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ABSTRACT

3D OBJECT DETECTION AND TRACKING FOR AUTONOMOUS
VEHICLES

By

Su Pang

Autonomous driving systems require accurate 3D object detection and tracking to achieve
reliable path planning and navigation. For object detection, there have been significant
advances in neural networks for single-modality approaches. However, it has been sur-
prisingly difficult to train networks to use multiple modalities in a way that demonstrates
gain over single-modality networks. In this dissertation, we first propose three networks for
Camera-LiDAR and Camera-Radar fusion. For Camera-LiDAR fusion, CLOCs (Camera-
LiDAR Object Candidates fusion) and Fast-CLOCs are presented. CLOCs fusion provides a
multi-modal fusion framework that significantly improves the performance of single-modality
detectors. CLOCs operates on the combined output candidates before Non-Maximum Sup-
pression (NMS) of any 2D and any 3D detector, and is trained to leverage their geometric
and semantic consistencies to produce more accurate 3D detection results. Fast-CLOCs
can run in near real-time with less computational requirements compared to CLOCs. Fast-
CLOCs eliminates the separate heavy 2D detector, and instead uses a 3D detector-cued 2D
image detector (3D-Q-2D) to reduce memory and computation. For Camera-Radar fusion,
we propose TransCAR, a Transformer-based Camera-And-Radar fusion solution for 3D ob-
ject detection. The cross-attention layer within the transformer decoder can adaptively learn
the soft-association between the radar features and vision queries instead of hard-association
based on sensor calibration only. Then, we propose to solve the 3D multiple object track-

ing (MOT) problem for autonomous driving applications using a random finite set-based



(RFS) Multiple Measurement Models filter (RFS-M3). In particular, we propose multiple
measurement models for a Poisson multi-Bernoulli mixture (PMBM) filter in support of
different application scenarios. Our RFS-M? filter can naturally model these uncertainties
accurately and elegantly. We combine learning-based detections with our RFS-M3 tracker
by incorporating the detection confidence score into the PMBM prediction and update step.
We have evaluated our CLOCs, Fast-CLOCs and TransCAR fusion-based 3D detector and
RFS-M3 3D tracker using challenging datasets including KITTI, nuScenes, Argoverse and
Waymo that are released by academia and industry leaders. Superior experimental results

demonstrated the effectiveness of the proposed approaches.
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PV-RCNN that are removed by our Fast-CLOCs. Green bounding boxes

are confirmed true positive detections. The upper row in each image is

the 3D detection projected to the image; the others are 3D detections in

LiDAR point clouds.| . . . . . . ... .. oo

XVl

65



[Figure 5.1:
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only detection has significant range error. Our TransCAR tusion can learn

the interactions between vision-based query and related radar signals and

predict improved detection. Unrelated radar points are prevented from

attention by Query-Radar attention mask.| . . . . . . .. ... ... ...
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Figure 5.2:

TransCAR system architecture. There are three primary components in

the system: (1) A camera network (DETR3D[12]) based on transformer

decoders to generate image-based 3D object queries. The initial object

queries are generated randomly; (2) A radar network that encodes radar

point locations and extracts radar features; (3) The TransCAR fusion

module based on three transformer cross-attention decoders. We propose

Details of radar network. The position encoding network (left) takes radar

point positions (zyz) as input. The radar data after preprocessing (Section

[5.2.2) are sent to the radar feature extraction network (right) to learn

useful radar features. Since radar signal is very sparse, each radar point is

treated independently. The numbers within the square brackets represent

the shape of thedata. |. . . . . . ... ... ... ... ... ... ....

[Figure 5.4:

Details of transformer camera-radar decoder layer. The vision-updated 3D

object queries are the queries to the multi-head cross attention module.
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[Figure 5.5:
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m/s) for class Car under the rain and no-rain scenes on nuScenes valida-
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Figure 5.7:
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Chapter 1

Introduction and Motivation

1.1 3D Object Detection

3D object detection, which is the core of 3D scene understanding and situation awareness, is
to recognize and determine 3D information of physical objects from sensor data. There are
mainly two tasks for 3D object detection: 3D object localization and object classification.
Many applications, including autonomous driving, service robots, virtual reality, and so on,
require 3D object detection.

Autonomous driving systems require accurate 3D object detection to achieve reliable
path planning and navigation. There are different definitions for 3D object detection under
different applications; for autonomous driving, 3D object detection is defined as determining
the object category, 3D position, heading, and size via a set of 3D bounding boxes from sensor
data. As shown in Figure[l.1 compared to 2D object detection, which has been well-studied
[13), [14), 15 [16], 3D object detection is more challenging with more output parameters needed
to specify 3D oriented bounding boxes around targets. Usually 4 parameters are used to
model a 2D bounding box, including top left pixel coordinates of the bounding box x1, 1
and bottom right pixel coordinates xo, y9 E While at least 7 parameters are needed to

represent a 3D bounding box, including 3D center location x, y, z, height h, width w and

L There are other ways to represent a 2D bounding box, such as center point pixel coordinate, and height
and width, it also requires 4 parameters.
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(b) 3D object detection pipeline.

Figure 1.1: 2D and 3D object detection pipelines. (a) 2D detection system takes RGB
images (or other sensor data) as input, and outputs 2D axis-aligned bounding boxes. (b)
3D detection system takes 3D point cloud (or other sensor data) and generates classified
oriented 3D bounding boxes.

length [ of the 3D bounding box, and heading angle 6.

LiDAR is the most commonly used 3D range sensor for accurate 3D object detection.
However, LiDAR-based methods [17, [4] I8, @, [19] are hampered by typically lower input
data resolution than video which has a large adverse impact on accuracy at longer ranges.
Figure [1.2]illustrates the difficulty of detecting vehicles at long range from just a few points
without texture information. The red bounding boxes in Figure show some missed
detections from a LiDAR-only detector (SECOND [4]) due to heavily occlusion and long
distance. In Figure .(b), the solid red bounding box represents a false positive detection
from a LiDAR-only detector. Due to the lack of texture and color information, and the low
resolution of LiDAR point cloud, the points within the solid red bounding box are detected
as a vehicle. Human annotators use both the camera images together with the LiDAR point

clouds to create the 3D ground truth bounding boxes [IT]. This motivates camera-LiDAR



(a) 3D detection using LiDAR point cloud on (b) 3D detection using LiDAR point cloud on
scene#1. scene#£2.

(c¢) LiDAR point cloud detection on scene#1 shown (d) LiDAR point cloud detection on scene#2 shown
in image. in image.

Figure 1.2: The challenge in detecting objects from LiDAR point cloud. Example #1 of
car detection from LiDAR-only methods: (a) and (c) show LiDAR-only detector missed two
vehicles due to occlusion, highlighted in dashed red bounding box. A second example, #2,
is show in (b) and (d), besides the missed detection highlighted in dashed red bounding box,
there is also a false positive detection represented in solid red bounding box.

fusion as a way to improve single-modal methods and achieve better 3D object detection.

Monocular cameras can also be used for 3D object detection, and are very popular due to
its low cost [20} 8 21], 22 12]. It can classify the object accurately, and can predict heading
angle and azimuth angle of the object precisely. However, the errors in depth estimation
are significant because regressing depth from single image is inherently an ill-posed inverse
problem. As shown in Figure the 3D properties obtained from monocular images are
often orders of magnitude worse than those obtained from a LiDAR point cloud.

Radars have been used for Advanced Driving Assistance System (ADAS) for many years.

Despite radar’s popularity in the automotive industry, it is challenging to directly estimate



Figure 1.3: Example of M3D-RPN [8] SOTA monocular image-only 3D detections. This
example highlights the error in 3D properties learned from monocular images. The red
bounding boxes represent the predictions from M3D-RPN, the green bounding boxes stand
for the ground truth. As shown in (a), the prediction looks perfect in image, but in 3D space
(b), there is significant location error.

classified 3D bounding boxes from automotive radar signal [23] 24] 25]. Compared to LiDAR
point clouds, automotive radar signals are much sparser, and they lack height information.
These properties make it challenging to distinguish between returns from objects of interest
and backgrounds.

While sensor fusion has potential to address the shortcomings of LiDAR-only, camera-
only and radar-only detections, finding an effective approach that improves on the state-of-
the-art single modality detectors has been difficult. This is illustrated in the official KITTI
3D Detection benchmark leaderboard EL where LiDAR-only based methods outperform most
of the fusion-based methods. Therefore, there is a clear need for further research in multi-
modal sensor fusion.

In this dissertation, we propose sensor fusion-based 3D object detection solutions for
the two most popular sensor setups in autonomous vehicles and ADAS systems: (1) cam-

era and LiDAR; (2) camera and radar. We first introduce CLOCs (Camera-LiDAR Object

2KITTI 3D Detection Leaderboard: http://www.cvlibs.net /datasets/kitti/.



Candidates Fusion) and Fast-CLOCs as a way to achieve improved accuracy for 3D object de-
tection. CLOCs uses much-reduced thresholds for each sensor and combines detection candi-
dates before Non-Maximum Suppression (NMS). By leveraging cross-modality information,
it can keep detection candidates that would be mistakenly suppressed by single-modality
methods, and remove detection candidates that violate the consistency between different
sensors. Fast-CLOCs can run in near real-time with less computational requirements com-
pared to CLOCs. It eliminates the separate heavy image-based 2D detector, and instead
uses a 3D detector-cued 2D image detector (3D-Q-2D) to reduce memory and computation.

We then propose TransCAR, a Transformer-based Camera-And-Radar fusion solution
for 3D object detection. TransCAR learns radar features from multiple radar scans and
then applies transformer decoder to learn the interactions between radar features and vision
queries. The cross-attention layer within the transformer decoder can adaptively learn the
soft-association between the radar features and vision queries instead of hard-association
based on sensor calibration only. In the end, TransCAR estimates a bounding box per
query using set-to-set Hungarian loss, which enables the method to avoid NMS. TransCAR

improves the velocity estimation using the radar scans without temporal information.

1.2 3D Multiple Object Tracking

3D Multiple object tracking (MOT) is to track independent 3D detections from multiple
frames and solve the association between them in 3D space. 3D MOT is a critical module
for enabling an autonomous vehicle to achieve robust perception of its environment and,
consequently, to achieve safe maneuvering within the environment surrounding the vehicle.

There are three main problems in 3D perception: 3D object detection, multiple object



tracking (MOT) and object trajectory forecasting. In a modular perception system, MOT
is a critical module that connects detection and forecasting.

For tracking-by-detection approaches, the impact of the quality of input detections that
are provided by the underlying detector is of paramount importance. However, due to the
complexity of cluttered environments and limitations of learning-based detectors, there are
many false positives, misses and inaccurate detections among input detections, as shown in
Figure[1.4 The main challenges for MOT in autonomous driving applications are threefold:
(1) uncertainty in the number of objects; (2) uncertainty regarding when and where the
objects may appear and disappear; (3) uncertainty in objects’ states. Traditional filtering
based methods, such as Kalman filtering [26], 27, 28], perform well in state update and
estimation but can hardly model the unknown number of objects, and the so-called birth and
death phenomena of objects. Meanwhile, the emergence of random finite set (RFS)[29, 30, 31]
based approaches has opened the door to developing theoretically sound Bayesian frameworks
that naturally model all the aforementioned uncertainties accurately and elegantly.

RFS-based MOT algorithms have been shown to be very effective for radar-based MOT
applications [32, B3]. In particular, Poisson multi-Bernoulli mixture (PMBM) filtering has
shown superior tracking performance and favorable computational cost [34] compared to
other RFS-based approaches. Consequently, under this work, we propose a PMBM filter to
solve the amodal MOT problem for autonomous driving applications. Applying RFS-based
trackers for 3D LiDAR data and/or for 2D /3D amodal detections (bounding boxes) has not
been well explored. Existing works in this area either underperform state-of-the-art trackers
or they have been tested using a small dataset that do not reflect broad and truly challenging
scenarios [35], 136, 37]. We believe that RFS-based method could provide a robust and highly

effective solution for these emerging detection modalities.



Figure 1.4: Overview of 3D multiple object tracking (MOT) system. For each frame, many
3D detections are generated, as the red bounding boxes on the top row. A 3D MOT sys-
tem needs to track the targets and filters out false positives (boxes shown within the blue
ellipses). For figures in the bottom row, different bounding box colors correspond to differ-
ent unique tracked IDs. Some tracks with the same IDs are connected with dashed lines to
help visualization.

In this dissertation, we propose to solve the 3D MOT problem for autonomous driving
applications using a random finite set-based (RFS) Multiple Measurement Models filter
(RFS-M3). In particular, we propose multiple measurement models for a Poisson multi-
Bernoulli mixture (PMBM) filter in support of different application scenarios. Our RFS-M3
filter can naturally model these uncertainties accurately and elegantly. We combine learning-
based detections with our RFS-M3 tracker by incorporating the detection confidence score
into the PMBM prediction and update step. To the best of our knowledge, this represents a
first successful attempt to employ an RFS-based approach in conjunction with 3D learning-
based detections for 3D MOT applications with comprehensive validation using challenging

datasets made available by industry leaders.



1.3 Summary of Research Contributions

This dissertation studies 3D object detection and tracking for autonomous vehicle appli-
cations. In particular, we explore using neural network-based sensor fusion as a way to
achieve improved accuracy for 3D object detection. Then we study applying random finite
set to solve the 3D multiple object tracking problem in tracking-by-detection fashion. This

dissertation delivers the following contributions:

e A novel Camera-LiDAR Object Candidates (CLOCs) fusion network is proposed to
achieve improved accuracy for 3D object detection. CLOCs improves single-modality
detectors, including SOTA detectors, to achieve new performance levels. As for now
(July 2022), CLOCs ranks the highest among all the monocular camera and LiDAR

fusion-based methods in the official KITTI 3D detection leaderboard.

e CLOCs and Fast-CLOCs are designed to exploit the geometric and semantic consisten-
cies between 2D and 3D detections and automatically learns probabilistic dependencies

from training data to perform fusion.

e Fast-CLOC:s is significantly more memory and computationally efficient than SOTA
fusion methods, and improves the SOTA camera-LiDAR fusion performance on the

KITTI and nuScenes datasets.

e The proposed 3D-Q-2D image detector within Fast-CLOCs outperforms SOTA image-

based detectors in 2D object detection.

e CLOCs uses any pair of pre-trained 2D and 3D detectors without retraining. Fast-
CLOCs uses any pre-trained 3D detector without retraining. The modularity and flex-

ibility of CLOCs and Fast-CLOCs enable them to be easily employed by any relevant
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already-optimized detection approaches.

To the best of our knowledge, this represents a first successful attempt to employ
transformer for the challenging camera and radar fusion. As for now (July 2022), the
proposed TransCAR ranks 1st among camera-radar fusion-based methods on nuScenes

3D detection benchmark.

Our studies investigate the inherent difficulties of data association for radar and cam-
era. And we propose to apply transformer to adaptively learn the soft-association and
shows superior 3D detection performance compared to hard-association depended on

sensor calibration.

An Random Finite Set-based Multiple Measurement Models filter (RFS-M3) is pro-
posed to solve the 3D MOT problem for autonomous driving applications. Multiple
measurement models ranging from 3D bounding box model to point measurement
model for a PMBM filter are studied in support of different application scenarios and

optimize the usage of computing resources.

To the best of our knowledge, this represents a first successful attempt to employ an
RFS-based approach that incorporates 3D detections from a neural network for 3D
MOT. We validated the performance of our RFS-M?3 tracker using three extensive
open datasets provided by three industry leaders — Waymo [7], Argoverse [38] and

nuSceness [2].



1.4 Thesis Organization

The rest of this dissertation is organized as follows. Chapter 2 gives more background intro-
duction and reviews related work on 3D object detection and traking. Then, we illustrate
our Camera-LiDAR Object Candidates (CLOCs) Fusion architecture and relevant details in
Chapter 3. In Chapter 4, we discuss the Fast-CLOCs. We then explain our Transformer-
based camera-and-radar fusion network (TransCAR) in Chapter 5. In Chapter 6, we discuss
the RFS-M3 tracker and analyze the experimental results on different open autonomous
driving datasets. Chapter 7 provides conclusions of the studies and discusses the future

work.
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Chapter 2

Background and Related Work

In the previous chapter we introduce the pipelines of 3D object detection and tracking,
including the input and output of the system. This chapter introduces the most commonly
used evaluation metrics for 3D object detection and tracking tasks. Then we discuss the
popular open datasets that are released by academia and industry leaders. These datasets
are golden standards for evaluating the 3D perception system of autonomous vehicles. In

the end, we review the related works.

2.1 Basics

2.1.1 Evaluation Metrics

There are multiple evaluation metrics for 3D object detection and tracking, we will give a
brief introduction on the evaluation metrics that are used in this dissertation, and are most

commonly applied in the autonomous driving applications.

2.1.1.1 Evaluation Metrics for 3D Object Detection

As discussed in the previous chapter, the output of a 3D object detection system is a set of
classified 3D bounding boxes and corresponding confidence scores. Each 3D bounding box

is represented as an 8-digit vector containing 3D dimension (height, width and length), 3D
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location (z,y, z), rotation (yaw angle) and confidence score. The confidence score is used
to model the confidence estimation of an object from the detector. 3D intersection over
union (IoU) is used for most 3D detection benchmarks as the true positive metric [I11 [7].
IoU is designed as a scale invariant metric, meaning that doubling the size and relative
overlap of two boxes will not change its value. All 3D detections are iteratively assigned to
ground truth 3D bounding boxes starting with the largest IoU. True positives are required
to overlap by more than a threshold and count multiple detections of the same object as
false positives [I1]. The threshold would be different for different object classes. The well
established average precision (AP) metric as describe in [39] is applied for evaluating the 3D
object detection.

In addition to 3D IoU, 2D center distance d on the ground plane between the 3D detection
and ground truth is also used as the true positive metric in some 3D detection benchmarks
[2]. Compared to 3D IoU, 2D center distance can decouple detection from object size and
orientation. This is better for evaluating small objects, such as pedestrians and cyclists, if
detected with a small translation error, but 0.0 IoU. Using center distance would make some

vision-only methods that tend to have large localization errors better evaluated. Figure [2.1

ToU=0.8 IoU=04 IoU=0.5 IoU =0.65

Figure 2.1: The difference between intersection over union (IoU) and center distance shown
in 2D. The blue and green bounding boxes in the four examples shown above have the same
center distance, while different IoU.
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shows the difference between IoU and center distance.

2.1.1.2 Evaluation Metrics for 3D Multiple Object Tracking

3D MOT is to track the independent 3D detections from multiple frames and solve the
association between them in 3D space. The output of a 3D MOT system is a set of tracked
3D targets, also referred as 3D tracks, modeled as classified 3D bounding boxes with tracked
IDs. For each tracked 3D track, in addition to the 7 parameters (z,y, z, h,w,[,8) used to
represent the 3D bounding box, there are two more parameters attached: tracked ID and
tracked confidence. Tracked ID is used to specify the identity of an object, the same object
across multiple frames possesses the same tracked ID. Tracked confidence is the confidence
estimation of a track from the tracker.

We use standard evaluation metrics commonly used for MOT [40, [41], 42} 2, 38, [7]. The
primary metrics are as follows:
MOTA: Multiple object tracking accuracy, it computes the ratio of all object configuration
errors made by the tracker, including false positives, misses, mismatches, over all frames [40].
Usually represented as a percentage or a floating number smaller than 1.0, when there are
more mistakes than the number of ground truths, MOTA could be negative.
AMOTA: Average multiple object tracking accuracy, proposed in [6]. Similar to the calcu-
lation of average precision (AP), AMOTA averages MOTA across all recall thresholds.
IDF1: F1 score, the harmonic mean of precision and recall, denotes as 2(precision x*
recall) /(precision + recall), where precision is the number of true positives over sum of
true positives and false positives, recall is the number of true positives over number of total
ground truth labels.

There are some other secondary metrics:

13



MOTP: Multiple object tracking precision. The total error in estimated position for
matched object-hypothesis pairs over all frames, averaged by the total number of matches
made. It shows the ability of the tracker to estimate precise object positions, independent
of its skill at recognizing object configurations, keeping consistent trajectories [40].
AMOTP: Average multiple object tracking precision, proposed in [6]. AMOTP averages
MOTP across all recall thresholds.
MOTP-I: Multiple object tracking precision based on intersection over union error. The
amodal shape estimation error, computed by the 1 — IoU of 3D bounding box projections
on zy plane after aligning orientation and centroid.
FP and FP%: The number of false positives and the false positive ratio. FP% is defined as
the number of false positives divided by the total number of objects [40].
TP and TP%: The number of true positives and the true positive ratio. TP% is calculated
as the number of true positives divided by the total number of objects [40].
IDS: The number of identity ID switches.

Similar to 3D object detection metrics, the true positive metrics for 3D MOT includes

3D IoU-based [7] and center distance-based [38] [2].

2.1.2 Datasets

There are some open datasets released by academia and industry leaders that are treated as
golden standards for evaluating 3D object detection and tracking.

KITTI: The KITTI dataset [11] released by Karlsruhe Institute of Technology and Toyota
Technological Institute at Chicago is one of the pioneering works for benchmarking percep-
tion systems for autonomous driving applications. The data are collected in the midsize city

of Karlsruhe, Germany. KITTI dataset has multiple benchmarks including 2D and 3D ob-
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ject detection, 2D MOT, road/lane detection, semantic segmentation, depth completion and
so on. Since KITTI doesn’t provide 3D tracking benchmark, we only use this dataset for
evaluating 3D object detection. The 3D object detection benchmark consists of 7481 train-
ing images and 7518 test images as well as the corresponding point clouds, comprising a
total of 80,256 labeled objects. Three classes including car, pedestrian and cyclist are well
labeled and are counted in the final evaluation. Although the field of view (FOV) of LiDAR
is 360 degree, KITTI only labeled the shared FOV between LiDAR and camera which is 90
degree. Objects that are visible for both LIDAR and camera are counted in evaluation. The
data collection frequency and annotation frequency are both 10Hz. 3D IoU is used as the
true positive metric.

nuScenes: nuScenes dataset is a large-scale autonomous driving dataset with 3D object
annotations released in 2018 by Motional (formerly nuTonomy) [2]. It carries the full au-
tonomous vehicle sensor suite: 6 cameras, 5 radars and 1 32-line LiDAR, all with 360 degree
field of view (FOV). nuScenes consists of 1000 data sequences collected in Boston and Singa-
pore, each 20 seconds long and fully annotated with 3D bounding boxes for 10 major classes.
Among the 1000 data sequences, 850 sequences are for training and validation, the rest 150
sequences are for testing. It has 7x as many annotations and 100x as many images as
the pioneering KITTI dataset. nuScenes has both 3D object detection and 3D multi-object
tracking benchmarks. The data collection frequency for LIDAR, camera and radar are 20Hz,
12Hz and 13Hz respectively. The annotation frequency is 2Hz. Center distance is used as
the true positive metric.

Argoverse: Argoverse was collected in Pittsburgh and Miami and released in 2019 [38] by
Argo AL The 3D tracking dataset includes 360 degree images from 7 cameras with overlap-

ping FOV, 3D point clouds from long range LiDAR. Argoverse 3D tracking dataset consists
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KITTI|nuScenes|Argoverse| Waymo
Number of data sequences 22 1000 113 1150
Annotated frequency 10Hz | 2Hz 10Hz 10Hz
Number of annotated Frames| 15K 40K 22K 230K

Hours 1.5 5.5 1 6.4

Number of 3D annotations | 80K 1.4M 993K 12M
Number of LiDAR 1 1 2 5
Number of camera 6 9 5)
Visited area (km?) - 5 1.6 76

Table 2.1: Basic information comparison between KITTI, nuScenes, Argoverse and Waymo
Datasets.

of 113 total number of data sequences and 15-30 seconds for each sequence. The data are di-
vided into three sets: 65 sequences for training (~ 13000 frames), 24 sequences for validation
(~ 5000 frames) and 24 sequences for test (~ 4200 frames). The data collection frequency
for LIDAR and camera are 10Hz and 30Hz respectively. The annotation frequency is 10Hz.
Center distance is applied as the true positive metric.

Waymo: Waymo dataset [7] is released in 2019 and so far is the largest dataset for au-
tonomous driving perception systems. The dataset consists of 1150 data sequences that each
span 20 seconds. Among the 1140 data sequences, 1000 sequences are for training and valida-
tion, 150 sequences are for testing. The data collection was conducted using 5 LiDARs and
5 high-resolution cameras in multiple cities including San Francisco, Phoenix, and Mountain
View, with large geographic coverage within each city. The data collection frequency and

annotation frequency are both 10Hz. 3D IoU is applied as the true positive metric.
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(c) Argoverse data collection vehicle [38].  (d) Waymo data collection vehicle [7].

Figure 2.2: Data collection vehicles for different datasets.

2.2 Existing Works in 3D Object Detection

We can classify 3D object detection methods according to the sensor modalities applied.
Therefore, the four main categories of 3D object detection are based on (1) cameras, (2)
LiDARs, (3) Radars, and (4) Multi-Modal Fusion. Although camera-based methods are
attractive for not requiring LiDAR, there is a large gap in 3D performance between these
methods and those that utilize LIDARs. Camera-LiDAR Fusion-based methods are supposed
to have the best performance, however, the fact is that the overall performance of camera-
LiDAR fusion-based methods is still worse than LiDAR-only based methods. According to
the KITTI 3D detection leaderboard, the average precision (AP) for the best monocular

camera-based 3D detector is 13.87% (MonoEF [43]), for the best stereo camera-based 3D
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detector is 64.66% (LIGA-Stereo [44]), while for the best LIDAR-based 3D detector is 82.54%
(SE-SSD [45]). Our proposed camera-LiDAR fusion-based method CLOCs [I] is currently
the best camera-LiDAR fusion-based method, the AP is 82.28%. CLOCs utilizes image-
based 2D detections to boost the performance of LiDAR-only detectors. The current best
result of CLOCs (82.28%) is achieved by improving CT3D [46] whose original AP is 81.77%.
Ideally, CLOCs is able to boost the best LiDAR-only detector SE-SSD (82.54%) to achieve
the best overall performance, but we do not have the source code for reproducing SE-SSD.
CLOCs creates a new baseline for camera-LiDAR fusion approaches.

Despite radar’s popularity in the automobile industry, few studies focus on fusing radar
signals with other sensor data. Compared to LIDAR point clouds, automotive radar signals
are much sparser, and they lack height information. However, as will be illustrated in the
later chapters, radar has its strengths. Radar can provide accurate depth measurement that
monocular camera-based solutions lack of. Our TransCAR uses transformer to fuse radar
and vision features, and ranks 1st among camera-radar fusion-based methods on nuScenes
3D detection benchmark. TransCAR even outperforms some LiDAR-based solutions released

in the early stages, such as PointPillars [19].

2.2.1 3D Detection using Camera

Monocular camera-based approaches: Estimating objects’ 3D dimensions and locations
from monocular 2D images without any references is impractical for traditional computer
vision approaches. The development of Convolutional Neural Networks (CNN) and massive
annotated training data make it possible. Mousavian et al. [20] use geometric constraints
between 2D and 3D bounding boxes to recover 3D information. [47, [48] estimate 3D object

information by calculating the similarity between 3D objects and CAD models. [§] proposes
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to reformulate the monocular 3D detection problem as a standalone 3D region proposal net-
work rather than relying on external networks, data or models. They leverage the geometric
relationship of 2D and 3D perspectives, allowing 3D boxes to utilize convolutional features
from the image plane. It is always challenging to handle objects that are occluded; to this
end, [21] proposes to consider the relationship of paired samples. This allows them to encode
spatial constraints for partially occluded objects from their adjacent neighbors. RTM3D [49]
studies to predict the nine perspective keypoints of a 3D bounding box in image space, and
then utilizes the geometric relationship of 3D and 2D perspectives to recover 3D properties
in 3D space. RTM3D is fast and the inference speed is faster than 24Hz. [50] quantifies the
impact introduced by each subtask in monocular 3D detection by intensive diagnosis exper-
iments, and find the ‘localization error’ is the vital factor. They propose three strategies
to improve the network. Another category is based on “Pseudo-LiDAR” techniques [51] 52]
originally designed for stereo cameras. These methods leverage advances in monocular depth
estimation and generate pseudo point clouds first, then training LiDAR-based detectors on
the resulting “Pseudo-LiDAR” point clouds to perform 3D object detection [53, 54, 55] 56].
Per-pixel depth estimation is the key for Pseudo-LiDAR-based approaches. The community
has made great progress in dense depth prediction [57, 68, (B9l 60, 61, 62]. Unlike above
methods, DETR3D [12] proposes a top-down transformer-based approach which utilizes ini-
tial 3D queries to index 2D image features to refine 3D queries and achieves new SOTA
performance.

Stereo camera-based approaches: Compared to monocular camera systems, stereo cam-
era systems can calculate depth with much more accuracy based on disparity maps. With
the help of CNNs and large number of annotated data, stereo camera system could achieve

much better performance. Pseudo-LiDAR [52] and Pseudo-LiDAR++ [51] explore using
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stereo images to generate dense point cloud (with disparity map) and conduct 3D object de-
tection using that cloud. Disp RCNN [63] thinks that the disparity map computed for the
entire image in Pseudo-LiDAR is costly and fails to leverage category-specific prior. There-
fore, they design an instance disparity estimation network (iDispNet) that predicts disparity
only for pixels on objects of interests and learns a category-specific shape prior for more ac-
curate disparity estimation. LIGA-Stereo [44] points out the high-level features learned by
stereo-based detectors are easily affected by the erroneous depth estimation due to the limita-
tion of stereo matching, so they utilize superior geometric-aware features from LiDAR-based
3D detection models to guide the training of stereo-based 3D detectors.

These image-based methods are promising, but compared to LiDAR-based techniques,

they generate much less accurate 3D bounding boxes.

2.2.2 3D Detection using LiDAR

Point-cloud techniques currently lead in popularity for 3D object detection. Compared to
multi-modal fusion based methods, single sensor setup avoids multi-sensor calibration and
synchronization issues. However, object detection performance at longer distance is still
relatively poor. Methods vary by how they encode and learn features from raw point clouds.
PointNet [I§] is the seminal work that takes raw point clouds as input and designs a neural
network to learn point-wise features directly from point clouds for 3D object detection and
instance segmentation. [I7] uses voxels to encode the raw point clouds, and 3D Convolutional
Neural Networks (CNN) are applied to learn voxel features for classification and bounding
box regression. SECOND [4] is the upgrade version of [I7], since raw LiDAR point cloud
has very sparse data structure, it uses sparse 3D CNNs which reduces the inference time

significantly. PointPillars [I9] uses PointNets [I§] in an encoder that represents point clouds
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organized in vertical columns (pillars) followed by a 2D CNN detection head to perform 3D
object detection; it enables inference at 62 Hz.

Compared with one-stage methods discussed above, PointRCNN [9], Fast PointRCNN
[64] and STD [65] apply a two-stage architecture that first generates 3D proposals in a
bottom-up manner and then refines these proposals in a second stage. PV-RCNN [I0]
leverages the advantages of both 3D voxel CNN and PointNet-based [I8] set abstraction to
learn more discriminative features. Additionally, Part-A? in [66] explores predicting intra-
object part locations (lower left, upper right, etc.) in the first stage, and such part locations
can assist accurate 3D bounding box refinement in the second stage. In order to achieve
better performance in long distance, Pyramid RCNN [67] is proposed to utilize a second-
stage module named pyramid Rol head, to adaptively learn the features from the long range
sparse points of interests.

Mao et al. and Sheng et al. introduce transformer into 3D object detection using point
clouds and propose Voxel Transformer (VoTr) [68] and Channel-wise Transformer (CT3D)
[46]. VoTr enables long-range relationships between voxels by self-attention to capture
large context information. CT3D simultaneously performs proposal-aware embedding and
channel-wise context aggregation for the point features with each proposal to achieve im-
proved accurate 3D object predictions. SE-SSD [45] utilizes both soft and hard targets with
constraints to jointly optimize the SSD (single-stage object detector) [69] through a pair of

teacher and student model [70)].

2.2.3 3D Detection using Radar

Due to the sparsity nature of radar measurements, it is challenging to use radar as the

primary sensor for full 3D object detection. Existing studies mainly focus on 2D and bird’s

21



eye view (BEV) object detection tasks [23], 24, 25]. Major et al. [23] propose to encode radar
signal as Range-Azimuth-Doppler tensors, then applies 3D convolutions to detect vehicles in
the BEV space. Schumann et al. [24] use the popular PointNet [18] to extract features from
radar point cloud and perform semantic segmentation. Graph Convolution Network (GNN)
is also introduced to process the raw radar tensor for 3D object detection [25]. Existing
works [23], 24], 24] in this area are mainly for low level autonomy such as collision avoidance
instead of advanced self-driving and ADAS system. And they are tested using small datasets

that do not reflect broad and truly challenging scenarios.

2.2.4 3D Detection using Multi-Modal Fusion

Camera-LiDAR Fusion-based approaches: Frustum PointNet [71], Pointfusion [72]
and Frustum ConvNet [73] are the representatives of 2D driven 3D detectors, which exploit
mature 2D detectors to generate 2D proposals and narrow down the 3D processing domain to
the corresponding cropped region in the image. But the 2D image-based proposal generation
might fail in some cases that could only be observed from 3D space.

MV3D [74] and AVOD [75] project the raw point clouds into bird’s eye view (BEV) to
form a multi-channel BEV image. A deep fusion based 2D CNN is used to extract features
from this BEV image as well as the front camera image for 3D bounding box regression.
The overall performance of these fusion-based methods is worse than LiDAR-only-based
methods. Possible reasons include: First, transforming raw point clouds into BEV images
loses spatial information. Second, the crop and resize operation used in these algorithms
in order to fuse feature vectors from different sensor modalities may destroy the feature
structure from each sensor. Camera images are high-resolution dense data, while LiDAR

point clouds are low-resolution sparse data, fusing these two different types of data structure
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is not trivial. Forcing feature vectors from 2D images and 3D LiDAR point clouds to have
the same size or equal-length, then concatenating, aggregating or averaging them could
result in inaccurate correspondence between these feature vectors and therefore is not the
optimal way for fusing features. In order to fuse features from different sensor modalities
with better correspondence, MMF [76] adopts continuous convolution [77] to build dense
LiDAR BEV feature maps and performs point-wise feature fusion with dense image feature
maps. 3D-CVF [78] employs auto-calibrated projection to transform the 2D camera features
to a smooth spatial feature map with the highest correspondence to the LiDAR features
in the BEV domain, then a gated feature fusion network is applied to fuse the features.
PointPainting [79] works by projecting LiDAR points into the semantic segmented image
and appending the classification scores to each point, this ‘painted’ point cloud can then be
fed to any LiDAR-based detectors. EPNet [80] presents a fusion module to augment the point
features with semantic image features in a point-wise manner. The overall performance of
these fusion-based methods is worse than LiDAR-only-based methods. Our proposed CLOCs
[1] is currently the best camera-LiDAR fusion-based 3D detector in the KITTI 3D detection
leaderboard.

Camera-Radar Fusion-based approaches: Few studies have focused on radar and cam-
era fusion-based 3D object detection. Most existing works either cannot predict 3D bounding
boxes or underperform monocular camera-based solutions. Some studies project radar points
onto the image plane to assist 2D object detection, especially for distant objects [81], 82].
RODNet [83] [84] proposes a camera-radar fusion cross-model supervision framework for
training the radar object detection network. It also proposes a different evaluation metric
to evaluate point-based radar detections in range-azimuth coordinates. Nabati et al. [85]

introduce a radar object proposal network to generate 3D proposals. These proposals are

23



mapped to the image and fed into a radar proposal refinement network for 3D bounding box
refinement. CenterFusion [86] uses a frustum-based method to associate radar features and
object center points in BEV. The associated radar features are used to complement image

features for better depth estimation in 3D object detection.

2.3 Existing Works for 3D Multi-Object Tracking

In this section, we focus on multiple object tracking (MOT) methods for autonomous driving

applications.

2.3.1 Multi-Object Tracking using Traditional Filtering

Kalman filter [26] and its variants are the most popular approaches in this category. Weng
et al [6] uses a combination of 3D Kalman filter and Hungarian algorithm for state esti-
mation and data association. This method can achieve reasonable performance with very
low computational cost and became the baseline methods for many 3D tracking competi-
tions [2, 38, [7]. Chiu et al [28] modified [6] by using stochastic information from the Kalman
filter in the data association step by measuring the Mahalanobis distance between predicted
object states and detections. But the simple birth-and-death management of targets and

single distance-based association make these methods struggle in cluttered environments.

2.3.2 Multi-Object Tracking using Neural Networks

Compared to traditional filtering-based approaches, recently developed neural network-based
methods can capture the descriptive features and temporal motion features from raw sensor

data for MOT. Frossard and Urtasun apply a convolutional neural network (CNN)-based
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Match Network to compute a matching cost score to formulate the data association problem
as a linear program [87]. Similarly, FANTrack [88] uses a CNN to learn a similarity function
that combines cues from both image and spatial features of objects. Weng et al proposes
GNN3DMOT to use a graph neural network to improve the discriminative feature learning for
MOT [89]. Some other methods [90} 9T} 02] 93] combine MOT with detection or forecasting
to reduce system complexity. These learning-based approaches use complicated networks
and require a great deal of training. They have great potential, but tracking performance
is so far similar or slightly worse than many filtering-based methods according to popular

open 3D tracking benchmark leaderboards.

2.3.3 Multi-Object Tracking using Random Finite Set

A recent family of MOT algorithms is based on RFS [29, B30, B1], including probability
hypothesis density (PHD) filter [94], cardinalized PHD filter [95], generalized labeled multi-
Bernoulli (GLMB) [96] and PMBM [97, 98]. PHD filter and CPHD filter are two examples
of moment approximations of the multi-object density. GLMB and PMBM are examples
of using multi-object conjugate priors. Among these RFS-based filtering methods, PMBM
filtering has shown superior performance and favourable computational cost [34] when com-
pared to other RFS-based approaches. RFS-based MOT algorithms have been shown to be
very effective for point target and extended shape target measurement models MOT ap-
plications [32} 33] B7]. However, the 3D input detection format (classified 3D/2D bounding
boxes) for modern autonomous driving systems is significantly different from point/extended
target models. Applying RFS for 2D /3D amodal detections (bounding boxes) from learning-
based detections has not been well explored. Existing works in this area either underperform

state-of-the-art trackers or they have been tested using a small dataset that do not reflect
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broad and truly challenging scenarios [35], 36} 37].

2.4 Summary of the Chapter

In this chapter we first review some basics about 3D object detection and tracking. For
3D object detection, there are mainly two true positive metrics: 3D IoU-based and center-
distance-based. Average precision is widely used to evaluate the performance for 3D object
detection. For 3D MOT, there are multiple evaluation metrics from different perspectives,
the primary metrics are MOTA and F1 score. Then we discuss the popular open datasets
that are released by academia and industry leaders: KITTI, nuScenes, Argoverse and Waymo
datasets. These datasets are the golden standards for evaluating 3D perception systems of
autonomous vehicles. In the end, we review the existing published works.

From the existing works we can summarize the issues in 3D object detection and tracking.
For 3D object detection, camera-based approaches suffer from low accuracy depth estima-
tion, which result in high ‘localization error’. Even for stereo camera-based approaches,
the depth estimation for long distance is still problematic. The main issues for LiDAR-
based approaches are originated from the low resolution of LiDAR scans and the lack of
appearance information. These issues make LiDAR-based approaches struggled in handling
long-distance and occluded objects. Due to the sparsity nature of radar measurements, it is
challenging to use radar as the primary sensor for full 3D object detection. Fusion-based ap-
proaches are supposed to have the best performance, but due to the issues in multi-sensor
data alignment and feature association, they perform worse than LiDAR-only approaches.
Our proposed CLOCs, Fast-CLOCs and TransCAR resolve some of the issues in fusion and

achieve new performance levels.
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For 3D MOT, traditional Kalman filter-based approaches cannot properly model the
birth and death of tracks and other uncertainties in MOT, which makes them struggled in
cluttered environments. Neural network-based approaches open a new window for solving 3D
MOT, but these methods are much heavier than traditional methods. This is problematic for
limited computing resources on the vehicle that are also requested by other heavy perception
tasks, such as object detection. The similarity matching network is also not stable for various
tracking scenarios. RFS-based approaches can naturally model the uncertainties in MOT
applications, but applying RFS with 3D detections (bounding boxes) and LiDAR has not
been well explored. Existing works in this area either underperform state-of-the-art trackers
or have been tested using small unrealistic datasets. Our proposed RFS-M3 addresses these

issues and outperforms previous methods.
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Chapter 3

CLOCs: Camera-LiDAR Object
Candidates Fusion for 3D Object

Detection

3.1 Introduction

Autonomous driving systems need accurate 3D perception of vehicles and other objects
in their environment. Unlike 2D visual detection, 3D-based object detection enables spatial
path planning for object avoidance and navigation. Compared to 2D object detection, which
has been well-studied [13| 14} [I5] [16], 3D object detection is more challenging, with more
output parameters needed to specify 3D oriented bounding boxes around targets. In addition,
LiDAR methods [17, 4] 18, [0, 19] are hampered by typically lower input data resolution than
video, which has a significant adverse impact on accuracy at longer ranges. Figure [3.1
illustrates the difficulty in detecting vehicles from just a few points with no texture at long
range. Human annotators use both camera images together with the LiDAR point clouds
to create ground truth bounding boxes [I1]. This motivates multi-modal sensor fusion as a
way to improve single-modal methods.

While sensor fusion has the potential to address the shortcomings of video-only and
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(¢) Image-only detector on #1. (d) CLOCs on #1 shown in img.

(g) Image-only detector on #2. (h) CLOCs on #2 shown in img.

Figure 3.1: Example #1 of car detection from single modality methods: (a) LiDAR-only
detector, and (c) image-only detector, with our CLOCs fusion shown in (b) and (d). A
second example, #2, is shown in the bottom 4 sub-figures. Dashed red box shows missed
object and solid red bounding box shows false positive detection. Our proposed CLOCs
fusion can correct both of these errors.

LiDAR-only detections, finding an effective approach that improves on the state-of-the-
art single modality detectors has been difficult. This is illustrated in the official KITTI

3D object detection benchmark leaderboard, where LiDAR-only based methods outperform
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most of the fusion based methods. Fusion methods can be divided into three broad classes:
early fusion, deep fusion and late fusion, each with their own pros and cons. Although early
and deep fusion have greatest potential to leverage cross modality information, they suffer
from sensitivity to data alignment, often involve complicated architectures [74) [75], [72, [77],
and typically require pixel-level correspondences of sensor data. On the other hand, late
fusion systems are much simpler to build as they incorporate pre-trained, single-modality
detectors without change, an only need association at the detection level. Our late fusion
approach uses much-reduced thresholds for each sensor and combines detection candidates
before Non-Maximum Suppression (NMS). By leveraging cross-modality information, it can
keep detection candidates that would be mistakenly suppressed by single-modality methods.

We propose Camera-LiDAR Object Candidates Fusion (CLOCs) as a way to achieve
improved accuracy for 3D object detection. The proposed architecture delivers the following

contributions:

e Versatility & Modularity: CLOCs uses any pair of pre-trained 2D and 3D detectors
without requiring re-training, and hence, can be readily employed by any relevant

already-optimized detection approaches.

e Probabilistic-driven Learning-based Fusion: CLOCs is designed to exploit the
geometric and semantic consistencies between 2D and 3D detections and automatically

learns probabilistic dependencies from training data to perform fusion.

e Speed and Memory: CLOCs is fast, leveraging sparse tensors with low memory

footprint, which only adds less than 3ms latency for processing each frame of data on

a desktop-level GPU.

e Detection Performance: CLOCs improves single-modality detectors, including state-
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of-the-art detectors, to achieve new performance levels. At the time of submission,
CLOCSs ranks the highest among all the fusion-based methods in the official KITTI

leaderboard.

3.2 2D and 3D Object Detection

We first introduce the basic representations of 2D and 3D object detection used in this dis-
sertation. 2D detection systems discussed in this dissertation take RGB images as input,
and output classified 2D axis-aligned bounding boxes with confidence scores, as shown in
Figure 3.2l 3D detection systems generate classified oriented 3D bounding boxes with con-
fidence scores, as shown in Figure 3.2 In the KITTI dataset [I1] only rotation in z axis is
considered (yaw angle), while rotations in x and y axis is set to zero for simplicity. Using
calibration parameters of the camera and LiDAR, the 3D bounding box in the LiDAR coor-
dinate can be accurately projected into the image plane, as shown in Figure [3.2] As we will
discuss in section [3.5.1] this projection motivates us to design an IoU-based metric in the

image plane to quantify the geometric consistency between 3D detections and 2D detections.

N
-

-

Projected 3D detection (green)
and 2D detection (yellow)

2D detection

Figure 3.2: 2D and 3D object detection. An object that is correctly detected by both a 2D
and 3D detector will have highly overlapped bounding boxes in the image plane.



3.3 Existing Issues for Camera-LiDAR Fusion

Data association between different sensor modalities is arguably the most challenging issue
for multi-modal sensor fusion. While 3D LiDAR points can be projected into a correspond-
ing image to obtain a 2D-3D association, the LiDAR points are typically sparse, resulting
in incomplete pixel association, and moreover, association typically has errors. There are
multiple reasons for erroneous associations, including differing visibility, occlusions due to
displaced sensor viewpoints, as well as scan-time differences from a moving platform, as
illustrated in Figure. [3.3]

These mismatches are particularly problematic for early and deep fusion. These methods
rely on fused data structures including image-augmented LiDAR point cloud [79, 80, LiDAR-
augmented depth image [99] and BEV grid-map that stores visual information and LiDAR
points from a pillar space into a grid [74], [75]. The mismatch error in the original pixel
association can harm the downstream learning due to difficulty in distinguishing backgrounds
and foregrounds.

The mismatch exists in feature domains as well. In early and deep fusion methods, some

fusion operations are performed in the intermediate stage; this includes the concatenation,

Figure 3.3: Examples of mismatch in projected LiDAR points and camera image pixels. Left
ellipse shows many points from the background projected on the vehicle. The right ellipse
shows missing LiDAR points and so no association for camera pixels.
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aggregation and averaging of visual and point cloud features. Cropping, resizing and pooling
operations are needed to convert them into the same shape. These steps can result in
inaccurate correspondence between these feature vectors and therefore likely degrading the

final fusion performance.

3.4 Why Fusion of Detection Candidates

Fusion architectures can be categorized according to the point at which features from different
modalities are combined. As shown in Figure three general categories are (1) early
fusion that combines data at input, (2) deep fusion that has different networks for different
modalities while simultaneously combining intermediate features, and (3) late fusion that
processes each modality on a separate path and fuses the outputs at the decision level.
Early fusion has the greatest opportunity for cross-modal interaction, but at the same
time inherent data differences between modalities including alignment, representation, and
sparsity are not necessarily well-addressed by passing them all through the same network.
Deep fusion addresses this issue by including separate channels for different modalities,
while still combining features during processing. This is the most complicated approach,
and it is not easy to determine whether complexity actually leads to real improvements.
Late fusion has a significant advantage in training; single-mode algorithms can be trained
using their own sensor data. Hence, the multi-modal data do not need to be synchronized or
aligned with other modalities. Only the final fusion step requires jointly aligned and labeled
data. Additionally, the detection level data on which late fusion operates are compact and
simple to encode for a network. Since late fusion prunes rather than creates new detections,

it is important that the input detectors be tuned to maximize their recall rate rather than
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(a) Early fusion. (b) Deep fusion.
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(c) Late fusion.

Figure 3.4: Different fusion architectures. (a) Early fusion combines the input sensor data
at the input stage. (b) Deep fusion has different channels for each sensor modalities and
fuses the features at the intermediate stage. (c) Late fusion processes each modality on a
separate path and fuses the outputs in the decision level.

their precision. In practice, this implies that individual modalities (a) avoid the NMS stage,
which may mistakenly suppress true detections, and (b) keep thresholds as low as possible.

In our late fusion framework, we incorporate all detection candidates before NMS in the
fusion step to maximize the probability of extracting all potential correct detections. Our
approach is data-driven; we train a discriminative network that receives as input the output
scores and classifications of individual detection candidates, as well as spatial descriptions of
the detection candidates. It learns from the data how best to combine the input detection

candidates for the final output detection.
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3.5 Camera-LiDAR Object Candidates Fusion

3.5.1 Geometric and Semantic Consistencies

For a given frame of image and LiDAR data, there may be many detection candidates of
with various confidences in each modality from which we seek a single set of 3D detections
and scores. Fusing these detection candidates requires an association between the different
modalities (even if the association is not unique). For this, we build a geometric association

score and apply semantic consistency. These are described in more detail as follows.

3.5.1.1 Geometric Consistency

As discussed in Section and shown in Figure [3.2] an object that is correctly detected by
both a 2D and a 3D detector will have highly overlapped bounding boxes in the image plane,
where false positives are less likely to have highly overlapped bounding boxes. Small errors
in pose will result in a reduction of overlap. This motivates an image-based Intersection over
Union (IoU) of the 2D bounding box and the bounding box of the projected corners of the
3D detection, to quantify geometric consistency between a 2D and a 3D detection.

There are 8 corner points and 12 edges in a 3D bounding box, after projecting them on the
image plane, the contour would be an irregular polygon, see Figure It would be slightly
complicated to calculate the IoU between an irregular polygon and a 2D bounding box (from
the image detector). Therefore, in this dissertation, we use the maximum and minimum zy
pixel coordinates from the 8 corner points to form an axis-aligned 2D bounding box as the
projected 3D bounding box. So, in the following sections, we refer to this axis-aligned 2D

bounding box as the projected 3D detection.
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Figure 3.5: The process of projecting 3D bounding box in the LiDAR coordinate onto the
image plane, and leveraging the 8 corner points (highlighted in red) to build axis-aligned 2D
bounding box (the orange box in the third figure). This 2D bounding box is referred as the
projected 3D detection, and used to quantify the geometric consistency.

3.5.1.2 Semantic Consistency

Detectors may output multiple categories of objects, but we only associate detections of the
same category during fusion. We avoid thresholding detections at this stage (or use very low
thresholds) and leave thresholding to the final output based on the final fused score.

The two types of consistencies illustrated above is the fundamental concept used in our

fusion network.

3.5.2 Network Architecture

In this section we explain the preprocessing/encoding of fused data, the fusion network
architecture and the loss function used for training.

3.5.2.1 Sparse Input Tensor Representation

The goal of our encoding step is to convert all individual 2D and 3D detection candidates into
a set of all consistent joint detection candidates which can be fed into our fusion network.
The general output of a 2D object detector is a set of 2D bounding boxes in the image plane

and the corresponding confidence scores. For k 2D detection candidates in one image can
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Figure 3.6: CLOCs Fusion network architecture. First, individual 2D and 3D detection
candidates are converted into a set of consistent joint detection candidates (a sparse tensor,
the blue box); Then a 2D CNN is used to process the non-empty elements in the sparse input
tensor; Finally, this processed tensor is mapped to the desired learning targets, a probability
score map, through MaxPooling.

be defined as follows:

P2D 2D}7

2D _ 2D
:{pl 7p2 ka

D —{lw, v, wig, yio) . 527}

P2D s the set of all k detection candidates in one image, for i;, detection pi2D, xi1, Y1 and

x;9,Y;o are the pixel coordinates of the top left and bottom right corner points from the 2D

2D ig the confidence score.

bounding box. s;
The output of 3D object detectors are 3D oriented bounding boxes in LiDAR coordinate
and confidence scores. There are multiple ways to encode the 3D bounding boxes, in KITTI

dataset [I1], a 7-digit vector containing 3D dimension (height, width and length), 3D location

(x,y,2) and rotation (yaw angle) is used. For n 3D detection candidates in one LiDAR scan
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can be defined as follows:

D D D D
P3P —(p3D p3D  p3D} .

p?D :{[h’m Wi, li7 Ty, Yis 24 GZ] ) SfD}

P3D

where is the set of all n detection candidates in one LiDAR scan, for i;, detection p?D,

[hiy wi, Uiy i, 94, 24, 6;] 1s the 7-digit vector for 3D bounding box. sg’D is the 3D confidence
score. Note that we take 2D and 3D detections without doing NMS, as discussed in the
previous section, some correct detections may be suppressed because of limited information
from single sensor modality. Our proposed fusion network would re-evaluate all detection
candidates from both sensor modalities to make better predictions. For k 2D detections and
n 3D detections, there are k x n combinations of associations; therefore, we build a k x n x 4
tensor T, as shown in Figure . For each element T j, there are 4 channels denoted as

follows:

Ti,j = {[OUi,j> SZZD, S?D, d]} (3.3)

2D

where IoU; j is the ToU between iy, 2D detection and jy, projected 3D detection, s and

s?D are the confidence scores for iy, 2D detection and jy, 3D detection, respectively. d;
represents the normalized distance between the j;, 3D bounding box and the LiDAR in the
zy plane. Elements T; ; with zero IoU are eliminated as they are geometrically inconsistent.

The input tensor T is sparse because for each projected 3D detection, only few 2D
detections intersect with it and so most of the elements are empty. The fusion network only

needs to learn from these intersected examples. Because we take the raw predictions before

NMS, k and n are large numbers, for SECOND [4], there are 70400 (200 x 176 x 2) predictions
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in each frame. It would be time consuming to do 1 x 1 convolution on a dense tensor with
this shape. We propose an implementation architecture to utilize the sparsity of tensor T
and make the calculations much faster and feasible for large £ and n values. Only non-
empty elements are delivered to the fusion network for processing, shown in Figure [3.0] As
we shall discuss later, the indices of the non-empty elements (i, j) are important for further
calculations; therefore, the indices of these non-empty elements are saved in the cache, as
shown in the blue box in Figure Here, note that for projected 3D detection pj that
does not have 2D detection intersected, we still fill the last element in the jy, column Ty ;
in T with the available 3D detection information and set IoUy, ; and S%D as -1. Because
sometimes 3D detector could detect some objects that 2D detector could not, and we do not
want to discard these 3D detections. Setting the ToU and s2D to -1 rather than 0 enables

our network to distinguish this case from other examples with very small JoU and s2D.

3.5.2.2 Network Detalils

The fusion network is a set of 1 x 1 2D convolution layers. We use Conv2D(c¢;y,, cout, k, 8) to
represent an 2 dimensional convolution operator where ¢;,, and cg,+ are the number of input
and output channels, k and s are the kernel size vector and stride respectively. We employ
four convolution layers sequentially as Conv2D(4, 18, (1,1), 1), Conv2D(18, 36, (1,1), 1),
Conv2D(36, 36, (1,1), 1) and Conv2D(36, 1, (1,1), 1), which yields a tensor of size 1 x p x 1
shown in Figure (3.6, where p is the number of non-empty elements in the input tensor T.
Note that for the first three convolution layers, after each convolution layer applied, ReLU
[100] is used. Since we have saved the indices of these non-empty elements (i, j), as shown
in Figure now we could build a tensor Tgut of shape £ x n x 1 by filling p outputs

based on the indices (7, j) and putting negative infinity elsewhere. Because one projected
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3D detection candidate could intersect with more than one 2D detection candidate, in other
words, p is always larger than the number of 3D detection candidates n. For some columns
in Tout, there could be multiple non-empty elements. Therefore, 2D max-pooling is used
along each column of Tgyt to obtain the final predicted fused confidence scores for n 3D

detection candidates.

3.5.2.3 Loss Function

We use a cross entropy entropy loss for target classification, modified by the focal loss in [16]
with parameters a = 0.25 and v = 2 to address the large class imbalance between targets

and background.

3.5.3 Training

The fusion network is trained using stochastic gradient descent (SGD). We use the Adam
optimizer with an initial learning rate of 3 * 10~3 and decay the learning rate by a factor of

0.8 for 15 epochs.

3.6 Experimental Results

In this section we present our experimental setup and results, including dataset, platform,
performance results and analyses. For all experiments, we focus on the car class since it has

the most training and testing samples in the KITTI [I1] dataset.
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3.6.1 Dataset

Our fusion system is evaluated on the challenging 3D object detection benchmark KITTI
dataset [II] which contains both LiDAR point clouds and camera images. There are 7481
training samples and 7518 testing samples. Ground truth labels are only available for training
samples. For the evaluation of testing samples, one needs to submit the detection results to
the KITTTI server. Since there are submission time limits for the KITTI evaluation server, for
experimental studies, we follow the convention in [101] to split the original training samples
into 3712 training samples and 3769 validation samples. We compare our method with sate-
of-the-art multi-modal fusion methods of 3D object detection on official test split of KITTI

as well as validation split.

3.6.2 2D/3D Detector Setup

We apply our CLOCs fusion network for a combination of different 2D and 3D detectors
to demonstrate the flexibility of our proposed pipeline. The 2D detectors we used include:
RRC [102], MS-CNN [103] and Cascade R-CNN [3]. The 3D detectors we incorporated are:
SECOND [4], PointPillars [19], PointRCNN [9], PV-RCNN [10] and CT3D [46]. Although
not all are the top performers within the KITTI leaderboard, we have selected these meth-
ods because they are the best currently-available open-source detectors. Our experiments
show that CLOCs improves the performance of these detectors significantly. At the time of
submission, CLOCs fusion of CT3D with Cascade R-CNN;, is ranked number 2 on the KITTI
3D detection leaderboard, number 1 on the 2D detection leaderboard, and outperforms all

other fusion methods.
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3.6.3 Evaluation Results

We evaluate the detection results on the KITTI test server. The IoU threshold for car is
0.7. All the instances are classified into three difficulty levels: easy, moderate and hard,
based on their 2D bounding boxes’ height in the image plane, occlusion level and truncation
level. All methods in the KITTT leaderboards are ranked according to the moderate difficulty
level. For hard level, ~ 2% of the ground truth bounding boxes have not been recognized
by humans, thereby upper bounding recall at 98%. Since KITTI has some restrictions on
the number of submissions, we only show the results evaluated on the official KITTT test
server from four fusion combinations of 2D and 3D detectors, which are SECOND [4] and
Cascade R-CNN [3], written as CLOCs_SecCas, PointRCNN [J] and Cascade R-CNN, as
CLOCs_PointCas, PV-RCNN [10] and Cascade R-CNN, as CLOCs_ PVCas, CT3D [46] and
Cascade R-CNN, as CLOCs_CTCas. All other combinations are evaluated on the validation
set.

Table shows the performance of our fusion method on the KITTTI test set through
server submission. Our methods outperform all multi-modal fusion-based works in moderate
and hard level at the time of submission. Note that the official open-source code of PV-
RCNN performs slightly worse than the private one owned by the PV-RCNN authors shown
on the KITTI leaderboard, and our CLOCs_PVCas result is based on the open-source PV-
RCNN. The baseline PV-RCNN in Table [3.1| refers to the open-source PV-RCNN. As shown
in Table [3.1, compared to baseline methods SECOND, PointRCNN and PV-RCNN, fusion
with Cascade R-CNN through our fusion network increases the performance in 3D and BEV
object detection by a large margin.

We evaluate the performance of all combinations of 2D and 3D detectors on car class of
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3D AP (%) Bird’s Eye View AP (%)
easy | moderate | hard | easy |moderate | hard
SECOND (baseline) [4] LiDAR 83.34 72.55 65.82 | 89.39 83.77 78.59
CLOCs_SecCas . 8 -
(SECOND-Cascade R-CNN) LiDAR+Img | 86.38 78.45 72.45 | 91.16 88.23 82.63
Improvement
(CLOCs SecCas over SECOND) - +3.04| +590 | +6.63 | +1.77| +4.46 | +4.04
PointRCNN (baseline) [9] LiDAR 86.23 75.81 68.99 | 92.51 86.52 81.39
CLOCs_PointCas . )
(PointRCNN-+Cascade R-CNN) LiDAR+Img | 87.50 76.68 71.20 | 92.60 88.99 81.74
Improvement
(CLOCs_PointCas over PointRCNN) - +1.27| +1.04 | +2.21 | +0.09| +2.47 | 40.35
PV-RCNN (baseline) [10] LiDAR 87.45 80.28 76.21 | 91.91 88.13 85.41
CLOCs_PVCas .
(PV-RCNN--Cascade R-CNN) LiDAR+Img | 88.94 | 80.67 | 77.15 | 93.05 | 89.80 | 86.57
Improvement
(CLOCs_PVCas over PV-RCNN) - +1.49| +0.39 | +094 | +1.14| +1.67 | +1.17
CT3D (baseline) [406] LiDAR 88.50 80.19 | 77.16 | 92.62 88.95 84.18
CLOCs_CTCas .
(CT3D+Cascade R-CNN) LiDAR+Img | 89.16 | 82.28 | 77.23 | 92.91 89.48 | 86.42
Improvement
(CLOCs_CTCas over CT3D)

Detector Input Data

- +0.66 | +2.09 | +0.07|+4+0.29 | +0.53 | +2.24

F-PointNet [71] LiDAR+Img | 82.19 69.79 60.59 | 91.17 84.67 T4.77
AVOD-FPN [75] LiDAR+Img | 83.07 71.76 65.73 | 90.99 84.82 79.62
F-ConvNet [73] LiDAR+Img | 87.36 76.39 66.69 | 91.51 85.84 76.11
UberATG-MMF [76] LiDAR+Img | 88.40 77.43 70.22 | 93.67 88.21 81.99
UberATG-ContFuse [77] LiDAR+Img | 83.68 68.78 61.67 | 94.07 | 85.35 75.88
3D-CVF [78] LiDAR+Img | 89.20 | 80.05 73.11 | 93.52 | 89.56 | 82.45
PI-RCNN [104] LiDAR+Img | 84.37 74.82 70.03 | 91.44 85.81 81.00
EPNet [80] LiDAR+Img | 89.81 79.28 74.59 | 94.22 88.47 83.69

Table 3.1: Performance comparison of object detection with state-of-the-art camera-LiDAR
fusion methods on car class of KITTI test set (new 40 recall positions metric). CLOCs
fusion improves the baselines and outperforms other state-of-the-art fusion-based detectors.
3D and bird’s eye view detection are evaluated by Average Precision (AP) with the best in
green and second-best in blue.

KITTI validation set, the results are shown in Table [3.2l Compared to the corresponding
baseline 3D detectors, our fusion methods have better performance in 3D and BEV detec-
tion benchmarks. These results demonstrate the effectiveness and flexibility of our fusion
approach.

Table|3.3|and Table|3.4]show the 3D and BEV evaluation results of pedestrian and cyclist
on KITTI validation set. The IoU threshold for pedestrian and cyclist is 0.5. Here, for 3D

detectors, only SECOND [4] and PointPillars [19] publish their training configurations for
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3D AP (%) Bird’s Eye View AP (%)
easy [moderate| hard | easy |moderate| hard
SECOND (baseline) (90.97| 79.94 |77.09/95.61| 89.54 86.96
SECOND+RRC 92.69| 82.69 |78.20/96.53| 92.78 87.74
SECOND+MSCNN 92.37| 82.36 |78.23196.34| 92.59 87.81
SECOND+C-RCNN* (92.35| 82.73 |78.10(96.34| 92.57 89.36
PointPillars (baseline) |87.37| 76.17 |72.88/92.40| 87.79 86.39
PointPillars+RRC  |88.48| 78.50 |75.13(93.53| 88.87 87.09
PointPillars+ MSCNN |89.22| 77.05 [73.16/92.80| 88.46 87.26
PointPillars+ C-RCNN*[89.95| 78.99 |73.27|93.77| 88.27 87.34
PointRCNN (baseline) [92.54| 82.16 |77.88/95.58| 88.78 86.34
PointRCNN+RRC  [92.67| 84.75 [81.82|95.98 90.80 87.96
PointRCNN+MSCNN (92.64| 83.26 |79.88/95.60[ 90.05 87.05
PointRCNN+C-RCNN*|93.09| 84.09 [80.73|96.13| 90.19 87.26
PV-RCNN (baseline) [92.10] 84.36 (82.48/93.02| 90.33 88.53
PV-RCNN+RRC  [92.82| 85.59 [83.00/93.65| 92.40 90.19
PV-RCNN+MSCNN (92.66/ 83.89 [83.29/93.50, 91.63 89.42
PV-RCNN+C-RCNN* [92.78| 85.94 [83.25(93.48 91.98 89.48

Detector

Table 3.2: 3D and bird’s eye view performance of fusion with different combinations of
2D /3D detectors through CLOCs on car class of KITTI validation set (new 40 recall positions
metric). *C-RCNN is Cascade R-CNN. Our CLOCs fusion methods outperform the baseline
methods.

class pedestrian and cyclist; for 2D detectors, only MS-CNN [103] does. Therefore, we only
show the evaluation results based on SECOND, PointPillars and MS-CNN. As shown in
Table |3.3] and Table [3.4] our fusion method improves the detection performance by a large

margin.

3D AP (%) Bird’s Eye View AP (%)
easy |moderate| hard | easy |moderate| hard
SECOND (baseline) ({58.01| 51.88 [47.05(61.97| 56.77 51.27
SECOND+MSCNN [62.54| 56.76 |52.26/69.35| 63.47 58.93
PointPillars (baseline)|58.38| 51.42 |45.20(66.97| 59.45 53.42
PointPillars+MSCNN (60.33| 54.17 46.42|/69.29| 63.00 54.80

Detector

Table 3.3: 3D and bird’s eye view performance of fusion on pedestrian class of KITTI
validation set (using new 40 recall positions). Our CLOCs fusion methods outperform the
corresponding baseline methods.
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3D AP (%) Bird’s Eye View AP (%)
easy \moderate| hard | easy \moderate| hard
SECOND (baseline) [78.50| 56.74 [52.83|81.91| 59.36 55.53
SECOND+MSCNN [85.47| 59.47 |55.00|88.96| 63.40 59.81
PointPillars (baseline)|82.31| 59.33 |55.25(84.65| 61.39 57.28
PointPillars+ MSCNN [90.26| 64.84 |59.59(92.64| 67.97 62.31

Detector

Table 3.4: Performance of fusion on cyclist class of KITTI validation set (new 40 recall
positions). Our CLOCs fusion methods outperform the corresponding baseline methods.

Figure [3.7|shows the average precision (AP) on KITTI validation set in different distance
ranges. The distance is defined as the Euclidean distance in xy plane between objects and
LiDAR. The blue bars are the APs for SECOND detector, the orange bars represent APs
for our CLOCs_SecCas. The yellow and purple bars show the APs of PointRCNN and
CLOCs_PointCas respectively. As shown in Figure [3.7, APs for CLOCs is higher than the
corresponding baselines in all distance ranges on both 3D and BEV detection benchmarks.
The largest improvement is in 40 ~ 50m. This is because the point clouds in long distance
are too sparse for LiDAR-only detectors such as SECOND and PointRCNN, while CLOCs

could utilize 2D detections to improve the performance.

ESECOND +240 .59y [EEISECOND
80 +6.16 |HOur CLOCs_SecCas | . IlOur CLOCs_SecCas
[ IPointRCNN r 1 [ JPointRCNN 1
70 ; Il Our CLOCs_PointCas || Il Our CLOCs_PointCas
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©
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AP in 3D (%)
(2]
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(2]
o

o
o

30~40m 40~50m 30~40m 40~50m
Distance Ranges Distance Ranges
(a) 3D detection. (b) Bird’s eye view detection.

Figure 3.7: Average Precision (AP) based on distance. Our CLOCs outperforms the baseline
by a large margin especially in long distance (40 ~ 50m).

Figure shows some qualitative results of our proposed fusion method on the KITTT [11]
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Figure 3.8: Precision and sigmoid score (predicted probability) from PointRCNN [9]. Blue
curve represents the predicted probability from PointRCNN, the yellow line is the ideal

situation in which the output probability equals precision. The sigmoid score does not
reflect real precision.

test set. Red bounding boxes represent wrong detections (false positives) from SECOND that
are deleted by our CLOCs, blue bounding boxes stand for missed detections from SECOND

that are corrected by our CLOCs, green bounding boxes are correct detections.

3.6.4 Score Scales

There are two common output scores for detectors: the first is a real number approximating
the log-likelihood ratio between target and clutter, and the second is a sigmoid transforma-
tion of this onto the range 0 to 1, so approximating a probability of target. We compare the
use of these in CLOCs in Table [3.5| and find improved performance using the logarithmic
likelihood score. The primary reason for the poor performance of the normalized score is
that it poorly approximates a probability of the target (or precision), see Figure . Using
this score forces the fusion network to learn a non-linear correction, whereas the equivalent
log likelihood score discrepancy is a simple offset that can easily be corrected by the fu-
sion layer. If we instead use a fitted sigmoid to obtain better probabilistic output from the
PointRCNN, then fusion works equally well with either input. In general, we believe that it

is simpler to use a log-likelihood output for each single-modality detector and fuse these.
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Figure 3.9: Qualitative results of our CLOCs on KITTT test set compared to SECOND [4].
Red and blue bounding boxes are false and missed detections from SECOND respectively
that are corrected by our CLOCs. Green bounding boxes are correct detections. The upper
row in each image is the 3D detection projected to the image; the others are 3D detections
in LiDAR point clouds.
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3D AP (%) Bird’s Eye View AP (%)
easy [moderate| hard | easy {moderate| hard
log score 93.09| 84.09 [80.73/96.13| 90.19 87.26
sigmoid score 91.64| 82.96 |79.13|95.33| 89.70 86.36

corrected sigmoid score92.83| 83.73 [80.12(95.88| 90.19 87.08
corrected log score |92.88] 83.92 (80.22/96.07| 89.93 87.21

Type of Scores

Table 3.5: Performance of CLOCs with PointRCNN using different score scales on car class
of KITTT validation set. Because the sigmoid score from PointRCNN poorly approximates
probability of a target (or precision), using it for fusion could result in worse performance.

3.6.5 Ablation Study

We evaluate the contribution of each channel and focal loss in our fusion pipeline. The
four channels include: IoU between 2D detections and projected 3D detections (IoU), 2D
confidence score (s2P), 3D confidence score (s3P) and normalized distance (d) between the
3D bounding box and the LiDAR in the xy plane. The results are shown in Table [3.6
IoU, as the measure of geometric consistency, is crucial to the fusion network. Without
IoU, the association between 2D and 3D detections would be ambiguous and further lead to
deterioration of performance. 2D confidence score indicates the certainty of 2D detections,
which could provide useful clues for the fusion. 3D confidence score (53D ) plays the most
important role among the four channels, because CLOCs generates new confidence scores
for all 3D detection candidates through fusion in which the original 3D scores are highly
important evidences. Closer objects are usually easier to detect because there are more hits
from LiDAR, the normalized distance (d) could be a useful indicator for this. Because there

is a large imbalance between positives and negatives among detection candidates, focal loss

could address this issue and improve detection accuracy.

48



ToU|s%P|s3P] d [focal loss|3D AP|BEV AP

79.94 | 89.54

vV IV IV v 78.95 | 88.43

v v IV v 80.96 | 90.32
v |V v v 38.64 | 47.16
vV |V IV v 81.96 | 91.90
vV IV |V IV 81.01 | 92.17
VIV IV IV v 82.73| 92.57

Table 3.6: The contribution of each channel and focal loss in our CLOCs fusion pipeline.
The results are on the moderate level car class of KITTI val split with AP calculated by 40
recall positions. SECOND and Cascade R-CNN are fused in this experiment, so the baseline
model is SECOND.

3.7 Summary of the Chapter

In this chapter, we propose Camera-LiDAR Object Candidates Fusion (CLOCs), as a fast
and simple way to improve performance of just about any 2D and 3D object detector when
both LiDAR and camera data are available. CLOCs exploits the geometric and semantic
consistencies between 2D and 3D detections and automatically learns fusion parameters. The
experiments show that our fusion method outperforms previous state-of-the-art methods by
a large margin on the challenging 3D detection benchmark of KITTI dataset, especially
in long-distance detection. As such, CLOCs provides a baseline for other types of fusion,

including early and deep fusion.
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Chapter 4

Fast-CLOCs: Fast Camera-LiDAR
Object Candidates Fusion for 3D

Object Detection

4.1 Introduction

When compared to single modality approaches, fusion-based object detection methods of-
ten require more complex models to integrate heterogeneous sensor data and use more GPU
memory and computational resources. This is particularly true for camera-LiDAR-based
multimodal fusion, which may require three separate deep learning networks and/or pro-
cessing pipelines that are designated for the visual data, LiDAR data, and for some form of
a fusion framework.

CLOCs performs detection-level fusion using any pair of pre-trained 2D and 3D detec-
tors to generate better 2D /3D detections. The CLOCs fusion step is fast and adds negligible
delay to the perception system. More importantly, CLOCs provides significant improve-
ments to the performance of the underlying 3D and 2D detection methods used. However,
by requiring a 2D detector and a 3D detector to run simultaneously, CLOCS uses high GPU

memory and compute power. We propose Fast-CLOCs: Fast Camera-LiDAR Object Can-
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(c¢) LiDAR-only detector. (d) LiDAR-only detector.

Figure 4.1: Fast-CLOCs can leverage the proposed 3D-Q-2D detector to remove false positive
detections. (a) The LiDAR-only detector has four false positives. The numbers shown in
the figure are LiDAR confidence scores. (¢) The 3D-Q-2D detector suppresses these false
positives by allocating them very small visual confidence scores. These LiDAR false positives
are more easily removed with image appearance information. (b) and (d) show the proposed
Fast-CLOCGCs fusion result with false positives removed.

didates fusion framework to achieve improved accuracy for 3D object detection with near
real-time performance (Figure. [4.1)). Unlike the original CLOCs, Fast-CLOCs eliminates a
separate heavy 2D detector; and instead, uses a 3D detector-cued 2D image detector (3D-Q-
2D) to reduce memory and computation. This proposed architecture delivers the following

contributions:
e Fast-CLOCs uses any 3D detector without re-training.

e The proposed 3D-Q-2D image detector within Fast-CLOCs outperforms state-of-the-

art (SOTA) image-based detectors in 2D object detection.

e Fast-CLOC:s is significantly more memory and computationally efficient than SOTA
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fusion methods, and can run in near real-time on a single desktop-level GPU.

e Fast-CLOCs improves the SOTA LiDAR-camera fusion performance on the KITTI and

nuScenes datasets.

4.2 Proposed Method

A high-level diagram of the proposed Fast-CLOCs architecture is shown in Figure [£.2] This
illustrates the three primary components of the system: (1) 3D object detector, (2) 3D-Q-
2D image detector, and (3) CLOCs fusion. The details of the system will be described and
illustrated in this section.

The 3D detector processes the 3D point cloud to generate 3D candidates. Here detection
candidates are used before Non-Maximum Suppression (NMS) because many correct detec-
tions are mistakenly suppressed during NMS [I]. A lightweight 3D-Q-2D image detector is
proposed to generate high-accuracy 2D detections for fusion. This proposed detector uses
the projected 3D candidates as its region proposals and refines them to predict its own 2D
detections. Then, CLOCs [1] fusion is applied to fuse the 3D and 2D candidates and produce

more accurate 3D detection results.

4.2.1 3D-Q-2D Image Detector
4.2.1.1 The Input Data

We propose to incorporate a 3D-Q-2D image detector instead of a separate complete 2D
image detector used by the original CLOCSs to significantly reduce GPU memory and com-

putational cost. As shown in Figure [4.3] for traditional RCNN-style multi-stage 2D image
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Figure 4.2: Fast-CLOCs system architecture. There are three primary components of the
system: (1) 3D object detector; (2) 3D detector-cued 2D image detector (3D-Q-2D); (3) the
original CLOC: fusion [I]. Compared to original CLOCSs, we propose to leverage a lightweight
3D-Q-2D detector (green block), instead of a separate complete 2D image detector, to reduce
the GPU memory and computational cost.

detectors [13] 105, B], the first stage is designed to generate foreground region proposals with
high recall rate, then the following stages are applied for further classification and bounding
box refinement. The quality of the proposals is of paramount importance for the final de-
tection output. The 3D detection candidates from the 3D detectors are of high quality and
high recall rate; therefore, the projected 3D detection candidates can be leveraged as the 2D
proposals for the 2D image detector with no extra costs. We project all 3D detection can-
didates into the image plane using the calibration parameters between LiDAR and camera,
and these constitute cues for our 3D-Q-2D image detector.

Note that there are 8 corner points for each 3D bounding box. After projecting them
into the image plane, we use the maximum and minimum xy pixel coordinates to build an
axis-aligned 2D bounding box. In this paper, the "projected 3D detection candidate” refers

to the corresponding axis-aligned 2D bounding box in the image plane.
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Figure 4.3: Architecture comparison of our 3D-Q-2D image detector and RCNN-style 2D
image detector. The 3D detection candidates from the 3D detectors can be leveraged as the
2D proposals for the 2D detector at no extra cost. Therefore, there is no need to have a
computationally expensive first-stage network in our proposed 2D detector.

4.2.1.2 The Backbone Feature Extraction Network

We use ResNet-50 with Feature Pyramid Network (FPN) [106], [15] pretrained in COCO [107]
as the backbone. The FPN produces a multi-scale feature pyramid in which all levels are
semantically strong, improving performance compared to producing the single-scale output
feature map from the backbone. The feature level selection module assigns the level of a
proposal based on its size in the original image. Small-sized proposals will be assigned to
low-level, high-resolution feature maps. The corresponding regions of interest (Rol) in the
feature map are calculated based on the downsample rate of that feature map (e.g., 4, 8, 16).
Multi-scale Rol align [5] is applied to extract features within the Rol in the feature maps.
Then, the extracted feature maps are converted into a fixed spatial extent of H x W (e.g.,

7 x 7). Bilinear interpolation is applied to avoid quantization of the Rol boundaries or bins.
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4.2.1.3 Detection Head

A bounding box regression head and a classification head are attached to the k output Rol
feature maps, where k is the number of projected 3D detection candidates. The 2D bounding
box is parameterized using the top left and bottom right pixel coordinates. The bounding

box prediction and training parameterizations are defined as follows:

WO — B0 _ g0 ppro _ pro _ pro (4.1)
ter = (w1 — 2" 0) JwPl™®, tyo = (w9 — by 7)/wP™ (4.2)
tyr = (y1 —y"") /PO, tyo = (y2 — yh 0) /AP0 (4.3)
th = (2] = 2)") JwP"0, thy = (a5 — a5 %) JwP"® (4.4)
tyy = (i — o7 ) /W0, i = (y5 —yh O)/hPTO (4.5)

where variables (z1,y1) and (x9,y2) are the top left and bottom right pixel coordinates of
the 2D boundary box, with height h, and width w. Variables x, 2P" and z* are for the
predicted 2D box, the projected 2D box (from 3D detector) and the ground-truth 2D box,
respectively.

The classification head maps the Rol features into softmax probabilities using (n + 1)
classes, with n for objects and 1 for background. Here note that although we have softmax
probabilities for each class, the output class of the 2D image detector is still determined by
the 3D detector. This is because for the fusion of a 3D detection with class #A, we ask from
the image detecor “how likely is it that there is an object with class #A in the projected
region?”, rather than “what is the class of the object within the projected region?”. The

latter is more challenging, requires a more complicated network, and is not needed for our
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Figure 4.4: KITTI validation car detection comparison of true positives and misses from a
2D detector (Cascade-RCNN [3]) and 3D detector (PV-RCNN [I0]). Only 219 objects are
missed by 3D detector but detected by 2D detector, while 2491 are missed by 2D detector
but detected by 3D detector. This shows that 3D detector has higher recall rate than 2D
detector, and validates using 3D-Q-2D replacing an independent 2D image detector in fusion.

fusion task.

4.2.1.4 Multi-Task Loss and Training

We have two loss functions for the proposed 2D detector, namely smooth L1 loss for bounding
box regression, and focal loss [16] for classification to address class imbalances between targets
and backgrounds. During training, the intersection of union (IoU) between projected 3D
detection candidates (2D proposals) and the 2D ground-truths are calculated. Proposals
with IoU greater than 6, are labeled positive, and those with IoU less than 0;,,, are labeled
negative examples. Different classes have different IoU thresholds. Only positive examples
are included in the bounding box regression loss, while both positive and negative examples
contribute to the classification loss. The final loss is the weighted sum of the two losses,
following [I0§] to use uncertainty to weigh the two losses during training.

The proposed network is trained using stochastic gradient descent (SGD). We use the

Adam optimizer with a maximum learning rate of 1 * 10~%, weight decay 0.01, and momen-
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Method Barrier | T.C. | Bicycle| Motor Ped Car Bus C.V. | Trailer | Truck
TIoU=0.5{IoU=0.5|IoU=0.5|IoU=0.5{Io0U=0.5{IoU=0.7|IoU=0.7{IoU=0.7{1o0U=0.7|IoU=0.7
CenterPoint
en[legg]om 71.06 | 56.05 | 35.78 | 55.89 | 74.76 | 63.64 | 61.58 4.49 26.67 | 55.43
CenterPoint
72.60 | 59.63 | 56.22 | 65.25 | 72.99 | 76.25 | 73.08 | 15.94 | 34.26 | 56.84
+3D-Q-2D

Table 4.1: 2D detection performance on nuScenes validation set. Since nuScenes does not
provide 2D evaluation metrics, we apply the KITTI 2D evaluation metrics here. All 2D
detections are evaluated by Average Precision (AP) with different 2D IoU thresholds for
different classes. ‘T.C.", ‘Motor’, ‘Ped’ and ‘C.V.” are short for traffic cone, motorcycle,
pedestrian and construction vechile, respectively. CenterPoint is a 3D detector that here we
evaluate on its 2D performance. By using CeterPoint to cue a 2D detector, we can obtain
much improved 2D performance, which is better for fusion.

tum 0.85 to 0.95 for 20 epochs.

4.2.1.5 CLOCs Fusion Network

CLOCs fusion is taken mainly from Chapter [3] We add another flag channel to highlight
whether a 3D detection overlaps with at least one 2D detection. There are two reasons for
this. First, we want to keep the 3D detection candidate that has no 2D detections overlap
with it. Because, as shown in Section 4.3, the recall rate for the 3D LiDAR-based detector is
higher than the 2D image-based detector. Second, the addition of this new channel helps the
network distinguish this case from other examples with very small ToU and 2D confidence

scores 82D .

4.2.2 The Scalability of Fast-CLOCs

Fast-CLOCGCs is a detection level fusion approach with a 3D-Q-2D block that leverages 3D
detections to cue the 2D detector. Thus, it is crucial that the 3D detector has a high recall

rate, as detections it misses will also be missed by the 2D detector. Based on our statistics,
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we believe this is not a problem because SOTA 3D-based detectors have far fewer misses
than SOTA 2D detectors. Figure [4.4] shows the statistics of the KITTI dataset, where we
compare the number of true positives and misses by the SOTA 2D and 3D detectors. The 3D
detector misses only 219 objects that are detected by the 2D image detector, whereas the 2D
detector misses 2491 objects detected by the 3D LiDAR detector. This high effective recall
rate of the 3D detector validates the use of the 3D-Q-2D detector to replace an independent

2D image detector in fusion.

4.3 Experimental Results

We evaluate our Fast-CLOCs on the challenging KITTI [IT] and nuScenes [2] object detection
benchmarks. We implement Fast-CLOCs using three 3D detectors: SECOND [], PV-
RCNN [10] and CenterPoint [109], termed Fast-CLOCs-SEC, Fast-CLOCs-PV and Fast-

CLOCs-CP respectively.

4.3.1 Evaluation Results
4.3.1.1 3D-Q-2D Image Detector:

Before evaluating our Fast-CLOCs in 3D object detection, we first evaluate the proposed
3D-Q-2D image detector. For Fast-CLOCs, the quality of the input 2D detection candidates
is of paramount importance. We use SECOND [4] and PV-RCNN [I0] as cueing 3D detectors
for KITTI dataset, termed as SECOND+3D-Q-2D and PV-RCNN+3D-Q-2D respectively.
CenterPoint is implemented for the nuScenes dataset and is termed CenterPoint+3D-Q-2D.

Table shows the 2D detection performance of our CenterPoint+3D-Q-2D in nuScenes

validation set. Since nuScenes does not provide 2D evaluation metrics, we apply the KITTI
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2D AP (%)

Detector Input Data casy [moderate] hard
MS-CNN [103] Img 90.83| 89.88 |79.16
Cascade-RCNN [3] Img 91.35| 90.59 [80.64
SECOND [4] LiDAR |97.87| 92.37 |89.87
SECOND+3D-Q-2D |LiDAR+Img|98.75| 95.56 [90.14
PV-RCNN [10] LiDAR |98.26] 94.42 [89.24
PV-RCNN+3D-Q-2D|LiDAR+Img|98.52| 95.08 |89.48

Table 4.2: Comparison of 2D detection performance with SOTA 2D image-based detectors
and corresponding 3D detectors on car class in KITTI validation set.

2D evaluation metrics here. 3D detections from CenterPoint [109] are projected onto the
image plane and evaluated using 2D detection metrics for comparison. All 2D detections are
evaluated by Average Precision (AP) with different IoU thresholds for different classes. As
shown in Table 4.1} compared to CenterPoint, our CenterPoint+3D-Q-2D has much better
performance for all classes except for pedestrian. The main reason for this we think is
that for nuScenes dataset, there are some driving sequences from rainy weather and night
time. Detecting pedestrians in these scenarios from camera images is more challenging than
using LiDAR. Table compares 2D detection performance with SOTA 2D image detectors
and corresponding 3D detectors on car class in KITTI validation set. This shows that our

3D-Q-2D image detector outperforms the SOTA 2D image detectors by a large margin.

4.3.1.2 Main Results

We present our 3D detection results on the KITTTI test set in Table 4.3 and results on the
nuScenes test set in Table[d.4] In the KITTT test set, our Fast-CLOCs-PV outperforms most
of the SOTA fusion-based methods in all three classes. Note that the official open-source
code of PV-RCNN performs slightly worse than the private one owned by the PV-RCNN

authors shown on the KITTI leaderboard, and our Fast-CLOCs-PV result is based on the
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3D AP (%)

Detector S* Car / Pedestrian / Cyclist
easy moderate hard
PV-RCNN (baseline) [10] L |87.45 / 47.30 / 77.33 | 80.28 / 39.42 / 62.02 | 76.21 / 36.97 / 55.52
Fast-CLOCs-PV (Ours) F [89.11 / 52.10 / 82.83|80.34 / 42.72 / 65.31(76.98 / 39.08 / 57.43
Improvement

(Fast-CLOCs-PV over PV-RCNN) | +1.66 / +4.8 / +5.5 | 4+0.06 / +3.3 / +3.29 |+0.77 / +2.11 / +1.91

CLOCs_PVCas [1] F| 8894 / — / — | 8067 / — / — | 7715 | — | —
CLOCs_SecCas [I] F| 8.38 ) — /] — 7845 | — | — 7245 /| — | —
F-PointNet [71] F|82.19 / 50.53 / 72.27| 69.79 / 42.15 / 56.12 | 60.59 / 38.08 / 49.01
AVOD [75] F | 76.39 / 36.10 / 57.19 | 66.47 / 27.86 / 42.08 | 60.23 / 25.76 / 38.29
EPNet [S0] F| 89.81 / — / — | 7928 /) — / — 7459 | — | —
UberATG-MMF [76] F| 8840 /| — / — | 7743 /) — | — 7022 /) — | —
UberATG-ContFuse [77] F| 868 /) — /] — 68.78 /| — | — 61.67 / — | —
PL-RCNN [104] F| 8437 /) — ) — | 7482 ) — | — 7003 / — | —
3D-CVF [78] F| 89.20 / — / — | 8005/ — / — | 711/ — / —

Table 4.3: Performance comparison of 3D object detection with SOTA camera-LiDAR fusion
methods on all classes of KITTI test set. *In S column, L represents LiDAR-only. F stands
for camera-LiDAR fusion-based approach. Average Precision (AP) is the evaluation metric,
with the best in green and the second-best in blue. Fast-CLOCs fusion outperforms other
SOTA fusion-based detectors in most measures, and has the same level of performance com-
pared to CLOCs_PVCas [I]. While CLOCs_PVCas requires significantly more computation

(shown in Table. [4.5).

open-source PV-RCNN. The baseline PV-RCNN in Table |4.3| refers to the open-source PV-
RCNN. Compared to baseline PV-RCNN, our Fast-CLOCs-PV increases the performance in
3D object detection by a large margin. Only CLOCs_PVCas has slightly better performance
than ours (less than 0.4% AP) in car class. But CLOCs_PVCas requires running PV-RCNN
and Cascade-RCNN simultaneously, which cannot be deployed on a single desktop-level
GPU platform, while Fast-CLOCs-PV can. 3D-CVF’s performance is close to ours in easy
and moderate level for car class, but our Fast-CLOCs-PV outperforms 3D-CVF in hard
level by a large margin (nearly 4% AP better). In nuScenes test set, our Fast-CLOCs-
CP outperforms other published SOTA methods in both mean Average Precision (mAP)

and nuScenes Detection Score (NDS). Our Fast-CLOCs-CP outperforms baseline method
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Method Setting®/mAP T|NDS 1

CenterPoint [109] L 58.0 | 65.5
Fast-CLOCs-CP (Ours) F 63.1 | 68.7
Improvement _ 451 | 439

(Fast-CLOCs-CP over CenterPoint)

PointPainting [79) F 46.4 | 58.1
3D-CVF [78] F | 52.7 | 62.3
WYSIWYG [111] L | 35.0 | 41.9
PointPillars [19] L | 40.1 | 55.0
CVCNet [112] L | 55.3 | 644
PMPNet [113] L | 454 | 53.1
SSN [114] L | 463 | 56.9
CBGS [115] L | 528 | 633

Table 4.4: Performance comparison of 3D object detection with SOTA methods on nuScenes
test set. *In Setting column, L represents LiDAR-only. F stands for camera-LiDAR. fusion-
based approach. We show the primary evaluation metrics nuScenes Detection Score (NDS) [2]
and mean Average Precision (mAP).

CenterPoint by 5.1% and 3.2% in mAP and NDS.

Speed and Memory: For self-driving vehicles, computing resources are limited. It is
challenging to install server-level multi-GPU system on the vehicle. Compared to other heavy
fusion-based approaches, Fast-CLOCSs can run in near real-time (8-13Hz) on a single standard
desktop-level GPU. All our experiments are performed using NVIDIA RTX 3080 with 10
GB GPU memory. The running speed and GPU memory comparison results are shown in
Table The original CLOCs [1] and some other fusion-based approaches [79, [110] require
running Cascade-RCNN [3] or Mask-RCNN [5] in addition to a 3D detector simultaneously.
These methods above are slow and cannot be deployed on a single desktop-level GPU system,
while Fast-CLOCs can and has better or same level of detection performance with faster

speed.
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3D Detector 2D Detector Fusion Total
Method
Name Mem |Speed| Name Mem |Speed| GPU Mem| Mem |Speed
CLOCs_PVCas [1]| PV-RCNN | 3-4GB |9.5Hz ~1GB [10+GB| <4Hz
C-RCNN | 5+GB | 4H
CLOCs_SecCas [1]| SECOND [2.5-3GB| 28Hz * “| ~1GB  |10+GB| <4H
Fast-CLOCs-PV | PV-RCNN | 3-4GB [9.5Hz ~1GB | 6.5GB | ~8Hz
Fast-CLOCs-CP |CenterPoint|3.5-4GB| 10Hz | 3D-Q-2D| 1-1.5GB| 18Hz| ~1GB 6.5GB | ~8Hz
Fast-CLOCs-SEC | SECOND |2.5-3GB| 28Hz ~1GB 5.5GB |~13Hz

Table 4.5: Comparison of running speed and GPU memory usage between CLOCs [I]
and Fast-CLOCs on RTX 3080 GPU. The ‘Mem’ stands for GPU memory. The original
CLOCs [1] requires running Cascade-RCNN [3] in addition to a 3D detector simultane-
ously, so it cannot run all together on a single desktop-level GPU system, while Fast-CLOCs
can and has better or the same level of detection performance. We cannot test running
CLOCs_PVCas and CLOCs_SecCas on our RTX 3080 due to out of GPU memory issue, but
since Cascade-RCNN can only run with around 4Hz, their final inference speeds would be
definitely slower than 4Hz. While Fast-CLOCs is much faster than that.

4.3.1.3 Ablation Study

We evaluate the contributions of each component within the proposed 3D-Q-2D image detec-
tor, the results are shown in Table . Rol Align [5] applies bilinear interpolation to avoid
quantization of Rol boundaries and further improve detection performance. FPN provides a
multi-scale feature pyramids which are helpful for detecting small objects (more than 2% AP
improvement in hard level). The box regression module refines the projected 3D detection
candidates and generates better 2D bounding boxes. Ablation study on the modifications of

the CLOGCs fusion network is provided in the supplementary materials.

4.3.1.4 Qualitative Results

Figure [4.6] shows some qualitative results of our proposed fusion method on KITTTI test set.
Red bounding boxes represent false positive detections from PV-RCNN [I0] that are deleted

by our Fast-CLOCs, green bounding boxes are true positive detections that are confirmed

by Fast-CLOCs.
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box 2D AP (%)
regression| easy |moderate| hard
95.97| 90.04 |86.52
97.03| 90.67 |87.20
v 97.23| 91.17 |87.26
v v 97.83| 92.66 |89.54
v v v 98.75| 95.56 |90.14

focal loss|Rol Align|FPN

SENENEN

Table 4.6: Ablation studies of different components in the proposed 3D-Q-2D image detector
on KITTI validation set. SECOND [4] is applied to cue the 2D detector. Rol Align [5] applies
bilinear interpolation to avoid quantization of the Rol boundaries or bins. Box regression
represents the 2D bounding box regression head, without it the proposed 2D detector would
output projected 3D boxes directly with visual confidence score.

(a) Fail Case#1: Fast-CLOCs removes a true positive (b) Fail Case#2: Fast-CLOCs removes a true posi-
from LiDAR 3D detector.

(c) Fail Case#3: Fast-CLOCs fails to remove a false (d) Fail Case#4: Fast-CLOCs fails to remove a false
positive from LiDAR 3D detector. positive from LiDAR 3D detector.

Figure 4.5: Some failure cases. (a) and (b): LiDAR-only detector detects the true positives
(car). But the cars are suppressed by the 3D-Q-2D detector due to high level of occlusion
(case#1) and poor lighting conditions (case#2) in image plane. Therefore, Fast-CLOCs
fusion removes these true positives. (c¢) and (d): LiDAR-only detector detects the cars but
with wrong poses, so they are false positives. But these false positives are not rejected by
the 3D-Q-2D detector because parts of the cars are visible in the image plane. Therefore,
Fast-CLOCGCs fusion keeps these false positives.
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Incorporating visual information from the image can help remove LiDAR false positive
detections and confirm LiDAR true positive detections, as shown in Figure [4.6] The image
projection region of a false positive detection in the LiDAR point cloud will be classified
and usually rejected as a detection through our 3D-Q-2D detector. Then Fast-CLOCs can
leverage this inconsistency to remove the false positive. Objects that are double confirmed

by LiDAR detector and 3D-Q-2D image detector will be kept by Fast-CLOCs.

4.3.1.5 Failure Cases Analysis

There are mainly two types of failure cases for Fast-CLOCs. One is mistakenly removing
the true positives; the other is failing to delete false positives. These failure cases occur
in scenarios in which objects are heavily occluded, at long distance, or under poor lighting
conditions. Figure [4.5/shows some failure examples. In fail case#1 and case#2, LiDAR-only
detector detects the true positive cars. But the true positives are suppressed by our 3D-Q-
2D detector due to high level of occlusion (case#1) and poor lighting condition (case#2)
in the image. So Fast-CLOCs fusion removes these true positives. In fail case#3 and
case#4, LiDAR-only detector detects the cars but with wrong poses, so they are false positive
detections. But these false positive detections are not rejected by our 3D-Q-2D detector.
Because parts of the cars are visible in the image plane, the 3D-Q-2D confirms them as cars
but fails to provide the full sizes of the cars in the image plane. Fast-CLOCs fusion therefore
keeps these false positive.

Detecting objects under occlusion is an open problem in the computer vision community.
Designing better detection networks and collecting more training data with these corner
cases could be one direction to resolve this issue. But it would require more computing

resources. We believe that adding temporal information from multiple frames would be a
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Figure 4.6: Qualitative results of our Fast-CLOCs on KITTTI [I1] test set compared to PV-
RCNN [I0]. Red bounding boxes are false positive detections from PV-RCNN that are
removed by our Fast-CLOCs. Green bounding boxes are confirmed true positive detections.
The upper row in each image is the 3D detection projected to the image; the others are 3D
detections in LiDAR point clouds.
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simpler direction.

4.4 Summary of the Chapter

In this chapter, we present Fast Camera-LiDAR Object Candidates (Fast-CLOCs) fusion
that can run high-accuracy 3D object detection in near real-time. Fast-CLOCs introduces
a lightweight 3D-Q-2D image detector to extract visual features from the image domain to
improve 3D detections significantly. Compared to other separate fusion-based approaches
that run independent 2D and 3D detectors simultaneously, Fast-CLOCs requires much less
GPU memory and operates in real time on a single desktop-level GPU. At the same time,
Fast-CLOCs achieves top or second-to-top performance in most categories compared to other

fusion methods on KITTI and nuScenes datasets.
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Chapter 5

TransCAR: Transformer-based
Camera-And-Radar Fusion for 3D

Object Detection

5.1 Introduction

Radars have been used for Advanced Driving Assistance System (ADAS) for many years.
However, despite radar’s popularity in the automotive industry, when considering 3D object
detection most existing works focus on LiDAR [17, 4, 9] 19, [71, [65], 10, [109], camera [8],
12 22, 21] and LiDAR-camera fusion [74} [75, [71], [77, [73, 80, [78, 104, [76, 1, 116]. One
reason for this is that there are not as many open datasets annotated with 3D bounding
boxes that include radar data [2], 38, [IT), [7]. Another reason is that, compared to LiDAR
point clouds, automotive radar signals are much sparser and lack height information. These
properties make it challenging to distinguish between returns from objects of interest and
backgrounds. However, radar has its strengths compared to LiDAR: (1) radar is robust
under adverse weather and light conditions; (2) radar can accurately measure object’s radial
velocity through the Doppler effect without requiring temporal information from multiple

frames; (3) radar has much lower cost compared to LIDAR. Therefore, we believe there is a
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Radar points without attention
Radar points with attention

Query position based on vision-only

* * @

Query position after
TransCAR fusion

D Vision-only predicted

detection
TransCAR predicted detection

D Ground truth

Query-Radar attention mask

Figure 5.1: An illustrative example showing how TransCAR fusion works. Vision-only de-
tection has significant range error. Our TransCAR fusion can learn the interactions between
vision-based query and related radar signals and predict improved detection. Unrelated
radar points are prevented from attention by Query-Radar attention mask.

gap and possibility for gain in radar-camera fusion research.

3D object detection is essential for self-driving and ADAS systems The goal of 3D object
detection is to predict a set of 3D bounding boxes and category labels for objects of interest.
It is challenging to directly estimate and classify 3D bounding boxes from automotive radar
data alone due to its sparsity and lack of height information. Monocular camera-based 3D
detectors [20, 8, 2], 22 T2] can classify objects, predict heading angles and azimuth angles of
objects accurately. However, the errors in depth estimation are significant because regressing
depth from a single image is inherently an ill-posed inverse problem. Radar can provide
accurate depth measurement, which monocular camera-based solutions cannot. Camera can
produce classification and 3D bounding box estimation that radar-based solutions cannot.
Therefore, it is a natural idea to fuse radar and camera for better 3D object detection
performance.

Data association between different sensor modalities is the main challenge for sensor
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Figure 5.2: TransCAR system architecture. There are three primary components in the
system: (1) A camera network (DETR3D[12]) based on transformer decoders to generate
image-based 3D object queries. The initial object queries are generated randomly; (2) A
radar network that encodes radar point locations and extracts radar features; (3) The Tran-
sCAR fusion module based on three transformer cross-attention decoders. We propose to
use transformer to learn the interactions between radar features and vision-updated object
queries for adaptive camera-radar association.

fusion technologies. Existing works mainly rely on multi-sensor calibration to do pixel-level
[79], feature level [76] [77, [74] [75, [72] or detection level [I], [116] association. However, this
is challenging for radar and camera association. First, the lack of height measurement in
radar makes the radar-camera projection incorporate large uncertainties along the height
direction. Second, radar beams are much wider than a typical image pixel and can bounce
around. This can result in some hits visible to the radar but are occluded from the camera.
Third, radar measurements are sparse and have low resolution. Many objects visible to the
camera do not have radar hits. For these reasons, the hard-coded data association based on
sensor calibration performs poorly for radar and camera fusion.

The seminal Transformer framework was initially proposed as a revolutionary technol-
ogy for natural language processing (NLP) [117], and subsequently has shown its versatility
in computer vision applications including object classification [I18] and detection [119] [120].

The self-attention and cross-attention mechanism within the transformer can learn the inter-
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actions between multiple sets of information [117, 119, 121]. And we believe that this makes
transformer a viable fit to solve the data association in camera-radar fusion. In this dis-
sertation, we propose a novel Transformer-based Radar and Camera fusion network termed
TransCAR to address the problems mentioned above. Our TransCAR first uses DETR3D
[12] to generate image-based object queries. Then TransCAR learns radar features from mul-
tiple accumulated radar scans and applies a transformer decoder to learn the interactions
between radar features and vision-updated queries. The cross-attention within the trans-
former decoder can adaptively learn the soft-association between the radar features and
vision-updated queries instead of hard-association based on sensor calibration only. Finally,
our model predicts a bounding box per query using a set-to-set Hungarian loss. Figure |5.1
illustrates the main idea of TransCAR. We also add the velocity discrepancy as a metric for
the Hungarian bipartite matching because radar can provide accurate radial velocity mea-
surements. Although our focus is on fusing multiple monocular cameras and radars, the
proposed TransCAR framework is applicable to stereo camera systems as well. We demon-
strate our TransCAR using the challenging nuScenes dataset [2]. TransCAR outperforms all
other state-of-the-art (SOTA) camera-radar fusion-based methods by a large margin. The

proposed architecture delivers the following contributions:

e To the best of our knowledge, this represents a first successful attempt to employ

transformer for the challenging task of camera and radar fusion.

e We propose a novel camera-radar fusion network that adaptively learns the soft-
association, and we show superior 3D detection performance compared to hard-association

based on radar-camera calibration.

e TransCAR improves the velocity estimation using radar without requiring temporal

70



information.

e As for now (July 2022). The proposed TransCAR ranks 1st among camera-radar

fusion-based methods on the nuScenes 3D detection benchmark.

5.2 TransCAR

A high-level diagram of the proposed TransCAR architecture is shown in Figure [5.2] The
camera network first utilizes multi-view images to generate vision-updated object queries.
The radar network encodes radar point locations and extract radar features. Then the
TransCAR fusion module performs camera-radar fusion by attentively fusing vision-updated

object queries with useful radar features. In the following, we present the details of each

module in TransCAR.

5.2.1 Camera Network

Our camera network takes multi-view images collected by 6 cameras covering the full 360
degrees around the ego-vehicle and initial 3D object queries as input, and outputs a set of
vision-updated 3D object queries in the 3D space. We apply DETR3D [12] to the camera
network and follow the iterative top-down design. It utilizes initial 3D queries to index 2D
features for refining 3D queries. The output 3D vision-updated queries are the input for the

TransCAR fusion module.

5.2.1.1 Why Start from Camera

We use multi-view images to generate 3D object queries for fusion. Radar is not suitable

for this task because many objects of interest do not have radar returns. There are mainly
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Class | #Total | #Radar Misses | Radar Miss Rate | #LiDAR Misses | LIDAR Miss Rate
Car 318157 114697 36.05% 14196 4.46%
Truck 47687 12779 26.80% 1134 2.38%
Bus 7451 1521 20.41% 42 0.56%
Trailer | 12604 2413 19.14% 413 3.28%
C.V.* 8655 2611 30.17% 166 1.92%
Ped.* | 139493 109026 78.16% 473 0.34%
Motor.* | 9209 5197 56.43% 196 2.13%
Bike 8171 5208 63.74% 111 1.36%
T.C.* 78532 54622 69.55% 1140 1.45%
Barrier | 115105 81464 70.77% 1828 1.59%

Table 5.1: Statistics of objects in different classes in nuScenes training set within 50 meters of
the ego vehicle. * ‘C.V.”, ‘Ped’, ‘Motor’ and ‘T.C’ represent construction vehicle, pedestrian,
motorcycle and traffic cone, respectively. An object that is missed by radar or LiDAR is
defined as having no hit/return from that object. Radar misses more objects. For the
two most common classes in autonomous driving applications, car and pedestrian, radar
misses 36.05% cars and 78.16% pedestrians. Although nuScenes does not provide detailed
visibilities of objects in the image, we believe that it is much higher than radar. Therefore,
we use camera instead of radar to generate 3D object queries for fusion.

two reasons behind this. First, automotive radar has a very limited vertical field of view
compared to camera and LiDAR and is usually installed at a lower position. Therefore, any
object that is located out of the radar’s small vertical field of view will be missed. Second,
unlike LiDAR, the radar beams are wider and the azimuth resolution is limited, making it
difficult to detect small objects. According to our statistics in Table [5.1] in the nuScenes
training set, radar has a high miss rate, especially for small objects. For the two most
common classes on the road, car and pedestrian, radar misses 36.05% of cars and 78.16% of
pedestrians. Cameras have much better object visibilities. Therefore, we utilize images to

predict 3D object queries for fusion.

5.2.1.2 Methodology

The camera network uses ResNet-101 [I06] with Feature Pyramid Network (FPN) [15] to

learn a multi-scale feature pyramid. These multi-scale feature maps provide rich information
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for detecting objects in different sizes. Following [120], 122], our camera network (DETR3D
[12]) is iterative. It has 6 transformer decoder layers to produce vision-updated 3D object
queries; each layer takes the output queries from the previous layer as input. The steps
within each layer are explained below.

For the first decoder layer, a set of N (N = 900 for nuScenes) learnable 3D object queries
QY = {q(l), qg, - q(])\,} € RC are initialized randomly within the 3D surveillance area. The
superscript 0 represents this is the input query to the first layer, and the subscript is the
index of the query. The network learns the distribution of these 3D query positions from
the training data. For the following layers, the input queries are the output queries from the
previous layer. Each 3D object query encodes a 3D center location p; € R3 of a potential
object. These 3D center points are projected to the image feature pyramid based on the
camera extrinsic and intrinsic parameters to sample image features via bilinear interpolation.
Assuming there are k layers in the image feature pyramid, the sampled image feature f; € RC
for a 3D point p; is the sum of sampled features across all k levels, C'is the number of feature
dimensions. A given 3D center point p; may not be visible in any camera image. We pad
the sampled image features corresponding to these out-of-view points with zeros.

A Transformer self-attention layer is used to learn the interactions among N 3D object
queries and generate attention scores. The object queries are then combined with the sampled
image features weighted by the attention scores to form the updated object queries Ql =
{qll, qlz, e qﬂv} € RC, where [ is the current layer. Ql is the input set of queries for the
(I + 1)-th layer.

For each updated object query qé, a 3D bounding box and a class label are predicted
using two neural networks. The details of bounding box encoding and loss function are

described in Section [5.2.4. A loss is computed after each layer during training. In inference
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mode, only the vision-updated queries output from the last layer are used for fusion.

5.2.2 Radar Network

The radar network is designed to learn useful radar features and encode their 3D positions
for fusion. We first filter radar points according to x and y range, since only objects within
+/ — 50 meters box area in BEV are evaluated in nuScenes [2]. As radar is sparse, we
accumulate radar from the previous 5 frames and transform them into the current frame.
The nuScenes dataset provides 18 channels for each radar point, including the 3D location
x,y,z in ego vehicle frame, radial velocities v; and vy, ego vehicle motion compensated
velocities vz and vy, false alarm probability pdh0, a dynamic property channel dynProp
indicating whether or not the cluster is moving or stationary, and other state channels E To
make the state channels feasible for the network to learn, we transform them into one-hot
vectors. Since we use 5 accumulated frames, the time offset of each frame with regard to
the current timestamp is useful to indicate the position offset, so we also add a time offset
channel for each point. With these pre-processing operations, each input radar point has 36
channels.

Multilayer perceptron (MLP) networks are used to learn radar features F}. € RM*C and

e RM*C where M and C are the number of radar points

radar point position encodings P;
and the number of feature dimensions, respectively. In this paper, we set M = 1500 and
C = 256 for nuScenes dataset. Note that there are less than 1500 radar points for each

timestep even after accumulation in nuScenes dataset. Therefore, we pad the empty spots

with out-of-scope positions and zero features for dimension compatibility. Figure shows

1A detailed explanation of each channel can be found at: https: //github.com/nutonomy /nuscenes-
devkit/blob/master/python-sdk /nuscenes/utils/data_classes.py.
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Figure 5.3: Details of radar network. The position encoding network (left) takes radar point
positions (zyz) as input. The radar data after preprocessing (Section are sent to the
radar feature extraction network (right) to learn useful radar features. Since radar signal
is very sparse, each radar point is treated independently. The numbers within the square
brackets represent the shape of the data.

the details of the radar network. We combine the learned features and position encodings
as the final radar features Fl, 0, = (Fy + Py) € RM*C These final radar features together
with the vision-updated queries from the camera network are used for TransCAR fusion in

the next step.

5.2.3 TransCAR Fusion

TransCAR fusion module takes vision-updated queries and radar features from previous steps
as input, and outputs fused queries for 3D bounding box prediction. Three transformer de-

coders work in an iterative fashion in the TransCAR fusion module. The query-radar atten-
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Figure 5.4: Details of transformer camera-radar decoder layer. The vision-updated 3D object
queries are the queries to the multi-head cross attention module. The radar features are keys
and values. See Section for details. The numbers within the square brackets represent
the shape of the data.

tion mask is proposed to assist the cross-attention layer in better learning the interactions

and associations between vision-updated queries and radar features.

It is challenging and time consuming to train a transformer if the number of input queries,
keys and values are large [I18, [119]. For our transformer decoder, there are N 3D object

queries Q € RVXC and M radar features F,.i€ RM*C a5 keys and values, where N =



900 and M = 1500 for nuScenes. It is not necessary to learn every pairwise interaction
(900 x 1500) between them. For a query q; € Q, only the nearby radar features are useful.
There is no need to interact q; with other radar features that are far away. Therefore, we
define a binary N x M Query-Radar attention mask M € {0, l}N <M g prevent attention
for certain positions, where 0 indicates no attention and 1 represents allowed attention. A
position (i,7) in M is allowed for attention only when the xy Euclidean distance between
the i-th query q; and the j-th radar feature f; is less than a threshold. There are three
Query-Radar attention masks in TransCAR fusion corresponding to the three transformer

decoders. The radius for these three masks are 2m, 2m and 1m, respectively.

5.2.3.2 Transformer Camera and Radar Cross-Attention

Three transformer cross-attention decoders are cascaded to learn the associations between
vision-updated queries and radar features in our TransCAR fusion. Figure [5.4] shows the
details of one transformer cross-attention decoder. For the initial decoder, the vision-updated

RNXC

queries Qg € output from the camera network are the input queries. The radar

RM*C are the input keys and values. The Query-Radar attention mask

features F,.,q €
M is used to prevent attentions to certain unnecessary pairs. The cross-attention layer
within the decoder will output an attention score matrix Ay € [0,1]V*M_ For the M
elements in the i-th row of Aq, they represent the attention scores between the i-th vision-
updated query and all M radar features, and their sum is 1. Note that for each query,
only radar features close to it are allowed for attention, so for each row in Aj, most of
them are zeros. These attention scores are indicators of associations between vision-updated

queries and radar features. Then, the attention-weighted radar features for vision-updated

queries are calculated as F¥ ., = (Ay - Fp4q) € RN*C F .- These weighted radar
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features combined with the original vision-updated queries are then augmented by a feed-
forward network (FFN) ®pppq. This forms the fused queries for initial-stage: Qg =

CppN1(Qimg + FF,g) € RVXC,

The middle and final transformer decoders work similarly to the initial one. But they
take the previous fused queries @y instead of the vision-updated queries as input. Taking
the middle query as an examole, the new Query-Radar attention mask My is calculated
based on the distance between Q1 and radar point positions. We also re-sample image
features f o using encoded query positions in Q 1 as the query positions are updated in the
initial decoder. Similarly to the initial decoder, the attention-weighted radar features for
Qs are defined as F 1, = (Ao~ Fpyq) € RV*C where Ag includes the attention scores for
intial-stage fused query Q1 and radar features Fj.,q. The output fused queries are learned
via Qro = CrpN2(Qp1 + F yo + fr2) € RY*CWe apply two sets of FFNs after the two
decoders to perform bounding box predictions. We compute losses from the two decoders
during training, and only the bounding boxes output from the last decoder are used during
inference.

Due to the sparsity of radar signals, for certain queries, there are no radar signals around.
Therefore, these queries will not interact with any radar signals, and their attention scores

are all zeros. Detections from these queries will be vision-based only.

5.2.4 Box Encoding and Loss Function

Box Encoding: We encode a 3D bounding box bsp as an 11-digit vector:

bsp = [cls,x,y, 2, h,w,l,sin(0), cos(0), ve, vy] (5.1)
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where els = {cq,...,cp} is the class label, z,y and z are the 3D center location, h,w and [
are the 3D dimension, ¢ is the heading angle, v, and vy are the velocities along the x and y
axes. For each output object query q, the network predicts its class scores ¢ € [0,1]" (n is

the number of classes, n = 10 for nuScenes) and 3D bounding box parameters b € R10.
b= [Azx, Ay, Az, log h,logw,logl, sin(f), cos(), vz, vy] (5.2)

where Ax, Ay and Az are the offsets between predictions and query positions from the
previous layer.

Loss: We use a set-to-set Hungarian loss to guide training and measure the difference
between network predictions and ground truths following [123] 119, [12]. There are two com-
ponents in the loss function, one for classification and the other for bounding box regression.
We apply focal loss [16] for classification to address the class imbalance, and L1 loss for
bounding box regression. Assuming that N and K represent the number of predictions and
ground truths in one frame, we pad ¢ (no object) with ground truths set since N is signif-
icantly larger than K. Following [123] 119, 12], we use Hungarian algorithm [124] to solve
the bipartite matching problem between the predictions and ground truths:

N

o= argergin Z[_]l{ci;é(b}ﬁo.(i)(ci) + ]l{cﬁéqﬁ}ﬁbox(bia ba(i))] (5.3)

where © denotes the set of permutations, ﬁa(i)(ci) represents the probability of class ¢; with
permutation index (i), and Ly, is the L1 difference for bounding boxes, b; and Bo(i) are
the ground truth box and predicted box respectively. Here, note that we also incorporate

the velocity estimation v; and vy into Ly, for a better match and velocity estimation. With
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the optimal permutation &, the final Hungarian loss can be represented as follows:

N
‘CHungam'cm = Z[_a(l - ﬁ&(i)(ci))7 log p(}(i)(ci) + ]l{ci;é(b}‘cbox(bh b&(i))] (5.4)

where a and v are the parameters of focal loss.

5.3 Experimental Results

We evaluate our TransCAR on the challenging nuScenes 3D detection benchmark [2] as it is

the only open large-scale annotated dataset that includes radar.

5.3.1 Dataset

There are 6 cameras, 5 radars and 1 LiDAR installed on the nuScenes data collection vehicle.
The nuScenes 3D detection dataset contains 1000 driving segments (scenes) of 20 seconds
each, with 700, 150 and 150 segments for training, validation and testing, respectively. The
annotation rate is 2Hz, so there are 28k, 6k and 6k annotated frames for training, validation
and testing, respectively. There are 10 classes of objects. The true positive metric is based

on BEV center distance.

5.3.2 Evaluation Results

We present our 3D detection results on the nuScenes test set in Table 5.2 Our TransCAR
outperforms all other camera-radar fusion methods at the time of submission. Compared
to the baseline camera-only method, DETR3D [12], TransCAR has higher mAP and NDS

(nuScenes Detection Score [2]). As shown in Table [5.2] among the 10 classes, the car class
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has the largest improvement (+1.8%). Cars and pedestrians are the main objects of interest
in driving scenarios. In the nuScenes dataset, class Car has the highest proportion in the
training set, it accounts for 43.74% of the total instances, and 63.95% of these car instances
have radar hits. Therefore, these car examples provide sufficient training examples for our
TransCAR to learn the fusion. Class Pedestrian has the second highest proportion in the
training set, it accounts for 19.67% of the total instances, but only 21.84% have radar returns.
TransCAR can still improve pedestrian mAP by 1.1%. This demonstrates that, for objects
with radar hits, TransCAR can leverage the radar hits to improve the detection performance,
and for objects without radar hits, TransCAR can preserve the baseline performance.
Table[5.3]shows the quantitative comparison with baseline DETR3D [12] in Car class with
different center distance evaluation metrics. In nuScenes dataset, the true positive metric
is based on the center distance, which means the center distance between a true positive
and the ground truth should be smaller than the threshold. nuScenes defines four distance
thresholds ranging from 0.5 to 4.0 meters. As shown in Table [5.3] TransCAR improves the
AP for all 4 metrics. In particular, for the more strict and important metrics 0.5 and 1.0
meters thresholds, the improvement is 5.63% and 6.20% respectively. Figure shows the

qualitative results on the nuScenes dataset.

5.3.3 Ablation and Analysis

Contribution of each component: We evaluate the contribution of each component
within our TransCAR network. The ablation study results on nuScenes validation set are
shown in Table The vision-only baseline is DETR3D [12]. Radial velocity is one of the
unique measurements that radar can provide; although it is not true velocity, it can still

guide the network to predict the object’s velocity without temporal information. As shown
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Method S* |ImAPHNDS?T| Car |Truck| Bus |Trailer|C.V.|Ped.|Motor.|Bike|T.C.|Barrier
MonoDIS[125] C | 30.4 | 384 |47.8] 22.0 |18.8| 17.6 | 7.4 |37.0| 29.0 |24.5[48.7| 51.1
CenterNet[126] C | 33.8 | 40.0 |53.6] 27.0 |24.8| 25.1 | 8.6 |37.5| 29.1 |20.7|58.3| 53.3
FCOS3D[127] C | 35.8 | 42.8 [52.4| 27.0 |27.7| 25.5 |11.7]39.7| 34.5 |29.8|55.7| 53.8

PGDJ[128] C | 38.6 | 44.8 |56.1] 29.9 |28.5| 26.6 |13.4|44.1| 39.7 |31.4]60.5| 56.1

DETR3D[12] (baseline)| C | 41.2 | 47.9 [60.3] 33.3 [29.0| 35.8 |17.0[45.5] 41.3 [30.8/62.7| 56.5
PointPillar [126] L | 305|453 |68.4] 23.0(28.2| 23.4 | 4.1 [59.7| 274 | 1.1 |30.8| 38.9
infoFocus[129] L | 395|395 |77.9] 31.4 |44.8| 37.3 |10.7(63.4| 29.0 | 6.1 |46.5| 47.8
CenterFusion[86]  [CR| 32.6 | 44.9 |50.9| 25.8 |23.4| 23.5 | 7.7 |37.0| 31.4 |20.1|57.5| 48.4
TransCAR(Ours) CR| 42.0 | 50.1 |62.1]| 33.3|29.4| 36.0 |17.9/46.6| 42.5 |32.0|63.1| 57.2

Table 5.2: Quantitative comparison with SOTA methods on nuScenes test set. ‘C.V.,

‘Ped’,'Motor” and ‘T.C’ are short for construction vehicle, pedestrian, motorcycle, and traffic
cone, respectively. TransCAR is currently the best camera-radar fusion-based method with
the highest mAP and NDS, and it even outperforms early-released LiDAR-based approaches.
The best performers are highlighted in bold green, excluding LiDAR-only solutions.

in the second row of Table [5.4] without radar radial velocity, the network can only use the
location of radar points for fusion, and the mAVE (m/s) is significantly higher (0.906 vs.
0.546). The Query-Radar attention mask can prevent attentions for certain pairs of queries
and radar features based on their distances. Without it, each query has to interact with all
the radar features (1500 in our work) within the scene. This is challenging for the network
to fuse useful radar features with the query, resulting in poorer performance.

The iterative refinement: There are three transformer cross-attention decoders that

work iteratively in TransCAR. We study the effectiveness of the iterative design in TransCAR

Methods AP Car@0.5m|AP Car@1.0m|AP Car@2.0m|AP Car@4.0m
Baseline(DETR3D) 16.72 46.28 71.55 83.96
TransCAR 22.35 52.48 74.52 84.53
Improvement 5.63 6.20 2.97 0.57

Table 5.3: Average Precision (AP) comparison with baseline DETR3D in Car class with
different center-distance evaluation metrics on nuScenes validation set. Our TransCAR im-
proves the AP by a large margin in all evaluation metrics.
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Figure 5.5: Qualitative comparison between TransCAR and baseline DETR3D on the
nuScenes dataset. Blue and red boxes are the predictions from TransCAR and DETR3D re-
spectively, green filled rectangles are ground truths. The larger dark points are radar points,
smaller color points are LIDAR points for reference (color yallow to green indicates the in-
creasing distance). The oval regions on the left column highlight the improvements made
by TransCAR, the orange boxes on the image highlight the corresponding oval region in the
top-down view. Best viewed with zoom-in and color.
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Method mAPT|NDSTmATE| mAVE]|
Vision-only Baseline [12]| 34.6 | 42.2 | 0.823 | 0.876
w/o radar

34.7 | 41.7 | 0.766 | 0.906

feature extraction

w/o Query-Radar
attention mask
TransCAR(Ours) 35.5 |46.2 | 0.756 | 0.546

34.4 | 39.5 | 0.765 | 1.125

Table 5.4: Ablation of the proposed TransCAR components on nuScenes val set.

Number of Transformer
Decoders in TransCAR

0 (Baseline [12], without fusion)| 34.6 | 42.2 | 0.823 | 0.876
34.9 | 43.4 | 0.763 | 0.768
354 | 45.4 | 0.758 | 0.625
35.5 | 46.2 | 0.756 | 0.546

mAPTNDSTmATE| mAVE]|

Table 5.5: Evaluation on detection results from different number of transformer decoders in

TransCAR.

fusion and present the results in Table The quantitative results in Table suggests
that the iterative refinement in TransCAR fusion can improve the detection performance
and is beneficial to fully leverage our proposed fusion architecture.

Performance in different distance ranges: Table and Table show the de-
tection performance on nuScenes dataset in different distance ranges, Table [5.6| shows the

average results for all the 10 classes, and Table|5.7|is for Car class only. The results from these

All <20m All in 20 - 30m All in 30 - 40m All in 40 - 50m
mAPT [NDSTmAVE] | mAP?1 [NDST|mAVE]| mAP1 INDSTmAVE] |\ mAPT|NDST|mAVE]
DETR3D [12]| 47.9 | 48.9 | 0.996 | 25.8 | 38.4 | 0.722 | 11.0 | 23.6 | 0.997 | 0.9 | 10.0 | 1.098

Ours 48.6 | 54.0 | 0.537 | 26.6 | 41.9 | 0.450 | 11.9 | 27.4 | 0.705 | 1.0 | 10.8 | 0.938
Improvement | +0.7 | +5.1 | -0.459 | +0.8 | +3.5| -0.272 | +0.9 | +3.8 | -0.292 | +0.1 | +0.8 | -0.160

Method

Table 5.6: Mean Average Precision (mAP, %), nuScenes Detection Score (NDS) and mean
Average Velocity Error (AVE, m/s) for all classes of different distance ranges on nuScenes
validation set. Our TransCAR outperforms the baseline (DETR3D) in all distance ranges.
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two Tables suggest that the vision-only baseline method (DETR3D) and our TransCAR per-
form better in shorter distances. The improvements of TransCAR, are more significant in the
range of 20 — 40 meters. This is mainly because for objects within 20 meters, the position
errors are smaller, there are limited space for leveraging radar for improvement. And for ob-
jects beyond 40 meters, the baseline performs poorly, therefore TransCAR can only provided
limited improvement. Note that the mean average precision (mAP) and corresponding im-
provements for all 10 classes in Table are smaller than the ones for Car class in Table
5.7 There are mainly two reasons for this. First, mAP is the mean of APs of all classes,
in nuScenes dataset, radar sensor has a higher miss rate for small-sized object classes (ped,
cyclist, traffic cone, etc.). For example, 78.16% of pedestrians and 63.74% of cyclists do
not have radar returns. Therefore, the performances for these classes are worse compared
to large-sized objects (car, bus, etc.). Therefore, the improvements brought by TransCAR
for these classes are limited, for those classes of objects that have radar returns, TransCAR
can leverage the radar signal to improve the detection performance, for the ones that do not
have radar returns, TransCAR can only preserve the baseline performance. Second, there is
a significant class imbalance in the nuScenes dataset, class Car accounts for 43.74% of the
training instances, while for some other classes, such as class Cyclist and class Motorcycle
only accounts for 1.00% and 1.07% respectively. The training examples for these rare classes
are not sufficient. As for the major class Car, which is also the most common objects in the
driving scenarios, TransCAR can improve the detection performance and velocity estimation
by a large margin (Table .

Different weather and lighting conditions: Radar is more robust under different
weather and light conditions compared to cameras. We evaluate the detection performance

under rainy conditions and during the night, the results are shown in Figure [5.6{ and Figure
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Cars <20m Cars in 20 - 30m | Cars in 30 - 40m | Cars in 40 - 50m
Method Radar Miss 31.53%|Radar Miss 73.29%|Radar Miss 48.16%|Radar Miss 50.45%
APT | AVE, | APt | AVE, | APt | AVE, |APf| AVE,
DETR3D [12] 76.4 0.917 48.7 0.810 28.8 0.934 5.0 1.015
TransCAR(Ours)| 79.2 0.487 53.8 0.398 33.9 0.588 6.0 0.698
Improvement +2.8 -0.430 +5.1 -0.412 +5.1 -0.346 +1.0 -0.317

Table 5.7: Average Precision (AP, %) and Average Velocity Error (AVE, m/s) for Car class
of different distance ranges on nuScenes validation set. We also present the miss rate of radar
sensor for different distance ranges. A car missed by radar is defined as a car that does not
radar return. Our TransCAR improves the AP and reduces the velocity estimation error by
a large margin in all distance ranges.

B Bascline (DETR3D) I Bascline (DETR3D)
I TransCAR (Ours) I TransCAR (Ours)
60.0% 59.3 1.000 60.0% 583 0.965 1.000

0.825
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0.825 67.5%

0.650 55.0%
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| 0.409
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Figure 5.6: Comparison of Average Precision (AP) and Average Velocity Error (AVE, m/s)
for class Car under the rain and no-rain scenes on nuScenes validation set. There are 1088
frames (27 scenes) among 6019 frames (150 scenes) in nuScenes validation set are annotated
as rain. TransCAR can significant improve the detection performance and reduce the velocity
estimation error under rainy conditions.
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b.7. Note that nuScenes does not provide the weather label for each annotated frame, the
weather information is provided in the scene description section (a scene is a 20-second data
segment [2]). After manual check of some of the annotated frames, we found that not all the
frames under ‘rain’ were captured when the rain was falling, some of them were collected right
before or after the rain. However, these images are of lower quality compared to the ones
collected during sunny weather. Therefore, they are suitable for our evaluation experiments.
Figure [5.6| shows the AP and AVE for class Car under rain and no-rain scenes. TransCAR
has a higher AP improvement (+5.1% vs. +3.6%) for the rain scenes compared to no-rain
scenes. The AVE for rain scenes is smaller than in the no-rain scenes; this is because there
are biases in the rain frames, and the cars within these rain scenes are closer to the ego
vehicle, which makes them easier to be detected. Figure shows the comparison of the
detection performance of night and daytime scenes. Poor lighting conditions at night make
the baseline method perform worse than daytime (52.2% vs. 54.8% in AP, 1.691m/w vs.
0.866m/w in AVE), TransCAR can leverage the radar data and boost the AP by 6.9% and
reduce AVE by 1.012m/s. Although there are limited night scenes (15 scenes, 602 frames),

this result can still demonstrate the effectiveness of TransCAR in night scenarios.

5.4 Summary of the Chapter

In this chapter, we proposed TransCAR, an effective and robust Transformer-based Camera-
And-Radar 3D detection framework that can learn a soft-association between radar features
and vision queries instead of a hard-association based on sensor calibration. The associ-
ated radar features improve range and velocity estimation. Our TransCAR sets the new

state-of-the-art camera-radar detection performance on the challenging nuScenes detection
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Figure 5.7: Comparison of Average Precision (AP) and Average Velocity Error (AVE, m/s)
for class Car during the night and daytime scenes on nuScenes validation set. There are
602 frames among 6019 frames in nuScenes validation set are collected during the night.
TransCAR can leverage the radar data to significantly improve the performance and reduce
the velocity estimation error during the night when the camera is affected.

benchmark. We hope that our work can inspire further research on radar-camera fusion and

motivate using transformers for sensor fusion.
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Chapter 6

RFS-M3: 3D Multi-Object Tracking
using Random Finite Set based
Multiple Measurement Models

Filtering

6.1 Introduction

Autonomous vehicles need robust and accurate 3D perception to achieve safe maneuvering
within a cluttered environment. There are three main problems in 3D perception: 3D object
detection, multiple object tracking (MOT) and object trajectory forecasting. In a modular
perception system, MOT is a critical module that connects detection and forecasting.

For tracking-by-detection approaches, the impact of the quality of input detections pro-
vided by the underlying detector is of paramount importance. However, due to the complex-
ity of cluttered environments and limitations of learning-based detectors, there are many
false positives, misses and inaccurate detections among input detections. Therefore, the
main challenges for MOT in autonomous driving applications are threefold: (1) uncertainty

in the number of objects; (2) uncertainty regarding when and where the objects may appear
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and disappear; (3) uncertainty in objects’ states.
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Figure 6.1: Overview of the proposed RFS-M3 tracker pipeline. For each frame, many 3D
detections are generated by a neural-network-based 3D detector, as the red bounding boxes
on the left column. Our RFS-M3 tracker successfully tracks targets and filters out false
positives (boxes shown within the blue ellipses). For figures in the right column, different
bounding box colors correspond to different unique tracked IDs. Some tracks with the same
IDs are connected with dashed lines to help visualization. Best viewed in color.

The family of Random Finite Set (RFS) [29] B0], BI] based approaches are theoretically
sound Bayesian frameworks that naturally model the uncertainties mentioned above accu-

rately and elegantly. Although traditional filtering-based methods, such as Kalman filtering
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[26], [6], 28], perform well in state estimation, they are not designed to model the unknown
number of objects, or the so-called birth and death phenomena of objects. RFS-based MOT
algorithms address these problems from a Bayesian perspective and have been shown to be
very effective in radar-based applications [32] 33]. Among RFS-based approaches, Poisson
multi-Bernoulli mixture (PMBM) filtering has shown superior performance and favorable
computational cost [34]. However, the 3D input detection format (3D bounding boxes) for
modern autonomous driving systems is significantly different from raw radar signals (points
and Doppler velocity). The application of RFS for 2D/3D amodal detections (bounding
boxes) from learning-based detections has not been well explored. Existing works in this
area either underperform state-of-the-art trackers or they have been tested using a small
dataset that do not reflect broad and truly challenging scenarios [35], 36, [37].

As discussed in Chapter 2, there are multiple evaluation metrics for 3D MOT corre-
sponding to different application scenarios. The main difference lies in the definition of True
Positive metrics (TP metrics). Waymo [7] uses the strictest TP metric: 3D intersection over
union (IoU). This requires trackers to not only perform well in data association, but also per-
form well in estimating tracks’ 3D locations, dimensions and orientations. The TP metrics
for Argoverse [38] and nuScenes [2] are calculated only using a center distance threshold at 2
meters during matching. These different metrics and application scenarios require different
system designs to optimize on-board computing resources.

We propose an RFS-based Multiple Measurement Models filter (RFS-M 3) to solve the 3D
MOT problem with amodal detections for autonomous driving applications. In particular,
we propose multiple measurement models ranging from the 3D bounding box model to
the point measurement model for a PMBM filter in support of different TP metrics and

optimize the usage of computing resources. Furthermore, our framework supports amodal
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detections, which implies the ability to track objects that are only partially visible due
to partial occlusions by other objects. This partial occlusion phenomenon represents a
challenging and realistic condition that should be addressed by any viable tracking solution.

The contributions of our paper are as follows:

e To the best of our knowledge, this represents a first successful attempt to employ an
RFS-based approach that incorporates amodal 3D detections from a neural network

for 3D MOT.

e Multiple measurement models including 3D bounding box model and point model are

incorporated in our RFS-M 3 to support different MOT application scenarios.

e Our RFS-M3 is an online real-time tracker with multiple global hypotheses maintained,

and can run at an average rate of 20 Hz on a standard desktop.

e We validate the performance of our RFS-M?3 tracker using three extensive open datasets
provided by three industry leaders — Waymo [7], Argoverse [38] and nuSceness [2]. It
is worth noting that among entries that use the organizer provided detections, our

RFS-M3 ranks No.2 in all-class MOTAEI on the Waymo dataset.

6.2 Problem Formulation and System Overview

Our problem formulation and system pipeline are summarized in Figure[6.2] This includes an
RFS-M3 tracker designed to solve the 3D MOT problem given a set of noisy 3D detections,
as well as estimate the number of objects, and maintain identity and state of each object.

The details of the RFS-M? tracker are further illustrated in Section 4.

1Multi—object tracking accuracy, MOTA in short, is the primary metric for ranking in most MOT bench-
marks.
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Our work is an online tracking-by-detection system with 3D detections as input for each

step. The standard format for n 3D detections in one frame can be defined as follows:

D ={d;,ds,...dn}, o

di = [zi, yi, 2, hiy wi, 1, 05, s, clsi]
where D is the set of all n detections in one frame, for #;;, detection d;, z;, y;, 2; is the center
location in 3D space, h;, w;,l; denote the height, width and length of the 3D bounding box,
6; is the orientation around z axis, s; and cls; are the confidence score and class name
(vehicle, pedestrian and so on) respectively. Note that our RFS-M 3 tracker module can
work with any 3D detector that outputs standard 3D detections. The 3D detectors can be
image-based [8, 56], LiDAR-based [10, 4] or multi-sensor fusion-based [I],[76]. But the impact
of the quality of input detections is of paramount importance.
The output of our RFS-M3 tracker for each frame is a set of m tracked 3D targets T
defined as follows:

T ={t1,t2,...tm}, 62)

tj = [IJ, yj, Zj, hj, wj, l], 9], weightj, ClSj, Zdj}

where weight; is the weight of the target, it models the probability of the corresponding

data association hypothesis. id; denotes the unique global tracked ID of the target.

6.3 Proposed Method

The high-level system of the proposed RFS-M?3 MOT tracker architecture is shown in Fig-

ure . This illustrates the four primary components of the tracker: (1) PMBM Predictions;
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RFS-M3Tracker

Raw Sensor Neural 3D Detection |:> Multiple Measurement PMBM Update Reduction
Data (LIDAR E> Network- E> Measurement: Models |:> Prune, Cap, Gate,
scans and/or based 3D D-{d,,d ) ) Update Recycle and Merge
images) Detector R Data Association Hypotheses |:> Detected & Hypotheses/States
Build Cost Matrix Undetected
- Tracks States 3D Tracked Targets:
Murty Algorithm and Weights ) T={t, ts, ... tn}
T
PMBM Prediction
Undetected Tracks Detected Tracks
Prediction Prediction

Figure 6.2: RFS-M? system architecture. The system works in a recursive way. Started at
tracks from previous timestep, PMBM prediction is done first to predict each track’s state,
then according to the detection measurements for the current time step, we form different
global association hypotheses from possible combinations of single target hypotheses (track-
detection pairs). Then the update of tracks is done based on the data association. Finally
the update outputs are sent to reduction module to remove unlikely results and output tracks
for the current timestep.

(2) Data Association; (3) PMBM Update; and (4) Reduction.

6.3.1 Random Finite Set and MOT

A random finite set (RFS) is a set where both the cardinality and the variables within the
set are random [95], 130]. In particular, a random finite set can be modeled using two layers
of probability distributions, one for the number of elements (cardinality) of the set and the
other for the elements themselves. The concept of random finite set fits the nature of MOT
very well, where the number of tracks and the track’s state is unknown. Combining Bayesian
recursion with RFS has shown to be a promising direction to solve the MOT problem. RFS
could model both the single track state as a stochastic variable as well as the number of

tracks.
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6.3.2 Detected and Undetected Tracks

Under the PMBM model [97, 98], the set of tracks x¢ at timestamp ¢ is the union of detected
tracks X%i and undetected tracks xj'. Detected tracks xg are tracked objects that have
been detected at least once. Undetected tracks xj' are potential objects that have not been
detected. Note that we are not explicitly tracking the undetected tracks, which is impossible
under a tracking-by-detection framework. Instead, we have a representation of their possible

existences.

6.3.3 Object States with Different Measurement Models

There are two versions of object states corresponding to two measurement models: a 3D

bounding box version and a point version. For 3D bounding boxes, the object state, X3D,

3D

and measurement, z°, are defined as:

X3D:[

T, Yz, ha w, l7 viﬂh Uya Vz,s U@}
(6.3)

73D — [z, y, 2, h,w,l, 0]

where vy, vy, v, represent the velocity of objects in 3D space, vy denotes the yaw angle
velocity. x,y, z, h,w, [, 0 are measurable states, while vy, vy, vz, vy are unmeasureable states.
Similarly, for point objects, the state, xP?, and measurement, zP?, are defined as:

Xpt = [.CU, Y, Ve, Uy} (6 4)

zPt = [z, y].

As discussed in the Experiment section, each version has its own unique attributes to handle

specific tracking TP metrics. Note that in addition to the 3D bounding box version, the
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outputs from the point model version are also tracked 3D bounding boxes for 3D targets;
however, the missing 3D information in the 2D point-target state is added from the associated

3D detection measurement.

6.3.4 Data Association Hypotheses

For each timestamp, there are multiple hypotheses for data association. In our measurement-
driven framework, each measurement is one of three options: a newly detected target, a
previously detected target, or a false positive detection. We form different global association
hypotheses from possible combinations of the single target hypothesis (STH). For example,
in Figure[6.3], for the time step ¢, T1, T5 and T3 are tracked targets, D1 and Do are detections.
The dashed circles are gated regions for each track; detections that are out of gated regions
will not be considered for association; for example, D9 is not a valid association candidate
for T since it is out of the gated region of T. D; could be associated with T7, Do could be
associated with T3, D1 could be a new track or false positive detection, there are also other
possibilities; these data association hypotheses for each valid target-detection pair are single
target hypotheses.

In our framework, within a global association hypothesis, one detection can only be
associated with one track in one global association hypothesis. For example, in Figure [6.3],
{D; is associated with T, T miss-detected, Ds is associated with T3}, {7 miss-detected,
D is associated with Ty, Ds is associated with T3} and {7 miss-detected, To miss-detected,
T3 miss-detected, Dy is a false positive detection, Dy is a new track} are all valid global
association hypotheses. While {D; associates to T, Dp associates to To, Dy associates to
T3} is not a valid global association because D is associated with multiple tracks 77 and

T at the same time.
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Figure 6.3: Example of single target hypothesis and global association hypotheses. 17, T5
and T3 are tracked targets, D1 and Do are detections. The dashed solid circles are gated

regions for each track, detections that are out of gated regions will not be considered for
association.

One of the advantages of our RFS-M3 tracker is that we maintain multiple global hy-
potheses instead of only one. For the k;j, global hypothesis in one frame, assuming that there

are n tracked targets (detected tracks) given m detection measurements, the m by (n + m)

cost matrix is built as follows:

_ll,l,k —l1727k e _ll,n,k —ll’g o0 cee o0
k _ZQ’L]C —l2,27k e —lg’n,k 0¢ —12’0 N oo
LF = (6.5)
_lm,l,k‘ _lm,Q,k ce _lm,n,k o0 e _lm,O

The left m x n block contains the negative logarithmic costs of associating each of the m
detection measurements with each of the n previously tracked targets (detected tracks). For
the element —/; ; 1. in the i;;, row and the jy, column, it represents the negative logarithmic
cost of associating the i, detection measurement to the j;, tracked target and is calculated
as —(log(wg j) — log(wé‘i j)) Here, wg j is the track-detection single target hypothesis weight,
and w& j is the missed detection single target hypothesis weight. The calculation details of

these weights are given in Section [6.3.7, The right m x m square block contains negative
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logarithmic costs for generating new targets from detection measurements.
Murty’s algorithm [I31], an extension of the Hungarian algorithm [124] is used to generate
K best global hypotheses instead of only one. The weight for each global hypothesis is based

on the product of its detected tracks’ weights.

6.3.5 PMBM Density

Under the PMBM model, Poisson RFS, also named Poisson point process (PPP), is used to
represent undetected tracks, and a multi-Bernoulli mixture (MBM) RF'S is used to represent

detected tracks [97, 08]. The PMBM density can be expressed as:

PMBMy(x) = > Pux")MBM;(x") (6.6)
xUxd=x
where x represents all objects in the surveillance area and x is the disjoint union set of
undetected tracks x" and detected tracks x?. Symbols P(-) and MBM(-) are the Poisson
point process density and the multi-Bernoulli mixture density, respectively. We assume that
the PPP mixture intensity and Bernoulli state probability density functions are Gaussian.
Therefore, the parameters for N* undetected tracks PPP densities are as follows:

ot 2 o7

7

where w;' is the weight of i;;, undetected track, p}' and 3} are the state mean and covariance,

respectively. The parameters for N d detected tracks MBM densities are:

d d .d <wdN?
{wf.rg w5, 25} (6.8)
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where w§-l and T;-i are the STH weight of the j;; detected track and the probability of ex-
istence, and u;-l and E;l are the Gaussian state variables. The PMBM density parameters
are the combination of PPP density parameters and MBM density parameters. The PMBM

prediction and update are the processes of predicting and updating the PMBM parameters.

6.3.6 PMBM Prediction

A crucial aspect of the PMBM filter is its conjugacy property, which was proved in [98]. The
notion of conjugacy is critical for robust and accurate Bayesian-based MOT. In summary,
the conjugacy of the PMBM filter inplies that if the prior is in a PMBM form, then the
distribution after the Bayesian prediction and update steps will be of the same distribution

form. Therefore, the prediction stage of a PMBM filter can be written as follows.

PMBMy (Xt 41) = /p(xt+1|xt)PMBMtt(Xt>5xt (6.9)

where p(x;41|x¢) represents the transition density. A constant velocity model is used as
the motion model in this work for simplicity. The undetected and detected tracks can be
predicted independently. Ps is defined as the probability of survival, namely the probability
that an object survives from one time step to the next. Standard Bayesian prediction is
applied for both detected and undetected track states. The weight of each undetected track
is scaled by Ps in the prediction step to account for the higher uncertainty in the prediction
step:

w;‘+1‘t = Psw;“t (6.10)
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For detected tracks, which are modeled as multi-Bernoulli mixture (MBM) RFSs, each MB
process can also be predicted independently of the others. The single target hypothesis

weight w? and probability of existence r? of each detected track can be predicted as follows:

d U
Wi =W
e (6.11)

d
Tt t)t

The single target hypothesis weight remains unchanged because no new information about
detection measurement is incorporated in the prediction stage. The probability of existence
for each MB-modeled object is decreased by a factor Ps in order to account for the higher
uncertainty of existence within the Prediction stage.

Unlike the standard PMBM filter that uses a constant for Ps, we incorporate confidence
scores from previously associated measurements in Py for detected tracks. This is because
detections with higher confidence scores indicate a higher chance of existence and survival

across frames.

6.3.7 PMBM Update

By adding information from the measurement model p(z;|x;), the PMBM density can be

updated with:

P(Zt41 (x4 1) PMBM; 3 (X¢41)
— 12

The update steps for different hypotheses are different, including detected /undetected tracks,
being associated with a detection measurement or not. The association metrics vary de-

pending on the measurement models. For the 3D bounding box measurement model, the
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association metric uses the Mahalanobis distance and 3D IoU between predicted 3D measure-
ments and real 3D measurements. The point measurement model only uses the Mahalanobis
distance between the center points.

Update of Undetected Tracks without Associated Measurement: Undetected
tracks that do not have any measurement associated with them remain undetected. The
Bayesian update will thus not change the states or variances of the Poisson distributions
since no new information is added. Therefore, the weight of each undetected track is reduced
by a factor of (1 — Py) to account for the decreased probability of existing [97, [98]:

Wit = (U= Pawilyy, (6.13)

P, is the probability of detection, that is, the probability that it should be detected.
Update of Potential New Tracks Detected for the First Time: Our RFS-M?
tracker is a measurement-driven framework: an object must be connected to a measurement
in order to be classified as a new track (detected for the first time). All undetected tracks and
corresponding gated measurements are considered to generate the new tracks. Note that the
detections from a neural network have confidence scores attached to them. This confidence
score is an invaluable indicator of the object probability of existence. Therefore, unlike a
standard PMBM filter, we incorporate the detection confidence score into the update step
of objects detected for the first time. For detections with confidence scores larger than a
threshold (dependent on different learning-based 3D detector), we generate a potential new
target by adding a new Bernoulli process and plugging the negative logarithmic weight in the
right m x m blocks diagonal in the cost matrix L discussed in Section For detections

with lower confidence score, since we are not certain about their existences and require more
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evidences from the future, an undetected track with PPP density is generated for each of
them.

Update of Detected Tracks without Associated Measurement: If there is no
measurement associated with the detected tracks, which was detected from a previous frame,
we maintain the object predicted state unchanged. Furthermore, the probability of existence

and weight are updated with:

d
Tt+1|t(1 - Fy)

d d
~ T T — Fa) (6.14)

d _
e
d . d d d
W11 =Wegrjp (= T + (U= Fa))

This weight is the missed detection weight mentioned in Section [6.3.4 Here P; is the
confidence score of the detection that is associated with this detected track in the previous
frame. Unlike standard Kalman filter-based trackers, the survival time of detected tracks
without measurement varies based on the tracking status from the previous time period.
Update of Detected Tracks with Associated Measurement: For a detected track
with associated measurements, the predicted state is updated by weighting in the information
contained in the measurement, and a standard Kalman filter [26] is used to update the state
vector. Also, the updated probability of existence is set to 1 because one cannot associate a
measurement to an object that does not exist. The updated weight can be calculated as:

d 4 4 o d A .
Wi 11 = Wi i1 PN (26 Hey g4, ) (6.15)

and rd are the predicted weight and probability of existence from the pre-

d
where w b1t

t+1)t

diction stage. S and N (z¢; H :13? IRIASY S') are the innovation covariance and measurement
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likelihood, and H is the observation matrix. Here we set probability of detection P; equal to

the associated detection confidence score. This weight is the target hypothesis-measurement

d

i mentioned in the Section [6.3.4]

pair weight w

6.3.8 Reduction

The general assignment problem in MOT is NP-hard [132], and hence reducing the number
of hypotheses is necessary for managing computational complexity and maintaining real-time
performance. Five reduction techniques are used in this work: pruning, capping, gating, re-
cycling and merging. Pruning is used to remove objects and global hypothesis with low
weights. Note that the weight of a global hypothesis is the sum of detected tracks’ weights.
Capping is used to set an upper bound for the number of global hypotheses and the num-
ber of detected tracks within one global hypothesis. Gating limits the search distance for
data association using Mahalanobis distance instead of Euclidean distance. Recycling moves
detected tracks with lower weights to undetected track set rather than discarding them.
There may be non-unique global hypotheses, and merging combines these identical global

hypotheses into one.

6.4 Experimental Results

6.4.1 Settings and Datasets

We evaluate our method on three popular open datasets provided by three industry leaders:
Waymo [7], Argoverse [38] and nuScenes [2]. The basic information for each dataset is shown

in Table [6.1]
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Since our method is not a learning-based method, we do not use the training set; but
the validation set is used for parameter tuning. The field of view of these datasets is 360
degrees. Note that for these open datasets, ground truth labels are only available for training
and validation sets. For fairness of evaluation of testing samples, one needs to submit the
tracking results to the relevant server.

Standard evaluation metrics [41] for MOT are used, including MOTA, MOTP (multi-
object tracking precision), FP (False Positives), IDS (ID switches) and so on. The details
of the metrics for each benchmark have been explained in Chapter 2 and can be found in

17, 138, 2.

6.4.2 Evaluation Results

The overall results for all classes on Waymo, Argoverse and nuScenes dataset are shown
in Table , Table and Table respectively. RFS-M3-Point represents our RFS-M3
with point measurement model and RFS-M3-3D denotes RFS-M? with 3D bounding box
measurement model. For Waymo dataset, the results for each class (vehicle, pedestrian and
cyclist) are shown in Table Table and Table respectively. Note that Waymo
dataset breakdowns all the ground truth labels into two difficulty levels: level 1 (L1 shown
in the result Tables) considers ground truth labels that have at least 5 LiDAR points, and

level2 (L2 shown in the result Tables) considers ground truth labels that have at least 1

Dataset | #Scenes/Segments é&;ﬁiﬁ #éizgjsed #Egl;;tlon

Waymo 1152 ~230.4K | ~230.04K 3
Argoverse 113 ~22.4K ~22.4K 2
nuScenes 1000 ~400K ~40.04K 7

Table 6.1: Basic information of Waymo, Argoverse and nuScenes Datasets.

104



MOTA/L1 Misses/L1|MOTA/L2 Misses/L2

/ Hac | [V 1 o7
Method Class| ™" ") [MOTP/LL | FP/L1(%) | ) %) 1 MOTP/L2 ||FP/L2(%) | %) )
Waymo ALL| 27.13 0.1753 9.78 62.88 25.92 0.263 13.98 64.55
Baseline [7]
AB‘}?(%%?SWI@ ALL|  30.20 0.2696 17.80 51.74 29.14 0.270 17.14 53.47
2-Stage Djata )
Association Tracker [1z5]| ALE | 3791 0.2626 9.18 51.53 36.53 0.2626 8.85 53.27
Pr?;ﬁ;lésm ALL| 37.97 0.2696 8.62 52.28 36.57 0.270 8.32 54.02
Our RFS-M3Point | ALL | 39.95 0.2698 8.03 51.11 38.51 0.270 7.74 52.86
Our RFS-M3-3D ALL| 43.21 0.2707 9.30 4721 41.73 0.270 8.98 49.01

Table 6.2: Quantitative comparison of 3D MOT evaluation results for ALL CLASSES on
Waymo test set.

LiDAR points. For Argoverse dataset, the results for each class (car and pedestrian) are
shown in Table and Table|6.8 respectively. There are 10 classes in nuScenes 3D tracking
benchmark, so we don’t show the results for each class, but the results are available at [?].

As shown in these tables, our method outperforms other state-of-the-art tracker signifi-
cantly. By Oct 2020, among all entries that use organizer-provided detections, our RFS-M3
tracker ranked No.2 on the Waymo 3D tracking leaderboard; For Argoverse leaderboard,
we ranked No.1 in Vehicle MOTA, No.2 in all-class MOTA and No.3 in averaged ranking
(primary metric). For tracking-by-detection, the quality of input detections is of paramount
importance. Although some methods used better self-generated detections than provided
by the organizer, nevertheless, our performance is very competitive. In Table |6.10, we show
the results of RFS-M3 with different input detections. The APH for CenterPoint[I33] is
14.8% higher than PPBA (organizer provided detections)[134], and this results in a 10.5%
improvement in MOTA. We believe that our RFS-M3 would perform better in these test
benchmarks with better input detections than organizer precomputed ones.

Our RFS-M3-3D performs significantly better than RFS-M3-Point on the Waymo dataset
(Table , while they have similar performance on the Argoverse and nuScenes datasets

(Table [6.6). This is because Waymo uses the strictest True Positive metrics — 3D IoU,
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, ~ [MOTA/LL], o« | Misses/L1|MOTA/L2] o\ | Misses/L2

Method S MOTP/L1 | |FP/L1(%) | | ) 1 MOTP/L2 | |FP/L2(%) | ) L
7.

B;;;E‘;OW vehicle|  42.49 0.1856 17.33 40.04 40.08 0.1856 16.35 43.44
AB?‘?(l\F'I%E‘Style vehicle|  38.20 0.1812 25.90 35.79 36.00 0.1812 24.41 39.48
Associi’tsi;igfﬁgjﬁ:‘r (5 vehicle|  45.59 0.1751 10.43 43.53 42.75 0.1751 9.78 47.06
P“fg;ﬁ;;m vehicle|  48.49 0.1783 9.25 41.88 45.48 0.1783 8.68 45.49
Our RFS-M3-Point | vehicle| 4871 0.1787 9.85 41.26 15.70 0.1787 9.24 14.88
Our RFS-M3-3D | vehicle| 50.11 0.1774 9.75 40.08 47.06 0.1774 9.16 13.73

Table 6.3: Quantitative comparison of 3D MOT evaluation results for VEHICLE class on
Waymo test set.

. |MOTA/L1|,, o, Misses/L1 | MOTA/L2|, o Misses/L2

Method Class G 1 |MOTP/LLLIFP/LA() 4| ™o ™| ™5 g ™ IMOTR/L2 4| FR/L2(%) L )
Waymo . .

M pedestrian 38.91 0.3403 12.00 48.60 37.69 0.3403 11.62 50.21

Baseline [7]

ABS%;I%?SW]‘% pedestrian|  28.24 0.3431 14.35 57.00 27.30 0.3431 13.87 58.43

2-Stage Data e . . mn . )

Association Tracker [I35] pedestrian|  39.83 0.3456 10.14 48.71 38.56 0.3456 9.82 50.34

Pr‘;;’;‘g;““ pedestrian|  35.95 0.3444 9.68 51.91 34.79 0.3444 9.37 53.47

Our RFS—;W:;—POint pedestrian| 42.28 0.3453 11.81 45.48 40.97 0.3453 11.44 47.18

Our RFS-M3-3D pedestrian|  39.10 0.3432 7.78 52.16 37.81 0.3432 7.53 53.73

Table 6.4: Quantitative comparison of 3D MOT evaluation results for PEDESTRIAN class
on Waymo test set.

MOTA/L1 Misses/L1 | MOTA /L2 Misses/L2
Method Class MOTP/L1 || FP/L1(% MOTP/L2 || FP/L2(%
S (%) 1 /L1 /LL(%) L (%) | (%) 1 /L2 /L2(%) L (%) |
ABB%;;K{;?SWIG cyclist| 24.16 0.2844 13.17 62.44 24.13 0.2844 13.15 62.49
AssociQa_tSigig%rE:l:r [rzm) | Cvelist| 2830 0.2670 6.96 62.35 28.26 0.2670 6.95 62.40
Pr?ﬁﬁ;ﬁ“" cyclist|  29.48 0.2861 6.92 63.04 29.44 0.2861 6.91 63.00
Our RES-MPPoint | eyclist|  32.05 0.2875 6.46 50.02 32.01 0.2875 6.45 59.97
Our RFS-M33D  |cyclist| 37.22 0.2893 6.35 56.06 37.17 0.2893 6.34 56.12

Table 6.5: Quantitative comparison of 3D MOT evaluation results for CYCLIST class on
Waymo test set.
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Method ClassMOTA (%) 1|IDF1 1MOTP |[MOTP-I* | |#False Positive ||#Misses ||#IDS |
Argoverse Baseline [38]| All 57.11 0.685 | 0.355 0.190 20626 49374 624
Our RFS-M3-Point | All 60.12 0.705 | 0.370 0.195 14202 48443 1145
Our RFS-M3-3D All 58.55 0.705 | 0.345 0.180 11536 52939 1520

Table 6.6: Quantitative comparison of 3D MOT evaluation results for ALL CLASSES on
Argoverse test set. *MOTP-I: amodal shape estimation error, computed by the 1-IoU of 3D
bounding box projections on xy plane after aligning orientation and center point.

Method ClassfMOTA (%) 1|IDF1 1| MOTP |[[MOTP-I* ||#False Possitive ||#Misses J|#IDS |
Argoverse Baseline [38]| Car 65.90 0.79 | 0.34 0.20 15693 23594 200
Our RFS-M3-Point | Car 71.67 0.81 0.34 0.19 8278 24165 362
Our RFS-M3-3D Car 71.14 0.81 0.32 0.17 6996 26039 382

Table 6.7: Quantitative comparison of 3D MOT evaluation results for CAR on Argoverse
test set.

Method Class MOTA (%) TIDF1 tMOTP [MOTP-I* ||[#False Possitive ||#Misses ||#IDS |
Argoverse Baseline [38]| All 48.31 0.58 0.37 0.18 4933 25780 424
Our RFS-M3-Point | All 48.56 0.60 0.40 0.20 5924 24278 783
Our RFS-M3-3D All 45.92 0.60 0.37 0.19 4540 26900 1138

Table 6.8: Quantitative comparison of 3D MOT evaluation results for PEDESTRIAN on
Argoverse test set.

/| * /|
Method Class AM((DO;F)A T AMOTP* | h({VO)T? MOTP | |#False Positive | | #Misses | | #IDS |
0 0
nuScenes All 15.1 1.501 15.40 | 0.402 15088 75730 | 9027
Baseline [2]
Probabilistic
KF P All 55.0 0.798 45.9 | 0.353 17533 33216 950
Our RFS-M3-Point| All 61.9 0.752 52.4 | 0.387 16728 27168 | 1525
Our RFS-M3-3D | All 61.4 0.716 51.1 | 0.363 19265 26921 | 1892

Table 6.9: Quantitative comparison on nuScenes test set. *¥AMOTA and AMOTP: average
MOTA and MOTP across different thresholds [6), 2].

while Argoverse and nuScenes use ground plane center distance. The temporal 3D bounding
box information contained in RFS-M3-3D provides limited assistance in reducing center
distance but is crucial to estimating 3D bounding boxes with higher accuracy. This is also
supported by the result that compared to RFS-M 3_Point, RFS-M?3-3D has smaller MOTP-I

on Argoverse dataset.
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Method (Tracker+Detector) [Class|Detection APH* 1[MOTATMOTP |
RFS-M3-3D4+PPBA[134] | Car 49.4% 40.4% | 0.182
RFS-M3-3D4CenterPoint [133]| Car 64.2% 50.9% | 0.171

Table 6.10: Comparison of RFS-AM3 with different input detections on Waymo val set, all
metrics in LEVEL_2 difficulty. *APH: average precision weighted by heading [7].

6.4.3 Ablation Study

We evaluate the contribution of each important component in our RFS-M3. The results are
shown in Table . One advantage of our RFS-M3 tracker is that we maintain multiple
global hypotheses instead of only one to achieve improved data association across frames.
This is because ambiguities within input detections could lead to wrong data associations
having higher weights than correct associations. Keeping the correct associations even with
lower weights could help correct the associations in future frames. P, is the probability
of detection. Incorporating the detection confidence score into P, rather than using a
constant as in standard PMBM, can better model the uncertainties within the prediction
and update. Gating is applied to limit the search distance for data association, and compared
to Euclidean distance, Mahalanobis distance performs better because it takes the estimated

state uncertainties into consideration.

MOTA 1 Misses

Meth 1 ) MOTP | |FP
ethod Class (Primary) (%) OTP | |FP(%) | (%) |

Single .
Global Hypo Vehicle 38.82 0.183 9.63 51.29
Constant P; | Vehicle 27.83 0.183 7.13 63.74
Gating with |y, .0 38.57 0183 | 951 |51.24
Euclidean dis

RFS-M3 | Vehicle 40.40 0.182 9.90 | 49.60

Table 6.11: Ablation study of RFS-M3-3D on Waymo val set, all metrics in LEVEL_2
difficulty.
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6.5 Summary of the Chapter

In this chapter, we present an RFS-M3 tracker to solve the 3D amodal MOT problem with
multiple measurement models in support of different autonomous driving scenarios. Our
framework can naturally model the uncertainties in the MOT problem. This represents a
first successful attempt to employ an RFS-based approach in conjunction with 3D neural
network-based detectors and with comprehensive testing using large-scale datasets. The
experimental results on Waymo, Argoverse and nuScenes datasets demonstrate that our

approach outperforms previous state-of-the-art methods by a large margin.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Autonomous driving systems require accurate 3D object detection and tracking to achieve re-
liable path planning and navigation. Different types of sensors including camera, LiDAR and
radar, are required in the self-driving perception system due to their complimentary char-
acteristics. Sensor fusion is crucial for combining data from different sensors and producing
robust and improved results.

Throughout this dissertation, we have proposed and demonstrated the effectiveness of
multiple sensor fusion-based 3D object detection and multi-object tracking techniques. We
first present CLOCs (Chapter [3)) and Fast-CLOCs (Chapter [4]) for camera-LiDAR fusion-
based 3D object detection. Our approach uses much-reduced thresholds for each sensor
and combines detection candidates before NMS. By leveraging cross-modality information,
it can keep detection candidates that would be mistakenly suppressed by single-modality
methods and remove detection candidates that violate the consistency between different
sensors. In Chapter [5, we apply Transformer for camera-radar fusion and propose Tran-
sCAR. TransCAR can learn the soft-association between radar features and vision queries
via transformer decoder instead of hard-association depended on sensor calibration. The as-

sociated radar information can improve the range and velocity estimation for vision-based
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detections. Then we present an RFS-M3 tracker (Chapter @ to solve the 3D MOT prob-
lem with multiple measurement models in support of different autonomous driving scenarios.
Our framework can naturally model the uncertainties in the MOT problem. The experimen-
tal results on Waymo, Argoverse and nuScenes datasets demonstrate that our approaches

outperform previous state-of-the-art methods.

7.2 Future Work

Maps for 3D Object Detection: High resolution maps are necessary for autonomous
driving applications including self-localization and path planning. Autonomous driving com-
panies either build HD maps themselves or cooperate with mapping companies to access the
maps E Most open detection and tracking benchmarks including Waymo, Argoverse and
nuScenes [7, 2] 38], also provide HD maps. These HD maps consist of accurate road topology
information, which could be beneficial to object detection and tracking. In particular, the
lane and parking information within the maps can provide critical constraints to where ob-
jects may realistically appear and head to in the future. The question of how to incorporate
map information into detection and tracking networks remains an open problem; apparently,
more research efforts are needed on this topic.

Joint Object Detection and Tracking: Through this dissertation, we have studied 3D
object detection and tracking in cascaded fashion, which is known as tracking-by-detection
framework. The tracking module takes the output of a detection module as input, and the
detection network processes each data frame independently. We believe that the tracking

results can be used as a priori for the detection network for the next time step. Because

LWAYMO website: https://waymo.com/, CRUISE website: https://www.getcruise.com/, HERE map
weibsite: https://www.here.com/.
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the tracking module takes previous temporal information into consideration, and tracked
targets are more likely to appear at the close neighborhoods for the next time step. Within
a joint detection and tracking framework, the tracking module can assist detection, and

better detection can benefit tracking in return.

112



BIBLIOGRAPHY

113



1]

3]

[4]

[5]

[10]

BIBLIOGRAPHY

Su Pang, Daniel Morris, and Hayder Radha. Clocs: Camera-lidar object candidates
fusion for 3d object detection. 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang
Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A mul-
timodal dataset for autonomous driving. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 11621-11631, 2020.

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High quality object detection and
instance segmentation. arXiv preprint arXiv:1906.09756, 2019.

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection.
Sensors, 18(10):3337, 2018.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In
Proceedings of the IEEE international conference on computer vision, pages 2961-2969,
2017.

Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani. 3d multi-object tracking:
A baseline and new evaluation metrics. 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik,
Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability
in perception for autonomous driving: Waymo open dataset. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2446—
2454, 2020.

Garrick Brazil and Xiaoming Liu. M3d-rpn: Monocular 3d region proposal network for
object detection. In Proceedings of the IEEE International Conference on Computer
Vision, pages 9287-9296, 2019.

Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal
generation and detection from point cloud. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 770-779, 2019.

Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and

Hongsheng Li. Pv-renn: Point-voxel feature set abstraction for 3d object detection. In
CVPR, 2020.

114



[11]

[12]

[13]

[14]

[15]

[16]

[17]

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer
Viston and Pattern Recognition, pages 3354-3361. IEEE, 2012.

Yue Wang, Vitor Campagnolo Guizilini, Tianyuan Zhang, Yilun Wang, Hang Zhao,
and Justin Solomon. Detr3d: 3d object detection from multi-view images via 3d-to-2d
queries. In Conference on Robot Learning, pages 180-191. PMLR, 2022.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems, pages 91-99, 2015.

Roberto Calandra, André Seyfarth, Jan Peters, and Marc P. Deisenroth. Bayesian
optimization for learning gaits under uncertainty. Annals of Mathematics and Artificial
Intelligence (AMAI), 76(1):5-23, 2016.

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2117-2125, 2017.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss
for dense object detection. In Proceedings of the IEEE international conference on
computer vision, pages 2980-2988, 2017.

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d
object detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4490-4499, 2018.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 652—-660, 2017.

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Bei-
jbom. Pointpillars: Fast encoders for object detection from point clouds. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.

Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka. 3d bound-
ing box estimation using deep learning and geometry. In Proceedings of the IEEFE
Conference on Computer Vision and Pattern Recognition, pages 7074-7082, 2017.

Yongjian Chen, Lei Tai, Kai Sun, and Mingyang Li. Monopair: Monocular 3d ob-

ject detection using pairwise spatial relationships. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12093-12102, 2020.

115



[22]

23]

[25]

[20]

[27]

[28]

[29]

[30]

[31]

Cody Reading, Ali Harakeh, Julia Chae, and Steven L. Waslander. Categorical depth
distributionnetwork for monocular 3d object detection. C'VPR, 2021.

Bence Major, Daniel Fontijne, Amin Ansari, Ravi Teja Sukhavasi, Radhika Gowaikar,
Michael Hamilton, Sean Lee, Slawomir Grzechnik, and Sundar Subramanian. Vehicle
detection with automotive radar using deep learning on range-azimuth-doppler ten-
sors. In Proceedings of the IEEE/CVF International Conference on Computer Vision
Workshops, pages 0-0, 2019.

Ole Schumann, Markus Hahn, Jiirgen Dickmann, and Christian Wohler. Semantic
segmentation on radar point clouds. In 2018 21st International Conference on Infor-
mation Fusion (FUSION), pages 2179-2186. IEEE, 2018.

Michael Meyer, Georg Kuschk, and Sven Tomforde. Graph convolutional networks
for 3d object detection on radar data. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3060-3069, 2021.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
1960.

Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani. 3d multi-object tracking:
A baseline and new evaluation metrics. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2020.

Hsu-kuang Chiu, Antonio Prioletti, Jie Li, and Jeannette Bohg. Probabilistic 3d multi-
object tracking for autonomous driving. arXiv preprint arXiv:2001.05673, 2020.

B-N Vo, Sumeetpal Singh, and Arnaud Doucet. Sequential monte carlo methods for
multitarget filtering with random finite sets. [EEE Transactions on Aerospace and
electronic systems, 41(4):1224-1245, 2005.

Ronald PS Mahler. Statistical multisource-multitarget information fusion, volume 685.
Artech House Norwood, MA, 2007.

Ba-Tuong Vo, Ba-Ngu Vo, and Antonio Cantoni. Bayesian filtering with random finite
set observations. IEEE Transactions on signal processing, 56(4):1313-1326, 2008.

Ba-Tuong Vo and Ba-Ngu Vo. A random finite set conjugate prior and application to
multi-target tracking. In 2011 Seventh International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, pages 431-436. IEEE, 2011.

Francesco Papi, Ba-Tuong Vo, Mélanie Bocquel, and Ba-Ngu Vo. Multi-target track-
before-detect using labeled random finite set. In 2013 International Conference on
Control, Automation and Information Sciences (ICCAILS), pages 116-121. IEEE, 2013.

116



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Yuxuan Xia, Karl Granstrcom, Lennart Svensson, and Angel F Garcia-Fernandez.
Performance evaluation of multi-bernoulli conjugate priors for multi-target filtering.
In 2017 20th International Conference on Information Fusion (Fusion), pages 1-8.
IEEE, 2017.

Bharath Kalyan, KW Lee, S Wijesoma, D Moratuwage, and Nicholas M Patrikalakis. A
random finite set based detection and tracking using 3d lidar in dynamic environments.
In 2010 IEEFE International Conference on Systems, Man and Cybernetics, pages 2288~
2292. IEEE, 2010.

Kwang Wee Lee, Bharath Kalyan, Sardha Wijesoma, Martin Adams, Franz S Hover,
and Nicholas M Patrikalakis. Tracking random finite objects using 3d-lidar in marine
environments. In Proceedings of the 2010 ACM Symposium on Applied Computing,
pages 1282-1287, 2010.

Karl Granstrom, Stephan Renter, Maryam Fatemi, and Lennart Svensson. Pedestrian
tracking using velodyne data—stochastic optimization for extended object tracking.
In 2017 ieee intelligent vehicles symposium (iv), pages 39-46. IEEE, 2017.

Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak, An-
drew Hartnett, De Wang, Peter Carr, Simon Lucey, Deva Ramanan, et al. Argoverse:
3d tracking and forecasting with rich maps. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 8748-8757, 2019.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-
CAL Visual Object Classes Challenge 2011 (VOC2011) Results. http://www.pascal-
network.org/challenges/VOC /voc2011/workshop/index.html.

Keni Bernardin, Alexander Elbs, and Rainer Stiefelhagen. Multiple object tracking
performance metrics and evaluation in a smart room environment. In Sixth IEEE
International Workshop on Visual Surveillance, in conjunction with ECCV, volume 90.
Citeseer, 2006.

Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking perfor-
mance: the clear mot metrics. FURASIP Journal on Image and Video Processing,
2008:1-10, 2008.

Anton Milan, Laura Leal-Taixé, lan Reid, Stefan Roth, and Konrad Schindler. Mot16:
A benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831, 2016.

Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, and Qinhong Jiang.
Monocular 3d object detection: An extrinsic parameter free approach. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
75567566, 2021.

117



[44]

[47]

[48]

[49]

[50]

[51]

[52]

Xiaoyang Guo, Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Liga-stereo: Learn-
ing lidar geometry aware representations for stereo-based 3d detector. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 3153-3163,
2021.

Wu Zheng, Weiliang Tang, Li Jiang, and Chi-Wing Fu. Se-ssd: Self-ensembling single-
stage object detector from point cloud. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14494-14503, 2021.

Hualian Sheng, Sijia Cai, Yuan Liu, Bing Deng, Jiangiang Huang, Xian-Sheng Hua,
and Min-Jian Zhao. Improving 3d object detection with channel-wise transformer. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
2743-2752, 2021.

Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa, Celine Teuliere, and Thierry
Chateau. Deep manta: A coarse-to-fine many-task network for joint 2d and 3d vehicle
analysis from monocular image. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2040-2049, 2017.

Roozbeh Mottaghi, Yu Xiang, and Silvio Savarese. A coarse-to-fine model for 3d pose
estimation and sub-category recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 418-426, 2015.

Peixuan Li, Huaici Zhao, Pengfei Liu, and Feidao Cao. Rtm3d: Real-time monocular 3d
detection from object keypoints for autonomous driving. In Computer Vision-ECCV
2020: 16th Furopean Conference, Glasgow, UK, August 25-28, 2020, Proceedings, Part
I1] 16, pages 644—-660. Springer, 2020.

Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, and Wanli
Ouyang. Delving into localization errors for monocular 3d object detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4721-4730, 2021.

Yurong You, Yan Wang, Wei-Lun Chao, Divyansh Garg, Geoff Pleiss, Bharath Hariha-
ran, Mark Campbell, and Kilian Q Weinberger. Pseudo-lidar++: Accurate depth for
3d object detection in autonomous driving. In International Conference on Learning
Representations, 2019.

Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell, and
Kilian Q Weinberger. Pseudo-lidar from visual depth estimation: Bridging the gap in
3d object detection for autonomous driving. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8445-8453, 2019.

118



[53]

[54]

[55]

[56]

[57]

[58]

[59]

[62]

Xinshuo Weng and Kris Kitani. Monocular 3d object detection with pseudo-lidar point
cloud. In Proceedings of the IEEE/CVF International Conference on Computer Vision
Workshops, pages 0-0, 2019.

Rui Qian, Divyansh Garg, Yan Wang, Yurong You, Serge Belongie, Bharath Hariharan,
Mark Campbell, Kilian Q Weinberger, and Wei-Lun Chao. End-to-end pseudo-lidar
for image-based 3d object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5881-5890, 2020.

Yan Wang, Xiangyu Chen, Yurong You, Li Erran Li, Bharath Hariharan, Mark Camp-
bell, Kilian Q Weinberger, and Wei-Lun Chao. Train in germany, test in the usa: Mak-
ing 3d object detectors generalize. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11713-11723, 2020.

Xinzhu Ma, Zhihui Wang, Haojie Li, Pengbo Zhang, Wanli Ouyang, and Xin Fan.
Accurate monocular 3d object detection via color-embedded 3d reconstruction for au-
tonomous driving. In Proceedings of the IEEE International Conference on Computer
Vision, pages 6851-6860, 2019.

Bo Li, Chunhua Shen, Yuchao Dai, Anton Van Den Hengel, and Mingyi He. Depth and
surface normal estimation from monocular images using regression on deep features
and hierarchical crfs. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1119-1127, 2015.

Vitor Guizilini, Jie Li, Rares Ambrus, Sudeep Pillai, and Adrien Gaidon. Robust semi-
supervised monocular depth estimation with reprojected distances. In Conference on
robot learning, pages 503-512. PMLR, 2020.

Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow. Digging
into self-supervised monocular depth estimation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3828-3838, 2019.

Jae-Han Lee, Minhyeok Heo, Kyung-Rae Kim, and Chang-Su Kim. Single-image depth
estimation based on fourier domain analysis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 330-339, 2018.

Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raventos, and Adrien Gaidon.
3d packing for self-supervised monocular depth estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2485—
2494, 2020.

Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer, Eddy Ilg,
Alexey Dosovitskiy, and Thomas Brox. Demon: Depth and motion network for learn-
ing monocular stereo. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 50385047, 2017.

119



[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[72]

[73]

Jiaming Sun, Linghao Chen, Yiming Xie, Siyu Zhang, Qinhong Jiang, Xiaowei Zhou,
and Hujun Bao. Disp r-cnn: Stereo 3d object detection via shape prior guided instance
disparity estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10548-10557, 2020.

Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast point r-cnn. In Proceedings
of the IEEE international conference on computer vision (ICCV), 2019.

Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya Jia. STD: sparse-to-dense
3d object detector for point cloud. ICCYV, 2019.

Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. From
points to parts: 3d object detection from point cloud with part-aware and part-
aggregation network. IFEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2020.

Jiageng Mao, Minzhe Niu, Haoyue Bai, Xiaodan Liang, Hang Xu, and Chunjing Xu.
Pyramid r-cnn: Towards better performance and adaptability for 3d object detection.
In Proceedings of the IEEE/CVFE International Conference on Computer Vision, pages
2723-2732, 2021.

Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi Feng, Xiaodan Liang, Hang
Xu, and Chunjing Xu. Voxel transformer for 3d object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 3164-3173, 2021.

Wu Zheng, Weiliang Tang, Sijin Chen, Li Jiang, and Chi-Wing Fu. Cia-ssd: Confident
iou-aware single-stage object detector from point cloud. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 3555-3562, 2021.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results. In Proceed-
ings of the 31st International Conference on Neural Information Processing Systems,
pages 1195-1204, 2017.

Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum point-
nets for 3d object detection from rgb-d data. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 918-927, 2018.

Danfei Xu, Dragomir Anguelov, and Ashesh Jain. Pointfusion: Deep sensor fusion
for 3d bounding box estimation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 244-253, 2018.

Zhixin Wang and Kui Jia. Frustum convnet: Sliding frustums to aggregate local point-
wise features for amodal 3d object detection. In /ROS. IEEE, 2019.

120



[74]

[78]

[79]

[30]

[81]

[82]

Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object de-
tection network for autonomous driving. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1907-1915, 2017.

Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven L Waslander.
Joint 3d proposal generation and object detection from view aggregation. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1-8. IEEE, 2018.

Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urtasun. Multi-task multi-
sensor fusion for 3d object detection. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 73457353, 2019.

Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. Deep continuous fusion
for multi-sensor 3d object detection. In Proceedings of the Furopean Conference on
Computer Vision (ECCYV), pages 641-656, 2018.

Jin Hyeok Yoo, Yecheol Kim, and Ji Song Kim. 3d-cvf: Generating joint camera and
lidar features using cross-view spatial feature fusion for 3d object detection.

Sourabh Vora, Alex H. Lang, Bassam Helou, and Oscar Beijbom. Pointpainting: Se-
quential fusion for 3d object detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2020.

Tengteng Huang, Zhe Liu, Xiwu Chen, and Xiang Bai. Epnet: Enhancing point
features with image semantics for 3d object detection. In FEuropean Conference on
Computer Vision, pages 35-52. Springer, 2020.

Felix Nobis, Maximilian Geisslinger, Markus Weber, Johannes Betz, and Markus
Lienkamp. A deep learning-based radar and camera sensor fusion architecture for
object detection. In 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF),
pages 1-7. IEEE, 2019.

Simon Chadwick, Will Maddern, and Paul Newman. Distant vehicle detection us-
ing radar and vision. In 2019 International Conference on Robotics and Automation

(ICRA), pages 8311-8317. IEEE, 2019.

[83] Yizhou Wang, Zhongyu Jiang, Xiangyu Gao, Jeng-Neng Hwang, Guanbin Xing, and

Hui Liu. Rodnet: Radar object detection using cross-modal supervision. In Proceedings
of the IEEE/CVE Winter Conference on Applications of Computer Vision, pages 504—
513, 2021.

[84] Yizhou Wang, Zhongyu Jiang, Yudong Li, Jeng-Neng Hwang, Guanbin Xing, and

Hui Liu. Rodnet: A real-time radar object detection network cross-supervised by

121



[89]

[90]

camera-radar fused object 3d localization. IEEE Journal of Selected Topics in Signal
Processing, 15(4):954-967, 2021.

Ramin Nabati and Hairong Qi. Radar-camera sensor fusion for joint object detection
and distance estimation in autonomous vehicles. arXw preprint arXiv:2009.08428,
2020.

Ramin Nabati and Hairong Qi. Centerfusion: Center-based radar and camera fusion
for 3d object detection. In Proceedings of the IEEE/CVE Winter Conference on Ap-
plications of Computer Vision, pages 1527-1536, 2021.

Davi Frossard and Raquel Urtasun. End-to-end learning of multi-sensor 3d tracking
by detection. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 635-642. IEEE, 2018.

Erkan Baser, Venkateshwaran Balasubramanian, Prarthana Bhattacharyya, and
Krzysztof Czarnecki. Fantrack: 3d multi-object tracking with feature association net-
work. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 1426-1433. IEEE,
2019.

Xinshuo Weng, Yongxin Wang, Yunze Man, and Kris M Kitani. Gnn3dmot: Graph
neural network for 3d multi-object tracking with 2d-3d multi-feature learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 6499-6508, 2020.

Hou-Ning Hu, Qi-Zhi Cai, Dequan Wang, Ji Lin, Min Sun, Philipp Krahenbuhl, Trevor
Darrell, and Fisher Yu. Joint monocular 3d vehicle detection and tracking. In Pro-

ceedings of the IEEFE international conference on computer vision, pages 5390-5399,
2019.

Xinshuo Weng, Ye Yuan, and Kris Kitani. Joint 3d tracking and forecasting with graph
neural network and diversity sampling. arXiw preprint arXiv:2005.07847, 2020.

Ming Liang, Bin Yang, Wenyuan Zeng, Yun Chen, Rui Hu, Sergio Casas, and Raquel
Urtasun. Pnpnet: End-to-end perception and prediction with tracking in the loop. In
Proceedings of the IEEE/CVE Conference on Computer Vision and Pattern Recogni-
tion, pages 1155311562, 2020.

Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furious: Real time end-to-
end 3d detection, tracking and motion forecasting with a single convolutional net.
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 3569-3577, 2018.

Ronald PS Mahler. Multitarget bayes filtering via first-order multitarget moments.
IEEE Transactions on Aerospace and Electronic systems, 39(4):1152-1178, 2003.

122



[95]

[100]

[101]

[102]

[103]

[104]

[105]

Ronald Mahler. Phd filters of higher order in target number. IEEFE Transactions on
Aerospace and Electronic systems, 43(4):1523-1543, 2007.

Ba-Tuong Vo and Ba-Ngu Vo. Labeled random finite sets and multi-object conjugate
priors. IEEE Transactions on Signal Processing, 61(13):3460-3475, 2013.

Jason L. Williams. Marginal multi-bernoulli filters: Rfs derivation of mht, jipda, and
association-based member. IEEE Transactions on Aerospace and Electronic Systems,
51(3):1664-1687, 2015.

Angel F Garcia-Fernandez, Jason L Williams, Karl Granstrom, and Lennart Svensson.
Poisson multi-bernoulli mixture filter: direct derivation and implementation. [EFEE
Transactions on Aerospace and Electronic Systems, 54(4):1883-1901, 2018.

Luca Caltagirone, Mauro Bellone, Lennart Svensson, and Mattias Wahde. Lidar—
camera fusion for road detection using fully convolutional neural networks. Robotics
and Autonomous Systems, 111:125-131, 2019.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807-814, 2010.

Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G Berneshawi, Huimin Ma, Sanja
Fidler, and Raquel Urtasun. 3d object proposals for accurate object class detection.
In Advances in Neural Information Processing Systems, pages 424-432, 2015.

Jimmy Ren, Xiaohao Chen, Jianbo Liu, Wenxiu Sun, Jiahao Pang, Qiong Yan, Yu-
Wing Tai, and Li Xu. Accurate single stage detector using recurrent rolling convolution.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 54205428, 2017.

Zhaowei Cai, Quanfu Fan, Rogerio S Feris, and Nuno Vasconcelos. A unified multi-scale
deep convolutional neural network for fast object detection. In european conference on
computer vision, pages 354-370. Springer, 2016.

Liang Xie, Chao Xiang, Zhengxu Yu, Guodong Xu, Zheng Yang, Deng Cai, and Xiaofei
He. Pi-renn: An efficient multi-sensor 3d object detector with point-based attentive
cont-conv fusion module. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 12460-12467, 2020.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on
computer wvision, pages 1440-1448, 2015.

123



[106]

[107]

[108]

109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770-778, 2016.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In Furopean conference on computer vision, pages 740-755. Springer, 2014.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 7482-7491, 2018.

Tianwei Yin, Xingyi Zhou, and Philipp Krahenbiihl. Center-based 3d object detection
and tracking. C'VPR, 2021.

Wenwei Zhang, Zhe Wang, and Chen Change Loy. Multi-modality cut and paste for
3d object detection. arXww preprint arXiw:2012.127/1, 2020.

Peiyun Hu, Jason Ziglar, David Held, and Deva Ramanan. What you see is what you
get: Exploiting visibility for 3d object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11001-11009, 2020.

Qi Chen, Lin Sun, Ernest Cheung, and Alan L Yuille. Every view counts: Cross-
view consistency in 3d object detection with hybrid-cylindrical-spherical voxelization.
Advances in Neural Information Processing Systems, 2020.

Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, and Ruigang Yang. Lidar-based
online 3d video object detection with graph-based message passing and spatiotemporal
transformer attention. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11495-11504, 2020.

Xinge Zhu, Yuexin Ma, Tai Wang, Yan Xu, Jianping Shi, and Dahua Lin. Ssn: Shape
signature networks for multi-class object detection from point clouds. ECCV, 2020.

Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu. Class-
balanced grouping and sampling for point cloud 3d object detection. arXiv preprint
arXiw:1908.09492, 2019.

Su Pang, Daniel Morris, and Hayder Radha. Fast-clocs: Fast camera-lidar object
candidates fusion for 3d object detection. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 187-196, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

124



[118]

[119]

[120]

[121]

[122]

123]

[124]

[125]

126]

127]

[128]

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiw:2010.11929, 2020.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kir-
illov, and Sergey Zagoruyko. End-to-end object detection with transformers. In Euro-
pean conference on computer vision, pages 213-229. Springer, 2020.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable
detr: Deformable transformers for end-to-end object detection. In International Con-
ference on Learning Representations, 2020.

Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun Chen, Hongbo Fu, and
Chiew-Lan Tai. Transfusion: Robust lidar-camera fusion for 3d object detection with
transformers. In Proceedings of the IEEE/CVFE Conference on Computer Vision and
Pattern Recognition, pages 1090-1099, 2022.

Yue Wang and Justin M Solomon. Object dgenn: 3d object detection using dynamic
graphs. Advances in Neural Information Processing Systems, 34, 2021.

Russell Stewart, Mykhaylo Andriluka, and Andrew Y Ng. End-to-end people detection
in crowded scenes. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2325-2333, 2016.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83-97, 1955.

Andrea Simonelli, Samuel Rota Bulo, Lorenzo Porzi, Manuel Lopez-Antequera, and
Peter Kontschieder. Disentangling monocular 3d object detection. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 1991-1999, 2019.

Xingyi Zhou, Dequan Wang, and Philipp Kréahenbiihl. Objects as points. arXiw
preprint arXiw:1904.07850, 2019.

Tai Wang, Xinge Zhu, Jiangmiao Pang, and Dahua Lin. Fcos3d: Fully convolutional
one-stage monocular 3d object detection. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 913-922, 2021.

Tai Wang, ZHU Xinge, Jiangmiao Pang, and Dahua Lin. Probabilistic and geometric

depth: Detecting objects in perspective. In Conference on Robot Learning, pages
1475-1485. PMLR, 2022.

125



[129]

[130]

[131]

[132]

[133]

134]

[135]

Jun Wang, Shiyi Lan, Mingfei Gao, and Larry S Davis. Infofocus: 3d object detection
for autonomous driving with dynamic information modeling. In Furopean Conference
on Computer Vision, pages 405-420. Springer, 2020.

Ronald PS Mahler. Advances in statistical multisource-multitarget information fusion.
Artech House, 2014.

Katta G Murthy. An algorithm for ranking all the assignments in order of increasing
costs. Operations research, 16(3):682-687, 1968.

Patrick Emami, Panos M Pardalos, Lily Elefteriadou, and Sanjay Ranka. Machine
learning methods for solving assignment problems in multi-target tracking. arXiv
preprint arXiw:1802.06897, 2018.

Tianwei Yin, Xingyi Zhou, and Philipp Krahenbiihl. Center-based 3d object detection
and tracking. arXw:2006.11275, 2020.

Shuyang Cheng, Zhaoqi Leng, Ekin Dogus Cubuk, Barret Zoph, Chunyan Bai, Jiquan
Ngiam, Yang Song, Benjamin Caine, Vijay Vasudevan, Congcong Li, et al. Improving
3d object detection through progressive population based augmentation. arXiv preprint
arXiw:2004.00831, 2020.

Minh-Quan Dao and Vincent Frémont. A two-stage data association approach for 3d
multi-object tracking. Sensors, 21(9):2894, 2021.

126



	List of Tables
	List of Figures
	Chapter 1Introduction and Motivation
	3D Object Detection
	3D Multiple Object Tracking
	Summary of Research Contributions
	Thesis Organization

	Chapter 2Background and Related Work
	Basics
	Evaluation Metrics
	Evaluation Metrics for 3D Object Detection
	Evaluation Metrics for 3D Multiple Object Tracking

	Datasets

	Existing Works in 3D Object Detection
	3D Detection using Camera
	3D Detection using LiDAR
	3D Detection using Radar
	3D Detection using Multi-Modal Fusion

	Existing Works for 3D Multi-Object Tracking
	Multi-Object Tracking using Traditional Filtering
	Multi-Object Tracking using Neural Networks
	Multi-Object Tracking using Random Finite Set

	Summary of the Chapter

	Chapter 3CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection
	Introduction
	2D and 3D Object Detection
	Existing Issues for Camera-LiDAR Fusion
	Why Fusion of Detection Candidates
	Camera-LiDAR Object Candidates Fusion
	Geometric and Semantic Consistencies
	Geometric Consistency
	Semantic Consistency

	Network Architecture
	Sparse Input Tensor Representation
	Network Details
	Loss Function

	Training

	Experimental Results
	Dataset
	2D/3D Detector Setup
	Evaluation Results
	Score Scales
	Ablation Study

	Summary of the Chapter

	Chapter 4Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection
	Introduction
	Proposed Method
	3D-Q-2D Image Detector
	The Input Data
	The Backbone Feature Extraction Network
	Detection Head
	Multi-Task Loss and Training
	CLOCs Fusion Network

	The Scalability of Fast-CLOCs

	Experimental Results
	Evaluation Results
	3D-Q-2D Image Detector:
	Main Results
	Ablation Study
	Qualitative Results
	Failure Cases Analysis


	Summary of the Chapter

	Chapter 5TransCAR: Transformer-based Camera-And-Radar Fusion for 3D Object Detection
	Introduction
	TransCAR
	Camera Network
	Why Start from Camera
	Methodology

	Radar Network
	TransCAR Fusion
	Query-Radar Attention Mask
	Transformer Camera and Radar Cross-Attention

	Box Encoding and Loss Function

	Experimental Results
	Dataset
	Evaluation Results
	Ablation and Analysis

	Summary of the Chapter

	Chapter 6RFS-M3: 3D Multi-Object Tracking using Random Finite Set based Multiple Measurement Models Filtering
	Introduction
	Problem Formulation and System Overview
	Proposed Method
	Random Finite Set and MOT
	Detected and Undetected Tracks
	Object States with Different Measurement Models
	Data Association Hypotheses
	PMBM Density
	PMBM Prediction
	PMBM Update 
	Reduction

	Experimental Results
	Settings and Datasets
	Evaluation Results
	Ablation Study

	Summary of the Chapter

	Chapter 7Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

