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ABSTRACT

CONSISTENT BAYESIAN LEARNING FOR NEURAL NETWORK MODELS:
THEORY AND COMPUTATION

By

Sanket Rajendra Jantre

Bayesian framework adapted for neural network learning, Bayesian neural networks, have

received widespread attention and successfully applied to various applications. Bayesian

inference for neural networks promises improved predictions with reliable uncertainty esti-

mates, robustness, principled model comparison, and decision-making under uncertainty. In

this dissertation, we propose novel theoretically consistent Bayesian neural network models

and provide their computationally efficient posterior inference algorithms.

In Chapter 2, we introduce a Bayesian quantile regression neural network assuming an

asymmetric Laplace distribution for the response variable. The normal-exponential mixture

representation of the asymmetric Laplace density is utilized to derive the Gibbs sampling

coupled with Metropolis-Hastings algorithm for the posterior inference. We establish the

posterior consistency under a misspecified asymmetric Laplace density model. We illustrate

the proposed method with simulation studies and real data examples.

Traditional Bayesian learning methods are limited by their scalability to large data and

feature spaces due to the expensive inference approaches, however recent developments in

variational inference techniques and sparse learning have brought renewed interest to this

area. Sparse deep neural networks have proven to be efficient for predictive model building in

large-scale studies. Although several works have studied theoretical and numerical properties

of sparse neural architectures, they have primarily focused on the edge selection.

In Chapter 3, we propose a sparse Bayesian technique using spike-and-slab Gaussian

prior to allow for automatic node selection. The spike-and-slab prior alleviates the need

of an ad-hoc thresholding rule for pruning. In addition, we adopt a variational Bayes ap-

proach to circumvent the computational challenges of traditional Markov chain Monte Carlo



implementation. In the context of node selection, we establish the variational posterior con-

sistency together with the layer-wise characterization of prior inclusion probabilities. We

empirically demonstrate that our proposed approach outperforms the edge selection method

in computational complexity with similar or better predictive performance.

The structured sparsity (e.g. node sparsity) in deep neural networks provides low latency

inference, higher data throughput, and reduced energy consumption. Alternatively, there is

a vast albeit growing literature demonstrating shrinkage efficiency and theoretical optimal-

ity in linear models of two sparse parameter estimation techniques: lasso and horseshoe.

In Chapter 4, we propose structurally sparse Bayesian neural networks which systemati-

cally prune excessive nodes with (i) Spike-and-Slab Group Lasso, and (ii) Spike-and-Slab

Group Horseshoe priors, and develop computationally tractable variational inference We

demonstrate the competitive performance of our proposed models compared to the Bayesian

baseline models in prediction accuracy, model compression, and inference latency.

Deep neural network ensembles that appeal to model diversity have been used successfully

to improve predictive performance and model robustness in several applications. However,

most ensembling techniques require multiple parallel and costly evaluations and have been

proposed primarily with deterministic models. In Chapter 5, we propose sequential en-

sembling of dynamic Bayesian neural subnetworks to generate diverse ensemble in a single

forward pass. The ensembling strategy consists of an exploration phase that finds high-

performing regions of the parameter space and multiple exploitation phases that effectively

exploit the compactness of the sparse model to quickly converge to different minima in the

energy landscape corresponding to high-performing subnetworks yielding diverse ensembles.

We empirically demonstrate that our proposed approach surpasses the baselines of the dense

frequentist and Bayesian ensemble models in prediction accuracy, uncertainty estimation,

and out-of-distribution robustness. Furthermore, we found that our approach produced the

most diverse ensembles compared to the approaches with a single forward pass and even

compared to the approaches with multiple forward passes in some cases.
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CHAPTER 1

INTRODUCTION

Artificial neural networks (ANN) are biologically inspired predictive models involving

computations and mathematics, which simulate the human–brain processes. Many of the

recent successes of the artificial intelligence such as image and voice recognition, robotics,

are powered by ANNs. However, ANNs still suffer from many fundamental issues from the

perspective of statistical modeling. One of the major challenges is their ability to model

the uncertainty, and hence build reliable and robust models while capturing complex data

dependencies and being computationally tractable. Probabilistic approaches and especially

the systematic Bayesian framework provides an exciting avenue to address this challenge. In

this dissertation, we propose novel Bayesian neural network models which are theoretically

consistent along with their computationally efficient implementations for the model inference.

In this Chapter, we briefly introduce the main concepts which are fundamental part of

this dissertation, neural networks and their Bayesian counterpart (Section 1.1), Markov chain

Monte Carlo sampling methods (Section 1.2), variational Bayesian inference (Section 1.3),

and posterior consistency preliminaries (Section 1.4). In addition, we discuss some existing

work that have significant impact to this field. Finally, we provide a brief outline of the rest

of the chapters in Section 1.5.

1.1 Neural Networks

1.1.1 Feedforward Neural Networks

Feedforward neural network can approximate any continuous function f(.) : Rp → R

arbitrarily well. Neural network tries to simulate the human brain, so it has many layers

of “neurons” just like the neurons in our brain. Originated from a multi-layer perceptron

(MLP) (Rosenblatt, 1961) which has multiple hidden layers compared to single hidden layer
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Figure 1.1 Single-layer neural network.

counterpart, the perceptron (Rosenblatt, 1957), neural networks are getting deeper to be

more accurate in approximating a continuous function. In Figure 1.1 we illustrate a single

hidden layer neural network or shallow neural network. The input to the hidden layer consists

of a linear combination of the model inputs passed through a non-linear activation function.

Let us consider the input vector x ∈ RP . Then the output of the shallow neural network

in Figure 1.1 is given by

η(x) = β0 +
k∑

j=1

βj × ψ

(
γj0 +

p∑
h=1

γjhxh

)

where γjh (j = 0, · · · , k;h = 1, · · · , p) are the input layer (including intercept h = 0) to

hidden layer weights, βj (j = 0, · · · , k) are the hidden layer (including intercept j = 0) to

output layer weights, and ψ(.) denotes the non-linear activation function. The universal

approximation theorem (Cybenko, 1989) states the approximation power of the shallow

neural networks.

Theorem 1.1.1 (Universal approximation theorem). Let ψ(.) be such that ψ(t)→ 0 as t→

−∞ and ψ(t)→ 1 as t→∞. Then for a continuous function f on [0, 1]p and an arbitrary

2



ϵ > 0, there exist k and parameters βj (j = 0, · · · , k), and γjh (j = 0, · · · , k;h = 1, · · · , p)

such that,

|f(x)− η(x)| < ϵ, ∀x ∈ [0, 1]p

The universal approximation capacity of neural networks along with available computing

power explain the widespread use of deep learning nowadays. In this dissertation, we use

the following non-linear activation functions.

• Sigmoid: ψ(x) = exp(x)
1+exp(x)

.

• Rectified Linear Unit (ReLU): ψ(x) = x+.

• Sigmoid Linear Unit (SiLU or Swish): ψ(x) = x× Sigmoid(x).

ReLU is one of the most popular activation function used in many deep neural archi-

tectures. However, it sometimes suffers from the dead ReLU problem where ReLU neurons

become inactive and only output 0 for any input (Lu et al., 2020). We ourselves encounter

this problem in our spike-and-slab models and there instead of ReLU we use the SiLU acti-

vations (Elfwing et al., 2018; Ramachandran et al., 2017) which unlike ReLU is smooth and

nonmonotonic (Figure 1.2).

Figure 1.2 ReLU and SiLU activations.
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1.1.2 Bayesian Neural Networks

Bayesian neural networks (BNN) differ from deterministic neural networks in that their

weights are assigned a probability distribution instead of a single value or point estimate.

These probability distributions describe the uncertainty in weights and can be used to esti-

mate uncertainty in predictions.

A neural network model can be viewed as a probabilistic model: p(y|x,θ) where θ

denotes the neural network weights. For classification, y is a set of classes and p(y|x,θ) is a

categorical distribution. For regression, y is a continuous variable and p(y|x,θ) is a Gaussian

distribution.

In Bayesian framework, instead of optimizing over a single probabilistic model, p(y|x,θ),

we discover all likely models via posterior inference over model parameters. First, we place a

prior distribution p(θ) on the neural network weights θ. The Bayes’ rule provides the exact

posterior distribution as follows,

p(θ|D) =
p(D|θ)p(θ)∫

θ
p(D|θ)p(θ)dθ

(1.1)

where p(D|θ) denotes the likelihood of D given the model parameters θ.

The main goal of the neural network is predictions on the new inputs. Given the poste-

rior in (1.1) we predict the label corresponding to a new example xnew by Bayesian model

averaging:

p(ynew|xnew,D) =

∫
p(ynew|xnew,θ)p(θ|D)dθ

The key distinguishing property of Bayesian approach from deterministic one is marginal-

ization instead of optimization, where we represent solutions given by all settings of param-

eters weighted by their posterior probabilities, rather than bet everything on a single setting

of parameters (Wilson and Izmailov, 2020). Bayesian procedures adapted for deep learning

have received widespread attention and applications of BNNs are found in several fields e.g.,

computer vision (Kendall and Gal, 2017), civil engineering (Bateni et al., 2007; Arangio
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and Bontempi, 2015), astronomy (Perreault Levasseur et al., 2017; Cobb et al., 2019), and

medicine (Kwon et al., 2020; Beker et al., 2020).

1.2 Markov Chain Monte Carlo Sampling

Markov chain Monte Carlo (MCMC) methods have been used in several Physics problems

for many years and later have been widely applied to Bayesian statistical modeling (Neal,

1996). MCMC methods do not make any assumptions regarding the form of the distribution

to be sampled, for instance whether a given distribution can be approximated by Gaussian.

Ideally, they are supposed to cover all the modes of a target distribution during sampling.

However, the high computational complexity of MCMC methods is their major disadvantage

in complex Bayesian models and large scale datasets.

In what follows, we describe two well-known MCMC sampling algorithms. the combina-

tion of these two algorithm is used in Chapter 2 for posterior inference in BQRNN model.

1.2.1 Metropolis-Hastings Algorithm

One of the most common algorithms for sampling from the posterior p(θ|D) is the

Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970). In the Markov

chain defined by the MH algorithm, the new state θ(t+1) is generated given the current state

θ(t) by first sampling a candidate state θ∗ from a proposal density gθ and subsequently

accepting the proposed candidate state with probability
min

{
p(θ∗|D)gθ∗ (θ

(t))

p(θ(t)|D)g
θ(t)

(θ∗)
, 1
}

if p(θ(t)|D)gθ(t)(θ
∗) > 0,

1 otherwise.

By taking a sufficient number of trial steps all of state space is explored and the MH algorithm

ensures that the points are distributed according to the required target distribution.

Typically, the proposal distribution is chosen to be symmetrical, satisfying the condition

gθ′ (θ) = gθ(θ
′
). Hence, the acceptance probability simplifies to min{p(θ∗|D)/p(θ(t)|D), 1}

which yields the so called random walk metropolis algorithm. Commonly used symmetrical
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proposal distribution is Gaussian with density gθ = N(θ,Σ) where Σ is a constant covariance

matrix. In our BQRNN model, we use the normal proposal density for the parameters

sampled using MH algorithm.

1.2.2 Gibbs Sampling Algorithm

The Gibbs algorithm was formally described by Geman and Geman (1984) and later

Gelfand and Smith (1990) showed its potential in a wide variety of conventional statistical

problems. In its basic version, Gibbs sampling is a special case of the MH algorithm.

The point of Gibbs sampling is that given a multivariate distribution over parameters

θ = {θ1, · · · , θp}, it is simpler to sample from a conditional distribution than to marginalize

by integrating over a joint distribution. This allows us to simulate a Markov chain in which

θ(t+1) is generated from θ(t) as follows:

Pick θ
(t+1)
1 from the distribution of θ1 given θ

(t)
2 , θ

(t)
3 , · · · , θ

(t)
p

Pick θ
(t+1)
2 from the distribution of θ2 given θ

(t+1)
1 , θ

(t)
3 , · · · , θ

(t)
p

...

Pick θ
(t+1)
j from the distribution of θj given θ

(t+1)
1 , · · · , θ(t+1)

j−1 , θ
(t)
j+1 · · · , θ

(t)
p

...

Pick θ
(t+1)
p from the distribution of θp given θ

(t+1)
1 , θ

(t+1)
2 , · · · , θ(t+1)

p−1

The samples obtained using above procedure for all the parameters together approximate

their joint distribution. The marginal distribution of any subset of variables can be approxi-

mated by simply considering the samples for that subset of variables while ignoring the rest.

The expected value of any variable can be approximated by averaging over all the samples

obtained from above procedure.

Although Gibbs sampling is easier to implement, it is only useful when the posterior dis-

tribution of one parameter conditional on given values of the other parameters has a known

distributional form. For many conventional statistical problems, these conditional distribu-

tions are of standard forms, hence efficient Gibbs sampling procedures are implemented with
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ease. On the contrary in neural networks, the conditional posterior distribution for hidden

layer weights in the network given values for the rest of the weights can be extremely messy,

with multiple modes. This is the case we encounter for hidden layer weights in our BQRNN

model where we implement combination of random walk MH and Gibbs sampling algorithm

for posterior inference.

1.3 Variational Bayesian Inference

Although, Markov chain Monte Carlo sampling is the gold standard for inference in

Bayesian models, it is computationally inefficient (Izmailov et al., 2021). As an alterna-

tive, variational inference or variational approximation tends to be faster and scales well

on complex Bayesian learning tasks with large datasets (Blei et al., 2017). Variational

Bayesian (VB) learning recasts the sampling problem to an optimization problem minimiz-

ing Kullback-Leibler (KL) divergence which intuitively measures the dissimilarity between a

surrogate distribution (called a variational distribution) q(θ) and the true posterior distri-

bution p(θ|D) (Jordan et al., 1999).

Definition 1.3.1 (Kullback-Leibler (KL) divergence). For two probability measures P1 and

P2 over a set X such that P1 is absolutely continuous with respect to P2, the KL divergence

of P1 with respect to P2 is defined as

dKL(P1, P2) =

∫
X

log

(
dP1

dP2

)
dP1

where dP1/dP2 is the Radon–Nikodym derivative of P1 with respect to P2. If P1 is not

absolutely continuous with respect to P2 then dKL(P1, P2) =∞.

As a first step in variational learning, we define a family of surrogate distributions, also

called variational family (Q) which consists of distributions of simpler form than the true

posterior (1.1) (ex. a family of Gaussian distributions).

Q = {q(θ,ν) : q is a simple candidate distribution used for approximation.},

7



where ν denotes the parameters of the variational distribution, also known as variational

parameters. For instance, if Q is a Gaussian family then ν includes the mean (µ) and

standard deviation (σ) of a Gaussian candidate distribution.

Once we select an appropriate variational family, the VB infers the parameters of a

distribution on the model parameters q(θ) that minimises the Kullback-Leibler (KL) distance

from the true posterior p(θ|D):

q∗(θ) = argmin
q(θ)∈Q

d KL(q(θ), p(θ|D)) (1.2)

We simplify the d KL(q(θ), p(θ|D)):

d KL(q(θ), p(θ|D)) = Eq(θ) [log q(θ)− log p(θ|D)]

= −Eq(θ) [log p(θ,D)− log q(θ)] + logm(D)

= −Eq(θ) [log p(D|θ)] + dKL(q(θ), p(θ)) + logm(D)

where m(D) is the marginal distribution of the data and is free of the θ. Hence, the op-

timization problem in (1.2) is equivalent to minimizing the negative evidence lower bound

(ELBO), which is defined as

L = −Eq(θ) [log p(D|θ)] + dKL(q(θ), p(θ)),

where the first term is the data-dependent cost widely known as the negative log-likelihood

(NLL), and the second term is prior-dependent and serves as regularization. Since, the

direct optimization of (3.9) is computationally prohibitive, gradient descent methods are

used (Kingma and Welling, 2014).

1.4 Posterior Consistency

In Bayesian analysis, one starts with a prior distribution (either informative or non-

informative) on the model parameters and updates the knowledge of the model as the number

of data observations grows, reflected in the posterior distribution. It is therefore important

to know whether the posterior distribution concentrates on neighborhoods of the true data

8



generating distribution as the data is collected indefinitely. This is known as the Bayesian

consistency of the posterior distribution. Although it is an asymptotic property, consistency

is one of the benchmarks since the violation of consistency is clearly undesirable and one

may have serious doubts against inferences based on an inconsistent posterior distribution.

Let P denote the prior distribution and {Pn(.|Dn)} denote a sequence of posterior dis-

tributions where Pn(.|Dn) is the posterior distribution based on the n-th data sample. Then

we define the posterior consistency as follows

Definition 1.4.1 (Posterior consistency.). The sequence of posteriors is consistent at θ0 if

{Pn(U |Dn)} → 1 a.s. P∞
θ0

for all neighborhoods U of θ0.

where P∞
θ0

is the joint distribution of {Di}∞i=1 when θ0 is the true value of θ.

Alternatively, let f0(x) be the underlying density of X. Let E(Y |X = x) = ν0(x) be the

true regression function of Y given X, and let ν̂n(x) be the estimated regression function.

Definition 1.4.2. ν̂n(x) is asymptotically consistent for ν0(x) if∫
(µ̂n(x)− µ0(x))2 f0(x) dx

p→ 0

where p above the arrow denotes the convergence in probability. In this frequentist

sense, Funahashi (1989) and Hornik et al. (1989) have established that the neural networks

are asymptotically consistent by showing the existence of some neural network, ν̂n(x), whose

mean squared error with the true function, ν0(x), converges to 0 in probability.

Lee (2000) showed that the posterior distribution for feedforward (single-layer) sigmoidal

neural networks is consistent. Their proof of consistency embedded the problem in a density

function estimation, which uses bounds on the bracketing entropy to show that the posterior

is consistent over Hellinger neighborhoods. Mathematically, let f0(x, y) denote the true joint

density function of X and Y random variables, and let f(x, y) be the corresponding density

function under the neural network model. The Hellinger distance between these two density
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functions is given by

dH(f, f0) =

√∫ ∫ (√
f(x, y)−

√
f0(x, y)

)2
dx dy

Definition 1.4.3. The posterior is asymptotically consistent for f0 over ϵ-Hellinger neigh-

borhoods ∀ϵ > 0 if,

P ({f : dH(f, f0) ≤ ϵ}|(X1, Y1), . . . , (Xn, Yn))
p→ 1

We use this framework to establish the Bayesian posterior consistency in our BQRNN

model in Chapter 2 where we combine the ideas provided by Lee (2000) and Sriram et al.

(2013). Specifically, Sriram et al. (2013) established the posterior consistency of the Bayesian

quantile regression under misspecified ALD model.

In variational Bayesian inference, Zhang and Gao (2020) studied contraction rates of the

variational posterior distributions for nonparametric and high-dimensional inference. They

provided the conditions on the prior, the likelihood and the variational family that charac-

terize the contraction rates. Similar to the “prior mass and testing” conditions considered

in the past literature (Schwartz, 1965), they found the contraction rate to be the sum of

two terms. The first term stands for the contraction rate of the true Bayesian posterior

distribution, and the second term is contributed by the variational approximation error.

Bhattacharya and Maiti (2021) used the framework provided by Zhang and Gao (2020)

and established the conditions needed for the variational posterior consistency of the single-

layer Bayesian neural networks. They establish that a simple Gaussian mean-field approx-

imation is good enough to achieve the variational posterior consistency. In this direction,

they show that ϵ- Hellinger neighborhood of the true density function receives close to 1

probability under the variational posterior. We use the similar framework, in our SS-IG

model to establish the consistency of the variational posterior in Chapter 3.
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1.5 Dissertation Outline

The main theme of this dissertation is the development of asymptotically consistent

Bayesian neural network models tailored for different scenarios. Each chapter forms a sep-

arate manuscript which is either published or under review. For ease of readability, we

separate appendices of each chapter providing them after the main content in each chapter.

Chapter 2 is based on our published paper titled “Quantile Regression Neural Networks:

A Bayesian Approach”1. In this chapter, we present the Bayesian quantile regression neural

network (BQRNN) and provide a Metropolis-Hastings coupled with Gibbs sampling algo-

rithm for posterior inference. We establish the posterior consistency in our proposed model

and present a set of simulation examples as well as real-data applications demonstrating

the efficacy of our method. The proofs of the requisite lemmas and posterior consistency

theorems are discussed in the chapter appendices.

Chapter 3 is based on our manuscript titled “Layer Adaptive Node Selection in Bayesian

Neural Networks: Statistical Guarantees and Implementation Details”2. In this chapter, we

develop spike-and-slab Gaussian node selection model and provide a variational algorithm for

posterior inference. We derive the variational posterior consistency and its contraction rate

for any generic shaped network structure. We measure the computational gains achieved by

our approach using layer-wise node sparsities for shallow models and floating point operations

in larger models. We also discuss the memory efficiency and computational speedup trade-

off between edge selection and node selection approach during test time. The proofs of

the lemmas required to establish the variational posterior consistency as well as additional

numerical experiment details are presented in the chapter appendices.

Chapter 4 is based on our manuscript titled “Compact Bayesian Neural Networks with

Structured Sparsity”3. In this chapter, we propose structurally sparse Bayesian neural net-

1Adpated by permission from Springer Nature: Journal of Statistical Theory and Practice, (Jantre
et al., 2021b), License No: 5352561465807.

2The revision is currently under review (Jantre et al., 2021a).
3The manuscript is currently under preparation.
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works using two distinct spike and slab prior setups, where the slab component uses hier-

archical priors on the group of incoming weights on the neurons: (i) Spike-and-Slab Group

Lasso (SS-GL), and (ii) Spike-and-Slab Group HorseShoe (SS-GHS). The chapter appendix

discusses additional numerical experiment details.

Chapter 5 is based on our manuscript titled “Sequential Bayesian Neural Subnetwork En-

sembles”4. In this chapter, we propose a sequential ensembling strategy for Bayesian neural

networks (BNNs) which learns multiple subnetworks in a single forward-pass. We combine

the strengths of the automated sparsity-inducing spike-and-slab prior that allows dynamic

pruning during training, which produces structurally sparse BNNs, and the proposed sequen-

tial ensembling strategy to efficiently generate diverse and sparse Bayesian neural networks.

Reproducibility considerations and additional numerical experiment details are presented in

the chapter appendices.

In Chapter 6, we summarize the work we have done in this dissertation and discuss the

likely future methodological and theoretical extensions of our current work. We also provide

fully documented Python codes that reproduce all the results in this dissertation and can be

easily modified and used by practitioners in chapter specific public repositories 5.

4The manuscript is currently under revision (Jantre et al., 2022). This work is a collaborative work with
my Argonne mentors, Dr. Madireddy and Dr. Balaprakash.

5https://github.com/jsanket123
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CHAPTER 2

BAYESIAN QUANTILE REGRESSION NEURAL NETWORKS

2.1 Introduction

Quantile regression (QR), proposed by Koenker and Basset (1978), models conditional

quantiles of the dependent variable as a function of the covariates. The method supple-

ments the least squares regression and provides a more comprehensive picture of the entire

conditional distribution. This is particularly useful when the relationships in the lower and

upper tail areas are of greater interest. Quantile regression has been extensively used in

wide array of fields such as economics, finance, climatology, and medical sciences, among

others (Koenker, 2005). Quantile regression estimation requires specialized algorithms and

reliable estimation techniques which are available in both frequentist and Bayesian liter-

ature. Frequentist techniques include simplex algorithm (Dantzig, 1963) and the interior

point algorithm (Karmarkar, 1984), whereas Bayesian technique using Markov chain Monte

Carlo (MCMC) sampling was first proposed by Yu and Moyeed (2001). Their approach em-

ployed the asymmetric Laplace distribution (ALD) for the response variable, which connects

to frequentist quantile estimate, since its maximum likelihood estimates are equivalent to

the quantile regression using check-loss function (Koenker and Machado, 1999). Recently,

Kozumi and Kobayashi (2011) proposed a Gibbs sampling algorithm, where they exploit the

normal-exponential mixture representation of the asymmetric Laplace distribution which

considerably simplified the computation for Bayesian quantile regression models.

Artificial neural networks are helpful in estimating possibly non-linear models without

specifying an exact functional form. The neural networks which are most widely used in

engineering applications are the single hidden-layer feedforward neural networks. These

networks consist of a set of inputs X, which are connected to each of k hidden nodes, which,

in turn, are connected to an output layer (O). In a typical single layer feedforward neural
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network, the outputs are computed as

Oi = b0 +
k∑

j=1

bjψ

(
cj0 +

p∑
h=1

Xihcjh

)
where, cjh is the weight from input Xih to the hidden node j. Similarly, bj is the weight

associated with the hidden unit j. The cj0 and b0 are the biases for the hidden nodes and the

output unit. The function ψ(.) is a nonlinear activation function. Some common choices of

ψ(.) are the sigmoid and the hyperbolic tangent functions. The interest in neural networks is

motivated by the universal approximation capability of feedforward neural networks (FNNs)

(Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989). According to these authors, standard

feedforward neural networks with as few as one hidden layer whose output functions are

sigmoid functions are capable of approximating any continuous function to a desired level of

accuracy, if the number of hidden layer nodes are sufficiently large. Taylor (2000) introduced

a practical implementation of quantile regression neural networks (QRNN) to combine the

approximation ability of neural networks with robust nature of quantile regression. Several

variants of QRNN have been developed such as composite QRNN where neural networks are

extended to the linear composite quantile regression (Xu et al., 2017) and later Cannon (2018)

introduced monotone composite QRNN which guaranteed the non-crossing of regression

quantiles.

Bayesian neural network learning models find the predictive distributions for the target

values in a new test case given the inputs for that case as well as inputs and targets for the

training cases. Early work of Buntine and Weigend (1991) and Mackay (1992) has inspired

widespread research in Bayesian neural network models. Their work implemented Bayesian

learning using Gaussian approximations. Later, Neal (1996) applied Hamiltonian Monte

Carlo in Bayesian statistical applications. Further, Sequential Monte Carlo techniques ap-

plied to neural network architectures are described in De Freitas et al. (2001). A detailed

review of MCMC algorithms applied to neural networks is presented by Titterington (2004).

Although Bayesian neural networks have been widely developed in the context of mean re-

gression models, there has been limited or no work available on its development in connection
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to quantile regression both from a theoretical and implementation standpoint. We also note

that the literature on MCMC methods applied to neural networks is somewhat limited due

to several challenges including lack of parameter identifiability, high computational costs,

and convergence failures (Papamarkou et al., 2022).

Our contributions: In this work, we develop the statistical framework for Bayesian quan-

tile regression neural network and study its properties both from theoretical as well as

numerical standpoint. The natural advantage of our Bayesian procedure over the frequentist

models is that we have posterior variance for our conditional quantile estimates which can

be used as an uncertainty quantification. The proposed Bayesian quantile regression neural

network (BQRNN) uses a single hidden layer FNN with sigmoid activation function, and a

linear output unit. On the numerical front, we have implemented the Bayesian procedure

using Gibbs sampling combined with random walk Metropolis-Hastings algorithm. We have

shown that our model outperforms Bayesian quantile regression (BQR) in the nonlinear

data setup while performing comparably in linear data setup. We use mean squared error to

provide empirical justification for the use of our proposed BQRNN model in any given data.

Our theoretical development includes establishment of posterior consistency, an essential

property in nonparametric Bayesian statistics, which in turn provides confidence in the use

of Bayesian quantile regression neural network models across all disciplines. The posterior

consistency of our method makes use of techniques from the works of Lee (2000) and Sriram

et al. (2013). The former has shown posterior consistency in the context of Bayesian neural

network for mean models while the later has shown it in the case of Bayesian quantile

regression. Following the framework of Lee (2000), we prove consistency of the posterior

by using universal approximation properties of neural networks as discussed in Funahashi

(1989), Hornik et al. (1989) and others. Analogous to the work of Lee (2000), our current

works borrow several ideas for establishing consistency in the context of density estimation

from Barron et al. (1999). Finally, to handle the case of ALD responses, we use the framework

in Sriram et al. (2013)’s which provides a method for handling of ALD in BQR scenario.
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The rest of this chapter is organized as follows. Section 2.2 introduces quantile regression

and its Bayesian formulation by establishing relationship between quantile regression and

asymmetric Laplace distribution. In Section 2.3, we propose the Bayesian quantile regression

neural network (BQRNN) model and the prior used in this study. Further, we detail our

hierarchical BQRNN model and provide the MCMC procedure which couples Gibbs sampling

with random walk Metropolis-Hastings algorithm. Section 2.4 provides an overview of the

posterior consistency results for our model. Section 2.5 presents simulation studies and real

world applications. A brief discussion and conclusion is provided in Section 2.6. The proofs

of the requisite lemmas and posterior consistency theorems are presented in the Appendix A

and Appendix B.

2.2 Bayesian Quantile Regression

Quantile regression (Koenker and Basset, 1978) offers a practically important alterna-

tive to mean regression by allowing the inference about the conditional distribution of the

response variable through modeling of its conditional quantiles. Let Y and X denote the

response and the predictors respectively and τ ∈ (0, 1) be the quantile level of the condi-

tional distribution of Y and F (.) be the cumulative distribution function of Y , then a linear

conditional quantile function of Y is denoted as follows

Qτ (yi|Xi = xi) ≡ F−1(τ) = xi
Tβ(τ), i = 1, . . . , n,

where β(τ) ∈ Rp is a vector of quantile specific regression coefficients of length p. The aim

of quantile regression is to estimate the conditional quantile function Q(.).

Let us consider the following linear model in order to formally define the quantile regres-

sion problem,

Y = XTβ(τ) + ε, (2.1)

where ε is the error vector restricted to have its τ th quantile to be zero, i.e.
∫ 0

−∞ f(εi)dεi =

τ . The probability density of this error is often left unspecified in the classical literature.
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The estimation through quantile regression proceeds by minimizing the following objective

function

min
β(τ) ∈ Rp

n∑
i=1

ρτ (yi − xi
Tβ(τ)) (2.2)

where ρτ (.) is the check function or quantile loss function with the following form:

ρτ (u) = u.{τ − I(u < 0)}, (2.3)

I(.) is an indicator function. which is either 0 or 1 depending on whether it satisfies the

given condition or not. This check function is not differentiable at zero, see Figure 2.1.

pp - 1

ρ
p
(u)

Figure 2.1 Quantile loss function.

Classical methods employ linear programming techniques such as the simplex algorithm,

the interior point algorithm, or the smoothing algorithm to obtain quantile regression es-

timates for β(τ) (Madsen and Nielsen, 1993; Chen, 2007). The statistical programming

language R makes use of quantreg package (Koenker, 2017) to implement quantile regres-

sion techniques whilst confidence intervals are obtained via bootstrap (Koenker, 2005).

Median regression in Bayesian setting has been considered by Walker and Mallick (1999)

and Kottas and Gelfand (2001). In quantile regression, a link between maximum-likelihood

theory and minimization of the sum of check functions, (2.2), is provided by asymmetric

Laplace distribution (ALD) (Koenker and Machado, 1999; Yu and Moyeed, 2001). This

distribution has location parameter µ, scale parameter σ and skewness parameter τ . Further

details regarding the properties of this distribution are specified in Yu and Zhang (2005). If

Y∼ ALD(µ, σ, p), then its probability distribution function is given by

f(y|µ, σ, τ) =
τ(1− τ)

σ
exp

{
−ρτ

(
y − µ
σ

)}
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As discussed in Yu and Moyeed (2001), using the above skewed distribution for errors pro-

vides a way to implement Bayesian quantile regression effectively. According to them, any

reasonable choice of prior, even an improper prior, generates a posterior distribution for

β(τ). Subsequently, they made use of a random walk Metropolis Hastings algorithm with a

Gaussian proposal density centered at the current parameter value to generate samples from

analytically intractable posterior distribution of β(τ).

In the aforementioned approach, the acceptance probability depends on the choice of

the value of τ , hence the fine tuning of parameters like proposal step size is necessary to

obtain the appropriate acceptance rates for each τ . Kozumi and Kobayashi (2011) overcame

this limitation and showed that Gibbs sampling can be incorporated with AL density being

represented as a mixture of normal and exponential distributions. Consider the linear model

from (2.1), where εi ∼ ALD(0, σ, τ), then this model can be written as

yi = xi
Tβ(τ) + θvi + κ

√
σviui, i = 1, . . . , n, (2.4)

where, ui and vi are mutually independent, with ui ∼N(0, 1), vi ∼ E(1/σ) and E(1/σ) is the

exponential distribution with mean σ. The θ and κ constants in (2.4) are given by

θ =
1− 2τ

τ(1− τ)
and κ =

√
2

τ(1− τ)

Consequently, a Gibbs sampling algorithm based on normal distribution can be implemented

effectively. Currently, Brq (Alhamzawi, 2018) and bayesQR (Benoit et al., 2017) packages

in R provide Gibbs sampler for Bayesian quantile regression. We are employing the same

technique to derive Gibbs sampling steps for all except hidden layer node weight parameters

for our Bayesian quantile regression neural network model.

2.3 Bayesian Quantile Regression Neural Networks

2.3.1 Model

In this work, we focus on feedforward neural networks with a single hidden layer of units

with logistic activation functions, and a linear output unit. Consider the univariate response
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variable Yi and the covariate vector Xi (i = 1, 2, . . . , n). Further, denote the number of

covariates by p and the number of hidden nodes by k which is allowed to vary as a function

of n. Denote the input weights by γjh and the output weights by βj. Let, τ ∈ (0, 1) be the

quantile level of the conditional distribution of Yi given Xi and keep it fixed. Then, the

resulting conditional quantile function is denoted as follows

Qτ (yi|Xi = xi) = β0 +
k∑

j=1

βj
1

1 + exp(−γj0 −
∑p

h=1 γjhxih)

= β0 +
k∑

j=1

βjψ(xT
i γj) = βTηi(γ) = Liβ (2.5)

where, β = (β0, . . . , βk)T , xi = (1, xi1, . . . , xip)
T , ηi(γ) = (1, ψ(xT

i γ1), . . . , ψ(xT
i γk))T and

L = (η1(γ), . . . ,ηn(γ))
T , i = 1, . . . , n. ψ(.) is the logistic activation function.

The specified model for Yi conditional on Xi = xi is given by Yi ∼ ALD(Liβ, σ, τ) with

a likelihood proportional to

σ−nexp

{
−

n∑
i=1

|εi|+ (2τ − 1)εi
2σ

}
(2.6)

where, εi = yi−Liβ. The above ALD based likelihood can be represented as a location-scale

mixture of normals (Kozumi and Kobayashi, 2011). For any a, b > 0, we have the following

equality (Andrews and Mallows, 1974)

exp{−|ab|} =

∫ ∞

0

a√
2πv

exp

{
−1

2
(a2v + b2v−1)

}
dv

Letting a = 1/
√

2σ, b = ε/
√

2σ, and multiplying by exp{−(2τ − 1)ε/2σ} the (2.6) becomes

σ−nexp

{
−

n∑
i=1

|εi|+ (2τ − 1)εi
2σ

}
=

n∏
i=1

∫ ∞

0

1

σ
√

4πσvi
exp

{
−(εi − ξvi)2

4σvi
− ζvi

}
dvi (2.7)

where, ξ = (1− 2τ) and ζ = τ(1− τ)/σ. (2.7) is beneficial in the sense that there is no need

to worry about the prior distribution of vi as it is extracted in the same equation. The prior

of vi in (2.7) is exponential distribution with mean ζ−1 and it depends on the value of τ .

Further we observe that, the output of the aforementioned neural network remains un-

changed under a set of transformations, like certain weight permutations and sign flips
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which renders the neural network non-identifiable. For example, in the above model 2.5,

take p, k = 2 and β0, γj0 = 0. Then,

2∑
j=1

βjψ(xT
i γj) = β1 [1 + exp(−γ11xi1 − γ12xi2)]−1 + β2 [1 + exp(−γ21xi1 − γ22xi2)]−1

In the foregoing equation we can notice that when β1 = β2 , two different sets of values of

(γ11, γ12, γ21, γ22) obtained by flipping the signs, namely (1,2,-1,-2) and (-1,-2,1,2) result in

the same value for
∑2

j=1 βjψ(xT
i γj). However, as a special case of lemma 1 of Ghosh et al.

(2000), the joint posterior of the parameters is proper if the joint prior is proper, even in the

case of posterior invariance under the parameter transformations. Note that, as long as the

interest is on prediction rather parameter estimation, this property is sufficient for predictive

model building. In this work, we focus only on proper priors, hence the non-identifiability

of the parameters in 2.5 doesn’t cause any problem.

2.3.2 Algorithm

We take mutually independent priors for β,γ1, . . . ,γk with β ∼ N(β0, σ
2
0Ik+1) and

γj ∼ N(γj0, σ
2
1Ip+1), j = 1, . . . , k. Further, we take inverse gamma prior for σ such that

σ ∼ IG(a/2, b/2). Prior selection is problem specific and it is useful to elicit the chosen prior

from the historical knowledge. However, for most practical applications, such information is

not readily available. Furthermore, neural networks are commonly applied to big data for

which a priori knowledge regarding the data as well as about the neural network parameters

is not typically known. Hence, prior elicitation from experts in the area is not applicable to

neural networks in practice. As a consequence, it seems reasonable to use near-diffuse priors

for the parameters of the given model.

Now, the joint posterior for β,γ, σ,v given y, is

f(β,γ, σ,v|y)

∝ l(y|β,γ, σ,v) π(β) π(γ) π(σ),

∝
(

1

σ

) 3n
2

(
n∏

i=1

vi

)− 1
2

exp

{
− 1

4σ

[
(y −Lβ − ξv)TV (y −Lβ − ξv)

]
− τ(1− τ)

σ

n∑
i=1

vi

}
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× exp

{
− 1

2σ2
0

(β − β0)T (β − β0)

}
× exp

{
− 1

2σ2
1

k∑
j=1

(γj − γj0)T (γj − γj0)

}

×
(

1

σ

)a
2
+1

exp

(
− b

2σ

)
.

where, V = diag(v−1
1 , v−1

2 , . . . , v−1
n ). A Gibbs sampling algorithm is used to generate samples

from the analytically intractable posterior distribution f(β,γ|y). Some of the full condition-

als required in this procedure are available only up to unknown normalizing constants, and

we used random walk Metropolis-Hastings algorithm to sample from these full conditional

distributions.

These full conditional distributions are as follows:

(a) π(β|γ, σ,v,y)

∼ N

[(
LTV L

2σ
+

I

σ2
0

)−1(
LTV (y − ξv)

2σ
+

β0

σ2
0

)
,

(
LTV L

2σ
+

I

σ2
0

)−1
]

(b) π(γj|β, σ,v,y)

∝ exp

{
− 1

4σ

[
(y −Lβ − ξv)TV (y −Lβ − ξv)

]}
× exp

{
− 1

2σ2
1

(γj − γj0)T (γj − γj0)

}
(c) π(σ|γ,β,v,y)

∼ IG

(
3n+ a

2
,
1

4

[
(y −Lβ − ξv)TV (y −Lβ − ξv)

]
+ τ(1− τ)

n∑
i=1

vi +
b

2

)

(d) π(vi|γ,β, σ,y)

∼ GIG (ν, ρ1, ρ2) where, ν =
1

2
, ρ21 =

1

2σ
(yi −Liβ)2 , and ρ22 =

1

2σ
.

The generalized inverse Gaussian distribution is defined as, if x ∼ GIG (ν, ρ1, ρ2) then

the probability density function of x is given by

f(x|ν, ρ1, ρ2) =
(ρ2/ρ1)

ν

2Kν(ρ1ρ2)
xν−1exp

{
−1

2
(x−1ρ21 + xρ22)

}
,

21



where x > 0,−∞ < ν < ∞, ρ1, ρ2 ≥ 0 and Kν(.) is a modified Bessel function of the

third kind (see, Barndorff-Nielsen and Shephard (2001)).

Unlike the parsimonious parametric models, the Bayesian nonparametric models require

additional statistical justification for their theoretical validity. For that reason we are going

to provide asymptotic consistency of the posterior distribution derived in our proposed neural

network model.

2.4 Theoretical Results

Let (x1, y1), . . . , (xn, yn) be the given data, let f0(x) be the underlying density of X.

Let Qτ (y|X = x) = µ0(x) be the true conditional quantile function of Y given X, and let

µ̂n(x) be the estimated conditional quantile function.

Definition 2.4.1. µ̂n(x) is asymptotically consistent for µ0(x) if∫
|µ̂n(x)− µ0(x)| f0(x) dx

p→ 0

We are essentially making use of Markov’s inequality to ultimately show that µ̂n(X)
p→

µ0(X). In similar frequentist sense, Funahashi (1989) and Hornik et al. (1989) have shown

the asymptotic consistency of the neural networks for mean-regression models by showing the

existence of some neural network, µ̂n(x), whose mean squared error with the true function,

µ0(x), converges to 0 in probability.

We consider the notion of posterior consistency for Bayesian non-parametric problems

which is quantified by concentration around the true density function (see Wasserman (1998),

Barron et al. (1999)). This boils down to the above definition of consistency on the condi-

tional quantile functions. The main idea is that the density functions deal with the joint

distribution of X and Y , while the conditional quantile function deals with the conditional

distribution of Y given X. This conditional distribution can then be used to construct

the joint distribution by assuming certain regularity condition on the distribution of X.

This allows the use of some techniques developed in density estimation field. Some of the
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ideas presented here can be found in Lee (2000) which developed the consistency results for

non-parametric regression using single hidden-layer feed forward neural networks.

Let the posterior distribution of the parameters P (.|(X1, Y1), . . . , (Xn, Yn)). Let f(x, y)

and f0(x, y) denote the joint density function of x and y under the model and the truth

respectively. Indeed, one can construct the joint density f(x, y) from the condition quantile

function f(y|x) by taking f(x, y) = f(y|x)f(x) where f(x) denotes the underlying den-

sity of X. Since, one is only interested in f(y|x) and X is ancillary to the estimation of

f(y|x), one can use some convenient distribution for f(x). Similar to Lee (2000), we define

Hellinger neighborhoods of the true density function f0(x, y) = f0(y|x)f0(x) which allows

us to quantify the consistency of the posterior. The Hellinger distance between f0 and any

joint density function f of x and y is defined as follows.

DH(f, f0) =

√∫ ∫ (√
f(x, y)−

√
f0(x, y)

)2
dx dy (2.8)

Based on (2.8), an ϵ-sized Hellinger neighborhood of the true density function f0 is given by

Aϵ = {f : DH(f, f0) ≤ ϵ} (2.9)

Definition 2.4.2 (Posterior Consistency). Suppose (Xi, Yi) ∼ f0. The posterior is asymp-

totically consistent for f0 over Hellinger neighborhoods if ∀ϵ > 0,

P (Aϵ|(X1, Y1), . . . , (Xn, Yn))
p→ 1

i.e. the posterior probability of any Hellinger neighborhood of f0 converges to 1 in probability.

Similar to Lee (2000), we prove the asymptotic consistency of the posterior for neural

networks with number of hidden nodes, k, being function of sample size, n. This sequence of

models indexed with increasing sample size is called sieve. We take sequence of priors, {πn},

where each πn is defined for a neural network with kn hidden nodes in it. The predictive

density (Bayes estimate of f) then be given by

f̂n(.) =

∫
f(.) dP (f |(X1, Y1), . . . , (Xn, Yn)) (2.10)
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Let µ0(x) = Qτ,f0(Y |X = x) be the true conditional quantile function and let µ̂n(x) =

Qτ,f̂n
(Y |X = x) be the posterior predictive conditional quantile function using a neural

network. For notational convenience we are going to drop x and denote these functions as

µ0 and µ̂n occasionally.

The following is the key result in this case.

Theorem 2.4.3. Let the prior for the regression parameters, πn, be an independent normal

with mean 0 and variance σ2
0 (fixed) for each of the parameters in the neural network. Suppose

that the true conditional quantile function is either continuous or square integrable. Let kn

be the number of hidden nodes in the neural network, and let kn → ∞. If there exists a

constant a such that 0 < a < 1 and kn ≤ na, then
∫
|µ̂n(x)− µ0(x)| dx p→ 0 as n→∞

In order to prove Theorem 2.4.3, we assume that Xi ∼ U(0, 1), i.e. density function of

x is identically equal to 1. This implies joint densities f(x, y) and f0(x, y) are equal to the

conditional density functions, f(y|x) and f0(y|x) respectively. Next, we define Kullback-

Leibler distance to the true density f0(x, y) as follows

DK(f0, f) = Ef0

[
log

f0(X, Y )

f(X, Y )

]
(2.11)

Based on (2.11), a δ− sized neighborhood of the true density f0 is given by

Kδ = {f : DK(f0, f) ≤ δ} (2.12)

Further towards the proof of Theorem 2.4.3, we define the sieve Fn as the set of all neural

networks with each parameter less than Cn in absolute value,

|γjh| ≤ Cn, |βj| ≤ Cn, j = 0, . . . , kn, h = 0, . . . , p (2.13)

where Cn grows with n such that Cn ≤ exp(nb−a) for any constant b where 0 < a < b < 1,

and a is same as in Theorem 2.4.3.

For the above choice of sieve, we next provide a set of conditions on the prior πn which

guarantee the posterior consistency of f0 over the Hellinger neighborhoods. At the end of
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this section, we demonstrate that the following theorem and corollary serve as an important

tool towards the proof of Theorem 2.4.3.

Theorem 2.4.4. Suppose a prior πn satisfies

i ∃ r > 0 and N1 s.t. πn(F c
n) < exp(−nr), ∀n ≥ N1

ii ∀δ, ν > 0, ∃ N2 s.t. πn(Kδ) ≥ exp(−nν), ∀n ≥ N2.

Then ∀ϵ > 0,

P (Aϵ|(X1, Y1), . . . , (Xn, Yn))
p→ 1

where Aϵ is the Hellinger neighborhood of f0 as in (2.9).

Corollary 2.4.5. Under the conditions of Theorem 2.4.4, µ̂n is asymptotically consistent

for µ0, i.e. ∫
|µ̂n(x)− µ0(x)| dx p→ 0

We present the proofs of Theorem 2.4.4 and Corollary 2.4.5 in

The main idea behind the proof of Theorem 2.4.4 is to consider the complement of

P (Aϵ|(X1, Y1), .., (Xn, Yn)) as a ratio of integrals. Hence let

Rn(f) =

n∏
i=1

f(xi, yi)

n∏
i=1

f0(xi, yi)

(2.14)

Then

P (Ac
ϵ|(X1, Y1), . . . , (Xn, Yn)) =

∫
Ac

ϵ

n∏
i=1

f(xi, yi)dπn(f)∫ n∏
i=1

f(xi, yi)dπn(f)

=

∫
Ac

ϵ

Rn(f)dπn(f)∫
Rn(f)dπn(f)

=

∫
Ac

ϵ∩Fn

Rn(f)dπn(f) +

∫
Ac

ϵ∩Fc
n

Rn(f)dπn(f)∫
Rn(f)dπn(f)
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In the proof, we have shown that the numerator is small as compared to the denominator,

thereby ensuring P (Ac
ϵ|(X1, Y1), . . . , (Xn, Yn))

p→ 0. The convergence of the second term

in the numerator uses assumption i) of the Theorem 2.4.4. It systematically shows that∫
Fc

n
Rn(f)dπn(f) < exp(−nr/2) except on a set with probability tending to zero (see Lemma

A.1.3 in A for further details). The denominator is bounded using assumption ii) of Theorem

2.4.4. First the KL distance between f0 and
∫
fdπn(f) is bounded and subsequently used

to prove that P (Rn(f) ≤ e−nς)
p→ 0, where ς depends on δ defined earlier. This leads to a

conclusion that for all ς > 0 and for sufficiently large n,
∫
Rn(f)dπn(f) > e−nς except on a

set of probability going to zero. The result in this case has been condensed in Lemma A.1.4

presented in A.

Lastly, the first term in the numerator is bounded using the Hellinger bracketing entropy

defined below

Definition 2.4.6 (Bracketing Entropy). For any two functions l and u, define the bracket

[l, u] as the set of all functions f such that l ≤ f ≤ u. Let ∥.∥ be a metric. Define an ϵ-

bracket as a bracket with ∥u− l∥ < ϵ. Define the bracketing number of a set of functions F∗

as the minimum number of ϵ-brackets needed to cover the F∗, and denote it by N[](ϵ,F∗, ∥.∥).

Finally, the bracketing entropy, denoted by H[]() , is the natural logarithm of the bracketing

number. (Pollard, 1991)

Wong and Shen (1995, Theorem 1, pp.348-349) gives the conditions on the rate of growth

of the Hellinger bracketing entropy in order to ensure

∫
Ac

ϵ∩Fn

Rn(f)dπn(f)
p→ 0. We next

outline the steps to bound the bracketing entropy induced by the sieve structure in (2.13).

In this direction, we first compute the covering number and use it as an upper bound

in order to find the bracketing entropy for a neural network. Let’s consider k, number of

hidden nodes to be fixed for now and restrict the parameter space to Fn then Fn ⊂ Rd where

d = (p + 2)k + 1. Further let the covering number be N(ϵ,Fn, ∥.∥) and use L∞ as a metric

to cover the Fn with balls of radius ϵ. Then, one does not require more than ((Cn + 1)/ϵ)d
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such balls which implies

N(ϵ,Fn, L∞) ≤
(

2Cn

2ϵ
+ 1

)d

=

(
Cn + ϵ

ϵ

)d

≤
(
Cn + 1

ϵ

)d

(2.15)

Together with (2.15), we use results from to bound the bracketing number of F∗ (the space

of all functions on x and y with parameter vectors lying in Fn) as follows:

N[](ϵ,F∗, ∥.∥2) ≤
(
dC2

n

ϵ

)d

(2.16)

This allows us to determine the rate of growth of Hellinger bracketing entropy which is

nothing but the log of the quantity in (2.16). For further details, we refer to Lemmas A.1.2

and A.1.3 in A.

Going back to the proof of Theorem 2.4.3, we show that the πn in Theorem 2.4.3 satisfies

the conditions of Theorem 2.4.4 for Fn as in (2.13). Then, the result of Theorem 2.4.3 follows

from the Corollary 2.4.5 which is derived from Theorem 2.4.4. Further details of the proof

of Theorem 2.4.3 are presented in B. Although Theorem 2.4.3 uses a fixed prior, the results

can be extended to a more general class of prior distributions as long as the assumptions of

Theorem 2.4.4 hold.

2.5 Numerical Experiments

2.5.1 Simulation Studies

We investigate the performance of the proposed BQRNN method using two simulated

examples and compare the estimated conditional quantiles of the response variable against

frequentist quantile regression (QR), Bayesian quantile regression (BQR), and quantile re-

gression neural network (QRNN) models. We implement QR from quantreg package, BQR

from bayesQR package and QRNN from qrnn (Cannon, 2011) package available in R. We

choose two simulation scenarios, (i) a linear additive model, (ii) a nonlinear polynomial

model. In both the cases we consider a heteroscedastic behavior of y given x.

Scenario I: Linear heteroscedastic; Data are generated from

Y = XTβ1 + XTβ2ε,
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Scenario II: Non-linear heteroscedastic; Data are generated from

Y = (XTβ1)
4 + (XTβ2)

2ε,

where, X = (X1, X2, X3) and Xi’s are independent and follow U(0, 5). The parameters β1

and β2 are set at (2, 4, 6) and (0.1, 0.3, 0.5) respectively.

We chose these scenarios to make our simulation studies comparable across the past

literature in quantile regression neural network domain (Xu et al., 2017; Cannon, 2018).

The robustness of our method is illustrated using three different types of random error

component (ε): N(0, 1), U(0, 1), and E(1) where, E(ζ) is the exponential distribution with

mean ζ−1. Fore each scenario, we generate 200 independent observations.

We work with a single layer feedforward neural network with a fixed number of nodes

k. We have tried several values of k in the range of 2-8 and settled on k = 4 which yielded

better results than other choices while bearing reasonable computational cost. We generated

100000 MCMC samples and then discarded first half of the sampled chain as burn-in period.

The 50% burn-in samples in MCMC simulations is not quite unusual and has been suggested

by Gelman and Rubin (1992). We also choose every 10th sampled value for the estimated

parameters to diminish the effect of autocorrelation between consecutive draws. Convergence

of MCMC was checked using standard MCMC diagnostic tools (Gelman et al., 2013).

We have tried several different values of the hyperparameters. For brevity, we report the

results for only choice of hyperparameters given by β0 = 0, σ2
0 = 100, γj = 0, σ2

1 = 100,

a = 3, and b = 0.1. This particular choice of hyperparameters reflect our preference for

near-diffuse priors since in many of the real applications of neural network we don’t have

information about the input and output variables relationship. Therefore, we wanted to test

our model performance in the absence of specific prior elicitation. We also tried different

starting values for β and γ chains and found that model output is robust to different starting

values of β but it varies noticeably for different starting values of γ. Further, we observed

that our model yields optimal results when we use QRNN estimates of γ as its starting value

in our model. We also have to fine-tune the step size of random walk Metropolis-Hastings
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(MH) updates in the γ generation process and settled on random walk variance of 0.012 for

scenario I while 0.0012 for scenario II. These step sizes lead to reasonable rejection rates for

MH sampling of γ values. However, they indicate the slow traversal of the parameter space

for γ values.

To compare the model performance of QR, BQR, QRNN and BQRNN, we have calcu-

lated the theoretical conditional quantiles (Cond Q) and contrasted them with the estimated

conditional quantiles from the given simulated models. Additionally, we compute standard

deviation (SD) and root mean squared error (RMSE) values for predicted conditional quan-

tiles of each observation in the BQR and BQRNN model using sampled chains. For scenar-

ios 1 and 2, Table 2.1 and Table 2.2, respectively, present these results at quantile levels,

τ = (0.05, 0.50, 0.95) for 3 observations. The Table 2.1 indicates neural network models

performs comparably with the linear models. This ensures the use of neural network models

even if the underlying relationship is linear. In Table 2.2, we can observe that BQRNN

outperforms other models in the tail area, i.e. τ = 0.05, 0.95, whereas it’s performance is

comparable to QRNN at the median. Furthermore, We notice that our relatively complex

BQRNN model has lower bias but higher variance (SD2) as compared to BQR model. How-

ever, BQRNN outperforms BQR proved by the lower RMSE values which consists of squared

bias and variance terms. We notice one exception when RMSE value in BQR is lower than

BQRNN for 20th observation in 95th quantile of all 3 error models. The occurrence of this

exception is random and not because BQR performed systematically better than our model.

In summary, we observe the tradeoff between bias and variance in our model which overall

performs better than a linear BQR model in a nonlinear setup. The natural advantage of

our Bayesian procedure over the frequentist QRNN is that we have posterior variance for

our conditional quantile estimates which can be used as an uncertainty quantification.
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Table 2.1 Simulation study I results. Simulated Conditional Quantiles for QR, BQR, QRNN and BQRNN

Noise Quantile Obs Theo QR BQR QRNN BQRNN
ε τ No Cond Q Cond Q Cond Q SD RMSE Cond Q Cond Q SD RMSE

N(0, 1) 0.05 20 17.56 17.19 17.19 0.60 0.70 16.98 17.15 0.34 0.53
50 37.38 37.69 37.67 0.74 0.80 38.80 39.03 0.68 1.79
100 42.53 42.45 42.56 0.92 0.92 41.43 41.31 0.69 1.40

0.50 20 20.23 20.23 20.25 0.37 0.37 20.23 20.23 0.51 0.51
50 42.62 42.87 42.65 0.31 0.31 42.62 42.68 0.77 0.77
100 48.78 48.81 48.67 0.39 0.41 48.78 48.01 0.97 1.24

0.95 20 22.90 21.81 22.38 0.68 0.86 21.42 21.85 0.46 1.15
50 47.86 47.92 47.70 0.69 0.71 47.52 47.19 0.80 1.04
100 55.02 54.28 54.20 0.92 1.24 53.80 53.47 1.05 1.88

U(0, 1) 0.05 20 20.31 20.39 20.25 0.40 0.41 20.55 20.44 0.30 0.33
50 42.78 42.68 42.56 0.47 0.52 42.89 42.92 0.61 0.63
100 48.97 48.93 48.82 0.56 0.58 48.34 48.82 0.70 0.72

0.50 20 21.04 21.28 21.25 0.19 0.29 20.98 20.97 0.33 0.34
50 44.21 44.30 44.22 0.22 0.22 43.95 43.98 0.66 0.70
100 50.68 50.88 50.79 0.25 0.28 50.39 50.82 0.76 0.78

0.95 20 21.77 21.87 22.10 0.46 0.56 21.72 21.82 0.33 0.34
50 45.65 45.58 45.69 0.46 0.47 45.43 45.38 0.65 0.70
100 52.39 52.36 52.45 0.58 0.58 52.49 52.52 0.75 0.76

E(1) 0.05 20 20.31 20.24 19.94 0.45 0.58 19.94 20.27 0.31 0.31
50 42.78 42.92 42.93 0.51 0.53 42.98 43.17 0.63 0.74
100 48.97 49.06 49.05 0.61 0.62 47.24 49.60 0.75 0.98

0.50 20 21.36 20.95 21.04 0.23 0.40 21.11 20.91 0.39 0.59
50 44.83 45.54 45.47 0.27 0.70 46.30 45.66 0.74 1.11
100 51.41 51.93 51.91 0.41 0.65 51.68 51.94 0.89 1.04

0.95 20 25.09 25.08 25.17 0.80 0.81 23.73 24.27 0.79 1.14
50 52.17 53.15 52.61 0.90 1.00 54.98 54.43 1.24 2.58
100 60.15 61.24 60.75 1.06 1.22 59.87 62.96 1.46 3.17

Obs No: Observation Number; Theo: Theoretical; Cond Q: Conditional Quantile; SD: Standard Deviation;

RMSE: Root Mean Squared Error.
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Table 2.2 Simulation study II results. Simulated Conditional Quantiles for QR, BQR, QRNN and BQRNN

Noise Quantile Obs Theo QR BQR QRNN BQRNN
ε τ No Cond Q Cond Q Cond Q SD RMSE Cond Q Cond Q SD RMSE

N(0, 1) 0.05 20 167491.82 -195687.34 10207.80 33.03 157284.03 30400.87 166112.85 8460.05 8570.87
50 3298781.46 2107072.28 24948.89 73.02 3273832.57 2626269.69 3289014.06 48028.83 49007.23
100 5660909.58 2741102.73 25680.38 75.52 5635229.20 3312208.28 5311964.68 88478.24 359985.24

0.50 20 167496.16 83421.40 92937.30 101.97 74558.93 183185.47 169748.75 2615.13 3451.33
50 3298798.17 2661086.40 228321.19 282.04 3070476.99 3292073.45 3290858.99 46577.95 47245.13
100 5660933.30 3550782.83 233862.83 258.14 5427070.47 5652427.31 5662655.46 80356.32 80366.74

0.95 20 167500.49 1184601.83 171358.16 180.90 3861.91 193187.39 174073.37 2751.37 7125.39
50 3298814.88 4731674.95 423324.96 481.51 2875489.96 3309795.50 3298328.52 46685.76 46683.63
100 5660957.02 5575413.13 429129.54 458.70 5231827.50 5772437.35 5676164.49 80825.89 82236.16

U(0, 1) 0.05 20 167496.29 -195833.01 10207.87 33.11 157288.42 -27470.71 154598.77 7923.98 15136.80
50 3298798.68 2107278.20 24949.04 73.11 3273849.64 2500915.26 3295376.39 47739.91 47857.66
100 5660934.02 2741400.69 25680.55 75.79 5635253.47 3100036.18 5285593.84 98238.89 387980.93

0.50 20 167497.47 83435.89 92937.55 101.16 74559.99 172793.77 168331.89 2583.07 2714.25
50 3298803.25 2661086.35 228322.57 278.93 3070480.69 3314585.80 3296332.61 46650.01 46710.73
100 5660940.51 3550796.98 233863.94 256.32 5427076.57 5607084.86 5660871.21 80101.17 80093.19

0.95 20 167498.66 1184587.54 171358.60 163.87 3863.42 196767.97 174714.72 5874.89 9304.78
50 3298807.82 4731690.36 423325.69 464.88 2875482.17 3316486.10 3303092.85 47168.25 47357.80
100 5660947.00 5575416.01 429130.38 430.23 5231816.64 5757769.91 5661073.43 80290.13 80282.20

E(1) 0.05 20 167496.29 -195784.51 10207.99 32.90 157288.30 -172912.92 161521.55 5217.48 7931.84
50 3298798.69 2107220.10 24949.33 72.48 3273849.36 2380587.55 3295994.41 47385.22 47463.40
100 5660934.04 2741316.61 25680.81 75.25 5635253.23 2825010.54 5194410.73 82821.54 473816.46

0.50 20 167497.98 83442.50 92937.24 102.27 74560.81 175113.10 169606.69 2568.74 3323.21
50 3298805.21 2661099.63 228321.18 282.92 3070484.04 3309978.81 3297248.31 46648.10 46669.41
100 5660943.29 3550827.77 233862.58 258.35 5427080.71 5603733.56 5660975.15 80088.73 80080.73

0.95 20 167504.05 1184595.04 171358.64 163.27 3858.05 182663.10 172254.32 2917.90 5574.72
50 3298828.60 4731683.78 423325.49 458.35 2875503.15 3337299.83 3298567.13 46680.30 46676.36
100 5660976.50 5575416.49 429130.11 422.79 5231846.41 5838226.18 5687421.49 80742.36 84955.07

Obs No: Observation Number; Theo: Theoretical; Cond Q: Conditional Quantile; SD: Standard Deviation; RMSE: Root Mean Squared Error.
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2.5.2 Real Data Examples

In this section, we apply our proposed method to three real world datasets which are

publicly available.

The first dataset is the Boston Housing dataset which is available in R package MASS

(Venables and Ripley, 2002). It contains 506 census tracts of Boston Standard Metropolitan

Statistical Area in 1970. There are 13 predictor variables and one response variable, corrected

median value of owner-occupied homes (in USD 1000s). Predictor variables include per

capita crime rate by town, proportion of residential land zoned for lots over 25,000 sq.ft.,

nitrogen oxide concentration, proportion of owner-occupied units built prior to 1940, full-

value property-tax rate per $10,000, and lower status of the population in percent, among

others. There is high correlation among some of these predictor variables and the goal here

is to determine the best fitting functional form to improve the housing value forecasts.

The second dataset is the Gilgais dataset available in R package MASS. This data was

collected on a line transect survey in gilgai territory in New South Wales, Australia. Gilgais

are repeated mounds and depressions formed on flat land, and many-a-times are regularly

distributed. The data collection with 365 sampling locations on a linear grid of 4 meters

spacing aims to check if the gilgai patterns are reflected in the soil properties as well. At

each of the sampling location, samples were taken at depths 0-10 cm, 30-40 cm and 80-90

cm below the surface. The input variables included pH, electrical conductivity and chloride

content and were measured on a 1:5 soil:water extract from each sample. Here, the response

variable is e80 (electrical conductivity in mS/cm: 80–90 cm) and we focus on finding the

true functional relationship present in the dataset.

The third dataset is concrete data which is compiled by Yeh (1998) and is available on

UCI machine learning repository. It consists of 1030 records, each containing 8 input features

and compressive strength of concrete as an output variable. The input features include the

amounts of ingredients in high performance concrete (HPC) mixture which are cement, fly

ash, blast furnace slag, water, superplasticizer, coarse aggregate, and fine aggregate. More-
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over, age of the mixture in days is also included as one of the predictor variable. According

to Yeh (1998), the compressive strength of concrete is a highly non-linear function of the

given inputs. The central purpose of the study is to predict the compressive strength of HPC

using the input variables.

In our experiments, we compare the performance of QR, BQR, QRNN, and BQRNN

estimates for f(x), the true functional form of the data, in both training and testing data

using mean check function (or, mean tilted absolute loss function). The mean check function

(MCF) is given as

MCF =
1

N

N∑
i=1

ρτ (yi − f̂(xi))

where, ρτ (.) is defined in (2.3) and f̂(x) is an estimate of f(x). We resort to this comparison

criterion since we don’t have the theoretical conditional quantiles for the data at our disposal.

For each dataset, we randomly choose 80% of data points for training the model and then

remaining 20% is used to test the prediction ability of the fitted model. Our single hidden-

layer neural network has k = 4 hidden layer nodes and the random walk variance is chosen

to be 0.012. These particular choices of the number of hidden layer nodes and random

walk step size are based on their optimal performance among several different choices while

providing reasonable computational complexity. We perform these analyses for quantiles,

τ = (0.05, 0.25, 0.50, 0.75, 0.95), and present the model comparison results for both training

and testing data in Table 2.3.

It can be seen that our model performs comparably well with QRNN model while out-

performing linear models (QR and BQR) in all the datasets. We can see that both QRNN

and BQRNN have lower mean check function values for training data than their testing

counterpart. This suggests that neural networks may be overfitting the data while trying to

find the true underlying functional form. The model performance of QR and BQR models

is inferior compared to neural network models, particularly when the regression relationship

is non-linear. Furthermore, our BQRNN model provides uncertainty estimation as a natural

byproduct which is not available in the frequentist QRNN model.
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Table 2.3 Real data applications results. MCF values are reported

Noise Quantile Sample QR BQR QRNN BQRNN

Boston τ = 0.05 Train 0.3009 0.3102 0.2084 0.1832
Test 0.3733 0.3428 0.3356 0.5842

τ = 0.25 Train 1.0403 1.0431 0.6340 0.6521
Test 1.2639 1.2431 1.0205 1.2780

τ = 0.50 Train 1.4682 1.4711 0.8444 0.8864
Test 1.8804 1.8680 1.4638 1.5882

τ = 0.75 Train 1.3856 1.3919 0.6814 0.7562
Test 1.8426 1.8053 1.3773 1.4452

τ = 0.95 Train 0.5758 0.6009 0.2276 0.2206
Test 0.7882 0.6174 0.8093 0.6880

Gilgais τ = 0.05 Train 3.6610 3.7156 3.0613 2.7001
Test 3.4976 3.2105 2.9137 3.9163

τ = 0.25 Train 13.9794 14.5734 8.6406 8.4565
Test 11.8406 11.4832 9.3298 10.1386

τ = 0.50 Train 18.1627 21.3587 10.4667 10.7845
Test 15.8210 17.2037 13.5297 14.3699

τ = 0.75 Train 13.6598 18.8357 7.9679 7.9905
Test 12.3926 18.2477 9.4711 10.6414

τ = 0.95 Train 3.8703 6.4137 2.3289 2.2508
Test 4.1266 6.4300 3.0280 2.5586

Concrete τ = 0.05 Train 2.9130 4.4500 2.0874 2.0514
Test 2.9891 4.2076 2.2021 2.6793

τ = 0.25 Train 10.0127 14.7174 7.0063 7.0537
Test 9.6451 14.3567 6.9179 7.4069

τ = 0.50 Train 13.1031 19.8559 9.3638 9.3728
Test 12.7387 18.2309 9.8936 10.9172

τ = 0.75 Train 11.5179 17.7680 7.6789 7.3932
Test 10.8299 16.3257 8.5755 9.4147

τ = 0.95 Train 3.9493 6.8747 2.4403 2.5262
Test 3.6489 6.8435 2.7768 4.1369
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2.6 Conclusion and Discussion

This chapter introduces the Bayesian neural network model for quantile estimation in a

systematic way. The practical implementation of Gibbs sampling coupled with Metropolis-

Hastings updates method have been discussed in detail. The method exploits the location-

scale mixture representation of the asymmetric Laplace distribution which makes its imple-

mentation easier. The model can be thought as a hierarchical Bayesian model which makes

use of independent normal priors for the neural network weight parameters. A future work in

this area could be sparsity induced priors to allow for node and layer selection in multi-layer

neural network architecture.

Further, we have developed asymptotic consistency of the posterior distribution of the

neural network parameters. The presented result can be extended to a more general class

of prior distributions if they satisfy the Theorem 2.4.4 assumptions. Following the theory

developed here, we bridge the gap between asymptotic justifications separately available for

Bayesian quantile regression and Bayesian neural network regression. The theoretical argu-

ments developed here justify using neural networks for quantile estimation in nonparametric

regression problems using Bayesian methods.

The proposed MCMC procedure has been shown to work when the number of parameters

are relatively low compared to the number of observations. We noticed that the conver-

gence of the posterior chains take long time and there is noticeable autocorrelation left in

the sampled chains even after burn-in period. We also acknowledge that our random-walk

Metropolis-Hastings algorithm has small step size which might lead to slow traversal of the

parameter space ultimately raising the computational cost of our algorithm. The computa-

tional complexity in machine learning methods are well-known. Further research is required

in these aspects of model implementation.
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APPENDIX A

LEMMAS FOR POSTERIOR CONSISTENCY PROOF

For all the proofs in Appendix A and Appendix B, we assume Xp×1 to be uniformly

distributed on [0, 1]p and keep them fixed. Thus, f0(x) = f(x) = 1. Conditional on X, the

univariate response variable Y has asymmetric Laplace distribution with location parameter

determined by the neural network. We are going to fix its scale parameter, σ, to be 1 for

the posterior consistency derivations. Thus,

Y |X = x ∼ ALD

(
β0 +

k∑
j=1

βj
1

1 + exp(−γj0 −
∑p

h=1 γjhxh)
, 1, τ

)
(A.1)

The number of input variables, p, is taken to be fixed while the number of hidden nodes, k,

is allowed to grow with the sample size, n.

A.1 Requisite Lemmas

All the lemmas described below are taken from Lee (2000).

Lemma A.1.1. Suppose H[](u) ≤ log[(C2
ndn/u)dn ], dn = (p + 2)kn + 1, kn ≤ na and Cn ≤

exp(nb−a) for 0 < a < b < 1. Then for any fixed constants c, ϵ > 0, and for all sufficiently

large n,
∫ ϵ

0

√
H[](u) ≤ c

√
nϵ2.

Proof. The proof follows from the proof of Lemma 1 from (Lee, 2000, p. 634-635).

For Lemmas A.1.2, A.1.3 and A.1.4, we make use of the following notations. From (2.14),

recall

Rn(f) =
n∏

i=1

f(xi, yi)

f0(xi, yi)

is the ratio of likelihoods under neural network density f and the true density f0. Fn is the

sieve as defined in (2.13) and Aϵ is the Hellinger neighborhood of the true density f0 as in

(2.9).
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Lemma A.1.2. sup
f∈Ac

ϵ∩Fn

Rn(f) ≤ 4exp(−c2nϵ2) a.s. for sufficiently large n.

Proof. Using the outline of the proof of Lemma 2 from (Lee, 2000, p. 635), first we have

to bound the Hellinger bracketing entropy using Van Der Vaart and Wellner (1996, Theo-

rem 2.7.11 on p.164). Next we use Lemma A.1.1 to show that the conditions of Wong and

Shen (1995, Theorem 1 on p.348-349) hold and finally we apply that theorem to get the

result presented in the Lemma 2.

In our case of BQRNN, we only need to derive first step using ALD density mentioned

in (A.1). And rest of the steps follow from the proof given in Lee (2000). As we are looking

for the Hellinger bracketing entropy for neural networks, we use L2 norm on the square root

of the density functions, f . The L∞ covering number was computed above in (2.15), so here

d∗ = L∞. The version of Van Der Vaart and Wellner (1996, Theorem 2.7.11) that we are

interested in is

If
∣∣∣√ft(x, y)−

√
fs(x, y)

∣∣∣ ≤ d∗(s, t)F (x, y) for some F,

then, N[](2ϵ ∥F∥2 ,F
∗, ∥.∥2) ≤ N(ϵ,Fn, d

∗)

Now let’s start by defining some notations,

ft(x, y) = τ(1− τ)exp
(
−(y − µt(x))(τ − I(y≤µt(x)))

)
,

where, µt(x) = βt
0 +

k∑
j=1

βt
j

1 + exp(−Aj(x))
and Aj(x) = γtj0 +

p∑
h=1

γtjhxh (A.2)

fs(x, y) = τ(1− τ)exp
(
−(y − µs(x))(τ − I(y≤µs(x)))

)
,

where, µs(x) = βs
0 +

k∑
j=1

βs
j

1 + exp(−Bj(x))
and Bj(x) = γsj0 +

p∑
h=1

γsjhxh (A.3)

For notational convenience, we drop x and y from fs(x, y), ft(x, y), µs(x), µt(x), Bj(x), and

Aj(x) and denote them as fs, ft, µs, µt, Bj, and Aj.∣∣∣√ft −
√
fs

∣∣∣
=
√
τ(1− τ)

∣∣∣∣exp

(
−1

2
(y − µt)(τ − I(y≤µt))

)
− exp

(
−1

2
(y − µs)(τ − I(y≤µs))

)∣∣∣∣
38



As, τ ∈ (0, 1) is fixed.

≤ 1

2

∣∣∣∣exp

(
−1

2
(y − µt)(τ − I(y≤µt))

)
− exp

(
−1

2
(y − µs)(τ − I(y≤µs))

)∣∣∣∣ (A.4)

Now let’s separate above term into two cases when: (a) µs ≤ µt and (b) µs > µt. Further

let’s consider case-a and break it into three subcases when: (i) y ≤ µs ≤ µt, (ii) µs < y ≤ µt,

and (iii) µs ≤ µt < y.

Case-a (i) y ≤ µs ≤ µt

The (A.4) simplifies to

1

2

∣∣∣∣exp

(
−1

2
(y − µt)(τ − 1)

)
− exp

(
−1

2
(y − µs)(τ − 1)

)∣∣∣∣
=

1

2

∣∣∣∣exp

(
−1

2
(y − µs)(τ − 1)

)∣∣∣∣ ∣∣∣∣exp

(
−1

2
(µs − µt)(τ − 1)

)
− 1

∣∣∣∣
As first term in modulus is ≤ 1

≤ 1

2

∣∣∣∣1− exp

(
−1

2
(µt − µs)(1− τ)

)∣∣∣∣
Note: 1− exp(−z) ≤ z ∀z ∈ R =⇒ |1− exp(−z)| ≤ |z| ∀z ≥ 0 (A.5)

≤ 1

4
|µt − µs| (1− τ)

≤ 1

4
|µt − µs|

≤ 1

2
|µt − µs|

Case-a (ii) µs < y ≤ µt

The (A.4) simplifies to

1

2

∣∣∣∣exp

(
−1

2
(y − µt)(τ − 1)

)
− exp

(
−1

2
(y − µs)τ

)∣∣∣∣
=

1

2

∣∣∣∣exp

(
−1

2
(y − µs)(τ − 1)

)
− 1 + 1− exp

(
−1

2
(y − µs)τ

)∣∣∣∣
≤ 1

2

∣∣∣∣1− exp

(
−1

2
(y − µt)(τ − 1)

)∣∣∣∣+
1

2

∣∣∣∣1− exp

(
−1

2
(y − µs)τ

)∣∣∣∣
Let’s use calculus inequality mentioned in (A.5)

≤ 1

4
|(y − µt)(τ − 1)|+ 1

4
|(y − µs)τ |
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Both terms are positive so we combine them in one modulus

=
1

4
|(y − µt)(τ − 1) + (y − µt + µt − µs)τ |

=
1

4
|(y − µt)(2τ − 1) + (µt − µs)τ |

≤ 1

4
[|(y − µt)| |2τ − 1|+ |µt − µs| τ ]

Here, |y − µt| ≤ |µt − µs| and |2τ − 1| ≤ 1

≤ 1

2
|µt − µs|

Case-a (iii) µs ≤ µt < y

The (A.4) simplifies to

1

2

∣∣∣∣exp

(
−1

2
(y − µt)τ

)
− exp

(
−1

2
(y − µs)τ

)∣∣∣∣
=

1

2

∣∣∣∣exp

(
−1

2
(y − µt)τ

)∣∣∣∣ ∣∣∣∣1− exp

(
−1

2
(µt − µs)τ

)∣∣∣∣
As first term in modulus is ≤ 1

≤ 1

2

∣∣∣∣1− exp

(
−1

2
(µt − µs)τ

)∣∣∣∣
Using the calculus inequality mentioned in (A.5)

≤ 1

4
|µt − µs| τ

≤ 1

4
|µt − µs|

≤ 1

2
|µt − µs|

We can similarly bound the (A.4) in case-(b) where µs > µt by |µt − µs| /2. Now,∣∣∣√ft −
√
fs

∣∣∣
≤ 1

2
|µt − µs|

Now, let’s substitute µt and µs from A.2 and A.3

=
1

2

∣∣∣∣∣βt
0 +

k∑
j=1

βt
j

1 + exp(−Aj)
− βs

0 −
k∑

j=1

βs
j

1 + exp(−Bj)

∣∣∣∣∣
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≤ 1

2

[∣∣βt
0 − βs

0

∣∣+
k∑

j=1

∣∣∣∣ βt
j

1 + exp(−Aj)
−

βs
j

1 + exp(−Bj)

∣∣∣∣
]

=
1

2

[∣∣βt
0 − βs

0

∣∣+
k∑

j=1

∣∣∣∣ βt
j − βs

j + βs
j

1 + exp(−Aj)
−

βs
j

1 + exp(−Bj)

∣∣∣∣
]

=
1

2

[∣∣βt
0 − βs

0

∣∣+
k∑

j=1

∣∣βt
j − βs

j

∣∣
1 + exp(−Aj)

+
k∑

j=1

∣∣βs
j

∣∣ ∣∣∣∣ 1

1 + exp(−Aj)
− 1

1 + exp(−Bj)

∣∣∣∣
]

Recall that
∣∣βs

j

∣∣ ≤ Cn

≤ 1

2

[∣∣βt
0 − βs

0

∣∣+
k∑

j=1

∣∣βt
j − βs

j

∣∣+
k∑

j=1

Cn

∣∣∣∣ exp(−Bj)− exp(−Aj)

(1 + exp(−Aj))(1 + exp(−Bj))

∣∣∣∣
]

(A.6)

Note: |exp(−Bj)− exp(−Aj)| =

exp(−Aj)(1− exp(−(Bj − Aj))), when Bj − Aj ≥ 0

exp(−Bj)(1− exp(−(Aj −Bj))), when Aj −Bj ≥ 0

Using the calculus inequality mentioned in (A.5)

≤

exp(−Aj)(Bj − Aj), when Bj − Aj ≥ 0

exp(−Bj)(Aj −Bj), when Aj −Bj ≥ 0

So,

∣∣∣∣ exp(−Bj)− exp(−Aj)

(1 + exp(−Aj))(1 + exp(−Bj))

∣∣∣∣ ≤


exp(−Aj)(Bj−Aj)

(1+exp(−Aj))(1+exp(−Bj))
, when Bj − Aj ≥ 0

exp(−Bj)(Aj−Bj)

(1+exp(−Aj))(1+exp(−Bj))
, when Aj −Bj ≥ 0

≤ |Aj −Bj|

Hence we can bound the (A.6) as follows

∣∣∣√ft −
√
fs

∣∣∣ ≤ 1

2

[∣∣βt
0 − βs

0

∣∣+
k∑

j=1

∣∣βt
j − βs

j

∣∣+
k∑

j=1

Cn |Aj −Bj|

]

Now, let’s substitute Aj and Bj from A.2 and A.3

≤ 1

2

[∣∣βt
0 − βs

0

∣∣+
k∑

j=1

∣∣βt
j − βs

j

∣∣+
k∑

j=1

Cn

∣∣∣∣∣γtj0 +

p∑
h=1

γtjhxh − γsj0 −
p∑

h=1

γsjhxh

∣∣∣∣∣
]

≤ 1

2

[∣∣βt
0 − βs

0

∣∣+
k∑

j=1

∣∣βt
j − βs

j

∣∣+
k∑

j=1

Cn

(∣∣γtj0 − γsj0∣∣+

p∑
h=1

|xh|
∣∣γtjh − γsjh∣∣

)]

41



Recall that |xh| ≤ 1 and w.l.o.g assume Cn > 1

≤ Cn

2

[∣∣βt
0 − βs

0

∣∣+
k∑

j=1

∣∣βt
j − βs

j

∣∣+
k∑

j=1

(∣∣γtj0 − γsj0∣∣+

p∑
h=1

∣∣γtjh − γsjh∣∣
)]

≤ Cnd

2
∥t− s∥∞

Now rest of the steps follow from the proof of Lemma 2 in Lee (2000, p. 635-636).

Lemma A.1.3. If there exists a constant r > 0 and N , such that Fn satisfies πn(F c
n) <

exp(−nr),∀n ≥ N , then there exists a constant c2 such that
∫
Ac

ϵ
Rn(f)dπn(f) < exp(−nr/2)+

exp(−nc2ϵ2) except on a set of probability tending to zero.

Proof. The proof is same as the proof of Lemma 3 from (Lee, 2000, p. 636).

Lemma A.1.4. Let Kδ be the KL-neighborhood as in (2.12. Suppose that for all δ, ν >

0,∃ N s.t. πn(Kδ) ≥ exp(−nν), ∀n ≥ N . Then for all ς > 0 and sufficiently large n,∫
Rn(f)dπn(f) > e−nς except on a set of probability going to zero.

Proof. The proof is same as the proof of Lemma 5 from (Lee, 2000, p. 637).

Lemma A.1.5. Suppose that µ is a neural network regression with parameters (θ1, . . . θd),

and let µ̃ be another neural network with parameters (θ̃1, . . . θ̃d̃n). Define θi = 0 for i > d

and θ̃j = 0 for j > d̃n. Suppose that the number of nodes of µ is k, and that the number of

nodes of µ̃ is k̃n = O(na) for some a, 0 < a < 1. Let

Mς = {µ̃
∣∣∣ ∣∣∣θi − θ̃i∣∣∣ ≤ ς, i = 1, 2, . . . } (A.7)

Then for any µ̃ ∈Mς and for sufficiently large n,

sup
x∈X

(µ̃(x)− µ(x))2 ≤ (5na)2ς2

Proof. The proof is same as the proof of Lemma 6 from (Lee, 2000, p. 638-639).
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APPENDIX B

POSTERIOR CONSISTENCY THEOREM PROOFS

B.1 Theorem 2.4.4 Proof

For the proof of Theorem 2.4.4 and Corollary 2.4.5, we use the following notations. From

(2.14), recall that

Rn(f) =
n∏

i=1

f(xi, yi)

f0(xi, yi)

is the ratio of likelihoods under neural network density f and the true density f0. Also, Fn

is the sieve as defined in (2.13). Finally, Aϵ is the Hellinger neighborhood of the true density

f0 as in (2.9).

By Lemma A.1.3, there exists a constant c2 such that
∫
Ac

ϵ
Rn(f)dπn(f) < exp(−nr/2) +

exp(−nc2ϵ2) for sufficiently large n. Next, from Lemma A.1.4,
∫
Rn(f)dπn(f) ≥ exp(−nς)

for sufficiently large n.

P (Ac
ϵ|(X1, Y1), . . . , (Xn, Yn)) =

∫
Ac

ϵ

Rn(f)dπn(f)∫
Rn(f)dπn(f)

<
exp

(
−nr

2

)
+ exp(−nc2ϵ2)

exp(−nς)

= exp
(
−n
[r

2
− ς
])

+ exp
(
−nϵ2[c2 − ς]

)
Now we pick ς such that for φ > 0, both r

2
− ς > φ and c2 − ς > φ. Thus,

P (Ac
ϵ|(X1, Y1), . . . , (Xn, Yn)) ≤ exp(−nφ) + exp(−nϵ2φ)

Hence, P (Ac
ϵ|(X1, Y1), . . . , (Xn, Yn))

p→ 0.

B.2 Corollary 2.4.5 Proof

Theorem 2.4.4 implies that DH(f0, f)
p→ 0 where DH(f0, f) is the Hellinger distance

between f0 and f as in (2.8) and f is a random draw from the posterior. Recall from (2.10),
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the predictive density function

f̂n(.) =

∫
f(.) dP (f |(X1, Y1), . . . , (Xn, Yn))

gives rise to the predictive conditional quantile function, µ̂n(x) = Qτ,f̂n
(y|X = x). We next

show that DH(f0, f̂n)
p→ 0, which in turn implies µ̂n(x) converges in L1-norm to the true

conditional quantile function,

µ0(x) = Qτ,f0(y|X = x) = β0 +
k∑

j=1

βj
1

1 + exp (−γj0 −
∑p

h=1 γjhxih)

First we show that DH(f0, f̂n)
p→ 0. Let Xn = ((X1, Y1), . . . , (Xn, Yn)). For any ϵ > 0:

DH(f0, f̂n) ≤
∫
DH(f0, f) dπn(f |Xn)

By Jensen’s Inequality

≤
∫
Aϵ

DH(f0, f) dπn(f |Xn) +

∫
Ac

ϵ

DH(f0, f) dπn(f |Xn)

≤
∫
Aϵ

ϵ dπn(f |Xn) +

∫
Ac

ϵ

DH(f0, f) dπn(f |Xn)

≤ ϵ+

∫
Ac

ϵ

DH(f0, f) dπn(f |Xn)

The second term goes to zero in probability by Theorem 2.4.4 and ϵ is arbitrary, therefore

DH(f0, f̂n)
p→ 0.

In the remaining part of the proof, for notational simplicity, we take µ̂n(x) and µ0(x) to

be µ̂ and µ̂0 respectively. The Hellinger distance between f0 and f̂n is

DH(f0, f̂n)

=

(∫∫ [√
f̂n(x, y)−

√
f0(x, y)

]2
dy dx

)1/2

=

(∫∫
τ(1− τ)

[
exp

(
−1

2
(y − µ̂n)(τ − I(y≤µ̂n))

)

−exp

(
−1

2
(y − µ0)(τ − I(y≤µ0))

)]2
dy dx

)1/2

=

(
2− 2

∫∫
τ(1− τ)exp

(
−1

2
(y − µ̂n)(τ − I(y≤µ̂n))−

1

2
(y − µ0)(τ − I(y≤µ0))

)
dy dx

)1/2
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let, T = −1

2
(y − µ̂n)(τ − I(y≤µ̂n))−

1

2
(y − µ0)(τ − I(y≤µ0))

=

(
2− 2

∫∫
τ(1− τ)exp (T ) dy dx

)1/2

(B.1)

Now let’s break T into two cases: (a) µ̂n ≤ µ0, and (b) µ̂n > µ0.

Case-(a) µ̂n ≤ µ0

T =



−
(
y − µ̂n+µ0

2

)
τ, µ̂n ≤ µ0 < y

−
(
y − µ̂n+µ0

2

)
τ + (y−µ0)

2
, µ̂n ≤ µ̂n+µ0

2
< y ≤ µ0

−
(
y − µ̂n+µ0

2

)
(τ − 1)− (y−µ̂n)

2
, µ̂n < y ≤ µ̂n+µ0

2
≤ µ0

−
(
y − µ̂n+µ0

2

)
(τ − 1), y ≤ µ̂n ≤ µ0

Case-(b) µ̂n > µ0

T =



−
(
y − µ̂n+µ0

2

)
τ, µ0 ≤ µ̂n < y

−
(
y − µ̂n+µ0

2

)
τ + (y−µ̂n)

2
, µ0 ≤ µ̂n+µ0

2
< y ≤ µ̂n

−
(
y − µ̂n+µ0

2

)
(τ − 1)− (y−µ0)

2
, µ0 < y ≤ µ̂n+µ0

2
≤ µ̂n

−
(
y − µ̂n+µ0

2

)
(τ − 1), y ≤ µ0 ≤ µ̂n

Hence now,∫
τ(1− τ)exp (T ) dy

=

∫ [
I(µ̂n≤µ0) + I(µ̂n>µ0)

]
τ(1− τ)exp (T ) dy

= I(µ̂n≤µ0)τ(1− τ)×
[∫ ∞

µ0

exp

{
−
(
y − µ̂n + µ0

2

)
τ

}
dy

+

∫ µ0

µ̂n+µ0
2

exp

{
−
(
y − µ̂n + µ0

2

)
τ +

(y − µ0)

2

}
dy

+

∫ µ̂n+µ0
2

µ̂n

exp

{
−
(
y − µ̂n + µ0

2

)
(τ − 1)− (y − µ̂n)

2

}
dy

+

∫ µ̂n

−∞
exp

{
−
(
y − µ̂n + µ0

2

)
(τ − 1)

}
dy

]
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+ I(µ̂n>µ0)τ(1− τ)×
[∫ ∞

µ̂n

exp

{
−
(
y − µ̂n + µ0

2

)
τ

}
dy

+

∫ µ̂n

µ̂n+µ0
2

exp

{
−
(
y − µ̂n + µ0

2

)
τ +

(y − µ̂n)

2

}
dy

+

∫ µ̂n+µ0
2

µ0

exp

{
−
(
y − µ̂n + µ0

2

)
(τ − 1)− (y − µ0)

2

}
dy

+

∫ µ0

−∞
exp

{
−
(
y − µ̂n + µ0

2

)
(τ − 1)

}
dy

]
=

1− τ
1− 2τ

exp

(
−|µ̂n − µ0|

2
τ

)
− τ

1− 2τ
exp

(
−|µ̂n − µ0|

2
(1− τ)

)
Substituting the above expression in Equation B.1 we get DH(f0, f̂n) equal to,(

2− 2

∫ [
1− τ
1− 2τ

exp

(
−|µ̂n − µ0|

2
τ

)
− τ

1− 2τ
exp

(
−|µ̂n − µ0|

2
(1− τ)

)]
dx

)1/2

Since DH(f0, f̂n)
p→ 0,∫ [

1− τ
1− 2τ

exp

(
−|µ̂n − µ0|

2
τ

)
− τ

1− 2τ
exp

(
−|µ̂n − µ0|

2
(1− τ)

)]
dx

p→ 1

Our next step is to show that above expression implies that |µ̂n − µ0| → 0 a.s. on a set Ω,

with probability tending to 1, and hence
∫
|µ̂n − µ0| dx

p→ 0.

We are going to prove this using contradiction technique. Suppose that, |µ̂n − µ0| ↛ 0

a.s. on Ω. Then, there exists an ϵ > 0 and a subsequence µ̂ni
such that |µ̂ni

− µ0| > ϵ on a

set A with P (A) > 0. Now decompose the integral as∫ [
1− τ
1− 2τ

exp

(
−|µ̂n − µ0|

2
τ

)
− τ

1− 2τ
exp

(
−|µ̂n − µ0|

2
(1− τ)

)]
dx

=

∫
A

[
1− τ
1− 2τ

exp

(
−|µ̂n − µ0|

2
τ

)
− τ

1− 2τ
exp

(
−|µ̂n − µ0|

2
(1− τ)

)]
dx

+

∫
Ac

[
1− τ
1− 2τ

exp

(
−|µ̂n − µ0|

2
τ

)
− τ

1− 2τ
exp

(
−|µ̂n − µ0|

2
(1− τ)

)]
dx

≤ P (A)︸ ︷︷ ︸
>0

[
(1− τ)exp(−ϵτ/2)− τexp(−ϵ(1− τ)/2)

1− 2τ

]
︸ ︷︷ ︸

<1 (max = 1 for ϵ = 0) and strictly ↓ for ϵ∈(0,∞)

+P (Ac)︸ ︷︷ ︸
<1

< 1

So we have a contradiction since the integral converges in probability to 1. Thus |µ̂n − µ0| →

0 a.s. on Ω. Once we apply Scheffe’s theorem we get
∫
|µ̂n − µ0| dx→ 0 a.s. on Ω and hence∫

|µ̂n − µ0| dx
p→ 0.
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Below we prove the Theorem 2.4.3 and for that we make use of Theorem 2.4.4 and

Corollary 2.4.5.

B.3 Theorem 2.4.3 Proof

We proceed by showing that with Fn as in (2.13), the prior πn of Theorem 2.4.3 satisfies

the condition (i) and (ii) of Theorem 2.4.4.

The proof of Theorem 2.4.4 condition-(i) presented in Lee (2000, proof of Theorem 1 on

p. 639) holds in BQRNN case without any change. Next we need to show that condition-(ii)

holds in BQRNN model. Let Kδ be the KL-neighborhood of the true density f0 as in (2.12)

and µ0 the corresponding conditional quantile function. We first fix a closely approximating

neural network µ∗ of µ0. We then find a neighborhood Mς of µ∗ as in (A.7) and show that

this neighborhood has sufficiently large prior probability. Suppose that µ0 is continuous.

For any δ > 0, choose ϵ = δ/2 in theorem from Funahashi (1989, Theorem 1 on p.184) and

let µ∗ be a neural network such that sup
x∈X
|µ∗ − µ0| < ϵ. Let ς = (

√
ϵ/5na) =

√
(δ/50)n−a in

Lemma A.1.5. Then following derivation shows us that for any µ̃ ∈ Mς , DK(f0, f̃) ≤ δ i.e.

Mς ⊂ Kδ.

DK(f0, f̃) =

∫∫
f0(x, y) log

f0(x, y)

f̃(x, y)
dy dx

=

∫∫ [
(y − µ̃)(τ − I(y≤µ̃))− (y − µ0)(τ − I(y≤µ0))

]
f0(y|x) f0(x) dy dx

let, T = (y − µ̃)(τ − I(y≤µ̃))− (y − µ0)(τ − I(y≤µ0))

=

∫ [∫
Tf0(y|x) dy

]
f0(x) dx

Now let’s break T into two cases: (a) µ̃ ≥ µ0, and (b) µ̃ < µ0.

Case-(a) µ̃ ≥ µ0

T =


(µ0 − µ̃)τ, µ0 ≤ µ̃ < y

(µ0 − µ̃)τ − (y − µ̃), µ0 < y ≤ µ̃

(µ0 − µ̃)(τ − 1), y ≤ µ0 ≤ µ̃
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Case-(b) µ̃ ≤ µ0

T =


(µ0 − µ̃)τ, µ̃ ≤ µ0 < y

(µ0 − µ̃)(τ − 1) + (y − µ̃), µ̃ < y ≤ µ0

(µ0 − µ̃)(τ − 1), y ≤ µ̃ ≤ µ0

So now,∫
Tf0(y|x) dy

=

∫ [
I(µ̃−µ0≥0) ×

{
(µ̃− µ0)(1− τ)I(y≤µ0) − (y − µ̃)I(µ0<y≤µ̃) − (µ̃− µ0)τI(y>µ0)

}
+I(µ̃−µ0<0) ×

{
(µ̃− µ0)(1− τ)I(y≤µ0) + (y − µ̃)I(µ̃<y≤µ0) − (µ̃− µ0)τI(y>µ0)

}]
f0(y|x) dy

=

∫ [
(µ̃− µ0)(1− τ)I(y≤µ0) − (µ̃− µ0)τI(y>µ0)

−(y − µ0 + µ0 − µ̃)I(µ0<y≤µ̃) + (y − µ0 + µ0 − µ̃)I(µ̃<y≤µ0)

]
f0(y|x) dy

let, z = y − µ0, b = µ̃− µ0 and note that P (y ≤ µ0|x) = τ, and P (y > µ0|x) = 1− τ.

= E
[
−(z − b)I(0<z<b) + (z − b)I(b<z<0)|x

]
≤ E

[
bI(0<z<b) − bI(b<z<0)|x

]
= |b| × [P (0 < z < b|x) + P (b < z < 0|x)]

= |b| × P (0 < |z| < |b| |x)

≤ |b|

Hence,∫∫
Tf0(y|x) dy dx ≤

∫
|b| f0(x) dx

=

∫
|µ̃− µ0| f0(x) dx

=

∫
|µ̃− µ∗ + µ∗ − µ0| f0(x) dx

≤
∫ [

sup
x∈X
|µ̃− µ∗|+ sup

x∈X
|µ∗ − µ0|

]
f0(x) dx

Use Lemma A.1.5 to bound the first term and
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use Funahashi (1989, Theorem 1 on p.184) to bound the second term.

≤
∫

[ϵ+ ϵ] f0(x) dx

= 2ϵ = δ

Finally we prove that ∀δ, ν > 0, ∃Nν s.t. πn(Kδ) ≥ exp(−nν) ∀n ≥ Nν ,

πn(Kδ) ≥ πn(Mς)

=
d̃n∏
i=1

∫ θi+ς

θi−ς

1√
2πσ2

0

exp

(
− 1

2σ2
0

u2
)

du

≥
d̃n∏
i=1

2ς inf
u∈[θi−1,θi+1]

1√
2πσ2

0

exp

(
− 1

2σ2
0

u2
)

=
d̃n∏
i=1

ς

√
2

πσ2
0

exp

(
− 1

2σ2
0

ϑi

)
ϑi = max((θi − 1)2, (θi + 1)2)

≥

(
ς

√
2

πσ2
0

)d̃n

exp

(
− 1

2σ2
0

ϑd̃n

)
where, ϑ = max

i
(ϑ1, . . . , ϑd̃n

)

= exp

(
−d̃n

[
a log n− log

√
δ

25πσ2
0

]
− 1

2σ2
0

ϑd̃n

)

ς =

√
δ

50
n−a

≥ exp

(
−
[
2a log n+

ϑ

2σ2
0

]
d̃n

)
for large n

≥ exp

(
−
[
2a log n+

ϑ

2σ2
0

]
(p+ 3)na

)
d̃n = (p+ 2)k̃n + 1 ≤ (p+ 3)na

≥ exp(−nν) for any ν and ∀n ≥ Nν for some Nν

Hence, we have proved that both the conditions of Theorem 2.4.4 hold. The result of Theorem

2.4.3 thereby follows from the Corollary 2.4.5 which is derived from Theorem 2.4.4.

Further, we can use similar argument to show that a neural network can approximate
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any L2 function arbitrarily closely. Note for any L2 function h, ∥h∥2 ≥ ∥h∥1, so(∫
(µ− µ0)

2 dλ(x)

) 1
2

< ϵ =⇒
∫
|µ− µ0| dλ(x) < ϵ

Hence,

DK(f0, f̃) ≤
∫
|µ̃− µ0| f0(x) dx

≤
∫ [

sup
x∈X
|µ̃− µ|+ sup

x∈X
|µ− µ0|

]
f0(x) dx

Use Hornik et al. (1989, Theorem 2.4 on p.362) and Lemma A.1.5

≤
∫

[ϵ+ ϵ] f0(x) dx

= 2ϵ = δ
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CHAPTER 3

LAYER ADAPTIVE NODE SELECTION IN BAYESIAN NEURAL
NETWORKS

3.1 Introduction

Deep learning profoundly impacts science and society due to its impressive empirical

success driven primarily by copious amounts of datasets, ever increasing computational

resources, and deep neural network’s (DNN) ability to learn task-specific representations

(LeCun et al., 2015). The key characteristic of deep learning is that accuracy empirically

scales with the size of the model and the amount of training data. As such, large neural

network models such as OpenAI GPT-3 (175 Billion) now typify the state-of-the-art across

multiple domains such as natural language processing, computer vision, speech recognition

etc. Nevertheless deep neural networks do have some drawbacks despite their wide ranging

applications. First, this form of model scaling is exorbitantly prohibitive in terms of compu-

tational requirements, financial commitment, energy requirements etc. Second, DNNs tend

to overfit leading to poor generalization in practice (Zhang et al., 2017). Finally, there are

numerous scenarios where training and deploying such huge models is practically infeasible.

Examples of such scenarios include federated learning, autonomous vehicles, robotics, recom-

mendation systems where models have to be refreshed daily/hourly or in an online manner

for optimal performance.

A promising direction for addressing these issues while improving the efficiency of DNNs is

exploiting sparsity. From a practical perspective, it has been well-known that neural networks

can be sparsified without significant loss in performance (Mozer and Smolensky, 1988; LeCun

et al., 1990; Hassibi and Stork, 1993) and there is growing evidence that it is more so in the

case of modern DNNs (Han et al., 2015). Recently Frankle and Carbin (2019) proposed the

lottery ticket (LT) hypothesis, namely that there exist sparse, trainable sub-networks within
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the larger network which can match the performance of their dense counterpart. To this end,

sparsity in DNNs provides a promising way to reduce the network complexity by eliminating

nonessential connections from a neural network thereby improving its calibration (Hoefler

et al., 2021). A number of approaches to neural network compression via sparsity have been

proposed in the literature (Cheng et al., 2018; Gale et al., 2019). Recent approaches (Guo

et al., 2016; Molchanov et al., 2017; Zhu and Gupta, 2018) in magnitude-based pruning of

neural network weights provide high model compression rates with minimal accuracy loss.

Whereas, sparse evolutionary training learns sparse neural networks with a fixed parameter

budget throughout the training based on adaptive sparse connectivity (Mocanu et al., 2018).

A key feature of sparsity in neural networks is its structure on the topology of the neu-

ral network weights. Weight pruning approaches perform high model compression leading

to significant storage cost reduction at test-time (Han et al., 2015, 2016; Molchanov et al.,

2017; Zhu and Gupta, 2018; Frankle and Carbin, 2019). However, they result in unstruc-

tured sparsity in deep neural architectures which leads to inefficient computational gains in

practical setups (Wen et al., 2016). Instead, inducing group sparsity on collection of incom-

ing weights into a given node (or node selection) reduces the dimensions of weight matrices

per layer allowing for significant computational savings. To that effect, edge selection and

node selection approaches are complementary with the former leading to storage reduction

and the later leading to computational speedup during inference stage. Although one may

argue node selection arises as a byproduct of edge selection, we clearly demonstrate that

an approach which targets node selection directly leads to lower latency models (smaller

number of nodes per layer) compared to an approach which achieves node selection through

edge selection.

Node selection through group sparsity in deep neural networks has been explored under

frequentist setting in Murray and Chiang (2015), Alvarez and Salzmann (2016), Ochiai et al.

(2017), Liu et al. (2017), Luo et al. (2017) and Louizos et al. (2018), etc.. On the other hand,

Louizos et al. (2017), Neklyudov et al. (2017), and Ghosh et al. (2019) incorporate group
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sparsity via shrinkage priors in Bayesian paradigm. These group sparsity approaches specif-

ically applied for node selection have shown significant computational speedup and lower

memory footprint at inference stage. However, all of the proposed methods of neuron selec-

tion perform ad-hoc pruning requiring fine-tuned thresholding rules. Moreover, the posterior

inference of network weights in Bayesian neural networks (BNN) through standard MCMC

method, ex. Hamiltonian Monte Carlo (Neal, 1992), does not scale well to modern neural

network architectures and large datasets used in practice. Instead computationally efficient

variational inference as an alternative to MCMC (Jordan et al., 1999; Blei et al., 2017), has

been explored in the context of edge selection both theoretically and numerically by Blundell

et al. (2015), Chérief-Abdellatif (2020), and Bai et al. (2020). On the other hand, Louizos

et al. (2017) and Ghosh et al. (2019) have explored variational inference for node selection

problem. In this work, we propose a Gaussian spike-and-slab prior for automatic node selec-

tion in Bayesian neural networks thereby alleviating the need of an ad-hoc thresholding rule

for pruning. Further for scalability, we develop a variational Bayes algorithm for posterior

inference of BNN model parameters in our proposed model and demonstrate its numerical

performance through simulation and real regression and classification datasets. Finally, we

provide the theoretical guarantees to our node selection method under mild restrictions on

the network topology.

Related Work. A closely related work to our proposed model is Bai et al. (2020)’s auto-

mated edge selection model using spike-and-slab prior. There the slab distribution controls

the magnitude of weights and spike allows for the exact setting of weights to 0. We introduce

spike-and-slab framework for node selection in BNNs and show the key resource efficiency

trade-off between node and edge selection at test-time. There are two main advantages to

node selection over edge selection (1) fewer parameters to train during optimization, (2)

results in structurally compact network leading to computational speedup at test-time.

On the theoretical front, sparse BNNs have been studied in the works of Polson and

Ročková (2018) and Sun et al. (2021). In the context of variational inference, sparse BNNs
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Sparse deep BNN with 

spike-and-slab priors 

for node selection

Hidden 

layer 1

Hidden 

layer 2

Output

Input

Hidden 

layer 3

Figure 3.1 Sparse neural network with node selection. Sparse deep BNN using spike-
and-slab priors achieves node selection in the given dense network on left leading to a sparse
network on right.

have been studied in the recent works of Chérief-Abdellatif (2020) and Bai et al. (2020).

All these works concentrate on the problem of edge selection facilitated through the use

of Gaussian spike-and-slab priors. In the context of node selection, Ghosh et al. (2019)

makes use of regularized horseshoe prior. The main limitations of their approach include (1)

need for fine tuning of the thresholding rule for node selection, and (2) lack of a theoretical

justification.

The only two works which have provided theoretical guarantees of their proposed sparse

DNN methods under variational inference include those of Chérief-Abdellatif (2020) and Bai

et al. (2020). Since they focus on the problem of edge selection, their theoretical developments

are related to the results of Schmidt-Hieber (2020) (see the sieve construction in relation (4) in

Schmidt-Hieber (2020)) and not directly extendable to our setup. Additionally, they assume

certain restrictions on the network topology like (i) equal number of nodes in each layer, (ii)

a known uniform bound B on all network weights, and (iii) a global sparsity parameter which

may not lead to a structurally compact network. Although from a numerical standpoint,

one may implicitly extend the problem of edge selection to node selection, the theoretical
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guarantees of node selection consistency in sparse DNNs is not immediate.

Detailed Contributions.

1. We propose a Gaussian spike-and-slab node selection model and develop a variational

Bayes approach for posterior inference of the model parameters. We call our approach

SS-IG (Spike-and-Slab Independent Gaussian) model.

2. We derive the variational posterior consistency using a functional space of neural net-

works which takes two layer dependent bounds, one which upper bounds the number

of neurons in each layer and the other which upper bounds the L1 norm of the weights

incident onto each node of a layer. These layer dependent bounds allow the general-

ization of the theoretical results presented to guarantee the consistency of any generic

shaped network structure. Further, it also guides the calculation of layer-wise prior

inclusion probabilities which allow for optimal node recovery per layer in the compu-

tational experiments.

3. We measure the computational gains achieved by our approach using layer-wise node

sparsities for shallow models and floating point operations in larger models. Our nu-

merical results validate the proposed theoretical framework for the node selection in

DNN models. These empirical experiments further justify the use of layer-wise node

inclusion probabilities to facilitate the optimal node recovery.

3.2 Nonparametric Modeling: Deep Learning Approach

Non-parametric modeling assumes an arbitrary relationship between the response and the

variables. The term non-parametric does not mean that the value lack inherent parameters,

but rather that the parameters are flexible and can vary. In particular, we would like to find

a function η0(·) : Rp → R such that η0(x) is a good approximation or a representation of y.

A standard neural network is, technically speaking, parametric since it has a fixed number

of parameters. However, most deep neural networks (DNNs) have thousands or millions of
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parameters that they could be interpreted as nonparametric. In fact, it has been proven

that in the limit of infinite width, a deep neural network can be seen as a Gaussian process,

which is a nonparametric model (Lee et al., 2018).

Mathematically, let Y ∈ R, X ∈ X be two random variables with the following condi-

tional distribution

f0(y|x) = exp [h1(η0(x))y + h2(η0(x)) + h3(y)] (3.1)

where η0(·) : X → R is a continuous function satisfying certain regularity assumptions and

X is usually a compact subspace of Rp. Note, the functions h1, h2, h3 are pre-determined and

different choices give rise to different families of generalized linear models. For h1(u) = u,

h2(u) = − log(1+eu), h3(y) = 1, we get the classification model. For h1(u) = u, h2(u) = −u2,

h3(y) = −y2/2− log(2π)/2, we get the regression model with σ2 = 1. Usually X = Rp. Note,

x is a feature vector from a marginal distribution PX and y is the corresponding output from

Y |X = x in (3.1). Let PX,Y be the joint distribution of (X, Y ).

Let g : X → R be a measurable function, the risk of g is R(g) =
∫
Y×X L(Y, g(X))dPX,Y

for some loss function L. The Bayes estimator minimizes this risk (Friedman et al., 2009).

For regression with squared error loss and classification with 0-1 loss, the optimal Bayes

estimators are g∗(x) = η0(x) and g∗(x) = 1{η0(x) ≥ 0} respectively. In practice, Bayes

estimator is not useful since the function η0(x) is unknown. Thus, an estimator is obtained

based on the training observations, D = {(x1, y1), ..., (xn, yn)}. A good estimator enjoys

universal consistency properties, i.e., its risk approaches Bayes risk as n → ∞ irrespective

of PX . To find this optimal class, we use Bayesian neural networks, ηθ(x) with θ denoting

the network weights, as an approximation to η0(x).

Mathematical Framework

For x ∈ Rp, consider a BNN with L hidden layers with k1, · · · , kL the number of nodes in

the hidden layers with k0 = p, kL+1 = 1 (in regression). kL+1 > 1 allows the generalization
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to Y ∈ Rd, d > 1, thereby providing a handle on multi class classification problems. The

total number of parameters is K =
∏L

l=0 kl+1(kl + 1). With Wl = [w0
l ,W

1
l ], let

ηθ(x) = w0
L + W 1

Lψ(w0
L−1 + W 1

L−1ψ(· · ·ψ(w0
1 + W 1

1 ψ(w0
0 + W 1

0 x)))), (3.2)

where ψ is a nonlinear activation function, w0
l are kl+1 × 1 vectors and W 1

l are kl+1 ×

kl matrices. Using the BNN in (3.2) to approximate the true function η0(x), conditional

probabilities of Y |X = x are

fθ(y|x) = exp [h1(ηθ(x))y + h2(ηθ(x)) + h3(y)] . (3.3)

Thus, the likelihood function for the data D under the model and the truth is

P n
θ =

n∏
i=1

fθ(yi|xi), P n
0 =

n∏
i=1

f0(yi|xi). (3.4)

3.3 Spike-and-Slab Independent Gaussian Node Selection

3.3.1 Model

To allow for automatic node selection, we consider a spike-and-slab prior consisting of

a Dirac spike (δ0) at 0 and a slab distribution (Mitchell and Beauchamp, 1988). The spike

part is represented by an indicator variable which is set to 0 if a node is not present in the

network. The slab part comes from a Gaussian distributed random variable. To allow for

the layer-wise node selection, we assume that the prior inclusion probability λl varies as a

function of the layer index l. The symbol i.d. is used to denote independently distributed

random variables.

Prior: We assume a spike-and-slab prior of the following form with zlj as the indicator for

the presence of jth node in the lth layer

wlj|zlj
i.d.∼
[
(1− zlj)δ0 + zljN(0, σ2

0I)
]
, zlj

i.d.∼ Ber(λl)

where l = 0, . . . , L, j = 1, . . . , kl+1. Also, wlj = (wlj1, . . . , wljkl+1) is a vector of edges

incident on the jth node in the lth layer. In the above formula, note δ0 is a Dirac spike
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vector of dimension kl + 1 with all entries zero and I is the identity matrix of dimension

kl + 1 × kl + 1. Furthermore, zlj with j = (1, . . . , kl+1) all follow Bernoulli(λl) to allow for

common prior inclusion probability, λl, for each node from a given layer l. We set λL = 1 to

ensure no node selection occurs in the output layer.

Posterior: With zl = (zl1, · · · , zlkl+1
), let z = (z1, · · · , zL) denote the vector of all indicator

variables. The posterior distribution of (θ, z) given D is given by

π(θ, z|D) =
P n
θ π(θ|z)π(z)∑

z

∫
P n
θ π(θ|z)π(z)dθ

=
P n
θ π(θ|z)π(z)

m(D)
(3.5)

where P n
θ =

∏n
i=1 fθ(yi|xi) is the likelihood function as in (3.4), π(z) is the probability mass

function of z with respect to the counting measure and π(θ|z) is the conditional probability

density function with respect to the Lebesgue measure of θ given z . Further, m(D) is the

marginal density of the data and is free of (θ, z).

Let π̃(θ) =
∑

z π(θ, z) be the marginal prior of θ. We shall use the notation

Π̃(A) =

∫
A
π̃(θ)dθ (3.6)

to denote the probability distribution function corresponding to the density function π̃. The

marginal posterior of θ expressed as a function of the marginal prior for θ is

π̃(θ|D) =
∑
z

π(θ, z|D) =
P n
θ π̃(θ)∫

P n
θ π̃(θ)dθ

=
P n
θ π̃(θ)

m(D)

Thus, the probability distribution function corresponding to the density function π̃(|D) is

then given by

Π̃(A|D) =

∫
A
π̃(θ|D)dθ (3.7)

Variational family: We posit the following mean field variational family (QMF) on network

weights as

QMF =
{
wlj|zlj

i.d.∼
[
(1− zlj)δ0 + zljN(µlj, diag(σ2

lj))
]
, zlj

i.d.∼ Ber(γlj)
}

for l = 0, . . . , L, j = 1, . . . , kl+1. This ensures that weight distributions follow spike-and-slab

structure which allows for node sparsity through variational approximation. Further, the
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weight distributions conditioned on the node indicator variables are all independent of each

other (hence use of the term mean field family). The variational distribution of parameters

obtained post optimization will then inherently prune away redundant nodes from each layer.

Also, Gaussian distribution for slab component is widely popular for approximating neural

network weight distributions (Blundell et al., 2015; Louizos et al., 2017; Bai et al., 2020).

Additionally, µlj = (µlj1, . . . , µljkl+1) and σ2
lj = (σ2

lj1, . . . , σ
2
ljkl+1) denote the vectors of

variational mean and standard deviation parameters of the edges incident on the jth node

in the lth layer. Similarly, γlj denotes the variational inclusion probability of the jth node in

the lth layer. We set γLj = 1 to ensure no node selection occurs in the output layer.

Variational posterior: Variational posterior aims to reduce the Kullback-Leibler (KL)

distance between a variational family and the true posterior (Blei and Lafferty, 2007; Hinton

and Van Camp, 1993) as

π∗ = argmin
q∈QMF

dKL(q, π(|D)) (3.8)

where dKL(q, π(|D)) denotes the KL-distance between q and π(|D).

Note, the variational member q can be written as q(θ, z) = q(θ|z)q(z) where q(z) is the

probability mass function of z with respect to the counting measure and q(θ|z) is the con-

ditional density function given with respect to the Lebesgue measure of θ given z. Further,

π∗ = argmin
q∈QMF

∑
z

∫
[log q(θ, z)− log π(θ, z|D)]q(θ, z)dθ

= argmin
q∈QMF

(∑
z

∫
[log q(θ, z)− log π(θ, z,D)]q(θ, z)dθ + logm(D)

)

= argmin
q∈QMF

[−ELBO(q, π(|D))] + logm(D) = argmax
q∈QMF

ELBO(q, π(|D)) (3.9)

Since logm(D) is free from q, it suffices to maximize the evidence lower bound (ELBO)

above.

Let π̃∗(θ) =
∑

z π
∗(θ|z)π∗(z) then π̃∗ denotes the marginal variational posterior for θ.
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We shall use the notation

Π̃∗(A) =

∫
A
π̃∗(θ)dθ (3.10)

to denote the probability distribution function corresponding to the density function π̃∗.

3.3.2 Algorithm

Evidence Lower Bound. The ELBO presented in (3.9) is given by L = −Eq[logP n
θ ] +

dKL(q, π) which is further simplified as

− Eq[logP n
θ ] + dKL(q, π)

= −Eq(θ|z)q(z)[logP n
θ ] + dKL

(
q(θ|z)q(z), π(θ|z)π(z)

)
= −Eq(θ|z)q(z)[logP n

θ ] +
∑
l,j

dKL(q(zlj)||π(zlj))

+
∑
l,j

[
q(zlj = 1)dKL(q(wlj|zlj = 1)||π(wlj|zlj = 1))

+ q(zlj = 0)dKL(q(wlj|zlj = 0)||π(wlj|zlj = 0))
]

= −Eq(θ|z)q(z)[logP n
θ ] +

∑
l,j

dKL(q(zlj)||π(zlj))

+
∑
l,j

q(zlj = 1)dKL(q(wlj|zlj = 1)||π(wlj|zlj = 1))

= −Eq(θ|z)q(z)[logP n
θ ] +

∑
l,j

dKL(q(zlj)||π(zlj))

+
∑
l,j

q(zlj = 1)dKL(N(µlj, diag(σ2
lj))||N(0, σ2

0I))

The KL of discrete variables appearing in the above expression creates a challenge in

practical implementation. Jang et al. (2017) and Maddison et al. (2017) proposed to re-

place discrete random variable with its continuous relaxation. Specifically, the continuous

relaxation approximation is achieved through Gumbel-softmax (GS) distribution, that is

q(zlj) ∼ Ber(γlj) is approximated by q(z̃lj) ∼ GS(γlj, τ), where

z̃lj = (1 + exp(−ηlj/τ))−1, ηlj = log(γlj/(1− γlj)) + log(ulj/(1− ulj)), ulj ∼ U(0, 1)
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Algorithm 3.1 Variational inference in SS-IG Bayesian neural networks

1: Inputs: training dataset, network architecture, and optimizer tuning parameters.
2: Model inputs: prior parameters for θ, z.
3: Variational inputs: number of Monte Carlo samples S.
4: Output: Variational parameter estimates of network weights and sparsity.
5: Method: Set initial values of variational parameters.
6: repeat
7: Generate S samples from ζlj ∼ N(0, I) and ulj ∼ U(0, 1)
8: Generate S samples for (zlj, z̃lj) using ulj
9: Use µlj,σlj, ζlj and zlj to compute loss (ELBO) in forward pass
10: Use µlj,σlj, ζlj and z̃lj to compute gradient of loss in backward pass
11: Update the variational parameters with gradient of loss using stochastic gradient de-

scent algorithm (e.g. Adam (Kingma and Ba, 2015))
12: until change in ELBO < ϵ

where τ is the temperature. We set τ = 0.5 for this work (also see section 5 in Bai et al.

(2020)). z̃lj is used in the backward pass for easier gradient calculation, while zlj is used for

selecting nodes in the forward pass. We use non-centered parameterization for the Gaussian

slab variational approximation where N(µlj, diag(σ2
lj)) is reparameterized as µlj + σlj ⊙ ζlj

for ζlj ∼ N(0, I), where ⊙ denotes the entry-wise (Hadamard) product.

3.4 Theoretical Results

In this section, we develop the theoretical consistency of the variational posterior in (3.10)

in context of node selection. Previous works which establish the statistical consistency of

sparse deep neural networks do so only in the context of edge selection. Thereby, the works of

Polson and Ročková (2018), Chérief-Abdellatif (2020) and Bai et al. (2020) use several results

from the pioneer work of Schmidt-Hieber (2020). In addition to node selection consistency,

we also relax certain network restrictions considered in the previous works. These restrictions

include (1) equal number of nodes in each layer which restricts one from using any previous

information on the number of nodes in the deep neural architecture (2) a known bound B on

all the neural network weights as they essentially rely on the sieve construction in equation 3

of Schmidt-Hieber (2020) which assumes that L∞ norm of all θ entries is smaller than 1 (3)

a global sparsity parameter s which does not always consider structurally sparse networks.
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Towards the proof, firstly our sieve construction allows the number of nodes of the neural

network to vary as a function of the layer. Secondly, instead of global sparsity parameter s

(see the sieve construction in relation (4) of Schmidt-Hieber (2020)) we allow for layer wise

sparsity vector s to account for the number of nodes in each layer. Finally, we relax the

assumption of a known bound B by considering a sieve with a layer wise constraint (denoted

by the vector B) on the L1 norm of the incoming edges of a node. Thus, our work extends on

current literature along three directions (1) theoretically quantifies predictive performance of

Bayesian neural networks with node based pruning (2) establishes that even without a fixed

bound on network weights, one can recover true solution by appropriate choice of the prior

(3) provides layer wise node inclusion probabilities to allow for structurally sparse solutions.

The relaxation of these network structure assumptions requires us to provide the framework

for node selection including appropriate sieve construction together with the derivation of

the results in Schmidt-Hieber (2020) customized to our problem.

To establish the posterior contraction rates, we show that the variational posterior in

(3.8) concentrates in shrinking Hellinger neighborhoods of the true density function P0 with

overwhelming probability. Since X ∼ U [0, 1]p, thus f0(x) = fθ(x) = 1. This further implies

P0 = f0(y|x)f0(x) = f0(y|x) and similarly Pθ = fθ(y|x). We next define the Hellinger

neighborhood of the true density P0 as

Hε = {θ : dH(P0, Pθ) < ε}

where the Hellinger distance between the true density function P0 and the model density Pθ

is

d2H(P0, Pθ) =
1

2

∫ (√
fθ(y|x)−

√
f0(y|x)

)2
dydx

We also define the KL neighborhood of the true density P0 as

Nε = {θ : dKL(P0, Pθ) < ε}

where the KL distance dKL between the true density function P0 and the model density Pθ
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is

dKL(P0, Pθ) =

∫
log

f0(y|x)

fθ(y|x)
f0(y|x)dydx

Let k = (k0, · · · , kL+1) be the node vector, W l = (w⊤
l1, · · · ,w⊤

lkl+1
)⊤ be the row represen-

tation of W l and w̃l = (||wl1||1, · · · , ||wlkl+1
||1) be the vector of L1 norms of the rows of

W l. Next we consider layer-wise sparsity, s = (s1, · · · , sL) for node selection. Similarly, we

consider layer-wise norm constraints, B = (B1, · · · , BL) on L1 norms of weights including

bias incident onto any given node in each layer. Based on s and B, we define the following

sieve of neural networks (check definition A.1.1).

F(L,k, s,B) = {ηθ ∈ (3.2) : ||w̃l||0 ≤ sl, ||w̃l||∞ ≤ Bl} . (3.11)

The construction of a sieve is one of the most important tools towards the proof of consistency

in infinite-dimensional spaces. In the works of Schmidt-Hieber (2020), Polson and Ročková

(2018), Chérief-Abdellatif (2020) and Bai et al. (2020), the sieve in the context of edge

selection is given by

F(L,k, s) = {ηθ ∈ (3.2) : ||θ||0 ≤ s, ||θ||∞ ≤ 1} .

which works with an overall sparsity parameter s. In addition, note the L∞ norm of all the

entries in θ is assumed to be known constant equal to 1 (see relation (4) in Schmidt-Hieber

(2020) and section 4 in Polson and Ročková (2018)). Section 3 in Bai et al. (2020) does

not explicitly mention the dependence of their sieve on some fixed bound B on the edges in

a network, however, their derivations on covering numbers (see proof of Lemma 1.2 in the

supplement of Bai et al. (2020)) borrow results from Schmidt-Hieber (2020) which is based

on sieve with B = 1.

Consider any sequence ϵn. For Lemmas 3.4.1 and 3.4.2, we use the sieve F(L,k, s,B) in

(3.11) with s = s◦ and B = B◦ where s◦l + 1 = nϵ2n/(
∑L

j=0 uj) and logB◦
l = (nϵ2n)/((L +

1)
∑L

j=0(s
◦
j + 1)) with ul = (L+ 1)2(log n+ log(L+ 1) + log kl+1 + log(kl + 1)). Note, s◦l and

B◦
l do not depend on l.
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Lemma 3.4.1 below holds when the covering number (check definition A.1.2) of the func-

tions which belong to the sieve F(L,k, s◦,B◦) is well under control. Lemma 3.4.2 below

states that for the same choice of the sieve, the prior gives sufficiently small probabilities

on the complement space F(L,k, s◦,B◦)c (see the discussion under Theorem 3.4.4 for more

details).

For the subsequent results, the symbol Ac is used to denote complement of a set A.

Lemma 3.4.1 (Existence of Test Functions). Let ϵn → 0 and nϵ2n → ∞. There exists a

testing function ϕ ∈ [0, 1] and constants C1, C2 > 0,

EP0(ϕ) ≤ exp{−C1nϵ
2
n}

sup
θ∈Hc

ϵn
,ηθ∈F(L,k,s◦,B◦)

EPθ
(1− ϕ) ≤ exp{−C2nd

2
H(P0, Pθ)}

where Hϵn = {θ : dH(P0, Pθ) ≤ ϵn} is the Hellinger neighborhood of radius ϵn.

Lemma 3.4.2 (Prior mass condition.). Let ϵn → 0, nϵ2n →∞ and nϵ2n/
∑L

l=0 ul →∞, then

for Π̃ as in (3.6) and some constant C3 > 0,

Π̃(F(L,k, s◦,B◦)c) ≤ exp(−C3nϵ
2
n/

L∑
l=0

ul)

Whereas Lemmas 3.4.1 and 3.4.2 work with a specific choice of the sieve, the following

Lemma 3.4.3 is developed for any generic choice of sieve indexed by s and B. The final piece

of the theory developed next tries to addresses two main questions (1) Can we get a sparse

network solution whose layer-wise sparsity levels and L1 norms of incident edges (including

the bias) of the nodes are controlled at levels s and B respectively? (2) Does this sparse

network retain the same predictive performance as the original network?

In this direction, let

ξ = minηθ∈F(L,k,s,B)||ηθ − η0||2∞

Based on the values s and B, we also define

ϑl = Bl
2/(kl + 1) +

L∑
m=0,m ̸=l

logBm + L+ log kl+1 + log(kl + 1) + log n+ log(
L∑

m=0

um)
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rl = sl(kl + 1)ϑl/n (3.12)

Lemma 3.4.3 has two sub conditions. Condition 1. requires that shrinking KL neigh-

borhood of the true density function P0 gets sufficiently large probability. This along with

Lemma 3.4.1 and 3.4.2 is an essential condition to guarantee the convergence of the true

posterior in (3.5). Condition 2. is the assumption needed to control the KL distance be-

tween true posterior and variational posterior and thereby guarantees the convergence of the

variational posterior in (3.8) (see the discussion under Theorem 3.4.4 for more details).

Lemma 3.4.3 (Kullback-Leibler conditions). Suppose
∑L

l=0 rl+ξ → 0 and n(
∑L

l=0 rl+ξ)→

∞ and the following two conditions hold for the prior Π̃ in (3.6) and some q ∈ QMF

1. Π̃
(
N∑L

l=0 rl+ξ

)
≥ exp(−C4n(

L∑
l=0

rl + ξ))

2. dKL(q, π) + n
∑
z

∫
dKL(P0, Pθ)q(θ, z)dθ ≤ C5n(

L∑
l=0

rl + ξ)

where π is the joint prior of (θ, z), q is the joint variational distribution of (θ, z) and

N∑L
l=0 rl+ξ is the KL neighborhood of radius

∑L
l=0 rl + ξ.

The following result shows that the variational posterior is consistent as long as Lemma

3.4.1, Lemma 3.4.2 and Lemma 3.4.3 hold. The proof of Theorem 3.4.4 demonstrates how

the validity of these three lemmas imply variational posterior consistency.

Theorem 3.4.4. Suppose Lemma 3.4.3 holds and Lemmas 3.4.1 and 3.4.2 hold for ϵn =√
(
∑L

l=0 rl + ξ)
∑L

l=0 ul. Then for some slowly increasing sequence Mn → ∞, Mnϵn → 0

and Π̃∗ as in (3.10),

Π̃∗(Hc
Mnϵn)→ 0, n→∞

in P n
0 probability where Hc

Mnϵn
= {θ : dH(P0, Pθ) ≤ Mnϵn} is the Hellinger neighborhood of

radius Mnϵn.

Note, the above contraction rate depends mainly on two quantities rl and ξ. Note rl

controls the number of nodes in the neural network. If the network is not sparse, then rl is
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kl+1(kl + 1)ϑl/n instead of sl(kl + 1)ϑl/n which can in turn make the convergence of ϵn → 0

difficult. On the other hand, if sl and Bl are too small, it will cause ξ to explode since a

good approximation to the true function may not exist in a very sparse space.

Remark (Rates as a function of n). Let L ∼ O(log n), B2
l ∼ O(kl + 1) and sl(kl +

1) = O(n1−2ϱ), for some ϱ > 0, then one can work with ϵn = n−ϱ log3(n) as long as ξ =

O(n−2ϱ log2(n)). The exact expression of ϱ is determined by the degree of smoothness of the

function η0.

Proof of Theorem 3.4.4 Discussion. To further enunciate Lemmas 3.4.1 and 3.4.2 con-

sider the quantity E1n =
∫
Hc

Mnϵn

(P n
θ /P

n
0 )π̃(θ)dθ as used in the following proof. Here, E1n can

be split into two parts

E1n =

∫
Hc

Mnϵn
∩F(L,k,s◦,B◦)

(P n
θ /P

n
0 )π̃(θ)dθ +

∫
Hc

Mnϵn
∩F(L,k,s◦,B◦)c

(P n
θ /P

n
0 )π̃(θ)dθ

Whereas Lemma 3.4.1 provides a handle on the first term by controlling the covering number

of the sieve F(L,k, s◦,B◦), Lemma 3.4.2 gives a handle on the second term by controlling

Π̃(F(L,k, s◦,B◦)c) (for more details we refer to Lemma A.2.6 in the Appendix A).

Next, consider the quantity E2n = log
∫

(P n
θ /P

n
0 )π̃(θ)dθ in the following proof. Lemma

3.4.3 part 1. provides a control on this term (see Lemma A.2.7 in the the Appendix A for

more details). Finally, consider the quantity E3n = dKL(q, π) +
∑

z

∫
log(P n

0 /P
n
θ )q(θ, z)dθ in

the following proof. Indeed Lemma 3.4.3 part 2. provides a control on this term (see Lemma

A.2.8 in the Appendix A for further details).

Proof. Let Π̃ and Π̃∗ be as in (3.7) and (3.10) respectively. Now,

dKL(π̃∗, π̃(|D)) =

∫
A
π̃∗(θ) log

π̃∗(θ)

π̃(θ|D)
dθ +

∫
Ac

π̃∗(θ) log
π̃∗(θ)

π̃(θ|D)
dθ

= −Π̃∗(A)

∫
A

π̃∗(θ)

Π̃∗(A)
log

π̃(θ|D)

π̃∗(θ)
dθ − Π̃∗(Ac)

∫
Ac

π̃∗(θ)

Π̃∗(Ac)
log

π̃(θ|D)

π̃∗(θ)
dθ

≥ Π̃∗(A) log
Π̃∗(A)

Π̃(A|D)
+ Π̃∗(Ac) log

Π̃∗(Ac)

Π̃(Ac|D)
, Jensen’s inequality
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where the above lines hold for any set A. Since Π̃(A|D) ≤ 1,

≥ Π̃∗(A) log Π̃∗(A) + Π̃∗(Ac) log Π̃∗(Ac)− Π̃∗(Ac) log Π̃(Ac|D)

≥ −Π̃∗(Ac) log Π̃(Ac|D)− log 2, (∵ x log x+ (1− x) log(1− x) ≥ − log 2)

= −Π̃∗(Ac)

(
log

∫
Ac

(P n
θ /P

n
0 )π̃(θ)dθ︸ ︷︷ ︸

E1n

− log

∫
(P n

θ /P
n
0 )π̃(θ)dθ︸ ︷︷ ︸

E2n

)
− log 2

The above representation is similar to the proof of Theorems 3.1 and 3.2 in Bhattacharya

and Maiti (2021). For any q ∈ QMF,

−Π̃∗(Ac)E1n ≤ dKL(π̃∗, π̃(|D))− Π̃∗(Ac)E2n + log 2

≤ dKL(π∗, π(|D))− Π̃∗(Ac)E2n + log 2 by Lemma A.2.3

≤ dKL(q, π(|D))− Π̃∗(Ac)E2n + log 2 π∗ is the KL minimizer

≤ dKL(q, π) +
∑
z

∫
log

P n
0

P n
θ

q(θ, z)dθ︸ ︷︷ ︸
E3n

+(1− Π̃∗(Ac))E2n + log 2

= E3n + (1− Π̃∗(Ac))E2n + log 2 (3.13)

where the fourth inequality in the above equation follows since

dKL(q, π(|D))

=
∑
z

∫
(log q(θ, z)− logP n

θ − log π(θ, z) + logm(D))q(θ, z)dθ

=
∑
z

∫
(log q(θ, z)− log π(θ, z))q(θ, z)dθ︸ ︷︷ ︸

dKL(q,π)

+
∑
z

∫
(logP n

0 − logP n
θ )q(θ, z)dθ

+ logm(D)− logP n
0︸ ︷︷ ︸

E2n

where m(D) is the marginal distribution of data as in (3.5).

Take A = Hc
Mnϵn

= {θ : dH(P0, Pθ) > Mnϵn}

If Lemma 3.4.1 and Lemma 3.4.2 hold, then by Lemma A.2.6, E1n ≤ −nCM2
nϵ

2
n/
∑
ul for

any Mn →∞ with high probability.
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If Lemma 3.4.3 condition 1 holds, then by Lemma A.2.7, E2n ≤ nMn(
∑L

l=0 rl + ξ) for any

Mn →∞ with high probability.

If Lemma 3.4.3 condition 2 holds, then by Lemma A.2.8, E3n ≤ nMn(
∑L

l=0 rl + ξ) for any

Mn →∞ with high probability.

Therefore, by (3.13), we get

nCM2
nϵ

2
n∑

ul
Π̃∗ (Hc

Mnϵn

)
≤ nMn(

L∑
l=0

rl + ξ) + nMn(
L∑
l=0

rl + ξ) + log 2

≤ nMn(
L∑
l=0

rl + ξ) + nMn(
L∑
l=0

rl + ξ) +Mn(
L∑
l=0

rl + ξ)

=⇒ Π̃∗ (Hc
Mnϵn

)
≤ 3Mn(

∑L
l=0 rl + ξ)

∑
ul

C1M2
nϵ

2
n

Taking ϵn =
√∑L

l=0(rl + ξ)
∑
ul and noting Mn →∞, the proof follows.

We next give conditions on the prior probabilities λl and σ0 to guarantee that Lemmas

3.4.1, 3.4.2 and 3.4.3 hold. This in turn implies the conditions of Theorem 3.4.4 hold and

variational posterior is consistent.

Corollary 3.4.5. Let σ2
0 = 1, − log λl = log(kl+1)+Cl(kl +1)ϑl, then conditions of Theorem

3.4.4 hold and Π̃∗ as in (3.10) satisfies

Π̃∗(Hc
Mnϵn)→ 0, n→∞

in P n
0 probability where and HMnϵn = {θ : dH(P0, Pθ) ≤Mnϵn} is the Hellinger neighborhood

of radius Mnϵn.

The proof of the corollary has been provided in Appendix A. In this corollary, note that

our expression of prior inclusion probability varies as a function of l thereby providing a

handle on layer-wise sparsity. Indeed, using these expressions in numerical studies further

substantiates the theoretical framework developed in this section.

Remark (Optimal Contraction). For a fixed choice of k, the optimal contraction rate is

achieved at s⋆,B⋆ = argmin
s,B

(
∑
rl + ξ). Thus, s⋆ and B⋆ are the optimal values of s and B
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which give the best sparse network with minimal loss in the true accuracy. The corresponding

probability expressions in Corollary 3.4.5 can be accordingly modified by setting s = s⋆ and

B = B⋆ in the expressions of ϑl and rl in (3.12).

3.5 Numerical Experiments

In this section, we present several numerical experiments to demonstrate the performance

of our spike-and-slab independent Gaussian (SS-IG) Bayesian neural networks which we im-

plement in PyTorch (Paszke et al., 2019). Further, to evaluate the efficacy of the variational

inference we benchmark our model on synthetic as well as real datasets. Our numerical inves-

tigation justifies the use of proposed choices of prior hyperparameters specifically layer-wise

prior inclusion probabilities, which in turn substantiates the significance of our theoretical

developments. With fully Bayesian treatment, we are also able to quantify the uncertain-

ties for the parameter estimates and variational inference helps to scale our model to large

network architectures as well as complex datasets.

We compare our sparse model with a node selection technique: horseshoe BNN (HS-

BNN) (Ghosh et al., 2019) and an edge selection technique: spike-and-slab BNN (SV-BNN)

(Bai et al., 2020) in the second simulation study and UCI regression dataset examples. We

use optimal choices of prior parameters and fine tuning parameters provided by the authors

of HS-BNN and SV-BNN in their respective models. Further we compare our model against

dense variational BNN model (VBNN) (Blundell et al., 2015) in all of the experiments.

Since it has no sparse structure, it serves as a baseline allowing to check whether sparsity

compromises accuracy. In all the experiments, we fix σ2
0 = 1 and σ2

e = 1. For our model,

the choices of layer-wise λl follow from Corollary 3.4.5: λl = (1/kl+1)exp(−Cl(kl + 1)ϑl).

We take Cl values in the negative order of 10 such that prior inclusion probabilities do not

fall below 10−50 otherwise λl values close to 0 might prune away all the nodes from a layer

(check appendix B for more discussion). The remaining tuning parameter details such as

learning rate, minibatch size, and initial parameter choice are provided in the appendix B.
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The prediction accuracy is calculated using variational Bayes posterior mean estimator with

30 Monte Carlo samples in testing phase.

Node sparsity estimates. In our experiments, we provide node sparsity estimates for

each hidden layer separately. For all models, the node sparsity in a given hidden layer is the

ratio of number of neurons with atleast one nonzero incoming edge over the original number

of neurons present in that layer before training. The layer-wise node sparsity estimates

give clear picture of the structural compactness of the trained model during test time. The

structurally compact trained model has lower latency during inference stage.

3.5.1 Simulation Study - I

We consider a two dimensional regression problem where the true response y0 is gener-

ated by sampling X from U([−1, 1]2) and feeding it to a deep neural network with known

parameters. We add a random Gaussian noise with σ = 5%
√
V ar(y0) to y0 to get noisy

outputs y. We create the dataset using a shallow neural network consisting of 2 inputs, one

hidden layer with 2 nodes and 1 output (2-2-1 network). We train our SS-IG model and

VBNN model using a single hidden layer network with 20 neurons in the hidden layer and

administer sigmoid activation. Each model is trained till convergence. We found that both

models give competitive predictive performance while fitting the given data. In Figure 3.2

we plot the magnitudes of the incoming weights into the hidden layer nodes using boxplots.

Our model with the help of spike and slab prior is able to prune away redundant nodes not

required for fitting the model. Since VBNN is densely connected, it shows all the nodes

being active in its final model. From this experiment, it is clear that neural networks can

be pruned leading to more compact models at inference stage without compromising the

accuracy. We also performed the same experiment with a wider neural network consisting of

100 nodes in the single hidden layer and provide the results in the appendix B. There again

we show that our model can easily recover the sparse solution with competitive performance.
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(a) VBNN (b) SS-IG

Figure 3.2 Simulation study I results. Node-wise weight magnitudes recovered by VBNN
and proposed SS-IG model in the synthetic regression data generated using 2-2-1 network.
The boxplots show the distribution of incoming weights into a given hidden layer node.

3.5.2 Simulation Study - II

We consider a nonlinear regression example and generate the data from the following

model:

y =
7x2

1 + x21
+ sin(x3x4) + 2x5 + ε,

where ε ∼ N(0, 1). Further all the covariates are i.i.d. N(0, 1) and independent of ε.

We generated 3000 data entries to create the training data for the experiment. Additional

1000 observations were generated for testing. We modeled this data using 2-hidden layer

neural network which consists of 20 neurons per hidden layer. Sigmoid activation function is

administered for each model used for comparative analysis. Table 3.1 provides the RMSEs

on train and test dataset as well as layer-wise node sparsity estimates for SS-IG, SV-BNN,

HS-BNN, and VBNN models. Our model is extremely well at pruning redundant nodes

which leads to the most compact model compared to the other sparse models: SV-BNN

and HS-BNN. Moreover it exhibits lower root mean squared error (RMSE) values on test

data among the sparse models while showing similar predictive performance compared to

the densely connected VBNN. This experiment further underscores the major benefit of
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Table 3.1 Simulation study II results. Performance of the proposed SS-IG, SV-BNN,
HS-BNN, and VBNN models where each model was trained for 10k epochs with learning
rate 5×10−3. Mean and S.D. of RMSE values and median sparsity estimates were calculated
from last 1000 epochs (with jump of 10 giving us sample of 100). The sparsity estimates are
given as a tuple of 2 values representing layer-1 and layer-2 node sparsities.

Model Train RMSE Test RMSE Sparsity Estimate

SS-IG 1.2087±0.0490 1.1947±0.0587 (0.35,0.05)
SV-BNN 1.2897±0.0323 1.2760±0.0363 (0.45,0.35)
HS-BNN 1.2580±0.0305 1.2436±0.0394 (1.00, 1.00)
VBNN 1.1661±0.0335 1.1614±0.0349 NA

our proposed approach to generate very compact models which could reduce computational

times and memory usage at inference stage.

3.5.3 UCI Regression Datasets

We apply our model to traditional UCI regression datasets (Dua and Graff, 2017) and

contrast our performance against SV-BNN, HS-BNN, and VBNN models. We follow the

protocol proposed by (Hernandez-Lobato and Adams, 2015) and train a single layer neural

network with sigmoid activations. For smaller datasets - Concrete, Wine, Power Plant,

Kin8nm, we take 50 nodes in the hidden layer, while for larger datasets - Protein, Year, we

take 100 nodes in the hidden layer. We spilt data randomly while maintaining 9:1 train-test

ratio in each case and for smaller datasets we repeat this technique 20 times. In Protein data

we perform 5 repetitions while in Year data we use a single random split (more details in the

appendix B). For the comparative analysis, we benchmark against SV-BNN, HS-BNN and

VBNN. Moreover, VBNN test RMSEs serve as baseline in each dataset. Table 3.2 summarises

our results including the sparsity estimate representing hidden layer-1 node sparsity (since

there is only one hidden layer in the networks considered).

We achieve lower RMSEs compared to SV-BNN and HS-BNN in Power Plant, Kin8nm,

and Year datasets and in other cases we achieve comparable RMSE values. In all the
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Table 3.2 UCI regression datasets results.

Test RMSE Sparsity Estimate

Dataset n(k0) SS-IG SV-BNN HS-BNN VBNN SS-IG SV-BNN

Concrete 1030 (8) 7.92±0.68 8.22±0.70 5.34±0.53 7.34±0.62 0.42±0.06 0.98±0.02
Wine 1599 (11) 0.66±0.05 0.65±0.05 0.66±0.05 0.64±0.05 0.18±0.05 0.87±0.04
Power Plant 9568 (4) 4.28±0.20 4.32±0.19 4.34±0.18 4.27±0.17 0.18±0.03 0.24±0.03
Kin8nm 8192 (8) 0.09±0.00 0.11±0.01 0.10±0.00 0.09±0.00 0.43±0.04 0.47±0.04
Protein 45730 (9) 4.85±0.05 4.93±0.06 4.59±0.02 4.78±0.06 0.81±0.03 0.93±0.03
Year 515345 (90) 8.68±NA 8.78±NA 9.33±NA 8.67±NA 0.71±NA 0.78±NA

datasets, our predictive performance is close to the dense baseline of VBNN. We provide

node sparsity estimates in our SS-IG and SV-BNN models. HS-BNN was not able to achieve

sparse structure which is consistent with the results provided in the appendix of (Ghosh

et al., 2019). In contrast to HS-BNN, our model sparsifies the model during training without

requiring ad-hoc pruning rule. Table 3.2 demonstrates that our approach uniformly achieves

better sparsity than SV-BNN. In particular, Concrete and Wine datasets show the high

compressive ability of our model over SV-BNN leading to very compact models for inference.

3.5.4 Image Classification Datasets

Here, we benchmark the empirical performance of our proposed SS-IG method on network

architectures and image classification datasets used in practice.

Baselines. We compare our model against VBNN model which serves as a dense baseline to

gauge the trade-off between predictive performance and sparsity. Moreover, to highlight the

complementary behavior in memory and computational efficiency of node selection compared

to edge selection achieved via Bayesian spike-and-slab prior framework, we compare our

model against the edge selection model, SV-BNN.

Network architectures. We consider 2 neural network model architectures: (i) multi-

layer perceptron (MLP), and (ii) LeNet-5-Caffe. In MLP model, we take 2 hidden layers
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with 400 neurons in each layer. Output layer has 10 neurons since there are 10 classes in both

datasets. Next, LeNet-5-Caffe model has 2 convolutional layers with 20 and 50 feature maps

respectively with filter size 5 × 5 for both layers. In SS-IG model, for convolution layers,

we prune output channels (similar to neurons in linear layers) using our spike-and-slab prior

where each output channel is assigned an Bernoulli variable to collectively prune parameters

incident on that channel. We apply 2 × 2 max pooling layer after each convolution layer.

The flattened feature layer after second convolution layer has size 4 ∗ 4 ∗ 50 = 800 serving as

input to the fully connected block, where there are 2 hidden layers with 800 and 500 neurons

respectively. The output layer has 10 neurons.

Datasets. We apply each network architecture on 2 image classification datasets: (i)

MNIST: dataset of 60,000 small square 28×28 pixel grayscale images of handwritten sin-

gle digits between 0 and 9, and (ii) Fashion-MNIST (Xiao et al., 2017): dataset of 60,000

small square 28×28 pixel grayscale images of items of 10 types of clothing. We preprocess

the images in the MNIST data by dividing their pixel values by 126. In Fashion-MNIST

data, we horizontally flip images at random with probability of 0.5.

Metrics. We quantify the predictive performance using the accuracy of the test data

(MNIST and Fashion-MNIST). Besides the test accuracy, we evaluate our model against

SV-BNN using the metrics that relate to the model compression and computational com-

plexity. First the compression ratio is the ratio of number of nonzero weights in the com-

pressed network versus the dense model and is an indicator of storage cost at test-time.

Next, we present layer-wise node sparsities in MLP experiments to highlight the computa-

tional speedups at test-time. In LeNet-5-Caffe experiments, we provide the floating point

operations (FLOPs) ratio which is the ratio of number of FLOPs required to predict y from

x during test time in the compressed network versus its dense counterpart. We have detailed

the FLOPs calculation in neural networks in Appendix B.

Nonlinear activation. We use swish activations (Elfwing et al., 2018; Ramachandran et al.,
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2017) instead of ReLUs in our proposed SS-IG model to avoid the dying neuron problem

(Lu et al., 2020). Specifically in large scale datasets turning off a node with more than

100 incoming edges adversely impacts the training process of ReLU networks. Smoother

activation functions such as sigmoid, tanh, swish etc help alleviate this problem. We choose

swish since it has the best performance. For VBNN and SV-BNN, we use ReLU activations

as recommended by their authors.

MLP Experiments

The results of MLP network experiments on MNIST and Fashion-MNIST are presented

in Figure 3.3. We provide test data accuracy, model compression ratio, and layer-wise node

sparsities in each experiment.

In MLP/MNIST experiment (Figure 3.3a - 3.3d), we observe that VBNN and SS-IG

models only require ∼ 400 epochs to achieve stable predictive performance (Figure 3.3a). In

contrast, SV-BNN slightly degrades after 600 epochs and takes longer to achieve convergence

in layer-wise node sparsities compared to our approach (Figure 3.3c and 3.3d). Moreover,

for SS-IG model, we observe that as we start to learn sparse network our model shows peak

test accuracy when most of the nodes are present in the model and it starts to drop as we

learn sparser network and ultimately the test accuracy stabilizes when the node sparsities

converge. Furthermore, SV-BNN has better model compression ratio (Figure 3.3b) in this

experiment at the expense of lower predictive performance. Our method is prunes off ∼ 80%

of first hidden layer nodes and ∼ 90% of second hidden layer nodes at the expense of ∼ 2%

accuracy loss due to sparsification compared to the dense VBNN.

In MLP/Fashion-MNIST experiment (Figure 3.3e - 3.3h), we observe that VBNN model

takes ∼ 200 epochs and our model takes ∼ 600 epochs for convergence. SV-BNN model

takes longer to achieve convergence in layer-wise node sparsities (Figure 3.3g and 3.3h).

We also observe the complementary behavior of our model and SV-BNN in memory and

computational efficiency where our model achieves better layer-wise node sparsities and SV-

75



(a) Test accuracy (b) Compression ratio

(c) Layer-1 node sparsity (d) Layer-2 node sparsity

(e) Test accuracy (f) Compression ratio

(g) Layer-1 node sparsity (h) Layer-2 node sparsity

Figure 3.3 MLP/MNIST and MLP/Fashion-MNIST experiments results. First
two rows (a)-(d) represent the MLP on MNIST experiment results. Bottom two rows (e)-(h)
represent the MLP on Fashion-MNIST experiment results.
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BNN has better model compression ratio (Figure 3.3f) with both models having similar

predictive performance (Figure 3.3e). Furthermore, our method prunes off ∼ 90% of first

hidden layer nodes and ∼ 92% of second hidden layer nodes at the expense of ∼ 3% accuracy

loss due to sparsification compared to the densely connected VBNN.

LeNet-5-Caffe Experiments

The results of more complex LeNet-5-Caffe network experiments on MNIST and Fashion-

MNIST are presented in Figure 3.4. We provide test data accuracy, model compression

ratio, and FLOPs ratio in each experiment over 1200 epochs. Here, FLOPs ratio serve as

a collective indicator of layer-wise node sparsities since FLOPs are directly related to how

many neurons or channels are remaining in linear or convolution layers respectively.

In LeNet-5-Caffe/MNIST experiment (Figure 3.4a - 3.4c), we observe that our model has

better predictive accuracy than SV-BNN (Figure 3.4a). Moreover, we achieve 10% more

(a) Test accuracy (b) Compression ratio (c) FLOPs ratio

(d) Test accuracy (e) Compression ratio (f) FLOPs ratio

Figure 3.4 LeNet-5-Caffe/MNIST and LeNet-5-Caffe/Fashion-MNIST experi-
ments results. Top row (a)-(c) represent the LeNet-5-Caffe/MNIST experiment results.
Bottom row (d)-(f) represent the LeNet-5-Caffe/Fashion-MNIST experiment results.
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reduction in Flops (Figure 3.4c)) compared to SV-BNN whereas SV-BNN achieves better

model compression than our approach (Figure 3.4b). Lastly, our method is able to reduce

the FLOPs of the model during inference at test-time by 90% at the expense of ∼ 0.5%

accuracy loss due to sparsification compared to the densely connected VBNN.

In LeNet-5-Caffe/Fashion-MNIST experiment (Figure 3.4d - 3.4f), we observe that both

SS-IG and SV-BNN have similar test accuracies at convergence (Figure 3.4d). However, our

model has 40% less FLOPs (Figure 3.4f) during inference stage compared to SV-BNN which

again achieves better model compression (Figure 3.4e). This highlights the complementary

nature of our method of node selection that leads to a structurally sparse model with sig-

nificantly lower (almost 5 times) FLOPs compared to weight pruning approach, SV-BNN,

which induces unstructured sparsity in the pruned network leading to significant model com-

pression with low storage cost. Lastly, our method leads to a sparse model with only 8% of

the FLOPs as compared to VBNN at the expense of ∼ 3% accuracy loss underscoring the

trade-off between predictive accuracy and sparsity.

3.6 Conclusion and Discussion

In this chapter, we have proposed sparse deep Bayesian neural networks using spike-and-

slab priors for optimal node recovery. Our method incorporates layer-wise prior inclusion

probabilities and recovers underlying structurally sparse model effectively. Our theoretical

developments highlight the conditions required for the posterior consistency of the variational

posterior to hold. With layer-wise characterisation of prior inclusion probabilities we show

that the proposed sparse BNN approximations can achieve predictive performance compa-

rable to dense networks. Our results relax the constraints of equal number of nodes and

uniform bounds on weights thereby achieving optimal node recovery on more generic neural

network structure. The closeness of a true function to the topology induced by layer-wise

node distribution depends on the degree of smoothness of the true underlying function. In

this work, this has not been studied in depth and forms a future direction for work.
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Note, in contrast to previous works, our work assumes a spike-and-slab prior on the

entire vector of incoming weights and bias onto a node. We underscore the fact that node

selection has complementary behavior with edge selection approaches as established by our

empirical experiments. Node selection offers significant computational speedup whereas edge

selection achieves significant model compression at test-time. The demonstration of the

efficacy of our node selection approach opens the avenue for exploration of sophisticated

group sparsity priors for node selection. Our detailed experiments show the subnetwork

selection ability of our method which underscores the notion that deep neural networks can

be heavily pruned without losing predictive performance. The experiment with convolution

neural network (LeNet-5-Caffe) highlights the generalizability of our approach from mere

multi layer perceptron to complex deep learning models. Although our method performs

model reduction while maintaining predictive power, some further improvements may be

obtained by choosing the number of layers in a data-driven fashion and can be a part of

future work.
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APPENDIX A

PROOFS OF SS-IG THEORETICAL RESULTS

A.1 Definitions

Definition A.1.1 (Sieve). Consider a sequence of function classes F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆

Fn+1 ⊆ · · · ⊆ F , where ∀f ∈ F , ∃ fn ∈ Fn s.t. d(f, fn) → 0 as n → ∞ where d(., .) is

some pseudo-metric on F . More precisely, ∪∞
n=1Fn is dense in F . Then, Fn is called a sieve

space of F with respect to the pseudo-metric d(., .), and the sequence {fn} is called a sieve

(Grenander, 1981).

Definition A.1.2 (Covering number). Let (V, ||.||) be a normed space, and F ⊂ V . Then,

{V1, · · · , VN} is an ε−covering of F if F ⊂ ∪Ni=1B(Vi, ε), or equivalently, ∀ ϱ ∈ F , ∃ i

such that ||ϱ − Vi|| < ε. The covering number of F denoted by N(ε,F , ||.||) = min{n :

∃ ε− covering over F of size n} (Pollard, 1991).

A.2 General Lemmas

Lemma A.2.1. Let g1 and g2 be any two density functions. Then

Eg1(|log(g1/g2)|) ≤ dKL(g1, g2) + 2/e

Proof. Refer to Lemma 4 in Lee (2000).

Lemma A.2.2. For any K > 0, let a,a0 ∈ [0, 1]K such that
∑K

k=1 ak =
∑K

k=1 a
0
k = 1, then

the KL divergence between mixture densities
∑K

k=1 akgk and
∑K

k=1 a
0
kg

0
k is bounded as

dKL

(
K∑
k=1

a0kg
0
k,

K∑
k=1

akgk

)
≤ dKL(a0,a) +

K∑
k=1

a0kdKL(g0k, gk)

Proof. Refer to Lemma 6.1 in Chérief-Abdellatif and Alquier (2018).
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Lemma A.2.3.

dKL(π̃∗, π̃(|D)) ≤ dKL(π∗, π(|D))

Proof. Using Lemma A.2.2 with a0 = π∗(z), a = π(z|D), g0 = π∗(θ|z) and g = π(θ|z,D),

we get

dKL(π̃∗, π̃(|D)) = dKL(
∑
z

π∗(θ|z)π∗(z),
∑
z

π(θ|z,D)π(z|D))

≤ dKL(π∗(z), π(z|D)) +
∑
z

dKL(π∗(θ|z), π(θ|z,D))π∗(z)

= dKL(π∗(θ, z), π(θ, z|D)) = dKL(π∗, π(|D))

Lemma A.2.4. For any 1-Lipschitz continuous activation function ψ such that ψ(x) ≤

x ∀x ≥ 0,

N(δ,F(L,k, s,B), ||.||∞) ≤
∑

s∗L≤sL

· · ·
∑
s∗0≤s0

[
L∏
l=0

(
Bl

δBl/(2(L+ 1)(
∏L

j=0Bj))
kl+1

)sl
]

where N denotes the covering number.

Proof. Given a neural network

η(x) = vL + WLψ(vL−1 + WL−1ψ(vL−2 + WL−2ψ(· · ·ψ(v1 + W1ψ(v0 + W0x)))

for l ∈ {1, · · · , L}, we define A+
l η : [0, 1]p → Rkl ,

A+
l η(x) = ψ(vl−1 + Wl−1ψ(vl−2 + Wl−2ψ(· · ·ψ(v1 + W1ψ(v0 + W0x)))

and A−
l η : Rkl−1 → RkL+1 ,

A−
l η(y) = vL + WLψ(vL−1 + WL−1ψ(· · ·ψ(vl + Wlψ(vl−1 + Wl−1y)))

The above framework is also used in the proof of lemma 5 in Schmidt-Hieber (2020). Next,

set A+
0 η(x) = A−

L+2η(x) = x and further note that for η ∈ F(L,k), |A+
l η(x)|∞ ≤

∏l−1
j=0Bj
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where k = (p, k1, · · · , kL, kL+1) and kL+1 = 1. Next, we derive upper bound on Lipschitz

constant of A−
l η.

|WLA
+
Lη(x1)−WLA

+
Lη(x2)|∞ = |A−

l η(A+
l−1η(x1))− A−

l η(A+
l−1η(x2))|∞ (A.1)

l.h.s. is bounded above by
∏L

j=0Bj and r.h.s consists of composition of Lipschitz functions

A−
l η and A+

l−1η with C1 and C2 being corresponding Lipschitz constants. So we can bound

r.h.s. by,

|A−
l η(A+

l−1η(x1))− A−
l η(A+

l−1η(x2))|∞ ≤ C1C2||x1 − x2||∞ ∀x1,x2 ∈ Rp

If we choose x1 = x ∈ [0, 1]p and x2 = 0 then,

|A−
l η(A+

l−1η(x))− A−
l η(A+

l−1η(0))|∞ ≤ C1C2 ∀x ∈ [0, 1]p

Since C2 is Lipschitz constant for A+
l−1η and we know that |A+

l−1η|∞ ≤
∏l−2

j=0Bj. So we

get C2 ≤ 2
∏l−2

j=0Bj. We use this in above expression,

|A−
l η(A+

l−1η(x))− A−
l η(A+

l−1η(0))|∞ ≤ 2C1

l−2∏
j=0

Bj ∀x ∈ [0, 1]p (A.2)

Next we know that l.h.s. of (A.2) can be bounded above by 2
∏L

j=0Bj because of (A.1).

So we get bound on Lipschitz constant of A−
l η,

2C1

l−2∏
j=0

Bj ≤ 2
L∏

j=0

Bj =⇒ C1 ≤
L∏

j=l−1

Bj

Let η, η∗ ∈ F(L,k, s,B) be two neural networks with W l = (vl,Wl) and W
∗
l = (v∗

l ,W
∗
l )

respectively. Here, we define δl using the L1 norms of the rows of Dl = W l−W
∗
l as follows

Dl = (d
⊤
l1, · · · ,d

⊤
lkl+1

)⊤ δl = (||dl1||1, · · · , ||dlkl+1
||1)

We choose η, η∗ such that ||δl||∞ ≤ ζBl. This also means that all parameters in each layer

of these two networks are at most ζBl distance away from each other. Then, we can bound

the absolute difference between these two neural networks by,

|η(x)− η∗(x)|
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≤
L+1∑
l=1

|A−
l+1η(ψ(vl−1 + Wl−1A

+
l−1η

∗(x)))− A−
l+1η(ψ(v∗

l−1 + W ∗
l−1A

+
l−1η

∗(x)))|

≤
L+1∑
l=1

(
L∏
j=l

Bj

)
||ψ(vl−1 + Wl−1A

+
l−1η

∗(x))− ψ(v∗
l−1 + W ∗

l−1A
+
l−1η

∗(x))||∞

≤
L+1∑
l=1

(
L∏
j=l

Bj

)
||vl−1 − v∗

l−1 + (Wl−1 −W ∗
l−1)A

+
l−1η

∗(x))||∞

≤
L+1∑
l=1

(
L∏
j=l

Bj

)
||δl−1||∞||A+

l−1η
∗(x))||∞

≤
L+1∑
l=1

(
L∏
j=l

Bj

)
ζBl−1

l−2∏
j=0

Bj = ζ(L+ 1)

(
L∏

j=0

Bj

)
(A.3)

Recall that we have at most kl number of nodes in each layer and there are
(
kl+1

sl

)
≤ ksll+1

combinations of nodes to choose sl active nodes in the given layer. Since supremum norm

of L1 norms of the rows of Wl is bounded above by Bl in our family of neural networks

F(L,k, s,B) so we can discretize these L1 norms with grid size δBl/(2(L + 1)(
∏L

j=0Bj))

and obtain upper bound on covering number as follows

N(δ,F(L,k, s,B), ||.||∞) ≤
∑

s∗L≤sL

· · ·
∑
s∗0≤s0

[
L∏
l=0

(
Bl

δBl/(2(L+ 1)(
∏L

j=0Bj))
kl+1

)sl
]

≤
L∏
l=0

(
2δ−1(L+ 1)

(
L∏

j=0

Bj

)
kl+1

)(sl+1)

(A.4)

Lemma A.2.5. Let θ∗ = arg min
θ∈F(L,k,s,B)

|ηθ − η0|2∞ and W̃l = supi ||wli − w∗
li||1, then for any

density q =
∏L

j=0 q(θj),∫
||ηθ − ηθ∗ ||22q(θ)dθ ≤

L∑
j=0

c2j−1

∫
W̃ 2

j qj(θj)dθj

L∏
m=j+1

∫
(W̃m +Bm)2q(θ)dθ

+ 2
L∑

j=0

j−1∑
j′=0

cj−1cj′−1

∫
W̃j(W̃j +Bj)qj(θj)dθj

L∏
m=j+1

∫
(W̃m +Bm)2q(θ)dθ

×
∫
W̃j′qj′(θj′)dθj′

j−1∏
m=j′+1

∫
(W̃m +Bm)q(θ)dθ (A.5)

where cj−1 ≤
∏j−1

m=0Bm.
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Proof. Let ηlθ be the partial networks defined as
η0θ(x) := ψ(W0x + v0),

ηlθ(x) := ψ(Wlη
l−1
θ (x) + vl),

ηLθ (x) := WLη
L−1
θ (x) + vL.

Similar to the proof of theorem 2 in Chérief-Abdellatif (2020), define

φl(θ) = sup
x∈[0,1]p

sup
1≤i≤kl+1

|ηlθ(x)i − ηlθ∗(x)i|.

We next show by induction

φl(θ) ≤
l∑

j=0

W̃jcj−1R
l
j+1

where we define cl = max(supx∈[0,1]p sup1≤i≤kl+1
|ηlθ∗(x)i|, 1), c0 = 1, Rl

j+1 =
∏l

m=j+1(W̃m +

Bm).

Claim: cl ≤ Blcl−1. Note

cl ≤ sup
x∈[0,1]p

sup
1≤i≤kl+1

(|w∗
li
⊤ηl−1

θ∗ (x)|+ |vli|)

≤ sup
x∈[0,1]p

sup
1≤i≤kl+1

(

kl∑
j=1

|w∗
lij||ηl−1

θ∗ (x)j|+ |vli|)

≤ sup
1≤i≤kl+1

(cl−1

kl∑
j=1

|w∗
lij|+ cl−1|vli|)

≤ cl−1 sup
1≤i≤kl+1

||w∗
li||1 = Blcl−1

where the above result holds since supi ||w∗
li||1 ≤ Bl. Next,

φl(θ) ≤ sup
x∈[0,1]p

sup
1≤i≤kl+1

(

kl∑
j=1

|wlijη
l−1
θ (x)j − w∗

lijη
l−1
θ∗ (x)j|+ |vli − v∗li|)

≤ sup
x∈[0,1]p

sup
1≤i≤kl+1

(

kl∑
j=1

|wlijη
l−1
θ (x)j − w∗

lijη
l−1
θ (x)j|

+ |w∗
lijη

l−1
θ (x)j − w∗

lijη
l−1
θ∗ (x)j|+ |vli − v∗li|)

≤ sup
x∈[0,1]p

sup
1≤i≤kl+1

(

kl∑
j=1

|wlij − w∗
lij||ηl−1

θ (x)j|
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+

kl∑
j=1

|w∗
lij||ηl−1

θ (x)j − ηl−1
θ∗ (x)j|+ |vli − v∗li|)

≤ sup
x∈[0,1]p

sup
1≤i≤kl+1

(

kl∑
j=1

|wlij − w∗
lij||ηl−1

θ (x)j − ηl−1
θ∗ (x)j|

+

kl∑
j=1

|wlij − w∗
lij||ηl−1

θ∗ (x)j|+ |vli − v∗li|) + φl−1(θ)Bl

≤ W̃l(φl−1(θ) + cl−1) + φl−1(θ)Bl = φl−1(θ)(W̃l +Bl) + cl−1W̃l

Now applying recursion we get

φl(θ) ≤ (φl−2(θ)(W̃l−1 +Bl−1) + cl−2W̃l−1)(W̃l +Bl) + cl−1W̃l

= φl−2(θ)(W̃l +Bl)(W̃l−1 +Bl−1) + cl−2W̃l−1(W̃l +Bl) + cl−1W̃l

Repeating this we get

φl(θ) ≤ φ0(θ)
l∏

j=1

(W̃j +Bj) +
l∑

j=1

cj−1W̃j

l∏
u=j+1

(W̃j +Bj)

= W̃0

l∏
j=1

(W̃j +Bj) +
l∑

j=1

B1 · · ·Bj−1W̃j

l∏
u=j+1

(W̃j +Bj)

=
l∑

j=0

B1 · · ·Bj−1W̃j

l∏
u=j+1

(W̃j +Bj) =
l∑

j=0

W̃jcj−1R
l
j+1

∫
||ηθ − ηθ∗||22q(θ)dθ ≤

∫
||ηθ − ηθ∗ ||2∞q(θ)dθ =

∫
φ2
L(θ)q(θ)dθ

=

∫
(

L∑
j=0

W̃jcj−1R
L
j+1)

2q(θ)dθ

=
L∑

j=0

c2j−1

∫
W̃ 2

j (RL
j+1)

2q(θ)dθ + 2
L∑

j=0

j−1∑
j′=0

cj−1cj′−1

∫
W̃jW̃j′R

L
j+1R

L
j′+1q(θ)dθ

=
L∑

j=0

c2j−1

∫
W̃ 2

j

(
L∏

m=j+1

(W̃m +Bm)

)2

q(θ)dθ

+ 2
L∑

j=0

j−1∑
j′=0

cj−1cj′−1

∫
W̃jW̃j′

L∏
m=j+1

(W̃m +Bm)
L∏

m=j′+1

(W̃m +Bm)q(θ)dθ

The proof follows by noting q(θ) =
∏L

j=0 q(θj).
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Lemma A.2.6. Suppose Lemma 3.4.1 and Lemma 3.4.2 in the Section 3.4 hold, with dom-

inating probability

log

∫
Hc

ϵn

P n
θ

P n
0

π(θ)dθ ≤ −Cnϵ
2
n∑
ul

Proof. Let Fn = F(L,k, s◦,B◦), s◦l +1 = nϵ2n/
∑L

j=0 uj, logB◦
l = nϵ2n/((L+1)

∑L
j=0(s

◦
j +1))

and Hϵn = {θ : dH(P0, Pθ) < ϵn} is the Hellinger neighborhood of size ϵn∫
Hc

ϵn

P n
θ

P n
0

π̃(θ)dθ ≤
∫
Hc

ϵn
∩Fn

P n
θ

P n
0

π̃(θ)dθ +

∫
Fc

n

P n
θ

P n
0

π̃(θ)dθ

≤
∫
Hc

ϵn∩Fn

P n
θ

P n
0

π̃(θ)dθ + exp

(
−(C0/2)nϵ2n∑

ul

)
where the last inequality follows from Lemma 3.4.2 because by Markov’s inequality

PPn
0

(∫
Fc

n

P n
θ

P n
0

π̃(θ)dθ > exp

(
−(C0/2)nϵ2n∑

ul

))
≤ exp

(
(C0/2)nϵ2n∑

ul

)
EPn

0

(∫
Fc

n

P n
θ

P n
0

π̃(θ)dθ

)
≤ exp

(
(C0/2)nϵ2n∑

ul

)
Π̃(F c

n) = exp

(
−(C0/2)nϵ2n∑

ul

)
→ 0

Further, ∫
Hc

ϵn∩Fn

P n
θ

P n
0

π̃(θ)dθ ≤
∫
Hc

ϵn∩Fn

ϕ
P n
θ

P n
0

π̃(θ)dθ︸ ︷︷ ︸
T1

+

∫
Hc

ϵn∩Fn

(1− ϕ)
P n
θ

P n
0

π̃(θ)dθ︸ ︷︷ ︸
T2

Next, borrowing steps from proof of theorem 3.1 in Pati et al. (2018), we have EPn
0

(ϕ) ≤

exp(−C1nϵ
2
n), thus for any C ′

1 < C1, ϕ ≤ exp(−C ′
1nϵ

2
n) with probability at least 1 −

exp(−(C1 − C ′
1)nϵ

2
n). Thus,

T1 ≤ exp(−C ′
1nϵ

2
n)T1 + T2

which implies with dominating probability T1 ≤ T2. Thus, it only remains to show T2 ≤

exp(−C ′
2(nϵ

2
n)/(

∑
ul)) for some C ′

2 > 0. This is true since

PPn
0

(T2 > e
−C2nϵ2n∑

ul ) ≤ e
C2

nϵ2n∑
ulEPn

0
(T2) ≤ e

C2nϵ2n∑
ul

∫
Hc

ϵn
∩Fn

EPθ
(1− ϕ)π̃(θ)dθ
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≤ e
C2nϵ2n∑

ul

∫
Hc

ϵn
∩Fn

e−C2nd2H(P0,Pθ)π̃(θ)dθ

≤ e
C2nϵ2n∑

ul e−C2nϵ2n

∫
Hc

ϵn
∩Fn

π̃(θ)dθ ≤ exp(−C ′
2nϵ

2
n/
∑

ul)

Therefore, for sufficiently large n and C = min(C0/2, C
′
2)/2∫

Hc
ϵn

P n
θ

P n
0

π̃(θ)dθ ≤ 2exp(−C ′
2nϵ

2
n/
∑

ul) + exp(−(C0/2)nϵ2n/
∑

ul) ≤ exp(−Cnϵ2n/
∑

ul)

Lemma A.2.7. Suppose Lemma 3.4.3 part 1. in the Section 3.4 holds, then for anyMn →∞

, with dominating probability,

log

∫
P n
0

P n
θ

π̃(θ)dθ ≤ nMn(
∑

rl + ξ)

Proof. By Markov’s inequality,

PPn
0

(
log

∫
P n
0

P n
θ

π̃(θ) ≥ nMn(
∑

rl + ξ)

)
≤ 1

nMn(
∑
rl + ξ)

EPn
0

∣∣∣∣log

∫
P n
θ

P n
0

π̃(θ)dθ

∣∣∣∣
=

1

nMn(
∑
rl + ξ)

∫ ∣∣∣∣log

∫
P n
θ

P n
0

π̃(θ)dθ

∣∣∣∣P n
0 dµ

≤ 1

nMn(
∑
rl + ξ)

(
dKL(P n

0 , L
∗) +

2

e

)
where L∗ =

∫
P n
θ π̃(θ)dθ and the last inequality follows from Lemma A.2.1.

dKL(P n
0 , L

∗) = EPn
0

(
log

P n
0∫

P n
θ π̃(θ)dθ

)
≤ EPn

0

(
log

P n
0∫

N∑
rl+ξ

P n
θ π̃(θ)dθ

)

≤
∫
N∑

rl+ξ

π̃(θ)dθ +

∫
N∑

rl+ξ

dKL(P n
0 , P

n
θ )π̃(θ)dθ Jensen’s inequality

≤ − log e−nC(
∑

rl+ξ) + n(
∑

rl + ξ) = n(C + 1)(
∑

rl + ξ)

where the last inequality follows from Lemma 3.4.3 part 1. in the Section 3.4. The proof

follows by noting C/Mn → 0.

Lemma A.2.8. Suppose Lemma 3.4.3 part 2. in the Section 3.4 holds, then for anyMn →∞

, with dominating probability,

dKL(q, π) +
∑
z

∫
log

P n
0

P n
θ

q(θ, z)dθ ≤ nMn(
∑

rl + ξ)
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Proof. By Markov’s inequality we have

PPn
0

(
dKL(q, π) +

∑
z

∫
q(θ, z) log

P n
0

P n
θ

dθ > nMn(
∑

rl + ξ)

)

≤ 1

nMn(
∑
rl + ξ)

(
dKL(q, π) + EPn

0

∣∣∣∣∣∑
z

∫
q(θ, z) log

P n
0

P n
θ

dθ

∣∣∣∣∣
)

≤ 1

nMn(
∑
rl + ξ)

(
dKL(q, π) + EPn

0

(∑
z

∫
q(θ, z)

∣∣∣∣log
P n
θ

P n
0

∣∣∣∣ dθ
))

=
1

nMn(
∑
rl + ξ)

(
dKL(q, π) +

∑
z

∫
q(θ, z)

∫ ∣∣∣∣log
P n
0

P n
θ

∣∣∣∣P n
0 dµdθ

)

By Lemma A.2.1, we get

≤ 1

nMn(
∑
rl + ξ)

(
dKL(q, π) +

∑
z

∫
q(θ, z)

(
dKL(P n

0 , P
n
θ ) +

2

e

)
dθ

)

=
1

nMn(
∑
rl + ξ)

(
dKL(q, π) + n

∑
z

∫
q(θ, z)dKL(P0, Pθ)dθ +

2

e

)

=
C

nMn(
∑
rl + ξ)

(
n(
∑

rl + ξ) + (2/e)
)
→ 0

where the last line in the above holds due to Lemma 4.3 part 2. in the Section 3.4.

A.3 Proof of Lemmas and Corollary in the Section 3.4

Proof of Lemma 3.4.1

Take s◦l + 1 = (nϵ2n)/(
∑L

j=0 uj) and logB◦
l = (nϵ2n)/((L+ 1)

∑L
j=0(s

◦
j + 1)).

We know from Lemma 2 of Ghosal and Van Der Vaart (2007) that, there exists a function

φ ∈ [0, 1], such that

EP0(φ) ≤ exp{−nd2H(Pθ1 , P0)/2}

EPθ
(1− φ) ≤ exp{−nd2H(Pθ1 , P0)/2}

for all Pθ ∈ F(L,k, s◦,B◦) satisfying dH(Pθ, Pθ1) ≤ dH(P0, Pθ1)/18.

LetH = N(ϵn/19,F(L,k, s◦,B◦), dH(., .)) denote the covering number of F(L,k, s◦,B◦),

i.e., there exist H Hellinger balls of radius ϵn/19, that entirely cover F(L,k, s◦,B◦). For
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any θ ∈ F(L,k, s◦,B◦) w.l.o.g we assume Pθ belongs to the Hellinger ball centered at Pθh

and if dH(Pθ, P0) > ϵn, then we must have that dH(P0, Pθh) > (18/19)ϵn and there exists a

testing function φh, such that

EP0(φh) ≤ exp{−nd2H(Pθh , P0)/2}

≤ exp{−((182/192)/2)nϵ2n}

EPθ
(1− φh) ≤ exp{−nd2H(Pθh , P0)/2}

≤ exp{−n(dH(P0, Pθ)− ϵn/19)2/2}

≤ exp{−((182/192)/2)nd2H(P0, Pθ)}.

Next we define ϕ = maxh=1,··· ,H φh. Then we must have

EP0(ϕ) ≤
∑
h

EP0(φh) ≤ Hexp{−((182/192)/2)nϵ2n}

≤ exp{−((182/192)/2)nϵ2n − logH}

Using Lemma A.2.4 with s = s◦ and B = B◦, we get

logH = logN(ϵn/19,F(L,k, s◦,B◦), dH(., .))

≤ logN(
√

8σ2
eϵn/19,F(L,k, s◦,B◦), ||.||∞)

≤ log

 L∏
l=0

(
38√
8σ2

eϵn
(L+ 1)

(
L∏

j=0

B◦
j

)
kl+1

)(s◦l +1)


=
L∑
l=0

(s◦l + 1) log

(
38√
8σ2

eϵn
(L+ 1)

(
L∏

j=0

B◦
j

)
kl+1

)

≤ C

[
L∑
l=0

(s◦l + 1)

(
log

1

ϵn
+ log(L+ 1) +

L∑
j=0

logB◦
j + log kl+1

)]

≤ C

L∑
l=0

(s◦l + 1)(log n+ log(L+ 1) +
L∑

j=0

logB◦
j + log kl+1)

≤ C
L∑
l=0

(s◦l + 1)(log n+ log(L+ 1) +
L∑

j=0

logB◦
j + log kl+1 + log(kl + 1)) ≤ Cnϵ2n
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where, C in each step is different which tends to absorb the extra constants in it. First

inequality holds due to the following

d2H(Pθ, P0) ≤ 1− exp

{
− 1

8σ2
e

||η0 − ηθ||2∞
}

and ϵn = o(1), the second inequality is because of (A.4), and fourth inequality is because of

s◦l log(1/ϵn) ≍ s◦l log n. Therefore,

EP0(ϕ) ≤
∑
h

EP0(φh) = exp{−C1nϵ
2
n}

for some C1 = (182/192)/2− 1/4. On the other hand, for any θ, such that dH(Pθ, P0) ≥ ϵn,

say Pθ belongs to the hth Hellinger ball, then we have

EPθ
(1− ϕ) ≤ EPθ

(1− φh) ≤ exp{−C2nd
2
H(P0, Pθ)}

where C2 = (182/192)/2. This concludes the proof.

Proof of Lemma 3.4.2

Assumption: s◦l + 1 = (nϵ2n)/(
L∑

j=0

uj), λlkl+1/s
◦
l → 0,

∑
ul logL = o(nϵ2n) (A.6)

Π̃(F(L,k, s◦,B◦)c) ≤ Π̃

(
L⋃
l=0

{||w̃l||0 > s◦l }

)
+ Π̃

(
L⋃
l=0

{||w̃l||∞ > B◦
l }

)

≤
L∑
l=0

Π̃(||w̃l||0 > s◦l ) +
L∑
l=0

Π̃(||w̃l||∞ > B◦
l )

=
L∑
l=0

∑
z

Π(||w̃l||0 > s◦l |z)π(z) +
L∑
l=0

∑
z

Π(||w̃l||∞ > B◦
l |z)π(z)

≤
L∑
l=0

P

(
kl+1∑
i=1

zli > s◦l

)
+

L∑
l=0

P

(
sup

i=1,··· ,kl+1

||wli||1 > B◦
l

∣∣∣z)

where w̃l = (||wl1||1, · · · , ||wlkl+1
||1)T and the last inequality holds since Π(||w̃l||0 > s◦l |z) ≤

1, Π(||w̃l||0 > s◦l |z) = 1 iff
∑
zli > s◦l and π(z) ≤ 1. We now break the proof in two parts

as follows.
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Part 1.

L∑
l=0

P

(
kl+1∑
i=1

zli > s◦l

)
=

L∑
l=0

P

(
kl+1∑
i=1

zli − kl+1λl > s◦l − kl+1λl

)
By Bernstein inequality

≤
L∑
l=0

exp

(
−1/2(s◦l − kl+1λl)

2

kl+1λl(1− λl) + 1/3(s◦l − kl+1λl)

)
≤

L∑
l=0

exp

(
−1/2(s◦l − kl+1λl)

2

kl+1λl + 1/3(s◦l − kl+1λl)

)

=
L∑
l=0

exp

(
−s◦l /2(1− kl+1λl/s

◦
l )

2

1/3(1 + 2kl+1λl/s◦l )

)
→

L∑
l=0

exp

(
−3s◦l

2

)
since

kl+1λl
s◦l

→ 0 by (A.6)

=
L∑
l=0

exp

(
− 3nϵ2n

4
∑
ul

+
3

2

)
≤ 5(L+ 1)exp

(
− nϵ2n

2
∑
ul

)
≤ exp

(
− nϵ2n

4
∑
ul

)
since

∑
ul log(5(L+ 1)) ∼

∑
ul logL = o(nϵ2n) by (A.6).

Part 2.

L∑
l=0

P

(
sup

i=1,··· ,kl+1

||wli||1 > B◦
l

∣∣∣z)

≤
L∑
l=0

kl+1∑
i=1

P
(
||wli||1 > B◦

l

∣∣∣z)
≤

L∑
l=0

kl+1∑
i=1

P
(
||wli||∞ >

B◦
l

kl + 1

∣∣∣z)

≤
L∑
l=0

kl+1∑
i=1

kl+1∑
j=1

P
(
|wlij| >

B◦
l

kl + 1

∣∣∣z)

≤ 2
L∑
l=0

kl+1∑
i=1

kl+1∑
j=1

exp

(
− B◦

l
2

(kl + 1)2

)
By concentration inequality

= 2
L∑
l=0

kl+1∑
i=1

kl+1∑
j=1

exp
(
− exp(

2nϵ2n

((L+ 1)
∑L

j′=0(s
◦
j′ + 1)

− 2 log(kl + 1))
)

≤
L∑
l=0

kl+1∑
i=1

kl+1∑
j=1

1

(L+ 1)kl+1(kl + 1)
exp(−nϵ2n) = exp(−nϵ2n)

where the third inequality holds since |wlij| given z is bound above by a |N(0, σ2
0)| random

variable. The above proof holds as long as

exp

(
2nϵ2n

(L+ 1)
∑L

j′=0(s
◦
j′ + 1)

− 2 log(kl + 1)

)
≥ nϵ2n+log(L+1)+log kl+1+log(kl+1)+log 2
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Taking log on both sides we get(
nϵ2n

(L+ 1)
∑L

j′=0(s
◦
j′ + 1)

− log(kl + 1)

)
≥ 1

2
log(nϵ2n+log(L+1)+log kl+1+log(kl+1)+log 2)

This is true since
∑L

j′=0(s
◦
j′ + 1) = (L+ 1)nϵ2n/

∑
ul is bounded above by

nϵ2n
(L+ 1)(log(kl + 1) + 1

2
log(nϵ2n + log(L+ 1) + log kl+1 + log(kl + 1) + log 2)

Proof of Lemma 3.4.3 part 1.

Assumption: − log λl = O{(kl + 1)ϑl}, − log(1− λl) = O{(sl/kl+1)(kl + 1)ϑl} (A.7)

dKL(P0, Pθ) =

∫
x∈[0,1]p

∫
y∈R

(
log

P0(y,x)

Pθ(y,x)

)
P0(y,x)dydx

P0(y,x) =
1√

2πσ2
e

exp

(
−(y − η0(x))2

2σ2
e

)
Pθ(y,x) =

1√
2πσ2

e

exp

(
−(y − ηθ(x))2

2σ2
e

)
So we get,

dKL(P0, Pθ) =

∫
x∈[0,1]p

∫
y∈R

log

(
exp

[
−(y − η0(x))2

2σ2
e

+
(y − ηθ(x))2

2σ2
e

])
P0(y,x)dydx

=

∫
x∈[0,1]p

∫
y∈R

2y(η0(x)− ηθ(x))− (η20(x)− η2θ(x))

2σ2
e

P0(y,x)dydx

=

∫
x∈[0,1]p

2η20(x)− 2η0(x)ηθ(x)− η20(x) + η2θ(x)

2σ2
e

dx

=

∫
x∈[0,1]p

(η0(x)− ηθ(x))2

2
dx =

1

2
||η0 − ηθ||22 (A.8)

where, σ2
e = 1 can be chosen w.l.o.g.

Next, let ηθ∗(x) be θ∗ satisfying arg minηθ∈F(L,k,s,B) |ηθ − η0|2∞. Then,

||ηθ∗ − η0||1 ≤ ||ηθ∗ − η0||∞ =
√
ξ (A.9)

Here, we redefine δl by considering the L1 norms of the rows of Dl = W l −W
∗
l as follows

Dl = (d
⊤
l1, · · · ,d

⊤
lkl+1

)⊤ δl = (||dl1||1, · · · , ||dlkl+1
||1)
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Next we define a neighborhood M√∑
rl

as follows:

M√∑
rl

=

{
θ : ||dli||1 ≤

√∑
rlBl

(L+ 1)(
∏L

j=0Bj)
, i ∈ Sl, ||dli||1 = 0, i ∈ Sc

l , l = 0, · · · , L

}
where Sc

l is the set where ||w∗
li||1 = 0, l = 0, · · · , L. Then, for every θ ∈ M√∑

rl
using

(A.3), we have

||ηθ − ηθ∗||1 ≤
√∑

rl (A.10)

Combining (A.9) and (A.10), we get for θ ∈M√∑
rl
, ||ηθ − η0||1 ≤

√∑
rl +
√
ξ. So we get,

dKL(P0, Pθ) ≤
(
√∑

rl +
√
ξ)2

2
≤
∑

rl + ξ

Since θ ∈ N∑
rl+ξ for every θ ∈M√∑

rl
; therefore,∫

θ∈N∑
rl+ξ

π̃(θ)dθ ≥
∫
θ∈M√∑

rl

π̃(θ)dθ

Let δn = (
√∑

rlBl)/((L+ 1)(
∏L

j=0Bj)) and A = {wli : ||wli −w∗
li||1 ≤ δn}

Π̃
(
M√∑

rl

)
=
∑
z

Π
(
M√∑

rl

∣∣∣z) π(z)

≥
∑

{z:zli=1,i∈Sl,zli=0,i∈Sc
l ,l=0,··· ,L}

Π
(
M√∑

rl

∣∣∣z) π(z)

=
L∏
l=0

(1− λl)kl+1−slλsll
∏
i∈Sl

E(1{wli∈A}|zli = 1)

≥
L∏
l=0

(1− λl)kl+1−slλsll
∏
i∈Sl

∫
wli∈A

(
1

2π

) kl+1

2
kl+1∏
j=1

exp

(
−
w2

lij

2

)
dwlij

≥
L∏
l=0

(1− λl)kl+1−slλsll
∏
i∈Sl

(
1

2π

) kl+1

2
kl+1∏
j=1

∫ w∗
lij+

δn
kl+1

w∗
lij−

δn
kl+1

exp

(
−
w2

lij

2

)
dwlij

=
L∏
l=0

(1− λl)kl+1−slλsll
∏
i∈Sl

(
1

2π

) kl+1

2
kl+1∏
j=1

2δn
kl + 1

exp

(
−
ŵ2

lij

2

)
where the third equality follows since E(1{wli∈A}|zli = 0) = 1 since ||w∗

li||1 = 0, for i ∈ Sc
l .

The last equality is by mean value theorem, ŵlij ∈ [w∗
lij− δn/(kl + 1), w∗

lij + δn/(kl + 1)], thus

=
L∏
l=0

(1− λl)kl+1−slλsll
∏
i∈Sl

exp

(
kl + 1

2
log

1

2π
+ (kl + 1) log

2δn
kl + 1

−
kl+1∑
j=1

ŵ2
lij

2

)

94



= exp

[
−

L∑
l=0

{
sl log

(
1

λl

)
+ (kl+1 − sl) log

(
1

1− λl

)

+
∑
i∈Sl

(
− kl + 1

2
log

1

2π
− (kl + 1) log

2δn
kl + 1

+

kl+1∑
j=1

ŵ2
lij

2

)}]

= exp

[
−

L∑
l=0

{
sl log

(
1

λl

)
+ (kl+1 − sl) log

(
1

1− λl

)

− sl(kl + 1)

2
log

1

2π
− sl(kl + 1) log

2δn
kl + 1

+
∑
i∈Sl

kl+1∑
j=1

ŵ2
lij

2

}]
(A.11)

Now,

L∑
l=0

∑
i∈Sl

kl+1∑
j=1

ŵ2
lij

2
≤ 1

2

L∑
l=0

∑
i∈Sl

kl+1∑
j=1

max((w∗
lij − δn/(kl + 1))2, (w∗

lij + δn/(kl + 1))2)

≤
L∑
l=0

∑
i∈Sl

kl+1∑
j=1

(w∗2
lij + δ2n/(kl + 1)2) ≤

L∑
l=0

∑
i∈Sl

||w∗
li||21 +

L∑
l=0

∑
i∈Sl

δ2n/(kl + 1)

≤
L∑
l=0

sl(B
2
l + 1) ≤ n

∑
rl ≤ n

(∑
rl + ξ

)
(A.12)

where the above line uses δn → 0. Finally

L∑
l=0

(
sl log

(
1

λl

)
+ (kl+1 − sl) log

(
1

1− λl

)
− sl(kl + 1)

2
log

1

2π
− sl(kl + 1) log

2δn
kl + 1

)

≤
L∑
l=0

(
Cnrl +

sl(kl + 1)

2

{
2 log(kl + 1) + 2 log(L+ 1) + 2

L∑
m=0,m ̸=l

logBm − log
∑

rl

})

≤ Cn
∑

rl ≤ Cn
(∑

rl + ξ
)

(A.13)

where the first inequality follows from (A.7) and expanding δn. The last inequality follows

since n
∑
rl → ∞ which implies − log

∑
rl = O(log n). Combining (A.12) and (A.13) and

replacing (A.11), the proof follows.

Proof of Lemma 3.4.3 part 2.

Assumption: − log λl = O{(kl + 1)ϑl}, − log(1− λl) = O{(sl/kl+1)(kl + 1)ϑl}
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Suppose there exists q ∈ QMF such that

dKL(q, π) ≤ C1n
∑

rl,∑
z

∫
Θ

|ηθ − ηθ∗|22 q(θ, z)dθ ≤
∑

rl. (A.14)

Recall θ∗ = arg minθ∈θ(L,p,s,B) |ηθ − η0|2∞. By relation (A.8),∑
z

∫
ndKL(P0, Pθ)q(θ, z)dθ =

∑
z

n

2

∫
||η0 − ηθ||22q(θ, z)dθ

≤ n

2

∑
z

∫
||ηθ∗ − ηθ||22q(θ, z)dθ +

n

2
||ηθ∗ − η0||2∞

≤ Cn(
∑

rl + ξ)

where the above relation is due to (A.14) which completes the proof.

We next construct q ∈ QMF as

wlij|zli ∼ zliN (w∗
lij, σ

2
l ) + (1− zli)δ0, zli ∼ Bern(γ∗li) γ∗li = 1(||w∗

li||1 ̸= 0)

where σ2
l = sl

8n(L+1)
(4L−l(kl + 1) log(kl+12

kl+1)
∏L

m=0,m ̸=lB
2
m)−1.

We next consider the relation (A.5) in Lemma A.2.5.

We upper bound the expectation of the supremum of L1 norm of multivariate Gaussian

variables:∫
W̃lq(θ, z)dθ ≤

∫
sup
i
||wli −w∗

li||1q(θ|z)dθ ≤
∫

sup
i
||wli −w∗

li||1q(θ|z = 1)dθ

since q(z) ≤ 1. If zli = 1, then ||wli − w∗
li||1 = 0, thus the above integral is maximized

at z = 1 where z = 1 indicates all neurons are present in the network. In this case, all

wlij are nothing but independent Gaussian random variables. In this direction we make use

of concentration inequalities similar to the proof of theorem 2 in Chérief-Abdellatif (2020).

Let, Y = supi ||wli −w∗
li||1.

exp(tEY ) ≤ E(exp(tY )) = E[sup
i

exp(t||wli −w∗
li||1)]

≤
kl+1∑
i=1

E[exp(t

kl+1∑
j=1

|wlij − w∗
lij|)] =

kl+1∑
i=1

kl+1∏
j=1

E[exp(t|wlij − w∗
lij|)]
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=

kl+1∑
i=1

kl+1∏
j=1

2exp

[
σ2
l t

2

2

]
Φ(σlt) ≤ kl+12

kl+1exp

[
(kl + 1)

σ2
l t

2

2

]

Thus, EY ≤ (log(kl+12
kl+1) + (kl + 1)σ2

l t
2/2)/t. Let t = (1/σl)

√
(2/(kl + 1)) log(kl+12kl+1),

EY ≤ σl

√
kl + 1

2

[√
log(kl+12kl+1) +

√
log(kl+12kl+1)

]
=
√

2σ2
l (kl + 1) log(kl+12kl+1) ≤

√
4σ2

l (kl + 1) log(kl+12kl+1)

Similarly,∫
W̃ 2

l q(θ, z)dθ =

∫
sup
i

(||wli −w∗
li||1)2q(θ, z)dθ ≤

∫
sup
i

(||wli −w∗
li||1)2q(θ|z = 1)

Let, Y ′ = supi(||wli −w∗
li||1)2.

exp(tEY ′) ≤ E(exp(tY ′)) = E[sup
i

exp(t(||wli −w∗
li||1)2)]

≤
kl+1∑
i=1

E[exp(t(

kl+1∑
j=1

|wlij − w∗
lij|)2)] ≤

kl+1∑
i=1

E[exp(t(kl + 1)

kl+1∑
j=1

(wlij − w∗
lij)

2)]

=

kl+1∑
i=1

kl+1∏
j=1

E[exp(t(kl + 1)(wlij − w∗
lij)

2)] =

kl+1∑
i=1

kl+1∏
j=1

(
1

1− 2t(kl + 1)σ2
l

) 1
2

≤ kl+1

(
1

1− 2t(kl + 1)σ2
l

) kl+1

2

Thus, EY ′ ≤ (log kl+1 − ((kl + 1)/2) log(1− 2t(kl + 1)σ2
l ))/t. Let t = 1/(4σ2

l (kl + 1)),

EY ′ ≤ 4σ2
l (kl + 1)

[
log kl+1 +

(
kl + 1

2

)
log 2

]
= 4σ2

l (kl + 1) log(kl+12
kl+1

2 )

≤ 4σ2
l (kl + 1) log(kl+12

kl+1)

Next we also get,∫
(W̃l +Bl)q(θ, z)dθ =

∫
W̃lq(θ, z)dθ +Bl ≤

√
4σ2

l (kl + 1) log(kl+12kl+1) +Bl ≤ 2Bl

∫
(W̃l +Bl)

2q(θ, z)dθ =

∫
W̃ 2

l q(θ, z)dθ + 2Bl

∫
W̃lq(θ, z)dθ +B2

l

≤ 4σ2
l (kl + 1) log(kl+12

kl+1) + 2Bl

√
4σ2

l (kl + 1) log(kl+12kl+1) +B2
l ≤ 4B2

l
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∫
W̃l(W̃l +Bl)q(θ, z)dθ =

∫
W̃ 2

l q(θ, z)dθ +Bl

∫
W̃lq(θ, z)dθ

≤ 4σ2
l (kl + 1) log(kl+12

kl+1) +Bl

√
4σ2

l (kl + 1) log(kl+12kl+1)

≤
√

4σ2
l (kl + 1) log(kl+12kl+1)

(√
4σ2

l (kl + 1) log(kl+12kl+1) +Bl

)
≤ 2Bl

√
4σ2

l (kl + 1) log(kl+12kl+1)

since
√

4σ2
l (kl + 1) log(kl+12kl+1) is bounded above by√√√√ 4sl

8n(L+ 1)

(
4L−l(kl + 1) log(kl+12kl+1)

L∏
m=0,m̸=l

B2
m

)−1

(kl + 1) log(kl+12kl+1)

= Bl

√√√√ sl
2n(L+ 1)

(
4L−l

L∏
m=0

B2
m

)−1

≤ Bl, The quantity in square root < 1 for large n.

Let bj = (kj + 1) log(kj+12
kj+1). From relation (A.5), we get∫

||ηθ − ηθ∗||22q(θ, z)dθ ≤
L∑

j=0

c2j−1(4σ
2
j bj)

(
L∏

m=j+1

4B2
m

)

+ 2
L∑

j=0

j−1∑
j′=0

cj−1cj′−12Bj

√
4σ2

j bj

(
L∏

m=j+1

4B2
m

)√
4σ2

j′bj′

(
j−1∏

m=j′+1

2Bm

)

= 4
L∑

j=0

4L−jσ2
j bj

(
j−1∏
m=0

B2
m

)(
L∏

m=j+1

B2
m

)

+ 8
L∑

j=0

j−1∑
j′=0

(
j−1∏
m=0

Bm

)(
j−1∏
m=0

Bm

)
2Bj

(
L∏

m=j+1

4B2
m

)(
j−1∏

m=j′+1

2Bm

)√
σ2
j bj

√
σ2
j′bj′

= 4
L∑

j=0

22L−2jσ2
j bj

L∏
m=0,m ̸=j

B2
m

+ 8
L∑

j=0

j−1∑
j′=0

4L−j2j−j′

(
j−1∏
m=0

Bm

)(
j−1∏
m=0

Bm

)(
L∏

m=j+1

Bm

)(
L∏

m=j′+1

Bm

)√
σ2
j bj

√
σ2
j′bj′

= 4
L∑

j=0

22L−2jσ2
j bj

(
L∏

m=0,m ̸=j

B2
m

)

+ 8
L∑

j=0

j−1∑
j′=0

2L−j2L−j′

(
L∏

m=0,m ̸=j

Bm

)(
L∏

m=0,m ̸=j′

Bm

)√
σ2
j bj

√
σ2
j′bj′

= 4

(
L∑

j=0

2L−j
√
σ2
j bj

(
L∏

m=0,m ̸=j

Bm

))2

= 4

(
L∑

j=0

√
sj

8n(L+ 1)

)2
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=
1

2n(L+ 1)

(
L∑

j=0

√
sj

)2

≤
∑L

j=0 sj

2n
≤

L∑
j=0

rl

This concludes the proof of (A.14). Next,

dKL(q, π) ≤ log
1

π(z)
+ 1(z = γ∗)dKL

({ L−1∏
l=0

kl+1∏
i=1

kl+1∏
j=1

{
γ∗liN (w∗

lij, σ
2
l ) + (1− γ∗li)δ0

}
kL+1∏
j=1

N (w∗
Lj, σ

2
L)
}
,
{ L−1∏

l=0

kl+1∏
i=1

kl+1∏
j=1

{
zliN (0, σ2

0) + (1− zli)δ0
} kL+1∏

j=1

N (0, σ2
0)
})

= log
1∏L−1

l=0 λ
sl
l (1− λl)kl+1−sl

+
L−1∑
l=0

kl+1∑
i=1

kl+1∑
j=1

dKL

(
γ∗liN (w∗

lij, σ
2
l ) + (1− γ∗li)δ0,

γ∗liN (0, σ2
0) + (1− γ∗li)δ0

)
+

kL+1∑
j=1

dKL

(
N (w∗

Lj, σ
2
L),N (0, σ2

0)
)

=
L−1∑
l=0

(
sl log

1

λl
+ (kl+1 − sl) log

1

1− λl

)
+

L−1∑
l=0

kl+1∑
i=1

kl+1∑
j=1

γ∗li

{
1

2
log

σ2
0

σ2
l

+
σ2
l + w∗

lij
2

2σ2
0

− 1

2

}

+

kL+1∑
j=1

{
1

2
log

σ2
0

σ2
L

+
σ2
L + w∗

Lj
2

2σ2
0

− 1

2

}

≤
L−1∑
l=0

Cnrl +
L−1∑
l=0

slkl + sl
2

[
σ2
l

σ2
0

+
B2

l

σ2
0(kl + 1)

− 1 + log
σ2
0

σ2
l

]

+
kL + 1

2

[
σ2
L

σ2
0

B2
L

σ2
0(kL + 1)

− 1 + log
σ2
0

σ2
L

]
where the first inequality follows from Lemma A.2.2. The inequality in the above line uses∑kl+1

j=1 w
∗
lij

2 ≤ B2
l and similar to the proof of Lemma 4.1 in Bai et al. (2020) uses (A.7).

Let σ2
0 = 1 and it could be easily derived that σ2

l ≤ 1.

dKL(q, π) ≤
L−1∑
l=0

Cnrl +
L−1∑
l=0

sl
2

(kl + 1)

[
B2

l

kl + 1
− log σ2

l

]
+

(kL + 1)

2

[
B2

L

kL + 1
− log σ2

L

]

=
L−1∑
l=0

Cnrl +
L−1∑
l=0

sl
2

(kl + 1)

[
B2

l

kl + 1
− log

(
sl

8n(L+ 1)

[
4L−lbl

L∏
m=0,m ̸=l

B2
m

]−1)]

+
(kL + 1)

2

[
B2

L

kL + 1
− log

(
1

8n(L+ 1)

[
bL

L∏
m=0,m ̸=L

B2
m

]−1)]

=
L−1∑
l=0

Cnrl +
L∑
l=0

sl
2

(kl + 1)

[
B2

l

kl + 1
− log

(
sl

8n(L+ 1)

[
4L−lbl

L∏
m=0,m ̸=l

B2
m

]−1)]
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=
L−1∑
l=0

Cnrl +
L∑
l=0

sl
2
B2

l +
L∑
l=0

sl
2

(kl + 1) log

(
8n(L+ 1)

sl

)

+
L∑
l=0

sl(kl + 1)(L− l) log 2 +
L∑
l=0

sl
2

(kl + 1) log(kl + 1)

+
L∑
l=0

sl
2

(kl + 1) log
(

log(kl+12
kl+1)

)
+

L∑
l=0

sl(kl + 1)

(
L∑

m=0,m ̸=l

logBm

)

≤
L−1∑
l=0

Cnrl +
L∑
l=0

sl
2
B2

l +
L∑
l=0

sl
2

(kl + 1) log

(
8n(L+ 1)

sl

)
+ L

L∑
l=0

sl(kl + 1)

+
L∑
l=0

sl
2

(kl + 1)(log(kl + 1) + log(kl+1 + kl + 1)) +
L∑
l=0

sl(kl + 1)

(
L∑

m=0,m ̸=l

logBm

)

≤
L−1∑
l=0

Cnrl +
L∑
l=0

sl
2
B2

l +
L∑
l=0

sl
2

(kl + 1) log

(
8n(L+ 1)

sl

)
+ L

L∑
l=0

sl(kl + 1)

+
L∑
l=0

sl(kl + 1) log(kl+1 + kl + 1) +
L∑
l=0

sl(kl + 1)

(
L∑

m=0,m ̸=l

logBm

)

≤
L−1∑
l=0

Cnrl +
L∑
l=0

sl(kl + 1)

[
B2

l

2(kl + 1)
+

(
L∑

m=0,m ̸=l

logBm

)
+ L+ log(kl+1 + kl + 1)

+
1

2
log

(
8n(L+ 1)

sl

)]

≤
L−1∑
l=0

(C + C ′)nrl + C ′nrL

+
L∑
l=0

sl(kl + 1)

[
B2

l

kl + 1
+

(
L∑

m=0,m ̸=l

logBm

)
+ L+ log(kl+1 + kl + 1) + log

(
n

sl

)]

≤
L−1∑
l=0

(C + C ′)nrl + C ′nrL +
L∑
l=0

sl(kl + 1)ϑl ≤ C1n
L∑
l=0

rl

This concludes the proof of (A.14).

Proof of Corollary 3.4.5

The proof is a direct consequence of Theorem 3.4.4 in the Section 3.4 as long as assumptions

of Lemma 3.4.2 and Lemma 3.4.3 parts 1 and 2 hold when σ2
0 = 1, − log λl = log(kl+1) +

Cl(kl + 1)ϑl and ϵn =
√

(
∑L

l=0 rl + ξ)
∑L

l=0 ul. This what we show next.
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Verifying assumption (A.6) under Proof of Lemma 3.4.2: Note,
∑
ul = O(ϵ2n), thus

∑
ul logL = o(nϵ2n) ⇐⇒ logL = o(n(

∑
rl + ξ))

which is indeed true since logL = o(L2) and L2 ≤ n
∑
rl. We show that (kl+1λl)/s

◦
l → 0.

With λl = (1/kl+1)exp(−Cl(kl + 1)ϑl),

kl+1λl
s◦l

≤
∑
ulexp(−C(kl + 1)ϑl)

nϵ2n
=

exp(−C(kl + 1)ϑl + log
∑
ul)

nϵ2n

≤ exp(−C(kl + 1)ϑl + ϑl)

nϵ2n
→ 0

where the above relation holds since log
∑
ul ≤ ϑl, ϑl →∞, kl →∞ and nϵ2n →∞.

Verifying assumption (A.7) under Proof of Lemma 3.4.3 part 1. and part 2. Note,

− log λl = log(kl+1) + Cl(kl + 1)ϑl ≤ ϑl + Cl(kl + 1)ϑl = O{(kl + 1)ϑl}

And then,

1− λl = 1− exp(−Clϑl(kl + 1))/kl+1

− log(1− λl) ∼ exp(−Clϑl(kl + 1))/kl+1 = O{(kl + 1)slϑl/kl+1}

since exp(−Clϑl(kl + 1))→ 0 and (kl + 1)slϑl →∞.
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APPENDIX B

ADDITIONAL NUMERICAL EXPERIMENTS DETAILS

B.1 FLOPs Calculation

We only count multiply operation for floating point operations (FLOPs) similar to Zhao

et al. (2019). In 2D convolution layer, we assume convolution is implemented as a sliding

window and that the nonlinearity function is computed for free. Then, for a 2D convolutional

layer (given bias is present) we get FLOPs as:

FLOPs = (Cin,prunedKwKh + 1)OwOhCout,pruned

where, Cin,pruned, Cout,pruned are the number of input channels and output channels after prun-

ing. Channels are pruned if all the parameters associated with that channel in convolution

mapping are zero. Kw and Kh are the kernel width and height respectively. Finally, Ow, Oh

are output width and height where Ow = (Iw + 2 × Pw − Dw × (Kw − 1) − 1)/Sw + 1 and

Oh = (Ih + 2× Ph −Dh × (Kh − 1)− 1)/Sh + 1. Here, Iw, Ih are input, Pw, Ph are padding,

Dw, Dh are dilation, Sw, Sh are stride widths and heights respectively.

For fully connected (linear) layers (with bias) we get FLOPs as:

FLOPs = (Ipruned + 1)Opruned

where, Ipruned is the number of pruned input neurons and Opruned is the number of pruned

output neurons.

B.2 Variational parameters initialization

We initialize the γlj’s at a value close to 1 for all of our experiments. This ensures that

at epoch 0, we have a fully connected deep neural network. This also warrants that most

of the weights do not get pruned off at a very early stage of training which might lead
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to bad performance. The variational parameters µljj′ are initialized using U(−0.6, 0.6) for

simulation and UCI regression examples whereas for classification Kaiming uniform initial-

ization (He et al., 2015) is used. Moreover, σljj′ are reparameterized using softplus function:

σljj′ = log(1 + exp(ρljj′)) and ρljj′ are initialized using a constant value of -6. This keeps

initial values of σljj′ close to 0 ensuring that the initial values of network weights stay close

to Kaiming uniform initialization.

B.3 Hyperparameters for training

We keep MC sample size (S) to be 1 during training. We choose learning rate of 3×10−3,

batch size of 400, and 10000 epochs in the 20 neurons case of simulation study-I. We use

learning rate of 10−3, batch size of 400, and 20000 epochs in the 100 neurons case of simulation

study-I. Next, we use learning rate of 5× 10−3, full batch, and 10000 epochs for simulation

study-II. In UCI regression datasets, we choose batch size = 128 and run 500 epochs for

Concrete, Wine, Power Plant, 800 epochs for Kin8nm. For Protein and Year datasets, we

choose batch size of 256 and run 100 epochs. For all the UCI regression datasets we keep

learning rate of 10−3. The Adam algorithm is chosen for optimization of model parameters.

In image classification datasets, for SS-IG model, we use 10−3 learning rate and minibatch

size of 1024 in all experiments except in LeNet-5-Caffe on Fashion-MNIST experiment where

we use 2 × 10−3 learning rate and 1024 minibatch size. For SV-BNN model, we take 10−3

learning rate and 1024 minibatch size in all experiments after extensive hyperparameter

search. For VBNN model, we take learning rate of 10−4 and minibatch size of 128 according

to Blundell et al. (2015). We train each model for 1200 epochs using Adam optimizer in all

the image classification experiments provided in the Section 3.5.

B.4 Fine-tuning of the constant in prior inclusion probability ex-
pression

Recall the layer-wise prior inclusion probabilities: λl = (1/kl+1)exp(−Cl(kl + 1)ϑl) from

the Corollary 3.4.5. In our numerical experiments, we use this expression to choose an
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optimal value of λl in each layer of a given network. The λl varies as we vary our constant

Cl and we next describe how is Cl chosen. The influence of Cl is mainly due to the kl + 1

term and Bl
2/(kl + 1) from ϑl term. We ensure that each incoming weight and bias onto

the node from layer l + 1 is bounded by 1 which leads us to choose Bl to be kl + 1. So the

leading term from (kl + 1)ϑl is (kl + 1) and Cl has to be chosen such that we avoid making

exponential term from λl expression close to 0. In our experiments we choose Cl values in

the negative order of 10 such that prior inclusion probabilities do not fall below 10−50. If we

instead choose a λl value very close to 0 then we might prune off all the nodes in each layer

or might make the training unstable which is not ideal. Overall the aforementioned strategy

of choosing Cl constant values ensure reasonable values for the λl in each layer.

B.5 Simulation study I: extra details

First we provide the network parameters used to generate the data for this simulation

experiment. The edge weights in the underlying 2-2-1 network are as follows: W0 = {w011 =

10, w012 = 15, w021 = −15, w022 = 10};W1 = {w111 = −3, w121 = 3} and v0 = {v01 =

−5, v02 = 5};v1 = {v11 = 4}.

(a) VBNN (b) SS-IG

Figure B.1 Simulation study I: additional experiment results. Node-wise weight
magnitudes recovered by VBNN and proposed SS-IG model in the synthetic regression data
generated using 2-2-1 network. The boxplots show the distribution of incoming weights into
a given hidden layer node. Only the 20 nodes with the largest edge weights are displayed.
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In Figure B.1, we provide additional results demonstrating the model selection ability of

our SS-IG approach in a wider network consisting of 100 nodes in the single hidden layer

structure considered in the simulation study-I from the Section 3.5.

B.5.1 Effect of Hidden Layer Widths

Here, we explore 2-hidden layer neural networks with varying widths. For our SS-IG

model we use 10−3 learning rate and minibatch size of 1024 while for VBNN model, we take

learning rate of 10−4 and minibatch size of 128 according to Blundell et al. (2015). We train

both the models for 400 epochs using Adam optimizer.

Figure B.2 summarizes the results. We have provided results for 3 different architectures

which have 400, 800, and 1200 nodes each in their 2-hidden layers. In Figure B.2a, we

find that across the architectures both SS-IG and VBNN models have similar predictive

performance. Further, our method is able to prune off more than 88% of first hidden layer

nodes and more than 92% of second hidden layer nodes (Figure B.2b) at the expense of

2% accuracy loss due to sparsification compared to the densely connected VBNN. We also

observe that as model capacity increases the sparsity percentage per layer decreases. This

suggests that, each architecture is trying to reach a sparse network of comparable size.

(a) Prediction accuracy per architecture (b) Layer-wise sparsity per architecture

Figure B.2 MNIST experiment results for varying hidden layer widths.
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CHAPTER 4

COMPACT BAYESIAN NEURAL NETWORKS WITH STRUCTURED
SPARSITY

4.1 Introduction

In high-dimensional modeling, predictor selection and sparse signal recovery are routine

statistical and machine learning practices. Sparse parameter estimation via high-dimensional

regularization penalizing model dimensionality is well studied in the literature. Two of the

most popular regularization techniques are lasso and horseshoe regularizers (Bhadra et al.,

2019). The lasso estimator (Tibshirani, 1996) induces sparsity by constraining the L1 norm

of the parameters in the model. The horseshoe estimator (Carvalho et al., 2010) places ab-

solutely continuous shrinkage priors on the entire parameter vector that selectively shrinks

the small signals since horseshoe prior has heavy tails supporting both zero values and large

values. Both Lasso and horseshoe procedures come with strong theoretical guarantees for

estimation and prediction. In this work, we propose a spike-and-slab prior framework sim-

ilar to SS-IG model proposed in Chapter 3 for dynamic node pruning with slab component

using either group lasso or group horseshoe priors. This combination of spike-and-slab prior

and group shrinkage priors, first ensures that unnecessary collection of weights incident on a

node are shrunk to zero and then the spike-and-slab setup allows for automated pruning of

such shrunken weights. In Figure 4.1, we provide an image classification experiment where

our proposed approaches of spike-and-slab Group Lasso (SS-GL) and spike-and-slab Group

Horseshoe (SS-GHS) demonstrate the improvement over simple Gaussian prior in the slab

part. In order to conduct posterior approximation, VI in the sparse BNNs with spike-and-

slab Gaussian prior framework for edge selection was introduced by Chérief-Abdellatif (2020)

and later Jantre et al. (2021a) extended it to node pruning. In this work, we adopt varia-

tional Bayesian inference leading to tractable model training in conjunction with continuous
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(a) Prediction accuracy (b) Layer-1 node sparsity (c) Layer-2 node sparsity

Figure 4.1 MNIST experiment results: motivation for group shrinkage priors over
Gaussian prior. Here, we demonstrate the performance of our SS-GL and SS-GHS models
in 2-layer perceptron network to classify MNIST, hand-written digits dataset. (a) we plot
the classification accuracy on the test data for our models and include (Jantre et al., 2021a)’s
SS-Gauss model. (b) and (c) we plot the proportion of active nodes (node sparsity) in the
layer-1 and layer-2 of the network respectively. We observe that our SS-GHS yields the most
compact network with the best classification accuracy.

relaxation of discrete Bernoulli variables associated with the spike part (Maddison et al.,

2017; Jang et al., 2017) similar to SS-IG model.

4.1.1 Proposed Methods

Firstly, there does not exist any cohesive literature which establishes the numerical effi-

ciency of shrinkage priors over Gaussian slabs in the context of training structurally sparse

networks. Secondly, the numerical properties of the corresponding variational implementa-

tion remain unexplored. To address these issues, we consider a spike-and-slab framework

with group shrinkage priors: (i) group lasso and (ii) group horseshoe, which first shrinks the

redundant model weights through the slab component and the spike component prunes out

the nodes with weights whose values are shrunk close to zero. Accordingly,

Detailed Contribution.

• We propose structurally sparse Bayesian neural networks using two distinct spike and

slab prior setups, where the slab component uses hierarchical priors on the group of

incoming weights (including bias) on the neurons: (i) Spike-and-Slab Group Lasso

(SS-GL), and (ii) Spike-and-Slab Group HorseShoe (SS-GHS).
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4.2 Structured Sparsity: Spike-and-Slab Hierarchical Priors

In order to carry out automatic node selection to induce structured sparsity in BNNs,

we consider spike-and-slab priors. A zero-mean Gaussian distribution is the commonly used

slab distribution in spike-and-slab priors (Jantre et al., 2021a). However, their use can lead

to inflated predictive uncertainties, especially when used in conjunction with fully factorized

variational inference (Ghosh et al., 2019). Instead, if we consider a slab distribution having

zero-mean Gaussian distribution with its scale being a random variable then the slab part

of the marginal prior distribution will have heavier tails and higher mass at zero. Such

hierarchical distributions in slab part further improve the sparsity as well as circumvent

the inflated predictive uncertainties. Below, we describe the two hierarchical spike-and-

slab priors and corresponding fully factorized variational family that we use in each of our

proposed approaches.

4.2.1 Spike-and-Slab Group Lasso (SS-GL):

To facilitate the optimal layer-wise node selection, we allow the prior inclusion probability

λl to vary as a function of the layer index l.

Prior: We assume a spike-and-slab prior of the following form with zlj being the indicator

for the presence of jth node in the lth layer.

π(wlj|zlj) =
[
(1− zlj)δ0 + zljN(0, σ2

0τ
2
ljI)
]
, π(zlj) = Ber(λl), π(τ 2lj) = G(kl/2 + 1, ς2/2)

where l = 0, . . . , L, j = 1, . . . , kl+1. N(., .), Ber(.), and G(., .) represent Gaussian, Bernoulli,

and Gamma distributions. wlj = (wlj1, . . . , wljkl+1) is a vector of edges incident on the jth

node in the lth layer. δ0 is a Dirac spike vector of dimension kl + 1 with all zero entries

and I is identity matrix of dimension kl + 1 × kl + 1. zlj with j = (1, . . . , kl+1) all follow

Ber(λl) to allow for common prior inclusion probability, λl, for each node from a given layer

l. We set λL = 1 to ensure no node selection occurs in the output layer. σ0 and τlj are the
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constant global and the variable local (per node) scale mixture components of the Gaussian

slab distribution. ς2/2 is the constant rate hyperparameter of the Gamma distribution.

Variational family: We consider the following fully factorized variational family

q(wlj|zlj) =
[
(1− zlj)δ0 + zljN(µlj, diag(σ2

lj))
]
, q(zlj) = Ber(γlj)

q(τ 2lj) = LN(µ
{τ}
lj , σ

{τ}
lj

2
)

for l = 0, . . . , L, j = 1, . . . , kl+1. LN(., .) denotes Log-Normal distribution and q(log τ 2lj) ∼

N(µ
{τ}
lj , σ

{τ}
lj

2
). The spike-and-slab structure of the variational family ensures that the vari-

ational weight distributions follow spike-and-slab structure allowing for exact node sparsity

through variational approximation. Further, the weight distributions conditioned on the

node indicator variables are all independent of each other. The variational distribution of

parameters obtained post optimization will then inherently prune away redundant nodes

from each layer. Moreover, we use Log-Normal family instead of Gamma family to approxi-

mate Gamma distributed τ 2lj since we obtain closed form expressions for dKL(q(τ 2lj), π(τ 2lj|ς2)).

Additionally, µlj = (µlj1, . . . , µljkl+1) and σ2
lj = (σ2

lj1, . . . , σ
2
ljkl+1) denote the vectors

of variational mean and standard deviation parameters of the slab component of q(wlj|zlj).

diag(σ2
lj) is the diagonal matrix with σ2

ljj′ being the j′th diagonal entry. Similarly, γlj denotes

the variational inclusion probability parameter of q(zlj). We set γLj = 1 to ensure no node

selection occurs in the output layer. µ
{τ}
lj and σ

{τ}
lj

2
denote the variational mean and standard

deviation parameters of the Gaussian distribution associated with q(log τ 2lj).

ELBO: Let θ be the network weights and ϖ = (z, τ 2) be the remaining parameters. We

minimize the loss function: L = −ELBO(q(θ,ϖ), π(θ,ϖ|D)),

L = −Eq(θ,ϖ)[logL(θ)] +
∑
l,j

q(zlj = 1)

∫
dKL(q(wlj|zlj = 1), π(wlj|τ 2lj, zlj = 1))q(τ 2lj)dτ

2
lj

+
∑
l,j

dKL(q(zlj), π(zlj)) +
∑
l,j

dKL(q(τ 2lj), π(τ 2lj|ς2))

= −Eq(θ,ϖ)[logL(θ)] +
∑
l,j

q(zlj = 1)

∫
dKL(N(µlj, diag(σ2

lj)), N(0, σ2
0τ

2
ljI))q(τ 2lj)dτ

2
lj
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+
∑
l,j

dKL(Ber(γlj),Ber(λl)) +
∑
l,j

dKL

(
LN(µ

{τ}
lj , σ

2{τ}
lj ), G(kl/2 + 1, ς2/2)

)

4.2.2 Spike-and-Slab Group Horseshoe (SS-GHS):

In this model, we consider spike-and-slab prior with group horseshoe distribution in the

slab part.

Prior: We consider regularized version of group horseshoe (Piironen and Vehtari, 2017) in

the slab part to circumvent the numerical stability issues associated with the unregularized

group horseshoe. We define our prior similar to SS-GL earlier.

π(wlj|zlj) =
[
(1− zlj)δ0 + zljN(0, σ2

0 τ̃
2
ljs

2I)
]
, τ̃ 2lj = c2τ 2lj/(c

2 + τ 2ljs
2)

π(zlj) = Ber(λl), π(τlj) = C+(0, 1), π(s) = C+(0, s0)

where l = 0, . . . , L, j = 1, . . . , kl+1. C
+(., .) denotes half Cauchy distribution. τ̃ 2lj is varying

local (per node) scale parameter, s2 is the varying global scale parameter, and σ2
0 is the

constant global scale parameter. Note that, when weights are strongly shrinking towards

0 then τ 2ljs
2 ≪ c2 and τ̃ 2lj → τ 2ljs

2 which leads to the unregularized version of the group

horseshoe. Whereas, when weights are away from 0 then corresponding τ 2ljs
2 will be large,

i.e, τ 2ljs
2 ≫ c2 and τ̃ 2lj → c2 , where c2 is constant. For these weights corresponding version

of regularized group horseshoe in the slab follows N(0, σ2
0c

2I). This helps in thinning out

the heavy tails associated with the horseshoe prior. Next, the prior inclusion probabilities,

λl are common for for all nodes from a given layer similar to SS-GL. Additionally, s0 is the

scale parameter of half Cauchy prior on s that can be tuned for specific situations.

Instead of directly working with the half-Cauchy distributions, we employ a decomposi-

tion of the half-Cauchy that relies upon gamma and inverse gamma distributions (Louizos

et al., 2017) as this allows us to compute the negative KL-divergence from the scale distribu-

tion π(τ) to an approximate log-normal scale posterior q(τ) in closed form. More specifically,

we have a half-Cauchy distribution that can be expressed in a non-centered parametrization
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as:

β̃ ∼ IG(1/2, 1), α̃ ∼ G(1/2, k2), τ 2 = β̃α̃

where IG(., .), G(., .) correspond to the inverse Gamma and Gamma distributions in the

scale parametrization, and τ follows a half-Cauchy distribution with scale k. Therefore we

re-express the whole SS-GHS prior hierarchy as:

π(wlj|zlj) =
[
(1− zlj)δ0 + zljN(0, σ2

0 τ̃
2
ljs

2I)
]
, π(zlj) = Ber(λl)

π(βlj) = IG (1/2, 1) , π(αlj) = G (1/2, 1) , π(sb) = IG (1/2, 1) , π(sa) = G
(
1/2, s20

)
Variational family: We consider the following fully factorized variational family

q(wlj|zlj) =
[
(1− zlj)δ0 + zljN(µlj, diag(σ2

lj))
]
, q(zlj) = Ber(γlj)

q(βlj) = LN(µ
{β}
lj , σ

{β}
lj

2
), q(αlj) = LN(µ

{α}
lj , σ

{α}
lj

2
),

q(sb) = LN(µ{sb}, σ{sb}2), q(sa) = LN(µ{sa}, σ{sa}2)

for l = 0, . . . , L, j = 1, . . . , kl+1. Similar to SS-GL variational family, we use Log-Normal

family instead of Gamma and Inverse-Gamma families to approximate Gamma and Inverse-

Gamma distributed variables to obtain closed form expression for the KL divergence between

prior and variational distributions. Moreover, (µ
{β}
lj , σ

{β}
lj

2
), (µ

{α}
lj , σ

{α}
lj

2
), (µ{sb}, σ{sb}2), and

(µ{sa}, σ{sa}2) denote the variational mean and standard deviation parameters of the Gaus-

sian distribution associated with q(log βlj), q(logαlj), q(sb) and q(sa).

ELBO: Let θ be the network weights and ϖ = (z, τ 2, s2) be the remaining parameters.

Similar to SS-GL, We minimize the loss function: L = −ELBO(q(θ,ϖ), π(θ,ϖ|D)),

L = −ELBO(q(θ,ϖ), π(θ,ϖ|D))

= −Eq(θ,ϖ)[logL(θ)] +
∑
l,i

dKL(q(zlj), π(zlj))

+

∫ ∫ [∑
l,j

q(zlj = 1)

∫ ∫
dKL(q(wlj|zlj = 1), π(wlj|βlj, αlj, sb, sa, zlj = 1))

×q(βlj) q(αlj) dβlj dαlj

]
q(sb) q(sa) dsb dsa
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+
∑
l,j

[
dKL(q(βlj), π(βlj)) + dKL(q(αlj), π(αlj))

]
+ dKL(q(sb), π(sb)) + dKL(q(sa), π(sa))

= −Eq(θ,ϖ)[logL(θ)] +
∑
l,i

dKL(Ber(γlj),Ber(λl))

+

∫ ∫ [∑
l,j

q(zlj = 1)

∫ ∫
dKL(N(µlj, diag(σ2

lj)), N(0, σ2
0βljαljsbsaI))

×q(βlj) q(αlj) dβlj dαlj

]
q(sb) q(sa) dsb dsa

+
∑
l,j

[
dKL(LN(µ

{β}
lj , σ

{β}
lj

2
), IG (1/2, 1)) + dKL(LN(µ

{α}
lj , σ

{α}
lj

2
), G (1/2, 1))

]
+ dKL(LN(µ{sb}, σ{sb}2), IG (1/2, 1)) + dKL(LN(µ{sa}, σ{sa}2), G

(
1/2, s20

)
)

4.2.3 Algorithm and Computational Details

We minimise the loss L for both SS-GL and SS-GHS models by recursively sampling their

corresponding variational posterior, allowing us to propagate the information through the

network. The Gaussian variational approximations, N(µlj, diag(σ2
lj)), are reparameterized

as µlj + σlj ⊙ ζlj for ζlj ∼ N(0, I), where ⊙ denotes the entry-wise (Hadamard) product.

Continuous Relaxation. The discrete spike variables (z) are replaced with their continu-

ous relaxation to circumvent the nondifferentiablility in L making practical implementation

easier (Jang et al., 2017; Maddison et al., 2017). Specifically, the Gumbel-softmax (GS)

distribution is used for continuous relaxation, that is q(zlj) ∼ Ber(γlj) is approximated by

q(z̃lj) ∼ GS(γlj, τ), where

z̃lj = (1 + exp(−ηlj/τ))−1, ηlj = log(γlj/(1− γlj)) + log(ulj/(1− ulj)), ulj ∼ U(0, 1)

where τ is the temperature. We keep τ = 0.5 for all the experiments similar to (Jantre et al.,

2021a). The use of z̃lj in the backward pass eases gradient calculation, while zlj is used in

the forward pass for exact node sparsity.
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Algorithm 4.1 Variational inference in SS-GL and SS-GHS Bayesian neural networks

Inputs: training dataset, network architecture, and optimizer tuning parameters.
Model inputs: prior parameters for T = (θ, z, τ 2) in SS-GL and T = (θ, z, τ 2, s2) in
SS-GHS.
Variational inputs: number of Monte Carlo samples S.
Output: Variational parameter estimates of network weights, scales, and sparsity.
Method: Set initial values of variational parameters.
repeat

Generate S samples of βlj, zlj, z̃lj, τ
2
lj, s

2 (for SS-GHS)
Use βlj, τ

2
lj, s

2 and zlj to compute L in forward pass
Use βlj, τ

2
lj, s

2 and z̃lj to compute gradient of L in backward pass
Update the variational parameters with gradient of loss using stochastic gradient descent
algorithm (e.g. SGD with momentum (Sutskever et al., 2013))

until change in ELBO < ϵ

4.3 Numerical Experiments

In this section, we demonstrate the performance of our proposed SS-GL and SS-GHS

approaches on network architectures and techniques used in practice. We consider multilayer

perceptron (MLP), LeNet-5-Caffe, and ResNet architectures which we implement in PyTorch

(Paszke et al., 2019). We perform image classification using aforementioned neural networks

in widely used MNIST, Fashion-MNIST, and CIFAR-10 datasets.

In all the experiments, we fix σ2
0 = 1 and σ2

e = 1. The remaining tuning parameter

details such as learning rate, minibatch size, and initial parameter choice are provided in the

Appendix. The prediction accuracy is calculated using variational Bayes posterior mean es-

timator with 10 Monte Carlo samples at test-time. We use swish (SiLU) activations (Elfwing

et al., 2018; Ramachandran et al., 2017) instead of ReLU in our proposed SS-GL and SS-

GHS models similar to Jantre et al. (2021a)’s spike-and-slab Gaussian node selection model

(SS-IG) to avoid the dying neuron problem (Lu et al., 2020). Smoother activation functions

such as sigmoid, tanh, etc also help alleviate this problem. We choose swish since it has the

best performance.

We provide node sparsity estimates for each linear hidden layer separately. For all models,

the node sparsity in a given linear layer is the ratio of number of neurons with atleast one
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nonzero incoming edge over the original number of neurons present in that layer before

training. In a convolution layer we provide channel sparsity estimate which is ratio of the

number of output channels with atleast one nonzero incoming connection over the total

number of output channels present in the dense counterpart. The layer-wise node or channel

sparsity estimates provide granular illustration of the structural compactness of the trained

model. The structural sparsity in the trained model leads to lower computational complexity

at test-time which is vital for resource constrained devices.

4.3.1 MLP MNIST Classification

In this experiment, we use MLP model with 2 hidden layers having 400 nodes per layer

to fit the MNIST data which consists of 60,000 small square 28×28 pixel grayscale images of

handwritten single digits between 0 and 9. We preprocess the images in the MNIST data by

dividing their pixel values by 126. Output layer has 10 neurons since there are 10 classes in

the MNIST data. We provide the graph of the prediction accuracy of the i.i.d. test data over

training period of 1200 epochs. We provide layer-wise node sparsity plots for both layers to

highlight the dynamic structural compactness of the model under training. In what follows,

we discuss the choice of ς2 in SS-GL model as well as the choice of creg values in SS-GHS

model.

SS-GL penalty parameter choice. In SS-GL model, the value of ς2 need to be carefully

tuned for numerical experiments (Xu and Ghosh, 2015). A very large value of ς2 will over-

shrink the network weights and leading to biased estimates; ς2 → 0 will lead to a very diffuse

distribution for the slab part. Instead we place a conjugate gamma prior on the penalty pa-

rameter, ς2 ∼ Γ(c, d), and estimate it through our variational inference framework via an

approximating family q(ς2) := LN(µς , σ
2
ς ).

Figure 4.2 summarizes the results of MLP-MNIST experiment using SS-GL model with

fixed ς2 = 1 and variable ς2 ∼ Γ(c = 4, d = 2). The values of the shape (c = 4) and rate

(d = 2) parameters where chosen based on hyperparameters search and past literature. We
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(a) Prediction accuracy (b) Layer-1 node sparsity (c) Layer-2 node sparsity

Figure 4.2 SS-GL penalty parameter choice experiment results. Here, we demonstrate
the performance of SS-GL with fixed ς2 = 1 and variable ς2 ∼ Γ(c = 4, d = 2). (a) The
classification accuracy on the test data. (b) and (c) the node sparsity in the layer-1 and
layer-2 of the network respectively. We observe that placing a prior on ς2 yields better
classification accuracy.

observe that inferring the value of ς2 from Bayesian estimation significantly improves the

predictive accuracy compared to fixed ς2 (Figure 4.2a). The fixed ς2 model has better node

sparsities in both the layers of the MLP model (Figure 4.2b and 4.2c). This suggests that

ς2 = 1 might be overshrinking the weights which assists in pruning them via spike-and-slab

prior, however this also hampers the predictive performance of the model. In rest of the

experiments involving SS-GL, we place the gamma prior on ς2 ∼ Γ(c = 4, d = 2).

SS-GHS regularization constant choice. In what follows, we provide MLP-MNIST

experiment using SS-GHS model with with regularization constant values of creg = 1 and

creg = kl + 1. In MLP, the kl + 1 = 400 + 1 = 401 is a large constant and essentially acts as

an unregularized model. We ran unregularized version of the model and verified this claim

but do not provide the results for brevity.

Figure 4.3 summarizes the results of MLP-MNIST experiment using SS-GHS model creg =

1 and creg = kl + 1. We observe that both values of creg lead to same predictive accuracies

on test data. However in creg = 1 scenario, SS-GHS model has better layer-1 node sparsity

(Figure 4.3b). Layer-2 node sparsity is same in both the creg values (Figure 4.3c). In rest of

the experiments involving SS-GHS, we choose creg = 1.
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(a) Prediction accuracy (b) Layer-1 node sparsity (c) Layer-2 node sparsity

Figure 4.3 SS-GHS regularization constant choice experiment results. We demon-
strate the performance of SS-GHS with regularization constant of creg = 1 and creg = kl+1 =
401. (a) The classification accuracy on the test data. (b) and (c) The node sparsity in the
layer-1 and layer-2 of the network respectively. We observe that both creg choices lead to
similar classification accuracies with creg = 1 having better layer-1 node sparsity.

MLP-MNIST comparison with SS-IG

We provide MLP-MNIST experiment where we compare our proposed models with SS-

IG model. The results are presented in Figure 4.4. We provide test data accuracy, model

compression ratio, flops ratio, and layer-wise node sparsities in each experiment.

Additional metrics. We provide two additional metrics that relate to the model com-

pression and computational complexity. (i) compression ratio: it is the ratio of number

of nonzero weights in the compressed network versus the dense model and is an indicator

of storage cost at test-time. (ii) floating point operations (FLOPs) ratio: it is the ratio of

number of FLOPs required to predict the output from the input during test-time in the

compressed network versus its dense counterpart. We have detailed the FLOPs calculation

in neural networks in Chapter 3 Appendix B. Layer-wise node and channel sparsities are

directly related to FLOPs ratio hence we only provide FLOPs ratio in LeNet-5-Caffe and

ResNet models.

In Figure 4.4a, we observe that SS-GHS has better predictive accuracy compared to SS-

GL and SS-IG models. Moreover, SS-GHS model not only has minimal storage cost among

the node selection models compared (Figure 4.4b) but also the least number of FLOPs

required for inference during test-time (Figure 4.4c). In Figure 4.4d and 4.4e, we observe
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(a) Prediction accuracy (b) Compression ratio (c) FLOPs ratio

(d) Layer-1 node sparsity (e) Layer-2 node sparsity

Figure 4.4 MLP/MNIST experiment results. Here, we demonstrate the performance of
our SS-GL (ς2 ∼ Γ(c = 4, d = 2)) and SS-GHS (creg = 1) models compared against SS-IG
model. (a) we plot the classification accuracy on the test data. (b) and (c) we plot the node
sparsity in the layer-1 and layer-2 of the network respectively. We observe that our SS-GHS
yields the most compact network with the best classification accuracy.

that SS-GHS has pruned away maximum number of nodes in contrast to SS-GL and SS-IG

models and this also leads to the maximum reduction in FLOPs evident from (Figure 4.4c).

Lastly, SS-GL and SS-IG models have similar predictive accuracies; however, SS-GL has

lower layer-wise node sparsities in both layers, hence lower FLOPs ratio and it also has

lower storage cost at test-time compared to SS-IG.

4.3.2 LeNet-5-Caffe Experiments

The results of more complex LeNet-5-Caffe network experiments on MNIST and Fashion-

MNIST are presented in Figure 4.5. We provide test data accuracy, model compression

ratio, and FLOPs ratio in each experiment over 1200 epochs. Here, FLOPs ratio serve as

a collective indicator of layer-wise node sparsities since FLOPs are directly related to how

many neurons or channels are remaining in linear or convolution layers respectively.
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In LeNet-5-Caffe/MNIST experiment (Figure 4.5a - 4.5c), we observe that our SS-GHS

and SS-GL models have better predictive accuracy than SS-IG (Figure 4.5a). We observe

that both SS-GHS and SS-GL models have better model compression ratio (Figure 4.5b).

Moreover, all three models compared achieve similar reduction in Flops (Figure 4.5c)). In

contrast with MLP-MNIST experiment (Figure 4.4) our SS-GHS and SS-GL have same

performance on all metrics in LeNet-5-Caffe-MNIST experiment.

In LeNet-5-Caffe/Fashion-MNIST experiment (Figure 4.5d - 4.5f), we observe that SS-

GHS has better predictive accuracy compared to SS-GL and SS-IG models. The storage

cost reduction in SS-GHS model is similar to SS-IG but better than SS-GL (Figure 4.5e).

Next, SS-IG achieves best reduction in FLOPs compared to both our approaches and SS-

GHS has lower FLOPs than SS-GL. Lastly, SS-GL and SS-IG models have similar predictive

accuracies; however, SS-IG has lower FLOPs and storage cost at test-time.

(a) Test accuracy (b) Compression ratio (c) FLOPs ratio

(d) Test accuracy (e) Compression ratio (f) FLOPs ratio

Figure 4.5 LeNet-5-Caffe/MNIST and LeNet-5-Caffe/Fashion-MNIST experi-
ments results. Top row (a)-(c) represent the LeNet-5-Caffe on MNIST experiment results.
Bottom row (d)-(f) represent the LeNet-5-Caffe on Fashion-MNIST experiment results.
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4.3.3 Residual Network Experiments

This section presents an example demonstrating the trade-off between the computational

complexity and memory cost at test-time among our structured pruning methods and recent

unstructured pruning methods in Residual Networks (ResNet) applied on CIFAR-10 dataset

(He et al., 2016). The CIFAR-10 dataset (Krizhevsky, 2009) consists of 60000 32x32 colour

images in 10 classes, with 6000 images per class. There are 50000 training images and 10000

test images. We use ResNet-20 and ResNet-32 architectures and follow the experimental

setting provided by Sun et al. (2021). We compare our proposed SS-GL and SS-GHS methods

with SS-IG (Jantre et al., 2021a), consistent sparse deep learning (BNNcs) (Sun et al., 2021),

and variational BNN with mixture Gaussian prior (VBNN) (Blundell et al., 2015).

In all of our experiments, we follow the same training setup as used in Sun et al. (2021),

that is, each model considered in Table 4.1 was trained using SGD with momentum for 300

epochs with mini-batch size of 128 during training, the momentum parameter was set to

0.9, and the initial learning rate was set to 0.1. The training data was preprocessed using

the random erasing data augmentation strategy proposed by Zhong et al. (2020). We use

step-wise constant learning rate schedule and decrease the learning rate by a factor of 10 at

epochs 150 and 225. We refine the parameters associated with sparse sub-network obtained

after first 300 epochs for additional 100 epochs where sparsity parameters in SS-IG and

our models are not trained and only parameters associated with the slab part are learned.

We use swish activations in our SS-GL and SS-GHS models as well as SS-IG. For BNNcs

and VBNN models, we use ReLU activations as recommended by their authors. In all the

models, we set σ2
e = 1 and σ2

0 = 0.04 same as Sun et al. (2021). In SS-IG, SS-GL, and

SS-GHS we use common λl = 10−4 after hyperparamter search, since our theory does not

cover Bayesian CNNs. However, establishing the posterior consistency in the Bayesian CNN

is an interesting future direction of work.

We quantify the predictive performance using the accuracy of the test data. Besides the

test accuracy, we use compression (%) and pruned FLOPs (%) which are compression ratio
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and FLOPs ratio discussed earlier converted to percentages respectively. In this experiment,

we only count parameters and FLOPs over convolutional and last fully connected layer,

because our proposed methods focus on channel and node pruning of convolutional and

linear layers respectively.

For ResNet architecture, our proposed methods under centered parameterization similar

to previous experiments in Section 4.3.1 and 4.3.2 have unstable performance. Instead we

incorporate non-centered parameterization (Ghosh et al., 2019) to stabilize the training.

Below we detail the non-centered parameterization strategy:

Non-Centered Parameterization

We adopt non-centered parameterization for the Gaussian slab component in both the

prior setups to circumvent the pathological funnel shaped geometries associated with the

coupled posterior (Ingraham and Marks, 2017; Ghosh et al., 2019). Accordingly, the coupling

between weights wlj and scales τ ∗2lj = τ 2lj (for SS-GL) or τ ∗2lj = τ̃ 2ljs
2 (for SS-GHS) can be

reformulated as

βlj ∼ N(0, σ2
0τ

∗2
lj I), wlj = τ ∗ljβlj,

This formulation leads to independent sampling of weights and scales from their respec-

tive prior distributions which are now marginally uncorrelated leads to simpler posterior

geometries (Betancourt and Girolami, 2015). This non-centered reparameterization leads to

efficient posterior inference without change in functional form of the respective prior.

We summarize the ResNet experiment results in Table 4.1. The comparison with BNNcs

and VBNN models indicates that our SS-GL and SS-GHS methods have significantly better

prediction accuracy in both ResNet-20 and ResNet-32 setups. Moreover, we demonstrate

that even though BNNcs and VBNN models have predefined high levels of pruned parameters,

our models have significantly less FLOPs during inference at test-time. This highlights the

trade-off between unstructured sparsity and structured sparsity methods, where the former

leads to significant reduction in storage cost and the later has significantly less computa-
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Table 4.1 ResNet-20/CIFAR-10 and ResNet-32/CIFAR-10 experiments results.
The results of each method is calculated by averaging over 3 independent runs with stan-
dard deviation reported in parentheses. For BNNcs and VBNN models, we show predefined
percentages of pruned parameters used for magnitude pruning given in (Sun et al., 2021).

Model Method Test Accuracy Compression (%) Pruned FLOPs (%)

ResNet-20 BNNcs (20%) 92.23 (0.16) 19.29 (0.12) 98.94 (0.38)
BNNcs (10%) 91.43 (0.11) 9.18 (0.13) 99.13 (0.37)
VBNN (20%) 89.61 (0.04) 19.55 (0.01) 100.00 (0.00)
VBNN (10%) 88.43 (0.13) 9.50 (0.00) 99.93 (0.00)
SS-IG 92.94 (0.15) 79.52 (0.98) 88.39 (1.00)
SS-GL (ours) 92.99 (0.11) 76.10 (1.55) 85.15 (1.76)
SS-GHS (ours) 92.87 (0.23) 78.70 (0.42) 86.18 (1.02)

ResNet-32 BNNcs (10%) 92.65 (0.03) 9.15 (0.03) 94.53 (0.86)
BNNcs (5%) 91.39 (0.08) 4.49 (0.02) 90.79 (1.35)
VBNN (10%) 89.37 (0.04) 9.61 (0.01) 99.99 (0.02)
VBNN (5%) 87.38 (0.22) 4.59 (0.01) 94.27 (0.54)
SS-IG 93.08 (0.23) 55.28 (2.96) 67.59 (2.36)
SS-GL (ours) 93.33 (0.11) 54.27 (1.73) 66.93 (2.98)
SS-GHS (ours) 93.15 (0.23) 53.72 (2.11) 66.68 (2.75)

tional complexity at test-time. In comparison with SS-IG node selection model, we observe

that our SS-GL and SS-GHS models have lower storage cost and FLOPS at test-time with

comparable predictive accuracy in ResNet-20 architecture. In ResNet-32 case, SS-GL has

better predictive accuracy than SS-IG, while compression (%) and pruned FLOPs (%) in

our models are comparable to SS-IG within standard deviation. This comparison further

highlights the advantage of using group shrinkage priors instead of Gaussian in the slab part

of spike-and-slab framework to achieve better test accuracies with lower computational and

memory footprint.

4.4 Conclusion and Discussion

In this chapter, we introduced the compact Bayesian neural network methods to handle

the model compression in a principled manner. Our proposed spike-and-slab models combine

the automated sparsity learning with the hierarchical group shrinkage priors: group lasso
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and group horseshoe. We provide computationally efficient and scalable variational inference

algorithms in both the models. In the large scale experiments involving ResNet architectures,

we relied on the non-centered parameterization which ensured the numerical stability of

our models. We demonstrate the superior performance of the group shrinkage priors over

Gaussian prior in slab component in several experiments which further highlights our point

that group shrinkage priors shrink the collection of weights incident on the node close to

zero which helps in removal of that node through spike-and-slab framework.

An immediate future work would be to establish the variational posterior consistency and

corresponding contraction rate in both the models. Moreover, the superiority of the SS-GL

and SS-GHS models over the SS-IG model could be established through the faster posterior

convergence rate for the former models compared to the later.
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APPENDIX

ADDITIONAL NUMERICAL EXPERIMENTS DETAILS

A.1 Variational parameters initialization

We initialize the γlj’s at a value close to 1 for all of our experiments. This ensures that

at epoch 0, we have a fully connected deep neural network. The variational parameters µljj′

are initialized using Kaiming uniform initialization (He et al., 2015). Moreover, σljj′ are

reparameterized using softplus function: σljj′ = log(1 + exp(ρljj′)) and ρljj′ are initialized

using a constant value of -6. This keeps initial values of σljj′ close to 0 ensuring that the

initial values of network weights stay close to Kaiming uniform initialization.

In SS-GL, µ
{τ}
lj is initialized using U(−0.6, 0.6) and σ

{τ}
lj = log(1 + exp(ρ

{τ}
lj )) where ρ

{τ}
lj

are initialized to -6. Moreover, µς is initialized to 1 and σς = log(1 + exp(ρ{τ})) where ρ{τ}

is initialized to -6.

In SS-GHS, µ
{α}
lj and µ

{β}
lj are initialized using U(−0.6, 0.6). σ

{α}
lj = log(1 + exp(ρ

{α}
lj ))

and σ
{β}
lj = log(1 + exp(ρ

{β}
lj )) where ρ

{α}
lj and ρ

{β}
lj are initialized to -6. Next, µ{sa} and µ{sb}

are initialized to 1. σ{sa} = log(1 + exp(ρ{sa})) and σ{sb} = log(1 + exp(ρ{sb})) where ρ{sa}

and ρ{sb} are initialized to -6.

A.2 Hyperparameters for training

In MLP-MNIST and LeNet-5-Caffe-MNIST experiments, we use 10−3 learning rate and

1024 minibatch size for all three models compared. In LeNet-5-Caffe-Fashion-MNIST exper-

iment, we train SS-GL with 10−3 learning rate whereas, SS-GHS and SS-IG are trained with

2 × 10−3 where minibatch size is 1024 in all three models compared. We train each model

for 1200 epochs using Adam optimizer in all the MLP and LeNet-5-Caffe experiments.
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CHAPTER 5

SEQUENTIAL BAYESIAN NEURAL SUBNETWORK ENSEMBLES

5.1 Introduction

Bayesian neural networks (BNNs) have pushed the envelope of probabilistic machine

learning through the combination of deep neural network architecture and Bayesian inference.

However, due to the enormous number of parameters, BNNs adopt approximate inference

techniques such as variational inference with a fully factorized approximating family (Jordan

et al., 1999). Although this approximation is crucial for computational tractability, they

could lead to under-utilization of BNN’s true potential (Izmailov et al., 2021).

Recently, ensemble of neural networks (Lakshminarayanan et al., 2017) has been proposed

to account for the parameter/model uncertainty, which has been shown to be analogous to

the Bayesian model averaging and sampling from the parameter posteriors in the Bayesian

context to estimate the posterior predictive distribution (Wilson and Izmailov, 2020). In this

spirit, the diversity of the ensemble has been shown to be a key to improving the predictions,

uncertainty, and robustness of the model. To this end, diverse ensembles can mitigate some of

the shortcomings introduced by approximate Bayesian inference techniques without compro-

mising computational tractability. Several different diversity-inducing techniques have been

explored in the literature. The approaches range from using a specific learning rate schedule

(Huang et al., 2017), to introducing kernalized repulsion terms among the ensembles in the

loss function at train time (D’Angelo and Fortuin, 2021), mixture of approximate posteriors

to capture multiple posterior modes (Dusenberry et al., 2020), appealing to sparsity (albeit

ad-hoc) as a mechanism for diversity (Havasi et al., 2021; Liu et al., 2022) and finally ap-

pealing to diversity in model architectures through neural architecture and hyperparameter

searches (Egele et al., 2021; Wenzel et al., 2020).

However, most approaches prescribe parallel ensembles, with each individual model part
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of an ensemble starting with a different initialization, which can be expensive in terms

of computation as each of the ensembles has to train longer to reach the high-performing

neighborhood of the parameter space. Although the aspect of ensemble diversity has taken

center stage, the cost of training these ensembles has not received much attention. However,

given that the size of models is only growing as we advance in deep learning, it is crucial to

reduce the training cost of multiple individual models forming an ensemble in addition to

increasing their diversity.

To this end, sequential ensembling techniques offer an elegant solution to reduce the cost

of obtaining multiple ensembles, whose origin can be traced all the way back to Swann and

Allinson (1998); Xie et al. (2013), wherein ensembles are created by combining epochs in

the learning trajectory. Jean et al. (2015); Sennrich et al. (2016) use intermediate stages of

model training to obtain the ensembles. Moghimi et al. (2016) used boosting to generate

ensembles. In contrast, recent works by Huang et al. (2017); Garipov et al. (2018); Liu et al.

(2022) force the model to visit multiple local minima by cyclic learning rate annealing and

collect ensembles only when the model reaches a local minimum. Notably, the aforemen-

tioned sequential ensembling techniques in the literature have been proposed in the context

of deterministic machine learning models. Extending the sequential ensembling technique to

Bayesian neural networks is attractive because we can potentially get high-performing en-

sembles without the need to train from scratch, analogous to sampling with a Markov chain

Monte Carlo sampler that extracts samples from the posterior distribution. Furthermore,

sequential ensembling is complementary to the parallel ensembling strategy, where, if the

models and computational resources permit, each parallel ensemble can generate multiple

sequential ensembles, leading to an overall increase in the total number of diverse models in

an ensemble.

On the other hand, Chapters 3 and 4 make a case for (i) the automatic data-driven

sparsity learning in Bayesian neural networks through the use of spike-and-slab priors, (ii)

the use of group sparsity priors Louizos et al. (2017); Ghosh et al. (2019); Jantre et al.
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(2021a) to provide structural sparsity in Bayesian neural networks leading to significant

computational gains. In this work, we leverage the automated structural sparsity learning

using spike-and-slab priors similar to Jantre et al. (2021a) in our approach to sequentially

generate multiple Bayesian neural subnetworks with varying sparse connectivities which

when combined yields highly diverse ensemble.

To this end, we propose Sequential Bayesian Neural Subnetwork Ensembles (SeBayS)

with the following major contributions:

• We propose a sequential ensembling strategy for Bayesian neural networks (BNNs)

which learns multiple subnetworks in a single forward-pass. The approach involves a

single exploration phase with a large (constant) learning rate to find high-performing

sparse network connectivity yielding structurally compact network. This is followed

by multiple exploitation phases with sequential perturbation of variational mean pa-

rameters using corresponding variational standard deviations together with piecewise-

constant cyclic learning rates.

• We combine the strengths of the automated sparsity-inducing spike-and-slab prior that

allows dynamic pruning during training, which produces structurally sparse BNNs, and

the proposed sequential ensembling strategy to efficiently generate diverse and sparse

Bayesian neural networks, which we refer to as Bayesian neural subnetworks.

5.1.1 Related Work

Ensembles of neural networks: Ensembling techniques in the context of neural net-

works are increasingly being adopted in the literature due to their potential to improve

accuracy, robustness, and quantify uncertainty. The most simple and widely used approach

is Monte Carlo dropout, which is based on Bernoulli noise (Gal and Ghahramani, 2016) and

deactivates certain units during training and testing. This, along with techniques such as

DropConnect (Wan et al., 2013), Swapout (Singh et al., 2016) are referred to as“implicit”
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ensembles as model ensembling is happening internally in a single model. Although they

are efficient, the gain in accuracy and robustness is limited and they are mainly used in the

context of deterministic models. Although most recent approaches have targeted parallel

ensembling techniques, few approaches such as BatchEnsemble (Wen et al., 2020) appealed

to parameter efficiency by decomposing ensemble members into a product of a shared matrix

and a rank-one matrix, and using the latter for ensembling and MIMO (Havasi et al., 2021)

which discovers subnetworks from a larger network via multi-input multi-output configura-

tion. In the context of Bayesian neural network ensembles, Dusenberry et al. (2020) proposed

a rank-1 parameterization of BNNs, where each weight matrix involves only a distribution

on a rank-1 subspace and uses mixture approximate posteriors to capture multiple modes.

Sequential ensembling techniques offer an elegant solution to ensemble training but have

not received much attention recently due to a wider focus of the community on diversity of

ensembles and less on the computational cost. Notable sequential ensembling techniques are

Huang et al. (2017); Garipov et al. (2018); Liu et al. (2022) that enable the model to visit

multiple local minima through cyclic learning rate annealing and collect ensembles only when

the model reaches a local minimum. The difference is that Huang et al. (2017) adopts cyclic

cosine annealing, Garipov et al. (2018) uses a piecewise linear cyclic learning rate schedule

that is inspired by geometric insights. Finally, Liu et al. (2022) adopts a piecewise-constant

cyclic learning rate schedule. We also note that all of these approaches have been primarily

in the context of deterministic neural networks.

Our proposed approach (i) introduces sequential ensembling into Bayesian neural net-

works, (ii) combines it with dynamic sparsity through sparsity-inducing Bayesian priors to

generate Bayesian neural subnetworks, and subsequently (iii) produces diverse model en-

sembles efficiently. It is also complementary to other parallel ensembling as well as efficient

ensembling techniques.
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5.2 Sequential Bayesian Neural Subnetwork Ensembles

5.2.1 Base Learner

We call individual models which are part of an ensemble the “Base learners”. Here we

provide the prior and corresponding fully factorized variational family that we use in our

proposed sequential ensembles.

Prior Choice. Zero-mean Gaussian distribution is a widely popular choice of prior for

the model parameters (θ) (Izmailov et al., 2021; Louizos et al., 2017; Mackay, 1992; Neal,

1996; Blundell et al., 2015). In our sequential ensemble of dense BNNs, we adopt the zero-

mean Gaussian prior similar to Blundell et al. (2015) in each individual BNN model part

of an ensemble. The prior and corresponding fully factorized variational family is given as

follows

p(θljk) = N(0, σ2
0), q(θljk) = N(µljk, σ

2
ljk)

where θljk is the kth weight incident onto the jth node (in MLP) or output channel (in CNN)

in the lth layer. N(., .) represents the Gaussian distribution. σ2
0 is the constant prior Gaussian

variance and is chosen through hyperparameter search. µljk and σ2
ljk are the variational mean

and standard deviation parameters of q(θljk).

Dynamic sparsity learning for our sequential ensemble of sparse BNNs is achieved via

spike-and-slab prior. We adopt the sparse BNN model, SS-IG (Jantre et al., 2021a) as a

base learner in to achieve the structural sparsity in Bayesian neural networks. The prior and

corresponding variational family in SS-IG model is given in Section 2.3.

5.2.2 Sequential Ensembling and Bayesian Neural Subnetworks

We propose an ensembling procedure to obtain the base learners {θ1,θ2, · · · ,θM} se-

quentially in a single training run and construct the ensemble. The ensemble predictions

are calculated using the uniform average of the predictions obtained from each base learner.
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Specifically, if yjnew represents the outcome of the mth base learner, then the ensemble pre-

diction of M base learners (for continuous outcomes) is ynew = 1
M

∑M
m=1 y

m
new.

Sequential Perturbations. Our ensembling strategy produces diverse set of base learn-

ers from a single end-to-end training process. It consists of an exploration phase followed by

M exploitation phases. The exploration phase is carried out with a large constant learning

rate for t0 time. This allows us to explore high-performing regions of the parameter space.

At the conclusion of the exploration phase, the variational posterior approximation for the

model parameters reaches a good region on the posterior density surface. Next, during each

equally spaced exploitation phase (time = tex) of the ensemble training, we first use mod-

erately large learning rate for tex/2 time followed by small learning rate for remaining tex/2

time. After the first model convergence step (time = t0 + tex), we perturb the mean parame-

ters of the variational posterior distributions of the model weights using their corresponding

standard deviations. The initial values of these mean variational parameters at each subse-

quent exploitation phase become µ′
ljk = µljk±ρ∗σljk, where ρ is a perturbation factor. This

perturbation and subsequent model learning strategy is repeated a total of M − 1 times,

generating M base learners (either dense or sparse BNNs) creating our sequential ensemble.

Sequential Bayesian Neural Subnetwork Ensemble (SeBayS). In this ensembling

procedure we use a large (and constant) learning rate (e.g., 0.1) in the exploration phase to

find high-performing sparse network connectivity in addition to exploring a wide range of

model parameter variations. The use of large learning rate facilitates pruning of excessive

nodes or output channels, leading to a compact Bayesian neural subnetwork. This struc-

tural compactness of the Bayesian neural subnetwork further helps us after each sequential

perturbation step by quickly converging to different local minima potentially corresponding

to the different modes of the true Bayesian posterior distribution of the model parameters.

Freeze vs No Freeze Sparsity. In our SeBayS ensemble, we propose to evaluate two

different strategies during the exploitation phases: (1) SeBayS-Freeze: freezing the sparse

connectivity after the exploration phase, and (2) SeBayS-No Freeze: letting the sparsity
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Algorithm 5.1 Sequential Bayesian neural subnetwork ensemble (SeBayS) algorithm

1: Inputs: training data D = {(xi, yi)}Ni=1, network architecture ηθ, ensemble size M , per-
turbation factor ρ, exploration phase training time t0, training time of each exploitation
phase tex.
Model inputs: prior hyperparameters for θ, z (for sparse models).

2: Output: Variational parameter estimates of network weights and sparsity.
3: Method: Set initial values of variational parameters: µinit,σinit,γinit.

# Exploration Phase
4: for t = 1, 2, . . . , t0 do
5: Update µ0

lj,σ
0
lj, and γ0lj (for sparse models) ← SGD(L).

6: end for
7: Fix the sparsity variational parameters, γlj, for freeze sparse models

# M Sequential Exploitation Phases
8: for m = 1, 2, . . . ,M do
9: for t = 1, 2, . . . , tex do
10: Update µm

lj ,σ
m
lj , and γmlj (for no freeze sparse models) ← SGD(L).

11: end for
12: Save variational parameters of converged base learner ηmθ .
13: Perturb variational mean parameters using standard deviations: µm+1

init = µm± ρ ∗ σm

14: Set variational standard deviations to a small value: σm+1
init = 10−6.

15: end for

parameters learn after the exploration phase. The first approach fixes the sparse connectivity

leading to lower computational complexity during the exploitation phase training. The

diversity in the SeBayS-Freeze ensemble is achieved via sequential perturbations of the mean

parameters of the variational distribution of the active model parameters in the subnetwork.

The second approach lets the sparsity learn beyond the exploration phase, leading to highly

diverse subnetworks at the expense of more computational complexity compared to the

SeBayS-Freeze approach.

We found that the use of sequential perturbations and dynamic sparsity leads to high-

performant subnetworks with different sparse connectivities. Compared to parallel ensem-

bles, we achieve higher ensemble diversity in single forward pass. The use of a spike-and-slab

prior allows us to dynamically learn the sparsity during training, while the Bayesian frame-

work provides uncertainty estimates of the model and sparsity parameters associated with

the network. Our approach is the first one in the literature that performs sequential en-
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sembling of dynamic sparse neural networks, and more so in the context of Bayesian neural

networks.

Initialization Strategy. We initialize the variational mean parameters, µ, using Kaim-

ing He initialization (He et al., 2015) while variational standard deviations, σ, are initialized

to a value close to 0. For dynamic sparsity learning, we initialize the variational inclusion

probability parameters associated with the sparsity, γlj, to be close to 1, which ensures that

the training starts from a densely connected network. Moreover, it allows our spike-and-slab

framework to explore potentially different sparse connectivities before the sparsity param-

eters are converged after the initial exploration phase. After initialization, the variational

parameters are optimized using the stochastic gradient descent with momentum algorithm

(Sutskever et al., 2013).

Algorithm. We provide the pseudocode for our sequential ensembling approaches: (i)

BNN sequential ensemble, (ii) SeBayS-Freeze ensemble, (iii) SeBayS-No Freeze ensemble

in Algorithm 5.1.

5.3 Numerical Experiments

In this section, we demonstrate the performance of our proposed SeBayS approach on

network architectures and techniques used in practice. We consider ResNet-32 on CIFAR10

(He et al., 2016), and ResNet-56 on CIFAR100. These networks are trained with batch nor-

malization, stepwise (piecewise constant) decreasing learning rate schedules, and augmented

training data. We provide the source code, all the details related to fairness, uniformity, and

consistency in training and evaluation of these approaches and reproducibility considerations

for SeBayS and other baseline models in the Appendix A.

Baselines. Our baselines include the frequentist model of a deterministic deep neural

network (trained with SGD), BNN (Blundell et al., 2015), spike-and-slab BNN for node

sparsity (Jantre et al., 2021a), single forward pass ensemble models including rank-1 BNN

Gaussian ensemble (Dusenberry et al., 2020), MIMO (Havasi et al., 2021), and EDST ensem-
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ble (Liu et al., 2022), multiple forward pass ensemble methods: DST ensemble (Liu et al.,

2022) and Dense ensemble of deterministic neural networks. For fair comparison, we keep

the training hardware, environment, data augmentation, and training schedules of all the

models same. We adopted and modified the open source code provided by the Liu et al.

(2022) and Nado et al. (2021) to implement the baselines and train them. Extra details

about model implementation and learning parameters are provided in the Appendix A.

Metrics. We quantify predictive accuracy and robustness focusing on the accuracy

and negative log-likelihood (NLL) of the i.i.d. test data (CIFAR-10 and CIFAR-100) and

corrupted test data (CIFAR-10-C and CIFAR-100-C) involving 19 types of corruption (e.g.,

added blur, compression artifacts, frost effects) (Hendrycks and Dietterich, 2019). More

details on the evaluation metrics are given in the Appendix A.

Results. The results for CIFAR10 and CIFAR100 experiments are presented in Ta-

bles 5.1 and 5.2, respectively. For all ensemble baselines, we keep the number of base models

M = 3 similar to Liu et al. (2022). We report the results for sparse models in the upper

half and dense models in the lower half of Tables 5.1 and 5.2. In our models, we choose the

perturbation factor (ρ) to be 3. See the Appendix E for additional results on the effect of

perturbation factor.

We observe that our BNN sequential ensemble consistently outperforms single sparse

and dense models, as well as sequential ensemble models in both CIFAR10 and CIFAR100

experiments. Whereas compared to models with 3 parallel runs, our BNN sequential ensem-

ble outperforms the DST ensemble while being comparable to the dense ensemble in simpler

CIFAR10 experiments. Next, our SeBayS-Freeze and SeBayS-No Freeze ensembles outper-

form single-BNN, SSBNN, and MIMO while being comparable to deterministic and rank-1

BNN in CIFAR10 case. Whereas, in CIFAR10-C they outperform SSBNN, MIMO, and

rank-1 BNN. Additionally, SeBayS-No Freeze ensemble has comparable performance to de-

terministic and EDST ensemble, while SeBayS-Freeze ensemble outperforms deterministic

and EDST ensemble in CIFAR10-C. In ResNet-32/CIFAR10 case, we dynamically pruned
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Table 5.1 ResNet-32/CIFAR10 experiment results. We mark the best results out of
single-pass sparse models in bold and single-pass dense models in blue.

Methods Acc (↑) NLL (↓) cAcc (↑) cNLL (↓) # Forward
passes (↓)

SSBNN 91.2 0.320 67.5 1.479 1
MIMO (M=3) 88.9 0.333 65.9 1.102 1
EDST Ensemble (M = 3) 93.1 0.214 69.8 1.236 1
SeBayS-Freeze Ensemble (M = 3) 92.5 0.273 70.4 1.344 1
SeBayS-No Freeze Ensemble (M = 3) 92.4 0.274 69.8 1.356 1

DST Ensemble (M = 3) 93.3 0.206 71.9 1.018 3

Deterministic 92.6 0.378 69.9 2.143 1
BNN 91.9 0.353 71.3 1.422 1
Rank-1 BNN (M=3) 92.4 0.238 68.7 1.271 1
BNN Sequential Ensemble (M = 3) 93.8 0.265 73.3 1.341 1

Dense Ensemble (M=3) 93.8 0.214 72.5 1.381 3

off close to 50% of the parameters in SeBayS approach.

In more complex ResNet56/CIFAR100 experiment, our SeBayS-Freeze ensemble out-

performs SSBNN and MIMO in both CIFAR100 and CIFAR100-C, while it outperforms

deterministic model in CIFAR100-C. Next our SeBayS-No Freeze ensemble outperforms

SSBNN in both CIFAR100 and CIFAR100-C while it outperforms MIMO in CIFAR100 and

Table 5.2 ResNet-56/CIFAR100 experiment results. We mark the best results out of
single-pass sparse models in bold and single-pass dense models in blue.

Methods Acc (↑) NLL (↓) cAcc (↑) cNLL (↓) # Forward
passes (↓)

SSBNN 67.9 1.511 38.9 4.527 1
MIMO (M=3) 65.8 1.528 42.3 2.522 1
EDST Ensemble (M = 3) 71.9 0.997 44.3 2.787 1
SeBayS-Freeze Ensemble (M = 3) 69.4 1.393 42.4 3.855 1
SeBayS-No Freeze Ensemble (M = 3) 69.4 1.403 41.7 3.906 1

DST Ensemble (M = 3) 74.0 0.914 46.7 2.529 3

Deterministic 69.8 1.786 41.6 5.856 1
BNN 70.4 1.335 43.2 3.774 1
Rank-1 BNN (M=3) 70.7 1.075 43.9 2.752 1
BNN Sequential Ensemble (M = 3) 72.2 1.250 44.9 3.537 1

Dense Ensemble (M=3) 74.2 1.236 45.4 4.093 3
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deterministic model in CIFAR100-C. Given the complexity of the CIFAR100, our SeBayS

approach was able to dynamically prune off close to 18% of the ResNet56 model parameters.

5.4 Sequential BNN Ensemble Analysis

5.4.1 Function Space Analysis

Quantitative Metrics. We measure the diversity of the base learners in our sequential

ensembles by quantifying the pairwise similarity of the base learner’s predictions on the test

data. The average pairwise similarity is given by

Dd = E [d(P1(y|x1, · · · , xN),P2(y|x1, · · · , xN))]

where d(., .) is a distance metric between the predictive distributions and {(xi, yi)}i=1,··· ,N

are the test data. We consider two distance metrics:

(1) Disagreement: the fraction of the predictions on the test data on which the base learners

disagree: ddis(P1,P2) = 1
N

∑N
i=1 I(arg maxŷi

P1(ŷi) ̸= arg maxŷi
P2(ŷi)).

(2) Kullback-Leibler (KL) divergence: dKL(P1,P2) = E [logP1(y)− logP2(y)].

When given two models have the same predictions for all the test data, then both dis-

agreement and KL divergence are zero.

Table 5.3 Diversity metrics in ResNet-32/CIFAR-10 and ResNet-56/CIFAR100
experiments. We mark the best results out of single-pass models in bold.

ResNet-32/CIFAR10 ResNet-56/CIFAR100

Methods ddis (↑) dKL (↑) Acc (↑) ddis (↑) dKL (↑) Acc (↑)

EDST Ensemble 0.058 0.106 93.1 0.209 0.335 71.9
BNN Sequential Ensemble 0.061 0.201 93.8 0.208 0.493 72.2
SeBayS-Freeze Ensemble 0.060 0.138 92.5 0.212 0.452 69.4
SeBayS-No Freeze Ensemble 0.106 0.346 92.4 0.241 0.597 69.4

DST Ensemble 0.085 0.205 93.3 0.292 0.729 74.0

We report the results of the diversity analysis of the base learners that make up our

sequential ensembles in Table 5.3 and compare them with the DST and EDST ensembles.

We observe that for simpler CIFAR10 case, our sequential perturbation strategy helps in
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generating diverse base learners compared to EDST ensemble. Specifically, the SeBayS-No

Freeze ensembles have significantly high prediction disagreement and KL divergence among

all the methods, especially surpassing DST ensembles which involve multiple parallel runs.

In a more complex setup of CIFAR100, we observe that SeBayS-No Freeze ensemble has

the highest diversity metrics among single-pass ensemble learners. This highlights the im-

portance of dynamic sparsity learning during each exploitation phase.

Training Trajectory. We use t-SNE (Van Der Maaten and Hinton, 2008) to visual-

ize the training trajectories of the base learners obtained using our sequential ensembling

strategy in functional space. In the ResNet32-CIFAR10 experiment, we periodically save

the checkpoints during each exploitation training phase and collect the predictions on the

test dataset at each checkpoint. After training, we use t-SNE plots to project the collected

predictions into the 2D space. In Figure 5.1, the local optima reached by individual base

learners using sequential ensembling in all three models is fairly different. The distance be-

tween the optima can be explained by the fact that the perturbed variational parameters in

each exploitation phase try to reach nearby local optima.

Dimension 1

Di
m

en
sio

n 
2

Learner-1
Learner-2
Learner-3

(a) BNN Sequential Ensemble

Dimension 1

Di
m

en
sio

n 
2

Learner-1
Learner-2
Learner-3

(b) SeBayS-Freeze

Dimension 1

Di
m

en
sio

n 
2

Learner-1
Learner-2
Learner-3
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Figure 5.1 Training trajectories of base learners in ResNet32/CIFAR10 experi-
ment. Training trajectories obtained by BNN sequential ensemble, SeBayS-Freeze Ensem-
ble, and SeBayS-No Freeze Ensemble.
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(a) Pruned Parameter Ratio (b) Pruned Flops Ratio

Figure 5.2 Dynamic sparsity and FLOPs curves. They show ratio of remaining param-
eters and FLOPs for our SeBayS-Freeze and SeBayS-No Freeze ensembles in ResNet32-
CIFAR10 experiment.

5.4.2 Dynamic Sparsity Learning

In this section, we highlight the dynamic sparsity training in our SeBayS ensemble meth-

ods. We focus on ResNet-32/CIFAR10 experiment and consider M = 3 exploitation phases.

In particular, we plot the ratios of remaining parameters and floating point operations

(FLOPs) in the SeBayS sparse base learners. In Figure 5.2, We observe that during ex-

ploration phase, SeBayS prunes off 50% of the network parameters and more than 35% of

the FLOPs compared to its dense counterpart.

5.4.3 Effect of Ensemble size

In this section, we explore the effect of the ensemble size M in ResNet-32/CIFAR10

experiment. According to the ensembling literature (Hansen and Salamon, 1990; Ovadia

et al., 2019), increasing number of diverse base learners in the ensemble improves predictive

performance, although with a diminishing impact. In our ensembles, we generate models

and aggregate performance sequentially with increasing M , the number of base learners in

the ensemble.

137



(a) BNN Sequential Ensemble (b) SeBayS-Freeze (c) SeBayS-No Freeze

Figure 5.3 Predictive performance results of the base learners and the sequential
ensembles as the ensemble size M varies in ResNet32/CIFAR10 experiment.

In Figure 5.3, we plot the performance of the individual base learners, as well as the

sequential ensemble as M varies. For individual learners, we provide the mean test accu-

racy with corresponding one standard deviation spread. When M = 1, the ensemble and

individual model refer to a single base learner and hence their performance is matched. As

M grows, we observe significant increase in the performance of our ensemble models with

diminishing improvement for higher Ms. The high performance of our sequential ensembles

compared to their individual base models further underscores the benefits of ensembling in

sequential manner.

5.5 Conclusion and Discussion

In this work, we propose SeBayS ensemble, which is an approach to generate sequential

Bayesian neural subnetwork ensembles through a combination of novel sequential ensem-

bling approach for BNNs and dynamic sparsity with sparsity-inducing Bayesian prior that

provides a simple and effective approach to improve the predictive performance and model

robustness. The highly diverse Bayesian neural subnetworks converge to different optima

in function space and, when combined, form an ensemble which demonstrates improving

performance with increasing ensemble size. Our simple yet highly effective sequential per-
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turbation strategy enables a dense BNN ensemble to outperform deterministic dense ensem-

ble. Whereas, the Bayesian neural subnetworks obtained using spike-and-slab node pruning

prior produce ensembles that are highly diverse, especially the SeBays-No Freeze ensembles

compared to EDST in both CIFAR10/100 experiments and DST ensemble in our simpler

CIFAR10 experiment. Future work will explore the combination of parallel ensembling of

our sequential ensembles leading to a multilevel ensembling model. In particular, we will

leverage the exploration phase to reach highly sparse network and next perturb more than

once and learn each subnetwork in parallel while performing sequential exploitation phases

on each subnetwork. We expect this strategy would lead to highly diverse base learners with

potentially significant improvements in model performance and robustness.
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APPENDIX A

REPRODUCIBILITY CONSIDERATIONS

A.1 Hyperparameters

Hyperparameters for single and parallel ensemble models. For the ResNet/CIFAR

models, we use minibatch size of 128 uniformly across all the methods. We train each single

model (Deterministic, BNN, SSBNN) as well as each member of Dense and DST ensemble

for 250 epochs with a learning rate of 0.1 which is decayed by a factor of 0.1 at 150 and 200

epochs. For frequentist methods, we use weight decay of 5e− 4 whereas for Bayesian models

the weight decay is 0 (since the KL term in the loss acts as a regularizer). For the DST

ensemble, we take the sparsity S = 0.8, the update interval ∆T = 1000, and the exploration

rate p = 0.5, same as Liu et al. (2022).

Hyperparameters for sequential ensemble models. For the ResNet/CIFAR models,

the minibatch size is 128 for all the methods compared. We train each sequential model

with M = 3 for 450 epochs. In the BNN and SeBayS ensembles, the exploration phase is

run for t0 = 150 epochs and each exploitation phase is run for tex = 100 epochs. We fix the

perturbation factor to be 3. During the exploration phase, we take a high learning rate of

0.1. Whereas, for each exploitation phase, we use learning rate of 0.01 for first tex/2 = 50

epochs and 0.001 for remaining tex/2 = 50 epochs. For the EDST ensemble, we take an

exploration time (tex) of 150 epochs, each refinement phase time (tre) of 100 epochs, sparsity

S = 0.8, and exploration rate q = 0.8, same as Liu et al. (2022).

A.2 Data Augmentation

For CIFAR10 and CIFAR100 training dataset, we first pad the train images using 4

pixels of value 0 on all borders and then crop the padded image at a random location gen-

erating train images of the same size as the original train images. Next, with a probability
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of 0.5, we horizontally flip a given cropped image. Finally, we normalize the images us-

ing mean = (0.4914, 0.4822, 0.4465) and standard deviation = (0.2470, 0.2435, 0.2616) for

CIFAR10. Whereas, we use mean = (0.5071, 0.4865, 0.4409) and standard deviation =

(0.2673, 0.2564, 0.2762) for CIFAR100. Next, we split the train data of size 50000 images

into a TRAIN/VALIDATION split of 45000/5000 transformed images. For CIFAR10/100

test data, we normalize the 10000 test images in each data case using the corresponding

mean and standard deviation of their respective training data.

A.3 Evaluation Metrics

We quantify the predictive performance of each method using the accuracy of the test

data (Acc). For a measure of robustness or predictive uncertainty, we use negative log-

likelihood (NLL) calculated on the test dataset. Moreover, we adopt {cAcc, cNLL} to

denote the corresponding metrics on corrupted test datasets. We also use VALIDATION

data to determine the best epoch in each model which is later used for TEST data evaluation.

In the case of Deterministic and each member of Dense, MIMO, and DST ensemble, we

use a single prediction for each test data element and calculate the corresponding evaluation

metrics for each individual model. In case of all the Bayesian models, we use one Monte Carlo

sample to generate the network parameters and correspondingly generate a single prediction

for each single model, which is used to calculate the evaluation metrics in those individual

models. For all the ensemble models, we generate a single prediction from each base learner

present in the ensemble. Next, we evaluate the ensemble prediction using a simple average of

M predictions generated from M base learners and use this averaged prediction to calculate

the evaluation metrics mentioned above for the ensemble models.

A.4 Hardware and Software

The Deterministic, MIMO, Rank-1 BNN, and Dense Ensemble models are run using

the Uncertainty Baselines (Nado et al., 2021) repository, but with the data, model and
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hyperparameter settings described in Section 5.3. Moreover, we consistently run all the

experiments on a single NVIDIA A100 GPU for all the approaches evaluated in this work.
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APPENDIX B

OUT-OF-DISTRIBUTION EXPERIMENT RESULTS

In Table B.1, we present the AU-ROC results for out-of-distribution (OoD) detection

for the ResNet-32/CIFAR10 models. In this case, the out-of-distribution data was taken to

be CIFAR100. The results show that our SebayS-Freeze Ensemble perform better than the

single SSBNN and MIMO model. On the other hand, SebayS-No Freeze Ensemble performss

better than SSBNN. Next, our BNN sequential ensemble performs better than deterministic

and BNN models.

Table B.1 OoD detection results in ResNet-32/CIFAR10 experiment. We mark the
best results out of single-pass sparse models in bold and single-pass dense models in blue.

Methods AUROC (↑) # Forward
passes (↓)

SSBNN 0.806 1
MIMO (M=3) 0.840 1
EDST Ensemble (M = 3) 0.872 1
SeBayS-Freeze Ensemble (M = 3) 0.864 1
SeBayS-No Freeze Ensemble (M = 3) 0.842 1

DST Ensemble (M = 3) 0.879 3

Deterministic 0.854 1
BNN 0.841 1
Rank-1 BNN (M=3) 0.866 1
BNN Sequential Ensemble (M = 3) 0.863 1

Dense Ensemble (M=3) 0.879 3
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APPENDIX C

EFFECT OF THE ENSEMBLE SIZE

In Section 5.4.3, we have explored the effect of the ensemble size M in ResNet-32/CIFAR10

experiment through comparison of mean individual learner test accuracies compared to en-

semble accuracies in uncorrupted test dataset. In Table C.1, we provide the results on both

CIFAR10 and CIFAR10-C datasets for our sequential ensembles with an increasing number

of base learners M = 3, 5, 10. We also provide BNN and SSBNN baselines to compare against

BNN sequential ensemble and SeBayS ensembles, respectively. We observe that our BNN

sequential ensemble and SeBayS ensembles of any size significantly outperform single BNN

and SSBNN models, respectively. With an increasing number of base learners (M = 3, 5, 10)

within each of our sequential ensembles, we observe a monotonically increasing predictive

performance. The NLLs for BNN sequential ensemble decrease as M increases. The NLLs

for the SeBayS ensembles are either similar or increasing as M increases, which suggests the

influence of the KL divergence term in ELBO optimization in variational inference.

Table C.1 Ensemble size effect results in ResNet-32/CIFAR10 experiment. We
mark the best results out of the sparse models in bold and the dense models in blue.

Methods Acc (↑) NLL (↓) cAcc (↑) cNLL (↓) # Forward
passes (↓)

SSBNN 91.2 0.320 67.5 1.479 1
SeBayS-Freeze Ensemble (M = 3) 92.5 0.273 70.4 1.344 1
SeBayS-Freeze Ensemble (M = 5) 92.5 0.273 70.9 1.359 1
SeBayS-Freeze Ensemble (M = 10) 92.7 0.275 71.0 1.386 1
SeBayS-No Freeze Ensemble (M = 3) 92.4 0.274 69.8 1.356 1
SeBayS-No Freeze Ensemble (M = 5) 92.5 0.271 70.2 1.375 1
SeBayS-No Freeze Ensemble (M = 10) 92.7 0.272 70.8 1.375 1

BNN 91.9 0.353 71.3 1.422 1
BNN Sequential Ensemble (M = 3) 93.8 0.265 73.3 1.341 1
BNN Sequential Ensemble (M = 5) 94.1 0.253 73.7 1.318 1
BNN Sequential Ensemble (M = 10) 94.2 0.244 73.9 1.300 1
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APPENDIX D

EFFECT OF THE MONTE CARLO SAMPLE SIZE

In variational inference during evaluation phase, model prediction is calculated using the

average of the predictions from ensemble of networks where the weights of each network

represent one sample from the posterior distributions of the weights. The number of such

networks used to build ensemble prediction is called the Monte Carlo (MC) sample. In

Table D.1, we present our sequential ensemble models as well as BNN and SSBNN baselines in

the ResNet-32/CIFAR10 experiment. Here, we take MC = 1 which is used in the Section 5.3

experiments and compare it with MC = 5 for each method. In single BNN and SSBNN

models, we observe significant improvement in model performance when using MC = 5

instead of 1. However, when we compare the SebayS ensembles using MC = 1 or 5 with

SSBNN using MC = 5, we observe that their performance is similar, indicating that MC = 1

is sufficient for our SebayS ensembles. On the other hand, sequential BNN ensembles using

MC = 1 has better performance compared to BNN with MC = 5. Whereas, sequential BNN

ensemble using MC = 1 and 5 have similar performance. This highlights the importance of

sequential perturbation strategy, which leads to more diverse ensembles compared to mere

Monte Carlo sampling.
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Table D.1 Monte Carlo sample size effect results in ResNet-32/CIFAR10 experi-
ment. We mark the best results out of the sparse models in bold and dense models in blue.
MC is the Monte Carlo sample size

Methods MC Acc (↑) NLL (↓)

SSBNN 1 91.2 0.320
SSBNN 5 92.3 0.270
SeBayS-Freeze Ensemble (M=3) 1 92.5 0.273
SeBayS-Freeze Ensemble (M=3) 5 92.5 0.270
SeBayS-No Freeze Ensemble (M=3) 1 92.4 0.274
SeBayS-No Freeze Ensemble (M=3) 5 92.6 0.268

BNN 1 91.9 0.353
BNN 5 93.2 0.271
BNN Sequential Ensemble (M=3) 1 93.8 0.265
BNN Sequential Ensemble (M=3) 5 93.9 0.254
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APPENDIX E

EFFECT OF THE PERTURBATION FACTOR

In this Appendix, we explore the influence of the perturbation factor on our sequential

ensemble models through the ResNet-32/CIFAR10 experiment. In Table E.1, we report the

results for our three sequential approaches for three perturbation factors, ρ = 2, 3, 5. For our

SeBayS-Freeze and No Freeze ensembles, the lower perturbations with ρ = 2 lead to higher

test accuracies and NLLs over ρ = 3, 5 in both the CIFAR10 and CIFAR10-C test datasets.

This means that higher perturbations ρ = 3, 5 might need a higher number of epochs to

reach the convergence in each exploitation phase. However, in the BNN sequential ensemble

ρ = 3 has an overall higher performance compared to ρ = 2, 5. This points to the fact that

the lower perturbation, ρ = 2, may not lead to the best ensemble model. In Table E.2, we

present the prediction disagreement and KL divergence metrics for the experiments described

in this Appendix. In the BNN sequential ensemble, the ρ = 5 perturbation model has the

best diversity metrics, whereas the ρ = 3 perturbation model has the best accuracy. In the

SeBayS approach, the perturbation of ρ = 3 leads to the best diversity metrics nonetheless

at the expense of slightly lower predictive performance. This highlights the fact that the

ρ = 3 SeBayS approaches lead to the best ensembles given the training budget constraint.

Hence, we use ρ = 3 for our three sequential models in all the experiments presented in the

Section 5.3.
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Table E.1 Perturbation factor effect results in ResNet-32/CIFAR10 experiment.
We mark the best results out of different perturbation models under a given method in bold.
Ensemble size is fixed at M = 3. ρ is the perturbation factor.

Methods ρ Acc (↑) NLL (↓) cAcc (↑) cNLL (↓)

SeBayS-Freeze Ensemble 2 92.7 0.264 70.6 1.303
SeBayS-Freeze Ensemble 3 92.5 0.273 70.4 1.344
SeBayS-Freeze Ensemble 5 92.5 0.267 70.6 1.314

SeBayS-No Freeze Ensemble 2 92.7 0.268 70.4 1.331
SeBayS-No Freeze Ensemble 3 92.4 0.274 69.8 1.356
SeBayS-No Freeze Ensemble 5 92.4 0.272 70.1 1.353

BNN Sequential Ensemble 2 93.6 0.269 73.3 1.361
BNN Sequential Ensemble 3 93.8 0.265 73.3 1.341
BNN Sequential Ensemble 5 93.6 0.262 73.0 1.366

Table E.2 Diversity metrics for models trained with different perturbation factors
in ResNet-32/CIFAR-10 experiment. We mark the best results out of different per-
turbation models under a given method in bold. Ensemble size is fixed at M = 3. ρ is the
perturbation factor.

ResNet-32/CIFAR10

Methods ρ ddis (↑) dKL (↑) Acc (↑)

BNN Sequential Ensemble 2 0.062 0.205 93.6
BNN Sequential Ensemble 3 0.061 0.201 93.8
BNN Sequential Ensemble 5 0.063 0.211 93.6

SeBayS-Freeze Ensemble 2 0.058 0.135 92.7
SeBayS-Freeze Ensemble 3 0.060 0.138 92.5
SeBayS-Freeze Ensemble 5 0.059 0.137 92.5

SeBayS-No Freeze Ensemble 2 0.082 0.222 92.7
SeBayS-No Freeze Ensemble 3 0.106 0.346 92.4
SeBayS-No Freeze Ensemble 5 0.083 0.228 92.4
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APPENDIX F

EFFECT OF THE CYCLIC LEARNING RATE SCHEDULE

In this Appendix, we provide the effect of different cyclic learning rate strategies during

exploitation phases in our three sequential ensemble methods. We explore the stepwise (our

approach), cosine (Huang et al., 2017), linear-fge (Garipov et al., 2018), and linear-1 cyclic

learning rate schedules.

Cosine. The cyclic cosine learning rate schedule reduces the higher learning rate of 0.01

to a lower learning rate of 0.001 using the shifted cosine function (Huang et al., 2017) in

each exploitation phase.

Linear-fge. In the cyclic linear-fge learning rate schedule, we first drop the high learning

rate of 0.1 used in the exploration phase to 0.01 linearly in tex/2 epochs and then further drop

the learning rate to 0.001 linearly for the remaining tex/2 epochs during the first exploitation

phase. Afterwards, in each exploitation phase, we linearly increase the learning rate from

0.001 to 0.01 for tex/2 and then linearly decrease it back to 0.001 for the next tex/2 similar

to Garipov et al. (2018).

Linear-1. In the linear-1 cyclic learning rate schedule, we linearly decrease the learning

rate from 0.01 to 0.001 for tex epochs in each exploitation phase and then suddenly increase

the learning to 0.01 after each sequential perturbation step.

In Figure F.1, we present the plots of the cyclic learning rate schedules considered in this

Appendix.

150



Figure F.1 Cyclic learning rate schedules. The red dots represent the converged models
after each exploitation phase used in our final sequential ensemble.

In Table F.1, we present the results for our three sequential ensemble methods under the

four cyclic learning rate schedules mentioned above. We observe that, in all three sequential

ensembles, the cyclic stepwise learning rate schedule yields the best performance in almost

all criteria compared to the rest of the learning rate schedules in each sequential ensemble

method. In Table F.2, we present the prediction disagreement and KL divergence metrics

for the experiments described in this Appendix. We observe that, in SeBayS-No Freeze

ensemble, cyclic stepwise schedule generates highly diverse subnetworks, which also leads to

high predictive performance. Whereas, in the BNN sequential and SeBayS-Freeze ensemble,

we observe lower diversity metrics for the cyclic stepwise learning rate schedule compared to

the rest of the learning rate schedules.
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Table F.1 Cyclic learning rate schedules results in ResNet-32/CIFAR10 experi-
ment. We mark the best results out of different learning rate (LR) schedules under a given
method in bold. Ensemble size is fixed at M = 3.

Methods LR Schedule Acc (↑) NLL (↓) cAcc (↑) cNLL (↓)

SeBayS-Freeze Ensemble stepwise 92.5 0.273 70.4 1.344
SeBayS-Freeze Ensemble cosine 92.3 0.301 69.8 1.462
SeBayS-Freeze Ensemble linear-fge 92.5 0.270 70.1 1.363
SeBayS-Freeze Ensemble linear-1 92.1 0.310 69.8 1.454

SeBayS-No Freeze Ensemble stepwise 92.4 0.274 69.8 1.356
SeBayS-No Freeze Ensemble cosine 92.2 0.294 69.9 1.403
SeBayS-No Freeze Ensemble linear-fge 92.4 0.276 70.0 1.379
SeBayS-No Freeze Ensemble linear-1 92.2 0.296 69.7 1.412

BNN Sequential Ensemble stepwise 93.8 0.265 73.3 1.341
BNN Sequential Ensemble cosine 93.7 0.279 72.7 1.440
BNN Sequential Ensemble linear-fge 93.5 0.270 73.1 1.342
BNN Sequential Ensemble linear-1 93.4 0.287 72.2 1.430

Table F.2 Diversity metrics for models trained with different cyclic learning rate
schedules in ResNet-32/CIFAR10 experiment. We mark the best results out of dif-
ferent learning rate (LR) schedules under a given method in bold. Ensemble size is fixed at
M = 3.

ResNet-32/CIFAR10

Methods LR Schedule ddis (↑) dKL (↑) Acc (↑)

BNN Sequential Ensemble stepwise 0.061 0.201 93.8
BNN Sequential Ensemble cosine 0.068 0.256 93.7
BNN Sequential Ensemble linear-fge 0.070 0.249 93.5
BNN Sequential Ensemble linear-1 0.071 0.275 93.4

SeBayS-Freeze Ensemble stepwise 0.060 0.138 92.5
SeBayS-Freeze Ensemble cosine 0.072 0.204 92.3
SeBayS-Freeze Ensemble linear-fge 0.076 0.215 92.5
SeBayS-Freeze Ensemble linear-1 0.074 0.209 92.1

SeBayS-No Freeze Ensemble stepwise 0.106 0.346 92.4
SeBayS-No Freeze Ensemble cosine 0.078 0.222 92.2
SeBayS-No Freeze Ensemble linear-fge 0.074 0.199 92.4
SeBayS-No Freeze Ensemble linear-1 0.077 0.217 92.2
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CHAPTER 6

EPILOGUE

6.1 Summary

This dissertation focuses on the development of novel theoretically consistent Bayesian

neural networks (BNN) models for wide range of data scenarios. We have proposed: the

Bayesian quantile regression neural networks (BQRNN) in Chapter 2, the spike-and-slab

Gaussian node selection technique (SS-IG) in Chapter 3, the spike-and-slab group lasso (SS-

GL) and the spike-and-slab group horseshoe (SS-GHS) in Chapter 4. In each of BQRNN

and SS-IG methods, we provide rigorous theoretical justification via posterior consistency

results and the optimal contraction rate. We also provide numerical evidence establishing

the advantage of our proposed methods compared to the recent competing techniques in

the literature. In Chapter 5, we propose sequential Bayesian neural subnetwork ensembles

(SeBayS) which use SS-IG models as the base models in the ensemble. We concluded that

chapter with several experiments showcasing the effectiveness of our proposed approach as

well as few studies where we explore the effect of changing some parameters in the model.

6.2 Broader Impacts

Our BQRNN approach is particularly useful when the relationships in the lower and

upper tail areas of the response variable distribution are of greater interest such as extreme

weather events, cascading failures in electric power grids, and other rare events modeling. On

the other hand, as deep learning gets harnessed by big industrial corporations in recent years

to improve their products, the demand for models with both high predictive and uncertainty

estimation performance is rising. The vast variety of its applications range from computer

vision, pattern recognition, to natural language processing. However, as deep learning models

are pushed into smaller and smaller embedded devices, such as, smart cameras recognizing
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visitors at your front door, the design of resource efficient neural networks is of extreme

practical importance. These real-world applications demand real-time, on-device neural

network inference. Our work on sparse BNNs addresses this computational bottleneck by

compressing neural networks by inducing sparsity during training. The Bayesian framework

estimates the posterior of model parameters allowing for uncertainty quantification around

the parameter estimates which can be vital in medical diagnostics. For example, many of

the brain imaging data could be processed through our model yielding a decision on certain

medical condition with added benefit of quantified confidence associated with that decision.

6.3 Future Research

In the future, the Bayesian neural networks still have a huge room to investigate. There

are few promising research directions which stem from our current work.

• The development of sparse deep Bayesian quantile networks which can allow for ex-

treme quantile inference with fewer data points. Such a model can benefit in cases

where the event of interest is rarely manifested in a given data.

• Bayesian convolutional neural network approximation theory which consists of the

derivations of posterior consistency, variable selection consistency, and asymptotically

optimal generalization bounds.

• The theoretical framework for the Bayesian ensembling including not only the posterior

consistency but also the nonasymptotic generalization error upper bounds. Such a

bound might depend on the data size as well as explicit number of base models in an

ensemble. This theoretical development will also help in deciding the optimal number

of base models in a given ensemble.

• Development of sparse Bayesian tensor-to-tensor convolution neural networks involving

structured sparsity learning which would potentially benefit ill-posed as well as well-

posed problems which can occur for instance in tomographic reconstruction.
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