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ABSTRACT 

NETWORK-WIDE CHARGING INFRASTRUCTURE PLANNING AND MARKET SHARE 
ANALYSIS FOR ELECTRIC VEHICLES 

By 

Mohammadreza Kavianipour 

Electric vehicles (EVs) are widely considered a sustainable substitution to conventional vehicles 

to mitigate fossil fuel dependence and reduce tail-pipe emissions. However, limited ranges, long 

charging times, and lack of charging infrastructure have hindered EV’s market acceptance. This 

calls for more investments in building charging stations and advancing battery and charging 

technologies to obviate issues associated with EVs and increase their market share and improve 

sustainability. This study introduces modeling frameworks to optimize fast-charging infrastructure 

locations at the network level to address the challenges associated with EVs. Furthermore, it 

investigates the required charging investments for the current and future EV market shares, 

technology advancements, and seasonal demand variations.  

First, this study seeks an optimal configuration for plug-in electric vehicle charging 

infrastructure that supports their long-distance intercity trips at the network level. A mathematical 

optimization model is proposed which minimizes the total system cost and considers the range 

anxiety, multiple refueling, maximum capacity, charging delay, and detour time. This study 

considers the impacts of charging station locations on the traffic assignment problem with a mixed 

fleet of electric and conventional vehicles considering a user equilibrium framework. This study 

fills existing gaps in the literature by capturing realistic patterns of travel demand and considering 

flow-dependent charging delays at charging stations in intercity networks. 



 

 

Then, the study focuses on Michigan and its future needs to support the intercity trips of 

EVs across the state in two target years of 2020 and 2030, considering monthly traffic demand and 

battery performance variations, as well as different battery sizes and charger technologies, the main 

contributing factors in defining the infrastructure needs of EV users, particularly in states with 

adverse weather conditions. This study incorporates the developed intercity model to suggest the 

optimal locations of EV fast chargers to be implemented in Michigan. 

Next, this study introduces an integrated framework for urban fast-charging infrastructure 

to address the range anxiety issue in urban networks. Unlike intercity trips that start with fully 

charged batteries, urban trips might start with any state of charge because of home/work chargers' 

unavailability, being part of a trip chain, and forgetting to charge overnight. A mesoscopic 

simulation tool is incorporated to generate trip trajectories, and a state-of-the-art tool is developed 

to simulate charging behavior based on various trip attributes for these trajectories. The resulting 

temporal charging demand is the key element in finding the optimum charging infrastructure. The 

solution quality and significant superiority in the computational efficiency of the decomposition 

approach are confirmed in comparison with the implicit enumeration approach.  

Finally, this study generates forecasting models to estimate the number of chargers and 

charging stations to support the EV charging demand for urban areas. These models provide 

macro-level estimates of the required infrastructure investment in urban areas, which can be easily 

implemented by policy-makers and city planners. This study incorporates data obtained from 

applying a disaggregate optimization-based charger placement model, for multiple case studies to 

generate the required data to calibrate the macro-level models, in the state of Michigan.  
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 Introduction 

1-1- Overview and Objectives 

In the U.S., transportation mostly hinges on gasoline and diesel fuels which contribute to energy 

insecurity and environmental issues. In 2019, transportation was responsible for 37% of the total 

energy used in the U.S., of which 70% is from burning petrolium in conventional vehicles (CVs) 

(U.S. Energy Information Administration, 2019). Furthermore, around 28 percent of Green House 

Gas (GHG) emissions in the U.S. were caused by transportation in 2018 (United States 

Environmental Protection Agency, 2018). The concerns about vehicle emissions and crude oil 

price fluctuations have pushed the car industry towards investment in electric vehicles (EV) 

production (Dong et al., 2014; He et al., 2013). EVs remove on-road emissions and can mitigate 

air pollution significantly if accompanied by green energy production. However, limited driving 

range and insufficient supporting infrastructure, as well as long charging times, have hindered the 

acceptance of EVs in the market (He et al., 2013; Nie and Ghamami, 2013). Although some current 

EV models can exceed 300 miles per charge, the range is still lower than that of similar 

conventional vehicles (CV). Also, unlike CVs, EVs' performance decreases further in cold weather 

(Krisher, 2019). Therefore, customers are concerned about being stranded along their way by 

running out of charge and not having access to charging stations, which is known as range anxiety 

(Tate et al., 2008). Providing adequate charging infrastructure mitigates some of the challenges 

associated with EVs and is known to be among the main factors to increase their market share (Nie 

et al., 2016). 

In the U.S., the government has promoted EVs' adoption by contributing to the expansion 

of charging infrastructure (Deb et al., 2018). There have been numerous initiatives to favor EV 

charging stations across the U.S. For instance, in an attempt to provide long-distance travels for 



2 

Tesla vehicles, this company has installed a national network of 357 DCFC stations that underpin 

2,478 fast chargers within the past five years (U.S Department of Energy, 2017). In addition, 

Electrify America is committed to a $2 billion investment in zero-emission vehicle initiative over 

the next decade (Electrify America, 2017; Green Car Reports, 2017). Electrify America plans to 

establish a vast community-based network of EV chargers and about 300 DCFC stations along 

corridors carrying high traffic volumes and linking metropolitan areas in 39 states. Recently, the 

U.S. Department of Transportation (USDOT) has specified a number of highways as alternative 

fuel corridors to promote an increased uptake of AFVs (U.S. Department of Transportation, 2017). 

To meet the aims of these initiatives, researchers should investigate the EV charging infrastructure 

needs in different states in order to take actions on building the required infrastructure that meets 

the potential EV demands.  

Many technologies have been introduced to provide the charging infrastructure required 

for EVs. Battery swapping stations, dynamic chargers, and fast-charging stations are among the 

most well-known technologies. Battery swapping stations store different types of fully charged 

batteries and can exchange the EVs depleted batteries very fast. However, the problems regarding 

the storage of multiple types of batteries as well as the battery ownership dilemma have made this 

business model struggling (Mirchandani et al., 2014). Another technology is dynamic charging 

stations, a relatively new technology, which recharges the vehicles while they are traveling 

(Riemann et al., 2015). These chargers seem to be profitable for electric vehicles that have fixed 

routes e.g., buses and taxis. The next technology is associated with incorporating fast chargers, 

which are stationary and EVs need to be plugged into them to get charged. Although there are 

three levels of chargers, only the Level 3 chargers can provide a reasonable level of service and 

feasibility for network applications (Nie and Ghamami, 2013).  
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The charging problem needs to be addressed for urban and intercity trips separately. 

Intercity trips are often considered to be stand-alone trips, in which EVs are highly likely to have 

fully charged batteries due to their preplanned nature. However, even a fully charged battery may 

not be enough for EVs to reach their destination. Therefore, the objective of intercity studies is to 

provide feasibility across the network or maximize the coverage while maintaining a limited 

budget. Urban trips, however, are part of chain of trips, in which EVs might have any state of 

charge (depending on the availability of chargers and dwell time for recharging at the trip origin). 

Therefore, the charging incidence in one trip may depend on its sequential trips as well, i.e., the 

vehicle might recharge during a feasible trip to prevent charging in a subsequent infeasible one 

(Usman et al., 2020). To capture the differences in users’ behavior, this study proposes different 

modeling frameworks for each case.  

 The purpose of this study is fivefold. First, it provides a framework for the optimization 

of charging station infrastructures for intercity networks considering range anxiety, charging and 

queuing delay, detour time, and network-wide trip feasibility. This study guarantees that all EV 

trips are fulfilled while minimizing the total system cost. Second, it sets out to incorporate monthly 

demand and battery performance variations at different months in the intercity network model in 

two target years of 2020 and 2030. The battery performance and traffic demand fluctuations in 

different months are expected to be extremely significant for the state of Michigan, because of the 

frequent severe weather conditions, as well as the tourism attractions in the state. Thirdly, this 

study investigates the charging requirements of EVs for intercity trips in Michigan, considering a 

variety of charging and vehicle technologies. Fourthly, the study introduces an integrated 

framework for urban fast-charging infrastructure to address the range anxiety issue. It guarantees 
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the feasibility for all trips while minimizing the total system cost. Finally, this study introduces 

forecasting models to estimate the required charging infrastructure for small urban areas. 

1-2- Knowledge Gap and Research Motivation 

Despite the extensive research conducted on the charging station planning problem, there is still a 

further need to develop approaches to realistically capture the users’ behavior in determining the 

optimal charging infrastructure configuration. More specifically, the trade-off between the 

infrastructure cost, which includes the charging station cost and charger cost, and users’ delay cost, 

which includes charging time, queuing time, and detour time, need to be captured realistically. In 

intercity networks, the feasibility of routes for EVs might depend on the availability of charging 

stations along them. As more EVs would traverse routes with charging stations, the traffic on the 

network links would be affected by the availability of charging stations as well. Thus, assigned 

routes and charging station allocation need to be determined jointly in an integrated model. As a 

result, a user equilibrium framework needs to be embedded into a system optimal framework to 

capture the route and recharging choices of users. 

The other factors affecting the users’ behavior are battery performance reduction in cold 

seasons and monthly demand variations. These factors are expected to be extremely significant for 

the state of Michigan, because of the frequent severe weather conditions during the winter season, 

as well as tourism attractions in the state during warmer seasons. Although the effects of EV 

demand seasonality on power consumption of EVs are investigated in a few studies (Bikcora et 

al., 2015; Donadee et al., 2014; Murakami et al., 2014; Shortt and O’Malley, 2014), there is a lack 

of studies in the literature that account for realistic traffic demands of the mixed fleet of 

conventional and electric vehicles in different months in the charging placement problem. 
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Thirdly, as a part of strategic charging planning, there is a need to investigate the optimal 

charging infrastructure configuration in the light of future technological advancements. High-end 

batteries and chargers can decrease the charging demand and charging time, respectively, and 

increase the EVs’ market share. This study captures the impact of technological advancements 

through sensitivity analysis on the optimal charging infrastructure and finds out the required 

investments to address the EV charging demand in two target years of 2020 and 2030. 

Fourthly, unlike intercity trips, which are often considered as stand-alone trips and are 

highly likely to have fully charged batteries due to their preplanned nature, urban trips are part of 

chain of trips, in which EVs might start with any state of charge (depending on the availability of 

chargers and dwell time for recharging at the trip origin). Therefore, the charging incidence in one 

trip may depend on its sequential trip as well, i.e., the vehicle might recharge during a feasible trip 

to prevent charging in a subsequent infeasible one (Usman et al., 2020). Therefore, there is a need 

to introduce a framework for urban fast-charging infrastructure to address the range anxiety issue 

while considering the chain of trips and state of charge variations at the start of each trip. 

Finally, estimating charging demand, modeling the problem, adopting integer programming, and 

efficiently solving the problem, make the urban charging infrastructure planning a demanding task 

in terms of input requirements and computational complexity. Thus, finding the optimal solution 

might not be practical or cost-efficient in all urban areas. A macro-level model can yield estimation 

to the required charging infrastructure, which provides insights to urban areas for planning 

purposes and high-level decision-making on policies and budget allocation. 

1-3- Research Significance and Contributions 

The main objective of this study is to provide mathematical frameworks to realistically capture the 

charging behavior of EVs, estimate their charging demand, and locate charging infrastructure to 
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address this demand in large-scale intercity and urban networks. This study captures the realistic 

behavior of users and considers the demand/supply variations to address some of the existing gaps 

in the literature of the facility location problem in large-scale networks. The main contributions of 

this study are as follows: 

- Suggesting a configuration for plug-in electric vehicle charging infrastructure to support 

long-distance intercity trips of electric vehicles at the network level. 

- Capturing realistic patterns of travel demand and considering flow-dependent charging 

delays at charging stations. 

- Considering monthly demand and battery performance variations, which are two 

contributing factors in defining the infrastructure needs of EV users, particularly in states 

with adverse weather conditions. 

- Investigating the impact of different battery and charger technologies on the configuration 

of charging infrastructures. 

- Developing a framework for urban fast-charging infrastructure to address the range anxiety 

issue. 

- Presenting a framework to simulate EVs charging behavior and charging demand in urban 

areas using a trip-based model.  

- Developing macroscopic models to forecast the future required charging infrastructure in 

small urban areas 

1-4- Research Methods and Dissertation Outline 

This dissertation is organized in seven chapters. The first two chapters provide the description of 

the concept and objectives of the study as well as a comprehensive background review on the 

dissertation topic. Chapter 3 presents a facility location problem to find the optimum charging 
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infrastructure in intercity networks considering route choice and travel time delay for a mixed fleet 

of electric and conventional vehicles at the network level. At the network level, the impacts of 

charging station locations on the traffic assignment problem with a mixed fleet of electric and 

conventional vehicles need to be considered. To this end, a traffic assignment module is integrated 

with a simulated annealing algorithm. This problem is formulated as a mixed-integer program with 

nonlinear constraints, which is known to be NP-hard, including possible local optimal solutions. 

Therefore, an SA algorithm is used to solve the proposed model in the intercity network of 

Michigan.    

Chapter 4 extends the intercity charging infrastructure model presented in Chapter 3 by 

considering monthly traffic patterns and battery performance variations. These two factors can 

affect the optimum charging infrastructure, particularly in states with adverse weather conditions. 

While the cold weather decreases the travel demand, the battery performance drops as well. On 

the other hand, the increased travel demand in warm seasons is associated with a higher battery 

performance. This chapter aims to propose a modified and robust framework to capture the impact 

of seasonality and provide a solution which is optimal throughout the year. 

Chapter 5 investigates the impacts of technological advancements on the charging 

infrastructure configuration. The battery capacity and charging power determine the range of EV 

and charging rate, respectively. Higher capacity batteries alleviate the charging demand while 

high-charging-power stations increase the service rate. On the other hand, these technologies 

dictate a higher price to the network. This chapter studies the impact of these factors on the 

optimum charging infrastructure configuration.  

Chapter 6 introduces an integrated framework for urban fast-charging infrastructure to 

address the range anxiety issue. A mesoscopic simulation tool is developed to generate trip 
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trajectories and simulate charging behavior based on various trip attributes. The resulted charging 

demand is the key input to a mixed-integer nonlinear program that seeks charging station 

configuration. The model minimizes the total system cost including charging station and charger 

installation costs, and charging, queuing, and detouring delays. The problem is solved using a 

decomposition technique where one sub-problem finds the location of charging stations and the 

second sub-problem determines the number of required chargers within the charging station. The 

first sub-problem is solved by incorporating a commercial solver for small networks, and a 

heuristic algorithm for large-scale networks. The second sub-problem is solved using the Golden 

Section method.  

Chapter 7 generates regression models to estimate the number of chargers and charging 

stations to support the EV charging demand for urban areas. These models provide macro-level 

estimates of the required infrastructure investment in urban areas, which can be easily 

implemented by policy-makers and city planners. This chapter incorporates data obtained from 

applying the disaggregate optimization-based charger placement model, developed in chapter 6, 

for multiple case studies to generate the required data to calibrate the macro-level models, in the 

state of Michigan. This simulated data set includes the number of charging stations and chargers 

for each market share, technology advancement scenario, and the transportation network topology. 

Finally, chapter 8 provides future research directions and a summary of the concluding remarks of 

this study. 
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 State of the Art Review 

2-1- Overview 

A comprehensive review of the previous studies on the facility location problem is 

presented in this chapter. Then, the refueling charging infrastructure for alternative fuel vehicles, 

especially EV charging infrastructure, is studied. Then, the literature of EVs charging 

infrastructure is reviewed for both urban and intercity areas thoroughly. Finally, the external 

factors affecting the optimal location of charging stations are investigated. 

2-2- Facility Location Problem 

Private and public firms usually face the problem of where to locate their facility at least once in 

their history (Daskin, 1995). The quality of service and the transportation costs of an agency 

depends on its location. Many facility location models have been introduced to help private and 

public decision-makers with addressing this concern. These models are categorized into set 

covering models, center problems, median problems, and fixed charge facility location problems 

(Daskin, 1995). 

Set covering models locate the minimum number of facilities while ensuring a given level 

of service, e.g., locating the required charging stations to provide service to a city in less than 5 

minutes. On the other hand, center problems locate a given number of facilities to provide a service 

for customers within the tightest possible standard. In case of interest to locate a given number of 

facilities which can find the least average distance between the facilities and customers, median 

problems are usually implemented. In all these cases, the implicit assumption is a uniform facility 

cost that favors no location over others. However, infrastructure cost of a facility might depend on 

the location as well, e.g., building a charging station in downtown can provide greater access for 
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the public. However, more expensive land would result in a higher infrastructure cost. Fixed 

charged location problems can make a balance between the different costs in the network. The 

models presented in this study consider the different costs in the system where a set of candidate 

locations are selected to minimize the total system cost. 

Facility location problems are integer programming problems. Some of the preliminary 

models in this category have exact solutions. However, for the more complicated ones, and the 

ones with nonlinear constraints, there are no exact solutions, as they are np-hard problems. 

Therefore, heuristic algorithms are usually implemented to solve them, which might not yield to 

the optimum solution. In this study, the focus is to formulate the problems correctly and consider 

all the influential components in each model and solve it through proposed frameworks. 

Formulating the problem correctly and considering all important components is known to be the 

most important part of the problem, whether obtaining the optimal or suboptimal solution to it 

(Mirchandani and Francis, 1990).  

2-3- Refueling Station Planning Problem  

The refueling station location model is a part of facility location model where the location of 

refueling stations and their allocated demand are determined simultaneously. This problem is 

studied extensively in the literature for  alternative fuel vehicles (AFVs) including vehicles driving 

on biodiesel, ethanol, propane, hydrogen, liquid natural gas (Erdoğan and Miller-Hooks, 2012; 

Kuby and Lim, 2007, 2005; Shukla et al., 2011; Upchurch et al., 2009), and electricity 

(Mirchandani et al., 2014; Nie and Ghamami, 2013). 

EVs are considered new technology and their charging infrastructure have been studied in 

the past 15 years. At the start of employing EVs, plug-in hybrid electric vehicles (PHEVs) were 

more common. PHEVs have limited electric range and thus, numerous studies aim to maximize 
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the distance traveled on electricity (Dashora et al., 2010; Dong and Lin, 2012; Eberhard and 

Tarpenning, 2006; He et al., 2013). With the advancement of battery and charging technology, 

higher capacity batteries become available while chargers provide more power, which reduces the 

charging time and induces a different charging pattern than the slow charging at home. Therefore, 

the next generation of EVs only have battery storage and are called battery electric vehicles 

(BEVs), or as referred to for the remainder of this study, EVs. The studies focusing on EVs 

charging station locations mainly distinguish between intercity trips (Kuby and Lim, 2007; Lim 

and Kuby, 2010) and urban trips (Chen et al., 2013; Dong et al., 2014; Frade et al., 2011; Ghamami 

et al., 2016b; Sweda and Klabjan, 2011) due to behavioral differences between these two types of 

trips. Similarly, these trips are studied separately in this study as well. 

2-4- EVs Charging Infrastructure at Intercity Networks 

Since the main deficiency of current BEVs , is their limited range, long distance intercity trips are 

the major concern for these vehicles. The optimization of charging locations for EV intercity trips 

is studied extensively in the literature (Ghamami et al., 2016b; He et al., 2015, 2018; Jing et al., 

2017; Nie and Ghamami, 2013; Riemann et al., 2015). Some of the early studies used flow 

capturing location modes (FCLMs) to maximize the captured flow by providing the charging 

stations on the intersecting roads with the maximum flow (Berman et al., 1992; Hodgson, 1990). 

However, FCLM cannot address the multiple required refueling stops along paths exceeding the 

vehicle range. To address this issue, the flow refueling location model (FRLM) has been 

introduced, in which round trips are considered and vehicles can be refueled more than once on 

their path (Kuby and Lim, 2005; Mirhassani and Ebrazi, 2013; Nourbakhsh and Ouyang, 2010; 

Xie et al., 2016). An optimization model explores EVs travel along a long corridor, and captures 

the tradeoff between investing in charging stations or batteries to provide a certain level of service 
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for travelers (Nie and Ghamami, 2013). The results suggest that for intercity travel, only fast-

charging stations can provide an acceptable level of service. The model is then extended to 

minimize the total system cost, including infrastructure investment, battery cost, and users’ time 

cost including queuing delay (Ghamami et al., 2016b). This model considers multiple origin-

destination (OD) pairs for a single type of EV and one corridor of travel. Other studies have also 

considered queuing delay as an element of routing (Chen et al., 2020; Jung et al., 2014). However, 

there is a need to find the best allocation of EV charging stations throughout an intercity network, 

where parallel and intersecting corridors exist.  

Path flow assignment and optimum location of facilities interact with each other, since the 

placement of facilities can affect traffic flow patterns. It is reasonable to assume that for long-

distance trips, locations of charging facilities may affect the route choice of the EV users as well 

as other travelers. In other words, due to the technological advancement and ubiquitous presence 

of internet and routing apps, users are aware of the traffic on roads and behave selfishly and 

noncooperatively just to minimize their own travel time and costs. Wardrop defines this concept 

as the user equilibrium traffic assignment problem for intra-city transportation networks (Wardrop, 

1952). This concept is implemented in intercity networks by many studies (Bai et al., 2011; 

Hajibabai et al., 2014; He et al., 2015). In user equilibrium for EVs, the limited range of EVs is 

also another element of the routing problem. Some studies have considered these factors to model 

the behavior of EVs and find the optimum location for charging stations (He et al., 2014; Jing et 

al., 2017; Zhang et al., 2018). However, these studies have not considered the queuing delay 

experienced by EVs. 

There are numerous studies on the location of chargers for EVs, and each of these models 

has some underlying assumptions. One of the most recent studies on charger placement considers 
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both users and investors by assuming queuing and charger cost. However, this study assumes 

charging after a fixed driving distance and only one facility is allowed on each link (Chen et al., 

2020). In another study, a network-level analysis is proposed for the location of DC fast chargers. 

This study assumes that EVs follow the fixed shortest path between different OD pairs (He et al., 

2019) and aims to solve the model based on this limiting assumption by proposing a 

comprehensive optimization framework. 

2-5- EVs Charging Infrastructure at Urban Networks 

Unlike intercity trips, which are often considered as preplanned and stand-alone trips and EVs are 

highly likely to depart from their origin fully charged, urban trips are part of a chain of trips, in 

which EVs might start with any state of charge (depending on the availability of chargers and 

dwell time for recharging at the trip origin). Therefore, the charging incidence in one trip may 

depend on its sequential trip as well, i.e., the vehicle might recharge during a feasible trip to prevent 

charging in a subsequent infeasible one (Usman et al., 2020). 

One common approach is to incorporate data-driven models developed from travel surveys 

considering endpoint, distance, purpose, departure time, and arrival time of each trip to find the 

charging demand. The charging demand is then used to select charging stations from a set of 

candidate locations to minimize unfulfilled trips. In addition to travel survey data, exploiting trip 

trajectory travel data is another common approach to find the charging demand. The taxis’ trip 

trajectory data has been used in numerous studies; e.g., to identify the locations with longest dwell 

times as the candidate points (Cai et al., 2014), adopt an optimization-based approach to find the 

hotspots maximizing the vehicles-miles-traveled (VMT) on electricity (Shahraki et al., 2015), and 

minimize the infrastructure cost considering congestion at charging stations (Yang et al., 2017). 

The models using taxi trajectories can be applied for taxis or buses but are not suitable for private 
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EVs due to the limited availability of GPS data. Therefore, an alternative approach to capture travel 

data is to use traffic simulation for the origin-destination demand tables. In this regard, some 

studies consider the fixed-route choice and travel patterns (Berman et al., 1992; Hodgson, 1990; 

Kuby and Lim, 2007, 2005; Lim and Kuby, 2010; Nourbakhsh and Ouyang, 2010; Upchurch et 

al., 2009; Xie et al., 2016; Zockaie et al., 2016), while others capture the interactions between 

service facility locations and the traffic assignment problem (Bai et al., 2011; Ghamami et al., 

2020a; Hajibabai et al., 2014; He et al., 2013, 2018; Riemann et al., 2015). Capturing these 

interactions makes the problem computationally cumbersome in large scale networks. This study 

relies on traffic simulation to generate vehicle trajectories. It captures the interaction between 

charging station locations and vehicles' assignment and introduces a heuristic technique to reduce 

the problem complexity. 

Due to the lack of real-world data on details of EVs’ trip trajectories and their state of 

charge along their trips, simulations were implemented to generate this data. Some studies locate 

charging stations using a simulation-optimization model minimizing investment cost for different 

types of chargers and/or the number of trajectories that are unable to reach their destination due to 

the lack of infrastructure (Dong et al., 2014; Xi et al., 2013). Another approach adopts real-time 

taxi trajectories and uses a time-series simulation model for traveling and charging behavior of 

plug-in hybrid electric vehicles to provide insights on optimal charging station development plans 

(Li et al., 2017). This study addresses charging and trip trajectory data unavailability by developing 

a state of charge simulator within a simulation-optimization framework.  

2-6- Impact of Queuing on Charging Infrastructure 

The queuing delay is usually considered to determine the number of chargers as a bi-level 

or separate problem (Jung et al., 2014; Wang et al., 2019; Xie et al., 2018). Xie et al. 2018 defined 
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one feasible path for each OD and provided enough chargers to certify a certain level of service 

(Xie et al., 2018). Jung et al. 2014 located the charging stations for electric taxis introducing a 

stochastic dynamic itinerary-interception refueling location model considering the queuing delay 

(Jung et al., 2014). They considered that users have information on the expected queuing delay in 

each charging station through a bi-level setting. The lower level incorporates an activity-based 

simulation framework to simulate the behavior of EVs based on the charging stations and chargers 

found in the upper-level program. Wang et al. 2019 defined different charging scenarios and 

embedded the expected waiting time into link travel times underlying the assumption that EVs 

have access to the expected waiting time information (Wang et al., 2019). In another approach, the 

nonlinear queuing constraints within the optimization models are linearized with logarithmic 

transformation and solved using commercial solvers (Yang et al., 2017). The impact of queuing 

on the assignment of vehicles to charging stations has been studied for locating chargers and 

charging stations that support the intercity trips of EVs. Some studies capture the exact 

deterministic and non-deterministic queuing delay, as well as range anxiety and detour time, in bi-

level or single-level optimization frameworks (Chen et al., 2020; Ghamami et al., 2020a; Zhang et 

al., 2018). The intercity studies generally assume a fully charged battery at the start of trips, which 

makes them inapplicable to urban networks since almost all urban trip distances are in the range 

of current EVs. 

2-7- Seasonal Variations 

Two important contributing factors in defining the infrastructure needs of EV users are battery 

performance and traffic demand fluctuations in different months (Hao et al., 2020). These factors 

are expected to be extremely significant for networks experiencing frequent severe weather 

conditions due to the reduction of battery performance in adverse weather and increased travel 
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demand in favorable weather conditions. Therefore, traffic demand variations across different 

months are accounted for in this study to capture multi-view perspectives and better equip the 

study network as part of the desired more electrified U.S. transportation system. Although the 

effects of EV demand seasonality on power consumption of EVs are investigated in a few studies 

(Bikcora et al., 2015; Donadee et al., 2014; Murakami et al., 2014; Shortt and O’Malley, 2014), 

there is a lack of studies in the literature that account for realistic traffic demands of the mixed 

fleet of conventional and electric vehicles in different months in the charging placement problem. 

In addition to travel demand fluctuations, this study differentiates between battery performances 

in favorable and extreme (or cold) weather conditions. 

2-8- Technology Advancements 

Although there are many studies on charging station planning, a few studies explore the future 

required charging infrastructure considering EV technologies advancements. A study investigates 

the entire U.S. network for EV charger placement needs considering 2010 long-distance travel 

data and maximizes the long-distance trips completions (He et al., 2019). The designed scenarios 

in this study consider discrete charging powers from 50 kW to 250 kW and EV ranges from 60 mi 

to 250 mi. Another study investigates charging powers of 50 kW, 100 kW, and 150 kW, and 

driving ranges of 62.5 mi, 125 mi, and 187.5 mi using an aggregate model and simulation of EV 

drivers’ charging behavior (Gnann et al., 2018). A recent research explores the long-term DCFC 

charging planning in the U.S., which considers a 15-year horizon starting in 2015 (Xie et al., 2018). 

In this study, a multi-period framework is proposed and solved using a genetic algorithm (GA) to 

determine the location and timing of station openings, as well as the number of required chargers 

at each location. Several battery types and fuel efficiencies, leading to different vehicle driving 

ranges (from 75 mi to 300 mi), are considered. However, planning for the future requires more in-
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depth and detailed analyses, which cannot be captured correctly by aggregate models. Also, as 

infrastructure advancements and expansions are required to increase market acceptance of EVs, 

user convenience should also be considered when building a network of charging stations.  

2-9- Forecasting Models 

Estimating charging demand, modeling the problem, adopting integer programming, and 

efficiently solving the problem, make the charging infrastructure planning a demanding task in 

terms of input requirements and computational complexity (Singh et al., 2022). Thus, finding the 

optimal solution might not be practical or cost-efficient in all urban areas. A macro-level model 

can yield estimation to the required charging infrastructure, which provides insights to urban areas 

for planning purposes and high-level decision-making on policies and budget allocation. The 

variation in the exact location of charging stations would not cause significant variation in detours 

in small urban areas. The current urban charging infrastructure planning tools, e.g., EVI-Pro 

(Wood et al., 2017) and BEAM (Sheppard et al., 2017), simulate the activities of EVs, which can 

be used in optimization models. EVI-Pro provides two different modules for intercity and urban 

networks. The EVI-Pro intercity module locates charging stations and chargers along intercity 

corridors. This module considers traffic volume and determines the number of chargers per station 

as a function of charging time, EV adoption level, peak traffic volume, and station spacing. On the 

other hand, the urban module tracks the EV state of charge for a sample of available trajectories 

provided by GPS devices. This module finds the feasible charging scenarios for each agent by 

ensuring a minimum threshold of available charge. Then, it finds the infrastructure required to 

satisfy the charging demand depending on the spatial/temporal charging incidence. This module 

assumes that charging events occur only during dwell times and does not consider the day-to-day 

charging demand variations. M.J. Bradley & Associates (“M.J. Bradley & Associates,” 2021) 
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developed a regression-based planning tool to estimate the required infrastructure for intercity 

travels. However, to the authors' best knowledge, there is no ready-to-use regression model 

designed for urban areas to be adopted by municipalities. 
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 Charging infrastructure planning in intercity networks 

3-1- Overview 

Despite the extensive research conducted on the charging station planning problem, there is still a 

further need to develop approaches to realistically capture the users’ behavior in order to determine 

the optimal charging infrastructure configuration. More specifically, the trade-off between the 

infrastructure cost and users delay cost need to be captured realistically. In this chapter, the 

problem of EV charging infrastructure to support long-distance intercity trips of electric vehicles 

at the network level is formulated. The problem of interest is to find the optimal infrastructure 

investment to support the intercity trips for electric vehicles in such networks. The decision 

variables are where to build charging stations in the network and how many chargers must be 

provided within them. The main constraints are the travel feasibility for electric vehicles between 

all OD-pairs with positive demand and ensuring a certain level of service in terms of total travel 

delay for electric vehicle users. A feasible network provides at least one feasible path for each OD 

pair for all classes of vehicles. A path is feasible for a class of vehicle if it can be traveled by those 

vehicles without getting stranded along the way, whether they need refueling or not. Therefore, by 

providing travel feasibility, it is ensured that all vehicles can fulfill their trips and reach their 

destinations.  

This problem is solved for a single corridor with multiple OD-pairs located along that 

corridor (Ghamami et al., 2016b). However, in this study, we focus on an intercity network of 

corridors. The element of the earlier corridor model that tracks the state of fuel in (Ghamami et al., 

2016b) cannot be directly applied to the intercity networks since there is no directionality of traffic 

flow. In addition to tracking the state of fuel, the integration of a routing problem for refueling 

with the charging station locating problem adds to the complexity of the network-wide model. 
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Considering travel time on corridors as a function of flow relates routing of different electric 

vehicle classes and conventional vehicles and calls for a new equilibrium state in the network that 

considers the refueling for electric vehicles. It should be noted that the location of charging stations 

affects the route choice of EV users, which affects the traffic flow pattern in the network, the 

energy consumption, and the optimum location of charging stations as a result. Thus, routes and 

locations need to be determined simultaneously in an integrated model. 

In this problem, the objective is to minimize the total system cost, including the investment in 

charging stations and the extra travel delay (detour delay, queue waiting delay, and recharging 

delay) due to recharging for all EV users. However, in the route choice problem, all users including 

the EV users are seeking to minimize their own travel time regardless of other travelers. Therefore, 

a user equilibrium problem needs to be embedded into a system optimal problem in the proposed 

model. This problem finds the optimal location of charging stations in a network, where users with 

various classes of vehicles try to minimize their travel times (including recharging delays for EV 

users), subject to change by travel flows along the routes. The level of service constraint is 

considered in the system optimal objective function by multiplying the value of time by the total 

delay for all the electric vehicles (including charging time, waiting time, and refueling detour travel 

time).  

3-2- Modeling framework 

This section first provides definitions of all variables and parameters used in the modeling 

framework. Then, the assumptions used to simplify the problem without losing the generality are 

presented. Then, modeling framework for the queuing procedure is presented and the desired 

equations are extracted. Finally, the bi-level mixed-integer program with non-linear constraints is 

presented, followed by brief discussions for each constraint.  
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In this study, the following notation in Table 3-1 is used. 

Table 3-1 Nomenclature 

Parameters Definitions 
G(I, E) Road network 
e ∈ E Set of links 
i ∈  I Set of nodes 
m ∈  M Set of user classes 
M′ Set of user classes except conventional vehicles 
N1
m Set of current refueling stations 

N2
m Set of candidate refueling stations 

N′
1
m Set of dummy nodes for current refueling stations 

N′
2
m Set of dummy nodes for candidate refueling stations 

I′ Entire set of nodes, including nodes and dummy nodes, 𝐼𝐼′ = 𝐼𝐼 ∪ 𝑁𝑁′
1
𝑚𝑚 ∪ 𝑁𝑁′

2
𝑚𝑚 

ω ∈ Ω Set of OD-pair 
r ∈ Rm

ω  Set of routes for users in class 𝑚𝑚 between OD-pair ω 
R′mω  Set of feasible routes for users in class 𝑚𝑚 between OD-pair ω 
k
= 1, 2, … , Kr 

Set of consecutive nodes in which Kr is the total number of nodes visited in route r 

akr  Tracks the sequences of nodes of the network in route r (akr = i, k = 1, 2, … , Kr) 
Skr  State of fuel after visiting each node (k) in route 𝑟𝑟 
h�akr ,ak−1

r �
m  Required energy to travel between nodes akr  and ak−1r by vehicles in class 𝑚𝑚 

Fm Maximum amount of energy a vehicle in class m can take 
𝑥𝑥𝑖𝑖𝑚𝑚 Binary variable, which equals 1 if there is a station in node 𝑖𝑖 for vehicles in class 

𝑚𝑚 and 0 otherwise 
𝛿𝛿𝑖𝑖𝑟𝑟 Binary parameter, which equals 1 if node 𝑖𝑖 ∈ 𝐼𝐼′ belongs to route 𝑟𝑟 and 0 otherwise 
Δ𝑒𝑒𝑟𝑟  Binary parameter, which equals 1 if link 𝑒𝑒 ∈ 𝐸𝐸 belongs to route 𝑟𝑟 and 0 otherwise 
𝑏𝑏𝑖𝑖𝑟𝑟 Sequence of node i (kth node) in route r 
𝑓𝑓𝑟𝑟 Total flow on route 𝑟𝑟 
𝑦𝑦𝑖𝑖𝑚𝑚 Total flow visiting the dummy station 𝑖𝑖 from vehicles in class 𝑚𝑚 
𝜈𝜈𝑖𝑖𝑚𝑚 Total refueling demand from vehicles in class 𝑚𝑚  visiting charging/refueling 

station 𝑖𝑖 
𝑓𝑓𝑒𝑒 Total flow for link 𝑒𝑒 
𝑇𝑇𝑇𝑇𝑑𝑑 Total detour travel time required for refueling, defined as the additional time 

electric vehicle users spend on the road to reach a recharging station 
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Entire electric vehicle travel time if, hypothetically, no charging is needed at all 
𝑀𝑀′ All classes of vehicles except conventional ones 
𝑡𝑡𝑒𝑒 Travel time on link 𝑒𝑒 
𝜎𝜎𝑒𝑒 Capacity of link 𝑒𝑒 
𝐴𝐴1 Congestion factor in BPR function, which is considered 4 in this study 
𝐴𝐴2 BPR function parameter, which equals 0.15 in this study 
𝐵𝐵𝑘𝑘𝑟𝑟 Binary parameter, which equals 1 if route 𝑟𝑟 in node k is feasible based on the state 

of fuel 
𝐶𝐶𝑃𝑃𝑚𝑚 Fixed cost of building refueling/charging stations for vehicles in class 𝑚𝑚 
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Table 3-1 (cont’d) 

𝐶𝐶𝑠𝑠𝑚𝑚 Cost per charger for class 𝑚𝑚 vehicles 
𝛾𝛾 Value of time 
𝜋𝜋𝑖𝑖 Total delay for all users at each station 𝑖𝑖, consisting of refueling time and waiting 

time in queue for an available pump or charger 
𝛼𝛼 Charging efficiency of batteries 
zi𝑚𝑚 Number of chargers for vehicles in class 𝑚𝑚 at node 𝑖𝑖 
𝑃𝑃 Charging power of chargers 
𝑡𝑡𝑖𝑖𝑚𝑚 Refueling time in node 𝑖𝑖 for class 𝑚𝑚 
𝑡𝑡𝑖𝑖′𝑚𝑚 Queuing time occurring due to excess demand in a charging station 
𝜇𝜇im Service rate, which is the average number of users each charger can serve in a 

station per hour 
𝜆𝜆im Arrival rate, which is the average number of users visiting each charger in a station 

per hour 
𝑇𝑇0 Design period 
𝑞𝑞𝜔𝜔𝑚𝑚 Travel demand for OD-pair 𝜔𝜔 for vehicles in class 𝑚𝑚 
𝐿𝐿 An arbitrary big number 
𝐶𝐶𝑇𝑇𝑟𝑟 Travel time in the set of routes r 
𝐶𝐶𝑇𝑇𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚 The minimum travel time for the set of routes r 
𝛼𝛼𝑚𝑚 Step size in method of successive averages 
𝑓𝑓𝑟𝑟𝑚𝑚 Path flow for route 𝑟𝑟 in the nth iteration in method of successive averages 

 

Following assumptions have been made in this study: 

I. Each vehicle has access to charging station to fully charge the battery before starting its 

intercity trip. 

II. The energy consumption of vehicles is a function of traveled distance. 

III. The vehicles assigned to charging stations (based on the traffic assignment module) have a 

uniform temporal arrival distribution. 

The network 𝐺𝐺 considered here includes a set of links (𝑒𝑒 ∈ 𝐸𝐸), and a set of nodes (𝑖𝑖 ∈ 𝐼𝐼), 

which has two main subsets: the set of current refueling stations (𝑁𝑁1𝑚𝑚 ⊂ 𝐼𝐼), and the set of candidate 

points for building refueling stations  (𝑁𝑁2𝑚𝑚 ⊂ 𝐼𝐼) . Notation 𝑚𝑚 ∈ 𝑀𝑀  denotes different classes of 

vehicles in the network such as conventional vehicles and EVs with certain battery sizes. Any node 

belonging to the set of current refueling stations or candidate refueling stations may be visited by 
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users for two reasons: refueling or as a midpoint along their route. These reasons need to be 

differentiated as a result of their impacts on the state of fuel. To this end, two sets of dummy nodes 

are introduced. The first dummy set is a duplicate of the current refueling stations set, which 

represents the set of current refueling stations visited for refueling purpose �𝑁𝑁′
1
𝑚𝑚�. The second 

dummy set is a duplicate of the candidate refueling stations set, which represents the set of 

candidate refueling stations that may be visited for refueling purpose �𝑁𝑁′
2
𝑚𝑚�. Thus, the entire set 

of nodes in the network is 𝐼𝐼′ = 𝐼𝐼 ∪ 𝑁𝑁′
1
𝑚𝑚 ∪ 𝑁𝑁′

2
𝑚𝑚. The dummy nodes of the network are connected 

to the original nodes using dummy links with zero travel times and zero fuel consumption. The 

model considers multiple sets of OD-pairs (𝜔𝜔 ∈ Ω) in a network. There is a known set of routes 

for each class of users between each origin and destination (𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚𝜔𝜔). Each route consists of a set 

of consecutive nodes 𝑘𝑘 = 1, 2, … ,𝐾𝐾𝑟𝑟, in which 𝐾𝐾𝑟𝑟 is the total number of nodes visited by route 𝑟𝑟. 

Also, 𝑎𝑎𝑘𝑘𝑟𝑟  tracks the sequences of nodes of the network in route 𝑟𝑟 (𝑎𝑎𝑘𝑘𝑟𝑟 = 𝑖𝑖, 𝑘𝑘 = 1, 2, … ,𝐾𝐾𝑟𝑟). 

The refueling and queuing waiting time can be extracted based on assumption III as follows.  

Refueling time for all vehicles in class m using station i for refueling is defined as:  

𝑡𝑡𝑖𝑖𝑚𝑚 = 𝛼𝛼 
νim

𝑃𝑃
          ∀𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′

1
𝑚𝑚 ∪  𝑁𝑁′

2
𝑚𝑚, (3.1) 

In which 𝛼𝛼 > 1 represents battery’s charging efficiency and 𝑃𝑃  is the charging power of each 

charger (Nie and Ghamami, 2013). The average refueling time, �̃�𝑡𝑖𝑖𝑚𝑚 (h), for each vehicle in class m 

can be calculated by dividing 𝑡𝑡𝑖𝑖𝑚𝑚 by the total number of vehicles visiting station 𝑖𝑖. 

�̃�𝑡𝑖𝑖𝑚𝑚 =
𝑡𝑡𝑖𝑖𝑚𝑚

𝑦𝑦𝑖𝑖𝑚𝑚
          ∀𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′

1
𝑚𝑚 ∪  𝑁𝑁′

2
𝑚𝑚, (3.2) 

 Then, the service rate can be defined as follows: 

𝜇𝜇𝑖𝑖𝑚𝑚 =
1
�̃�𝑡𝑖𝑖𝑚𝑚

          ∀𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′
1
𝑚𝑚 ∪  𝑁𝑁′

2
𝑚𝑚, (3.3) 
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In which, 𝜇𝜇𝑖𝑖𝑚𝑚 is the service rate for vehicles in class 𝑚𝑚 at station 𝑖𝑖 (vehicle per hour). This value 

defines the number of vehicles that can be served in one hour. The arrival rate of customers 𝜆𝜆im, 

which is the average number of users per hour visiting each charger or fuel dispenser in a station, 

is defined as follows: 

𝜆𝜆im =
𝑦𝑦𝑖𝑖𝑚𝑚

𝑇𝑇0𝑧𝑧𝑖𝑖𝑚𝑚
          ∀𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′

1
𝑚𝑚 ∪  𝑁𝑁′

2
𝑚𝑚,   (3.4) 

 

 

Figure 3-1 (a) Arrival rate lower than service rate (b) arrival rate greater than service rate 
resulting in queue 

Where 𝑇𝑇0  is the design period in hours. Assuming a uniform arrival rate (assumption III), 

deterministic queuing is considered in this study (Zukerman, 2013). Therefore, no queue forms 

when the service rate is greater than the arrival rate (Figure 3-1(a)). Otherwise, the queuing 

happens in a charging station if the number of users visiting each charger per hour (arrival rate of 

customers) is higher than the available service rate (Figure 3-1(b)). When the hourly visiting flow 

for a charger is higher than the number of vehicles that can be served by that charger per hour, the 

extra vehicles have to wait in line for the chargers to become available. The total queuing delay 

for each station in each class is the summation of all queuing delays for all vehicles in that class 
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visiting that station. Assuming a right triangle waiting time function, the first vehicle visiting the 

station has no queuing delay while the last person experiences the longest one, assuming the queue 

would be recovered at the end of the day. Considering a constant flow, the total queuing time must 

be the area of the triangle. One side of the triangle is the number of users and the other side is the 

last person waiting time. Last person waiting time is the average charging time multiplied by the 

difference between the arrival rate and the service rate. Therefore, the total queuing time is defined 

as:  

𝑡𝑡𝑖𝑖′𝑚𝑚 = 0.5𝑇𝑇0 �̃�𝑡𝑖𝑖𝑚𝑚𝑦𝑦𝑖𝑖𝑚𝑚 (𝜆𝜆𝑖𝑖𝑚𝑚 − 𝜇𝜇𝑖𝑖𝑚𝑚),          ∀𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′
1
𝑚𝑚 ∪ 𝑁𝑁′

2
𝑚𝑚,         (3.5) 

With all the above definitions, we can formulate the proposed model as follows: 

min
𝑥𝑥𝑖𝑖
𝑚𝑚,𝑧𝑧𝑖𝑖

𝑚𝑚 � � (𝐶𝐶𝑃𝑃𝑚𝑚𝑥𝑥𝑖𝑖𝑚𝑚 + 𝑧𝑧𝑖𝑖𝑚𝑚

𝑖𝑖∈𝑁𝑁′2
𝑚𝑚

𝐶𝐶𝑠𝑠𝑚𝑚)
𝑚𝑚∈𝑀𝑀

+ 𝛾𝛾( � 𝜋𝜋𝑖𝑖
𝑖𝑖∈𝑁𝑁′1

𝑚𝑚∪ 𝑁𝑁′2
𝑚𝑚

+ 𝑇𝑇𝑇𝑇𝑑𝑑)   (3.6) 

Subject to:  

 𝑥𝑥𝑖𝑖𝑚𝑚 ∈ {0,1},          ∀𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′
2
𝑚𝑚 (3.7) 

 𝑧𝑧𝑖𝑖𝑚𝑚 ∈ 𝑍𝑍,          ∀𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′
2
𝑚𝑚 (3.8) 

 𝑧𝑧𝑖𝑖𝑚𝑚 ≤ 𝑥𝑥𝑖𝑖𝑚𝑚𝐿𝐿,          ∀𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′
2
𝑚𝑚 (3.9) 

 𝑆𝑆𝑘𝑘𝑟𝑟 = 𝑆𝑆𝑘𝑘−1𝑟𝑟 − ℎ�𝑎𝑎𝑘𝑘𝑟𝑟 ,𝑎𝑎𝑘𝑘−1
𝑟𝑟 �

𝑚𝑚 ,          ∀ 𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚𝜔𝜔 ,𝑘𝑘 = 1, 2, … ,𝐾𝐾𝑟𝑟 ,𝑎𝑎𝑘𝑘𝑟𝑟 ∈ 𝐼𝐼 (3.10) 

 𝑆𝑆𝑘𝑘𝑟𝑟 = 𝐹𝐹𝑚𝑚,          ∀ 𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚𝜔𝜔 ,𝑘𝑘 = 1, 2, … ,𝐾𝐾𝑟𝑟 ,𝑎𝑎𝑘𝑘𝑟𝑟 ∈ 𝑁𝑁′
1
𝑚𝑚 (3.11) 

 
𝑆𝑆𝑘𝑘𝑟𝑟 = 𝐹𝐹𝑚𝑚𝑥𝑥𝑎𝑎𝑘𝑘𝑟𝑟

𝑚𝑚 + 𝑆𝑆𝑘𝑘−1𝑟𝑟 �1 − 𝑥𝑥𝑎𝑎𝑘𝑘𝑟𝑟
𝑚𝑚 � ,          ∀ 𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚𝜔𝜔 , 𝑘𝑘

= 1, 2, … ,𝐾𝐾𝑟𝑟 ,𝑎𝑎𝑘𝑘𝑟𝑟 ∈ 𝑁𝑁′
2
𝑚𝑚 

(3.12) 

 𝑆𝑆𝑘𝑘𝑟𝑟 ≤ 𝐵𝐵𝑘𝑘𝑟𝑟𝐿𝐿,          ∀ 𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚𝜔𝜔 ,𝑘𝑘 = 1, 2, … ,𝐾𝐾𝑟𝑟 (3.13) 

 𝑆𝑆𝑘𝑘𝑟𝑟 ≥ (𝐵𝐵𝑘𝑘𝑟𝑟 − 1)𝐿𝐿,          ∀ 𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚𝜔𝜔 ,𝑘𝑘 = 1, 2, … ,𝐾𝐾𝑟𝑟 (3.14) 

 𝐵𝐵𝑘𝑘𝑟𝑟 ∈ {0,1},          ∀𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚𝜔𝜔 ,𝑘𝑘 = 1, 2, … ,𝐾𝐾𝑟𝑟 (3.15) 
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 𝑇𝑇𝑇𝑇𝑑𝑑 ,𝜋𝜋𝑖𝑖𝜖𝜖 argmin
𝑓𝑓𝑟𝑟

� � � 𝑓𝑓𝑟𝑟 ∗ (𝐶𝐶𝑇𝑇𝑟𝑟 − 𝐶𝐶𝑇𝑇𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚)
 𝑟𝑟∈𝑅𝑅′𝑚𝑚𝜔𝜔𝜔𝜔∈Ω 𝑚𝑚∈𝑀𝑀

 (3.16) 

 Subject to  

 𝑓𝑓𝑟𝑟 ≤ 𝐵𝐵𝑘𝑘𝑟𝑟𝐿𝐿,          ∀ 𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚𝜔𝜔 ,𝑘𝑘 = 1, 2, … ,𝐾𝐾𝑟𝑟 (3.17) 

 � 𝑓𝑓𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑚𝑚𝜔𝜔

= 𝑞𝑞𝜔𝜔𝑚𝑚,          ∀ 𝜔𝜔 ∈ 𝛺𝛺,𝑚𝑚 ∈ 𝑀𝑀 (3.18) 

 � � 𝑓𝑓𝑟𝑟 𝛿𝛿𝑖𝑖𝑟𝑟

𝑟𝑟∈𝑅𝑅𝑚𝑚𝜔𝜔𝜔𝜔∈Ω 

≤ 𝑥𝑥𝑖𝑖𝑚𝑚𝐿𝐿,           ∀𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′
2
𝑚𝑚 (3.19) 

 𝑓𝑓𝑒𝑒 = � � � 𝑓𝑓𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑚𝑚𝜔𝜔𝜔𝜔∈Ω

Δ𝑒𝑒𝑟𝑟 ,          ∀𝑒𝑒 ∈ 𝐸𝐸  
𝑚𝑚∈𝑀𝑀

 (3.20) 

 𝑡𝑡𝑒𝑒 = 𝑡𝑡0𝑒𝑒 �1 + 𝐴𝐴2 �
𝑓𝑓𝑒𝑒
𝜎𝜎𝑒𝑒
�
𝐴𝐴1
� ,          ∀𝑒𝑒 ∈ 𝐸𝐸 (3.21) 

 𝑇𝑇𝑇𝑇𝑑𝑑 = ( � � � �𝑓𝑓𝑟𝑟𝛥𝛥𝑒𝑒𝑟𝑟  𝑡𝑡𝑒𝑒
𝑒𝑒∈𝐸𝐸𝑟𝑟∈𝑅𝑅𝑚𝑚𝜔𝜔𝜔𝜔∈𝛺𝛺

) − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚∈𝑀𝑀′

 (3.22) 

 𝑦𝑦𝑖𝑖𝑚𝑚 = � � 𝑓𝑓𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑚𝑚𝜔𝜔𝜔𝜔∈Ω

𝛿𝛿𝑖𝑖𝑟𝑟 ,          ∀ 𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′
1
𝑚𝑚 ∪ 𝑁𝑁′

2
𝑚𝑚 (3.23) 

 𝜈𝜈𝑖𝑖𝑚𝑚 = � � 𝑓𝑓𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑚𝑚𝜔𝜔𝜔𝜔∈Ω

𝛿𝛿𝑖𝑖𝑟𝑟 �𝐹𝐹𝑚𝑚 −  𝑆𝑆�𝑏𝑏𝑖𝑖𝑟𝑟−1�
𝑟𝑟 � ,           ∀𝑖𝑖 ∈ 𝑁𝑁′

1
𝑚𝑚 ∪ 𝑁𝑁′

2
𝑚𝑚,∀ 𝑚𝑚 ∈ 𝑀𝑀 (3.24) 

 𝑡𝑡𝑖𝑖𝑚𝑚 = 𝛼𝛼 
νim

𝑃𝑃
          ∀𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′

1
𝑚𝑚 ∪  𝑁𝑁′

2
𝑚𝑚 (3.25) 

 𝜆𝜆im =
𝑦𝑦𝑖𝑖𝑚𝑚

𝑇𝑇0𝑧𝑧𝑖𝑖𝑚𝑚
          ∀𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′

1
𝑚𝑚 ∪  𝑁𝑁′

2
𝑚𝑚, (3.26) 

 𝑡𝑡𝑖𝑖′𝑚𝑚 = 0.5𝑇𝑇0 �̃�𝑡𝑖𝑖𝑚𝑚𝑦𝑦𝑖𝑖𝑚𝑚 (𝜆𝜆im − 𝜇𝜇𝑖𝑖𝑚𝑚),          ∀𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′
1
𝑚𝑚 ∪  𝑁𝑁′

2
𝑚𝑚, (3.27) 

 � (𝑡𝑡𝑖𝑖𝑚𝑚 + 𝑡𝑡𝑖𝑖′𝑚𝑚

𝑚𝑚∈𝑀𝑀

) ≤ 𝜋𝜋𝑖𝑖 ,          ∀ 𝑖𝑖 ∈ 𝑁𝑁′
1
𝑚𝑚 ∪  𝑁𝑁′

2
𝑚𝑚 (3.28) 
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 � 𝑡𝑡𝑖𝑖𝑚𝑚

𝑚𝑚∈𝑀𝑀

≤ 𝜋𝜋𝑖𝑖 ,          ∀ 𝑖𝑖 ∈ 𝑁𝑁′
1
𝑚𝑚 ∪  𝑁𝑁′

2
𝑚𝑚 (3.29) 

 𝐶𝐶𝑇𝑇𝑟𝑟 = � 𝛿𝛿𝑖𝑖𝑟𝑟

𝑖𝑖∈𝑁𝑁′1
𝑚𝑚∪ 𝑁𝑁′2

𝑚𝑚

𝜋𝜋𝑖𝑖
∑ 𝑦𝑦𝑖𝑖𝑚𝑚𝑚𝑚∈𝑀𝑀

+ �𝑡𝑡𝑒𝑒𝛥𝛥𝑒𝑒𝑟𝑟
𝑒𝑒∈𝐸𝐸

          ∀𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚𝜔𝜔  (3.30) 

 𝐶𝐶𝑇𝑇𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝐶𝐶𝑇𝑇𝑟𝑟 ,           ∀𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚𝜔𝜔  (3.31) 

 𝜋𝜋𝑖𝑖 ≥ 0,          ∀𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁′
1
𝑚𝑚 ∪  𝑁𝑁′

2
𝑚𝑚 (3.32) 

 𝑓𝑓𝑟𝑟 ≥ 0,          ∀𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚𝜔𝜔  (3.33) 

 𝑓𝑓𝑒𝑒 ≥ 0,          ∀𝑒𝑒 ∈ 𝐸𝐸 (3.34) 
 

The objective function (3.6) consists of two main terms. The first term represents 

infrastructure investment cost, which includes the fixed cost of building a charging station at any 

location and the variable cost of chargers. For charging station cost, the number of charging 

stations is multiplied by 𝐶𝐶𝑃𝑃𝑚𝑚 (measured in $ per day per station), which is the cost of a charging 

station for a vehicle in class m. In order to calculate the charger cost, the number of chargers is 

multiplied by 𝐶𝐶𝑠𝑠𝑚𝑚 (measured in $ per day per spot), which is the cost to provide one charger for 

the vehicles in class m. The second term represents the monetary value of the total time spent on 

refueling and waiting in queue and required detour times to access charging stations. The total 

time is multiplied by 𝛾𝛾, which is the value of time ($ per hour).  

Constraint (3.7) states that the problem is an integer programming and stations are built 

(𝑥𝑥 = 1) or not (𝑥𝑥 = 0) at any location. Constraint (3.8) indicates that the number of spots in 

charging stations must be selected from a given set. Constraint (3.9) is a feasibility constraint that 

ensures there is no allocated charger (𝑧𝑧 = 0) at a location that is not selected to have a charging 

station (𝑥𝑥 = 0). Constraints (3.10-12) monitor the state of fuel over the routes and different classes 

of vehicles to ensure the feasibility of travel along each route by each class of vehicles. Constraint 

(3.10) reduces the state of fuel along the route due to the energy consumption on each link of the 
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route. Constraint (3.11) changes the state of fuel status to the full capacity once the dummy node 

associated with an existing charging station is visited along a route. Constraint (3.12) changes the 

state of fuel status to the full capacity once the dummy node associated with a candidate charging 

station is traveled along a route if the candidate node is selected in the solution. Otherwise, it does 

not change the status of the fuel. Constraints (3.13-15) are feasibility constraints. Constraint (3.13) 

ensures that when the state of fuel is positive along a route, then it is feasible. Constraint (3.14) 

states that when the state of fuel becomes negative along a route, this route becomes infeasible at 

that certain point. Constraint (3.15) states that each route is either feasible or infeasible.  

Objective function (3.16) implies that travelers’ behavior for the route choice and selecting 

charging stations along their routes is based on the user equilibrium concept. According to this 

concept, as mentioned earlier, users behave selfishly to minimize their own travel time. Therefore, 

the travel times on all used routes for each OD pair are equal and lower than unused routes.  

Constraint (3.17) enforces the flow to be zero for any path that includes at least a node with 

a negative state of fuel (infeasible case). Once the required fuel to travel between any two 

consecutive charging stations exceeds the fuel capacity of the vehicle, we would have a negative 

state of fuel, which is an infeasible solution. Constraint (3.18) is the flow conservation equation. 

It denotes that the total flow from all routes for each class of vehicles between an OD-pair forms 

the given travel demand between that OD-pair for that class of vehicles. Constraint (3.19) states 

that if a candidate node is not selected as a charging facility, then the path flow must be zero for 

all paths that include the dummy node associated with that candidate node. Constraint (3.20) finds 

the flow on each link and Constraint (3.21) finds travel time on each link of the network using 

BPR function. Constraint (3.22) defines the difference between the total link travel time for any 
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feasible solution excluding the required time for refueling and the total link travel time when no 

vehicle changes its path for the refueling purpose. Therefore, it is the total detour time. 

 Constraint (3.23) calculates the total incoming flows to a refueling station node by 

summing up all flows from different OD-pairs for a specific vehicle class. Constraint (3.24) 

calculates the charging demand at each charging station assuming the state of fuel for each vehicle 

crossing the dummy node of this station needs to be changed to the full capacity from the state of 

fuel right before entering the dummy link. In intercity travels, users typically try to minimize their 

number of stops; thus, it is reasonable to assume a full recharge at each stop. However, this 

assumption can be modified to consider different charging behaviors in the proposed framework 

of this study, without loss of generality. Constraint (3.25) calculate the total required charging time 

for all travelers at a certain station. Constraint (3.26) finds the arrival rate which is the average 

number of users visiting each charger per hour. Constraint (3.27) calculates the total queuing delay 

in each station for each class. If the average number of visits per hour for chargers in a station is 

higher than the inverse of the average charging time in the same station, then queuing would take 

place. The total delay consists of the terms calculated in Constraints (3.25) and (3.27) is reported 

in Constraint (3.28). Constraint (3.29) assures that when the provided supply is larger than the 

demand (resulting in negative average waiting time in queue), the delay would be only equal to 

the total refueling time and would not be reduced due to the negative waiting time. Constraint 

(3.30) defines the travel time along each route, including two terms: the first term is the delay in 

charging stations for waiting in the queue and recharging time, and the second term captures the 

travel time along with the links of each route. In the first term, the total delay in each station is 

divided by the total number of travelers using that station to calculate the average delay. Then, for 

the route of interest, these delays are summed up over the stations located along the route. In the 
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second term, link travel times, a function of link flows, are summed up over the links located along 

the route. Constraint (3.31) implies that the minimum path travel time for each OD-pair and vehicle 

class is smaller or equal to the other path travel times for that specific OD-pair and class of 

vehicles. Finally, Constraints (3.32-34) are feasibility conditions for different variables. 

3-3- Solution Methodology 

The formulated model is a mixed-integer problem with non-linear constraints, which is known to 

be NP-hard. Due to the complexity of the problem, current commercial solvers like CPLEX and 

Knitro are either slow or unable to solve the problem especially when the problem size grows. This 

often calls for a metaheuristic algorithm to find a good solution with a proper approximation and 

in a reasonable time. In this study, a metaheuristic algorithm based on Simulated Annealing (SA) 

is implemented to solve the problem (Metropolis et al., 1953). Recent papers (Ghamami et al., 

2016a; Zockaie et al., 2016) show that the SA algorithm can solve flow-capturing mixed integer 

programs (MIPs) efficiently. Figure 3-2 provides the framework of the proposed solution 

algorithm, which is discussed in detail in the following. 

3-3-1- Simulated Annealing 

The metaheuristic solution method proposed in this study includes two iterative procedures. In the 

first iterative procedure, a new solution (selected locations to be equipped with charging stations 

with a certain number of spots at each station) is generated by perturbing the solution in the 

previous iteration, which is then called neighbor solution. Then, the objective function needs to be 

evaluated for the neighbor solution. To this end, travelers’ behavior needs to be determined in 

terms of route choice and selecting charging stations for refueling among the existing options in 

the current solution. As the decision of each traveler being affected by other travelers’ decision 

through congestion, an equilibrium state needs to be found by solving a traffic assignment problem 
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specifying routing and charging station selection for refueling simultaneously for all travelers. 

Users select routes to minimize their total delays including the travel time, charging time, and 

waiting time in queue. Thus, a second iterative procedure is proposed to find such an equilibrium 

state. Once the equilibrium state is reached, then the objective function can be evaluated for the 

neighbor solution. This new objective function for the neighbor solution needs to be compared 

with the objective function of the current solution as part of the simulated annealing algorithm. In 

this algorithm, the neighbor solution would be accepted deterministically as the new current 

solution, if it improves the objective function. It would be also probabilistically accepted, based 

on the difference between the objective function values even if it does not improve the objective 

function. This ensures that the algorithm avoids getting trapped in local optimum solutions. Once 

the neighbor solution is accepted as the new current solution or rejected (thus no change in the 

current solution), another neighbor solution would be generated randomly based on the current 

solution in the next iteration. The process would continue for a certain number of iterations to find 

the best solution in terms of the objective function. The probability of accepting a worse neighbor 

solution (in terms of the objective function) as the new current solution decreases in higher 

iterations to ensure the optimality of the best-found solution.  

To apply the general SA algorithm framework to solve the proposed model, certain 

assumptions and definitions are needed to generate feasible initial and neighbor solutions. The 

solution framework based on the SA algorithm is provided in Figure 3-2 followed by the 

assumptions and definitions used to enhance the performance of the solution framework. 
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Figure 3-2 The proposed solution framework based on the simulated annealing algorithm 

First, we need to modify the variables associated with the number of spots. Considering 

these variables as integer variables results in an infinite set of possible values and generation of 
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various feasible solutions. Therefore, instead of a continuous integer variable for the number of 

spots in each candidate station, we define five levels for the number of spots (very low, low, 

medium, high, and very high, which are respectively considered as 2,3,5,10, and 15 chargers). 

Each candidate station selected as a part of any feasible solution must have one of these levels as 

its number of chargers. 

To obtain an initial solution, instead of a random initial solution, we set x=1 for all the 

candidate nodes to ensure the feasibility of the initial solution. This assumption assures that there 

is at least one feasible path for all vehicle classes and all OD-pairs in the network. For the number 

of spots, we assume the medium level for all candidate charging stations in the initial solution.  

To move from a current solution to a neighbor solution, we propose to use a weighted 

random approach to improve the efficiency of the algorithm. There are multiple possible 

perturbations such as adding or removing a candidate station or increasing or decreasing the level 

of number of spots for a candidate station in the current solution. According to the type of 

perturbation, each location is associated with a weight factor (e.g., total flows, total delays). Then, 

the location is picked based on a weighted random selection. More specifically, we define: 

Φ(𝑁𝑁) = �𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (3.35) 

where 𝜙𝜙𝑖𝑖 is the weight factor for station 𝑖𝑖 , Φ(𝑁𝑁) is the cumulative weight factor, and 𝑁𝑁 is the 

number of stations. Then, the location 𝑙𝑙 is selected if it satisfies the following: 

Φ(𝑙𝑙 − 1)
Φ(𝑁𝑁)

≤ 𝜌𝜌 ≤
Φ(𝑙𝑙)
Φ(𝑁𝑁) (3.36) 

where 𝜌𝜌 is a random number drawn from a uniform distribution between 0 and 1, written as 𝜌𝜌 =

u[0,1]. In addition, the following rules are used to guide the perturbation process. At each iteration, 
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one of these rules is selected randomly to perturb the current solution. If there is no feasible option 

available for a certain rule, the random number is regenerated to select another rule.   

Rule 1: When a new station is to be added, each location i ∈ N2
m, not being in the current solution, 

is weighted based on the total crossing flow at that node, i.e. 𝜙𝜙𝑖𝑖 = ∑ ∑ frr∈Rmωω∈Ω δir. This means 

that locations with higher flows are prioritized to be selected. The medium level of number of spots 

is considered for the new station. 

Rule 2: When a new station is to be removed, each station i ∈ N2
m, being in the current solution, is 

weighted based on the inverse of total crossing flow at that node, i.e. 𝜙𝜙𝑖𝑖 = 1
∑ ∑ frr∈Rmωω∈Ω δir�  . 

This implies that locations with lower flows are prioritized to be selected. However, if removing 

the selected station makes an OD infeasible for any classes of vehicles, then the perturbation 

process would be repeated to keep the neighbor solution feasible. In this case, weight factors are 

calculated based on a new set, which includes all the previous stations excluding the 

aforementioned one. 

Rule 3: When new chargers are to be added to a station, each location i ∈ N2
m, being in the current 

solution with the spot level at very low, low, medium, and high is weighted based on the queuing 

delay at that station, i.e. 𝜙𝜙𝑖𝑖 = πi . This means that stations with higher queuing delays are 

prioritized to be selected. 

Rule 4: When chargers are to be removed from a station, each location i ∈ N2
m, being in the current 

solution with the spot level at low, medium, high, and very high is weighted based on the inverse 

of total queuing delay at that station, i.e. 𝜙𝜙𝑖𝑖 = 1 πi� . This implies that the stations with lower 

queuing delays are prioritized to be selected. 
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3-3-2- Network Analysis Procedure 

In this section, the users’ behavior for selecting their routes and charging stations is discussed. Due 

to congestion on links and charging stations, travelers cannot choose their route independently. 

Therefore, an equilibrium framework is needed to solve this problem. First, we discuss the 

enumeration and generation of a feasible set for the routes between each OD-pair as the main 

element of the assignment problem. Then, we propose a route-based formulation for the 

equilibrium problem. Finally, a solution algorithm is proposed to solve this problem. The 

assignment algorithm finds the user equilibrium state by switching travelers’ routes iteratively. 

Note that a route is defined by the sequence of nodes to be traveled from the origin to the 

destination. This list of nodes might include dummy nodes in which recharging occurs. Solving 

the assignment problem to define travelers’ route choice is required at each iteration of the main 

heuristic algorithm to evaluate the objective function for each neighbor solution. 

The set of all feasible and practical paths is the main input for the assignment subproblem. 

In urban networks, where the enumeration of all feasible paths is impossible, a column generation 

approach can be applied, which incorporates the shortest path algorithm to augment the set of used 

paths by travelers. However, in this problem, due to the range anxiety, the existence of multi-

classes of vehicles, and tracking the state of fuel along the routes, incorporating a shortest path 

algorithm is not straightforward. Furthermore, unlike the classic routing problem, where no path 

can include any loop, the routing sub-problem in this study might need to consider loops to arrange 

visiting charging stations. Thus, in the intercity networks, enumerating all feasible paths might be 

a better approach. However, in large networks (such as the intercity network of Michigan) this 

enumeration itself could be computationally demanding. Therefore, two assumptions are used to 

reduce the computational efforts as follows: 
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1) It is assumed that no vehicle can visit a node twice unless it is visiting the node for refueling, 

i.e. loops are allowed just for refueling purposes and only one time for each station. (This 

assumption is consistent with minimization of travel time in a static network) 

2) It is assumed that for each OD-pair, instead of all feasible paths, at least five paths with 

minimum distance and without refueling (not crossing dummy nodes) must be provided. 

 As each route is a set of consecutive nodes, considering different options for the refueling 

purpose, i.e. visiting dummy nodes, would increase the total number of paths depending on the 

number of available charging stations along the initial path set for each OD-pair. For each OD pair, 

the Euclidian distance between each origin and destination is calculated. While enumerating all 

feasible paths via the branch and bound method, the distance between the origin and the last node 

in the branch is calculated. If the branch length, which is the sum of all link lengths to that point, 

is larger than a prespecified distance limit factor multiplied by the Euclidian distance, the branch 

is not considered for the path enumeration anymore. The distance limit factor is set to 1.2 in this 

study. After enumerating all available paths with these conditions for each OD-pair, if there are at 

least five paths (a reasonable number of existing paths in the intercity networks), enumeration for 

the OD-pair would stop. Otherwise, the enumeration is repeated while the distance limit factor is 

increased by 10%. This process continues until at least five paths, not including any dummy node, 

are available for each OD-pair. Once there are five paths for each OD-pair, these paths would be 

augmented to routes considering the dummy nodes along these paths for refueling, i.e., each 

refueling path represents a specific refueling pattern with its specific assigned flow. Tracking the 

state of fuel along these routes, a set of feasible routes considering refueling would be available 

for each OD-pair. At this point, the original problem is reduced to assigning all OD flows to the 

constructed feasible routes. 
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As the focus of this study is to find the required number of chargers and their locations in 

an inter-city network, a path-based approach along with some simplistic assumptions are 

incorporated to support inter-city trips. However, for urban networks, some efficient models can 

consider the limited range of EVs for a link-based traffic assignment model ensuring 

computational feasibility. Nonetheless, these efficient algorithms do not consider multiple 

recharging or the required amount of charge, since they deal with short-range trips. Thus, these 

approaches are not applicable to our study. 

In the assignment problem, it is assumed that users try to minimize their travel times and 

they cannot decrease their travel time by changing their routes. Thus, the travel time for every used 

route should be equal to the least travel time associated with its OD-pair. In the assignment 

problem, which is the lower level problem, the variables of the upper-level problem, i.e. 𝑥𝑥 and 𝑧𝑧, 

are known and used to generate the set of feasible routes. The only decision variable in the lower 

level problem is 𝑓𝑓𝑟𝑟, which is the path flow for each vehicle class 𝑚𝑚 along with the route r. To solve 

the assignment problem, a gap function is defined along with an algorithm that reduces the gap 

through an iterative process. This algorithm solves the user equilibrium problem once the gap 

function is close to zero (Lu et al., 2009). By defining 𝑅𝑅′𝑚𝑚𝜔𝜔  as the set of feasible routes for vehicles 

in class 𝑚𝑚 ∈ 𝑀𝑀 and OD-pair 𝜔𝜔 ∈ Ω, we can formulate the assignment problem as follows: 

𝐺𝐺𝑎𝑎𝐺𝐺(𝑟𝑟, min{𝐶𝐶𝑇𝑇𝑟𝑟}) = � � � 𝑓𝑓𝑟𝑟 ∗ (𝐶𝐶𝑇𝑇𝑟𝑟 − 𝐶𝐶𝑇𝑇𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚)
 𝑟𝑟∈𝑅𝑅′𝑚𝑚𝜔𝜔𝜔𝜔∈Ω 𝑚𝑚∈𝑀𝑀

 (3.37) 

� 𝑓𝑓𝑟𝑟
𝑟𝑟∈𝑅𝑅′𝑚𝑚𝜔𝜔

= 𝑞𝑞𝜔𝜔𝑚𝑚,          ∀ 𝜔𝜔 ∈ 𝛺𝛺,𝑚𝑚 ∈ 𝑀𝑀 (3.38) 

𝐶𝐶𝑇𝑇𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝐶𝐶𝑇𝑇𝑟𝑟 ,          ∀𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅′𝑚𝑚𝜔𝜔  (3.39) 

𝑓𝑓𝑟𝑟 ≥ 0,          ∀𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅′𝑚𝑚𝜔𝜔  (3.40) 
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In this formulation, CT is the route travel cost including link travel times and the average waiting 

times at charging stations. We incorporate a decent direction method combined with the method 

of successive averages (MSA) to find the equilibrium state through a certain number of iterations 

(Lu et al., 2009; Peeta and Mahmassani, 1995). For the decent direction, we use the minimum cost 

of each feasible route set considering the current traffic assignment in each iteration. For the MSA, 

the step size (𝛼𝛼𝑚𝑚 =  2
2+𝑚𝑚

) is used at each iteration n. The stopping criterion in this method is set to 

be 100 iterations, as it provides a reasonable convergence and gap for the case study that is 

considered here. We begin with an initial solution for the route flow assignment and update the 

route flows in the nth iteration according to the following equations: 

𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑖𝑖𝑎𝑎(𝐶𝐶𝑇𝑇𝑟𝑟) = 𝑟𝑟∗,          ∀𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅′𝑚𝑚𝜔𝜔  (3.41) 

𝑓𝑓𝑟𝑟𝑚𝑚 =  𝑓𝑓𝑟𝑟𝑚𝑚−1 + 𝛼𝛼𝑚𝑚 ∗ 𝑓𝑓𝑟𝑟𝑚𝑚−1 ∗
𝐶𝐶𝑇𝑇𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚 −𝐶𝐶𝑇𝑇𝑟𝑟

𝐶𝐶𝑇𝑇𝑟𝑟
,          ∀𝜔𝜔 ∈ Ω,𝑚𝑚 ∈ 𝑀𝑀, 𝑟𝑟

∈ 𝑅𝑅′𝑚𝑚𝜔𝜔 − {𝑟𝑟∗}                

(3.42) 

𝑓𝑓𝑟𝑟𝑚𝑚 = 𝑓𝑓𝑟𝑟𝑚𝑚−1 + � 𝛼𝛼𝑚𝑚 ∗ 𝑓𝑓𝑟𝑟𝑚𝑚−1
𝐶𝐶𝑇𝑇𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚 −𝐶𝐶𝑇𝑇𝑟𝑟

𝐶𝐶𝑇𝑇𝑟𝑟 𝑟𝑟∈𝑅𝑅′𝑚𝑚𝜔𝜔−{𝑟𝑟∗}

        𝑟𝑟 = 𝑟𝑟∗ (3.43) 

 

Average gap for all vehicle classes in the network is considered as a measure of effectiveness (Lu 

et al., 2009): 

𝐴𝐴𝐺𝐺𝑎𝑎𝐺𝐺(𝑟𝑟) =
∑ ∑ ∑ 𝑓𝑓𝑟𝑟 ∗ (𝐶𝐶𝑇𝑇𝑟𝑟 − 𝐶𝐶𝑇𝑇𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚) 𝑟𝑟∈𝑅𝑅′𝑚𝑚𝜔𝜔𝜔𝜔∈Ω 𝑚𝑚∈𝑀𝑀

∑ 𝑓𝑓𝑟𝑟𝑟𝑟∈𝑅𝑅′𝑚𝑚𝜔𝜔
 (3.44) 

As the average gap is independent of the problem size, it is a useful criterion to monitor the 

convergence pattern of a decent direction method. 

 

 



39 

3-4- Numerical Results 

This section first presents the intercity network considered for the case study. The case study 

description is followed by presenting the numerical results to (1) evaluate the performance of the 

proposed metaheuristic algorithm, (2) present the optimal solution for the base case (considering 

current battery size and EV market share), and (3) assess the sensitivity of the optimal solution to 

the critical input for future hypothetical EV market shares and battery sizes. Afterwards, the 

performance of the proposed algorithm is compared with a benchmark for a small case study. The 

SA algorithm is implemented in MATLAB with an Intel(R) Core (TM) i5-2400 CPU and 16 GB 

RAM. The default values for the parameters used in the model are listed in Table 3-2, which are 

mainly adopted from the basic and general corridor model (Ghamami et al., 2016b; Nie and 

Ghamami, 2013). For simplicity, all parameters are assumed not to vary with location or OD-pairs, 

even though the model can capture such variations. We note that all capital costs (charging facility) 

are later amortized based on the life cycle of the facility.  

Table 3-2 Base case parameter values 

Parameters Description unit Value 
𝐶𝐶𝑠𝑠 Fixed construction cost of charging stations k$ 520 

𝐶𝐶𝑝𝑝 Per spot construction cost of recharging outlet $
𝑘𝑘𝑘𝑘

 500 

𝛽𝛽 Battery performance 𝑚𝑚𝑖𝑖𝑙𝑙𝑒𝑒
𝑘𝑘𝑘𝑘 ℎ

 2.5 

𝜃𝜃 Range tolerance (confident range) - 0.8 

⍺ Energy efficiency (converting energy/power 
ratio to charging time) - 1.3 

𝑇𝑇0 Time period h 12 

𝛾𝛾 Value of time $
ℎ

 18 

𝐶𝐶𝑒𝑒 Battery cost $
𝑘𝑘𝑘𝑘 ℎ

 205 

A1 Congestion factor in BPR function - 4 
A2 Coefficient in BPR function - 0.15 
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3-4-1- Case Study 

The purpose of the case study is twofold: 

I. Implementing the proposed model on a real-world network to assess its performance and 

viability. 

II. Studying the sensitivity of the optimal solutions to the inputs. We are especially interested 

in two types of parameters: those related to the demand, such as the current and future EV 

market share, and those related to technology, such as the battery size.  

The sketch network of the Lower Peninsula of the State of Michigan is considered as the 

case study. The travel distance between some of the major cities in Michigan is beyond the range 

of current electric vehicles. Also, there are often multiple travel corridors between most of the OD-

pairs. The network used in this study consists of 26 nodes, 96 links, and 272 OD-pairs with almost 

3 million daily trips. The network is simplified in terms of links and demand zones from the state-

wide network of Michigan provided by the planning division of the Michigan Department of 

Transportation (MDOT). The demand matrix is almost symmetrical. The size of each circle in 

Figure 3-3 represents the amount of demand generated/attracted to that node. 
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Figure 3-3 Sketch network of the State of Michigan with demand generation/attraction points.  

The model is able to consider various classes of vehicles, e.g. CVs, plug-in hybrid electric 

vehicles, EVs, hydrogen fuel vehicles, etc. However, the focus of this study is on CVs and EVs. 

CVs affect the lower level traffic assignment as link flows include both EVs and CVs. Herein, it 

is assumed that there is no detouring for CVs to reach gas stations due to manifold gas stations 

along the roads. A recent study confirms that a reasonable level of service could only be achieved 

with Type III (fast) chargers (Nie and Ghamami, 2013). Therefore, it is assumed that all installed 

chargers have a power of 50 kW, a typical value for Type III chargers. Also, 67 percent of EVs 

are assumed to have a 40-kWh battery with an average range of 100 miles, while 33 percent are 

assumed to have a 100-kWh battery with a range of 250 miles. Furthermore, it is assumed that 

there is no fast charger currently available because there is almost no DC fast charger available to 
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the public in the state of Michigan. Finally, two different sets of nodes are considered as candidate 

points: 

1. Every node that represents an intersection or demand generation/attraction in the network 

Points along the links to prevent the distances longer than 50 miles between any two 

consecutive nodes in the network. 

 The 50-mile threshold is selected as it can provide feasibility across the network, while 

maintaining the efficiency of the solution algorithm in terms of computation time. In Figure 3-4, 

the second set of the candidate points are located in the middle of links 1-19, 2-5, 2-18, 2-21, 3-6, 

3-7, 4-19, 5-8, 6-7, 7-25, 8-9, 8-12, 9-15, 10-16 and 16-17. As the length of link 4-7 is longer than 

100 miles, there are two candidate points along with it. Unless otherwise specified, the parameter 

values mentioned above are used throughout the numerical results section. 

 

Figure 3-4 Candidate stations in the sketch network of Michigan Lower Peninsula 
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3-4-2- Model Calibration 

Metaheuristic algorithms typically require calibration of some parameters to be adjusted to a 

specific problem. Iteration numbers and temperature changes are among these parameters for the 

proposed SA-based algorithm. The initial temperature is set to 0.05 with a decreasing factor of 

0.85 for each temperature change (Kavianipour et al., 2019; Zockaie et al., 2018). As the number 

of required iterations at each temperature and the number of temperature changes depend on the 

feasible set, sensitivity analyses are performed to find a proper setting for these parameters. 

Finally, in this study, an iterative process is used to solve the lower level problem that assigns 

travelers to different routes and charging stations. The number of iterations in this process is 

another parameter that needs to be set. 

3-4-2-1- Number of iterations (inner and main) for SA algorithm 

The proper numbers of main and inner iterations for the SA algorithm are selected through 

testing different values. The combination that provides the minimum objective function (closer to 

optimal) with the minimum required number of total iterations is selected for the rest of the 

analyses. Table 3-3 shows the objective functions measured through the application of the 

proposed solution algorithm. Each row represents a certain number of temperature changes 

(number of main iterations), and each column represents a certain number of iterations at each 

temperature (number of inner iterations). According to Table 3-3, increasing the number of 

iterations (inner or main) results in a decreasing pattern for the measured objective function. 

However, after a certain point increasing the number of iterations does not provide any reduction 

in the objective function value. Thus, the number of main and inner iterations are set to 25 for the 

rest of this study.  
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Table 3-3 Optimum objective function ($/day) values for different numbers of main and inner 
iterations in the SA algorithm 

Main 
iterations 

Inner iterations 
5 10 15 20 25 30 

5 12882.59 11859.09 10916.87 10236.86 9753.54 9644.55 
10 11859.09 10236.86 9644.55 9243.83 9175.34 9141.09 
15 10916.87 9644.55 9223.28 9141.09 9134.24 9134.24 
20 10236.86 9243.83 9141.09 9134.24 9134.24 9134.24 
25 9753.54 9175.34 9134.24 9134.24 9134.24 9134.24 
30 9644.55 9141.09 9134.24 9134.24 9134.24 9134.24 

 

3-4-2-2- Number of iterations for the Assignment Problem 

As mentioned earlier, the travelers’ route choice behavior is assumed to follow a user 

equilibrium model. To test the effectiveness of the proposed assignment algorithm, the average 

gap values are plotted versus the assignment iteration numbers for a given inner iteration of the 

main algorithm. The plot is provided in Figure 3-5.  

 

Figure 3-5 The average gap for different iterations in the path and charging station assignment 
sub-problem 

A significant decreasing pattern can be observed in the early iterations. However, after a certain 

number of iterations, the changes in the average gap become minimal. The total number of 
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assignment iterations for this study is set to 100, which provides less than a minute average gap 

values (acceptable for inter-city networks) in a reasonable computation time. 

3-4-2-3- Enumeration versus SA 

To evaluate the performance of the SA, we incorporate an enumeration approach as a benchmark. 

Enumerating all the possible combinations of charging station locations and number of chargers 

and is not practical for the proposed case study, since it requires evaluating the objective function 

for each of 643 possible combinations. Therefore, we limit the search space by considering only a 

subset of candidate points for building charging stations. To this end, the number of candidate 

points need to be larger than the number of optimal charging stations. Thus, the following scenario 

is defined for the evaluation purpose. Assuming a 1% market share and a battery capacity of 100 

kWh, the SA approach finds an optimum solution with four charging stations and a maximum of 

two chargers at a station. Therefore, we select a random subset of eight nodes, i.e., 

{2,5,7,9,15,20,29,35}, as candidate locations and consider three levels of chargers as {1,2,3} for 

each selected charging station, which makes the total number of facility combinations equal to 48 

=65,536. The optimal objective function value found by the enumeration approach for this 

simplified network (i.e., only allowing the charging stations at candidate points) is 1,766 $/day, 

where nodes 7, 9 and 20 are selected with 3, 1 and 3 chargers, respectively. The SA approach 

reports the same solution as the best solution. However, it takes almost 33,000 seconds to find the 

optimum solution using the enumeration approach versus 75 seconds for the SA approach. These 

results strongly suggest computational efficiency of the proposed solution approach in terms of 

the objective function quality and computational performance. 
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3-5- Results 

3-5-1- Base case 

In this section, the convergence of the SA algorithm is demonstrated for the selected number of 

main and inner iterations (𝐾𝐾0 and 𝐾𝐾1) in the previous section. After a certain number of main and 

inner iterations, there is no clear indication that a higher number of iterations would help reduce 

the objective function value, as one might expect. On the other hand, the computational time 

increases with the number of iterations. Figure 3-6 presents the convergence of the objective 

function values as the number of iterations increases. In Figure 3-6(a), the objective function 

values are plotted continuously for different main and inner iterations. Figure 3-6(b) reports the 

changes in the objective function value plotted for each outer or main iteration. After 17 main 

iterations, the objective function value does not improve any more. To account for different 

analyses in this study, the numbers of main and inner iterations are both set to 25 to ensure the 

optimality of the final solution. 

 

Figure 3-6 Metaheuristic algorithm convergence (a) General trend of the objective function for 
different iterations and (b) Changes in objective function value for different main and inner 

iterations 

Figure 3-7 shows the optimal configuration of the charging stations for the State of 

Michigan sketch network in the Lower Peninsula with the current demand level for electric 

  
(a) (b) 
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vehicles (0.38 percent of EV market share). The optimal solution chooses 18 charging stations 

among the candidate nodes of the network in the Michigan Lower Peninsula. It suggests one high-

level station (with 10 chargers), one medium-level station (5 chargers), four low-level charging 

stations (3 chargers) and 12 very low-level charging stations (2 chargers). In the plot, each circle 

represents a charging station and the size of the circle visualizes the spot (charger) level in that 

station. The total objective function for this case is 9,134 ($/day) which consists of 2,913 ($/day) 

investment cost and 6,221 ($) delay cost. The optimum solution for the base case causes 20,736 

(min) of total delay including the charging time, waiting time, and detour for charging. Note that 

the existing charging stations do not support intercity trips in the studied network.  

 

Figure 3-7 Optimal configuration (size and location) of selected candidate charging stations 
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3-5-2- Sensitivity analysis 

In the previous section, the optimal solution is presented for the base case including the current 

market share and a 40 kWh battery size assuming a fixed value of time and investment cost for 

acquiring charging stations and chargers. In this section, through multiple sensitivity analyses, 

each of these parameters is set to different possible values, while the other ones are assumed to be 

the same as the base case. These analyses provide insights regarding the impacts of technology 

development on EVs in the future. 

3-5-2-1- Battery Size 

Battery size is one of the factors that car companies invest in to overcome the range anxiety issue 

for EV users. Considering the unit battery cost of 205 ($/kWh) (Union of Concerned Scientists, 

2018), increasing the battery size for the entire population of EVs requires certain investments as 

shown in Figure 3-8(a). Increasing the battery size reduces the number of required charging times, 

the total waiting time, and charging station investment cost (see Figure 3-8(b) and (c)). However, 

increasing the battery size beyond 70 kWh does not reduce waiting time and infrastructure cost 

significantly. Thus, a proper investment seems to be increasing the EVs’ battery size to 70 kWh. 

It is noteworthy to mention that this result is based on the assumption that the cost of the battery 

size is an increasing linear function of its size.  
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Figure 3-8 (a) Effects of the battery size on the battery investment cost (b) Effects of the battery 
size on the waiting time (c) Effects of the battery size on the infrastructure investment costs 

By comparing these figures, some insightful findings can be extracted. The average per year cost 

of increasing the battery size from 40 kWh to 70 kWh for the current market share is $16.74M:  

Battery size increase ∗ price per kW ∗ market share ∗ number of cars in Michigan

∗ (
1

lifetime
) = (70 − 40kWh) ∗ 205

$
kWh

∗ 0.0038 ∗ 7164651 ∗ 0.1

= $16.74M 

(3.45) 

However, the total saving in the investment cost is just about $0.8M per year (Figure 3-8(c)). It 

means that providing batteries with higher capacities can reduce delays by more than 90 percent, 

  

(a) (b) 

 

(c) 
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however, it needs significant investments. It is noteworthy to mention that the saving due to 

reduced delay is almost $2.5M per year. 

3-5-2-2- Market share 

Due to the environmental benefits of EVs, certain incentives have been provided to increase the 

market share for EVs to maximize their benefits. Increasing the market share results into increase 

of the optimum objective function and total delay. To decrease the total delay, more chargers are 

needed in charging stations. Therefore, the initial setting of five different charger levels, with 2, 3, 

5, 10 and 15 capacities can not support the demand in the future. Thus, in this section, we use 

various five-level sets, where the number of spots for each level is set based on the demand in each 

scenario. It should be noted that the number of spots should be deemed as the total number of 

chargers in a small region in an aggregate model. This assumption brings in some approximations, 

but it is pivotal for the sake of computational time. The sensitivity analysis on the market share is 

shown in Figure 3-9. Figure 3-9(a) plots the objective function (k$) for different EVs’ market 

share. This figure shows that the objective function increases when EVs’ market share increases. 

Figure 3-9(b) shows the total delay (h/day) increases almost linearly as the market share increases, 

which means that the average delay is almost constant for different EVs’ market shares. It is 

noteworthy that although the total delay consists of refueling delay, queuing delay and detouring 

delay, the queuing delay is almost zero in all scenarios. The assumed value of time and per unit 

charger cost justify adding chargers to the station to remove the queuing. Figure 3-9(c) plots the 

number of required spots for different EVs’ market shares. Increasing the market share increases 

the number of required spots, which explains the increased investment cost and constant average 

delays. 
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Figure 3-9 (a) Effects of the market share on the objective function value (b) Effects of the 
market share on the total delay (c) Effects of the market share on the total number of spots 

3-5-2-3- Value of time 

Figure 3-10(a) shows the relation between the optimum objective function (k$/day) for different 

value of times, γ ($/h). As the value of time increases, the optimum objective function increases, 

which is consistent with the equation (12). Figure 3-10(b) shows the relation between the total 

delay (h/day) and the value of time ($/h). As the value of time increases, the model compensates 

its effects on the objective function by decreasing the total delay. However, after a certain value 

  

(a) (b) 

 

(c) 
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of time, the total delay cannot be reduced any further and remains almost constant. The reason is 

that the total delay is the summation of detour time, queuing time and charging time. By increasing 

the value of time, model builds more charging stations and chargers to decrease detour time and 

queuing time respectively. But after some point, there is no more queuing time and the detour time 

cannot be decreased any more, while the charging time remains constant. Figure 3-10(c) plots the 

total number of spots for different values of γ ($/h). By increasing the value of time, the number 

of spots increases to decrease the total delay. After some point, when there is no queuing delay 

and all candidate stations are selected to be equipped with chargers, increasing the value of time 

has no impact on the number of spots.  

 

Figure 3-10 (a) Effects of the value of time on the objective function (b) Effects of the value of 
time on the total delay (c) Effects of the value of time on the number of spots 
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3-5-2-4- Battery Size and EV Market Share 

Battery size and market share of EVs are two of the main factors affecting the charging needs of 

EVs. Figure 3-11(a) plots the number of spots for different EV market shares up to 20 percent for 

different battery sizes (kW).  

 

Figure 3-11 (a) The effect of EV market share on number of spots for different battery size (b) 
The effect of EV market share on total daily delay for different battery size 

By increasing the market share for each battery type, the number of charging stations and chargers 

increases as well. For a fixed market share, increasing the battery size leads to less chargers. By 

increasing the battery size from 40 kW to 70 kW, the number of spots decreases by almost 80 

percent. Figure 3-11(b) shows the relation between the total delay (h/day) and EVs’ market share 

for different battery sizes (kW). By increasing the market share for a certain battery size, the total 

delay increases as the number of EVs increases. For each market share, increasing the battery size 

decreases the total delay due to a lower charging demand. This means that EVs would be able to 

travel longer distances without the need for charging. However, increasing the battery size beyond 

the 70 kWh does not result in a significant decrease in the total delay. This is due to the fact that 

the 70 kWh battery, providing a range of 175 miles, is enough to get to a close city or the next 

  

(a) (b) 
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charging station. Thus, the number of in-trip charging decreases and the total delay remains almost 

constant up to 20 percent market share. However, for smaller battery sizes, there is a significant 

charging delay that increases with the increase in the market share. Although larger battery size 

results into less total delay, there is a significant cost associated with it. This cost increases linearly 

when the market share increases. 

Battery size and market share of EVs affect the configuration of charging stations in 

addition to the number of charging stations and chargers, which are discussed in the above sections. 

Figure 3-12 illustrates the impact of battery size and market share on the configuration of charging 

stations. In the first three scenarios, the market share is kept constant while the battery capacity 

increases. With higher capacity batteries, the need for charging decreases. Therefore, the required 

number of chargers drop from 19 in scenario 1 to 6 in scenario 2 (Also reflected in Table 3-4 and 

Table 3-5). The number of charging stations also drops to 3 when the battery capacity is increased 

to 100 kWh. In scenario 4-6, the battery capacity is 40 kWh while the market share of EVs 

increases from 1 percent in scenario 4 to 5 percent in scenario 5 and to 10 percent in scenario 6. 

While the number of stations and their configuration is not affected significantly by the increased 

market share, the required chargers have increased from 150 in scenario 4 to 730 in scenario 5 and 

to 1,510 in scenario 6. Similarly, the market share increases in scenario 7 to 9 from 1 percent to 

10 percent while the battery capacity is held at 70 kWh. As shown in Figure 3-12, the location of 

charging station has not changed significantly based on the market share while the number of 

chargers increased from 27 to 280. Based on these nine scenarios, the location of chargers is merely 

dictated by the battery capacity, while the number of chargers reflects the market penetration rate.  

Two other elements of this study, the congestion level and users’ delay, are compared in Table 3-4 

and Table 3-5, respectively. Comparing the first three scenarios in Table 3-4, the charging station 
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visiting flow decreases when the battery capacity increases. However, the increased market share 

results in more congestion level as more vehicles need recharging, which is reflected in scenarios 

4-6 and 7-9 in Table 3-4.  

Table 3-4 Charging station, number of stations and chargers, and congestion level under nine 
different scenarios 

Scenario Battery Market 
Share 

Station 
Num. 

Charger 
Num. 

Congestion level (Veh/day) 
Ave. Max. 

1 40 0.38% 19 64 72 253 
2 70 0.38% 6 12 27 44 
3 100 0.38% 3 6 13 19 
4 40 1% 23 150 155 526 
5 40 5% 24 730 747 2564 
6 40 10% 26 1510 1385 5210 
7 70 1% 7 27 60 113 
8 70 5% 10 140 215 470 
9 70 10% 10 280 430.7 939 

 

Table 3-5 Charging station, number of stations and chargers, and users’ delay under nine 
different scenarios 

Scenario Battery Market Share Station Num. Charger Num. Users delay (min) 
Ave. Max. 

1 40 0.38% 19 64 21.9 43 
2 70 0.38% 6 12 34.6 59.7 
3 100 0.38% 3 6 28.9 45.5 
4 40 1% 23 150 22.4 41.8 
5 40 5% 24 730 23.4 42 
6 40 10% 26 1510 23.8 42.7 
7 70 1% 7 27 34.1 62.7 
8 70 5% 10 140 31.6 50 
9 70 10% 10 280 31.6 49 

 

Table 3-5 compares the users delay under the mentioned scenarios. Comparing scenarios 1, 4, 5, 

and 6, the users’ average delay is mainly influenced by the battery capacity. Similarly, scenarios 

2, 7, 8, and 9 that share the same battery capacity have an almost the same average delay. 

Increasing the battery capacity changes the users’ delay, which can be reflected by comparing 
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scenarios 1, 4, 5, and 6 with scenarios 2 and 3. In these scenarios, EVs need to spend more time to 

get recharged. Although higher capacity batteries barely need recharging, but they require more 

power to be recharged. Therefore, an increase in users delay is expected, which is reflected 

Table 3-5. However, this increase is also a function of the network structure. 
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Figure 3-12 Visualized configuration and capacity of charging stations under different battery 
size and market shares 
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3-6- Summary 

This study proposes a mixed integer program with non-linear constraints to formulate the 

infrastructure planning problem for EVs in the intercity networks considering the range anxiety 

issue. Dummy nodes and links are used to differentiate between visiting a node along a trip and 

visiting it for the refueling purpose. The objective function makes a trade-off between the 

investment of building charging stations with a certain number of chargers and EV users’ total 

delay, including the charging time, waiting time, and required detour time to access a charging 

station. A metaheuristic solution approach is proposed based on the simulated annealing to solve 

this problem for the intercity network of Michigan with realistic daily travel demand and trip 

distances. The numerical experiments show a successful application of the solution methodology 

resulting in key findings as follows: 

• Increasing the battery size beyond 70 kWh does not improve the delay or the investment 

cost significantly since the delay is within the minimum range. 

• The current charging stations in Michigan do not support intercity trips. To support such 

trips for EVs, a substantial investment is required. Adding 18 charging stations consisting 

of 1 station with 10 chargers, 1 station with 5 chargers, 4 stations with 3 chargers and 12 

stations with 2 chargers would facilitate the intercity trips for current EV users while 

maintaining an acceptable level of service. 

• Increasing the market share by as much as 20 percent requires significant investment in 

either the charging infrastructure or the battery size.  

• By increasing the battery size, the need to build more charging stations decreases. If we 

have a fleet of EVs with the highest battery technology available in the market, the required 

number of charging stations and spots decreases tremendously. However, a significant 
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battery investment cost is associated with this approach that scales up with the increase in 

the market share. 

• Providing more charging stations and spots is the more economical approach to support 

EVs intercity trip feasibility compared to increasing battery’s size. 

• With the current chargers’ cost and value of time, providing enough chargers to remove 

the queuing in charging stations is the cost-effective approach. 

• The size of the battery determines the location of charging stations while the market share 

affect the charger count within charging stations. 
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 Monthly Traffic Demand and Battery Performance Variations Impact on EV 
charging infrastructure 

4-1- Overview 

Monthly traffic patterns and battery performance variations are two main contributing factors in 

defining the infrastructure needs of EV users, particularly in states with adverse weather 

conditions. Knowing this, the current study focuses on Michigan and its future needs to support 

the intercity trips of EVs across the state in two target years of 2020 and 2030, considering monthly 

traffic demand and battery performance variations. This chapter incorporates a recently developed 

modeling framework to suggest the optimal locations of EV fast chargers to be implemented in 

Michigan. Considering demand and battery performance variations is the major contribution of the 

current study to the proposed modeling framework by the same authors in the literature. 

Furthermore, many stakeholders in Michigan are engaged to estimate the input parameters. 

Therefore, the research study can be used by authorities as an applied model for optimal allocation 

of resources to place EV fast chargers. This study suggests the optimum location and number of 

chargers to meet the growing EV demand. The results also show that the reduced battery 

performance in cold weather is a more critical factor than the increased demand in warm seasons 

in designing the EV infrastructure. 

This chapter sets out to incorporate monthly demand and battery performance variations at 

different months in the intercity network model, developed in chapter 3, in two target years of 

2020 and 2030, in such a way that the considered travel needs of BEV users for their intercity trips 

are satisfied in Michigan. Two important contributing factors in defining the infrastructure needs 

of BEV users are battery performance and traffic demand fluctuations in different months (Hao et 

al., 2020). These factors are expected to be extremely significant for the state of Michigan, because 
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of the frequent severe weather conditions, as well as the tourism attractions in the state. Therefore, 

traffic demand variations across different months are accounted for in this study to capture multi-

view perspectives and better equip Michigan as part of the desired more electrified U.S. 

transportation system. Although the effects of EV demand seasonality on power consumption of 

EVs are investigated in a few studies (Bikcora et al., 2015; Donadee et al., 2014; Murakami et al., 

2014; Shortt and O’Malley, 2014), there is a lack of studies in the literature that account for 

realistic traffic demands of the mixed fleet of conventional and electric vehicles in different months 

in the charging placement problem. In addition to travel demand fluctuations, this study 

differentiates between battery performances in favorable and extreme (or cold) weather conditions. 

It is worth noting that the present study considers currently available battery and charging 

technologies. Stakeholders at numerous meetings throughout the “Electric Vehicle Charger 

Placement in Michigan”, a project funded by Michigan Department of Environment, Great Lakes, 

and Energy (EGLE), provided the available battery and charging technologies’ data for the present 

study. Therefore, the results of the current study can be used by authorities as an applied model 

for optimal allocation of resources to place BEV fast chargers in Michigan. The charging station 

counts and locations found in this study serve vehicles to reach their destination with 20% charge, 

assuming that they started their trip fully charged. 

The structure for the remainder of this chapter is as follows. The second section states the 

problem of interest. The third section presents a modeling framework to minimize the total cost 

considering the variations in traffic demand and battery performance. The fourth section explains 

the data collection process. The fifth section delineates the solution algorithm to find the optimal 

charger placement by incorporating travel demand fluctuations in different months and battery 



62 

performance reduction in cold weather. Finally, the sixth section contains the results and 

discussion following by the summary. 

4-2- Problem Statement 

In a state-wide roadway network, there are usually numerous parallel and intersecting corridors 

between different OD pairs. The integration of these corridors form a network, known as an 

intercity network. The problem of interest in this study is to find the optimal DC fast charging 

infrastructure investment to support the intercity trips of BEVs in the state of Michigan in light of 

the expected BEV demands over the years, the variations of electric and conventional vehicles’ 

(CVs) traffic demands over different months, and battery performance reduction in cold weather. 

In this problem, the objective is to minimize the total system cost, including the investment on 

charging stations and the additional travel delay (detour delay, queuing delay, and charging delay) 

due to charging of all BEV users. However, in the route choice problem, all users including the 

EV drivers would like to minimize their own travel time regardless of other travelers. Therefore, 

in the proposed model, a user equilibrium problem needs to be embedded into a system optimal 

problem. This problem finds the optimal location of charging stations in a network, where users 

with various classes of vehicles try to minimize their own travel times (including charging delays 

for BEV users), subject to change by travel flows along the routes.  

Therefore, realistic traffic demands of different OD pairs, which fluctuate over different 

months should be considered to find the infrastructure needs of BEV users throughout a year. 

However, the monthly OD demands were not available for Michigan. Thus, we propose to estimate 

traffic demand variations using the traffic counts available from the Michigan Department of 

Transportation (MDOT) loop detectors installed across Michigan roadways. In addition, the 

battery performance reduction of BEVs in cold weather is a significant factor that should be 
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considered. Taking these two factors into account, one can find the optimal charging station 

location and charger counts that meet the BEV users’ needs in all months and as a result, more 

reliable infrastructure would be provided for potential BEV users. 

Table 4-1 Definitions of parameters and variables 

Parameter  Definition 
𝑒𝑒 ∈ 𝐸𝐸 Set of links 
𝑖𝑖 ∈ 𝐼𝐼 Set of nodes 

𝑁𝑁1𝑘𝑘 ⊂ 𝐼𝐼 Set of current refueling/charging stations for vehicles in class 
k 

𝑁𝑁2𝑘𝑘 ⊂ 𝐼𝐼 Candidate points for building refueling/charging stations for 
vehicles in class k 

𝑘𝑘 ∈ 𝐾𝐾 Different classes of vehicles in the network 
𝑁𝑁′

1
𝑘𝑘&𝑁𝑁′

2
𝑘𝑘  Sets of dummy nodes for charging purposes 

𝐶𝐶𝑘𝑘 ($ per station per lifetime) The fixed cost of a charging station for a vehicle in class k 

𝑥𝑥𝑖𝑖𝑘𝑘  
A binary variable taking the value of 1 when a charging 
station is located on candidate node i for a vehicle of class k 

𝑧𝑧𝑖𝑖𝑘𝑘 The number of chargers located on candidate node i for a 
vehicle of class k 

𝑆𝑆𝑘𝑘 ($ per spot per lifetime) The cost to provide one charger for vehicles in class k 
𝛾𝛾 ($ per hour) Value of time 
𝑌𝑌 (yrs)  Lifetime of the charging stations and chargers 

𝜋𝜋𝑖𝑖𝑚𝑚 (hr per month per yr) 
Total queuing and charging time at charging station i during 
month m 

𝑇𝑇𝑘𝑘𝑚𝑚 (hr per month per yr) Detour time for vehicle class k during month m 
𝑓𝑓(𝑒𝑒) (vehicles) Estimated link flow for link 𝑒𝑒 ∈ 𝐸𝐸 
𝑓𝑓(𝑒𝑒) (vehicles) Actual link flow for link 𝑒𝑒 ∈ 𝐸𝐸 

�̂�𝑡 (trips per day) Estimated OD demand matrix containing the number of trips 
per day for different OD pairs 

𝐺𝐺(�̂�𝑡) A function that finds link flow based on the user equilibrium 
process and OD demand matrix, �̂�𝑡 

𝜑𝜑𝑒𝑒𝑚𝑚 
An average value of the monthly factors for link 𝑒𝑒 in month 
m 

𝜅𝜅𝑂𝑂𝑂𝑂 
Set of all links with a positive share of demand for the OD 
pair 

𝑃𝑃𝑒𝑒𝑂𝑂𝑂𝑂 The proportion of each OD demand that uses each link e 
𝛷𝛷𝑂𝑂𝑂𝑂𝑚𝑚  Demand factor of month m for each OD pair 

Γ&Γ𝑚𝑚 Objective function value & the neighbor solution objective 
function value in the metaheuristic algorithm 
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4-3- Modeling Framework 

The modeling framework used in this study captures link travel time variations by link flows along 

the routes, and tracks the state of fuel and electricity for groups of vehicles traveling between 

different OD pairs. In this framework, the objective function value, which is a summation of the 

total investment costs and the monetary value of detour and queuing delays, is minimized over the 

year to capture the traffic demand and battery performance variations over different months of the 

year. The model considers BEVs with limited driving ranges, and ensures the feasibility of long-

distance trips by providing the required infrastructure en-route, while minimizing investment cost 

as well as the total delay for all BEVs. Different locations along major roads are differentiated by 

their land acquisition costs and electric power availability.   

In this study, the road network contains a set of links (𝑒𝑒 ∈ 𝐸𝐸), and a set of nodes (𝑖𝑖 ∈ 𝐼𝐼). 

The set of current refueling/charging stations and candidate points for building refueling/charging 

stations are defined by 𝑁𝑁1𝑘𝑘 ⊂ 𝐼𝐼 and 𝑁𝑁2𝑘𝑘 ⊂ 𝐼𝐼, respectively, where 𝑘𝑘 ∈ 𝐾𝐾 denotes different classes of 

vehicles in the network. Note that CVs and PEVs with certain battery sizes are assumed as different 

classes of vehicles. Any node, belonging to the set of current or candidate refueling/charging 

stations, may be visited by users for refueling/charging purposes or as a midpoint along their route. 

Given the impacts of the visiting purpose on the state of fuel/charge, two sets of dummy nodes are 

introduced for charging purpose as 𝑁𝑁′
1
𝑘𝑘 and 𝑁𝑁′

2
𝑘𝑘. The objective function below, which is adopted 

from the function provided by (Ghamami et al., 2020a), aims to minimize the investment cost 

(charger, grid, construction, land, etc.) and also the users’ refueling/charging, detouring and 

queuing time cost: 
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𝑚𝑚𝑖𝑖𝑎𝑎�

⎝

⎛ � (𝐶𝐶𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘 + 𝑧𝑧𝑖𝑖𝑘𝑘

𝑖𝑖∈𝑁𝑁′2
𝑘𝑘
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 (4.1) 

The objective function (4.1) consists of two main terms. The first term represents infrastructure 

investment cost, which includes the fixed cost of acquiring a charging station at any location and 

the variable cost of charging spots. For charging station cost, the number of charging stations is 

multiplied by 𝐶𝐶𝑘𝑘 (measured in $ per station per lifetime), which is the fixed cost of building a 

charging station for a vehicle in class k. 𝑥𝑥𝑖𝑖𝑘𝑘  is a binary variable taking the value of 1 when a 

charging station is located on candidate point i for a vehicle of class k. For the charging spot cost, 

the number of charging spots, 𝑧𝑧𝑖𝑖𝑘𝑘, is multiplied by 𝑆𝑆𝑘𝑘 (measured in $ per spot), which is the fixed 

cost to provide one charging spot for vehicles in class k. The second term of the objective function 

represents the monetary value of time spent waiting and charging in the stations, and required 

detours to access charging stations. The total time for waiting in queue, charging, and detour is 

multiplied by γ, which is the value of time ($ per hour). Therefore, 𝜋𝜋𝑖𝑖𝑚𝑚 denotes the total queuing 

and charging time at charging station i during month m, while 𝑇𝑇𝑘𝑘𝑚𝑚 is the detour time of vehicle in 

class k in month m. In (4.1), delays are summed over the lifetime of charging stations, Y. The 

decision variables of the study are the location and capacity of the charging stations (number of 

charging spots). The model ensures the feasibility of travel for BEVs traveling between different 

OD pairs considering their route choice options.  

In order to find the optimal location and capacity of charging stations, the objective 

function defined in (4.1) is minimized, given the traffic demand and battery performance provided 

for different months. Therefore, traffic demand needs to be estimated for different months using 

the available information (i.e., the base OD demand matrix and traffic counts on a subset of links). 

Thus, the OD demand matrix that best matches the traffic volumes of the subset of links for each 
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month should be found. The daily traffic demand is then expanded to monthly traffic demand, and 

the OD demand matrices of different months are used to find the optimum charging station location 

and capacity considering the traffic demand and battery performance variations over different 

months of a year. Note that the EV demand is considered to be 6 percent of the total traffic demand. 

The objective function of the sub-model used to generate the monthly OD demand matrices, which 

are the inputs of the main problem in (4.1), is as follows (Eisenman and List, 2004). 

𝑚𝑚𝑖𝑖𝑎𝑎��𝑓𝑓𝑒𝑒� − 𝑓𝑓𝑒𝑒�
𝑒𝑒∈𝐸𝐸

  (4.2) 

Subject to 

𝑓𝑓 = 𝐺𝐺(�̂�𝑡) (4.3) 

𝑓𝑓 > 0, �̂�𝑡 > 0 (4.4) 

where 𝑓𝑓 is the vector of estimated flows for all links, 𝑒𝑒 ∈ 𝐸𝐸, and 𝑓𝑓 is the count observations for 

the same links. �̂�𝑡 is the estimated OD demand matrix while 𝐺𝐺(�̂�𝑡) is a function that estimates link 

flow based on the OD demand matrix. This function allocates users to different routes and charging 

stations for charging in a way that there is no other route or charging option to reduce their total 

travel time (including detour, waiting, and charging time). Note that the total travel time of each 

route depends on the number of assigned users to the routes and charging stations.  The function 

finds the link flow vector, 𝑓𝑓, for all links, 𝑒𝑒 ∈ 𝐸𝐸, based on the user equilibrium process and the 

OD demand matrix. 

4-3- Data Summary 

Input variables reflecting the local information in Michigan are significantly important in finding 

the optimal charging facility locations and the associated number of chargers. Therefore, the 

required data to find the optimum charging facility in Michigan are collected through different 

stakeholder meetings and requests from relevant companies. Thus, in this section, data acquisition 
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details are presented, which entail associated costs of each station and its chargers based on the 

station location, electricity provision costs, types of chargers, PEV specifications and market share, 

and travel demand information to capture the effects of seasonality in trip making. In this study, a 

value of time of $18/hour is considered to calculate the monetary value of experienced delay. The 

details of the other collected data and the sources are presented as follows. 

4-3-1- Costs Data 

In this chapter, the costs of site acquisition, utility upgrade, electrical panel and switch gear, 

engineering and design, permitting, and project management are incorporated as station costs. 

Station set-up costs, including project management, equipment, construction, and maintenance 

costs, were requested and provided by different charging station companies. The charging stations 

supporting 50 kW chargers have costs of $48,437. The 50 kW chargers also cost $33,750. Land 

acquisition cost for siting fast DC charging stations depends upon many factors. Several studies 

state that population density is the most visible and measurable basis that should be taken into 

account at macro-level assessment. Seo et al. (2018) estimated that a one percent increase in 

population density increases commercial land values by 3.5 percent when other factors are 

unchanged. This finding is supported by an earlier study by McDonald (Mc Donald, 1993), who 

found elasticity measures between 3.05 and 3.21. Another contributing factor in the site acquisition 

cost is the commercial property values of the neighborhood, which also depend on various factors. 

The population density in this study is extracted from the U.S. Census (U.S. Census Bureau, 2010) 

data, which provides the population counts and density values at the zip code level in the 2010 

decennial census. The population densities of Michigan for different zip codes are illustrated in 

Figure 4-1. The modeling nodes for route placement of charging stations are overlaid with 

Figure 4-1, and land costs are calculated to develop comparative land costs that are combined with 
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other costs in modeling optimal EV charger placement. Statistics on land costs are provided in 

Table 4-2. 

 

 

Figure 4-1 Population density of Michigan at the zip code level (U.S. Census Bureau, 2010) 

Power availability is another contributing factor in BEV charging facility placement. In this study, 

the utility coverage at each candidate location across the state is checked through the Michigan 

Public Service Commission website (“MPSC - MI Public Service Commission,” 2019). 

Subsequently, the coordinates of each candidate location are provided to the related responsible 

utility company to obtain the electricity provision costs. These costs include but are not limited to: 

conduit from the transformer to the meter enclosure, meter enclosure, protective equipment, and 

conduit and conductor from the meter enclosure to the charging station. Considering the fact that 

electricity provision costs could vary substantially in even matters of meters, the provided costs at 

each location are the average values within the area. Also, for candidate locations under 
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jurisdiction of multiple utility companies, the average cost is used as an input to the proposed 

modeling framework. Statistics on electricity provision costs are also provided in Table 4-2. 

Table 4-2 Estimated land cost and electricity provision cost at candidate points 

 
Minimum Average Maximum Standard 

Deviation 
Land Cost ($) 162,410  171,095  250,175  16,638  
Electricity Provision Cost ($) 12,230  69,539  275,000  55,924  

 

4-3-2- PEV Specifications and Market Share 

In order to reflect the needs of the current and projected future PEV demand, PEV market share at 

present and into the future is accounted for in this study. In addition, current battery size and 

performances in different weather conditions are considered as other vehicle specific 

characteristics in this study. Auto companies’ representatives at various stakeholder meetings 

associated with this study, recommended using a 70 kWh EV battery size for the model. In terms 

of charging power, this study considers 50 kW DC fast chargers. The battery efficiency in this 

study is considered to be 3.5 mi/kWh in favorable weather conditions based on the suggestion of 

vehicle manufacturers and other stakeholders (i.e. in summer and fall) (Ghamami et al., 2019b). 

This value is called the nominal battery performance throughout the study. Various studies suggest 

that the battery performance declines by 25% to 30% in cold temperatures (which is assumed to 

occur on December, January, and February in this study) (Department of Energy, 2020). Battery 

performance variation highly depends on the model and type of the car. Therefore, the value 

suggested by vehicle manufacturers and Office of Energy Efficiency and Renewable Energy 

(Department of Energy, 2020) is used in this study. Given the mentioned PEV specifications, the 

present study focuses on developing a BEV DC fast charger optimized placement map for 2030.  

As such, projections for future EV market share in Michigan are also required. Based on the 
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Midcontinent Independent System Operator (MISO) predictions, a recent study in Michigan 

recommends the market shares of 1.49% in 2020 and 6.00% in 2030 (Electric Vehicle Cost-Benefit 

Analysis Plug-in Electric Vehicle Cost-Benefit Analysis: Michigan, 2017). 

4-3-3- OD Travel Demand and Michigan Road Network 

Michigan road network configuration and OD travel demand, which is associated with a typical 

fall weekday traffic demand, were provided by MDOT. The network physical structure was 

designed in TransCAD® (Figure 4-2(a)) and simplified (Figure 4-2(b)) for the purpose of this 

study to avoid the computational challenges and roadway details which are unnecessary for the 

intercity network evaluation. The base OD demand values were obtained from state travel surveys 

and were transferred to an OD demand matrix using the planning travel models of the state DOT. 

This demand table is estimated for about 2,300 traffic analysis zones (TAZs) for a weekday in fall 

season with normal weather conditions. First, the 2,300 TAZs are aggregated to 24 nodes 

representing large cities throughout Michigan with populations higher than 50,000. Moreover, the 

aggregated demand table (base demand) is modified to capture monthly variations in demand as a 

result of different factors, such as tourism or weather conditions. The monthly variations are 

calculated based on the continuous counting station data provided by MDOT. The modifications 

applied to consider demand at border points of Michigan and monthly variations of demand are 

elaborated in the following. 

4-3-3-1- State of Charge 

The modeling framework presented in this study is designed to support intercity trips within 

Michigan. The network level problem considered in this study is solved considering all BEVs 

begin their trips fully charged (assuming that intercity trips are well-planned with available 

chargers at trip origins). Our model also ensures that BEVs arrive at their destinations with at least 



71 

20 percent battery charge level (Nie and Ghamami, 2013). To this end, BEV users might need to 

charge their battery depending on their trip length to ensure this minimum battery charge at the 

destination. In case of multiple required charges along the BEV trips, the battery would be charged 

up to 80 percent of the battery capacity (due to exponential increase in charging time in the last 20 

percent of the battery capacity) except for the last required charging before reaching the 

destination. For the last required charging along the BEV trip, the model assumes the battery would 

be charged only up to a level that can ensure the minimum available charge at the destination. This 

study assumes that a charger is available at both ends of a trip, unlike the common FRLM studies 

that ensure completion of a symmetrical round trip with a single charge.  

4-3-3-2- Demand Estimation at Border Points 

In this chapter, the border points or boundary nodes, which are nodes connecting Michigan to the 

neighbor states and Canada, are also considered as origin or destination nodes. These trips are 

supported by providing charging stations to fully charge the vehicles that are leaving the state. For 

BEV trips with out-of-state origins or destinations, the model considers only the portion of these 

trips that occur in Michigan. This study refers to these trips as external demand. To enable external 

demand of BEVs, additional charging spots are required at the border nodes. In this study, based 

on the nationwide OD matrix, the external outgoing flows for each boundary node is estimated. 

Based on the intended charge level and the charging demand, the required number of charging 

spots at boundary nodes are determined.   
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(a) (b) 

 

Figure 4-2 Michigan road networks (a) Original Michigan road network provided by MDOT (b) 
Simplified intercity road network along with the location of continuous counting stations  

4-3-3-3- Monthly Demand Estimation 

Monthly demand is estimated using the counting station data provided by MDOT. Given the 

fluctuating traffic patterns in different months of a year, monthly demands, which reflect the 

existing traffic patterns in the network, should be estimated for each OD pair. The resulting 

monthly demands can be used as inputs to the charger location model to ensure that the estimated 

charging station locations and number of spots are adequate. In this study, it is assumed that a 

proportional relationship exists between the traffic counts of the stations and the OD demands. 

Thus, the observations from count stations located on Michigan highways are used as a priori 

information. MDOT provided the counts of 122 continuous counting stations installed on 

Michigan highways from which 66 detectors are located on the current simplified network links. 

Having assigned detectors to their relevant links (both directions) in the Michigan network, 90 

one-directional links out of 114 links have at least one count station. Note that the information of 
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each individual detector is used for both directions of the corresponding link connecting two 

specific nodes.  

Figure 4-3(a)-(c) demonstrate the variations of OD demands over different months for two 

specific locations across the state as well as the sum of all OD pairs. The variations of attracted 

traffic demand over different months for a candidate point located around Mackinac Bridge (as a 

tourist attraction location), connecting the Upper and Lower Peninsula, are demonstrated in 

Figure 4-3(a), while the variations of generated demand for a candidate location on the boundaries 

of Detroit are shown in Figure 4-3(b). As shown in these figures, traffic demands throughout a 

year are distributed differently for these two locations which indicates the importance of 

considering a specific demand matrix for each month and each OD pair. The sum of all estimated 

OD demands over different months for the state of Michigan is also demonstrated in Figure 4-3(c) 

as well as the average monthly demand over all months. The fluctuation of total demand in 

different months can be observed in this figure, with the least total demand in January and the 

highest total demand in July.  
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(a) Attracted traffic demand to a node located around Mackinac Bridge 

 
(b) Generated traffic demand from a node located on Detroit 

 
(c) Total monthly demand of the Michigan network in addition to the average monthly demand 
 

Figure 4-3 Demand variations over different months of a year 
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4-4- Solution Algorithm 

The optimization model used in this study to find the charging station counts and locations, which 

is adopted from chapter 3, is a mixed integer problem with non-linear constraints. As discussed in 

chapter 3, this problem is known to be NP-hard (refer to chapter 3 for more details about the 

problem and its constraints). The road network for the state of Michigan is considered a large-scale 

network. Solving such problems is computationally challenging or even impossible for the current 

commercial solvers in the market. Therefore, solving this problem requires a metaheuristic 

algorithm that is designed for this purpose. The metaheuristic algorithm used in this chapter to find 

the optimum charging station locations and capacity is a modification of the algorithm presented 

in chapter 3 based on the Simulated Annealing algorithm. The algorithm of the current study finds 

the optimum charging station locations and counts given the monthly traffic demands and battery 

performances. The following explains the procedure to estimate monthly OD demands and 

incorporating the variations in traffic demand and battery performance into the modeling 

framework. Afterward, the SA algorithm, which is the core of the modeling framework to find the 

optimum charging station locations and counts over the year, is explained. 

4-4-1- Considering Monthly Variations of Demand in the Modeling Framework 

Due to the cold weather in winter and scenic views in spring, summer, and fall, the traffic demand 

varies significantly in Michigan which leads to different travel patterns throughout the year. The 

travel pattern variations are accompanied by changes to the battery performance, as Li-Ion 

batteries do not fulfill their potential in cold temperatures. In order to capture the impact of these 

factors, the solutions are determined for each month considering weather influences on battery 

performance and monthly demands. It should be noted that these two factors are not positively 

correlated. In winter season, the performance of the battery is the worst, while the maximum 
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demand occurs during summer season. Therefore, the optimal design for the BEV charging 

infrastructure network should be identified considering a trade-off between these two factors. 

Furthermore, the link performance functions are modified to capture the scenic routes’ 

specifications (such as US-31, which runs along western lake shore of Michigan before ending 

south at Mackinaw City). A heuristic method is developed and used to estimate the monthly 

demands incorporating the information of 66 continuous counting stations across the roads of the 

intercity network of Michigan. The monthly demands are then used to find the optimal charger 

location and capacity throughout the year. 

Monthly factors for each count station, representing the share of annual demand for each 

month, are utilized as main inputs of this method. The base OD demand estimated for a typical 

day in fall season, provided by MDOT, is also used as a reference value to be multiplied by 

estimated monthly factors for the OD pairs to result in monthly demands. The method developed 

to estimate monthly demands for each OD pair is an iterative approach consisting of multiple steps: 

1- Finding an average factor for each month and each link with at least one detector 

(continuous count station) 

2- Calculating shares of OD pairs’ demands that are traveling on each link by executing a 

traffic assignment algorithm 

3- Assigning adjacent count stations to OD pairs without any assigned continuous counting 

station 

Estimating monthly factors for each OD pair in the network.  

Since there might be multiple counting stations on each individual link in the network, an average 

value of the monthly factors (φ𝑖𝑖
𝑚𝑚) should be estimated to represent the traffic pattern of link i, in 

month m. Note that no factor is assumed for the links without any detector. Furthermore, the share 
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of base OD demand is found for each link using a traffic assignment module. To do so, the base 

OD demand is given initially as the input to the traffic assignment module and the proportion of 

each OD demand that uses each link are defined as 𝐺𝐺𝑖𝑖𝑂𝑂𝑂𝑂, where i is the link number and OD is an 

origin and destination pair. In each iteration of the algorithm, the monthly OD demands of the 

previous iteration is given as the input to the traffic assignment module. Once the set of used paths 

for each OD pair is identified, it should be checked whether all OD pairs have at least one count 

station in their paths set to be used as an estimation factor. The count stations of the links reaching 

the origin or departing from the destination are used as an estimator for the OD pairs without any 

counting station. Finally, monthly factors for each OD pair, 𝛷𝛷𝑂𝑂𝑂𝑂𝑚𝑚 , are estimated using the share of 

each link from demand and the average factors of the links as below.  

𝛷𝛷𝑂𝑂𝑂𝑂𝑚𝑚 =
∑ 𝜑𝜑𝑖𝑖𝑚𝑚𝑃𝑃𝑖𝑖𝑂𝑂𝑂𝑂𝑖𝑖∈𝑘𝑘𝑂𝑂𝑂𝑂
∑ 𝑃𝑃𝑖𝑖𝑂𝑂𝑂𝑂𝑖𝑖∈𝑘𝑘𝑂𝑂𝑂𝑂

  (4.4) 

where 𝑘𝑘𝑂𝑂𝑂𝑂 is the set of all links with a positive share of demand for the OD pair, derived from the 

traffic assignment module. Using the monthly factor estimated by (4.4) and the base OD demand, 

monthly demands for all OD pairs are estimated and used as the input of traffic assignment for the 

next iteration. This iterative process needs to be repeated till there is a convergence in the monthly 

OD demands for two consecutive iterations. Figure 4-4 illustrates the algorithm to estimate 

monthly OD demands using loop detector data. 
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Figure 4-4 A brief illustration of the algorithm to estimate monthly demands for each OD pair 

4-4-2- Metaheuristic algorithm to find the optimum solution 

An SA algorithm is used to find the charging station counts and locations that serve the 

travel demand of BEVs throughout the year. Figure 4-5 illustrates the SA algorithm to find 

optimum charging locations and counts given the monthly OD demands and battery performance. 

Monthly OD demands, estimated in the previous subsection (Figure 4-4), and battery performance 

variations are the inputs to the algorithm. In this algorithm, different levels are defined for the 

number of chargers in each candidate station instead of a continuous integer variable: very low, 

low, medium, high, and very high. Each candidate station that is part of any solution has one of 

the five defined levels for the number of chargers. To ensure path feasibility for all vehicle classes 

and OD pairs, the decision variables for all candidate nodes are set to one in the initial solution. In 

addition, the number of chargers is set to the medium level for all charging stations. This initial 

solution, which guarantees feasibility, can be considered as the current solution. By perturbing the 

current solution, a neighbor solution can be generated by randomly changing one of the decision 
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variables (adding/removing charging station or increasing/decreasing number of chargers level). 

The neighbor solution generation process is designed in a way to ensure feasibility in case of 

removing charging stations from any candidate nodes. The general procedure in the SA algorithm 

to find the optimal solution with the minimum objective function is as follows. 

According to the type of perturbation, each location is associated with a weight factor (e.g., total 

flows and total delays), which is used to select the location based on a probabilistic greedy 

algorithm. To implement the probabilistic greedy algorithm, some rules are considered. Only one 

of these rules is used at each iteration of the algorithm. First, in order to add a new station, each 

location is weighted based on the total flow. The locations with higher crossing flow have priority 

in this rule. Second, to remove an existing station, each station is weighted based on the inverse of 

total flow. This rule implies that the locations with lower total flow get priority to be removed. 

Third, each location is weighted based on the total delay to add new chargers to a station. Finally, 

to remove chargers from a station, each location is weighted based on the inverse of total delay. 

These perturbation rules improve the convergence speed of the algorithm to the optimal solution. 

Perturbing the current solution according to these perturbation rules generates the neighbor 

solution and then a probabilistic decision is made to replace the current solution by the neighbor 

solution or not. If the neighbor solution improves the objective function relative to the current 

solution, it would be deterministically selected. However, even if it has a worse objective function, 

it might be selected probabilistically to avoid trapping in a local optimal solution. The process of 

generating neighbor solution and making a probabilistic decision on replacing the current solution 

would be repeated for many iterations to efficiently search the feasible area of the optimization 

problem and converge to the optimal solution. The probability of accepting a worse solution is 

reduced over the iterations to ensure convergence of the SA algorithm. A more detailed version of 
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this discussion is provided in Ghamami et al. (Ghamami et al., 2020a). To find the objective 

function of each neighbor solution a network analysis procedure needs to be performed.  

To consider users’ route choice behavior in the algorithm, the network analysis procedure 

is embedded in the SA algorithm to find traffic flow for all feasible paths between each OD pair. 

The network analysis procedure is solved using the method of successive averages (MSA). For 

each solution, which consists of the available charging stations and the number of chargers within 

them, the vehicles are assigned to routes based on the user equilibrium concept. The MSA, which 

is used to assign vehicles to their optimum route, has a decreasing step size at each iteration. The 

process terminates when a defined gap value is lower than a small threshold. The average charging 

time is calculated based on the total required charge at each station. To address the queuing delay, 

a uniform arrival rate to stations is considered. Based on the arrival rate and the charging station 

service rate, which depends on the number of chargers, the queuing delay is calculated using a 

deterministic queuing approach. The charging, queuing, and detour delays affect the assignment 

of vehicles, as well as the objective function. A detailed explanation of this approach is provided 

in the study by Ghamami et al. (Ghamami et al., 2020a). 



81 

 

Figure 4-5 A schematic view of the SA algorithm to find the optimal charging station counts and 
locations given the varying battery performances and monthly OD demands over the year 

4-5- Results and Discussion 

In this study, future BEV infrastructure needs in Michigan are investigated in light of the 

recommended current battery size and charging power. The intention is to illuminate the charging 

demands accounting for future demands under the assumption of variable monthly traffic demands 

and battery performance. This study differentiates between battery performance in favorable and 
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cold weather conditions. Conclusively, for each target year, BEV charging demands are first 

investigated for four different months to show the impacts of traffic demand and battery 

performance variations on the charging station configuration and counts. In addition, the optimum 

charging station locations and counts are presented with estimated traffic demands and assumed 

battery performances over the year. The lifetime of the chargers is assumed 10 years in this study. 

The results of link performance modifications for scenic routes such as US-31 indicate that 

although scenic routes are more desirable, drivers mainly opt for major highways due to their 

reduced travel times. Therefore, considering scenic routes’ effect on the link performance function 

does not affect the optimum charging station locations and spots. Thus, the effects of scenic routes 

are only considered through OD demand variations. Figure 4-6 and Figure 4-7 depict the optimized 

locations and capacities required across Michigan so that the related demands of different scenarios 

for January (the lowest battery performance), July (the highest traffic demand), February (a higher 

demand than January and lower battery performance than July), and October (a moderate demand) 

are satisfied. The scenarios reflect different demands, performances, and market shares of different 

months for the 2020 (Figure 4-6) and 2030 (Figure 4-7) target years. In all the figures of this 

section, solid circles are used to pinpoint charging station locations, the radii of which illustrate 

capacity. In this regard, Table 4-3 presents the number of required charging stations and chargers 

for different scenarios (months). Also, the investment costs of charging stations and chargers, and 

land costs are provided in this table. The sum of these costs forms the total cost of each scenario. 

Total charging time which is the summation of charging time and queuing time (waiting time in 

queue prior to charging) is also demonstrated in this table. Average charging delays in the system 

are also reported in minutes per charging vehicle in this table.  
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Comparing the results of Figure 4-6 and Figure 4-7 shows that, as we move onwards from 

2020 to 2030, more charging stations and chargers are needed due to the increased BEV market 

share. Accordingly, as evident in Table 4-3, cost components and the total cost follow the same 

trend across the years. In terms of charging time, each month experiences a rising charging time 

as we move forward into the future. Note that total charging time reflects the time required for all 

BEVs in the network to charge including queuing time at the station.  

As shown in Figure 4-6 and Figure 4-7, for each target year, January scenarios need larger 

charging infrastructure when compared to the other months. According to Figure 4-3c, total 

monthly demand of January falls below that of February, July, and October. However, as EV 

battery performance is lower in cold temperature by almost 30%, more chargers must be allocated 

to fulfill the EV demand. Accordingly, the results of Table 4-3 show that the January scenario in 

each target year evinces higher charging time, more required charging stations and chargers, and 

larger investment costs. It is noteworthy that the battery performance in July and October are 

considered identical due to comparable weather conditions. Considering the relatively close total 

traffic demands for July and October (Figure 4-3), these two scenarios in each target year share 

almost similar specifications. Although the average charging delays and investment costs are 

smaller for July and October scenarios, the charging station locations and counts of these scenarios 

cannot serve the EV demands of January and February scenarios with up to 30% battery 

performance reductions. However, it is observed that the required infrastructures for January and 

February scenarios fulfill the charging demands of BEVs in other scenarios, even though charging 

station locations may not overlap entirely. 

 

 



84 

50 chargers      30 chargers      20 chargers     10 chargers      5 chargers     No charger 

  
a) January with 70% battery 

performance of the nominal 
performance 

b) February with 75% battery 
performance of the nominal 
performance 

 

  
c) July with nominal battery 

performance 
d) October with nominal battery 

performance 
 

Figure 4-6 Visualized location and capacity of charging stations under different demand and 
battery performance scenarios with 2020 BEV market growth (1.49%) 
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Figure 4-7 Visualized location and capacity of charging stations under different demand and 
battery performance scenarios with 2030 BEV market growth (6.00%) 

 

Houghton

Marquette Sault Ste. Marie

Crystal Falls

Traverse City

Alpena

Ludington

Bay City

Grand Rapids Lansing
Flint Port Huron

Kalamazoo
Ann Arbor

Detroit

Luna Pier100 mi 

Houghton

Marquette Sault Ste. Marie

Crystal Falls

Traverse City

Alpena

Ludington

Bay City

Grand Rapids Lansing
Flint Port Huron

Kalamazoo
Ann Arbor

Detroit

Luna Pier100 mi 

Houghton

Marquette Sault Ste. Marie

Crystal Falls

Traverse City

Alpena

Ludington

Bay City

Grand Rapids Lansing
Flint Port Huron

Kalamazoo
Ann Arbor

Detroit

Luna Pier100 mi 

Houghton

Marquette Sault Ste. Marie

Crystal Falls

Traverse City

Alpena

Ludington

Bay City

Grand Rapids Lansing
Flint Port Huron

Kalamazoo
Ann Arbor

Detroit

Luna Pier100 mi 



86 

Table 4-3 Summary of results for different month scenarios: charging stations counts and 
capacity, chargers, required investment, detour time, and charging time and delay 

Variable\Scenario January 2020 February 2020 July 
2020 October 2020 

Optimum Charging Infrastructure     
Number of charging stations 35 33 24 20 
Number of chargers 126 118 81 68 
Investment Cost     
Charging station cost (million $) 5.56 5.33 3.65 3.08 
Land cost (million $) 0.24 0.22 0.15 0.13 
Charger cost (million $) 4.25 3.98 2.73 2.30 
Total cost (million $) 10.05 9.54 6.53 5.50 
Delay Time     
Total charging time (hr) 901.72 796.78 526.55 420.06 
Average charging delay (min) 31.54 30.90 29.74 29.83 
Total detour time (hr) 7.72 21.56 30.21 18.49 

 January 2030 February 2030 July 
2030 October 2030 

Optimum Charging Infrastructure     
Number of charging stations 38 37 32 31 
Number of chargers 478 437 303 269 
Investment Cost     
Charging station cost (million $) 6.04 5.76 5.05 4.84 
Land cost (million $) 0.90 0.83 0.57 0.51 
Charger cost (million $) 16.13 14.75 10.23 9.08 
Total cost (million $) 23.07 21.33 15.84 14.43 
Delay Time     
Total charging time (hr) 3642.09 3211.78 2135.40 1712.50 
Average charging delay (min) 30.90 31.16 27.81 28.74 
Total detour time (hr) 30.01 66.18 71.16 47.15 

  

Although the required infrastructures for January and February scenarios fulfill the 

charging demands of BEVs in other scenarios, the charging station configuration and counts for 

these two scenarios are not the optimum for the entire year. Thus, using the algorithm presented 

in Figure 4-5, further analyses are performed to find the optimum charging station location and 

counts that serve the entire year demand with varying traffic demands and battery performances 

over the months. Figure 4-8 illustrates the visualized location and capacity of charging stations 

required across Michigan to satisfy the entire year demand with estimated 2020 and 2030 BEV 
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market growths. Table 4-4 presents the number of required charging stations and chargers to serve 

the entire year demand as well as the investment costs of charging stations and chargers, land costs, 

detour time, and charging time and delay for the two target years. Similar to the results of monthly 

scenarios, more charging stations and chargers, and consequently a higher investment cost, are 

required to serve the BEV demand in 2030 relative to 2020. Although the total charging time of 

the system have significantly increased from 2020 to 2030, the average charging delay has slightly 

decreased. In addition, the investment costs and number of charging stations and chargers in 

Figure 4-8 and Table 4-4 are relatively close to the costs and counts of January scenario. Less 

number of charging stations are selected with more number of chargers in the entire year model 

relative to the January scenario. However, the average charging delays are lower for the entire year 

results, while total detour times are slightly higher. Another observation from Figure 4-8 is that 

charging station locations of 2020 and 2030 do not overlap at some candidate points. Thus, the 

optimal design may vary depending on the target year demand. The implementation of the stations 

resulted from 2030 scenarios is suggested in this study. 

 Overall, this study finds the optimum charging stations to support intercity trips in the 

state of Michigan, as well as to its neighbor states and Canada. These stations are proposed to 

support the trips started with a full battery to reach their destination with 20% battery. Different 

scenarios are considered for traffic demand and battery performance variations during different 

months of two target years (i.e. 2020, 2030). The results show the sensitivity of charging station 

configurations to traffic demand variation and battery performance reduction in winter months. 

The configuration of charging stations for winter demand supports the summer travel demand. In 

addition, the charging station locations and counts that satisfy the entire year demand are found 

considering battery performances and traffic demands in all months. The results for 2030 target 
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year are suggested to be the main focus of implementation to ensure serving the future predicted 

demand. Even though the advancement in batteries are expected to happen by 2030, some older 

vehicles with smaller batteries or vehicles with degraded batteries are expected to still be on the 

roads in 2030. Thus, this study assumes a fast charging option with smaller batteries to ensure 

coverage and feasibility of trips for these vehicles. It is recommended to build charging stations 

for the 2030 scenario to ensure trip feasibility for all the vehicles in the market. Although the 

presented algorithm in this study can be applied to any other state, the resulting configurations and 

patterns among different months highly depend on the input data, which should be gathered for 

the state of interest. 

50 chargers      30 chargers      20 chargers     10 chargers      5 chargers     No charger 
 

  
a) 2020 BEV market growth (1.49%) b) 2030 BEV market growth (6.00%) 

 

Figure 4-8 Visualized location and capacity of charging stations optimized for the entire year 
demand and battery performance   
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Table 4-4 Summary of results optimized for the entire year demand: charging stations counts and 
capacity, chargers, required investment, and charging time and delay 

Variable\Year 2020 2030 
Optimum Charging Infrastructure   
Number of charging stations 28 36 
Number of chargers 129 490 
Investment Cost   
Charging station cost (million $) 4.34 5.62 
Land cost (million $) 0.24 0.92 
Charger cost (million $) 4.35 16.54 
Total cost (million $) 8.94 23.08 
Delay Time   
Total charging time (hr) 521.41 2097.32 
Average charging delay (min) 28.85 28.57 
Total detour time (hr) 20.5 79.81 

 

4-6- Summary 

Recent studies have shown that the lack of charging infrastructure is a key obstacle in the way of 

BEV adoption. Therefore, charger placement problems have attracted the attention of researchers 

to make charging stations accessible, and thus spur more potential BEV buyers to BEV ownership. 

The current study finds the optimum configuration of charging stations to support intercity trips 

within the state of Michigan as well as to its neighbor states and Canada. The study focuses on 

minimizing the investment cost and user delay, and compares the anticipated BEV demand 

scenarios in two target years (i.e., 2020, 2030). Due to weather conditions in Michigan as well as 

tourism attractions across the state, battery performance and traffic demand fluctuations in 

different months are accounted for to capture multi-view perspectives and better equip Michigan’s 

electrified transportation system. 

Based on the SA algorithm, a metaheuristic SA algorithm is utilized in this study to find 

the optimal charging station locations and capacity, considering the route choice behavior of BEV 

and CV users. Input variables reflecting the local information in Michigan are collected and 
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requested via stakeholder meetings and relevant companies. Monthly OD demands are also 

estimated using a base OD demand for a typical weekday in fall, and the information of 66 

continuous counting stations across Michigan roads provided by MDOT. In addition, the battery 

performance is considered between 70% and 75% of the nominal performance in cold weather. 

Given these inputs, the optimized charger placement for 2020 and 2030 are generated for the 

current battery technology (i.e., 70kWh), and 50kW DC fast charger. The analyses of this study 

lead to the following findings: 

• Since the configuration of charging stations in 2020 does not overlap with the one resulted 

from 2030 scenarios, the results of 2030 scenarios should be the main focus of implementation 

to ensure serving the future predicted demand. 

• The results of January scenario are closer to the optimum results for the entire year rather than 

scenarios of other months. In addition, the configuration and counts of charging stations and 

chargers vary significantly when the OD traffic demands change monthly. These findings show 

the importance of considering monthly OD demand variations and battery performance 

reduction in winter months. 

• All system costs are relatively reasonable to build a network supporting BEV travel continuity 

in Michigan. Total estimated investment costs vary from 5.50 to 23.08 million dollars, 

depending on the desired scenario and the target year. If there is a funding model where 

multiple entities share the cost of implementation, the cost to build the system is reasonable 

and likely within means. 
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 Impacts of Technology Advancements on Electric Vehicle Charging 
Infrastructure Configuration 

5-1- Overview 

High-end batteries and chargers can decrease the charging demand and charging time, 

respectively, and hence increase the EVs’ market share. Based on a recently developed intercity 

model presented in chapter 3, this study investigates the impact of different battery and charger 

technologies on the configuration of charging infrastructure for the intercity network of Michigan 

in 2030. The major contributions of this study are considering the effects of a variety of technology 

advancements on infrastructure requirements, developing a realistic modeling framework 

considering the intercity network of Michigan, and using realistic assumptions and parameters 

calibrated through multiple stakeholders’ meetings. Therefore, the parameters and findings of this 

study can be used for future studies requiring realistic data. This study finds that the location of 

charging stations merely depends on the battery capacity while the charging power dictates the 

number of required chargers. Furthermore, high-tech charging infrastructures showed to be the 

cheaper option compared to low-tech ones. 

This chapter aims to bridge the gap in the current literature by investigating the charging 

requirements of EVs for intercity trips in Michigan, considering a variety of charging and vehicle 

technologies, using a modeling framework proposed in chapter 3. The solution algorithm is 

adjusted through various strategies such as refining the discrete set of chargers based on the local 

factors. A supplemental aggregate framework is proposed to capture and serve the out of state 

travel demand. The remainder of this study is structured as follows. The next section is the 

Modeling Framework followed by the Solution Approach section. Then the Data collection, 
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Numerical Results, and Discussions are presented. The last section provides Conclusions and 

insights for future work. 

5-2- Modeling Framework 

This study aims to investigate the impacts of different charging technologies and batteries on the 

optimal configuration of infrastructure supporting the intercity trips of EVs in the state of 

Michigan. To this end, this project draws on the proposed methodology in chapter 3 to answer the 

following questions: 

• Where to deploy charging stations? 

• How many chargers are required at each station? 

• What are the impacts and costs of each technology? 

Thus, the objectives are 1) providing enabling infrastructure to support intercity trips of EV users 

while maintaining an acceptable level of service, and 2) evaluating the impacts of different 

technologies on the required investment cost and experienced delay. Thus, a modeling framework 

is proposed to find the optimal location and number of chargers at each charging facility in an 

intercity network, considering the impacts of charging station locations and the route choice of EV 

users on one another. Then, the effects of different charging and battery technologies on the 

charging location problem are investigated. A framework is proposed in this study to capture the 

impacts of “Technology Advancements” on the configuration of charging stations (Figure 5-1). 

The technology advancements include battery type and its maximum energy capacity, charging 

power, and charging infrastructure cost. Then, the charging infrastructure size and location is 

optimized for the desired technology. The other inputs required for the “Infrastructure 

Optimization” include road network, origin-destination travel demand, electricity provision cost, 

and land cost information. The main outputs of this framework are the bare-bone network of 
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charging stations including the optimum number of chargers and location of charging stations, 

investment cost, and average users’ delay. 

 

Figure 5-1 Modeling Framework 

The infrastructure optimization model implemented in this study is based on chapter 3, which 

enables 

• travel time variation by link/nodes flows along the routes/stations 

• tracking the state of fuel for vehicles traveling between different OD pairs 

• maintaining an acceptable level of service considering the total delay for all EVs.  

5-3- Solution Approach  

The optimization model used in this study is a mixed-integer problem with non-linear constraints, 

which is known to be NP-hard. The commercial solvers, such as Knitro, can solve such problems. 

However, when the network size increases, solving such problems is computationally challenging 

for the current commercial solvers. Thus, a metaheuristic approach is developed in this study based 

on the Simulated Annealing (SA) algorithm. The proposed algorithm can solve NP-hard problems 
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efficiently. It starts with a feasible solution and moves towards neighbor solutions. The neighbor 

solution is accepted with a certain probability even if it worsens the objective function to avoid 

getting trapped in a local optimal solution. This algorithm is discussed in detail in chapter 3.  

5-3-1- Refining the Discrete Set of Chargers 

Chapter 3 incorporate a discrete set of chargers to be built at each charging station. To further 

improve the solution, a new approach is adopted in this study. In this approach, after solving the 

problem based on the initial discrete set of chargers, the problem is solved again using the optimal 

solution of the first step as the initial solution. A new discrete set of chargers for each node is 

redefined based on the optimal solution in step 1, which supports smaller changes compared to the 

initial set. This method can further refine the number of chargers to get closer to the global optimal 

solution and reduces the number of needed chargers by up to twenty percent. The solution 

framework presented in chapter 3 is updated to make the following flowchart presented in 

Figure 5-2, which reflects the changes specific to this study. Also, the discrete set is defined and 

then refined for each combination of charging station power and battery type. 
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Figure 5-2 SA-based solution framework 

5-4- Data Summary 

Optimal charging station locations and charger counts per station are not only impacted by vehicle 

and charger specifications but also heavily depend on the road network characteristics, travel data 

and costs at each location. Thus, local information is essential. Data acquisition details for the 

charger placement project of the state of Michigan are presented below, which includes but is not 
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limited to the travel demand information, road network specifications, market share, electricity 

provision cost, land cost, and the charger and battery cost (Table 5-1). 

Table 5-1 Summary of the required data 

Data Stakeholder/Source 
Michigan Road Network Michigan Department of Transportation 
Michigan Travel Demand Matrix Michigan Department of Transportation 
Electricity Provision Cost Utility Companies 
Land Cost Economic Analysis 
Vehicle Specifications Car Companies (Ford Motor Company and General Motors) 
Charger Cost and Specifications Charging Station Companies (ChargePoint and Greenlots) 

 

5-4-1- Michigan Road Network  

Michigan road network is provided by the Michigan Department of Transportation (MDOT) 

(Figure 5-3(a)). As this study focuses on the location of chargers along the highways and major 

roads in the state of Michigan, the network is simplified to a sketch network (Figure 5-3(b)) which 

also assists in avoiding the computational challenges and roadway details that are unnecessary for 

intercity network evaluations.  

 
 

(a) (b) 
 

Figure 5-3 Michigan road network (a) Original Michigan road network from MDOT (b) 
Simplified intercity road network of the state of Michigan 
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5-4-2- Origin-Destination Travel Demand 

Origin-destination travel demand in Michigan is also provided by MDOT. The OD demand values 

are obtained from state travel surveys and transferred to the OD demand matrix using the state 

DOT’s planning travel models. This demand table is estimated for about 3,000 traffic analysis 

zones (TAZs) for a weekday in the fall season with normal weather conditions. The 3,000 TAZs 

are aggregated to 24 nodes representing large cities throughout the state of Michigan with a 

population larger than 50,000. The intercity travel demand is aggregated accordingly. 

5-4-2-1- External demand estimation 

EV trips heading to a neighboring state, or Canada, which are referred to as external demand in 

this study, and their requisite chargers are also considered in this study. These chargers ensure that 

the EVs are fully charged before leaving the state and have the opportunity to fully charge as they 

enter the state at border cities. The border points, which are nodes connecting Michigan to its 

neighbor states and Canada, are considered as origin/destination nodes for inter-state travels. Then, 

based on the nationwide origin-destination demand matrix, the external outgoing flows for each 

border point in the state of Michigan are estimated. 

5-4-2-2- Monthly demand variation 

Given the fluctuating traffic patterns in different months of a year due to tourism or weather 

conditions, monthly demands for each OD pair should be estimated, which reflects the existing 

traffic patterns in the network. The estimation of monthly demand is conducted using the 

continuous counting stations data provided by MDOT. The fluctuation of total demand in different 

months shows the least observed travel demand in January and the highest travel demand in July. 
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5-4-3- EV Specifications  

Auto companies present at the various stakeholder meetings throughout the project associated with 

this study recommended the current EV battery size of 70 kWh, while future battery size is 

anticipated to be 100kWh. The battery performance in this study is considered to be 3.5 mi/kWh 

in favorable weather conditions (i.e., in summer and fall); and is supposed to decline by almost 

30% in cold temperatures, i.e., winter (Department of Energy, 2020). Furthermore, it is assumed 

that EVs charge their battery up to the amount that would be enough to reach their destinations; 

but not more than 80 percent of their battery capacity as charging slows down significantly after 

this threshold. Furthermore, EV drivers recharge their batteries, when there is at least 20% residual 

energy in the battery. 

5-4-4- Market Share 

In terms of EV market share, a recent study in Michigan conducted by Midcontinent Independent 

System Operator (MISO) suggests the estimated EV market share at 0.14% in 2017 (Lowell et al., 

2017). This study also recommends a 6% EV market share in 2030, which means 6% of on-road 

vehicles in 2030 are anticipated to be EVs. Bloomberg predicts a market share of 11% in 2030, 

which seemed to be too optimistic based on the feedback from the stakeholder meetings (Lowell 

et al., 2017).  

5-4-5- Charging Station Specifications 

The proposed modeling framework for the EV charger placement intends to minimize charging 

infrastructure investment costs and EV users’ delay. Accordingly, suggested station specifications 

and set-up costs were requested from different charging station companies, such as ChargePoint® 

and Greenlots®. In terms of charging power, 50-kW DC fast chargers are currently available, 

while 150kW and even 350 kW chargers are appearing in the market. The two companies provided 
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costs of site acquisition, project management, equipment, construction, utility upgrade, and 

maintenance. This study considers detailed site acquisition costs as well as utility costs for the 

candidate locations. Therefore, these two components are excluded from the costs of charging 

station companies provided and replaced with more realistic estimates derived from other sources. 

The details of these cost components are provided in the Site Acquisition Costs and Utility 

Provision Costs subsections. Among the above-mentioned costs, site acquisition, utility upgrade, 

electrical panel and switchgear, engineering, design, permitting and project management costs are 

incorporated in station costs. On the other hand, DC fast charger, validation and activation costs 

constitute charger cost. Therefore, stations with higher capacities incur larger charger cost 

resulting from the cost of each charger, and the activation and validation costs. 

5-4-5-1- Site Acquisition Costs 

Land acquisition for siting DCFC stations can take many forms from outright purchases to long-

term lease contracts with/without site improvements. These facilities may share space with other 

retail establishments, may be coupled with other transportation fueling stations, or maybe stand-

alone establishments to serve the specialty needs of EV drivers. The value of a site hinges on the 

revenue potential the site promises for an occupant. The existing literature on studies of 

commercial land values provides some basis for estimating the expected land values for 

commercial properties (West Technologies, 2015).  

In estimating the expected costs of commercial property for siting DCFC stations, the host 

location population density is the most visible and measurable basis at a macro-level study. One 

study estimated the elasticity measure as 3.5, which means when the population density increases 

by one percent, commercial land values increase by 3.5 percent while other elements are held 

unaltered (Seo et al., 2018). In this study, the land cost is estimated using this elasticity measure, 
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average Michigan commercial property values, average Michigan population density and site-

specific population densities (Bigelow, 2017; William Larson, 2015). Table 5-2 shows the 

minimum, maximum, average, and standard deviation of the estimated land costs.  

Table 5-2 Estimated land cost and utility provision cost at candidate points statewide 

Type of cost Minimum Average Maximum Standard 
Deviation 

Land Cost $162,410  $171,095  $250,175  $16,638  
Electricity provision 
cost $12,230  $69,539  $275,000  $55,924  

 

5-4-5-2- Electricity Provision Costs 

Another important factor in EV charging facility placement is power availability and grid capacity. 

In this study, the website of the Michigan Public Service Commission (“MPSC - MI Public Service 

Commission,” 2019) was used to pinpoint the utility coverage at each candidate location across 

the state. Contacting the utility companies, the average electricity provision costs at the locations 

under their jurisdiction were gathered. These costs include but are not limited to: conduit from the 

transformer to the meter enclosure, meter enclosure, protective equipment, conduit and conductor 

from the meter enclosure to the charging station, etc. As this study is performed at a macro level, 

the provided costs at each location are average values within the considered 5-mile radius. Also, 

if any candidate location is under the jurisdiction of multiple utility companies, the average cost is 

considered. The maximum, minimum, average electricity provision costs and standard deviations 

are as reported in Table 5-2.  

5-5- Results and Discussions 

The focus of this section is to capture the effects of technology advancements on charger placement 

in the state of Michigan. The SA based algorithm is applied to the intercity network of Michigan. 

The SA algorithm parameters are calibrated in (Ghamami et al., 2020a). The number of main and 
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inner iterations are set to 25 and the control parameter is set to 0.85 which is reduced in each main 

iteration as below. 

Ω𝑁𝑁1 = 0.05 × 0.85𝑁𝑁1 (5.1) 

Where Ω𝑁𝑁1 is the control parameter of the main iteration 𝑁𝑁1. The rest of this chapter first 

discusses the Robustness and the Impact of Refining the Discrete Set of Chargers followed by a 

discussion on technology scenarios. Then, charging station configurations and associated delay 

and costs are presented for each technology scenario, followed by a discussion on the results. 

5-5-1- Robustness 

This section investigates the impact of stochasticity resulted from different seed numbers on the 

optimum solution. The SA algorithm uses random numbers to probabilistically choose a neighbor 

solution and also when it decides to select a solution that increases the objective function value. 

Therefore, this section seeks to show the robustness of the solution to the different seed numbers. 

To this end, the impact of 10 different seed numbers, each representing a scenario, are studied 

considering 1% EV market share, 50 kW charging power, and 70 kWh battery. The optimum 

objective function value, the charging infrastructure cost, and the cumulative number of chargers 

for these scenarios are presented in Figure 5-4. Figure 5-4(a) shows that among these scenarios, 

the optimum objective function value can change up to one percent. The similar objective function 

values show the availability of almost identical solutions with different representations. 

Figure 5-4(b) shows the cumulative number of chargers across the scenarios. While there are 

differences between the scenarios showing different number of chargers in stations, all scenarios 

have an almost the same total number of chargers. More specifically, the total number of chargers 

varies almost 2 percent among the scenarios.  
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(a) 

 
(b) 

 

Figure 5-4 The impact of seed number on the (a) optimum objective function values (b) 
cumulative number of chargers 

5-5-2- Impact of Refining the Discrete Set of Chargers 

To account for the exact queuing at charging station, which affect the travel times and the traffic 

assignment, the number of chargers should be known before the traffic assignment. Therefore, a 

discrete set of chargers is defined initially and stations can have one of the number of chargers 

available in the initial set. However, the global optimum number of chargers might be different 

than the values of the initial set. Therefore, using the solution resulted from the initial set of 

chargers, a new set of chargers is defined for each location separately. This section investigates 

the impact of this refinement on the optimal solution. Figure 5-5 shows the initial objective 
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function against the objective function value from the refined set. It shows that the objective 

function of the refined set always improves the objective function values of the initial set.  

 

Figure 5-5 The impact of refining the discrete set of chargers on the optimum objective function 
value 

5-5-3- Considered Scenarios 

This study seeks to illuminate the DC fast charging planning for the state of Michigan in light of 

different technologies for battery and DC fast chargers. To this end, a variety of scenarios and 

demand levels were tested (Fakhrmoosavi et al., 2021). The target year of 2030 with an EV market 

share of 6% (Lowell et al., 2017) is selected for testing the effects of technology. EV battery 

performance is expected to drop by 30% due to the impacts of cold weather. Demand analysis 

revealed that even though the travel demand in Michigan is smaller during winter months, the 

reduced battery performance calls for a denser network of charging stations during winter months 

(Fakhrmoosavi et al., 2021).  

Table 5-3 Considered scenarios information for the target year of 2030 

Scenario 1 2 3 4 5 6 
Battery Capacity (kWh) 70 70 70 100 100 100 
Charger Power (kW) 50 150 350 50 150 350 
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Therefore, January demand as the coldest month in Michigan, with 70% of the EV battery 

performance is considered. In light of these assumptions, the charging station configuration for 

two battery sizes of 70 kWh and 100 kWh, and three charging powers of 50 kW, 150 kW, and 350 

kWh are investigated. Table 5-3 presents the configuration of each considered scenario. 

5-5-4- EV Charging Infrastructure Placement  

In this chapter, future EV infrastructure requirements in Michigan are investigated under different 

battery and DCFC technologies in 6 scenarios for the target year of 2030. Figure 5-6 depicts the 

optimal configuration of charging stations and chargers across Michigan serving all OD demands 

in each scenario. A solid circle shows a candidate location is selected to be equipped with a 

charging station, while the radius of the circle indicates the number of chargers required in that 

area. Comparing the charging configuration of the scenarios with the same battery size, the location 

and number of charging stations do not vary significantly across the scenarios (also reflected in 

Table 5-5) as charging stations are required to ensure trip feasibility. However, the number of 

chargers drops as the charging power increases due to the higher charging speed and throughput, 

as well as the higher cost of high-tech fast chargers. On the other hand, comparing the scenarios 

for the same charging power and different battery capacity illuminates the significant impact of 

battery capacity on charging station locations. The increased battery capacity reduces the charging 

need and affects the locations where EVs need recharging along their route. Therefore, the 

configurations resulted from different battery capacities differ significantly in terms of the 

charging demand of the users. 



105 

 

Figure 5-6 Visualized configuration of charging stations under different technologies 
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Considering all the scenarios, a huge charging infrastructure investment is required to 

facilitate EV trips in the Upper Peninsula (UP) of Michigan. While this part of Michigan only takes 

3% of the state population (U.P. Supply, 2020) and 2% of the state intercity trips, it requires a 

charging infrastructure investment close to the investment required for the Lower Peninsula (LP) 

of Michigan. The reason lies behind the trip distances in UP. Due to the long-distance trips in UP, 

almost all EVs need to recharge their batteries along the route. However, most of the trips in LP 

are within the EVs’ range and do not require any recharging, or they need to recharge just enough 

to get to their destinations. Table 5-4 presents detailed investment costs and delay time 

components. 

Table 5-4 Scenario results: charging Stations, chargers, required investment, and delay time 

 Technology scenarios 
  1 2 3 4 5 6 
Battery energy (kWh) 70 70 70 100 100 100 
Charging power (kW) 50 150 350 50 150 350 
Optimum charger placement       
Number of charging stations 34 29 27 25 19 16 
Number of chargers 513 181 90 250 94 46 
Investment cost       
Charging station cost (million 
$) 5.45 5.48 6.14 3.90 3.64 3.76 

Land cost (million $) 0.97 0.34 0.17 0.47 0.18 0.09 
Charger cost (million $) 17.31 13.80 12.83 8.44 7.17 6.56 
Charging infrastructure cost 
(million $) 25.57 19.62 19.14 12.81 10.98 10.40 

Delay time       
Refueling time (hr) 3648 1218 527 1574 524 228 
Average delay (min) 30.62 10.60 4.00 39.52 13.49 5.95 

 

According to Table 5-5, when a battery size of 70 kWh is considered for EVs, increasing 

the charging power reduces the charging infrastructure cost from 25 million dollars to 19 million 

dollars, which is about a 24% reduction in investment cost. This means that higher throughput 
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leads to a less required number of high-tech fast chargers. It is worth noting that the increase in 

charging power also decreases the average delay by 87%. Similarly, for 100 kWh batteries, 

increasing the charging power from 50 kW to 350 kW decreases the infrastructure cost from 12.8 

million dollars to 10.4 million dollars, which is about a 19% reduction in investment cost. 

Furthermore, the average delay decreases from 39 min to 6 min, which is about 85% reduction. 

All in all, the 100-kWh battery and 350 kW charger can provide the lowest investment cost. 

However, a 100-kWh battery is 30% more expensive compared to a 70-kWh battery and the battery 

cost value becomes more significant as the EV market share increases. 

Table 5-5 The impact of providing 50 kW chargers for the optimum solution of 150 kW chargers 

Optimization 
Specifications 

Charger Power (kW) 150 150 150 150 
Battery Energy (kWh) 70 70 100 100 

Installation 
Specifications 

Charger Power (kW) 150 50 150 50 
Battery Energy (kWh) 70 70 100 100 

Number of stations 29 29 19 19 
Number of chargers 181 181 94 94 
Total investment cost (million $) 19.62 11.01 10.98 6.38 
Total refueling time (hr) 1218 3756 523 1608 
Total queuing delay (hr) 0.99 52469 2.9 20914 
Average delay (min) 10.6 525.3 13.5 611 
Trip feasibility Yes Yes Yes Yes 

 

Considering the 50 kW chargers as the currently available technology, further analyses are 

conducted to investigate how the network would respond if the charging infrastructure 

configurations are determined for 150kW chargers, but the less costly, easier to access 50kW 

chargers are installed instead, with the capacity for future upgrade. Table 5-5 provides the results 

for this strategy for both considered battery sizes. In Table 5-5, columns 3 and 5 represent the 

results for the scenario of optimum configuration for 150kW chargers and installing 50kW 
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chargers. An important initial observation is that EV trips are feasible even with lower power 

chargers. On the other hand, replacing 150 kW chargers with 50 kW chargers increases total 

refueling time by over 200%, causing queuing time and average delay to increase. Thus, the 

optimal location of charging stations and the allocated chargers for 150kW chargers can serve EV 

trips with 50kW chargers with smaller investment costs; however, the entire refueling and queuing 

time in the system, as well as average delay would increase significantly. Therefore, a good 

strategy is to start building 50kW power chargers with modules that are expandable to 150kW 

power chargers. It is crucial to monitor the market share growth and expand to 150 kW as the 

market share increases to avoid significant delays. 

5-6- Summary 

Infrastructure availability is known to be the key to the adoption of EVs (Nie et al., 2016). In order 

to make the best investment in the supporting infrastructure to increase market acceptance of EVs, 

an optimization model is calibrated through series of stakeholder meetings, adjusted through 

various strategies, and implemented in this study to find the optimum location of charging stations 

and number of chargers in a real-world application. The target year of 2030 with a market share of 

6% is selected to anticipate the upcoming EV demand and provide the requisite charging 

infrastructure accordingly. The intercity travel demand reduces during winter in Michigan. 

However, the battery performance also reduces in cold weather by about 30%. Former studies have 

revealed that reduced battery performance has a larger impact on infrastructure requirements 

compared to that of the demand. Thus, January demand is selected, being the coldest month in 

Michigan, with 70% battery performance. The aim of this study is to investigate the trade-off 

between the charging infrastructure cost and the delay experienced by users including detouring 

delay, charging delay, and queuing delay. At another level, this study investigates the impact of 
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different technologies on the configuration of charging infrastructure, experienced delays, and total 

system cost. Three different charging technologies with charger powers of 50 kW, 150 kW, and 

350 kW, as well as two different battery types with capacities of 70 kWh and 100 kWh,  are 

considered (based on the discussion with stakeholders of the project). The combinations of these 

technologies are investigated to provide information regarding future planning. The analyses lead 

to the following findings: 

• The size of the battery determines the location of charging stations. 

• The number of chargers is a function of the charging power. 

• Charging stations with higher power have a higher cost, but they decrease the total required 

infrastructure cost and users’ delay considering the higher rate of return. 

• The configuration of high-power charging stations can be applied for the same battery size 

with a lower-power charger; the network would be feasible for EVs. However, EV users 

experience high delays due to queuing at charging stations. 

• The level of investment is a function of trips’ length and frequency rather than the 

population or population density. 
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 Electric Vehicle Fast Charging Infrastructure Planning in Urban Networks 

6-1- Overview 

Distances of single urban trips are generally much shorter than the range of typical EVs in the 

market, but vehicles are supposed to serve a daily chain of trips instead of a single trip. Also, not 

all urban trips can begin with fully charged batteries due to various reasons such as unavailability 

of level 2 (L2, with 6.2 kW power) chargers (Wood et al., 2017), lack of charging time, or owners 

simply forgetting to fully recharge over the night. To address the range anxiety issue, this chapter 

introduces an integrated framework for urban fast charging infrastructure. It develops an integrated 

modeling framework for urban charging infrastructure planning, considering DC fast chargers with 

50 kW to 150 kW charging powers. 

To estimate the EVs charging demand, a comprehensive data set that includes daily chains 

of trips for all travelers and availability of level 2 chargers at each intermediate destination is 

required. However, most of the urban planning agencies rely on static zone-to-zone demand tables 

with aggregate data on trip purposes and land use characteristics at zone levels. Thus, an innovative 

approach is developed in this study to: (i) generate required dynamic travel demand information 

from available aggregate data, (ii) build a charging behavior simulation tool to assign the stochastic 

initial state of charge for each vehicle trajectory according to the departure time, trip purpose, and 

land use characteristics at the origin, (iii) feed this spatial and temporal distribution of charging 

demand into a novel agent-based charging infrastructure optimization framework, which captures 

travelers’ charging behavior for a given market share of EVs, and ensures the feasibility of all EV 

trips. The mathematical model is decomposed into two subproblems that find the optimal location 

of stations and the number of chargers at each location separately.  
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The state-wide roadway network in Michigan provided by the Michigan Department of 

Transportation (MDOT) is considered as the main network of interest. Real-time traffic volume 

observations from loop detectors are used together with daily static demand data to estimate time-

dependent demand tables. Then, a simulation-based dynamic traffic assignment tool, 

DYNASMART-P, is used to provide trip trajectories, and zone-to-zone time-dependent travel time 

and distance skims. Time-dependent trip purposes are also available from a travel survey in 

Michigan (Wilaby and Casas, 2016). Finally, land-use attributes at origin and destination zones 

are used to determine trip purposes and to simulate charging behavior for any city of interest in 

the state-wide network. Regional networks for three cities with various sizes, namely Marquette, 

Lansing, and Detroit, are used to demonstrate the successful implementation of the proposed 

optimization framework for various charging technological advancement. 

The remainder of this chapter is organized as follows. The next section provides a literature 

review on charging station optimization and lists the key contributions of this study. Next, the 

research framework section presents the traffic simulation model, the charging behavior simulation 

model, the optimization model, as well as a solution methodology. The next section demonstrates 

numerical experiments including setup of the case studies, data, and results. Finally, the last section 

provides summary concluding remarks. 

6-2- Research Framework 

This section first presents the proposed research framework (Figure 6-1) by demonstrating the 

connections between traffic simulation, charging behavior simulation, and a mathematical 

optimization model. The traffic simulation component uses the Origin-Destination (OD) demand 

table and road network properties as inputs, incorporating a simulation-based dynamic traffic 

assignment tool (DYNASMART-P), to analyze the travelers’ route choice behavior. Trip 
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trajectories and skim tables are the main output of this component. The former includes traveled 

paths and travel time stamps along each path for each vehicle, and the latter are the average zone-

to-zone travel distances and times. The next component, charging behavior simulation, utilizes 

temporal distribution of trip purposes, land use data, and trip trajectories from the first component 

to simulate travelers’ charging behavior based on a random distribution of the initial state of charge 

and the required energy to complete their trips. The vehicles unable to fulfill their trips need to be 

recharged, forming the charging demand. This charging demand along with travel skims will be 

fed into an agent-based urban charging infrastructure planning model. This model, which is 

formulated as a nonlinear mixed-integer program, is decomposed into two subproblems; one 

locates the charging stations in the network, and the other finds the number of chargers at each 

station. 

This section also presents a decomposition approach to solve the mathematical 

optimization model. Once the charging station location is determined based on station costs, 

refueling times, and travel detours for those in need of recharging, the time-dependent incoming 

flow and required energy in each station can be used to determine the number of charges needed 

to minimize the deterministic or stochastic queuing delay. The first subproblem is a linear mixed-

integer mathematical model. While commercial solvers, e.g. CPLEX and Gurobi, can solve it for 

small-scale networks, a metaheuristic algorithm is developed for larger-scale networks in this 

study. The second subproblem is a non-linear mixed-integer mathematical model whose objective 

function is proven to be convex, and hence the golden section method is proposed to solve this 

subproblem. 
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Figure 6-1 Components in the proposed research framework 

6-2-1- Traffic and Charging Behavior Simulation 

The statewide road network of Michigan consists of 37,125 links, 16,976 nodes, and 2,330 traffic 

analysis zones. The static demand matrix for different OD pairs is provided on the daily basis by 

Michigan Department of Transportation (MDOT). Hourly factors are multiplied into the static 

demands to convert them into a time-dependent OD demand matrix. Hourly factors are estimated 

based on the information of 122 loop detectors installed across Michigan highways. These loop 

detectors are mostly located inside the city boundaries, which are the focus of the current study. 

For example, Detroit, Lansing, and Marquette networks contain 46, 20, and 2 loop detectors on 

their links, respectively. To consider the directionality of traffic during different hours of a day, 

the closest loop detector counting the traffic of the same direction as the OD pair direction is found.  

Based on the traffic counts of the selected loop detector for the OD pair of interest, the hourly 

demand factors are then defined for the OD pair. 

Travelers’ route choice is a collective decision-making process that results in a certain 

traffic state and congestion level at the network level. Traffic simulation provides trip trajectories 

that can be used to predict the time-dependent charging demand. Each trajectory provides 

information regarding the chosen path, timestamps of travel along the path, origin zone, destination 
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zone, departure time interval, vehicle type (randomly assigned based on the given market share), 

total travel time, and total travel distance. In this study, a mesoscopic traffic simulation tool, 

DYNASMART-P (Jayakrishnan et al., 1994), is incorporated to provide agent-based information 

applicable to the state-wide network of Michigan, and then the required trip trajectories for the 

cities of interest are extracted. The trajectories of all vehicles, along with the dynamic skims 

including travel times and distances for every OD-pair are reported as the outputs of this research 

component. 

Intercity trips are often considered as stand-alone trips, in which EVs are highly likely to 

have fully charged batteries due to their preplanned nature. Urban trip, however, is part of a chain 

of trips, in which EVs might have any state of charge (depending on the availability of chargers 

and dwell time for recharging at the trip origin). Therefore, the charging incidence in one trip may 

depend on its sequential trip as well, i.e., the vehicle might recharge during a feasible trip to prevent 

charging in a subsequent infeasible one (Usman et al., 2020). However, the availability of trip 

chain information is still limited and transportation agencies still rely on zone-to-zone OD demand 

tables. Therefore, developing a framework to capture the EVs charging demand based on zone-to-

zone OD demands is crucial. In this study, a simulation tool is developed to estimate the charging 

behavior of EVs based on their departure time, trip purpose, and land use characteristics of their 

origin and destination zones. The simulation tool estimates the initial state of charge at the origin, 

and the desired state of charge that the EV drivers prefer to have upon arrival at the destination. 

The proposed simulation tool distinguishes the trips that begin from certain origins; e.g. it 

considers a higher initial state of charge for single-family residential areas than multi-family ones, 

as well as workplaces since some workplaces provide level 2 charging facilities for their 

employees. To this end, the simulation tool incorporates a survey conducted by MDOT in 2016 
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(Wilaby and Casas, 2016) that presents the time-dependent trip purpose distribution in the state of 

Michigan. Seven groups of activities are considered in the survey, including home-based work 

(HBWork), non-home-based work (NHBWork), home-based school (HBSchool), home-based 

shop (HBShop), home-based social (HBSocial), home-based other (HBOther), and non-home-

based other (NHBOther). HBWork shows a trip directly from home to work or from work to home. 

NHBWork shows trips with one end at work while the other end is not home. HBSchool shows a 

trip from home to school or from school to home. HBShop shows a trip from home to shop or shop 

to home. HBSocial shows a trip from home to a recreational place or vice versa. HBOther shows 

a trip which has one end at home while the other end is not in the previous groups. NHBWork 

shows a trip that has an end at work, but its other end is not home. NHBOther shows the trips that 

has no end at home or work. Assuming users might have access to chargers at home or workplace, 

the charging behavior is affected by four groups of activities: HBWork, NHBWork, NHBOther, 

and the home-based non-work (HBNWork). Note that HBSchool, HBShop, HBSocial, and 

HBOther are combined in the latter group (HBNWork), since they all provide similar charging 

opportunity for users. Based on the time-dependent trip purpose distribution in Michigan, the 

probability of each trip belonging to one of these four groups at each time interval can be 

calculated. 

The other input to the simulation tool is the land use characteristics at the origin and 

destination of trips. The simulation tool focuses on three land use characteristics due to their 

impacts on charging behavior, namely residential (R), commercial (C), and other (O) and their 

area ratio (the ratio of the land use characteristic area over the total TAZ area) in zone 𝓀𝓀 is denoted 

by 𝒮𝒮𝓀𝓀1 , 𝒮𝒮𝓀𝓀2 , and 𝒮𝒮𝓀𝓀3 , respectively (𝒮𝒮𝓀𝓀1 + 𝒮𝒮𝓀𝓀2 + 𝒮𝒮𝓀𝓀3 = 1). Note that the last category, O, includes 

recreational, transport, and agricultural land uses. Thus, there are nine possible combinations of 
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origin and destination zone types for each trip. The unadjusted static probability of origin (ℴ)-

destination (𝒹𝒹) paired land use characteristics, 𝓅𝓅ℴ𝒹𝒹
𝒾𝒾𝒾𝒾 , is defined as below: 

𝓅𝓅ℴ𝒹𝒹
𝒾𝒾𝒾𝒾 = 𝒮𝒮ℴ𝒾𝒾.𝒮𝒮𝒹𝒹

𝒾𝒾 (6.1) 

Where 𝒾𝒾 and 𝒾𝒾 represents the land use characteristics. Assuming the purpose of each trip can be 

captured stochastically through its origin and destination land use, the nine possible combinations 

are crossed with the four sets of activities discussed earlier. Therefore, HBWork includes R-C and 

C-R, HBOther includes R-R, O-R, and R-O, NHBWork includes C-C, C-O, and O-C, and 

NHBOther includes O-O. Since the time-dependent distribution of each trip purpose (activity) is 

known, the origin-destination paired land use probabilities need to be adjusted according to their 

trip departure time intervals, using a temporal factor defined as follows:  

𝒯𝒯ℴ𝒹𝒹,𝓂𝓂
𝓉𝓉 =

𝒜𝒜𝓂𝓂
𝓉𝓉

∑ 𝓍𝓍𝑚𝑚
𝒾𝒾𝒾𝒾𝒮𝒮ℴ𝒾𝒾.𝒮𝒮𝒹𝒹

𝒾𝒾
𝑖𝑖𝑖𝑖

. (6.2) 

Where 𝒯𝒯ℴ𝒹𝒹,𝑚𝑚
𝓉𝓉  is the temporal factor for activity 𝓂𝓂 at time 𝓉𝓉 for ℴ𝒹𝒹 and 𝒜𝒜𝓂𝓂

𝓉𝓉  is the time dependent 

share of activity. 𝓍𝓍𝑚𝑚
𝒾𝒾𝒾𝒾 is a binary parameter indicating if land use combination 𝒾𝒾𝒾𝒾 is a subset of 𝓂𝓂. 

The probability associated with each OD pair land use can be adjusted for each time interval by 

multiplying the defined temporal factor. The probability associated with each OD pair land use 

can be adjusted for each time interval by multiplying the defined temporal factor. Then, the origin-

destination pair land use (thus associated trip purpose group) can be probabilistically assigned for 

each EV trajectory. To clarify this point, assume a hypothetical example as follows: Assume that 

HBWork share for a trip departure time interval is 0.55, shares of R and C land uses at the trip 

origin zone are 0.7 and 0.2, and shares of R and C land uses at the trip destination zone are 0.3 and 

0.5. Then, the unadjusted probability associated with R-C and C-R would be 0.7 × 0.5 = 0.35, 

and 0.2 × 0.3 = 0.06, respectively. The temporal factor would be (0.55/ (0.35 + 0.06)) and the 
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adjusted probability for the trip to have R-C as the origin-destination paired land use would be 

0.35 × (0.55/ (0.35 + 0.06)). 

Once the trip purpose, origin-destination paired land use characteristics, and residential 

type (if applicable) are assigned for each EV trajectory, using associated truncated random normal 

distributions, the initial and desired state of charge would be determined for the trajectory. The 

difference between the desired state of charge and the initial state of charge plus the charge spent 

en-route to reach the destination is the total charge required for each EV trajectory. If this value is 

positive, the EV would need to recharge along its path to the destination and its charging demand 

should be provided to the optimization model as an input; otherwise, the EV trajectory would not 

need recharging and would not be considered in the optimization model.  

6-2-3- The Mathematical Optimization Model 

This section aims to present the developed modeling framework that minimizes the cost for 

providing the charging infrastructure, as well as the users’ charging, queuing, and detour delays. 

The notations presented in Table 6-1is used in this chapter: 

Table 6-1 Nomenclature 

Sets 
𝑖𝑖 ∈ 𝐼𝐼 Set of zones 
𝜏𝜏 ∈ 𝑇𝑇 Set of time intervals that vehicles get to charging stations 
𝜃𝜃 ∈ 𝑇𝑇 Set of time intervals that vehicles leave charging stations 
𝑖𝑖 ∈ 𝐽𝐽 Set of electric vehicles that need recharging 

Decision variables 
𝑥𝑥𝑖𝑖 Binary decision variable for availability of a charging station at zone 𝑖𝑖 which equals 1 

if there is a charging station at zone 𝑖𝑖 and zero otherwise 
𝑧𝑧𝑖𝑖 Integer decision variable for number of chargers to be provided at the charging station 

in zone 𝑖𝑖 
State Variables 
𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃 Charging incidence matrix, which is one if EV 𝑖𝑖 arrives to charging station in zone 𝑖𝑖 

at time interval 𝜏𝜏 and depart from it towards its destination at time interval 𝜃𝜃 
𝜋𝜋𝑖𝑖𝜏𝜏 Total charging and queuing delay experienced by EVs reaching to the charging station 

of zone 𝑖𝑖 at time τ 
𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 Detour travel time required to reach the assigned charging station for EV 𝑖𝑖 refueling 



118 

Table 6-1 (cont’d) 

𝑦𝑦𝑖𝑖𝜏𝜏 Total number of EVs visiting the charging station at zone 𝑖𝑖 at time 𝜏𝜏 
𝑣𝑣𝑖𝑖𝜏𝜏 Total energy demand of EVs visiting charging station in zone 𝑖𝑖 at time 𝜏𝜏 
�̃�𝑡𝑖𝑖𝜏𝜏 Average remaining charging time for users at zone 𝑖𝑖 at time 𝜏𝜏 
𝜇𝜇𝑖𝑖𝜏𝜏 Service rate of the charging station in zone 𝑖𝑖 at time 𝜏𝜏  
𝜆𝜆𝑖𝑖𝜏𝜏 Arrival rate to the charging station in zone 𝑖𝑖 at time 𝜏𝜏 
𝑞𝑞𝑖𝑖𝜏𝜏 Queuing time for the last vehicle joining the queue of the charging station in zone 𝑖𝑖 at 

time 𝜏𝜏 
𝜒𝜒𝑖𝑖𝜏𝜏 Incidence matrix of observing queuing for the entire period of 𝜏𝜏 at the charging station 

of zone 𝑖𝑖 
𝛿𝛿𝑖𝑖𝜏𝜏 Portion of time that queue length is greater than zero in charging station of zone 𝑖𝑖 

during time interval 𝜏𝜏  
𝑘𝑘�𝑖𝑖𝜏𝜏 Average waiting time in charging station of zone 𝑖𝑖 for EVs arriving at time 𝜏𝜏 
𝑅𝑅𝑖𝑖𝑖𝑖 Refueling time for EV 𝑖𝑖 recharging at the charging station of zone 𝑖𝑖 
𝜌𝜌𝑖𝑖𝜏𝜏 Utilization rate of charging station zone 𝑖𝑖 at time 𝜏𝜏 
𝑃𝑃𝑖𝑖0𝜏𝜏  Probability of not having any vehicles using any chargers at charging station of zone 𝑖𝑖 

at time 𝜏𝜏 
𝑙𝑙𝑖𝑖𝜏𝜏 Number of customers in the queue at charging station of zone 𝑖𝑖 at time 𝜏𝜏 

Parameters 
𝐶𝐶𝑖𝑖𝑠𝑠 Cost of building and maintaining a charging station at zone 𝑖𝑖 , converted to the 

depreciation cost per day (the assumed analysis period in the model formulation) 
𝐶𝐶𝑖𝑖
𝑝𝑝 Cost of one charger installation and maintenance at zone 𝑖𝑖 , converted to the 

depreciation cost per day 
𝛾𝛾 Value of time 
𝑀𝑀 An arbitrary big number 
𝐸𝐸𝑖𝑖𝑖𝑖𝜃𝜃  Required energy for EV 𝑖𝑖 to reach the charging station at zone 𝑖𝑖 and depart from it 

toward its destination at time interval 𝜃𝜃 
𝜁𝜁𝑖𝑖 Desired state of charge for EV 𝑖𝑖 at the destination 
𝐹𝐹 Maximum amount of charge that EVs can store 
𝑠𝑠𝑖𝑖 Initial state of charge for EV 𝑖𝑖 
β Battery performance 

𝑇𝑇(𝑎𝑎,𝑏𝑏)
𝑒𝑒  Distance between the centroid of zones a and b for vehicles departing at time c 
𝑠𝑠𝑚𝑚𝑎𝑎𝑥𝑥 State of charge that the charging speed drops beyond it 
𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚 Minimum state of charge that drivers let their batteries drop to 
𝑡𝑡(𝑎𝑎,𝑏𝑏)
𝑒𝑒  Average travel time of vehicles departing zone a to destination zone b departing at 

time c 
𝑡𝑡𝑖𝑖′ Departure time for EV 𝑖𝑖 from its origin 
𝑡𝑡𝑖𝑖 Departure time interval for EV 𝑖𝑖 from its origin  
𝑂𝑂(𝑖𝑖) Origin zone of EV 𝑖𝑖 
𝐷𝐷(𝑖𝑖) Destination zone of EV 𝑖𝑖 
𝑇𝑇0 Duration of each time interval 
𝛼𝛼 Charging efficiency of batteries 
𝑃𝑃 Charging power 
𝜀𝜀 An arbitrary small number 
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Three main assumptions are made to formulate the problem of interest in this study: 

i. Users select the path, and a charging station if needed, that minimizes their total travel time 

(including detour, queueing, and recharging time). 

ii. Detour of EVs for recharging does not affect network link travel times, i.e. EVs are not 

congestion makers, but congestion takers (Sheppard et al., 2017).  

iii. Travel distances in urban networks are within the full range of EVs. Therefore, EVs that 

need recharging only recharge one time per route. 

The network considered in this study consists of a set of zones (𝑖𝑖 ∈ 𝐼𝐼). A set of time intervals (𝜏𝜏 ∈

𝑇𝑇) at which EVs can arrive at charging stations. This discrete set allows the model to capture the 

visiting flow to stations over time. Another set of time intervals (𝜃𝜃 ∈ 𝑇𝑇) shows the time intervals 

at which vehicles depart the charging stations. This set enables the model to differentiate between 

the congestion levels in the arrival and departing time intervals. We assume 𝑇𝑇0 is the duration of 

each time interval. Each electric vehicle (𝑖𝑖 ∈ 𝐽𝐽) has a trajectory that is known as a priori, with 

origin 𝑂𝑂(𝑖𝑖) , destination 𝐷𝐷(𝑖𝑖) , exact departure time 𝑡𝑡𝑖𝑖′ , departure time interval 𝑡𝑡𝑖𝑖 , trip length 

𝑇𝑇�𝑂𝑂(𝑖𝑖),𝑂𝑂(𝑖𝑖)�
𝑡𝑡𝑗𝑗 , travel time 𝑡𝑡�𝑂𝑂(𝑖𝑖),𝑂𝑂(𝑖𝑖)�

𝑡𝑡𝑗𝑗 , initial state of charge 𝑠𝑠𝑖𝑖 , and desired state of charge at 

destination 𝜁𝜁𝑖𝑖. The solid line in Figure 6-2 shows the shortest direct path from origin to destination. 

 

Figure 6-2 An electric vehicle’s route choices 
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If a lack of energy is an issue, the EV must recharge at one of the available charging station options 

(𝐼𝐼𝑚𝑚,𝑎𝑎 = 1 … 4). The EV will charge enough to reach its destination with its desired state of charge 

at destination (𝜁𝜁𝑖𝑖). The energy required for EV 𝑖𝑖  to reach to its destination, while visiting a 

charging station along its route and leaving it at time 𝜃𝜃 can be calculated as:  

𝐸𝐸𝑖𝑖𝑖𝑖𝜃𝜃 = 𝜁𝜁𝑖𝑖𝐹𝐹 − 𝑠𝑠𝑖𝑖𝐹𝐹 + 1
β

[𝑇𝑇(𝑂𝑂(𝑖𝑖),𝑖𝑖)
𝑡𝑡𝑗𝑗 + 𝑇𝑇�𝑖𝑖,𝑂𝑂(𝑖𝑖)�

𝜃𝜃 ],            ∀ 𝑖𝑖 ∈ 𝐽𝐽, 𝑖𝑖 ∈ 𝐼𝐼. (6.3) 

In the above formulation, 𝐹𝐹 is the battery capacity and β is the battery performance in (𝑚𝑚𝑖𝑖𝑒𝑒𝑒𝑒
𝑘𝑘𝑘𝑘ℎ

), 

which converts the distance to energy. While EVs battery performances might differ based on the 

vehicle type and model, an average battery performance is considered for all EVs in the urban 

network. The required energy is calculated using the desired state of charge at destination, the 

initial state of charge and the distances from the origin zone to the charging zone, and from the 

charging zone to the destination zone. Having the charging demand, an agent-based model can be 

formulated as follows:  

The objective function (6.4) consists of two main terms. The first term calculates the total 

infrastructure investment cost including the costs associated with the availability of charging 

stations, 𝑥𝑥𝑖𝑖, and the integer variable 𝑧𝑧𝑖𝑖 that represents the number of chargers at each location i. 

The next term provides the monetary value of the total delay of all EV travelers that need 

recharging, including those related to the total queueing and charging delays, 𝜋𝜋𝑖𝑖𝜏𝜏, at all charging 

stations for different arrival time intervals, as well as those related to the total detour time, 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, 

experienced by EV users to access a charging station. These delays are multiplied by the value of 

time factor, 𝛾𝛾, to calculate their monetary values. Please note that just an average value of time is 

considered for simplicity. This assumption can be easily updated and the research framework can 

min∑ (𝐶𝐶𝑖𝑖𝑠𝑠𝑥𝑥𝑖𝑖 + 𝐶𝐶𝑖𝑖
𝑝𝑝𝑧𝑧𝑖𝑖𝑖𝑖∈𝐼𝐼 ) + 𝛾𝛾(∑ ∑ 𝜋𝜋𝑖𝑖𝜏𝜏𝜏𝜏∈𝑇𝑇𝑖𝑖∈𝐼𝐼 + ∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖)𝑖𝑖∈𝐽𝐽  . (6.4) 
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be adjusted to capture the variations of value of time due to different classes of users, activities, 

and trip purposes. The objective function (6.4) is subject to constraints (5-18) and (21-27). 

Constraint (6.5) states the binary decision variable to determine if a zone is equipped with 

a charging station (𝑥𝑥 = 1) or not (𝑥𝑥 = 0). Constraint (4) is a logic constraint ensuring that there 

is no charger in zone 𝑖𝑖 if the zone does not have a charging station. Constraint (6.7) accounts for 

the maximum charge intake. It limits the charging incidence matrix by not letting the required 

charge exceeds the available fast charging capacity in the battery at the time of arrival to the station. 

Constraint (6.8) ensures that each EV can only be charged in zones within its viable range. 

Constraint (6.9) ensures that charging can only happen when there is a charging station at zone 𝑖𝑖. 

Constraint (6.10) ensures that each EV charges exactly one time (note that the trajectories are 

𝑥𝑥𝑖𝑖 ∈ {0,1}, and 𝑧𝑧𝑖𝑖 ∈ {0,1,2, … },             ∀ 𝑖𝑖 ∈ 𝐼𝐼 (6.5) 

𝑧𝑧𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖𝑀𝑀,             ∀ 𝑖𝑖 ∈ 𝐼𝐼 (6.6) 

��𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃𝐸𝐸𝑖𝑖𝑖𝑖𝜃𝜃

𝜃𝜃∈𝑇𝑇𝜏𝜏∈𝑇𝑇

≤ 𝑠𝑠𝑚𝑚𝑎𝑎𝑥𝑥𝐹𝐹 − 𝑠𝑠𝑖𝑖𝐹𝐹 +
𝑇𝑇(𝑂𝑂(𝑖𝑖),𝑖𝑖)
𝑡𝑡𝑗𝑗

β
,            ∀ 𝑖𝑖 ∈ 𝐽𝐽, 𝑖𝑖 ∈ 𝐼𝐼 (6.7) 

���𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃𝑇𝑇(𝑂𝑂(𝑖𝑖),𝑖𝑖)
𝑡𝑡𝑗𝑗

𝜃𝜃∈𝑇𝑇𝜏𝜏∈𝑇𝑇𝑖𝑖∈𝐼𝐼

≤ β(𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚)𝐹𝐹,             ∀ 𝑖𝑖 ∈ 𝐽𝐽 (6.8) 

��𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃

𝜃𝜃∈𝑇𝑇𝜏𝜏∈𝑇𝑇

≤ 𝑥𝑥𝑖𝑖 ,             ∀ 𝑖𝑖 ∈ 𝐼𝐼,∀𝑖𝑖 ∈ 𝐽𝐽 (6.9) 

���𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃

𝑖𝑖∈𝐼𝐼𝜃𝜃∈𝑇𝑇𝜏𝜏∈𝑇𝑇

= 1,             ∀𝑖𝑖 ∈ 𝐽𝐽 (6.10) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = ���𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃

𝑖𝑖∈𝐼𝐼𝜃𝜃∈𝑇𝑇

(
𝜏𝜏∈𝑇𝑇

𝑡𝑡(𝑂𝑂(𝑖𝑖),𝑖𝑖)
𝑡𝑡𝑗𝑗 + 𝑡𝑡(𝑖𝑖,𝑂𝑂(𝑖𝑖))

𝜃𝜃 − 𝑡𝑡(𝑂𝑂(𝑖𝑖),𝑂𝑂(𝑖𝑖))
𝑡𝑡𝑗𝑗 ),             ∀  𝑖𝑖 ∈ 𝐽𝐽  (6.11) 

𝑡𝑡𝑖𝑖′ +  𝑡𝑡(𝑂𝑂(𝑖𝑖),𝑖𝑖)
𝑡𝑡𝑗𝑗 − 𝑇𝑇0𝜏𝜏 ≤ �1 − 𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃�𝑀𝑀,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝜃𝜃 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖 ∈ 𝐽𝐽 (6.12) 

𝑡𝑡𝑖𝑖′ + 𝑡𝑡(𝑂𝑂(𝑖𝑖),𝑖𝑖)
𝑡𝑡𝑗𝑗 − 𝑇𝑇0(𝜏𝜏 − 1) ≥ �𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃 − 1�𝑀𝑀,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝜃𝜃 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖 ∈ 𝐽𝐽 (6.13) 
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filtered to the EVs requiring recharging). Constraint (6.11) calculates the detour travel time for 

each EV to get to the charging station. The detoured path travel time includes the average time-

dependent travel time from the origin to the charging station and then to the destination. The 

original path travel time is the average travel time of vehicles with the origin of O(j) and destination 

of D(j). Constraints (6.12) and (6.13) are feasibility constraints that ensure vehicles can be 

allocated to a charging station upon arrival at the station.  

Constraints (6.14) and (6.15) find the temporal charging demand for each station. Constraint (6.14) 

calculates the total number of EVs visiting the charging station of zone 𝑖𝑖 at time 𝜏𝜏, 𝑦𝑦𝑖𝑖𝜏𝜏. Constraint 

(6.15) finds the required energy for all EVs visiting the charging station of zone 𝑖𝑖 during time 

interval 𝜏𝜏, 𝑣𝑣𝑖𝑖𝜏𝜏. The arrival rate, 𝜆𝜆i𝜏𝜏, which is the average number of EV users per charger visiting 

the station of zone 𝑖𝑖 at time interval 𝜏𝜏, is defined as: 

𝜆𝜆i𝜏𝜏 = 𝑦𝑦𝑖𝑖
𝜏𝜏

𝑇𝑇0𝑧𝑧𝑖𝑖
,          ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼   . (6.16) 

Similarly, the average charging time for a group of EVs visiting the charging station of zone 𝑖𝑖 is 

denoted by �̃�𝑡𝑖𝑖𝜏𝜏 and defined as: 

�̃�𝑡𝑖𝑖𝜏𝜏 = 𝛼𝛼 𝑣𝑣𝑖𝑖
𝜏𝜏

𝑃𝑃𝑦𝑦𝑖𝑖
𝜏𝜏 ,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼. (6.17) 

Where 𝑃𝑃 represents the charging power. The service rate, 𝜇𝜇𝑖𝑖𝜏𝜏, is defined as the number of EVs that 

can be charged in one hour and is calculated as follows: 

𝜇𝜇𝑖𝑖𝜏𝜏 = 1
�̃�𝑡𝑖𝑖
𝜏𝜏 ,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼. (6.18) 

The queueing delay at the end of time interval 𝜏𝜏 can be calculated as follows:  

𝑦𝑦𝑖𝑖𝜏𝜏 = ∑ ∑ 𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃𝜃𝜃∈𝑇𝑇𝑖𝑖∈𝐽𝐽 ,              ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼, (6.14) 

𝑣𝑣𝑖𝑖𝜏𝜏 = ∑ ∑ 𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃𝜃𝜃∈𝑇𝑇 𝐸𝐸𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖∈𝐽𝐽 ,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼 . (6.15) 
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𝑞𝑞𝑖𝑖𝜏𝜏 =
(𝜆𝜆𝑖𝑖𝜏𝜏 − 𝜇𝜇𝑖𝑖𝜏𝜏)𝑇𝑇0

𝜇𝜇𝑖𝑖𝜏𝜏
+ 𝑞𝑞𝑖𝑖𝜏𝜏−1,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼. (6.19) 

Here, 𝑞𝑞𝑖𝑖𝜏𝜏 shows the longest waiting time experienced in station 𝑖𝑖 at time interval 𝜏𝜏. When EVs 

reach charging stations, four scenarios might occur depending on the remaining queue from the 

previous time interval, the arrival rate, and the service rate. These scenarios are illustrated in 

Figure 6-3. If there is no remaining queue and the service rate is greater than the arrival rate, (𝜇𝜇𝑖𝑖𝜏𝜏 >

𝜆𝜆𝑖𝑖𝜏𝜏), EVs experience no queue (Figure 6-3(a)). If there is no remaining queue, (𝑞𝑞𝑖𝑖𝜏𝜏−1 = 0), but the 

arrival rate is greater than the service rate, (𝜇𝜇𝑖𝑖𝜏𝜏 < 𝜆𝜆𝑖𝑖𝜏𝜏), EVs experience queuing during the entire 

time interval (Figure 6-3(b)). If there is a remaining queue form the previous time interval, (𝑞𝑞𝑖𝑖𝜏𝜏−1 >

0), and the service rate cannot dissipate the queue by the end of the time interval, EVs experience 

queue during the entire time interval (Figure 6-3(c)). In this case, charging access cannot be 

provided to any incoming flow. Therefore, all vehicles will experience the queue and wait in line 

to get access to an available charger at a later time. In the last scenario (Figure 6-3(d)), there is a 

remaining queue from the previous time interval but it dissipates before the end of the current time 

interval. Therefore, after a time, 𝛿𝛿𝑖𝑖𝜏𝜏, the incoming EVs can be charged upon their arrival. The value 

of 𝛿𝛿𝑖𝑖𝜏𝜏 can be calculated based on Figure 6-3(d) as follows. 

𝑦𝑦𝑖𝑖∗ = 𝛿𝛿𝑖𝑖𝜏𝜏𝜆𝜆𝑖𝑖𝜏𝜏 (6.20) 

𝑦𝑦𝑖𝑖∗ = (𝛿𝛿𝑖𝑖𝜏𝜏 − 𝑞𝑞𝑖𝑖𝜏𝜏−1)𝜇𝜇𝑖𝑖𝜏𝜏 (6.21) 

𝛿𝛿𝑖𝑖𝜏𝜏𝜆𝜆𝑖𝑖𝜏𝜏 = (𝛿𝛿𝑖𝑖𝜏𝜏 − 𝑞𝑞𝑖𝑖𝜏𝜏−1)𝜇𝜇𝑖𝑖𝜏𝜏 → 𝛿𝛿𝑖𝑖𝜏𝜏𝜆𝜆𝑖𝑖𝜏𝜏 − 𝛿𝛿𝑖𝑖𝜏𝜏𝜇𝜇𝑖𝑖𝜏𝜏 = −𝑞𝑞𝑖𝑖𝜏𝜏−1𝜇𝜇𝑖𝑖𝜏𝜏 (6.22) 

→ 𝛿𝛿𝑖𝑖𝜏𝜏(𝜇𝜇𝑖𝑖𝜏𝜏 − 𝜆𝜆𝑖𝑖𝜏𝜏) = 𝜇𝜇𝑖𝑖𝜏𝜏𝑞𝑞𝑖𝑖𝜏𝜏−1 → 𝛿𝛿𝑖𝑖𝜏𝜏 =
𝜇𝜇𝑖𝑖𝜏𝜏𝑞𝑞𝑖𝑖𝜏𝜏−1

𝜇𝜇𝑖𝑖𝜏𝜏 − 𝜆𝜆𝑖𝑖𝜏𝜏
 

(6.23) 
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(a) (b) 

  
(c) (d) 

 

Figure 6-3 Four queuing scenarios upon the arrival of EVs at charging stations 

The above-mentioned deterministic queuing formulations can be summarized as follows: 

𝑞𝑞𝑖𝑖𝜏𝜏 ≥
(𝜆𝜆𝑖𝑖𝜏𝜏 − 𝜇𝜇𝑖𝑖𝜏𝜏)𝑇𝑇0

𝜇𝜇𝑖𝑖𝜏𝜏
+ 𝑞𝑞𝑖𝑖𝜏𝜏−1 (6.24) 

𝑞𝑞𝑖𝑖𝜏𝜏 ≥ 0,             ∀ 𝑖𝑖 ∈ 𝐼𝐼 (6.25) 

𝑞𝑞𝑖𝑖0 = 0,             ∀ 𝑖𝑖 ∈ 𝐼𝐼 (6.26) 

(𝜆𝜆𝑖𝑖𝜏𝜏 − 𝜇𝜇𝑖𝑖𝜏𝜏)𝑇𝑇0
𝜇𝜇𝑖𝑖𝜏𝜏

+ 𝑞𝑞𝑖𝑖𝜏𝜏−1 ≤ 𝜒𝜒𝑖𝑖𝜏𝜏𝑀𝑀,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼 (6.27) 

(𝜆𝜆𝑖𝑖𝜏𝜏 − 𝜇𝜇𝑖𝑖𝜏𝜏)𝑇𝑇0
𝜇𝜇𝑖𝑖𝜏𝜏

+ 𝑞𝑞𝑖𝑖𝜏𝜏−1 ≥ (𝜒𝜒𝑖𝑖𝜏𝜏 − 1)𝑀𝑀,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼 (6.28) 

𝛿𝛿𝑖𝑖𝜏𝜏 = 𝑇𝑇0𝜒𝜒𝑖𝑖𝜏𝜏 +
𝜇𝜇𝑖𝑖𝜏𝜏𝑞𝑞𝑖𝑖𝜏𝜏−1

𝜇𝜇𝑖𝑖𝜏𝜏 − 𝜆𝜆𝑖𝑖𝜏𝜏
(1 − 𝜒𝜒𝑖𝑖𝜏𝜏),             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼 (6.29) 

𝑘𝑘�𝑖𝑖𝜏𝜏 =
𝛿𝛿𝑖𝑖𝜏𝜏

𝑇𝑇0
�
𝑞𝑞𝑖𝑖𝜏𝜏 + 𝑞𝑞𝑖𝑖𝜏𝜏−1

2
� ,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼. (6.30) 



125 

Constraints (6.24-26) calculate the queuing delay at the end of each time interval. 

Constraint (6.24) sets a lower bound for the queuing delay by summing the queuing delay of the 

previous time interval and the additional queuing delay for the current interval. Constraint (6.25) 

ensures that the estimated queue is always non-negative. Constraint (6.26) is a boundary condition 

assuming that the system starts with no initial queue. Constraints (6.27) and (6.28) determine the 

type of queuing for time interval 𝜏𝜏 using the fully queued incidence matrix 𝜒𝜒𝑖𝑖𝜏𝜏. If the left-hand side 

of equation (6.27) is positive, resulting in a positive queue at the end of the time interval, the fully 

queued incidence matrix would be equal to one (𝜒𝜒𝑖𝑖𝜏𝜏 = 1). In this case, constraint (6.28) would not 

be binding. If the left-hand side of the constraint (6.28) becomes negative, the fully queued 

incidence matrix would be set to zero (𝜒𝜒𝑖𝑖𝜏𝜏 = 0). In this case, constraint (6.27) would not be binding. 

Constraint (6.29) calculates the portion of time interval with a queue. If the fully queued incidence 

matrix is equal to one, the second term of this constraint is zero and 𝛿𝛿𝑖𝑖𝜏𝜏 = 𝑇𝑇0. If the queue dissipates 

within the time interval, the first term will be zero and the second term calculates the 𝛿𝛿𝑖𝑖𝜏𝜏. Constraint 

(6.30) calculates the average queuing time for EVs visiting the charging station in zone 𝑖𝑖 at time 

interval 𝜏𝜏.  

 Finally, the following constraints provides the relationships among various time variables. 

𝑅𝑅𝑖𝑖𝑖𝑖𝜃𝜃 = 𝛼𝛼
𝐸𝐸𝑖𝑖𝑖𝑖𝜃𝜃

𝑃𝑃
,             ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖 ∈ 𝐽𝐽 (6.31) 

𝜋𝜋𝑖𝑖𝜏𝜏 = 𝑦𝑦𝑖𝑖𝜏𝜏𝑘𝑘�𝑖𝑖𝜏𝜏 + ��𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃

𝑖𝑖∈𝐽𝐽𝜃𝜃∈𝑇𝑇

𝑅𝑅𝑖𝑖𝑖𝑖𝜃𝜃 ,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼 (6.32) 

𝑡𝑡𝑖𝑖′ + 𝑡𝑡(𝑜𝑜(𝑖𝑖),𝑖𝑖)
𝑡𝑡𝑗𝑗 + 𝑅𝑅𝑖𝑖𝑖𝑖𝜃𝜃 + 𝑘𝑘�𝑖𝑖𝜏𝜏 − 𝑇𝑇0𝜃𝜃 ≤ �1 − 𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃�𝑀𝑀,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝜃𝜃 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖 ∈ 𝐽𝐽 (6.33) 

𝑡𝑡𝑖𝑖′ +  𝑡𝑡(𝑜𝑜(𝑖𝑖),𝑖𝑖)
𝑡𝑡𝑗𝑗 + 𝑅𝑅𝑖𝑖𝑖𝑖𝜃𝜃 + 𝑘𝑘�𝑖𝑖𝜏𝜏 − 𝑇𝑇0(𝜃𝜃 − 1) ≥ �𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃 − 1�𝑀𝑀,             ∀ 𝜏𝜏 ∈ 𝑇𝑇,𝜃𝜃 ∈ 𝑇𝑇, 𝑖𝑖

∈ 𝐼𝐼, 𝑖𝑖 ∈ 𝐽𝐽 
(6.34) 
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Constraint (6.31) calculates the required time to recharge each EV at each charging station 

considering the loss of electricity factor and the charging power. Constraint (6.32) calculates the 

total delay in each charging station by summing up the total queuing delay for all EVs visiting the 

charging station at that time interval and the total refueling time of EVs for all departure time 

intervals from that station. Constraints (6.33) and (6.34) determine the departure time interval in 

which a vehicle would be able to leave the station. They ensure that the summation of the EV 

departure time, average travel time from origin to the charging station, the refueling time and 

waiting time in the queue matches the departure time interval from the station.  

Note in this mathematical modeling, only deterministic queuing is considered. In the next section 

the presented mathematical model is decomposed to two-subproblems. In the second subproblem 

the proposed solution approach accounts for both deterministic and stochastic queueing delays.   

6-2-3- Solution Methodology 

The proposed Mixed-Integer Non-Linear Programming (MINLP) model in the previous section 

has multiple nonlinear constraints. The impact of queuing on the assignment of charging demands 

to charging stations, makes the problem highly nonlinear and challenging. In the literature, queuing 

time is usually considered only to determine the number of required chargers via a bi-level 

formulation or as a separate problem (Jung et al., 2014; Wang et al., 2019; Xie et al., 2018). 

Therefore, the proposed problem is decomposed into two subproblems assuming the queuing does 

not affect the assignment of charging demands to charging stations. Since the decomposition 

approach is a heuristic approach, an implicit enumeration approach is compared with this approach 

for a small case study in the numerical experiments section to show its efficiency and accuracy. 

Note that the formulated problem is highly non-linear with mixed-integer variables. Thus, there is 

no exact solution methodology, and common commercial solvers cannot be implemented even for 
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small case studies. Even in the decomposed approach, the first subproblem requires a heuristic 

approach for large scale applications. 

6-2-3-1- Optimal Locating of Charging Stations 

In the first subproblem, a minimization problem is solved that considers the monetary value of 

detour and refueling times and the cost of charging stations, ignoring the charging queue. In this 

study, the number of chargers in each station is not limited, thus enough chargers would be 

provided at each station to provide a consistent level of service at each location, proportional to 

the charging demand. The mathematical model for the first subproblem, including the objective 

function and constraints, is as follows: 

min�(𝐶𝐶𝑖𝑖𝑠𝑠𝑥𝑥𝑖𝑖
𝑖𝑖∈𝐼𝐼

) + 𝛾𝛾(����𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃

𝑖𝑖∈𝐽𝐽𝑖𝑖∈𝐼𝐼

𝑅𝑅𝑖𝑖𝑖𝑖𝜃𝜃

𝜃𝜃∈𝑇𝑇𝜏𝜏∈𝑇𝑇

+ �𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖)
𝑖𝑖∈𝐽𝐽

  (6.35) 

Subject to: 

Constraints (6.5), (6.7-13), (6.31), and 

 

𝑡𝑡𝑖𝑖′ + 𝑡𝑡(𝑂𝑂(𝑖𝑖),𝑖𝑖)
𝑡𝑡𝑗𝑗 + 𝑅𝑅𝑖𝑖𝑖𝑖𝜃𝜃 − 𝑇𝑇0𝜃𝜃 ≤ �1 − 𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃�𝑀𝑀,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝜃𝜃 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖 ∈ 𝐽𝐽 (6.36) 

𝑡𝑡𝑖𝑖′ +  𝑡𝑡(𝑂𝑂(𝑖𝑖),𝑖𝑖)
𝑡𝑡𝑗𝑗 + 𝑅𝑅𝑖𝑖𝑖𝑖𝜃𝜃 − 𝑇𝑇0(𝜃𝜃 + 1) ≥ �𝑄𝑄𝑖𝑖𝑖𝑖𝜏𝜏𝜃𝜃 − 1�𝑀𝑀,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝜃𝜃 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖 ∈ 𝐽𝐽 (6.37) 

In this subproblem, the departure time confines the charging incidence matrix through constraints 

(6.36-37). In this model, the queuing delay in charging stations is ignored, unlike the primary 

optimization model. Therefore, per assumption, vehicles can be charged once they get to charging 

stations.  

The objective function (6.35) along with its constraints form a mixed-integer linear model. 

Commercial solvers such as CPLEX and Gurobi, solve moderate sized instances effectively. 

However, as the size of the problem grows, the computational requirements increase exponentially. 

Therefore, a metaheuristic approach is also provided for large-scale case studies based on 
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Simulated Annealing (SA) approach. For more details please refer to (Ghamami et al., 2020a, 

2016b; Kavianipour et al., 2019; Zockaie et al., 2016) for similar applications of the SA algorithm. 

To improve the efficiency of the algorithm, the following strategies are shown to be effective in 

generating neighboring solutions. More details of the algorithm can be found in Figure 6-4. 

1. To add a station randomly to a traffic analysis zone, each zone is weighted based on the 

number of crossing EV trajectories. Accordingly, the zones visited by a higher number of 

crossing trajectories, have a higher chance of being added to the current solution. 

2. To remove a station randomly from traffic analysis zones equipped with one in the current 

solution, the zones are weighted based on the inverse of their number of incoming EV 

flows. Accordingly, stations with a lower incoming flow, have a higher chance to be 

removed from the current solution. 
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Figure 6-4 The SA-based solution algorithm to find the optimal location of charging stations 

6-2-3-2- Optimal Number of Chargers at Each Charging Station 

To find the number of chargers in each charging station, the second subproblem is formulated as 

follows for each selected station in the first subproblem such as 𝑖𝑖: 

min𝐶𝐶𝑖𝑖
𝑝𝑝𝑧𝑧𝑖𝑖 + 𝛾𝛾�𝑦𝑦𝑖𝑖𝜏𝜏𝑘𝑘�𝑖𝑖𝜏𝜏

𝜏𝜏∈𝑇𝑇

  

Subject to 

(6.38) 

(6.14-18) and (6.24-30)  
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The objective function (6.38) includes the total installation and maintenance costs of chargers, and 

the monetary value of total travelers’ queuing delay at each station, which depends on the number 

of chargers allocated to the station. The objective function needs to be minimized for each charging 

station selected in the first subproblem, to find the optimum number of chargers, as the main 

decision variable. This problem is a MINLP.  

In the first subproblem, EV trajectories requiring recharging are assigned to each charging 

station, forming a temporal arrival distribution for each charging station. Based on the availability 

of chargers at the station, they either charge upon their arrival or wait in the queue for an available 

charger. This subproblem makes a trade-off between providing more chargers or letting users wait 

in the queue for an available charger. 

Assuming a uniform arrival and service rates for each time interval, the queuing behavior 

can be modeled based on a deterministic queue modeling approach (Zukerman, 2013), as presented 

in (6.24-30). The objective function (6.38) along with its constraints forms a mixed-integer 

problem with nonlinear constraints and is convex as shown below. 

First, we examine the objective function: 

Γ = 𝐶𝐶𝑖𝑖
𝑝𝑝𝑧𝑧𝑖𝑖 + 𝛾𝛾�𝑦𝑦𝑖𝑖𝜏𝜏𝑘𝑘�𝑖𝑖𝜏𝜏

𝜏𝜏∈𝑇𝑇

= 𝐶𝐶𝑖𝑖
𝑝𝑝𝑧𝑧𝑖𝑖 + �𝑦𝑦𝑖𝑖𝜏𝜏

𝛿𝛿𝑖𝑖𝜏𝜏

𝑇𝑇0
�
𝑞𝑞𝑖𝑖𝜏𝜏 + 𝑞𝑞𝑖𝑖𝜏𝜏−1

2
�

𝜏𝜏∈𝑇𝑇

 (6-39) 

In the above formulation, 𝐶𝐶𝑝𝑝 and 𝛾𝛾 are parameters and 𝑦𝑦𝑖𝑖𝜏𝜏  is known as it is the output of the 

location subproblem. Based on the (6.29), 𝛿𝛿𝑖𝑖𝜏𝜏 is a function of 𝜒𝜒𝑖𝑖𝜏𝜏and 𝑧𝑧𝑖𝑖. 𝑞𝑞𝑖𝑖𝜏𝜏 is also a function of 𝜒𝜒𝑖𝑖𝜏𝜏, 

𝑧𝑧𝑖𝑖, and 𝑞𝑞𝑖𝑖𝜏𝜏−1.  

Inductive reasoning can be used to show the convexity of 𝑞𝑞𝑖𝑖𝜏𝜏 as follows: 

Step 1: The convexity of 𝑞𝑞𝑖𝑖𝜏𝜏 should be checked for 𝜏𝜏 = 1.  
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𝑞𝑞𝑖𝑖𝜏𝜏 =
(𝜆𝜆𝑖𝑖𝜏𝜏 − 𝜇𝜇𝑖𝑖𝜏𝜏)𝑇𝑇0

𝜇𝜇𝑖𝑖𝜏𝜏
𝜒𝜒𝑖𝑖𝜏𝜏 (6.40) 

 If 𝜒𝜒𝑖𝑖1 = 0 → 𝑞𝑞𝑖𝑖1 = 0 → 𝐶𝐶𝐶𝐶𝑎𝑎𝑣𝑣𝑒𝑒𝑥𝑥 (6.41) 

If 𝜒𝜒𝑖𝑖1 = 1 → 𝑞𝑞𝑖𝑖𝜏𝜏 =
�
𝑦𝑦𝑖𝑖
𝜏𝜏

𝑇𝑇0𝑧𝑧𝑖𝑖
−𝜇𝜇𝑖𝑖

𝜏𝜏�𝑇𝑇0

𝜇𝜇𝑖𝑖
𝜏𝜏 → 𝑑𝑑(𝑞𝑞𝑖𝑖

𝜏𝜏)
𝑑𝑑𝑧𝑧

= − 𝑦𝑦𝑖𝑖
𝜏𝜏

𝜇𝜇𝑖𝑖
𝜏𝜏𝑧𝑧𝑖𝑖2

→ 𝑇𝑇2�𝑞𝑞𝑖𝑖
𝜏𝜏�

𝑇𝑇𝑧𝑧2 = 2
𝑦𝑦𝑖𝑖
𝜏𝜏

𝜇𝜇𝑖𝑖
𝜏𝜏𝑧𝑧𝑖𝑖3

= 2
𝑦𝑦𝑖𝑖
1

𝜇𝜇𝑖𝑖
1𝑧𝑧𝑖𝑖3

 (6.42) 

(6.41) and (6.42) are both convex, which shows the convexity of the 𝑞𝑞𝑖𝑖𝜏𝜏 for 𝜏𝜏 = 1. 

Step 2: It is assumed that 𝑞𝑞𝑖𝑖𝜏𝜏 is convex for 𝜏𝜏 = 𝑎𝑎 − 1 ⟶ 𝑞𝑞𝑖𝑖𝑚𝑚−1 is convex. 

Step 3: The convexity of 𝑞𝑞𝑖𝑖𝜏𝜏 should be checked for 𝜏𝜏 = 𝑎𝑎 

𝑞𝑞𝑖𝑖𝑚𝑚 = 𝜒𝜒𝑖𝑖𝑚𝑚(
𝑇𝑇0
𝜇𝜇𝑖𝑖𝑚𝑚

�
𝑦𝑦𝑖𝑖𝑚𝑚

𝑇𝑇0𝑧𝑧𝑖𝑖
− 𝜇𝜇𝑖𝑖𝑚𝑚� + 𝑞𝑞𝑖𝑖𝑚𝑚−1) (6.43) 

If 𝜒𝜒𝑖𝑖𝑚𝑚 = 0 → 𝑞𝑞𝑖𝑖𝑚𝑚 = 0 (6.44) 

If 𝜒𝜒𝑖𝑖𝑚𝑚 = 1 → 𝑞𝑞𝑖𝑖𝑚𝑚 = 𝑇𝑇0
𝜇𝜇𝑖𝑖
𝑛𝑛 �

𝑦𝑦𝑖𝑖
𝑛𝑛

𝑇𝑇0𝑧𝑧𝑖𝑖
− 𝜇𝜇𝑖𝑖𝑚𝑚� + 𝑞𝑞𝑖𝑖𝑚𝑚−1 (6.45) 

(6.44) is convex. (6.45) consists two terms: the first is convex similar to (6.42) and the second term 

is convex per assumption in step 2. Therefore, the convexity of 𝑞𝑞𝑖𝑖𝜏𝜏 can be concluded based on 

inductive reasoning. 

The next step is to prove the convexity of the objective function. The objective function is 

a function of 𝑧𝑧𝑖𝑖 and 𝜒𝜒𝑖𝑖𝑚𝑚,𝑎𝑎 = 1, … 𝜏𝜏. The first part of the objective function is convex. Therefore, 

the second part is evaluated for convexity as follows: 

Γ′ = 𝛾𝛾�𝑦𝑦𝑖𝑖𝜏𝜏𝑘𝑘�𝑖𝑖𝜏𝜏

𝜏𝜏∈𝑇𝑇

 (6.46) 

The convexity of 𝑦𝑦𝑖𝑖𝜏𝜏𝑘𝑘�𝑖𝑖𝜏𝜏 is similar to the convexity of Γ′(Boyd and Vandenberghe, 2009). 

Γ" = 𝑦𝑦𝑖𝑖𝜏𝜏𝑘𝑘�𝑖𝑖𝜏𝜏 = 𝑦𝑦𝑖𝑖𝜏𝜏
𝛿𝛿𝑖𝑖𝜏𝜏

𝑇𝑇0
(
𝑞𝑞𝑖𝑖𝜏𝜏 + 𝑞𝑞𝑖𝑖𝜏𝜏−1

2
) =

𝑦𝑦𝑖𝑖𝜏𝜏

2𝑇𝑇0
𝛿𝛿𝑖𝑖𝜏𝜏(𝑞𝑞𝑖𝑖𝜏𝜏 + 𝑞𝑞𝑖𝑖𝜏𝜏−1) (6.47) 

The convexity of 𝛿𝛿𝑖𝑖𝜏𝜏(𝑞𝑞𝑖𝑖𝜏𝜏 + 𝑞𝑞𝑖𝑖𝜏𝜏−1) is similar to the convexity of Γ"(Boyd and Vandenberghe, 2009).  
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𝛿𝛿𝑖𝑖𝜏𝜏 = 𝑇𝑇0𝜒𝜒𝑖𝑖𝜏𝜏 +
𝜇𝜇𝑖𝑖𝜏𝜏𝑞𝑞𝑖𝑖𝜏𝜏−1

𝜇𝜇𝑖𝑖𝜏𝜏 − 𝜆𝜆𝑖𝑖𝜏𝜏
(1 − 𝜒𝜒𝑖𝑖𝜏𝜏) (6.48) 

𝑞𝑞𝑖𝑖𝜏𝜏 = 𝜒𝜒𝑖𝑖𝜏𝜏(
𝑇𝑇0
𝜇𝜇𝑖𝑖𝑚𝑚

(𝜆𝜆𝑖𝑖𝜏𝜏 − 𝜇𝜇𝑖𝑖𝑚𝑚) + 𝑞𝑞𝑖𝑖𝜏𝜏−1) (6.49) 

𝛿𝛿𝑖𝑖𝜏𝜏(𝑞𝑞𝑖𝑖𝜏𝜏 + 𝑞𝑞𝑖𝑖𝜏𝜏−1) = �𝑇𝑇0𝜒𝜒𝑖𝑖𝜏𝜏 +
𝜇𝜇𝑖𝑖𝜏𝜏𝑞𝑞𝑖𝑖𝜏𝜏−1

𝜇𝜇𝑖𝑖𝜏𝜏 − 𝜆𝜆𝑖𝑖𝜏𝜏
(1 − 𝜒𝜒𝑖𝑖𝜏𝜏)� �𝜒𝜒𝑖𝑖𝜏𝜏(

𝑇𝑇0
𝜇𝜇𝑖𝑖𝑚𝑚

(𝜆𝜆𝑖𝑖𝜏𝜏 − 𝜇𝜇𝑖𝑖𝑚𝑚) + 𝑞𝑞𝑖𝑖𝜏𝜏−1) + 𝑞𝑞𝑖𝑖𝜏𝜏−1� (6.50) 

𝜒𝜒𝑖𝑖𝜏𝜏 is a binary variable indicating if there is a queue in the time interval (𝜒𝜒𝑖𝑖𝜏𝜏 = 1) or not (𝜒𝜒𝑖𝑖𝜏𝜏 = 0). 

Therefore, the convexity of the function is evaluated for different values of 𝜒𝜒𝑖𝑖𝜏𝜏.  

Case 1: 𝜒𝜒𝑖𝑖𝜏𝜏 = 1 

Γ3 = 𝛿𝛿𝑖𝑖𝜏𝜏(𝑞𝑞𝑖𝑖𝜏𝜏 + 𝑞𝑞𝑖𝑖𝜏𝜏−1) = 𝑇𝑇0 �
𝑇𝑇0
𝜇𝜇𝑖𝑖𝜏𝜏

(𝜆𝜆𝑖𝑖𝜏𝜏 − 𝜇𝜇𝑖𝑖𝜏𝜏) + 2𝑞𝑞𝑖𝑖𝜏𝜏−1� =
𝑇𝑇02

𝜇𝜇𝑖𝑖𝜏𝜏
(𝜆𝜆𝑖𝑖𝜏𝜏 − 𝜇𝜇𝑖𝑖𝜏𝜏) + 2𝑇𝑇0𝑞𝑞𝑖𝑖𝜏𝜏−1 (6.51) 

(6.51) is convex as it is the summation of two convex terms, as proved in the above section, and 

this indicates the convexity of the objective function when 𝜒𝜒𝑖𝑖𝜏𝜏 = 1. 

Case 2: 𝜒𝜒𝑖𝑖𝜏𝜏 = 0 

Γ4 = 𝛿𝛿𝑖𝑖𝜏𝜏(𝑞𝑞𝑖𝑖𝜏𝜏 + 𝑞𝑞𝑖𝑖𝜏𝜏−1) =
𝜇𝜇𝑖𝑖𝜏𝜏𝑞𝑞𝑖𝑖𝜏𝜏−1

𝜇𝜇𝑖𝑖𝜏𝜏 − 𝜆𝜆𝑖𝑖𝜏𝜏
𝑞𝑞𝑖𝑖𝜏𝜏−1 =

𝜇𝜇𝑖𝑖𝜏𝜏(𝑞𝑞𝑖𝑖𝜏𝜏−1)2

𝜇𝜇𝑖𝑖𝜏𝜏 − 𝜆𝜆𝑖𝑖𝜏𝜏
 (6.52) 

𝜇𝜇𝑖𝑖𝜏𝜏 does not affect the convexity of (6.52). Therefore, considering 𝜆𝜆i𝜏𝜏 = 𝑦𝑦𝑖𝑖
𝜏𝜏

𝑇𝑇0𝑧𝑧𝑖𝑖
, the convexity of this 

phrase can be evaluated as follows: 

Γ5 =
(𝑞𝑞𝑖𝑖𝜏𝜏−1)2

𝜇𝜇𝑖𝑖𝜏𝜏 − 𝜆𝜆𝑖𝑖𝜏𝜏
 (6.53) 

𝑇𝑇(Γ5)
𝑇𝑇𝑧𝑧

=
2𝑞𝑞𝑖𝑖𝜏𝜏−1

𝑇𝑇𝑞𝑞𝑖𝑖
𝜏𝜏−1

𝑇𝑇𝑧𝑧 �𝜇𝜇𝑖𝑖𝜏𝜏 −
𝑦𝑦𝑖𝑖𝜏𝜏
𝑇𝑇0𝑧𝑧𝑖𝑖

� − 𝑦𝑦𝑖𝑖𝜏𝜏
𝑇𝑇0𝑧𝑧𝑖𝑖2

(𝑞𝑞𝑖𝑖𝜏𝜏−1)2

(𝜇𝜇𝑖𝑖𝜏𝜏 −
𝑦𝑦𝑖𝑖𝜏𝜏
𝑇𝑇0𝑧𝑧𝑖𝑖

)2
 (6.54) 
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𝑇𝑇(Γ5)
𝑇𝑇𝑧𝑧

=
2𝑞𝑞𝑖𝑖𝜏𝜏−1

𝑇𝑇𝑞𝑞𝑖𝑖
𝜏𝜏−1

𝑇𝑇𝑧𝑧

𝜇𝜇𝑖𝑖𝜏𝜏 −
𝑦𝑦𝑖𝑖𝜏𝜏
𝑇𝑇0𝑧𝑧𝑖𝑖

−

𝑦𝑦𝑖𝑖𝜏𝜏
𝑇𝑇0𝑧𝑧𝑖𝑖2

(𝑞𝑞𝑖𝑖𝜏𝜏−1)2

(𝜇𝜇𝑖𝑖𝜏𝜏 −
𝑦𝑦𝑖𝑖𝜏𝜏
𝑇𝑇0𝑧𝑧𝑖𝑖

)2
 (6.55) 

𝑇𝑇2(Γ5)
𝑇𝑇𝑧𝑧2
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𝑇𝑇𝑞𝑞𝑖𝑖𝜏𝜏−1
𝑇𝑇𝑧𝑧

(𝜇𝜇𝑖𝑖𝜏𝜏 −
𝑦𝑦𝑖𝑖𝜏𝜏
𝑇𝑇0𝑧𝑧𝑖𝑖
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−
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(6.56) 

As 𝜒𝜒𝑖𝑖𝜏𝜏 = 0 ⟶ 𝜇𝜇𝑖𝑖𝜏𝜏 > 𝜆𝜆𝑖𝑖𝜏𝜏 ⟶ 𝜇𝜇𝑖𝑖𝜏𝜏 > 𝑦𝑦𝑖𝑖
𝜏𝜏

𝑇𝑇0𝑧𝑧𝑖𝑖
⟶ 𝜇𝜇𝑖𝑖𝜏𝜏 −

𝑦𝑦𝑖𝑖
𝜏𝜏

𝑇𝑇0𝑧𝑧𝑖𝑖
> 0  Further, as proved in (6.45), the first 

derivative of 𝑞𝑞𝑖𝑖𝜏𝜏 is negative. Therefore, the second derivative is always positive since all terms in 

(6.56) are positive. As the objective function is convex for both of the cases, we can conclude that 

it is always convex. 

Since the objective function is strictly convex and the constraints are convex, the proposed 

problem can be solved using numerical solution approaches such as the Golden-section search 

technique. This technique is designed to find the extreme value of a function in a pre-defined 

interval as its domain (Kiefer, 1953). The deterministic queuing assumption provides the minimum 

number of chargers required to support the charging demand.  

The deterministic queueing model assumes zero queueing delay when the service rate is 

greater than the arrival rate. Thus, if the model provides enough chargers to avoid the deterministic 

queue, then the service rate would be greater than the arrival rate. Assuming a Poisson distribution 
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for the arrival process and an exponential distribution for the service rates, a stochastic queuing 

model can be implemented (Zukerman, 2013) for the cases that the average service rate exceeds 

the average arrival rate. It should be noted that if the arrival rate is greater than the service rate, 

only the deterministic approach is applicable. If a steady-state condition is assumed in each time 

interval, the M/M/k (M stands for Markovian, which is a Poisson distribution for arrival rates and 

an exponential distribution for service time distribution and k represents multiple number of 

chargers) queuing model can be used to model the stochastic queuing delay. The formulation is as 

follows: 

𝜌𝜌𝑖𝑖𝜏𝜏 =
𝜆𝜆𝑖𝑖𝜏𝜏

𝑧𝑧𝑖𝑖𝜇𝜇𝑖𝑖𝜏𝜏
,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼 (6.57) 

𝑃𝑃𝑖𝑖0𝜏𝜏 = (�
(𝑧𝑧𝑖𝑖𝜌𝜌𝑖𝑖𝜏𝜏)𝑚𝑚

𝑚𝑚!

𝑧𝑧𝑖𝑖−1

𝑚𝑚=0

+
(𝑧𝑧𝑖𝑖𝜌𝜌𝑖𝑖𝜏𝜏)𝑧𝑧𝑖𝑖

𝑧𝑧𝑖𝑖! (1 − 𝜌𝜌𝑖𝑖𝜏𝜏)
)−1,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼 (6.58) 

𝑙𝑙𝑖𝑖𝜏𝜏 =
𝑃𝑃𝑖𝑖0𝜏𝜏 (𝜆𝜆𝑖𝑖

𝜏𝜏

𝜇𝜇𝑖𝑖𝜏𝜏
)𝑧𝑧𝑖𝑖𝜌𝜌𝑖𝑖𝜏𝜏

𝑧𝑧𝑖𝑖! (1 − 𝜌𝜌𝑖𝑖𝜏𝜏)2
,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼 (6.59) 

𝑘𝑘�𝑖𝑖𝜏𝜏 =
𝑙𝑙𝑖𝑖𝜏𝜏

𝜆𝜆𝑖𝑖𝜏𝜏
,             ∀ 𝜏𝜏 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐼𝐼 (6.60) 

In these formulations, equation (6.57) finds the utilization, 𝜌𝜌𝑖𝑖𝜏𝜏, at each charging station in each 

time interval. Equation (6.58) finds the probability that there is no queue in the system. Equation 

(6.59) finds the number of customers in the queue. Finally, equation (6-60) calculates the average 

waiting time in the queue. These equations are based on queuing theory for M/M/k queues. For 

more information on queuing theory, please refer to (Zukerman, 2013). The average queue size of 

the M/M/k system is convex respect to the traffic flow (Grassmann, 1983). Therefore, the optimum 

value of the objective function can be calculated using the Golden-section search technique similar 

to the deterministic approach. The two-stage framework for finding the optimal number of 
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chargers considering both deterministic and stochastic approaches is presented in Figure 6-5. Note 

that the deterministic model provides a lower bound for the stochastic model, without which the 

Golden-section method cannot be applied to the stochastic model. Furthermore, in case of a non-

zero deterministic queue in the first stage, the stochastic queueing model would be irrelevant.  

 

 

Figure 6-5 Two-stage framework for finding the optimal number of chargers considering 
deterministic and stochastic queuing delays 

6-3- Numerical Experiments 

This section first introduces the case studies and their network specifications. Then, it provides the 

input data used in the charging behavior simulator. Next, it briefly discusses the considered 

parameter values in the optimization model. It is worth noting that these values are derived based 

on the provided feedback in stakeholder meetings in Michigan and can be calibrated for each 

region. based on the input from various stakeholders’ meeting as part of the EV charger placement 

project in Michigan. Finally, some scenarios are introduced to be accompanied by sensitivity 
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analyses to provide applied insights for the EV fast-charging infrastructure deployment in urban 

areas.  

6-3-1- Case Studies 

The road network and OD travel demand information in the State of Michigan are provided by 

MDOT. The regional road networks for the cities of Marquette, Lansing and Detroit are extracted, 

as shown in Figure 6-6, beyond the actual city borders. The city of Marquette is considered as a 

small sized network which has 62 nodes, 21 zones, 336 lane-miles in length. The city of Lansing 

is considered as a medium-sized network with 896 nodes, 91 zones, 2,030 lane-miles in length. 

The city of Detroit is the large-scale network used in this study, which has 5,461 nodes, 301 zones, 

and 8,776 lane-miles in length. 

The land use information is provided by MDOT for each traffic analysis zone in the state-

wide network. The land acquisition costs are provided for each traffic analysis zone by city 

municipalities. Utility provision costs are provided through utility companies serving these three 

cities (DTE Energy and Consumers Energy). Two levels of powers are considered for charging 

stations: 1) 50 kW with a station cost of $48,437 and a charger cost of $33,750, 2) 150 kW with a 

station cost of $80,125 and a charger cost of $76,250. Two battery sizes of 70 kWh and 100 kWh 

are considered for EVs. The battery performance is assumed to be 3.5 mi/kWh during the summer, 

with a 30% reduction for winter weather conditions (the latter is considered as the critical case for 

Michigan). An EV adoption rate of 6% is considered, which means that 6% of total trajectories are 

by EVs, based on the projected 2030 EV market share in Michigan by MISO Energy (MISO 

Energy, 2018). A value of time of $18/hour is used to monetarize traveler delay. The combination 

of the two battery capacities and charger powers leads to four scenarios, which are investigated for 

each city in the next section.  
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(a) (b) 

 
 

(c) (d) 
 

Figure 6-6 (a) Michigan state-wide network (b) City of Marquette case study network (c) City of 
Lansing case study network (d) City of Detroit case study network 

In this study, the initial state of charge (as a fraction of the EV battery capacity) before 

noon is assumed to follow a normal distribution with the average and standard deviation values 

presented in Table 6-2. It is worth noting that these values are based on the current circumstances 

in Michigan. For the trips departing between noon and 5:00 PM, the mean values are assumed to 

be reduced by 0.1. For trajectories departing after the 5:00 PM, another 0.1 reduction is 
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implemented. Moreover, a normal distribution with a mean of 0.15 and a standard deviation of 0.1 

is considered for the desired state of charge for EVs at their destination. 

Table 6-2 Parameters of normal distributions for the initial state of charge 

  Initial state of charge (% battery) 
Battery (kWh) 70 100 
  Mean SD Mean SD 
Home- single family 0.75 0.05 0.7 0.05 
Home- multi family 0.5 0.2 0.6 0.2 
Work 0.6 0.2 0.65 0.3 
Other 0.55 0.3 0.6 0.3 

 

6-3-2- Results 

In this section, we first explore various aspects of the solution methodology to demonstrate the 

performance of the proposed approach (i.e. validation of the decomposition approach for the main 

problem, comparison of the metaheuristic approach with the commercial solver for the first 

subproblem, and comparison of the deterministic and stochastic queuing models in the second 

subproblem). Then, the results are provided for the four defined scenarios in two large case studies. 

6-3-2-1- Enumeration versus Decomposition 

To test the performance of the decomposition approach, i.e., its solution quality and convergence 

speed, we compare it with a simple enumeration approach which exhaust all facility combinations. 

Since such a simple approach cannot be applied even to small-sized networks, two subsets of zones 

are selected as candidate locations for the charging stations in the smallest case study, Marquette 

network. We test two applications, respectively with 5 and 7 randomly selected zones (out of 21 

zones) to be candidates for charging stations. Based on the charging behavior simulation and for a 

scenario with 70 kW battery, 197 EV trajectories need recharging. The maximum number of 

required chargers at each station should not be bounded in theory, but failure to set a cap on the 

maximum number of chargers prevents exhausting all combinations. Therefore, a subset of 
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scenarios needs be considered. The solution from the decomposition approach uses a maximum of 

three chargers per stations. Hence, we set the maximum number of chargers per station to be four 

in our enumerations, which makes the total number of possible charge installation combinations 

equal to 55 and 57 for the two applications. If the enumeration technique has the option to build 4 

chargers and selects to build less at all stations, the resulted solution by the enumeration technique 

is the optimal solution. In another word, it suggests that the cap on the maximum number of 

chargers has not affected the optimum solution in the enumeration process, otherwise it would 

have required at least 4 chargers. For each of these combinations, the assignment of charging 

demand to available charging stations is solved using Knitro, and then the objective function is 

evaluated. The combination with the minimum objective function value is compared with that from 

the decomposition approach. The results are presented in Table 6-3 for both applications.   

Table 6-3 Comparing the enumeration and decomposition technique for a small network 

Scenario 5 Candidate Stations 7 Candidate Stations 

Technique Enumerat
ion 

Decomposi
tion 

Percent 
Differe

nce 

Enumerat
ion 

Decomposi
tion 

Percent 
Differe

nce 
Number of Stations  4 4 0.0% 4 4 0.0% 
Number of Chargers 8 9 12.5% 9 9 0.0% 
Average Charging 
delay (min)  15.73 15.82 0.6% 15.31 15.31 0.0% 

Average detour delay 
(min) 5.84 5.75 -1.5% 4.51 4.51 0.0% 

Station Cost (m$) 0.56 0.56 0.0% 0.56 0.56 0.0% 
Chargers Cost (m$) 0.29 0.32 12.5% 0.32 0.32 0.0% 
Infrastructure Cost 
(m$) 0.84 0.88 4.2% 0.88 0.88 0.0% 

Total objective 
function value ($/day) 

1,511 1,520 0.6% 1,417 1,417 0.0% 

Solution time (s) 12,600 4 -
100.0% 241,200 4 -

100.0% 
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The results show that the decomposition technique provides a solution that is very close to, or 

identical to, the optimal solution (within zero or one percent difference). However, the solution 

time is much faster. Since the number of facility combinations grows exponentially with the 

network size (e.g., number of candidate zones), it is impossible to solve the full-scale problem 

even for small case studies via the enumeration approach. In contrast, the decomposition approach 

can provide a near-optimum solution instantaneously for this small case study. 

6-3-2-2- Robustness 

This section studies the impact of seed numbers on the optimum solution. Seed numbers determine 

the random number generation, which can affect the simulated users’ charging behavior since the 

initial/desired SOC are determined based on random numbers. Thus, the impact of 10 different 

seed numbers, i.e., scenarios, are studied in the medium sized network, city of Lansing, as 

presented in Figure 6-7.  

The objective function, number of stations, and number of chargers are compared in these 

scenarios. Figure 6-7(a) shows that the objective function values variation is almost 3 percent in 

these scenarios, which shows the availability of almost identical solutions with different 

representations. Figure 6-7(b) shows that most of the scenarios have 16 charging stations, while 

the highest number of charging station is 18. Lastly, Figure 6-7(c) shows the cumulative number 

of chargers for each scenario. Based on this figure, the scenarios have similar locations for 

charging. Further, the number of chargers is almost the same in each charging station which shows 

the similarity of the results. While the differences in scenarios are small, the solution robustness 

can be improved by considering multiple random seeds for random number generation and 

applying the proposed framework for each scenario. Since the focus of the study is to develop the 

framework, the numerical experiments are performed for one seed number. 
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a)  b)  

 

 
c)  

Figure 6-7 The impact of seed number on the (a) optimum objective function value (b) number 
of stations (c) cumulative number of chargers for city of Lansing 

6-3-2-3- CPLEX versus Simulated Annealing 

We further test the SA approach for the first subproblem (i.e., locating charging stations). 

Figure 6-8 shows the convergence of the metaheuristic approach for the city of Lansing toward 

the optimal value provided by CPLEX. It shows that the objective function of the metaheuristic 

approach can get very close to the optimal solution. 
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Figure 6-8 The convergence of the metaheuristic method toward the optimal objective function 
provided by CPLEX for the city of Lansing 

The solution quality of the metaheuristic approach is evaluated for the city of Lansing and 

Detroit in Table 6-4.  

Table 6-4 Comparing CPLEX and SA performance in solving station location subproblem 

City Lansing Detroit 

Technique CPLEX SA Percent 
difference CPLEX SA Percent 

difference 
Battery size (kWh) 70 70 - 70 70 - 
Charging station (kW) 50 50 - 50 50 - 
Number of zones  92 92 - 301 301 - 
EV Trajectories  28,574 28,574 - 212,299 212,299 - 
Number of Stations  16 16 0.0% 62 62 0.0% 
Number of Chargers 87 92 5.7% 641 639 -0.3% 
Average delay (min)  10.75 10.93 1.7% 11.19 11.37 1.6% 
Station Cost (m$) 2.52 2.66 5.3% 15.37 15.37 0.0% 
Chargers Cost (m$) 3.48 3.30 -5.2% 23.22 23.15 -0.3% 
Infrastructure Cost (m$) 6.00 5.95 -0.8% 38.59 38.52 -0.2% 
Charging station location 
subproblem objective 
function value ($/day) 

7,747 7,860 1.5% 67,543 69,193 2.4% 

Total objective function 
value ($/day) 

8,803 8,858 0.6% 74,507 76,118 2.2% 

Required memory (GB) 5.20 0.82 -84.2% 107 4.2 -96.1% 
Solution time (s) 323 238 -26.3% 16,717 8311 -50.3% 

 

Although the optimum objective function value for the first subproblem increases by 1.5% and 

2.4% for the two cities, the computational efficiency in terms of the required memory is decreased 
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significantly by 84% and 96%, respectively. Furthermore, the solution time of the metaheuristic 

approach is reduced by a 30% margin for the medium-size case study, and over 50% for the large-

scale case study. One should note that the problem size is only almost tripled in terms of the 

number of zones from Lansing case study to Detroit case study. However, the memory requirement 

is increased by a factor of 20. This shows the importance of the metaheuristic approach for even 

larger case studies. Furthermore, the charging station configurations at the network level are 

provided in Figure 6-9.  

  
(a) CPLEX for Lansing (b) SA for Lansing 

  
(c) CPLEX for Detroit (d) SA for Detroit 

 

Figure 6-9 Charging station configurations for the cities of Lansing and Detroit with CPLEX and 
SA algorithm 
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The red dots represent installed charging stations, while the blue dots show candidate locations 

that have not been selected. The size of each red dot represents the recommended number of 

chargers. The size of the traffic analysis zones increases as the population density decreases. 

Figure 6-9 shows that the locations of charging stations are almost the same in both approaches.   

6-3-2-4- Deterministic versus Stochastic Queueing Models 

Deterministic queuing provides a zero-queuing time when the service rate exceeds the arrival rate. 

In this case, a steady state stochastic queuing, which does not exist when the service rate is smaller 

than arrival rate, can be applied. Figure 6-10 compares the deterministic queueing model with an 

M/M/k model for a sample charging station, and provides the values of the two-stage model. 

 

Figure 6-10 The optimum number of chargers for a sample charging stations considering 
deterministic and stochastic queuing models 

Note that the deterministic model provides a left bound (minimum number of chargers that certify 

higher service rate relative to the arrival rate) for the stochastic model, without which the Golden-

section method cannot be applied to the stochastic model. The figure plots the objective function 

value relative to the number of chargers for each stage. The objective function of the stochastic 

queuing can be determined when the service rate is higher than the arrival rate, as reflected in 
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Figure 6-10. As it is shown, a greater number of chargers is required to count for the stochastic 

queueing delay, in addition to the deterministic queueing delay. 

6-3-2-5- Scenario results 

For Lansing and Detroit, four scenarios are investigated based on battery capacity and charging 

power. Table 6-5 summarizes the model outputs.  

Table 6-5 Comparing the optimum solutions under various battery capacity and charger power 
for the cities of Lansing and Detroit 

City Lansing Detroit 
Battery size (kWh) 70 100 70 100 70 100 70 100 
Charging power 
(kW) 50 50 150 150 50 50 150 150 

Number of zones  92 92 92 92 301 301 301 301 

# EV trajectories  28,57
4 

28,57
4 

28,57
4 

28,57
4 

212,29
9 

212,29
9 

212,29
9 

212,29
9 

# of stations  16 14 13 10 62 51 52 40 
# of chargers 85 89 36 33 639 618 239 228 
Station cost 
(Million dollar) 2.52 2.21 2.47 1.88 15.37 12.64 14.54 11.18 

Charger cost 
(Million dollar)  3.39 3.56 2.96 2.73 23.15 22.39 18.82 17.95 

Total infrastructure 
cost (Million 
dollar)  

5.91 5.78 5.43 4.62 38.52 35.03 33.35 29.13 

Average charging 
and queuing delay 
(min) 

10.8 14.74 3.83 5.26 11.37 15.29 3.98 5.30 

 

Consideration of 150 kW chargers provides a lower total investment cost despite a higher unit cost 

for these chargers. Furthermore, they provide lower charging and queuing times for travelers. 

Meanwhile, the 70 kWh vs. 100 kWh battery scenarios demonstrate a slight reduction in the 

number of charging stations under the larger battery size, as expected. However, the total number 

of chargers remains almost the same. The main reason for this observation may be caused by the 

fact that the charging behavior simulation tool uses various distributions for the initial and desired 
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states of charge as a fraction of the battery size. This is a different pattern relative to a recent study 

(Ghamami et al., 2020a) for intercity networks (which is different in nature to urban areas).    

6-4- Summary 

This study develops a methodological framework to find the optimum investment plan for building 

a network of charging stations for urban areas considering queueing delays and feasibility of EV 

trips. This study finds the locations for charging stations and the number of chargers at each 

location, with an approximate cost of building such networks. A charging behavior simulator tool 

is developed and used along with a traffic simulation tool to provide an agent-based charging 

demand as the main input. No study in the literature captures all of these features for urban areas. 

The optimization model is decomposed into two subproblems. The first subproblem finds the 

location of the charging stations, and the second subproblem finds the required number of chargers 

at those stations. The former is solved using two approaches, a metaheuristic algorithm and using 

commercial solvers. The latter is solved using the Golden-section method via a two-stage 

algorithm that captures both deterministic and stochastic queueing delays. The methodology is 

first validated for a small case study in the city of Marquette. Then, the research approach and 

results are presented for two urban areas in Michigan, namely the cities of Lansing and Detroit, to 

ensure the feasibility of the urban trips of EV users in those regions by 2030 under a predicted 

market share. The winter scenario with 70 percent battery performance is tested under battery 

energy levels of 70 kWh and 100 kWh, and charger power levels of 50 kW and 150 kW.  

The results of the tested scenarios provide the key findings as follows: 

• The decomposition approach provides near-optimum solution to the main problem (within 

one percent of the optimal solution provided by the enumeration approach) in the small 

case study. 
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• 150 kW chargers reduce the charging and waiting time for travelers, as compared to that 

of 50 kW chargers. 

• Due to the higher throughput of 150kW charger, the number of 150 kW chargers needed 

to support the EV trips in urban areas is much smaller than that of 50 kW chargers. 

Therefore, implementing a network of 150 kW chargers is less costly despite the higher 

per unit cost of these chargers.  

• The battery size does not affect the number of chargers in urban areas, unlike the intercity 

network, as the length of the urban trips is significantly lower than the range of EVs. 
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 Macro Analysis to Estimate Electric Vehicles Fast-Charging Infrastructure 
Requirements in Small Urban Areas  

7-1- Overview 

The current EV charging infrastructure planning studies and tools require detailed information, 

extensive resources, and skills that can be a significant barrier to urban areas for finding the 

required charging infrastructure to support a targeted EV market share. This chapter develops a set 

of regression models to estimate the number of required public DCFC charging stations and 

chargers to meet the charging demand of EV trips in urban areas. These models require basic 

information and are easier to implement than other charging infrastructure planning techniques, 

e.g., optimization-based frameworks, which are computationally challenging and require detailed 

information and extensive resources and skills to be implemented. The policy-makers and city 

planners can easily implement these regression models to estimate macro-level charging 

infrastructure in each urban area for different technological advancements, and EV market share. 

In this study, the regression models are calibrated based on four groups of input data, 

including network-specific data, travel data, technology-specific data, and charging infrastructure 

data. Network-specific data includes information regarding the number of TAZs, and lane length 

of the road network. Travel data provides information on travel demand and VMT. Technology-

specific data provides information on battery size, charging power, and EV market share. The 

charging infrastructure data is provided using a recent simulation-optimization study by 

Kavianipour et al. (Kavianipour et al., 2021). The models are calibrated and validated using the 

data of eight major cities in Michigan. 70% of available data are used for calibration, and the 

remaining 30% are incorporated for validation purposes. As the data set is an over-dispersed count 
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data, the NB regression model is used, and RMSE and MAE metrics were implemented to validate 

the model.  

7-2- Research Framework 

This section first presents the research framework (Figure 7-1) to show the connections among the 

different steps involved in calibrating the macro charging planning model, its validation, and 

application. The modeling starts by feeding the inputs, i.e., OD dynamic travel demand and 

network configurations including nodes and links, to a dynamic traffic assignment (DTA) tool, 

i.e., DYNASMART-P. The DTA generates two key outputs: vehicle trajectories and dynamic 

skims. These data and other inputs such as land use characteristics, market share of EVs, and 

battery capacity are fed to the charging behavior simulation module, which assesses the feasibility 

of each trajectory. The infeasible trajectories are the input to a micro charging optimization model 

determining the location of level 3 public direct current fast charging (DCFC) stations and the 

number of chargers within each station as its outputs. This information is aggregated and 

incorporated with other aggregate data to calibrate macro models. Note that the difference between 

the state of the charge at the origin and the destination of the trajectory determines the feasibility 

of a trajectory. The infeasible trajectories are the trajectories that cannot fulfill their trips based on 

these states of charge and the required charge to reach the destination. 

The macro charging infrastructure framework illustrates the connection between the input 

data, micro charging infrastructure model, and calibration of regression models. The calibration of 

macro models is coupled with a validation process incorporating additional data obtained from the 

micro model for scenarios other than that used for the calibration process. The macro charging 

infrastructure framework considers aggregate network information, aggregate travel demand, i.e., 

vehicle miles traveled (VMT), technology information, and aggregate charging infrastructure data. 
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Note that the latter is the output of the micro charging infrastructure model. The generated 

scenarios are stored and divided into calibration and validation data sets. Note that the macro 

charging infrastructure framework requires a variety of scenarios as data inputs for calibration and 

validation. These scenarios are generated in the scenario generator, which includes all the 

information stored in each scenario as shown in Figure 7-1. Then these scenarios are fed into the 

micro charging infrastructure framework to generate aggregate charging infrastructure 

information, which is then used as inputs for developing the macro models. It is also worth noting 

that the micro charging infrastructure model consists of an optimization model used to plan for the 

EV charging infrastructure for future EV trips. In the absence of actual data for the future EV trips 

and very low current EV penetration rate, the model relies on realistic assumptions for travel 

pattern and charging behavior verified by various stakeholders, including transportation engineers, 

planners, charging station companies, OEMs, utility companies, and the EV users. Further, the 

macro model is an aggregate model developed using the outputs of the micro model. Thus, the 

macro model is validated using a random sample of the output of the micro model. It is based on 

the aggregate travel data that is often available for the smaller cities. The macro models are 

developed to overcome the challenges associated with the data limitations in smaller urban areas. 

The macro model usage diagram presented in Figure 7-1 shows the required data to use the 

specified regression models to be developed in this study. It shows that the required charging 

infrastructure in urban areas can be estimated based on the VMT, target technology, and 

aggregated network information. The rest of this section discusses both micro and macro charging 

infrastructure frameworks in detail. 
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Figure 7-1 Research framework components to develop macro charging planning models 

7-2-1- Micro charging infrastructure framework 

To optimize the EV charging infrastructure investment, this study uses the micro-scaled 

simulation-optimization framework developed in chapter 6 to simulate the travel and charging 
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behavior of EV drivers and find the optimum charging configuration addressing the EV charging 

demand in urban areas. This chapter implements the modeling framework for different urban areas 

in Michigan to develop macro-scale models that can estimate the required charging infrastructure 

for other urban areas (in Michigan and elsewhere). Incorporating future EV adoption rates and 

possible technological advancements are the key inputs to these models.  

The objective function of the developed model in chapter 6 is as follows: 

min�(𝐶𝐶𝑘𝑘𝑠𝑠𝑥𝑥𝑘𝑘 + 𝐶𝐶𝑘𝑘
𝑝𝑝𝑧𝑧𝑘𝑘

k∈𝐾𝐾

) + 𝛾𝛾(�𝜋𝜋𝑘𝑘
𝑘𝑘∈𝐾𝐾

+ �𝜏𝜏𝑟𝑟)
𝑟𝑟∈𝑅𝑅

  (7.1) 

The objective function consists of two main terms. The first one calculates the charging 

infrastructure investment cost, including the cost of charging station, 𝐶𝐶𝑘𝑘𝑠𝑠, and charger cost, 𝐶𝐶𝑘𝑘
𝑝𝑝, at 

each location k ∈ 𝐾𝐾. The availability of charging stations and the number of chargers in each 

location is specified by 𝑥𝑥𝑘𝑘 and 𝑧𝑧𝑘𝑘, respectively. The second term calculates the monetary cost of 

users’ experienced delay using the value of time factor, 𝛾𝛾. It considers the charging and waiting in 

queue delay at each charging station 𝜋𝜋𝑘𝑘  and detour delay, 𝜏𝜏𝑟𝑟 , for every trajectory 𝑟𝑟 ∈ 𝑅𝑅 . The 

objective function of the micro model is subjected to a set of constraints which consider: 

• Charging within the available battery capacity: this constraint prevents EVs to charge 

more than their battery capacity 

• Maintaining a minimum level of charge: this constraint makes the vehicles choose a 

charging station that is within their range in order to not drop below a minimum level 

of charge 

• Charging vehicles where charging stations exist: this constraint enforces that the 

number of vehicles that recharge at any location, other than stations, is equal to zero. 

• Providing feasibility for all EV trips: this constraint enforces that all vehicles with 

charging demand must be recharged.  
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• Calculating dynamic detours and waiting times: the study considers dynamic travel 

times and travel distances changing throughout the day. Further, it considers the 

waiting and detour time to select the optimum location to charge for each vehicle. 

The results of the optimization problem, which includes the number of public DCFC charging 

stations and chargers for each scenario and the associated battery sizes and charging powers, are 

the inputs to the macro models for their calibration and validation. 

7-2-2- Macro charging infrastructure framework  

In this section, a set of macro models are specified to estimate the number of public DCFC charging 

stations and chargers required to support EV trips in urban areas (regardless of their spatial 

distribution). To this end, the macro models are calibrated based on Negative Binomial (NB) 

regression to examine how the number of charging stations and chargers vary with respect to input 

variables, including network size, travel demand, technological information (i.e., EV battery size 

and charging power), and EV market shares. Note that the NB regression is preferred to the linear 

regression model due to the nature of the dependent variables, which are count data (Washington 

et al., 2011). The calibration of macro-scale models is coupled with the validation process to assess 

the difference between the estimated and observed values in the validation data set.  

7-2-2-1- Negative Binomial Regression 

The dependent variables in charging planning studies, namely the number of charging stations and 

chargers, are count data consisting of non-negative integer values. The most common statistical 

methods used to model count data are Poisson and NB regression models (Washington et al., 

2011). The Poisson model assumes the mean of the count data is equal to its variance. However, 

the variance can be significantly larger than the mean, which is called over-dispersion (Washington 

et al., 2011). The Poisson model may yield inaccurate results when overdispersion is present. This 
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problem can be solved by implementing a generalized form of the Poisson model, referred to as 

the NB regression model. The data summary indicates that the variance is significantly larger than 

the mean of dependent variables (Table 7-5). Hence, the NB model is implemented, which is 

expressed as follows: 

𝑦𝑦𝑖𝑖 = exp (𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖 + ⋯𝛽𝛽𝑞𝑞𝑥𝑥𝑞𝑞𝑖𝑖 + 𝜖𝜖𝑖𝑖) (7.2) 

Where 𝑦𝑦𝑖𝑖 is the observed value of the dependent variable for 𝑖𝑖𝑡𝑡ℎ observation and 𝑞𝑞 represents the 

total number of independent variables. 𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖 , … , 𝑥𝑥𝑞𝑞𝑖𝑖  are the observed values of independent 

variables for the observation 𝑖𝑖 and 𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑞𝑞 are the coefficients of the independent variables. 

exp (𝜖𝜖𝑖𝑖) is a Gamma distributed disturbance term with a mean equal to one and a variance equal 

to 𝛼𝛼, the over-dispersion parameter. The over-dispersion parameter captures the effect of variance 

not equal to the mean as shown below (Washington et al., 2011) Where 𝐸𝐸(𝜆𝜆𝑖𝑖) is the expected value 

of the dependent variable 𝜆𝜆𝑖𝑖: 

𝑉𝑉𝑎𝑎𝑟𝑟(𝜆𝜆𝑖𝑖) = 𝐸𝐸(𝜆𝜆𝑖𝑖) + 𝛼𝛼𝐸𝐸(𝜆𝜆𝑖𝑖)2 (7.3) 

7-2-2-2- Calibration and Validation 

The maximum likelihood method is adopted to calibrate the NB model and estimate the 

coefficients, using the statistical software SPSS. In an iterative procedure, the model Goodness-

of-fit test is considered based on (Cameron and Trivedi, 2013; Naderan and Shahi, 2010; 

Washington et al., 2011): correlation between the variables, the p-value less than 5%, the ratio of 

deviance and degrees of freedom around 0.8-1.2, and the Akaike’s Information Criterion (AIC). 

The model having the lowest value of AIC is the optimum model. The AIC is defined as follows: 

𝐴𝐴𝐼𝐼𝐶𝐶 = −2𝐿𝐿𝐿𝐿(𝛽𝛽) + 2(𝐺𝐺 + 1) (7.4) 

Where p is the number of predictors in the model, and 𝐿𝐿𝐿𝐿(𝛽𝛽)  is the log-likelihood value at the 

convergence of the model. The model is validated by considering the two widely used metrics 
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(Wang and Lu, 2018; Washington et al., 2011), Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE), as follows: 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=1

2

𝑎𝑎
 (7.5) 

𝑀𝑀𝐴𝐴𝐸𝐸 =
∑ |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑚𝑚
𝑖𝑖=1

𝑎𝑎
 (7.6) 

Where 𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖 are the 𝑖𝑖𝑡𝑡ℎ observed and predicted values of the dependent variable, respectively. 

The term 𝑎𝑎 denotes the total number of observations. 

 7-3- Numerical Analysis 

This section first discusses the case study, including the study network and its specifications, 

technology scenarios, and market shares. Then, the results of the micro charging planning model, 

along with their statistics, are discussed. This information is used as the input to the macro charging 

planning model. Next, the calibrated regression models are introduced, and finally, the model 

validation results are provided. 

7-3-1- Case Study 

This study uses the Michigan road network presented in Figure 7-2 provided by the Michigan 

Department of Transportation (MDOT). This network consists of 37,125 links, including 11,516 

freeways or highways, 20,742 arterials, and 4,867 ramps. The daily demand of this network 

provided by MDOT is 28,859,401 trips for a weekday in the Fall. The static OD demand table of 

Michigan is converted to a time-dependent OD demand table using a set of time factors. These 

time factors are calculated by matching the observed traffic flow captured by loop detectors 

installed on Michigan highways and the estimated traffic in DYNASMART-P (Kavianipour et al., 

2021). The time-dependent OD demand and the road network are the inputs to the DYNASMART-

P. This tool simulates travelers’ route choices and finds the network equilibrium dynamically. The 
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outputs of this simulation are vehicle trajectories and network zone-to-zone skims, which are 

inputs to the micro charging planning model. Initially, the models were obtained considering the 

data set of Detroit. However, the data set of Detroit does not represent a good fit for small urban 

areas. Hence, it was excluded from the analysis (see Figure 7-3 and Figure 7-4). 

 

Figure 7-2 Michigan state-wide transportation network and selected cities for macro-scale model 
calibration and validation 
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Figure 7-3 Number of chargers vs number of stations for different scenarios of all the cities in 
Michigan 

Since the urban charging planning addresses the charging demand of unfulfilled trips 

within the city boundaries, the vehicle trajectories of each urban area must be extracted to be used 

in the micro charging planning approach. Therefore, this study extracts trajectories for eight cities 

(excluding Detroit) highlighted in Figure 7-2. These cities are selected based on their network size 

and population. The network characteristics and travel demand of these cities are provided in 

Table 7-1. In this table, the number of Traffic Analysis Zones (TAZs) and lane length represent 

the size of the network, while the travel demand and vehicle miles traveled represent the traffic in 

the network. 

 This study considers different scenarios for each city based on EV battery sizes including 

70 kWh, 85 kWh, 100 kWh, and 115 kWh with an energy consumption rate of 0.3 kWh/mile 

(Ghamami et al., 2020b, 2019a). The charging powers range from 50 kW to 300 kW and their 

associated costs provided by charging station companies (ChargePoint and Greenlots), are 
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presented in Table 7-2 (Ghamami et al., 2020b, 2019a). The land use acquisition costs and 

electricity provision costs required for estimating the location-specific station costs are provided 

by the city municipalities and utility companies, respectively (Ghamami et al., 2020b, 2019a). 

Table 7-1 Network characteristics and travel demand for considered cities 

Cities 
/Parameter 

Number of 
TAZs 

Network Lane 
Length (mi) 

Travel Demand (# 
of daily trips) 

Vehicle Miles 
Traveled (per day) 

Muskegon 52 916 535,443 3,161,057 
Ann Arbor 36 789 624,618 3,894,950 
Kalamazoo 55 1128 712,796 4,085,052 
Flint 84 1557 985,411 6,760,436 
Saginaw 116 2726 1,054,842 7,122,931 
Lansing 91 2030 1,086,242 7,183,037 
Grand Rapids 82 2045 1,726,732 10,447,668 
Marquette 21 336 178,741 931,957 

  

Table 7-2 Charging infrastructure cost for different charging power (Ghamami et al., 2020b, 
2019a) 

Power (kW) Charger Cost ($) Charging Station Cost ($) 
50 33,750 48,438 
100 62,083 69,563 
150 76,250 80,125 
300 142,500 124,000 

 

Table 7-3 Descriptive Statistics for the land cost and utility cost across different DCFC locations 
in Michigan (Ghamami et al., 2020b, 2019a). 

Type of cost Mean Standard Deviation Minimum Maximum 
Land acquisition cost ($/acre) 181,305 31,709 68,197 314,756 
Electricity provision cost ($) 96,987 46,417 50,000 231,585 

 

The summary of these costs is presented in Table 7-3. The land use characteristic information at 

the zone level is provided by the Michigan Department of Transportation (MDOT) (Ghamami et 

al., 2020b, 2019a). Further, each of the technology scenarios is tested for EV market shares, 

ranging from 1 to 50 in 5 percent incremental steps. The market share assumptions are based on 
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the forecasted EV market share in the target year of 2050 (Electric Vehicle Cost-Benefit Analysis 

Plug-in Electric Vehicle Cost-Benefit Analysis: Michigan, 2017). Hence, the 50% EV market share 

in 2050 is considered as an upper bound for the statistical analysis and developing the micro and 

macro models. Note that market share is defined as the percent of total vehicles traveling in each 

city that are electrified. The number of vehicles is directly correlated with the number of trips used 

as input to the micro-scale model. Thus, a higher EV market share represents a higher share of 

randomly assigned trajectories as EVs. In total, there are 1,405 different scenarios considering all 

eight cities. The charging infrastructure requirements in all of these scenarios are obtained using 

the micro-level optimization model. In the micro-level optimization model, the value of drivers’ 

time is considered to be $18/hr. 

7-3-2- Micro Charging Planning Results 

The micro charging infrastructure data is generated using the simulation-optimization approach 

developed in chapter 6. Table 7-4 summarizes the infrastructure requirements for the listed urban 

areas considering the different technology and EV market share scenarios. This table shows the 

range of number of stations, number of chargers, total infrastructure cost, and average charging 

and queuing delay for the different scenarios of each urban area considered in this study. 

Table 7-4 Summary of Infrastructure Requirements for Different Scenarios (EV battery sizes of 
70-115 kWh, charging powers of 50-300 kW, and market shares of 1-50%) 

Urban Area Number of 
Stations 

Number of 
Chargers 

Infrastructure Cost 
(million Dollars) 

Average Charging & 
Queuing Delay (min) 

Ann Arbor 1-13 2-278 0.64-14.40 0.21-19.06 
Flint 3-32 6-581 1.51-28.75 0.14-21.59 
Grand Rapids 6-43 12-969 2.50-52.09 1.10-18.44 
Kalamazoo 3-28 6-446 0.89-21.49 0.98-21.65 
Lansing 3-37 6-728 1.59-39.04 0.78-20.33 
Marquette 1-10 2-170 0.50-7.18 1.52-20.02 
Muskegon 3-25 6-387 1.04-17.14 0.97-19.09 
Saginaw 5-57 10-843 1.94-38.65 1.06-19.47 
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7-3-3- Regression Models 

7-3-3-1- Data Descriptions                

This study calibrates a set of regression models using the data set generated by implementing the 

micro-model for the above-mentioned eight cities in Michigan for different EV market shares and 

technology scenarios.  

The dependent variable in this study are: 

 EVs market share (%) (𝜌𝜌)  

 Urban VMT (million miles/day) (𝑉𝑉) 

 Road network lane length (1000 mi) (𝐿𝐿) 

 Number of TAZs (𝑇𝑇) 

 Number of nodes (I) 

 EVs battery size (kWh) (𝐸𝐸) 

 Charging power at charging stations (kW) (𝑃𝑃) 

 Generated travel demand (1000 trips/day) (𝐷𝐷) 

The independent variables are: 

 Number of chargers (𝜓𝜓) 

 Number of charging stations (𝜒𝜒) 

The descriptive statistics of the input data set are presented in Table 7-5. There are a total of 1,405 

observations. The study generates data points for each city considering variations of the EV market 

share (1-50%), EV battery size (70-115 kWh), and charging power (50-300 kW). 70% (1,012 

observations) of the data are randomly selected to calibrate the regression models, and the 

remaining 30% of the data (393 observations) are used for the model validation following the 

common approach in the literature (Gholamy et al., 2018). For the calibration data set, the number 
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of TAZs ranges from 21 to 116. The average lane length of the network is 1,438 miles. The VMT 

ranges from 931,957 to 10,447,668. The market share of EVs varies from 1% to 50%. The 

dependent variables are the number of charging stations and the number of chargers in the urban 

area. The number of charging stations has an average of 19, a standard deviation of 12, ranging 

from 1 to 57. The number of chargers has an average of 170, a standard deviation of 176, and 

varies from 2 to 969. It was also observed that the variables presenting the city characteristics 

(number of TAZs, number of nodes, travel demand, road network lane length, and VMT) are 

strongly correlated to each other (Table 7-5) as their correlation coefficients are greater than 0.7 

(Clark, 2018). 

Table 7-5 Descriptive Statistics for Dependent and Independent Variables 

Calibration 
group 
(N=1,012) 

 Variable Mean Std. Deviation Minimum Maximum 
Battery size (kWh) 93 17 70 115 
Charging Power (kW) 151 95 50 300 
Number of TAZs 67 30 21 116 
Market share (%) 25 16 1 50 
Number of nodes 575 302 62 1,031 
Travel demand (1,000 
trips/day) 853 426 179 1,727 

Lane length (miles) 1,438 749 336 2,726 
VMT (1000 
miles/day) 5,389 2,760 932 10,448 

Dependent Variables 
Number of Stations 19 12 1 57 
Number of Chargers 170 176 2 969 
Total observations 
(N) 1012    

Validation 
group 
(N=393) 

Variable Mean Std. Deviation Minimum Maximum 
Battery size (kWh) 92 16 70 115 
Charging Power (kW) 148 89 50 300 
Number of TAZs 67 29 21 116 
Market share (%) 25 16 1 50 
Number of nodes 588 307 62 1,031 
Travel demand (1,000 
trips/day) 885 449 179 1,727 

Lane length (miles) 1,441 723 336 2,726 
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Table 7-5 (cont’d) 

 VMT (1000 
miles/day) 5,571 2,867 932 10,448 

Dependent Variables 
Number of Stations 19 12 2 56 
Number of Chargers 173 184 4 956 
Total observations 
(N) 393    

Correlation 

  

Batter
y size 

Chargin
g Power 

Marke
t share 

# of 
TAZs 

# of 
nodes 

Travel 
deman

d 

Lane 
lengt

h 

VM
T 

Battery 
size  1.00 0.02 0.02 0.01 0.00 0.00 0.01 0.00 

Chargin
g Power 0.02 1.00 -0.01 0.00 -0.01 -0.01 0.00 -0.01 

Market 
share 0.02 -0.01 1.00 -0.01 -0.01 0.00 -0.01 0.00 

# of 
TAZs 0.01 0.00 -0.01 1.00 0.85 0.74 0.98 0.81 

# of 
nodes 0.00 -0.01 -0.01 0.85 1.00 0.95 0.88 0.98 

Travel 
demand 0.00 -0.01 0.00 0.74 0.95 1.00 0.80 0.99 

Lane 
length 0.01 0.00 -0.01 0.98 0.88 0.80 1.00 0.84 

VMT 0.00 -0.01 0.00 0.81 0.98 0.99 0.84 1.00 
 

7-4- Results 

The NB regression analysis is done for the calibration group to obtain models estimating the 

number of charging stations/chargers. Including the data of Detroit in the data set results in 

regression models that cannot accurately estimate the required charging infrastructure of Detroit 

and adversely affect the predicted charging infrastructure for other cities as well, especially the 

number of charging stations (Figure 7-4). Hence, Detroit is excluded from the data set. It is 

important to note that these regression models are macro-models that are developed to estimate 

charging infrastructure in small or mid-sized urban areas to be easily implemented by stakeholders. 
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However, large-scale networks entail detailed micro-level optimization models to estimate 

optimized charging infrastructure and locations. 

  

a) Number of stations b) Number of chargers 

Figure 7-4 Predicted versus observed values of the dependent variable (including Detroit) for the 
calibration data set 

The optimum regression models for the number of charging stations/chargers are presented 

in Table 7-6. All the variables in the NB regression model have a p-value of less than 0.01. The 

models presented are the best models based on the lowest AIC, RMSE, MAE values, and the 

practical relation of the independent and dependent variables. The calibrated model for charging 

stations has battery size, charging power, EV market share, and road network lane length, as 

independent variables. The model suggests that the required number of charging stations decreases 

for larger battery sizes and higher charging power. The larger battery size means more energy can 

be stored in the battery. Hence, the number of EV trajectories that require recharging decreases, 

reducing the required number of charging stations in the process. The higher charging power 

increases the throughput at each charger and reduces the users’ delays. Therefore, each charging 
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station with the same number of chargers can serve more vehicles, which decreases the required 

total number of charging stations. Since a higher EV market share means more EV trips, more 

charging stations are required to serve these increased trips, which justifies the positive sign of EV 

market share. The larger road network lane length would also mean more routes which would 

result in more and longer detours even for a similar charging demand. Thus, the number of 

charging stations increases to ensure trip feasibility, and reduce detours of the EV trips. 

Table 7-6 Calibrated Negative Binomial Models to Estimate the Number of Charging 
stations/Chargers 

Number of 
Stations 
(N=1,012) 

Parameter Coefficients Standard Error p-value 
Intercept 1.6536 0.04848 <0.01 
Battery size (kWh) -0.0017 0.00043 <0.01 
Charging power (kW) -0.0009 0.00008 <0.01 
Market share (%) 0.0199 0.00051 <0.01 
Road network lane 
length (1,000 mi) 0.6510 0.01037 <0.01 

Dispersion parameter 0.0019   
Deviance/df 1.193   
Log-Likelihood -2929.658   
Akaike's Information 
Criterion (AIC) 

5871.316   

Number of 
Chargers 
(N=1,012) 

Parameter Coefficients Standard Error p-value 
Intercept 3.0306 0.08383 <0.01 
Battery size (kWh) 0.0030 0.00077 <0.01 
Charging power (kW) -0.0058 0.00013 <0.01 
Market share (%) 0.0436 0.00095 <0.01 
VMT (million miles) 0.2111 0.00513 <0.01 
Dispersion parameter 0.1608   
Deviance/df 1.060   
Log-Likelihood -5227.156   
Akaike's Information 
Criterion (AIC) 

10466.312   

Calibration   
& 
Validation 

Dependent 
Variable 

Equations Calibration Validation 
RMS
E 

MA
E 

RMS
E 

MA
E 

Number of 
Stations 

𝜒𝜒 =
𝑒𝑒1.654−0.002(𝐸𝐸)−0.001(𝑃𝑃)+0.020(𝜌𝜌)+0.651(𝐿𝐿   4.48 3.58 4.78 3.78 

Number of 
Chargers 

𝜓𝜓 =
𝑒𝑒3.031+0.003(𝐸𝐸)−0.006(𝑃𝑃)+0.044(𝜌𝜌)+0.211(𝑉𝑉   87.78 49.7

7 
101.9
7 

54.6
5 



165 

The best-calibrated model predicting the number of chargers is a function of battery size, 

charging power, EV market share, and the total VMT (Table 7-6). The larger battery size indicates 

the less frequent but longer charging time for each user. Hence, the number of chargers increases 

with the size of the battery to reduce the user delay and the queue at each charging station. Note 

that even though the total charging demand remains the same, the vehicles with larger batteries 

charge for a longer duration and less frequently. But these less frequent long-duration charging 

can still cause a queue formation at the charging stations, especially during peak hours, thereby 

increasing the delay. Thus, to avoid the queue formation and delay, more chargers are required for 

larger battery sizes. The higher charging power increases the throughput at each charger. Hence, 

each charger can serve a greater number of users, which reduces the overall number of chargers in 

the system. The higher EV market share indicates more EV trips; thus, a larger number of chargers 

are required to meet the energy demand of increased EV trips. Further, if the VMT in the system 

increases, more energy is required to travel more miles. Thus, more chargers are required to serve 

the increased energy demand in the system. 

The calibrated models are applied to the remaining 30% of the data set for its validation. 

The RMSE and MAE values for the calibration and validation (predicted) groups are shown in 

Table 7-6. Considering the descriptive statistics (Table 7-5), the RMSE and MAE values for the 

validation group are comparable to that of the RMSE and MAE of the calibration data set. Further, 

the plot of predicted values versus the observed values for the validation group indicates that the 

errors are within acceptable range (Figure 7-5). Hence, the developed regression models can 

satisfactorily predict the number of charging stations/chargers for the different scenarios/regions.  
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a) Number of charging stations b) Number of chargers 

Figure 7-5 Predicted versus observed values of the dependent variable (excluding Detroit) for the 
validation data set 

7-5- Summary 

Electric vehicles are proposed to substitute conventional vehicles due to their high energy 

efficiency and potential to reduce carbon footprint. However, the limited range and lack of 

charging infrastructure are the major challenges in adopting these vehicles. One of the key factors 

in the EV market growth is the availability of adequate charging infrastructure. This study develops 

a set of regression models to estimate the number of required public DCFC charging stations and 

chargers to meet the charging demand of EV trips in urban areas. These models require basic 

information and are easier to implement than other charging infrastructure planning techniques, 

e.g., optimization-based frameworks, which are computationally challenging and require detailed 

information and extensive resources and skills to be implemented. The policy-makers and city 

planners can easily implement these regression models to estimate macro-level charging 

infrastructure in each urban area for different technological advancements, and EV market share. 
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In this study, the regression models are calibrated based on four groups of input data, 

including network-specific data, travel data, technology-specific data, and charging infrastructure 

data. Network-specific data includes information regarding the number of TAZs, and lane length 

of the road network. Travel data provides information on travel demand and VMT. Technology-

specific data provides information on battery size, charging power, and EV market share. The 

charging infrastructure data is provided using a recent simulation-optimization study by 

Kavianipour et al. (Kavianipour et al., 2021). The models are calibrated and validated using the 

data of eight major cities in Michigan. 70% of available data are used for calibration, and the 

remaining 30% are incorporated for validation purposes. As the data set is an over-dispersed count 

data, the NB regression model is used, and RMSE and MAE metrics were implemented to validate 

the model. The numerical results show a successful model validation, and the key findings of the 

study are as follows: 

• The negative binomial regression model can be calibrated and be implemented to 

predict the required number of charging stations and chargers in urban areas. 

• The number of charging stations reduces with an increase in charging power and EV 

battery size, while it increases with an increase in market share of EVs, and the road 

network lane length 

• The number of chargers reduces with an increase in charging power, while it increases 

with EVs market share, battery size, and VMT in the system. 

The developed models represent the most impactful factors for planning EV charging 

infrastructure. The main factors impacting the number of required charging stations are the 

vehicles’ battery size, charging stations’ power, EV market share, and road network lane length, 

while the factors to predict the number of chargers are the vehicles’ battery size, charging stations’ 
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power, EV market share, and the total VMT. Hence, it is observed that while vehicles’ battery size, 

charging stations’ power, and EV market share impact both chargers and charging stations, VMT 

defines energy demand and thus impacts the number of chargers and road network lane length 

impacts detour and thus the number of charging stations. 
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 Concluding Remarks and Future Research 

8-1- Concluding Remarks 

EVs are considered a sustainable alternative to CVs to decrease the GHGs and dependence on 

fossil fuel. However, their adoption is hindered due to some obstacles, including limited range, 

long charging time, and lack of supporting charging infrastructure. Providing a dense network of 

fast-charging stations can facilitate the travel of EVs and also promote their adoption. On the other 

hand, advancing the battery and charging technologies can increase the range of EVs and reduce 

their charging time, respectively. This study presents a mathematical framework to find the 

optimum configuration of charging infrastructure to support long-distance trips in intercity and 

urban networks considering various operational conditions. It realistically captures the travel 

patterns for a mixed fleet of electric and conventional vehicles in intercity networks and considers 

flow-dependent recharging/queuing delays at charging stations. This framework is then extended 

to capture the monthly traffic demand and battery performance variations, which are two main 

contributing factors in defining the infrastructure needs of EV users, particularly in states with 

adverse weather conditions. For the case study of Michigan, it is shown that the decreased battery 

performance in months with adverse weather dictates the optimal charging infrastructure, 

overshadowing the increased demand in favorable weather conditions. Afterward, this study 

investigates the impacts of different battery and charger technologies on the optimal configuration 

of charging infrastructure for the intercity networks. It is shown that the location of charging 

stations merely depends on the battery capacity while the charging power dictates the number of 

required chargers.  

Finally, this study introduces an integrated framework for urban fast-charging 

infrastructure to optimize the configuration of charging facilities. Unlike intercity trips that OD 
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trips are considered, urban trips need to be individually considered since they might start with any 

state of charge. After generating trip trajectories, a state-of-the-art tool is developed to simulate 

charging behavior, resulting in the temporal charging demand. This demand is addressed by 

providing a network of charging stations. It is shown that the problem can be decomposed into two 

subproblems, where the location of charging stations and the number of chargers are found 

separately. The key findings of this study are as follows. 

• Building an enabling charging infrastructure network to support EVs intercity trips is less 

expensive compared to increasing the battery capacity. 

• The assumed values for charger cost and value of time calls for providing as many chargers 

as needed to avoid deterministic queuing. 

• The battery size determines the location of charging stations in intercity networks, while 

the EV market share affects the number of chargers within charging stations. 

• The numerical results establish the sensitivity of optimal configuration and numbers of 

charging stations and chargers to monthly OD demand variations and battery performance 

reduction in winter months. 

• The optimum charging infrastructure for OD demand and battery performance of January 

is closer to the optimum results for the entire year rather than OD demand and battery 

performance of other months. 

• Charging stations with higher power have a higher cost, but they decrease the total required 

infrastructure cost and users’ delay considering the higher rate of return. 

• The decomposition approach for urban networks provides a near-optimum solution to the 

main problem in the small case study. 
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• The battery size does not affect the number of chargers in urban areas, unlike the intercity 

network, as the length of the urban trips is significantly lower than the range of EVs. 

• The negative binomial regression model can be calibrated and be implemented to predict 

the required number of charging stations and chargers in urban areas. 

8-2- Future Research Directions 

The proposed methodologies and models in this study to find the optimal charging infrastructure 

configurations benefit from realistic capturing of user behavior and near-global-optimum 

solutions. However, there are still some limitations to consider for future studies. For instance, the 

urban model in Chapter 6 assumes that EVs only recharge during their infeasible trip. However, 

they might recharge in a feasible trip to prevent future recharging. This behavior must be captured 

to provide a solution that can better address the EVs charging demand. This requires a more in-

depth study of users’ behavior, a possible future research direction. In this regard, various 

strategies for spatial and temporal pricing of electricity can be studied to explore their impacts on 

congestion and the required number of chargers. Further, incorporating trip chain data and 

adjusting the model accordingly is an important future research direction. Another future path to 

consider is the impact of vehicle type and model on the battery performance and capacity.   

Finally, the proposed regression models in Chapter 7 are easy to apply and do not require 

detailed information. Including additional information such as the population and demographics 

of the cities can make the model more robust. Another scope for future research would be to 

consider a more extensive data set to build more profound regression models. Further, this model 

considers realistic assumptions on travel patterns and charging behavior verified through various 

stakeholder meetings; However, there is no actual data available for the high level of adoption to 

validate the micro model. As a future research direction, it is vital to gather data for EV market 
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share propagation and charging infrastructure throughout the time and validate the proposed micro 

models. Further, the current study focuses on developing models to predict level 3 public DCFC 

chargers by considering homogeneous users with vehicles of identical battery sizes. In future, the 

modeling framework can be extended to consider heterogeneous users and mix of level 2 and level 

3 public chargers. Also, these models consider the urban characteristics of the cities in Michigan 

and account for the impact of cold weather on the optimum charging infrastructure; hence they can 

be easily applied to any city with similar conditions to Michigan. However, cities with different 

weather conditions and urban characteristics would require macro models calibrated using 

unadjusted battery size and the associated urban characteristics. 
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