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ABSTRACT 

SPARSE LARGE-SCALE MULTI-OBJECTIVE OPTIMIZATION FOR CLIMATE-SMART 

AGRICULTURAL INNOVATION 

 

By 

Ian Meyer Kropp 

The challenge of our generation is to produce enough food to feed the present and future 

global population. This is no simple task, as the world population is expanding and becoming more 

affluent, and conventional agriculture often degrades the environment. Without a healthy and 

functional environment, agriculture as we know it will fail. Therefore, we must equally balance 

our broad goals of sustainability and food production as a single system. Multi-objective 

optimization, algorithms that search for solutions to complex problems that contain conflicting 

objectives, is an effective tool for balancing these two goals. In this dissertation, we apply multi-

objective optimization to find optimal management practices for irrigating and fertilizing corn.  

There are two areas for improvement in multi-objective optimization of corn management: 

existing methods run burdensomely slow and do not account for the uncertainty of weather. 

Improving run-time and optimizing in the face of weather uncertainty are the two goals of this 

dissertation. We address these goals with four novel methodologies that advance the fields of 

biosystems & agricultural engineering, as well as computer science engineering. 

 In the first study, we address the first goal by drastically improving the performance of 

evolutionary multi-objective algorithms for sparse large-scale optimization problems. Sparse 

optimization, such as irrigation and nutrient management, are problems whose optimal solutions 

are mostly zero. Our novel algorithm, called sparse population sampling (SPS), integrates with 

and improves all population-based algorithms over almost all test scenarios. SPS, when used with 



NSGA-II, was able to outperform the existing state-of-the-art algorithms with the most complex 

of sparse large-scale optimization problems (i.e., 2,500 or more decision variables).  

 The second study addressed the second goal by optimizing common management practices 

in a study site in Cass County, Michigan, for all climate scenarios. This methodology, which relied 

on SPS from the first goal, implements the concept of innovization in agriculture. In our 

innovization framework, 30 years of management practices were optimized against observed 

weather data, which in turn was compared to common practices in Cass County, Michigan. The 

differences between the optimal solutions and common practices were transformed into simple 

recommendations for farmers to apply during future growing seasons. Our recommendations 

drastically increased yields under 420 validation scenarios with no impact on nitrogen leaching. 

 The third study further improves the performance of sparse large-scale optimization. 

Where SPS was a single component of a population-based algorithm, our proposed method, S-

NSGA-II, is a novel and complete evolutionary algorithm for sparse large-scale optimization 

problems. Our algorithm outperforms or performs as well as other contemporary sparse large-scale 

optimization algorithms, especially in problems with more than 800 decision variables. This 

enhanced convergence will further improve multi-objective optimization in agriculture.  

 Our final study, which addresses the second goal, takes a different approach to optimizing 

agricultural systems in the face of climate uncertainty. In this study, we use stochastic weather to 

quantify risk in optimization. In this way, farmers can choose between optimal management 

decisions with full understanding of the risks involved in every management decision. 
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1. INTRODUCTION 

 Agriculture is a critical, and often overlooked, component of humanity’s future well-being. 

Without enough food, humanity cannot exist in its current state. Therefore, a successful future 

depends upon our ability and willingness to maintain our environment, which provides food, water, 

and energy to humanity. In other words, our fate hinges on our ability to live sustainably.  

However, the lifestyle of modern industrialized nations makes sustainable living 

increasingly difficult. The global population is expected to grow to 10 billion by the year 2050 

(UN, 2019), and the existing population is becoming more affluent (Kharas and Gertz, 2010). 

Though increased affluence and population are positive in many ways, it makes it increasingly 

difficult for the earth to provide the food, water, and energy that we depend upon. First off, as we 

consume food, we consume and impact precious resources, like water, nutrients, healthy soil, and 

land. Therefore, as populations grow, so does humanity’s demand for these necessary building 

blocks of food. Secondly, the food that more affluent communities consume, such as eggs, dairy, 

and meats, demands even more resources from the environment. And water quantity and quality 

are dwindling in many parts of the world (Awange, 2022), as is soil quality (Doran, 2002). 

 Our consumption of resources is not intrinsically unsustainable since many of these 

resources can be renewed. However, on the whole, today’s food system is not renewable. We pump 

water to feed our crops without recharging the supplying aquifers. We apply so much fertilizer on 

fields that our waterways and seas are undrinkable and unfishable. We plow soil until all of its 

nutrients erode away. We destroy pollinator habitats to the point that we cannot pollinate our crops. 

And on top of all of these issues, climate change further endangers the viability and magnitude of 

crop production. Increased levels of greenhouse gases, such as carbon dioxide, methane, and 
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nitrous oxide will lead to farmland salination, aquifer depletion, increased weather uncertainty, 

decreased yields, and many more negative impacts (Alo et al., 2017). And industry is not the only 

source of greenhouse gases: agriculture accounts for 11% of greenhouse gases in the US (US EPA, 

2020). 

 However, a sustainable future is not only concerned with the environment. Indeed, a 

successful and sustainable future includes social and economic goals as well (Purvis et al., 2019). 

For example, despite the importance of their work, farmers often lead economically precious lives, 

especially small and medium-scale farmers (Carolan, 2016). Furthermore, the average age of 

farmers is increasing (an average increase of 9.7 years from 1945 to 2017 (Johr, 2012)), implying 

that the next generation of workers is finding farming increasingly economically unsavory. 

Therefore, it is as important for farmers to follow practices that preserve their savings accounts as 

well as preserve the soil and water. From a social standpoint, modern farming practices often 

hollow out local farming communities in the Midwest (Lobao and Stofferahn, 2008). Agricultural 

mechanization turns many agricultural jobs obsolete, rendering once-thriving rural main streets 

into ghost towns. Unmitigated mechanization, therefore, makes many Midwestern communities 

unlivable for future farmers. 

 Though these goals of sustainability are plain and intuitive, it is deeply difficult to put them 

into practice. Management levers affecting each goal interplay with the other goals, creating a 

complex system of cause and effect. That is why modern scholarship takes a systems approach. 

For context, a traditional approach to agriculture has historically focused myopically on feeding 

people. Though this is important, it does not consider the entire agricultural ecosystem. These 

approaches often result in ecological disasters such as The Dust Bowl, where over-cultivation of 

the soil turned the fertile Great Plains into a barren landscape. A systems approach takes the entire 
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agro-ecological system at hand into account when making decisions (Lowrance et al., 1984). The 

Dust Bowl could have been prevented with alternative management practices like no-till farming 

or tree wind breaks while still providing food for our society (Rasmussen, 2010).  

 However, a challenge emerges when trying to sustain global agricultural systems: how to 

balance social, economic, and environmental sustainability? Unlike a 100-meter sprint, where 

there is always one clear goal and one clear winner, there are many equally good solutions to the 

problem at hand. For example, let us think of a hypothetical farmer musing over how to manage 

their plot of land. The farmer could take an entirely environmentally sustainable approach by 

rewilding their land and returning to a hunter-gather way of life. On the other hand, the best 

solution from an economic point of view would be to exploit the land to maximize profits. Finally, 

the best solution socially might be to invite all of her neighbors into an egalitarian Maoist farm 

commune. Each of these solutions is equally optimal since no single goal is more important than 

the other. However, each of these solutions would clearly be unpalatable to our farmer since they 

are terrible with respect to our other goals. Therefore, the task at hand becomes searching for the 

solutions that reasonably balance these goals. It turns out that there are innumerable solutions to 

agricultural management that are optimal concerning these three goals, known as a Pareto optimal 

set (Marler and Arora, 2004). As agricultural researchers following systems theory, our task should 

be to find the Pareto optimal solutions to sustainably support humanity.  

  As any farmer will tell you, the task of finding the perfect (i.e., Pareto optimal) solutions 

to agricultural management is practically impossible. There are innumerable ways of irrigating a 

field, applying nitrogen, choosing cover crops, and so on. And though one can plausibly come up 

with good solutions to a problem, finding optimal (i.e., perfect) solutions is remarkably challenging 

in agriculture. This is where computers become helpful. Computers excel at doing the grunt work 
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that humans struggle with, such as going through millions of possible management decisions and 

determining which are useful. Computers are particularly good at determining which solutions to 

a problem are Pareto optimal and which solutions are not. One management practice that would 

not be Pareto optimal, returning to our example of a farmer planning out their field, would be to 

throw salt on the field. This solution is clearly worse environmentally, economically, and socially 

than many other feasible solutions. The research field of finding Pareto optimal solutions among 

all possible solutions to a multi-objective problem is known as multi-objective optimization 

(Marler and Arora, 2004). With a Pareto set in hand, a farmer can do what we do best: make 

nuanced value judgments. Which solution, amongst the Pareto set, offers the best tradeoff between 

social, environmental, and economic goals? Alternatively, a farmer can examine the Pareto optimal 

set for innovations to the system at hand. Herein lies the power of multi-objective optimization: 

computers and humans work together to find the best solution to the problem at hand.  

 This research takes a multi-objective optimization approach to improve the sustainability 

of agriculture. Since the agricultural systems are so complex, existing multi-objective approaches 

are currently ineffective. Therefore, in our first and third studies, we developed novel multi-

objective optimization methods that find increasingly better solutions to irrigation and nutrient 

management and run faster than existing methods. With these improvements, in our second study, 

we can create Pareto optimal sets for long periods to find common themes amongst management 

practices in a given region and climate. In our final study, we again use our improved optimization 

methods to improve crop management in the face of weather uncertainty predictively. With these 

strides in multi-objective and agricultural research, we have not only pushed the state-of-the-art in 

agricultural management, but in multi-objective algorithm design as well. 
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2. LITERATURE REVIEW 

2.1 Optimization in Agriculture 

2.1.1 Water and Nutrient management 

 In order to sustainably feed the growing population, we must first identify how much food 

will be needed and how to reach those targets. Estimates of our future food needs vary, but recent 

scholarship suggests that food production will need to increase by 70% by 2050 (van Dijk et al., 

2021). To keep up with a 70% increase in food demand, today's agricultural systems need to 

dramatically change over the next 28 years. Since arable land, or land suitable for farming, is 

becoming increasingly rare (Thiaw, 2019), we must look to increase the output of our existing 

farmland to meet our target output sustainably. Fortunately, in many parts of the world, farms 

produce far less yield (i.e., food output) than their potential yield (Fischer et al., 2014). This 

difference in current and potential yields is called a yield gap, and closing yield gaps have been 

shown to be sufficient to meet the next generation's food demands (Pradhan et al., 2015). As an 

example, technologies like hybridization and improved management have increased average corn 

production in the US from roughly 25 bushels per acre to 140 bushels per acre (Jin et al., 2019; 

Wortmann et al., 2017). In other words, we can potentially meet our goals of sustainable 

agricultural production by optimizing how farmers take care of their crops.  

 However, which management practices do we optimize? At the most basic level, plants 

need CO2, light, nutrients, and water to survive and thrive (Mauseth, 2014). Of these four 

requirements, conventional agriculture has the most control over water and nutrient management. 

Throughout the world, farmers irrigate their fields in order to provide plants with water during 

critical growth stages (Ritchie et al., 1986). Irrigation can supplement the water demands of plants 

at certain growth phases in temperate regions or it can fulfill nearly all of the crop’s water 
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requirements in arid or semi-arid areas. Nutrient management, on the other hand, provides crops 

with the critical elements needed for developing proteins and DNA. Water and air only provide 

hydrogen, oxygen, and carbon, whereas proteins and DNA also need phosphorus and nitrogen 

(Mauseth, 2014). Similar to irrigation, nutrient management provides these elements at the critical 

growth stages.  

 Improving nutrient and irrigation management can significantly improve yields. For 

example, in arid (i.e., dry) and semi-arid regions of the world, water demand often limits the 

growth potential of crops (Khan et al., 2006).  However, by improving how farmers irrigate (e.g., 

delivery methods, amount, and timing) in arid regions, greater yields can often be achieved with 

the same amount of water (Parsinejad et al., 2013). Meanwhile, nutrient management aims to raise 

crops that are high yield, economically viable, and leave little environmental trace. Nutrient 

management includes its own unique challenges. Nutrients can be applied through organic means 

(e.g., compost, brown manures, green manures) or through industrial fertilizers (Robertson and 

Vitousek, 2009; Sharpley and Beegle, 2001). In regions where industrial fertilizers are scarce, 

management optimization can help make the most out of the scarce organic mediums, similar to 

optimization irrigation. On the other hand, where industrial fertilizers are available, farmers often 

have the means to over-apply nutrients (Robertson and Vitousek, 2009; Sharpley and Beegle, 

2001). However, overabundance causes its own issues. Though the crops may have all the nutrients 

they need, the over-application of synthetic fertilizer can pollute surrounding waterways. The 

pollution from a single farm adds up when examined on a global scale. The cumulative pollution 

of waterways from thousands of farms leads to oceanic dead zones thousands of miles wide (Essick 

and Charles, 2013).  
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 Though these two systems may seem independent, the best way to manage irrigation and 

nutrient uptake is as a single system. For example, nutrient uptake can be improved by well-timed 

irrigation applications (Kropp et al., 2019) and plants can use water more efficiently when their 

nutrient demands are met (Waraich et al., 2011). Furthermore, poor irrigation management can 

worsen the total amount of nitrogen polluted into the environment (Gheysari et al., 2009). 

Therefore, it makes sense to manage both irrigation and nitrogen application as a single, 

interconnected system.  

2.1.2 Weather uncertainty and modeling 

 Irrigation and nutrient management can only go so far in the face of weather uncertainty. 

Farmers across the world experience dramatic differences in yield from year to year, mostly from 

yearly variations in weather (Coffel et al., 2022; Kukal and Irmak, 2018). This makes sense, 

considering the importance of water in plant growth and development. On top of that, climate 

change will increase weather uncertainty, including more intense extreme weather events like 

drought and heavy rain (Martinez-Feria et al., 2020). Therefore, it is essential to optimize plant 

growth holistically by incorporating nutrient management, irrigation management, and climate 

variability.  

 With this three-part system in mind, agronomists and farmers must determine which 

practices will effectively fulfill our environmental and nutritional needs. However, determining 

whether a given practice will be effective or not poses its own challenges. Historically, researchers 

have tested and evaluated different management methods through field experiments in the real 

world (Vilayvong et al., 2015). As one can imagine, this process takes a great deal of time since 

each management method requires a full growing season to complete. Furthermore, field tests are 

limited to the weather at the test site, making evaluating future outcomes of practices impossible. 
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Thankfully, crop simulation models solve many of the drawbacks of field tests. A crop simulation 

model is a computer program that takes in soil, weather, cultivar, and management inputs for a 

given season and simulates the performance of crops (e.g., yield and biomass) (Hoogenboom et 

al., 2017). This allows researchers to implement different management practices under any climate 

scenario imaginable. On top of that, modern computers can run most field-scale crop simulation 

models in fractions of seconds. With crop models, one can evaluate a management practice for 

thousands of plausible weather scenarios, thus ensuring that the given practice poses low risks to 

farmers, as discussed in the next section. 

2.1.3 Stochastic weather generators 

 Due to the infeasibility of predicting complete and accurate seasonal forecasts, agronomists 

instead try to generate large numbers of plausible weather scenarios. With a set of plausible 

weather scenarios, agronomists can use crop simulation models to create and study a range of 

possible outcomes for their management decision. This is known as a Monte Carlo analysis (Ines 

and Mohanty, 2008). With this information, practitioners can understand the risk associated with 

a given decision. For example, imagine a farmer deciding between two management decisions. 

One management decision, decision A, leads to high average yields, but has a high risk of crop 

failure over a range of different weather scenarios. Next, imagine another management decision, 

decision B, which leads to moderate yields with minimal risk of crop failure. Decision makers can 

now quantify not only the expected yields from a management decision but also the risk involved.  

 These sets of plausible weather scenarios can be generated through stochastic 

disaggregation. These take advantage of the fact that seasonal forecasts (e.g., average temperature 

in May, average rainfall in April) are very accurate with the advent of global climate models 

(GCMs) (Hansen et al., 2006). With these accurate aggregate forecasts, stochastic disaggregation 
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algorithms create random weather patterns that are statistically identical to the aggregate forecast 

(Han and Ines, 2017). Take this simplified scenario as an example: say, a GCM predicts there will 

be an average rainfall of 5mm within the next three days. One realization of this prediction would 

be 5 mm on day one, 0 mm on day two, and 10 mm on day three. Another realization would be 0 

mm on day one, 5 mm on day two, and 10 mm on day three. Both of these scenarios have the same 

average rainfall and are therefore plausible outcomes for the next three days.   

2.1.4 Crop Optimization 

Despite the gains from crop simulation models and stochastic weather generators, the 

complexity of farming still makes finding global optimal management practices difficult. In other 

words, there are more possible ways for a farmer to manage their field than anyone could ever 

evaluate within a reasonable amount of time (even with a crop simulation model). Thankfully, 

computer science research has developed sophisticated methods for searching through these kinds 

of complex systems for optimal solutions. These methods, known collectively as optimization, 

have been proven to dramatically improve crop management practices (Eeswaran et al., 2021; 

Kropp et al., 2019, 2022b). The following sections dive into the challenges and opportunities in 

applying computer optimization to agricultural management.  

2.2 Successes and Challenges in Multi-Objective Optimization in Agriculture  

2.2.1 Introduction to optimization   

 Abstractly, optimization algorithms look for the best solution to a given problem 

(Goldberg, 1989). In order to do so, optimization platforms require an objective function that tells 

the optimization algorithm how good or bad a solution is to the problem at hand (known as a fitness 

value). The objective function takes, as input, the numerical solution to the problem, and outputs 
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the fitness of the given solution. This allows the optimization algorithm to search through all 

possible ways of solving a problem for the best possible approaches. In the case of agricultural 

optimization, a crop simulation model acts as an objective function by telling the optimization 

algorithm the fitness of a given management strategy. Additionally, optimization algorithms accept 

lower and upper bounds on the solution values (e.g., no negative irrigation values!), as well as 

constraints on what makes a solution feasible (e.g., no crop failure).  

 Traditionally, optimization algorithms handled relatively simple objective functions. These 

so-called classical optimization algorithms, such as golden section search, gradient descent search, 

or simplex search, typically could only handle objective functions that were unimodal, 

differentiable, and/or linear (Deb, 2009).  More simply put, these algorithms solve specific classes 

of problems exceedingly well. Despite the importance of these problem sets, most real-world 

problems, such as crop optimization, are too complex to be solved by these classical methods. 

Real-world problems often have massive or difficult to navigate decision spaces, which classical 

methods struggle to or are incapable of solving. 

2.2.2 Evolutionary Optimization  

 Evolutionary algorithms (EAs) were developed to solve the vast majority of optimization 

problems that are too complex to solve with the classic methods. Unlike classical methods, which 

perform extremely well in a small class of problems, EAs perform decently well for a vast class 

of problems (Goldberg, 1989). This makes EAs great methods for solving complex problems like 

agricultural management optimization (Kropp et al., 2019). 

 EAs, as their names suggest, mimic the process of biological evolution in order to find 

increasingly better solutions to a given problem. This generally works by first creating a random 
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set of solutions to the given problem, and then virtually evolving the population into an 

incrementally fitter population (Goldberg, 1989). Under this evolution metaphor, each solution is 

an individual in a population, and the decision variables in the problem are the individual's DNA. 

Similar to biological evolution, the solutions that survive each generation of evolution depend on 

their fitness, which the objective function (i.e., fitness function) provides. After determining the 

survivors in a population, EAs then mate and recombine the best solutions to the problem in order 

to combine and carry on the best genes into the next population. Finally, a predetermined number 

of genes in the gene pool are mutated to introduce novel traits into the population. After many 

generations of evolution, EAs typically find near-optimal solutions, if not globally optimal 

solutions.  

 Randomness is an essential distinction between classical optimization methods and EAs. 

On the one hand, classical optimization algorithms are deterministic algorithms, or contain no 

randomness (Deb, 2009). In other words, if repeatedly ran, classical optimization algorithms will 

produce the exact same results over and over again. On the other hand, EAs are stochastic 

algorithms, or are driven by randomness. Theoretically, EAs will return different solutions to the 

optimization for every run. In the real world, where real random number generators do not exist, 

EAs often take a seed (i.e., any integer value) that will power the pseudo-random number generator 

that drives the evolutionary process.  

2.2.3 Evolutionary Multi-Objective Optimization 

  So far, we have only discussed the complexity of problems in terms of how many input 

variables they contain. However, complexity can also arise when introducing new objective values. 

As a simplified example, imagine a person choosing one out of several houses in a housing market 

with two goals (i.e., objectives): price and square footage. Assuming all houses are of similar build 
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quality, the objectives of price and square footage conflict with each other since bigger houses 

generally cost more. Therefore, there are at least two equally optimal solutions at hand: one that is 

large and expensive and one that is small but inexpensive. And between these two extreme points 

are houses that balance these two objectives: medium-sized houses with moderate prices. All of 

these solutions are known as Pareto optimal solutions and represent the two-dimensional objective 

space of the given problem (Marler and Arora, 2004). This demonstrates an important point: as 

the number of conflicting objectives climbs, so does the dimensionality of the results to the 

problem (Zille and Mostaghim, 2017). In other words, a single objective problem has one solution, 

a two objective problem has a two-dimensional solution set, a three objective problem has a three-

dimensional solution set, and so on. 

 Though each solution in a Pareto set is fully optimal in a multi-objective problem, the 

chosen solution depends on the decision maker running the optimization. Going back to our home 

buyer example, a family (i.e., decision maker) on a tight budget might look at the Pareto set of 

houses and choose the cheaper house with less square footage. Another decision maker, say a 

single wealthy businessperson, might find the trade-off of increased price worth the extra square 

footage. The chosen solution depends entirely on the values of the decision maker, which 

highlights the power of multi-objective optimization: computers do the grunt work of finding the 

Pareto optimal set, and humans make the value-based decisions that computers cannot make.  

 Though there are classical means of solving multi-objective optimization problems (e.g., 

weighted sum, Benson’s, and -constraint approaches), evolutionary multi-objective optimization 

(EMO) has experienced tremendous popularity over the last 30 years (Deb, 2009). EAs are 

excellent methods for solving multi-objective optimization problems, since the population of an 

EA is an effective way of representing Pareto optimal sets (Schaffer, 1985). However, ranking the 



13 

solutions in a population by fitness (a critical stage of all EAs), poses a challenge: how do you 

rank a population when there are several equally important objectives? The non-dominated sorting 

(NS) algorithm elegantly solves this problem (Deb et al., 2002).  

In non-dominated sorting, the members of a population are grouped into increasingly better 

Pareto sets (non-dominated solutions is a synonym for Pareto optimal solutions), which ranks 

solutions by their fitness with respect to all objectives simultaneously. To do so, NS first finds the 

non-dominated solutions in a population, which are the solutions that are not dominated by any 

other member of the population. A solution A dominates solution B if and only if A is better than 

B in all possible objectives. Thus, the first non-dominated set of solution outperforms the other 

population members and are marked as the best solution in the population. Then, these best 

solutions are temporarily removed from the population, and the non-dominated set of the 

remaining population is found. This new set of non-dominated solutions is thus the second-best 

set of solutions in the population. This process continues until all population members are sorted 

into sets of solutions ranked with respect to all objectives.  

However, what if an EA wants to select the top 50 solutions out of a population of 100 

members, and the top two non-dominated sets have 25 and 30 individuals, respectively? Clearly, 

the algorithm would first select all members of the first non-dominated set, but how do we then 

select the best 25 members of the second non-dominated set? Different algorithms handle this 

problem differently, but an effective approach is to pick the best 25 solutions out of the 30-solution 

set with respect to diversity (Deb et al., 2002; Deb and Jain, 2014). In optimization, diversity refers 

to the similarity of solutions in a Pareto set. Generally, decision-makers are attracted to Pareto sets 

with more diversity, since it provides more options to choose from. Therefore, prioritizing 

solutions by diversity helps balance the sorting process, which has up to this point only prioritized 
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population optimality (also known as convergence). Some algorithms, specifically the non-

dominated sorting genetic algorithm-II (NSGA-II), determine diversity by calculating the volume 

between neighboring population members in a front (Deb et al., 2002). However, this method does 

not scale well when calculating the crowding distance between solutions in problems with more 

than three objectives. The algorithm NSGA-III overcomes this hurdle by creating many 

approximately-equally-spaced reference vectors in hyperspace to determine crowing (the inverse 

of diversity) (Deb and Jain, 2014). Non-dominated-sorting-based evolutionary algorithms are 

demonstrably among the top algorithms for solving multi-objective optimization problems, though 

there are still room for improvement in the field (Coello Coello et al., 2020). 

2.2.4 Large-Scale and Sparse Optimization 

 Optimizing systems becomes increasingly difficult as the number of decision variables 

increases. Irrigation optimization often entails optimizing large numbers of decision variables, 

since each day of a, say, 100-day growing season, has a variable amount of irrigation that can be 

applied. As the number of decision variables increases, the number of possible solutions to a 

problem increases exponentially, which in turn renders the problem dramatically harder to solve. 

The literature classifies these types of problems, which have approximately 100 or more decision 

variables, as large-scale multi-objective optimization problems (LSMOP) (Zille and Mostaghim, 

2017).  

 Researchers have developed several approaches to solve LSMOPs more effectively, but 

one approach works particularly well for irrigation optimization. This approach, known as sparse 

LSMOPs optimization, takes advantage of the sparsity of an optimal irrigation schedule (Tian et 

al., 2021b). Sparsity, in this context, refers to the ratio of zero to nonzero values in the irrigation 

schedule, or the number of days of no irrigation versus the number of days with irrigation. In many 
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crops, such as corn, the number of days without irrigation far outnumber the number of days with 

irrigation (Kelley, 2016; Kelley and Hall, 2020). By taking advantage of this property, we can 

reduce the complexity of these otherwise challenging problems. Several optimization algorithms 

exist that solve sparse LSMOPs. However, they still suffer poor performance, and some run 

dramatically slower as the number of decision variables increases (Kropp et al., 2022a; Tan et al., 

2021; Wang et al., 2021).  

2.2.5 Innovization 

 As discussed earlier, weather uncertainty poses a practical challenge to agricultural 

management optimization for a future growing season. Crop simulation models, which are critical 

for most agricultural optimization platforms, are at the root of the issue. Crop simulation models 

require precise rain, solar radiation, minimum temperature, and maximum temperature data for the 

entire growing season in order to provide accurate predictions of yields (Hoogenboom et al., 2017). 

However, weather forecasts are less accurate after several days into the future. Therefore, 

agricultural optimization platforms need to rectify the need for accurate forecasts with the reality 

of inaccurate forecasts. Innovization is one method that addresses this issue. 

 Abstractly, an innovization platform finds innovations in a system by analyzing the output 

of an optimization run (Deb and Srinivasan, 2006). The output of a multi-objective optimization 

run, a Pareto set, is known to be good solutions to the problem at hand, and thus can be analyzed 

for what exactly makes them good solutions. In our proposed agricultural innovization, each multi-

objective optimization scenario would be run against historical observed weather over 30 years, 

which would then be analyzed for recurring themes in the optimal solutions (Kropp et al., 2022b). 

Therefore, the benefit of innovization over classic optimization is that instead of running a separate 
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optimization run for any weather scenario, innovization creates general improvements to an 

agricultural system that can be applied to any weather scenario.  
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3. INTRODUCTION TO METHODOLOGY AND RESULTS 

 All of the methodologies in this dissertation search for the best management practices for 

irrigation and nitrogen application for growing corn. Each of the individual studies addresses a 

specific challenge within this broad goal and is interconnected with the other studies. These 

challenges are pulled from two primary unaddressed issues from my master’s thesis: accounting 

for weather uncertainty in optimization and speeding up the rate of optimization. In my master’s 

thesis, excellent management practices were discovered using evolutionary multi-objective 

optimization, but weather was kept constant, and it took approximately two weeks to complete one 

optimization run. These two issues are interconnected since our hypothesized methods for 

optimizing under uncertain weather conditions (i.e., innovization or stochastic weather generation) 

dramatically increase run time, which makes speeding up the rate of optimization essential. In 

summary, our first and third studies addressed optimization speed, making the second and fourth 

studies on weather uncertainty feasible. 

 Our first study, 4., seeks to improve the speed and convergence of evolutionary multi-

objective optimization in solving irrigation-like problems. This class of problem, known as sparse 

large-scale multi-objective problems (LSMOP), includes problems with 100 or more decision 

variables, most of which are optimally zero values. Through a novel population initialization 

routine in the evolutionary optimization called sparse population sampling (SPS), we significantly 

improved the performance of three optimization algorithms (i.e., evolutionary, differential, and 

particle swarm optimization) in solving sparse LSMOPs.  

 In our second study, 5., we use the methods of the first study to quickly find optimal 

agricultural practices in the face of weather uncertainty through innovization. Innovization worked 

by first running 900 corn management optimization runs over 30 years in a single site in Southwest 
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Michigan, and then data mining for common traits of optimal solutions. The results of the data 

mining are site-specific recommendations to improve the common practices in the study area that 

can be applied under any weather condition. The innovization platform used the SPS routine, 

which enabled it to run within a reasonable amount of time. Without SPS, 900 crop optimization 

runs, each taking 2 weeks to complete, would have taken 34 years to complete. 

 Though SPS improved the performance of multi-objective algorithms in solving sparse 

LSMOPs, the solutions were still far from perfect in solving many test problems. The third study 

of this dissertation, 6., aimed to create a better sparse LSMOP algorithm by creating advanced 

sparse operators for evolutionary optimization (i.e., population initialization, crossover, and 

mutation). In doing so, we will be able to solve climate-uncertain crop optimization more 

effectively through innovization and stochastic weather generation.  

 In our final study, we again use our improved sparse LSMOP algorithms in order to 

optimize crop management under weather uncertainty. Instead of using innovization, this study 

uses stochastic weather generators in order to quantify the risk within a given management 

decision.  
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4. BENEFITS OF SPARSE POPULATION SAMPLING IN MULTI-OBJECTIVE 

EVOLUTIONARY COMPUTING FOR LARGE-SCALE SPARSE OPTIMIZATION 

PROBLEMS 

4.1 Introduction  

At their core, most practical problem-solving tasks can be reduced to an optimization 

system. Every problem consists of goals (i.e., objectives) that we seek to improve by choosing 

among a set of plausible actions (i.e., decision variables). The decision variables that bring us 

closest to our goals are then chosen. Though we can deterministically find the exact optimal 

solution for certain problems (e.g., finding the minima or maxima of differentiable problems), a 

large class of problems are exceptionally difficult having either multimodality, non-

differentiability, or a large decision space. Classical point-based methods and other known 

optimization methods are thus not guaranteed to find the exact optimum (Deb, 2009) . This broader 

class of difficult problems has inspired the creation of approximate yet flexible algorithms, such 

as evolutionary algorithms (EA), to attempt to find a near-optimal solution in a quick 

computational time. EAs harness the concept of natural selection and genetics to generate 

increasingly better solutions to difficult optimization problems by exploiting an evolving 

population of solutions. Starting with a population of random solutions to a given problem, EAs 

mimic evolution by evolving this population into incrementally improved solutions over 

generations of different populations. Furthermore, the genes of each population member are the 

decision variables of the problem, and the survivability of each population member is how well it 

solves the problem, or objective value (Goldberg, 1989). 

EAs are particularly effective at solving multi-objective optimization problems (MOP) 

(Deb, 2009; Storn and Price, 1997; Zitzler et al., 2001). MOPs consist of multiple objectives that 
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are in conflict with each other (Tamaki et al., 1996), and are endemic to critical fields of 

engineering, such as hydrological engineering (Herman et al., 2020; Hernandez-Suarez et al., 

2018), agricultural engineering, (Kropp et al., 2019; Whittaker et al., 2017) mechanical 

engineering (D’Errico et al., 2011), and structural engineering (Suresh et al., 2007). Since, unlike 

single-objective problems, MOPs have multiple objectives, their solutions can be expressed in the 

form of a set of solutions, or a Pareto set (Deb, 2009). For example, there is often multiple equally 

optimal solutions when training a machine learning model: one solution might have a low training 

error with high over fitting, and another might have low over fitting at the expense of training 

accuracy. Evolutionary multi-objective (EMO) algorithms combine the principles of EAs into 

finding Pareto-optimal solutions to challenging MOPs (Coello, 2006). 

Amongst MOPs, there is a subset that has received little stand-alone attention in the 

literature: large-scale sparse MOPs (LSSMOP). LSSMOPs are problems with high numbers of 

decision variables (Zille and Mostaghim, 2017), and sparse MOPs are problems whose optima are 

known to be sparse vectors (Gong et al., 2015). Sparse optimization is present in countless real-

world scenarios. Portfolio optimization is one example (Eftekharian et al., 2017). In portfolio 

optimization, an investor attempts to optimally distribute funds into a large number of available 

investments. However, portfolios are often sparse solutions, since most investors can only manage 

and desire a relatively small number of investments (Branke et al., 2009). When considering 

thousands of possible investment scenarios, the problem immediately becomes massive. Another 

example is agricultural irrigation optimization. Farmers in semi-arid and arid regions often require 

irrigation for their crops, and financial or political pressures typically restrict the maximum number 

of irrigation applications. Therefore, farmers must decide what minority of days of the growing 

season to water their crops, requiring a sparse optimal solution (Kropp et al., 2019). Multi-
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objective optimization is also widely found in feature selection, where an optimal subset among 

many features must be chosen, minimizing the number of features chosen and maximizing model 

accuracy (Zhang et al., 2017). Outside of these specified cases, there are few general-purpose 

EMOs developed for LSSMOPs with evolutionary optimization, besides the recent algorithm 

SparseEA (Hong et al., 2021; Ye Tian et al., 2020). 

Population sampling strategies have been under-studied in the LSSMOP literature, despite 

the fact that uniform genome sampling employed by most EAs is not well suited for LSSMOPS. 

For example, real-valued EAs have genomes consisting of real numbers (Herrera et al., 1998). 

They typically initialize their population by pulling random real values from a uniform distribution 

for each location of the genome (Whitley, 1994). Though this methodology effectively solves 

problems that converge upon dense genomes in low-dimensional decision spaces, it struggles to 

overcome problems that are both large-scale and sparse (Ye Tian et al., 2020). This is likely 

because solving large-scale sparse MOPs with uniform sampling requires evolving the whole 

initial population from a dense high-dimensional to a sparse high-dimensional space. Take the 

following theoretical problem as a demonstrative example. Say, 𝐹(𝐱) is an optimization problem, 

where 𝐱 ∈ ℝ1000, and 95% elements of 𝐱∗ are zero. Firstly, it is deeply unlikely for an initial 

population created by uniform distribution within the lower and upper bound of 𝐱 to be sparse. If 

we are using 32-bit real values and uniform genome sampling, then there will be a 
1

4,294,967,296
 

chance that a single member of the genome will be set to zero, let alone the 949 other genes that 

must be set to zero in 𝐱∗ . An EA, given this initial population, needs to then evolve each of the 

950 genes to zero. Under these circumstances, there is room for significant speed and efficiency 

improvements for traditional initial population sampling. 
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The goal of this paper is to introduce a novel approach to solve LSSMOPs through sparse 

population sampling (SPS). This formerly un-researched approach is shown to significantly 

improve the performance of evolutionary optimization problems operating in sparse optimization 

spaces with a simple, linear time run time. Existing algorithms can easily incorporate SPS, which 

allows them to easily harness the benefits of this routine with minimal coding effort. 

In order to examine this goal, we put forward two hypotheses: 1) algorithms that are not 

designed to solve LSSMOPs will solve LSSMOPS significantly more effectively when using SPS, 

and 2) the algorithms in Part 1, combined with SPS, will perform significantly better than 

algorithms designed to specifically to solve LSSMOPs. 

In the following sections, the SPS concept is described in Section 4.2 Sparse population 

sampling. The experimental set-ups are then discussed in Section 4.3 Experimental set up. 

Extensive results to evaluate the SPS concept are presented in Section 4.4 Results. Discussions of 

the results and conclusions of this study are presented in Sections 4.5 Discussion and 4.6 

Conclusions, respectively. 

4.2 Sparse population sampling 

Instead of sampling a population uniformly, which statistically always leads to a majority 

of non-zero values, one can simply seed the population of an EA with sparse initial genomes. This 

provides the population with a head start towards reaching the optima known to have a sparse 

solution. Sampling a population with sparse individuals is the core concept behind our proposed 

algorithm, SPS. SPS seeds a population with individuals within a range of sparsities, or with a 

single sparsity when expert knowledge is available. 
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The SPS routine that we propose is as simple as it is effective. Assume the given problem 

has 𝑑 decision variables and is a population-based algorithm with 𝑁 population members. SPS 

works by first generating a population with an existing population sampler (e.g., a uniform 

sampling distribution) for the given algorithm (Algorithm 1, line 4), and then modifying this 

population to ensure all population members are within certain sparsity limits (Algorithm 1 lines 

5–15). These limits will be known as 𝑏𝑙 for the lower bound, 𝑏𝑢 for the upper bound, with 𝑏𝑙 , 𝑏𝑢 ∈

[0,1], where 1 represents 100% sparsity (i.e., a genome of all zeros), and 0 represents 0% sparsity 

(i.e., a genome of all non-zero values). If a target sparsity is known through expert knowledge, 𝑏 𝑙 

and 𝑏 𝑢 can both be set to that target value. This target sparsity range will be referred to as 𝑆, such 

that 𝑆 = [𝑏𝑙, 𝑏𝑢] . If no range or target sparsity is given, SPS will seed the population between a 

sparsity of 50% and 100%, which is likely to cover the majority of target sparsities of sparse 

problems (Algorithm 1, lines 1–3). 

With the sparsity range 𝑆 initialized, SPS then creates one unique sparsity mask (𝑀) for 

each of the 𝑁 population members (Algorithm 1, lines 6–14). An individual’s sparsity mask is an 

array that contains a corresponding bit for all 𝑑 elements of the genome for the given problem. If 

the bit is zero, that location in the genome is forced to be a zero in the initial population. Which 

bits are one and which bits are zero are generated at random (Algorithm 1, lines 6–14) and differ 

between individuals in the initial population. The sparsity of the mask 𝑀 lies within the following 

given range: 

{𝑀|1 −
∑ 𝑚𝑖
𝑑
𝑖=0

𝑑
∈ 𝑆} 

( 1 ) 

where 𝑀 is the sparsity mask, 𝑚𝑖 is the value of the mask at position 𝑖 (𝑚 ∈ {0,1}), 𝑑 is the number 
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Algorithm 1: Sparse Population Sampling 

of dimensions in the genome, and 𝑆 is the target sparsity range (𝑆 = [𝑏𝑙 , 𝑏𝑢]). This relationship 

ensures that every member of the population is rendered within the target sparsity range. The 

sparsity mask for each individual will also be unique, in order to encourage a good spread of 

sparsities in the initial population. It is important to note that the position of the non-zero and zero 

values is not maintained after the initial population generation. 
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SPS is an efficient and adaptive addition to any existing algorithm. It only runs once during 

the population initialization with a linear run time with respect to population size. It is also flexible, 

since it can be incorporated into any population-based algorithm, including standard EAs. 

4.3 Experimental set up  

4.3.1 Evaluating sparse population sampling  

When measuring the performance of SPS, there are a myriad of independent performance 

parameters that affect the dependent performance indicators of optimization runs. The independent 

parameters include: 

1. use of SPS  

2. choice of test function  

3. number of decision variables 4. sparsity while the dependent 

and performance indicators include: 

1. hyper-volumes (HV)  

2. run time (R)  

3. number of non-dominated solutions (NDS) 

This section describes the battery of hypotheses and their experiments that measure the sensitivities 

of independent parameters on the dependent performance indicators. 

The two main hypotheses stated at the end of the introduction will now be called effective 

hypotheses and comparative hypotheses. The goal of the effective hypotheses is to understand the 

effects of SPS on evolutionary and population-based algorithms, and its sensitivity to sparsity. 

This is achieved by running standard EAs under two configurations: one with SPS and another 
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without SPS. The goal of the comparative runs is to determine whether an existing algorithm using 

SPS is sufficiently effective to act as a stand-alone sparse optimization algorithm. This is achieved 

by measuring the performance of a standard EA with SPS against stand-alone sparse EA 

algorithms. As of today, the primary generic sparse optimization EA is SparseEA (Ye Tian et al., 

2020). The standard EA used in this case was the Non-dominated Sorting Genetic Algorithm 

(NSGA-II), which performed the best with SPS in the effective results. These overarching 

hypotheses could not be tested using a single test since there are so many independent parameters 

and performance indicators. Therefore, they are broken into smaller sub-tests that account for these 

differences (Figure 1). 

Each of these sub-tests utilized statistical significance testing to verify its particular 

research question. The first step in statistical significance testing is to determine the null 

hypotheses, which represents the status quo. Preliminary runs showed that generic EAs have very 

low HVs when solving LSSMOPs, a metric of solution diversity and convergence (While et al., 

2006). Therefore, our first null hypothesis for the effective runs is that SPS does not significantly 

improve mean HV (𝐻0
𝑒𝐻𝑉, Figure 1, Table 1), and our alternative hypothesis asserts that SPS 

significantly increases the mean HV in LSSMOPs. Also, during preliminary runs, generic EAs 

often had low numbers of non-dominated solutions (NDS) in their final populations. This is an 

unsuitable outcome, since having more solutions in a resulting Pareto front gives decision-makers 

more optimal solutions to choose from. Since there is a hard upper limit to NDS (the population 

of the EA), and some EAs already retain 100% of their NDS, our second null hypothesis is that 

SPS will worsen the NDS in final populations of LSSMOPs (Figure 1, Table 1), and our alternative 

hypothesis is that SPS will maintain or improve NDS in LSSMOPs. Run time is not considered 
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for the effective runs because run time will not be significantly affected by the use of SPS, since it 

runs in linear time with regards to population size, which is computationally negligible. 

For the comparative runs, the first null hypotheses assert that NSGAII with SPS does not 

significantly improve the HV (𝐻0
𝑐𝐻𝑉) and run time (𝐻0

𝑐𝑅) compared to SparseEA (Figure 1, Table 

1) for LSSMOPs. Our alternative hypothesis is that NSGA-II combined with SPS will perform 

significantly better with respect to HV and run time than SparseEA. The final null hypothesis is 

that the NDS under NSGA-II with SPS will be worse than with SparseEA (𝐻0
𝑐𝑁 , Figure 1, Table 

1), and the alternative hypothesis is that NSGA-II will maintain or improve upon SparseEA’s NDS. 

Each of the above hypotheses (𝐻0
𝑒𝑁, 𝐻0

𝑒𝐻𝑉, 𝐻0
𝑐𝑁, 𝐻0

𝑐𝐻𝑉, 𝐻0
𝑐𝑅) were then further split into 

sub-hypotheses to test and measure the effect of algorithm complexity (i.e., number of decision 

variables) and different test problems (Figure 1, Table 1). The number of decision variables and 

algorithm were generated by the Sparse Multi-Objective Problems (SMOP) test suite (Ye Tian et 

al., 2020). SMOP consists of 8 test problems (SMOP1 through SMOP8), each designed with a 

different optimization challenge (e.g., multimodality, deception) and Pareto front shape. 

Furthermore, each of these test functions can contain different sparsities and decision space sizes 

(i.e., size of genomes). For example, it can generate a test function with 80 decision variables and 

a target sparsity to 90%, or 400 decision variables and a sparsity of 85%. The flexibility of SMOP 

allows us to measure the effects of problem characteristics, such as sparsity and number of decision 

variables, on our overall hypotheses. 



28 

 

Figure 1. Hierarchy of hypotheses. a.) and b.) are effective (𝐻0
𝑒) and comparative (𝐻0

𝑐) 

hypotheses respectively, which are then broken down into performance metrics, and then 

different run constants. The performance metrics include number of non-dominated Solutions 

(NDS) (𝐻0
𝑒𝑁 and 𝐻0

𝑐𝑁), hyper-volume (HV) (𝐻0
𝑒𝐻𝑉, and 𝐻0

𝑐𝐻𝑉), or run time (𝐻0
𝑐𝑅). The run 

constants include test problem from the Sparse Multi-Objective Problems (SMOP), and number 

of decision variables (DV). c.) breaks down hypotheses by number of decision variables, and is 

denoted as 𝐻0
𝑞𝐾

:𝑈/SMOP [𝑖−𝑗] , where, 𝑞 is either 𝑒 for effective or 𝑐 for comparative , 𝐾 is 

either 𝐻𝑉, 𝑁, or 𝑅 for HV, NDS, or run time respectively, 𝑈 is the number of decision variables, 

and SMOP [𝑖−𝑗] denote a range of SMOP test functions, such as SMOP[1–8] denoting SMOP1 

through SMOP8. 

The exact test function configuration (i.e., complexity, sparsity, and test problem) 

generated for each hypothesis differed between the effective and comparative runs. For the 

comparative runs, we wanted to measure how NSGA-II and SparseEA both performed against 
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each other under increasing algorithmic complexity. To achieve these ends, the comparative runs 

hold sparsity at a typical constant value (90%) while varying the number of decision variables 

between 100, 500, 1,000, 2,500, 5,000, and 7,5001. To measure these effects, the main comparative 

hypotheses (𝐻0
𝑐𝑁, 𝐻0

𝑐𝐻𝑉, 𝐻0
𝑐𝑅) were divided up into individual hypotheses and will be denoted as 

𝐻0
𝑐: 𝑈/𝑆𝑀𝑂𝑃𝐿, where 𝑈 is the number of decision variables in that given test, and 𝐿 is the test 

problem used (e.g., 𝐻0
𝑐: 1000/𝑆𝑀𝑂𝑃4, 𝐻0

𝑁: 5000/𝑆𝑀𝑂𝑃5). The effective runs perform these 

same hypothesis tests, which vary the number of decision variables (while using the same 

notations), while also including a set of runs to observe the effect of varying sparsity on SPS. The 

goal of this subset of the objective runs is to observe the effect of sparsity on problems with and 

without SPS and will not be experiment based. 

Each combination of problem type, sparsity, and decision variables was rerun several 

times. Based on preliminary simulations, we chose 60 runs to maximize the accuracy of our 

statistical measures while minimizing run time of all simulations. For every configuration, the HV 

and the number of non-dominated solutions are measured for each Pareto front. In preliminary 

runs, the reference point was (1,1). However, due to the large scale of many of the test problems, 

several algorithms could not find solutions within the square of (1,1) (see example in Figure A8).2 

This resulted in HV of zero for many trials, which prevents any meaningful analysis in higher 

decision spaces. On the other hand, reference points that are too far away from the Pareto front are 

imprecise. Therefore, in order to strike a balance, the smallest reference point that yielded all non-

                                                 
1 These intervals were chosen to first measure the finer effects of changes on the number of decision variables, and then the asymptotic behavior as 

the number of decision variables increased. 

2 Figures marked with a prefix ‘A’ are available in the Appendix.  
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zero HVs was chosen for the comparative and effective runs. Specifically, the comparative 

reference point is (2,2), and the effective reference point is (4,4). Since all test problems had 

extreme points between (0,1) and (1,0), no objective normalization was run. Optimization run time 

is also recorded for each run. Typically, the t-test is used to reject or not reject a null hypothesis 

and requires that data follows a consistent parametric distribution. However, none of the resulting 

metric distributions followed a single consistent parametric distribution, so we instead used a non-

parametric hypothesis test: the Wilcoxon Rank-Sum test (Hollander et al., 2013). The Wilcoxon 

Rank-Sum test is a two-sided hypothesis test based on the relative ranking of the two samples in 

question (e.g., one with SPS and one without SPS). The p-value threshold used was 2.5%. 

Table 1: Complete set of hypotheses tested. Each cell includes 8 individual test configurations 

for each SMOP test function (denoted by SMOP[1–8]). Each configuration is then ran 60 times. 

Decision 

variables ∗ 

Global hypotheses     

𝐻0
𝑒𝐻𝑉 𝐻0

𝑒𝑁 𝐻0
𝑐𝐻𝑉   𝐻0

𝑐𝑁   𝐻0
𝑐𝑅𝑇 

500  𝐻0
𝑒𝐻𝑉

:500/SMOP[1–8] 𝐻0
𝑒𝑁

:500/SMOP[1–8] 𝐻0
𝑐𝐻𝑉

:500/SMOP[1–8] 𝐻0
𝑐𝑁

:500/SMOP[1–8] 𝐻0
𝑐𝑅𝑇

:500/SMOP[1–8] 
1,000  𝐻0

𝑒𝐻𝑉
:1000/SMOP[1–8] 𝐻0

𝑒𝑁
:500/SMOP[1–8] 𝐻0

𝑐𝐻𝑉
:1000/SMOP[1–8] 𝐻0

𝑐𝑁
:1000/SMOP[1–8] 𝐻0

𝑐𝑅𝑇
:1000/SMOP[1–8]  

2,500  𝐻0
𝑒𝐻𝑉

:2500/SMOP[1–8] 𝐻0
𝑒𝑁

:500/SMOP[1–8] 𝐻0
𝑐𝐻𝑉

:2500/SMOP[1–8] 𝐻0
𝑐𝑁

:2500/SMOP[1–8] 𝐻0
𝑐𝑅𝑇

:2500/SMOP[1–8]  
5,000  𝐻0

𝑒𝐻𝑉
:5000/SMOP[1–8] 𝐻0

𝑒𝑁
:500/SMOP[1–8] 𝐻0

𝑐𝐻𝑉
:5000/SMOP[1–8] 𝐻0

𝑐𝑁
:5000/SMOP[1–8] 𝐻0

𝑐𝑅𝑇
:5000/SMOP[1–8]  

7,500  𝐻0
𝑒𝐻𝑉

:7500/SMOP[1–8] 𝐻0
𝑒𝑁

:500/SMOP[1–8] 𝐻0
𝑐𝐻𝑉

:7500/SMOP[1–8] 𝐻0
𝑐𝑁

:7500/SMOP[1–8] 𝐻0
𝑐𝑅𝑇

:7500/SMOP[1–8]  
∗All runs with varying decision variables keep sparsity at 90%. Each hypothesis has a label that corresponds to its configuration, denoted as  
𝐻0
𝑞𝐾

:U/SMOPL, where, 𝑞 is either 𝑒 for effective or 𝑐 for comparative, 𝐾 is either 𝐻𝑉, 𝑁, or 𝑅 for HV, NDS, or run time respectively, 𝑈 is the 

number of decision variables, and SMOP𝐿 is one of the 8 SMOP test functions. Finally, let [i-j] denote a range of values, such as SMOP[1–8] 
denoting SMOP1 through SMOP8.  

 

For the effective runs, we used three commonly-used population-based multi-objective 

optimization algorithms: differential evolution (Storn and Price, 1997) (MOEA/D-DE (Zhang et 

al., 2009)), Particle Swarm optimization (Kennedy and Eberhart, 1995) (MOPSO (Lin et al., 

2015)), and evolutionary optimization (NSGA-II (Deb et al., 2002)). For the comparative run, we 

ran SparseEA (Y. Tian et al., 2020a) (currently the sole generic algorithm designed to solve 

LSSMOPs) against the best performing algorithm with SPS from the effective runs (NSGA-II). 

All the effective and comparative optimization runs were tested using the MATLAB (version 
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2020b) (MATLAB, 2020) optimization library PlatEMO (Tian et al., 2017), and each algorithm 

ran under the default arguments of PlatEMO version 2.9.0. For the runs with SPS, the sparsity 

range was set to the default for SPS 50% to 100% . The computer was run on 2, 12-core 2.50GHz 

Intel Xeon processors, with 125GB of RAM. 

4.4 Results 

4.4.1 Effects of SPS on standard EAs 

Across all algorithms, test problems, and numbers of decision variables in the effective runs, SPS 

significantly increased the HV of their respective algorithms (Table 2 and Figure A1). In other 

words, we rejected 𝐻0
𝑒𝐻𝑉:[100–7500]/SMOP[1–8] for NSGA-II, MOPSO, and MOEA/D-DE 

(save one exception 𝐻0
𝑒𝐻𝑉:100/SMOP6 for NSGA-II, which cannot be rejected). The increase in 

HV was more dramatic in some test problems, especially SMOP1, SMOP2, SMOP4, SMOP5, and 

SMOP8, all with p-values of 3.557e-21. (Figure 2, Figure A1b, Figure A1d, Figure A1e, Figure 

A1h, and Table A1). This rate of improvement increases with the number of decision variables 

(Figure 2 Figure A1). Lastly, relative to the algorithms without SPS, the algorithms using SPS kept 

a noticeably steady HV throughout different numbers of decision variables (Figure 2 and Figure 

A1) up to 7500 decision variables.  

 The effect of SPS on NDS was more varied during the effective runs. NSGA-II on average 

maintained its entire population of non-dominated solutions both with and without SPS (Table 2 

and Table A1). This is a positive outcome, since NSGA-II was already able to achieve near perfect 

NDS without SPS, so any improvement was impossible. SPS even modestly improved the NDS 

for NSGA-II for SMOP8 under 500 and 1000 decision variables (Table 2 and Table A1). 

Therefore, 𝐻0
𝑒𝑁:[100–7500]/SMOP[1–8] was rejected for NSGA-II. This significant improvement 
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of HV, while avoiding any manner of negative performance impacts (i.e., run time or NDS) across 

all test problems and numbers of decision variables, demonstrates the utility of using SPS with 

NSGA-II under LSSMOPs. The results of MOPSO with SPS were more mixed. MOPSO without 

SPS already exhibited a perfect median NDS across all test problems and numbers of decision 

variables, and the majority of MOPSO with SPS maintained these perfect NDS. Specifically, 

𝐻0
𝑒𝑁:SMOP [1 − 2] , 𝐻0

𝑒𝑁:[100-7,500]/SMOP4, and 𝐻0
𝑒𝑁 :[100–7500]/SMOP[7–8] were all 

rejected for MOPSO (Table 2 and Table A1). However, MOPSO with SPS had significant 

decreases in NDS under SMOP5 and SMOP6. With SPS, MOPSO had medians ranging between 

28 to 30, whereas MOPSO without SPS had NDS of 100 (Table 2 and Table A1; Figures Figure 

A2e, and Figure A2f). Therefore, we were unable to reject 𝐻 SMOP [5 − 6] for MOPSO. SMOP3, 

also posed a challenge to MOPSO with SPS, but the decreases were less dramatic, with p-values 

being 19 to 22 orders to magnitude smaller than the latter (Table A1). Also, 95% of values stayed 

between 80 and 95 NDS (Figure Figure A2c). Regardless, we were unable to reject 𝐻0
𝑒𝑁:[100–

7500]/SMOP3. Yet, from a practical standpoint, though these runs failed the Wilcoxon Rank-Sum 

test, they are still decent solutions. Unlike the runs under SMOP5 and SMOP6, the majority of 

NDS deviations still included the vast majority of the population. This practically minor decrease 

is arguably a good tradeoff for the significant improvement in HV. MOEA/D-DE also had mixed 

results for NDS. Firstly, using SPS with MOEA/D-DE tended to increase NDS variability (Figure 

Figure A2). Secondly, we were only able to reject a minority (7 out of 48) of NDS null hypotheses 

for MOEA/D-DE (Table 2 and Table A1). However, similar to MOPSO-SPS and SMOP3, the 

significant decreases were not the majority of the population. Most deviations were above 90 NDS, 

and a relative few medians went down to 65 (Table 2, Table A1).  
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Table 2: EFFECTIVE performance of NSGA-II, MOPSO, and MOEA/D-DE with varying 

number of decision variables. 

# dec. 
vars. 

Test 
prob. 

NSGA-II w/ and w/out SPS  MOPSO w/ and w/out SPS  MOEA/D-DE w/ and w/out SPS  

Median HV  Median NDS   Median HV  Median NDS   Median HV  Median NDS  

100  SMOP1  15.49(15.40)+  100(100)≈  15.31(14.36)+  100(100)≈  15.30(14.69)+  100(100)≈ 

100  SMOP2  15.47(14.60)+  100(100)≈  15.08(9.62)+  100(100)≈  15.14(11.13)+  100(100)≈ 

100  SMOP3  15.47(13.92)+  100(100)≈  12.53(9.73)+  100(100)−   15.19(11.00)+  99(100)− 

100  SMOP4  15.78(15.60)+  100(100)≈  15.77(13.58)+  100(100)≈  15.73(14.04)+  100(100)≈ 

100  SMOP5  15.77(15.18)+  100(100)≈  15.60(14.99)+  30(100)−   15.63(15.04)+  98(100)−  

100  SMOP6  15.75(15.75)−  100(100)≈  15.63(15.52)+  28(100)−   15.61(15.52)+  98(100)−  

100  SMOP7  15.19(14.82)+  100(100)≈  14.78(14.09)+  100(100)≈  14.92(14.44)+  94(85)+  

100  SMOP8  14.71(11.81)+  100(100)≈  14.03(4.90)+  100(100)≈  14.40(7.85)+  94(84)+  

500  SMOP1  15.42(14.93)+  100(100)≈  15.32(14.07)+  100(100)≈  15.18(14.07)+  100(100)≈ 

500  SMOP2  15.30(13.00)+  100(100)≈  15.07(8.53)+  100(100)≈  14.96(8.79)+  100(100)−  

500  SMOP3  15.29(11.94)+  100(100)≈  12.37(9.18)+  100(100)−   14.94(10.25)+  90(100)−  

500  SMOP4  15.78(14.87)+  100(100)≈  15.77(13.15)+  100(100)≈  15.71(13.26)+  100(100)−  

500  SMOP5  15.75(15.06)+  100(100)≈  15.62(14.95)+  28(100)−   15.59(14.97)+  97(100)−  

500  SMOP6  15.72(15.64)+  100(100)≈  15.61(15.46)+  28(100)−   15.61(15.44)+  98(100)−  

500  SMOP7  14.96(13.83)+  100(100)≈  14.75(13.85)+  100(100)≈  14.66(13.84)+  99(100)−  

500  SMOP8  14.28(7.75)+  100(98)+   13.97(3.76)+  100(100)≈  13.84(2.87)+  98(94)≈ 

1,000  SMOP1  15.40(14.58)+  100(100)≈  15.31(14.02)+  100(100)≈  15.13(13.99)+  100(100)≈ 

1,000  SMOP2  15.26(11.78)+  100(100)≈  15.09(8.31)+  100(100)≈  14.96(8.55)+  100(100)−  

1,000  SMOP3  15.15(10.64)+  100(100)≈  12.33(9.09)+  100(100)−   14.62(10.09)+  83(100)−  

1,000  SMOP4  15.78(14.35)+  100(100)≈  15.77(13.06)+  100(100)≈  15.71(13.18)+  100(100)−  

1,000  SMOP5  15.75(14.93)+  100(100)≈  15.60(14.94)+  30(100)−   15.55(14.95)+  98(100)−  

1,000  SMOP6  15.72(15.55)+  100(100)≈  15.61(15.45)+  29(100)−   15.63(15.43)+  98(100)−  

1,000  SMOP7  14.88(13.04)+  100(100)≈  14.75(13.83)+  100(100)≈  14.65(13.71)+  99(100)−  

1,000  SMOP8  14.23(4.75)+  100(100)+   13.99(3.52)+  100(100)≈  13.95(2.56)+  97(99)−  

2,500  SMOP1  15.38(13.89)+  100(100)≈  15.29(13.97)+  100(100)≈  15.14(13.92)+  100(100)−  

2,500  SMOP2  15.24(10.18)+  100(100)≈  15.06(8.18)+  100(100)≈  14.89(8.44)+  100(100)−  

2,500  SMOP3  15.19(8.63)+  100(100)≈  12.20(9.06)+  100(100)−   14.48(9.95)+  82(100)−  

2,500  SMOP4  15.78(13.80)+  100(100)≈  15.77(13.01)+  100(100)≈  15.73(13.15)+  100(100)−  

2,500  SMOP5  15.75(14.62)+  100(100)≈  15.61(14.94)+  29(100)−   15.59(14.94)+  99(100)−  

2,500  SMOP6  15.72(15.40)+  100(100)≈  15.62(15.44)+  29(100)−   15.61(15.43)+  98(100)−  

2,500  SMOP7  14.83(11.73)+  100(100)≈  14.74(13.80)+  100(100)≈  14.55(13.64)+  94(100)−  

2,500  SMOP8  14.19(2.12)+  100(100)≈  14.00(3.51)+  100(100)≈  13.90(2.25)+  95(100)−  

5,000  SMOP1  15.38(13.24)+  100(100)≈  15.27(13.99)+  100(100)≈  15.12(13.90)+  100(100)−  

5,000  SMOP2  15.23(9.22)+  100(100)≈  15.07(8.16)+  100(100)≈  14.90(8.40)+  100(100)−  

5,000  SMOP3  15.17(7.40)+  100(100)≈  12.32(9.14)+  100(100)−   14.01(9.90)+  73(100)−  

5,000  SMOP4  15.78(13.49)+  100(100)≈  15.77(12.98)+  100(100)≈  15.73(13.14)+  100(100)−  

5,000  SMOP5  15.75(14.26)+  100(100)≈  15.60(14.94)+  27(100)−   15.55(14.94)+  98(100)−  

5,000  SMOP6  15.71(15.27)+  100(100)≈  15.62(15.44)+  29(100)−   15.61(15.42)+  99(100)−  

5,000  SMOP7  14.81(10.34)+  100(100)≈  14.73(13.78)+  100(100)≈  14.35(13.58)+  91(100)−  

5,000  SMOP8  14.19(1.45)+  100(100)≈  14.00(3.69)+  100(100)≈  13.37(2.20)+  63(100)−  

7,500  SMOP1  15.38(12.80)+  100(100)≈  15.31(13.97)+  100(100)≈  15.10(13.90)+  100(100)≈ 

7,500  SMOP2  15.23(8.80)+  100(100)≈  15.07(8.10)+  100(100)≈  14.93(8.36)+  100(100)−  

7,500  SMOP3  15.17(6.90)+  100(100)≈  12.17(9.00)+  100(100)−   12.86(9.88)+  69(100)−  

7,500  SMOP4  15.78(13.36)+  100(100)≈  15.77(12.98)+  100(100)≈  15.74(13.16)+  100(100)−  

7,500  SMOP5  15.75(14.02)+  100(100)≈  15.60(14.94)+  28(100)−   15.53(14.94)+  98(100)−  

7,500  SMOP6  15.72(15.19)+  100(100)≈  15.61(15.44)+  29(100)−   15.63(15.43)+  99(100)−  

7,500  SMOP7  14.81(9.42)+  100(100)≈  14.74(13.80)+  100(100)≈  14.47(13.55)+  91(100)−  

7,500  SMOP8  14.18(1.26)+  100(100)≈  14.03(3.49)+  100(100)≈  13.44(2.15)+  66(100)−  

Let –, ≈, and + denote statistical differences between the runs with and without SPS according to the Wilcoxon Rank-Sum test. – denotes 
configurations perform worse with SPS, + denotes configurations that performed better with SPS, and ≈ marks no difference between the 
algorithm with or without SPS.  
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With respect to HV, nearly all algorithms with SPS monotonically increased with 

increasing sparsity (Figure A3) during the effective runs. The only exceptions were all algorithms 

under SMOP4, which only decreased marginally between 75% and 95% (Figure A3d). On the flip 

side, algorithms that did not use SPS tended to generate worse HVs with increasing sparsity, 

except for a few exceptions. Those exceptions included MOPSO and MOEA/D-DE, which 

increased modestly with increasing sparsity against SMOP7 and SMOP8 (though the same 

algorithms with SPS had higher HV in those sparsity ranges) (Figure A3g and Figure A3h). For 

SMOP[1–5] and SMOP8, all SPS HVs were significantly larger than their non-SPS enabled 

counter parts at all sparsities (Figure A3). Interestingly, there is a small sparsity window during 

SMOP6 and SMOP7 where the non-SPS algorithms had slightly better HVs than the SPS enabled 

algorithms (Figure A3f and Figure A3g). Regardless, these benefits are quickly overcome by the 

SPS enabled algorithms in higher sparsities (i.e., roughly between 56% and 70% sparsity). This 

small region, along with the relatively lower HV, demonstrates that SPS operates increasingly 

optimally as sparsities increase.  

NDS performance with varying sparsity differed between the various algorithms during 

the effective runs. Most maintained 100% sparsity throughout all sparsity levels. Of the algorithms 

without SPS, NSGA-II and MOEA/D-DE had non-perfect NDS in SMOP8. Additionally, SPS 

had slight negative effects on MOPSO and MOEA/D-DE. Increased sparsity boosted variability 

in MOPSO and MOEA/D-DE for SMOP1, and SMOP4 (Figure A4a and Figure A4d). MOPSO 

with SPS for SMOP5 and SMOP6 were the only configurations that exhibited a monotonic 

decrease in NDS with sparsity (Figure A4e, and A4f).  
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Figure 2. The HV of three types of multi-objective optimization algorithms ran against SMOP1 with 

and without SPS. SPS consistently increases HV for all algorithms and numbers of decision 

variables. Note that the variances of some configurations were so small that the confidence intervals 

were rendered as lines. See Figure A1 for the results of SMOP[2–8]. 

4.4.2 Generic EA with SPS compared to SparseEA 

The most dramatic improvement NSGA-II with SPS had over SparseEA was in run times, 

as the former ran significantly faster than the later (Table 3 and Table A2; Figure 3 and Figure 

A6). The only exception to this trend was for SMOP4 with 5000 decision variables, where there 

was no significant difference in run time between the two algorithms (Table 3, Figure A6d). The 

log transform of both sets of run times were sub-linear (Figure 3 and Figure A6d), which suggests 

that both are 𝑜(𝑑𝑖)|𝑖 ∈  ℕ (i.e., sub-exponential). However, NSGA-II with SPS runs significantly| 
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faster than SparseEA under all 48 scenarios (save SMOP5 with 5000 decision variables) (Table 3 

and Table A2). Also, the rate of increase in the SparseEA log-transformed run times increase at a 

faster rate than the NSGA-II with SPS log-transformed run times (Figure 3 and Figure A6). This 

suggests that both the asymptotic run time bound of both algorithms are at least polynomial time 

with respects to 𝑑, and SparseEA is likely a polynomial of a higher order than NSGA-II with SPS. 

Furthermore, NSGA-II with SPS runs as much as one order of magnitude faster than SparseEA at 

100, and then 3 orders of magnitude at 7500 decision variables (Figure 3).  

NSGA-II with SPS demonstrated significantly greater HVs in runs with high numbers of 

decision variables. NSGA-II with SPS achieved consistently higher HVs throughout the 5000 and 

7500 decision variable runs under all test problems (Table 3 and Table A2; Figure 4 and Figure 

A5), the only exception being SMOP4 at 5000 variables, which did not have significantly 

divergent HVs. For 2500 decision variables, NSGA-II with SPS and SparseEA on average 

performed about the same (i.e., three runs with higher HV for SparseEA, three runs with higher 

HV for NSGA-II with SPS, and two runs with no significant difference in HV) (Table 3 and Table 

A2; Figure 4 and Figure A5). For the three lower numbers of decision variables, 100, 500, and 

1,000, SparseEA achieved significantly higher HVs (Table 3, Table A2; Figure 4 and Figure A5). 

However, if the HVs are interpolated over the gaps in decision variables, NSGA-II with SPS had 

a higher HV for the bulk of tested decision variables (approximately 3000 to 7500 decision 

variables) except for SMOP3 (Figure 4 and Figure A5).  
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Table 3: Comparative performance of NSGA-II with SPS and SparseEA. 

# dec. vars.  Test prob. Median performance of NSGA-II with SPS 

HV  Run time  NDS  

100  SMOP1  3.49(3.49)+  2.03(3.89)+  100(100)≈ 

100  SMOP2  3.46(3.47)≈ 1.40(3.70)+  100(100)≈ 

100  SMOP3  3.47(3.48)−  1.51(4.23)+  100(100)≈ 

100  SMOP4  3.78(3.78)−  2.14(4.66)+  100(100)≈ 

100  SMOP5  3.77(3.78)−  2.15(4.96)+  100(100)≈ 

100  SMOP6  3.75(3.78)−  2.37(4.95)+  100(100)≈ 

100  SMOP7  3.19(3.18)+  2.16(4.61)+  100(100)+  

100  SMOP8  2.65(2.98)−  1.48(3.76)+  100(71)+  

500  SMOP1  3.42(3.44)−  3.25(7.93)+  100(100)≈ 

500  SMOP2  3.30(3.36)−  2.99(7.56)+  100(100)≈ 

500  SMOP3  3.27(3.42)−  2.92(7.57)+  100(100)≈ 

500  SMOP4  3.78(3.78)−  3.49(7.05)+  100(100)≈ 

500  SMOP5  3.75(3.77)−  3.66(8.68)+  100(100)≈ 

500  SMOP6  3.72(3.77)−  4.75(9.40)+  100(100)≈ 

500  SMOP7  2.96(3.05)−  3.72(8.74)+  100(100)≈ 

500  SMOP8  2.31(2.75)−  3.04(7.74)+  100(100)+  

1,000  SMOP1  3.40(3.40)≈ 4.71(13.06)+  100(100)≈ 

1,000  SMOP2  3.26(3.28)−  4.88(13.01)+  100(100)≈ 

1,000  SMOP3  3.15(3.39)−  4.70(13.35)+  100(100)≈ 

1,000  SMOP4  3.78(3.78)−  5.94(9.28)+  100(100)≈ 

1,000  SMOP5  3.75(3.75)+  4.86(13.34)+  100(100)≈ 

1,000  SMOP6  3.72(3.74)−  6.73(14.81)+  100(100)≈ 

1,000  SMOP7  2.88(2.92)−  4.96(14.20)+  100(100)≈ 

1,000  SMOP8  2.23(2.51)−  4.92(13.12)+  100(100)≈ 

2,500  SMOP1  3.38(3.38)+  10.31(48.29)+  100(100)≈ 

2,500  SMOP2  3.24(3.24)≈ 10.48(48.42)+  100(100)≈ 

2,500  SMOP3  3.10(3.38)−  10.26(51.62)+  100(100)≈ 

2,500  SMOP4  3.78(3.78)≈ 13.17(15.95)+  100(100)≈ 

2,500  SMOP5  3.75(3.74)+  10.93(48.72)+  100(100)≈ 

2,500  SMOP6  3.72(3.73)−  15.31(54.09)+  100(100)≈ 

2,500  SMOP7  2.83(2.82)+  10.64(52.43)+  100(100)≈ 

2,500  SMOP8  2.20(2.23)−  10.78(52.75)+  100(100)≈ 

5,000  SMOP1  3.38(3.12)+  20.13(200.99)+  100(8)+  

5,000  SMOP2  3.23(2.95)+  20.57(204.46)+  100(8)+  

5,000  SMOP3  3.14(3.06)≈ 19.76(215.55)+  100(7)+  

5,000  SMOP4  3.78(3.68)+  26.25(25.98)≈ 100(12)+  

5,000  SMOP5  3.75(3.60)+  21.85(197.53)+  100(11)+  

5,000  SMOP6  3.72(3.63)+  30.55(216.93)+  100(16)+  

5,000  SMOP7  2.82(2.52)+  21.20(214.22)+  100(8)+  

5,000  SMOP8  2.19(1.83)+  20.96(196.42)+  100(7)+  

7,500  SMOP1  3.38(3.15)+  29.85(577.32)+  100(9)+  

7,500  SMOP2  3.23(2.95)+  30.58(594.09)+  100(8)+  

7,500  SMOP3  3.10(3.09)≈ 29.56(618.53)+  100(7)+  

7,500  SMOP4  3.78(3.68)+  39.50(79.66)+  100(12)+  

7,500  SMOP5  3.75(3.60)+  32.42(573.44)+  100(10)+  

7,500  SMOP6  3.72(3.63)+  45.69(623.84)+  100(16)+  

7,500  SMOP7  2.81(2.49)+  31.14(608.23)+  100(8)+  

7,500  SMOP8  2.17(1.82)+  31.47(657.65)+  100(7)+  

Let −, ≈, and + denote statistical differences between SparseEA and 

NSGA-II with SPS according to the Wilcoxon Rank-Sum test. - denotes 
that SparseEA performed better, + denotes NSGA-II with SPS performed 

better, and ≈ marks no statistical difference between SparseEA and 

NSGA-II with SPS.  
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Figure 3. Comparative runs which measure the effect of varying number of decision variables on 

run time for SMOP1. Note that the variances of some configurations were so small that the 

confidence intervals were rendered as lines. See Figure A6 for the SMOP[2–8] runs. 

 

Figure 4. Comparative runs which measure the HV of NSGA-II with SPS and SparseEA over 

increasing numbers of decision variables for SMOP1. SparseEA suffers significant decreases in 

HV after 2500 variables. Note that the variances of some configurations were so small that the 

confidence intervals were rendered as lines. See Figure A5 for the SMOP[2–8] runs. 
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Finally, NSGA-II with SPS significantly improved the NDS for runs with greater numbers 

of decision variables (i.e., 5000 and 7,500), with p-values ranging between 3.02e-24 and 1.02e-23 

(Table A2; Figure 5 and Figure A7). When the number of decision variables are low (i.e., 100, 

500, 1,000, 2,500), NSGA-II with SPS maintains the same number of NDS as SparseEA in most 

runs, and performs marginally better in some (i.e., SMOP8 with 100 and 500 decision variables). 

However, when the number of decision variables is increased, SparseEA struggles to maintain a 

high NDS. Meanwhile, when the number of decision variables is increased to 5000 and 7,000, the 

runs had median NDS between 16 and 7 (compared to the optimal of 100). These few solutions in 

the final Pareto set would severely limit the number of Pareto optimal options for a decision-

maker. NSGA-II with SPS on the other hand consistently produced 100 NDS in all runs across all 

numbers of decision variables. 

With these performances in mind, there are tradeoffs between the two algorithms. With 

regards to HV, SparseEA performs better in problems with moderate numbers of decision variables 

(i.e., between 100 and 1,000). However, as the size of the decision space increases, NSGAII with SPS 

on average achieves significantly better HV and NDS. In addition, across the all numbers of decision 

variables, NSGA-II with SPS runs orders-of-magnitude faster than SparseEA.  
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Figure 5. Comparative runs which measure the NDS of NSGA-II with SPS and SparseEA over 

increasing numbers of decision variables for SMOP1. SparseEA struggles to find solutions with 

over 10 NDS after 2500 decision variables. Note that many NSGA-II with SPS solutions 

maintained 100 NDS under all numbers of decision variables, and the median overlaps the 

perfect NDS line at 𝑦 = 100. Also, the variances of some configurations were so small that the 

confidence intervals were rendered as lines. See Figure A7 for the remaining SMOP[2–8] runs. 

 

4.5 Discussion 

Considering the simplicity of sparse population sampling, there are remarkable benefits to 

this elegantly straightforward routine. As the effective runs demonstrated, SPS yielded near-

universal improvements in HV regardless of the test problem. NSGA-II ran particularly well with 

SPS among the tested algorithms. Not only did it significantly increase HV from NSGA-II without 

SPS, but it also experienced no losses in NDS, and has the same algorithmic complexity as NSGA-

II without SPS (Table 2 and Figure A1). Also, with the exception of a few cases, it consistently 
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found larger HVs than all other algorithms in the effective runs (Figure A1). The single exception 

to this overall trend was NSGA-II without SPS, which had higher HV in low sparsities for SMOP6 

(Figure A3f). In the comparative runs, NSGA-II with SPS also outperformed the stand-alone 

LSSMOP SparseEA in high-dimensional problems (i.e., > 5 , 000). In this range of decision 

variables, NSGA-II with SPS outperformed the HV of SparseEA, maintained a consistent NDS, 

and had a dramatically lower run time. These performance increases highlight the benefits of 

sparse population sampling. SPS with NSGA-II is simple, stable, and high performing in high-

dimensional spaces. However, the relatively diminished performance of NSGA-II with SPS in 

lower dimensional spaces calls for improvements in further research.  

The performance of MOEA/D-DE and MOPSO were less consistent. Most issues were 

slight NDS losses and instability, which all could plausibly be seen as a worthwhile tradeoff for 

increased HV. Save for a minority of NDS in the upper twenties, SPS enabled MOPSO and 

MOEA/DDE were able to keep NDS in the nineties for the vast majority of test runs, which is still 

a practically useful NDS. This is a plausibly worthwhile tradeoff for the increase in HV. However, 

there was a fraction of practically unusable cases of NDS losses among SMOP5 and SMOP6 under 

MOPSO, which warrants further investigation. Also, even though SPS universally improved HV, 

the SPS enabled algorithms were not able to achieve perfect HV across all scenarios except for 

NSGA-II with SPS for SMOP4 which achieved near perfect HV (Figure A1, Figure A3, Figure 

A5). However, it is worth noting that SparseEA was also unable to achieve perfect HV for the 

entire range of decision variables.  

These observed drawbacks are not issues with SPS itself, but with the algorithms that it 

samples for. We propose SPS not as a complete solution to large-scale sparse optimization problems, 

but rather as a powerful performance enhancer to incorporate into any future sparse algorithm. 
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Indeed, it is remarkable that NSGA-II with SPS performs as well as it does, considering no other 

change was made to the algorithm. Regardless, a more holistic algorithm must be written with SPS in 

mind in order to address the HV and NDS drawbacks of NSGA-II, MOPSO, and MOEA/D-DE. These 

improvements will likely be enhanced population sampling, crossover functions, or other critical 

genetic algorithm operations. Future research should revolve around developing an algorithm that 

adapts to changes in target sparsity better than the three algorithms in the effective runs.  

SPS is also fairly sensitive to changes in sparsity. Except for the exceptions discussed in 

Section 4.4.1 Effects of SPS on standard EAs, sparsity monotonically increased with greater 

sparsity. Though the high HV at higher sparsity is commendable, future work must develop methods 

to keep HVs consistently high from low-sparsity problems to high-sparsity problems.  

Taking all of these findings into consideration, we provide the following recommendation for 

solving LSSMOPs. For sparse problems with 100 to 3000 decision variables, SparseEA obtains 

higher HVs at the expense of longer run times. When dealing with problems that are highly sparse (i.e., 

roughly 75% sparsity) and large scale multi-objective algorithms (i.e., greater than 3000 decision 

variables), NSGA-II with SPS is the best option out of the algorithms with respects to HV, run time, 

and steady NDS.  

To summarize, besides the above exceptions, we reject the first global null hypothesis that 

SPS has no impact or a negative impact on existing algorithms’ performance with LSSMOPs (𝐻0
𝑒). 

The effective runs demonstrated that SPS can be incorporated into and improve upon most existing 

population-based algorithms with negligible loss to stability and algorithm complexity. There are 

only one to two parameters (Algorithm 1), which minimizes parametric complexity. It also requires 

no resources or dependencies from the algorithm beyond the initial population generation, and thus 

SPS can be combined with any population-based algorithm. We also reject a significant portion our 
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second main null hypothesis, that SPS with NSGA-II with SPS will perform worse or the same as 

SparseEA (𝐻0
𝑐). As observed in the comparative runs, as problem complexity increased (between 

5000 and 7500 decision variables), NSGA-II with SPS achieved higher HV and NDS. Also, with 

respect to run time, NSGA-II with SPS performed significantly faster than SparseEA across all 

configurations. Where SparseEA did outperform NSGA-II with SPS (i.e., the lower decision variable 

problems) with respect to HV, we are unable to reject 𝐻0
𝑐. 

4.6 Conclusions 

SPS shows great promise for improving the performance for LSSMOPs. It improves the HV 

for nearly all algorithms with little to no side-effects and combined with NSGA-II outperforms 

existing LSSMOP algorithms in high-dimensional decision spaces (as large as 8000 variables). This 

near-universal improvement entails no known impacts to run time and requires only two parameters. 

On the other hand, it suffers from minor NDS instability and/or decreases in many test cases, and 

severe NDS decreases in a small minority of test cases. However, slightly less than optimal NDS is an 

arguable tradeoff for the remarkable near-universal gains in HV. Future research must focus on how 

to improve these drawbacks by creating more holistic integrations with population-based algorithms, 

such as devising customized sparse-variable crossover and mutation operators.  

The findings from this study established a solid foundation for the development of a 

theoretical proof of the proposed sampling strategy. Specifically, future work should address why 

SPS performs better at higher sparsities, why NDS is critically unstable for MOPSO under SMOP5 

and SMOP6, and why NSGA-II with SPS outperforms the other algorithms with SPS. All of these 

endeavors are critical to making the performance of algorithms with SPS more robust under all 

sparsity conditions. Nevertheless, SPS brought about near-universal HV improvements with little to 
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no loss in NDS or run time or change to the main algorithm. Also, this algorithm is one of the few to 

effectively solve large scale (100 to 8,000-variable) multi-objective optimization problems. By better 

solving LSSMOPs, SPS shows promise in solving the difficult, large-scale problems throughout 

engineering 
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5. AGRICULTURAL INNOVIZATION: AN OPTIMIZATION-DRIVEN SOLUTION FOR 

SUSTAINABLE AGRICULTURAL INTENSIFICATION IN MICHIGAN 

5.1 Introduction 

The current global agricultural production system struggles to meet food and nutrition 

security (El Bilali et al., 2019). This is primarily due to the 30% expected increase in world 

population by 2050, which will elevate food demand by 50% and require a 70% increase in food 

production (van Dijk et al., 2021). In addition, food accessibility will be further threatened by 

adverse climate conditions and volatile food prices, especially in developing and underdeveloped 

regions of the world (Richardson et al., 2018).  Therefore, food production systems, being sensitive 

to abiotic and biotic shocks, need timely decisions in optimizing resource use. To mitigate these 

shocks, breeders have developed high yielding resistant crop cultivars. These modern cultivars 

require optimization of water and nutrient management to minimize yield gaps and to ensure the 

sustainability of agroecosystems (Tian et al., 2018). Despite being a critical resource in food 

production, water also faces scarcity due to population growth and climate change. The latest 

Intergovernmental Panel on Climate Change (IPCC) report highlights increased water-related food 

scarcity due to the increased frequency of droughts and poor water management (Arias et al., 2021)  

Maize (Zea mays L.) is the third most important crop after rice and wheat, due to its stable 

global productivity. This is primarily attributed to high-yielding seeds and modern management 

practices (Ricciardi et al., 2021). Despite continuous efforts in developing high yielding cultivars, 

many regions of the world are experiencing a stagnation in yield improvement over the last two 

decades (Kucharik et al., 2020). One critical component of this stagnation is interannual variation 

in yield, which is primarily attributed to crop-climate feedback (Coffel et al., 2022; Kukal and 

Irmak, 2018). To address this variability in yield, a data-driven resource optimization approach is 
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more feasible with the constrained resources availability (Eeswaran et al., 2021; Kropp et al., 

2019). For example, in the United States Corn Belt, farmers were able to boost productivity over 

the last few decades by optimizing irrigation and nitrogen management (Jin et al., 2019; Wortmann 

et al., 2017; Zheng et al., 2019).  

The traditional method of optimizing agricultural management practices is through field 

experiments, which are constrained by time and monitory resources (Vilayvong et al., 2015). 

However, computer modeling, monitoring, and optimization now allow farmers to optimize 

management practices at greater spatiotemporal scales (Abbasi et al., 2014; Tyagi, 2016). This is 

critical since managing or sustaining the agroecosystem under short, and long-term climatic 

variability requires a system approach with complex data handling (da Fonseca et al., 2020). Crop 

simulation models have been used to investigate the impact of management practices on crop 

growth and development (Araya et al., 2021; Jha et al., 2018). Additionally, data-driven simulation 

studies have developed novel methods of resource optimization for management practices at both 

farm (Kropp et al., 2019) and regional levels (Ban et al., 2019).  These advancements are already 

paying off, considering that precision agriculture and information technology have significantly 

increased agricultural productivity (Ahmed et al., 2018; Basso, 2020; Monzon et al., 2018). 

However, system complexity and multi-dimensional data reduce optimization speed (Sabarina and 

Priya, 2015). In fact, it is impossible to exhaustively examine all management practices to find an 

optimum. However, optimization techniques efficiently find near-optimal solutions among all 

possible management practices. Classical optimization techniques, such as gradient descent 

(Curry, 1944) and linear programming (Chvatal et al., 1983), efficiently solve simple optimization 

problems, but perform poorly with more complex problems such as multi-modal, non-convex, and 

nonlinear problems (Deb, 2009). Agricultural optimization falls in the latter category, making it a 
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good candidate for evolutionary optimization (Kropp et al., 2019). This study chose evolutionary 

optimization because it offers a less specialized but an overall more capable optimization than the 

classical techniques (Goldberg, 1989). Research has repeatedly demonstrated the efficacy of 

evolutionary algorithms in developing more optimal crop management practices (Akbari et al., 

2018; Groot et al., 2012; Kropp et al., 2019; Mello Jr et al., 2013; Sarker and Ray, 2009). 

In addition to evolutionary optimization, the utility of multi-objective (MO) optimization 

techniques has been widely examined for agriculture management. MO problems contain no single 

solution that simultaneously satisfies all objectives in the problem (Miettinen, 2012). For example, 

suppose a farmer aims to minimize irrigation while maximizing their yield. In that case, there are 

two equally optimal solutions: Solution A maximizes yield with considerable irrigation losses, and 

Solution B that minimizes irrigation by not irrigating at all. Each of these solutions is equally 

optimal, and no better solution exists that outperforms each solution in both categories at once. 

And between these two extreme solutions typically lie a group of solutions, known as a Pareto 

front, that are also equally optimal and offer different tradeoffs to the problem (Censor, 1977). In 

the above example, one solution may use a moderate amount of irrigation while attaining modest 

yields, which wastes less water than Solution A but gets higher yields than Solution B. Evolutionary 

multi-objective (EMO) optimization algorithms specialize in solving multi-objective problems 

with highly complex and irregular search spaces (Goldberg, 1989), which is why they were the 

method of choice in the study.  

The primary difficulty in optimizing an agricultural system is predicting the weather (Jones 

et al., 2017). Without proper management, unpredictable meteorological events (e.g., precipitation, 

minimum air temperature, maximum air temperature, solar radiation) can either help the plant, kill 

the plant, or produce middling yields. One way to address these uncertainties is to widen the scope 
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of optimization, since it is better to search innovations that are true for all possible weather patterns 

than to improve specific management actions for a given year. A data-driven approach to 

discovering such innovations entails data mining massive datasets of irrigation schedules to 

determine the defining characteristics of good management practices. Such datasets are hard to 

obtain through the traditional agronomic literature due to the time and costs required to run 

agronomic experiments (Vilayvong et al., 2015). However, the combination of crop models and 

optimization can produce such a dataset (Kropp et al., 2019; Saravi et al., 2021). Given a fixed 

weather pattern, MO algorithms can generate effective management practices for a given year 

(Kropp et al., 2019), which can then be data mined for their successful characteristics. This process, 

known as innovization, uses optimization results to mine data for new innovations in a given 

system (Deb and Srinivasan, 2006).  

This study carefully examines weather patterns and their impacts on an agricultural system 

over 30 years to prescribe (i.e., innovize) new management actions that achieve sustainable 

intensification. Sustainable intensification is defined as increasing agricultural yields with no 

additional impact on environment or land use (Pretty and Bharucha, 2014). This innovization 

procedure is novel because long-term optimization results are transformed into best practice 

recommendations without requiring new optimization for future climatic scenarios. Also, 

innovization has never before been applied to an agricultural application. This study hypothesizes 

that innovization will generate new knowledge of maize production within a given region. These 

data-driven innovations will then be translated to easy-to-understand management actions for 

regional farmers and weather patterns. In order to test these hypotheses, the following objectives 

were examined against the current best practices that are recommended by the local extension 

publications (herein called common practices): 1) evaluate the productivity and sustainability of 
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long term innovization-based irrigation scheduling under the regional weather patterns; 2) gauge 

the productivity and sustainability of long term innovization-based fertilizer applications under 

regional weather patterns; and 3) gauge the productivity and sustainability of long term 

innovization-based coordinated irrigation and fertilizer management under regional weather 

patterns. 

5.2 Materials and methods 

5.2.1 Modeling overview 

Overall, the innovization platform generates optimized management actions for the study 

site, compares them to management actions following common practices, and finally makes 

recommended amendments to the common practices accordingly (Error! Reference source not f

ound.). We chose a study area with complete meteorological (1989-2018) and soil data to generate 

the optimized management actions and the management actions following common practices data 

(Section 5.2.2 Study area). Using a calibrated crop model for the study site, an optimization 

platform generates the near-optimal management actions for the 30 years of weather data (Section 

5.2.3 Experiment setup and 5.2.6 Innovization framework) (Figure A10). Then, an algorithm 

representing farmers following common practices was established and ran with the same 30 years 

of weather data (Section 5.2.5 Common practice at the study site). The 30 years of optimized and 

common practice management actions are then statistically compared (Section 5.2.6 Innovization 

framework). Specifically, the analysis compares the amount of irrigation applied in each 

physiological growth stage and the timing of a second nitrogen fertilizer application during the 

growing season (Section 5.2.6 Innovization framework). Finally, a validation routine measures the 

performance of the new amended practices and the original common practices to confirm or reject 
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the efficacy of the innovization procedure. The validation is performed on 14 climatologically 

similar study sites around the primary study site (Figure A9).  

 

Figure 6: Modeling overview 
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5.2.2 Study area 

The study area is a field in the village of Cassopolis within Cass County, Michigan, USA (42° 1' 

29.64'' N, 86° 10' 15.6'' W) (Figure 7). The location is in the humid temperate region of the 

Midwest USA Corn belt. The long-term (1989-2018) average, minimum, and maximum 

temperature of the location is 9.81 °C, 3.1 °C, and 16.6 °C, respectively, and the average annual 

precipitation is 1002.52 mm (PRISM, 2022). About 60 percent of the annual rainfall occurs during 

the crop growing season of May-October. Although Michigan seems to have abundant freshwater 

resources, precipitation is low during critical crop growing summer months. Additionally, crops 

often suffer from water deficits during the peak growing season (Andresen et al., 2011) The major 

soil type is shallow sandy loam with moderate drainage.  

 

Figure 7. Study site 
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5.2.3 Experiment setup 

5.2.3.1 Crop model  

This study employs crop simulation models to create the optimized management practices 

needed for innovization. The crop model selected for this study was the Decision Support System 

for Agrotechnology Transfer (DSSAT) version 4.7.5 (Hoogenboom et al., 2017; Jones et al., 2003) 

DSSAT is a collection of computer modules that are integrated to simulate crop growth for varying 

soil, weather, and genotype databases. DSSAT is also easily integrated into different modeling 

packages to consider climate variability and change (Han and Ines, 2017), remote sensing data (Li 

et al., 2015; Richetti et al., 2019), and advanced machine learning techniques (Singh et al., 2019). 

Its modules are reconfigurable and reusable, permitting users to modulate the code that connects 

the state and rate variables (de Abreu Resenes et al., 2019). These sets of capabilities make DSSAT 

a clear choice for this study. 

5.2.3.2 Soil and weather data 

Based on the soil type classification of the web soil survey webpage, the dominant soil for 

the study area was identified as sandy loam (NRCS, 2019). Sub-surface tile drain depth and 

spacing were kept at 75 cm and 10 m, respectively. Initial soil water content was held at 75% 

(0.145 cm3/cm3), based on soil sampling results from 2018 (Jha, 2019).  

Daily weather data (i.e., solar radiation, maximum and minimum temperature, and rainfall) 

were obtained from Dowagiac, MI, the nearest Enviroweather station. Enviroweather is a weather 

station network developed and supported by Michigan State University (MSU Enviroweather, 

2019). Since the weather station was established in 2014, historical weather data prior to 2014 

(1989-2013) were collected from the Global Historical Climatology Network (GHCN) for 
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Cassopolis to complete the 30-year climatological datasets (Menne et al., 2012). We used these 

daily weather data to calculate the growing degree days (GDD), a surrogate for crop phenological 

development. The Maize growing season is May through October.  

5.2.4 Prediction of developmental stages based on growing degree days 

Maize expresses a determinate growth habit with distinct vegetative and reproductive 

phases. Maize developmental stages are first based on vegetative development (V) and then on 

reproductive development (R). The most adopted method for determining vegetative stages is the 

Leaf Collar method (Ritchie et al., 1986) which can vary with hybrid, initial soil and planting 

conditions, and location. However, most of the Corn Belt hybrids produce 19-20 leaves. The 

appearance of consecutive leaves is driven by air temperature and hence can be predicted or 

tracked by estimating degree days or heat accumulation. The most recommended method of 

predicting heat accumulation is GDD, popularly known as 30/10 method (Abendroth et al., 2010).  

The optimal growing temperature for maize starts at 10° C and ends at 30°C. Using 30-year 

historical weather data, we calculated the degree days (Equation ( 2 ) in each year and estimated 

developmental stages.  

𝐺𝐷𝐷 =
𝑇𝑀𝐼𝑁 + 𝑇𝑀𝐴𝑋

2
− 10 

( 2 ) 

Where, 𝐺𝐷𝐷  is growing degree day in Celsius, 𝑇𝑀𝐼𝑁 is the minimum daily air temperature, and 

𝑇𝑀𝐴𝑋 is the maximum daily air temperature. Note that if temperatures are lower than 10° C, 𝑇𝑀𝐼𝑁 

is kept constant at 10° C, if temperatures are greater than 30°C, 𝑇𝑀𝐴𝑋 is kept constant at 30°C.  

Temperature based crop vegetative and reproductive development stages were used to 

optimize irrigation and nitrogen management strategies. Predicted stages based on air temperature 

can be seen in Table A3. These average values for each predicted stage and day were used in 
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setting up the constants and constraints for optimization, including when to irrigate (30-year 

minimum of V6 through 30-year maximum of R2) and when to apply nitrogen (30-year minimum 

of V6 through 30-year maximum of V14) (Table 4).  

All of the innovization years (1989-2018) were divided into dry, normal, and wet years of 

precipitation. Dry years are the driest 1/3 of the innovization years, wet years were the wettest 1/3 

of the innovization years, and the final 1/3 were the normal years (Table A3). These categories 

were also used to characterize the precipitation for the validation scenarios (Table 4).  

5.2.5 Common practice at the study site 

Agronomic management of maize is primarily driven by specific developmental stages 

determined by the heat accumulation in plants (Abendroth et al., 2010). Growers in Cassopolis 

determine initial crop water requirement by measuring the accumulated soil moisture before the 

growing season. As the maize develops physiologically, growers irrigate after the midpoint of the 

vegetative stage (V6-V8) in addition to supplemental rainfall. Physiologically, crops need more 

water for biomass growth during critical growth stages, and hence this requirement is met through 

irrigation. Based on these growth stages and in order to optimize water use efficiency, farmers in 

Cassopolis generally plant on May 15. The irrigation source is groundwater pumping, and the 

method is sprinkler irrigation. Under normal weather conditions, the common practice is to irrigate 

10 mm after 50 days of planting (V6-V8 stage) at 5 days intervals up to the tasseling stage (60-70 

days after planting (DAP)). For reproductive stages (i.e., from the tasseling stage onwards), 

growers irrigate 20 mm at 5 days intervals up to the R2 stage (i.e., blistering stage, or 100-110 

DAP) (Figure 8) (Kelley, 2016; Kelley and Hall, 2020; Kranz et al., 2008). In the case of heavy 

rainfall (i.e., greater than 20 mm), farmers typically wait ten days before resuming irrigation 

(Figure 8). Similarly, nitrogen application time and amount are important to yield production and 
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potential groundwater contamination. The common practice of applying nitrogen for Southwest 

Michigan’s sandy to sandy loam soils is 200-210 Kg N/ha. This is based on the tool Maximum 

Return to Nitrogen (MRTN) recommendation, which growers adopt in the Corn Belt of the USA 

(Gramig et al., 2017). This application is split into two doses: pre-plant incorporation (75%) and 

another side-dressed dose (25%) between V6 to V14, depending on weather conditions. However, 

nitrogen requirement increases rapidly after the V8 growth stage (8-leaf collar stage), i.e., 55-60 

DAP. The vigorous biomass growth during mid to late vegetative stages requires a large amount 

of nitrogen. Growers usually confine their side-dress application to V8-V10. Since rain negatively 

affects the application of nitrogen, the common practice is to delay the application until five days 

after heavy rainfall events (i.e., greater than 20 mm), three days after moderate rainfall events (i.e., 

greater than 10 mm), and two days after any other rainfall event (Figure 9). These are the practices 

that this study aims to improve through the process of innovization. 

Figure 8. Flow chart of common irrigation practices in Cass County, Michigan. 
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5.2.6 Innovization framework 

The first task in agricultural innovization is to generate many near-optimal irrigation and 

nitrogen schedules for a vast number of weather scenarios. These schedules are ideally generated 

using numerous optimizations runs over the entire span of potential weather conditions; a wide 

breadth of initial conditions ensures that we are analyzing the widest range of possible 

meteorological scenarios. The agronomical literature recommends 30 years of weather 

representative to better understand the cropping systems (Deshcherevskaya et al., 2013).  

Therefore, from 1989 to 2018, 30 independent optimization runs improved the common 

management practices (i.e., irrigation and nitrogen applications) for each growing season.  

All MO runs optimized three objectives: maximizing maize yield, minimizing water usage, 

and minimizing nutrient leaching. The decision variables (i.e., the management practices to 

optimize) included when and how much to irrigate during the growing season, and when to apply 

the second nitrogen application (Table 4). The first nitrogen application, 150 kg/ha at DAP 0, 

remains constant throughout all scenarios (Table 4). Formally, the optimization is defined by: 

max𝑓𝑌(𝑖46, … , 𝑖118, 𝑁)  

min𝑓𝐼(𝑖46, … , 𝑖118, 𝑁) ( 3 ) 

min𝑓𝐿(𝑖46, … , 𝑖118, 𝑁)  
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Figure 9. Flow chart of common nitrogen practices in Cass County, Michigan 
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where, 𝑖46 represents the 30-year minimum start date of V6 (DAP 46), 𝑖118 represents the 

30-year maximum end date of R1 (DAP 118), and 𝐼 is the entire irrigation schedule (𝐼 =

{𝑖46, … , 𝑖118}). In other words, each 𝑖𝑑 ∈ 𝐼 represents the amount of irrigation for day-after-

planting 𝑑 in the irrigation schedule. The total irrigation applied on DAP 𝑖 is between 0 and 30 

mm (𝑖 ∈ [0,30]). 𝑁, which represents the date of the second nitrogen application, falls between 

the minimum V6 and the maximum V14 (𝑁 ∈ [min (V6),max (V14)]) for the 30 years of study 

(Table A3) and involves applying 50 kg/ha of nitrogen. 𝑓𝑌, 𝑓𝐼, and 𝑓𝐿 are yield, total irrigation 

usage, and total nitrogen leached into the soil, respectively. Each of these objectives is a function 

of the irrigation schedule and nitrogen application variables, as well as the fixed soil, weather, and 

cultivar for each year. DSSAT provides the total irrigation, yield, and leaching (𝑓𝐼, 𝑓𝑌, and 𝑓𝐿) by 

simulating maize growth for the given soil conditions, cultivar genotype, weather, and 

management practices at the study site.  

The EMO algorithm chosen for this study was the non-dominated sorted genetic algorithm 

III (NSGA-III), a powerful, many-objective optimization algorithm that simultaneously prioritizes 

solution convergence and diversity (Deb and Jain, 2014). Because of the stochastic nature of EMO 

algorithms, the optimization was repeated 30 times for each year with different random seeds. Due 

to the long run time of the optimization in preliminary runs, thirty repetitions were determined to 

be the ideal balance between run time and sample size. This lowers the odds that a single 

optimization with poor convergence is included in the results.  

Every irrigation solution ran during the optimization, regardless of fitness, was saved for 

analysis during the innovization. All solutions for 30 runs for a given year were then combined 

into a single set and sorted into non-dominated fronts (another term for a Pareto front). Non-

dominated sorting takes all solutions from all 30 optimization runs and sorts them into Pareto 
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Table 4. Optimization variables and constants 

Variables  

Parameter Differences between runs 

Weather  Different observed data for each year 

Irrigation When and how much to irrigate during the 

growing season between the 30-year minimum 

of V6 (DAP 46) and maximum start day of R2 

(DAP 118) 

Second nitrogen application 25% side dressed between the 30-year 

minimum of V6 and maximum of V14 

Constants  

Parameter Constants across runs 

Planting date May 15th 

First nitrogen application preplant incorporation 75% (of 200 kg) 

Total nitrogen application 200 kg 

Innovization period 1989 - 2018 

Variables  

Parameter Differences between runs 

Weather  Different observed data for each year 

Irrigation period Between the 30-year minimum of V6 (DAP 46) 

and maximum start day of R2 (DAP 118) 

Second nitrogen application 25% side dressed between the 30-year minimum 

of V6 and maximum of V14 

Constants  

Parameter Constants across runs 

Planting date May 15th 

First nitrogen application preplant incorporation 75% (of 200 kg) 

Total nitrogen application 200 kg 

Innovization period 1989 - 2018 
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fronts with increasing optimality. For example, the first front is globally optimal for the three 

objectives; the second front is globally optimal if the first front is removed, and so on.  

Traditional optimization algorithms tend to struggle to optimize large-scale optimization 

problems. Luckily, expert knowledge of irrigation helps simplify the optimization procedure: 

irrigation schedules are known to be sparse (Kropp et al., 2019). In simpler terms, plants 

physiologically only need irrigation during a minority of days in the growing season. Formally, 

the optimal 𝐼 is always a vector of values that are mostly zero. This class of problems are known 

as large-scale sparse multi-objective problems LSSMOP (Zille and Mostaghim, 2017). There are 

a several options to take advantage of this knowledge. Kropp et al. (2022a) demonstrated that 

NSGA-II, a version of NSGA-III for lower objective spaces (Deb et al., 2002), solves sparse 

problems effectively with sparse population sampling (SPS). SPS consists of modifying the initial 

population of evolutionary algorithms to enforce a target sparsity, which starts the initial 

population off on advantageous footing during the first generation. The target sparsity for this 

study was set to 80%, or an irrigation schedule with 80% of days without irrigation based on the 

sparsity of common practice irrigation schedules in preliminary runs.  

Once the 30 repetitions for the 30 years of optimization are completed, we are left with a 

large dataset of 489,614 unique irrigation schedules, their respective yields, leaching levels, and 

water usages. However, this dataset still poses a challenge to innovization: no attributes in the 

dataset are relevant to improving common practices (Figure 8 and Figure 9). Firstly, the raw 

attributes include the days of the growing season and how much irrigation was applied during 

those days, which is directly tied to the weather of that given year. Thus, the irrigation schedules 

must be first transformed into a weather-independent format. In addition, a raw irrigation schedule 

holds little meaning for a farmer in the study area and transforming the results into relevant 
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attributes will simplify the results. Therefore, the optimization results were run through a process 

that transformed the raw irrigation schedules into what we will refer to as a knowledge attribute 

table. The knowledge attribute table includes the irrigation schedule transformed into variables 

that describe how much water is applied during each physiological stage. For example, one 

attribute describes how much irrigation water was applied during the V8 stage of growth. 

Transforming yearly optimal irrigation schedules into physiological terms standardizes the 

irrigation schedules across all weather patterns. In addition, it makes the data more understandable 

to farmers, who can easily determine the current physiological stage of a plant in the field. See the 

complete list of physiological attributes in Table 5. The final attributes are the threshold of heavy, 

moderate, and light rain rainfall in the context of nitrogen application. These values correspond to 

the common practices in the study site to delay the second nitrogen application by five days after 

heavy rainfall, three days after a moderate rainfall, and one day after light rainfall (Figure 9). To 

determine the heavy rain threshold from raw irrigation schedules, we select the total rainfall from 

the day with the greatest amount of rainfall within five days before the second nitrogen application. 

This represents the amount of rain the optimized nitrogen management was able to tolerate. The 

same process calculated the moderate and light rain thresholds, but within three and one day(s) 

before the second nitrogen application, respectively.  

With knowledge attributes calculated, we next search for ways to innovate the common 

practices of Cass County farmers (Figure 8 and Figure 9). Looking for innovations in the common 

practices of producers makes recommendations easy and understandable for existing practitioners 

to follow. One area for improvement in the existing system is how much irrigation is applied during 

each application. As described in Figure 8, farmers in Cass County currently irrigate 10 mm of 

water during the vegetative phases of maize, and 20 mm during the reproductive stages of maize. 
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Table 5. Knowledge attributes 

Knowledge attribute code Description 

𝑤𝑉6 Total water during V6 

𝑤𝑉7 Total water during V7 

𝑤𝑉8 Total water during V8 

𝑤𝑉9 Total water during V9 

𝑤𝑉10 Total water during V10 

𝑤𝑉11 Total water during V11 

𝑤𝑉12 Total water during V12 

𝑤𝑉13 Total water during V13 

𝑤𝑉14 Total water during V14 

𝑤𝑅1 Total water during R1 

𝑚ℎ Threshold for heavy rainfall  

𝑚𝑚 Threshold for moderate rainfall 

𝑚𝑙 Threshold for light rainfall 

  

These fixed application amounts are excellent targets for innovization since they only consider 

whether the plant is in the vegetative or reproductive stages. Optimizing irrigation application 

amount for individual growth stages (i.e., V6 through V14, and R1) would give the farmer better 

control in managing the water use of their crop. Additionally, an optimized set of application 

amounts per growth phase would be simple to communicate with farmers. To discover targeted 

application amounts for each physiological phase, we compared the optimized median values of 

𝑤𝑉6 through 𝑤𝑅1 from the 30 years of optimized practices to the values of 𝑤𝑉6 through 𝑤𝑅1 

brought about by 30 years of common practices in Cass County. These 30 years of common 

practices were realized by first designing an algorithm that simulates the decision-making of a 

farmer following common practices as described in Figure 8. Let this simulated farmer be known 

as 𝑔𝑐𝑜𝑚. Then, the simulated farmer runs for all 30 years of weather data, and the of 𝑤𝑉6 through 
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𝑤𝑅1 are calculated from their management decisions. With the computer-optimized and the 

common-practice-based medians for 𝑤𝑉6 through 𝑤𝑅1, the percentage difference is calculated 

between the two as follows:  

Δ�̃�𝑝 =
(�̃�𝑝

𝑜𝑝𝑡
− �̃�𝑝

𝑐𝑜𝑚)
�̃�𝑝
𝑐𝑜𝑚⁄  ( 4 ) 

 

where, 𝑝 ∈ {𝑉6,… , 𝑉14, 𝑅1},  �̃�𝑝 is the median water usage during physiological phase 𝑝 for 

either common practices (�̃�𝑝
𝑐𝑜𝑚) or optimized practices (�̃�𝑝

𝑜𝑝𝑡
), and Δ�̃�𝑝 is the median difference 

between common practices and optimized practices (0 ≤ Δ�̃�𝑝 ≤ 1). With the set of recommended 

percentage differences Δ𝑊 = {Δ�̃�𝑉6, … , Δ�̃�𝑉14, Δ�̃�𝑅1}, we can then advise the farmer to alter the 

default irrigation application amount in common practices (i.e., either 10 mm in vegetative stages 

or 20 mm in reproductive stages) according to Δ𝑊. Formally speaking, we would recommend:  

𝑖𝑝
𝑟𝑒𝑐 = 𝑖𝑝 + 𝑖𝑝 ∗ Δ�̃�𝑝 ( 5 ) 

where, 𝑖𝑝 is the amount of irrigation applied during the physiological phase 𝑝 according to common 

practices (i.e., 𝑖𝑝 ∈ {10, 20}), and 𝑖𝑝
𝑟𝑒𝑐 is the new recommended irrigation amount for this 

physiological growth phase. The timing of irrigation would remain intact from common practices. 

In summary, our recommended irrigation practice would take the form 𝐼𝑟𝑒𝑐 = {𝑖𝑉6
𝑟𝑒𝑐, … , 𝑖𝑉14

𝑟𝑒𝑐 , 𝑖𝑅1
𝑟𝑒𝑐}, 

where each element in the vector 𝐼𝑟𝑒𝑐 is the amount of irrigation that is applied during the given 

physiological phase.  

A similar innovization procedure occurs for improving the second nitrogen application. 

According to the common practices, before irrigating, farmers will wait for five consecutive days 

after a heavy precipitation event (i.e., greater than 20 mm), three days for a moderate precipitation 
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event (i.e., greater than 10 mm), and two days after any light precipitation events. We hypothesized 

that these thresholds, denoted as 𝑚ℎ, 𝑚𝑚, and 𝑚𝑙, can be innovated. To test this hypothesis, we 

examined the precipitation of the days leading up to the optimal fertilizer applications. For each 

optimal result, we search for what has constituted a heavy, moderate, and light precipitation event 

in that optimal result, or 𝑚ℎ
𝑜𝑝𝑡

, 𝑚𝑚
𝑜𝑝𝑡

, and 𝑚𝑙
𝑜𝑝𝑡

. In other words, we record the most extreme 

weather events (i.e., the amount of precipitation on the day with the most rain) five days before 

the second application, three days before the second application, and two days before the second 

application. We then take the medians of these three sets to obtain �̃�ℎ
𝑜𝑝𝑡

, �̃�𝑚
𝑜𝑝𝑡

 , and �̃�𝑙
𝑜𝑝𝑡

. Then, 

the percentage difference between 𝑚ℎ, 𝑚𝑚, and 𝑚𝑙 in common practices (𝑚ℎ
𝑐𝑜𝑚, 𝑚𝑚

𝑐𝑜𝑚, and 

𝑚𝑙
𝑐𝑜𝑚) and in the optimized results (�̃�ℎ

𝑜𝑝𝑡
, �̃�𝑚

𝑜𝑝𝑡
 , and �̃�𝑙

𝑜𝑝𝑡
) will define the deviation between all 

thresholds as follows: 

Δ�̃�ℎ =
(�̃�ℎ

𝑜𝑝𝑡 −𝑚ℎ
𝑐𝑜𝑚)

𝑚ℎ
𝑐𝑜𝑚⁄  

( 6 ) 

Δ�̃�𝑚 =
(�̃�𝑚

𝑜𝑝𝑡 −𝑚𝑚
𝑐𝑜𝑚)

𝑚𝑚
𝑐𝑜𝑚⁄  

( 7 ) 

Δ�̃�𝑙 =
(�̃�𝑙

𝑜𝑝𝑡 −𝑚𝑙
𝑐𝑜𝑚)

𝑚𝑙
𝑐𝑜𝑚⁄  

( 8 ) 

where, Δ�̃�ℎ, Δ�̃�𝑚, Δ�̃�𝑙 are the percentage difference between the optimized rain thresholds and 

the common practices. From Δ�̃�ℎ, Δ�̃�𝑚, Δ�̃�𝑙, recommendations can be made for an innovative 

threshold for what constitutes heavy, moderate, and light rain as follows. Together, these three 

recommendations will be known as the set 𝑀𝑟𝑒𝑐 = {𝑚ℎ
𝑟𝑒𝑐, 𝑚𝑚

𝑟𝑒𝑐 , 𝑚𝑙
𝑟𝑒𝑐}.  
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𝑚ℎ
𝑟𝑒𝑐 = 𝑚ℎ

𝑐𝑜𝑚 ∗ Δ�̃�ℎ ( 9 ) 

𝑚𝑚
𝑟𝑒𝑐 = 𝑚𝑚

𝑐𝑜𝑚 ∗ Δ�̃�𝑚 ( 10 ) 

𝑚𝑙
𝑟𝑒𝑐 = 𝑚𝑙

𝑐𝑜𝑚 ∗ Δ�̃�𝑙 ( 11 ) 

5.2.7 Validation 

To validate the innovativeness of 𝐼𝑟𝑒𝑐 and 𝑀𝑟𝑒𝑐, we measure the performance of four 

strategies. The first strategy represents farmers following common practices, denoted as the 

common practice strategy. The other three strategies are innovization based: 1) farmers only 

following irrigation recommendations 𝐼𝑟𝑒𝑐 (irrigation recommendation strategy), 2) farmers only 

following nitrogen application recommendations of 𝑀𝑟𝑒𝑐 (nitrogen recommendation strategy), 

and 3) farmers following both irrigation and nitrogen application recommendations (𝐼𝑟𝑒𝑐 and 

𝑀𝑟𝑒𝑐) (all recommendation strategy). These strategies will measure the performance of  𝐼𝑟𝑒𝑐 and 

𝑀𝑟𝑒𝑐 individually, as well as the recommendations enacted simultaneously. Performance is 

measured in yield, water efficiency, and nitrogen leaching, which DSSAT simulates, given the 

weather for the season. These strategies will also demonstrate the sensitivity of the irrigation and 

nitrogen parameters on our agricultural objectives. We measured these performance metrics under 

as many validation seasons of weather as possible to ensure statistical rigor. Since there are 

plentiful weather records in Southwest Michigan, we gathered 420 validation seasons of weather 

available. This included 30 years of historical weather data (1989-2018), and 14 weather stations 

in Southwest Michigan (Figure A9) (30 × 14 = 420). These climatologically similar sites are in 

Allegan, Bainbridge, Benton Harbor, Berrien Springs, Dowagiac, Fennville, Grand Junction, Hart, 

Keeler, Lawrence, Lawton, Oshtemo, Scottdale, and South Haven counties. All weather data was 
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retrieved from MSU Enviroweather and the GHCN. Of these 420 validation seasons, 159 are 

climatologically dry, 135 are climatologically normal, and 126 are climatologically wet.  

With these 420 validations seasons, three statistical tests measure the efficacy of the 

amended practices: 𝑔𝐼
𝑟𝑒𝑐 versus 𝑔𝐼

𝑐𝑜𝑚, 𝑔𝑀
𝑟𝑒𝑐versus 𝑔𝑀

𝑐𝑜𝑚, and 𝑔𝑀𝐼
𝑟𝑒𝑐 versus 𝑔𝑀𝐼

𝑐𝑜𝑚. Under each test, 

420 DSSAT simulations of the common practice strategy are compared to 420 DSSAT simulations 

of amended practices according to yield, water efficiency, and leaching. Since the data did not 

consistently follow a normal distribution, the Wilcoxon Rank Sum test was used (Hollander et al., 

2013) to test whether these three-performance metrics were different between the two runs.   

5.3 Results and discussions 

5.3.1 Performance of irrigation recommendation strategy  

Overall, the irrigation recommendation strategy (Table 6) increased yields over the common 

practice strategy, with a mean increase of 271.11 kg/ha per year (Table 7). This increase was 

statistically significant, with a p-value of 3.5% (i.e., < 5%) (Table A4). Of the validation seasons, 

78.83% of seasons saw gains in yield, and the gains far outweighed the losses. The average gain 

in yield was 364.64 kg/ha per year compared to the common practice strategy, as opposed to an 

average loss in yield of 93.03 kg/ha (Figure 10). Thus, on a yearly basis, the benefits of the 

irrigation recommendation strategy far outweighed the costs. This is further illustrated when 

considering how much a farmer is expected to gain over the course of 30 years. To do so, we 

calculated the average cumulative net increase in yields across all study sites over thirty years 

(Figure 11). To summarize, a farmer can expect an average increase in yield between 6964.18 

kg/ha and 7904.82 kg/ha by the end of 30 years (Figure 11) over the common practice strategy. 

Encouragingly, no farmer experienced an increase below 6288 kg/ha over the common practice 
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strategies during the thirty-year period, and one scenario even experienced a 9720 kg/ha increase 

in yield. These increases imply that yield is highly sensitive to the irrigation parameters in the 

innovization framework. In summary, despite a minority of validation seasons with minor 

decreases in yield, the irrigation recommendation strategy consistently results in significantly 

increased yields compared to the common practice strategy. Furthermore, Nandan (2021) supports 

these assertions by demonstrating the potential impacts of designed irrigation scheduling on corn 

yields in the Midwest USA under interannual precipitation variability.  

 

Figure 10. The average gains and losses in yield between 1989 and 2018. 
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Table 6. Knowledge attributes recommendations 

Irrigation Recommendations 

Knowledge attribute code Recommended change from 

common practices (mm) 

𝑤𝑉6 -9% 

𝑤𝑉7 +31% 

𝑤𝑉8 +13% 

𝑤𝑉9 +50% 

𝑤𝑉10 +60% 

𝑤𝑉11 -0.5% 

𝑤𝑉12 -0.5% 

𝑤𝑉13 +14% 

𝑤𝑉14 +13% 

𝑤𝑅1 -10% 

Nitrogen recommendations 

Knowledge attribute code Recommended change from 

common practices (mm) 

𝑚ℎ -60% 

𝑚𝑚 -64% 

𝑚𝑙 +∞%* 

*A change from 0 to 0.8 
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 These dramatic improvements in yield came at the expense of water use efficiency. Overall, 

there was a mean decrease in water use efficiency of 66.45 kg/mm‧ha across all scenarios 

compared to the common practice strategy. This decrease was statistically significant, with a p-

value of 0.3% (i.e., < 5%) (Table A4). Furthermore, 80.67% of scenarios had worse water use 

efficiency than the common practice strategy, and these worse scenarios were of a greater 

magnitude (on average 86.25 kg/mm‧ha worse) than the improved scenarios (on average 4.57 

kg/mm‧ha improved) (Table 7). These outcomes suggest that water use efficiency is sensitive to 

the irrigation parameters in the innovization model. Though not the desired result, such a decrease 

Figure 11. Cumulative net increase in yield between irrigation recommendation strategy, 

nitrogen recommendation strategy, and all recommendation strategy strategies from 

common practice strategy. The lines’ transparent margins represent the 95% confidence 

interval of that average value 
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in water use efficiency in the Midwest is an arguably worthwhile tradeoff for the increased yields 

brought about by the irrigation recommendation strategy (Andresen et al., 2011).  

The irrigation recommendation strategy improved leaching slightly over the common 

practice strategy, with the mean leaching improving by 0.9 kg/ha per year (Table 7). However, 

this improvement is not statistically significant since the decrease in leaching had a p-value of 64% 

(i.e., > 5%) (Table A4), suggesting that leaching is only minimally sensitive to the set irrigation 

parameters in our innovization framework. And even if leaching is not significantly changed, as 

the p-value suggests, this is still a promising outcome since it suggests that the irrigation 

recommendation strategy can increase yields with no impacts on nitrogen leaching. Also, two 

years (2001 and 2008) had sizeable decreases in leaching, which resulted in an average cumulative 

net decrease of 26.96 kg/ha in leaching over 30 years (Figure 12). This was most likely caused by 

the difference in irrigation applications around the second nitrogen application. In the years with 

significantly decreased leaching, the irrigation recommendation strategy consistently applied less 

irrigation when the irrigation application date was near the second nitrogen application date. This 

also would explain why yields jumped up in these years as increased nitrogen uptake would help 

improve yields during this critical physiological phase. However, beyond 2001 and 2008, the 

cumulative net decrease was relatively unstable, with a maximum reduction in yield of 61.57 kg/ha 

and a minimum reduction of 8.87 kg/ha. In summary, despite minor improvements, leaching did 

not significantly change under the irrigation recommendation strategy, which is a good outcome 

considering the significant improvements in yield. This contrasts with the literature, which clearly 

states that the amount and timing of irrigation greatly influences the nitrate leaching. Altering the 

irrigation schedule to avoid coincidental N application helps crops in uptaking N during critical 

crop growth stages and hence lessen leaching (Singh, 2021). Gheysari et al. (2009) have 
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highlighted the impact of different levels of irrigation on nitrate leaching in corn and emphasized 

that if irrigation and nitrogen application timing can be managed efficiently on the field, the impact 

on nitrate leaching will be less without comprising corn yields. Therefore, the irrigation 

recommendation strategy failed to achieve potential statistically significant improvements in 

leaching. The climate of the validation season affected the performance of the irrigation 

recommendation strategy. With regards to yield, there is no statistically significant change from 

the common practice strategy during dry and normal years, while there is a statistically significant 

increase in yield during wet years (Table 7, Table A4). This suggests that there may have been a 

deficiency in the common practice strategy during wet years that the irrigation recommendation 

strategy addressed. It also emphasizes the relative sensitivity of yield to the irrigation parameters 

of the innovization model during wet years compared to dry and normal years. Concerning 

leaching, climate variabilities brought about little change in the performance of the irrigation 

recommendation strategy: dry, wet, and normal years all had no significant change in leaching 

from the common practice strategies (Table 7, Table A4). Finally, though there was a drop in mean 

water use efficiency during dry years, the change was not statistically significant (i.e., a p-value of 

15%) (Table A4). However, water use efficiency significantly decreased from the common 

practice strategy for normal and wet years. Overall, the innovizations had the least amount of 

impact during dry years and the most amount of impact during wet years.   
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Table 7. The overall performance of the various strategies as well as its performance over 

different climate scenarios. Superscripts +, −, and ≈ denote a statistical improvement, statistical 

worsening, or no statistical change from the common practice strategy, respectively. 

Strategy 
Mean yield 

 (kg/ha) 

Mean leaching 

(kg/ha) 

Mean water efficiency 

(kg/mm‧ha) 

 Performance across all years 

Common practice 7054.03 23.24 297.88 

Irrigation recommendation 7325.14+ 22.37≈ 231.43− 

Nitrogen recommendation 7072.43≈ 23.28≈ 299.81≈ 

All recommendations 7333.21+ 22.34≈ 231.67− 

 
Performance during dry years 

Common practice 5934.72 14.08 222.86 

Irrigation recommendation 6080.56≈ 13.33≈ 175.81≈ 

Nitrogen recommendation 5937.12≈ 13.75≈ 224.16≈ 

All recommendations 6104.40≈ 13.23≈ 176.43≈ 

 
Performance during normal years 

Common practice 7716.19 28.22 368.66 

Irrigation recommendation 7902.55≈ 28.53≈ 290.51− 

Nitrogen recommendation 7735.88≈ 28.41≈ 371.34≈ 

All recommendations 7907.21≈ 28.53≈ 290.66− 

 
Performance during wet years 

Common practice 7757.02 29.46 316.72 

Irrigation recommendation 8256.10+ 27.04≈ 237.56− 

Nitrogen recommendation 7775.88≈ 29.67≈ 317.56≈ 

All recommendations 8248.21+ 27.07≈ 237.41− 
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5.3.2 Performance of nitrogen recommendation strategy 

Compared to the irrigation recommendation strategy, the nitrogen recommendation strategy 

(Table 6) offered no clear benefits or drawbacks. With respect to yield, though there are minor 

drops in yield between the mean yield of the nitrogen recommendation strategy and the common 

practice strategy (Table 7), the two strategies are statistically nearly identical (p-value of 90%) 

(Table A4). The gains of the strategy were smaller in comparison to the losses (40.7 kg/ha in gains 

versus 57.5 kg/ha in losses) (Figure 10), and only 30% of the scenarios were gains. The above 

findings demonstrate that yield is insensitive to nitrogen application timing in our innovization 

framework. Finally, the cumulative 30-year yield across the 14 study sites hovered around 0 kg/ha 

Figure 12. The cumulative net change in leaching between irrigation recommendation strategy, 

nitrogen recommendation strategy, and all recommendation strategy from common practice 

strategy. The lines’ transparent margins represent the 95% confidence intervals of that average 

value. 
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change from the common practice strategies (Figure 11). In summary, despite consistent losses, 

there was no statistical change in yield between the nitrogen recommendation strategy. 

The nitrogen recommendation strategy also had very little change in water use efficiency or 

leaching from the common practice strategy. Nominally, there is a minor mean increase in water 

use efficiency (1.92 kg/mm‧ha) (Table 7), but not enough to be statistically significant (p-value of 

91%) (Table A4). Leaching similarly had a mean increase between the common practice and the 

nitrogen recommendation strategies (23.28 versus 23.24 kg/ha) (Table 7), but not to a statistically 

significant extent (p-value of 96%) (Table A4). Therefore, there is no significant change in 

environmental impact between the two strategies and leaching and water efficiency were largely 

insensitive to nitrogen application timing in our framework. Considering this lack of 

improvements, the irrigation recommendation strategy is a clear better option than the nitrogen 

recommendation strategy. Finally, climate has no statistical impact on the performance of the 

nitrogen recommendation strategy. Though minor differences exist in performance across dry, 

normal, and wet years, none of them are statistically significant. Across the board, the nitrogen 

recommendation strategy has no statistical effect on yield, water use efficiency, or nitrogen 

leaching. 

5.3.3 Performance of all recommendation strategy 

The all recommendation strategy differs from the common practice strategy similarly to the 

irrigation only strategy. There is a statistically significant (p-value of 3.2%) (Table A4) mean 

increase in yield of 279.18 kg/ha per year over the common practice strategy (Table 7), and 77% 

of scenarios resulted in an increase of yields. Of this 77%, the average increase was 349.4 kg/ha, 

which is slightly lower than the increases from the irrigation recommendation strategy at 364.6 

kg/ha (Figure 10). On the other hand, the 23% of scenarios resulting in yield losses from the 
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common practice strategy were on average lower than the irrigation recommendation strategy at 

67.57 kg/ha (Figure 10). Cumulatively over the 30-year study period, the all recommendation 

strategy modestly outpaces the irrigation only strategy by 348.9 kg/ha (Figure 11). However, 

despite these differences between the all recommendation strategy and the irrigation only strategy, 

there no significant difference between the yields of both strategies (p-value of 94%). Overall, the 

performance of the all recommendation strategy is statistically identical to the irrigation 

recommendation strategy with respect to yield.  

Similar to the irrigation recommendation strategy, the all recommendation strategy suffered 

from setbacks in water use efficiency compared to the common practice strategy. Specifically, 

there was a mean decrease in water use efficiency by 66.21 kg/mm‧ha (Table 7), which was 

statistically significant (p-value of 0.3%) (Table A4). Compared to the setbacks in the irrigation 

recommendation strategy, the mean water use efficiency in the all recommendation strategy was 

nominally worse (by 0.30 g/mm‧ha) (Table 7). However, the two strategies both had identical rates 

of water use efficiency decrease from the common practice strategy (p-value of 96%). As 

described before, this is an arguably worthwhile tradeoff for the increase in yield in the Midwest. 

With respect to leaching, the lack of improvements or setbacks in the all recommendation strategy 

is identical to the irrigation recommendation strategy by all statistical measures (i.e., same means, 

p-value of 97%) (Table A4). The effects of climate on performance are similarly identical to the 

effects of climate on the irrigation recommendation strategy.  

Compared to the current best-performing strategy, irrigation recommendation strategy, the 

changes in yield, leaching, and water use efficiency are statistically identical, despite nominal 

differences between the two. However, if one considers the complexity of the proposed practice 

and, subsequently, its appeal to farmers, the irrigation recommendation strategy is the better 
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choice. Therefore, though they are statistically identical, the irrigation recommendation strategy 

is arguably the practice worth adopting. Meanwhile, the nitrogen recommendation strategy offers 

no statistical improvement to the common practice strategy and thus should not be recommended 

to farmers. 

5.3.4 Study implications 

The gains in the irrigation recommendation and all recommendation strategies are also 

financially worthwhile improvements over the common practice strategy. For the irrigation 

recommendation strategy, a farmer in Cass County would gain on average 6,900 kg/ha in yield 

over 30 years (with negligible changes in leaching) just by slightly altering their irrigation amounts 

according to the vegetative stage. To grasp the impact of a 6,900 kg/ha improvement in yield, 

consider the following example. The average price of corn in the US was ¢12 per kg between 1989 

and 2018 (FarmDoc, 2021), and thus a farmer with a 500-hectare farm would gain $427,612.86 

over a thirty-year period. This is a sizable amount increase with a very minimal shift from common 

practices in the region.  

Though the efficacy of this study is bounded by the study area, it can be easily expanded on a 

regional scale. To do so, Extension Educators would collect the common practices of different 

regions for different cultivars and soil types. Then, the Extension Educators would search for ways 

to optimize the common practices for each specific combination of region, cultivar, and soil types. 

Next, an innovization software platform would analyze how those variables could be improved for 

the study region. All of these individual rules could then be aggregated into a single decision 

support tool for a region, where farmers could easily access simple amendments to their common 

regional practices. Alternatively, in areas with low internet connectivity, Extension Educators 

could distribute the recommendations through simple pamphlets. Such an optimization platform 
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excellently melds human decision-making and computer optimization, and outputs results that 

farmers can actually apply to their fields. 

5.4 Conclusions 

This study examined the efficacy of agricultural innovization under three different strategies: 

the irrigation recommendation strategy, the nitrogen recommendation strategy, and the all 

recommendation strategy. Two of the three strategies (i.e., the irrigation recommendation strategy 

and all recommendation strategy) both statistically significantly improved yields with no impact 

to nitrogen leaching. However, both strategies resulted in loss in water use efficiency. Though the 

drop was not critically significant for the Midwest, it is an area of improvement in future studies. 

Future studies should add a water efficiency objective to ensure that the innovization outputs 

solutions that are near-optimal in water efficiency as well as in yield, total water use, and leaching. 

Overall, the irrigation recommendation strategy is the best option to recommend to farmers, due 

to its high yield, lack of nitrogen leaching, and relative simplicity.  

Another room for growth is finding innovations that are specific to climate variabilities. In this 

study, the irrigation recommendation strategy only improved irrigation during wet seasons (Table 

7), with normal and dry seasons exhibiting no statistically significant change from the common 

practice strategy. Though this is a promising outcome, there is room for improvement. Future 

studies should seek to perform innovizations on specific climate scenarios, which can then be 

designed into more intelligent amendments to the common practice strategy. This is well within 

reason, since seasonal climate forecasts are skillful enough to predict whether a growing season 

will be wet, normal, or dry climatologically.  
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Other areas of future work include ground truth studies and different agricultural conventions. 

Specifically, though the model was thoroughly calibrated and validated on the study site, future 

work should attempt to implement the recommended practices in the field in order to validate their 

efficacy in the real world. Finally, the framework can and should be applied to other agricultural 

conventions, such as organic or regenerative farming. This is well within the capacity of our 

proposed framework and would entail changing the decision variables and objectives to those 

unique to the given agricultural system.  

In summary, this study demonstrates the efficacy of agricultural innovization. By considering 

the common practices of real farmers in a study region and optimizing the practices for 30 years 

of weather data, we generate practical and effective recommendations for farmers. By following 

our recommendations, simulated farmers were able to gain a 6,900 kg/ha increase in yield over 

thirty years of management. Moreover, these gains only incurred negligible changes in leaching 

levels and increased water use. Such methods are promising within a food system that needs to 

sustainably increase yields to feed an increasingly large and affluent global population.  
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6. IMPROVED EVOLUTIONARY OPERATORS FOR SPARSE LARGE-SCALE 

MULTI-OBJECTIVE OPTIMIZATION PROBLEMS 

6.1 Introduction 

Optimization algorithms solve problems that were once un-solvable before the advent of 

modern computers. Some problems are relatively simple to solve by algorithms, such as 

differential function minimization, or problems with unimodal search spaces. On the other hand, 

other problems are comparatively challenging, and lack known deterministic algorithms that can 

solve the given problem in a reasonable amount of time (i.e., NP-Complete problems). To solve 

these types of difficult problems, researchers developed evolutionary algorithms (EA) (Goldberg, 

1989), which employ the concepts of natural selection to find increasingly fit, if not optimal, 

solutions. Other researchers (Eberhart and Kennedy, 1995) developed particle swarm optimization 

(PSO) algorithms that effectively mimicked the collective problem-solving ability of groups of 

individually autonomous animals. Both of these demonstrably successful algorithms are known as 

population-based algorithms. 

Population-based algorithms have the added benefit of effectively solving problems with 

multiple conflicting objectives, known as multi-objective problems (MOP) (Deb, 2009). The 

objectives of a MOP cannot be satisfied by a single solution, and instead, algorithms solving MOPs 

return sets of solutions known as Pareto sets. Each solution of a Pareto set is equally optimal 

amongst all of the other Pareto solutions within the set and represents a trade-off within the multi-

objective problem (Censor, 1977). 

However, meta-heuristic algorithms become increasingly incapable with increased 

problem complexity. One pertinent example is the number of decision variables in a problem, since 

problem complexity exponentially increases with the increase in decision variables (Tian et al., 
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2019a). This phenomenon, known as the curse of dimensionality, can affect an algorithm’s ability 

to converge onto an optimal set of solutions, or critically slow down the rate of convergence 

(Cheng et al., 2017). Formally, the literature agrees that problems with 100 or more decision 

variables are large-scale multi-objective problems (LSMOP) (Zille and Mostaghim, 2017). 

The LSMOP literature, which has flourished over the previous 10 year, takes various 

approaches to overcome the curse of dimensionality in LSMOPs (Tian et al., 2021b). One 

increasingly common approach is to take advantage of properties of the resulting Pareto front in 

the problem, such as solution sparsity (Tian et al., 2019a). In fact, many critical engineering 

problems contain solutions that are large-scale sparse vectors, such as irrigation optimization 

(Kropp et al., 2022b, 2019), and portfolio optimization (Branke et al., 2009). Recently, researchers 

have designed a handful of general-purpose algorithms that seek to solve sparse LSMOPs (Tian et 

al., 2019a; Y. Tian et al., 2020b, 2020a; Zhang et al., 2021). Despite exciting progress, there is still 

room for improvement. Specifically, many algorithms still suffer degraded performance when 

optimizing problems with greater than 500 decision variables (Kropp et al., 2022a; Zhang et al., 

2021). Additionally, many of these algorithms are computationally expensive, and/or require large 

amounts of memory. 

A common thread connecting many of the above algorithms (i.e., SparseEA, MP-MMEA, 

MDR-SAEA, PMMOEA, MOEA/PSL, SparseEA2) is that they all employ a two-layer encoding 

scheme to represent the sparsity and the real-values of the problem genome. We hypothesized that 

a small-scale EMO algorithm, equipped with sparse genetic operators, is sufficient to solve sparse 

LSMOPs effectively and quickly. Specifically, we propose a novel population sampler that boosts 

the fitness of the initial population, a mutation operator that mutates nonzero genome values as 

well as genome sparsity, and a crossover operator that appropriately maintains the sparsity of the 
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parents in the child solutions. All operators can be employed in any small-scale evolutionary 

algorithm, but we chose to pair it with the non-dominated sorting genetic algorithm II (NSGA-II), 

due to its demonstrable good performance with sparse genetic operators (Kropp et al., 2022a). We 

hypothesize that these genetic operators will be sufficient to create an algorithm that performs well 

with respects to convergence, diversity, speed, and memory. 

In the remainder of this paper, Section 6.2 Related Work presents key past studies related 

to the solution of spare optimization problems. Our proposed evolutionary multi-objective 

optimization algorithm is described in Section 6.3 Proposed Method: Sparse NSGA-II with details 

of the customized operators for handling sparse variables. Section 6.4 Results presents the results 

on test and real-world problems involving cases with as many as 6,400 variables. Finally, 

conclusions of this extensive study are made in Section 6.5 Conclusion. 

6.2 Related Work 

Research has followed several broad directions to solve LSMOPs. Over the last few years, 

the LSMOP scholarship has been divided into three categories: decision variable analysis (e.g., 

MOEA/DVA (Ma et al., 2015), LMEA (Zhang et al., 2018)), cooperative coevolution (e.g., 

CCGDE3 (Antonio and Coello Coello, 2013) and DPCCMOEA (Cao et al., 2017)), and problem 

transformation (e.g., WOF (Zille et al., 2018)) approaches (He et al., 2019; Ma et al., 2021; Tan et 

al., 2021; Tian et al., 2019b, p.; Zhang et al., 2021). Recently, Tian et al. (Tian et al., 2021b) 

introduced a new category of novel search space MOEAs, which introduce different operators 

(e.g., mutation, crossover, population initialization) to the search process (e.g., SparseEA (Tian et 

al., 2019a), SparseEA2 (Zhang et al., 2021), and NSGA-II with SPS (Kropp et al., 2022a)). 
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As mentioned before, a subset of LSMOPs contains optimal solutions that are sparse 

vectors. In other words, a minority of decision variables in the problem are significant to 

convergence and diversity, and the remaining decision variables are zeroes (Tian et al., 2019a).. 

In the following paragraphs, we outline the most recent attempts to create a general-purpose sparse 

LSMOP, as well as some algorithms that attempt to solve further subsets of sparse LSMOPs, such 

as problems with multimodality and long function evaluations. 

The earliest example of a general-purpose sparse evolutionary algorithm was SparseEA, 

proposed by Tian et al. (2019a). SparseEA introduces new population initialization, as well as 

novel crossover and mutation operators. SparseEA represents problem genomes as two vectors: 

one binary and one real. The binary vector encodes which positions of the genome are zero or 

nonzero, while the real vector represents the nonzero value of the given position if it is a 1 in the 

binary vector. SparseEA showed considerable improvements over other evolutionary algorithms 

for small- and large-scale optimization problems, especially for problems ranging between 100 

and 1,000 decision variables. However, as the number of decision variables increases, algorithm 

performance begins to suffer with respect to time, convergence, diversity, and the number of 

resulting non-dominated solutions in the final generation (Kropp et al., 2022a; Tan et al., 2021; Y. 

Tian et al., 2020b). 

Tian et al. (2019a) also designed the sparse multi-objective optimization problem 

framework (SMOP) as a benchmark test for sparse LSMOPs. The SMOP framework allows 

researchers to configure problems automatically with arbitrary numbers of decision variables, 

objective functions, and target sparsity. The test suite includes eight different tests that each 

represent different challenges in sparse LSMOPs. Since its creation, SMOP has since become the 
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de facto testing framework for sparse LSMOPs (Kropp et al., 2022a; Tan et al., 2021; Tian et al., 

2019a; Y. Tian et al., 2020b; Zhang et al., 2021). 

Several improved approaches to solving sparse LSMOPs followed the development of 

SpareEA. MOEA/PSL uses a framework of two unsupervised neural networks to reduce the search 

space of the sparse LSMOP: a restricted Boltzmann machine and a denoising autoencoder (Y. Tian 

et al., 2020b). Using this method, the authors discovered that they could overcome the performance 

of SparseEA over a large swath of the SMOP test suite (all tests except for all SMOP5 tests, and 

SMOP4 and SMOP6 with 1,000 decision variables) between 1,000 and 10,000 decision variables. 

Smaller large-scale SMOP runs were not included in the study (i.e., between 100 and 1,000 

variables). Additionally, MOEA/PSL, though slower than other conventional LSMOPs, on 

average, ran faster than the only existing sparse LSMOP (i.e., SparseEA) with 10,000-decision 

variable SMOP problems (Y. Tian et al., 2020b). 

Taking a different approach, Kropp et al. demonstrated that sparse operators, on their own, 

can significantly improve the performance of population-based algorithms solving sparse 

LSMOPs (Kropp et al., 2022a). The proposed operator, which was called sparse population 

sampling (SPS), modified the default population sampler of a number of algorithms, including 

genetic, particle swarm, and differential evolution algorithms to guarantee a sparsity range in the 

initial population (Kropp et al., 2022a). SPS was shown to significantly increase the hypervolume 

of all algorithms in many configurations of SMOP. NSGA-II with SPS was then shown to 

outperform SparseEA with SMOP problems with greater than 5,000 decision variables with greater 

speed. However, the algorithm required target sparsity parameters which significantly affected 

performance.  
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Three algorithms, MDR-SAEA, MP-MMEA, and SLMEA address sub problems of sparse 

LSMOPs. MDR-SAEA, proposed by Tan et al. (Tan et al., 2021), aims to improve the performance 

of sparse LSMOPs with expensive performance objective function evaluations. This particularly 

difficult class of problems suffers both from the curse of dimensionality and infeasibly long 

function evaluations, and thus, requires optimization routines with few objective function 

evaluations. The first stage of the algorithm, multi-stage dimension reduction (MDR of MDR-

SAEA), involves a feature selection by sorting the importance of each decision variable through 

an initial nondominated sorting routine. Then, a genetic algorithm attempts to optimize the 

distribution and number of the nonzero values throughout the genome. Finally, the surrogate 

assistant evolutionary algorithm (SAEA of MDR-SAEA), solves this simplified sparse LSMOP. 

The results are promising, with MDRSAEA obtaining higher IGD than SparseEA and MOEA/PSL 

for all test problems between 500 and 1,000 decision variables, except for SMOP5 where 

SparseEA and MOEA/PSL outperformed MDR-SAEA. MDR-SAEA also requires on average 

fewer function evaluations than the competing algorithms. The algorithm MP-MMEA focuses on 

solving multi-modal sparse LSMOPs (Tian et al., 2021a). The main concept behind MP-MMEA 

is to divide the search population into sub-populations, and to guide each population towards 

diverse and convergent areas of the search space via guidance vectors. Additionally, population 

size changes dynamically throughout the search process via a merge-and-divide routine. Another 

novelty of the publication was a test suite called SMMOP, which represents multi-objective 

problems that are multi-modal, sparse, and large-scale. MP-MMEA is able to outperform various 

competing algorithms between 100 and 500 decision variables at varying sparsities. SLMEA (Tian 

et al., 2022), on the other hand, attempts to improve the performance and convergence of sparse 

super-large-scale multi-objective optimization problems (i.e., roughly greater than 10,000 
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variables). Most LSMOPs struggle to run at such a large scale; therefore, SLMEA is designed 

exclusively with matrix operations to improve its performance on GPUs. Algorithmically, SLMEA 

is a dimension reduction algorithm that clusters the decision space into multiple groups. The 

routine then optimizes the clusters, rather than the individual decision variables themselves, thus 

reducing the number of function evaluations. Through these adaptations, SLMEA is able to run 

drastically quicker than the competing state-of-the-art algorithms and were able to outperform 

MOEA/PSL and SparseEA in almost all 1,000,000 decision variable SMOP problems. 

Two more recent algorithms take further steps towards solving generic sparse LSMOPs: 

PM-MOEA, SparseEA2, and S-ECSO. PM-MOEA (Y. Tian et al., 2020a) employs pattern mining 

to improve sparse LSMOP performance. Instead of attempting to determine the exact position of 

the nonzero values, PM-MOEA finds maximum and minimum candidate sets of the locations of 

the nonzero values via pattern mining. Through these sets, the dimensionality of the problem can 

be dynamically reduced according to the pattern mining outcomes. An additional advantage of 

these methods is that the algorithms require no additional parameters. Finally, PM-MOEA 

introduces new crossover and mutation operators for the two-layer genome encoding scheme 

introduced by SparseEA (Tian et al., 2019a). The combination of these methods leads to an 

impressive range of improvements over the state of the art, improving performance of all SMOP 

tests except for SMOP3 for problems including 100 through 10,000 decision variables. Zhang et 

al. (Zhang et al., 2021) take a slightly different approach and directly improves upon the existing 

drawbacks of SparseEA. Specifically, the authors observed that many existing sparse LSMOP 

algorithms focus unequal attention on sparsity maintenance. Therefore, the proposed SparseEA2 

algorithm aims to balance the optimization of solution sparsity and the values of the resulting 

nonzero values. This is accomplished using variable grouping techniques. Between 1,000 and 
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5,000 decision variables, SparseEA2 is able to improve the performance of several scenarios of 

SMOP tests over varying scenarios. Finally, a competitive swarm optimization (CSO) algorithm, 

S-ECSO (Wang et al., 2021), adapts CSO for sparse LSMOPs utilizing two components. The first 

component is a sparse operator, named the strongly convex sparse operator, which effectively 

generates sparse solutions throughout the CSO. The second component is an improvement on the 

normal CSO platform, which seeks to better balance convergence and diversity throughout the 

search process. 

6.3 Proposed Method: Sparse NSGA-II 

 In this paper, we consider sparse LSMOPs as multi-objective problems having at least 100 

decision variables (𝐷), of which most are zero at the optimal solution. A solution to such a problem 

will take the form for 𝐱, such that 𝐱 = (𝑥1, 𝑥2, 𝑥𝐷)
𝑇. The set of positions of x that are optimally 

zero will be denoted by 𝐱𝑧∗, such that 𝐱𝑧∗ = {𝑥𝑧|𝑥𝑧 ∈ 𝐱∗, 𝑥𝑧 = 0}. Conversely, the positions that 

are optimally nonzero will be 𝐱𝑛∗, such that 𝐱𝑛∗ = {𝑥𝑛|𝑥𝑛 ∈ 𝐱∗, 𝑥𝑛 ≠ 0}. 𝜃 is the sparsity of 

optimal solutions, such that 𝜃 = 0 denotes that an optimal solution is entirely zeros, and 𝜃 = 1 

denotes that an optimal solution is entirely ones (𝜃 = 1 −
∑𝐱∗=0

𝐷
). 𝑁 will denote the population 

size throughout the optimization. 

 In the following sections, we outline three major updates to the commonly used small-scale 

evolutionary multi-objective algorithm NSGA-II. The first is an updated population sampler called 

VSSPS (Section 6.3.1 Varied Striped Sparse Population Sampling), the second is an updated 

crossover operator called S-SBX (Section 6.3.2 Sparse Simulated Binary Crossover), and the last 

is an updated mutation operator called S-PM (Section 6.3.3 Sparse Polynomial Mutation). The 

overall algorithm will be referred to as sparse NSGA-II, or S-NSGA-II for short. 
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6.3.1 Varied Striped Sparse Population Sampling 

The SPS algorithm, as proposed by Kropp et al. (2022a), has three observed areas for 

improvement: 

1. Since a uniform distribution determines the position of the nonzero genomes in the initial 

population, there are no guarantees that any given 𝑥𝑛 (i.e., optimal non-zero genome 

position) in 𝐱 will be set to a non-zero value in any of the initial population members 

2. When a population is initialized with a random distribution of nonzero values, a given 

population member may contain nonzero values in the correct position and others in other 

disparate incorrect positions 

3. SPS is dependent on two parameters: an upper (𝑏𝑢) and lower (𝑏𝑙) sparsity bound on the 

uniform distribution that determines the position of the nonzero positions. 

The first two issues are addressed in our proposed striped sparse population sampling (SSPS) 

algorithm, and the final issue is addressed in our varied SSPS (VSSPS) algorithm. 

To effectively outline SSPS, we first define a sparsity mask (𝑀). In the context of this 

paper, 𝑀 is an 𝑁 × 𝐷 matrix that defines which positions in the initial population will be nonzero 

or zero values. Positions in 𝑀 that are set to 1 will be set to a nonzero value in the initial population. 

𝑀 is then used to render the default population (𝑃𝑖) (generated by the default population sampler 

in any population-based optimization algorithm) sparse (𝑃𝑠) through an element-wise 

multiplication (𝑃𝑖  ° 𝑀 =  𝑃𝑠). The SPS algorithm guarantees the sparsity of every population 

member of M, which we define as the sparsity vector 𝑠 =  (𝜃1, . . . , 𝜃𝑁)
𝑇, has a sparsity within the 

target sparsity range (i.e., 𝑏𝑙  ≤  min(𝐬)  ≤  max(𝐬)  ≤  𝑏𝑢). This procedure runs only once in the 
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beginning of the EA, and nonzero positions defined in 𝑀 are not enforced throughout the 

evolutionary algorithm. 

The key idea behind SSPS is to arrange the 1s into cyclical stripes through 𝑀, instead of 

randomly and uniformly distributing the 1s throughout 𝑀 as per the original SPS algorithm (Figure 

13). This design aims to address the first concern with SPS. The stripes also address the second 

concern with SPS: that one individual in the initial population can have a nonzero value within 

𝐱𝑛∗, but also nonzero values outside of 𝐱𝑛∗. Therefore, the fitness boost of having a nonzero value 

in 𝐱𝑛∗ is canceled out by having a nonzero value outside of 𝐱𝑛∗. SSPS seeks to avoids this issue, 

since the 1s in any given individual are localized to one region of the genome, and therefore 

population members with nonzeros in 𝐱𝑛∗ have a niche compared to other population members 

with no nonzero values in 𝐱𝑛∗ (Figure 14). Furthermore, these population members with no 

nonzero values in 𝐱𝑛∗ will theoretically have lower fitness than the average population member 

(Figure 14). Therefore, SSPS will theoretically have a bubble-up effect where initial population 

members that have nonzero values in 𝐱𝑛∗ will have a fitness boost, and those without will have 

fitness penalty. Therefore, after the first generation, the population will theoretically have solutions 

that have nonzeros clustered around 𝐱𝑛∗. 
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Figure 13: Comparison between the two example sparsity masks (𝑀) for two initial populations. 

The first (a.)) uses sparse population sampling, and thus the distribution of nonzero values are 

uniformly distributed throughout the population and genome. The second (b.)) uses striped 

sparse population sampling, and the nonzero values are arranged in stripes down the population. 

The arrangement of the stripes throughout 𝑀 is critical for improving the fitness of the first 

generation. But before going into detail on stripe arrangement, let us refer to the original randomly 

and uniformly distributed 𝑀 from SPS as 𝑀𝑢 and the striped 𝑀 from SSPS as 𝑀𝑠. The sparsity 

vectors for 𝑀𝑢 and 𝑀𝑠 will be equivalent, thus ensuring that the target sparsities are still within 

the predefined lower and upper sparsity bounds. The stripes in 𝑀𝑠 are arranged according to the 

given sparsity vector 𝐬 passed to the main SSPS routine. The sparsity vector 𝐬 is first turned into 

a width vector, which defines the width (𝐰) of the stripe for each row of 𝑀𝑠 (𝐰 =

 (⌊𝐷 · 𝜃1⌋, … , ⌊𝐷 · 𝜃𝑁⌋)
𝑇) (Algorithm 1, line 1). To determine stripe placement, SSPS first divides 
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the width vectors into cycles (𝐜) (Algorithm 1, lines 2—7). Each cycle (𝑐𝑘) is a contiguous subset 

of the weight vector, such that the sum of each 𝑐𝑘 is less than or equal to 𝐷. Formally: 

𝐜 | 𝑐𝑘  ∈  𝐜, 𝑐𝑘  ⊆  𝐰,∑𝑐𝑘 ≤ 𝐷 

Finally, for each row 𝑖 (i.e., individual in the population) of 𝑀𝑠, a stripe of 1s with a width 

𝑤𝑖 is placed in 𝑀𝑠, such that it is to the right of the stripe in the (𝑖 −  1)𝑡ℎ row (Algorithm 1, lines 

8—28, Figure 13 and Figure 16). If at the beginning of a new cycle, the stripe will go at the 1st 

column of 𝑀𝑠. 

 

Figure 14: A simplified example of how SSPS causes solutions with stripes over optimal nonzero 

positions (highlighted green) to have greater fitness than those with no overlap with optimal 

nonzero positions (highlighted red). 
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Algorithm 2: SSPS 

Frequently, the cumulative width of stripes does not equal 𝐷 (Figure 15). This poses an 

issue, since leaving this difference, or gap, at the beginning or end of the genome will create a 
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significant bias against those genome positions. Therefore, we need some way of rectifying those 

gaps throughout the stripes of each given cycle. Generally, our first goal in rectifying gaps should 

be to get as close to a uniform distribution of nonzero values throughout the population as possible. 

This will ensure that no nonzero position will be biased positively or negatively in the initial 

population. The second goal should be to produce individuals with sparsities as close to s as 

possible. In this study, we lengthen the width of enough stripes to fill in each gap (Algorithm 1, 

lines 13 and 17). This works well since it first covers all genome positions evenly and without a 

gap throughout each cycle (Figure A11  in the appendix). And secondly, since as many stripes are 

packed into each cycle as possible, each gap is relatively small compared to the stripe sizes, and 

the target sparsity is negligibly affected (Figure A12). The only exceptions to these rules are for 

sparsities that are very large (i.e., between 0.25 and 0.5) and when in the last cycle in 𝑀. The latter 

issue arises because the final cycle often does not have enough remaining stripes from w to fill up 

𝐷, and the resulting sparsities are negatively affected by significant widening. Therefore, in the 

last cycle, gaps are filled with empty space between each stripe (Algorithm 1, line 19). 

SSPS can be configured in two ways: with a single target sparsity (𝐬 of identical sparsities), 

or with a range of sparsities. For the latter scenario, 𝐬 is set as a linear interpolation of |𝐬| points 

between 𝑏𝑙 and 𝑏𝑢. However, to reduce the dependence on parameters, we devised a parameterless 

version of SSPS called varied SSPS (VSSPS). In VSSPS, 𝑏𝑙 and 𝑏𝑢 are set to a range of 0.25 to 0, 

which covers all of the sparsities in the existing sparse LSMOP literature enumerated above. SSPS 

runs with a run time of 𝑂(𝑁𝐷), and takes 𝑂(𝑁𝐷) in memory (Algorithm 1). 
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Figure 15: A simplified example of a striping pattern for a 16 × 𝑁 mask 𝑀 following the 

sparsity defined in 𝐬. Though this genome is not large-scale for illustrative purposes, the same 

concept applies to any 𝑀 × 𝐷 mask. 

6.3.2 Sparse Simulated Binary Crossover 

On its own, SBX tends to drive population sparsities towards dense solutions (Figure 16). 

This is likely because SBX treats zero and nonzero genome positions identically (Deb and 

Agrawal, 1995). For example, suppose one parent has a nonzero value at position d in the genome 

and the other parent had a zero value at position 𝑑. SBX will create child solutions that are adjacent 

to the parent values, proportional to the proximity of the two parents’ real values. In other words, 

SBX will typically make both of these positions nonzero values, subsequently making the genome 

denser. Our algorithm, Sparse SBX (S-SBX), aims to keep the best parts of SBX, while improving 

its performance with sparse problems. In other words, since sparsity is a critical phenotype of 
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optimal solutions in sparse LSMOPs, the sparsity of children in S-SBX should be approximately 

the same as the parents. 

 

Figure 16: The effects of SBX on NSGA-II solving a sparse MOP. There is a strong tendency for 

the algorithm to create increasingly dense populations. 

The flow of S-SBX is as follows. First, all positions of the genome that are nonzero in both 

parents or are zero in both parents (which we will denote as 𝑥𝑚), are crossed over with normal 

SBX (Figure 17 Phase 1, and Algorithm 2, lines 1—4). This ensures genome positions containing 

nonzero values in 𝑥𝑛∗ will get further optimized towards their optimal nonzero real value. In the 

second phase, S-SBX handles mismatched positions of the genome (i.e., one parent is nonzero and 

the other parent is zero) (Figure 17 Phase 2, and Algorithm 2 lines 5—8). In this scenario, this 

subset of the genome (which we will denote as 𝑥𝑚) will be swapped, genome position by genome 
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position, at random between the parents (Figure 17). Which positions of 𝑥𝑚 are swapped is 

determined by a swap mask vector 𝐯, defined as: 

𝐯 | 𝐯 ∈  {0,1}|𝑥
𝑚| 

Each element of 𝐯 is selected randomly from a uniform random distribution. Zeros in 𝐯 

indicate that the value from parent 1 should go to child 1, and the value from parent 2 should go 

to child 2 (Figure 17 Phase 2). On the other hand, ones in 𝐯 indicate that the values should be 

swapped, such that the value from parent 1 goes to child 2, and the value from parent 2 goes to 

child 1 (Figure 17 Phase 2). This phase of the crossover procedure passes on genetic information 

about the positioning of non-zero values. 

 

Figure 17: A simplified example of sparse SBX. In the first phase, genome positions that are 

both zero or nonzero are crossed over with SBX. In the second phase, the genome positions that 

are mismatched are swapped at random in the children genomes. The aim to crossover the best 

aspects of the parent genotypes while approximately maintaining parent sparsity. 
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Algorithm 3: S-SBX 

As mentioned earlier, the goal of S-SBX is to effectively pass on key genetic traits between 

the two parents while maintaining the approximate sparsity of the parents. To do so, we create two 

randomly generated sparse parents with the same sparsities, and then repeatedly perform S-SBX 

on the original parents while recording the resulting sparsities. Ideally, the algorithm should 

maintain a tight distribution around the original sparsities of the parents. This has been confirmed 

through repeated trial runs (Figure A13). The algorithm has a run time complexity of 𝑂(𝑁𝐷), and 

takes up 𝑂(𝑁𝐷) in memory. 

6.3.3 Sparse Polynomial Mutation 

A mutation operator should ideally be the driving force of evolution. Therefore, in the case 

of sparse LSMOPs, the mutation should drive the population towards the optimal target sparsity 
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of the problem at hand. However, the most common mutation operator in real EA (i.e., polynomial 

mutation (PM)) falls short of achieving this goal. For context, in polynomial mutation, each 

genome position has a predefined probability of mutation. If a position is mutated, its altered by a 

polynomial probability density function (Deb, 2009). This implies that sparsity may be altered if 

a genome position set at zero is mutated to a nonzero value, or vice-versa. However, these changes 

in sparsity are theoretically rare. If, say, the probability of mutation is set to 0.1, then there’s only 

a small chance that a position will be flipped from a nonzero to zero or vice-versa. Furthermore, 

it’s exceedingly unlikely that a nonzero value will be flipped to a zero value (Kropp et al., 2022a). 

Therefore, we can deduce that the ability of PM to mutate sparsity is very subtle, and slightly 

biased towards denser solutions. 

We propose a sparse polynomial mutation operator (S-PM) to address these shortcomings. 

The goal is to maintain the good performance of the original PM on nonzero values while also 

effectively mutating solution sparsity. In the first phase of S-PM, PM is run on all of the nonzero 

positions in the genome, which maintains the proven efficacy of PM on real valued MOOs 

(Algorithm 3, lines 1—3). In the second phase, the global sparsity of the whole genome runs the 

possibility of mutating, depending on a parameter 𝑝𝑚
𝑠  (Algorithm 3 lines 4—13). If the genome is 

chosen for mutation, then the sparsity of the genome (𝜃) is mutated to the value 𝜃′ using the same 

polynomial distribution function from PM. In the case that 𝜃′ <  𝜃, random nonzero positions are 

flipped in the genome to zeros (Algorithm 3, lines 7—9). In the alternative case where 𝜃′ >  𝜃, 

then the genome will become denser by flipping the required number of zero positions to plausible 

nonzero values (Algorithm 3, lines 10—12). This routine aims to create more evolutionary 

randomness with respect to sparsity while maintaining the mutation of the nonzero portions of the 

genome. It takes up 𝑂(𝑁𝐷) time, and 𝑂(𝑁𝐷) memory.  



98 

 

Algorithm 4: S-PM 

6.3.4 Experimental setup 

As mentioned in the introduction, we seek to determine whether modifying the genetic 

operators of a small-scale, multi-objective optimization algorithm (i.e., NSGA-II in this study) is 

sufficient for solving sparse LSMOPs. Formally, we define our null hypothesis as H0, which posits 

the proposed algorithm (S-NSGA-II) has no notable improvement in solving sparse LSMOP over 

the current state-of-the-art sparse LSMOP algorithms. One exception is for the number of non-

dominated solution metric, where our null hypothesis states that S-NSGAII performs strictly worse 

than the other state of the art algorithms, since it is common to have a number of nondominated 

solutions that is equal to the population size. In order to accept or reject 𝐻0, we run both state-of-
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the-art algorithms and S-NSGA-II against a battery of tests to test for improvements in 

performance. Since none of the results followed a single distribution, the Wilcoxon Rank-Sum test 

was used for significance testing (Hollander et al., 2013) with a significance threshold of 2.5%. 

This battery of tests includes the eight SMOP benchmark tests (Tian et al., 2019a), as well as two 

real-world application problems, including neural network (NN) training and portfolio 

optimization (PO). The goal of the NN training optimization is to find the best weights of a hidden 

layer of neurons with respects to model complexity and training error (Tian et al., 2019a). The 

code is included in PlatEMO 3.4, and includes two parameters: size of the hidden layer, and which 

dataset to choose from the UCI machine learning repository (Dua and Graff, 2017; Tian et al., 

2017). In the PO problem, an investor is trying to minimize risk and maximize profits for a large 

investment portfolio (Y. Tian et al., 2020b). This test problem is also from PlatEMO 3.4 (Tian et 

al., 2017). As for which algorithms to benchmark S-NSGA-II against, since S-NSGA-II is a 

generic sparse LSMOP algorithm, we chose four generic state-of-the-art algorithms for sparse 

LSMOPs: SparseEA, SparseEA2, MOEA/PSL, and PM-MOEA. 

Each of the SMOP benchmark problems were ran with 100, 200, 400, 800, 1,600, 3,200, 

and 6,400 decision variables. We chose to double the number of decision variables with each 

subsequent configuration in order to observe the asymptotic behavior of the given algorithms as 

the number of decision variables (i.e., problem complexity) increases. The target sparsity for 

SMOP was set at 𝜃 =  0.1. After preliminary time tests, each configuration was repeated 30 times 

in order to balance a manageable simulation run time and statistical rigor. Algorithms that failed 

to solve 30 repetitions for a given configuration within 24 hours was terminated and excluded from 

results. 
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Three separate benchmarks were included for each configuration: hyper-volume (HV), 

number of non-dominated solutions (NDS), and run time in seconds. HV is useful in that it covers 

both the diversity and the convergence of a Pareto optimal front. NDS describes the number of 

non-dominated solutions in a final population (i.e., the size of the Pareto front) (Kropp et al., 

2022a). Ideally, it should be as close to the population size (N) as possible, since having a larger 

Pareto front (i.e., higher NDS) is more useful to a decision maker than a smaller Pareto front. This 

is a useful metric for sparse LSMOPs, since many sparse LSMOPs struggle to maintain sufficiently 

high NDS as the number of decision variables increases (Kropp et al., 2022a). Finally, run time 

measurements are critical to determining whether or not an algorithm can run within a feasible 

amount of time, especially as the number of decision variables increases. All optimization runs 

were executed using the PlatEMO 3.4 (Tian et al., 2017) framework under MATLAB 2022a 

(MATLAB, 2022). Each competing algorithm took its default parameter from PlatEMO 3.4. The 

tests were run on 2, 12-core Xeon processors with 125GB of RAM. 

Each SMOP hypothesis is denoted by the following nomenclature: 𝐻0
𝑇:𝑈/SMOP𝐿, such 

that 𝑈 is the number of decision variables, 𝑇 is the test metric used, and 𝐿 is the SMOP test for the 

given hypothesis. The metrics include HV, NDS, and RT (run time). For the application tests, we 

denote the NN and PO-based hypotheses as 𝐻0
𝑇:𝑈/NN_D𝐾 𝐻0

𝑇:PO_D𝐾 respectively, where 𝐸 is 

the size of the hidden layer (for NN only), and 𝐾 is the data set used. Let * denote a wildcard that 

matches any value for 𝑈, 𝐿, 𝐾, or 𝐸. 
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6.4 Results 

6.4.1 SMOP Results 

On the whole, S-NSGA-II ran faster than the existing methods, resulted in better HV, and 

maintained consistent NDS throughout the different scenarios. First off, S-NSGA-II achieved 

universally better HV over the majority of scenarios (Table 8), and the exceptions are as follows. 

S-NSGA-II struggled to outperform the base algorithms for SMOP4 problems. SparseEA, 

SparseEA2, and PM-MOEA all outperformed S-NSGA-II with test problems with 100 and 200 

decision variables (Figure A17). Furthermore, PM-MOEA outperformed S-NSGA-II with SMOP4 

under any number of decision variables. On the other hand, S-NSGA-II eventually outperforms 

SparseEA, SparseEA2, and MOEA/PSL in SMOP4 in higher decision variables (Figure 18). This 

relatively poor performance of S-NSGA-II at lower decision variables is a trend throughout the 

other test problems. Also, the relatively worse performance of S-NSGA-II at solving SMOP4 

demonstrates an area for improvement in S-NSGA-II (Figure A17). The only distinct property of 

SMOP4 is low intrinsic dimensionality (Tian et al., 2019a), suggesting that S-NSGA-II needs to 

better address this class of problem at lower dimensions. SparseEA2 is also able to outperform S-

NSGA-II for the majority of SMOP problems between 100 and 200 decision variables (Figure 18, 

Figure A14—Figure A21). S-NSGA-II is also able to achieve the best HV for SMOP5 and SMOP6 

(Figure A18, Figure A19), until MOEA/PSL eventually outperforms it in higher dimensional 

spaces, suggesting that MOEA/PSL excels at solving unimodal sparse large-scale problems (Tian 

et al., 2019a). 
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Figure 18: Typical mean HV (i.e., performance) of S-NSGA-II compared to state of the art 

generic spares LSMOPs. In this scenario, the algorithms are solving SMOP3 at different number 

of decision variables. Note how the performance of all of the algorithms slowly decline with 

increasing numbers of decision variables. SparseEA and SparseEA often perform very well in 

the relatively low decision spaces, and then experience serious drops in HV around 3,000 

decision variables. S-NSGA-II often outperforms the majority of algorithms in large decision 

spaces. The shaded areas around each mean line are the 95% confidence interval for the mean. 
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Table 8: Performance  of different algorithms compared to sparse NSGA-II in solving smop 

problems. Performance is measured in hypervolume, run time, and number of non-dominated 

solutions. The performance of S-NSGA-II is the first number in each cell, followed by the base 

algorithm in parentheses. Scenarios where S-NSGA-II performed better, worse, or approximately 

the same as the base method are denoted with +, −, and ≈ respectively. Scenarios where the base 

method did not halt within a reasonable amount of time are denoted with —. 

D Test 

prob 

S−NSGA−II vs SparseEA S−NSGA−II vs SparseEA2 S−NSGA−II vs MOEA/PSL S−NSGA−II vs PM−MOEA 

HV Time NDS HV Time NDS HV Time NDS HV Time NDS 

100 SMOP1 0.58(0.58)+ 2.53(4.08)+ 100.00(100.00)≈ 0.58(0.58)− 2.53(3.91)+ 100.00(100.00)≈ 0.58(0.58)+ 2.53(4.96)+ 100.00(100.00)≈ 0.58(0.58)+ 2.53(12.66)+ 100.00(100.00)≈ 

100 SMOP2 0.58(0.56)+ 0.97(4.10)+ 100.00(100.00)≈ 0.58(0.58)− 0.97(3.89)+ 100.00(100.00)≈ 0.58(0.57)+ 0.97(5.32)+ 100.00(100.00)≈ 0.58(0.57)+ 0.97(13.42)+ 100.00(100.00)≈ 
100 SMOP3 0.58(0.57)+ 0.97(4.75)+ 100.00(100.00)≈ 0.58(0.58)≈ 0.97(4.54)+ 100.00(100.00)≈ 0.58(0.58)≈ 0.97(4.78)+ 100.00(100.00)≈ 0.58(—)+ 0.97(—)+ 100.00(—)+ 

100 SMOP4 0.82(0.82)− 0.94(4.37)+ 100.00(100.00)≈ 0.82(0.82)− 0.94(5.23)+ 100.00(100.00)≈ 0.82(0.82)− 0.94(6.03)+ 100.00(100.00)≈ 0.82(0.82)− 0.94(20.83)+ 100.00(100.00)≈ 

100 SMOP5 0.82(0.82)+ 0.96(4.88)+ 100.00(100.00)≈ 0.82(0.82)+ 0.96(5.28)+ 100.00(100.00)≈ 0.82(0.81)+ 0.96(7.19)+ 100.00(100.00)≈ 0.82(0.82)+ 0.96(15.69)+ 100.00(100.00)≈ 

100 SMOP6 0.82(0.82)+ 1.25(4.98)+ 100.00(100.00)≈ 0.82(0.82)+ 1.25(5.47)+ 100.00(100.00)≈ 0.82(0.81)+ 1.25(6.94)+ 100.00(100.00)≈ 0.82(0.82)+ 1.25(15.81)+ 100.00(100.00)≈ 

100 SMOP7 0.34(0.32)+ 0.94(4.46)+ 100.00(100.00)≈ 0.34(0.35)− 0.94(4.26)+ 100.00(100.00)≈ 0.34(0.33) ≈ 0.94(5.73)+ 100.00(100.00) ≈ 0.34(0.33)+ 0.94(12.94)+ 100.00(100.00)≈ 

100 SMOP8 0.19(0.16)+ 0.99(6.10)+ 100.00(77.50)+ 0.19(0.18)≈ 0.99(4.17)+ 100.00(100.00)≈ 0.19(0.15)+ 0.99(7.53)+ 100.00(100.00)≈ 0.19(—)+ 0.99(—)+ 100.00(—)+ 

200 SMOP1 0.58(0.57)+ 1.21(5.05)+ 100.00(100.00)≈ 0.58(0.58)≈ 1.21(5.66)+ 100.00(100.00)≈ 0.58(0.56)+ 1.21(7.33)+ 100.00(100.00)≈ 0.58(0.57)+ 1.21(15.19)+ 100.00(100.00)≈ 

200 SMOP2 0.56(0.54)+ 1.12(5.38)+ 100.00(100.00)≈ 0.56(0.58)− 1.12(5.63)+ 100.00(100.00)≈ 0.56(0.54)+ 1.12(6.77)+ 100.00(100.00)≈ 0.56(0.55)+ 1.12(13.90)+ 100.00(100.00)≈ 

200 SMOP3 0.57(0.56)+ 1.18(5.01)+ 100.00(100.00)≈ 0.57(0.58)− 1.18(6.07)+ 100.00(100.00)≈ 0.57(0.56)+ 1.18(7.85)+ 100.00(100.00)≈ 0.57(—)+ 1.18(—)+ 100.00(—)+ 

200 SMOP4 0.82(0.82)− 1.20(4.80)+ 100.00(100.00)≈ 0.82(0.82)− 1.20(6.19)+ 100.00(100.00)≈ 0.82(0.82)≈ 1.20(11.39)+ 100.00(100.00)≈ 0.82(0.82)− 1.20(26.82)+ 100.00(100.00)≈ 

200 SMOP5 0.82(0.81)+ 1.19(6.10)+ 100.00(100.00)≈ 0.82(0.82)+ 1.19(6.50)+ 100.00(100.00)≈ 0.82(0.81)+ 1.19(13.68)+ 100.00(100.00)≈ 0.82(0.82)+ 1.19(21.46)+ 100.00(100.00)≈ 

200 SMOP6 0.82(0.81)+ 1.48(5.63)+ 100.00(100.00)≈ 0.82(0.81)+ 1.48(6.63)+ 100.00(100.00)≈ 0.82(0.81)+ 1.48(13.01)+ 100.00(100.00)≈ 0.82(0.81)+ 1.48(20.46)+ 100.00(100.00)≈ 

200 SMOP7 0.32(0.29)+ 1.16(5.53)+ 100.00(100.00)≈ 0.32(0.34)− 1.16(5.89)+ 100.00(100.00)≈ 0.32(0.29)+ 1.16(7.43)+ 100.00(100.00)≈ 0.32(0.30)+ 1.16(13.61)+ 100.00(100.00)≈ 
200 SMOP8 0.17(0.14)+ 1.19(5.49)+ 100.00(93.00)+ 0.17(0.15)+ 1.19(6.23)+ 100.00(100.00)+ 0.17(0.11)+ 1.19(7.20)+ 100.00(100.00)≈ 0.17(—)+ 1.19(—)+ 100.00(—)+ 

400 SMOP1 0.57(0.55)+ 1.82(6.87)+ 100.00(100.00)≈ 0.57(0.57)+ 1.82(8.48)+ 100.00(100.00)≈ 0.57(0.55)+ 1.82(13.28)+ 100.00(100.00)≈ 0.57(0.54)+ 1.82(17.89)+ 100.00(100.00)≈ 
400 SMOP2 0.54(0.49)+ 1.77(7.38)+ 100.00(100.00)≈ 0.54(0.54)≈ 1.77(8.87)+ 100.00(100.00)≈ 0.54(0.51)+ 1.77(12.42)+ 100.00(100.00)≈ 0.54(0.49)+ 1.77(18.30)+ 100.00(100.00)≈ 

400 SMOP3 0.56(0.53)+ 1.76(6.69)+ 100.00(100.00)≈ 0.56(0.55)+ 1.76(8.29)+ 100.00(100.00)≈ 0.56(0.55)+ 1.76(12.92)+ 100.00(100.00)≈ 0.56(—)+ 1.76(—)+ 100.00(—)+ 

400 SMOP4 0.82(0.82)≈ 1.90(5.90)+ 100.00(100.00)≈ 0.82(0.82)≈ 1.90(7.59)+ 100.00(100.00)≈ 0.82(0.82)+ 1.90(22.65)+ 100.00(100.00)≈ 0.82(0.82)− 1.90(31.57)+ 100.00(100.00)≈ 

400 SMOP5 0.82(0.81)+ 1.91(7.28)+ 100.00(100.00)≈ 0.82(0.82)+ 1.91(9.13)+ 100.00(100.00)≈ 0.82(0.81)+ 1.91(26.94)+ 100.00(100.00)≈ 0.82(0.81)+ 1.91(27.95)+ 100.00(100.00)≈ 

400 SMOP6 0.82(0.81)+ 2.54(7.68)+ 100.00(100.00)≈ 0.82(0.81)+ 2.54(9.15)+ 100.00(100.00)≈ 0.82(0.81)+ 2.54(26.67)+ 100.00(100.00)≈ 0.82(0.81)+ 2.54(28.49)+ 100.00(100.00)≈ 

400 SMOP7 0.28(0.24)+ 1.77(7.87)+ 100.00(100.00)≈ 0.28(0.31)− 1.77(8.78)+ 100.00(100.00)≈ 0.28(0.23)+ 1.77(12.73)+ 100.00(100.00)≈ 0.28(0.23)+ 1.77(17.96)+ 100.00(100.00)≈ 

400 SMOP8 0.15(0.09)+ 1.88(7.08)+ 100.00(99.00)+ 0.15(0.11)+ 1.88(8.88)+ 100.00(100.00)+ 0.15(0.05)+ 1.88(11.80)+ 100.00(100.00)≈ 0.15(—)+ 1.88(—)+ 100.00(—)+ 

800 SMOP1 0.56(0.51)+ 3.13(10.75)+ 100.00(100.00)≈ 0.56(0.52)+ 3.13(11.97)+ 100.00(100.00)≈ 0.56(0.53)+ 3.13(24.36)+ 100.00(100.00)≈ 0.56(0.51)+ 3.13(23.86)+ 100.00(100.00)≈ 

800 SMOP2 0.51(0.43)+ 3.12(11.10)+ 100.00(100.00)≈ 0.51(0.45)+ 3.12(13.06)+ 100.00(100.00)≈ 0.51(0.47)+ 3.12(19.98)+ 100.00(100.00)≈ 0.51(0.44)+ 3.12(23.45)+ 100.00(100.00)≈ 

800 SMOP3 0.56(0.50)+ 3.19(10.11)+ 100.00(100.00)≈ 0.56(0.51)+ 3.19(13.65)+ 100.00(100.00)≈ 0.56(0.53)+ 3.19(20.05)+ 100.00(100.00)≈ 0.56(—)+ 3.19(—)+ 100.00(—)+ 

800 SMOP4 0.82(0.82)≈ 3.50(7.98)+ 100.00(100.00)≈ 0.82(0.82)≈ 3.50(11.47)+ 100.00(100.00)≈ 0.82(0.82)+ 3.50(51.07)+ 100.00(100.00)≈ 0.82(0.82)− 3.50(46.23)+ 100.00(100.00)≈ 

800 SMOP5 0.81(0.80)+ 3.29(11.42)+ 100.00(100.00)≈ 0.81(0.81)≈ 3.29(13.52)+ 100.00(100.00)≈ 0.81(0.81)+ 3.29(71.96)+ 100.00(100.00)≈ 0.81(0.81)+ 3.29(41.23)+ 100.00(100.00)≈ 

800 SMOP6 0.82(0.79)+ 4.54(11.72)+ 100.00(100.00)≈ 0.82(0.80)+ 4.54(14.06)+ 100.00(100.00)≈ 0.82(0.80)+ 4.54(72.83)+ 100.00(100.00)≈ 0.82(0.81)+ 4.54(39.07)+ 100.00(100.00)≈ 
800 SMOP7 0.24(0.15)+ 3.15(11.17)+ 100.00(100.00)≈ 0.24(0.19)+ 3.15(13.63)+ 100.00(100.00)≈ 0.24(0.20)+ 3.15(25.22)+ 100.00(100.00)≈ 0.24(0.16)+ 3.15(22.47)+ 100.00(100.00)≈ 

800 SMOP8 0.12(0.04)+ 3.23(11.77)+ 100.00(100.00)+ 0.12(0.05)+ 3.23(12.61)+ 100.00(100.00)+ 0.12(0.01)+ 3.23(21.34)+ 100.00(100.00)≈ 0.12(—)+ 3.23(—)+ 100.00(—)+ 

1600 SMOP1 0.56(0.49)+ 5.53(18.86)+ 100.00(100.00)≈ 0.56(0.49)+ 5.53(22.63)+ 100.00(100.00)≈ 0.56(0.50)+ 5.53(46.58)+ 100.00(100.00)≈ 0.56(0.50)+ 5.53(29.52)+ 100.00(100.00)≈ 

1600 SMOP2 0.48(0.39)+ 5.70(20.88)+ 100.00(100.00)≈ 0.48(0.40)+ 5.70(23.98)+ 100.00(100.00)≈ 0.48(0.42)+ 5.70(45.15)+ 100.00(100.00)≈ 0.48(0.41)+ 5.70(30.41)+ 100.00(100.00)≈ 

1600 SMOP3 0.55(0.49)+ 5.89(21.58)+ 100.00(100.00)≈ 0.55(0.49)+ 5.89(23.99)+ 100.00(100.00)≈ 0.55(0.50)+ 5.89(40.62)+ 100.00(100.00)≈ 0.55(—)+ 5.89(—)+ 100.00(—)+ 

1600 SMOP4 0.82(0.82)≈ 6.42(11.32)+ 100.00(100.00)≈ 0.82(0.82)≈ 6.42(15.15)+ 100.00(100.00)≈ 0.82(0.82)+ 6.42(110.29)+ 100.00(100.00)≈ 0.82(0.82)− 6.42(77.75)+ 100.00(100.00)≈ 

1600 SMOP5 0.81(0.78)+ 5.92(20.43)+ 100.00(100.00)≈ 0.81(0.79)+ 5.92(23.74)+ 100.00(100.00)≈ 0.81(0.81)+ 5.92(155.87)+ 100.00(100.00)≈ 0.81(0.81)+ 5.92(52.77)+ 100.00(100.00)≈ 

1600 SMOP6 0.81(0.78)+ 8.57(23.15)+ 100.00(100.00)≈ 0.81(0.78)+ 8.57(25.66)+ 100.00(100.00)≈ 0.81(0.80)+ 8.57(166.69)+ 100.00(100.00)≈ 0.81(0.80)+ 8.57(58.09)+ 100.00(100.00)≈ 

1600 SMOP7 0.18(0.11)+ 5.72(21.56)+ 100.00(100.00)≈ 0.18(0.12)+ 5.72(24.57)+ 100.00(100.00)≈ 0.18(0.15)+ 5.72(43.85)+ 100.00(100.00)≈ 0.18(0.12)+ 5.72(29.95)+ 100.00(100.00)≈ 

1600 SMOP8 0.10(0.01)+ 5.94(19.50)+ 100.00(100.00)≈ 0.10(0.01)+ 5.94(24.51)+ 100.00(100.00)≈ 0.10(0.00)+ 5.94(57.09)+ 100.00(100.00)≈ 0.10(—)+ 5.94(—)+ 100.00(—)+ 

3200 SMOP1 0.55(0.49)+ 11.00(70.05)+ 100.00(100.00)≈ 0.55(0.49)+ 11.00(69.80)+ 100.00(100.00)≈ 0.55(0.49)+ 11.00(95.77)+ 100.00(100.00)≈ 0.55(0.49)+ 11.00(45.52)+ 100.00(100.00)≈ 

3200 SMOP2 0.46(0.38)+ 11.59(74.33)+ 100.00(100.00)≈ 0.46(0.38)+ 11.59(74.88)+ 100.00(100.00)≈ 0.46(0.39)+ 11.59(84.90)+ 100.00(100.00)≈ 0.46(0.39)+ 11.59(45.88)+ 100.00(100.00)≈ 

3200 SMOP3 0.54(0.49)+ 11.88(72.50)+ 100.00(100.00)≈ 0.54(0.49)+ 11.88(75.07)+ 100.00(100.00)≈ 0.54(0.49)+ 11.88(77.84)+ 100.00(100.00)≈ 0.54(—)+ 11.88(—)+ 100.00(—)+ 

3200 SMOP4 0.82(0.82)≈ 13.10(15.58)+ 100.00(100.00)≈ 0.82(0.82)≈ 13.10(20.21)+ 100.00(100.00)≈ 0.82(0.82)+ 13.10(270.81)+ 100.00(100.00)≈ 0.82(0.82)− 13.10(171.40)+ 100.00(100.00)≈ 

3200 SMOP5 0.80(0.78)+ 12.24(71.43)+ 100.00(100.00)≈ 0.80(0.78)+ 12.24(73.78)+ 100.00(100.00)≈ 0.80(0.81)− 12.24(323.72)+ 100.00(100.00)≈ 0.80(0.80)+ 12.24(73.78)+ 100.00(100.00)≈ 

3200 SMOP6 0.81(0.78)+ 17.24(79.92)+ 100.00(100.00)≈ 0.81(0.78)+ 17.24(79.68)+ 100.00(100.00)≈ 0.81(0.80)+ 17.24(408.72)+ 100.00(100.00)≈ 0.81(0.79)+ 17.24(86.85)+ 100.00(100.00)≈ 
3200 SMOP7 0.15(0.10)+ 12.06(79.92)+ 100.00(100.00)≈ 0.15(0.10)+ 12.06(80.78)+ 100.00(100.00)≈ 0.15(0.09)+ 12.06(149.06)+ 100.00(100.00)≈ 0.15(0.10)+ 12.06(47.99)+ 100.00(100.00)≈ 

3200 SMOP8 0.07(0.00)+ 12.16(69.39)+ 100.00(100.00)≈ 0.07(0.00)+ 12.16(66.43)+ 100.00(100.00)≈ 0.07(0.00)+ 12.16(138.93)+ 100.00(100.00)≈ 0.07(—)+ 12.16(—)+ 100.00(—)+ 

6400 SMOP1 0.54(0.37)+ 24.72(344.98)+ 100.00(9.00)+ 0.54(0.37)+ 24.72(345.89)+ 100.00(9.00)+ 0.54(0.48)+ 24.72(210.79)+ 100.00(100.00)≈ 0.54(0.49)+ 24.72(79.86)+ 100.00(100.00)≈ 

6400 SMOP2 0.44(0.27)+ 5.59(347.67)+ 100.00(8.00)+ 0.44(0.27)+ 25.59(346.37)+ 100.00(8.00)+ 0.44(0.38)+ 25.59(172.99)+ 100.00(100.00)≈ 0.44(0.39)+ 25.59(81.08)+ 100.00(100.00)≈ 

6400 SMOP3 0.53(0.35)+ 26.24(358.55)+ 100.00(7.00)+ 0.53(0.36)+ 26.24(353.91)+ 100.00(7.00)+ 0.53(0.49)+ 26.24(180.98)+ 100.00(100.00)≈ 0.53(—)+ 26.24(—)+ 100.00(—)+ 

6400 SMOP4 0.82(0.75)+ 28.29(45.88)+ 100.00(11.00)+ 0.82(0.73)+ 28.29(44.96)+ 100.00(12.00)+ 0.82(0.82)+ 28.29(631.41)+ 100.00(100.00)≈ 0.82(0.82)− 28.29(669.37)+ 100.00(100.00)≈ 

6400 SMOP5 0.79(0.68)+ 26.39(362.31)+ 100.00(11.00)+ 0.79(0.66)+ 26.39(355.57)+ 100.00(12.00)+ 0.79(0.81)− 26.39(763.31)+ 100.00(100.00)≈ 0.79(0.79)+ 26.39(118.16)+ 100.00(100.00)≈ 

6400 SMOP6 0.80(0.70)+ 36.35(392.58)+ 100.00(16.00)+ 0.80(0.70)+ 36.35(402.79)+ 100.00(16.00)+ 0.80(0.80)− 36.35(861.83)+ 100.00(100.00)≈ 0.80(0.78)+ 36.35(174.14)+ 100.00(100.00)≈ 

6400 SMOP7 0.14(0.04)+ 26.06(372.07)+ 100.00(7.00)+ 0.14(0.05)+ 26.06(370.04)+ 100.00(8.00)+ 0.14(0.10)+ 26.06(248.75)+ 100.00(100.00)≈ 0.14(0.10)+ 26.06(97.86)+ 100.00(100.00)≈ 

6400 SMOP8 0.05(0.00)+ 26.29(364.05)+ 100.00(7.00)+ 0.05(0.00)+ 26.29(337.60)+ 100.00(7.00)+ 0.05(0.00)+ 26.29(271.75)+ 100.00(100.00)≈ 0.05(—)+ 26.29(—)+ 100.00(—)+ 

(+/−/≈) 50/2/4 56/0/0 12/0/44 38/9/9 56/0/0 11/0/45 49/4/3 56/0/0 0/0/56 49/7/0 42/14/0 14/0/42 
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Table 9: Performance of different algorithms compared to S-NSGA-II in solving two real-world 

problems: neural network training and portfolio optimization. Performance is measured in 

hypervolume, run time, and number of nondominated solutions. The performance of S-NSGA-II 

is the first number in each cell, followed by the base algorithm in parentheses. Scenarios where 

sparse NSGA-II performed better, worse, or approximately the same as the base method are 

denoted with +, −, and ≈ respectively. Scenarios where the base method did not halt within a 

reasonable amount of time are denoted with —. 

Prob Data  

set 

#  

Layers 

D S-NSGA-II vs SparseEA S-NSGA-II vs SparseEA2 S-NSGA-II vs MOEA/PSL S-NSGA-II vs PM-MOEA 

HV Time NDS HV Time NDS HV Time NDS HV Time NDS 

NN 1 20  321   0.89(0.89)≈  30.36(35.44)+          100.00(8.00)+  0.89(0.89)≈  30.36(35.49)+          100.00(7.00)+  0.89(0.89)−       30.36(37.80)+        100.00(8.00)+   0.89(0.88)+       30.36(46.60)+   100.00(100.00)≈ 

NN 1  40    641   0.89(0.89)≈  41.63(44.30)+          100.00(7.00)+  0.89(0.89)≈  41.63(46.02)+          100.00(6.50)+  0.89(0.90)−       41.63(51.54)+        100.00(9.50)+   0.89(0.89)+       41.63(58.85)+   100.00(100.00)≈ 
NN 1  80    1281  0.89(0.89)+        63.61(65.29)+          100.00(6.00)+  0.89(0.89)+        63.61(67.86)+          100.00(6.00)+  0.89(0.90)≈ 63.61(93.25)+        100.00(8.00)+   0.89(0.89)+       63.61(88.72)+   100.00(100.00)≈ 

NN 1  160   2561  0.90(0.89)+        142.51(144.27)≈  100.00(6.00)+  0.90(0.89)+        142.51(152.93)+        100.00(6.00)+  0.90(0.89)≈ 142.51(212.50)+      100.00(9.00)+   0.90(0.89)+       142.51(180.97)+ 100.00(100.00)≈ 

NN 1  320   5121  0.90(0.88)+        232.09(334.26)+        100.00(3.00)+  0.90(0.88)+        232.09(343.01)+        100.00(3.00)+  0.90(0.89)+       232.09(446.00)+      100.00(7.50)+   0.90(0.89)+       232.09(308.71)+ 100.00(100.00)≈ 

NN 2  20    401   0.94(0.97)−        24.02(33.24)+          100.00(12.00)+ 0.94(0.97)−        24.02(31.27)+          100.00(11.00)+ 0.94(0.96)−       24.02(36.59)+        100.00(6.00)+   0.94(0.93)≈ 24.02(45.94)+   100.00(100.00)≈ 

NN 2  40    801   0.95(0.98)−        32.76(41.07)+          100.00(12.50)+ 0.95(0.98)−        32.76(44.43)+          100.00(14.00)+ 0.95(0.95)≈ 32.76(54.80)+        100.00(6.00)+   0.95(0.93)+       32.76(62.30)+   100.00(100.00)≈ 

NN 2  80    1601  0.96(0.98)−        51.58(61.31)+          100.00(13.00)+ 0.96(0.98)−        51.58(64.13)+          100.00(13.00)+ 0.96(0.94)+       51.58(93.50)+        100.00(6.00)+   0.96(0.93)+       51.58(97.70)+   100.00(100.00)≈ 

NN 2  160   3201  0.96(0.97)−        108.65(117.14)+        100.00(9.00)+  0.96(0.97)−        108.65(125.12)+        100.00(9.00)+  0.96(0.97)≈ 108.65(232.33)+      100.00(7.50)+   0.96(0.94)+       108.65(187.73)+ 100.00(100.00)≈ 

NN 2  320   6401  0.97(0.94)+        203.70(336.55)+        100.00(3.50)+  0.97(0.94)+        203.70(343.52)+        100.00(4.00)+  0.97(0.97)≈ 203.70(549.06)+      100.00(8.00)+   0.97(0.94)+       203.70(332.14)+ 100.00(100.00)≈ 

NN 3  20    521   0.80(0.81)−        61.73(55.89)≈    100.00(17.00)+ 0.80(0.81)−        61.73(49.04)−          100.00(16.00)+ 0.80(0.80)≈ 61.73(64.72)≈  100.00(11.00)+  0.80(0.79)+       61.73(97.19)+   100.00(100.00)≈ 

NN 3  40    1041  0.80(0.81)−        84.16(96.56)+          100.00(16.00)+ 0.80(0.81)−        84.16(98.37)+          100.00(15.50)+ 0.80(0.80)≈ 84.16(131.22)+       100.00(9.00)+   0.80(0.79)+       84.16(124.37)+  100.00(100.00)≈ 

NN 3  80    2081  0.80(0.81)−        121.86(124.04)≈  100.00(19.00)+ 0.80(0.81)−        121.86(139.71)+        100.00(16.00)+ 0.80(0.81)+       121.86(182.40)+      100.00(6.50)+   0.80(0.79)+       121.86(160.69)+ 100.00(100.00)≈ 

NN 3  160   4161  0.80(0.78)+        213.53(221.27)≈  100.00(4.00)+  0.80(0.78)+        213.53(231.61)≈  100.00(4.00)+  0.80(0.81)≈ 213.53(360.23)+      100.00(5.50)+   0.80(0.79)+       213.53(314.69)+ 100.00(100.00)≈ 

NN 3  320   8321  0.81(0.78)+        462.53(967.34)+        100.00(4.00)+  0.81(0.78)+        462.53(1014.64)+       100.00(4.00)+  0.81(0.81)≈ 462.53(777.91)+      100.00(7.50)+   0.81(0.80)+       462.53(571.96)+ 100.00(100.00)≈ 

PO 1  20    321   0.12(0.12)≈   9.69(30.78)+      100.00(100.00)≈   0.12(0.12) −   9.69(28.81)+      100.00(100.00)≈   0.12(0.12)+   9.69(119.43)+      100.00(100.00)+   0.12(0.12)≈   9.69(203.27)+      100.00(100.00)≈ 

PO 2  40    641   0.12(0.12)+         333.67(975.89)+   100.00(55.50)+          0.12(0.12)+   333.67(834.32)+   100.00(56.00)+          0.12(0.11)+  333.67(1146.78)+   100.00(100.00)+   0.12(0.12)≈   33.67(6235.00)+   100.00(100.00)+ 

(+/−/≈) 7/7/3 13/0/4 16/0/1 7/8/2 15/1/1 16/0/1 5/3/9 16/0/1 17/0/0 14/0/3 17/0/0 1/0/16 

 

Overall, we are able to reject the majority (34 out of 56) of HV null hypotheses 

(𝐻0
𝐻𝑉:100/SMOP[5-6], 𝐻0

𝐻𝑉:200/SMOP[5-6,8], 𝐻0
𝐻𝑉:400/SMOP[1,3,5-6,8], 

𝐻0
𝐻𝑉:800/SMOP[1-3,6-8], 𝐻0

𝐻𝑉:1600/SMOP[1-3,5-8], 𝐻0
𝐻𝑉:3200/SMOP[1-3,6-8], and  

𝐻0
𝐻𝑉:6400/SMOP[1-3,78]). The remaining null hypotheses we accept. Other than deficient HVs 

for this subclass of problems, S-NSGA-II runs faster than SparseEA under all scenarios (Table 8), 

rejecting 𝐻0
𝑅𝑇:*/SMOP*. S-NSGA-II also maintains more NDS than SparseEA under all test 

problems with 6,400 decision variables, and for all SMOP8 under 100-800 decision variables 

(Table 8). In fact, S-NSGA-II maintains a median 100 NDS in all scenarios, which is encouraging, 

considering many of the sparse large-scale optimization algorithms struggle to maintain 100 NDS, 

including SparseEA, SparseEA2, and MP-MMEA. Therefore, we reject all of 𝐻0
𝑁𝐷𝑆:*/SMOP*. 
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6.4.2 Real-world problem results 

On the whole, S-NSGA-II excelled at solving the NN problem set in the same categories 

as it did in the SMOP problem set. Across the four problem sets, S-NSGA-II outperformed or kept 

pace with the competing algorithms in scenarios with large numbers of decision variables (i.e., 

approximately greater than 3,200 decision variables) (Table 9, Figure 19). Also, except for one 

scenario (NN, data set 3, vs. SparseEA2), S-NSGA-II ran as fast (six scenarios), if not faster (54 

scenarios), than the competing algorithms (Table 9). We can therefore reject 𝐻0
𝑅𝑇:*/NN_D*,  

 

Figure 19: The studied algorithms training a NN with increasing complexity. Note that similar to 

many scenarios, SparseEA and SparseEA2 perform very well in lower decision spaces, while 

dropping in performance at around 3,000 decision variables. S-NSGA-II actually gradually 

performs better and better with increasing complexity, as do the other competing algorithms. The 

shaded areas around each mean line is the 95% confidence interval for the mean. 
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except for the aforementioned exceptions. Finally, S-NSGA-II maintained more NDS than all of 

SparseEA, SparseEA2, and MOEA/PSL, and approximately the same number of NDS as PM-

MOEA (Table 9). In summary, we reject 𝐻0
𝑁𝐷𝑆:*/NN_D*. 

Though S-NSGA-II performed well with respect to HV, it did not outperform the other 

algorithms as it did for the SMOP problems. As a matter of fact, we can only reject 

𝐻0
𝐻𝑉:320/NN_D1 (Table 9). For the rest of the scenarios, we accept the null hypotheses 

𝐻0
𝐻𝑉:*/NN_D*. However, the actual results are less simple than the HV hypothesis results suggest. 

First off, S-NSGA-II performed, with respects to HV, either better than or as well as all of the 

competing algorithms after 3,200 decision variables. In other words, no algorithm out competed 

S-NSGA-II in this problem set with respects to HV. For further context, consider that SNSGA-II 

maintains dramatically better NDS than SparseEA, SparseEA2, and MOEA/PSL (maximum 

median NDS of 100 versus 19) (Table 9). For these algorithms, an algorithm that achieves the 

same HV with improved NDS is a better outcome. The only other algorithms that achieved perfect 

median NDS for the NN problems was PM-MOEA, but S-NSGA-II achieves better HV than PM-

MOEA for all scenarios with greater than 3,200 decision variables (Table 9). Therefore, despite 

accepting most of the HV hypotheses, the time and NDS improvements brought about by S-

NSGA-II is arguably a worthwhile trade-off for sparse LSMOPs with greater than 3,200 decision 

variables. 

The PO problem set yielded similar results to the NN problem set. First off, S-NSGA-II 

ran faster than all algorithms, thus rejecting 𝐻0
𝑅𝑇:PO_D* (Table 9). Additionally, S-NSGAII 

achieved median NDS as high or higher than all other algorithms, therefore also rejecting  

𝐻0
𝑁𝐷𝑆:PO_D* (Table 9). On the other hand, we must accept  𝐻0

𝐻𝑉:PO_D*, since SNSGA-II does 

not universally increase HV as it does for the SMOP problem set (Table 9). Specifically, 
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SparseEA2 outperforms S-NSGA-II for PO data set 1 (1,000 decision variables), and PM-MOEA 

performs as well as S-NSGA-II for data set 2 (5,000 decision variables). However, similar 

tradeoffs between SparseEA, SparseEA2, and MOEA/PSL vs. SNSGA-II are still present: S-

NSGA-II gets far better NDS and run time than the competing algorithms. PM-MOEA, on the 

other hand, gets statistically similar HV and NDS, but still runs slower than S-NSGA-II. The 

improved run time compared to PM-MOEA is arguably worthwhile for a user. 

6.4.3 Discussion 

This study recommends SparseEA2 for sparse LSMOPs with relatively lower numbers of 

decision variables, and SNSGA-II for problems with relatively higher numbers of decision 

variables. For the SMOP problem set, between 100 and 200 decision variables, SparseEA2 obtains 

the best HV for the majority of scenarios and maintains perfect median NDS (though SparseEA2 

still runs universally slower than S-NSGA-II). However, when the number of decision variables 

increases (approximately 3,000 decision variables), SparseEA2, and its predecessor SparseEA, 

struggles to obtain good HVs (Figure 18, Figure A14—Figure A21) compared to the other 

algorithms. Also, for problems larger than 6,400 decision variables, SparseEA and SparseEA2 both 

fail to maintain an adequate number of NDS. During this data range is where S-NSGA-II performs 

the best. It achieves the best HV for the majority of scenarios, maintains perfect NDS, and runs 

universally faster than the competing algorithms. 

  The real-world problem sets also roughly uphold our recommendations. SparseEA2 

performed the best with respects to HV below and at 3,200 decision variables. S-NSGA-II, though 

it did not obtain universally better HV, it maintained median HV values that were as good as any 

other algorithm while maintaining a stable NDS and running faster in the majority of scenarios. 

Therefore, though the range is different between the real world problems and the SMOP problems, 
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SparseEA2 performs better in lower ranges of decision variables, whereas S-NSGA-II performs 

better in higher ranges of decision variables. This upholds our general recommendation, but at a 

different scale of decision variables (i.e., > 200 versus > 3,200). 

6.5 Conclusion 

Through an extensive set of benchmark and real-world tests, we have determined that S-

NSGA-II is a successful sparse LSMOP algorithm. With respect to convergence and diversity (i.e., 

hypervolume (HV) metric), S-NSGA-II either performs as well if not better than other state-of-

the-art sparse LSMOP algorithms, particularly with problems with 5,000 or more decision 

variables. Furthermore, it runs almost universally faster than the other algorithms of this study, 

requires minimal amounts of memory, and maintains perfect median number of non-dominated 

solutions (NDS) throughout all trials. 

Future work should focus on improving the performance of S-NSGA-II in lower decision 

spaces, and certain problem sub-categories (i.e., NN, SMOP4, and SMOP5). Also, none of the 

algorithms tested under the SMOP test suite achieved perfect HV, which is an area for 

improvement for all sparse LSMOPs. Also, most research in the sparse LSMOP literature has 

disregarded NDS as a metric for algorithms solving sparse LSMOPs. We strongly recommend that 

this metric become standard in the literature, as Pareto-optimal sets with identical HVs (or inverted 

generational distances) but different NDS are not equivalent. Also, future scholars should 

investigate the effects of VSSPS on other popularly-used population-based algorithms, such as 

particle swarm optimization and differential evolution. 

By harnessing the sparsity property of LSMOPs, sparse LSMOP algorithms are able to find 

increasingly better solutions to this difficult class of real-world problems. In this paper, we have 



109 

adapted simple sparse operators that enable a small-scale MOP to effectively, quickly, and stably 

solve LSMOPs. In doing so, we are able to better train neural networks, optimize stock portfolios, 

and schedule crop irrigation. 
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7. CLIMATE-AWARE AGRICULTURAL MULTI-OBJECTIVE OPTIMIZATION 

USING STOCHASTIC WEATHER 

7.1 Introduction 

Weather variability is currently the primary source of yield variation between growing 

seasons (Coffel et al., 2022; Kukal and Irmak, 2018). Therefore, when agricultural inputs are 

scarce, data-driven resource optimization is an effective tool for improving unstable interannual 

yield variation (Eeswaran et al., 2021), especially evolutionary multi-objective optimization 

(EMO) (Kropp et al., 2019). However, though Kropp et al. (2019) provided highly precise and 

effective management recommendations, they could not provide farmers with predictive 

recommendations for the season ahead. This is because the optimization platform required accurate 

daily weather data for the entire growing season. Kropp et al. (2022d) demonstrated that 

innovization, an evolutionary multi-objective optimization technique for finding innovations (Deb 

and Srinivasan, 2006), can create predictive management recommendations that effectively 

stabilize yields within a region. However, a drawback of the methods of Kropp et al. (2022d) is 

that the recommendations do not provide farmers with full Pareto optimal fronts. Methodologies 

that output Pareto fronts are valuable, since they provide stakeholders the ability to choose the 

solution from the Pareto front that represents their values. That is why we aim to develop a method 

that uses classical EMO techniques that output a Pareto front. Therefore, in order to make these 

techniques work, we need a method of providing accurate daily weather predictions for the entire 

growing season. One such promising method is through stochastic disaggregation of monthly 

climate predictions (Han et al., 2017). In other words, the goal of our proposed study is to develop 

a platform that allows us to run classical EMO techniques for sustainable agricultural 

intensification using stochastically disaggregated daily weather data.  
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 We put forth two objectives to meet this goal: Objective 1) generate weather that is 

sufficient to be used in EMO crop management models, and Objective 2) construct an EMO 

platform that prescribes a Pareto front of management actions to farmers.  

7.2 Methods 

7.2.1 Stochastic weather generation 

The daily weather forecasts will be created through several sources, each with unique 

strengths. Short-term forecasts (3 days into the future) will be provided through historical daily 

predicted weather forecasts from NOAA’s weather forecasting arm via the National Digital 

Forecast Database (NDFD) (NOAA, 2018). Then, sub-seasonal (i.e., “Sub-seasonal to Seasonal” 

(S2S)) climate predictions (2 weeks into the future) will be gathered, and then disaggregated into 

several daily weather realizations. This S2S forecast will come from the World Climate Research 

Program (Robertson et al., 2015). Finally, seasonal climate forecast (SCF) predictions will fill out 

the remaining growing season and come from U.S. Climate Prediction Center (CPC) (O’Lenic et 

al., 2008). The number of the S2S and SCF realizations is the maximum number of realizations 

that do not make the optimization unreasonably slow. The study area is Cass County, in Southwest 

Michigan. Cass County was chosen because it is a significant corn producing region that relies on 

irrigation (Kropp et al., 2022c). It also has daily rainfall data for the study site, as well as for several 

climatologically similar sites in Southwest Michigan (MSU Enviroweather, 2019). 

These sources will then be compiled into rolling forecasts to generate rolling recommended 

management actions through the growing season. In the first rolling recommended management 

action, which will occur according to the physiological water demands of the cultivar, the 

optimization will present management actions to the farmer for the first two weeks of irrigation. 
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Then during the second rolling management recommendations, the optimization platform will 

present management actions to the farmer for the 3rd through 4th weeks of irrigation actions. This 

process will repeat for the remainder of the growing season. During each cycle, the optimization 

will generate recommended management actions according to three sets of weather data. First, the 

short-term forecast will cover days 0 through 3. Then, the S2S prediction will be transformed into 

a number of stochastic realizations of days 4 through 14. Finally, the SCF forecast will be 

transformed into several stochastic realizations of days 15 through the remainder of the growing 

season. Generation of these realizations will be generated through the tools FResampler1 and 

predictWTD (Han et al., 2017; Han and Ines, 2017). 

7.2.2 Stochastic EMO platform  

 As described in Objective 1, an optimization routine will be run every two weeks to 

generate recommended management practices for the growers in the study area. The required 

dependencies of this routine are as follows. First, a calibrated DSSAT model for maize will be 

chosen from the literature. In our case, we will use the calibrated DSSAT model from Jha et al. 

(2019; 2021) for a study site in Cass county Michigan. Next, the weather inputs will be chosen and 

processed as described in Objective 1. Finally, and most critically for this study, an objective 

function that can process the weather data from Objective 1, as well as proposed management 

actions, will be developed.  

 An objective function is an essential component of an EMO. The role of an objective 

function is to numerically describe the fitness of any given solution (i.e., how good of a solution it 

is) to a problem. In the research of Kropp et al. (2019), the objective function took a schedule of 

days of irrigation and the amounts of irrigation on each of those dates. The objective function 

would then return three objective values according to those management practices: 𝑂𝑓: yield, 𝑂𝑤: 
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water usage, and 𝑂𝑙: nitrogen leaching. However, as mentioned earlier, this function depends on 

historical weather data, which is not obtainable by a farmer planning a future field. Therefore, 

using our ensemble of possible weather realizations from Objective 1, we can modify this objective 

function to take advantage of this new data.  

 In our proposed method, DSSAT is run n times in each objective function, such that n is 

the number of weather realizations available in the ensemble (Figure 20). For each realization, the 

same proposed management actions are kept constant throughout the n DSSAT runs. Therefore, 

we get n different possible yields (𝑦0, … , 𝑦𝑛), n different possible leaching values (𝑙0 , … , 𝑙𝑛), and 

one irrigation water usage (w) for the given management action (Figure 20). Ensembles of 

objective values are very useful since they allow us to calculate both the expected value (i.e., E(𝑦) 

and E(𝑙)) and the risk behind each management decision (i.e., Pfail(𝑦)). Failure in this context is a 

threshold defined by the decision maker that is unacceptable. For example, a farmer must obtain a 

certain amount of yield in order to turn a profit in a given year. In summary, our proposed objective 

functions would be 𝑂EXP(𝑓), 𝑂EXP(𝑙), 𝑂Pfail(𝑦)
, and 𝑂𝑤. Now, in the face of weather uncertainty, a 

farmer can see a more realistic expected value of yield and leaching, as well as the risk, behind a 

management decision.  
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Figure 20: Illustration of how an objective function can handle stochastic weather. Since the crop 

model can only handle one fixed season of weather, we repeatedly run the crop model under 

many weather realizations generated from a climate model. This, combined with the 

management schedule being inputted into the objective function, will result in a distribution of 

environmental and yield results. 

7.2.3 Preliminary Run Experimental Setup 

 As of this dissertation, we have set up a preliminary run to demonstrate the utility of using 

stochastic weather in crop optimization. This preliminary run was comprised of a single (i.e., not 
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rolling) optimization for the entire season using a disaggregated SCF forecast. The decision 

variables were the amount and timing of irrigation, and the timing of a 50 kg/ha application of 

nitrogen. There is a constant 150 kg/ha application of nitrogen at planting. These variables were 

optimized to maximize average yield, minimize average leaching, minimize total irrigation 

applied, and minimize the risk of crop failure. The objective function calculates these values for 

every function evaluation by simulating the fixed management practice in DSSAT under 100 

different stochastic realizations of the GCM forecast. 100 was chosen as a balance between 

accuracy and run time. The 100 DSSAT simulations returned an array of 100 different yields and 

leaching amounts, which were in turn averaged to obtain two out of the four objective values. The 

third objective value, total irrigation, was simply taken from the sum of irrigation applied during 

the season. We defined the fourth objective value, crop failure risk, as the percentage of the 100 

realizations that go below a yield threshold defined by a farmer. Based on the common practices 

of the study area, we chose a threshold of 8,000 kg/ha as our failure threshold, but any alternative 

can be chosen for a different study site or decision maker. Since this is a many-objective problem, 

we used NSGA-III (Deb and Jain, 2014) to optimize the system. The study site was Cassopolis, in 

Cass County, Michigan, using the same field and DSSAT configuration as Kropp et al. (2022b).  

7.3 Preliminary results  

Though currently under development, this study is already yielded exciting results. We will 

discuss the resulting Pareto front (Figure 21) through the lens of a decision maker (i.e., a farmer) 

choosing a management action from the front. First, as irrigation increases, the risk of crop failure 

drops (Figure 21, Table 10), and crop yields rise. This makes sense since yields significantly 

depend on water from either rain or irrigation. Therefore, as irrigation amounts drop, more and 

more of the crop’s water demand is satisfied solely by rain, which is highly risky. Increasing 
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irrigation also raises leaching levels. This agrees with the literature because irrigating at or around 

nitrogen applications risks leaching the nitrogen into the groundwater (Gheysari et al., 2009). In 

summary, irrigation management comes with delicate trade-offs. Increasing irrigation amounts can 

make farmers confident that their yields will be, on average, high. However, this guarantee often 

comes at the price of increased nitrogen leaching and water waste.  

 

Figure 21: 4-D Pareto front of average yields, average leaching, total irrigation, and crop failure 

risk. The bottom center sub-figure (a) is the Pareto set head-on, the top right sub-figure (b) is the 

Pareto set rotated to the right, and the top left sub-figure (c) is the Pareto set rotated to the left.  

 Beyond being a useful illustration of the relationship between objectives, this Pareto front 

would be an attractive decision support tool for a farmer. To illustrate the point, imagine a 

hypothetical farmer looking to find a management regime for their farm amongst the Pareto 

optimal set (Table 10). Let’s say that the farmer primarily wants to maximize their yields and 
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profits, but also wants to minimize leaching for ethical purposes. Looking at Table 10, the obvious 

good choice with respects to yield is solution 1, since it has both the highest average yield and the 

lowest risk of crop failure. However, since the average leaching is quite high at 17.90 kg/ha (the 

minimum average leaching for the Pareto optimal set is 8.89 kg/ha), the farmer might be willing 

to sacrifice a bit of yield, water efficiency, and/or risk for better average leaching. A farmer 

following conventional management decision making would not have any way of clearly 

navigating this trade-off. But with the optimized Pareto front, the farmer can implement a 

management decision that will guarantee the desired trade-off. In this case, the farmer might 

choose solution 5 (Table 10), which increases risks by 6%, decreases average yield by 273.26 

kg/ha, and an increases irrigation by 2.51 mm for a 5.36 kg/ha decrease in average leaching. These 

changes illustrate just one way that famers can intelligently understand and choose among the 

possible trade-offs in a multi-objective system.  

As promising as these results are, they are only the beginning of this research undertaking. 

The Pareto front from (Table 10) was generated using stochastic weather generated from only a 

seasonal forecast. Once our methodology is complete, including three types of weather forecasts 

and bi-weekly rolling optimization, we hypothesize that these results will improve, especially with 

respects of risk and environmental efficiency.  
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Table 10: Pareto optimal solutions for climate-aware optimization run, sorted by yield. 

 Pareto Optimal Solutions 1-50   Pareto Optimal Solutions 51-100 

Sol. 

no. 

Fail 

Risk 

Yield 

(kg/ha) 

Leaching 

(kg/ha) 

Irrigation 

(mm) 
 

Sol. 

no. 

Fail 

Risk 

Yield 

(kg/ha) 

Leaching 

(kg/ha) 

Irrigation 

(mm) 

1* 0.06 10,110.16 17.90 10.32  51 0.4 7,990.79 9.45 1.24 

2 0.09 9,975.09 20.41 8.32  52 0.4 7,990.79 9.45 1.24 

3 0.09 9,888.5 18.48 10.14  53 0.52 7,919.64 11.09 2.33 

4 0.12 9,863.04 12.54 15.87  54 0.57 7,907.48 14.39 2.33 

5* 0.16 9,836.9 12.54 12.83  55 0.47 7,851.34 9.26 3.22 

6 0.18 9,750.33 11.63 12.76  56 0.47 7,844.68 9.10 3.22 

7 0.13 9,733.06 14.04 8.91  57 0.57 7,835.66 12.15 3.24 

8 0.16 9,730.86 12.67 8.78  58 0.57 7,807.22 9.24 11.19 

9 0.18 9,603.69 16.55 11.75  59 0.47 7,735.01 11.36 1.18 

10 0.18 9,570.27 11.07 14.66  60 0.53 7,717.73 9.24 2.19 

11 0.18 9,567.65 12.40 9.72  61 0.6 7,700.06 14.15 5.26 

12 0.19 9,536.1 19.40 6.91  62 0.57 7,686.63 9.19 7.18 

13 0.22 9,452.55 12.67 6.65  63 0.53 7,662.59 9.41 1.18 

14 0.21 9,271.95 10.48 12.5  64 0.53 7,661.1 9.30 1.18 

15 0.25 9,256.68 12.32 3.59  65 0.53 7,661.1 9.30 1.18 

16 0.22 9,191.21 10.17 7.47  66 0.53 7,661.1 9.30 1.18 

17 0.25 9,125.47 10.26 5.46  67 0.53 7,657.03 11.16 1.16 

18 0.21 9,111.58 10.15 8.48  68 0.57 7,622.86 9.18 6.18 

19 0.33 9,074.26 16.71 4.57  69 0.61 7,574.53 14.09 13.38 

20 0.25 8,970.94 9.96 4.45  70 0.62 7,480.78 11.47 11.14 

21 0.31 8,928.04 14.28 11.47  71 0.65 7,419.5 9.67 10.18 

22 0.29 8,915.12 15.42 4.51  72 0.65 7,342.14 9.65 11.14 

23 0.27 8,909.37 11.03 3.48  73 0.57 7,342.02 9.34 4.18 

24 0.3 8,869.49 10.94 11.58  74 0.65 7,280.56 9.46 11.13 

25 0.29 8,858.8 11.60 2.49  75 0.65 7,279.75 13.03 3.29 

26 0.35 8,834.46 10.18 10.41  76 0.61 7248.65 11.44 2.12 

27 0.35 8,812.96 9.98 11.41  77 0.69 7,221.55 11.09 7.1 

28 0.31 8,792.18 10.39 6.43  78 0.65 7,165.94 11.91 5.29 

29 0.29 8,742.78 9.78 14.34  79 0.61 7,160.8 11.26 1.11 

30 0.36 8,706.07 11.12 11.38  80 0.61 7,160.8 11.26 1.11 

31 0.35 8,674.23 13.36 8.38  81 0.61 7,153.64 9.18 3.11 

32 0.36 8,655.96 11.12 10.39  82 0.62 7,140.3 9.17 8.11 

33 0.29 8,651.33 13.68 2.37  83 0.62 7,138.37 9.39 4.14 

34 0.33 8,625.11 14.25 5.41  84 0.65 7,119.94 9.46 8.11 

35 0.39 8,540.8 9.91 4.36  85 0.65 7,114.03 12.97 3.26 

36 0.35 8,363.02 9.86 8.33  86 0.61 7,084.92 9.25 3.1 

37 0.35 8,265.68 9.37 4.29  87 0.61 7078.22 9.22 1.11 

38 0.35 8,253.72 12.71 4.28  88 0.61 7,078.22 9.22 1.11 

39 0.35 8,223.31 9.34 3.29  89 0.69 7,062.35 9.05 7.1 

40 0.42 8,184.46 14.51 4.35  90 0.65 7,032.5 12.78 2.23 

41 0.48 8,166.4 12.96 6.3  91 0.65 7,029.74 13.12 1.25 

42 0.35 8,160.33 12.39 3.25  92 0.65 6,838.76 12.03 1.25 

43 0.48 8,154.03 10.05 9.28  93 0.68 6,808.8 9.19 4.02 

44 0.48 8,148.85 12.84 6.29  94 0.68 6,757.35 9.19 3.02 

45 0.35 8,095.34 9.60 2.27  95 0.69 6,739.6 10.37 1.01 

46 0.44 8,039.23 12.07 1.24  96 0.69 6,733.88 9.11 2.03 

47 0.44 8,026.63 9.40 12.22  97 0.71 6,677.95 8.89 3.03 

48 0.53 8,011.97 12.36 6.24  98 0.69 6,610.74 10.37 0 

49 0.4 7,990.79 9.45 1.24  99 0.71 6,513.46 9.19 1 

50 0.4 7,990.79 9.45 1.24  100 0.71 6,474.88 9.19 0 
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7.4 Conclusion 

  Our results demonstrate the utility of incorporating stochastic weather into crop 

optimization, and how weather uncertainty can be integrated into multi-objective optimization 

through a risk objective. Furthermore, a Pareto front that includes a risk objective illustrates the 

trade-offs among different decisions when managing irrigation and nitrogen in crop production. 

Quantifying risk in this way enables farmers to predictively manage their corn for future 

management while also choosing the lowest risk solution for their particular circumstances. Also, 

unlike conventional agricultural decision making, our methods allow farmers to finely tune the 

balance between production and environmental objectives.  

 To conclude this study, several steps will need to happen. To complete Objective 1, we 

must compile the completed disaggregated weather forecasts into rolling bi-weekly forecasts. In 

their current state, our three separate forecasts are not combined, nor are they in a format that could 

support a rolling optimization routine. For Objective 2, we need to build the optimization 

framework that can provide farmers with the rolling bi-weekly Pareto fronts for management. On 

top of that, since the management decisions for a given two-week cycle depend on the decisions 

from the previous cycles, we will need to implement an automatic decision maker to choose which 

Pareto optimal solution is implemented every two weeks. Finally, a validation routine must 

compare our results to common practices in the study area, as well as other competing smart 

agricultural methods. 
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8. CONCLUSIONS 

 This dissertation aimed to create innovative climate-smart irrigation and nitrogen 

management practices through novel, cutting-edge sparse large-scale multi-objective optimization. 

Through this undertaking, the fields of biosystems & agricultural engineering and computer 

science engineering complement each other. Computer science gained new insight into sparse 

large-scale multi-objective problems, and biosystems engineering gained new climate-aware tools 

to aid farmers in sustainably meeting food demands for the future. In summary, we demonstrated:  

• Seeding population-based multi-objective algorithms with sparse initial populations, which 

we refer to as the SPS algorithm, dramatically improves algorithm performance when 

solving sparse large-scale multi-objective problems. 

• NSGA-II with SPS was able to find better solutions more quickly than the state-of-the-art 

sparse large-scale multi-objective algorithm in solving the most complex problems in this 

problem class. 

• Innovization is an effective method of accounting for climate uncertainty in optimizing 

future growing seasons. 

• Through innovization, we created human-centric updates to local common practices that 

boosted agricultural productivity with minimal environmental impact. 

• We can effectively solve sparse large-scale multi-objective optimization problems by only 

updating the genetic operators in existing small-scale multi-objective optimization 

algorithms 

• Our genetic operators, combined with NSGA-II, outperformed several contemporary 

algorithms with respect to convergence, run time, and the number of non-dominated 

solutions. 
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9. FUTURE RESEARCH RECOMMENDATIONS 

Though this dissertation furthered the research fields of agriculture and biosystems engineering 

and computer science engineering, much work remains. We outline our future recommended 

research directions as follows: 

• Field tests should be conducted to determine the efficacy of our innovization 

recommendations in Cass County, Michigan 

• Currently, our research uses multi-criterion decision making (MCDM) after the 

optimization run. Adopting the practices of interactive EMO, where decision makers 

interactively perform MCDM during the optimization, is an opportunity further to speed 

up the rate of convergence in agricultural optimization.  

• Decision tools for predictive management recommendations through EMO should be 

created for farmers.  

• Future multi-objective optimization research should include social objectives, as well as 

environmental and economic objectives 

• Sparse LSMOPs still have room for improvement in solving the SMOP test suit with 

respect to hypervolume.  

• Future LSMOP research should include the number of non-dominated solutions as a metric. 

Many algorithms struggle to maintain full Pareto optimal sets when solving problems with 

many decision variables.  
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Supplementary Materials: Benefits of Sparse Population Sampling in Multi-Objective 

Evolutionary Computing for Large-Scale Sparse Optimization Problems 

 

Figure A1: Effective runs measuring the effect of varying the number of decision variables on 

hyper volume. Note that the variances of some configurations were so small that the confidence 

intervals were rendered as lines. 
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Figure A2: Effective runs measuring the effect of varying the number of decision variables on 

NDS. Note that many solutions maintained 100 NDS under all numbers of decision variables, 

and overlap each other on y = 100, and that the variances of some configurations were so small 

that the confidence intervals were rendered as lines. 
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Figure A3: Effective runs measuring the effect of varying problem sparsity on HV. Note that the 

variances of some configurations were so small that the confidence intervals were rendered as 

lines. 
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Figure A4 Effective runs measuring the effect of varying problem sparsity on NDS. Note that 

many solutions maintained 100 NDS under all numbers of decision variables, and overlap each 

other on y = 100, and that the variances of some configurations were so small that the confidence 

intervals were rendered as lines.  
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Figure A5: Comparative runs measuring the effect of varying number of decision variables on 

HV. Note that the variances of some configurations were so small that the confidence intervals 

were rendered as lines 
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Figure A6: Comparative runs measuring the effect of varying number of decision variables on 

run time. Note that the variances of some configurations were so small that the confidence 

intervals were rendered as lines. 
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Figure A7: Comparative runs measuring the effect of varying number of decision variables on 

NDS. Note that many solutions maintained 100 NDS under all numbers of decision variables, 

and overlap each other on y = 100 and Note that the variances of some configurations were so 

small that the confidence intervals were rendered as lines.  
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Figure A8: Example of why HV reference points of (1,1) were not used. This run measures the 

performance of SparseEA versus NSGA-II with SPS at varying decision variables, and uses a 

reference point of (1,1). After 500 decision variables, both algorithms struggle to find solutions 

within the box (1,1), and the HV goes to zero. Therefore, these HV values lack any useful 

information on how the algorithms perform in larger decision spaces beyond 500 decision 

variables.  
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Table A1. Effective performance of NSGA-II, MOPSO, and MOEA-D-DE with varying number 

of decision variables. 
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Table A2. p-value of two-sided Wilcoxon Rank-Sum test for the comparative runs. 
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Supplementary Materials: Agricultural Innovization: An Optimization-Driven Solution for 

Sustainable Agricultural Intensification in Michigan 

S1 Cultivar coefficients 

A critical first step to effectively employing the crop model is to accurately calculate the 

cultivar coefficients for CERES-Maize. Originally developed by Jones and Kiniry (1986), the 

current version of the CERES-Maize model evaluates maize management practices and production 

and is included in the DSSAT suite of models (Li et al., 2015; Liu et al., 2011; Lizaso et al., 2011). 

As with all models, the parameters of CERES-Maize must be calibrated and validated. A 

significant set of parameters that drive the model performance are the crop-specific parameters 

widely known as genetic coefficients. Therefore, calibration of the genetic coefficients is required 

with every new cultivar introduced to the model (Jones et al., 2011). We selected cultivar 

coefficients of popular maize hybrids for Cassopolis, which were validated for the study area.  (Jha, 

2019; Jha et al., 2021) estimated these coefficients using an ensemble of three coefficient 

estimation methods: a.) GENotype Coefficient cALCculator (GENCALC) (Bao et al., 2017; Hunt 

et al., 1993); b.) Generalized Likelihood Uncertainty Estimation (GLUE) (He et al., 2009; Sun et 

al., 2016) and c.) Noisy Monte Carlo Genetic Algorithm (NMCGA) (Ines & Mohanty, 2008; Jha 

et al., 2021).  

GENCALC calculates the genetic coefficients of new cultivars using a gradient search 

technique using crop, weather, and soil data input for the genotype. However, it does not account 

for parameter uncertainty. GLUE overcomes this limitation by using observed data and a priori 

information about parameter distributions to estimate posterior distributions of model parameters. 

The prior and posterior distributions are computed based on Bayes’ theorem (Bolstad & Curran, 

2016), which is used to understand uncertainties in parameters and model outputs. Another method 
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is Noisy Monte Carlo Genetic Algorithm (NMCGA) (Ines & Mohanty, 2008) which employs a 

Monte Carlo approach to evaluate realizations of model parameters with assumed distributions. 

The process of basic genetics (selection, crossover, and mutation) is employed at each solution of 

model parameter for every generation until a solution is achieved, which is judged based on the 

goodness-of-fit of the model. The coefficients chosen for this study are an ensemble (weighted 

average) of all three methods, which yielded the best performing parameters and can be adopted 

across the geographical location for the validation studies. The weights were assigned based on 

inverse squared distance between the predicted and observed variable(s) of phenology and growth, 

which is substantially impacted by respective phenology or growth coefficients (Jha et al., 2021). 

 

Figure A9. Complete map of all validation weather stations 
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Figure A10. Example of Pareto fronts from 1991 and 1994 
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Table A3. Growing degree day in Fahrenheit during the innovization period for the vegetative 

and reproductive development stages 

Innovization 

Years* 

Vegetative and Reproductive Development Stages (number of days after planting) 

V6 V7 V8 V9 V10 V11 V12 V13 V14 R1 R2 R3 R4 R5 R6 

1989n 61 65 69 72 78 80 83 85 87 100 110 120 126 132 162 

1990w 57 61 65 71 75 78 81 84 86 99 109 119 125 131 161 

1991d 46 50 54 58 62 65 68 71 74 84 94 104 110 116 146 

1992n 62 66 70 75 80 84 87 90 93 108 118 128 134 140 170 

1993w 60 64 68 72 77 80 83 86 89 100 110 120 126 132 162 

1994n 55 59 63 66 71 74 77 80 83 94 104 114 120 126 156 

1995n 61 65 69 72 78 81 84 87 90 102 112 122 128 134 164 

1996w 58 62 66 70 76 78 81 84 87 100 110 120 126 132 162 

1997w 66 70 74 77 84 87 90 93 96 107 117 127 133 139 169 

1998d 53 57 61 65 69 71 74 77 80 91 101 111 117 123 153 

1999d 50 54 58 64 70 72 75 78 81 91 101 111 117 123 153 

2000n 53 57 61 66 71 74 77 80 83 96 106 116 122 128 158 

2001w 54 58 62 66 73 75 78 81 84 97 107 117 123 129 159 

2002d 59 63 67 71 75 77 80 83 86 99 109 119 125 131 161 

2003d 61 65 69 73 78 80 83 86 89 103 113 123 129 135 165 

2004n 47 51 55 60 65 69 72 75 78 91 101 111 117 123 153 

2005d 52 56 60 67 71 73 76 79 82 96 106 116 122 128 158 

2006w 55 59 63 67 71 74 77 80 83 97 107 117 123 129 159 

2007n 50 54 58 63 66 69 72 75 78 90 100 110 116 122 152 

2008w 53 57 61 69 74 76 79 82 85 100 110 120 126 132 162 

2009n 58 62 66 70 74 76 79 82 85 101 111 121 127 133 163 

2010n 52 56 60 65 69 71 74 77 80 94 104 114 120 126 156 

2011w 57 61 65 70 75 78 81 84 87 106 116 126 132 138 168 

2012d 53 57 61 66 70 73 76 79 82 96 106 116 122 128 158 

2013n 57 61 65 70 74 76 79 82 85 100 110 120 126 132 162 

2014n 56 60 64 68 73 75 78 81 84 98 108 118 124 130 160 

2015n 54 58 62 67 72 74 77 81 84 97 107 117 123 129 159 

2016n 55 59 63 67 72 74 77 81 84 99 109 119 125 131 161 

2017w 55 59 63 67 73 77 80 83 86 102 112 122 128 134 164 

2018w 60 64 60 64 69 71 74 77 80 93 103 113 119 125 155 

* A superscript d denotes a dry year of precipitation, a superscript n denotes a normal year of precipitation, and a superscript w denotes a wet year of 

precipitation. 
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Table A4. The p-values of the innovization strategies over the common practice strategy for all 

validation seasons as well as over different climate scenarios. Superscripts +, −, and ≈ denote a 

statistical improvement, statistical worsening, or no statistical change from the common practice 

strategy, respectively. 

Strategy  

Yield  

p-values 

Leaching 

p-values 

Water Efficiency  

p-values 

 

 Performance across all years 

Irrigation recommendation 3.51%+ 64.45%≈ 0.31%− 

Nitrogen recommendation 90.46%≈ 95.89%≈ 90.90%≈ 

All recommendations 3.21%+ 61.13%≈ 0.30%− 

 
Performance during dry years  

Irrigation recommendation 38.86%≈ 89.14%≈ 15.32%≈ 

Nitrogen recommendation 99.91%≈ 93.26%≈ 89.71%≈ 

All recommendations 38.83%≈ 80.99%≈ 16.45%≈ 

  Performance during normal years  

Irrigation recommendation 28.25%≈ 88.37%≈ 0.09%− 

Nitrogen recommendation 96.82%≈ 87.26%≈ 100.00%≈ 

All recommendations 24.41%≈ 91.53%≈ 0.09%− 

 
Performance during wet years  

Irrigation recommendation 2.83%+ 48.25%≈ 5.11%− 

Nitrogen recommendation 90.64%≈ 94.92%≈ 99.67%≈ 

All recommendations 2.94%+ 49.07%≈ 5.01%− 
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Supplementary Materials: Improved Evolutionary Operator for Sparse Large-Scale Multi-

Objective Optimization Problems 

 

Figure A11. Distribution of nonzero values throughout a population of 100 with 1,000 decision 

variables from SPSS.  
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Figure A12. Target sparsities versus actual sparsities realized in SSPS. As θ increases, the gap 

calculation increasingly affects the accuracy of the realized sparsity in the population. 
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Figure A13. The distribution of sparsity after repeatedly performing S-SBX on the same initial 

population 1,000 times. The initial population is generated through SSPS with a target sparsity of 

0.25. See how the distribution of resulting sparsities are distributed around the initial sparsity, 

similar to the distribution for SBX or PM. 
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Figure A14: Performance (i.e., mean HV) of the studied algorithms solving SMOP1 with 

increasing numbers of decision variables. The shaded areas around each mean line is the 95% 

confidence interval for the mean. 
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Figure A15: Performance (i.e., mean HV) of the studied algorithms solving SMOP2 with 

increasing numbers of decision variables. The shaded areas around each mean line is the 95% 

confidence interval for the mean. 
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Figure A16: Performance (i.e., mean HV) of the studied algorithms solving SMOP3 with 

increasing numbers of decision variables. The shaded areas around each mean line are the 95% 

confidence interval for the mean. 
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Figure A17: Performance (i.e., mean HV) of the studied algorithms solving SMOP4 with 

increasing numbers of decision variables. The shaded areas around each mean line are the 95% 

confidence interval for the mean. 
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Figure A18: Performance (i.e., mean HV) of the studied algorithms solving SMOP5 with 

increasing numbers of decision variables. The shaded areas around each mean line are the 95% 

confidence interval for the mean. 
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Figure A19: Performance (i.e., mean HV) of the studied algorithms solving SMOP6 with 

increasing numbers of decision variables. The shaded areas around each mean line are the 95% 

confidence interval for the mean. 
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Figure A20: Performance (i.e., mean HV) of the studied algorithms solving SMOP7 with 

increasing numbers of decision variables. The shaded areas around each mean line are the 95% 

confidence interval for the mean. 
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Figure A21: Performance (i.e., mean HV) of the studied algorithms solving SMOP8 with 

increasing numbers of decision variables. The shaded areas around each mean line are the 95% 

confidence interval for the mean. 
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Figure A22: Performance (i.e., mean HV) of the studied algorithms solving the NN training 

problem, data set 1, with increasing numbers of decision variables. The shaded areas around each 

mean line are the 95% confidence interval for the mean. 
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Figure A23: Performance (i.e., mean HV) of the studied algorithms solving the NN training 

problem, data set 2, with increasing numbers of decision variables. The shaded areas around each 

mean line are the 95% confidence interval for the mean. 

1000 2000  000 4000 5000 6000

Decision  ariables

0.91

0.92

0.9 

0.94

0.95

0.96

0.9 

0.9 
 
 

S NSGA II

SparseEA

SparseEA2

MOEA/PSL

PM MOEA



151 

 

Figure A24: Performance (i.e., mean HV) of the studied algorithms solving the NN training 

problem, data set 3, with increasing numbers of decision variables. The shaded areas around each 

mean line are the 95% confidence interval for the mean. 
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