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ABSTRACT

DECODE PHENOME-GENOME INTERACTIONS: A DATA SCIENCE APPROACH

By

Abhijnan Chattopdhyay

The responses of plants to their environments are determined by multiple interacting genetic

factors that themselves may operate through numerous biological mechanisms. Disentangling

these complex genome-by-environment interactions is a significant challenge to understanding the

underlying biology and developing more robust crops. This dissertation integrates high throughput

phenotyping and genome sequencing and aims to harness these multidimensional interactions to

test whether different genetic components affect biological processes through similar or distinct

mechanisms. First, we present a comparison of different methods that can be practically used for

genome-enabled prediction and selection purposes with the help of synthetic datasets with varying

levels of difficulty and variability. Using such tools, we have found multiple traits are modulated

by similar genomic regions, termed “co-localization”. But, the question remains, how can one

test for co-segregation, or co-linkages, of multiple phenotypes to specific genetic polymorphisms?

From domain knowledge, we can argue that there exist various physical modes of interactions

among photosynthetic processes, which result in distinct patterns of interactions between measured

parameters. We propose a Bayesian latent variable (LV) approach that tries to imitate such physical

modes of interaction among photosynthetic processes by projecting the multivariate phenotypes

into lower-dimensional latent factors. Estimation of the entries of the loading matrix (the connection

between multidimensional phenotypes to LVs) is through the Automatic Relevance Determination

(ARD) prior, which can automatically remove the irrelevant latent factors and add immediate

interpretability. This means for a single genotype, the observed latent factors will likely reflect

the effects of environmental or developmental effects on mechanistic interconnections. Also, these

low-dimensional structure/ latent factors can be genetically mapped using quantitative trait loci

(QTL) mapping and can be validated with the linkages from colocalized traits obtained from



univariate QTL analysis. The added advantage of our approach is we can describe specific classes

of relationships among multiple phenotypes governed by specific genetic regions that can be shared

or specific to environments which can be further used to distinguish functional and genetic linkages

among a range of photosynthetic regulatory processes. We extended our setup to integrate multiple

environments and showed that the latent variables, either specific to one treatment or shared by

various treatments, can be mapped to distinct genetic loci, revealing specific genetic polymorphisms

altering the co-regulatory network among phenotypes in𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒×𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒×𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙

space. The final piece of my work is to model the association/correlation between phenotypes as a

function of genetic and environmental explanatory variables to pin down distinct mechanisms. We

develop an efficient estimation methodology called Correlation Modeling under Pairwise Likelihood

Estimation (CMPLE), aided by a novel Minorize-Maximize (MM) algorithm, and provide statistical

inference techniques. Simulation studies mimicking biological data show that the method is

beneficial for recovering pertinent information, including different regulatory pathways, and is

computationally efficient in handling many parameters. Our approach is also illustrated by analyzing

a motivating dataset from recombinant inbred cowpea lines. Using CMPLE, we can identify the

specific genetic variations affecting distinct biological mechanisms, namely “Photoprotection” and

“Photoinhibition,” under various environmental conditions.
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CHAPTER 1

PHENOME-BY-GENOME-BY-ENVIRONMENT INTERACTIONS AND THE SCOPE OF
DATA SCIENCE

Portions of this chapter appeared in the following publication:

A. Kanazawa, A. Chattopadhyay, S. Kuhlgert, H. Tuitupou, T. Maiti, and D. M. Kramer, “Light

potentials of photosynthetic energy storage in the field: what limits the ability to use or dissipate

rapidly increased light energy?,” Royal Society of Open Science, vol. 8, p. 211102, 2021

1.1 Background

Generation and testing of models (or hypotheses) are essential components of the scientific method.

Development of Artificial Intelligence (AI) and Machine Learning(ML) promises algorithms, tools

and techniques that can identify previously unseen connections between phenomena. Though these

AI methods can reveal new correlations and connections, they do not provide mechanistic insights.

Indeed, it is often unclear how the unseen networks of ML operate, or if the algorithms they develop

have any relationship to the true mechanisms that govern the phenomena. Indeed, different ML

approaches may lead to similar predictions, but with mechanistic algorithms,inference might be

unrelated to the true physical processes.

This issue also affects the robustness of AI/ML for making universally-applicable predictions.

The fact that multiple, non-mechanistic algorithms can fit limited sets of data gives rise to the

phenomenon of "overfitting" in which model outputs can provide excellent fits to subsets of data

that are not universally applicable. More physically realistic models may overcome these issues

by constraining algorithms to those that are physically realistic (based on universally-applicable

models). Lack of tethering of AI/ML to physical models motivates our proposed work to "bridge

the gap" between scientifically feasible phenomenons and AI driven models using experimental

data. The aims include the development of tools that allow AI algorithms to be compared to or

constrained by hypothetical (physically-relevant) models, thereby enabling "classical" scientific

1



hypotheses testing as well as the generation of more universally applicable models, reducing the

occurrence of overfitting. We chose as a use case the understanding how solar energy transduction

enables and limits the energy productivity of crops, is critical for improving the productivity and

resilience of crops in a rapidly changing world. Recent development of large scale genotyping and

phenotyping technologies demonstrates the opportunity to harness natural and induced variation in

photosynthetic processes across various environmental conditions. The major scientific challenge

is to understand the complex interactions among the genomics, environment and performance

(phenotypes) of plant photosynthesis–a hyper-dimensional problem that is difficult for unaided

human understanding.

Our ultimate aim is to enable global analyses of the flood of data from these technologies to

generate and test models relevant to meaningful biological functions. These models will represent

hypotheses that can be directly tested using more reductionist approaches in the lab. These tools

and models will then be used to identify genetic components that can account for the observed

diversity of genotype and phenotype variation, and can be used as targets for advanced breeding

and engineering efforts .

New high-throughput phenotyping platforms that can rapidly measure multiple phenotypes,

allow us to compare the genomic associations of multiple traits. Such platforms generate data

“hyper-cubes” that can relate a wide range of parameters (reflecting potentially linked traits),

metadata (e.g. environmental conditions) and genomic content. Here, we explore the possibility of

using such “co-association” (or co-segregation) maps of hyper-cubic data sets to test models that

predict functional and genetic linkages among a range of photosynthetic regulatory processes. We

propose to develop a new class of generative models based on dimensioanlity reduction methods

for high dimensional phenomics network. These networks provide biologically significant clusters

of interrelated photosynthesis traits which can be regarded as fundamental mechanisms across

different genotypes and different environmental stress. Representation of such dynamics across

"Genotype × Phenotype × Environmental" space is crucial to understand the mechanistic bases of

the "true" phenomenon and motivates the researchers to use such structural models with different
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crops in different climates.

1.2 Photosynthetic model and Electron transfer chain

Consider the case of light capture by photosynthesis [1]. In chloroplasts, photosynthesis can be

initiated when light energy is absorbed by pigments (chlorophylls and specific carotenoids). Using

high throughput plant phenotyping tools, it is possible to rapidly measure a range of parameters that

reflect distinct, mechanistically-related processes related to photosynthetic efficiency on different

genotypes under various environmental conditions (light intensity, temperature, humidity, 𝐶𝑂2

levels, time and location). Interpretation of these parameters is based on the literature [2, 3, 4].

Also, through affordable sequencing processes, the gene expressions of any population can be

easily obtained, and one can identify SNP markers that can be significantly associated with any

phenotype of interest.

Under environmental stresses, e.g., high light intensities, high or low temperatures, lack of

water, light input can exceed the capacity to perform photochemistry. This leads to the buildup

of photochemical intermediates that can initiate the formation of reactive oxygen species and

subsequent photodamage to the photosynthetic machinery, while decreasing the efficiency of pho-

tochemistry [5, 6]. Chloroplasts can protect themselves from photodamage by activating various

“nonphotochemical quenching” (𝑁𝑃𝑄) processes that dissipate absorbed light energy, decreas-

ing the accumulation of reactive intermediates. While 𝑁𝑃𝑄 can alleviate photodamage, it also

decreases photochemical efficiency, and thus the regulation of 𝑁𝑃𝑄 is finely adjusted by the

chloroplast to balance these tradeoffs.

There are multiple forms of 𝑁𝑃𝑄 (rapidly formed “energy-dependent”, 𝑞𝐸 and slowly activated

photo-inhibitory quenching, 𝑞𝐼), which are activated under different environmental conditions and

modified by genetic variations [7, 8]. These altered 𝑁𝑃𝑄 responses (“total” 𝑁𝑃𝑄, designated

𝑁𝑃𝑄𝑡 [9]) can contribute to the canonical 𝑞𝐸 mechanism where the prediction is that the extent

of 𝑞𝐸 will be positively associated with increased lumen acidification, which will be reflected in

a positive correlation between 𝑁𝑃𝑄𝑡 and the thylakoid pmf, in our case estimated by the 𝐸𝐶𝑆𝑡
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parameter [10]. This predicted association should be modified or broken down under certain

conditions or in mutants that lack key components required for activation of the 𝑞𝐸 response. In

some cases, the breakdown in normal photoprotective mechanisms can lead to the buildup of a

large fraction of photodamaged PSII centers, as reflected in increased 𝑞𝐼 (slowly reversible 𝑁𝑃𝑄

associated with photodamage). The associated loss of photochemical activity can lead to decreased

electron and proton transfer, resulting in decreased 𝑝𝑚 𝑓 , which will be reflected in a negative

correlation between 𝑁𝑃𝑄𝑡 and 𝐸𝐶𝑆𝑡.

As an empirical evidence, Figure 1.1 shows a positive correlation between 𝑁𝑃𝑄𝑡 and 𝐸𝐶𝑆𝑡

in a cowpea RIL population under the control temperature and for a genetic combination of QTL

markers in chromosomes 4 and 9 (genotypes with AA allele for both markers) [11] . On the other

hand, 𝑁𝑃𝑄𝑡 and 𝐸𝐶𝑆𝑡 are negatively correlated under the low temperature (Chilling stress) and

for a different genetic combinations of QTL markers in chromosomes 4 and 9 (genotypes with AA

allele the first marker and BB allele for the second).
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Figure 1.1: Real data example where we identify example of photoprotection and photodamage
been regulated by different genetic variations at different environmental conditions

Under ideal conditions, a large fraction of solar energy is used to drive photochemical reactions.
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This fraction is usually termed the quantum yield of photochemistry. Productive photochemistry

induces a series of electron and proton transfer reactions, resulting in the formation of biochemical

energy-storing products, ATP and NADPH, which in turn are used to drive the fixation of 𝐶𝑂2 and

other cellular processes. These electron transfers involve two chlorophyll-containing complexes,

Photosystem I (PS I) and Photosystem II (PS II), which are essentially connected by the cytochrome

b6f complex and mobile electron carriers plastoquinone/plastoquinol (PQ/PQH2) and plastocyanin

(PC). In “non-cyclic photophosphorylation”, PS II oxidizes the water and releases protons into the

lumen, which travels down an electron transport chain to PSI while forming an electrochemical

proton gradient (pmf, proton motive force) and passes to NADP+ to make NADPH (Figure 1.2).

Under different abiotic stresses, plants regulate their photosynthetic machinary by triggering

various nonphotochemical quenching processes (𝑁𝑃𝑄). Process (A) (Energy-dependent 𝑁𝑃𝑄

(𝑞𝐸)) activated by acidification of the thylakoid lumen resulting in quenching excitation energy

through the 𝑞𝐸 mechanism. This is reflected by the positive correlation between 𝑁𝑃𝑄𝑡 and 𝐸𝐶𝑆𝑡.

On the other hand, formation of reactive oxygen species can damage PS II, resulting in Process

(B) (long-lived photoinhibition-related 𝑁𝑃𝑄 (𝑞𝐼)) and decrease the number of active PS II centers

which can be observed by the negative correlation between 𝑁𝑃𝑄𝑡 and 𝐸𝐶𝑆𝑡. These two processes

are illustrated in the Figure 1.3. It is noteworthy that these two forms of 𝑁𝑃𝑄 are both induced

under conditions where light input exceeds capacity and have similar effects on photochemical

efficiency.
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Figure 1.2: Simplified schematics for regulating light energy capture and storage by plant photo-
synthesis

However, the 𝑞𝐸 form is typically considered to act as a primary photoprotective mechanism and

is readily reversed. In contrast, the qI form involves protein damage, the repair of which requires

degradation and resynthesis of the PS II D1 protein, and is thus considered to reflect more severe

responses [12]. This patterns are highly influenced by a number of other factors as well. [13]

showed that at under lower 𝐶𝑂2 and increasing light, there is a rapid drop in the yield of PS II (𝜙𝐼 𝐼)

and a corresponding rapid rise in the yield of 𝑁𝑃𝑄, together with a decrease in 𝑞𝐿. But, under

high 𝐶𝑂2 there is a slower drop in the yield of PS II and 𝑞𝐿 with increasing light, and slower rise

in the yield of 𝑁𝑃𝑄. This shows that multiple parts of the photosynthetic machinery indulges in

co-regulating the quenching behaviours.
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Figure 1.3: Flowchart of photo-protection and photo-damage through purely correlative scheme

This apparent connections between 𝑁𝑃𝑄𝑡 and 𝐸𝐶𝑆𝑡 is further impacted by other photosynthetic

responses, e.g., 𝜙𝐼 𝐼 , 𝑞𝐿, etc. as illustrated below. Thus, we have a complex interactions among

numerous phenotypic responses which can impact the "beneficial" photoprotective and "harmful"

photoinhibitary (photodamage) mechanisms. In real world, the fine balance of such phenotype

associations breaks down with certain genetic and environment predictors. Here we aim to associate

genetic markers with the corresponding combination of environmental conditions modulating the

contributions from these two forms of regulatory mechanism. In fact, by identifying this co-

segregation, we can gain better insights about the genetic and environmental determinants of

variations in biological system.

1.3 Biological Questions and Big Data Platform

1.3.1 Facilitating science to generate "benchmark" modles

Imagine yourself as a manufacturer of a new model of a car. You have built a world class engineering

laboratory to design and produce a car which might be the future of automobile industry. The only

problem is you are yet to get a licence to test your models of car outside the lab. So, you would
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not be able tell how it might behave on freeways or winding roads or how the tires might fare in

snowy conditions. Even if you have carefully designed the new car, you are quite uncertain to

assess its performance in real road conditions. A similar problem has been faced by the scientists

studying plants, and in particular, photosynthesis, the process by which plants converts light energy

into chemical energy generating all our food. This natural process involves net movement of

electrons through a series of electron carriers performing a series of chemical reactions known

as the light-dependent reactions. In short, Light energy is absorbed by pigment molecules,which

passes excited electrons to an electron transport chain activating energetically "downhill" flow

of electrons,and thus leading to synthesis of ATP and NADPH. Photosynthesis experts around

the globe have been studying photosynthesis in their lab with sophisticated instruments and under

specific controlled conditions. From such "reductionist" experiments, researchers are able to dissect

complex processes of electron transfers into different component parts of the photosystems. Results

from such researches provide a detailed framework of the wonderful biological machine which has

powered life for over a billion years.

Such versatile platform enables researchers to demonstrate novel processes under dynamic en-

vironmental conditions. Not only that, Science have enlightened us with the genomic artifacts of

photosynthetic systems which uses genomic sequencing to identify combinations of genetic loci

associated with specific traits and generate elite lines with combinations of those traits through

marker assisted breeding. Co-assessing genomic information identifies potentially important ge-

netic loci, helping plants to cope with environmental changes and perils. Coupling sophisticated

Phenotyping with Gene-sequencing explore the possibility of test models to predict functional and

genetic linkages among a range of Photosynthetic regulatory processes. With the reproducible

characteristics at the core of the data generating mechanism, such platform and data generated has

the potential to serve as the "benchmark" models for Phenomics applications.
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1.3.2 Generating Hypothesis and regulatory Pathways

Biological schematics do not always behave as expected outside the lab. Photosynthesis is highly

sensitive to rapid changes in environmental conditions such as light, temperature, humidity, and

the availability of water and other nutrients. Understanding different photosynthetic parameters in

rapid fluctuations in environmental conditions are critical for plant productivity and the avoidance

of photodamage. With this goal of bringing "Nature to the lab”, We developed an experimental

approach using the open science PhotosynQ platform to probe the “Light Potentials" of photo-

synthetic processes to rapid increases or decreases in ambient light In this work, we describe an

approach to studying the extents and mechanisms or the diversity of such dynamic responses in

the field. In a selected set of data on Mentha, we show that the capacity to increase LEF and NPQ

upon rapid increases in light are strongly suppressed in leaves previously exposed to low ambient

PAR or low leaf temperature.

A simple linear effects model applied over the entire data set indicated strong correlations

between LEFamb, PARamb, and Tleaf, suggesting that both environmental factors controlled

LEFamb. However, such correlations may be coincidental since PAR and Tleaf are both expected

to be dependent on weather or time of day, as it is clear from the solid statistical correlations

between PAR and Tleaf. Also, the effects are likely to be co-dependent. For example, at low

PARamb, LEFamb should be light-limited and thus have minimal dependence on Tleaf. Still, at

higher PARamb, it may be more strongly controlled by temperature-dependent processes.

One approach to disentangling these effects would be to slice the data into segments, e.g.,

at different ranges of PARamb, and test for correlations with Tleaf within each piece. However,

arbitrary-chosen ranges for the details can add bias or fail to detect more complex interactions.

We thus applied a Gaussian Mixture Model (GMM) clustering approach based on those presented

earlier. Because GMM is an unsupervised machine learning method, it can reduce bias in selecting

clusters representing regions of distinct interactions among environmental and photosynthetic

parameters. GMM assumes that the data points from the population of interest are drawn from

a combination (or mixture) of Gaussian distributions with specific parameters and performs an
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optimization scheme to a sum of several Gaussian distributions, allowing for an utterly unsupervised

process, avoiding potential user bias. An expectation-maximization (EM) algorithm was used to fit

the GMM to the dataset, generating a series of Gaussian components (clusters) with distributions

characterized by specific means and covariance matrices. The optimal number of groups was

determined using the Bayesian Information Criterion (BIC), the value of the maximized log-

likelihood, with a penalty on the number of parameters in the model. This approach also allows the

comparison of models with differing parameterizations and differing numbers of clusters because

the volumes, shapes, and orientations of the covariances can be constrained to those described by

defined models.

Clusters obtained through GMM are within the cluster (intracluster) and between cluster (inter-

cluster) variations. Intracluster variations can be analyzed to determine variations in the interactions

between parameters and variations in environmental conditions, e.g., to assess if a relationship is

modulated in different ways under different ranges of conditions. Also, as will be seen in the Dis-

cussion, intercluster variations (differences in the mean and covariances between clusters) can be

used to differentiate distinct patterns of behavior, or mechanistic interactions, between conditions.

Figure 1.4: Three basic mechanistic models describing proposed processes that can limit the LPs
of photosynthetic and photoprotective mechanisms

Using an unsupervised statistical clustering approach, we showed that these effects could be

independent of each other under some environmental conditions while likely interacting under
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others. This enables to compare the responses of multiple photosynthetic processes, and we were

able to test for contributions from several mechanistic Models (Figure : 1.4) for limitations to

LEF and NPQ potentials: 1) Limitations in photosystem I (PSI) electron acceptors; 2) increased

thylakoid proton motive force (pmf) leading to rapid increases in NPQ in the form of qE, and 3)

increased pmf leading to robust photosynthetic control of plastoquinol oxidation at the cytochrome

b6f complex (PCON).

Figure 1.5: Relationships among measured parameters, predicted model behaviours and clustering

Figure: 1.5b plots the dependence of 𝑁𝑃𝑄ℎ𝑖𝑔ℎ−𝑎𝑚𝑏, which can be attributed to light-induced

qE changes, on light-induced pmf changes (𝐸𝐶𝑆𝑡ℎ𝑖𝑔ℎ−𝑎𝑚𝑏). A generally positive correlation was

observed between 𝑁𝑃𝑄ℎ𝑖𝑔ℎ−𝑎𝑚𝑏and (𝐸𝐶𝑆𝑡ℎ𝑖𝑔ℎ−𝑎𝑚𝑏), but with high variability, especially at higher

values. Applying the clustering obtained for Figure: 1.5a on top of the data in Figure: 1.5b, we see

that this variability can be explained by the environmental conditions and the modes of behaviours.

11



Specifically, we see clear evidence for condition-dependent suppression of rapid activation of qE

in response to increases in pmf. Particularly, the sensitivities of 𝑁𝑃𝑄ℎ𝑖𝑔ℎ−𝑎𝑚𝑏 to 𝐸𝐶𝑆𝑡ℎ𝑖𝑔ℎ−𝑎𝑚𝑏, as

indicated by the slopes in figure 8b, were smallest in clusters 1 (slope ∼ 1.6) and 2 (slope ∼ 17.7),

which comprise those with Model 3-like behaviour and occurred at low Tleaf and PARamb values.

Higher sensitivities of 𝑁𝑃𝑄ℎ𝑖𝑔ℎ−𝑎𝑚𝑏 to (𝐸𝐶𝑆𝑡ℎ𝑖𝑔ℎ−𝑎𝑚𝑏) were seen for clusters 3 (slope ∼ 28.1) and

4 (slope ∼ 35.1), which comprised those associated with Models 2 and intermediate, and occurred

at higher Tleaf and PARamb values.

To assess what controlled the switch between Models 2 and 3, we performed GMM (using

𝑞𝐿ℎ𝑖𝑔ℎ−𝑎𝑚𝑏, 𝑃+
ℎ𝑖𝑔ℎ−𝑎𝑚𝑏, Tleaf as inputs). Four distinct clusters were observed (see symbol colours,

1.5a). Intercluster comparisons show that points in clusters 1 and 2 fell exclusively in the region

predicted for Model 3. Cluster 3 fell entirely within the region predicted for Model 2. Cluster

4 extended between these regions, possibly indicating contributions from both mechanisms. The

clusters falling in the Model 3 region were associated with relatively low Tleaf (1.5c) and PARamb

(1.5d), compared with those associated with Model 2 or intermediate behaviours, suggesting that

Model 2 prevailed at higher Tleaf and/or PARamb, while Model 3 prevailed at lower values. Within

the GMM clusters , 𝑞𝐿ℎ𝑖𝑔ℎ−𝑎𝑚𝑏 was dependent predominantly on Tleaf (cluster 3), PARamb (clus-

ter 1), or both (clusters 2 and 4). This dependence suggests that Tleaf and PARamb acted either

independently or cooperatively, depending on conditions, affecting the propensity for photosynthe-

sis to adopt Model 2 or 3 behaviours. As a first-order test of the robustness of these clusters by

re-analysing randomly selected subpopulations of the data. Over there, we obtained comparable

results, i.e. that we would interpret in similar ways, with as few subpopulations as small as 25% of

the full dataset, suggesting that the clustering approach was reasonably robust.

In summary, We found no evidence for Model 1 under any of our conditions, indicating that in

Mentha, under our conditions, PSI was maintained in oxidized forms. At higher leaf temperatures,

Model 2 prevailed, meaning robust control of induced LEF by NPQ. Strikingly, at lower leaf

temperatures, we saw evidence for Model 3, where high light-induced increases in pmf but not in

NPQ, resulting in a net reduction of QA and oxidation of P700. Thus, the results reveal considerable
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temperature-dependent limitations to NPQ, independent of the formation of pmf, that result in the

shape of states likely to produce reactive oxygen species. This low-temperature limitation may thus

represent a new target for improving the efficiency and robustness of photosynthesis.

1.4 Scope of Data Science

As the concept of co-association maps gain popularity among the Photosynthesis community, both

practitioners and scientists aim to harness the possibility of simultaneously gather data and generate

models to support hypothesis invoked from it. In particular, with statistical guarantees researchers

were able to draw insights from such data and test hypothesis in the context of biological discovery.

With the support of both experiments performed in lab and data from field, we want to accomplish

a number of biological goals with the theme of this dissertation. In particular, we aim to answer

the following questions:

Biological Query 1: Genome-wide regression and prediction performance

Genetic studies are highly complex in nature as it involves the analysis of high dimensional

data, with phenotype(s) being regressed upon a large amount of predictor variables. Even under

linear setup, the inherent association among the SNPs and the "heritability" factor make the

estimation even complex. One such example would be of a complex phenotype where genetic

markers from a specific cluster is attributable to a given phenotype. Since different statistical

models addresses the regression problem differently and the nature of "true" association between

the response and the predictor variables are unknown, it is near impossible to make robust inference

both in terms of prediction and variable selection. Here, we explore various methods like Bayesian

linear models, G-BLUP (incorporates genome information) and a shallow neural network approach,

called LASSONET to make comparisons for prediction accuracy under varied complexity. Based

on synthetic datasets encompassing various situations, we discuss the prediction performance and

point out several advantages and disadvantages for different methods.
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Biological Query 2: Functional and Genetic linkages for Photosynthetic regulatory Process

under different conditions

Plants behave differently with changes in different environmental conditions, for example with

respect to excess heat, or excess light or combinations of both(we call this as stress). These

behaviours of plants observed under different stress conditions are reflected by phenotypic variations

in measured photosynthetic parameters causing natural variation in photosynthetic processes under

diverse environmental stresses. The differences in the interconnections between the photosynthetic

parameters are evident from the following correlation matrices measured under different stresses:

Figure 1.6: Correlations among different phenotypes under different conditions: A) Control/Pre-
stress, B) DHS, C) recovery after DHS (RecD), D) LHS, and E) recovery after LHS (RecL).

Studies confirm these interconnections among different phenotypes are responsible for mechanistic

bases for adaptations to specific processes of photosynthesis that allow for greater fitness in specific

environments. Also, we know about natural variations within a species has come from studies

that associate measured phenotypes with specific genomic components, resulting in the familiar

quantitative trait loci (QTL) maps. Our objective is to identify specific genomic regions which

can potentially different photosynthetic process across different conditions. Biologically speaking,
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we explore the possibility of using such “co-association” (or co-segregation) maps of hypercubic

data sets (across "Genotype × Phenotype × Environmental" space) to test models that predict

functional and genetic linkages among a range of photosynthetic regulatory processes. We explore

statistical methods for assessing potential multidimensional linkages and discuss the types of

scientific questions that can be asked using the approaches, as well as potential pitfalls.

Biological Query 3: Correlation modeling of multivariate phenotypes in terms of genetic and

environmental variables

Quantitative genomics experiments aim to reveal underlying mechanisms that link genotypic

variations with multiple biological responses (phenotypes). Interactions/correlations among vari-

ous phenotypes give new insights into how genetic diversity may have tuned biological processes

to enhance fitness under diverse conditions. Dealing with multivariate phenotypes along with the

genetic and environmental interactions is a challenging task. One advantage of multivariate GWAS

over univariate GWAS is that multivariate GWAS can handle across-trait correlation. But, mul-

tivariate GWAS does not explicitly model across-trait correlation in terms of relevant predictors.

Also, there exist several statistical methods that deal with variance covariance estimation under

generalised linear model. But, in our knowledge, there are no work that can model the interactions

between the multiple responses in terms of predictor variables. We therefore provide an innovative

framework to dissect genetic configurations behind photosynthetic mechanisms by modeling stan-

dard deviations and pairwise correlations among a set of multivariate phenotypes through genetic

and environmental predictors. Specifically, our framework, "Correlation Modeling under Pairwise

Likelihood Estimation", abbreviated as CMPLE is capable to recover pertinent biological models

arising from multi-omics platforms, such as high-throughput phenotyping and genome sequencing.

Besides, this procedure has the aspect of many desirable qualities, such as efficient computation,

interpretability, and statistical foundation. Our main contributions in this regard are as follows

• Note that, conventional maximum likelihood estimation of parameters fails when one per-

forms standard deviation modeling and pairwise correlation modeling (in terms of predictors).
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We have developed a pairwise-composite likelihood approach to estimate the model param-

eters from the functional forms of standard deviation and correlations among multivariate

responses.

• We have proposed a gradient Minorize-Maximize (MM) algorithm to efficiently estimate the

model parameters. This guarantees optimization convergence and computational advantages

under the given setup.

• Implementing CMPLE on a motivating dataset from a population of cowpea (Vigna unguic-

ulata. (L.) Walp.), we have identified specific genetic variations affecting distinct biological

mechanisms, namely “Photoprotection” and “Photoinhibition” under various environmental

conditions.

In summary, this research advances statistical approaches for the inference of predictors associated

with pairwise correlations in a multivariate setup. Instead of estimating the covariance/precision

matrix, the pairwise correlation modeling is relevant in Phenotype × Genotype × Environment

association studies and helps discover novel bio-physiological pathways in Photosynthesis.

16



CHAPTER 2

FINDING THE BEST TOOL FOR GENOME-ENABLED-PREDICTION: A
COMPARISON STUDY

2.1 Background

Plummeting cost of gene sequencing and genetic marker assays has effectively made it possible

to apply them to thousands of individuals in genetic studies. By integrating high-throughput phe-

notyping data with genomic information, scientists have led statistical genomics into a new era of

revolution. The data quality and volume have helped researchers develop tools and techniques that

can be efficiently applied for advanced breeding and cultivar improvement. Genome-wide associa-

tion studies (GWAS) explore an individual’s genetic potential and estimate phenotypes using single

nucleotide polymorphism (SNP) markers. This process is known as "genome-enabled prediction"

(genomic prediction) and can be used to determine breeding program selections (genomic selec-

tion). Commonly, genomic prediction is applied early in a breeding program to increase the overall

selection procedure and thus helps increase the rate of genetic gain in multiple applications.

Whole-genome-regression (WGR) technique was initially proposed by Meuwissen et al. [14]

and has been extensively applied for the genomic analysis of complex traits in plants [15], animals

[16] and humans [17, 18]. In WGR, the response phenotypes are regressed over a large number of

genetic markers concurrently, invoking a statistical challenge of the "curse of dimensionality" [19]

in which the number of predictor variables (e.g., SNPs) is often much larger than the number of

observations. This large-p-with-small-n regression (where 𝑛 represents sample size and 𝑝 denotes

the number of predictors) has been extensively studied in statistical and machine learning (ML)

literature. Some statistical methods developed for the cause include Bayesian Ridge Regression

(BRR), G-BLUP, BayesA, BayesB, BayesC, Bayesian Lasso, etc. Machine learning techniques,

such as Reproducing Kernel Hilbert Space, Gradient Boosting Trees, Random Forest, and Artificial

Neural Network have also been implemented to cope with the challenge of high dimensional
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regressions and have proven to be effective in genetics. However, there are concerns regarding

the best tool which can be used for simultaneous feature (marker) selection and complex trait

(phenotype) prediction.

Most statistical methods for phenotype prediction in WGR have linear models as their backbone.

Nevertheless, in real datasets, the association’s nature might also be nonlinear. Machine learning

methods such as Shallow neural networks (e.g., single layer NNs) have implemented nonparametric

high dimensional regression using nonlinear models and been utilized in multiple applications of

the plant, animal, or human genetics. Some studies reflect that NNs can be efficiently trained to

obtain high prediction accuracy, but no consistent evidence exists that NNs can outperform linear

models. It has been documented that the results obtained from NNs are highly dependent on the

genetic architecture, marker density, sample size, span of linkage disequilibrium, and the traits

of interest of the species [18]. Hence, empirical evidence suggests that no single approach has

uniform superiority across data sets and traits.

Another aspect of WGR deals with choosing optimal SNP markers with high predictive accuracy

for the phenotype of interest. Though there have been a very large number of SNPs that are

genotyped for a study, most of the methods deal with one SNP at a time for genomic selection.

There are several reasons to consider all the SNPs for analysis. The marginal effects of each SNP

might have a very different effect from their joint effects. One example of this behavior would

be an SNP which is not related to a disease, but correlated with a causal SNP, and will have a

marginal association with the disease. Another example might be to think of a situation where

several SNPs may have weak marginal effects but strong joint effects. Conditional on causal SNPs

which are already included in the model, one would expect that false-positive signals will tend

to be weakened while marginally uncorrelated causal SNPs will have a better chance of being

selected. Also, the predictive power of a single SNP is assumed to be pretty low. When utilizing a

large number of relevant SNPs, one can also improve the prediction power by several folds. While

working with a large amount of SNPs, one usually faces the difficulty that the number and extent

of spurious associations between the response phenotype and the predictor SNPs increase rapidly
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while including many predictors into the model. Also, additional challenges are embodied due to

the weak effects of causal variants and strong linkage disequilibrium (LD) among SNPs.

There is a large number of studies based on variable selection methods as discussed earlier,

but most of those methods are statistically inaccurate and computationally infeasible for ultra high

dimensional 𝑝. One of the techniques to resolve this problem is through the sure independence

screening (SIS) method [20] by first reducing the dimension to a moderate scale (below sample size)

by univariate correlation learning, and then selecting important predictors by a popular variable

selection method, such as the LASSO. Similarly, Wu et al. [21] reduced the dimension of predictors

to a relatively smaller size using a simple score criterion and subsequently applied the LASSO. One

of the shortcomings of this approach is that important features which are marginally uncorrelated

with response are more likely to be missed. This is because the univariate screening step is carried

out using marginal correlations. One can also modify the SIS implementation by iterative sure

independence screening (ISIS) procedure. In this procedure, one can iterate the SIS procedure

conditional on the previously selected features which helps in capturing meaningful features that

are marginally uncorrelated with the response. In a recent approach, LASSONET tackles this

problem within a Neural Network framework, where feature sparsity is attained by incorporating

a skip layer [22]. It has proven to perform significantly better with simultaneous feature selection

and prediction problems.

In this study, we present a comparison of different methods that can be practically used for

genome enabled prediction and selection problems. With the help of synthetic datasets with

different level of difficulty and variability, our goal is to find out the best tool that can perform

simultaneous variable selection and achieve higher prediction accuracy.

2.2 Methods and Materials

2.2.1 Bayesian Linear Models

Data is collected on a single continuous response, 𝑦𝑖, 𝑖 = 1, . . . , 𝑛, for 𝑛 individual genotypes. The

data equation is given as 𝑦𝑖 = 𝜃𝑖 + 𝑒𝑖, where 𝜃𝑖 is the linear predictor that models the expected value
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of 𝑦𝑖 given the predictors, and 𝑒𝑖 are independently and normally distributed random variables with

mean zero and variance 𝜎2
𝑒 . The linear predictor, 𝜃𝑖 is further expressed as 𝜃𝑖 = 𝜇 + ∑𝑝

𝑗=1 𝑥𝑖, 𝑗 𝛽 𝑗 ,

where 𝜇 is the overall intercept, 𝑥𝑖, 𝑗 denotes the marker information for the 𝑗’th predictor for 𝑖’th

individual, and 𝛽 𝑗 denotes the effect of the 𝑗’th predictor on the response. Let, 𝜂 represents the

collection of unknown parameters: the intercept, regression coefficients, and the residual variance,

expressed as 𝜂 = {𝜇, 𝛽1, . . . , 𝛽𝑝, 𝜎
2
𝑒 }. Since, we are performing our analysis within Bayesian

paradigm, we assume prior density in the following way:

𝑝(𝜂) = 𝑝(𝜇)𝑝(𝜎2
𝑒 )

𝑝∏
𝑗=1

𝑝(𝛽 𝑗 )

The joint likelihood is written by,

𝑝(𝜂 |𝑦1, . . . , 𝑦𝑛) =
𝑛∏
𝑖=1

N(𝑦𝑖 − 𝜇 −
𝑝∑︁
𝑗=1
𝑥𝑖, 𝑗 𝛽 𝑗 , 𝜎

2
𝑒 )𝑝(𝜂) (2.1)

We assign a flat prior to the intercept term, 𝜇 and a scaled-inverse 𝜒2 density to the residual variance,

𝜎2
𝑒 : 𝑝(𝜎2

𝑒 ) = 𝜒−2(𝜎2
𝑒 |S𝑒, 𝑑𝑓𝑒), where the degrees of freedom is 𝑑𝑓𝑒 (> 0) and the scale parameter

is S𝑒 (> 0) . For the regression coefficients, 𝛽 𝑗 , we have assigned either flat or informative priors.

The choice of informative priors plays a significant role to attain the different choice of shrinkage.

Here, we provide different choices for the priors, for example Gaussian prior for Bayesian ridge

regression [23], scaled-t density for BayesA [14], Double Exponential or Laplace prior for Bayesian

Lasso [24], mixture of point mass at zero and scaled-t slab for BayesB [14] and mixture of point

mass at zero and Gaussian slab for BayesC [25]. We describe the different priors and the choice of

hyper-parameters more elaborately in the following paragraph.

Bayesian Ridge Regression

In Bayesian Ridge Regression (BRR), the regression coefficients are assigned IID normal distribu-

tions with mean zero and variance 𝜎2
𝛽
. In the second level of hierarchy, we assign a scaled-inverse

Chi-squared density, with parameters 𝑑𝑓𝛽 and S𝛽 for the variance parameter. The joint distribution

of the priors along with the hyper-parameters is written as,

𝑝(𝛽1, . . . , 𝛽𝑝, 𝜎
2
𝛽) =

𝑝∏
𝑗=1

N(𝛽 𝑗 |0, 𝜎2
𝛽)𝜒−2(𝜎2

𝛽 |𝑑𝑓𝛽,S𝛽) (2.2)
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Here, the density is parameterized in a manner, so that the prior expectation and the mode of the

variance parameter are 𝐸 (𝜎2
𝛽
) =

S𝛽

𝑑𝑓𝛽−2 , and 𝑀𝑜𝑑𝑒(𝜎2
𝛽
) =

S𝛽

𝑑𝑓𝛽+2 , respectively. The values of 𝑑𝑓𝛽

and S𝛽 are not known. For our analysis, we set the 𝑑𝑓𝛽 as 5 and solve for the scale parameter for

matching the expected R-squared of the model. In genomic studies, this is commonly known as the

Best Linear Unbiased predictor (BLUP).

BayesA

In BayesA, the regression coefficients are modeled as a scaled-t density, with parameters 𝑑𝑓𝛽 and

S𝛽. In our setup, this density is constructed as an infinite mixture of scaled-normal densities

for computational convenience. Similar to BRR, in the first level of hierarchy, marker regression

coefficients are assigned IID normal densities with mean zero and marker specific variance 𝜎2
𝛽

and

in the second level of hierarchy, a scaled-inverse Chi-squared density, with parameters 𝑑𝑓𝛽 and

S𝛽 is assigned for the variance parameter. The difference between BRR and BayesA is through

the treatment of the scale parameter, S𝛽. Here, the scale parameter is modeled through a gamma

density with rate and shape parameters 𝑟 and 𝑠 respectively. We have set 𝑑𝑓𝛽 as 5, 𝑠 as 1.1 and

solve for the rate parameter to match the expected R-squared of the model. In BayesA, the joint

distribution of the priors along with the hyper-parameters is written as,

𝑝(𝛽1, . . . , 𝛽𝑝, 𝜎
2
𝛽) =

𝑝∏
𝑗=1

N(𝛽 𝑗 |0, 𝜎2
𝛽)𝜒−2(𝜎2

𝛽 |𝑑𝑓𝛽,S𝛽)G(S𝛽 |𝑟, 𝑠), (2.3)

where G(.|., .) denotes a Gamma density.

Bayesian LASSO

The marginal distribution of marker effects in Bayesian LASSO (BL) is double-exponential. Fol-

lowing the work of Park and Casella, we represent the double exponential density as a mixture of

scaled normal densities. First level of hierarchy introduces independent normal densities with zero

mean and marker specific variance 𝜏2
𝑗
× 𝜎2

𝑒 on the marker effects. The residual variance, 𝜎2
𝑒 is

modeled as a scaled-inverse Chi-square density and the predictor specific scale parameters, 𝜏2
𝑗

are

modeled as IID exponentially distributed with rate parameter 𝜆2/2. Lastly, 𝜆2 is assigned a gamma
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prior, 𝜆2 ∼ G(𝑟, 𝑠). For our setup, we have set 𝑠 as 1.1 and solved for 𝑟 to match the expected

R-squared of the model. In BL, the joint distribution of the priors along with the hyper-parameters

is written as,

𝑝(𝛽1, . . . , 𝛽𝑝, 𝜏1, . . . , 𝜏𝑝, 𝜆
2 |𝜎2

𝑒 ) =
𝑝∏
𝑗=1

N(𝛽 𝑗 |0, 𝜏2
𝑗 × 𝜎2

𝑒 )𝐸𝑥𝑝(𝜏2
𝑗 |
𝜆2

2
)G(𝜆2 |𝑟, 𝑠), (2.4)

where 𝐸𝑥𝑝(.|.) denotes an Exponential density.

BayesB and BayesC

In these cases, the regression coefficients are modeled as IID priors which are expressed as mixtures

of point mass at zero and a slab. The slab part is structured with either scaled-t density for BayesB

or normal for BayesC. These mixture priors are extensions for BayesA and BRR in the respective

cases by incorporating an additional parameter 𝜋 which represents the prior proportion of non zero

predictors. We assign a Beta prior, 𝜋 ∼ 𝐵𝑒𝑡𝑎(𝑝𝑜, 𝜋0) to the mixting parameter. The beta prior is

parameterized to achive 𝐸 (𝜋) = 𝜋0. Also, 𝑝0 > 0 is interpreted as the number of prior counts and

𝜋0 ∈ [0, 1]. If one chooses 𝑝0 = 2 and 𝜋0 = 0.5, one can obtain a uniform prior in [0, 1], on the

other hand a large value of 𝑝0 collapses the prior with point of mass at 𝜋0. The joint distribution

of the priors along with the hyper-parameters in BayesB is written as,

𝑝(𝛽1, . . . , 𝛽𝑝, 𝜎
2
𝛽 , 𝜋) = {

𝑝∏
𝑗=1

[𝜋N(𝛽 𝑗 |0, 𝜎2
𝛽) + (1 − 𝜋)1(𝛽 𝑗 = 0)]𝜒−2(𝜎2

𝛽 |𝑑𝑓𝛽,S𝛽)} (2.5)

×G(S𝛽 |𝑟, 𝑠)𝐵𝑒𝑡𝑎(𝜋 |𝑝0, 𝜋0),

and the joint distribution of the priors along with the hyper-parameters in BayesC is written as,

𝑝(𝛽1, . . . , 𝛽𝑝, 𝜎
2
𝛽 , 𝜋) = {

𝑝∏
𝑗=1

[𝜋N(𝛽 𝑗 |0, 𝜎2
𝛽) + (1 − 𝜋)1(𝛽 𝑗 = 0)]𝜒−2(𝜎2

𝛽 |𝑑𝑓𝛽,S𝛽)} (2.6)

×𝐵𝑒𝑡𝑎(𝜋 |𝑝0, 𝜋0),

In both the cases, we have set 𝜋0 = 0.5 and 𝑝0 = 10. This signifies a weakly informative beta

prior for the mixing parameter with the prior mode as 0.5.
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2.2.2 Genomic-BLUP

Instead of the linear models, one can also incorporate different random effects while structuring

the conditional expectation function, 𝜃𝑖. Assuming we have 𝑙 many random effects (𝑢1, . . . , 𝑢𝑙),

we can write the conditional expectation for the 𝑖’th individual as 𝜃𝑖 = 𝜇 +
∑𝑝

𝑗=1 𝑥𝑖, 𝑗 𝛽 𝑗 +
∑𝑙
𝑘=1 𝑢𝑖,𝑘 .

Extending from our previous section, we can write the collection of unknown parameters as

𝜂 = {𝜇, 𝛽1, . . . , 𝛽𝑝, 𝑢𝑖, . . . , 𝑢𝑙 , 𝜎
2
𝑒 } and express the prior density in the following way:

𝑝(𝜂) = 𝑝(𝜇)𝑝(𝜎2
𝑒 )

𝑝∏
𝑗=1

𝑝(𝛽 𝑗 )
𝑙∏
𝑘=1

𝑝(𝑢𝑘 )

One common choice is to incorporate Gaussian random effects with some specified covariance

structure. In Bayesian settings, people have extensively studied this form in terms of Reproducing

Kernel Hilbert Space Regression (RKHS). Gianola et al. [26] have proposed this approach for

prediction purpose in genomic studies. The general idea of RKHS is as follows: First, one need

to specify the Reproducing Kernel (RK), which is a positive definite functional mapping from the

pairs of individuals into the real line. For example, given two genotypes, 𝑥𝑖 and 𝑥𝑖′, we can construct

the reproducing kernel as a real valued function, 𝑘 (𝑥𝑖, 𝑥𝑖′) that maps the genotype pair {𝑥𝑖, 𝑥𝑖′} into

a real line satisfying the condition
∑
𝑖

∑
𝑖′ 𝛼𝑖𝛼𝑖′𝑘 (𝑥𝑖, 𝑥𝑖′) > 0, for any non zero coefficients 𝛼𝑖 and 𝛼𝑖′.

Next, we represent the regression function as a linear combination of basis functions determined

through the reproducing kernel. In Bayesian settings, the RKHS can be expressed as

𝑦𝑖 = 𝜇 + 𝑢𝑖 + 𝑒𝑖, 𝑝(𝜇, 𝑢, 𝑒) ∝ N (0, 𝐾𝜎2
𝑢 )N (0, 𝐼𝜎2

𝑒 ),

where 𝐾 = {𝑘 (𝑥𝑖, 𝑥𝑖′)} is a 𝑛 × 𝑛 kernel matrix. In Genomic-BLUP (G-BLUP), one incorporates

only one random effects which represents the linear regression on the marker densities, 𝑔 ∼

N(0, 𝐺𝜎2
𝑔 ), where 𝐺 stands for the marker information matrix. For practical problems and

ease of interpretations, we have standardized the 𝐺 matrix to have an average diagonal value of

approximately one. Janss et al.[27] argued the equivalence between the RKHS regression through

Gaussian process and random regressions on principal components. In our implementation, we

have used the eigen value decomposition of the genomic matrix, 𝐺 to make use of this equivalence.
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2.2.3 LASSONET

In linear models, LASSO is a very popular tool that assigns zero weights to the most redundant

features through 𝑙1 regularization which results in feature sparsity/feature selection. With the

backdrop of neural networks, Lemhadri et al. [22] developed LASSONET which can perform

global feature selection by adding a residual (skip) layer and allowing a predictor to participate in

any hidden layer if the residual layer is active. This method integrates feature selection with the

learning of parameters directly, which helps in delivering an entire regularization path with a range

of feature sparsity. The objective function being implemented in LASSONET is as follows,

minimize𝜃,𝑊 𝐿 (𝜃,𝑊) + 𝜆 | |𝜃 | |1

subject to | |𝑊 (1)
𝑗

| |∞ ≤ 𝑀 |𝜃 𝑗 |, 𝑗 = 1, . . . , 𝑑.
(2.7)

The advantages of using this tool is that it uses only a subset of the features and the linear and

non linear components are optimized jointly, allowing the flexibility to capture non-linearity. The

key idea of this procedure is the constraint

|𝑊 (1)
𝑗 ,𝑘

| ≤ 𝑀 |𝜃 𝑗 |

, which budgets the total amount of non linearity involving the predictor 𝑗 with respect to to

the relative effct importance of 𝑋 𝑗 as the main effect. Training the LASSONET deals with two

operations: at first, a vanilla gradient step is applied on all model parameters followed by a

hierarchical proximal operator being applied on the input layer pair (𝜃,𝑊 (1)). Also, this helps in

gaining huge computational efficiency. Authors argued that the LASSONET regularization path

has an equivalent training cost of training a 𝑠𝑖𝑛𝑔𝑙𝑒 model. They have also suggested to use a default

value of M=10, for the hierarchy coefficient.

2.3 Experiments

In this section, we discuss the performance of different methods in terms of prediction and selection

accuracy based on synthetic datasets. In the synthetic dataset, we have simulated data on a single

response generated through marker genotypes from a real dataset from CIMMYT global wheat
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breeding program. This dataset comprises phenotypic, genotypic, and pedigree information of 599

wheat lines was made publicly available by Crossa et al. [15]. Each line was genotyped for 1279

diversity array technology (DArT) markers. Similar to the RIL population for cowpea, at each

marker, there were two homozygous genotypes possible, and they were coded as 0 or 1. For our

analysis, we have taken three different cases: (1) significant equispaced markers, (2) significant

markers in one cluster, and (3) significant markers in two clusters. The simulation settings (2) and

(3) are based on our experience with phenotypes where the correlative pattern of nearby markers

indicates a QTL region instead of a single QTL marker. Also, in real data analysis, many of

the phenotypes of interest are very complex, and genetic and environmental fluctuations hugely

influence them. A measure of an individual’s genetic variation accountable for differences in their

traits is termed as "Heritability" (represented as ℎ2). It should be noted that the estimate of the

heritability in a particular trait is conditional on a specific population and environment. It is highly

dynamic (changes over time as circumstances change).

Estimates of heritability can range from zero to one, where a value close to zero indicates that

most of the variability in a given trait is due to environmental factors, with very little influence

from genetic variations. On the other hand, a heritability score close to one indicates that genetic

differences can be attributed to explaining almost all of the variations in a trait, with little con-

tribution from environmental factors. Many genetic disorders caused by variants (also known as

mutations) in a single gene have high heritability. In human genomics, many of the complex traits

in an individual, such as intelligence and genetic diseases, have an estimated heritability score in

the range of 0.4 to 0.55, suggesting that the variability of such trains is due to a combination of

genetic and environmental factors. In our simulation we have incorporated a heritability score of

0.2, and 0.5 for each of the three cases to account for difference in trait complexity. Also, we

have varied the number of significant markers as 10, 20, and 30 to replicate real data situations.

Below are the results from the three different situations as per our interest. In each of the cases,

the number of individuals (𝑛) is 599, the number of available markers (𝑝) is 1279, the number of

significant markers (𝑝0) is 10, 20, 30, and the heritability (ℎ2) is 0.2, and 0.5. For each combination
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of significant markers and heritability score under one setup, the univariate response variable is

generated as follows:

𝑦𝑖 =

𝑝∑︁
𝑗=1
𝑥𝑖, 𝑗 𝛽 𝑗 + 𝜖𝑖 (2.8)

where 𝜖𝑖 ∼ N(0, 1 − ℎ2) and the marker effects, 𝛽 𝑗 are modeled via the following mixture model,

𝛽 𝑗 =


N(0, ℎ2/10) if 𝑗 ∈ Significant marker list

0 otherwise.

This simulation design was chosen closely following Perez and de los Campos [28]. To compare

the predictive performance, we divide the dataset into training and testing framework following

the common convention of 80-20 split. For prediction accuracy, we compared three different

measure: (1) correlation of predicted response with the signal, i.e., Cor(𝑦̂, signal), (2) correlation

of predicted response with actual y, i.e., Cor(𝑦̂, 𝑦), and (3) Mean Square error (MSE). For an ideal

model, one should achieve higher values for the measures (1) and (2), but should attain lower MSE.

For the Bayesian methods, we ran 10, 000 iterations, with 1, 000 samples as the burn-in samples.

For LASSONET, we chose the optimal 𝜆 which minimizes the MSE in the training setup from the

LASSO path and used it for the testing dataset. The value of 𝑀 was set at 10. Below we present one

of the regularization path for the LASSONET solution for the equispaced markers with ℎ2 = 0.2

and 𝑝0 = 10
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Figure 2.1: Choice of 𝜆 and LASSONET path
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2.3.1 Simulation setup 1: Significant markers in equispaced locations

In this simplistic setup, we chose the significant markers in the genomic regions as equispaced

markers for each choice of 𝑝0 = 10, 20 and 30 and the effects of the selected markers are generated

following equation 2.8. Table 2.1 highlights the performance accuracy of different methods.

Table 2.1: Prediction performance from simulation setup 1 with heritability score as 0.2 and 0.5.
Cor with signal: correlation of predicted response with the signal, Cor with actual y: correlation
of predicted response with actual response, MSE: Mean square error

Methods Cor with signal Cor with actual 𝑦 MSE

ℎ2 = 0.2 ℎ2 = 0.5 ℎ2 = 0.2 ℎ2 = 0.5 ℎ2 = 0.2 ℎ2 = 0.5

BRR
0.67 0.51 0.45 0.26 0.59 0.74
0.68 0.53 0.44 0.23 0.77 1.03
0.80 0.68 0.61 0.40 0.62 0.88

BayesA
0.93 0.86 0.78 0.61 0.31 0.54
0.89 0.83 0.78 0.57 0.41 0.84
0.86 0.70 0.85 0.70 0.32 0.61

BayesB
0.95 0.86 0.77 0.61 0.32 0.54
0.93 0.65 0.73 0.59 0.44 0.83
0.89 0.70 0.82 0.69 0.35 0.61

BayesC
0.96 0.76 0.76 0.65 0.33 0.53
0.93 0.64 0.72 0.61 0.46 0.78
0.88 0.70 0.82 0.71 0.36 0.60

BL
0.89 0.71 0.82 0.63 0.28 0.56
0.85 0.62 0.79 0.55 0.41 0.86
0.85 0.70 0.85 0.69 0.32 0.63

GBLUP
0.81 0.64 0.80 0.65 0.32 0.54
0.81 0.63 0.76 0.63 0.47 0.77
0.84 0.70 0.85 0.71 0.32 0.59

LASSONET
0.94 0.82 0.62 0.36 0.45 0.71
0.83 0.51 0.55 0.20 0.66 1.02
0.81 0.62 0.60 0.37 0.67 0.92
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2.3.2 Simulation setup 2: Significant markers in one cluster

In this setup with Significant markers in one cluster, we chose the significant markers in the genomic

regions in the range (91, 100), (91, 110), and (91, 120) for the choice of 𝑝0 = 10, 20 and 30 and

the effects of the selected markers are generated following equation 2.8. Table 2.2 highlights the

performance accuracy of different methods.

Table 2.2: Prediction performance from simulation setup 2 with heritability score as 0.2 and 0.5.
Cor with signal: correlation of predicted response with the signal, Cor with actual y: correlation
of predicted response with actual response, MSE: Mean square error

Methods Cor with signal Cor with actual 𝑦 MSE

ℎ2 = 0.2 ℎ2 = 0.5 ℎ2 = 0.2 ℎ2 = 0.5 ℎ2 = 0.2 ℎ2 = 0.5

BRR
0.56 0.73 0.25 0.46 0.73 0.56
0.68 0.80 0.34 0.57 1.01 0.71
0.59 0.76 0.34 0.57 0.94 0.67

BayesA
0.78 0.91 0.62 0.76 0.54 0.31
0.74 0.89 0.61 0.80 0.77 0.39
0.69 0.86 0.72 0.85 0.62 0.32

BayesB
0.81 0.95 0.61 0.72 0.54 0.35
0.76 0.91 0.63 0.77 0.75 0.43
0.71 0.88 0.71 0.82 0.62 0.36

BayesC
0.77 0.96 0.64 0.70 0.53 0.37
0.75 0.92 0.67 0.76 0.72 0.45
0.67 0.88 0.72 0.82 0.61 0.36

BL
0.73 0.88 0.63 0.81 0.56 0.28
0.74 0.87 0.66 0.83 0.76 0.36
0.66 0.85 0.71 0.86 0.64 0.30

GBLUP
0.70 0.85 0.66 0.80 0.51 0.29
0.72 0.86 0.69 0.82 0.71 0.38
0.63 0.82 0.72 0.86 0.61 0.32

LASSONET
0.86 0.94 0.37 0.64 0.68 0.44
0.74 0.84 0.37 0.64 0.96 0.61
0.61 0.77 0.42 0.26 0.88 0.60
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2.3.3 Simulation setup 3: Significant markers in two clusters

In this setup with Significant markers in two clusters, we chose the significant markers in the

genomic regions in the range between (91, . . . , 95, 701, . . . , 705), (91, . . . , 100, 701, . . . , 710),

and (91, . . . , 105, 701, . . . , 715) for the choice of 𝑝0 = 10, 20 and 30 and the effects of the selected

markers are generated following equation 2.8. Table 2.3 highlights the performance accuracy of

different methods.

Table 2.3: Prediction performance from simulation setup 3 with heritability score as 0.2 and 0.5.
Cor with signal: correlation of predicted response with the signal, Cor with actual y: correlation
of predicted response with actual response, MSE: Mean square error

Methods Cor with signal Cor with actual 𝑦 MSE

ℎ2 = 0.2 ℎ2 = 0.5 ℎ2 = 0.2 ℎ2 = 0.5 ℎ2 = 0.2 ℎ2 = 0.5

BRR
0.68 0.78 0.34 0.55 0.73 0.58
0.77 0.86 0.33 0.56 0.97 0.65
0.40 0.70 0.26 0.53 0.88 0.62

BayesA
0.89 0.94 0.62 0.79 0.53 0.31
0.78 0.96 0.57 0.77 0.76 0.40
0.48 0.81 0.70 0.84 0.64 0.31

BayesB
0.90 0.97 0.61 0.76 0.53 0.35
0.81 0.92 0.59 0.74 0.74 0.43
0.49 0.84 0.69 0.81 0.64 0.34

BayesC
0.85 0.97 0.66 0.74 0.53 0.37
0.79 0.92 0.64 0.73 0.71 0.44
0.49 0.81 0.71 0.84 0.63 0.32

BL
0.81 0.93 0.65 0.83 0.55 0.27
0.77 0.88 0.63 0.80 0.75 0.36
0.48 0.79 0.69 0.84 0.66 0.31

GBLUP
0.78 0.88 0.68 0.82 0.51 0.30
0.74 0.86 0.67 0.80 0.69 0.37
0.47 0.77 0.72 0.85 0.61 0.31

LASSONET
0.90 0.95 0.43 0.68 0.68 0.44
0.80 0.91 0.34 0.59 0.92 0.62
0.49 0.74 0.19 0.52 0.91 0.62
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2.4 Discussion

First noticeable difference from comparing the heritability (ℎ2) from 0.2 to 0.5 is the reduction of

our prediction accuracy in all the three simulation setups. That means, the correlation between

the signal and actual response with the predicted fell off while the MSE increased. This can be

biologically explained as the heritability is measure of how complex the phenotype is, and as the

complexity increases, the prediction performs poorly.

Next, in all the three situations BRR performed the worst while there was no conclusive evidence

of a best method that outperformed others at least for the cases considered. For simulation setup

1, both the bayesian mixture models, BayesB and BayesC were performing better in terms of

prediction accuracy. This result was consistent across the different number of significant markers

chosen for the context. For simulation situation two, we found that the mixture based methods,

BayesB and BayesC have a better accuracy in terms of the correlation of the predicted response and

signal. But, We attained similar performance in terms of correlation with actual response and MSE

with Bayesian LASSO and G-BLUP. For heritability score of 0.5, MSE of Bayesian LASSO and

G-BLUP were consistently smaller than BayesB and BayesC. Note that, we did not see reasonable

prediction from LASSONET so far with the simulated situation 1 and 2. For simulation setup 3,

we found similar conclusions as we had obtained for setup 2. But, here we found LASSONET to

have improved performance in terms of correlation with signal than the competing methods.

Overall, we found that Bayesian LASSO and Genomic-BLUP were the robust performers to

apply for different complexities of the data in terms of prediction purpose. In genetic studies,

there are usually two major interests: (a) Prediction, (b) Selection. In this chapter, we have mainly

focused on the Prediction aspect, but argue that since we have used Bayesian tools, we can do

hypothesis testing based on the credible intervals to find the selected markers. LASSONET is

more interpretable in a sense that it does prediction and selection simultaneously. So, we can not

disregard it as well. We intend to explore more situations to justify our arguments.
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CHAPTER 3

BAYESIAN LATENT FACTOR MODELS TO DIFFERENTIATING GENETIC AND
MECHANISTIC BASES OF PHOTOSYNTHESIS

3.1 Background

The term “Natural variations” in photosynthetic processes explains the ability of some phototrophs

to transcend others under specific environmental conditions. Inter-dependency between the genetic

architecture of an individual (genome) and observable physical or physiological traits or charac-

teristics (phenome) provides an opportunity to harness these natural variations. With the advent

of high-throughput phenotyping platforms, it is highly feasible to rapidly measure multiple pho-

tosynthetic parameters (phenotypes), which allows us to compare the genotypic variations across

numerous traits. Also, rapid advancements in genotyping technologies permitted the production

of high-density genetic chips cost-effectively, making the connection from “genome to phenome”

possible. Integrating such multi-omics data platforms creates data “hyper-cubes,” which involve

multidimensional potentially linked traits, environmental variables, and genomic content. Using

“co-association” (or co-segregation) maps of such hyper-cubic data sets, we dissect various func-

tional and genetic linkages under photosynthetic machinery. We propose to develop a new class of

generative models based on dimensionality reduction methods in the form of a “colocalized” pheno-

type network. Representation of such dynamics across𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒×𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒×𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙

space is crucial to understanding the mechanics of adaptations and facilitating agricultural yield

improvement.

One way to associate observed responses (phenotypes) with certain genomic regions is through

the familiar Quantitative trait loci (QTL) maps. Using such an association tool over a population

of cowpea recombinant inbred lines (RIL), we tested how the tolerance of plants differ when

exposed to heat stress imposed under different lighting conditions (light or dark). Furthermore,

as with all “omics” approaches, where correlations among multiple traits are informative under
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different conditions, it can enable the discovery of potentially causal phenotype interactions, which

in turn may shed light on the functions of photosynthetic regulatory pathways. However, we found

potential caveats from this analogy as the system’s dominant correlations can result from parallel

transitive or indirect interactions.

Rapid advancements in multi-omics technologies have led to great deal of interest in the

integrated analysis of multi-modal datasets. As the multi-modal datasets provide information on

multiple subjects (genotypes) and features from different viewpoints (treatments), the integrated

analysis will help to understand biological mechanisms of complex problems and develop tailored

treatment for many diseases and health problems. In the past few years, several approaches

for integrative analysis have been proposed and applied in diverse field of applications, e.g., in

brain imaging, chemical systems biology, single-cell RNA-seq data. One class of models that

has been extensively used are based on low-rank matrix factorization such as nonnegative matrix

factorization [29, 30], factor analysis [31, 32], canonical correlation analysis methods [33, 34].

Other approaches utilizes clustering framework to obtain interpretation among the multi-omics

data , e.g., hierarchical clustering [35], consensus clustering [36], icluster [37]. The basic concept

underlying these approaches deals with finding low-dimensional latent factors, which are assumed to

carry pertinent information regarding the underlying biological variations across different genotypes

and phenotypes and environments. But, these methods are highly unsupervised, which makes the

model estimation, inference and interpretation very difficult. Nonetheless, the integrative analysis

has proven to be far superior than individual (uni-modal) analysis and there is room for improvement

in both methodological and applied research areas.

In this paper, we adopted factor analysis framework to assess differential linkages by generating

networks of interactions defined by latent variables (LVs), each of which represents a distinct mode

of action of photosynthesis . We then compare the behavior of these networks with the outcomes

of hypothetical models operating under different conditions and assess potential associations of

genetic components to specific modes of action.
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3.2 Materials and methods

Plants (RIL population) being used in this study is taken from University of California, Riverside

from the cross between Yacine and 58-77. The Yacine × 58-77 RIL population consisted of 104

lines used to generate the population-specific linkage map, but only 90 RILs were used in the QTL

mapping due to limitations in seed stocks for some lines. A total of five different treatments were

used for the data analysis, namely: Control (Con), Dark heat stress (DHS), Recovery after Dark

heat stress (RecD), Light heat stress (LHS), Recovery after Light heat stress (RecL).

Figure 3.1: Variation in photosynthetic parameters and leaf temperature across the different treat-
ments. A-H) Violin and box plots showing the distribution of various parameters among the RILs
and parental lines. The red marker indicates the mean of all genotypes. Con= Control, DHS=dark
heat stress, LHS=light heat stress , RecD=recovery after DHS and RecL=recovery after LHS. I-J)
Correlation and density plots between 𝑞𝐿 and 𝜙𝐼 𝐼 under Control and I) DHS or J) LHS using the
raw data for each treatment.

Data analyses were performed using (R Core Team 2019). Subsequent analyses uses the

covariate adjusted effects obtained via the analysis of covariance (ANCOVA) model.
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3.2.1 Linakage maps using QTL mapping

This section assesses possible linkages between genomic variations in the RIL population and

specific responses to LHS and DHS. For the linakge maps we have used genomic BLUP as

discussed in earlier sections. Figures 3.2 and 3.3 show several striking features in QTL maps for

𝜙𝐼 𝐼 under control, LHS and DHS, and recovery conditions. First, the control shows significant QTLs

on chromosomes 3, 6, 9, and 10 that completely disappeared and were replaced by distinct QTLs

during LHS (chromosome 2) and DHS (chromosome 2 and 6). The most likely basis for this “linkage

swapping” is that, under control conditions, 𝜙𝐼 𝐼 is modulated by one set of genetically-controlled

processes and a different set of processes linked to various genetic components under stressful

conditions. This interpretation is consistent with genotype-by-environment interaction, whereby

genotypes may behave differently depending on the environment, and the roles of “ancillary”

components of the organism, that control processes not essential under many conditions but critical

under diverse and fluctuating environments. There are many examples in photosynthesis research

where knocking out well-conserved genes has little effect under (artificially static) laboratory

conditions but shows emergent phenotypes under more severe or rapidly fluctuating environments.

3.3 Bayesian Latent Factor Models

To set the models and notations, assume that the observed data contain 𝑁 independent units. For

each unit𝑄 traits (phenotypes) are observed for 𝑆 different treatments. We use 𝑋 (1) ∈ R𝑄×𝑁 , 𝑋 (2) ∈

R𝑄×𝑁 , . . . , 𝑋 (𝑆) ∈ R𝑄×𝑁 to denote the collection of 𝑆 treatments with

dimensionality 𝑄 on 𝑁 independent observations. Let 𝑌 be their vertical concatenate, which is of

size 𝑃 × 𝑁 , where 𝑃 = 𝑆𝑄,

𝑌𝑃×𝑁 = [𝑋 (1) , 𝑋 (2) , . . . , 𝑋 (𝑆)]𝑇

Our goal is to first find out 𝐾 < 𝑃 factors that describe the dependencies between the observed

phenotypes across the data sets encompassing different treatments. In other words, the problem

can be described as a set of 𝐾 latent factors which contain a projection for each of the 𝑆 treatments
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Figure 3.2: Genetic and phenotypic linkages among multiple photosynthetic processes. LOD
scores for different parameters are presented for Control/Pre-stress (Con) (left most panel), DHS
(middle panel), LHS (right most panel).Chromosomes are separated by transparent colors with
faint lines for borders.
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Figure 3.3: Genetic and phenotypic linkages among multiple photosynthetic processes. LOD scores
for different parameters are presented for Recovery after DHS (RecD) (left panel) and Recovery
after LHS (RecL) (right panel). Chromosomes are separated by transparent colors with faint lines
for borders.
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with a non-zero weight for each factor. Note that, one would like to put sparsity over the weights

for added interpretations.

Our data challenge is very similar to the Factor analysis (FA), which explains a multivariate

dataset 𝑋 ∈ R𝑄×𝑁 in terms of 𝐾 < 𝑄 latent factors for defining the dependencies between the 𝑁

observed samples of dimensionality 𝑄. In FA, the underlying latent factors are connected to the

observable variables through factor weights, which are collected in the loading matrix𝑊 ∈ R𝑄×𝐷 .

One can add sparsity to the individual entry of 𝑊 to obtain straightforward interpretations. In our

setup, we can apply FA to each of the 𝑆 treatment conditions and estimate the loading matrix and

factor scores for every condition. Since the loading matrix𝑊 connects the set of observed pheno-

types in terms of a smaller group of latent variables (LV), one can expect that each LV identified by

FA can, under appropriate conditions, represent the physical modes of interactions among photo-

synthetic processes, which result in distinct patterns of interactions between measured phenotypes.

In a single genotype, the observed LVs will likely reflect environmental or developmental effects

on mechanistic interconnections. Here, though, we consider a population of genetically distinct

plants under a single environmental condition, where the LV will likely reflect the actions of genetic

polymorphisms that alter the behavior of the co-regulatory network among phenotypes.

A hypothetical illustration describes two genetic components that alter photosynthesis’s re-

sponses to HS in distinct ways. Consider a functional mechanism (mechanism A) representing

the correlations expected for pmf-controlled photoprotection. For example, a genetic variation

that decreases the activity of the ATP syntheses can result in decreases in gH+, increases in pmf,

and decreases 𝜙𝐼 𝐼 . Using FA analysis one can describe this behavior by LV1 in Figure 3.4, as

a network of correlations. In this visualization, if the same colored lines connect two measured

parameters, they are positively correlated, whereas different colors signify negatively correlated.

From our model, decreases in gH+ should increase NPQ(t) but decreases in 𝜙𝐼 𝐼 . Hence, gH+ is

linked through LV1 with differently colored lines to NPQ(t) but with the same colored lines to

𝜙𝐼 𝐼 . Suppose that an additional process modulates 𝜙𝐼 𝐼 through photoinhibition and repair of PSII,

independently of ATP synthesis activity (mechanism B). For example, a genetic component that
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results in more rapid PSII repair should increase the content of active PSII and thus 𝜙𝐼 𝐼 while

decreasing NPQ(t). Here, parameters can be connected through multiple LVs, each describing a

different set of correlations, as illustrated through LV2 in Figure 3.4.

Figure 3.4: A hypothetical illustration of expected relationships between latent variables, correla-
tions among measured parameters, and genetic components

But, FA on individual treatments fails to capture the dependencies across multiple treatment

conditions. Also, the LVs under each treatment are independent, and one can not make connections

or test separable models based on individual FA analysis. One solution is the Canonical Correlation

Analysis (CCA,), which can simultaneously model underlying associations between two sets of

treatment conditions. CCA helps identify linear combinations of variables from each modality that

maximize their correlation. CCA also suffers from certain caveats. For example, they do not provide

an inherent robust inference for statistical associations between phenotypes. Also, the associations

between data modalities need to be modeled to capture variations. One possible way to address the

caveats is based on the probabilistic interpretation of CCA [38], which allows for the uncertainty

estimation of the model parameter. This approach has been extended to more complex situations by

adding hierarchical prior distributions as explained in Bayesian CCA [39]. Still, it fails to recover

associations among data modalities and is computationally challenging under high-dimensional
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problems. One of the limitations is averted by Virtanen and colleagues [40, 41] by removing the

irrelevant latent factors and further extending to more than two modalities, namely Group Factor

Analysis (GFA) [42, 41]. GFA is a simple extension of the Bayesian FA model with group-wise

sparsity, which helps in straightforward interpretations. GFA has proven its applicability in various

domains, from genomics, drug discoveries, and task-based FMRI data [43]. To our knowledge, GFA

has not been applied to reveal Phenome-Genome interactions from Multi-omics data modalities.

To illustrate the differences between various methods, we have applied Bayesian formulations

of FA, CCA, and GFA to our dataset and argued the implications and interpretations under different

setups. Our findings include multiple nodes of mechanistic processes representing "positive-

negative" associations linking phenotypes to specific patterns under various stress conditions. We

conclude from our analysis that due to the flexibility and robustness, the integrative framework of

Bayesian GFA can reveal meaningful biological mechanisms previously unknown under heat stress

treatments.

3.3.1 Bayesian Factor Analysis (BFA)

The Bayesian version of FA assumes that 𝑁 observations of𝑄 phenotypes stored in the data matrix

𝑋 ∈ R𝑄×𝑁 are generated by the latent variable matrix 𝐹 ∈ R𝐾×𝑁 , where 𝐾 represents the number

of latent dimensions. In formal notations, suppose that 𝑄 dimensional data vector 𝑦𝑛 follows a 𝐾

factor model:

𝑥𝑛 = 𝑊 𝑓𝑛 + 𝜇 + 𝜖𝑛

𝑓𝑛 ∼ N(0,IK) (3.1)

𝜖𝑛 ∼ N(0, 𝜓)

Under the Model 3.1, 𝑥𝑛 ∼ N(𝜇, 𝜓 +𝑊𝑊𝑇 ). Without loss of generality, we can assume zero

mean data and omit the 𝜇 parameter hereafter. To tackle FA model in Bayesian context, we introduce

a prior 𝑝(𝜃) over the model parameters 𝜃 = (𝑊, 𝜓) with respect to the posterior distribution 𝑝(𝜃 |𝑌 ).

For simpler inferences, the prior distributions are selected to be conjugate such that the posterior
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distribution has the same functional form as the prior distribution. To determine the number of

latent dimensions to be included in the model, we incorporate Automatic relevance Determination

(ARD) prior over the loading matrix𝑊 . This is achieved through a hierarchical prior specifications

𝑝(𝑤 |𝛼) on the elements of 𝑊 , where 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝐾). Inherently, by pushing some 𝛼𝑘 ’s

towards infinity, one can drive the elements of the loading matrix of 𝑊 to become close to zero.

This results in the pruning of the irrelevant latent components 𝑘 during inference.

𝑝(𝑊 |𝛼) =

𝑄∏
𝑗=1

𝐾∏
𝑘=1

N(𝑤 𝑗 ,𝑘 |0, 𝛼−1
𝑘 ),

𝑝(𝛼) =

𝐾∏
𝑘=1

Γ(𝛼𝑘 |𝑎𝛼, 𝑏𝛼),

𝑝(𝜓) = W−1(𝜓 |Λ0, 𝑣0),

where, Γ(·) denotes a gamma distribution andΛ0 represents a symmetric positive definite matrix and

𝑣0 is the degrees of freedom of the inverse Wishart distribution (W−1(·)). The joint probabilistic

distribution of the model 3.1 is given by,

𝑝(𝑋, 𝐹,𝑊, 𝛼, 𝜓) =
[
𝑝(𝑋 |𝐹,𝑊, 𝜓)𝑝(𝑊 |𝛼)𝑃(𝛼)𝑝(𝜓)

]
𝑝(𝐹)

To estimate the model parameters and the latent variables , we need to evaluate the posterior distri-

bution 𝑝(𝐹,𝑊, 𝛼, 𝜓 |𝑋) and marginalising the unintended variables. However, the marginalisations

are very complex and often analytically intractable. Thus, the posterior distribution needs to be

approximated.

3.3.2 Bayesian Canonical Correlation Analysis (BCCA)

In Bayesian CCA, we assume that 𝑁 observations from two different data modalities, 𝑋 (1) and 𝑋 (2)

are generated from a common latent variables 𝐹 ∈ R𝐾×𝑁 .
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Similar to Model 3.1, we can write,

𝑥
(1)
𝑛 = 𝑊 (1) 𝑓𝑛 + 𝜖 (1)𝑛

𝑥
(2)
𝑛 = 𝑊 (2) 𝑓𝑛 + 𝜖 (2)𝑛

𝑓𝑛 ∼ N(0,IK) (3.2)

𝜖
(1)
𝑛 ∼ N(0, 𝜓 (1))

𝜖
(2)
𝑛 ∼ N(0, 𝜓 (2))

Here, in Model 3.2, 𝑊 (1) ∈ R𝑄×𝐾 and 𝑊 (2) ∈ R𝑄×𝐾 are the projection matrices which transform

the latent variables 𝑓𝑛 into the input space of two separate treatments. The joint distribution is

given by,

𝑝(𝑋, 𝐹,𝑊, 𝛼, 𝜓) =

𝑁∏
𝑛=1

2∏
𝑠=1

[
𝑝(𝑥 (𝑠)𝑛 | 𝑓𝑛, 𝑤 (𝑠) , 𝜓 (𝑠))𝑝(𝑤 (𝑠) |𝛼(𝑠))𝑃(𝛼(𝑠))𝑝(𝜓 (𝑠))

]
𝑝( 𝑓𝑛),

𝑝(𝑤 (𝑠) |𝛼(𝑠)) =

𝑄∏
𝑗=1

𝐾∏
𝑘=1

N(𝑤 (𝑠)
𝑗 ,𝑘
|0, 𝛼(𝑠)−1

𝑘
),

𝑝(𝛼(𝑠)) =

𝐾∏
𝑘=1

Γ(𝛼(𝑠)
𝑘
|𝑎 (𝑠)𝛼 , 𝑏 (𝑠)𝛼 ),

𝑝(𝜓 (𝑠)) = W−1(𝜓 (𝑠) |Λ(𝑠)
0 , 𝑣

(𝑠)
0 )

Here, the prior distributions are chosen so that the posterior distributions has the same functional

form. The prior distribution over the loading matrix is chosen to be ARD priors similar to be BFA

setup which helps in recovering the relevant latent factors. The inference of model parameters

and latent variables depends on computing the posterior distribution, 𝑝(𝐹,𝑊, 𝛼, 𝜓 |𝑋) which is

analytically intractable and should be approximated. Following Chong Wang [2007], one can

use the mean field variational Bayes, or the Gibbs sampling. Even there the inference becomes

unusually cumbersome in the presence of high dimensional data. To overcome this, Virtanen er al

(2011) proposed to impose modality wise sparsity. A further extension has been proposed by the

same authors which generalizes the same idea to more than two data modalities, which is known

as the Bayesian group factor analysis.
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3.3.3 Bayesian Group Factor Analysis (BGFA)

For the group factor analysis, we assume that there are 𝑆 many data modalities, where the 𝑠’th data

modality is being represented as 𝑋 (𝑠) ∈ R𝑄×𝑁 , 𝑠 = 1, . . . , 𝑆. Now, equivalent to the latent factor

components discussed in BFA and BCCA, BGFA tries to find the optimal set of 𝐾 latent factors

which can separate between-group associations from within-group associations. Mathematically,

one can write the data from the 𝑠’th group generated as follows,

𝑓𝑛 ∼ N(0,IK)

𝑥
(𝑠)
𝑛 = 𝑊 (𝑠) 𝑓𝑛 + 𝜖 (𝑠)𝑛 (3.3)

𝜖
(𝑠)
𝑛 ∼ N(0, 𝑇 (𝑠)−1)

Where 𝑇 (𝑠)−1 denotes a diagonal covariance matrix, with 𝑇 (𝑠) = 𝑑𝑖𝑎𝑔(𝜏(𝑠)1 , . . . , 𝜏
(𝑠)
𝑄

) as the inverse

of the error variances of the 𝑠’th group. The structure of the loading matrix, 𝑊 , and the latent

structures, 𝐹, are automatically learned by imposing group-wise sparsity through the independent

ARD priors. The automatic pruning of the unimportant latent components is achieved by putting a

separate ARD prior to the elements of𝑊 (𝑠) ,

𝑝(𝑤 (𝑠) |𝛼(𝑠)) =

𝑄∏
𝑗=1

𝐾∏
𝑘=1

N(𝑤 (𝑠)
𝑗 ,𝑘
|0, 𝛼(𝑠)−1

𝑘
),

𝑝(𝛼(𝑠)) =

𝐾∏
𝑘=1

Γ(𝛼(𝑠)
𝑘
|𝑎 (𝑠)𝛼 , 𝑏 (𝑠)𝛼 ),

𝑝(𝜏(𝑠)) = Γ(𝜏(𝑠) |𝑎 (𝑠)𝜏 , 𝑏 (𝑠)𝜏 )

We have chosen the hyperparameters 𝑎 (𝑠)𝛼 , 𝑏
(𝑠)
𝛼 ), 𝑎 (𝑠)𝜏 , 𝑏 (𝑠)𝜏 to be very small number (e.g., 10−14) in

order to get uninformative priors. Finally, we can write the joint distribution as,

𝑝(𝑋, 𝐹,𝑊, 𝛼, 𝜏) =

𝑁∏
𝑛=1

𝑆∏
𝑠=1

[
𝑝(𝑥 (𝑠)𝑛 | 𝑓𝑛, 𝑤 (𝑠) , 𝜏(𝑠))𝑝(𝑤 (𝑠) |𝛼(𝑠))𝑃(𝛼(𝑠))𝑝(𝜏(𝑠))

]
𝑝( 𝑓𝑛)

Note that, the posterior calculations are often analytically intractable and it needs to be approximated

through mean field variational approximation.
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3.3.4 Mean Field Variational Approximation

In Bayesian settings, the calculations regarding the posterior distributions are computationally

challenging. The way around is to approximate the true posterior with a suitable factorized

distribution through Variational Bayesian (VB) setting. Let the model parameters are denoted

by 𝜃 and our goal is to approximate the true posterior, 𝑝(𝜃 |𝑋) with the help of the variational

distribution, 𝑞(𝜃). The main idea in VB is to minimize the dissimilarity, 𝐷 (𝑞; 𝑝) between 𝑞(𝜃)

and 𝑝(𝜃 |𝑋). The most used dissimilarity measure in such cases is the Kullback–Leibler divergence

(𝐾𝐿-divergence) which makes this minimization tractable. In theory, the 𝐾𝐿-divergence is written

as,

𝐷𝐾𝐿 (𝑞 | |𝑝) =
∫

𝑞(𝜃) 𝑙𝑛 𝑝(𝜃 |𝑋)
𝑞(𝜃) 𝑑𝜃

Following Bishop [44], the marginal log-likelihood is written as,

L(𝑞) =

∫
𝑞(𝜃) 𝑙𝑛 𝑝(𝑋, 𝜃)

𝑞(𝜃) 𝑑𝜃

𝑙𝑛 𝑝(𝑋) = L(𝑞) + 𝐷𝐾𝐿 (𝑞 | |𝑝),

whereL(𝑞) is the lower bound of the marginal log likelihood. Note that, 𝑙𝑛 𝑝(𝑋) is constant and this

implies that maximizing the Evidence lower bound (ELBO) L(𝑞) is equivalent to the minimization

of the 𝐾𝐿-divergence 𝐷𝐾𝐿 (𝑞 | |𝑝). We assume that 𝑞(𝜃) can be factorized as 𝑞(𝜃) = ∏
𝑖 𝑞𝑖 (𝜃𝑖) and

L(𝑞) is maximized with respect to all possible 𝑞𝑖 (𝜃𝑖),

𝑙𝑛 𝑞𝑖 (𝜃𝑖) = < 𝑙𝑛 𝑝(𝑋, 𝜃) > 𝑗≠𝑖 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,

where < · > represents the expectation taken with respect to
∏
𝑖 𝑞𝑖 (𝜃𝑖) for all 𝑗 ≠ 𝑖. In BGFA, we

can approximate the full posterior by the following variational distribution,

𝑞(𝜃) = 𝑞(𝐹)
𝑆∏
𝑠=1

𝑞(𝑊 (𝑠))𝑞(𝛼(𝑠))𝑞(𝜏(𝑠)),
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where 𝜃 = {𝐹,𝑊, 𝛼, 𝜏}. Since we have assigned conjugate priors, we can obtain the following

analytically tractable solutions after optimizing 𝑞(𝜃).

𝑞(𝐹) =

𝑁∏
𝑛=1

N( 𝑓𝑛 |𝜇 𝑓𝑛 , Σ 𝑓𝑛),

𝑞(𝑊 (𝑠)) =

𝑄∏
𝑗=1

N(𝑊 (𝑠)
𝑗 ,∗ |𝜇𝑊 (𝑠)

𝑗 ,∗
, Σ

𝑊
(𝑠)
𝑗 ,∗
),

𝑞(𝛼(𝑠)) =

𝐾∏
𝑘=1

Γ(𝛼(𝑠)
𝑘
|𝑎̃ (𝑘)
𝛼𝑠
, 𝑏̃

(𝑘)
𝛼𝑠

), (3.4)

𝑞(𝜏(𝑠)) =

𝑄∏
𝑗=1

Γ(𝜏(𝑠)
𝑗
|𝑎̃ ( 𝑗)
𝜏𝑠
, 𝑏̃

( 𝑗)
𝜏𝑠
),

where the 𝑗’th row of𝑊 (𝑠) is denoted by𝑊 (𝑠)
𝑗 ,∗ . For the optimization, we can follow the variational

Bayes Expectation-Maximization (VBEM) scheme. For the convergence, we assign the relative

change of ELBO, L(𝑞) to fall below a preassigned small value (e,g., 10−5). This is essentially

a sequential procedure where the parameters are updated sequentially. We have only listed the

optimization scheme for BGFA. Procedures for BFA and BCCA follow similar strategies.

3.4 Results

Although the comparative LOD profiles and QTL linkages shown in Figure 3.2 and 3.3 reflect

genetic linkage between the measured traits, one can not comprehend the complex nature of the

interaction between these photosynthesis regulatory partners. Furthermore the question remains if

there exist multiple interaction co-occurring withing a treatment conditions and modulated through

different genetic components. For example, the QTL maps show apparent linkages between different

subsets of measurable parameters under different conditions. Under DHS we observed one set of

overlapping QTLs on chromosome 6 between 𝜙𝐼 𝐼 , gH+, NPQt, 𝜙𝑁𝑂 and 𝜙𝑁𝑃𝑄 , and a distinct set

on chromosome 2 with linkages between 𝜙𝐼 𝐼 and 𝜙𝑁𝑃𝑄 , as well as NPQt (in LHS) but not the

other parameters. These complexities likely reflect the pleiotropic, time-and condition-dependent

interactions among processes and genetic loci. To mitigate this problem we have performed BFA

on each treatment conditions. We observed several trends in the BFA analyses and associated QTL
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maps, as described in the following.

First, different LVs were linked to distinct sets of QTLs. For example, under DHS, LV1 mapped

to a QTL on chromosome 6, LV2 to a QTL on chromosome 1 and LV4 mapped to a QTL on

chromosome 4. The segregation of LV with distinct QTLs was consistently observed across all

conditions, suggesting that BFA was able to partition the observed variation into distinct modes of

behavior that are influenced by different sets of genetic components.

Second, most QTLs associated with LVs were also observed from QTL analyses of individual

parameters. When multiple parameters were linked through a LV, we also observed overlapping

QTL from maps of the individual parameters (Figure 3.2 and 3.3), providing further support that

EFA coupled to QTL mapping was able to identify possible mechanistic and genetic linkages

between traits associated with distinct biochemical/physiological behaviors. For example, leaf

temperature (Tleaf) and relative chlorophyll content (SPAD) showed genetic associations, but only

weak functional connections to other parameters, suggesting that genetic variations in the traits do

not, under our conditions, strongly influence the photosynthetic control mechanisms.

Third, some LV showed functional trends but did not show measurable genetic linkages. For

example, the linkage between 𝜙𝑁𝑂 and gH+ on LV1 during DHS and the link between pmf and

gH+, on LV3 during recovery from LHS (Figure 3.5 and 3.6) showed only small associations with

genomic loci. This behavior may indicate that the observed variations were controlled through

many small effect loci that did not result in measurable associations using our current techniques.

Next, BFA revealed changes in mechanistic interactions and genetic control modes under

different environmental challenges. Under each treatment, both the patterns of correlations among

parameters and the QTL linkages for the contributing LVs were distinct. For example, a key

distinction between Control and DHS was the change in the sign of the correlations between

traits for LV1. In the control, 𝜙𝑁𝑂 and qL were negatively and positively linked to 𝜙𝐼 𝐼 on LV1

respectively. Under DHS, 𝜙𝑁𝑂 and qL became positively and negatively linked respectively at LV1,

with no change in the directionality of the linkage for 𝜙𝐼 𝐼 (Figure 3.5). These changes imply that

the effects of genetic variations on functional/regulatory interactions are distinct under the different
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Figure 3.5: Bayesian Factor Analysis coupled with QTL mapping for genetic linkage between
photosynthetic traits under Control/Pre-stress(Con) (left most panel), DHS (middle panel), LHS
(right most panel).

Figure 3.6: Bayesian Factor Analysis coupled with QTL mapping for genetic linkage between
photosynthetic traits under Recovery after dark heat stress (RecD) (left panel), and Recovery after
light heat stress (RecL) (right panel).
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treatments. Moreover, even when the functional linkages among parameters were similar, e.g.

comparing control and LHS Recovery (Figure 3.6), the LV loading factors mapped to distinct sets

of loci, suggesting that different processes and loci are involved in maintaining and reestablishing

photosynthetic responses before and after LHS. Overall, these changes in functional and genomic

linkages suggest that different sets of genetic components influence these behaviors under different

conditions.

Finally, BFA may resolve distinct but overlapping QTLs. When comparing QTLs of individual

parameters, we observed an apparent linkage between pmf and qL under Control condition (Figure

3.2), whereas BFA suggested that these two parameters are controlled by different interaction

networks (LVs) (Figure 3.5). While we cannot rule out the possibility that this separation was

caused by the limitations of our approach, it suggests that BFA may distinguish between distinct

but closely-linked QTLs as long as they control distinct patterns of behaviors.

One of the shortcoming of using BFA in our framework is we can not make inference from

combining two or more treatment conditions. Similar to clustering approach, BFA can only explain

within group variation. This results in a lack of connection between the latent factors from different

data modalities. For example, the LV1 from Control condition is not comparable with the LV1 from

DHS condition. Consequently, the QTL maps from LVs can not fully resolve the colocalization

between interlinked parameters from multiple treatments.

To mitigate the between group association and possible mechanistic linkages among the differ-

ent treatments we incorporated the between group interactions into our analysis through BCCA and

BGFA. In BCCA, we conducted pairwise comparisons among treatments with different combina-

tions of photosynthetic parameters. In Figure 3.7, we compared the two treatment combinations,

Control and Dark heat stress from the photosynthetic parameters, 𝜙𝐼 𝐼 , pmf, qL, and NPQt. The

upper right panel shows log of the estimated ARD matrix shown as Hinton diagrams where blue

segment corresponds to active components while red segment corresponds to inactive ones. To

compute the number of latent factors, We compared different Hinton diagrams and ground truthed it

based on QTL from each latent factors. Here, we found three Latent factors to be optimal with LV1
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Con DHS

Figure 3.7: Bayesian Canonical Correlation analysis coupled with QTL mapping for genetic linkage
between photosynthetic traits under Control (Con) and dark heat stress (DHS).

is specific to DHS, LV3 is specific to Control. One interesting distinction between the interactions

among the parameters was that, under Control condition, 𝜙𝐼 𝐼 and qL were found to be positively

correlated whereas under DHS, 𝜙𝐼 𝐼 and qL were negatively correlated with a strong association

with NPQt. Also, this LV1 was found to be mapped with the QTLs found with pmf under DHS

(Figure 3.2).

One of our findings from this approach is that in the case where multiple trait interact in opposite

directions (negative correlations), their affect will cancel out and the resulting LV will not detect the

genetic linkages found from individual QTL maps. This is because the LVs are linear combinations

of the individual weights obtained for each trait. For example, in our heterogeneous population,

the observed negative correlations between 𝜙𝐼 𝐼 and NPQt was reflected as a "damped out" effect in
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LV3 and the apparent linkage in Chromosome 2 in missing.

We further applied BCCA on the treatment conditions, DHS and LHS on the same set of

photosynthetic parameters (Figure 3.8). We found two latent factors to be optimal in this setup

with LV1 specific to DHS and LV2 specific to LHS. The notable difference in the mechanistic

connection between the two treatments is through the lack of connection between NPQt and pmf

under LHS. Also, LV2 mapped out to chromosome 2, which co-localized with the 𝜙𝐼 𝐼 and NPQt

under LHS (Figure 3.2). In order to explore the differences and associations between a set of

DHS LHS

Figure 3.8: Bayesian Canonical Correlation analysis coupled with QTL mapping for genetic linkage
between photosynthetic traits under dark heat stress (DHS), and light heat stress (LHS)

measured phenotypes across five treatments, we applied BGFA by concatenating the observed data

matrices vertically. As we have discussed earlier, the resulting loading matrix (𝑊) provided the

connections with measured phenotypes with the auxiliary latent variables and the latent factors

( 𝑓𝑛) were mapped with QTL mapping to show different genetic linkages. The number of latent
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variables optimal under this case were optimally chosen to be five. In Figure 3.9, we plotted out

the loading matrices corresponding to each treatments and Figure 3.10 showed the genetic linkages

corresponding to each latent factors. We found that LV2 was specific to Control condition, and

LV1 was specific to LHS. LV4 was shared by DHS and RecD, whereas LV3 was shared by LHS and

RecD. LV5 was shared by all the treatment conditions barring LHS. One of the key mechanistic

linakages we found is based on the LV4, where the connection of pmf with LV4 is missing under

RecD, but present in DHS. Also, we found the canonical connection between NPQt and pmf was

missing under LHS, which is consistent across the BCCA and BGFA analysis. Since the LVs

are comparable across treatments, we can test for the amount of interactions between traits being

modulated by any particular LV. For example, LV5 which is shared by Con, DHS, RecD and RecL

has a different extent of interactions across treatments. The connection between 𝜙𝐼 𝐼 , 𝜙𝑁𝑂 , pmf and

qL is significantly stronger in Control from others.

From the genetic linkages obtained from the LVs we can confirm the colocalization of 𝜙𝐼 𝐼 ,

𝜙𝑁𝑂 and NPQt being modulated by a QTL regions at chromosome 2. We found a QTL peak at

chromosome from LV4 which could be mechanistically linking phenotypes of interest. Also, with

LV5 and LV3, we found QTL peaks at chromosome 7 which were not found from individual QTL

msps or with BFA or BCCA.

3.5 Discussion

We aimed to extend the analyses of biophysical measurements of photosynthesis to understand

how nature has tweaked key processes to respond to changing environmental conditions. This is

possible because of the availability of inexpensive genomic sequencing and the development of

rapid and detailed phenotyping that combines measurements of photosynthetic regulatory networks

at multiple points. The combined data can give a more resolved view of the interplay of biophysical

processes in vivo and the genetic components that control them. However, methods to handle

such hyperdimensional data sets are still being developed. While it is possible to make predictions

from such data sets using ML, the need to generate and test specific mechanistic hypotheses is
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essential to the scientific method. The methods described representing first-order attempts to use

these combined tools to compress hyperdimensional data into usable forms (LVs) and use these

to generate and test hypothetical models for how genetic polymorphisms impact the regulatory

network of photosynthesis. We also show that latent factors can provide a deeper analysis of more

complex interacting networks, by teasing apart distinct modes of interactions and specific genetic

components that control them. The results strongly support the view that the regulatory network is

DHS LHSCON

RecD RecL

Figure 3.9: Bayesian Group factor analysis of photosynthetic traits under Control (Con), dark heat
stress (DHS), light heat stress (LHS), Recovery after dark heat stress (RecD) , and Recovery after
light heat stress (RecL).

highly flexible and controlled by distinct sets of ancillary genetic components depending on specific

environmental challenges, consistent with the genotype-by-environment interaction paradigm.

We conclude that, in the cowpea diversity panels we used and under the conditions of our
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Figure 3.10: QTL analysis of resulting LVs from BGFA

experiments, genetic variations observed in leaf movements do not lead to measurable variations in

photoprotection under low-temperature stress. Further, responses to DHS and LHS are governed by

distinct genetic variations that broadly impact non-qE-dependent NPQ mechanisms, but not qE or

transpiration rates. In addition, genetic variation in transpiration-induced cooling did not influence

the tolerance of PSII to LHS and DHS. the methods will no doubt be advanced by increasing the

diversity and resolution of genetic variants, the numbers of specific processes measured, and the

sophistication of the modeling, including the use of machine learning.

These observations suggest that latent factors can be helpful in applications towards generating

hypothetical models from genetic diversity experiments that measure multiple, functionally-related

phenotypes. Because we used the results of latent factors for subsequent analyses, i.e., QTL
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mapping, combining the two marks and interpreting one in light of the other provides some

confidence in the conclusions. His approaches should also be useful for crop improvement efforts,

especially in identifying specific mechanisms and genetic components that modulate photosynthetic

efficiency and resilience under diverse environmental challenges.

The results also emphasize certain caveats that need to be considered for immediate applica-

tions and improved methods of development. Some of these issues can be alleviated by introducing

functions to linearizing parameters or adding additional measurements that discriminate between

possible mechanisms. other issues, including the simplified assumptions of linear interdepen-

dencies and compensation between parameters, multiple interpretations of correlational data, etc.,

will require the development of next-level approaches, such as extended methods like clustering

algorithms to determine and constrain possible LV structures. Also, using FA, we explored the

possibility of deciding possible latent space in the phenotypic area which can regulate specific phe-

notypic interactions. They intend to extend this knowledge by possibly backtracking the phenotypic

interactions by exploring the latent factors in the genomic space. While incorporating the gene

regulatory network in our desired data, we expect to observe the gene-driven pathways controlling

the phenotypic interactions.

LV structures help explain the mechanistic bases of biophysical mechanisms corresponding

to causal pathways (domain-specific) in phenotype interactions. In fact, our empirically mo-

tivated LV proposes a new research theme for understanding the interdependence across the

𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 space. Methodological and practical innovations for

quantifying such pathways provide scientific grounds for the functions of photosynthetic regulatory

pathways. However, dominant correlations in a system can result from parallel transitive or indirect

interactions. We show certain classes of hypotheses can be generated and tested using simple

comparisons of QTL maps. But still the question remains how we can model the interactions

or correlations among the measured phenotypes with a given set of predictors. We model the

correlations among multiple traits with a selected number of predictors in the following chapter.
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CHAPTER 4

CMPLE TO DECODE PHOTOSYNTHESIS USING THE MINORIZE-MAXIMIZE
ALGORITHM

4.1 Motivation

4.1.1 General background

Understanding photosynthesis, how solar energy transduction enables and limits the energy pro-

ductivity of crops is critical for improving the quality and resilience of agriculture in a rapidly

changing world. Abiotic stress factors, e.g., high light intensities, high or low temperatures, lack of

water, inhibit the ability to use light energy productively and lead to photodamage to the photosyn-

thetic machinery [45]. Plants can maintain photochemistry to adapt to the challenges of non-ideal

environments using a range of mechanisms, where several photosynthetic responses can contribute

to this maintenance of yield, and it is possible to harness these variations to improve crop per-

formance. However, the dynamics of photosynthetic responses may include complex interactions

among species, genotypes, developmental stages, or other environmental conditions. The recent

development of high-throughput phenotyping platforms [46, 47] can rapidly and non-invasively

measure multiple, potentially related, photosynthetic traits and environmental parameters. An-

alyzing such voluminous data with complex interactions among multiple traits, genotypes, and

environmental variables requires computationally efficient and interpretable statistical models that

can potentially explore the mechanistic bases of useful or adaptive photosynthetic processes.

Several methods have been suggested for investigating the statistical association between mea-

sured traits and genetic markers, including genome-wide association studies (GWAS) and whole-

genome regression (WGR) approaches, which produce familiar quantitative trait loci (QTL) map

[48, 49]. Standard QTL mapping has mainly been used to analyze the genetic association with

individual traits. Nevertheless, alterations in genetic loci can affect the associations between multi-

ple characteristics, classified as meaningful biological mechanisms. This is particularly important

54



when addressing important but complex traits such as photosynthetic efficiency or crop yield, which

can be affected by multiple processes under different conditions. It is thus essential to interpret

associations between traits using genetic markers and determine if variations at different genetic

markers affect the inter-relationships among traits through similar or distinct mechanisms. A natu-

ral choice for multiple-trait analysis is to extend single-trait GWAS or WGR methods directly to the

multiple-trait domain [50, 51]. But, characterization of such methods to elucidate the association

among multiple traits remains challenging [52, 53]. We address a few of the challenges below.

Multiple-trait analysis tools do not exploit the information in the correlation matrix of related

traits and thus cannot connect them with genetic and environmental predictors. Pleiotropy, the effect

of genetic diversity on multiple traits, plays a significant role under different abiotic stresses [54, 55].

Without modeling the correlation matrix, one can not fully express the occurrence of pleiotropy in

real-world applications. Also, dimension reduction procedures, where a multivariate response is

summarized into a univariate score using principal component (PC) analysis, have limited usage

due to its lack of interpretability. To address this stated need, we propose an interpretable model of

the variance-covariance matrix in terms of the predictor variables and related inference.

Pourahmadi [56] used the Cholesky decomposition, and expressed the entries of the variance-

covariance matrix in terms of the unrestricted parameters and guaranteed positive-definiteness of the

variance-covariance matrix. Although one could model these unrestricted parameters in terms of

the predictor variables, the regression parameters do not have any easy interpretation. Alternatively,

one can model the covariance matrix as a parsimonious quadratic function of predictor variables

[57]. For modelling the variance-covariance in terms of predictor variables, Zou et al. [58]

proposed to use a regression model for the second moments of the response variable. The authors

then imposed a positivity restriction on the resulting eigenvalues to ensure positive definiteness of

the variance-covariance matrix. Unfortunately, for these methods, model parameters lack direct

interpretation when correlations among responses are of utmost interest.

A downside of correlation modeling is the computational burden to estimate many parameters

[59]. If there are 𝑝 predictors and 𝑞 traits, the correlation and standard deviation modeling involve
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at least (𝑝 + 1)𝑞(𝑞 + 1)/2 model parameters. The estimation of so many parameters is challenging

and computationally expensive.

These limitations motivate us to develop a framework to model the correlations and standard

deviations among the responses in terms of several predictor variables. We use the pairwise

composite likelihood method for statistical inference. For efficient estimation of the parameters

we develop an Minorize-Maximize (MM) algorithm. The method is abbreviated as CMPLE

for Correlation Modeling under Pairwise Likelihood Estimation. Specifically, by comparing the

impacts of genetic variations on the correlations among a set of related phenotypes, we can

distinguish between certain classes of (well-defined) hypothetical biological models and determine

whether combinations of genetic variations and environmental conditions affect similar or distinct

mechanisms. We show that it is possible to distinguish between classes of hypothetical models

under certain conditions, leading to new biological discoveries. This analysis has direct application

in plant breeding research. We predict that by applying CMPLE to diversity panels from different

species, we can reveal additional mechanisms of adaptation and will guide the breeding and

engineering of photosynthesis for higher, more climate-resilient productivity.

4.1.2 Contributions to the literature

Finding the possible genetic variations and environmental conditions that dictate the photodamage

or photoprotection is a critical step in improving photosynthetic yield and productivity. We believe

that modeling the pairwise correlations through the genetic and environmental predictors is the

best way to explore the dynamic nature of the problem stated. With this goal in mind, we have

developed CMPLE, where the correlations among different traits are subjectively modeled and

estimated using a pairwise composite likelihood framework. The pairwise-composite likelihood

method has, in the past, been used in different contexts. For example, Lele and Taper [60] used

it in the estimation of variance components, Gao et al. [61] used it in genome-wide association

studies, and Bai et al. [62] used it in spatial-clustered data. However, to the best of our knowledge,

the pairwise-composite likelihood method has not been used to model pairwise correlations. Our
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work directly models the correlations and standard deviation in terms of predictor variables.

Instead of the pairwise likelihood approach if one tries the conventional full likelihood based

inference using the 𝑞 variate response, then the parameters of the standard deviations and cor-

relations need to be estimated in such a way that the resulting 𝑞 × 𝑞 variance-covariance matrix

is positive definite. Without any doubt, this is an exceptionally hard optimization problem and

difficult to interpret in practical situations. Pairwise likelihood approach allows the modeling of

pairwise correlation between 𝑞 multivariate responses avoiding the requirement of the 𝑞 × 𝑞 vari-

ance covariance matrix to be positive definite. In real life settings, biologists need to address how

the pairwise correlations are related to the predictors, not the entire variance-covariance matrix.

Our estimated model parameters have easy interpretations which can be directly applied in various

situations.

Our approach also mitigates the problem of the computational burden. To alleviate the compu-

tational issue, we develop a Minorize-Maximimize (MM) algorithm [63] for parametric estimation.

Although the MM algorithm has been successfully used in different areas [64, 65, 66], it has never

been used in correlation modeling. The critical aspect of the MM algorithm is to find a suitable

minorizing function that helps optimize a complex objective function (aka logarithm of the pairwise

composite likelihood, in our case). There is no standard recipe to obtain a minorizing function.

It is very much problem-specific and requires innovative use of mathematical inequalities. Never-

theless, our numerical studies show that the use of the MM algorithm can reduce the computation

time manifold. It has also demonstrated superior performance while handling a large number of

parameters. We have developed an R function, called CMPLE which can be readily applied while

modeling correlations between multiple responses in terms of predictors (both continuous and

categorical).
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4.2 Models and notations

4.2.1 Background

To set the models and notations assume that the observed data are collected from 𝑛 independent

units/subjects. For each unit, 𝑞 traits (phenotypes) and 𝑝 features (candidate genes) are observed.

Let 𝑌𝑖, 𝑗 and 𝑋𝑖,𝑟 be the 𝑗 th trait and the 𝑟th feature of the 𝑖th unit, 𝑗 = 1, . . . , 𝑞, 𝑟 = 1, . . . , 𝑝, and

𝑖 = 1, . . . , 𝑛. The goal is to study the correlation between any pair of phenotypes and investigate

how this correlation is regulated by a set of features. Let us assume that conditional on the

covariate 𝑋𝑖 = (𝑋𝑖,1, . . . , 𝑋𝑖,𝑝)𝑇 , 𝑌𝑖 = (𝑌𝑖,1, . . . , 𝑌𝑖,𝑞)𝑇 follows a multivariate normal distribution

with mean 𝜇𝑖 = 0, and variance-covariance matrix Σ𝑖. The goal is understanding the correlation

and its behavior with respect to the features. The variance-covariance matrix can be presented

as Σ𝑖 = Diag(𝜎𝑖,1, . . . , 𝜎𝑖,𝑞) 𝑅𝑖 Diag(𝜎𝑖,1, . . . , 𝜎𝑖,𝑞), where 𝑅𝑖 = ((𝜌𝑖, 𝑗 ,𝑘 )) is the 𝑞 × 𝑞 correlation

matrix for the 𝑞 phenotypes from the 𝑖th subject, and the variance of 𝑌𝑖, 𝑗 is denoted by 𝜎2
𝑖, 𝑗

.

4.2.2 Correlation modeling

To achieve that goal, 𝜌𝑖, 𝑗 ,𝑘 , the pairwise correlation between 𝑌𝑖, 𝑗 and 𝑌𝑖,𝑘 , is written as 𝜌𝑖, 𝑗 ,𝑘 =

𝑔−1(𝜂𝑖, 𝑗 ,𝑘 ), where 𝑔 : (−1, 1) → (−∞,∞) is a known link function to transform the correlation to

the linear predictor defined as 𝜂𝑖, 𝑗 ,𝑘 = 𝛿 𝑗 ,𝑘,0+
∑𝑝

𝑟=1 𝛿 𝑗 ,𝑘,𝑟𝑋𝑖,𝑟 , where 𝛿 𝑗 ,𝑘 = (𝛿 𝑗 ,𝑘,0, 𝛿 𝑗 ,𝑘,1, . . . , 𝛿 𝑗 ,𝑘,𝑝)𝑇

is the regression parameter. Observe that 𝜂𝑖, 𝑗 ,𝑘 = 𝑔(𝜌𝑖, 𝑗 ,𝑘 ), and we require that 𝑔 to be a one-to-one

function. There are many popular choices for the link function 𝑔. For the convenience, we take

𝑔(•) = log{(1 + •)/(1 − •)}. This results in

𝜌𝑖, 𝑗 ,𝑘 = 𝑔−1(𝜂𝑖, 𝑗 ,𝑘 ) = 1 − 2
1 + exp(𝜂𝑖, 𝑗 ,𝑘 )

= 1 − 2
1 + exp(𝛿 𝑗 ,𝑘,0 +

∑𝑝

𝑟=1 𝛿 𝑗 ,𝑘,𝑟𝑋𝑖,𝑟)
. (4.1)

The regression coefficient 𝛿 𝑗 ,𝑘,𝑟 has a monotone linear relation with the correlation. Hence, we can

interpret a predictor’s effect on the correlation via the regression parameters 𝛿 𝑗 ,𝑘,𝑟 . Specifically, if

𝛿 𝑗 ,𝑘,𝑟 > 0 (𝛿 𝑗 ,𝑘,𝑟 < 0), then the correlation between the 𝑗 th and 𝑘th phenotype increases (decreases)

with the 𝑟th feature while other features remains unchanged.
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Although any model is just an approximation of the truth, we can use the model to compute

another interpretable measure, such as the average marginal effect (AME) [67, 68, 69]. In general,

AME on the mean is defined as the change in the conditional mean of an outcome variable with

respect to a single feature. Likewise, the AME of the 𝑟th feature on the ( 𝑗 , 𝑘)th pairwise correlation

can be defined as the average change of the correlation for a change in the 𝑟th feature. Let us denote

the (𝑝 − 1) component vector (𝑋𝑖,1, . . . , 𝑋𝑖,𝑟−1, 𝑋𝑖,𝑟+1, . . . , 𝑋𝑖,𝑝)𝑇 by 𝑋𝑖,(−𝑟) . Then, for a binary

feature 𝑋𝑟 , the AME is defined as 𝐴𝑀𝐸𝑟 = 𝐸{𝜌𝑖, 𝑗 ,𝑘 |𝑋𝑖,𝑟 = 1, 𝑋𝑖,(−𝑟)} − 𝐸{𝜌𝑖, 𝑗 ,𝑘 |𝑋𝑖,𝑟 = 0, 𝑋𝑖,(−𝑟)} =

𝐸{𝜑𝑟,( 𝑗 ,𝑘) (𝑋𝑖, 𝜃)}, where 𝜃 denotes all the parameters and

𝜑𝑟,( 𝑗 ,𝑘) (𝑋𝑖, 𝜃) = 2
{

1
1 + exp(𝛿 𝑗 ,𝑘,0 +

∑𝑝
𝑠≠𝑟 𝛿 𝑗 ,𝑘,𝑠𝑋𝑖,𝑠)

− 1
1 + exp(𝛿 𝑗 ,𝑘,0 + 𝛿 𝑗 ,𝑘,𝑟 +

∑𝑝
𝑠≠𝑟 𝛿 𝑗 ,𝑘,𝑠𝑋𝑖,𝑠)

}
.

For a continuous feature 𝑋𝑟 , 𝐴𝑀𝐸𝑟 = 𝐸{𝜑𝑟,( 𝑗 ,𝑘) (𝑋𝑖, 𝜃)}, where

𝜑𝑟,( 𝑗 ,𝑘) (𝑋𝑖, 𝜃) =
(
𝜕𝜌𝑖, 𝑗 ,𝑘

𝜕𝑋𝑖,𝑟

)
= 2𝛿 𝑗 ,𝑘,𝑟

exp(𝛿 𝑗 ,𝑘,0 +
∑𝑝

𝑠=1 𝛿 𝑗 ,𝑘,𝑠𝑋𝑖,𝑠)
{1 + exp(𝛿 𝑗 ,𝑘,0 +

∑𝑝

𝑠=1 𝛿 𝑗 ,𝑘,𝑠𝑋𝑖,𝑠)}2 .

Let 𝜃̂ be the estimator of 𝜃 and 𝑆 denotes the estimated variance-covariance matrix of 𝜃̂. Then the

estimator of 𝐴𝑀𝐸𝑟 is �𝐴𝑀𝐸𝑟 = (1/𝑛)∑𝑛
𝑖=1 𝜑𝑟 ( 𝑗 ,𝑘) (𝑋𝑖, 𝜃̂). Applying the delta method, we obtain

the standard error of 𝐴𝑀𝐸𝑟 as√︄
[∇𝜃

∑𝑛
𝑖=1 𝜑𝑟 ( 𝑗 ,𝑘) (𝑋𝑖, 𝜃)

𝑛
]⊤
𝜃=𝜃̂

𝑆 [∇𝜃
∑𝑛
𝑖=1 𝜑𝑟 ( 𝑗 ,𝑘) (𝑋𝑖, 𝜃)

𝑛
]
𝜃=𝜃̂
,

where ∇𝜃 (•) ≡ 𝜕 (•)/𝜕𝜃.

4.2.3 Standard deviation modeling

The log-linear function is used to model the standard deviation of the phenotypes in terms on the

features. Specifically, for the 𝑗 th response and the 𝑖th experimental unit, the standard deviation is

modeled as

log(𝜎𝑖, 𝑗 ) = 𝛼 𝑗 ,0 +
𝑝∑︁
𝑟=1

𝛼 𝑗 ,𝑟𝑋𝑖,𝑟 . (4.2)

The 𝛼 parameters measure the effect of the features on the standard deviation. Like the correlation,

AME can be used to measure the effect of the features.
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4.3 Estimation methodology

4.3.1 Composite likelihood

As mentioned previously, in our pairwise modeling, there is no guaranty that the correlation

matrix 𝑅𝑖 is positive definite. Thus, the model parameters cannot be estimated by maximizing the

multivariate normal density function. With this, we propose to estimate the model parameters via

the pairwise-composite likelihood method. Now define 𝜃 = (𝛼𝑇 , 𝛿𝑇 )𝑇 , where 𝛼 = (𝛼𝑇1 , . . . , 𝛼
𝑇
𝑞 )𝑇

and 𝛿 = (𝛿𝑇1,2, 𝛿
𝑇
1,3, . . . , 𝛿

𝑇
𝑞−1,𝑞)

𝑇 . The pairwise composite likelihood function for 𝑞 responses is

𝐶𝐿 (𝜃) =

𝑞−1∏
𝑗=1

𝑞∏
𝑘= 𝑗+1

L 𝑗 ,𝑘 (𝜃),

where L 𝑗 ,𝑘 (𝜃) =
∏𝑛
𝑖=1 𝑓 (𝑌𝑖, 𝑗 , 𝑌𝑖,𝑘 |𝑋𝑖) denotes the pairwise likelihood function for the 𝑗 th and 𝑘th

responses, and

𝑓 (𝑌𝑖, 𝑗 , 𝑌𝑖,𝑘 |𝑋𝑖) =
1

2𝜋𝜎𝑖, 𝑗𝜎𝑖,𝑘
√︃

1 − 𝜌2
𝑖, 𝑗 ,𝑘

× exp
{
− 1

2(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)

(
𝑌2
𝑖, 𝑗

𝜎2
𝑖, 𝑗

−
2𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘
𝜎𝑖, 𝑗𝜎𝑖,𝑘

+
𝑌2
𝑖,𝑘

𝜎2
𝑖,𝑘

)}
. (4.3)

The estimator of 𝜃 is defined as 𝜃̂ = argmax𝜃ℓ(𝜃), where ℓ(𝜃) = log{𝐶𝐿 (𝜃)}. Note that the length

of the 𝜃-vector is 𝑛𝜃 = 𝑞 × (𝑝 + 1) +
(𝑞
2
)
× (𝑝 + 1) = (𝑝+1)𝑞(𝑞+1)

2 . For a scenario with two features

(𝑝 = 2) and four phenotypes (𝑞 = 4), 𝑛𝜃 is 30. For the scenario of 𝑝 = 6 and 𝑞 = 4, 𝑛𝜃 is 70.

Thus, applying the standard Newton-Raphson method or its variant is very time-consuming as it

will require repeated inversion of a large matrix. Therefore, we develop an MM algorithm which

is more computationally efficient than direct maximization of ℓ(𝜃) using the Newton-Raphson

method.

4.3.2 The MM algorithm

The MM algorithm squarely depends on finding a suitable minorization function for the log of the

composite likelihood, ℓ(𝜃). Note that ℓ(𝜃) = ∑
𝑗<𝑘 ℓ 𝑗 ,𝑘 (𝛼, 𝛿), where ℓ 𝑗 ,𝑘 (𝛼, 𝛿) is the logarithm of
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the pairwise likelihood function

ℓ 𝑗 ,𝑘 (𝜃) = −1
2

𝑛∑︁
𝑖=1

{
log(𝜎2

𝑖, 𝑗 ) + log(𝜎2
𝑖,𝑘 ) + log(1 − 𝜌2

𝑖, 𝑗 ,𝑘 )

+ 1
(1 − 𝜌2

𝑖, 𝑗 ,𝑘
)

(
𝑌2
𝑖, 𝑗

𝜎2
𝑖, 𝑗

−
2𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘
𝜎𝑖, 𝑗𝜎𝑖,𝑘

+
𝑌2
𝑖,𝑘

𝜎2
𝑖,𝑘

)}
.

Now, we state the main result based on which our analysis is based on.

Theorem 1. For any 𝜃 and 𝜃0 in the parameter space,

ℓ∗(𝜃 |𝜃 (0)) =
𝑝∑︁
𝑗=1
𝑔1(𝛼 𝑗 |𝜃 (0)) +

∑︁
𝑗<𝑘

∑︁
𝑔2(𝛿 𝑗 ,𝑘 |𝜃 (0) + 𝑔3(𝜃 (0))

is a minorization function of ℓ(𝜃) such that and ℓ(𝜃) ≥ ℓ∗(𝜃 |𝜃 (0)) ∀𝜃, 𝜃0 and ℓ(𝜃) = ℓ∗(𝜃 |𝜃), where

𝑔1(𝛼 𝑗 |𝜃 (0)) =
∑
𝑠:𝑠< 𝑗 𝜓1,𝑠, 𝑗 (𝛼 𝑗 − 𝛼(0)

𝑗
, 𝑗 |𝜃 (0)) + ∑

𝑠:𝑠> 𝑗 𝜓1, 𝑗 ,𝑠 (𝛼 𝑗 − 𝛼(0)
𝑗
, 𝑗 |𝜃 (0)) for 𝑗 = 1, . . . , 𝑞,

𝑔2(𝛿 𝑗 ,𝑘 |𝜃 (0)) = 𝜓2, 𝑗 ,𝑘 (𝜌 𝑗 ,𝑘 |𝜃 (0)) for 𝑗 ≠ 𝑘 , and 𝑔3(𝜃 (0)) =
∑∑

𝑗<𝑘 𝜓3, 𝑗 ,𝑘 (𝜃 (0)), with

𝜓1, 𝑗 ,𝑘 (𝛼𝑟 − 𝛼(0)
𝑟 , 𝑟 |𝜃 (0)) =

𝑛∑︁
𝑖=1

[{
1 +

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)

}
𝑍𝑇𝑖 (𝛼

(0)
𝑟 − 𝛼𝑟)

−
𝑌2
𝑖,𝑟

4𝜎 (0)2
𝑖,𝑟

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

exp{4𝑍𝑇𝑖 (𝛼
(0)
𝑟 − 𝛼𝑟)}

−
{ (𝑌2

𝑖, 𝑗
+ 𝑌2

𝑖,𝑘
)

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)

}
exp{3𝑍𝑇𝑖 (𝛼

(0)
𝑟 − 𝛼𝑟)}

]
,
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𝜓2, 𝑗 ,𝑘 (𝜌 𝑗 ,𝑘 |𝜃 (0)) =
𝑛∑︁
𝑖=1

[
−1

2
log(1 − 𝜌2

𝑖, 𝑗 ,𝑘 ) −


𝑌2
𝑖, 𝑗

4𝜎 (0)2
𝑖, 𝑗

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
+

𝑌2
𝑖,𝑘

4𝜎 (0)2
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

 ×

©­«
1 − 𝜌(0)

2

𝑖, 𝑗 ,𝑘

1 − 𝜌2
𝑖, 𝑗 ,𝑘

ª®¬
2

+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
log ©­«

1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘

1 − 𝜌2
𝑖, 𝑗 ,𝑘

ª®¬
−

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
6𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
©­«
1 − 𝜌(0)

2

𝑖, 𝑗 ,𝑘

1 − 𝜌2
𝑖, 𝑗 ,𝑘

ª®¬
3

−

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)
©­«
1 + 𝜌(0)

𝑖, 𝑗 ,𝑘

1 + 𝜌𝑖, 𝑗 ,𝑘
ª®¬

3

+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)
log ©­«

1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

1 + 𝜌𝑖, 𝑗 ,𝑘
ª®¬
]
,

and

𝜓3, 𝑗 ,𝑘 (𝜃 (0)) =
𝑛∑︁
𝑖=1

{ (
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)
− 1

2
log(𝜎 (0)2

𝑖, 𝑗
𝜎

(0)2
𝑖,𝑘

)
}
.

Proof of Theorem 1: Conditional on the covariate 𝑋𝑖,𝑌𝑖 = (𝑌𝑖,1, . . . , 𝑌𝑖,𝑞)𝑇 follows a multivariate

normal distribution with mean 0 and variance-covariance matrix Σ𝑖. As defined in Section 4.3.1, the

pairwise likelihood for the ( 𝑗 , 𝑘)th response is L 𝑗 ,𝑘 (𝜃) =
∏𝑛
𝑖=1 𝑓 (𝑌𝑖, 𝑗 , 𝑌𝑖,𝑘 |𝑋𝑖), with 𝑓 (𝑌𝑖, 𝑗 , 𝑌𝑖,𝑘 |𝑋𝑖)

is given in (4.3). The logarithm of L 𝑗 ,𝑘 (𝜃) is

ℓ 𝑗 ,𝑘 (𝛼, 𝛿) = −1
2

𝑛∑︁
𝑖=1

[
log(𝜎2

𝑖, 𝑗 ) + log(𝜎2
𝑖,𝑘 ) + log(1 − 𝜌2

𝑖, 𝑗 ,𝑘 )

+ 1
(1 − 𝜌2

𝑖, 𝑗 ,𝑘
)

(
𝑌2
𝑖, 𝑗

𝜎2
𝑖, 𝑗

−
2𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘
𝜎𝑖, 𝑗𝜎𝑖,𝑘

+
𝑌2
𝑖,𝑘

𝜎2
𝑖,𝑘

)]
.

To derive the minorization function for ℓ 𝑗 ,𝑘 , we consider each term separately. Consider the

following term

−
𝑌2
𝑖, 𝑗

𝜎2
𝑖, 𝑗
(1 − 𝜌2

𝑖, 𝑗 ,𝑘
)
= −

𝑌2
𝑖, 𝑗

𝜎
(0)2
𝑖, 𝑗

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
×
𝜎

(0)2
𝑖, 𝑗

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

𝜎2
𝑖, 𝑗
(1 − 𝜌2

𝑖, 𝑗 ,𝑘
)

≥ −
𝑌2
𝑖, 𝑗

2𝜎 (0)2
𝑖, 𝑗

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

{©­«
𝜎

(0)
𝑖, 𝑗

𝜎𝑖, 𝑗

ª®¬
4

+ ©­«
1 − 𝜌(0)

2

𝑖, 𝑗 ,𝑘

1 − 𝜌2
𝑖, 𝑗 ,𝑘

ª®¬
2 }
.
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The above inequality follows from the AM-GM inequality. Similarly, we have

−
𝑌2
𝑖,𝑘

𝜎2
𝑖,𝑘
(1 − 𝜌2

𝑖, 𝑗 ,𝑘
)
= −

𝑌2
𝑖,𝑘

𝜎
(0)2
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
×
𝜎

(0)2
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

𝜎2
𝑖,𝑘
(1 − 𝜌2

𝑖, 𝑗 ,𝑘
)

≥ −
𝑌2
𝑖,𝑘

2𝜎 (0)2
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

{©­«
𝜎

(0)
𝑖,𝑘

𝜎𝑖,𝑘

ª®¬
4

+ ©­«
1 − 𝜌(0)

2

𝑖, 𝑗 ,𝑘

1 − 𝜌2
𝑖, 𝑗 ,𝑘

ª®¬
2 }
.

Next, after replacing 𝜌𝑖, 𝑗 ,𝑘 by 1 − 2/{1 + exp(𝛿 𝑗 ,𝑘,0 +
∑𝑝

𝑟=1 𝛿 𝑗 ,𝑘,𝑟𝑋𝑖,𝑟)}, in the term

𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘/𝜎𝑖, 𝑗𝜎𝑖,𝑘 (1 − 𝜌2
𝑖, 𝑗 ,𝑘

), we obtain

𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘

𝜎𝑖, 𝑗𝜎𝑖,𝑘 (1 − 𝜌2
𝑖, 𝑗 ,𝑘

)
=

𝑌𝑖, 𝑗𝑌𝑖,𝑘

𝜎𝑖, 𝑗𝜎𝑖,𝑘 (1 − 𝜌2
𝑖, 𝑗 ,𝑘

)

−
2𝑌𝑖, 𝑗𝑌𝑖,𝑘

𝜎𝑖, 𝑗𝜎𝑖,𝑘 (1 − 𝜌2
𝑖, 𝑗 ,𝑘

){1 + exp(𝛿 𝑗 ,𝑘,0 +
∑𝑝

𝑟=1 𝛿 𝑗 ,𝑘,𝑟𝑋𝑖,𝑟)}

=

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2
−
(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎𝑖, 𝑗𝜎𝑖,𝑘 (1 − 𝜌2

𝑖, 𝑗 ,𝑘
)

−

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2
−
(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
𝜎𝑖, 𝑗𝜎𝑖,𝑘 (1 − 𝜌2

𝑖, 𝑗 ,𝑘
){1 + exp(𝛿 𝑗 ,𝑘,0 +

∑𝑝

𝑟=1 𝛿 𝑗 ,𝑘,𝑟𝑋𝑖,𝑟)}
(4.4)

= 𝐵1 + 𝐵2 + 𝐵3 + 𝐵4.

Now,

𝐵1 =

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎𝑖, 𝑗𝜎𝑖,𝑘 (1 − 𝜌2
𝑖, 𝑗 ,𝑘

)
≥

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

{
1 + log

(
𝜎

(0)
𝑖, 𝑗

𝜎𝑖, 𝑗

)
+
(
𝜎

(0)
𝑖,𝑘

𝜎𝑖,𝑘

)
+
(1 − 𝜌(0)

2

𝑖, 𝑗 ,𝑘

1 − 𝜌2
𝑖, 𝑗 ,𝑘

)}
,

and this inequality follows due to the fact that for any generic 𝑥 > 0, 𝑥 ≥ {1 + log(𝑥)} and equality

holds when 𝑥 = 1. Next, using the AM-GM inequality we have

𝐵2 = −

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎𝑖, 𝑗𝜎𝑖,𝑘 (1 − 𝜌2

𝑖, 𝑗 ,𝑘
)
≥ −

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
6𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

{(
𝜎

(0)
𝑖, 𝑗

𝜎𝑖, 𝑗

)3
+
(
𝜎

(0)
𝑖,𝑘

𝜎𝑖,𝑘

)3
+
(1 − 𝜌(0)

2

𝑖, 𝑗 ,𝑘

1 − 𝜌2
𝑖, 𝑗 ,𝑘

)3}
.

After replacing 1 + exp(𝛿 𝑗 ,𝑘,0 +
∑𝑝

𝑟=1 𝛿 𝑗 ,𝑘,𝑟𝑋𝑖,𝑟) by 2/
(
1 − 𝜌𝑖, 𝑗 ,𝑘

)
in (4.4), we have

𝐵3 + 𝐵4 = −

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎𝑖, 𝑗𝜎𝑖,𝑘 (1 + 𝜌𝑖, 𝑗 ,𝑘 )
+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎𝑖, 𝑗𝜎𝑖,𝑘 (1 + 𝜌𝑖, 𝑗 ,𝑘 )

.
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Now,

𝐵3 = −

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎𝑖, 𝑗𝜎𝑖,𝑘 (1 + 𝜌𝑖, 𝑗 ,𝑘 )

≥ −

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)

{©­«
𝜎

(0)
𝑖, 𝑗

𝜎𝑖, 𝑗

ª®¬
3

+ ©­«
𝜎

(0)
𝑖,𝑘

𝜎𝑖,𝑘

ª®¬
3

+ ©­«
1 + 𝜌(0)

𝑖, 𝑗 ,𝑘

1 + 𝜌𝑖, 𝑗 ,𝑘
ª®¬

3 }
,

and

𝐵4 =

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎𝑖, 𝑗𝜎𝑖,𝑘 (1 + 𝜌𝑖, 𝑗 ,𝑘 )

≥

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)

{
1 + log ©­«

𝜎
(0)
𝑖, 𝑗

𝜎𝑖, 𝑗

ª®¬ + log ©­«
𝜎

(0)
𝑖,𝑘

𝜎𝑖,𝑘

ª®¬ + log ©­«
1 + 𝜌(0)

𝑖, 𝑗 ,𝑘

1 + 𝜌𝑖, 𝑗 ,𝑘
ª®¬
}
,

and these two inequalities follow from the AM-GM inequality and 𝑥 ≥ 1+log(𝑥) for any generic

𝑥 > 0.
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We further define

𝜓1, 𝑗 ,𝑘 (𝛼𝑟 − 𝛼(0)
𝑟 , 𝑟 |𝜃 (0))

=

𝑛∑︁
𝑖=1

{
log

(
𝜎

(0)
𝑖,𝑟

𝜎𝑖,𝑟

)
−

𝑌2
𝑖,𝑟

4𝜎 (0)2
𝑖,𝑟

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

(
𝜎

(0)
𝑖,𝑟

𝜎𝑖,𝑟

)4

+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
log

(
𝜎

(0)
𝑖,𝑟

𝜎𝑖,𝑟

)

−
(𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘
)

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

(
𝜎

(0)
𝑖,𝑟

𝜎𝑖,𝑟

)3

−

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)

(
𝜎

(0)
𝑖,𝑟

𝜎𝑖,𝑟

)3

+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)
log

(
𝜎

(0)
𝑖,𝑟

𝜎𝑖,𝑟

) }
,

=

𝑛∑︁
𝑖=1

[
𝑍𝑇𝑖 (𝛼

(0)
𝑟 − 𝛼𝑟) −

𝑌2
𝑖,𝑟

4𝜎 (0)2
𝑖,𝑟

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

exp{4𝑍𝑇𝑖 (𝛼
(0)
𝑟 − 𝛼𝑟)}

+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
𝑍𝑇𝑖 (𝛼

(0)
𝑟 − 𝛼𝑟)

−
{ (𝑌2

𝑖, 𝑗
+ 𝑌2

𝑖,𝑘
)

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)

}
exp{3𝑍𝑇𝑖 (𝛼

(0)
𝑟 − 𝛼𝑟)}

+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)
𝑍𝑇𝑖 (𝛼

(0)
𝑟 − 𝛼𝑟)

]

=

𝑛∑︁
𝑖=1

[{
1 +

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)

}
𝑍𝑇𝑖 (𝛼

(0)
𝑟 − 𝛼𝑟)

−
𝑌2
𝑖,𝑟

4𝜎 (0)2
𝑖,𝑟

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

exp{4𝑍𝑇𝑖 (𝛼
(0)
𝑟 − 𝛼𝑟)}

−
{ (𝑌2

𝑖, 𝑗
+ 𝑌2

𝑖,𝑘
)

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)

}
exp{3𝑍𝑇𝑖 (𝛼

(0)
𝑟 − 𝛼𝑟)}

]
,
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𝜓2, 𝑗 ,𝑘 (𝜌 𝑗 ,𝑘 |𝜃 (0))

=

𝑛∑︁
𝑖=1

[
−1

2
log(1 − 𝜌2

𝑖, 𝑗 ,𝑘 ) −


𝑌2
𝑖, 𝑗

4𝜎 (0)2
𝑖, 𝑗

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
+

𝑌2
𝑖,𝑘

4𝜎 (0)2
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

 ©­«
1 − 𝜌(0)

2

𝑖, 𝑗 ,𝑘

1 − 𝜌2
𝑖, 𝑗 ,𝑘

ª®¬
2

+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
log ©­«

1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘

1 − 𝜌2
𝑖, 𝑗 ,𝑘

ª®¬
−

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
6𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
©­«
1 − 𝜌(0)

2

𝑖, 𝑗 ,𝑘

1 − 𝜌2
𝑖, 𝑗 ,𝑘

ª®¬
3

−

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)
©­«
1 + 𝜌(0)

𝑖, 𝑗 ,𝑘

1 + 𝜌𝑖, 𝑗 ,𝑘
ª®¬

3

+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)
log ©­«

1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

1 + 𝜌𝑖, 𝑗 ,𝑘
ª®¬
]
.

Since,

𝜌𝑖, 𝑗 ,𝑘 = 1 − 2/{1 + exp(𝛿𝑇𝑗,𝑘𝑍𝑖)},

1 + 𝜌𝑖, 𝑗 ,𝑘 = 2 exp(𝛿𝑇𝑗,𝑘𝑍𝑖)/{1 + exp(𝛿𝑇𝑗,𝑘𝑍𝑖)},

𝜌2
𝑖, 𝑗 ,𝑘 = {exp(𝛿𝑇𝑗,𝑘𝑍𝑖) − 1}2/{exp(𝛿𝑇𝑗,𝑘𝑍𝑖) + 1}2,

1 − 𝜌2
𝑖, 𝑗 ,𝑘 = 4 exp(𝛿𝑇𝑗,𝑘𝑍𝑖)/{exp(𝛿𝑇𝑗,𝑘𝑍𝑖) + 1}2.
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Now using these terms, we obtain

𝜓2, 𝑗 ,𝑘 (𝜌 𝑗 ,𝑘 |𝜃 (0))

=

𝑛∑︁
𝑖=1

(
− log(4)

2
− 0.5𝛿𝑇𝑗,𝑘𝑍𝑖 + log{exp(𝛿𝑇𝑗,𝑘𝑍𝑖) + 1}

− ©­«
𝑌2
𝑖, 𝑗

𝜎
(0)2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎
(0)2
𝑖,𝑘

ª®¬
(
1 − 𝜌(0)

2

𝑖, 𝑗 ,𝑘

)
×
{exp(𝛿𝑇

𝑗,𝑘
𝑍𝑖) + 1}4

64 exp(2𝛿𝑇
𝑗,𝑘
𝑍𝑖)

+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)

[
log

(
1 − 𝜌(0)

2

𝑖, 𝑗 ,𝑘

)
− log(4) − 𝛿𝑇𝑗,𝑘𝑋𝑖 + 2log{exp(𝛿𝑇𝑗,𝑘𝑍𝑖) + 1}

]

−

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
6𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(
1 − 𝜌(0)

2

𝑖, 𝑗 ,𝑘

)2
×
{1 + exp(𝛿𝑇

𝑗,𝑘
𝑍𝑖)}6

64 exp(3𝛿𝑇
𝑗,𝑘
𝑍𝑖)

−

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(
1 + 𝜌(0)

𝑖, 𝑗 ,𝑘

)2
×
{1 + exp(𝛿𝑇

𝑗,𝑘
𝑍𝑖)}3

8 exp(3𝛿𝑇
𝑗,𝑘
𝑍𝑖)

+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)

[
log

(
1 + 𝜌(0)

𝑖, 𝑗 ,𝑘

)
− log(2) − 𝛿𝑇𝑗,𝑘𝑍𝑖 + log{1 + exp(𝛿𝑇𝑗,𝑘𝑍𝑖)}

] )
.

Also,

𝜓3, 𝑗 ,𝑘 (𝜃 (0)) =
𝑛∑︁
𝑖=1

{ (
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑘
)
+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑘

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑘

)
− 1

2
log(𝜎 (0)2

𝑖, 𝑗
𝜎

(0)2
𝑖,𝑘

)
}
.

Now, the minorization of the composite log-likelihood is

ℓ∗(𝜃 |𝜃 (0)) =
(𝑞−1)∑︁
𝑗=1

𝑞∑︁
𝑘=( 𝑗+1)

{
𝜓1, 𝑗 ,𝑘 (𝛼 𝑗 − 𝛼(0)

𝑗
, 𝑗 |𝜃 (0)) + 𝜓1, 𝑗 ,𝑘 (𝛼𝑘 − 𝛼(0)

𝑘
, 𝑘 |𝜃 (0))

+ 𝜓2, 𝑗 ,𝑘 (𝜌 𝑗 ,𝑘 |𝜃 (0)) + 𝜓3, 𝑗 ,𝑘 (𝜃 (0))
}

=

𝑞∑︁
𝑗=1
𝑔1(𝛼 𝑗 |𝜃 (0)) +

∑︁
𝑗<𝑘

∑︁
𝑔2(𝛿 𝑗 ,𝑘 |𝜃 (0)) + 𝑔3(𝜃 (0)),

where 𝑔1(𝛼 𝑗 |𝜃 (0)) =
∑
𝑠:𝑠< 𝑗 𝜓1,𝑠, 𝑗 (𝛼 𝑗−𝛼(0)

𝑗
, 𝑗 |𝜃 (0))+∑

𝑠:𝑠> 𝑗 𝜓1, 𝑗 ,𝑠 (𝛼 𝑗−𝛼(0)
𝑗
, 𝑗 |𝜃 (0)) for 𝑗 = 1, . . . , 𝑞,

𝑔2(𝛿 𝑗 ,𝑘 |𝜃 (0)) = 𝜓2, 𝑗 ,𝑘 (𝜌 𝑗 ,𝑘 |𝜃 (0)) for 𝑗 ≠ 𝑘 , 𝑔3(𝜃 (0)) =
∑∑

𝑗<𝑘 𝜓3, 𝑗 ,𝑘 (𝜃 (0)).
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In the MM algorithm, we maximize the minorizing function ℓ∗ rather than ℓ. The minorizing

function ℓ∗ is expressed as a summation of 𝑔1(𝛼1 |𝜃 (0)), . . . , 𝑔1(𝛼𝑝 |𝜃 (0)), and

𝑔2(𝛿1,2 |𝜃 (0)), . . . , 𝑔2(𝛿𝑝−1,𝑝 |𝜃 (0)), this results in the separation of the parameters. Separation of the

parameter has a great advantage when optimizing a function with respect to a high-dimensional

argument (𝜃 in our case). The functions 𝑔1, 𝑔2 are all differentiable functions, and satisfy standard

regularity conditions, and these function are used in updating the parameter values. The parameter

estimates are obtained by the gradient MM algorithm [63]. Let 𝜃 (𝑡) be the parameter value at the

𝑡th iteration, then 𝜃 (𝑡+1) is obtained by one step Newton-Raphson method

𝜃 (𝑡+1) = 𝜃 (𝑡) −
{

𝜕2

𝜕𝜃𝜕𝜃𝑇
ℓ∗(𝜃 |𝜃 (𝑡))

}−1

𝜃=𝜃 (𝑡)

{
𝜕

𝜕𝜃
ℓ∗(𝜃 |𝜃 (𝑡))

}
𝜃=𝜃 (𝑡)

. (4.5)

The above step is repeated until the estimate converges. Specifically, we stop the above iteration

when 1𝑇 ( |𝜃 (𝑡+1) − 𝜃 (𝑡) |/|𝜃 (𝑡) |) < 𝜖0, a prespecified small number.

Observe that in Equation (4.5), rather than the log-composite likelihood ℓ(𝜃), the minorization

function ℓ∗(𝜃 |𝜃 (𝑡)) is used. Next, 𝜕ℓ∗(𝜃 |𝜃 (𝑡))/𝜕𝛼 𝑗 = 𝜕𝑔1(𝛼 𝑗 |𝜃 (𝑡))/𝜕𝛼 𝑗 , a function of 𝛼 𝑗 only, and

𝜕ℓ∗(𝜃 |𝜃 (𝑡))/𝜕𝛿 𝑗 ,𝑘 = 𝜕𝑔2(𝛿 𝑗 ,𝑘 |𝜃 (𝑡))/𝜕𝛿 𝑗 ,𝑘 , a function of 𝛿 𝑗 ,𝑘 only. Consequently 𝜕2ℓ∗(𝜃 |𝜃 (𝑡))/𝜕𝜃𝜕𝜃𝑇

is a block-diagonal matrix, and each block is a matrix of order (𝑝 + 1) × (𝑝 + 1) and this greatly

enhances computational efficiency.

Specifically, the complexity of the inversion of each block matrix is in the order 𝑂 ((𝑝 + 1)3).

Thus, the complexity of one update of the MM algorithm is 𝑂 (𝑛𝑛𝜃 + 𝑛(𝑝 + 1)2𝑞(𝑞 + 1)/2 + (𝑝 +

1)3𝑞(𝑞+1)/2). In other words, the complexity is𝑂 (𝑛𝑛𝜃 +𝑛(𝑝+1)𝑛𝜃 + (𝑝+1)2𝑛𝜃), where 𝑛𝜃 = (1+

𝑝)𝑞(1+𝑞)/2. On the other hand, the complexity of a direct optimization of ℓ(𝜃) using the Newton-

Raphson method is 𝑂 (𝑛𝑛𝜃 + 𝑛𝑛2
𝜃
+ 𝑛3

𝜃
). Alternatively, the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithm can be used to optimize ℓ(𝜃). This algorithm avoids large matrix inversion, so

it has a square order complexity. Although the proportionality constant of the complexity order

is unknown, the order of this complexity for BFGS is still larger than the complexity of the MM

algorithm as long as (𝑝 + 1) < 𝑞(𝑞 + 1)/2, and this holds for our real data and the simulation

scenarios.
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The terms of Equation (4.5) are [𝜕ℓ∗(𝜃 |𝜃 (𝑡))/𝜕𝜃]𝜃=𝜃 (𝑡) = [𝜕ℓ∗(𝜃 |𝜃 (𝑡))/𝜕𝛼1, . . . ,

𝜕ℓ∗(𝜃 |𝜃 (𝑡))/𝜕𝛼𝑞, 𝜕ℓ∗(𝜃 |𝜃 (𝑡))/𝜕𝛿1,2, . . . , 𝜕ℓ
∗(𝜃 |𝜃 (𝑡))/𝜕𝛿𝑞−1,𝑞]𝜃=𝜃 (𝑡) , and(

𝜕ℓ∗(𝜃 |𝜃 (𝑡))
𝜕𝛼 𝑗

)
𝜃=𝜃 (𝑡)

=
∑︁
𝑠:𝑠< 𝑗

𝑛∑︁
𝑖=1

{
−1 +

𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖,𝑠, 𝑗
)
−

𝑌𝑖, 𝑗𝑌𝑖,𝑠

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 − 𝜌(𝑡)2𝑖,𝑠, 𝑗 )

+
𝑌𝑖, 𝑗𝑌𝑖,𝑠

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 + 𝜌(𝑡)
𝑖,𝑠, 𝑗

)

}
𝑍𝑖 +

∑︁
𝑠:𝑠> 𝑗

𝑛∑︁
𝑖=1

{
−1 +

𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)

−
𝑌𝑖, 𝑗𝑌𝑖,𝑠

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 − 𝜌(𝑡)2𝑖, 𝑗 ,𝑠)
+

𝑌𝑖, 𝑗𝑌𝑖,𝑠

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑠

)

}
𝑍𝑖, for 𝑗 = 1, . . . , 𝑞,

(
𝜕ℓ∗(𝜃 |𝜃 (𝑡))
𝜕𝛿 𝑗 ,𝑘

)
𝜃=𝜃 (𝑡)

=

𝑛∑︁
𝑖=1

{
𝜌
(𝑡)
𝑖, 𝑗 ,𝑘

1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘

−
𝑌2
𝑖, 𝑗
𝜌
(𝑡)
𝑖, 𝑗 ,𝑘

𝜎 (𝑡)2
𝑖, 𝑗 (1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘
)2

−
𝑌2
𝑖,𝑘
𝜌
(𝑡)
𝑖, 𝑗 ,𝑘

𝜎 (𝑡)2
𝑖,𝑘 (1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘
)2

+
2𝑌𝑖, 𝑗𝑌𝑖,𝑘𝜌(𝑡)𝑖, 𝑗 ,𝑘

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)2

+
𝑌𝑖, 𝑗𝑌𝑖,𝑘

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑘

)2

} (1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)

2
𝑍𝑖,

for 𝑗 < 𝑘 = 1, . . . , 𝑞 and 𝑍𝑖 = (1 𝑋𝑇
𝑖
)𝑇 . Furthermore, let 𝐴 = {𝜕2ℓ∗(𝜃 |𝜃 (𝑡))/𝜕𝜃𝜕𝜃𝑇 }𝜃=𝜃 (𝑡) , then

𝐴 = Diag(𝐴1, . . . , 𝐴𝑞, 𝐴
†
1,2, . . . , 𝐴

†
𝑞−1,𝑞), where

𝐴 𝑗 =

(
𝜕2ℓ∗(𝜃 |𝜃 (𝑡))
𝜕𝛼 𝑗𝜕𝛼

𝑇
𝑗

)
𝜃=𝜃 (𝑡)

= −
𝑛∑︁
𝑖=1

( ∑︁
𝑠:𝑠< 𝑗

[ 4𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖,𝑠, 𝑗
)
+ 3

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

{ (𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑠
)

(1 − 𝜌(𝑡)
2

𝑖,𝑠, 𝑗
)
+
(𝑌𝑖, 𝑗 + 𝑌𝑖,𝑠)2

(1 + 𝜌(𝑡)
𝑖,𝑠, 𝑗

)

}]
+

∑︁
𝑠:𝑠< 𝑗

[ 4𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)
+ 3

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

{ (𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑠
)

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)
+
(𝑌𝑖, 𝑗 + 𝑌𝑖,𝑠)2

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑠

)

}])
𝑍𝑖𝑍

𝑇
𝑖 ,
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𝐴
†
𝑗 ,𝑘

=

(
𝜕2ℓ∗(𝜃 |𝜃 (𝑡))
𝜕𝛿 𝑗 ,𝑘𝜕𝛿

𝑇
𝑗,𝑘

)
𝜃=𝜃 (𝑡)

=

𝑛∑︁
𝑖=1

[ 1 + 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)2

− ©­«
𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎
(𝑡)2
𝑖,𝑘

ª®¬ ×
1 + 5𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)3

+ 1

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)3

{
(𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘 )2(1 + 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘
) − (𝑌2

𝑖, 𝑗 + 𝑌2
𝑖,𝑘 ) (1 + 7𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘
)
}

+
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

− 4(𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘 )2

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑘

)3

] (1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)2

4
𝑍𝑖𝑍

𝑇
𝑖

+
𝑛∑︁
𝑖=1

[
𝜌
(𝑡)
𝑖, 𝑗 ,𝑘

1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘

−
(
𝑌2
𝑖, 𝑗

𝜎 (𝑡)2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎 (𝑡)2
𝑖,𝑘

)
𝜌
(𝑡)
𝑖, 𝑗 ,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)2

−
𝑌𝑖, 𝑗𝑌𝑖,𝑘

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘


2𝜌(𝑡)

𝑖, 𝑗 ,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)2

+ 1
(1 + 𝜌(𝑡)

𝑖, 𝑗 ,𝑘
)2


]
𝜌
(𝑡)
𝑖, 𝑗 ,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)

2
𝑍𝑖𝑍

𝑇
𝑖 .

The above expressions are derived in the following manner.

Observe that 𝜕ℓ∗(𝜃 |𝜃 (𝑡))/𝜕𝛼 𝑗 = 𝜕𝑔1(𝛼 𝑗 |𝜃 (𝑡))/𝜕𝛼 𝑗 =
∑
𝑠:𝑠< 𝑗 𝜕𝜓1,𝑠, 𝑗 (𝛼 𝑗 − 𝛼(𝑡)

𝑗
, 𝑗 |𝜃 (𝑡))/𝜕𝛼 𝑗 +∑

𝑠:𝑠> 𝑗 𝜕𝜓1, 𝑗 ,𝑠 (𝛼 𝑗 − 𝛼(𝑡)
𝑗
, 𝑗 |𝜃 (𝑡))/𝜕𝛼 𝑗 for 𝑗 = 1, . . . , 𝑞. Now,

𝜓1, 𝑗 ,𝑠 (𝛼 𝑗 − 𝛼(0)
𝑗
, 𝑗 |𝜃 (0)) =

𝑛∑︁
𝑖=1

[{
1 +

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑠

)2

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑠

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑠
)
+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑠

)
2𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑠

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑠

)

}
𝑍𝑇𝑖 (𝛼

(0)
𝑗

− 𝛼 𝑗 )

−
𝑌2
𝑖, 𝑗

4𝜎 (0)2
𝑖, 𝑗

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑠
)

exp{4𝑍𝑇𝑖 (𝛼
(0)
𝑗

− 𝛼 𝑗 )}

−
{ (𝑌2

𝑖, 𝑗
+ 𝑌2

𝑖,𝑠
)

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑠

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑠
)
+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑠

)2

6𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑠

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑠

)

}
exp{3𝑍𝑇𝑖 (𝛼

(0)
𝑗

− 𝛼 𝑗 )}
]
,
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so

𝜕𝜓1, 𝑗 ,𝑠 (𝛼 𝑗 − 𝛼(0)
𝑗
, 𝑗 |𝜃 (0))

𝜕𝛼 𝑗
=

𝑛∑︁
𝑖=1

[
−
{
1 +

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑠

)2

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑠

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑠
)
+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑠

)
2𝜎 (0)

𝑖, 𝑗
𝜎

(0)
𝑖,𝑠

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑠

)

}
+

𝑌2
𝑖, 𝑗

𝜎
(0)2
𝑖, 𝑗

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑠
)

exp{4𝑍𝑇𝑖 (𝛼
(0)
𝑗

− 𝛼 𝑗 )}

+
{ (𝑌2

𝑖, 𝑗
+ 𝑌2

𝑖,𝑠
)

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑠

(1 − 𝜌(0)
2

𝑖, 𝑗 ,𝑠
)
+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑠

)2

2𝜎 (0)
𝑖, 𝑗
𝜎

(0)
𝑖,𝑠

(1 + 𝜌(0)
𝑖, 𝑗 ,𝑠

)

}
×

exp{3𝑍𝑇𝑖 (𝛼
(0)
𝑗

− 𝛼 𝑗 )}
]
𝑍𝑖,

and

(
𝜕𝜓1, 𝑗 ,𝑠 (𝛼 𝑗 − 𝛼(𝑡)

𝑗
, 𝑗 |𝜃 (𝑡))

𝜕𝛼 𝑗

)
𝜃=𝜃 (𝑡)

=

𝑛∑︁
𝑖=1

[
−
{
1 +

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑠

)2

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)
+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑠

)
2𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑠

)

}
+

𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)

+
{ (𝑌2

𝑖, 𝑗
+ 𝑌2

𝑖,𝑠
)

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)
+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑠

)2

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑠

)

}]
𝑍𝑖,

=

𝑛∑︁
𝑖=1

{
−1 +

𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)
−

𝑌𝑖, 𝑗𝑌𝑖,𝑠

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 − 𝜌(𝑡)2𝑖, 𝑗 ,𝑠)

+
𝑌𝑖, 𝑗𝑌𝑖,𝑠

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑠

)

}
𝑍𝑖 .

Likewise,(
𝜕𝜓1,𝑠, 𝑗 (𝛼 𝑗 − 𝛼(𝑡)

𝑗
, 𝑗 |𝜃 (𝑡))

𝜕𝛼 𝑗

)
𝜃=𝜃 (𝑡)

=

𝑛∑︁
𝑖=1

{
−1 +

𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖,𝑠, 𝑗
)
−

𝑌𝑖, 𝑗𝑌𝑖,𝑠

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 − 𝜌(𝑡)2𝑖,𝑠, 𝑗 )

+
𝑌𝑖, 𝑗𝑌𝑖,𝑠

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 + 𝜌(𝑡)
𝑖,𝑠, 𝑗

)

}
𝑍𝑖 .

71



Adding the above two expressions, we obtain(
𝜕ℓ∗(𝜃 |𝜃 (𝑡))

𝜕𝛼 𝑗

)
𝜃=𝜃 (𝑡)

=
∑︁
𝑠:𝑠< 𝑗

𝑛∑︁
𝑖=1

{
−1 +

𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖,𝑠, 𝑗
)
−

𝑌𝑖, 𝑗𝑌𝑖,𝑠

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 − 𝜌(𝑡)2𝑖,𝑠, 𝑗 )

+
𝑌𝑖, 𝑗𝑌𝑖,𝑠

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 + 𝜌(𝑡)
𝑖,𝑠, 𝑗

)

}
𝑍𝑖 +

∑︁
𝑠:𝑠> 𝑗

𝑛∑︁
𝑖=1

{
−1 +

𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)

−
𝑌𝑖, 𝑗𝑌𝑖,𝑠

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 − 𝜌(𝑡)2𝑖, 𝑗 ,𝑠)
+

𝑌𝑖, 𝑗𝑌𝑖,𝑠

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑠

)

}
𝑍𝑖 .

Next consider,

𝜕2𝜓1, 𝑗 ,𝑠 (𝛼 𝑗 − 𝛼(𝑡)
𝑗
, 𝑗 |𝜃 (𝑡))

𝜕𝛼 𝑗𝜕𝛼
𝑇
𝑗

= −
𝑛∑︁
𝑖=1

[ 4𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)

exp{4𝑍𝑇𝑖 (𝛼
(𝑡)
𝑗

− 𝛼 𝑗 )}

+ 3
2𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

{ (𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑠
)

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)
+
(𝑌𝑖, 𝑗 + 𝑌𝑖,𝑠)2

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑠

)

}
exp{3𝑍𝑇𝑖 (𝛼

(𝑡)
𝑗

− 𝛼 𝑗 )}
]
𝑍𝑖𝑍

𝑇
𝑖 ,

and (
𝜕2𝜓1, 𝑗 ,𝑠 (𝛼 𝑗 − 𝛼(𝑡)

𝑗
, 𝑗 |𝜃 (𝑡))

𝜕𝛼 𝑗𝜕𝛼
𝑇
𝑗

)
𝜃=𝜃 (𝑡)

= −
𝑛∑︁
𝑖=1

[ 4𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)
+ 3

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

×

{ (𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑠
)

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)
+
(𝑌𝑖, 𝑗 + 𝑌𝑖,𝑠)2

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑠

)

}]
𝑍𝑖𝑍

𝑇
𝑖 .

Similarly, (
𝜕2𝜓1,𝑠, 𝑗 (𝛼 𝑗 − 𝛼(𝑡)

𝑗
, 𝑗 |𝜃 (𝑡))

𝜕𝛼 𝑗𝜕𝛼
𝑇
𝑗

)
𝜃=𝜃 (𝑡)

= −
𝑛∑︁
𝑖=1

[ 4𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖,𝑠, 𝑗
)
+ 3

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

×

{ (𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑠
)

(1 − 𝜌(𝑡)
2

𝑖,𝑠, 𝑗
)
+
(𝑌𝑖, 𝑗 + 𝑌𝑖,𝑠)2

(1 + 𝜌(𝑡)
𝑖,𝑠, 𝑗

)

}]
𝑍𝑖𝑍

𝑇
𝑖 .

Combining the above two expressions, we obtain(
𝜕2ℓ∗(𝜃 |𝜃 (𝑡))
𝜕𝛼 𝑗𝜕𝛼

𝑇
𝑗

)
𝜃=𝜃 (𝑡)

= −
∑︁
𝑠:𝑠< 𝑗

𝑛∑︁
𝑖=1

[ 4𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖,𝑠, 𝑗
)
+ 3

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

{ (𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑠
)

(1 − 𝜌(𝑡)
2

𝑖,𝑠, 𝑗
)

+
(𝑌𝑖, 𝑗 + 𝑌𝑖,𝑠)2

(1 + 𝜌(𝑡)
𝑖,𝑠, 𝑗

)

}]
𝑍𝑖𝑍

𝑇
𝑖 −

∑︁
𝑠:𝑠< 𝑗

𝑛∑︁
𝑖=1

[ 4𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)

+ 3
2𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑠

{ (𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑠
)

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑠
)
+
(𝑌𝑖, 𝑗 + 𝑌𝑖,𝑠)2

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑠

)

}]
𝑍𝑖𝑍

𝑇
𝑖 .
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Next, observe that 𝜕ℓ∗(𝜃 |𝜃 (𝑡))/𝜕𝛿 𝑗 ,𝑘 = 𝜕𝑔2(𝛿 𝑗 ,𝑘 |𝜃 (𝑡))/𝜕𝛿 𝑗 ,𝑘 = 𝜕𝜓2, 𝑗 ,𝑘 (𝛿 𝑗 ,𝑘 |𝜃 (𝑡))/𝜕𝛿 𝑗 ,𝑘 .

Recall that,

𝜓2, 𝑗 ,𝑘 (𝜌 𝑗 ,𝑘 |𝜃 (𝑡)) =
𝑛∑︁
𝑖=1

(
− log(4)

2
− 0.5𝛿𝑇𝑗,𝑘𝑍𝑖 + log{exp(𝛿𝑇𝑗,𝑘𝑍𝑖) + 1}

− ©­«
𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎
(𝑡)2
𝑖,𝑘

ª®¬
(
1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

)
×
{exp(𝛿𝑇

𝑗,𝑘
𝑍𝑖) + 1}4

64 exp(2𝛿𝑇
𝑗,𝑘
𝑍𝑖)

+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)

[
log

(
1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

)
− log(4)

− 𝛿𝑇𝑗,𝑘𝑍𝑖 + 2log{exp(𝛿𝑇𝑗,𝑘𝑍𝑖) + 1}
]

−

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
6𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(
1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

)2
×
{1 + exp(𝛿𝑇

𝑗,𝑘
𝑍𝑖)}6

64 exp(3𝛿𝑇
𝑗,𝑘
𝑍𝑖)

−

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(
1 + 𝜌(𝑡)

𝑖, 𝑗 ,𝑘

)2
×
{1 + exp(𝛿𝑇

𝑗,𝑘
𝑍𝑖)}3

8 exp(3𝛿𝑇
𝑗,𝑘
𝑍𝑖)

+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑘

)

[
log

(
1 + 𝜌(𝑡)

𝑖, 𝑗 ,𝑘

)
− log(2)

− 𝛿𝑇𝑗,𝑘𝑍𝑖 + log{1 + exp(𝛿𝑇𝑗,𝑘𝑍𝑖)}
] )
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Further simplifying, we get

𝜓2, 𝑗 ,𝑘 (𝜌 𝑗 ,𝑘 |𝜃 (𝑡)) =
𝑛∑︁
𝑖=1

(
− log(4)

2
− 0.5𝛿𝑇𝑗,𝑘𝑍𝑖 + log{exp(𝛿𝑇𝑗,𝑘𝑍𝑖) + 1}

− ©­«
𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎
(𝑡)2
𝑖,𝑘

ª®¬
(
1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

)
× 1

64

{
exp(𝛿𝑇𝑗,𝑘𝑍𝑖/2) + exp(−𝛿𝑇𝑗,𝑘𝑍𝑖/2)

}4

+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)

[
log

(
1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

)
− log(4)

− 𝛿𝑇𝑗,𝑘𝑍𝑖 + 2log{exp(𝛿𝑇𝑗,𝑘𝑍𝑖) + 1}
]

−

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
6𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(
1 − 𝜌(𝑡)

𝑖, 𝑗 ,𝑘

)2
× 1

64

{
exp(𝛿𝑇𝑗,𝑘𝑍𝑖/2) + exp(−𝛿𝑇𝑗,𝑘𝑍𝑖/2)

}6

−

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(
1 + 𝜌(𝑡)

𝑖, 𝑗 ,𝑘

)2
× 1

8

{
1 + exp(−𝛿𝑇𝑗,𝑘𝑍𝑖)

}3

+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑘

)

[
log

(
1 + 𝜌(0)

𝑖, 𝑗 ,𝑘

)
− log(2)

− 𝛿𝑇𝑗,𝑘𝑍𝑖 + log{1 + exp(𝛿𝑇𝑗,𝑘𝑍𝑖)}
] )
.
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Now,

𝜕𝜓2, 𝑗 ,𝑘 (𝜌 𝑗 ,𝑘 |𝜃 (𝑡))
𝜕𝛿 𝑗 ,𝑘

=

𝑛∑︁
𝑖=1

[
−0.5 +

exp(𝛿𝑇
𝑗,𝑘
𝑍𝑖)

1 + exp(𝛿𝑇
𝑗,𝑘
𝑍𝑖)

− ©­«
𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎
(𝑡)2
𝑖,𝑘

ª®¬
(
1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

)
× 1

32

{
exp(𝛿𝑇𝑗,𝑘𝑍𝑖/2) + exp(−𝛿𝑇𝑗,𝑘𝑍𝑖/2)

}3

×
{
exp(𝛿𝑇𝑗,𝑘𝑍𝑖/2) − exp(−𝛿𝑇𝑗,𝑘𝑍𝑖/2)

}

+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)

{
−1 +

2 exp(𝛿𝑇
𝑗,𝑘
𝑍𝑖)

1 + exp(𝛿𝑇
𝑗,𝑘
𝑍𝑖)

}

−

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
6𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(
1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

)2
× 3

64

{
exp(𝛿𝑇𝑗,𝑘𝑍𝑖/2) + exp(−𝛿𝑇𝑗,𝑘𝑍𝑖/2)

}5

×
{
exp(𝛿𝑇𝑗,𝑘𝑍𝑖/2) − exp(−𝛿𝑇𝑗,𝑘𝑍𝑖/2)

}

−

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(
1 + 𝜌(𝑡)

𝑖, 𝑗 ,𝑘

)2
× 3

8

{
1 + exp(−𝛿𝑇𝑗,𝑘𝑍𝑖)

}2{
1 − exp(−𝛿𝑇𝑗,𝑘𝑍𝑖)

}

+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑘

)

{
−1 +

exp(𝛿𝑇
𝑗,𝑘
𝑍𝑖)

1 + exp(𝛿𝑇
𝑗,𝑘
𝑍𝑖)

}]
𝑍𝑖,
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and (
𝜕𝜓2, 𝑗 ,𝑘 (𝜌 𝑗 ,𝑘 |𝜃 (𝑡))

𝜕𝛿 𝑗 ,𝑘

)
𝜃=𝜃 (𝑡)

=

𝑛∑︁
𝑖=1

[
−0.5 +

exp(𝑍𝑇
𝑖
𝛿
(𝑡)
𝑗 ,𝑘
)

1 + exp(𝑍𝑇
𝑖
𝛿
(𝑡)
𝑗 ,𝑘
)

− ©­«
𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎
(𝑡)2
𝑖,𝑘

ª®¬
(
1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

)
× 1

32

{
exp(𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2)

+ exp(−𝑍𝑇𝑖 𝛿
(𝑡)
𝑗 ,𝑘
/2)

}3{
exp(𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2) − exp(−𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2)

}

+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)

−1 +
2 exp(𝑍𝑇

𝑖
𝛿
(𝑡)
𝑗 ,𝑘
)

1 + exp(𝑍𝑇
𝑖
𝛿
(𝑡)
𝑗 ,𝑘
)


−

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
6𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(
1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

)2

× 3
64

{
exp(𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2) + exp(−𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2)

}5

×
{
exp(𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2) − exp(−𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2)

}

−

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(
1 + 𝜌(𝑡)

𝑖, 𝑗 ,𝑘

)2

× 3
8

{
1 + exp(−𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
)
}2{

1 − exp(−𝑍𝑇𝑖 𝛿
(𝑡)
𝑗 ,𝑘
)
}

+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑘

)

{
−1 +

exp(𝑍𝑇
𝑖
𝛿
(𝑡)
𝑗 ,𝑘
)

1 + exp(𝑍𝑇
𝑖
𝛿
(𝑡)
𝑗 ,𝑘
)

}]
𝑍𝑖 .

Simplifying further, we obtain(
𝜕ℓ∗(𝜃 |𝜃 (𝑡))
𝜕𝛿 𝑗 ,𝑘

)
𝜃=𝜃 (𝑡)

=

𝑛∑︁
𝑖=1

{
𝜌
(𝑡)
𝑖, 𝑗 ,𝑘

1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘

−
𝑌2
𝑖, 𝑗
𝜌
(𝑡)
𝑖, 𝑗 ,𝑘

𝜎 (𝑡)2
𝑖, 𝑗 (1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘
)2

−
𝑌2
𝑖,𝑘
𝜌
(𝑡)
𝑖, 𝑗 ,𝑘

𝜎 (𝑡)2
𝑖,𝑘 (1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘
)2

+
2𝑌𝑖, 𝑗𝑌𝑖,𝑘𝜌(𝑡)𝑖, 𝑗 ,𝑘

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)2

+
𝑌𝑖, 𝑗𝑌𝑖,𝑘

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑘

)2

} (1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)

2
𝑍𝑖 .
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Next,

𝜕2𝜓2, 𝑗 ,𝑘 (𝜌 𝑗 ,𝑘 |𝜃 (𝑡))
𝜕𝛿 𝑗 ,𝑘𝜕𝛿

𝑇
𝑗,𝑘

=

𝑛∑︁
𝑖=1

( exp(𝛿𝑇
𝑗,𝑘
𝑍𝑖)

{1 + exp(𝛿𝑇
𝑗,𝑘
𝑍𝑖)}2

− ©­«
𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎
(𝑡)2
𝑖,𝑘

ª®¬
(
1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

)
× 1

64

[
3{exp(𝛿𝑇𝑗,𝑘𝑍𝑖/2) + exp(−𝛿𝑇𝑗,𝑘𝑍𝑖/2)}

2

× {exp(𝛿𝑇𝑗,𝑘𝑍𝑖/2) − exp(−𝛿𝑇𝑗,𝑘𝑍𝑖/2)}
2 + {exp(𝛿𝑇𝑗,𝑘𝑍𝑖/2) + exp(−𝛿𝑇𝑗,𝑘𝑍𝑖/2)}

4
]

+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)
×

2 exp(𝛿𝑇
𝑗,𝑘
𝑍𝑖)

{1 + exp(𝛿𝑇
𝑗,𝑘
𝑍𝑖)}2

−

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
6𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(
1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

)2
× 3

128

[
5{exp(𝛿𝑇𝑗,𝑘𝑍𝑖/2) + exp(−𝛿𝑇𝑗,𝑘𝑍𝑖/2)}

4

× {exp(𝛿𝑇𝑗,𝑘𝑍𝑖/2) − exp(−𝛿𝑇𝑗,𝑘𝑍𝑖/2)}
2 + {exp(𝛿𝑇𝑗,𝑘𝑍𝑖/2) + exp(−𝛿𝑇𝑗,𝑘𝑍𝑖/2)}

6
]

−

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(
1 + 𝜌(𝑡)

𝑖, 𝑗 ,𝑘

)2
× 3

8

[
2{1 + exp(−𝛿𝑇𝑗,𝑘𝑍𝑖)}{1 − exp(−𝛿𝑇𝑗,𝑘𝑍𝑖)}

2

+ {exp(𝛿𝑇𝑗,𝑘𝑍𝑖) + exp(−𝛿𝑇𝑗,𝑘𝑍𝑖)}
3
]

+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑘

)
×

exp(𝛿𝑇
𝑗,𝑘
𝑍𝑖)

{1 + exp(𝛿𝑇
𝑗,𝑘
𝑍𝑖)}2

)
𝑍𝑖𝑍

𝑇
𝑖 .
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Subsequently,(
𝜕2𝜓2, 𝑗 ,𝑘 (𝜌 𝑗 ,𝑘 |𝜃 (𝑡))

𝜕𝛿 𝑗 ,𝑘𝜕𝛿
𝑇
𝑗,𝑘

)
𝜃=𝜃 (𝑡)

=

𝑛∑︁
𝑖=1

( exp(𝑍𝑇
𝑖
𝛿
(𝑡)
𝑗 ,𝑘
)

{1 + exp(𝑍𝑇
𝑖
𝛿
(𝑡)
𝑗 ,𝑘
)}2

− ©­«
𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎
(𝑡)2
𝑖,𝑘

ª®¬
(
1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

)
× 1

64

[
3{exp(𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2)

+ exp(−𝑍𝑇𝑖 𝛿
(𝑡)
𝑗 ,𝑘
/2)}2 × {exp(𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2) − exp(−𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2)}2

+ {exp(𝑍𝑇𝑖 𝛿
(𝑡)
𝑗 ,𝑘
/2) + exp(−𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2)}4

]

+

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)
×

2 exp(𝑍𝑇
𝑖
𝛿
(𝑡)
𝑗 ,𝑘
)

{1 + exp(𝑍𝑇
𝑖
𝛿
(𝑡)
𝑗 ,𝑘
)}2

−

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
6𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(
1 − 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

)2
× 3

128

[
5{exp(𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2)

+ exp(−𝑍𝑇𝑖 𝛿
(𝑡)
𝑗 ,𝑘
/2)}4 × {exp(𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2) − exp(−𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2)}2

+ {exp(𝑍𝑇𝑖 𝛿
(𝑡)
𝑗 ,𝑘
/2) + exp(−𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
/2)}6

]

−

(
𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘

)2

6𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(
1 + 𝜌(𝑡)

𝑖, 𝑗 ,𝑘

)2
× 3

8

[
2{1 + exp(−𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
)}

× {1 − exp(−𝑍𝑇𝑖 𝛿
(𝑡)
𝑗 ,𝑘
)}2

+ {exp(𝑍𝑇𝑖 𝛿
(𝑡)
𝑗 ,𝑘
) + exp(−𝑍𝑇𝑖 𝛿

(𝑡)
𝑗 ,𝑘
)}3

]
+

(
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

)
2𝜎 (𝑡)

𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑘

)

×
exp(𝑍𝑇

𝑖
𝛿
(𝑡)
𝑗 ,𝑘
)

{1 + exp(𝑍𝑇
𝑖
𝛿
(𝑡)
𝑗 ,𝑘
)}2

)
𝑍𝑖𝑍

𝑇
𝑖 .
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Simplifying further, we obtain,(
𝜕2ℓ∗(𝜃 |𝜃 (𝑡))
𝜕𝛿 𝑗 ,𝑘𝜕𝛿

𝑇
𝑗,𝑘

)
𝜃=𝜃 (𝑡)

=

𝑛∑︁
𝑖=1

[ 1 + 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)2

− ©­«
𝑌2
𝑖, 𝑗

𝜎
(𝑡)2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎
(𝑡)2
𝑖,𝑘

ª®¬ ×
1 + 5𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)3

+ 1

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)3

{
(𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘 )2(1 + 𝜌(𝑡)

2

𝑖, 𝑗 ,𝑘
)

−(𝑌2
𝑖, 𝑗 + 𝑌2

𝑖,𝑘 ) (1 + 7𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)
}

+
𝑌2
𝑖, 𝑗

+ 𝑌2
𝑖,𝑘

− 4(𝑌𝑖, 𝑗 + 𝑌𝑖,𝑘 )2

2𝜎 (𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘

(1 + 𝜌(𝑡)
𝑖, 𝑗 ,𝑘

)3

] (1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)2

4
𝑍𝑖𝑍

𝑇
𝑖

+
𝑛∑︁
𝑖=1

[
𝜌
(𝑡)
𝑖, 𝑗 ,𝑘

1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘

−
(
𝑌2
𝑖, 𝑗

𝜎 (𝑡)2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎 (𝑡)2
𝑖,𝑘

)
𝜌
(𝑡)
𝑖, 𝑗 ,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)2

−
𝑌𝑖, 𝑗𝑌𝑖,𝑘

𝜎
(𝑡)
𝑖, 𝑗
𝜎

(𝑡)
𝑖,𝑘


2𝜌(𝑡)

𝑖, 𝑗 ,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)2

+ 1
(1 + 𝜌(𝑡)

𝑖, 𝑗 ,𝑘
)2


]
𝜌
(𝑡)
𝑖, 𝑗 ,𝑘

(1 − 𝜌(𝑡)
2

𝑖, 𝑗 ,𝑘
)

2
𝑍𝑖𝑍

𝑇
𝑖 .

4.4 Inference

Let 𝜃0 be the true parameter lies in an open subset of multidimensional Euclidean space. Assume

that all predictors are in a compact subset of multidimensional Euclidean space,
∑𝑛
𝑖=1 𝑋𝑖𝑋

⊤
𝑖

has full

rank, and other regularity conditions hold. Then following the standard asymptotic results [70], we

obtain
√
𝑛(𝜃̂ − 𝜃0) −→ 𝑁𝑛𝜃 (0,G−1) in distribution, where 𝑁𝑛𝜃 denotes the 𝑛𝜃-variate multivariate

normal distribution. The Godambe information G is G(𝜃0) = H(𝜃0)J−1(𝜃0)H𝑇 (𝜃0), where

H(𝜃) = 𝐸 [−∇𝜃U(𝜃;𝐷)], J (𝜃) = var[U(𝜃;𝐷)], where 𝐷 denotes the data from randomly

chosen subject or experimental unit, and U(𝜃;𝐷) denotes the score function corresponding to this

randomly chosen subject. The information G(𝜃0) is consistently estimated by Ĥ Ĵ−1Ĥ𝑇 , where
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Ĥ = −(1/𝑛)∑𝑛
𝑖=1 ∇𝜃U(𝜃;𝐷𝑖) | 𝜃̂ , Ĵ = (1/𝑛)∑𝑛

𝑖=1 U(𝜃;𝐷𝑖)U(𝜽;𝐷𝑖)𝑇 | 𝜃̂ ,

U(𝜃;𝐷𝑖) =
𝜕

𝜕𝜃

∑︁
𝑗

∑︁
𝑗<𝑘

log{ 𝑓 (𝑌𝑖, 𝑗 , 𝑌𝑖,𝑘 |𝑋𝑖)}

=
𝜕

𝜕𝜃

[
−1

2

𝑞∑︁
𝑗=1

(𝑞 − 1)log(𝜎2
𝑖, 𝑗 ) −

1
2

∑︁
𝑗<𝑘

∑︁
log(1 − 𝜌2

𝑖, 𝑗 ,𝑘 )

−1
2

∑︁
𝑗<𝑘

∑︁ 1
(1 − 𝜌2

𝑖, 𝑗 ,𝑘
)

(
𝑌2
𝑖, 𝑗

𝜎2
𝑖, 𝑗

−
2𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘
𝜎𝑖, 𝑗𝜎𝑖,𝑘

+
𝑌2
𝑖,𝑘

𝜎2
𝑖,𝑘

)]
,

and detailed expressions ofH and J are given below. Thus, the standard error of the 𝑟th component

of 𝜃̂ is the square root of the 𝑟th diagonal element of the inverse of Ĥ Ĵ−1Ĥ𝑇 . This standard error

helps compute the Wald confidence interval for the parameter and can also be used for hypothesis

testing. Let ℓ𝑖, 𝑗 ,𝑘 (𝛼, 𝛿) = log{ 𝑓 (𝑌𝑖, 𝑗 , 𝑌𝑖,𝑘 |𝑋𝑖)}, and ℓ𝑖 (𝛼, 𝛿) =
∑
𝑗

∑
𝑗<𝑘 log{ 𝑓 (𝑌𝑖, 𝑗 , 𝑌𝑖,𝑘 |𝑋𝑖)}. Then,

ℓ𝑖, 𝑗 ,𝑘 (𝛼, 𝛿) = −1
2

[
log(𝜎2

𝑖, 𝑗 ) + log(𝜎2
𝑖,𝑘 ) + log(1 − 𝜌2

𝑖, 𝑗 ,𝑘 )

+ 1
(1 − 𝜌2

𝑖, 𝑗 ,𝑘
)

(
𝑌2
𝑖, 𝑗

𝜎2
𝑖, 𝑗

−
2𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘
𝜎𝑖, 𝑗𝜎𝑖,𝑘

+
𝑌2
𝑖,𝑘

𝜎2
𝑖,𝑘

)]
and

ℓ𝑖 (𝛼, 𝛿) = −1
2

𝑞−1∑︁
𝑗=1

𝑞∑︁
𝑘= 𝑗+1

[
log(𝜎2

𝑖, 𝑗 ) + log(𝜎2
𝑖,𝑘 ) + log(1 − 𝜌2

𝑖, 𝑗 ,𝑘 )

+ 1
(1 − 𝜌2

𝑖, 𝑗 ,𝑘
)

(
𝑌2
𝑖, 𝑗

𝜎2
𝑖, 𝑗

−
2𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘
𝜎𝑖, 𝑗𝜎𝑖,𝑘

+
𝑌2
𝑖,𝑘

𝜎2
𝑖,𝑘

)]
= −1

2

𝑞∑︁
𝑗=1

(𝑞 − 1)log(𝜎2
𝑖, 𝑗 ) −

1
2

∑︁
𝑗<𝑘

∑︁
log(1 − 𝜌2

𝑖, 𝑗 ,𝑘 )

− 1
2

∑︁
𝑗<𝑘

∑︁ 1
(1 − 𝜌2

𝑖, 𝑗 ,𝑘
)

(
𝑌2
𝑖, 𝑗

𝜎2
𝑖, 𝑗

−
2𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘
𝜎𝑖, 𝑗𝜎𝑖,𝑘

+
𝑌2
𝑖,𝑘

𝜎2
𝑖,𝑘

)
.
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We need to calculate the score functions U(𝜃;𝐷𝑖) = 𝜕ℓ𝑖 (𝛼, 𝛿)/𝜕𝜃. For this derivation we use

𝜕𝜎𝑖, 𝑗/𝜕𝛼 𝑗 = 𝜎𝑖, 𝑗𝑍𝑖 and 𝜕𝜌𝑖, 𝑗 ,𝑘/𝜕𝛿 𝑗 ,𝑘 = 0.5(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)𝑍𝑖. For 𝑗 = 1, . . . , 𝑞,

𝜕ℓ𝑖 (𝛼, 𝛿)
𝜕𝛼 𝑗

= − (𝑞 − 1)
𝜎𝑖, 𝑗

𝜕𝜎𝑖, 𝑗

𝜕𝛼 𝑗
+

𝑞∑︁
𝑘=1,𝑘≠ 𝑗

𝑌2
𝑖, 𝑗

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)𝜎3
𝑖, 𝑗

𝜕𝜎𝑖, 𝑗

𝜕𝛼 𝑗
−

𝑞∑︁
𝑘=1,𝑘≠ 𝑗

𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)𝜎𝑖,𝑘𝜎2
𝑖, 𝑗

𝜕𝜎𝑖, 𝑗

𝜕𝛼 𝑗

= −(𝑞 − 1)𝑍𝑖 +
𝑞∑︁

𝑘=1,𝑘≠ 𝑗

𝑌2
𝑖, 𝑗

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)𝜎2
𝑖, 𝑗

𝑍𝑖 −
𝑞∑︁

𝑘=1,𝑘≠ 𝑗

𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)𝜎𝑖,𝑘𝜎𝑖, 𝑗
𝑍𝑖,

𝜕ℓ𝑖 (𝛼, 𝛿)
𝜕𝛿 𝑗 ,𝑘

=
𝜌𝑖, 𝑗 ,𝑘

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)
𝜕𝜌𝑖, 𝑗 ,𝑘

𝜕𝛿 𝑗 ,𝑘
−

(
𝑌2
𝑖, 𝑗

𝜎2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎2
𝑖,𝑘

)
𝜌𝑖, 𝑗 ,𝑘

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)2

𝜕𝜌𝑖, 𝑗 ,𝑘

𝜕𝛿 𝑗 ,𝑘

+
𝑌𝑖, 𝑗𝑌𝑖,𝑘

𝜎𝑖, 𝑗𝜎𝑖,𝑘

(
(1 − 𝜌2

𝑖, 𝑗 ,𝑘 )
−1 𝜕𝜌𝑖, 𝑗 ,𝑘

𝜕𝛿 𝑗 ,𝑘
+

2𝜌2
𝑖, 𝑗 ,𝑘

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)2

𝜕𝜌𝑖, 𝑗 ,𝑘

𝜕𝛿 𝑗 ,𝑘

)
=

𝜌𝑖, 𝑗 ,𝑘

2
𝑍𝑖 −

1
2

(
𝑌2
𝑖, 𝑗

𝜎2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎2
𝑖,𝑘

)
𝜌𝑖, 𝑗 ,𝑘

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)
𝑍𝑖 +

𝑌𝑖, 𝑗𝑌𝑖,𝑘

𝜎𝑖, 𝑗𝜎𝑖,𝑘

(
𝑍𝑖

2
+

𝜌2
𝑖, 𝑗 ,𝑘

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)
𝑍𝑖

)
,

for 𝑗 < 𝑘 . To calculate the sensitivity matrix, we need to calculate the double derivatives of the

above two expressions. That is for 𝑗 = 1, . . . , 𝑞

𝜕2ℓ𝑖 (𝛼, 𝛿)
𝜕𝛼 𝑗𝜕𝛼

𝑇
𝑗

=

𝑞∑︁
𝑘=1,𝑘≠ 𝑗

−2
(

𝑌2
𝑖, 𝑗

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)𝜎3
𝑖, 𝑗

)
𝑍𝑖
𝜕𝜎𝑖, 𝑗

𝜕𝛼𝑇
𝑗

+
𝑞∑︁

𝑘=1,𝑘≠ 𝑗

(
𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘

𝜎2
𝑖, 𝑗
𝜎𝑖,𝑘

)
𝑍𝑖
𝜕𝜎𝑖, 𝑗

𝜕𝛼𝑇
𝑗

= −2
𝑞∑︁

𝑘=1,𝑘≠ 𝑗

(
𝑌2
𝑖, 𝑗

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)𝜎2
𝑖, 𝑗

)
𝑍𝑖𝑍

𝑇
𝑖 +

𝑞∑︁
𝑘=1,𝑘≠ 𝑗

(
𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘

𝜎𝑖, 𝑗𝜎𝑖,𝑘

)
𝑍𝑖𝑍

𝑇
𝑖 ,

𝜕2ℓ𝑖 (𝛼, 𝛿)
𝜕𝛼 𝑗𝜕𝛼

𝑇
𝑘

=
𝜌𝑖, 𝑗 ,𝑘𝑌𝑖, 𝑗𝑌𝑖,𝑘

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)𝜎𝑖, 𝑗𝜎𝑖,𝑘
𝑍𝑖𝑍

𝑇
𝑖 ,

and for 𝑗 < 𝑘

𝜕2ℓ𝑖 (𝛼, 𝛿)
𝜕𝛼 𝑗𝜕𝛿

𝑇
𝑗,𝑘

=

{
𝑌2
𝑖, 𝑗
𝜌𝑖, 𝑗 ,𝑘

𝜎2
𝑖, 𝑗
(1 − 𝜌2

𝑖, 𝑗 ,𝑘
)
−
𝑌𝑖, 𝑗𝑌𝑖,𝑘

𝜎𝑖, 𝑗𝜎𝑖,𝑘

(
1
2
+

𝜌2
𝑖, 𝑗 ,𝑘

1 − 𝜌2
𝑖, 𝑗 ,𝑘

)}
𝑍𝑖𝑍

𝑇
𝑖 ,

𝜕2ℓ𝑖 (𝛼, 𝛿)
𝜕𝛿 𝑗 ,𝑘𝜕𝛿

𝑇
𝑗,𝑘

=
(1 − 𝜌2

𝑖, 𝑗 ,𝑘
)𝑍𝑖𝑍𝑇𝑖

4
− 𝑍𝑖

2

(
𝑌2
𝑖, 𝑗

𝜎2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎2
𝑖,𝑘

) (
(1 − 𝜌2

𝑖, 𝑗 ,𝑘 )
−1 𝜕𝜌𝑖, 𝑗 ,𝑘

𝜕𝛿𝑇
𝑗,𝑘

+
2𝜌2

𝑖, 𝑗 ,𝑘

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)2

𝜕𝜌𝑖, 𝑗 ,𝑘

𝜕𝛿𝑇
𝑗,𝑘

)
+
𝑌𝑖, 𝑗𝑌𝑖,𝑘𝑍𝑖

𝜎𝑖, 𝑗𝜎𝑖,𝑘

( 2𝜌3
𝑖, 𝑗 ,𝑘

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)2

𝜕𝜌𝑖, 𝑗 ,𝑘

𝜕𝛿𝑇
𝑗,𝑘

+
2𝜌𝑖, 𝑗 ,𝑘

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)
𝜕𝜌𝑖, 𝑗 ,𝑘

𝜕𝛿𝑇
𝑗,𝑘

)
=

{ (1 − 𝜌2
𝑖, 𝑗 ,𝑘

)
4

− 1
2

(
𝑌2
𝑖, 𝑗

𝜎2
𝑖, 𝑗

+
𝑌2
𝑖,𝑘

𝜎2
𝑖,𝑘

) (
1
2
+

𝜌2
𝑖, 𝑗 ,𝑘

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)

)
+
𝑌𝑖, 𝑗𝑌𝑖,𝑘

𝜎𝑖, 𝑗𝜎𝑖,𝑘

(
𝜌3
𝑖, 𝑗 ,𝑘

(1 − 𝜌2
𝑖, 𝑗 ,𝑘

)
+ 𝜌𝑖, 𝑗 ,𝑘

)}
𝑍𝑖𝑍

𝑇
𝑖 .
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4.5 Simulation studies

4.5.1 Simulation design

Three different scenarios were considered. The number of phenotypes, 𝑞, was set to four for all

scenarios. For scenarios 1 and 2, the number of predictors 𝑝 was set to 2, and the sample size

𝑛 was set to 261 and 600, respectively. For the third scenario, 𝑝 was set to 6 and 𝑛 to 500.

All these numbers were chosen by closely following real datasets [11]. Each dataset contained

information on 𝑋 and 𝑌 from 𝑛 independent units. The predictor 𝑋 had 𝑝 components for every

unit, and each component was independently simulated from the Bernoulli(0.5) distribution. Next,

𝑌 was generated from 𝑁4(0, Σ𝑖), where Σ𝑖 = Diag(𝜎𝑖,1, . . . , 𝜎𝑖,𝑞)𝑅𝑖Diag(𝜎𝑖,1, . . . , 𝜎𝑖,𝑞), where

𝑅𝑖 = ((𝜌𝑖, 𝑗 ,𝑘 )). The true values of the parameter 𝜃 are given in the simulation tables.

4.5.2 Method of analysis

For each scenario 𝜌𝑖, 𝑗 ,𝑘 ’s and 𝜎𝑖, 𝑗 ’s were modelled according to Equations (4.1) and (4.2) with

respectively. Under each scenario 500 datasets were generated. Each dataset was analyzed by two

approaches, 1) the proposed MM algorithm, and 2) the direct method where parameter estimates

were obtained by directly maximizing the log-composite likelihood function. Under approach 2),

we used the optim function of R and chose to optimize using the L-BFGS-B, a variant of the

Broyden–Fletcher–Goldfarb–Shanno algorithm.

For both the approaches, the initial values for 𝜃 parameters were randomly generated from

Normal(0, 0.10). Since our proposed method is an iterative optimization, we used the sum of the

absolute relative difference between the parameter estimates in subsequent iterations to be less than

0.001 as the stopping criteria for the convergence.

4.5.3 Results

Results for scenarios 1 and 2 are presented in Tables 4.1 and 4.2. Results for scenario 3 are presents

in Tables 4.3 and 4.4.
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Table 4.1: Results of the simulation study for scenario 1 with 𝑛 = 261, 𝑝 = 2, 𝑞 = 4. All entries of
the table except for the true parameter values are multiplied by 100. Par: Parameter, SD: standard
deviation, SE: standard error, CP: 95% coverage probability, RMSE: root mean squared error

Par True Bias SD SE CP RMSE Par True Bias SD SE CP RMSE
𝛼1,0 −1.9 −0.9 8.0 7.4 93.8 8.0 𝛼3,0 −1.3 −0.1 7.8 7.5 93.2 7.8
𝛼1,1 −0.4 0.1 8.9 8.5 93.6 8.9 𝛼3,1 −0.2 0.1 8.6 8.6 96.2 8.6
𝛼1,2 0.3 −0.1 9.1 8.5 93.0 9.1 𝛼3,2 0 −0.9 9.1 8.6 94.0 9.1
𝛼2,0 −1.7 0.3 7.8 7.4 92.4 7.8 𝛼4,0 −1.4 −0.2 7.9 7.4 92.2 7.9
𝛼2,1 −0.4 −1.0 8.8 8.5 93.8 8.9 𝛼4,1 0 0 9.2 8.5 92.4 9.2
𝛼2,2 0 −0.6 8.9 8.5 93.6 8.9 𝛼4,2 0 −0.4 8.9 8.6 93.4 8.9
𝛿1,2,0 −0.7 −0.4 21.2 20.9 94.2 21.2 𝛿2,3,0 0 −0.1 22.3 21.2 93.6 22.3
𝛿1,2,1 −0.8 0.2 24.6 24.5 95.8 24.6 𝛿2,3,1 0 0.5 26.9 24.5 92.0 26.8
𝛿1,2,2 0 0.1 25.0 24.1 94.8 25.0 𝛿2,3,2 0 0.3 25.2 24.6 93.8 25.2
𝛿1,3,0 1.2 1.3 21.3 21.4 94.6 21.3 𝛿2,4,0 1.1 1.5 20.9 20.9 93.8 20.9
𝛿1,3,1 0 −0.9 24.9 24.6 94.6 24.9 𝛿2,4,1 0 −1.5 24.8 24.0 95.0 24.8
𝛿1,3,2 0 −0.1 25.5 24.6 94.4 25.5 𝛿2,4,2 −0.9 −0.2 24.9 24.5 95.6 24.9
𝛿1,4,0 0 −0.1 22.2 21.1 93.6 22.1 𝛿3,4,0 0 0.8 22.4 21.2 94.4 22.4
𝛿1,4,1 0 0.7 25.5 24.3 91.8 25.4 𝛿3,4,1 0 −1.3 26.1 24.6 93.0 26.1
𝛿1,4,2 0.6 0.1 24.9 24.6 95.0 24.9 𝛿3,4,2 0 −0.2 25.4 24.6 95.0 25.4

Table 4.2: Results of the simulation study for scenario 2 with 𝑛 = 600, 𝑝 = 2, 𝑞 = 4. All entries
except for the true parameter values of the table are multiplied by 100. Par: Parameter, SD: standard
deviation, SE: standard error, CP: 95% coverage probability, RMSE: root mean squared error

Par True Bias SD SE CP RMSE Par True Bias SD SE CP RMSE
𝛼1,0 −1.0 −0.1 5.1 4.9 94.8 5.1 𝛼3,0 1.0 −0.6 5.1 4.9 94.8 5.1
𝛼1,1 1.0 0.1 5.7 5.6 94.2 5.7 𝛼3,1 0.3 0.4 5.4 5.7 97.0 5.4
𝛼1,2 0.2 0 5.7 5.7 94.6 5.7 𝛼3,2 0.1 0.3 5.7 5.7 95.0 5.7
𝛼2,0 2.0 −0.7 5.0 4.9 93.6 5.1 𝛼4,0 −1.0 −0.4 5.3 5.0 92.4 5.3
𝛼2,1 0.2 0.2 5.7 5.6 94.4 5.7 𝛼4,1 −0.5 0.2 5.4 5.7 96.4 5.4
𝛼2,2 −0.5 0.5 5.8 5.7 94.2 5.9 𝛼4,2 1.0 0 5.8 5.7 95.4 5.8
𝛿1,2,0 0.2 0.1 14.0 13.9 93.4 14.0 𝛿2,3,0 −0.1 0.4 13.7 14.0 94.4 13.7
𝛿1,2,1 0.5 −0.7 15.6 15.9 95.0 15.6 𝛿2,3,1 1.0 1.0 15.9 16.2 94.8 16.0
𝛿1,2,2 1.0 1.2 16.8 16.2 95.6 16.8 𝛿2,3,2 −0.2 −1.0 15.9 15.8 94.4 15.9
𝛿1,3,0 0.2 0.7 13.7 14.1 95.6 13.7 𝛿2,4,0 0.2 0.4 15.1 14.1 94.2 15.1
𝛿1,3,1 0.2 −1.1 16.3 16.2 94.2 16.3 𝛿2,4,1 0.5 −0.5 16.6 15.9 95.0 16.6
𝛿1,3,2 0.5 −0.7 16.4 16.2 94.8 16.4 𝛿2,4,2 −1.0 0 16.6 16.2 94.2 16.6
𝛿1,4,0 0.2 0.1 14.0 14.2 95.4 14.0 𝛿3,4,0 −0.1 0.1 14.2 14.1 94.2 14.2
𝛿1,4,1 0.2 −0.4 16.2 16.2 94.4 16.2 𝛿3,4,1 0.2 −0.1 16.5 16.2 95.6 16.5
𝛿1,4,2 −0.5 1.2 15.9 16.3 96.6 16.0 𝛿3,4,2 −0.2 0.7 16.4 16.2 94.8 16.4
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Table 4.3: Results of 𝛼 parameters from the simulation study for scenario 3 with 𝑛 = 500, 𝑝 = 6,
𝑞 = 4. All entries except for the true parameter values of the table are multiplied by 100. Par:
Parameter, SD: standard deviation, SE: standard error, CP: 95% coverage probability, RMSE: root
mean squared error

Par True Bias SD SE CP RMSE Par True Bias SD SE CP RMSE
𝛼1,0 −1.0 −0.8 8.7 8.0 92.4 8.8 𝛼3,0 1.0 −1.7 8.7 8.1 92.6 8.8
𝛼1,1 1.0 0.5 6.0 6.0 94.2 6.0 𝛼3,1 0.3 0.4 6.5 6.1 92.4 6.5
𝛼1,2 0.2 0.2 6.1 6.0 94.8 6.1 𝛼3,2 0.1 −0.3 6.5 6.1 93.8 6.5
𝛼1,3 −0.4 −0.4 6.2 6.0 95.2 6.2 𝛼3,3 0 0.3 6.4 6.1 93.2 6.4
𝛼1,4 0.3 −0.1 6.0 6.0 95.4 6.0 𝛼3,4 −0.2 0.1 6.6 6.1 92.6 6.6
𝛼1,5 0 0.5 6.2 6.0 93.4 6.2 𝛼3,5 0.1 0.5 6.5 6.1 93.8 6.5
𝛼1,6 −0.5 −0.1 6.5 6.0 93.8 6.5 𝛼3,6 −0.2 0.6 6.3 6.1 93.8 6.3
𝛼2,0 2.0 −0.4 8.4 8.1 93.4 8.4 𝛼4,0 −1.0 −0.7 8.4 8.0 92.8 8.4
𝛼2,1 0.2 −0.1 6.3 6.0 93.8 6.2 𝛼4,1 −0.5 −0.2 6.5 6.0 92.0 6.5
𝛼2,2 −0.5 0 6.2 6.0 94.6 6.2 𝛼4,2 0 0 6.6 6.1 91.2 6.6
𝛼2,3 −0.4 −0.3 6.7 6.2 92.8 6.7 𝛼4,3 0.3 −0.6 6.3 6.0 93.4 6.3
𝛼2,4 0 0 6.4 6.0 93.8 6.4 𝛼4,4 −0.2 0.3 6.2 6.0 93.6 6.2
𝛼2,5 0.3 −0.5 6.1 6.0 93.4 6.1 𝛼4,5 −0.2 0.1 6.1 6.0 95.0 6.1
𝛼2,6 0 −0.2 6.2 6.1 93.8 6.2 𝛼4,6 0.2 0.2 6.2 6.0 94.4 6.2

We present the bias, the standard deviation of the estimates (SD), the estimated standard error

(SE), the empirical coverage probability of the 95% Wald ’s confidence intervals, and the root mean

squared error (RMSE) of the estimates for the proposed MM algorithm. The second approach’s

results are qualitatively similar to the MM algorithm. Hence they are not presented in the tables.

The important take-way messages are 1) the biases of the parameters are negligible for different

sample sizes and different 𝑝, 2) the SEs are very close to the SDs, indicating that the asymptotic

standard deviation of the estimators is captured well by the SE, 3) the empirical coverage probabil-

ities are pretty close to 0.95. All of these indicate that the method of estimation works well, and

asymptotic properties of the estimator hold. The SD and SE decrease with the sample size (Tables

4.1 and 4.2 in the Supplementary Materials). Even for the scenario of a large number of parameters

(Table 4.3, 4.4), the performance of the MM algorithm is extremely satisfactory.

In general, the bias and SD (also RMSE) are considerably larger for the 𝛿 parameters than the

𝛼 parameters, indicating more uncertainties (less information) in the correlation parameters than

the standard deviations.
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Table 4.4: Results of 𝛿 parameters from the simulation study for scenario 3 with 𝑛 = 500, 𝑝 = 6,
𝑞 = 4. All entries except for the true parameter values of the table are multiplied by 100. Par:
Parameter, SD: standard deviation, SE: standard error, CP: 95% coverage probability, RMSE: root
mean squared error

Par True Bias SD SE CP RMSE Par True Bias SD SE CP RMSE
𝛿1,2,0 0.2 1.2 23.5 23.1 94.8 23.5 𝛿2,3,0 0 1.1 24.5 23.5 92.8 24.5
𝛿1,2,1 0.5 −2.4 17.7 17.3 95.6 17.8 𝛿2,3,1 0 0.3 19.3 17.8 93.4 19.3
𝛿1,2,2 0 −4.4 17.2 17.2 94.6 17.8 𝛿2,3,2 −0.2 3.1 18.5 17.9 93.6 18.7
𝛿1,2,3 −0.7 3.3 18.3 17.4 94.4 18.6 𝛿2,3,3 0 −2.5 18.9 17.8 93.8 19.0
𝛿1,2,4 0.3 −2.7 16.9 17.2 95.2 17.1 𝛿2,3,4 0 1.7 17.0 17.8 95.0 17.1
𝛿1,2,5 0 1.8 17.6 17.2 93.0 17.7 𝛿2,3,5 0 −1.1 17.8 17.8 94.4 17.8
𝛿1,2,6 −0.8 3.0 18.0 17.5 93.4 18.2 𝛿2,3,6 0 −2.6 18.4 17.8 93.0 18.6
𝛿1,3,0 0.5 −3.4 25.0 23.4 93.0 25.2 𝛿2,4,0 0.3 1.7 23.3 23.0 94.4 23.4
𝛿1,3,1 0.2 −0.5 17.9 17.6 94.2 17.9 𝛿2,4,1 0 2.7 18.6 17.2 93.0 18.8
𝛿1,3,2 0.5 −1.4 17.7 17.7 95.0 17.8 𝛿2,4,2 −1.0 4.1 18.14 17.6 93.6 18.6
𝛿1,3,3 0 1.9 19.3 17.5 92.0 19.3 𝛿2,4,3 0.4 −4.5 18.0 17.2 93.2 18.5
𝛿1,3,4 0.2 −3.9 19.2 17.5 92.4 19.6 𝛿2,4,4 −0.3 1.4 17.0 17.2 94.4 17.1
𝛿1,3,5 −0.5 5.4 18.8 17.7 93.6 19.5 𝛿2,4,5 0.5 −1.4 17.6 17.2 93.6 17.7
𝛿1,3,6 0 1.0 18.4 17.5 93.8 18.4 𝛿2,4,6 0.3 −6.0 18.4 17.2 92.4 19.3
𝛿1,4,0 1.0 −1.4 26.8 23.5 90.8 26.8 𝛿3,4,0 −1.0 0.5 24.4 23.4 92.6 24.4
𝛿1,4,1 0.2 −2.1 19.6 17.7 92.0 19.7 𝛿3,4,1 0.2 1.3 18.3 17.6 95.2 18.3
𝛿1,4,2 −0.5 −0.1 18.1 17.8 94.8 18.1 𝛿3,4,2 −0.2 2.2 16.9 17.7 95.4 17.0
𝛿1,4,3 −0.2 0.1 18.9 17.7 93.8 18.9 𝛿3,4,3 −0.1 1.0 18.5 17.6 94.0 18.5
𝛿1,4,4 0.5 −2.8 18.3 17.8 94.2 18.5 𝛿3,4,4 0.2 2.9 17.8 17.7 95.2 18.0
𝛿1,4,5 0.1 4.6 18.5 17.7 92.6 19.1 𝛿3,4,5 0.6 −2.8 17.9 17.7 95.2 18.1
𝛿1,4,6 −0.1 −0.9 18.0 17.7 95.0 18.0 𝛿3,4,6 −0.1 −1.4 18.6 17.6 92.8 18.6

4.5.4 Computational advantage

We have extended Scenario 3 from the simulation design by varying the number of predictor

variables. Specifically, we set the number of phenotypes, 𝑞 to 4, and the sample size, 𝑛 to 500.

We used four different values of the predictor variable, 𝑝= 2, 3, 4, 5. This resulted in the number

of unknown parameters in our setting as 30, 40, 50, 60 respectively. The multivariate phenotype

response, 𝑌 , and the design matrix, 𝑋 were generated exactly as Section 4.5. Under each scenario,

we performed 100 simulations. Figure 4.1 shows the average computation time (in seconds) of the

MM algorithm
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Figure 4.1: Average computational time comparison between CMPLE and direct optimization
method (DOP) for 100 simulations

and direct optimization (DOP) via the optim function with the "L-BFGS-B" method. Both tech-

niques were used to maximize the pairwise composite likelihood function. The numerical results

seem to indicate that the DOP method has an exponential time complexity, and CMPLE has linear

time complexity with respect to the number of parameters.

Our method has a clear advantage in terms of computation time over the direct optimization

method. The proposed method is at least four times faster than the direct method (see Table 4.5).

All simulations were done on a 2.8Ghz Intel Xeon E5-1603 processor.

Table 4.5: Average computation time (in seconds) using the MM algorithm and direct optimization
(DOP) via the optim function with the “L-BFGS-B” method for 100 simulations under different
scenarios.

Simulation scenario
1 2 3

MM 5021 16394 33576
DOP 23782 56970 204036
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4.6 Data Example

4.6.1 Background

We analyzed a population of cowpea (Vigna unguiculata. (L.)Walp.) recombinant inbred lines

(RILs) which has a high level of genetic diversity and significantly variable phenotypic response

to fluctuating environments. Previous studies have demonstrated strong genetic variation on pho-

tosynthetic responses in cowpea that co-regulates the light reactions of photosynthesis [3]. We

were particularly interested in assessing the phenotype associations in terms of previously identi-

fied candidate genes under two environmental conditions: (1) CT, control temperature 29°C/19°C

(day/night), and (2) LT, low or suboptimal temperature (chilling stress) 19°C/13°C (day/night).

The responses consisted of 𝑞 = 4 phenotypes, namely (1) steady-state PS II quantum yields, 𝜙𝐼 𝐼 ,

(2) non-photochemical quenching, 𝑁𝑃𝑄𝑡 , (3) 𝑄𝐴 redox state PS II center opened, 𝑞𝐿 , and (4)

thylakoid pmf (proton motive force), 𝐸𝐶𝑆𝑡 . These phenotypes were measured using MultispeQ 2.0

hand-held instruments as described in [47].

For this experiment, 𝑛 = 470 observations were used which originated from a cross between

a tolerant cultivar California Blackeye 27 (CB27) bred by the University of California, Riverside

and a sensitive breeding line 24-125B-1 developed by Institute de Recherche Agricole pour le

Développement (IRAD, Cameroon). Single nucleotide polymorphism (SNP) markers of genotype

data of CB27 × 24-125B-1, based on EST sequences produced by [71]. Individuals of the RIL

population are homozygous for each marker in the two parental lines, as indicated by the designations

of either AA, having the allele from CB27 (tolerant, maternal line), or BB, having the allele from

24-125B-1 (sensitive, paternal line). To incorporate them in our analysis, we have used dummy

coding to transform them into binary (0, 1) features, where 0 (1) characterize the AA (BB) allele

at a given marker locus.

First, we performed individual QTL analysis on these four phenotypes using the Multiple QTL

Mapping (MQM) model using the Rqtl package [72]. LOD thresholds were determined using

a permutation analysis implemented with the mqmpermutation and mqmscan functions with the
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number of permutations set at 1000 and a nominal significance cutoff of 𝑝 < 0.05. Results from

the QTL analysis are presented in Figure 4.2. We found two candidate loci under QTL peaks at

chromosome 4 (59.64 cm) and chromosome 9 (86.93 cm) that are the common significant SNP’s

under both conditions. These loci were also predicted by pseudomolecules through BLAST in early

release genomes in Phytozome and those are annotated by Pfam, Panther, EuKaryotic Orthologous

Groups (KOG), Kyoto Encyclopedia of Genes and Genomes (KO), Gene Ontology (GO) and best-

hit of Arabidopsis gene. For the subsequent analysis, we have used these 𝑞 = 4 phenotypes with

𝑝 = 3 predictors (two candidate loci and one environmental variable).
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Figure 4.2: QTL plot of different phenotypes used in the Cowpea RIL data. LOD threshold for
each phenotype is marked by the bold horizontal line. QTL with a LOD higher than that can be
considered significant. Chromosomes are marked by the vertical lines.

4.6.2 Method of analyses

We fit the following model to 𝜎𝜙𝐼 𝐼 , the standard deviation of phenotype 𝜙𝐼 𝐼 , in terms of the

predictors, 𝜎𝜙𝐼 𝐼 = exp(𝛼1,0 + 𝛼1,1Marker 1 + 𝛼1,2Marker 2 + 𝛼1,3Environment). Similar model

was fit to the standard deviation of the other phenotypes. Simultaneously, we fit the following

model to the pairwise correlations between phenotypes 𝜙𝐼 𝐼 and 𝑁𝑃𝑄𝑡 , 𝜌𝜙𝐼 𝐼&𝑁𝑃𝑄𝑡
= 1 − 2/{1 +
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exp(𝛿1,2,0+𝛿1,2,1Marker 1+𝛿1,2,2Marker 2+𝛿1,2,3Environment)}. Similarly, the remaining five pair-

wise correlations, 𝜌𝜙𝐼 𝐼&𝑞𝐿 , 𝜌𝜙𝐼 𝐼&𝐸𝐶𝑆𝑡 , 𝜌𝑁𝑃𝑄𝑡&𝑞𝐿 , 𝜌𝑁𝑃𝑄𝑡&𝐸𝐶𝑆𝑡 , 𝜌𝑞𝐿&𝐸𝐶𝑆𝑡 were modelled in terms of

the predictors.

Before applying the MM algorithm, we subtracted respective mean from the four phenotypes to

have mean zero. For the above described models, there were a total of 40 parameters including 𝛼

parameters and 𝛿 parameters. Note that 𝜃 = (𝛼⊤, 𝛿⊤)⊤. We set the initial value of 𝜃 to the random

numbers generated from Normal(0, 0.15), and used the sum of the absolute relative difference

between subsequent iterations to be less than 𝜖0 = 0.001 as the stopping criteria for the iterative

algorithm 4.5.

4.6.3 Interpretation

The results of our analyses are placed in Tables 4.6 and 4.7. Specifically, Table 4.6 contains

Table 4.6: Parameter estimates and the 95% confidence interval in parentheses of the parameters
of the standard deviation model for the measured phenotypes from the cowpea dataset.

𝜙𝐼 𝐼 𝑁𝑃𝑄𝑡 𝑞𝐿 𝐸𝐶𝑆𝑡
Intercept −2.61 (−2.73,−2.49) −0.37 (−0.51,−0.23) −2.17 (−2.29,−2.05) −3.18 (−3.43,−2.93)
Marker 1 −0.04 (−0.16, 0.08) −0.43 (−0.61,−0.25) 0.03 (−0.13, 0.19) 0.02 (−0.16, 0.20)
Marker 2 0.08 (−0.04, 0.20) 0.45 (0.29, 0.61) −0.07 (−0.21, 0.07) −0.24 (−0.42,−0.06)
Environment 0.19 (0.07, 0.31) 0.45 (0.29, 0.61) −0.14 (−0.30, 0.02) 0.16 (0.01, 0.32)

Table 4.7: Parameter estimates and 95% confidence interval in parentheses of the parameters of
pairwise correlation among the measured phenotypes from the cowpea dataset.

Intercept Marker 1 Marker 2 Environment
𝜙𝐼 𝐼&𝑁𝑃𝑄𝑡 −1.35 (−1.72,−0.98) −0.45 (−0.82,−0.08) 0.12 (−0.25, 0.49) −0.71 (−1.10,−0.32)
𝜙𝐼 𝐼&𝑞𝐿 1.82 (1.49, 2.15) 0.29 (−0.02, 0.60) −0.32 (−0.63,−0.01) −0.30 (−0.63, 0.03)
𝜙𝐼 𝐼&𝐸𝐶𝑆𝑡 0.16 (−0.23, 0.55) −0.65 (−1.02,−0.28) 0.38 (−0.01, 0.77) 0.17 (−0.18, 0.52)
𝑁𝑃𝑄𝑡&𝑞𝐿 0.35 (−0.12, 0.82) −0.54 (−0.95,−0.13) 0.23 (−0.18, 0.64) −0.42 (−0.75,−0.09)
𝑁𝑃𝑄𝑡&𝐸𝐶𝑆𝑡 0.82 (0.45, 1.19) 0.13 (−0.24, 0.50) −0.14 (−0.55, 0.27) −1.05 (−1.44,−0.66)
𝑞𝐿&𝐸𝐶𝑆𝑡 1.01 (0.58, 1.44) −0.52 (−0.95,−0.09) −0.01 (−0.42, 0.40) −0.47 (−0.88,−0.06)

the estimate and 95% CI of the 𝛼 parameters involved in the standard deviation modelling, whereas

Table 4.7 corresponds to the 𝛿 parameters involved in the pairwise correlation modelling. We made

several key observations from our analysis.
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• The 𝛼 parameters measure how the standard deviation of individual phenotypes changes

with different candidate loci or the environmental factor. The 𝛼 𝑗 -parameters ( 𝑗 is the index

for phenotype) can be viewed as the conditional effect of each predictor variable on 𝑗’th

phenotype. For example, the conditional effect of Marker 1 on the standard deviation of

𝑁𝑃𝑄𝑡 was estimated to be −0.43. This means that in our population, if there is a change

from allele AA to allele BB at Marker 1, the conditional standard deviation of 𝑁𝑃𝑄𝑡 will

decrease by 35% while all other predictors remain unchanged. Likewise, if there is a change

from allele AA to allele BB at Marker 2, then the conditional standard deviation of 𝑁𝑃𝑄𝑡

will increase by 57% while all other predictors remain unchanged. Like Marker 2, if the

temperature changes from control (CT) to low (LT), then the conditional standard deviation of

𝑁𝑃𝑄𝑡 will increase by 57% while all other predictors remain unchanged. These are the most

noteworthy changes in the standard deviation of the phenotypes. The standard deviation of 𝜙𝐼 𝐼

and 𝐸𝐶𝑆𝑡 seem to be affected by environment, and Marker 2 and environment, respectively.

Similarly, in Table 4.7, we collect 𝛿 𝑗 ,𝑘 estimates that can be used to calculate the conditional

effect of each predictor on the correlation between ( 𝑗 , 𝑘) phenotype pair. For example, the

estimated regression parameter of Marker 1 on the pairwise correlation of 𝜙𝐼 𝐼 and 𝑁𝑃𝑄𝑡

was −0.45. This means in our population, if the Marker 1 allele changes from AA to BB,

the conditional pairwise correlation between 𝜙𝐼 𝐼 and 𝑁𝑃𝑄𝑡 will decrease by 0.13 (using the

Equation 4.1) when Marker 2 is at allele AA and environment is set at the control condition.

Quantification of the changes in correlations based on the predictors has a profound signif-

icance in the photosynthetic experiments as it indicates the change in biological processes

which plant adapts. As example, the estimated regression parameter of the Environment

variable on 𝑁𝑃𝑄𝑡 and 𝐸𝐶𝑆𝑡 was −1.05. This indicates in our population, if the Environment

variable changes from control temperature(CT) to low temperature(LT), the conditional pair-

wise correlation between 𝑁𝑃𝑄𝑡 and 𝐸𝐶𝑆𝑡 will decrease by 0.50 (using the Equation 4.1)

when both the markers are at allele AA.

• Intercept terms, after appropriate transformation, represent the baseline conditional standard
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deviation and baseline pairwise correlation among phenotypes when all the markers are fixed

at allele AA and the environment variable is fixed at the control temperature. For example, in

Table 4.6, an intercept of −2.61 under column 𝜙𝐼 𝐼 implies that the standard deviation of the

phenotype 𝜙𝐼 𝐼 is exp(−2.61) = 0.07 when all the predictors are at their baseline. Likewise,

in Table 4.7, the estimated intercept −1.35 under the column 𝜙𝐼 𝐼&𝑁𝑃𝑄𝑡 implies that the

estimated correlation between the phenotypes 𝜙𝐼 𝐼 and 𝑁𝑃𝑄𝑡 is 1 − 2/{1 + exp(−1.35)} =

−0.59 when all the predictors are at their baseline. Consequently, the 95% CI of the intercept

(−1.72,−0.98) implies that the 95% CI of the correlation between the phenotypes 𝜙𝐼 𝐼 and

𝑁𝑃𝑄𝑡 is (−0.70,−0.45) when all the predictors are at their baseline.

• We have also estimated the average marginal effects and the corresponding 95% confidence

intervals for candidate loci on correlations between phenotypes in Table 4.8. For example, the

average marginal effect of Marker 1 on the correlation between 𝜙𝐼 𝐼 and 𝐸𝐶𝑆𝑡 is estimated to

be −0.32 (95% CI: −0.50, −0.13) when the marker allele changes from AA to BB. Likewise,

the average marginal effect of the environment variable on the correlation between 𝑁𝑃𝑄𝑡

and 𝐸𝐶𝑆𝑡 is estimated to be −0.51 (95% CI: −0.69, −0.32).

Table 4.8: Average marginal effect estimates and 95% confidence interval in parentheses of the
pairwise correlations between phenotypes based on predictors.

Marker 1 Marker 2 Environment
𝜙𝐼 𝐼&𝑁𝑃𝑄𝑡 −0.11 (−0.27, 0.04) 0.03 (−0.06, 0.12) −0.16 (−0.25,−0.07)
𝜙𝐼 𝐼&𝑞𝐿 0.08 (−0.07, 0.23) −0.08 (−0.17,−0.01) −0.08 (−0.17, 0.01)
𝜙𝐼 𝐼&𝐸𝐶𝑆𝑡 −0.32 (−0.50,−0.13) 0.18 (0.02, 0.37) 0.08 (−0.11, 0.27)
𝑁𝑃𝑄𝑡&𝑞𝐿 −0.26 (−0.48,−0.05) 0.11 (−0.09, 0.31) −0.20 (−0.41,−0.01)
𝑁𝑃𝑄𝑡&𝐸𝐶𝑆𝑡 0.06 (−0.11, 0.23) −0.06 (−0.23, 0.11) −0.50 (−0.69,−0.32)
𝑞𝐿&𝐸𝐶𝑆𝑡 −0.24 (−0.40,−0.08) 0.01 (−0.20, 0.19) −0.22 (−0.41,−0.03)

• The signs of the coefficients in Tables 4.6 and 4.7 indicate the direction in which the con-

ditional (or marginal) standard deviation and correlation between the phenotypes change

with respect to predictors. Different directionality can be biologically explained as different

regulatory pathways inside a photosynthesis system. For example, the estimated regression

parameter for Marker 1 on the correlation between 𝜙𝐼 𝐼 and 𝑞𝐿 is 0.29, whereas the regres-
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sion parameter for Marker 2 on the exact correlation is −0.32. This explains two different

relationship between 𝜙𝐼 𝐼 and 𝑞𝐿 asserted by Marker 1 and Marker 2, respectively.

Table 4.9: Pairwise correlation estimates and 95% confidence interval in parentheses of the mea-
sured phenotypes from all genetic combinations of Marker 1 and Marker 2 from the cowpea dataset
under 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 temperature.

𝐴𝐴𝐴𝐴 𝐴𝐴𝐵𝐵 𝐵𝐵𝐴𝐴 𝐵𝐵𝐵𝐵

𝜙𝐼 𝐼&𝑁𝑃𝑄𝑡 −0.59 (−0.70,−0.45) −0.55 (−0.68,−0.37) −0.72 (−0.78,−0.64) −0.69 (−0.78,−0.57)
𝜙𝐼 𝐼&𝑞𝐿 0.72 (0.63, 0.79) 0.64 (0.53, 0.72) 0.78 (0.73, 0.83) 0.71 (0.64, 0.78)
𝜙𝐼 𝐼&𝐸𝐶𝑆𝑡 0.08 (−0.11, 0.27) 0.27 (0.08, 0.43) −0.24 (−0.38,−0.09) −0.06 (−0.26, 0.15)
𝑁𝑃𝑄𝑡&𝑞𝐿 0.17 (−0.06, 0.39) 0.28 (0.13, 0.42) −0.10 (−0.23, 0.04) 0.02 (−0.19, 0.23)
𝑁𝑃𝑄𝑡&𝐸𝐶𝑆𝑡 0.39 (0.22, 0.54) 0.33 (0.11, 0.52) 0.44 (0.34, 0.54) 0.38 (0.18, 0.55)
𝑞𝐿&𝐸𝐶𝑆𝑡 0.47 (0.29, 0.62) 0.46 (0.33, 0.58) 0.24 (0.04, 0.42) 0.23 (0.01, 0.43)

Table 4.10: Pairwise correlation estimates and 95% confidence interval in parentheses of the
measured phenotypes from all genetic combinations of Marker 1 and Marker 2 from the cowpea
dataset under 𝐿𝑜𝑤 temperature.

𝐴𝐴𝐴𝐴 𝐴𝐴𝐵𝐵 𝐵𝐵𝐴𝐴 𝐵𝐵𝐵𝐵

𝜙𝐼 𝐼&𝑁𝑃𝑄𝑡 −0.77 (−0.84,−0.68) −0.75 (−0.81,−0.67) −0.85 (−0.90,−0.78) −0.83 (−0.88,−0.77)
𝜙𝐼 𝐼&𝑞𝐿 0.64 (0.53, 0.73) 0.54 (0.40, 0.65) 0.72 (0.63, 0.79) 0.63 (0.51, 0.73)
𝜙𝐼 𝐼&𝐸𝐶𝑆𝑡 0.16 (−0.04, 0.36) 0.34 (0.18, 0.49) −0.16 (−0.31, 0.03) 0.03 (−0.16, 0.21)
𝑁𝑃𝑄𝑡&𝑞𝐿 −0.04 (−0.25, 0.18) 0.03 (−0.12, 0.18) −0.30 (−0.42,−0.16) −0.19 (−0.38,−0.02)
𝑁𝑃𝑄𝑡&𝐸𝐶𝑆𝑡 −0.19 (−0.30,−0.09) −0.18 (−0.31,−0.05) −0.05 (−0.24, 0.15) −0.03 (−0.25, 0.19)
𝑞𝐿&𝐸𝐶𝑆𝑡 0.26 (0.04, 0.46) 0.26 (0.04, 0.45) 0.01 (−0.15, 0.16) 0.01 (−0.23, 0.23)

• Using the results presented in Tables 4.6 and 4.7, we estimated correlations among the

different pairs of phenotypes and their associated 95% confidence intervals for all possible

combinations of genetic variations and environmental conditions (see Table 4.9 and 4.10).

This resulted in eight possible combinations, revealing biologically relevant patterns among

the phenotypes. For the row corresponding to 𝑁𝑃𝑄𝑡&𝐸𝐶𝑆𝑡, a positive association was found

under control temperature (CT), whereas a negative association was predominant under

low temperature (LT). Under the control temperature, genetic variations in chromosomes

4 and 9 modulated photochemistry mainly through the 𝑞𝐸 mechanism, while under the

low temperature, they modulated photochemistry predominantly through the 𝑞𝐼 mechanism.

Also, under LT, we have found that the combinations AAAA and AABB produced negative

correlations between 𝑁𝑃𝑄𝑡 and 𝐸𝐶𝑆𝑡, while the combinations BBAA and BBBB resulted in

uncorrelated 𝑁𝑃𝑄𝑡 and 𝐸𝐶𝑆𝑡. This suggests that the genetic variations of chromosome 4 are
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more likely to modulate the 𝑞𝐼 mechanism. To illustrate further, we looked into the estimated

correlations among 𝑁𝑃𝑄𝑡 and 𝑞𝐿 for the different groups under the low temperature. For the

AAAA and AABB combinations, 𝑁𝑃𝑄𝑡 and 𝑞𝐿 were uncorrelated, but for the BBAA and

BBBB combinations, 𝑁𝑃𝑄𝑡 and 𝑞𝐿 were negatively correlated. This can be explained as

follows. If the downstream processes are blocked, electrons get accumulated in𝑄𝐴, ensuring

𝑄𝐴 to be more reduced (𝑞𝐿 goes down), which increases 𝑞𝐼. As 𝑞𝐼 builds up, the slope

gradient between 𝑁𝑃𝑄𝑡 and 𝑞𝐿 gradually increases to a point where the negative associations

between 𝑁𝑃𝑄𝑡 and 𝑞𝐿 break down. For example, under low temperatures, within AAAA

and AABB, we have found no association between 𝑁𝑃𝑄𝑡 and 𝑞𝐿.

4.7 Discussion

Analyzing high-dimensional voluminous datasets generated by high-throughput phenotyping and

genome sequencing is of paramount interest for adaptive plant breeding. However, as the process

involves complex interactions among multiple traits, genotypes, and environmental variables, suit-

able statistical models and efficient computational techniques are required to identify appropriate

mechanisms. Therefore, we have developed the CMPLE workflow (overall workflow presented

in Figure B.1) to bridge the gap in the phenotype-genotype-environment association studies by

exploiting the correlation structure among phenotypes based on genetic and environmental vari-

ables. This is an important step toward solving different applications arising from the integration

of multi-omics datasets.

Standard quantitative genomics experiments aim to determine what genetic variations contribute

to individual phenotypes. On the other hand, interactions among various phenotypes signify

pleiotropy, i.e., markers having multi-trait effects. Our method, CMPLE, is possibly the first

tool in the quantitative genetics literature that explains pleiotropy by incorporating the pairwise

correlations of multiple traits. The proposed methodology helps recover pertinent information

regarding different regulatory pathways associated with genetic variations.

With our experimental data on photosynthesis, we have explained a possible hypothesis that
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genetic variations alone are not responsible for photodamage. Instead, they condition the photo-

synthetic system to respond differently, favoring photoprotection or photodamage. With the given

population, we identified a trade-off in photosynthesis machinery between these two processes being

regulated through combinations of genetic and environmental predictors. We sparse out the genetic

marker effects of specific SNPs in chromosomes 4 and 9, which under the control temperature

favor photoprotective mechanisms, whereas, under low temperature, they are more consistent with

modulation of 𝑞𝐼. Also, under low-temperature conditions, where the photosynthetic machinery

favors the 𝑞𝐼 mechanism, we have identified the correlations between 𝑁𝑃𝑄𝑡 and 𝑞𝐿 to be changing

with specific genetic configurations, e.g., uncorrelated 𝑁𝑃𝑄𝑡 and 𝑞𝐿 (for combinations AAAA

and AABB) and negatively correlated 𝑁𝑃𝑄𝑡 and 𝑞𝐿 (for combinations BBAA and BBBB). This

provides evidence for a subsequent hypothesis that the gradient between 𝑁𝑃𝑄𝑡 and 𝑞𝐿 can further

modulate the 𝑞𝐼 mechanism under low temperatures. This can be interpreted as one example of re-

flecting epistasis, where multiple genetic components interact in complex ways to further modulate

regulatory pathways inside a system.
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CHAPTER 5

IMPACT OF THIS DISSERTATION

In this thesis, we have proposed novel statistical machine learning methodology and computationally

efficient algorithms, tools, and techniques to detect genetic markers for multivariate phenotypes

and estimate the network structure from high-dimensional genomics datasets in multidisciplinary

research. Through the analysis of "massive" datasets consisting of multiple phenotypes and many

genetic markers we were to reveal new insights into how genetic diversity may have tuned biological

processes to enhance fitness under diverse conditions.

The thesis tackled numerous applications from the perspective of plant physiology and genetics

as a whole. In a nutshell, we have explored model-based clustering tools to identify environmental

conditions affecting different phenotypes and assessed their interactions to reveal a new limiting

behavior that plants adapt to in the real world. We provided a comparison of different statistical

tools for genome-enabled analysis. Next, we implemented Bayesian latent factor analysis to

discover and test possible mechanistic bases of such variations by assessing cosegregation (or lack

thereof) between genetic diversity and multiple traits. We found that these latent factors under

appropriate conditions represent the physical modes of interactions among phenotypes, which

led to the identification of quantitative trait loci (QTLs), i.e., genetic polymorphisms altering

the co-regulatory network among phenotypes. A significant conclusion from our work is that

standard QTL mapping on individual traits fails to address the associations between multivariate

phenotypes. One should model the interactions/ correlations among phenotypes through genetic

markers to affirm meaningful biological mechanisms. To this end, we proposed to model the

correlations among multiple complex phenotypes as a function of genetic and environmental

explanatory variables (weighted graph estimation through correlation regression model). We

have developed the “state-of-the-art” estimation methodology called Correlation Modeling under

Pairwise Likelihood Estimation (CMPLE), aided by a novel Minorize-Maximize (MM) algorithm,

and provided a technique for statistical inference.
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In-plant breeding, a key aspect is to evaluate the genetic merit of candidate markers for artificial

selection and predict the expected yield for phototrophs. Using CMPLE, we can provide genome-

enabled predictions for correlation between multiple traits. In practice, plant breeders can use our

tool to screen plants to detect the participation of distinct response mechanisms in different species,

under diverse environments, at different development stages. Further, it can guide the breeding of

varieties with improved responses to other environmental conditions, most notably for application

to climate-resilient agriculture.

We want to stress that mean regression modeling/analysis is not a substitute for correlation

modeling/analysis. These two provide different aspects of association in the phenotype-genotype

space. Therefore, irrespective of whether we work with the residual responses (residual obtained

after regressing the phenotypes on the candidate genes) or the mean zero responses (obtained after

subtracting the crude means from respective phenotypes), the results of the correlation analysis

remain somewhat unchanged. This work represents a significant advance in modeling pairwise cor-

relation and standard deviation in terms of predictor variables. The modeling is also accompanied

by a novel estimation technique that boosts the optimization problem involving many parameters.

Besides methodology development, we have shown that joint inference of standard deviations and

correlations among phenotypes can be used to test co-segregation of genetically-resolved associ-

ation between different traits and improves the precision of phenotype network structure (Figure:

B.2 and B.3)

The approach can be extended for different applications. The focus of this paper was purely

on the modeling of the correlation and standard deviation. This can be relaxed by modeling

both the mean and variance-covariance and developing problem-specific MM algorithms and

minorizing functions. The current proof-of-concept approach was developed for a moderate number

of predictors. Generally, a regularized estimation is recommended for many predictors, and creating

a statistical method for a regularized analysis of the correlation will be an exciting topic of future

research. Another possible way for extending our work is through the simultaneous selection

(of genetic predictors) and estimation of pairwise correlation in the context of high-dimensional
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datasets.

In a nutshell, this dissertation has argued uniqueness of photosynthetic mechanisms under

abiotic stress (heat and cold temperatures). Next, we have demonstrated new genetic controls by

incorporating the interactions between biological traits. Finally, we have offered novel statistical

methodology and computationally efficient algorithm: CMPLE for Multi-omics platforms. All of

these taken together can be used for creating climate adaptive plants for the betterment of mankind.

This work was supported by the DOE Office of Science, Basic Energy Sciences under Awards

DEFG02-91ER20021 and DE-SC0007101 and NSF-DMS 1945824 and 1924724.
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APPENDIX A

SUPPLEMENT FOR PHENOME-BY-GENOME-BY-ENVIRONMENT INTERACTIONS
AND THE SCOPE OF DATA SCIENCE

A.1 Clustering on the Light-potential experiment

The experiment, examining light-induced changes in chlorophyll fluorescence and absorbance

changes at ambient photosynthetically- active radiation (PAR), following 10s of PAR equivalent

to full sunlight, and following 10s of darkness, yields an estimate of the rapid Light Potentials of

linear electron flow (LEF), nonphotochemical quenching (NPQ) and related processes. (Figure:

A.1)

Figure A.1: Light and temperature effects on LEF and photosystem II quantum efficiency (𝜙𝐼 𝐼).
Each parameter was plotted as a function of the square root of the ambient photosynthetically active
radiation (PARamb, X-axis) and leaf temperature (Tleaf, coloration of points). (a) Dependencies
of LEF measured at PARamb; (b) LEF measured at 10 s high light (𝐿𝐸𝐹ℎ𝑖𝑔ℎ); (c) the high light-
induced differences in LEF (𝐿𝐸𝐹ℎ𝑖𝑔ℎ−𝑎𝑚𝑏); (d) the PSII quantum efficiencies measured under
ambient PAR (𝑃ℎ𝑖2𝑎𝑚𝑏, points coloured by Tleaf) and at 10 s high light (𝑃ℎ𝑖2ℎ𝑖𝑔ℎ, grey points).

As shown in Figure A.2, GMM analysis of LEFamb, PARamb, and Tleaf, found six distinct,

compact clusters that differed in the mode of interaction among the photosynthetic and environmen-
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tal parameters. Encompassing points with lower PARamb showed moderate (Cluster 5) to strong

(Clusters 1,2, and 4) dependence of LEFamb on PARamb, with little contributions from Tleaf.

Figure A.2: Gaussian Mixture Model (GMM) clustering of LEFamb (Panel A) and correlation
matrixes between LEFamb, PARamb and leaf temperature (Tleaf) for each cluster (Panel B).

By contrast, two clusters (3 and 6), which included points at higher PARamb, showed sub-

stantial dependencies on both PARamb and Tleaf. These results are consistent with LEF being

predominantly light-limited at low ambient PAR but increasingly limited by temperature-dependent

processes at higher PAR. These two cluster classes indicate that PARamb and Tleaf are likely to af-

fect LEFamb in independent ways. The fact that the shapes of the clusters were not determined with

individual slicing under the individual parameters for PARamb and Tleaf but with a co-dependence
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on both PARamb and Tleaf suggests that, under some conditions, these effects interact, e.g., Tleaf

may affect the dependence of LEFamb on PARamb.

GMM identified five distinct clusters for interactions among LEFhigh, PARamb, and Tleaf

(Figure A.3). In contrast to the results on LEFamb, sets at lower PARamb (1, 2, and 4) showed

LEFhigh dependencies on both Tleaf and PARamb, while Cluster 3 showed correlations with

Tleaf but not with PARamb. The stronger dependence on Tleaf of LEFhigh compared to LEFamb

implies that the exposure to high light revealed additional rate limitations in LEFhigh that were

more strongly controlled by both Tleaf and PARamb and that, at least under some conditions, these

effects were independent of each other.

Figure A.3: Gaussian Mixture Model (GMM) clustering of LEFhigh (Panel A) and correlation
matrixes between LEFhigh, PARamb and leaf temperature (Tleaf) for each cluster (Panel B).
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APPENDIX B

SUPPLEMENT FOR CMPLE TO DECODE PHOTOSYNTHESIS USING THE
MINORIZE-MAXIMIZE ALGORITHM

B.1 CMPLE workflow

Phenotypes, Gene Markers,
Environment Conditions

𝑆𝑡𝑑𝑃ℎ𝑒𝑛𝑜 = 𝑓 (𝐺𝑒𝑛𝑒, 𝐸𝑛𝑣)
𝐶𝑜𝑟𝑟𝑃ℎ𝑒𝑛𝑜 = 𝑓 (𝐺𝑒𝑛𝑒, 𝐸𝑛𝑣)

Pairwise Composite Likelihood

Optimize
using
MM

algorithm

Maximum composite-
likelihood estimate

Statistical Inference

Phenotype Network

Figure B.1: Correlation Modeling Under Pairwise Likelihood Estimation (CMPLE) workflow
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B.2 Additional Simulation

We have also performed an additional simulation with 𝑛= 1000, 𝑝= 10, and 𝑞= 4. The total number

of parameters estimated here is 110.

Table B.1: Simulation results for 𝛼 parameters under scenario 4 with 𝑛 = 1000, 𝑝 = 10, 𝑞 = 4. All
entries except for the true parameter values of the table are multiplied by 100. Par: Parameter, SD:
standard deviation, DOP: direct optimization, MM: minorize-maximize

DOP MM DOP MM
Par True Bias SD Bias SD Par True Bias SD Bias SD
𝛼1,0 −1.0 −0.2 9.2 −0.3 9.2 𝛼3,0 0.0 −0.3 9.8 −0.3 9.8
𝛼1,1 1.0 0.6 6.0 0.6 6.0 𝛼3,1 0.3 0.8 6.2 0.8 6.2
𝛼1,2 0.2 0.6 6.5 0.7 6.5 𝛼3,2 0.1 −0.2 7.3 −0.2 7.3
𝛼1,3 −0.4 0.3 6.5 0.3 6.5 𝛼3,3 0.0 0.4 6.3 0.4 6.3
𝛼1,4 0.3 −0.5 7.2 −0.5 7.2 𝛼3,4 −0.2 −0.2 6.4 −0.1 6.4
𝛼1,5 0.0 0.0 6.6 0.0 6.6 𝛼3,5 0.1 0.2 5.8 0.2 5.8
𝛼1,6 −0.5 0.5 5.4 0.6 5.4 𝛼3,6 −0.2 −0.6 6.6 −0.6 6.6
𝛼1,7 −0.3 0.5 7.0 0.5 6.9 𝛼3,7 1.0 0.3 6.7 0.3 6.7
𝛼1,8 0.1 −0.3 6.3 −0.2 6.3 𝛼3,8 −1.0 0.4 5.5 0.4 5.5
𝛼1,9 −0.4 0.6 6.5 0.6 6.5 𝛼3,9 −0.1 1.0 6.1 1.0 6.1
𝛼1,10 1.0 0.3 6.7 0.3 6.7 𝛼3,10 0.2 0.1 6.9 0.2 6.9
𝛼2,0 2.0 1.6 9.1 1.6 9.1 𝛼4,0 −1.0 0.0 9.1 0.0 9.1
𝛼2,1 0.2 −0.7 5.4 −0.7 5.4 𝛼4,1 −0.5 1.3 5.7 1.2 5.7
𝛼2,2 −0.5 0.0 7.4 0.1 7.4 𝛼4,2 0.0 0.3 6.0 0.3 5.9
𝛼2,3 −0.4 −0.3 6.3 −0.3 6.3 𝛼4,3 0.3 1.2 6.0 1.2 6.0
𝛼2,4 0.0 −0.9 5.9 −0.9 5.9 𝛼4,4 −0.2 0.1 7.4 0.1 7.4
𝛼2,5 0.3 −0.4 5.9 −0.4 5.9 𝛼4,5 −0.2 0.2 6.4 0.2 6.4
𝛼2,6 0.0 0.0 6.1 0.0 6.1 𝛼4,6 0.2 0.0 5.7 0.0 5.7
𝛼2,7 0.3 0.4 5.8 0.4 5.8 𝛼4,7 0.0 −0.2 6.8 −0.1 6.8
𝛼2,8 0.2 0.6 6.1 0.6 6.1 𝛼4,8 0.0 0.8 5.9 0.8 5.8
𝛼2,9 −0.4 −0.2 6.3 −0.2 6.3 𝛼4,9 0.6 −0.7 6.2 −0.7 6.3
𝛼2,10 0.0 0.2 5.5 0.2 5.6 𝛼4,10 −0.5 −0.5 6.6 −0.5 6.6
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Table B.2: Simulation results for 𝛿 parameters under scenario 4 with 𝑛 = 1000, 𝑝 = 10, 𝑞 = 4. All
entries except for the true parameter values of the table are multiplied by 100. Par: Parameter, SD:
standard deviation, DOP: direct optimization, MM: minorize-maximize

DOP MM DOP MM
Par True Bias SD Bias SD Par True Bias SD Bias SD
𝛿1,2,0 0.2 0.1 30.3 −0.2 29.9 𝛿2,3,0 0.0 0.8 30.6 0.6 30.5
𝛿1,2,1 0.5 0.4 19.0 0.5 19.0 𝛿2,3,1 0.0 −4.6 19.3 −4.5 19.4
𝛿1,2,2 0.0 2.2 18.8 2.3 18.7 𝛿2,3,2 −0.2 −0.1 19.3 −0.1 19.3
𝛿1,2,3 −0.7 −2.3 18.2 −2.2 18.2 𝛿2,3,3 0.0 −0.2 19.4 −0.2 19.5
𝛿1,2,4 0.3 1.1 17.5 1.2 17.5 𝛿2,3,4 0.0 −0.1 18.8 −0.1 18.9
𝛿1,2,5 0.0 −3.4 17.3 −3.4 17.5 𝛿2,3,5 0.0 −3.6 17.7 −3.6 17.7
𝛿1,2,6 −0.8 0.3 20.8 0.3 20.9 𝛿2,3,6 0.0 5.3 19.9 5.4 19.9
𝛿1,2,7 0.1 5.2 19.7 5.2 19.7 𝛿2,3,7 −0.3 2.8 19.3 2.6 19.5
𝛿1,2,8 0.0 −0.4 15.5 −0.4 15.5 𝛿2,3,8 0.2 −3.8 16.3 −3.6 16.4
𝛿1,2,9 0.1 −1.5 19.9 −1.5 20.0 𝛿2,3,9 0.0 0.1 20.3 0.2 20.3
𝛿1,2,10 0.2 −1.1 20.7 −0.9 20.7 𝛿2,3,10 0.0 −1.0 20.1 −0.9 20.1
𝛿1,3,0 0.5 1.8 30.3 1.4 29.9 𝛿2,4,0 0.3 0.5 30.6 0.4 30.8
𝛿1,3,1 0.2 −0.5 20.9 −0.4 21.0 𝛿2,4,1 0.0 −1.8 19.5 −1.9 19.6
𝛿1,3,2 0.5 5.1 17.7 5.2 17.7 𝛿2,4,2 1.0 −2.9 19.9 −3.0 19.7
𝛿1,3,3 0.0 −4.5 19.3 −4.3 19.2 𝛿2,4,3 0.4 0.2 18.0 0.3 17.8
𝛿1,3,4 0.2 1.9 21.0 2.1 21.0 𝛿2,4,4 −0.3 −1.5 15.6 −1.6 15.7
𝛿1,3,5 −0.6 −5.9 19.1 −5.8 19.2 𝛿2,4,5 0.5 2.9 17.6 3.0 17.5
𝛿1,3,6 0.0 −3.4 17.8 −3.3 17.7 𝛿2,4,6 0.3 0.5 19.9 0.6 20.1
𝛿1,3,7 −0.3 0.0 19.2 0.1 19.2 𝛿2,4,7 0.1 1.9 18.4 1.9 18.4
𝛿1,3,8 0.2 −3.0 18.8 −2.9 18.8 𝛿2,4,8 −0.6 −2.1 17.6 −1.9 17.5
𝛿1,3,9 0.4 2.1 18.4 2.3 18.2 𝛿2,4,9 0.6 −1.6 18.4 −1.5 18.3
𝛿1,3,10 −0.2 2.0 18.2 2.0 18.2 𝛿2,4,10 −0.1 1.0 17.3 0.8 17.1
𝛿1,4,0 1.0 1.2 30.3 1.1 29.9 𝛿3,4,0 −1.0 2.7 30.4 3.2 30.0
𝛿1,4,1 0.2 0.0 18.9 −0.1 18.9 𝛿3,4,1 0.2 −4.9 19.4 −5.1 19.1
𝛿1,4,2 −0.5 4.5 21.1 4.3 21.0 𝛿3,4,2 −0.2 0.1 19.4 −0.2 19.5
𝛿1,4,3 −0.2 −0.4 20.2 −0.3 20.0 𝛿3,4,3 −0.1 0.0 18.2 −0.1 18.2
𝛿1,4,4 0.5 3.1 16.5 3.3 16.7 𝛿3,4,4 0.2 −3.1 18.0 −3.2 18.0
𝛿1,4,5 0.1 −0.5 19.0 −0.5 19.2 𝛿3,4,5 0.6 1.1 19.4 1.0 19.4
𝛿1,4,6 −0.1 −0.4 20.8 −0.4 21.1 𝛿3,4,6 −0.1 0.1 21.6 0.1 21.5
𝛿1,4,7 −0.1 −1.2 20.5 −1.1 20.5 𝛿3,4,7 0.0 1.3 19.9 0.9 19.4
𝛿1,4,8 0.0 1.5 17.9 1.5 17.9 𝛿3,4,8 0.2 −1.0 20.3 −0.8 20.0
𝛿1,4,9 −0.1 −3.5 18.6 −3.5 18.6 𝛿3,4,9 0.3 −0.9 20.3 −0.9 20.1
𝛿1,4,10 −0.2 0.3 19.1 0.4 19.1 𝛿3,4,10 −0.2 1.6 19.0 1.4 18.8
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B.3 CMPLE application on Heat Stress treatments

Using CMPLE on the DHS dataset based on the two selected SNP markers in chromosome 2 we

have found distinguishable correlation pattern among the selected set of phenotypes.

Figure B.2: Correlation network under DHS

Again with the genetic configuration of BBAA for the two selected SNPs under DHS and LHS,

we can identify distinct phenotypic network under the various condions specified.

Figure B.3: Correlation network under DHS and LHS
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