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ABSTRACT

STATISTICAL METHODS FOR SINGLE CELL GENE EXPRESSION: DIFFERENTIAL
EXPRESSION, CURVE ESTIMATION AND GRAPHICAL MODELLING

By

Satabdi Saha

This dissertation elucidates a set of statistical methods developed for analysis of single cell

gene expression datasets. Gene expression profiling of single cells has led to unprecedented

progress in understanding normal physiology, disease progression and developmental pro-

cesses. However, despite many improvements in high throughput sequencing, various tech-

nical factors including cell-cycle heterogeneity, library size differences, amplification bias,

and low RNA capture per cell lead to high noise in scRNA-seq experiments. A primary

characteristic of these datasets is the presence of high number of zeroes which represents the

undetectable level of expression for a transcript. Statistical methods capable of modelling

novel single cell experiments are developed and new estimation strategies are proposed and

validated using simulated and real data experiments.

• In Chapter 1, the motivation and underlying philosophies of single cell gene expression

is reviewed. Methods for analysis of dose response experiments and gene co-expression

networks are reviewed and novel statistical hypothesis to be investigated using single

cell experiments are discussed.

• In Chapter 2, I analyze a unique in vivo dose response hepatic scRNAseq dataset con-

sisting of 9 dose groups with 3 biological replicates for 11 distinct liver cell types for

greater than 100K cells. A Hurdle model for multiple group data is proposed, which

models the bimodality of single cell gene expression within multiple groups. Based

on the model assumptions, I derive a fit for purpose Bayesian test for simultaneously

testing the differences in mean gene expression and zero proportions for multiple dose

groups. For comparison the counterpart likelihood-ratio test for differential expres-



sion that incorporates testing for both components is also derived. This chapter was

originally published in [1].

• In Chapter 3, dose response curve estimation for single cell experiments is studied. Cur-

rent protocols for genomic dose response modelling are only capable of modelling bulk

and microarray datasets. A semiparametric regression model for joint dose response

curve estimation for multiple cell-types while accounting for confounding covariates is

proposed. A novel, scalable and efficient optimization algorithm using the MM phi-

losophy is proposed for the estimation of both monotone and non-monotone curves.

Two relevant tests of hypothesis are discussed and the proposed methods are validated

using several simulated datasets.

• In Chapter 4, co-expression network estimation is studied using graph signal processing.

A kernelized signed graph learning approach is developed for learning single cell gene

co-expression networks, based on the assumption of smoothness of gene expressions

over activating edges. Performance is assessed using real human and mouse embryonic

datasets. This chapter was originally published in [2].
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CHAPTER 1

INTRODUCTION

1.1 Motivation for exploring single cell gene expression

Cells are the fundamental unit of life: Millions of cells in our body coordinate to perform

basic physiological functions essential for maintaining life. Yet, several critical biological

processes such as the genesis, development and fate commitment of early-stage embryos,

are determined by the biology of a single cell. The ability to investigate single-cell states

have allowed exploration of critical biological systems with unprecedented resolution. It is

now possible to easily profile individual cells instead of cell populations, which advances our

fundamental understanding of the intrinsic cellular heterogeneity and dynamics [5, 6, 7].

However, despite many improvements in high throughput sequencing, various technical

factors including cell-cycle heterogenity, library size differences, amplification bias, and low

RNA capture per cell lead to high noise in single-cell RNAseq (scRNAseq) experiments.

Recent technologies are capable of sequencing millions of cells, but often generate highly

sparse expression datasets due to shallow sequencing. The presence of these issues result in

substantial noise that often obscures the true biological signal and renders the application

of traditional statistical models for analysis of single cell datasets unsuitable [8, 9].

The availability of gene expression data on a single cell level has led to a more complete

picture of the average state of an organism across time and space. Denoting Y as the vector

of gene expression measurement and Z as the set of covariates, significant efforts have been

made in modelling E(Y |Z) to study differential expression of genes, ie. to determine if the

observed difference or change in expression levels of genes between experimental conditions

is statistically significant.

Compared to the bulk genomic protocols, single cell gene expression allows inference on

cellular heterogeneity. Bulk experiments dealt with data averaged over cells, hence measuring
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cell-cell variation is unfamiliar ground in gene expression methods. Grouping cells into

predefined cell-types (assume that cells within a cell-type group are independent replicates),

estimating cell-type specific models and quantifying the statistical differences therewith can

lead to to important insights into cell-type specific behaviour. One might be interested in

modelling the functional form of E(Y |Z) for different cell-types and quantify the variability

between the estimated functions.

Finally one might desire inference on the co-expression of Y , which explains how the

expression of one gene covaries with the others, an example studied in coexpression network

estimation. This might help us understand how genes can regulate each other, and render

deeper biological insights.

1.2 Structure of single cell gene expression datasets

Unlike microarray and bulk RNAseq datasets, scRNAseq data exhibits excess zero values

due to the low per cell RNA input, biases in capture and amplification, transcriptional

bursts, and other technical factors [10, 11, 12]. This no expression (zero values), due to a

conflation of both biological and technical factors, results in an excessive number of zeroes

leading to bimodal expression. Consequently, single cell models consider the gene expression

distribution as a mixture of an unexpressed (zero) and a positively (non-zero) expressed

population [13, 11, 14, 1]. The statistical model for Y is formulated as

Yi,j|Ri,j ∼ f(θ)

Yi,j = 0 with probability 1 when Ri,j = 0
(1.1)

where f(θ) denotes the distribution of gene j in cell i, given that it is detectable. The

indicator variable Ri,j indicates the presence or absence of expression for gene j in cell i.

Most existing methods use the Poisson or the negative binomial distribution to model the

read counts of individual genes directly [10, 13, 11, 15]. Another approach that is frequently

used is to assume that log(Yi,j) follows a normal distribution, which leads to a more tractable

mathematical theory than count distributions have [14, 16, 17, 1]. Additionally bulk RNA-seq
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data have been historically modelled using both count and continuous distributions and the

logarithmic transformation used to make the data continuous is well accepted in the field of

bulk genomics [18, 19, 20]. There is also an ongoing debate in the field of single cell genomics

as to whether the excess zeros present in the data need to modelled differently assuming a

sampling process different from the process used to model the true biological expression.

Recent research has argued that count distributions like the negative binomial or a Poisson

distribution with a Gamma prior on the mean, that eventually leads to a negative binomial

posterior is enough for modelling the excess zeros in the expression data. What we observed

in our experimental datasets is a very high percentage of zeroes, often close to 60− 70% and

the experimental scientists were more convinced that such severe percentage of zeroes were

more a result of the technical errors than the actual biological process. We conducted several

experiments to test this hypothesis [1] and concluded that a zero induced distribution would

best model our experimental data [21, 22]. Therefore throughout the entire dissertation we

stick to zero-induced distributions. However all our proposed methods could be well adapted

to work without the zero-inflation part.

1.3 Dose Response Experiments

The central idea of toxicology lies in understanding the molecular mechanisms of action that

makes a treatment toxic. An important tool for studying the mechanisms of action is to

understand the response of a living organism to a range of doses of the toxic substance.

The dose–response relationship, or the dose response curve, describes the magnitude of the

response of an organism, as a function of exposure to a stressor (usually a toxin) after a

certain exposure time [23]. Developing dose response models is crucial for determining safe,

hazardous and beneficial levels of pollutants, drugs, foods and several other substances to

which humans or other organisms are exposed [24]. These conclusions often form the basis

for public policy. The U.S. Environmental Protection Agency (EPA) has developed extensive

guidance and reports on dose–response modeling and assessment, as well as software [25].
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The potency value derived from the dose response model is the benchmark dose (BMD).

BMD is the dose or concentration that produces a predetermined change in the response

rate of an adverse effect. This predetermined change in response is called the benchmark

response (BMR), and is generally assumed to be the standard deviation of the response at

zero dose [26]. Dose-dependent gene expression profiling (aka genomic dose-response studies

(GDRS)) of drugs and chemicals has been proposed as an alternative test to rodent bioassays

to assess human health risks. Application of single-cell RNA sequencing (scRNAseq) for

the evaluation of chemicals, drugs, and food contaminants presents the rare opportunity of

accounting for cellular heterogeneity in pharmacological and toxicological responses[27].

1.3.1 National Toxicology Program’s approach to genomic dose
response modeling

The National Toxicology Program (NTP) proposes the use of the approach outlined below

for both in vivo and in vitro genomic dose-response studies (GDRS) [26]. The steps in the

process include (1) designing a dose response experiment with a sufficient number of doses

that can effectively capture the shape of a dose response curve and accurately determine

the benchmark dose (BMD) for all dose responsive genes, (2) designing a statistical test

of hypothesis to determine whether the modelled data shows any effect to the treatment.

This test acts a preliminary step for filtering out genes that aren’t dose responsive. (3)

Conducting a second trend test for identifying genes that exhibit a biologically plausible

response to the treatment, (4) fitting parametric dose response models derived from the

Environmental Protection Agency (EPA) BMD software to identify a biological potency

estimate, ie. benchmark dose (BMD) for each gene exhibiting a dose-related response to

treatment, (5) grouping genes into predifined sets defined by gene ontologies and calculating

the composite BMD of the gene set and (6) finally providing a biological explanations for

the selected set of genes and BMD estimates. As pointed out by NTP, following all the steps

for GDRS modelling leads to consistent modelling and facilitates the use of use of genomic
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dose-response data in risk assessment. Assuming that the experimental process is adequate,

I mainly focus on the statistical considerations of items 2-4.

1.3.1.1 Determining Adequate Signal in the Data

The first step of the GDRS protocol seeks to determine whether the signal in the data is

adequate to model and likely to yield minimally reproducible findings [28]. Simply put,

we are interested in finding whether a gene is dose responsive. Statistically, this can be

formulated as an ANOVA problem. There is a population of interest for which there is a

true quantitative outcome Y for each of the k levels of dose D. The population outcomes

for each group have mean parameters µ1,j, .., µK,j with no restrictions on the pattern of

means. The population variances for the outcome for each of the k groups defined by the

levels of the explanatory variable all have the same value, σ2
j . We are interested in testing

the null hypothesis that “nothing interesting is happening.”. For one-way ANOVA, we use

H0 : µ1 = µ2 = . . . µK , which states that all of the population means are equal, without

restricting what the common value is. The alternative must include everything else, which

can be expressed as “at least one of the k population means differs from all of the other". Use

of a pre-fitering test to determine dose responsiveness helps to avoid modeling of data with no

statistically plausible signal. Modeling data with no statistically significant effect is likely to

yield unreproducible results with highly inaccurate estimates of BMD values. Further, given

the huge number of genes (usually in the order of millions) it is an unnecessary computational

burden to model genes with no statistically plausible signal.

An associated problem that is studied in gene expression studies is to compare two

biological conditions in order to find differentially expressed (DE) genes. A gene is defined

as DE if it is transcribed into different amounts of mRNA molecules per cell under the two

conditions. However, since we do not observe the true levels of expression, carefully designed

statistical tests help biologists understand to what extent a gene is DE. Currently, there

are dozens of differential gene expression analysis (DGEA) approaches for scRNAseq data;
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developed based on differences in assumptions, statistical methodologies, and study designs

[29, 30, 31, 32, 33, 34]. A recent comparison of 36 approaches demonstrated acceptable

performance for common bulk RNAseq tools such as edgeR and limma-trend, and MAST

for single cell experiments, as well as common statistical tests such as the Wilcoxon rank

sum (WRS) and the t-test [32]. However, most methods have been developed primarily for

two group comparisons whereas our study designs consists of multiple groups. The use of

two sample tests for multiple group study designs elevate the type I error rate warranting

further investigation of these methods for multiple group dose–response study designs [35].

Chapter 2 proposes the first multiple group statistical testing framework designed exclusively

for single cell dose response designs. The test statistic is derived for both the frequentist and

Bayesian set-up and benchmarked against selected bulk and single cell DE analysis methods

capable of accomodating multiple group designs. A further detailed background and analysis

is delayed until Chapter 2.

1.3.1.2 Filtering of Measured Features

The second step of GDRS protocol applies a statistical trend test and effect size to filter genes.

Statistically, it assumes that the experimenter has apriori knowledge that the response to

the treatment has a known direction, and in most cases, the response increases in magnitude

as the dose is increased. Therefore the statistical analysis is based on the assumption that

the responses are monotonically ordered. Thus the test of hypothesis translates to H0 : µ1 =

µ2 = . . . µK , versus µ1 ≤ µ2 ≤ . . . µK . Several statistical tests have been proposed for testing

this monotonically ordered alternative hypothesis. The test recommended by the US EPA

and NTP is the William’s Trend test [36] to identify monotonic trends.

Williams’ test is a step-down trend test for testing several treatment levels with a zero

control in a one -way ANOVA design with normally distributed errors of homogeneous vari-

ance. Let there be K groups including the control and let the zero dose level be indicated

with k = 1 and the treatment levels as 2 ≤, · · · ≤ K, then the following K − 1 hypotheses
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are tested:

H0,K−1 : x̄1 = µ2 = · · · = µK , Ha,K−1 : x̄1 ≤ µ2 ≤ . . . µK , x̄1 < µK

H0,K−2 : x̄1 = µ2 =
... = µK−1, Ha,K−2 : x̄1 ≤ µ2 ≤ . . . µK−1, x̄1 < µK−1

...
...

H0,1 : x̄1 = µ2, Ha,1 : x̄1 < µ2,

The first step is to determine the maximum likelihood (ML) estimates µ̂k under the alterna-

tive hypothesis that there is a response. This is estimated using the pool adjacent violators

algorithm (PAVA) [37]. If the response is a decrease in mean, then the above formulation

applies after a change of the inequality sign. The kth test statistic t̄i is calculated as follows:

t̄i =
µ̂k − x̄1

s2
√

1/nk − 1/n1

where s2 is an unbiased estimator of error variance of Y with ν degrees of freedom. The

critical t-values as given in the tables of [36] for α = 0.05 (one-sided) and are looked up

according to the degree of freedoms (ν)) and the order number of the dose level. Regarding

genomic dose-response modeling, NTP acknowledges limitations to using a more traditional

trend test such as the Williams’ Test that identifies only monotonic trends.

1.3.1.3 Dose Response Curve Estimation

The third step of the genomic dose-response analysis focuses on fitting dose-response curves

to each gene that exhibits a response to treatment as determined by the filtering approach de-

scribed above. To model the data, parametric models such as polynomial, linear, power, Hill

and exponential 2, 3,4 dose-response models are fitted to the measured features. Equations

describing the models are given in the table below. A detailed description of all the models

can be found in the EPA’s Benchmark Dose Software (BMDS)Version 3.2 user guide. The

current GDRS modelling softwares [28] are only capable of modelling bulk RNA-sequencing

datasets, with no statistical framework or recommendation existing for dose response mod-

elling of single cell datasets. The bulk gene expression data is usually log transformed and

presumed to have a normal distribution and each model is run assuming constant variance.
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Model Formula
Linear µ(dose) = γ + βdose

Polynomial (order-q) µ(dose) = γ + β1dose+ β2dose
2 + · · ·+ βqdose

q

Hill µ(dose) = γ + (v ∗ dosen)/(kn + dosen)

Exponential 2 or 3 µ(dose) = a ∗ exp(sign(b ∗ dosed))
Exponential 3 or 4 µ(dose) = a ∗ (c− (c− 1) ∗ exp(dosed))

Power µ(dose) = γ + βdoseδ

Table 1.1 Parametric models for genomic dose response analysis

Let us denote a sample of n independent and identically distributed (IID) pairs of vari-

ables, B = {(Zi, Yi)}, i = 1, . . . n, as the data. Zi can be further segmented as Zi = {(Di, Xi)}

where Di represents the dose vector and Xi represents the vector of other confounding co-

variates such as age, gender etc. The main interest of dose response studies lies in modelling

E(Yi) as a function of the dose vector; ie. E(Yi|Di) = ζ(Di, θ), where θ is the vector of un-

known parameters. In general, the methods for estimating dose response can be classified as

parametric or nonparametric. Parametric methods assume a model ζ(Di, θ) for the DR curve

where θ is the vector of unknown parameters. Considerable amount of statistical methodol-

ogy exists in parametric modelling of dose-response studies, employing parametric models,

such as Logistic, Exponential, and Gompertz as well as others [38] and the US EPA [28] gives

guidelines on how to employ these methods. These models are generally fit using standard

techniques such as maximum likelihood (ML) or restricted maximum likelihood (RML) and

their functional forms are monotonic allowing for tractable estimation of relevant BMD’s. It

is well known that if a parametric model is correctly specified then the ML/RML estimators

are efficient. However, in many cases, it is difficult to correctly specify the parametric form

of the dose–response curve because the biological mechanism of drug action or toxicity may

be complex and the form of the dose–response curve is unknown apriori [39]. When the

parametric model is misspecified, the corresponding curve estimate may be severely biased.

In addition, fitting of extremely flexible polynomial models with high orders to match diffi-

cult non-monotonic curve shapes, can lead to severe overfitting. The standard workaround

is to fit multiple parametric models, each of which may fit the data reasonably, but produce
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a range of BMD estimates that accounts for model uncertainty in the estimation process.

Accounting for this uncertainty using model averaging (MA) has received recent attention

in the literature [40]. However, despite simulation studies suggesting that model-averaged

estimates provide BMD estimates that have low bias and nominal coverage properties, these

estimates may fail to adequately describe the true uncertainty for DR curves on the edge

of the MA model space, hence resulting in inaccurate inference. Further, as the MA results

are available on limited number of parametric forms, models that make fewer assumptions

on parametric forms may allow for better estimation of the dose response curves [39].

To enhance the robustness of the estimation of the dose–response curve, many nonpara-

metric methods have been proposed. [41] proposed MLE estimation procedures under the

assumption that the dose response curve is sigmoid and non-decreasing. [42] proposed a

method for non-parametric estimation of the dose response curve under monotonicity con-

straints using B-splines regression. [43] used kernel estimators to obtain estimates for the

dose–response curve under general shape restrictions. In the Bayesian setup, several ap-

proaches have been proposed for non-parametric estimation of dose response curves under

monotonicity constraints. From a Bayesian perspective, one specifies a suitable prior on the

regression function that induces monotonicity and then inference is based on the posterior

distribution. [44] employed an additive model with a prior imposed on the slope of the

piecewise-linear functions. [45] adopted mixture modelling of shifted and scaled probability

distribution functions. [46] propose a Gaussian process model with a posterior projection

approach for shape-constrained curves. In contrast to the parametric methods, all the non-

parametric approaches are flexible and learn the shape of the dose response curves based

on the data. To the best of our our knowledge, none of the existing literature has consid-

ered building a non-parametric regression model for both unconstrained and monotonicity

constrained estimation of dose response curves for single cell experiments while accounting

for technical confounders. Incorporation of such a flexible modelling structure will allow for

more accurate modeling of a variety of non-monotonic responses. Further, the incorporation
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of a flexible nonparametric modeling approach to describe the shape of the diversity of dose-

response behaviors observed in genomic dose-response will lead to the estimation of more

accurate BMD’s.

1.4 Covariation Analysis

A gene co-expression network (GCN) is an undirected graph, where nodes correspond to

different genes, and edges connecting the nodes denote the co-expression relationships be-

tween genes. GCNs can help people learn the functional relationships between genes and

infer and annotate the functions of unknown genes. GCN reconstruction attempts to infer

this co-expression network from high-throughput data using statistical and computational

approaches. Multiple methods encompassing varying mathematical concepts have been pro-

posed during the last decade to infer GCNs using gene expression data from bulk population

sequencing technologies, which accumulate expression profile from all cells in a tissue. These

methods can be broadly classified into two groups: the first group infers a static GCN, con-

sidering steady state of gene expression, while the second group uses temporal measurements

to capture the expression profile of the genes in a dynamic process. A thorough evaluation

of the static and dynamic models used in bulk GCN reconstruction can be found in [47, 48].

In the static group, several computational approaches ranging from correlation networks

[49], Gaussian graphical models [50], Bayesian networks [51], regression analyses [52, 53],

and information theoretical approaches [54, 55] have been used for network inference from

population-level data. Similarly, several models have been proposed for the analysis of pop-

ulation level dynamic gene expression data [56, 57, 58]. In this dissertation we will mainly

focus on estimating a static co-expression network. Mathematically we are interested in

derterming the relationship between Yi and Yj. The first step is to construct a symmetric

adjacency matrix A, where Ai,j is a weighted adjacency score in the range from 0 to 1 be-

tween genes i and j. Ai,j measures the level of association between gene expression vectors

Yi and Yj. Clustering methods can then be applied to search for gene modules based on the
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resulting distance matrix [49]. The modules can serve to understand functional relationships

between known disease genes and candidate genes. Gene modules can also be used to detect

regulatory genes and study the regulatory mechanisms in various organisms [59]. Further

background will be delayed until Chapter 4.
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CHAPTER 2

BAYESIAN SINGLE CELL RNASEQ DIFFERENTIAL GENE
EXPRESSION TEST FOR DOSE RESPONSE STUDY

DESIGNS

2.1 Single Cell Dose Response Experiments

Single-cell transcriptomics enables researchers to investigate homeostasis, development and

disease at unprecedented cellular resolution [60, 6, 61, 62, 63]. As with any new innovative

technology, diverse tools soon follow to address specific applications and unique challenges.

Currently, there are dozens of differential gene expression analysis (DGEA) approaches for

single-cell RNAseq (scRNAseq) data; developed based on differences in assumptions, statis-

tical methodologies, and study designs [29, 30, 31, 32, 33, 34]. A recent comparison of 36

approaches demonstrated acceptable performance for common bulk RNAseq tools such as

edgeR and limma-trend, and MAST for snRNAseq, as well as common statistical tests such

as the Wilcoxon rank sum (WRS) and the t-test [32]. However, most methods have been

developed primarily for two group comparisons whereas study designs typical of pharmacol-

ogy and toxicology experiments such as dose–responses consist of multiple groups. The use

of two sample tests for multiple group study designs elevate the type I error rate warranting

further investigation of these methods for multiple group dose–response study designs [35].

Dose–response studies are used to derive the efficacy and/or safety margins such as ef-

fective dose and the point of departure (POD). Significant efforts by the toxicology and

regulatory communities have suggested that acute (< 14 days) and sub-acute (14–28days)

transcriptomic studies as viable alternative to the current standard 2-year rodent bioassay

that significantly reduces the time and resources needed to assess risk [64, 65, 26]. Gene

expression profiling at single-cell resolution could further support such evaluations by identi-

fying cell-specific dose-dependent responses indicative of an adverse event. The U.S. National

Toxicology Program (NTP) recently reported a robust DGEA approach is essential to de-
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riving biologically relevant PODs [26]. However, concerns regarding the inclusion of false

positives that produce less conservative POD estimates potentially leads to incorrect clas-

sification of mode-of-action( MoA), thus highlighting the importance of controlling type I

error rates [66, 67].

Unlike microarray and bulk RNAseq datasets, single-cell RNAseq (scRNAseq) data ex-

hibits excess zero values due to the low per cell RNA input, biases in capture and amplifica-

tion, transcriptional bursts, and other technical factors[12]. This no expression (zero values),

due to a conflation of both biological and technical factors, results in an excessive number

of zeroes in an otherwise continuous measure [14]. Therefore, traditional tests of differential

gene expression, based on the assumption of a normal distribution, fail to correctly model the

bimodality of single cell gene expression[16]. Consequently, scRNAseq test methods usually

consider the gene expression distribution as a mixture of a unexpressed (zero) and a posi-

tively (non-zero) expressed population [14, 16, 68]. For example, the Seurat Bimod approach

tests for differential gene expression using a likelihood ratio test designed for the said mixture

population. MAST extends the Seurat Bimod test to a two-part generalized linear model

structure capable of incorporating covariates [14, 16]. Given the improved performance of

MAST [32, 14, 16], we hypothesized that multiple group tests developed assuming the same

distributional framework would be most favorable for dose–response study designs. Further-

more, a Bayesian approach which considers prior knowledge is anticipated to minimize type

I error rates [69, 70].

The aim of the presented study is to evaluate the performance of existing and novel DGEA

test methods on dose–response scRNAseq datasets. To reduce the rate of false positives

we propose a novel, multiplicity corrected, Bayesian multiple group test (scBT) designed

exclusively for DGEA of dose–response scRNAseq data. Two other fit-for-purpose frequentist

multiple group tests are also examined: (i) a multiple group extension of the Seurat Bimod

test and (ii) a simple extension of test (i) to a generalized linear model framework. Existing

and proposed methods are benchmarked on simulated and real experimental dose–response
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datasets. Using simulated datasets we were able to investigate the influence of various

parameters such as number of cells, and illustrate how using different test methods can aid

in gaining biological insight on the role of individual cell types on the pathophysiological

consequences of exposure.

2.2 Materials and Methods

2.2.1 Animal handling and treatment

Male C57BL/6 mice aged postnatal day (PND) 25 were obtained from Charles Rivers Lab-

oratories (Kingston, NY) were housed and treated as previously described [71]. Mice were

housed in Innovive cages (San Diego, CA) with ALPHA-dri bedding (Shepherd Specialty

Papers, IL) at 23◦C, 30-40% relative humidity, and a 12:12 h light:dark cycle. Aquavive

water (Innovive) and Harlan Teklad 22/5 Rodent Diet 8940 (Madison, WI) was provided ad

libitum. On PND 29, randomly assigned mice were gavaged at Zeitgeber time (ZT) 0 with

0.1 mL sesame oil vehicle (Sigma-Aldrich,St. Louis, MO), 0.01, 0.03, 0.1, 0.3, 1, 3, 10 or 30

µ g/kg TCDD every 4 days for 28 days (7 total administered doses). At day 28 mice were

euthanized by CO2 asphyxiation and livers were immediately flash frozen in liquid nitrogen

and stored at −80◦C. All animal procedures were approved by the Michigan State Uni-

versity (MSU) Institutional Animal Care and Use Committee (IACUC) and reporting of in

vivo experiments follow the Animal Research: Reporting of In Vivo Experiments (ARRIVE)

[72] and Minimum Information about Animal Toxicology Experiments (MIATE) guidelines

(https://fairsharing.org/FAIRsharing.wYScsE).

2.2.2 Real scRNAseq and snRNAseq datasets

Hepatic single-nuclei RNA-sequencing (snRNAseq) was performed as previously described

using the 10× Genomics Chromium Single Cell 3′ v3.1 kit (10X Genomics, Pleasanton, CA)

[73]. Briefly, nuclei were isolated using EZ Lysis Buffer (Sigma-Aldrich), homogenized by

disposable Dounce homogenizer, washed, filtered using a 70-µ m cell strainer. The nuclei
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pellet was resuspended in buffer containing DAPI (10 µg/ml), filtered using a 40-µm strainer,

and immediately sorted using a BD FACSAria IIu (BD Biosciences, San Jose, CA) at the

MSU Pharmacology and Toxicology Flow Cytometry Core (facs.iq.msu.edu/). Sequencing

(150-bp paired end) was performed at a depth of 50,000 reads/cell using a NovaSeq6000 at

Novogene (Beijing, China). CellRanger v3.0.2 (10x Genomics) was used to align reads to

mouse gene models (mm10, release 93) including introns and exons to consider both pre-

mRNA and mature mRNA gene models. Seurat was used to integrate and log-normalize

expression data [74]. The data is available on the Gene Expression Omnibus (GEO) at

accession ID GSE184506 and R package versions are listed in Supplementary Table S1.

Additional real datasets were publicly available. Hepatic whole-cell generated using the

10X Genomics platform was obtained from GEO (GSE129516)[63]. Hepatic single-nuclei

processed as the dose–response data for control and high dose TCDD treatment (0 and 30

µg/kg) was obtained from GEO (GSE148339). Peripheral blood mononuclear cell (PBMC)

data also generated using the 10x Genomics platform and Seurat was obtained from the

SeuratData R package [74].

Gene set enrichment analysis of experimental data was performed using the fgsea v1.14

R package on gene lists sorted by significance values (e.g. P-value). Gene sets from BIO-

CARTA, KEGG, PANTHER and WIKIPATHWAYS were obtained from the Gene Set

Knowledgebase (GSKB; http://ge-lab.org/gskb/) and filtered for gene sets containing 15–250

genes. Gene sets were agglomerated based on overlap of gene membership and only those

showing ≥ 50% overlap were considered similar for subsequent network analyses. Visualiza-

tion and calculation of measures of centrality were determined using igraph v1.2.7. Gene

sets were considered enriched when adjusted P-value < 0.05

2.2.3 Dose-response data simulation

To simulate dose-response scRNAseq datasets we developed a wrapper for the Splatter R

package[75]. Splatter simulates counts using parameters estimated from real data to set the
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mean expressions, variance, and outlier probability. Other parameters such as the number

of cells, genes, probability of being differentially expressed, mean fold-change of DE genes

(location) and standard deviation of fold-change of DE genes (scale) were manually assigned

to best reflect real data. The wrapper (SplattDR) leverages the group simulation feature

of Splatter by applying a multiplicative factor estimated using dose-response models in 2.1

based on the US EPA Benchmark Dose Software[28]. SplattDR R package is available at

(github.com/zacharewskilab/splattdr).

Model Formula
Hill µ(dose) = γ + (v ∗ dosen)/(kn + dosen)

Exponential 2 or 3 µ(dose) = a ∗ exp(sign(b ∗ dosed))
Exponential 3 or 4 µ(dose) = a ∗ (c− (c− 1) ∗ exp(dosed))

Power µ(dose) = γ + βdoseδ

Table 2.1 Dose-response models for simulation of scRNAseq data

2.2.4 Single cell RNA-seq Hurdle Model

We model the log-normalized gene expression matrix using a hurdle distribution wherein the

rate of gene expression is assumed to follow a Bernoulli distribution and conditional on a

cell expressing the gene, the log-normalized expression level is assumed to follow a Gaussian

distribution[14]. We denote Yi,j to be the log-normalized expression value of gene j in cell

i, for i = 1, . . . n and j = 1, . . . p. To characterize the bimodal properties of single cell data,

for a given cell, a gene is defined to be either positively expressed or undetected. Define

Rij = I[Yij > 0] to be the indicator variable denoting the presence or absence of expression

for gene j in cell i. Following [14], the log-normalized gene expression values are modeled as

follows:

Yi,j|Ri,j ∼ Normal(µj, σ
2
j ),

Yi,j = 0 with probability 1 when Ri,j = 0,

Ri,j ∼ Bernoulli(ωj),

(2.1)

where µj and σ2
j denote the mean and variance of the gene expression level, conditional on

the gene being expressed and ωj denotes the rate of gene expression of gene j across all cells.
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2.2.4.1 Hypothesis Formulation

We now assume that our data has been collected under K conditions (doses), and denote

the data by Dk,o ≡ {(Yk,i,j, Rk,i,j), i = 1, . . . , nk} . The underlying populations for the

sample data Dk,o for k = 1, 2, . . . , K, dose groups are assumed to be identified by the

parameters (µk,j, σ
2
j , ωk,j). The aim of this study is to test for difference in gene expression

patterns between the different dose groups. Traditionally one would perform an ANOVA

test to detect changes in mean across groups for samples with continuous measurements.

However, to account for the bimodality in single cell gene expression distribution, the test

should detect for changes in µj and ωj simultaneously, as both could drive differential gene

expression. Therefore we define,

H0 : µ1,j = µ2,j = . . . µK,j = µj and ω1,j = ω2,j = . . . ωK,j = ωj. (2.2)

versus the alternative

Ha : µk,j is different for at least one k and

ωk,j is different for at least one k, k = 1, . . . K

2.2.4.2 Single cell Bayesian Hurdle model Analysis (scBT)

Given the single cell RNA-seq hurdle model structure, we assume that a priori, given σ2
j ,

µk,j ∼ Normal(mk,0, τk,µσ
2
j ), σ2

j ∼ IG(aσ, bσ), ωk,j ∼ Beta(ak,ω, bk,ω), where IG is the

inverse gamma distribution with shape aσ and scale bσ and mk,0, τk,µ, aσ, bσ, ak,ω, bk,ω are

the hyperparameters. Given the large number of gene-wise model fits arising from a single

cell expreriment, there is a pressing need to allow for a parallel structure whereby the same

model is fitted to each gene. The prior distributions on the parameters describe how the

unknown coefficients µk,j ωk,j and σ2
j vary across the genes and the dose groups while allowing

for information borrowing between the genes. Now, based on the model assumptions, we

propose a Bayesian test for simultaneously testing the differences in mean gene expression
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and dropout proportions as formulated in 2.2.4.1. Under the null hypothesis the marginal

likelihood is written as

LH0,j =

∫ ∫ ∫ K∏
k=1

{ nk∏
i=1

[
1√
2πσj

exp

{
−(Yk,i,j − µj)

2

2σ2
j

}
ωj

]Rk,i,j

(1− ωj)
1−Rk,i,j

}
× π(µj|σ2

j )π(σ
2
j )π(ωj)dµjdσ

2
jdωj

=
1

(2π)(
∑K

k=1

∑nk
i=1Rk,i,j)/2

× 1√
1 + τµ

∑K
k=1

∑nk

i=1Rk,i,j

× 1

Γ(aσ)baσσ
× Γ(aσ + (

∑K
k=1

∑nk

i=1Rk,i,j)/2)

(1/bσ +Atot/2)aσ+(
∑K

k=1

∑nk
i=1Rk,i,j)/2

× Beta(aω + (
∑K

k=1

∑nk

i=1Rk,i,j), bω +
∑K

k=1 nk − (
∑K

k=1

∑nk

i=1Rk,i,j))

Beta(aω, bω)
, (2.3)

where

Atot =

{
K∑
k=1

nk∑
i=1

Rk,i,jY
2
k,i,j +

m2
0

τµ

}
−

{
K∑
k=1

nk∑
i=1

Rk,i,j +
1

τµ

}−1

×

{
K∑
k=1

nk∑
i=1

Rk,i,jYk,i,j +
m0

τµ

}2

.

Under the alternative hypothesis we compute the marginal likelihood without any restriction

on the K means µk,j and the dropout parameter ωk,j; k = 1, 2, . . . K. Particularly, we

assume that µk,j ∼ Normal(mk,0, τk,µσ
2
j ), and σ2

j ∼ IG(aσ, bσ), ωk,j ∼ Beta(ak,ω, bk,ω); k =

1, 2, . . . K. Now, the marginal likelihood under the alternative hypothesis is given by

LHa,j =

∫
· · ·
∫ { K∏

k=1

nk∏
i=1

[
1√
2πσj

exp

{
−(Yk,i,j − µk,j)

2

2σ2
j

}
ωk,j

]Rk,i,j

(2.4)

× (1− ωk,j)
1−Rk,i,j

}
×

K∏
k=1

{
π(µk,j)π(ωk,j)

}
π(σ2

j )
K∏
k=1

{
dµk,jdωk,j

}
dσ2

j

=
1

(2π)(
∑K

k=1

∑nk
i=1Rk,i,j)/2

× 1∏K
k=1

√
1 + τk,µ

∑nk

i=1Rk,i,j

× 1

Γ(aσ)baσσ
× Γ(aσ +

∑K
k=1

∑nk

i=1Rk,i,j/2)

(1/bσ +
∑K

k=1 Ak/2)aσ+
∑K

k=1

∑nk
i=1Rk,i,j/2
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×
K∏
k=1

Beta(ak,ω +
∑nk

i=1Rk,i,j, bk,ω + nk −
∑nk

i=1Rk,i,j)

Beta(ak,ω, bk,ω)
(2.5)

Now, under the assumption that aω = ak,ω, bω = bk,ω, τµ = τk,µ, for k =1,2, . . . K, and

r! ∼
√
2πr(r/e)r we have,
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LH0,j

LHa,j

=
(√

2πe
)1−K

×
∏K

k=1

√
1 + τk,µ

∑nk

i=1Rk,i,j√
1 + τµ

∑K
k=1

∑nk
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×
(
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2
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×
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√
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×
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The Bayes factor is then defined as

BF01,j =
LH0,j

LHa,j

× π(Ha)

π(H0)
(2.6)

where π(Ha) and π(H0) are the prior probabilities for the alternative and null model,

respectively. The hyperparameters are obtained by maximising the marginal likelihood under

the null and the alternative hypothesis. Detailed derivations of the likelihood function and

the Bayes Factor are provided in Supplementary Material. Using the test of hypothesis

described in Equation (2.2) scBHM conducts a test of DE for each gene independently.

To control for multiplicity we adopt the FDR correction approach discussed in [76]. The

rejection threshold is estimated in terms of the posterior probabilities of the null hypothesis,

p(H0,j|Dj). For a target FDR α, the procedure rejects all hypotheses with p(H0,j|Dj) < ζ
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, where p(H0,j|Dj) = [1 + 1
BF01,j

]−1 and ζ is the largest value such that C(ζ)
J(ζ)

≤ α where,

J(ζ) = {j : p(H0,j|Dj) ≤ ζ} and C(ζ) =
∑

j∈J(ζ) p(Ho,j|Dj).

2.2.4.3 Multiple group Likelihood Ratio Test (LRT)

To carry out a direct performance comparison with scBT, we extend the Seurat Bimod [14]

for multiple groups. Assuming that all the K groups have the same variance σ2
j and omitting

the index j for clarity, the likelihood ratio test can be defined as;

Λ(Y,R) =
supθ∈H0L(θ|Y,R)
supθ∈HaL(θ|Y,R)

where the likelihood can be written as;

L(θ|Y,R) =
∏
k

ωekk (1− ωk)
nk−ek

∏
i∈Ck

f(Yi,k|µk, σ2)

where Y and R represent the gene observation vector and the gene indicator vector across

K dose groups, θ = {µk, σ2, πk, k = 1, . . . , K} is the vector of unknown parameters, Ck is

the set of cells expressing the gene in group k (i.e.Ck = {i : Ri,k = 1}), ek =
∑

iRi,k is the

number of cells expressing the gene in group k and f is the density function of the normal

distribution with parameters µk and σ2. Therefore we can write,

Λ(Y,R) =
sup{ω,µ,σ2}ω

(
∑
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∑
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+
k − ¯̄Y +)2∑

k

∑ek
i=1(Y
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k )2

}−
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2

= Λb(R) · Λn(Y +)

where Λb is a binomial LRT, Λn is a normal LRT, Y + is the set of positive Y values, Ȳ +
k is the

mean of the positive Y values in the kth group and ¯̄Y = 1
K

∑K
k=1 Ȳk. Thus, it can be shown

21



that the combined LRT is the product of a binomial and a normal LRT statistic Λb and Λn,

both of which are derived using classical statistical theory. Applying classical asymptotic

results about LRTs , −2logΛ(Y,R) converges to a χ2 distribution with (2K − 2) degrees

of freedom under H0. We note here that the sample size for the χ2 statistic is not n, but

n+ =
∑K

k=1 ωknk and n+ is sufficiently large for our simulation and real data experiments.

2.2.4.4 Linear model-based Likelihood Ratio Test (LRT linear)

The generalized linear model approach MAST was identified as one of the top performing

tests for pairwise differential expression testing [32, 16]. Deriving from their approach, the

LRT multiple test is extended to a generalized linear model framework, where the mean and

the dropout proportions are modelled as a linear function of the dose groups (assumed to

be a continuous covariate). Using the same distributional assumptions defined in 2.1 we fit

a logistic regression model for the discrete variable R and a Gaussian linear model for the

continuous variable Y conditional on (R = 1) independently, as follows: E(Yij|Rij = 1) =

m0,j+m1,j∗di and logit{P (Rij = 1)} = ψ0,j+ψ1,j∗di, where d represents the continuous dose

groups. Under this modelling approach, the null hypothesis described in Equation 2.2 can be

rewritten as H0 : E(Yij|Rij = 1) = m0j and logit{P (Ri,j = 1)} = ψ0j. The regression models

are fit using the lm and brglm functions in the stats and brglm R packages. The likelihood

ratio test statistic is computed using the same statistical theory discussed discussed for the

LRT multiple test and it asymptotically follows a χ2 distribution under H0.

2.2.5 Benchmarking method selection

Our fit-for-purpose tests were benchmarked to existing differential expression testing meth-

ods or their multiple group equivalent based on previously reported performance, ability to

consider multiple groups, or whether they served as foundation for the scBT and multiple

group LRT (LRT multiple) tests developed here. Seurat Bimod served as foundation for the
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scBT and LRT multiple tests as previously outlined, and MAST was identified as one of the

top performing test for two group comparisons [32]. Similarly, limma-trend performed well

for two sample comparisons and can consider multiple groups. The Wilcoxon Rank Sum

test was identified as providing excellent balance between its ability to identify DE genes

and speed, and is the default test for the Seurat R package for scRNAseq analysis. It was

also reported that the t test performed well and therefore we included the ANOVA and

Kruskal-Wallis (KW) tests, a parametric and non-parametric alternative of the t test for

multiple group comparisons. All tests were run without correction for batch effects or other

nuisance covariates. Multiplicity for each test was controlled using FDR correction 31. All

tests, including scBT, LRT multiple and LRT Linear are available in our scBT R package

(github.com/satabdisaha1288/scBT). R session information is listed Supplementary Table

S1. A flow diagram outlines our benchmarking approach (Figure 2.1).

2.2.5.1 Seurat Bimod

Seurat Bimod test [14] is a pairwise differential gene expression testing approach developed

assuming the single cell RNA-seq hurdle model framework. The test is formulated as H0:

the mean and the dropout parameters of the gene vector under two dose groups are equal

versus Ha: the mean and the dropout parameters differ over the two groups. The LRT based

test statistic −2logΛ(y, r) converges to a χ2 distribution with two degrees of freedom under

H0. The computations are carried out using the R Package Seurat .

2.2.5.2 MAST

MAST [16] proposes a two-part generalized linear model for differential expression analysis

of scRNAseq data. The first part models the rate of gene expression using logistic regression

logit(ωij) = Xiβ
ω
j and the second part uses a linear model to express the positive gene-

expression Yij, conditional on Rij as µij = Xiβ
µ
j ; where βωj andβ

µ
j are the coefficients of

the covariates used in the logistic and linear regression model respectively. A test with an
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Figure 2.1 Flow diagram of the simulation, benchmarking, and experimental data
evaluation strategy presented in the manuscript. Briefly, SplattDR was developed to
simulate dose-response scRNAseq data and validated based on experimental dose-response
data. Simulated datasets were generated varying diverse parameters 10 times and then
used to assess the performance of each test method. Each test method was also assessed
using experimental data from the hepatic snRNAseq dose response dataset obtained from
male mice gavage every 4 days for 28 days with 0.01, 0.03, 0.1, 0.3, 1, 3, 10, or 30 µg/kg
TCDD. Related figures for each analysis from the main body are noted.

asympotic χ2 null distribution is employed for identifying DEGs and multiplicity is controlled

using FDR correction[77]. Despite the fact that LRT-linear and MAST have the same hurdle

regression framework, the estimation process for the two methods has some significant differ-

ences. First, to achieve shrinkage of the continuous variance, MAST assumes a gamma prior

distribution on the precision (inverse of variance) parameter and estimates its posterior max-

imum likelihood estimator (MLE) and uses that in place of the regular MLE of the precision

parameter. Second, it fits a Bayesian logistic regression model for the discrete component by

assuming Cauchy distribution priors centered at zero for the regression parameters. This is
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done to deal with cases of “linear separation” where the parameter estimates diverge to ±∞

and the Fisher information matrix becomes singular. And finally, it considers the cellular

detection rate defined as CDRi = 1
p

∑P
j=1Rij to be a covariate in both the logistic and

linear regression models. LRT linear on the other hand simply fits the non-Bayesian linear

and the logistic regression models without considering variance shrinkage or adjustment for

additional covariates.

2.2.5.3 Limma-trend

Limma-trend [20] proposes a linear model based differential expression approach for mod-

elling RNA-seq experiments of arbitrary complexity. Their framework models the mean gene

expression as a function of several continuous and categorical covariates. A separate linear

model is fitted for each gene, but the gene-wise models are linked by global parameters using

the parametric empirical Bayes approaches [78]. The global variance estimated by the em-

pirical Bayes procedure also incorporates a mean variance trend, allowing better modelling

of low abundance genes. Finally, test of differential gene expression is carried out by testing

the significance of one or more coefficients of the fitted linear model.

2.2.5.4 Wilcoxon Rank Sum (WRS) Test

WRS [79] test is a non-parametric test commonly used for pairwise DGE testing. The test is

formulated as H0, the distributions of the gene vector under two dose groups are equal versus

Ha: the distributions are not equal.The test involves the calculation of the U statistic, which

for large samples is approximately normally distributed. Since this is a pairwise test, a union

is taken over all the genes found to be DE in each of the pairwise tests. The computations

are carried out using the wilcox.test function in R package stats and multiplicity is controlled

using FDR correction.
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2.2.5.5 ANOVA

Analysis of variance (ANOVA) [80] is very commonly used for testing the differences among

means in multiple groups. For a fixed gene j, it is assumed that the observed gene vector

yk,i,j for cell i is grouped by dose. Assuming that Yk,i,j ∼ Normal(µk,j, σ
2
j ), ANOVA aims

to test the null hypothesis H0 : µ1,j = µ2,j = . . . µK,j = µj versus Ha : µk,j, i = 1, . . . , n; j =

1, . . . , p; k = 1, . . . , K is different for at least one k. The test statistic is computed using the

aov function in R package stats and it follows a F-distribution with (K − 1) and (n − K)

degrees of freedom. Multiplicity is controlled by applying FDR correction on the obtained

p-values.

2.2.5.6 Kruskal-Wallis (KW) Test

KW [81] test extends the WRS test for multiple groups. It is also a non-parametric extension

of the ANOVA test.The test is formulated as; H0, the distributions of the gene vector under

K dose groups are equal versus Ha: the distributions are not equal. The computation of

the KW test statistic is carried out using the kruskal.test function in R- package stats and

it asymptotically follows a χ2 distribution with K − 1 degrees of freedom. Multiplicity is

controlled by applying FDR correction on the obtained p-values.

2.2.6 Benchmarking and sensitivity analyses

Benchmarking of DE test methods was performed on simulated datasets based on initial

parameters derived from real dose-response snRNAseq data. The probability of differential

expression was set to 10% with a 50% probability of being down-regulated, equally dis-

tributed among the dose-response models in Table 1. Batch parameters were used to include

sample variation associated with data obtained from 3 individuals in each dose group. A

total of 5,000 genes were simulated for 4,500 cells (500 per dose group) using the same doses

as the real dataset. Sensitivity analyses varied each of the following parameters according
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to values is supplementary Table 1: cell abundance equally distributed among dose groups,

varying cell numbers in each dose group, percent DE genes, proportion of downregulated

DE genes, fold-change location or scale, and dropout rate. Each simulation was replicated

10 times using a different initial seed. Method concordance was determined as area under

the concordance curve (AUCC) for the top 100- or 500-ranked genes in simulated and real

datasets, respectively, as previously described [82].

2.3 Results

For benchmarking of DGEA methods, a ground truthis required. Existing simulation tools

such as PowSimR, SymSim, SPsimSeq and Splatter are commonly used for power analy-

ses, evaluating DE analysis methods, and testing cell clustering strategies [75, 83, 84, 85].

Tools such as SymSim and Splatter are also capable of simulating cell trajectories and model

differentiation processes. Trajectories which exhibit non-linear changes over time or across

different developmental stages are not unlike dose–response effects which change over a con-

tinuum of doses. However, dose-responsive changes commonly follow defined trajectories

such as Hill, exponential, power, and linear models [28]. To simulate dose–response scR-

NAseq data we developed a wrapper for the Splatter scRNAseq data simulation tool named

SplattDR. SplattDR modified the Splatter grouped data simulation strategy by adjusting

counts from means defined by one of the dose–response functions outlined in the Materials

and Methods.

To demonstrate the modeling capability of SplattDR, 10000 gene expression responses

were simulated with a 10% probability of being differentially expressed, equally distributed

across the dose–response models. Parameters used in Splatter were initially estimated from

our experimental single nuclei RNAseq (snRNAseq) dose–response dataset. The simulated

data compared to the experimental data showed the relationship between the mean expres-

sion, percentage of zeroes, and mean variance were consistent (Figures 2.2A, B). Estimation

of the normalized root mean square deviation (NRMSD) from a curve fit to the experimental
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data indicated excellent concordance.

The distribution of log(fold-changes) between vehicle (dose 0) and the highest simulated

dose (dose 9; 30 µg/kg) showed a more even distribution within a similar range compared

to experimental data which was skewed towards induction (Figure 2.2C).

However, the gene induction skew was captured by modulating the parameters affecting

the probability of differential expression and the proportion of differentially repressed genes

(Supplementary Figure A.1). Principal components analysis (PCA) of the simulated data

clearly showed the dose-dependent characteristics of scRNAseq data with distinct clusters

increasing in separation with increasing dose (Figure 2.2D) which was also resolved by PCA

within the experimental data (Supplementary Figure A.2).

To our knowledge, no other published in-vivo dose-response scRNAseq datasets are avail-

able limiting the number of datasets to estimate initial parameters for simulation to date. To

investigate whether existing datasets generated using a different study design (e.g. whole cells

or different tissue source) could be used to derive initial parameters, we also simulated 10 000

genes starting with parameters estimated from (i) a two-dose liver snRNAseq (GSE148339),

(ii) whole cell liver scRNAseq (GSE129516) and (iii) peripheral blood mononuclear cells

(PBMC; GSE108313) datasets. When compared to a model fit for experimental data to

determine the relation between mean expression and percent zeroes or mean variance, the

NRMSD for data simulated from these datasets were between 1 and 10% with data simulated

from whole cell data differing the most from the model fit (Figure 2.2E). We then explored

whether parameters estimated from distinct cell types could replicate the characteristics of

that same cell type (Figure 2.2F). Not surprisingly, using initial parameters derived from

individual cell types in the experimental dose–response data had lower NRMSD than those

derived from the whole cell dataset. Notably, when data derived from a lower abundant

cell sub-type was used to estimate starting parameters, the dose–response characteristics for

that cell subtype was also poorly modeled (Figures 2.2E, 2.2F)
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Figure 2.2 Comparison of simulated and real dose-response data. (A) Relationship
between gene-wise mean expression and percent zeroes for simulated and real dose-response
data. Simulation data consisted of 10,000 genes and 9 dose groups based on parameters
derived from experimental dose-response snRNAseq data. Black line represents a fitted
model to the experimental data from which the normalized root mean square deviation
(NRMSD) of simulated data was determined. (B) Relationship between gene-wise mean
expression and variance for simulated and experimental data. NMRSD was calculated for
simulated data from the fitted model represented as a black line. (C) Distribution of
log(fold-changes) in experimental and simulated data showing the median and minimum
and maximum values. (D) Principal components analysis of simulated data colored
according to simulated dose groups. (E) NMRSD estimated relative to fitted model in A,B
for simulated data generated from initial parameters derived from published hepatic
scRNAseq (two dose; GSE148339), hepatic whole cell (whole cell; GSE129516), and
peripheral blood mononuclear cell (PBMC; GSE108313) datasets. (F) NMRSD estimated
relative to model fitted to cell-type specific experimental dose-response data when
simulated from initial parameters estimated from that same cell type. Box and whisker
plots show median NMRSD, 25th and 75th percentiles, and minimum and maximum values.

2.3.1 Performance accuracy of DE test methods

We evaluated the performance of several differential gene expression analysis methods on

simulated datasets consisting of nine dose groups of 500 cells each (4500 total) and 5000
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Figure 2.3 Classification performed of DE analysis tests. (A) ROCs estimated from
simulated dose-response scRNAseq data for 9 DE test methods including all genes
expressed in at least 1 cell (unfiltered). (B) ROCs for 9 DE test methods after filtering
simulated dose-response scRNAseq data for genes expressed in only ≥ 5% of cells (low
levels) in at least one dose group. (C) Precision-recall curves (PRCs) for 9 DE test
methods on unfiltered simulated dose-response scRNAseq data. (D) PRCs for 9 DE test
methods on filtered simulated dose-response scRNAseq data. Lines represent the mean
values and shaded region reflects the standard deviation for 10 independent simulations.
(E) Precision of DE test methods. (F) FPR of DE test methods. (G) MCC for test
methods. E,F,G Box and whisker plots median values, 25th and 75th percentiles, and
minimum and maximum values for 10 independent simulations. Points reflects values for
each independent simulation. Panels display comparisons of unfiltered and filtered datasets.

genes with a 10% probability of being differentially expressed (500 differentially expressed

genes). Selection criteria for test inclusion are outlined in the Materials and Methods sec-

tion and included 9 test methods; ANOVA [80], single-cell Bayes hurdle model test (scBT),

Kruskall–Wallis (KW) [81], limma-trend [20, 78], likelihood-ratio test (LRT) linear and mul-

tiple, MAST [16], Seurat bimod [14] and WRS [79]. With ground truth from simulated data,

the sensitivity, specificity, and precision for each test method was computed. Area under the

receiver-operating characteristic curve (AUROC) was used to measure test performance for

correctly classified differentially expressed genes.
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In unfiltered data, AUROC scores showed similar performance for most tests except scBT

which had the largest AUROC among all test methods (Figure 2.3A). To account for the

inherent class imbalance between differentially expressed and non-differentially expressed

classes the area under the precision-recall curves (AUPRC) was also calculated. Similar

to AUROCs, AUPRCs identified scBT as the best performing test (Figure 2.3C). In most

standard differential expression testing pipelines genes expressed at low levels are removed to

minimize false detection rates. Following filtering of genes expressed in ≥ 5% of cells in any

dose group, scBT was consistently ranked as the best test based on AUROC and AUPRC

scores. The performance of LRT linear test also improved, with comparable AUROC and

AUPRC scores relative to scBT, suggesting LRT linear is poorly suited for genes expressed

at low levels (Figures 2.3B–D).

AUROC and AUPRC reflect the performance of each test method with varying signifi-

cance (i.e. P-value) thresholds. In the standard pipeline a fixed threshold is used, typically a

P-value ≥ 0.05 after adjustment for multiple hypothesis testing (i.e. Bonferroni correction).

For each method except scBT, the performance at an adjusted P-value ≥ 0.05 significance

criteria was evaluated. In scBT analysis, a gene was considered differentially expressed when

the estimated posterior probabilities of the null hypothesis, p(H0, j|Dj), was less than , where

the value was chosen to achieve a target FDR of 0.05. scBT significantly outperformed all

other tests in precision rates irrespective of low expression filtering (Figure 2.3E). However,

scBT was less effective in identifying true positives (Figures 3F). Applying the filtering cri-

teria improved the recall rates, but the precision rates remain largely unchanged (Figure

2.3E, 2.3F). Test method classification performance scores were estimated as the Matthews

correlation coefficient (MCC) which is well suited for unbalanced data [86]. We see that the

scBT and LRT linear tests performed best for this metric on both unfiltered and filtered

data (Figure 2.3G).
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Figure 2.4 Evaluation of Type I and II error control. (A) False positive rate (FPR) of 9
differential expression test methods estimated from negative control (0% DE genes)
simulated dose-response scRNAseq data including all genes expressed in at least 1 cell
(unfiltered) and genes expressed in only ≥ 5% of cells in at least one dose group (filtered).
(B,C) Logistic regression models were fitted to negative control data to predict the
probability of false positive identification using percent zeroes and mean expression as
covariates. Lines represent the predicted probability of false positive classification with the
shaded region representing the 95% confidence interval. (D) False negative rate (FNR) of 9
differential expression test methods estimated from positive control (100% DE genes)
simulated dose-response scRNAseq data including unfiltered and filtered datasets. (E,F)
Logistic regression models were fit to positive control data. Lines represent predicted
probability of false negative classification with shaded region representing the 95%
confidence interval.

2.3.2 Type I error control and power

To investigate test performance in controlling type I errors (false positives), DGEA methods

on simulated datasets were examined with 0% DE genes (i.e. negative control). Using the

threshold for the computed posterior null probabilities, scBT identified only one false positive

gene in 2 of 10 simulations (Figure 2.4 A). ANOVA, scBT, KW, limma-trend and LRT linear
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had false positive rates (FPRs) below 3% indicating better performance compared to two

group tests. After filtering for genes with low expression levels, scBT still correctly identified

all the non-differentially expressed genes and was the best performing test. These are the

same tests that had a better FPR control in initial simulations (Figure 2.4). To explore

whether mean expression or percentage of zeroes influenced type I error rates, a logistic

regression model was fit to negative control data. We predicted the probability for each gene

to be identified as differentially expressed in the negative control data. While the curve for

scBT is missing since few false positives were identified, the predicted FPR for all the other

tests except LRT linear were also high for highly expressed genes with few zeroes (Figures

2.4B, 2.4C). Next, a positive control dataset with 100% differentially expressed genes was

simulated to evaluate test performance for detecting true positives. All tests except scBT

exhibited a false negative rate (FNR) ≥ 40% (Figure 2.4D). The best performing tests for

FNR also had high FPR. Logistic model regression fitting for false negative classification of

genes shows that the false negative rates were highest when the mean expression was either

too high or too low for all tests (Figures 2.4E, 2.4F).

2.3.3 Parameter Sensitivity Analysis

Experimental scRNAseq datasets will vary between cell types, cell composition, and re-

sponses depending on the target tissue, treatment, number of cells sequenced, and more.

For example, some distinct cell types are very abundant (e.g. hepatocytes), with others

present at lower levels (e.g. portal fibroblasts) in hepatic scRNAseq datasets. Moreover,

treatments such as exposure to a xenobiotic, can elicit dose-dependent changes in relative

proportions of cell types such as the infiltration of immune cells (26). We investigated the

impact by changing cell abundance from 25 to 2000 cells per dose group and observed an

increase in the false positive rate (FPR) when increasing the number of cells. The scBT and

LRT linear tests were less sensitive to an increase in the FPR as cell abundance increased

while the total positive rates (TPR + FPR) increased with cell abundance for all methods.
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Figure 2.5 Matthews correlation coefficient (MCC) from sensitivity analyses of differential
expression test methods. (A) MCC for 9 DGEA test methods determined from simulated
dose response data with varying number of cells per dose group. Simulations consisted of
5,000 genes with a probability of differential expression of 10% and 9 dose groups. (B)
MCC for simulated data varying the cells numbers by dose group. The number of cells in
each of the 9 doses groups is shown on the right. (C) MCC for varying proportion of
differentially expressed genes. (D) MCC when varying the mean fold-change (location) of
repressed differentially expressed genes. (E) MCC for varying distribution of fold-change
(scale) of differentially expressed genes. (F) MCC for varying dropout rates calculated as in
Table S3. Points represent median and error bars represent minimum to maximum values.
Boxplots represent median, 25th to 75th percentile, and minimum to maximum values.
Each analysis consisted of 10 replicate datasets including all genes expressed in at least 1
cell (unfiltered) and genes expressed in ≥ 5% of cells in at least one dose group (filtered).
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Although all tests exhibited comparable performance at low cell numbers (≥500), as cell

numbers increased scBT outperformed all other tests in both precision and MCC score (Fig-

ures 2.5 A) Comparison of AUROCs and AUPRCs across cell numbers showed that ANOVA,

KW, limma-trend, and LRT linear tests performed best for a small number of cells, but the

increase in AUROC was steeper for scBT.

It was also evident from the experimental snRNAseq dataset that the number of cells

per dose group was not fixed. We evaluated the performance of the test methods when the

number of cells dose-dependently increased or decreased, and when the number of cells per

dose group were taken from experimental data. Notably, while scBT had the best MCC

for increasing number of cells per dose, LRT linear performed better than scBT when the

number of cells decreased before and after filtering for genes expressed at low levels (Figure

2.5B). The shift in MCC between increasing and decreasing cell numbers for scBT appears

to be driven by a concomitant decrease in TPR and increase in FNR.

Increasing the proportion of differentially expressed genes led to an improvement in MCC

except for scBT and LRT linear, though these tests maintained the top MCC scores as well

as AUROC and AUPRC (Figure 2.5C). As the magnitude of the effect increased, LRT

linear performed best at the low end while scBT exhibited the greatest improvement in

MCC (Figure 2.5D). Conversely, while the MCC decreased for most tests when modulating

the fold-change scale of differentially expressed genes, scBT improved and was more stable

(Figure 2.5 E). As the proportion of unexpressed genes increased, the FPR increased with

precision decreasing for all tests. However, scBT was least affected, and maintained the

highest MCC among all tests (Figure 2.5F).

2.3.4 Test method agreement

To assess agreement between tests, the area under the concordance curve (AUCC) for each

pair of tests for the top 100 genes ranked by adjusted P-value was calculated as previously

described [32, 82]. All methods showed excellent concordance (AUCC ≥ 0.77) with LRT
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linear showing the poorest consistency compared to all other tests while the limma-trend and

ANOVA tests showed perfect agreement with an AUCC of 1 (Supplementary Figure A.3).

Pairwise differential gene expression comparisons between Seurat Bimod, MAST and WRS

had AUCC > 0.95AUCCs while the multiple group tests ANOVA, LRT multiple, KW, and

scBT clustered together with AUCC ranging between 0.9 and 1. In the absence of nuisance

covariates, MAST and Seurat Bimod provided similar results, as expected given their similar

mixture normal model structure. Likewise for ANOVA and limma-trend, both of which rely

on normality assumptions for testing differential gene expression.

2.4 Real dose–response dataset DE analysis

Without ground truth for experimental data, the performance of the differential expression

test methods was examined by first evaluating the agreement for each identified cell type

(Figures 2.6). Genes in the experimental dataset were considered differentially expressed

when expressed in ≥5% of cells in at least one dose group and had a |fold-change| ≥ 1.5.

In hepatocytes, the most abundant cell type, fewer than 5 genes were not detected in all

test methods, with the majority missed by the WRS test (Figure 2.6A). Upon closer exam-

ination, those genes were not expressed in control hepatocytes. Not surprisingly, for all cell

types, the largest intersection was between all tests indicating strong agreement within all

test methods. Only a few tests identified a subset of unique genes as differentially expressed,

which accounted for a very small fraction. For example, LRT linear identified 12 unique dif-

ferentially expressed genes in portal fibroblasts, one of the least abundant cell types (Figure

2.6B). LRT linear was the best performing test for low cell numbers indicating that the 12

unique differentially expressed genes may in fact be true positives. Consistent with simu-

lations of varying cell numbers (Figure 2.6A), 24 genes were not identified as differentially

expressed by the scBT method for stellate cells which exhibit a dose-dependent decrease in

numbers (Figures 2.6C, D). Although scBT outperformed other tests in most scenarios, it

under performed in this scenario. Nevertheless, when ranking genes by significance level (i.e.

36



Figure 2.6 Agreement of differential expression test methods on experimental dose-response
data. (A) Upset plot showing the intersection size of genes identified as differentially
expressed by 9 different test methods in hepatocytes from the portal region of the liver
lobule. (B) Intersect of differentially expressed genes in portal fibroblasts. (C) Intersect
size in hepatic stellate cells. Vertical bars represent the intersect size for test methods
denoted by a black dot. Horizontal bars show the total number of differentially expressed
genes identified within each test (set sizes). Only intersects for which genes were identified
are shown. Genes were considered differentially expressed when (i) expressed in > 5% of
cells within any given dose group and (ii) exhibit a |fold-change| ≥ 1.5. A heatmap in the
upper left corner of each panel shows the pairwise AUCC comparisons for the 500 lowest
p-values. (D) Relative proportion of cell types identified in each dose group of the real
dataset for the cell types in A,B,C. Experimental snRNAseq data was obtained from male
mice gavaged with sesame oil vehicle (vehicle control) or 0.01 – 30 µg/kg TCDD every 4
days for 28 days. (E) Graph metrics for gene set enrichment analysis of portal fibroblasts
grouped by similarity in gene membership. Violin plots show distribution of node-wise
values for each test method. (F) Network visualization of significantly enriched (adjusted
p-value ≤ 0.05) gene sets using the Bayes factor ranked genes of portal fibroblasts. Groups
of ≥ 2 nodes were manually annotated following commonality in the gene set names. Each
node represents a gene set with the size of the node representing the number of genes in a
gene set, and edges connect nodes with ≥ 50% overlap.
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P-values), AUCC were high for all pairwise comparisons.

To explore the biological insight gained by using the test methods, gene set enrichment

analysis was performed by ranking genes following significance values (adjusted P-value or

Bayes factor) on gene sets from BIOCARTA, KEGG, PANTHER and WIKIPATHWAYS.

Gene sets were grouped based on their similarity in gene membership into a network for

which centrality measures can be estimated. An examination of portal fibroblasts, which

exhibited the most disagreement among test methods (Figure 2.6B), showed that multiple

group test methods, particularly scBT had improved centrality metrics (centrality – number

of edges; closeness – steps required to access other nodes; and betweenness – number of

paths that go through a node) (Figure 2.6E). Visualization of significantly enriched terms

identified enriched functions associated with growth factor and immune cell signaling in

addition to expected terms such as xenobiotic metabolism and nuclear receptors involved in

lipid metabolism (Figure 2.6F). Alternatively, WRS which did not find as many connected

groups of functions, was largely limited to those identified by scBT except for the hormone

signaling and tryptophan metabolism clusters. While there is no ground truth from real data,

greater agreement between similar gene sets from disparate sources suggests that multiple

group tests such as scBT provide more reliable findings [1]. However, all the test methods

produce comparable gene set enrichment results as expected since the most robust changes

were identified by all the test methods.

2.5 Discussion

The goal of this study was to compare the performance of newly developed DGEA test

methods for dose–response experiments to existing analysis methods. Using simulated data

to generate ground truth, we evaluated the performance of nine differential expression testing

methods which were broadly classified as either fit-for-purpose, multiple group, or two group

tests. Criteria for test method selection was based on previous benchmarking efforts for two

group study designs identifying MAST, limma-trend, WRS, and t-test as the best performers
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[32, 87]. ANOVA and KW tests were also included for evaluating multiple group comparisons,

and Seurat Bimod, for having the same modelling framework as scBT, LRT multiple and

LRT linear tests. The test methods were ranked from best to worse (1-9) based on type I

error rate, type II error rate, MCC, AUROC and AUPRC (Figure 7, Supplementary Table

S4).

While several scRNAseq tools have been developed [75, 83, 84, 85], none are developed

to simulate dose–response models commonly identified in toxicological and pharmacological

datasets [28, 88]. Our SplattDR wrapper for the Splatter package (28) was able to show

that simulated data can effectively emulate key experimental scRNAseq data characteristics

when simulation parameters were estimated from various Unique Molecular Identifier (UMI)-

based datasets. In agreement with a previous report, technical and biological factors, such

as cell type, does appear to influence gene dropout rates (18). We primarily focused on

10× Genomics UMI data given the unavailability of real experimental dose–response data

generated using other platforms.

Overall, test method performance was consistent with their intended application. For

example, fit-for-purpose tests scBT and LRT linear consistently ranked higher followed by

multiple groups tests such as KW and LRT multiple. scBT exhibited the best overall perfor-

mance with excellent FPR control and top ranked MCC while LRT linear struck a balance

between type I and type II error rates. The scBT results are not surprising as Bayes factor-

based tests have proven to be conservative and consequently more appropriate when false

positives are of concern [69, 70]. In the context of investigating chemical or drug MoAs, false

positives have the potential to lead to wasted effort and resources in attempts to validation

and support findings [89]. Moreover, when assessing a large number of genes, a 5% FP rate

(P − value ≥ 0.05) can result in hundreds of FPs that skew MoA classifications [67].

A single test method was not expected to outperform all other tests under all conditions as

previously demonstrated when comparing pairwise testing [29, 32, 87]. Therefore, we assessed

the strengths and limitations of each test method by varying parameters likely to change

39



within and across various experimental datasets. The number and relative abundance of cell

types is known to be affected by disease or treatment, and the distribution of differential

expression influenced by the chemical, drug, or food contaminant being evaluated [63, 73].

scBT consistently ranked at the top under most scenarios, particularly when the mean and

standard deviation of the fold-change for differentially expressed genes varied. However, scBT

under performed in MCC when the number of cells decrease in a dose-dependent manner

which would be expected in treatments which alter cell population sizes (e.g. inflammation).

Under these circumstances LRT linear outperformed all other tests with scBT performing

similar to the other test methods as evident when 24 differentially expressed genes were

not identified by scBT within experimental data for stellate cells which experienced a dose-

dependent decrease in relative abundance following TCDD treatment. Although excluding

genes expressed at low levels generally improved the performance of all test methods, the

comparative performance of test methods did not significantly change in most cases. We

did not have access to experimental scRNAseq dose–response data, however, we expect that

the scBT would perform equally well as with experimental snRNAseq data as the elevated

number of zeroes are common to both types of data. Major differences between these types

of data are (i) biases in gene detection and (ii) overall counts [73]. Given the higher overall

counts in scRNAseq data, test method such as scBT may even perform better.

DGEA provides biological information regarding the effects of exposure to chemicals,

drugs, and food contaminants. As expected, gene set enrichment analyses did not dramat-

ically differ in the enriched pathways which are driven by the most robust responses such

as xenobiotic metabolism. However, when integrating gene sets from disparate sources we

found gene sets that partially overlap in gene membership were consistently identified by

multiple group test methods. For example, several gene sets related to growth factors and

cell proliferation were identified by scBT but not WRS. Portal fibroblasts are implicated

in proliferation of cholangiocytes and the secretion of growth factors during development.

Enrichment of these terms suggests a functional role consistent with the induction of bile
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duct proliferation by TCDD (45,46). In contrast, WRS identified enrichment associated

with tryptophan as well as oxytocin/thyrotropin-releasing-hormone pathways which has not

been linked to the effects of TCDD on portal fibroblasts. Although ground truth for the

complete experimental dataset is not available, the use of test methods such as scBT reduce

experimental noise to identify leads warranting further analysis.

2.6 Conclusion

Collectively, our findings suggest that scBT and LRT linear fit-for-purpose tests are bet-

ter suited for the differential expression analysis of dose–response studies and when false

positives are of greater concern than false negatives. Moreover, consistent with previous

benchmarking efforts, we show that common non-parametric tests such as KW out-perform

test methods developed for scRNAseq data when the study involves comparisons between

multiple groups. Ultimately, each test method performs optimally under diverse scenarios.

While the importance of controlling type I error rates is acknowledged, a balance must be

struck with type II error rates. The tradeoff should be determined based on the individual

research question being investigated. It may even be reasonable to apply different test meth-

ods to distinct cell types based on dropout rates, cell abundance, and changes in relative cell

proportions given the strengths and weaknesses of each test method.
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CHAPTER 3

SEMIPARAMETRIC DOSE RESPONSE CURVE
ESTIMATION FOR SINGLE CELL DOSE RESPONSE

EXPERIMENTS

3.1 Single Cell Dose Response Experiments

Gene expression profiling of single cells has led to unprecedented progress in understanding

normal physiology, disease progression and developmental processes. In contrast to bulk

RNA-sequencing (RNAseq), gene expression profiling of single-cell allows investigation of

cell-specific heterogenity and can be used to assess changes in response to drugs and chemicals

for individual cell populations. Dose-dependent gene expression profiling (aka genomic dose-

response studies (GDRS)) of drugs and chemicals has been proposed as an alternative test to

rodent bioassays to assess human health risks and application of single-cell RNA sequencing

(scRNAseq) for the evaluation of chemicals, drugs, and food contaminants presents the

opportunity of accounting for cellular heterogeneity in pharmacological and toxicological

responses. Although dose response modelling of bulk RNA-seq datasets have been long-used

for generating quantitative estimates of risks associated with such responses, no statistical

study yet exists for the estimation of dose response curves for scRNA-seq datasets.

Unlike microarray and bulk RNA-seq datasets that record gene expression measurements

averaged over many cells, scRNAseq allows gene expression mesurement on a cellular level

hence enabling biological investigation at the cellular level. However, despite many improve-

ments in high throughput sequencing, various technical factors including cell-cycle hetero-

genity, library size differences, amplification bias, and low RNA capture per cell lead to high

noise in scRNA-seq experiments. Recent technologies are capable of sequencing millions of

cells, but often generate highly sparse expression datasets due to shallow sequencing. The

presence of these issues result in substantial noise that often obscures the true biological

signal and renders unsuitable, the application of traditional statistical models for analysis of
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single cell datasets. Several statistical models have been proposed for the analysis of single

cell datasets, with most focusing on zero-inflated count data distributions like Poisson or

negative binomial, to account for the overdispersion. Continuous hurdle models like MAST

have also been proposed that treat the zero sampling process to be completely different

from the sampling process of true biological expression, which is generally positive. Several

statistical studies have been designed to investigate problems related to differential gene ex-

pression, cell-type clustering, denoising or imputation, gene regulatory network construction,

trajectory inference and other statistical problems studied earlier in the context of bulk and

microarray datasets. However, no rigorous statistical framework has yet been designed for

dose response modelling for scRNA-seq datasets that are invaluable for deriving cell-type

specific efficacy and/or safety margins such as effective dose and the point of departure

(POD) of several toxicological/ pharmacological responses.

Regulatory communities have suggested that acute ( < 14 days) and sub-acute (14–28

days) transcriptomic studies as viable alternative to the current standard 2-year rodent

bioassay that significantly reduces the time and resources needed to assess risk. Further-

more, single cell transcriptomic datasets could bolster such investigations by identifying

cell-specific dose-dependent responses indicative of an adverse event. The U.S. National

Toxicology Program (NTP) recently reported a robust DGEA approach is essential to de-

riving biologically relevant PODs. In characterizing biologic and public health significance,

and the need for possible regulatory interventions, it is important to efficiently estimate dose

response functions while accounting for cell-specific heterogenity and known experimental

confounders. Motivated by the lack of a single framework for single cell dose–response esti-

mation and trend testing, while accounting for covariates this chapter proposes a complete

statistical framework for the same.
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3.1.1 Motivating experimental study and hypothesis of interest

In this work we analyze a unique in vivo dose response hepatic scRNAseq dataset consisting of

9 dose groups with 3 biological replicates for 11 distinct liver cell types for greater than 100K

cells. The 9 dose groups represent 9 doses of varying levels of 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD). The persistent organic pollutant and potent agonist of the aryl hydrocarbon

receptor (AHR), TCDD induces hepatic lipid accumulation (steatosis) that progresses to

steatohepatitis with fibrosis. In humans, TCDD and related compounds are associated

with dyslipidemia and inflammation and in mice, AHR activation by TCDD elicits cell-

specific and spatially resolved histological and gene expression responses. Our interest lies

in estimation of cell-type specific dose response curves for genes of interest in order to derive

finer point of departures (PODs) for use towards informed decision-making on the safety and

toxicity of drugs and chemicals. We hypothesize that some genes of interest would exhibit

different POD’s for different cell-types and our interest not only lies in estimating cell-specific

DR curves but also in testing whether there exists a difference in cell-type specific POD’s.

This would be particularly hard if the genes exhibit slight changes in POD’s over a handful

of cell-populations while exhibiting the same POD over others. In those cases we would like

to investigate how the POD estimates change in comparison to existing ones established via

bulk and microarray based DR studies. Futher, it could be possible that celltypes exhibit

completely different DR curve shapes for some genes whereas there are slight shifts and slope

changes for cell-type specific DR curves for other genes. It is essential to allow the DR curve

to change according to cell-types for a particular gene in order to capture these varying curve

shapes. It is also essential to test whether these estimated changes between celltypes are

statistically significant, in order to ensure accurate POD estimation. Therefore in this work

we propose 1) a semi-parametric regression model for flexible modelling of dose response

curves, while accounting for high percentange of zeroes and effects of additional covariates

2) a scalable and computationally efficient MM algorithm for the estimation of regression

parameters, 3) an approach to incorporate monotonicity assumptions, if supported by prior
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beliefs, within the estimation paradigm, 4) tests of hypothesis for testing the presence of a

dose response trend and whether the trend varies for different cell-types and 5) estimation

of cell-type aware POD’s.

3.1.2 Literature on dose response curve estimation

The primary interest in dose response studies lies in assessing the association between a

continuous predictor, D, and a response variable, Y , while adjusting for covariates, X =

(X1, . . . Xq)
⊤. There are a number of papers in the existing literature on dose response

curve estimation, but none that solves the problem underlying our motivating examples.

Most of the existing literature focusses on analyzing data from bulk RNA-seq datasets,

microarrays or traditional environmental toxicity studies that focuses on continuous or di-

chotomous endpoints. Let us denote a sample of n independent and identically distributed

(IID) pairs of variables, B = {(Zi, Yi)}, i = 1, . . . n as the data. Zi can be further segmented

as Zi = {(Di, Xi)} where Di represents the dose vector and Xi represents the vector of other

confounding covariates such as age, gender etc. The main interest of dose response studies

lies in modelling E(Yi) as a function of the dose vector; ie. E(Yi|Di) = ζ(Di, θ), where θ is

the vector of unknown parameters.

In general, the methods for estimating dose response can be classified as parametric or

nonparametric. Parametric methods assume a model ζi(D, θ) for the DR curve where θ is

the vector of unknown parameters. Considerable amount of statistical methodology exists

in parametric modelling of dose-response studies, employing parametric models, such as

Logistic, Exponential, and Gompertz as well as others (Holland-Letz and Kopp-Schneider

2015) and the US EPA (US EPA 2012) gives guidelines on how to employ these methods.

These models are generally fit using standard techniques such as maximum likelihood (ML)

or restricted maximum likelihood(RML) and their functional forms are monotonic allowing

for tractable estimation of relevant POD’s. It is well known that if a parametric model

is correctly specified then the ML/RML estimators are efficient. However, in many cases,
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it is difficult to correctly specify the parametric form of the dose–response curve because

the biological mechanism of drug action or toxicity may be complex and the form of the

dose–response curve is unknown apriori. When the parametric model is misspecified, the

corresponding curve estimate may be severely biased. In addition fitting of extremely flexible

polynomial models with high orders, to match difficult non-monotonic curve shapes can lead

to severe overfitting. The standard workaround is to fit multiple parametric models, each of

which may fit the data reasonably, but produce a range of POD estimates that accounts for

model uncertainty in the estimation process. Accounting for this uncertainty using model

averaging (MA) has received recent attention in the literature. However, despite simulation

studies suggesting that model-averaged estimates provide POD estimates that have low bias

and nominal coverage properties, these estimates may fail to adequately describe the true

uncertainty for DR curves on the edge of the MA model space, hence resulting in inaccurate

inference. Further, as the MA results are available on limited number of parametric forms,

models that make fewer assumptions on parametric forms may allow for better estimation

of the dose response curves.

To enhance the robustness of the estimation of the dose–response curve, many nonpara-

metric methods have been proposed. [41] proposed MLE estimation procedures under the

assumption that the dose response curve is sigmoid and non-decreasing. [42] proposed a

method for non-parametric estimation of the dose response curve under monotonicity con-

straints using B-splines regression. [43] used kernel estimators to obtain estimates for the

dose–response curve under general shape restrictions. In the Bayesian setup, several ap-

proaches have been proposed for non-parametric estimation of dose response curves under

monotonicity constraints. From a Bayesian perspective, one specifies a suitable prior on the

regression function that induces monotonicity and then inference is based on the posterior

distribution. [44] employed an additive model with a prior imposed on the slope of the

piecewise-linear functions. [45] adopted mixture modelling of shifted and scaled probability

distribution functions. [46] propose a Gaussian process model with a posterior projection
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approach for shape-constrained curves. In contrast to the parametric methods, all the non-

parametric approaches are flexible and learn the shape of the dose response curves based

on the data. To our knowledge none of the existing literature has considered building a

semi-parametric regression model for both unconstrained and monotonicity constrained es-

timation of dose response curves for single cell experiments while accounting for technical

confounders and whose development is the primary goal of this chapter.

3.1.3 Literature on MM algorithms

A large number of statistical and machine learning problems require the computation of

min
θ∈Θ

(θ,B) or θ̂ = argmin
θ∈Θ

R(θ,B) (3.1)

where R(θ,B) is a risk function defined over the observed data B and is dependent on

some parameter θ ∈ ×. Common risk functions that are used in practice are the negative

log-likelihood functions, which can be expressed as

R(θ,B) = − 1

n

n∑
i=1

f(zi; yi; θ)

where f(zi, yi, θ) is a density function over the support of Z and Y . Simple maximum likeli-

hood estimation problems (or alternatively minimization of the negative log-likelihood) can

be solved analytically, but most practical maximum likelihood and least squares estima-

tion problems must be solved numerically. The task of computing 3.1 may be complicated

by various factors which include the lack of differentiability of R or difficulty in obtaining

closed-form solutions to the first-order condition equation ∇θR = 0, where ∇θ is the gra-

dient operator with respect to θ , and 0 is a zero vector. The double duty MM acronym

that stands for majorize in case of minimization problems and minorize for maximization

problems provides an unifying algorithm for simplifying the computation of a difficult form

of 3.6 via iterative minimization of surrogate functions [90]. Simplification is attained by (a)

avoiding computationally expensive inversion of large matrices, (b) linearizing the optimiza-
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tion problem, (c) parameter uncoupling, (d) cleverly dealing with equality and inequality

constraints or (e) turning a non-differentiable surface into a smooth one.

Let Θ(r) represent a fixed value of the parameter Θ, and let h(Θ|Θ(r)) denote a real-valued

function of Θ whose form depends on Θ(r). The function h(Θ|Θ(r)) is said to majorize a real-

valued function f(Θ) at the point Θ(r) provided

h(Θ|Θ(r)) ≥ f(Θ) for all Θ

h(Θ(r)|Θ(r)) = f(Θ(r)) (3.2)

Therefore the surface h(Θ|Θ(r)) lies above the surface f(Θ) and is tangent to it at the point

at Θ = Θ(r). The function h(Θ(r)|Θ(r)) is said to minorize f(Θ) at Θ(r) if −h(Θ(r)|Θ(r))

majorizes −f(Θ) at Θ(r). Θ(r) represents the current iterate in optimizing the surface

f(Θ). In a majorize-minimize MM algorithm, the algorithm minimizes the majorizing func-

tion h(Θ|Θ(r)) rather than the actual function f(Θ) . If θ(r+1) denotes the minimizer of

h(Θ(r)|Θ(r)), then the MM procedure forces f(Θ) towards a minimum. The inequality

f(Θ(r+1)) = h(Θ(r+1)|Θ(r)) + f(Θ(r+1))− h(Θ(r+1)|Θ(r))

≤ h(Θ(r)|Θ(r)) + f(Θ(r))− h(Θ(r)|Θ(r))

= f(Θ(r)) (3.3)

follows directly from the fact h(Θ(r+1)|Θ(r)) ≤ h(Θ(r)|Θ(r))) and definition 3.2. The descent

property 3.3 allows for remarkable numerical stability and the MM algorithm also applies to

maximization rather than minimization with straightforward changes.

MM algorithms, which present a generalization of the EM (expectation– maximization)

algorithms [91] have been shown to effectively solve a variety of optimization problems in

machine learning, statistical estimation and signal processing. A comprehensive treatment

on the theory and implementation of MM algorithms can be found in [92]. Summaries and

tutorials on MM algorithms for various problems can be found in [93, 90, 94, 95, 92] Some

theoretical analyses of MM algorithms can be found in [96, 97, 98].
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3.2 Methods

3.2.1 Model, notations and assumptions

It is understood that scRNA-seq data are collected from many cells of different types when

cells are exposed to different dose levels. Since the data for every gene will be analyzed

separately, let us denote the data from a given gene by {Yi,j, Di,j, Xi,j | i = 1, . . . , I, j =

1, . . . , ni}. Here i and j are used to denote the suffix for the cell-type and a cell within

a specific type of cell. Here Yi,j denotes the response (scRNA-seq expression) from the

jth cell of ith cell type, Di,j and Xi,j denote the dose-level and a set of covariates for the

corresponding cell. Since the scRNA-seq expression contain excessive amount of zeros, we

adopt a zero-inflated negative binomial distribution:

Yi,j ∼ ωi,jNB(mi,j = siµi,j, ϕ) + (1− ωi,j)I(Yi,j = 0). (3.4)

Model (3.4) implies that the response is assumed to come from a two-component mixture

of two distributions. One component has a mass fully concentrated on zero, and the other

component is the Negative Binomial distribution with the mean of mi,j and the scale of

exp(ϕ), where ϕ is on the real line. We define the mean mij = si,jµi,j where si,j represents

the cell-specific biases and µi,j, expected transcript count. The scale factors si,j are computed

using scran [99], an approach that uses pooling across single cells to normalize scRNA-seq

sequencing data with high number of zeroes. Further µi,j is assumed to be function that

depends on the dose Dj and covariates Xi,j. Specifically, we assume that

µi,j = exp{ζi(Di,j) +X⊤
i,jβ}, (3.5)

where ζj is nonparametric function of the dose specific to ith type of cells. Our goal is to

estimate this function ψi. The covariate Xi,j is assumed to exert a linear effect through the

regression parameter β. Our method implicitly assumes that ζi can be well approximated

between boundary points a and b by a cubic B spline basis with some number of knots.

We will denote knot configurations by pairs (K, τ), where the number of knots K is a
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non-negative integer and the knot locations are given by the K dimensional vector k =

(k1, ...., kK), for a < d(1) < τ1 ≤ · · · ≤ τK < d(n) < b for k = 1, ..., K denote the kth function

in a cubic B-spline basis with natural boundary constraints, i.e. linear outside [a, b].

Therefore the dose response curve is approximated as:

ζi(D) =
M∑
m=1

γi,mBm(D),

with M = d+K + 1. With the above model for the dose-response curve, we can write

µi,j = exp{
M∑
m=1

γi,mBm(Di,j) +X⊤
i,jβ}. (3.6)

Furthermore, lab experiments indicate that the chance of zero inflation tends to decrease

with the increasing dose level. This is because a lot of genes are induced, thereby increasing

the mean while simultaneously reducing the dropouts. Therefore we propose to model the

inflation parameter as a function of the mean of the negative binomial component (3.4),

which means we model ωi,j in terms of siµi,j

logit(ωi,j) = ψ0 + ψ1log(siµi,j), (3.7)

where ψ0 and ψ1 are two unknown parameters to be estimated. Define Θ = (ϕ, β, γ1,1, . . . ,

γ1,M , . . . , γJ,1, . . . , γJ,M , ψ0, ψ1)
⊤. Then the log-likelihood function is

ℓ(Θ) =
I∑
i=1

ni∑
j=1

(
I(Yi,j > 0)

[
Yi,jlog(siµi,j)− {Yi,j + exp(ϕ)}log{siµi,j + exp(ϕ)}

+ ϕ exp(ϕ) + log Yi,j + exp(ϕ) − log(Yi,j!)− log exp(ϕ) + log(ωi,j)
]

+ I(Yi,j = 0)log
[
(1− ωi,j) + ωi,j

{
exp(ϕ)

siµi,j + exp(ϕ)

}eϕ ])
.

The goal is estimating the parameter by maximizing ℓ(Θ). The maximization of ℓ(Θ) is

difficult as the dimension of Θ could be large. Therefore, we develop an MM algorithm to

ease the complexity of this optimization. The first step of the MM algorithm is developing

a minorization function that is easy to optimize compared to ℓ(Θ) and it is presented in the

following theorem. Define Θ(0) = (ϕ(0), β(0), γ
(0)
1,1 , . . . , γ

(0)
1,M , · · · , γ

(0)
J,1, . . . , γ

(0)
J,M , ψ

(0)
0 , ψ

(0)
1 )⊤.
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Theorem 1. The minorizing function of ℓ(Θ) is ℓ†(Θ|Θ(0)), such that

ℓ†(Θ|Θ(0)) = ℓ†1(ϕ|Θ(0)) + g1(ψ0|Θ(0)) + g2(ψ1|Θ(0)) +
∑I

ι=1 ℓ
†
3,ι(γι|Θ(0))

+ℓ†4(β|Θ(0)) + ℓ†5(Θ
(0)), (3.8)

ℓ(Θ) ≥ ℓ†(Θ|Θ(0)) with equality holding when Θ = Θ(0), and the terms of (3.8) are

ℓ†1(ϕ|Θ(0)) =
I∑
i=1

ni∑
j=1

([
I(Yi,j > 0){Yi,j + exp(ϕ)}+ exp(ϕ)Γ

(0)
i,j

]
{
exp(ϕ(0))− exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

}
+
{
I(Yi,j > 0) + Γ

(0)
i,j

}
×
[
ϕ exp(ϕ)− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

{exp(ϕ)− exp(ϕ(0)}2

− exp(ϕ)log{siµ(0)
i,j + exp(ϕ(0))}

]
+ I(Yi,j > 0)

{
log Yi,j + exp(ϕ) − log exp(ϕ)

})
,

g1(ψ0|Θ(0)) =
I∑
i=1

ni∑
j=1

[{
I(Yi,j > 0) + Γ

(0)
i,j

}
ψ0 −

ω
(0)
i,j

2M + 5
exp{(ψ0 − ψ

(0)
0 )(2M + 5)}

]

g2(ψ1|Θ(0)) =
I∑
i=1

ni∑
j=1

{{
I(Yi,j > 0) + Γ

(0)
i,j

}[
ψ1log(si)− 0.5(M + 1)(ψ1 − ψ(0))2

+ ψ1{
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}
]

−
ω
(0)
i,j

2M + 5

(
exp{log(si)(ψ1 − ψ

(0)
1 )(2M + 5)}

+ 0.5(M + 1) exp{(ψ1 − ψ
(0)
1 )2}

+ exp

[
(ψ1 − ψ

(0)
1 ){

M∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}(2M + 5)

])}
,

ℓ†3,i(γi|Θ0) =

ni∑
j=1

{{
I(Yi,j > 0) + Γ

(0)
i,j

}
×
[
−0.5

M∑
m=1

(γi,m − γ
(0)
i,m)

2B2
m(Di,j) + ψ

(0)
1

M∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j)

]

−
ω
(0)
i,j

2M + 5

(
0.5

M∑
m=1

exp[{(γi,m − γ
(0)
i,m)Bm(Di,j)(2M + 5)}2]
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+
M∑
m=1

exp{(γi,m − γ
(0)
i,m)ψ

(0)
1 Bm(Di,j)(2M + 5)}

)}

+

ni∑
j=1

(
I(Yi,j > 0)Yi,j

M∑
m=1

γi,mBm(Di,j)

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+ Γ
(0)
i,j exp(ϕ

(0))

}
×

µ
(0)
i,j

M + 1

M∑
m=1

exp{(γi,m − γ
(0)
i,m)Bm(Di,j)(M + 1)}

− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0) + Γ

(0)
i,j

}
×
[
−2(µ

(0)
i,j )

2

M∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j)

+
(µ

(0)
i,j )

2

M + 1

M∑
m=1

exp{2(M + 1)(γi,m − γ
(0)
i,m)Bm(Di,j)}

])
,

ℓ†4(β|Θ0) =
I∑
i=1

ni∑
j=1

{{
I(Yi,j > 0) + Γ

(0)
i,j

}[
−0.5{X⊤

i,j(β − β(0))}2

+ ψ
(0)
1 X⊤

i,j(β − β(0))

]
−

ω
(0)
i,j

2M + 5

(
0.5 exp[{X⊤

i,j(β − β(0))(2M + 5)}2]

+ exp{X⊤
i,jψ

(0)
1 (β − β(0))(2M + 5)}

)}
+

I∑
i=1

ni∑
j=1

(
I(Yi,j > 0)Yi,jX

⊤
i,jβ

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0) + Γ

(0)
i,j exp(ϕ

(0))

}

×
µ
(0)
i,j

M + 1
exp{X⊤

i,j(β − β(0))(M + 1)}

− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0) + Γ

(0)
i,j

}
×
[
−2(µ

(0)
i,j )

2X⊤
i,j(β − β(0)) +

(µ
(0)
i,j )

2

M + 1
exp{2(M + 1)X⊤

i,j(β − β(0))}
])
,

52



where, Γ(0)
i,j = I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )/{(1− ω

(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )},

ω
(0)
i,j = exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}/[1 + exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}], and

G(ϕ, µi,j) = [exp(ϕ)/{sjµi,j + exp(ϕ)}]eϕ.

The noticeable fact is that the minorizing function separates all the parameters. Conse-

quently, the follow-up calculation becomes extremely simple compared to the case of non-

separated parameters in the joint update of all the parameters in any iterative procedure.

Next, parameters are estimated by the Newton-Raphson method. This technique of updat-

ing the parameters is known as gradient MM algorithm [93]. Let Θ(t) and Θ(t+1) be the

parameter value at the tth and (t + 1)th iterations, respectively, then in the gradient MM

approach, Θ(t+1) = Θ(t) −
{
∂2ℓ†(Θ|Θ(t))
∂Θ∂Θ⊤ |Θ=Θ(t)

}−1
∂ℓ†(Θ|Θ(t))

∂Θ
|Θ=Θ(t) . Starting with an initial

value of Θ, this update is repeated until the parameters converge with a specified tolerance.

Note that in the above update, instead of the log-likelihood, we are using the minorizing

function. Because of the separation of the parameters, {∂2ℓ†(Θ|Θ(t))/∂Θ∂Θ⊤} turns out to

be diagonal matrix. Specifically,

∂ℓ†(Θ|Θ(0))

∂ϕ
|Θ=Θ(0) =

I∑
i=1

ni∑
j=1

(
− exp(ϕ(0))

siµ
(0)
i,j + exp(ϕ(0))

[
Yi,jI(Yi,j > 0) + exp(ϕ(0))

×
{
I(Yi,j > 0) + Γ

(0)
i,j

}]
+ I(Yi,j > 0)

{
∂

∂ϕ
log Yi,j + exp(ϕ) |ϕ=ϕ(0)

− ∂

∂ϕ
log exp(ϕ) |ϕ=ϕ(0)

}
+
{
I(Yi, > 0) + Γ

(0)
i,j

}[
exp(ϕ(0)) + exp(ϕ(0))ϕ(0)

− exp(ϕ(0))log
{
sjµ

(0)
i,j + exp(ϕ(0))

}])
,

∂ℓ†(Θ|Θ(0))

∂ψ0

|Θ=Θ(0)=
I∑
i=1

ni∑
j=1

{
I(Yi,j > 0) + Γ

(0)
i,j − ω

(0)
i,j

}
,

∂ℓ†(Θ|Θ(0))

∂ψ1

|Θ=Θ(0)=
I∑
i=1

ni∑
j=1

{
log(si) +

d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)

}
{
I(Yi,j > 0) + Γ

(0)
i,j − ω

(0)
i,j

}
,
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∂ℓ†(Θ|Θ(0))

∂β
|Θ=Θ(0)=

I∑
i=1

ni∑
j=1

Xi,j

[
ψ

(0)
1

{
I(Yi,j > 0) + Γ

(0)
i,j − ω

(0)
i,j

}
+ I(Yi,j > 0)Yi,j

−
sjµ

(0)
i,j

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j

+ I(Yi,j > 0) exp(ϕ(0) + Γ
(0)
i,j exp(ϕ

(0))

}]
,

∂ℓ†(Θ|Θ(0))

∂γi,m
|Θ=Θ(0)=

ni∑
j=1

Bm(Di,j)

[
ψ

(0)
1

{
I(Yi,j > 0) + Γ

(0)
i,j − ω

(0)
i,j

}
+ I(Yi,j > 0)Yi,j

−
sjµ

(0)
i,j

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+ Γ
(0)
i,j exp(ϕ

(0))

}]
.

Also,

∂2

∂ϕ2
ℓ†(Θ|Θ(0)) |Θ=Θ(0) =

I∑
i=1

ni∑
j=1

{
I(Yi,j > 0)

(
− Yi,j exp(ϕ

(0))

siµ
(0)
i,j + exp(ϕ(0))

+
∂2

∂ϕ2
log Yi,j + exp(ϕ) |Θ=Θ(0) −

∂2

∂ϕ2
log exp(ϕ) |Θ=Θ(0)

)
+
{
I(Yi, > 0) + Γ

(0)
i,j

}[
2 exp(ϕ(0)) + exp(ϕ(0))ϕ(0)

− exp(ϕ(0))log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
− 3 exp(2ϕ(0)) + sj exp(2ϕ

(0))

sjµ
(0)
i,j + exp(ϕ(0))

]}
,

∂2

∂ψ2
0

ℓ†(Θ|Θ0) |Θ=Θ(0) = (2M + 5)
I∑
i=1

ni∑
j=1

ω
(0)
i,j ,

∂2

∂ψ2
1

ℓ†(Θ|Θ(0)) |Θ=Θ(0) =
I∑
i=1

ni∑
j=1

(
−(M + 1)

{
I(Yi,j > 0) + Γ

(0)
i,j

}

−
ω
(0)
i,j

2M + 5

[
(2M + 5)2 × {log(si)}2 +M + 1

+ {
M∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}2(2M + 5)2

])
,

∂2

∂γ2i,r
ℓ†(Θ|Θ(0)) |Θ=Θ(0) = −

ni∑
j=1

B2
r (Di,j)

({
I(Yi,j > 0) + Γ

(0)
i,j + (2M + 5)
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× (1 + ψ
(0),2
1 )ω

(0)
i,j

}
+

sjµ
(0)
i,j (M + 1)

siµ
(0)
i,j + exp(ϕ(0))

[{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+ Γ
(0)
i,j exp(ϕ

(0))

}
+ 2µ

(0)
i,j

{
I(Yi,j > 0) + Γ

(0)
i,j

}])
,

A detailed proof of the theorem is provided in the Appendix for Chapter 3.

3.2.2 Penalized Estimation

In our proposed spline model, regression is performed by choosing a set of knots and

by finding the spline defined over these knots. In this case, the number of knots has

an important influence on the resulting fit; not having enough knots leads to underfit-

ted regression and too many knots lead to overfitted model. Choosing the position of

knots is also an issue since uniformly distributed knots can lead to overfitting in an area

where there are few points and underfitting in an area where there are many points. The

most widely used spline regression methods overcome this difficulties by using a penal-

ization approach. In smoothing splines, knots are set at each data point and the wig-

gliness of the spline is controlled by penalizing over its integrated squared second order

derivative
∫
ψ

′′
(x)

2
dx. Substantial statistical methodology exists in the literature for find-

ing the best number and location of knots; we refer to [100] for a review. To this effect,

one can choose a large number of equally spaced initial knots and estimate the model by

maximizing a penalized likelihood function. We follow [101] Chapter 5.5.3, and set for

k = 1, . . . , K, τk = k+1
K+2

th sample quantile of the unique dose levels. The default choice for

K = min(0.25 × the number of unique dose levels, 35). This knot placement procedure has

been shown to peform well in a lot of scenarios. Alternatively the statistician may choose

K based on visual inspection of the data scatterplot to better depict the complexity of the

regression function relative to the noise in the data. The penalized log-likelihood function
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is ℓp(Θ) = ℓ(Θ) −
∑

i λiP(γi), where λi > 0 is the smoothing parameter and P(γi) denotes

the penalty function for the ith dose-response curve. The minorizing function for ℓp(Θ) is

simply ℓ†(Θ|Θ(0)) −
∑

i λiP(γi). This will lead to a minor adjustment to the expressions

when taking derivatives of the minorizing function with respect to γi. Procedures such as

cross validation and generalized cross validation are used for the selection of the smoothness

parameter λ ([101] Chapter 5)

3.2.3 Monotonicity constraints

Our primary focus is inference on the unknown regression function log(µi). Equation (1)

works fine when we have no prior information on the shape of the regression function. How-

ever, a high percentage of genes are expected to have a higher chance of an adverse response

at increasing dose levels, after adjusting for important confounding factors, such as age and

sex. Additionally, incorporating monotonicity constraints while assessing the dose response

function has been shown to improve estimation efficiency and power to detect trends [102].

To impose monotonicity constraints on Equation (1), we need to assume that ψi ∈ Θ+ is an

isotonic regression function with Θ+ = {ζi(d1) ≤ ζi(d2)∀(d1, d2) ∈ R2, d1 < d2}. Currently

we express the log-mean function as log(µi,j) =
∑M

m=1 γi,mBm(Di,j) + X⊤
i,jβ. To make this

function monotone increasing with respect to dose d, we need γi,m > 0, for m = 1, . . . ,M

[103]. Therefore we write

γi,m = exp(ηi,m)

log(µi,j) =
M∑
m=1

exp(ηi,m)Bm(Di,j) +X⊤
i,jβ

According to theorem 5.9 of [104], ζi(D) =
∑M

m=1 γi,mBm(D), is a class of monotone nonde-

creasing splines, since the monotonicity of the B-splines is guaranteed by the nondecreasing

order of co- efficients.

Thus our goal now is estimation of parameters

Θ = (ϕ(0), β(0), η
(0)
1,1, . . . , η

(0)
1,M , . . . , η

(0)
J,1, . . . , η

(0)
J,M , ψ

(0)
0 , ψ

(0)
1 )⊤
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Accounting for this parameter transformation in the minorization function, only changes the

first and second derivative calculation with respect to γi,m for m = 2, . . . ,M . Now, the first

derivative of the minorization function with respect to ηi,m will be

∂

∂ηi,m
g5,i(ηi|Θ(0)) =

(
∂

∂γi,m
g3,i(exp(ηi)|Θ(0)) +

∂

∂γi,m
ℓ‡3,i(exp(ηi)|Θ(0))

)
× exp(ηi,m)

Define

Hm,m′ (γi,m) =
∂2

∂γ2i,m
g3,i(γi|Θ(0)) +

∂2

∂γ2i,r
ℓ‡3,i(γi|Θ(0))

Then the second derivates with respect to ηi,m can be written as

Hm,m′ (ηi,m) = Hm,m′ (exp(ηi,m))× exp(ηm)× exp(ηm′ )

+
∂

∂ηi,m
g5,i(ηi|Θ(0))× I(m = m

′
)

The rest of the computations remain exactly the same as before.

3.2.4 Confidence interval estimation

The gradient of the penalized log-likelihood function is

∂ℓp(Θ)

∂Θ
=
∂ℓ(Θ)

∂Θ
−
∑
i

λi
∂

∂Θ
P(γi) =

I∑
i=1

ni∑
j=1

Ui,j,

where Ui,j = {∂ℓi,j(Θ)/∂Θ− (λi/ni) ∂P(γi)/∂Θ} |Θ=Θ̂ .

Let H = ∂2ℓp(Θ)/∂Θ∂Θ⊤ |Θ=Θ̂, and define A = −(H/
∑I

i=1 ni)
−1. Then the variance-

covariance of
√∑I

i=1 niΘ̂ can be estimated by

V0 = A

(
1∑I
i=1 ni

I∑
i=1

ni∑
j=1

Ui,jU
⊤
i,j

)
A⊤

. The square root of the diagonal elements of V0 divided by the square root of the total

sample size,
∑

i ni, is the standard error of the estimator of each component of the Θ vector.

An important component of the model is estimation of dose-response relation for a gene in

a specific cell type. Suppose the interest is in the ith cell type, so the dose-response relation
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estimator for the ith cell type is Ĝi(D
∗) =

∑M
m=1Bm(D

∗)γ̂i,m at the dose level D∗. We can

re-write Ĝi(D
∗) = L⊤Θ̂, where

L⊤ = (0, 0, 0, 0, B1(D
∗), . . . , BM(D∗), 0, . . . , 0)

Therefore,

var(Ĝi(D)) = var(L⊤Θ̂) = L⊤
(

V0∑I
i=1 ni

)
L.

Then the 95% pointwise CI for Gi(D
∗) is Ĝi(D

∗)± 1.96×
√

var(Ĝi(D∗)).

3.2.5 Model Selection

In case, the user is not sure whether placing monotonicity constraints betters the model

estimation, we suggest fitting both the unconstrained and constrained versions of the models

and selecting the model with the lowest AIC where AIC = 2θ − 2log(l(Θ̂)), where θ is the

number of estimated parameters and log(l(Θ̂)) is maximum value of the likelihood function

for the model . In case of penalized estimation, the value of the optimal λ can be chosen

using cross-validation and then the value of the log-likelihood can be calculated using the

MLE estimates obtained via MM algorithm for penalized estimation.

3.3 Hypothesis Testing

There are two tests of hypothesis that we wish to conduct for the model described above:

1. Test if there is any effect of dose on the response for a given cell-type. Suppose that

we are interested in the ith cell type, then set H0,1 : γi,2 = γi,3 = . . . γi,M versus the

alternative Ha,1 : at least one of the components of γi is different from the rest of the

components.

2. To test if the dose-response curves differ by the cell-types we set H0,2 : γ1 = · · · = γI

versus the alternative Ha,2 : at least one of γi is different from the rest.
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For both tests, we use likelihood ratio test. The likelihood ratio test statistic is given by

Λψ = 2
{
ℓ(Θ̂)− ℓ(Θ̂H0)

}
where Θ̂, calculated via the MM algorithm, denotes the unconstrained MLEs of Θ while Θ̂H0

is the constrained MLE of Θ under H0 , which can be obtained by

Θ
(t+1)
H0

= Θ
(t)
H0

−

{
∂2ℓ†(ΘH0|Θ

(t)
H0
)

∂ΘH0∂Θ
⊤
H0

|
ΘH0

=Θ
(t)
H0

}−1
∂ℓ†(ΘH0|Θ

(t)
H0
)

∂ΘH0

|
ΘH0

=Θ
(t)
H0

where

ℓ†(ΘH0|Θ
(0)
H0
) = ℓ†1(ϕH0|Θ

(0)
H0
) + g1(ψ0H0

|Θ(0)
H0
) + g2(ψ1H0

|Θ(0)
H0
) +

I∑
i=1

ℓ†3,i(γiH0
|Θ(0)

H0
)

+ ℓ†4(βH0|Θ
(0)
H0
) + ℓ†5(Θ

(0)
H0
)

For problem 1), the null model, ψi(D) does not vary with D, so is a constant. Therefore,

µi,j = exp(γ∗ + XT
i,jβ). Under the null hypothesis H0,1, Λψ is asymptotically follows a

chi-squared distribution with degrees of freedom (M − 1). Under the null hypothesis H0,2,

γ1 = · · · = γI = γ (say), so Λψ is asymptotically follows a chi-squared distribution with

degrees of freedom (I − 1)M .

3.4 Results

3.4.1 Simulation Design

To study the behavior of the procedure, we conducted a simulation study. We generated the

log-mean dose response curve as; log(µij) = ζi(D
(s)
ij ) + βXij,where Di,j = {0, 0.01, 0.03, 0.1,

0.3, 1, 3, 10, 30} and D
(s)
ij =

log(Di,j+1)

log(30) . The dose response function ζi(D
(s)
ij ) is then assumed

to follow four different patterns

• Case 1:

ζ1,1(D
(s)
1,j) = 1 + 0.1D

(s)
1,j + 0.1D

(
1,js)

2
+ 3(D

(s)
1,j − 0.5)2+

ζ1,2(D
(s)
2,j) = 1 + 0.1D

(s)
1,j + 0.8D

(
1,js)

2
+ 0.8(D

(s)
1,j − 0.5)2+

ζ1,3(D
(s)
3,j) = 0.5 + 0.2D

(s)
1,j
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• Case 2:

ζ2,1(D
(s)
1,j) = 0.15 exp{2×D

(s)
1,j}

ζ2,2(D
(s)
2,j) = 0.15 exp[{2 + (0.5/300)} ×D

(s)
2,j ]

ζ2,3(D
(s)
3,j) = 0.15 exp[{2 + (0.6/300)} ×D

(s)
3,j ]

• Case 3:

ζi(D
(s)
ij ) =

1.5sin(D
(s)
i,j )

1 + 1.5sin(D
(s)
i,j )

+ 2, i = 1, 2, 3

• Case 4:

ζi(D
(s)
ij ) = 3, i = 1, 2, 3

We generated a single covariate Xi,j ∼ N(0, 1) and set β = 0.5. The B-spline basis matrix

Bm(Di,j) is then generated using three knots at 0.008, 0.075 and 0.4. We also fixed the

degree of the B-spline basis as d = 3. We chose ψ0 = 0.5, ψ1 = 0.1 and computed ωi,j

using Equation 3.7. The binary random variable Ri,j is then generated from a Bernoulli

distribution with mean ωi,j. Finally expression data Yij is generated as Yi,j = Y
′
i,jRi,j where,

Y
′
ij is generated from a negative binomial distribution with mean si,jµi,j, and dispersion

exp(ϕ) where ϕ ∼ N(0.5, 0.1). Datasets with three cell types are generated. The analysis is

repeated with cell-type specific sample sizes ni = 100, 300.

3.4.2 Analysis

For each dose response pattern and for ni = (100, 300) we simulated 500 data sets. Tables

3.1, 3.2, 3.3 and 3.4 summarizes the estimated mean, SE, bias, Mean square error and

coverage probabilities of parameters β, ϕ, ψ0 and ψ1 for cases 1-4. The results are compared

with an intercept model having ψ1 = 0. It can be seen in general that the performance of

the full model is better than the intercept model in all aspects, thus indicating a dependence

of the zero-inflation parameter on the log-mean. Figures 3.1,3.3,3.5,3.6,3.9,4.0,4.3 and 4.4
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demonstrate the fits of the estimated curve along the 95% confidence interval. From the

figures, it can be seen that the fitted values for both sample sizes are close to the true values,

and the 95% confidence bands in general covers the true curves. As expected, the confidence

intervals are wider when sample size decreases.

To further demonstrate the performance of our proposed ZINB spline model (ZINB-SPL)

we benchmarked it against three competing methods; (a) Zero inflated negative binomial gen-

eralized additive model (ZINB-GAM-Dose) with the zero inflation parameter dependent on

the dose as logit(ωij) = γ0 + γ1 ∗ dose, (b) Zero inflated negative binomial generalized ad-

ditive model (ZINB-GAM-Int) with the zero inflation parameter having an intercept model;

logit(ωij) = γ0 , and (c) Negative Binomial GAM. We use R packages mgcv [105] for fitting

NB GAM and zigam [106] for fitting models (a) and (b). The benchmarking curves for

the simulation scenarios are reported in Figures 3.3, 3.7,3.11 and 3.15. The performance of

the four models are very close in case of the linear and constant models demonstrated in

simulation scenarios 3 and 4. However ZINB-SPL leads to almost perfect curve estimates in

non-linear curves shapes illustrated in simulation scenarios 1 and 2. This is further demon-

strated by the RMSE boxplots in Figures 3.4, 3.8,3.12 and 3.16. The RMSE boxplots in

Figure 3.4 and 3.8 for the ZINB-SPL lies significantly lower than the other 3 models. Also

note that the NB-GAM model has the worst performance in scenarios 1 and 2, hence justi-

fying the need of a zero-inflation structure to model the excess zeroes in the data generating

process.

Under Case 1 and Case 2, we had 500 positive control datasets where true mean curve

varies for the three cell-types. Therefore Case 1 and Case 2 were used to to study the power

of Test 2 in detecting true positive instances, (Section 3.3) . In this scenario, it is expected

that the the LRT test statistic will have large values, with the expected p-value close to

0. Therefore the expected true positive rate is computed as TPR = 1
500

∑500
l=1 I[P (Λζ,l >

χ2
M(I−1)|Ha) < α]. Case 2 embodies a local alternative testing scenario where the slope

parameter of the DR functions for cell type 2 and 3 are written as α2 = α1 + g1/nk and
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α3 = α1 + g2/nk, where α1 is the slope parameter of the DR function for cell-type 1 and

g1 = 0.5 and g2 = 0.6 are sufficiently close. Therefore it is expected that the power of test

2 in detecting true positives for Case 1 will be much smaller than the expected TPR in case

1, where there is larger discrepancy in the shape of the true mean functions. In Case1, out

of 500 simulations, in 490 instances the null hypothesis was rejected with an expected TPR

of 0.98 for ni = 300. For ni = 300, 476 instances were rejected the null hypothesis with an

expected TPR of 0.952. For Case 2, ni = 300, 298 out of 500 instances yielded a rejection

of the null hypothesis with an expected TPR of 0.578 and for ni = 100, 196 out of 500

simulations yielded a rejection of the null hypothesis with an expected TPR of 0.392. The

decrease in TPR for smaller sample sizes and local alternatives is an expected result.

Next, under Case 3 and 4, the true log-mean response ηi(D
(s)
ij ) followed the same DR

model for all the cell types. The only difference is that in Case 3, all celltypes has a mono-

tonically increasing DR function, whereas in Case 4, the DR function is a constant. There-

fore the datasets generated from these cases serve as negative control datasets, where the

true dose response curves does not change with the cell-types. We conducted Test 2 on

these datasets to study the ability of the test in controlling for false positives. Since all the

datasets in this scenario are generated from a null model, the average p-value should be close

to 1 and we determine false positive rate as FPR = 1
500

∑500
l=1 I[P (Λη,l > χ2

(M)(I−1)|H0) < α],

where α = 0.05. For Case 3, ni = 300, 39 out of 500 simulations yielded a rejection of the

null hypothesis with expected FPR = 0.076 . For ni = 100, 54 instances rejected the null

hypothesis with an expected FPR of 0.108. In Case 4, ni = 300, 22 out of 500 instances

are rejected, thus having an expected FPR of 0.044. For ni = 100, 76 out of 500 instances

are rejected at a level of 0.05, with an expected FPR of 0.152. This clearly indicates that a

higher sample size is preferable for controlling the false positive rates.
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ni = 300 ni = 100

Scenario Model β̂ SE Bias MSE Cov β̂ SE Bias MSE Cov
Case 1 Full 0.507 0.049 0.007 0.003 0.95 0.491 0.083 -0.008 0.008 0.92

Intercept 0.515 0.049 0.015 0.002 0.94 0.500 0.0824 0.007 0.007 0.93
Case 2 Full 0.498 0.112 -0.002 0.004 0.96 0.502 0.123 0.02 0.015 0.97

Intercept 0.512 0.045 0.012 0.003 0.998 0.5079 0.0795 -0.007 0.011 0.992
Case 3 Full 0.500 0.037 -0.0015 0.0014 0.942 0.499 0.066 -0.001 0.004 0.938

Intercept 0.500 0.037 0.001 0.001 0.938 0.498 0.067 0.002 0.004 0.965
Case 4 Full 0.495 0.031 -0.004 0.001 0.952 0.504 0.060 0.004 0.003 0.964

Intercept 0.501 0.033 0.001 0.001 0.931 0.503 0.060 0.003 0.003 0.964

Table 3.1 Parameter estimate, asymptotic standard error, bias and mean squared
error(MSE)of parameter β under full model and the intercept model. The results are
averaged over 500 replicates and reported for ni = 100, 300

ni = 300 ni = 100

Scenario Model ϕ̂ SE Bias MSE Cov ϕ̂ SE Bias MSE Cov
Case 1 Full 0.618 0.168 0.118 0.043 0.902 0.891 0.303 -0.008 0.008 0.74

Intercept 0.601 0.171 0.101 0.041 0.904 0.888 0.308 0.389 0.263 0.75
Case 2 Full 0.621 0.243 0.221 0.127 0.856 1.283 0.325 0.7836 1.136 0.532

Intercept 0.687 0.264 0.187 0.119 0.776 1.317 0.314 0.817 1.158 0.525
Case 3 Full 0.554 0.089 0.054 0.011 0.922 0.684 0.155 0.185 0.080 0.764

Intercept 0.555 0.0907 0.055 0.011 0.901 0.682 0.153 0.182 0.159 0.752
Case 4 Full 0.529 0.070 0.029 0.006 0.851 0.625 0.120 0.126 0.032 0.796

Intercept 0.540 0.069 0.040 0.007 0.892 0.635 0.120 0.135 0.034 0.762

Table 3.2 Parameter estimate, asymptotic standard error, bias and mean squared
error(MSE)of parameter ϕ under full model and the intercept model. The results are
averaged over 500 replicates and reported for ni = 100, 300

ni = 300 ni = 100

Scenario Model ψ̂0 SE Bias MSE Cov ψ̂0 SE Bias MSE Cov
Case 1 Full 0.512 0.166 0.012 0.050 0.97 0.488 0.427 -0.012 0.173 0.978

Intercept 0.619 0.268 0.119 0.029 1 0.609 0.480 0.109 0.064 1
Case 2 Full 0.455 0.223 -0.045 0.069 0.96 0.044 0.592 0.101 0.229 0.91

Intercept 0.552 0.206 0.052 0.048 0.988 0.5218 0.383 0.021 0.146 0.976
Case 3 Full 0.4744 0.353 -0.025 0.0267 1 0.431 0.598 -0.068 0.190 0.972

Intercept 0.725 0.352 0.0554 0.011 1 0.728 0.602 0.227 0.072 1
Case 4 Full 0.482 0.462 -0.018 0.016 0.961 0.468 0.795 -0.031 0.120 1

Intercept 0.796 0.502 0.296 0.093 1 0.797 0.788 0.136 0.034 1

Table 3.3 Parameter estimate, asymptotic standard error, bias and mean squared
error(MSE)of parameter ψ0 under full model and the intercept model. The results are
averaged over 500 replicates and reported for ni = 100, 300

63



Figure 3.1 Results of the simulation study, illustrating the performance of Model 1 (see
Simulation Design) in 500 replicates with 300 sample size. The columns correspond to the
three different cell-types. Continuous red and blue lines and the shaded grey region
represent the log-mean curve averaged across 500 random replicates, the true simulated
curves, and the 95% pointwise confidence intervals. respectively.

Figure 3.2 Results of the simulation study, illustrating the performance of Model 1 (see
Simulation Design) in 500 replicates with 100 sample size. The columns correspond to the
three different cell-types. Continuous red and blue lines and the shaded grey region
represent the log-mean curve averaged across 500 random replicates, the true simulated
curves, and the 95% pointwise confidence intervals. respectively.
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Figure 3.3 Results of the simulation study, illustrating the performance of Model 1 (see
Simulation Design) in 500 replicates for sample size 300. The columns correspond to the
three different cell-types. Continuous cyan, peach, darkblue, darkgreen and red lines
represent the represent the true curve and the estimated log-mean curves averaged across
500 random replicates for ZINB-SPL, ZINB-GAM-Dose, ZINB-GAM-Int and NB-GAM
models respectively

Figure 3.4 Results of the simulation study, illustrating the estimated RMSE of Model 1
(see Simulation Design) in 500 replicates for sample size 300. The columns correspond to
RMSE boxplots of the NB-GAM, ZINB-GAM-Dose, ZINB-GAM-Int and ZINB-SPL
models respectively for the three different cell-types plotted over 500 replicates.
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Figure 3.5 Results of the simulation study, illustrating the performance of Model 2 (see
Simulation Design) in 500 replicates for 300 sample size. The columns correspond to the
three different cell-types. Continuous red and blue lines and the shaded grey region
represent the log-mean curve averaged across 500 random replicates, the true simulated
curves, and the 95% pointwise confidence intervals. respectively.

Figure 3.6 Results of the simulation study, illustrating the performance of Model 2 (see
Simulation Design) in 500 replicates for 100 sample size. The columns correspond to the
three different cell-types. Continuous red and blue lines and the shaded grey region
represent the log-mean curve averaged across 500 random replicates, the true simulated
curves, and the 95% pointwise confidence intervals. respectively.
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Figure 3.7 Results of the simulation study, illustrating the performance of Model 2 (see
Simulation Design) in 500 replicates for sample size 300. The columns correspond to the
three different cell-types. Continuous cyan, peach, darkblue, darkgreen and red lines
represent the represent the true simulated curves and the estimated log-mean curve
averaged across 500 random replicates for ZINB-SPL, ZINB-GAM-Dose, ZINB-GAM-Int
and NB-GAM models respectively

Figure 3.8 Results of the simulation study, illustrating the estimated RMSE of Model 2
(see Simulation Design) in 500 replicates for sample size 300. The columns correspond to
RMSE boxplots of the NB-GAM, ZINB-GAM-Dose, ZINB-GAM-Int and ZINB-SPL
models respectively for the three different cell-types plotted over 500 replicates.
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Figure 3.9 Results of the simulation study, illustrating the performance of Model 3 (see
Simulation Design) in 500 replicates for 300 sample size. The columns correspond to the
three different cell-types. Continuous red and blue lines and the shaded grey region
represent the log-mean curve averaged across 500 random replicates, the true simulated
curves, and the 95% pointwise confidence intervals. respectively.

Figure 3.10 Results of the simulation study, illustrating the performance of Model 3 (see
Simulation Design) in 500 replicates for 100 sample size. The columns correspond to the
three different cell-types. Continuous red and blue lines and the shaded grey region
represent the log-mean curve averaged across 500 random replicates, the true simulated
curves, and the 95% pointwise confidence intervals. respectively.
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Figure 3.11 Results of the simulation study, illustrating the performance of Model 3(see
Simulation Design) in 500 replicates for sample size 300. The columns correspond to the
three different cell-types. Continuous cyan, peach, darkblue, darkgreen and red lines
represent the represent the true simulated curves and the estimated log-mean curve
averaged across 500 random replicates for ZINB-SPL, ZINB-GAM-Dose, ZINB-GAM-Int
and NB-GAM models respectively

Figure 3.12 Results of the simulation study, illustrating the estimated RMSE of Model 3
(see Simulation Design) in 500 replicates for sample size 300. The columns correspond to
RMSE boxplots of the NB-GAM, ZINB-GAM-Dose, ZINB-GAM-Int and ZINB-SPL
models respectively for the three different cell-types plotted over 500 replicates.
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Figure 3.13 Results of the simulation study, illustrating the performance of Model 4 (see
Simulation Design) in 500 replicates for 100 sample size. The columns correspond to the
three different cell-types. Continuous red and blue lines and the shaded grey region
represent the log-mean curve averaged across 500 random replicates, the true simulated
curves, and the 95% pointwise confidence intervals. respectively.

Figure 3.14 Results of the simulation study, illustrating the performance of Model 4 (see
Simulation Design) in 500 replicates for 300 sample size. The columns correspond to the
three different cell-types. Continuous red and blue lines and the shaded grey region
represent the log-mean curve averaged across 500 random replicates, the true simulated
curves, and the 95% pointwise confidence intervals. respectively.

70



Figure 3.15 Results of the simulation study, illustrating the performance of Model 4 (see
Simulation Design) in 500 replicates for sample size 300. The columns correspond to the
three different cell-types. Continuous cyan, peach, darkblue, darkgreen and red lines
represent the represent the true simulated curves and the estimated log-mean curve
averaged across 500 random replicates for ZINB-SPL, ZINB-GAM-Dose, ZINB-GAM-Int
and NB-GAM models respectively

Figure 3.16 Results of the simulation study, illustrating the estimated RMSE of Model 4
(see Simulation Design) in 500 replicates for sample size 300. The columns correspond to
RMSE boxplots of the NB-GAM, ZINB-GAM-Dose, ZINB-GAM-Int and ZINB-SPL
models respectively for the three different cell-types plotted over 500 replicates.
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ni = 300 ni = 100

Scenario Model ψ̂1 SE Bias MSE Cov ψ̂1 SE Bias MSE Cov
Case 1 Full 0.081 0.166 -0.019 0.025 0.956 0.101 0.294 0.099 0.009 0.964

Intercept 0.000 0.1658 -0.099 0.094 1 0.000 0.291 -0.09 0.009 1
Case 2 Full 0.109 0.2607 0.0089 0.010 0.96 0.0438 0.572 -0.056 0.324 0.892

Intercept 0.000 0.148 -0.100 0.057 0.998 0.000 0.556 -0.100 0.0100 0.992
Case 3 Full 0.113 0.152 0.013 0.006 0.956 0.135 0.262 0.034 0.038 0.988

Intercept 0.000 0.150 -0.100 0.010 1 0.000 0.318 -0.100 0.010 1
Case 4 Full 0.107 0.154 0.007 0.002 0.952 0.111 0.264 0.012 0.014 0.964

Intercept 0.000 0.164 -0.100 0.010 1 0.000 0.288 -0.100 0.0100 1

Table 3.4 Parameter estimate, asymptotic standard error, bias and mean squared
error(MSE)of parameter ψ1 under full model and the intercept model. The results are
averaged over 500 replicates and reported for ni = 100, 300

3.5 Discussion

In this chapter we present the first statistically rigorous approach for modelling zero-inflated

single cell dose response data. Our method proposes a semi-parametric regression frame-

work for the estimation of several non-linear cell-type specific curves arising naturally in

single cell dose response experiments. We discuss an extremely flexible penalized regression

approach along with further extensions to estimation under monotonicity constraints. Our

novel technique flexibly models cell-type speficific heterogenity and its use of a ZINB-Bspline

model allows it to effectively capture diverse DR functions and accommodate undesirable

zero inflation in data. Further, to better deal with a large number of parameters, arising due

to the joint modelling of multiple cell-type specific DR curves, we propose a highly scalable

and computationally efficient MM algorithm. Through our MM estimator we are able to

significantly reduce the computational complexity of our proposed optimization problem.

Finally we propose two highly relevant hypothesis testing approaches that test of presence of

DR signal along with differences in the shape of the functional form for different cell-types.

Comprehensive studies on simulated datasets confirm that our proposed model ZINB-

SPL yields better RMSE than the competing methods (ZINB-GAM-Dose, ZINB-GAM-Int

and NB-GAM). Further, ZINB-SPL displayed greater estimation accuracy for constant, lin-

ear and non-linear curve shapes. In case of the highly non-linear shapes, the performance of
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ZINB-SPL showed a clear improvement over the competing methods. The consistent per-

formnce of ZINB-SPL in four realistic simulation scenarios highlighted the robustness of our

proposed approach in modeling dose response relationships under varying characteristics of

scRNA-seq datasets. Additionally, the hypothesis testing results for the simulation scenarios

demonstrated effective false positive rate control while maintaining considerable power for

testing against local alternatives.

An advantage of our proposed MM framework is that it is highly scalable and can provide

computationally efficient estimation for a large number of parameters in the model, which

could be the case if many cell-types are modelled jointly. In addition, it is straightforward to

generalize the proposed framework to monotonicity constrained estimation which may be of

interest in several biomedical problems. Thus we provide the first framework for statistically

modelling single cell dose response datasets along with a appropriate machinery for testing

differences between cell-type specific toxicological responses.
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CHAPTER 4

KERNELIZED SIGNED GRAPH LEARNING FOR
SINGLE CELL GENE REGULATORY NETWORK

INFERENCE

4.1 Single Cell Gene Regulatory Networks

Gene regulatory networks (GRNs) represent fundamental molecular regulatory interactions

among genes that establish and maintain all required biological functions characterizing a

certain physiological state of a cell in an organism [107]. Cell type identity in an organism is

determined by how active transcription factors interact with a set of cis-regulatory regions

in the genome and controls the activity of genes by either activation or repression of tran-

scription [108]. Usually, the relationship between these active transcription factors and their

target genes characterize GRNs. Due to the inherent causality captured by these mean-

ingful biological interactions in GRNs, genome-wide inference of these networks holds great

promise in enhancing the understanding of normal cell physiology, and also in characterizing

the molecular compositions of complex diseases [109, 110].

GRNs can be mathematically characterized as graphs where nodes represent genes and

the edges quantify the regulatory relations. GRN reconstruction attempts to infer this reg-

ulatory network from high-throughput data using statistical and computational approaches.

Multiple methods encompassing varying mathematical concepts have been proposed during

the last decade to infer GRNs using gene expression data from bulk population sequencing

technologies, which accumulate expression profile from all cells in a tissue. These methods

can be broadly classified into two groups: the first group infers a static GRN, considering

steady state of gene expression, while the second group uses temporal measurements to cap-

ture the expression profile of the genes in a dynamic process. A thorough evaluation of the

static and dynamic models used in bulk GRN reconstruction can be found in [47, 48].

Recent advances in RNA-sequencing technologies have enabled the measurement of gene
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expression in single cells. This has led to the development of several computational ap-

proaches aimed at quantifying the expression of individual cells for cell-type labelling and

estimation of cellular lineages. Several algorithms have been developed to arrange cells in

a projected temporal order (pseudotime trajectory) based on similarities in their transcrip-

tional states. In parallel, several dynamic models for single cell GRN reconstruction have

also been developed taking into account the estimated pseudotimes. Since single cell network

reconstruction algorithms try to establish functional relationships between genes taking into

account the entire population of cells, it is debatable as to whether additional knowledge

regarding cell state transitions may provide any added benefits [111, 3]. In summary, direct

application of bulk GRN reconstruction methods may not be adequate for single cell network

inference.

The complex nature of single-cell transcriptomics data pose unique challenges in GRN

inference. Changes in gene expression due to cell-cell stochastic variation, cell-cycle hetero-

geneity and high sparsity due to insufficient sequencing depths and capture inefficiency for

genes with low expression form some of the unique characteristics of these datasets [112, 113].

Most importantly the high sparsity/high zero values feature in single cell datasets has gar-

nered a lot of attention and several statistical methods have been designed to particularly

model this phenomenon [10, 16, 114]. Recent research has indicated that these zero values

referred to as "dropouts" most likely result from biological variation and may be indicative

of heterogeneity in gene expression for varying cell types [21, 22].

To account for these unique challenges a variety of algorithms for network reconstruction

in scRNAseq data have been recently proposed , but most of these methods fail to outperform

network estimation methods developed for bulk data or microarrays. [3, 111]. To that end, we

propose a network reconstruction algorithm that learns the co-expression between genes by

borrowing ideas from graph signal processing (GSP) literature. GSP provides a framework

for analyzing signals defined on graphs by extending classical signal processing tools and

concepts [115]. In many applications of GSP, the graph topology is not always available,
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thus it must be inferred or learned from the observed data. The major approaches to graph

learning (GL) include smoothness based methods [116], where the graph is learned with the

assumption that graph signals vary smoothly with respect to graph structure; and diffusion

process based models, where the graph is learned from signals that are assumed to be graph

filtered versions of random processes [117]. In this work, we focus on learning graphs with

the smoothness assumption for the following reasons. First, smooth signals admit low-pass

and sparse representations in the graph Fourier domain. Thus, the GL problem is equivalent

to finding efficient information processing transforms for graph signals. Second, many graph-

based machine learning tasks, such as spectral clustering, graph regularized learning etc.,

are developed based on the smoothness of the graph signals. Finally, smooth graph signals

are observed ubiquitously in real-world applications [117].

Smoothness based GL is first considered in [118] by modeling graph signals using fac-

tor analysis, where the transformation from factors to observed signals exploits the graph

topology. By imposing a suitable prior on factors, the graph signals are modelled to have

low-frequency representation in the graph Fourier domain. This analysis results in an op-

timization problem where a graph is learned such that variation of signals over the learned

graph is minimized. Different variations of this framework with constraints on the learned

topology and for handling noisy graph signals were considered in [119, 120, 121, 122, 123].

All of the previous works learn unsigned graphs with the exception of [124], where a signed

graph is learned by employing signed graph Laplacian defined by [125]. By using signed

Laplacian, [124] aim to learn positive edges between nodes whose signal values are similar

and negative edges between nodes whose signal values have opposite signs with similar abso-

lute values. However, this approach is not suitable when graph signals are either all positive-

or negative-valued, as in the case of gene expression data.

Considering the advantages of GL approaches in learning graph topologies that are con-

sistent with the observed signals, in this paper, we propose a novel GL algorithm for the re-

construction of GRNs. In particular, we assume gene expression data obtained from cells are
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Figure 4.1 Euclidean distances (left, normalized to [0, 1]) and correlations (right) between
expressions of gene pairs in curated datasets studied in Section 4.4. Values are calculated
only for gene pairs that are connected in the ground truth GRNs and they are reported
separately for activating and inhibitory edges. Only inhibitory edges are reported for VSC,
since its GRN includes only inhibitory edges.

graph signals residing on an unknown graph structure, which corresponds to the GRN. One

important characteristic of GRNs is that they are signed graphs, where positive and negative

edges correspond to activating and inhibitory regulations between genes. To this end, we

propose a novel and computationally efficient signed GL approach, scSGL, that reconstructs

the GRN under the assumption that graph signals admit low-frequency representation over

activating edges, while admitting high-frequency representation over inhibitory edges. Bio-

logically, this modelling implies that two genes that are connected with an activating edge

have similar expressions, while two genes connected with an inhibitory edge have dissimilar

expressions. In Figure 4.1, we show how these assumptions hold for curated datasets studied

in Section 4.4. The figure shows that Euclidean distances between expressions are smaller for

gene pairs connected by activating edges than for those connected by inhibitory edges. The

figure also reports correlations between expressions, which indicates that expressions of gene

pairs connected with activating and inhibitory edges are positively correlated, i.e., similar,
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and negatively correlated, i.e., dissimilar, respectively. We also performed a Wilcoxon Rank

Sum test to determine whether the calculated associations for the positive ground truth

connections were significantly lower than the associations for the negative ground truth con-

nections for Euclidean distances. We test the null hypothesis, H0 : the distributions of both

populations are equal versus the alternative hypothesis Ha :, the distribution of the negative

associations are stochastically greater than the distribution of positive associations. In case

of the correlation distances we want to test Ha :the distribution of the positive associations

are stochastically greater than the distribution of negative associations. The calculated p-

values were all less than 0.01, hence justifying our assumptions for all curated datasets except

VSC, which only has negative associations. Another important characteristic of scRNAseq

is high proportion of dropouts. We address this issue by employing kernel functions to map

graph signals to a higher dimensional space and assuming low- and high-frequency represen-

tation for these high dimensional graph signals. This mapping allows us to use kernels that

are appropriate for modelling single cell data structures.

4.2 Background

4.2.1 Notations

Define an undirected graph as G = (V,E) where V is the set of nodes with a cardinality

of |V | = n and E ⊆ V × V denotes the edge set with cardinality |E| = m. Edges between

nodes i and j are denoted by ei,j having a weight wij. If the weights wi,j are strictly positive

then the graph is unsigned, whereas if wi,j allows both positive and negative values then the

graph is referred to as signed. Define W to be the n × n symmetric adjacency matrix of

graph G, where Wij = Wji = wij if eij ∈ E and 0, otherwise. In the case of signed graphs, W

can be decomposed as W+ −W− where W+
ij = wij for wij > 0 and W−

ij = |wij| for wij < 0.

Further the Laplacian matrix L is defined as L = D−W where D is the degree matrix of G.

Similar to the decomposition of the adjacency matrix, the Laplacian can be decomposed for

estimation of signed Laplacians. All one and all zero vectors and matrices are represented

78



by 1 and 0, respectively. Finally, ith row and column of a matrix X are represented by Xi·

and X·i, respectively.

4.2.2 Low- and High-frequency Signals on Unsigned Graphs

A graph signal x ∈ Rn is a vector whose entries reside on the nodes of an unsigned graph G.

Graph Fourier transform (GFT) of x is defined as the expansion of x in terms of the eigenbasis

of the graph Laplacian [126]. This representation allows us to characterize x in terms of its

graph spectral content as either low- or high-frequency, where low(high)-frequency graph

signals have small (large) variation with respect to the graph [127].

Let L = VΛV⊤ be the eigendecomposition of L where Λ is the diagonal matrix of

eigenvalues with Λii = λi and V·i is the eigenvector corresponding to λi. GFT of x is then

x̂ = V⊤x and inverse GFT is [126]:

x = Vx̂ =
n∑
i=1

x̂iV·i. (4.1)

Thus, x is the linear combination of eigenvectors of L with the coefficients equal to

the entries of x̂. Eigenvectors of L corresponding to small eigenvalues have small variation

over the graph. Thus, if most of the energy of x̂ lies in x̂is corresponding to the small

eigenvalues, then x varies little over G. On the other hand, if most of the energy of x̂ lies in

x̂is corresponding to the large eigenvalues, x has high variation over G. The total variation

of x over G is then quantified as [126]:

trace(x̂⊤Λx̂) = trace(x⊤VLV⊤x) = trace(x⊤Lx), (4.2)

which is small for low-frequency graph signals and large for high-frequency ones.

4.2.3 Unsigned Graph Learning

An unknown unsigned graph G can be learned from a set of observed graph signals defined

over it with the assumption that graph signals have low-frequency representation in graph
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spectral domain, i.e., total variation is small. Using this assumption, [118] proposes to learn

G by minimizing (4.2) with respect to L given a set of graph signals {xi}pi=1 as follows:

min.
L∈L

trace(X⊤LX) + α∥L∥2F s.t. trace(L) = 2n, (4.3)

where L = {L : Lij = Lji ≤ 0 ∀i ̸= j,L1 = 0} is the set of Laplacian matrices and X ∈ Rn×p

is the data matrix whose columns are graph signals. The constraint trace(L) = 2n ensures

that trivial solutions are avoided. ∥L∥F is employed to control the sparsity of the learned

graph as discussed in [119]. In particular, the Frobenius norm penalizes L from having

entries with large absolute values, and the non-positivity constraint (Lij = Lji ≤ 0) and

degree constraint (trace(L) = 2n) threshold edges with small weights. Thus, as α → ∞

edges of the learned graph start having very similar weights and no thresholding can be

performed to sparsify the learned graph. On the other hand, small values of α leads L

to have entries with varying values and the imposed constraints threshold the small values

yielding a sparse graph.

4.2.4 Kernels

Traditional machine learning and signal processing applications are mostly developed based

on linear modelling due to their simplicity. However, real world problems require nonlinear

estimation that can detect more complex patterns in the data. For this purpose, kernels are

introduced to capture the nonlinearity by mapping signals to a high-dimensional space [128].

Kernels correspond to dot products in a higher dimensional feature space and overcome

explicit construction of the feature space; thus providing simplicity of linear methods in

nonlinear estimation. Given data from input space X , and a mapping function ϕ : X → H

where H is an Hilbert space, a kernel function can be expressed as an inner product in the

corresponding feature space, i.e., κ(xi,x′
i) = ⟨ϕ(xi), ϕ(x′

i)⟩, where κ : X ×X → R is a finitely

positive semi-definite kernel function [129]. An explicit representation of the feature map

ϕ is not necessary and the dimension of mapped feature vectors could be high and even
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infinite. By using different kernels, learning algorithm can be augmented to exploit various

(nonlinear) associations between input data. For example, the first term in (4.3) can be

rewritten as trace(XX⊤L) =
∑

i,j⟨Xi·,Xj·⟩Lij, where the dot product between the rows of

X can be replaced by κ(Xi·,Xj·). In the next section, this observation is used to develop a

graph learning framework that is able to capture nonlinear relations between graph signals.

4.3 Methods

4.3.1 Signed Graph Learning

In (4.3), an unsigned graph is learned with the assumption that the observed graph signals

have low-frequency representation in graph spectral domain. In order to learn a signed graph

G, one needs to make some additional assumptions about the graph signals X. In this work,

we make the following assumptions:

1. Signal values on nodes connected by positive edge values are similar to each other, i.e.,

variation over positive edges is small.

2. Signal values on nodes connected by negative edge values are dissimilar to each other,

i.e., variation over negative edges is large.

From GSP perspective, these assumptions correspond to graph signals being low- and high-

frequency over positive and negative edges, respectively. Let G+ be the graph corresponding

to the positive edges of G and let G− be the graph corresponding to the negative edges of

G with the edge weights equal to the absolute value of the original edge values. Assumption

1 implies that the graph signals have low-frequency representation in the graph Fourier

domain of G+. On the other hand, assumption 2 implies that the graph signals have high-

frequency representation in graph Fourier domain of G−. We use (4.2) to quantify how

well the graph signals fit these assumptions. Thus, to learn an unknown signed graph, we

minimize trace(X⊤L+X) with respect to L+ while maximizing trace(X⊤L−X) with respect
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to L−:

min.
L+,L−∈L

trace(X⊤L+X)− trace(X⊤L−X) + α1∥L+∥2F + α2∥L−∥2F

s.t. trace(L+) = 2n, trace(L−) = 2n (4.4)

L+
ij = 0 if L−

ij ̸= 0 and L−
ij = 0 if L+

ij ̸= 0 ∀i ̸= j,

where Frobenius norms and the first two constraints are similar to (4.3) and the last con-

straint ensures that L+ and L− are not non-zero for the same indices.

4.3.2 Kernelized Signed Graph Learning

As mentioned in Section 4.2.4, kernels are used in learning algorithms to exploit various

(nonlinear) relations between input data. This is especially crucial in GRN inference as

shown in [130], where 17 different association measures between gene expressions are com-

pared in terms of their performance in GRN inference and various other tasks on single-cell

transcriptomic datasets. In this paper, we consider three kernels: correlation coefficient, r,

measure of proportionality, ρ [131] and a modification of Kendall’s tau (τzi) for zero inflated

non-negative continuous data [132]. These kernels are selected because r is a commonly used

measure for network inference, ρ performs the best in [130] and τzi can handle high ratio of

dropouts in scRNAseq.

As mentioned in Section 4.2.4, kernels provide an efficient way of capturing the non-

linear associations between input data samples. This is especially crucial in building single

cell GRN learning algorithms due to the unique statistical properties exhibited by single

cell data. To determine optimal measures of association in single cell network learning,

[130] evaluated 17 association measures in terms of their ability to reconstruct gene and

cellular networks from single cell transcriptomic datasets. Two measures, ρ [131], a measure

of association for compositional data and τzi, a measure of association for zero inflated

non-negative continuous data [132] are shown to perform consistently better in all learning

scenarios investigated in [130]. The strong performance of ρ can be explained on the basis
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that scRNA-seq captures only a small proportion of messenger RNA in each cell and therefore

gene expression measurements can be viewed as relative measures of abundance (as seen in

compositional data). On the other hand, τzi, a modification of Kendall’s rank correlation

coefficient, is expected to provide less biased estimates of association in the setting of zero-

inflated continuous data, a characteristic of single cell transcriptomic datasets [132]. To

compare and contrast these two measures, the correlation kernel r is additionally investigated

since it’s widely used in GRN reconstruction algorithms.

In its current form, (4.3) cannot be used directly for different associations. Thus, the

optimization problem in (4.4) is extended using kernels. The first term in (4.4) can be

written as trace(XX⊤L+) =
∑

i,j⟨Xi·,Xj·⟩L+
ij and the second term can be written similarly.

By replacing dot products with a given kernel function, i.e., κ(Xi·,Xj·), the problem in (4.4)

can be extended to incorporate the different associations as:

min.
L+,L−∈L

trace(KL+)− trace(KL−) + α1∥L+∥2F + α2∥L−∥2F

s.t. trace(L+) = 2n, trace(L−) = 2n (4.5)

L+
ij = 0 if L−

ij ̸= 0 and L−
ij = 0 if L+

ij ̸= 0 ∀i ̸= j,

where K ∈ Rn×n is the kernel matrix with Kij = κ(Xi·,Xj·). From GSP perspective, this

modification implies that graph signals on each node, i.e., Xi·, are first mapped to a (higher

dimensional) Hilbert space and the signed graph is learned in this new space. Namely,

let Φ ∈ Rn×p̂ be the matrix constructed from mapping Xi·’s to the Hilbert space H with

dimension p̂ where rows of Φ are ϕ(Xi·). When learning unknown signed graph G with a

kernel, each column of Φ is a graph signal over G and they are assumed to have low- and

high-frequency representation with respect to G+ and G−, respectively. Extending signed

graph learning problem in (4.4) using kernels brings flexibility and any association metric

in [130] can be implemented in this framework if it is a positive semi-definite kernel. The

optimization procedure for 4.5 is given in the Supplementary Material.
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4.3.3 Hyperparameter Selection

The optimization problem in 4.5 requires the selection of two regularization parameters α1

and α2, which determine the density of the learnt graph, i.e., large values of α1 (α2) result

in denser L+ (L−). Their values can be set to obtain a graph with desired positive and

negative edge densities. Next we illustrate the algorithm used for generating realistic single

cell simulations.

1. Given a matrix X ∈ Rn×p whose columns are graph signals, we randomly shuffle each

column of the matrix k times creating k surrogate data matrices.

2. Association between rows of the surrogate data matrices are calculated by the kernel

employed in (4.5).

3. Thresholds λ1 and λ2 are selected as the pth and (100− p)th percentiles of the values

in the association matrix calculated in Step 2.

4. Steps (1-3) are repeated k times to construct the empirical distribution of the thresholds

λ1 and λ2.

5. Finally, λ̂1 and λ̂2 are selected to be the medians of the empirical distributions con-

structed in Step 4.

6. The association matrix for the original data X is constructed.

7. The number of entries in the association matrix that are smaller than λ̂1 are determined

and normalized by the total number of entries in the association matrix to obtain the

density of L−. Similarly, number of entries in the association matrix greater than λ̂2

is used to determine the density of L+.

8. Values of α1 and α2 are then selected to learn graphs with the estimated graph densities

found in Step 7. Since the density of the positive (negative) graph increases monoton-
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ically with the value of α1 (α2), bisection search is used to determine the values of α1

and α2 that give the desired densities.

4.3.4 Generation of simulated datasets from zero-inflated negative
binomial distribution

In this section, we outline the algorithm that was used to generate the simulated datasets

for parameter sensitivity analysis.

1. For each simulation setting, we first generated a binary association graph

Gj1j2 , ∀j1, j2 ∈ {1, . . . , p} using either of the three graph topologies random, hub and

cluster.

2. A binary indicator Ij1j2 was next sampled for each entry of the association graph with

Ij1j2 ∼ Bernoulli(0.5).

3. Given the binary association graph a weight matrix was generated as:

Wj1j2 =


Gj1j2Unif(0.3, 0.7) if Ij1j2 = 0,

Gj1j2Unif(−0.7,−0.3) if Ij1j2 = 1.

4. Random samples of n multivariate Gaussian random variables were then generated,

with known weight matrix Wj1j2 . The random sample was denoted as (X1, . . . , Xp),

where each variable (gene vector) Xj = (Xj1, . . . , Xjn)
T consisted of n realizations.

5. To mimic the dropout phenomenon present in real scRNAseq datasets, we next in-

troduced additional zeros to the gene expression matrix. Following [13], the dropout

probability for each row (gene vector) in the gene expression matrix X was calcu-

lated as: pji = exp(−ρX2
ji), where ρ represents the exponential decay parameter that

controls the dependence between the dropout probability and gene expression.
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6. A binary indicator was next sampled for each entry: ηji ∼ Bernoulli(pji), with ηji = 1

indicating that the corresponding entry of Xji would be replaced by 0. The dropout

probability for each gene vector was calculated as ωj =
∑n

i=1 ηji.

7. Using a modification of the NORTA (Normal to Anything) method [133] we generated

samples from a multivariate zero inflated negative binomial distribution based on the

multivariate normal samples generated in Step 4 using mean, dispersion and zero-

inflation parameters λ, k and ωjs.

8. To mirror real scRNA-seq gene expression data behaviour, the gene expression mean

λ and standard deviation k were estimated from a real scRNA-seq dataset, Peripheral

Blood Mononuclear Cells (PBMC) freely available from 10X Genomics.

4.3.5 Performance Metrics

4.3.5.1 AUPRC and AUROC:

Area under precision and recall curve and area under the receiver operating characteristic

are calculated by comparing inferred graphs to ground truth gene regulations. During this

calculation, signs of the learned edges are ignored as the AUPRC and AUROC are perfor-

mance metrics restricted to binary classification. In particular, we first take the absolute

value of edge weights and then compare them to ground truth edges. Thus, these metrics

indicate how well methods detect edges without considering the signs of the inferred edges.

Ground truth networks are considered as undirected and self-loops are ignored. Following

[3], we also defined AUPRC ratio and AUROC ratio as the ratio of AUPRC (AUROC) value

of the methods to AUPRC (AUROC) of the random estimator.

4.3.5.2 AUPRC Activating/Inhibitory:

One of our goals is to learn whether the edges are activating or inhibitory. AUPRC as defined

above cannot evaluate the sign information. Thus, for curated datasets, whose ground truth
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gene regulations include signed edge information, we calculate AUPRC for activating and

inhibitory edges seperately. In particular, for methods that learn signed graphs we compare

the learned positive edges to activating edges in ground truth and learned negative edges

to inhibitory edges in the ground truth. For methods that do not learn signed edges, we

evaluate the inferred edges with respect to the ground truth activating and inhibitory edges

separately to calculate two AUPRC values.

4.3.5.3 EPR

Early precision ratio is the fraction of true positives in the top-k edges in the inferred graphs

where k is the number of edges in the ground truth network [3]. For methods that return

signed edges, we found top-k edges after taking absolute value of the edge weights, thus this

metric is used for edge detection performance rather than the detection of edge signs. Ground

truth networks are considered to be directed graphs and self-loops are ignored. Finally, EPR

ratio is defined as the ratio of the EPR values of the methods to the EPR value of the

random estimator.

4.4 Results

In this section, performance of scSGL is evaluated and compared to state-of-the-art GRN

inference methods on various simulated and experimental scRNAseq datasets. We selected

GENIE3 [52], GRNBOOST2 [53], PIDC [134] and PPCOR [50] for comparison as they are

the top performing methods in [3]. GENIE3, GRNBOOST2 and PPCOR were originally

developed for bulk analysis, while PIDC is developed for single cell gene expression data.

Among these methods, GENIE3 and GRNBOOST2 return fully connected directed networks,

while the remaining two infer undirected networks. Finally, only PPCOR algorithm returns

signed graphs. Given the inherent sparsity of gene networks, we used the area under the

precision-recall curves (AUPRC) ratio as the primary evaluation metric. Supplementary

Material also includes results using area under the receiver operating characteristic curves
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Figure 4.2 Performance of scSGL and state-of-the-art methods on curated datasets as
measured by AUPRC for activating and inhibitory edges. x-axis indicates dropout ratio in
the dataset.

(AUROC) ratio and early precision ratio (EPR) ratio, whose overall results are consistent

with the following observations made with AUPRC ratio.

4.4.1 Synthetic Datasets

Curated Datasets From BEELINE: The first simulation datasets we consider are cu-

rated from "published Boolean models of GRNs" [3]. These datasets were generated using

the recently proposed single cell GRN simulator BoolODE [3]. BoolODE converts boolean

functions specifying a GRN directly to ODE equations using

GeneNetWeaver [135, 136], a widely used method to simulate bulk transcriptomic data

from GRNs. These datasets are generated from four literature-curated Boolean models:

mammalian cortical area development (mCAD), ventral spinal cord (VSC) development,

hematopoietic stem cell (HSC) differentiation and gonadal sex determination (GSD). These

models represent different types of graph structures, with varying numbers of positive and

negative edges; thus serving as good examples for illustrating the robustness of the proposed

method in modelling signed graph topologies. BoolODE is used to create ten random sim-

ulations of the synthetic gene expression datasets with 2,000 cells for each model. For each

dataset, one version with a dropout rate of 50% and another with a rate of 70% are also

considered to evaluate the performance of the methods under missing values.

AUPRC ratios are calculated separately for activating and inhibitory edges and their
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Figure 4.3 Performance of various methods for synthetic datasets with varying number of
genes (top row), dropout ratio (middle row) and number of cells (bottom row).

average over realizations are reported in Figure 4.2. For most of the datasets, scSGL performs

better than other benchmarking methods in inferring both activating and inhibitory edges.

Although there is a difference between the performances of different kernels, scSGL generally

performs better than state-of-the-art methods irrespective of the selected kernel. Comparing

the performances of different kernels, it is observed that τzi results in higher AUPRC ratios

in GSD, HSC and VSC while ρ performs better in mCAD datasets. It is also observed that

AUPRC ratios are higher for activating edges then inhibitory edges. Increasing the dropout

ratio causes a drop in the performance of all methods for inferring the activating edges but

not for learning the inhibitory edges. Overall, the best performing kernel is τzi, which might

be because of its robustness to increasing dropout ratio compared to other kernels.
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Parameter Sensitivity Analysis: To mimic the zero inflated and overly dispersed nature

of most scRNAseq datasets, we simulated gene expression data from a multivariate zero-

inflated negative binomial (ZINB) distribution for our second simulation. These datasets

were then used to conduct parameter sensitivity analysis for the proposed methods. Given

a known graph structure, synthetic datasets are generated from a ZINB distribution by

adapting an algorithm developed by [133]. The three parameters of the ZINB distribution;

λ, k and ω, which control its mean, dispersion and degree of zero-inflation, respectively were

determined from a real scRNAseq dataset to make the simulations mirror the properties of

real datasets.

The ZINB simulator is then used to generate expression data from three different network

structures: random networks, networks with a given community structure and networks with

hubs. Random networks are generated using Erdős–Rényi model with desired edge density.

Since Erdős–Rényi model is not realistic due to its binomial degree distribution, we also

consider networks with hubs. These networks are generated using a Barabási–Albert model

whose degree distribution follows a power-law function. Finally, networks with community

structure, also known as modular networks, are generated using a disjoint union of random

graphs. The accuracy of the scSGL inferred graphs were then evaluated for all three graph

structures. To investigate the robustness of scSGL, we simulated datasets from the afore-

mentioned network topologies by varying the following parameters: (i) number of genes (10,

50, 100 and 250), (ii) number of cells (100, 300, 500 and 1000) and (iii) dropout probabilities

(0.26-0.36). To account for the inherent randomness of the simulations, 10 independent data

replicates were generated for every parameter combination and the mean AUPRC ratios

obtained by averaging over the replicates are reported in Figure 4.3.

Recent investigations of scRNAseq datasets have revealed that dropout rates are primarily

driven by a combination of technical and biological factors [108]. Consequently, while mean

gene expression and proportion of zeros are linked, this may vary based on cell type, sex,

and other biological and technical factors. While investigating the impact of dropout rates
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on network estimation accuracy, we found a steady decline in AUPRC ratios for all methods

with an increase in the number of zeroes. scSGL irrespective of the kernel choice maintained

the highest AUPRC ratios across all network topologies. Gene expression in scRNAseq

datasets can be intepreted as relative measures of abundance owing to the datasets being a

combination of gene expression derived from several cell-types. This could be the reason why

proportionality measures perform well [130]. The strong performance of τzi can be explained

on the basis that it explicitly models the dropouts present in scRNAseq datasets. Despite the

poor performance of regularized correlation networks (PPCOR), we see a strong performance

of scSGL when using the correlation kernel. This proves that gene-gene relationships are in

fact non-linear in nature. This belief is also strengthened by the above average performance

of tree-based machine learning algorithms like GENIE3 and GRNBOOST2. It is to be noted

that PIDC, the only other method capable of modelling excess zeroes, while accounting for

non-linear relationships fails to achieve a top-ranking AUPRC ratios.

Next, we evaluated the impact of cell sizes on network reconstruction. Figure 2 demon-

strates a clear rise in AUPRC ratios when the number of cells are increased. PIDC, the only

other single cell network estimation technique, achieves a below average performance at the

lowest sample size of 100. This could be due to the fact that PIDC requires large sample

sizes for accurate estimation of pairwise joint probability distributions for calculating mutual

information. In general, PPCOR has the worst performance among all methods. It should

also be noted that the performance of GRNBOOST2 was equivalent to scSGL for all the

network topologies when the sample size was 10 times the number of genes. These results

indicate the importance of sample size in accurate network estimation for all of the methods

and network topologies is considered.

Finally, the performance of each of the methods was evalulated by varying the number

of genes. All methods had high AUPRC ratios across network topologies when the number

of genes was small. While the AUPRC ratios of all the methods declined with an increase in

the number of genes, scSGL performed significantly better than most of the benchmarking
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methods. This dip in performance could be attributed to the fact that all methods learn very

dense networks. With an increase in the number of nodes, there is an increasing number

of false edges detected by every algorithm. The performance of scSGL could further be

improved with a more biologically informed framework for hyperparameter selection.

Computational Complexity: Methods are compared in terms of their scalability to

datasets with large number of genes. For this purpose, synthetic data generation process

used in parameter sensitivity analysis is employed to create three datasets with 500, 1000

and 2000 genes. Each dataset is generated from Barabási–Albert model, includes 1000 cells,

and has a dropout ratio of 0.26. Average run time and AUPRC ratios over 10 replicates

are reported in Figure 4.4. We reported results only for the correlation kernel, as other ker-

nels have similar performances and run times. It is observed that scSGL runs significantly

faster than GENIE3, GRNBOOST2 and PIDC while having superior performance in terms

of AUPRC ratio. Although PPCOR runs faster than scSGL, it shows poor performance.

Further discussion on the computational and storage complexity of scSGL is provided in [2]
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Figure 4.4 Scalability analysis of different methods. Run time of benchmarking methods
are calculated using BEELINE pipeline [3]. Run time of scSGL includes kernel
construction and optimization procedure. All methods are run on the same computer.
Results of GENIE3 for 2000 genes are not reported due to its high run time.
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4.4.2 Real Datasets

For real datasets, we consider scRNAseq expressions of human embryonic stem cells (hESC)

and mouse embryonic stem cells (hESC) which include 758 and 451 cells, respectively. We

inferred GRNs between 500 highly varying genes along with highly varying TFs [3]. Inferred

GRNs are compared to three different databases of gene regulations: STRING [137], cell-

type specific [138] and nonspecific [139, 140, 141]. AUPRC ratios are reported in Figure

4.5. All methods have performance values close to random estimator. Except PPCOR,

which has random performance in both datasets and for all databases, methods have com-

parable performances, with scSGL showing slightly better performance in hESC and while

benchmarking methods working slightly better in mESC.

To add biological meaning to the estimated networks we compared them to the reference

networks in the STRING database. The STRING database is a compendium of protein-

protein interactions created by gathering information from varying sources like experimental

studies, text mining etc. The edges in the STRING network are classified as high confi-

dence (minimum score of 0.700), medium confidence (minimum score of 0.400) and and low

confidence (minimum score of 0.150). In hESC dataset, scSGL-ρ identified the maximum

number of high confidence associations present in the STRING reference network. scSGL-ρ,

scSGL-r and scSGL-τzi each identified 60, 56 and 24 high confidence STRING interactions,

respectively, with an edge confidence greater than 0.5. The interactions identified by scSGL-

r form a network of 56 unique genes including genes Nanog, Sox2, Sox4, Pou5f1, Ctnnb1,

Gata2, Gata3 and many others. Lineage-specific marker genes, Cdk6, Col5a1, Vim, and

Itg5, which are known to have regulatory roles in cell differentiation were also detected by

scSGL-r but with edge confidence less than 0.5 (0.1-0.3) [142, 143]. scSGL-ρ and scSGL-

r identified 20 common genes including Sox2, Sox4, Gata6, Ctnnb1 and Bmp4. scSGL-

τzi identified the least number of genes but successfully retrieved lineage markers Nanog,

Sox2, Sox4, Pou5f1,Ctnnb1, Gata2, Gata3. All three kernel methods identified genes Sox4,

Ctnnb1, Bmp4 and Gata6. According to the STRING database, the 56 genes identified by
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Figure 4.5 Performance of methods for two real-world scRNAseq datasets. Inferred graphs
are compared to three different gene regulatory databases.

scSGL-r are associated with 839 significantly enriched biological process gene ontology (GO)

terms that include cell differentiation, chromosome separation, specification of animal organ

position, mitotic nuclear division and organ formation. Genes identified by scSGL-ρ and

scSGL-τzi had similar functional enrichments for biological processes. To demonstrate some

of the learned associations in hESC, we plotted the subnetwork of 24 lineage specific marker

genes using scSGL [143]. Figure 6 shows the presence of activating relationships between

key definitive endoderm (DE) markers like Gata6, Gata4, and Eomes and joint inhibition

of pluripotency markers Pou5f1, Nanog, and Sox2. Gata4 and Gata6 have been reported as

necessary for the development and function of a number of endoderm-derived tissues and

cells [144, 145] and onset of Gata4 and Gata6 expression has been reported to be coincident

with the beginning of endoderm gene expression [146]. In addition, inhibition of pluripo-

tency markers by the key DE markers indicates progression of the cells towards a DE state.

We also learned day specific scSGL graphs for the 24 marker genes by first clustering the

dataset over days (0,12,24,36,72 and 96 hrs). Day specific graphs showed that scSGL can

effectively recover gene network changes from data clustered over time points (Section 7;

Supplementary Data) .

In mESC dataset, scSGL-ρ, scSGL-r and scSGL-τzi each identified 67, 103 and 55 high

confidence STRING interactions, respectively, with an edge confidence greater than 0.5. The
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three estimated networks capture interactions regulated by known transcription factors Sox2,

Nanog, Klf4, Myc and Sall4 [147]. scSGL-r identified known relationships between Sox2 and

Nanog; Esrrb with Sox2 and Rybp among many others. scSGL-ρ identified known relation-

ships between Esrrb and Etv5 and indirect interactions between Sall4 and Rybp regulated

by TF Oct4. scSGL-τzi identified most of the important relationships identified by scSGL-

r along with additional relationships between Sox2, Nanog, and Rif1. According to the

STRING database, the 103 genes identified by scSGL-r are associated with 908 significantly

enriched biological process GO terms that include cell fate determination, specification and

commitment, mitotic DNA replication and regulation of nodal signalling pathway. Similar

to hESC analysis, scSGL, irrespective of the chosen kernel, identified genes with similar

functional enrichments for biological processes. To demonstrate some of the learned associ-

ations in mESC, we plotted the subnetwork of 19 well known marker genes+TF in mESC

differentiation, estimated using scSGL. As can be seen in Figure 6B, Nanog, Gata4, Sox2,

Sox17, Zfp42 and Lefty1 emerge as some of the hub nodes with high degrees of associations.

The learned network also captures vital signed associations between Sox2, Nanog, Sox17,
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Zfp42 and Gata4. It is well known that Sox2 and Nanog form the core of a transcription

factor network that promotes embryonic stem cell pluripotency and self- renewal. Zfp42 is

also known to be a direct target of Nanog, which is augmented by Sox2 [148]. In addition,

Sox17 together with Gata4 expression reinforce a transcriptional network that antagonizes

Nanog expression to initiate differentiation [149].

Finally, to analyze the relation between edges identified by scSGL and benchmarking

methods, the intersection between the top 1000 edges is reported as an UpSet plot [150] in

Figure 4.7. In both datasets, PPCOR does not have any intersection with other methods

probably because of its poor performance reported in Figure 4.5. The remaining 6 methods

have an intersection set with cardinality around 40 edges. The same number of common

edges is found in the intersection of PIDC, GENIE3, GRNBOOST2, scSGL-τzi, scSGL-r

and in the intersection of PIDC, GENIE3, scSGL-τzi, scSGL-r, scSGL-ρ. These observa-

tions hold for both datasets, indicating the reproducibility of the proposed approach across

different datasets. Edges identified by τzi and r have more intersecting edges with bench-

marking methods and with each other than those identified by ρ, which indicates that the

benchmarking methods have more common edges with correlation based association metrics

than with proportionality measures. scSGL methods have more common edges with PIDC

than with GENIE3 and GRNBOOST2, which may be due to the fact that PIDC learns

co-expression GRN similar to scSGL, while GENIE3 and GRNBOOST2 learn directed in-

teractions between genes.

4.5 Discussion

In this paper, we have introduced a novel network inference algorithm based on GSP. Our

proposed algorithm scSGL identifies functional relationships between genes by learning the

signed adjacency matrix from the gene expression data under the assumption that graph

signals are similar over positive edges and dissimilar over negative edges. This novel tech-

nique also takes into account the nonlinearity of the gene interactions by employing kernel
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Figure 4.7 UpSet plot that shows intersection between the top 1000 edges by scSGL with 3
kernels and benchmarking methods in hESC and mESC datasets.

mappings. We applied scSGL to four curated datasets derived from "published Boolean

models of GRN" and two real experimental scRNAseq datasets during differentiation. To

conduct an in-depth analysis of gene co-expression network reconstruction from scRNAseq

datasets, we generated simulations from zero inflated negative binomial distributions. These

simulations, generated using different parameter combinations, were used to investigate the

robustness of our proposed methods to changing cell sizes, gene numbers and dropout rates.

For the curated datasets, scSGL consistently obtained higher AUPRC ratios in compari-

son to the benchmarking methods, despite each dataset having a different number of stable

cell states. Parameter sensitivity analysis reflected the superior performance of scSGL in

estimating networks under varying network topologies. The performance remained consis-

tent even when the gene numbers increased, the dropout rates were high and the sample

sizes were low. This indicated the robustness of scSGL in modelling networks under varying

characteristics of scRNA-seq datasets.

The networks estimated from real data using scSGL identified important functional re-

lationships between target genes and transcription factors and exhibited enrichment for ap-
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propriate functional processes. In addition, day specific analysis of the hESC dataset showed

how scSGL can be used to infer gene networks for clustered datasets (Supplementary Mate-

rial). This may be particularly important in single cell network inference, if cell-type specific

networks are of interest. We also demonstrated that scSGL attained performance compa-

rable to state-of-the-art-methods in real data experiments, with the performance of all the

GRN reconstruction methods methods being close to random. Accuracy evaluation of the

predicted networks for the real datasets were done using cell-type specific, non-specific and

functional networks described in [3]. However, most of the information in these ground truth

datasets have been accumulated based on tissue level data and hence it’s not completely ap-

propriate to calculate precision and recall rates from these databases.

Although scRNAseq techniques provide significant advantages over bulk data such as

increased sample size with higher depth coverage and and presence of highly distinct cell

clusters, it also comes laced with multiple sources of technical and

biological noise. Moreover, the inability to differentiate between technical and biological

noise, and the absence of adequate noise modelling techniques further exacerbate the problem

[151, 8]. scSGL aims to capture the node similarities and dissimilarities based on distances

between graph signals. These graph signals exhibit smoothness, which implies that within a

given node cluster, genes tend to be homogeneous, while varying across clusters. This leads

to densely connected graphs where the heterogeneity induced by distinct cell sub-populations

can be simultaneously curbed. Using single cell data with cell cluster labels, easily obtained

from single cell clustering algorithms [152], in conjunction with scSGL can aid in identifying

functional modules that are associated with a cell type [153]. Integrating pseudotemporal

ordering with scSGL can further help in identifying the functional modules associated with

differential pathways [154].

Despite the availability of a large number of computational methods, accurate GRN

reconstruction still remains an open problem. Most reconstruction methods are based on

the assumption that presence of an edge implies regulatory relationships. They also have
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the tendency to establish links between genes regulated by the same regulator. These issues

can generate a lot of false positives and therefore additional sources of data such as ChIP-

seq measurements that help in identifying direct interactions between TFs and target genes,

can provide a way to filter out the spurious interactions [155]. Finally, gene regulation has

multiple layers beyond direct TF-target interaction, but functional relationships can only be

established if these relationships induce persistent changes in transcriptional state. As single

cell data sources over multiple modalities continue to become available, it will be interesting

to see how integration of these data types aids GRN reconstruction using scSGL. [156].
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APPENDIX A

BAYESIAN SINGLE CELL RNASEQ DIFFERENTIAL GENE EXPRESSION
TEST FOR DOSE RESPONSE STUDY

DESIGNS

Figure A.1 Principal components analysis of cell types identified in a real hepatic
dose-response snRNAseq dataset. Points represent a distinct cell and colors reflect the dose
group.
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Figure A.2 Comparison of fold-change distribution in simulated and real dose-response
snRNAseq data where the log-normal mean (facLoc) and standard deviation (facScale)
were varied as well as the percentage of differentially expressed genes and proportion of
downregulated DE genes. A total of 5000 genes were simulated or sampled from real data
and the fold-change for the highest dose group was calculated. The Kullback-Leibler
Divergence (KLD) intrinsic discrepancy (ID) was used to evaluate the similarity in
distributions.
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Figure A.3 Benchmarking scores for data simulated using the Splatter [4] wrapper Splattdr
with default initial parameters. A total of 4500 cells and 5000 genes were simulated across
9 dose groups with a probability of being differentially expressed of 10%, 50% of which
were downregulated. (A) Ground truth was used to estimated the False Positive Rate
(FPR), True Positive Rate (TPR), False Negative Rate (FNR), True Negative Rate
(TNR), precision, balanced accuracy, and F1 score. Boxplots and whiskers represent values
for 10 replicate simulations. (B) The area-under the concordance curve (AUCC) was
calculated as previously described (ref) for the 100 most significant genes (K = 100).
Heatmap represents the pairwise AUCC for each DE analysis grouped by similarity.
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APPENDIX B

SEMIPARAMETRIC DOSE RESPONSE CURVE
ESTIMATION FOR SINGLE CELL DOSE RESPONSE

EXPERIMENTS

B.1 Proof of Theorem 1

Define Θ(0) = (ϕ(0), β(0), γ
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For the sake of brevity, define G(ϕ, µi,j) = [exp(ϕ)/{sjµi,j + exp(ϕ)}]eϕ . Then,
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µ
(0)
i,j

)
− Yi,jlog

{
siµi,j + exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

}
− exp(ϕ)log{siµi,j + exp(ϕ)}+ exp(ϕ(0))log{siµ(0)

i,j + exp(ϕ(0))}

+ϕ exp(ϕ)− ϕ(0) exp(ϕ(0)) + log[Γ{Yi,j + exp(ϕ)}]
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−log[Γ{Yi,j + exp(ϕ(0))}]

−log[Γ{exp(ϕ)}] + log[Γ{exp(ϕ(0))}]

+log(ωi,j)− log(ω(0)
i,j )

)
+I(Yi,j = 0)log

{
(1− ωi,j) + ωi,jG(ϕ, µi,j)

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}}
= ℓ(Θ(0))

+
I∑
i=1

ni∑
j=1

{
I(Yi,j > 0)

(
Yi,jlog

(
µi,j

µ
(0)
i,j

)
− Yi,jlog

{
siµi,j + exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

}

− exp(ϕ)log

{
siµi,j + exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

}
− exp(ϕ)log{siµ(0)

i,j + exp(ϕ(0))}+ exp(ϕ(0))log{siµ(0)
i,j + exp(ϕ(0))}

+ϕ exp(ϕ)− ϕ(0) exp(ϕ(0)) + log[Γ{Yi,j + exp(ϕ)}]

−log[Γ{Yi,j + exp(ϕ(0))}]− log[Γ{exp(ϕ)}] + log[Γ{exp(ϕ(0))}]

+log(ωi,j)− log(ω(0)
i,j )

)
+I(Yi,j = 0)

×
{

log
[
(1− ω

(0)
i,j ){(1− ωi,j)/(1− ω

(0)
i,j )}

]
+log

[
1 +

ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j ){ωi,jG(ϕ, µi,j)/ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )}

(1− ω
(0)
i,j ){(1− ωi,j)/(1− ω

(0)
i,j )}

]
−log[(1− ω

(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )]

}
≥ ℓ(Θ(0))

+
I∑
i=1

ni∑
j=1

{
I(Yi,j > 0)

(
Yi,jlog

(
µi,j

µ
(0)
i,j

)
− Yi,jlog

{
siµi,j + exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

}

− exp(ϕ)log

{
siµi,j + exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

}
− exp(ϕ)log{siµ(0)

i,j + exp(ϕ(0))}+ exp(ϕ(0))log{siµ(0)
i,j + exp(ϕ(0))}

+ϕ exp(ϕ)− ϕ(0) exp(ϕ(0)) + log[Γ{Yi,j + exp(ϕ)}]

−log[Γ{Yi,j + exp(ϕ(0))}]− log[Γ{exp(ϕ)}] + log[Γ{exp(ϕ(0))}]
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+log(ωi,j)− log(ω(0)
i,j )

)
+I(Yi,j = 0)×

[
(1− ω

(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

log

{
(1− ωi,j)

(1− ω
(0)
i,j )

}

+
ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

log

{
ωi,jG(ϕ, µi,j)

ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}]}
(B.1)

The last inequality follows by applying the Jensen’s inequality to the term involved with

I(Yi,j = 0). Now, applying the inequality −log(x) ≥ 1− x for any generic x > 0 we obtain

−log

{
siµi,j + exp(ϕ)

sjµ
(0)
i,j + exp(ϕ(0))

}
≥1− siµi,j + exp(ϕ)

sjµ
(0)
i,j + exp(ϕ(0))

=
sj(µ

(0)
i,j − µi,j) + exp(ϕ(0))− exp(ϕ)

sjµ
(0)
i,j + exp(ϕ(0))

. (B.2)

Let us now consider the very last term of (B.1).

log

{
ωi,jG(ϕ, µi,j)

ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
= log

{
ωi,j

ω
(0)
i,j

}
+ log

{
G(ϕ, µi,j)

G(ϕ(0), µ
(0)
i,j )

}

= log

{
ωi,j

ω
(0)
i,j

}
− log{G(ϕ(0), µ

(0)
i,j )}+ log{G(ϕ, µi,j)}

= log

{
ωi,j

ω
(0)
i,j

}
− log{G(ϕ(0), µ

(0)
i,j )}+ exp(ϕ)ϕ

− exp(ϕ)

[
log

{
siµi,j + exp(ϕ)

sjµ
(0)
i,j + exp(ϕ(0))

}

+log
{
sjµ

(0)
i,j + exp(ϕ(0))

}]
= log

{
ωi,j

ω
(0)
i,j

}
− log{G(ϕ(0), µ

(0)
i,j )}+ exp(ϕ)ϕ

− exp(ϕ)log

{
siµi,j + exp(ϕ)

sjµ
(0)
i,j + exp(ϕ(0))

}
− exp(ϕ)log

{
sjµ

(0)
i,j + exp(ϕ(0))

}
≥ log

{
ωi,j

ω
(0)
i,j

}
− log{G(ϕ(0), µ

(0)
i,j )}+ exp(ϕ)ϕ

+exp(ϕ)

{
sj(µ

(0)
i,j − µi,j) + exp(ϕ(0))− exp(ϕ)

sjµ
(0)
i,j + exp(ϕ(0))

}
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− exp(ϕ)log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
= log

{
ωi,j

ω
(0)
i,j

}
− log{G(ϕ(0), µ

(0)
i,j )}+ exp(ϕ)ϕ

− exp(ϕ)log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
+exp(ϕ)

{
exp(ϕ(0))− exp(ϕ)

sjµ
(0)
i,j + exp(ϕ(0))

}

+
sj exp(ϕ)(µ

(0)
i,j − µi,j)

sjµ
(0)
i,j + exp(ϕ(0))

= log

{
ωi,j

ω
(0)
i,j

}
− log{G(ϕ(0), µ

(0)
i,j )}+ exp(ϕ)ϕ

− exp(ϕ)log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
+exp(ϕ)

{
exp(ϕ(0))− exp(ϕ)

sjµ
(0)
i,j + exp(ϕ(0))

}

+
sj{exp(ϕ)− exp(ϕ(0))}(µ(0)

i,j − µi,j)

sjµ
(0)
i,j + exp(ϕ(0))

+
sj exp(ϕ

(0))(µ
(0)
i,j − µi,j)

sjµ
(0)
i,j + exp(ϕ(0))

≥ log

{
ωi,j

ω
(0)
i,j

}
− log{G(ϕ(0), µ

(0)
i,j )}+ exp(ϕ)ϕ

− exp(ϕ)log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
+exp(ϕ)

{
exp(ϕ(0))− exp(ϕ)

sjµ
(0)
i,j + exp(ϕ(0))

}
− 0.5sj

sjµ
(0)
i,j + exp(ϕ(0))

×
[
{exp(ϕ)− exp(ϕ(0))}2 + (µ

(0)
i,j − µi,j)

2

]
+
sj exp(ϕ

(0))(µ
(0)
i,j − µi,j)

sjµ
(0)
i,j + exp(ϕ(0))

(B.3)
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The first inequality in the above derivation is obtained by using (B.2). The second inequality

is obtained by applying the inequality ab ≥ −0.5(a2+ b2). Once again using (B.2) we obatin

− exp(ϕ)log

{
siµi,j + exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

}
≥ exp(ϕ)

sj(µ
(0)
i,j − µi,j) + exp(ϕ(0))− exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

=
sj exp(ϕ)(µ

(0)
i,j − µi,j)

siµ
(0)
i,j + exp(ϕ(0))

+
exp(ϕ){exp(ϕ(0))− exp(ϕ)}

siµ
(0)
i,j + exp(ϕ(0))

=
sj{exp(ϕ)− exp(ϕ(0)}(µ(0)

i,j − µi,j)

siµ
(0)
i,j + exp(ϕ(0))

+
sj exp(ϕ

(0)(µ
(0)
i,j − µi,j)

siµ
(0)
i,j + exp(ϕ(0))

+
exp(ϕ){exp(ϕ(0))− exp(ϕ)}

siµ
(0)
i,j + exp(ϕ(0))

≥− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

×
[
{exp(ϕ)− exp(ϕ(0)}2 + (µ

(0)
i,j − µi,j)

2

]
+
sj exp(ϕ

(0)(µ
(0)
i,j − µi,j)

siµ
(0)
i,j + exp(ϕ(0))

+
exp(ϕ){exp(ϕ(0))− exp(ϕ)}

siµ
(0)
i,j + exp(ϕ(0))

. (B.4)

Now, we apply inequalities (B.2), (B.3), and (B.4) to (B.1) and obtain,

ℓ(Θ) ≥ ℓ(Θ(0))

+
I∑
i=1

ni∑
j=1

[
I(Yi,j > 0)

(
Yi,jlog

(
µi,j

µ
(0)
i,j

)

+Yi,j

{
sj(µ

(0)
i,j − µi,j) + exp(ϕ(0))− exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

}

− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

[
{exp(ϕ)− exp(ϕ(0)}2 + (µ

(0)
i,j − µi,j)

2

]

+
sj exp(ϕ

(0)(µ
(0)
i,j − µi,j)

siµ
(0)
i,j + exp(ϕ(0))
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+
exp(ϕ){exp(ϕ(0))− exp(ϕ)}

siµ
(0)
i,j + exp(ϕ(0))

− exp(ϕ)log{siµ(0)
i,j + exp(ϕ(0))}+ exp(ϕ(0))log{siµ(0)

i,j + exp(ϕ(0))}

+ϕ exp(ϕ)− ϕ(0) exp(ϕ(0)) + log[Γ{Yi,j + exp(ϕ)}]

−log[Γ{Yi,j + exp(ϕ(0))}]− log[Γ{exp(ϕ)}]

+log[Γ{exp(ϕ(0))}] + log(ωi,j)− log(ω(0)
i,j )

)
+I(Yi,j = 0)×

{
(1− ω

(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

log

{
(1− ωi,j)

(1− ω
(0)
i,j )

}

+
ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(
log

{
ωi,j

ω
(0)
i,j

}
− log{G(ϕ(0), µ

(0)
i,j )}

+exp(ϕ)ϕ− exp(ϕ)log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
+exp(ϕ)

{
exp(ϕ(0))− exp(ϕ)

sjµ
(0)
i,j + exp(ϕ(0))

}

− 0.5sj

sjµ
(0)
i,j + exp(ϕ(0))

[
{exp(ϕ)− exp(ϕ(0))}2 + (µ

(0)
i,j − µi,j)

2

]

+
sj exp(ϕ

(0))(µ
(0)
i,j − µi,j)

sjµ
(0)
i,j + exp(ϕ(0))

)}]
= ℓ†1(ϕ|Θ(0)) + ℓ∗2(ψ0, ψ1, γ1, . . . , γI , β|Θ(0))

+ℓ∗3(γ1, . . . , γI , β|Θ(0)) + ℓ∗4(Θ
(0)) (B.5)

where

ℓ†1(ϕ|Θ(0)) =
I∑
i=1

ni∑
j=1

{
I(Yi,j > 0)

(
Yi,j

{
exp(ϕ(0))− exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

}

− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

{exp(ϕ)− exp(ϕ(0)}2

+
exp(ϕ){exp(ϕ(0))− exp(ϕ)}

siµ
(0)
i,j + exp(ϕ(0))

− exp(ϕ)log{siµ(0)
i,j + exp(ϕ(0))}

+ϕ exp(ϕ) + log[Γ{Yi,j + exp(ϕ)}]

−log[Γ{exp(ϕ)}]
)
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+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

[
exp(ϕ)ϕ

− exp(ϕ)log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
+exp(ϕ)

{
exp(ϕ(0))− exp(ϕ)

sjµ
(0)
i,j + exp(ϕ(0))

}

− 0.5sj

sjµ
(0)
i,j + exp(ϕ(0))

{exp(ϕ)− exp(ϕ(0))}2
]}

,

ℓ∗2(ψ0, ψ1, γ1, . . . , γI , β|Θ(0)) =
I∑
i=1

ni∑
j=1

[
I(Yi,j > 0)log(ωi,j)

+I(Yi,j = 0)

×
{

(1− ω
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

log(1− ωi,j)

+
ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

log (ωi,j)
}]

=
I∑
i=1

ni∑
j=1

[
I(Yi,j > 0)

(
ψ0 + ψ1log(siµi,j)

−log [1 + exp{ψ0 + ψ1log(siµi,j)}]
)

+I(Yi,j = 0)×
{
−

(1− ω
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

×log [1 + exp{ψ0 + ψ1log(siµi,j)}]

+
ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

×
(
ψ0 + ψ1log(siµi,j)

−log [1 + exp{ψ0 + ψ1log(siµi,j)}]
)}]

=
I∑
i=1

ni∑
j=1

({
I(Yi,j > 0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×{ψ0 + ψ1log(siµi,j)}
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−log [1 + exp{ψ0 + ψ1log(siµi,j)}]
)

=
I∑
i=1

ni∑
j=1

({
I(Yi,j > 0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×{ψ0 + ψ1log(siµi,j)}

−log

[
1 + exp{ψ0 + ψ1log(siµi,j)}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

]

−log[1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}]

)
≥

I∑
i=1

ni∑
j=1

({
I(Yi,j > 0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×{ψ0 + ψ1log(siµi,j)}

+1− 1 + exp{ψ0 + ψ1log(siµi,j)}
1 + exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

−log[1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}]

)
,

where the last inequality is obtained using the result log(x) ≤ x − 1, so −log(x) ≥ 1 − x.

Now,

ℓ∗2(ψ0, ψ1, γ1, . . . , γI , β|Θ(0)) ≥
I∑
i=1

ni∑
j=1

({
I(Yi,j > 0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×{ψ0 + ψ1log(siµi,j)}

+
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

− exp{ψ0 + ψ1log(siµi,j)}
1 + exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

−log[1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}]

)

111



=
I∑
i=1

ni∑
j=1

({
I(Yi,j > 0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
ψ0 + ψ1log(si)

+ψ1{
d+K+1∑
m=1

γi,mBm(Di,j) +X⊤
i,jβ}

]

+
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

×
(
1− exp{ψ0 − ψ

(0)
0 + ψ1log(siµi,j)

−ψ(0)
1 log(siµ

(0)
i,j )}

)
−log[1 + exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}]

)
.

Let us work on two specific terms of the above expression. First,

ψ1{
d+K+1∑
m=1

γi,mBm(Di,j) +X⊤
i,jβ} = (ψ1 − ψ1

(0)){
d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j)

+X⊤
i,j(β − β(0))}

+ψ1
(0){

d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j)

+X⊤
i,j(β − β(0))}

+ψ1{
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}

≥ −0.5

[
(d+K + 2)(ψ1 − ψ(0))2

+
d+K+1∑
m=1

(γi,m − γ
(0)
i,m)

2B2
m(Di,j)

+{X⊤
i,j(β − β(0))}2

]
+ψ1

(0){
d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j)

+X⊤
i,j(β − β(0))}
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+ψ1{
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}.

The above inequality is obtained by applying the result, ab ≥ −0.5(a2 + b2) repeatedly on

the product terms. The second term,

− exp{ψ0 − ψ
(0)
0 + ψ1log(siµi,j)− ψ

(0)
1 log(siµ

(0)
i,j )}

= − exp

[
ψ0 − ψ

(0)
0 + ψ1log(si) + ψ1{

d+K+1∑
m=1

γi,mBm(Di,j) +X⊤
i,jβ}

−ψ(0)
1 log(si)− ψ

(0)
1 {

d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}
]

= − exp

[
ψ0 − ψ

(0)
0 + log(si)(ψ1 − ψ

(0)
1 ) + (ψ1 − ψ

(0)
1 )

×{
d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j) +X⊤

i,j(β − β(0))}

+ψ
(0)
1 {

d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j) +X⊤

i,j(β − β(0))}

+(ψ1 − ψ
(0)
1 ){

d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}
]

= − exp

[
ψ0 − ψ

(0)
0 + log(si)(ψ1 − ψ

(0)
1 ) + (ψ1 − ψ

(0)
1 )

×{
d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j) +X⊤

i,j(β − β(0))}

+
d+K+1∑
m=1

(γi,m − γ
(0)
i,m)ψ

(0)
1 Bm(Di,j) +X⊤

i,jψ
(0)
1 (β − β(0))

+(ψ1 − ψ
(0)
1 ){

d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}
]

≥ − 1

2d+ 2K + 7

(
exp{(ψ0 − ψ

(0)
0 )(2d+ 2K + 7)}

+exp{log(si)(ψ1 − ψ
(0)
1 )(2d+ 2K + 7)}

+
d+K+1∑
m=1

exp{(ψ1 − ψ
(0)
1 )(γi,m − γ

(0)
i,m)Bm(Di,j)(2d+ 2K + 7)}

+exp{(ψ1 − ψ
(0)
1 )X⊤

i,j(β − β(0))}(2d+ 2K + 7)}

+
d+K+1∑
m=1

exp{(γi,m − γ
(0)
i,m)ψ

(0)
1 Bm(Di,j)(2d+ 2K + 7)}
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+exp{X⊤
i,jψ

(0)
1 (β − β(0))(2d+ 2K + 7)}

+exp

[
(ψ1 − ψ

(0)
1 ){

d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}(2d+ 2K + 7)

])
≥ − 1

2d+ 2K + 7

(
exp{(ψ0 − ψ

(0)
0 )(2d+ 2K + 7)}

+exp{log(si)(ψ1 − ψ
(0)
1 )(2d+ 2K + 7)}

+
d+K+1∑
m=1

exp

[
0.5(ψ1 − ψ

(0)
1 )2 + 0.5{(γi,m − γ

(0)
i,m)Bm(Di,j)(2d+ 2K + 7)}2

]
+exp

[
0.5(ψ1 − ψ

(0)
1 )2 + 0.5{X⊤

i,j(β − β(0))(2d+ 2K + 7)}2
]

+
d+K+1∑
m=1

exp{(γi,m − γ
(0)
i,m)ψ

(0)
1 Bm(Di,j)(2d+ 2K + 7)}

+exp{X⊤
i,jψ

(0)
1 (β − β(0))(2d+ 2K + 7)}

+exp

[
(ψ1 − ψ

(0)
1 ){

d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}(2d+ 2K + 7)

])
≥ − 1

2d+ 2K + 7

(
exp{(ψ0 − ψ

(0)
0 )(2d+ 2K + 7)}

+exp{log(si)(ψ1 − ψ
(0)
1 )(2d+ 2K + 7)}

+0.5(d+K + 1) exp{(ψ1 − ψ
(0)
1 )2}

+0.5
d+K+1∑
m=1

exp[{(γi,m − γ
(0)
i,m)Bm(Di,j)(2d+ 2K + 7)}2]

+0.5 exp{(ψ1 − ψ
(0)
1 )2}+ 0.5 exp[{X⊤

i,j(β − β(0))(2d+ 2K + 7)}2]

+
d+K+1∑
m=1

exp{(γi,m − γ
(0)
i,m)ψ

(0)
1 Bm(Di,j)(2d+ 2K + 7)}

+exp{X⊤
i,jψ

(0)
1 (β − β(0))(2d+ 2K + 7)}

+exp

[
(ψ1 − ψ

(0)
1 ){

d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}(2d+ 2K + 7)

])
.

The first and third inequalities follow from the AM-GM inequality and the second inequality

follows from the result that ab ≤ (a2 + b2)/2. Now,

ℓ∗2(ψ0, ψ1, γ1, . . . , γI , β|Θ(0)) ≥
I∑
i=1

ni∑
j=1

({
I(Yi,j > 0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}

114



×
[
ψ0 + ψ1log(si)

−0.5(d+K + 2)(ψ1 − ψ(0))2

−0.5
d+K+1∑
m=1

(γi,m − γ
(0)
i,m)

2B2
m(Di,j)

−0.5{X⊤
i,j(β − β(0))}2

+ψ1
(0){

d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j)

+X⊤
i,j(β − β(0))}

+ψ1{
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}
]

+
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

×
{
1− 1

2d+ 2K + 7

×
(
exp{(ψ0 − ψ

(0)
0 )(2d+ 2K + 7)}

+exp{log(si)(ψ1 − ψ
(0)
1 )(2d+ 2K + 7)}

+0.5(d+K + 1) exp{(ψ1 − ψ
(0)
1 )2}

+0.5
d+K+1∑
m=1

exp[{(γi,m − γ
(0)
i,m)Bm(Di,j)

×(2d+ 2K + 7)}2] + 0.5 exp{(ψ1 − ψ
(0)
1 )2}

+0.5 exp[{X⊤
i,j(β − β(0))(2d+ 2K + 7)}2]

+
d+K+1∑
m=1

exp{(γi,m − γ
(0)
i,m)ψ

(0)
1 Bm(Di,j)

×(2d+ 2K + 7)}

+exp{X⊤
i,jψ

(0)
1 (β − β(0))(2d+ 2K + 7)}

+exp

[
(ψ1 − ψ

(0)
1 ){

d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}

×(2d+ 2K + 7)

])}
−log[1 + exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}]

)
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= g1(ψ0|Θ0) + g2(ψ1|Θ0) +
I∑
i=1

g3,i(γi|Θ0)

+g4(β|Θ0) + g5(Θ0),

g1(ψ0|Θ0) =
I∑
i=1

ni∑
j=1

[{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
ψ0

−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× 1

2d+ 2K + 7
exp{(ψ0 − ψ

(0)
0 )(2d+ 2K + 7)}

]
,

g2(ψ1|Θ0) =
I∑
i=1

ni∑
j=1

{{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
ψ1log(si)− 0.5(d+K + 2)(ψ1 − ψ(0))2

+ψ1{
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}
]

−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× 1

2d+ 2K + 7

(
exp{log(si)(ψ1 − ψ

(0)
1 )(2d+ 2K + 7)}

+0.5(d+K + 1) exp{(ψ1 − ψ
(0)
1 )2}

+0.5 exp{(ψ1 − ψ
(0)
1 )2}

+exp

[
(ψ1 − ψ

(0)
1 ){

d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}(2d+ 2K + 7)

])}
,

g3,i(γi|Θ(0)) =

ni∑
j=1

{{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}

×
[
−0.5

d+K+1∑
m=1

(γi,m − γ
(0)
i,m)

2B2
m(Di,j)

+ψ1
(0)

d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j)

]
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− −
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× 1

2d+ 2K + 7

(
0.5

d+K+1∑
m=1

exp[{(γi,m − γ
(0)
i,m)Bm(Di,j)

×(2d+ 2K + 7)}2]

+
d+K+1∑
m=1

exp{(γi,m − γ
(0)
i,m)ψ

(0)
1 Bm(Di,j)(2d+ 2K + 7)}

)}
,

and

g4(β|Θ(0)) =
I∑
i=1

ni∑
j=1

({
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
−0.5{X⊤

i,j(β − β(0))}2 + ψ
(0)
1 X⊤

i,j(β − β(0))

]
−

exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× 1

2d+ 2K + 7

[
0.5 exp[{X⊤

i,j(β − β(0))(2d+ 2K + 7)}2]

+ exp{X⊤
i,jψ

(0)
1 (β − β(0))(2d+ 2K + 7)}

])
.

ℓ∗3(γ1, . . . , γI , β|Θ(0)) =
I∑
i=1

ni∑
j=1

[
I(Yi,j > 0)

{
Yi,jlog (µi,j)−

Yi,jsjµi,j

siµ
(0)
i,j + exp(ϕ(0))

− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

(µi,j − µ
(0)
i,j )

2

− sj exp(ϕ
(0)µi,j

siµ
(0)
i,j + exp(ϕ(0))

}

−
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

×
{

0.5sj

sjµ
(0)
i,j + exp(ϕ(0))

(µi,j − µ
(0)
i,j )

2 +
sj exp(ϕ

(0))µi,j

sjµ
(0)
i,j + exp(ϕ(0))

}]

=
I∑
i=1

ni∑
j=1

[
I(Yi,j > 0)Yi,jlog (µi,j)

−
{
I(Yi,j > 0)Yi,jsj

siµ
(0)
i,j + exp(ϕ(0))

+
I(Yi,j > 0)sj exp(ϕ

(0)

siµ
(0)
i,j + exp(ϕ(0))
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+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× sj exp(ϕ
(0))

sjµ
(0)
i,j + exp(ϕ(0))

}
µi,j

−
{

0.5sjI(Yi,j > 0)

siµ
(0)
i,j + exp(ϕ(0))

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× 0.5sj

sjµ
(0)
i,j + exp(ϕ(0))

}
×(µi,j − µ

(0)
i,j )

2

]

=
I∑
i=1

ni∑
j=1

[
I(Yi,j > 0)Yi,jlog (µi,j)

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}
µi,j

− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
(µi,j − µ

(0)
i,j )

2

]
Now, we obtain two inequalities for −µi,j and −(µi,j − µ

(0)
i,j )

2 and apply them in the above

expression. First,

−µi,j =− exp{
d+K+1∑
m=1

γi,mBm(Di,j) +X⊤
i,jβ}

=− µ
(0)
i,j exp{

d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j) +X⊤

i,j(β − β(0))}

≥ −
µ
(0)
i,j

d+K + 2

[d+K+1∑
m=1

exp{(γi,m − γ
(0)
i,m)Bm(Di,j)(d+K + 2)}

+ exp{X⊤
i,j(β − β(0))(d+K + 2)}

]
,

where the inequality is obtained by using the AM-GM inequality. Second,

−(µi,j − µ
(0)
i,j )

2 =− (µ
(0)
i,j )

2 + 2µ
(0)
i,j µi,j − (µi,j)

2

=− (µ
(0)
i,j )

2 + 2(µ
(0)
i,j )

2

(
µi,j

µ
(0)
i,j

)
− (µ

(0)
i,j )

2

(
µi,j

µ
(0)
i,j

)2

=− (µ
(0)
i,j )

2
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+ 2(µ
(0)
i,j )

2 exp{
d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j) +X⊤

i,j(β − β(0))}

− (µ
(0)
i,j )

2 exp{2
d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j) + 2X⊤

i,j(β − β(0))}

≥ − (µ
(0)
i,j )

2

+ 2(µ
(0)
i,j )

2

{
1 +

d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j) +X⊤

i,j(β − β(0))

}

−
(µ

(0)
i,j )

2

d+K + 2

[d+K+1∑
m=1

exp{2(d+K + 2)(γi,m − γ
(0)
i,m)Bm(Di,j)}

+ exp{2(d+K + 2)X⊤
i,j(β − β(0))}

]
,

where the inequality is obtained by applying exp(x) ≥ 1+ x for any generic x to the middle

term of the above expression and using the AM-GM inequality to the third term. Now,

applying these two inequalities we obtain,

ℓ∗3(γ1, . . . , γI , β|Θ(0)) ≥
I∑
i=1

ni∑
j=1

{
I(Yi,j > 0)Yi,j{

d+K+1∑
m=1

γi,mBm(Di,j) +X⊤
i,jβ}

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}

×
µ
(0)
i,j

d+K + 2

[d+K+1∑
m=1

exp{(γi,m − γ
(0)
i,m)Bm(Di,j)

×(d+K + 2)}+ exp{X⊤
i,j(β − β(0))(d+K + 2)}

]
− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
(
(µ

(0)
i,j )

2
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−2(µ
(0)
i,j )

2

{
1 +

d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j)

+X⊤
i,j(β − β(0))

}
+

(µ
(0)
i,j )

2

d+K + 2

[d+K+1∑
m=1

exp{2(d+K + 2)

×(γi,m − γ
(0)
i,m)Bm(Di,j)}

+exp{2(d+K + 2)X⊤
i,j(β − β(0))}

])}
=

K∑
i=1

ℓ‡3,i(γi|Θ0) + ℓ‡4(β|Θ0),

where

ℓ‡3,i(γi|Θ0) =

ni∑
j=1

(
I(Yi,j > 0)Yi,j

d+K+1∑
m=1

γi,mBm(Di,j)

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}

×
µ
(0)
i,j

d+K + 2

d+K+1∑
m=1

exp{(γi,m − γ
(0)
i,m)Bm(Di,j)(d+K + 2)}

− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}

×
[
−2(µ

(0)
i,j )

2

d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j)

+
(µ

(0)
i,j )

2

d+K + 2

d+K+1∑
m=1

exp{2(d+K + 2)(γi,m − γ
(0)
i,m)Bm(Di,j)}

])
,

ℓ‡4(β|Θ0) =
I∑
i=1

ni∑
j=1

(
I(Yi,j > 0)Yi,jX

⊤
i,jβ

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}
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×
µ
(0)
i,j

d+K + 2
exp{X⊤

i,j(β − β(0))(d+K + 2)}

− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}

×
[
−2(µ

(0)
i,j )

2X⊤
i,j(β − β(0)) +

(µ
(0)
i,j )

2

d+K + 2
exp{2(d+K + 2)

×X⊤
i,j(β − β(0))}

])
.

Combining all results we can write

ℓ(Θ) ≥ ℓ†1(ϕ|Θ(0)) + g1(ψ0|Θ(0)) + g2(ψ1|Θ(0)) +
I∑
i=1

ℓ†3,i(γi|Θ(0))

+ℓ†4(β|Θ(0)) + ℓ†5(Θ
(0)),

where

ℓ†3,i(γi|Θ(0)) = g3,i(γi|Θ(0)) + ℓ‡3,i(γi|Θ(0)),

ℓ†4(β|Θ(0)) = g4(β|Θ(0)) + ℓ‡4(β|Θ(0)).

Let us now consider the derivatives.

∂

∂ϕ
ℓ†1(ϕ|Θ(0)) =

∂

∂ϕ

I∑
i=1

ni∑
j=1

{
I(Yi,j > 0)

(
Yi,j

{
exp(ϕ(0))− exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

}

− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

{exp(ϕ)− exp(ϕ(0)}2

+
exp(ϕ){exp(ϕ(0))− exp(ϕ)}

siµ
(0)
i,j + exp(ϕ(0))

− exp(ϕ)log{siµ(0)
i,j + exp(ϕ(0))}

+ϕ exp(ϕ) + log[Γ{Yi,j + exp(ϕ)}]

−log[Γ{exp(ϕ)}]
)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

[
exp(ϕ)ϕ

− exp(ϕ)log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
+exp(ϕ)

{
exp(ϕ(0))− exp(ϕ)

sjµ
(0)
i,j + exp(ϕ(0))

}
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− 0.5sj

sjµ
(0)
i,j + exp(ϕ(0))

{exp(ϕ)− exp(ϕ(0))}2
]}

,

=
I∑
i=1

ni∑
j=1

{
I(Yi,j > 0)

(
−Yi,j

{
exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

}
− sj

siµ
(0)
i,j + exp(ϕ(0))

{exp(ϕ)− exp(ϕ(0)} exp(ϕ)

+
exp(ϕ){exp(ϕ(0))− 2 exp(ϕ)}

siµ
(0)
i,j + exp(ϕ(0))

− exp(ϕ)log{siµ(0)
i,j + exp(ϕ(0))}

+exp(ϕ) + ϕ exp(ϕ) +
∂

∂ϕ
log[Γ{Yi,j + exp(ϕ)}]

− ∂

∂ϕ
log[Γ{exp(ϕ)}]

)
+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

[
exp(ϕ) + exp(ϕ)ϕ

− exp(ϕ)log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
+
exp(ϕ){exp(ϕ(0))− 2 exp(ϕ)}

sjµ
(0)
i,j + exp(ϕ(0))

− sj

sjµ
(0)
i,j + exp(ϕ(0))

{exp(ϕ)− exp(ϕ(0))} exp(ϕ)
]}

,

=
I∑
i=1

ni∑
j=1

{
I(Yi,j > 0)

(
− Yi,j exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

+
∂

∂ϕ
log[Γ{Yi,j + exp(ϕ)}]− ∂

∂ϕ
log[Γ{exp(ϕ)}]

)
+

{
I(Yi, > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}[
exp(ϕ) + exp(ϕ)ϕ

− exp(ϕ)log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
+
exp(ϕ){exp(ϕ(0))− 2 exp(ϕ)}

sjµ
(0)
i,j + exp(ϕ(0))

− sj

sjµ
(0)
i,j + exp(ϕ(0))

{exp(ϕ)− exp(ϕ(0))} exp(ϕ)
]}

,

Next,

∂2

∂ϕ2
ℓ†1(ϕ|Θ(0)) =

I∑
i=1

ni∑
j=1

{
I(Yi,j > 0)

(
− Yi,j exp(ϕ)

siµ
(0)
i,j + exp(ϕ(0))

122



+
∂2

∂ϕ2
log[Γ{Yi,j + exp(ϕ)}]− ∂2

∂ϕ2
log[Γ{exp(ϕ)}]

)
+

{
I(Yi, > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}[
2 exp(ϕ)

+ exp(ϕ)ϕ− exp(ϕ)log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
+
exp(ϕ){exp(ϕ(0))− 4 exp(ϕ)}

sjµ
(0)
i,j + exp(ϕ(0))

− sj

sjµ
(0)
i,j + exp(ϕ(0))

{2 exp(ϕ)− exp(ϕ(0))} exp(ϕ)
]}

.

Now,

∂

∂ϕ
ℓ†1(ϕ|Θ(0)) |Θ=Θ(0) =

I∑
i=1

ni∑
j=1

{
I(Yi,j > 0)

(
− Yi,j exp(ϕ

(0))

siµ
(0)
i,j + exp(ϕ(0))

+
∂

∂ϕ
log[Γ{Yi,j + exp(ϕ)}] |ϕ=ϕ(0)

− ∂

∂ϕ
log[Γ{exp(ϕ)}] |ϕ=ϕ(0)

)
+

{
I(Yi, > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
[
exp(ϕ(0)) + exp(ϕ(0))ϕ(0)

− exp(ϕ(0))log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
+
exp(ϕ(0)){exp(ϕ(0))− 2 exp(ϕ(0))}

sjµ
(0)
i,j + exp(ϕ(0))

− sj

sjµ
(0)
i,j + exp(ϕ(0))

{exp(ϕ(0))− exp(ϕ(0))}

exp(ϕ(0))

]}
,

=
I∑
i=1

ni∑
j=1

{
I(Yi,j > 0)

(
− Yi,j exp(ϕ

(0))

siµ
(0)
i,j + exp(ϕ(0))

+
∂

∂ϕ
log[Γ{Yi,j + exp(ϕ)}] |ϕ=ϕ(0)

− ∂

∂ϕ
log[Γ{exp(ϕ)}] |ϕ=ϕ(0)

)
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+

{
I(Yi, > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
exp(ϕ(0)) + exp(ϕ(0))ϕ(0)

− exp(ϕ(0))log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
− exp(2ϕ(0))

sjµ
(0)
i,j + exp(ϕ(0))

]}

∂2

∂ϕ2
ℓ†1(ϕ|Θ(0)) |Θ=Θ(0) =

I∑
i=1

ni∑
j=1

{
I(Yi,j > 0)

(
− Yi,j exp(ϕ

(0))

siµ
(0)
i,j + exp(ϕ(0))

+
∂2

∂ϕ2
log[Γ{Yi,j + exp(ϕ)}] |Θ=Θ(0)

− ∂2

∂ϕ2
log[Γ{exp(ϕ)}] |Θ=Θ(0)

)
+

{
I(Yi, > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
2 exp(ϕ(0)) + exp(ϕ(0))ϕ(0)

− exp(ϕ(0))log
{
sjµ

(0)
i,j + exp(ϕ(0))

}
− 3 exp(2ϕ(0))

sjµ
(0)
i,j + exp(ϕ(0))

− sj exp(2ϕ
(0))

sjµ
(0)
i,j + exp(ϕ(0))

]}
.

∂

∂ψ0

g1(ψ0|Θ0) =
I∑
i=1

ni∑
j=1

[{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}

−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× exp{(ψ0 − ψ
(0)
0 )(2d+ 2K + 7)}

]
,

∂

∂ψ0

g1(ψ0|Θ0) |Θ=Θ(0) =
I∑
i=1

ni∑
j=1

[
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

]
,
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∂2

∂ψ2
0

g1(ψ0|Θ0) =
I∑
i=1

ni∑
j=1

[
−

exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

×(2d+ 2K + 7) exp{(ψ0 − ψ
(0)
0 )(2d+ 2K + 7)}

]
,

∂2

∂ψ2
0

g1(ψ0|Θ0) |Θ=Θ(0) =
I∑
i=1

ni∑
j=1

[
−
(2d+ 2K + 7) exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

]
,

∂

∂ψ1

g2(ψ1|Θ0) =
∂

∂ψ1

I∑
i=1

ni∑
j=1

{{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
ψ1log(si)− 0.5(d+K + 2)(ψ1 − ψ(0))2

+ψ1{
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}
]

−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× 1

2d+ 2K + 7

(
× exp{log(si)(ψ1 − ψ

(0)
1 )(2d+ 2K + 7)}

+0.5(d+K + 1) exp{(ψ1 − ψ
(0)
1 )2}

+0.5 exp{(ψ1 − ψ
(0)
1 )2}

+exp

[
(ψ1 − ψ

(0)
1 ){

d+K+1∑
m=1

γ
(0)
i,mBm(Di,j)

+X⊤
i,jβ

(0)}(2d+ 2K + 7)

])}
=

I∑
i=1

ni∑
j=1

{{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
log(si)− (d+K + 2)(ψ1 − ψ

(0)
1 )

+{
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}
]

−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× 1

2d+ 2K + 7

(
(2d+ 2K + 7)× log(si)× exp{log(si)(ψ1 − ψ

(0)
1 )(2d+ 2K + 7)}

+(d+K + 1) exp{(ψ1 − ψ
(0)
1 )2} × (ψ1 − ψ

(0)
1 )
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+exp{(ψ1 − ψ
(0)
1 )2}(ψ1 − ψ

(0)
1 )

+ exp

[
(ψ1 − ψ

(0)
1 ){

d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}(2d+ 2K + 7)

]

×{
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}(2d+ 2K + 7)

)}
,

∂

∂ψ1

g2(ψ1|Θ0) |Θ=Θ(0) =
I∑
i=1

ni∑
j=1

({
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}

×
{

log(si) +
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)

}

−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× 1

2d+ 2K + 7

[
(2d+ 2K + 7)× log(si)

+{
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}(2d+ 2K + 7)

])

=
I∑
i=1

ni∑
j=1

[{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}

×
{

log(si) +
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)

}

−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

×
{

log(si) +
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)

}]

=
I∑
i=1

ni∑
j=1

{
log(si) +

d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)

}

×
[
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

]

∂2

∂ψ2
1

g2(ψ1|Θ0) =
I∑
i=1

ni∑
j=1

{
−(d+K + 2)

{
I(Yi,j > 0)
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+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}

−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× 1

2d+ 2K + 7

(
(2d+ 2K + 7)2 × {log(si)}2

× exp{log(si)(ψ1 − ψ
(0)
1 )(2d+ 2K + 7)}

+2(d+K + 1) exp{(ψ1 − ψ
(0)
1 )2} × (ψ1 − ψ

(0)
1 )2

+(d+K + 1) exp{(ψ1 − ψ
(0)
1 )2}

+2 exp{(ψ1 − ψ
(0)
1 )2}(ψ1 − ψ

(0)
1 )2

+exp{(ψ1 − ψ
(0)
1 )2}

+exp

[
(ψ1 − ψ

(0)
1 ){

d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}(2d+ 2K + 7)

]

×{
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}2(2d+ 2K + 7)2

)}
,

∂2

∂ψ2
1

g2(ψ1|Θ0) |Θ=Θ(0) =
I∑
i=1

ni∑
j=1

(
−(d+K + 2)

{
I(Yi,j > 0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}

−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× 1

2d+ 2K + 7

[
(2d+ 2K + 7)2 × {log(si)}2 + d+K + 2

+{
d+K+1∑
m=1

γ
(0)
i,mBm(Di,j) +X⊤

i,jβ
(0)}2(2d+ 2K + 7)2

])

∂

∂γi,m
g3,i(γi|Θ(0))

=
∂

∂γi,m

ni∑
j=1

{{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}

×
[
−0.5

d+K+1∑
m=1

(γi,m − γ
(0)
i,m)

2B2
m(Di,j) + ψ1

(0)

d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j)

]
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−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× 1

2d+ 2K + 7

(
0.5

d+K+1∑
m=1

exp[{(γi,m − γ
(0)
i,m)Bm(Di,j)(2d+ 2K + 7)}2]

+
d+K+1∑
m=1

exp{(γi,m − γ
(0)
i,m)ψ

(0)
1 Bm(Di,j)(2d+ 2K + 7)}

)}

=

ni∑
j=1

{{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
−(γi,m − γ

(0)
i,m)B

2
m(Di,j) + ψ

(0)
1 Bm(Di,j)

]
−

exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× 1

2d+ 2K + 7

(
exp[{(γi,m − γ

(0)
i,m)Bm(Di,j)(2d+ 2K + 7)}2]

×(γi,m − γ
(0)
i,m)Bm(Di,j)×Bm(Di,j)× (2d+ 2K + 7)2

+exp{(γi,m − γ
(0)
i,m)ψ

(0)
1 Bm(Di,j)(2d+ 2K + 7)}

×ψ(0)
1 Bm(Di,j)(2d+ 2K + 7)

)}
,

=

ni∑
j=1

Bm(Di,j)

{{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
{
−(γi,m − γ

(0)
i,m)Bm(Di,j) + ψ

(0)
1

}
−

exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

×
(
exp[{(γi,m − γ

(0)
i,m)Bm(Di,j)(2d+ 2K + 7)}2]

×(γi,m − γ
(0)
i,m)Bm(Di,j)× (2d+ 2K + 7)

+ exp{(γi,m − γ
(0)
i,m)ψ

(0)
1 Bm(Di,j)(2d+ 2K + 7)}

×ψ(0)
1

)}
,

∂

∂γi,m
g3,i(γi|Θ(0)) |Θ=Θ(0)
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= ψ
(0)
1

ni∑
j=1

Bm(Di,j)

{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

}

∂2

∂γ2i,m
g3,i(γi|Θ(0))

=
∂

∂γi,m

ni∑
j=1

Bm(Di,j)

{{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
{
−(γi,m − γ

(0)
i,m)Bm(Di,j) + ψ

(0)
1

}
−

exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

×
(
exp[{(γi,m − γ

(0)
i,m)Bm(Di,j)(2d+ 2K + 7)}2]

×(γi,m − γ
(0)
i,m)Bm(Di,j)× (2d+ 2K + 7)

+ exp{(γi,m − γ
(0)
i,m)ψ

(0)
1 Bm(Di,j)(2d+ 2K + 7)}

×ψ(0)
1

)}
=

ni∑
j=1

Bm(Di,j)

{{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
{
−Bm(Di,j)

}
−

exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

×
(
exp[{(γi,m − γ

(0)
i,m)Bm(Di,j)(2d+ 2K + 7)}2]

×2(γi,m − γ
(0)
i,m)

2B3
m(Di,j)(2d+ 2K + 7)3

+exp[{(γi,m − γ
(0)
i,m)Bm(Di,j)(2d+ 2K + 7)}2]

×Bm(Di,j)× (2d+ 2K + 7)

+ exp{(γi,m − γ
(0)
i,m)ψ

(0)
1 Bm(Di,j)(2d+ 2K + 7)}

×ψ(0)
2

1Bm(Di,j)(2d+ 2K + 7)

)}
.
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∂2

∂γ2i,m
g3,i(γi|Θ(0)) |Θ=Θ(0)

=

ni∑
j=1

Bm(Di,j)

{{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
{
−Bm(Di,j)

}
−

exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

×
(
Bm(Di,j)× (2d+ 2K + 7) + ψ(0)

2

1Bm(Di,j)(2d+ 2K + 7)

)}
= −

ni∑
j=1

B2
m(Di,j)

{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

+(2d+ 2K + 7){1 + ψ(0)
2

1}
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

}
.

Also,

∂2

∂γi,mγi,r
g3,i(γi|Θ(0)) |Θ=Θ(0)= 0.

∂

∂γi,r
ℓ‡3,i(γi|Θ(0))

=
∂

∂γi,r

ni∑
j=1

(
I(Yi,j > 0)Yi,j

d+K+1∑
m=1

γi,mBm(Di,j)

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}

×
µ
(0)
i,j

d+K + 2

d+K+1∑
m=1

exp{(γi,m − γ
(0)
i,m)Bm(Di,j)(d+K + 2)}

− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}

×
[
−2(µ

(0)
i,j )

2

d+K+1∑
m=1

(γi,m − γ
(0)
i,m)Bm(Di,j)

+
(µ

(0)
i,j )

2

d+K + 2

d+K+1∑
m=1

exp{2(d+K + 2)(γi,m − γ
(0)
i,m)Bm(Di,j)}

])
,
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=

ni∑
j=1

(
I(Yi,j > 0)Yi,jBr(Di,j)

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}

×
µ
(0)
i,j

d+K + 2
exp{(γi,r − γ

(0)
i,r )Br(Di,j)(d+K + 2)}Br(Di,j)(d+K + 2)

− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
−2(µ

(0)
i,j )

2Br(Di,j)

+
(µ

(0)
i,j )

2

d+K + 2
exp{2(d+K + 2)(γi,r − γ

(0)
i,r )Br(Di,j)}2(d+K + 2)Br(Di,j)

])
,

=

ni∑
j=1

Br(Di,j)

(
I(Yi,j > 0)Yi,j

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}
×µ(0)

i,j exp{(γi,r − γ
(0)
i,r )Br(Di,j)(d+K + 2)}

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
−(µ

(0)
i,j )

2 + (µ
(0)
i,j )

2 exp{2(d+K + 2)(γi,r − γ
(0)
i,r )Br(Di,j)}

])
.

So,

∂

∂γi,r
ℓ‡3,i(γi|Θ(0)) |Θ=Θ(0)

=

ni∑
j=1

Br(Di,j)

[
I(Yi,j > 0)Yi,j

−
sjµ

(0)
i,j

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}]
.
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∂2

∂γ2i,r
ℓ‡3,i(γi|Θ(0))

=
∂

∂γi,r

ni∑
j=1

Br(Di,j)

(
I(Yi,j > 0)Yi,j

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}
×µ(0)

i,j exp{(γi,r − γ
(0)
i,r )Br(Di,j)(d+K + 2)}

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
−(µ

(0)
i,j )

2 + (µ
(0)
i,j )

2 exp{2(d+K + 2)(γi,r − γ
(0)
i,r )Br(Di,j)}

])
=

ni∑
j=1

Br(Di,j)

(
− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}
×µ(0)

i,jBr(Di,j)(d+K + 2) exp{(γi,r − γ
(0)
i,r )Br(Di,j)(d+K + 2)}

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×2(d+K + 2)Br(Di,j)(µ

(0)
i,j )

2 exp{2(d+K + 2)(γi,r − γ
(0)
i,r )Br(Di,j)}

)
.

Now,

∂2

∂γ2i,r
ℓ‡3,i(γi|Θ(0)) |Θ=Θ(0)

= −(d+K + 2)

ni∑
j=1

B2
r (Di,j)

[
sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j

+I(Yi,j > 0) exp(ϕ(0) +
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}
µ
(0)
i,j

+
2sj(µ

(0)
i,j )

2

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}]

∂2

∂γi,rγi,m
ℓ‡3,i(γi|Θ(0)) |Θ=Θ(0)= 0.
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∂

∂β
g4(β|Θ(0)) =

∂

∂β

I∑
i=1

ni∑
j=1

({
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
−0.5{X⊤

i,j(β − β(0))}2 + ψ
(0)
1 X⊤

i,j(β − β(0))

]
−

exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× 1

2d+ 2K + 7

[
0.5 exp[{X⊤

i,j(β − β(0))(2d+ 2K + 7)}2]

+ exp{X⊤
i,jψ

(0)
1 (β − β(0))(2d+ 2K + 7)}

])
.

=
I∑
i=1

ni∑
j=1

({
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
−{X⊤

i,j(β − β(0))}Xi,j + ψ
(0)
1 Xi,j

]
−

exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

× 1

2d+ 2K + 7

[
exp[{X⊤

i,j(β − β(0))(2d+ 2K + 7)}2]

×X⊤
i,j(β − β(0))Xi,j(2d+ 2K + 7)2

+exp{X⊤
i,jψ

(0)
1 (β − β(0))(2d+ 2K + 7)}

×ψ(0)
1 Xi,j(2d+ 2K + 7)

])
.

=
I∑
i=1

ni∑
j=1

Xi,j

({
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
−X⊤

i,j(β − β(0)) + ψ
(0)
1

]
−

exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

×
[
exp[{X⊤

i,j(β − β(0))(2d+ 2K + 7)}2]X⊤
i,j(β − β(0))(2d+ 2K + 7)

+ exp{X⊤
i,jψ

(0)
1 (β − β(0))(2d+ 2K + 7)} × ψ

(0)
1

])
.
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∂

∂β
g4(β|Θ(0)) |Θ=Θ(0) = ψ

(0)
1

I∑
i=1

ni∑
j=1

Xi,j

{
I(Yi,j > 0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

−
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

}
.

∂2

∂β∂β⊤ g4(β|Θ
(0)) =

I∑
i=1

ni∑
j=1

Xi,j

({
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
(
−X⊤

i,j

)
−

exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

×
[
exp[{X⊤

i,j(β − β(0))(2d+ 2K + 7)}2]

×2{X⊤
i,j(β − β(0))}2(2d+ 2K + 7)3X⊤

i,j

+exp[{X⊤
i,j(β − β(0))(2d+ 2K + 7)}2]X⊤

i,j(2d+ 2K + 7)

+ exp{X⊤
i,jψ

(0)
1 (β − β(0))(2d+ 2K + 7)}(ψ(0)

1 )2

×X⊤
i,j(2d+ 2K + 7)

])
= −

I∑
i=1

ni∑
j=1

Xi,jX
⊤
i,j

({
I(Yi,j > 0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}

+
(2d+ 2K + 7) exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

×
[
exp[{X⊤

i,j(β − β(0))(2d+ 2K + 7)}2]

×2{X⊤
i,j(β − β(0))}2(2d+ 2K + 7)2

+exp[{X⊤
i,j(β − β(0))(2d+ 2K + 7)}2]

+ exp{X⊤
i,jψ

(0)
1 (β − β(0))(2d+ 2K + 7)} × (ψ

(0)
1 )2

])
.
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∂2

∂β2
g4(β|Θ(0)) |Θ=Θ(0) = −

I∑
i=1

ni∑
j=1

Xi,jX
⊤
i,j

{
I(Yi,j > 0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

+(2d+ 2K + 7){1 + (ψ
(0)
1 )2}

×
exp{ψ(0)

0 + ψ
(0)
1 log(siµ

(0)
i,j )}

1 + exp{ψ(0)
0 + ψ

(0)
1 log(siµ

(0)
i,j )}

}
.

∂

∂β
ℓ‡4(β|Θ0) =

∂

∂β

I∑
i=1

ni∑
j=1

(
I(Yi,j > 0)Yi,jX

⊤
i,jβ

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}

×
µ
(0)
i,j

d+K + 2
exp{X⊤

i,j(β − β(0))(d+K + 2)}

− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}
×
[
−2(µ

(0)
i,j )

2X⊤
i,j(β − β(0))

+
(µ

(0)
i,j )

2

d+K + 2
exp{2(d+K + 2)X⊤

i,j(β − β(0))}
])

. =
I∑
i=1

ni∑
j=1

(
I(Yi,j > 0)Yi,jXi,j

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}

×
µ
(0)
i,j

d+K + 2
exp{X⊤

i,j(β − β(0))(d+K + 2)} ×Xi,j(d+K + 2)

− 0.5sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

}

×
[
−2(µ

(0)
i,j )

2Xi,j +
(µ

(0)
i,j )

2

d+K + 2
exp{2(d+K + 2)X⊤

i,j(β − β(0))}
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×2(d+K + 2)Xi,j

])
. =

I∑
i=1

ni∑
j=1

Xij

(
I(Yi,j > 0)Yi,j

− sj

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0)Yi,j + I(Yi,j > 0) exp(ϕ(0)

+
I(Yi,j = 0)ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
i,j )

× exp(ϕ(0))

}
×µ(0)

i,j exp{X⊤
i,j(β − β(0))(d+K + 2)}

−
sj(µ

(0)
i,j )

2

siµ
(0)
i,j + exp(ϕ(0))

{
I(Yi,j > 0) +

I(Yi,j = 0)ω
(0)
i,j G(ϕ

(0), µ
(0)
i,j )

(1− ω
(0)
i,j ) + ω

(0)
i,j G(ϕ

(0), µ
(0)
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APPENDIX C

KERNELIZED SIGNED GRAPH LEARNING FOR
SINGLE CELL GENE REGULATORY NETWORK

INFERENCE

C.1 Optimization Algorithm for Signed Graph Learning

In this section, we present an ADMM based algorithm to solve the optimization problem for

signed graph learning. For convenience, we include the optimization problem below:

min.
L+,L−∈L

trace(KL+)− trace(KL−) + α1∥L+∥2F + α2∥L−∥2F

s.t. trace(L+) = 2n, trace(L−) = 2n (C.1)

L+
ij = 0 if L−

ij ̸= 0 and L−
ij = 0 if L+

ij ̸= 0 ∀i ̸= j.

This problem is non-convex due to the last two constraints, which are called complementarity

constraints [157]. In [158], it is shown that alternating direction method of multipliers

(ADMM) converges for problems with complementarity constraints under some assumptions.

First, we rewrite the problem in vector form. Let upper(·) be an operator that takes an n×n

matrix and returns a n(n−1)/2-dimensional vector that corresponds to the upper triangular

part of the input matrix. Define diag(x) as an operator which returns a diagonal matrix

with the diagonal elements equal to the input vector x. Similarly, diag(X) returns the

diagonal of the input matrix X as a vector. The matrix P ∈ Rn×n(n−1)/2 is defined such that

Pupper(A) = A1 where A is a symmetric matrix whose diagonal entries are equal to zero.

Let k = upper(K), d = diag(K), ℓ+ = upper(L+), ℓ− = upper(L−). Thus, (C.1) can be

rewritten as:

min.
ℓ+≤0, ℓ−≤0

⟨2k−P⊤d, ℓ+⟩ − ⟨2k−P⊤d, ℓ−⟩+ α1⟨(2I+P⊤P)ℓ+, ℓ+⟩

+ α2⟨(2I+P⊤P)ℓ−, ℓ−⟩

s.t. 1⊤ℓ+ = −n, 1⊤ℓ− = −n, and ℓ+⊥ℓ−,

(C.2)
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where the first two terms correspond to trace terms in (C.1), the last two terms correspond

to Frobenius terms of (C.1) and first two constraints are the same as the first two constraints

of (C.1). The last constraint with ℓ+ ≤ 0 and ℓ− ≤ 0 correspond to the complementarity

constraints. By introducing two slack variables v = ℓ+ and w = ℓ−, the problem is written

in standard ADMM form:

min.
v,w,ℓ+,ℓ−

ıS(v,w) + h(ℓ+, ℓ−) + ıH(ℓ
+) + ıH(ℓ

−)

s.t. v − ℓ+ = 0, w − ℓ− = 0,

(C.3)

where ıS(·) is the indicator function for the complementarity set S = {(v,w) : v ≤ 0, w ≤

0, v⊥w}, h(ℓ+, ℓ−) is the objective function in (C.2), and ıH() is the indicator function for

the hyperplane H = {ℓ : 1⊤ℓ = −n}. The augmented Lagrangian of (C.3) is:

Lρ(v,w, ℓ+, ℓ−, λ1, λ2) =ıS(v,w) + h(ℓ+, ℓ−) + ıH(ℓ
+) + ıH(ℓ

−)

+ λ⊤1 (v − ℓ+) +
ρ

2
∥v − ℓ+∥22 + λ⊤2 (w − ℓ−)+

ρ

2
∥w − ℓ−∥22, (C.4)

where λ1 and λ2 are Lagrange multipliers and ρ > 0 is the Augmented Lagrangian parameter.

(v,w)-step: The (v,w)-step of ADMM can be found as the projection onto the comple-

mentarity set S:

(vk+1,wk+1) = argmin
v,w

ıS(v,w) +
ρ

2
∥v − ℓ+

k
+
λk1
ρ
∥22 +

ρ

2
∥w − ℓ−

k
+
λk2
ρ
∥22 = ΠS(y), (C.5)

where y = [(ℓ+
k − λk1/ρ)

⊤, (ℓ−
k − λk2/ρ)

⊤]⊤ and ΠS(·) is the projection operator on the set

S.

(ℓ+, ℓ−)-step: Using the fact that optimization can be performed separately for ℓ+ and

ℓ−, ℓ+-step can be written as:

ℓ+
k+1

= argmin
ℓ+

z⊤ℓ+ + α1⟨(2I+P⊤P)ℓ+, ℓ+⟩+ ıH(ℓ
+) +

ρ

2
∥vk+1 − ℓ+ +

λk1
ρ
∥22

= ΠH [((4α1 + ρ)I+ 2α1P
⊤P)−1(ρvk+1 + λk1 − z)],

(C.6)

where z = 2k− P⊤d and ΠH(·) is the projection operator on the hyperplane H. Similarly,

ℓ−-step can be written as:

ℓ−
k+1

= ΠH [((4α2+ρ)I+ 2α2P
⊤P)−1(ρwk+1+λk2 +z)]. (C.7)
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Lagrange multipliers udpate: The updates of Lagrange multipliers are:

λk+1
1 = λk1 + ρ(vk+1 − ℓ+

k+1
), (C.8)

λk+1
2 = λk2 + ρ(wk+1 − ℓ−

k+1
). (C.9)

C.1.1 Computational and Storage Complexity

Computational complexity of the optimization procedure described above can be found by

determining how many computations are required for each ADMM step. Let M = n(n−1)/2

where n is the number of genes. (v,w)-step can be performed in O(M) time, or O(n2) time.

(ℓ+, ℓ−)-step requires the inversion of the matrix (4α1 + ρ)I + 2α1P
⊤P, which needs to be

calculated only once before the optimization iterations. The inverse matrix has a closed form

solution which can be found using Woodbury matrix identity. It has a decomposition of the

form A⊤A where A is a sparse matrix with O(n2) non-zero entries. Thus, matrix-vector

multiplication of (ℓ+, ℓ−)-step can be done in O(n2) time. Updates of Lagrangian multipliers

can also be performed O(M) time, or O(n2). Let I be the number of iterations required for

the convergence of ADMM. Thus, overall time complexity of scSGL is O(In2). The storage

complexity of scSGL is determined by the size of the inverse matrix required in (ℓ+, ℓ−)-step.

Since this matrix has a decomposition of the form A⊤A, we only need to store A. Thus,

the storage complexity of scSGL is O(n2).

The computational and storage complexity of ADMM is quadratic in the number of genes

and is not affected by the number of cells. Note that, scSGL also requires the construction

of the kernel matrix before running the optimization. Since there are already very efficient

tools to construct kernel matrices [130], we did not include their complexity in the analysis

above. Finally, there are recent works in GSP literature for scaling GL methods to learning

graphs with millions of nodes [159]. These approaches can be employed to scale scSGL,

which we left as a future pursuit.
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C.2 AUROC and EPR Results

In the main text, we consider AUPRC based metrics defined above as the main performance

metrics for comparison due to inherent sparsity of GRNs. In this section, AUROC and EPR

values for synthetic data used in parameter sensitivity analysis are reported in Figures C.1

and C.2, respectively. AUROC and EPR ratios for real datasets are also reported in Figure

C.3.
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Figure C.1 AUROC values of various methods for synthetic datasets with three different
topologies (random, modular and hub) and varying number of genes (top row), dropout
ratio (middle row) and number of cells (bottom row).
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Figure C.2 EPR values of various methods for synthetic datasets with three different
topologies (random, modular and hub) and varying number of genes (top row), dropout
ratio (middle row) and number of cells (bottom row).

C.3 Synthetic Networks from BEELINE Pipeline

In the main text, we studied the performance of scSGL on curated datasets from BEE-

LINE pipeline [3]. Simulated scRNAseq datasets generated from six synthetic networks

using BoolODE are considered. For the sake of completeness, we report the performance of

scSGL and benchmarking methods on these datasets here. These six networks correspond

to different GRNs, that can produce a variety of trajectories observed in differentiating and

developing cells (refer to [3] for the details of these networks). Each dataset includes 10

142



Sp
eci

fic

GENIE3

GRNBOOST2

PIDC

PPCOR

scSGL-r

scSGL-

scSGL- zi

0.921

1.015

1.012

1.000

0.942

0.947

0.958

Non
pe

cifi
c

0.946

0.989

0.992

1.000

1.047

1.018

1.049

hESC AUROC Ratio

ST
RING

1.236

1.160

1.241

1.000

1.208

1.151

1.173

Sp
eci

fic

0.985

1.016

1.011

1.000

1.011

1.020

1.009

Non
pe

cifi
c

1.066

1.043

1.040

1.000

1.056

1.066

1.055

mESC AUROC Ratio

ST
RING

1.156

1.125

1.114

1.000

1.121

1.155

1.121

High

Low

Sp
eci

fic

GENIE3

GRNBOOST2

PIDC

PPCOR

scSGL-r

scSGL-

scSGL- zi

0.959

0.941

0.914

1.000

1.006

0.910

0.991

Non
pe

cifi
c

1.778

1.560

1.904

1.000

1.905

1.868

1.850

hESC EPR Ratio

ST
RING

3.457

3.194

3.750

1.000

3.096

4.414

3.398

Sp
eci

fic

1.054

1.049

1.001

1.000

1.005

1.050

0.999

Non
pe

cifi
c

3.237

3.062

2.527

1.000

2.011

1.253

1.944

mESC EPR Ratio

ST
RING

3.268

3.290

3.179

1.000

2.673

1.366

2.364

High

Low

Figure C.3 AUROC and EPR ratios of methods for two real-world scRNAseq datasets.
Inferred graphs are compared to three different gene regulatory databases.

realizations of an expression data with 500 cells. Compared to curated datasets analyzed in

the main text, these datasets do not include any dropouts. We calculated AUPRC ratios

for activating and inhibitory edges separately and average of 10 realizations are reported in

Figure C.4.

The figure indicates that scSGL along with PPCOR are the best performing methods for

inference of activating edges. For BF, BFC and CY; PPCOR followed by scSGL-r have the

highest AUPRC ratios. On the other hand, scSGL-r followed by other kernels and PPCOR

have the highest performances for LI, LL and TF. For the inference of inhibitory edges,

the best performing method varies across networks. In BF, GRNBOOST2 shows the best

performance; in BFC and TF, scSGL-τ and GRNBOOST2 have the highest AUPRC ratios;

and for the remaining datasets scSGL-r followed by PPCOR perform better than others.

In [3], it is observed that methods perform well on linear networks (LI and LL); while the

inference in the remaining networks is harder. AUPRC ratios reported in Figure C.4 are

inline with this observation, where AUPRC ratios for linear networks are generally higher

than those for BF, BFC, CY and TF. Overall, scSGL-r along with PPCOR are the best

performing methods, if the results on activating and inhibitory edges are evaluated together.

Finally, when performances of kernels are compared, it can be seen that correlation kernel
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shows the highest performance, followed by zero-inflated Kendall.
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Figure C.4 Performance of scSGL and state-of-the-art methods on curated datasets as
measured by AUPRC ratios for activating and inhibitory edges. Each column corresponds
to a synthetic network. Abbreviations: LI, linear; CY, cycle; LL, linear long; BF,
bifurcating; BFC, bifurcating converging and TF, trifurcating.

C.4 Cell-Type Specific GRN Inference

scSGL is developed based on the assumption that all cells are related to a single GRN.

However, single cell datasets are generally a combination of cells arising from varying cell-

types, and therefore may necessitate the inference of cell type specific GRNs. Cell-type

specific GRN’s can be learned in our framework by adding a cell-type clustering step before

applying scSGL. One could either group the datasets by using cluster labels provided by

the original authors of the experimental study or by clustering the dataset using one of the

many clustering algorithms proposed for single cell data [160] (in case pre-defined cell-labels

are absent). Assuming independence within cell-groups, we could estimate cell-type specific

networks using scSGL for each cluster separately.

In this section, we demonstrate the process for using scSGL to learn cell type specific

GRNs and apply this process to the differentiation dataset hESC. We apply scSGL seper-
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Figure C.5 Edges detected using scSGL-r between 24 Lineage marker genes of hESC at
different time points of the differentiation process. Only edges whose absolute edge weights
fall into top 10 percent are shown. Edge thicknesses are proportional to their weights, and
node sizes are proportional to their degrees.

ately to the hESC dataset clustered by days (0,12,24,36,72 and 96 hrs) and learn scSGL

graphs between 24 lineage-specific marker genes [143] at these different time points. Figure

C.5 demonstrates the absence of edges from the Gata-family binding proteins at 0h. Gata

family binding proteins have been reported as necessary for the development and function

of a number of endoderm-derived tissues and cells [146, 161]. Onset of Gata4 and Gata6 ex-

pression has been reported to be coincident with the beginning of endoderm gene expression

hence the absence of edges from Gata 4 and Gata6 at 0h are indicative of the undifferentiated

nature of the single cells [146]. Weak interactions start to emerge at 12 hours of differentia-

tion with inhibition of pluripotency markers Nanog and Sox2. At 24 h of differentiation, we

notice a stronger inhibition of Nanog and pluripotency marker Pmaip1 by Gata6, indicating

a transition of the cells towards a primitive streak state. Hand1 has been reported to play

an essential role in both trophoblast-giant cells differentiation and in cardiac morphogenesis

[162]. Inhibition of known DE marker Cer1 by Hand1 and Gata family TF’s at 36 and 72

145



h of differentiation indicates an advanced state of differentiation. The appearance of key

DE markers Gata2, Gata4, Gata6, Cer1 and Eomes as hub-nodes in 96-h time point net-

work indicates that the cells have progressed toward the definitive endoderm (DE) state.

This analysis clearly demonstrates that scSGL identifies gene network changes from data

clustered over time points.

We acknowledge that analyzing the dataset in this manner does not exploit the similarity

between the true cell-type specific networks and estimating a single network for the different

cell-types ignores the fact that we do not expect the cell-type specific graphs to be identical.

Our optimization framework can be extended to jointly learn Laplacians estimated from

multiple cell groups but that is out of scope for the current paper and will be considered in

future research.
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