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ABSTRACT 

USING MACHINE LEARNING TO UNCOVER POPULATION 
HETEROGENEITY IN LONGITUDINAL STUDY 

 
By 

Youngjun Lee 
 

 Machine learning has been an emerging data analytic tool in the fields of quantitative social 

and behavioral sciences. Among others, model-based recursive partitioning (MOB) is one of the 

popular comprehensive approaches incorporating parametric model into tree-based algorithm. It has 

gained growing interests as a complementary data analytic tool to address population heterogeneity 

by detecting parameter instability over candidate covariates. Structural equation models using tree 

algorithm (SEM Trees) has particularly shown its benefits for discovering informative covariates and 

their complex interactions that predict differences in structural parameters with interpretable results, 

which in turn produces distinct homogeneous subgroups. While all previous studies make important 

contributions to use this approach, it has been less examined to investigate the performance of SEM 

Trees where there exist interaction effects of various types of covariates (i.e., categorical, ordinal, 

and continuous), which is the key motivation of this study.  

This study has three main purposes. First, it aims to introduce a framework of MOB for 

educational researchers and guide them when it can be beneficial with an illustrative example 

using nationally representative longitudinal data (High School Longitudinal Study of 2009). A 

parametric latent growth curve model (LGCM) is used as a template model along with MOB. 

Second, a simulation study for a given LGCM is conduced to investigate the performance of 

MOB, which provides researchers with statistical evidence of how well MOB recovers true 

subgroups. Simulation conditions include a) effect size (0.2, 0.4, 0.6, 0.8, and 1.0), b) sample 

size (1,000, 2,000, 5,000, 10,000, and 20,000), c) three different test statistic for ordinal 



  

covariate (chi-square, adapted maximum Lagrange multiplier, and a weighted double maximum), 

d) pre pruning option of limiting the minimum sample size per subgroup (250 vs. none), and e) 

post pruning option (BIC vs. none). The main evaluation criteria are a) statistical power to 

recover true subgroups, b) overall classification accuracy and precision, c) accuracy of cut points 

of ordinal/continuous covariates and labels of categorical covariates, and d) bias and root mean 

squared error (RMSE) of the parameter estimates per subgroup. Third, the simulation is 

parallelly conducted with GMM, and the results of it are compared with the ones of MOB.  

The key findings suggest that medium effect size (0.4 - 0.6) with relatively large sample 

sizes (5,000, 10,000, and 20,000) and large effect size (0.8 - 1.0) with adequate sample size 

(1,000 or 2,000) are enough to distinguish the difference in focal parameters, recovering the true 

number of subgroups. In addition, treating ordinal variables as either ordinal or categorical is not 

different in terms of recovering the true subgroups. However, the empirical study suggests that 

using test statistic for the ordinal covariates is desired when there exist association between the 

outcome and ordinal covariate. Post pruning using BIC and limiting the minimum size per 

subgroup simultaneously are also desired options. Without the post pruning with BIC, MOB 

tends to over-extract the subgroups across conditions. With the same simulated datasets, GMM 

produced neither accurate subgroups nor reliable parameter estimates.   

This study sheds light on how to uncover subpopulations using MOB algorithm with a 

popular parametric model for longitudinal study. This approach is beneficial for large-scale data 

such as more than 10,000 sizes with large number of potential covariates. Limitations and future 

directions are also discussed. The findings play a critical role to lay the groundwork of extending 

the application of MOB into various statistical models by investigating its performance regarding 

complex covariate effects.  
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CHAPTER 1. INTRODUCTION 

 
 

1.1 Background and rationale 

Machine learning has been an emerging data analytic tool in the fields of methodological 

statistics as well as social and behavioral sciences since the first appearance of automated interaction 

detection (AID) for tree-structured regression analysis introduced by Morgan and Sonquist (1963). 

Emergence of new academic communities such as Educational Data Mining and Learning Analytics 

reflect the growing trend in application of machine learning within educational contexts (e.g., Baker 

et al., 2016; Paquette et al., 2020). Machine learning refers to either supervised or unsupervised 

process of modeling that automatically reveals patterns of variation in large-scale datasets or so-

called big data. The main goal of machine learning is to build reliable and accurate predictive 

models, and it has several advantageous features over traditional statistical regression models. First, 

it can handle high-dimensional predictors even when the number of the predictors (i.e., the number 

of columns) is larger than the sample size (i.e., the number of rows). Second, there are no statistical 

assumptions with a model. That is, it has merely set of optimal tuning parameters and several best 

performing classifiers (i.e., algorithms) to enhance the performance of prediction. Third, no prior 

knowledge is required to select predictors (covariates or features) for constructing a model, which 

allows a screening of informative predictors in exploratory research. Fourth, machine learning 

automatically detects nonlinearity and complex interaction effects of covariates with an iterative 

algorithmic approach.  

Among many machine learning approaches, tree-based methods, also known as recursive 

partitioning or decision-tree, have been extensively and increasingly employed in educational and 

psychological research (e.g., Grimm & Jacobucci, 2020; Jacobucci & Grimm, 2020; Strobl et al., 

2011; Strobl et al., 2015). A well-known algorithm within the realm of tree-based methods is the 
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classification and regression trees (CART; Breiman et al., 2017). To briefly explain the tree 

algorithm, a structured tree is grown by recursively partitioning the samples using available 

variables, starting from the entire sample (i.e., root node) through subgroups (i.e., child nodes or 

inner nodes) to final subgroups (i.e., terminal nodes or final nodes) of subjects based on the values 

of variables selected by algorithms. Thus, the subgroups of subjects are determined by a set of 

variables that are related to the outcome, in which the values of the outcome are different across 

subgroups. Two key strengths of using tree-based methods are interpretability and predictability. 

Although the predictive power of decision-tree is relatively weaker than other modern approaches 

(Fernandez-Delgado et al., 2014), such as random forests introduced by Breiman (2001), a single 

tree is still significantly valuable due to its simple, intuitive, and clear interpretability because it 

produces a visualization of the tree with the results (e.g., Eo & Cho, 2013; Le & Moore, 2020). 

Consequently, one can easily understand the structure, composition, and characteristics of the 

subgroups depicted by the tree.  

In contrast to the machine learning detecting complex interactions automatically, traditional 

statistical models should specify all the interaction terms. In the realm of social sciences, “the 

testing of interactions is at the very heart of theory testing” (Cohen et al., 2014). Interactions can be 

a form of person-person, context-context, or person-context (Bauer & Shanahan, 2007). If the 

interaction effects are well-established and correctly specified in a model, the results of the 

statistical models are clearly interpretable, unbiased, and efficient (De Gonzalez & Cox, 2007). 

However, when given many variables in datasets, specifying all possible combinations of 

interactions of the variables produces complex higher-order interactions. This not only makes ones 

hard to understand the terms in a model, but also is not common in practice. Even if higher-order 

interactions are modeled correctly, the interpretation is greatly limited as the effects of each 

covariate are estimated controlling for both effects of other key covariates and interaction effects. 
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Moreover, for categorical variables, multiple dummy variables have to be created and the quantity 

of their interactions with other covariates would increase dramatically. For instance, if there are 

three covariates including gender (e.g., female, male) and race/ethnicity (e.g., White, Black, 

Hispanic, Asian, and others), and categorized socio-economic status (e.g., low, medium, and high), 

the possible number of interaction terms is twenty-two. As researchers also tend to include and 

interpret interaction terms based on the statistical significance of each term, the model specification 

is likely to be exploratory and subject to a great degree of modifications, which may lead to spurious 

results.  

To partially compensate for specifying complex interaction effects of the statistical models, 

there has been substantially growing interests in combining parametric models and tree-based 

methods over the last two decades (see Loh, 2014 for more details). This analytic approach is 

beneficial for finding informative covariates as their higher-order interactions and nonlinearity 

effects can be automatically detected. Among many others, the model-based recursive partitioning 

(MOB; Zeileis et al., 2008) provides a unified framework that fits a parametric model locally, in 

which the heterogeneous subsamples are determined by testing overall parameter instability. In 

many cases of social science research, it may be unrealistic to assume that a global model fits the 

whole sample at a satisfactory. Instead, it would be more reasonable to assume that data for varying 

subsamples of subjects well fits diverse models (Zeileis et al, 2008). As regards, MOB attempts to 

find such subsamples given available covariates using a huge recursive searching method. Within 

this framework, the definition of a covariate is a candidate variable that could be potentially related 

to the interested outcome(s) in the available datasets. This concept of covariate is broader than the 

one used in statistics. That is, all the variables that could be related to the outcome(s) that 

researchers believe can be the candidates of covariates, making algorithm(s) detect and find those 

relationship automatically. The basic idea of the generic MOB is that a particular parametric model 
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is fitted to each subsample, which can be in a form of OLS regressions, generalized linear models, 

item response models, or structural equation models. The estimated parameters are then tested 

whether they are statistically different depending on the values of covariates. It has been shown that 

these new approaches adopting machine learning offer valuable opportunities to answer novel 

research questions for social and behavioral research that is notably different from what traditional 

parametric statistical models can answer; for example, how the subgroups (formed based on the 

combinations of covariates) differ in their characteristics, raising the issues of population 

heterogeneity (e.g., Serang, 2021).  

Over the past decade, researchers have been actively adopting MOB particularly for 

structural equation models, so called (SEM Trees), which was introduced by Brandmaier et al. 

(2013). SEM Trees integrates the comprehensive and flexible SEM framework with tree algorithm. 

The main goal of SEM Trees is analogous to MOB, which is to identify subgroups having similar 

covariance structures or item response patterns using a data-driven, but theory-constrained search as 

SEM Trees utilizes a template structural parametric model derived from an existing theory. SEM 

Trees are currently implemented via specific software packages, such as semtree (Brandmaier et 

al., 2013) by either connecting it with OpenMx (Neale et al., 2015) or lavaan (Rosseel, 2012) to 

estimate SEM models. Stegmann et al. (2018) further proposed an approach called nonlinear 

longitudinal recursive partitioning with an associated package of longRpart2, which is useful to 

model inherent nonlinearity of changes. Recently, Serang and his colleagues (2020) extended SEM 

Trees to make it easily available with popular commercial software Mplus by connecting it with 

MplusTrees in R package. They claim that it has some advantages that can cover broader range 

of SEMs estimated from Mplus over OpenMx or lavaan. Currently, there are a few simulation 

studies employing SEM Trees for longitudinal data (Usami et al., 2017; Usami et al., 2019). The 

results indicate that the informativeness of a dichotomous covariate related to the true subgroups, 
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which is measured by their correlation, was the most critical factor to recover the true number of 

subgroups.  

SEM Trees originally use likelihood-ratio test (LRT; testing change of deviance) by default 

for evaluating heterogeneity of parameters to search for optimal split points in covariates. The LRT-

guided split evaluation appears to be powerful and efficient for dichotomous covariates, although it 

requires an additional step of locating the optimal cut point for categorical, ordinal, or continuous 

covariates that have more than two unique values. The likelihood ratio for each possible splitting 

values of each covariate should be calculated, which in turn produces computationally demanding 

processes. To complement this, Arnold et al. (2021) recently added options of various score-based 

testing methods for ordinal and continuous covariates into existing semtree. They determined that 

not only it was more computationally efficient than LRT, but also it showed having higher enough 

power to detect group differences and unbiased estimates in the selected covariates to grow a tree. A 

key difference between SEM Trees and MOB is how they choose the split points of a covariate, 

which is one of the key elements to determine the characteristics of subgroups. While SEM Trees 

locates the cut points by means of score-based testing, MOB locates the cut points by comparing 

likelihood ratios. That is, MOB first selects the covariate using test statistic. Then, it determines the 

cut point by optimizing the sum of the loss function between the two resulting subgroups. This 

makes MOB computationally more efficient than the original SEM Trees. However, no prior studies 

have explored the performance of MOB for SEMs. 

More importantly, while all previous studies make important contributions, most of the 

simulation studies merely examined single informative covariate that is directly related to the 

terminal subgroups. A few empirical studies using SEM Trees did explore various types of 

covariates showing interactions (e.g., Stegmann et al., 2018) and yet, their applications in terms of 

adopting options for finding optimal and generalizable results are largely insufficient. Finding 
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empirical literature using SEM Trees or MOB is also limited in social science literature. 

Furthermore, until today, there is no simulation study that investigates the performance of MOB for 

varying types of covariates and their interaction effects within the context of longitudinal SEM, 

which is the key motivation for this study. To the best of my knowledge, this is the first simulation 

study to employ the MOB algorithm from partykit for the SEM trees rather than using 

semtree to scrutinize how well it performs.  

1.2 Research purposes and questions 

This study has three main purposes to address the needs of using MOB approach: a) 

Demonstrate how to use MOB with longitudinal data using two R packages, partykit and 

lavaan with an empirical data (High School Longitudinal Study of 2009). b) Investigate the 

performance of MOB with latent growth curve model (LGCM) having interactions of multiple types 

of covariates (categorical, ordinal, and continuous) via a simulation study. C) Compare the results of 

MOB with the ones of growth mixture model (GMM).  

To accomplish the above three research purposes, there are specific nine research questions 

to be answered: 

1) How can the approach of MOB with longitudinal data be used to find heterogeneous 

subgroups?  

2) For a given population model of LGCM and the certain number of covariates, how well 

MOB correctly determine the true number of subgroups?  

3)  For a given population model of LGCM and the certain number of covariates, how 

accurately and precisely MOB classify the true subgroups?  

4) For a given population model of LGCM and the certain number of covariates, how well 

MOB recover the splitting points of the covariates?  

5) For a given population model of LGCM and the certain number of covariates, how 
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accurately and precisely MOB recover the parameter estimates (mean intercept)?   

6) What is the best option for test statistic of the ordinal covariates? 

7) When is the post pruning option of BIC more desirable than without it?  

8) When is limiting the minimum sample size per a subgroup more desirable than without 

it?  

9) For a given population model of LGCM, how well GMM correctly determine the true 

number of subgroups compared to MOB? 

The first research question is answered by an illustrative example with detailed procedures. 

This study employs an empirical data from a nationally representative longitudinal study. Using the 

results from the empirical data, a population model is specified and datasets for simulations are 

generated. The second to the eighth research questions are answered by a Monte Carlo simulation 

study. The performance of MOB was evaluated under various conditions including a) effect size 

(0.2, 0.4, 0.6, 0.8, and 1.0), b) sample size (1,000, 2,000, 5,000, 10,000, and 20,000), c) treatment of 

ordinal covariate with different test statistic (chi-square, adapted maximum Lagrange multiplier, and 

a weighted double maximum), d) pre-pruning option limiting minimum sample size per subgroup 

(250 vs. none), and e) post-pruning option (BIC vs. none). To answer the nineth research question, 

the simulated datasets were simultaneously fitted to a growth mixture model (GMM) to see how the 

results are different from each other.  

The next chapter reviews traditional statistical approaches dealing with population 

heterogeneity depending on the types of variables (outcomes), assumptions, and contexts, followed 

by reviewing the detailed procedures of MOB and previous literature. Chapter 3 describes how to 

use MOB with the empirical longitudinal data to find heterogeneous subgroups, followed by the 

interpretation of the resulting tree and figures. Chapter 4 presents a population model along with 

simulation designs and evaluation criteria for the simulation study. Chapter 5 describes the results in 
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the order of the research questions, a) statistical power to determine the true number of subgroups, 

b) overall classification accuracy and precision of the subgroups, c) accuracy of the splitting points 

of the covariates, d) bias and root mean squared error (RMSE) of the parameter estimates, and e) 

desirable options for test statistic of the ordinal covariates, post pruning method using BIC, and 

limiting minimum sample size per a subgroup. Primary findings, implications, limitations of this 

study are discussed in Chapter 6.   
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CHAPTER 2. LITERATURE REVIEW  
 

 

2.1 Overview of statistical models explaining population heterogeneity 

Population heterogeneity has gained attention in social and behavioral science literature 

(Lubke & Muthén, 2005). Sources of the heterogeneity can be either observed or unobserved. For 

the former, heterogeneity is often explained by fixed effects of covariates such as demographics, 

contextual backgrounds, or behavioral characteristics and psychological traits. These fixed effects 

reveal the difference of the outcome between the observed covariates specified by researchers in a 

statistical model. The unexplained individual differences can be captured by residual (error term) in 

the regression model. If the data has a hierarchically nested structure (i.e., students are nested within 

schools, and the schools are nested in counties, and so forth), multilevel models (also known as 

hierarchical linear models; Raudenbush & Bryk, 2002) can be used to specify the associated random 

effects in a model not only to capture the remained heterogeneity of the individuals, but also to 

explain the differences of parameters of regression coefficients by regressing them on observed 

covariates at each level. This approach has been widely used for nested data structure. Another 

popular approach to investigating heterogeneity is to employ multi-group structural equation models 

(MGSEM; Jöreskog, 1971) or differential item functioning in item response theory (DIF; 

Mellenbergh, 1989), which tests separate structural factor models or item response functions with 

two or more pre-defined grouping covariates such as gender or race. This is especially useful when 

there is a small number of groups to be tested for comparisons. However, it becomes tiresome and 

infeasible with numerous groups because multiple estimation and testing should be done to compare 

parameters across every pair of groups, requiring adjustments of multiple statistical testing. 

Eventually, this reduces statistical power.  

If the source(s) of the heterogeneity is unobserved or latent rather than observed, other 
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approaches can be used to specify and estimate them in a statistical model. Within a comprehensive 

and general statistical framework of latent variable modeling (LVM), a popular flexible modeling 

approach to investigating heterogeneity is called finite mixture model (FMM). FMM can be defined 

as a parametric statistical model assuming the presence of unobserved distinct groups, also known 

as latent classes (McLachlan & Basford, 1988; McLachlan et al., 2019). If it is reasonable to assume 

that the sample consists of several latent groups showing different characteristics or distributions in 

terms of measured outcome variable(s), a variant of FMM can be a decent choice for researchers to 

adopt depending on the types of observed indicators and latent variables as well as research 

questions. Under the umbrella of the extended FMM framework, representative examples of sub-

models that explore unobserved heterogeneity include (a) latent class analysis for both categorical 

observed and latent variables (LCA; McCutcheon, 1987), (b) latent profile analysis for continuous 

observed indicators and categorical latent variables (LPA; Gibson, 1959), (c) factor mixture 

model/analysis (FMA; Lubke & Muthén, 2005) and mixture item response theory (Mixture IRT; 

Rost, 1990) for continuous and categorical/ordinal indicators, respectively, specifying 

simultaneously both categorical and continuous latent variables for cross-sectional outcomes of 

measurement models, and (d) growth mixture model for longitudinal outcomes (GMM; Muthén & 

Asparouhov, 2007; Muthén & Shedden, 1999).  

Once the number of the latent classes and their structures are determined via a series of 

process of selecting the best fitting model based on some criteria such as AIC (Akaike Information 

Criterion; Akaike, 1974) or BIC (Bayesian Information Criterion; Schwarz, 1978) or relevant other 

statistical testing and theoretical consideration, a natural interest is to identify the characteristics of 

the latent classes using available covariates and previous knowledge from established theory. Since 

the latent class itself does not sufficiently inform meticulous implications, informative covariates 

should be added to explain the latent class memberships. However, there exist mixed 
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recommendations for guiding and determining the number of classes whether one should include 

covariates during the modeling process or after class enumeration. While some argue that 

simultaneous estimation of a correct model specification with the added covariates produces reliable 

class enumeration (e.g., Lubke & Muthén, 2007), others, for example, Vermunt (2010) and Nylund-

Gibson and Masyn (2016) suggest that the number of latent classes should be determined without 

covariates first, then covariates or distal outcomes would be added to examine their associations 

with latent class memberships. The latter approach is called as three-step approach in contrast to 

one-step approach for the former (Asparouhov & Muthén, 2013). Following the three-step approach, 

it provides estimated posterior probabilities for each observation to belong to certain classes 

accounting for uncertainty in class membership. The class membership, which is a nominal variable 

generated from the posterior probabilities, is then explained by the added covariates using 

multinomial logistic regression model (Nylund-Gibson et al., 2014). However, the relationship 

between the covariates and the class membership is typically presumed to be linear, and their 

interactions are manually formed by one’s own choice/decision. If there are many available potential 

informative covariates that are likely to interact with others, and less established prior knowledge 

about the relationship, it challenges researchers to correctly specify those complex interactions that 

might be associated with the class membership. The model-based recursive partitioning method 

adopting machine learning technique of the decision tree algorithm can handle this issue of complex 

interactions of the covariates, which helps to understand and interpret the subgroups that are distinct 

in terms of the specified statistical models.  

2.2 Model-based recursive partitioning 

The model-based recursive partition is introduced by Zeileis et al (2008) to not only 

uncover subgroups but also investigate different treatment effects depending on the groups. MOB 

employs an empirical score function for detecting the parameter instability (Zeileis & Hornik, 
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2007). The score is a case-wise derivative of the estimation function at the estimated parameters. It 

is used to inspect if the parameter estimates fluctuate randomly around their mean of zero or exhibit 

systematic deviations from zero over the values of covariates, which leading to construct relevant 

test statistic for any types of covariates. It has been widely used in various social and behavioral 

research including but not limited to psychometric research, such as measurement invariance (e.g., 

Merkle et al., 2014). MOB is also adopted to beta regression for limited responses (Grün et al., 

2012) and Rasch item response theory (Rasch Trees; Strobl et al., 2015). Recently, it was extended 

to a linear mixed model that handles multilevel data structure (Fokkema et al., 2018). They 

conducted a simulation study to see if it recovers treatment-subgroup interactions under nested data 

structure. The results showed higher accuracy and predictive power for recovering the interaction of 

fixed effects, while the random effects were set to constant across subgroups.  

The general procedures of MOB algorithm have four steps (Zeileis et al., 2008):  

(1) A parametric model is chosen by a researcher and fitted to all samples via a selected 

estimation method that should have a form that either maximizes or minimizes an objective 

function.  

(2) Stability (or volatility) of parameter estimates is assessed for every covariate considered 

(𝑍𝑍𝑝𝑝 = 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑃𝑃). If any overall instability is detected with respect to particular 

covariate(s), a covariate showing the highest instability are chosen based on the p-value from 

the test statistics. If there is no significant volatility detected across all the values of the 

covariates, the process stops.  

(3) The fitted model is divided into a set of segmented models according to the split points 

(values) of the covariates that are searched and computed to locally fit the model better. The 

number of splits can be either fixed or adaptively chosen. The split points are determined 

through optimizing the sum of the log-likelihoods of two partitioned models. That is, with 
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the selected covariate, a split point that improves the highest model fit is determined and the 

samples are divided into another subsample. 

(4) The split is done with the selected covariates and the steps (1) - (3) are repeated until 

there is no more significant instability. Some stopping rules also can be used by researchers 

depending on research questions and sample sizes, and if the criteria are met, splitting does 

not proceed anymore.  

The details of how the above steps are carried out are described in the following.  

2.2.1 Parameter estimation for a template model 

The first step is to fit a parametric model to a whole sample using M-estimators such as 

ordinary least squares or maximum likelihood estimation. The specification of a template parametric 

model is determined at this stage according to research questions and established theory. Focusing 

on maximum likelihood estimation under multivariate normality assumption, the likelihood function 

given 𝑛𝑛 independent and identically distributed observations 𝑦𝑦𝑖𝑖 (𝑖𝑖 = 1, 2, … , 𝑛𝑛) and a set of 

parameters 𝜽𝜽 = {𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝐾𝐾} is obtained by the product of the individual densities as 

𝐿𝐿(𝜽𝜽;𝑦𝑦𝑖𝑖) =  �(2𝜋𝜋)−
𝑘𝑘
2

𝑛𝑛

𝑖𝑖=1

|Σ(𝜽𝜽)|−
1
2𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
�𝑦𝑦𝑖𝑖 − 𝜇𝜇(𝜽𝜽)�

′
Σ(𝜽𝜽)−1�𝑦𝑦𝑖𝑖 − 𝜇𝜇(𝜽𝜽)��, (2-1) 

where 𝜇𝜇(𝜃𝜃) is the 𝑘𝑘 × 1 mean vector and Σ(𝜃𝜃) is the 𝑘𝑘 × 𝑘𝑘 covariance matrix. A set of parameters is 

estimated consistently and efficiently by maximizing the above likelihood function or minimizing 

the negative log-likelihood. The 𝑦𝑦𝑖𝑖 individuals equally contribute to the whole log-likelihood as  

𝑙𝑙𝑙𝑙𝑙𝑙(𝜽𝜽;𝑦𝑦𝑖𝑖) =  −
1
2
�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(2𝜋𝜋) + 𝑛𝑛𝑛𝑛𝑛𝑛|Σ(𝜽𝜽)| + ��𝑦𝑦𝑖𝑖 − 𝜇𝜇(𝜽𝜽)�

′
Σ(𝜽𝜽)−1�𝑦𝑦𝑖𝑖 − 𝜇𝜇(𝜽𝜽)�

𝑛𝑛

𝑖𝑖=1

�. (2-2) 

The above function is used typically via well-established iterative ways to find the 

parameter estimates, 𝜃𝜃�. It is also more widely employed to assess the goodness of model fit between 

two competing models to select a better fitting model. Multiplying the log-likelihood by -2, the 
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difference between two log-likelihoods of competing models asymptotically follows a 𝜒𝜒2 

distribution with q (the difference in the number of parameters between two models) degrees of 

freedom. This 𝜒𝜒2 is used as a test statistic for likelihood ratio testing (LRT). LRT is initially 

suggested by Brandmaier et al. (2013) to determine whether or not the samples are to be divided into 

sub-samples according to the values of covariates as indicated earlier. MOB uses LRT for locating 

the split points, but selecting a covariate is completed by other test statistic constructed using a score 

function. 

The score is defined as the gradient of the log-likelihood function with respect to the vector 

of k parameters. The individual scores are obtained from the individual likelihoods 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜽𝜽;𝑦𝑦𝑖𝑖) = −
1
2
�𝑘𝑘𝑘𝑘𝑘𝑘(2𝜋𝜋) + 𝑙𝑙𝑙𝑙|Σ(𝜽𝜽)| + �𝑦𝑦𝑖𝑖 − 𝜇𝜇(𝜽𝜽)�

′
Σ(𝜽𝜽)−1�𝑦𝑦𝑖𝑖 − 𝜇𝜇(𝜽𝜽)��, (2-3) 

by taking the partial derivatives of them with respect to each parameter where the expected gradient 

of the function is zero. Parameters estimates 𝜃𝜃� can be computed by a summation of the partial 

derivatives of the individual log-likelihood function with respect to a set of 𝜃𝜃� under mild regularity 

conditions (White, 1994) as 

�−
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�𝜽𝜽�;𝑦𝑦𝑖𝑖�

𝜕𝜕𝜽𝜽�

𝑛𝑛

𝑖𝑖=1

= 0. (2-4) 

Then, the individual scores are calculated by solving the first partial derivatives of the 

individual log-likelihood function with respect to each 𝜽𝜽� . The score function is represented as a 

matrix form:   

𝑠𝑠�𝜽𝜽�;𝑦𝑦𝑖𝑖� =

⎣
⎢
⎢
⎢
⎢
⎡𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�𝜃𝜃

�1;𝑦𝑦1�
𝜕𝜕𝜃𝜃�1

⋯
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�𝜃𝜃�𝐾𝐾;𝑦𝑦1�

𝜕𝜕𝜃𝜃�𝐾𝐾
⋮ ⋱ ⋮

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�𝜃𝜃�1;𝑦𝑦𝑛𝑛�
𝜕𝜕𝜃𝜃�1

⋯
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�𝜃𝜃�𝐾𝐾;𝑦𝑦𝑛𝑛�

𝜕𝜕𝜃𝜃�𝐾𝐾 ⎦
⎥
⎥
⎥
⎥
⎤

. (2-5) 

These scores represent the extent to which an individual’s log-likelihood is maximized by 
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each k parameters. The closer the individual score is to zero, the better the individual fits the model. 

On the other hand, large values of scores imply misfit between the individual and model. Thus, it is 

possible to inspect if the scores deviate from zero systematically according to particular covariates.    

2.2.2 Testing instability of parameter estimates 

The second step is to test if all parameter estimates are stable, or they fluctuate over a set 

of partitioning covariates (𝑍𝑍𝑝𝑝) using the empirical score function. Based on the matrix of the 

empirical contributions to the gradient, the instability of the parameter estimates is tested if splitting 

the sample with respect to one of covariates (𝑍𝑍𝑝𝑝) improves the model fit. One of the methods is to 

check if the scores fluctuate randomly around zero or deviate systematically from zero. Under 

parameter stability, the empirical score function fluctuates randomly around its expected value of 

zero. If there are some instabilities over parameters, systematic departures from zero for sub-

subsamples related to certain covariates can be detected. Intuitively, the idea is similar to examining 

the randomness of residuals in linear regression. The deviations are monitored by the empirical 

fluctuation process, which is defined as the K-dimensional cumulative score process,  

𝐵𝐵�𝜽𝜽�; 𝑗𝑗� =
1
√𝑛𝑛

𝐼𝐼�𝜃𝜃��
−1/2

�𝑠𝑠�𝜃𝜃�;𝑦𝑦𝑖𝑖,𝑍𝑍𝑝𝑝�
⌊𝑛𝑛𝑗𝑗⌋

𝑖𝑖=1

    (0 ≤ 𝑗𝑗 ≤ 1), (2-6) 

where n is the total sample size within a subgroup (node), j is the number of sorted samples by a 

candidate covariate 𝑍𝑍𝑝𝑝 that is being examined. ⌊𝑛𝑛𝑗𝑗⌋ is a floor operator producing an integer part of 

nj. 𝐵𝐵𝑝𝑝�𝜽𝜽�; 𝑗𝑗� is the partial sum process of the scores to njth samples ordered by 𝑍𝑍𝑝𝑝, scaled by the 

inverse of the square root of both n and the estimated covariance matrix of Fisher’s information, 

𝐼𝐼�𝜃𝜃��, evaluated at the parameter estimates. This produces an n × K matrix for a pth covariate 

accounting for the ordering of individuals simultaneously.  

𝐵𝐵�𝜽𝜽�; 𝑗𝑗� converges to a univariate distribution of Brownian bridge by a functional central 
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limit theorem under the null hypothesis that the parameter estimates are stable (see Merkle et al., 

2014; Zeileis & Hornik, 2007 for details). Formally, the functional central limit theorem holds as 

𝐵𝐵�𝜽𝜽�; ∙ �
𝑑𝑑
→  𝐵𝐵0(∙), (2-7) 

where 
𝑑𝑑
→ denotes convergence in distribution and 𝐵𝐵0(∙) is a k-dimensional Brownian bridge. The 

Brownian bridge is a stochastic process that is pinned at the start (i=0) and the end (i=n). The 

expected value of the bridge is zero with variance 𝑗𝑗(1 − 𝑗𝑗), implying that most volatility occurs in 

the middle of the bridge. Thus, an empirical cumulative score can be represented within an n × K 

matrix with elements 𝐵𝐵𝑝𝑝�𝜽𝜽�; 𝑖𝑖/𝑛𝑛�. This will be denoted as 𝐵𝐵�𝜽𝜽��
𝑖𝑖𝑖𝑖

. Test statistic of a single value of 

scalar can be derived by aggregating 𝐵𝐵�𝜽𝜽��
𝑖𝑖𝑖𝑖

 over i individuals and k parameters. Each row of the 

matrix represents a cumulative sum of scores of individuals who belong to 𝑖𝑖/𝑛𝑛 percentile of the 

covariate, 𝑍𝑍𝑝𝑝 or below. Different ways of aggregating them produce different test statistic depending 

on the types of covariates (Merckle & Zeileis, 2013; Merckle et al., 2014). Then, the null hypothesis 

of parameter homogeneity can be tested by comparing the test statistic obtained by aggregating 

𝐵𝐵�𝜽𝜽��
𝑖𝑖𝑖𝑖

 with the corresponding analogous statistic from a Brownian bridge. Currently, MOB 

provides different test statistic for continuous and categorical covariates as a default option, and 

users can optionally utilize other two test statistic for ordinal covariates (Hothorn & Zeileis, 2015).  

a) Test statistic for categorical covariates (declared as ‘factor’ in R) 

Assessing the parameter instabilities for categorical covariates, 𝑍𝑍𝑝𝑝 having M levels of 

categories, is achieved by constructing a test statistic, through summing the squared differences in 

the sum of scores corresponding to the associated category m = 1, 2, …, M of the covariate over K 

parameters, 

𝐿𝐿𝐿𝐿 = � ��𝐵𝐵�𝜽𝜽��
𝑖𝑖𝑚𝑚𝑘𝑘

− 𝐵𝐵�𝜽𝜽��
𝑖𝑖(𝑚𝑚−1)𝑘𝑘

�
2𝐾𝐾

𝑘𝑘=1

𝑀𝑀

𝑚𝑚=1

, (2-8) 
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where 𝑖𝑖(𝑚𝑚−1) is the size of individuals within m-1 category. 𝐿𝐿𝐿𝐿 follows 𝜒𝜒2 distribution 

asymptotically with 𝐾𝐾(𝑀𝑀 − 1) degrees of freedom. This captures the fluctuation within each of the 

categories of the partitioning covariate, 𝑍𝑍𝑝𝑝. This is a Lagrange multiplier (LM) type test statistic, 

which is asymptotically equivalent to the corresponding LRT. Using 𝐿𝐿𝐿𝐿 is especially beneficial 

compared to LRT approach in terms of reducing computational burden because the model is fitted 

once in the current subgroup (node) to estimate parameters and corresponding score functions are 

computed per node. Then, the scores are simply reordered and aggregated, producing a test statistic 

each time (Zelleis et al., 2008). The corresponding vector of p-values for the 𝑍𝑍𝑝𝑝 covariates can also 

be obtained (Hjort & Koning, 2002). This test statistic can also be used if the ordinal variable is 

treated as unordered/categorical in the analysis.  

b) Test statistic for ordinal covariates (declared as ‘ordered’ in R) 

Although the above 𝐿𝐿𝐿𝐿 statistic for categorical variables can be used by default for ordinal 

variables, two statistics for the ordinal variables were proposed by Merkle et al. (2014). The first 

one is a weighted double maximum (𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂) and the second one is an adapted 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂. Their 

associated test statistic can be also obtained. The former employs multivariate normal probability to 

calculate the p-values, and the latter gets p-values by means of simulating the critical values on the 

fly (Kleiber et al., 2002) requiring some computation time. Formally, these statistics can be 

represented as  

𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = max
𝑚𝑚=1,…,𝑀𝑀−1

�
𝑖𝑖𝑚𝑚
𝑛𝑛
�1 −

𝑖𝑖𝑚𝑚
𝑛𝑛
��
−1/2

max
𝑘𝑘=1,…,𝐾𝐾

�𝐵𝐵�𝜽𝜽��
𝑖𝑖𝑖𝑖
�, (2-9) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂 = max
𝑚𝑚=1,…,𝑀𝑀−1

�
𝑖𝑖𝑚𝑚
𝑛𝑛
�1 −

𝑖𝑖𝑚𝑚
𝑛𝑛
��
−1

�𝐵𝐵�𝜽𝜽��
𝑖𝑖𝑖𝑖
2

𝐾𝐾

𝑘𝑘=1

. (2-10) 

 

c) Test statistic for continuous covariates (declared as ‘numeric’ or ‘integer’ in R) 
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Among the proposed three different test statistic for continuous covariates (Merkle & 

Zeileis, 2013), a currently available statistic is the supremum of Lagrange multiplier that can be 

presented as  

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶 = max
𝑖𝑖=𝑖𝑖,…,𝑖𝑖

�
𝑖𝑖
𝑛𝑛
�1 −

𝑖𝑖
𝑛𝑛
��
−1

�𝐵𝐵�𝜽𝜽��
𝑖𝑖𝑖𝑖
2

𝐾𝐾

𝑘𝑘=1

. (2-11) 

This is the maximum of the sum of the squares of the 𝐵𝐵𝑖𝑖𝑖𝑖�𝜽𝜽�� in each k-dimensional vector 

of parameters over all single-split j samples, scaled by its variance component. Since 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶 

considers the values of all parameters at a single point, it is suitable when there exists a noticeable 

single change point in several parameters. The lower and upper bounds �𝑖𝑖, 𝑖𝑖� are typically specified 

for the continuous covariates since few individuals belonging to the extreme values could have an 

effect on instability of the test statistic. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶 is asymptotically equivalent to the supremum of 

likelihood-ratio statistics (Chow, 1960; Zelleis et al., 2008), and the asymptotic p-values can be 

obtained from a table proposed by Hansen (1997). If there are many ties in the partitioning 

covariates, the maximum value is not unique, and the results may be affected by the ordering of the 

individuals. In this case, it is suggested to either investigate the results by breaking ties randomly or 

treat the continuous variable as an ordinal variable.  

2.2.3 Partitioning sample into subgroups along with selected covariates 

In the third step, sample in the current node is divided into child nodes along with the 

partitioning covariate, 𝑍𝑍𝑝𝑝∗.  The covariate showing the strongest association with the parameter 

instability producing the highest p-value is firstly chosen. Then, a split value (breakpoint) that 

optimizes the estimating function with the largest improvement of the model fit is computed. This is 

achieved by an exhaustive iterative search procedure, during which the two models consisting of the 

divided subsamples within each node are fit and the split point is determined for each noticeable 

breakpoint in the chosen 𝑍𝑍𝑝𝑝∗ covariate based on likelihood ratio testing.  
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2.2.4 Repeating steps until stopping rules are met 

Steps 1) - 3) are repeated until there is no significant instability of parameters is detected in 

the current nodes. The node showing stable/homogeneous set of parameters is called a terminal 

node, which is the uncovered distinct subgroup. Optionally, there are pre- and post- pruning 

strategies to determine the optimal tree size. The options for the former include a setting of a 

minimal number of sizes for a node, for example, setting up a node size of 100, and/or to use a 

Bonferroni-adjusted p-value. However, when the sample size is very large that the traditional 

significance level is not useful, the resulting trees typically produce excessive number of terminal 

nodes because small parameter instabilities can be detected, which is not concise to interpret the 

trees. In this case, a grown large tree is pruned back if the splits did not improve the model based on 

AIC or BIC (Su et al., 2004). That is, the large tree is pruned/evaluated based on whether or not the 

sum of model fit of the divided subgroups improves the model fit of the previous group including 

the divided subgroups statistically. This option is currently available in partykit (Hothorn & 

Zeileis, 2015). Among others, limiting the sample size per a subgroup (node) and post pruning 

method using BIC are investigated in a simulation study. 
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CHAPTER 3. AN ILLUSTRATIVE EXAMPLE 
 
 

To achieve the first research purpose, this chapter demonstrates how to use MOB with a 

parametric template model of latent growth curve model (LGCM) with an educational empirical 

data. Before describing the procedure of MOB, it is necessary to understand how MOB works to 

uncover statistically distinct and interpretable groups creating a visualized tree. I used two 

categorical covariates, gender, and race. They are considered to be related to the outcome, 

academic achievement. The outcome variables are overall GPA scores from 9th to 12th grades, 

which produces four repeated measurements. A quadratic latent growth curve model was chosen 

as a template parametric model rather than linear growth model, to estimate the fixed effects of 

the intercept, linear slope and quadratic slope plus their covariance-variance and the residuals. 

The result shows how the changes in GPAs over four years differ across demographics.  

An example of LGCM tree using MOB is presented in Figure 1. The composition of the 

subgroups can be found in this visualized tree directly. Following the terminology of the 

machine learning community, the top of the tree is called root node, which indicates the whole 

sample that is used for the study. The subsamples (subgroups) in the middle of the tree are called 

inner nodes or child nodes. These subgroups were determined by a race covariate first in this 

example because the parameters of some ethnic groups are most significantly different from 

other ethnic groups. Specifically, the left side of the tree consists of three race groups, Black 

(BLK), Hispanic (HIP), and Other ethnic groups (OTS), and the right side of the tree consists of 

two race categories, Asian (ASA) and White (WHT). Then, the machine learning algorithm built 

in MOB keeps continuing to find heterogeneity (instability) of the model parameters. The second 

covariate dividing the subgroups is the gender, and the subsamples are divided into subsamples 

again and again until either some stopping rules are met or there is no more significant instability 
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of the parameters across the values of the covariates. The final distinct subgroups are called 

terminal nodes. Each final distinct subgroups have their sample size and own model parameters 

including the intercept, linear slope, and quadratic slope, to distinguish their change trajectories 

based on the latent growth curve model.  

In this example, there are nine distinct subgroups showing significantly different initial 

GPA score and their changes over time. For example, the third subgroup from the left at the 

bottom of the tree is the group of Black male students (Node 8), which shows the lowest initial 

GPA score. In contrast, the sixth subgroup from the left at the bottom of the tree is the group of 

Asian female students (Node 13) showing the highest initial GPA score. This tree easily informs 

us the composition of the subgroups, which enables us to understand complex interaction effects 

between the race and gender. The information in the bottom of the tree can be customized by 

researchers. For instance, all the parameter estimates including the random effects and their 

standard errors can be also presented while this study presents three coefficients only for the 

illustrative purpose.   
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Figure 1. An example of LGCM tree using MOB. 

Using the parameter estimates of each terminal node, the expected GPA change 

trajectories across four grades can be visualized as Figure 2. Interestingly, most of the subgroups 

show similar change trajectories that slightly decrease from the first year to the third year then 

increase at the four years. This result is expected and can be interpreted as common in population 

because most of the students and schools would make their great efforts to manage the GPA 

scores of the 12th grade. However, this analysis reveals that two other subgroups (Node 13 and 

Node 16) do not follow the same trend. Node 13 and Node 16 in the Figure 2 show that their 

overall GPA scores constantly decreased over the four years despite of their highest initial GPA 

score at the first year.  
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Figure 2. An example of expected GPA changes across four grades (Nodes are subgroups). 

Looking at the previous Figure 1, the Nodes 13 and 16 are the groups of Asian female 

and Asian male students, respectively. Moreover, regarding the change between the third and 

fourth year, the amount of increase for the nodes 14 (White female), 4 (Black / Hispanic female), 

and 8 (Black male) is large compared to other groups. The lowest initial GPA group is Black and 

Hispanic male student groups (nodes 8 and 9). The combination of two covariates produces ten 

intersectional groups (interaction effect) though, nine groups are statistically different in terms of 

the change in GPAs over time. This section would not attempt to interpret the substantive 

meaning of the results because this analysis used only two covariates of the race and gender, to 

provide an overview of the tree and what information MOB can produce for the interpretation. 

Next section describes how to use MOB in detail.   

3.1 Data 
 

The data used for this study is High School Longitudinal Study (HSLSL:09). This is a 

representative sample of the U.S. high school students collecting a variety of information on 
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students’ academic outcomes, experiences, environments, and backgrounds. It used a stratified 

two-stage sampling design, which samples schools first followed by students from the selected 

schools as the second step. It started to collect the data from the academic year of 2009, and 

follow-up data were collected in 2012, 2013, and 2016. In 2013, the transcripts were collected to 

add more detailed information on students’ academic outcomes containing students’ course 

taking and GPA scores. In addition, the HSLS:09 contains numerous covariates on students’ 

experiences, demographics, and their noncognitive scale scores related to the educational 

outcomes. To producing replicable results, this study uses publicly available datasets.  

The interested educational outcomes are the overall GPA scores from 9th to 12th grades, 

which is the same as the above exemplary analysis. These measures are non-cumulative GPA 

scores. Measurement invariance across years is assumed for the purpose of this study that GPA 

score measures the same construct across years. The outcomes are used to fit unconditional latent 

growth curve model. One of the most important reasons to choose GPA score as an outcome for 

this study is that GPA scores have been known as strong indicators to predict academic success 

in college and career (Allensworth & Clark, 2020). According to their recent study, high school 

GPA is the most critical indicator of the academic readiness and performance for students and 

institutions of higher education. In that sense, the high school GPA scores of the different 

students would follow different trajectories having different initial points and shapes. Some of 

groups of students could share their backgrounds, demographics, and experiences in schools in 

terms of the GPA scores. The purpose of this approach, MOB, is to find those subgroups using 

available predictors/covariates.  

The covariates found to be related to GPA scores are selected based on previous 

literature to avoid any irrelevant covariates and to reduce the estimation time (e.g., Bowers & 
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Sprott, 2012). A few available student- and school-level covariates are considered for this study 

though, there is no limit to the number of covariates. That is, if there is no existing prior 

literature matching to the research topic or if the research purpose is to explore any potentially 

relevant covariates, researchers can add any kinds of covariates without any limitations while 

this would increase the estimation time. One of the benefits of using MOB is to use covariates as 

they are. It is not required to make multiple dummy variables for making groups with categorical 

variables, which is commonly done in regression modeling. In addition, it is unnecessary to 

assume that the ordinal responses are either continuous or categorical. Researchers can declare 

the ordinal variables as ordinal, and MOB can get the relevant test statistic for the hypothesis 

testing of the ordinal variables as I described in Chapter 2. A list of the used four outcomes and 

ten covariates are presented in Table 1. The covariates of the first year (9th grade) were only 

chosen to be related to the initial GPA score and its change over time. 
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Table 1. A list of variables of High School Longitudinal Study of 2009 data 
Variables Descriptions Types 

Outcomes   
   GPA9 

Overall GPA scores from 9th to 12th grades (four 
repeated measures and non-cumulative GPA scores) Continuous 

   GPA10 
   GPA11 
   GPA12 
Covariates   
   SEX Female or male Categorical 
   RACE Black, Hispanic, Asian, White, and others Categorical 
   LOCA School location: city, suburban, town, and rural Categorical 
   FLUNCH* Categorized percentage of students enrolled in the school 

who receive free or reduced-price lunch; 0 = 0%, 1= 
more than 0% but less than 10%, 2 = at least 10% but 
less than 20%, …, 11 = 100%. This has 11 ordered 
categories 

Ordinal 

   HACT Hours spent on extracurricular activities on typical school 
day; 1 = less than 1 hour, 2 = 1 to 2 hours, …, 6 = 5 or 
more hours. This has six ordered categories 

Ordinal 

   MISBEHAV* Frequency of student in-class misbehavior at this school; 
1 = Daily, 2 = At least once a week, 3 = At least once a 
month, 4 = On occasion, and 5 = Never happens. This 
has five ordered categories 

Ordinal 

   SES Socio-economic status scale Continuous 
   MATEFF Standardized scale of student’s math self-efficacy; higher 

values represent higher math self-efficacy 
Continuous 

   BEHAVSCH Standardized scale of student’s answer about in-school 
behavior within last 6 months. Higher values represent 
more positive assessments of the school's problems, i.e., 
fewer problems are indicated 

Continuous 

   SCHCLI Standardized scale of administrator’s assessment of 
school climate; higher values represent more positive 
assessments of the school’s climate, i.e., fewer problems 
are indicated 

Continuous 

Note. All continuous variables are rounded to one decimal place for the analysis.  FLUNCH and 
MISBEHAV are restricted-use variables. The covariates are chosen from the first year (9th 
grade) only.   
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First, the categorical covariates are 1) gender (female and male), 2) race (Black, 

Hispanic, Asian, White, and Others), and 3) school location (city, suburban, town, and rural). 

Second, the ordinal covariates are 1) hours spent on extracurricular activities on typical school 

day (HACT; 1 = less than 1 hour, 2 = 1 to 2 hours, …, 6 = 5 or more hours), which has six 

ordered categories, 2) the categorized percentage of students enrolled in the school who receive 

free or reduced-price lunch (FLUNCH; 0 = 0%, 1 = more than 0% but less than 10%, 2 = at least 

10% but less than 20%, …, 11 = 100%), 3) the frequency of student in-class misbehavior at this 

school (MISBEHAV; 1 = daily, 2 = at least once a week, 3 = at least once a month, 4 = on 

occasion, and 5 = never happens). Third, the continuous covariates are 1) socio-economic status 

(SES; standardized scale score), 2) student’s math self-efficacy scale score (MATEFF; higher 

values represent higher math self-efficacy), 3) school’s motivation scale score (BEHAVSCH; 

higher values represent more positive assessments of the school’s problem), and 4) scale score of 

the administrator’s assessment of school climate (SCHCLI; higher values represent more 

positive assessments of the school’s climate, i.e., fewer problems are indicated). All these scale 

scores are standardized composite scores and rounded to one decimal place to reduce the 

estimation time.  

3.2 Template model: LGCM 
 

To use a latent growth curve model (LGCM) as a template model of the MOB, the first 

step is to scrutinize descriptive statistics of the variables that are intended to be used based on 

previous literature or theories. After excluding all non-responses for each variable, 9,275 

samples were chosen to be analyzed for the illustrative purpose assuming the missingness of 

missing completely at random. The descriptive statistics of the continuous/ordinal variables and 

frequency and proportions of the categorical variables are presented in Table 2 and Table 3, 
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respectively. Although the descriptive statistics of the ordinal variables are presented with the 

continuous variables together, the analysis treats the ordinal variables as ordinal rather than 

categorical or continuous. This feature was discussed in detail Chapter 2.  

 
Table 2. Descriptive statistics of continuous and ordinal variables without sampling weights 
(n=9,275) 

 Mean SD Min Max Skewness Kurtosis 
GPA9 2.982 0.741 0.130 4.000 3.870 -0.667 
GPA10 2.937 0.750 0.000 4.000 4.000 -0.632 
GPA11 2.938 0.741 0.000 4.000 4.000 -0.686 
GPA12 3.027 0.727 0.000 4.000 4.000 -0.971 
FLUNCH* 4.494 2.468 1.000 12.000 11.000 0.296 
HACT* 2.600 1.434 1.000 6.000 5.000 0.805 
MISBEHAV* 2.116 1.151 1.000 5.000 4.000 0.652 
SES 0.178 0.780 -1.800 2.900 4.700 0.286 
MATEFF 0.059 0.997 -2.500 1.700 4.200 -0.356 
BEHAVSCH 0.124 0.868 -5.600 1.200 6.800 -1.640 
SCHCLI 0.253 0.995 -3.200 2.600 5.800 -0.411 

Note. FLUNCH, HACT, and MISBEHAV are ordinal variables. FLUNCH = categorized 
percentage of students enrolled in the school who receive free or reduced-price lunch, HACT = 
hours spent on extracurricular activities on typical school day. MISBEHAV = frequency of 
student in-class misbehavior at this school. SES = socio-economic status scale score. MATEFF = 
student’s math self-efficacy scale score. BEHAVSCH = student’s school motivation scale score. 
SCHCLI = scale score of the administrator’s assessment of school climate.  
 

Table 3. Frequency and proportions of categorical variables without sampling weights 
Gender 

Race 
Female Male Total Female Male Total 

n % 
Others  410 458 868 4.4 4.9 9.4 
Asian  373 397 770 4.0 4.3 8.3 
Black 336 333 669 3.6 3.6 7.2 
Hispanic 640 638 1,278 6.9 6.9 13.8 
White 2,856 2,834 5,690 30.8 30.6 61.3 
Total 4,615 4,660 9,275 49.8 50.2 100.0 

 City Suburb Town Rural Total 
School location 2,518 

(0.27%) 
3,287 

(0.35%) 
1,207 

(0.13%) 
2,263 

(0.24%) 
9,275 

(100.0%) 
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Correlations between continuous variables are estimated and visually presented with 

the coefficients in Table 4. Color intensity and the size of the circle are proportional to the 

correlation coefficients. In the right side of the correlogram, the legend color shows the 

correlation coefficients and the corresponding colors. The SES and school motivation 

(BEHAVSCH) have stronger associations (around 0.3s) with GPA scores than two other 

covariates (around 0.1 - 0.2).   

Table 4. Correlation matrix between continuous variables with a visualized figure 

 
GPA9 GPA10 GPA11 GPA12 SES MAT- 

EFF 
BEHA-
VSCH 

SCH- 
CLI 

GPA9 1.000 0.843 0.761 0.684 0.354 0.216 0.290 0.132 
GPA10 0.843 1.000 0.821 0.721 0.343 0.219 0.323 0.154 
GPA11 0.761 0.821 1.000 0.776 0.341 0.272 0.361 0.160 
GPA12 0.684 0.721 0.776 1.000 0.307 0.176 0.320 0.152 
SES 0.354 0.343 0.341 0.307 1.000 0.133 0.080 0.177 
MATEFF 0.216 0.219 0.272 0.176 0.133 1.000 0.200 0.066 
BEHAVSCH 0.290 0.323 0.361 0.320 0.080 0.200 1.000 0.079 
SCHCLI 0.132 0.154 0.160 0.152 0.177 0.066 0.079 1.000 

Note. GPA9 - GPA12 = Overall GPA scores from the 9th to the 12th grade. SES = socio-
economic status scale score. MATEFF = student’s math self-efficacy scale score. BEHAVSCH = 
student’s school motivation scale score. SCHCLI = scale score of the administrator’s assessment 
of school climate.  
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The general procedure is the same as the traditional approach. One of the most 

important parts of this is to examine whether the growth pattern shows linear or quadratic or 

other nonlinear forms. Then, researchers can compare the model fit indices to find the best fitting 

model. Among them, ones can also determine if the random effects are either constrained to be 

the same across times or freely estimated by comparing all the candidate models. In this study, 

the average trend of GPA scores across four grades (9th to 12th) was examined by drawing a 

spaghetti plot of 50 randomly chosen students. In Figure 3, it is not easy to find a noticeable 

general trend pattern of the GPA score across years. However, it is hard to find dramatic changes 

of GPA score from the year to year. Keeping this in mind, both linear and quadratic latent 

growth curve models are considered to be fitted to this data.  

 
Figure 3. Spaghetti plot of overall GPA for 50 randomly chosen students. 
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Following the classical notations from Bollen and Curran (2006), a latent growth curve 

model can be represented as  

𝑌𝑌𝑖𝑖 =  Λ ∙ 𝜂𝜂𝑖𝑖 + 𝜀𝜀𝑖𝑖, 

𝜂𝜂𝑖𝑖 =  𝜇𝜇𝜂𝜂𝑖𝑖 +  𝜁𝜁𝑖𝑖 , 
(3-1) 

where 𝑌𝑌𝑖𝑖 is a 𝑇𝑇 ×  1 vector of 𝑇𝑇 repeated measures for 𝑖𝑖th individual (𝑖𝑖 =  1, 2, … , 𝑛𝑛), Λ is a 

𝑇𝑇 × 𝑘𝑘 matrix of factor loadings (intercept, linear slope, and quadratic slope: these are fixed 

based on the coding of time points), 𝜂𝜂𝑖𝑖 is a 𝑘𝑘 ×  1 vector of 𝑘𝑘 latent factors, and 𝜀𝜀𝑖𝑖 is a 𝑇𝑇 ×  1 

vector of residuals. The vector of latent factors is decomposed into 𝜇𝜇𝜂𝜂𝑖𝑖 +  𝜁𝜁𝑖𝑖 , which are the mean 

and deviance, respectively.  

A combined form can be expressed as 𝑌𝑌𝑖𝑖 =  Λ ∙ �𝜇𝜇𝜂𝜂𝑖𝑖 + 𝜁𝜁𝑖𝑖� +  𝜀𝜀𝑖𝑖. Then, the model-

implied covariance matrix is written as  

Σ =  ΛΨΛ′ +  Θ𝜀𝜀𝑖𝑖 , (3-2) 

where Σ is the covariance matrix of the responses 𝑌𝑌𝑖𝑖, Ψ is the covariance structure of latent 

factors of 𝜁𝜁𝑖𝑖, and Θ𝜀𝜀𝑖𝑖 is the covariance structure of the residuals, which is a diagonal matrix 

consisting of all the variance components. With four time points, the factor loadings of intercept, 

linear slope, and quadratic slope were fixed and coded as [1, 1, 1, 1], [0, 1, 2, 3], and [0, 1, 4, 9], 

respectively. The variance of residuals (𝜀𝜀𝑖𝑖) are fixed to be the same across time points to avoid 

negative variances and to enhance model fit in this study. Depending on distribution of data, the 

residuals can be freely estimated. They are assumed to be normally and equivalently distributed 

as 𝜀𝜀𝑖𝑖 ~ 𝑁𝑁 (0, 𝜎𝜎𝜀𝜀2) following a common practice though, one can specify different distributional 

forms.  

Denoting 𝜃𝜃 to be all parameters to be estimated, 𝜇𝜇(𝜃𝜃) and Σ(𝜃𝜃) are model-implied 

mean and covariance structures, respectively. Without covariates/predictors, the parameters 
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estimated from this model specification are a) means of three latent factors (fixed effects; 

intercept (𝜇𝜇𝐼𝐼), linear slope (𝜇𝜇𝑆𝑆), and quadratic slope (𝜇𝜇𝑄𝑄)), b) their variances (𝜎𝜎𝐼𝐼2, 𝜎𝜎𝑆𝑆2, and 𝜎𝜎𝑄𝑄2) 

and covariances (𝜎𝜎𝐼𝐼𝐼𝐼, 𝜎𝜎𝐼𝐼𝐼𝐼, and 𝜎𝜎𝑆𝑆𝑆𝑆), and c) a fixed residual (𝜎𝜎𝜀𝜀2). In total, there are ten 

parameters. Parameters are estimated by employing the robust maximum likelihood (MLR) 

estimation under the mild multivariate normality assumption.  

 
Figure 4. The expected GPA score over four years from quadratic latent growth curve model. 

 

This study examined a variety of models including the linear latent growth curve model 

and quadratic LGCM with freely estimated residuals across times. However, the model fit 

indices of the linear model were poorer than the ones of the quadratic model. In addition, there 

were negative variance estimates with the freely estimated residuals. Based on this result, this 

study decided to use the quadratic LGCM as a template model. Table 5 shows the parameter 
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estimates and the model fit indices of the unconditional quadratic LGCM. As displayed in Figure 

4, the expected overall GPA score decreases from the first year (9th grade) to the third year (11th 

grade) and then, increases in the fourth year (12th grade). The variances and covariances of the 

latent growth factors are significant except the covariance between intercept and linear slope. 

The intercept variance is fairly large compared to the slopes, indicating that there are significant 

individual differences in the GPA score at 9th grade (i.e., Time point 1), however, the overall 

patterns of the changes over time is alike among individuals. To explore what demographic, 

environmental, and behavioral factors are associated with the initial status (i.e., GPA in 9th 

grade) and changes over time, informative covariates can be used to explain the differences. 

 

Table 5. Results of unconditional quadratic latent growth curve model  
Parameters Estimates S.E. p-value 
Means Intercept (𝜇𝜇𝐼𝐼) 2.984 0.008 < 0.001 
 Linear slope (𝜇𝜇𝑆𝑆) -0.087 0.005 < 0.001 
 Quadratic slope (𝜇𝜇𝑄𝑄) 0.034 0.002 < 0.001 
Variances Intercept (𝜎𝜎𝐼𝐼2) 0.471 0.008 < 0.001 
 Linear slope (𝜎𝜎𝑆𝑆2) 0.057 0.005 < 0.001 
 Quadratic slope (𝜎𝜎𝑄𝑄2) 0.007 0.001 < 0.001 
Covariances I ~ S (𝜎𝜎𝐼𝐼𝐼𝐼) 0.001 0.004 0.791 
 I ~ Q (𝜎𝜎𝐼𝐼𝐼𝐼) -0.012 0.001 < 0.001 
 S ~ Q (𝜎𝜎𝑆𝑆𝑆𝑆) -0.016 0.002 < 0.001 
Variances Residuals (𝜎𝜎𝜀𝜀2) 0.084 0.001 < 0.001 
Model fit indices    
 AIC 51542.013   
 BIC 51613.364   
 CFI 0.994   
 TLI 0.991   
 RMSEA 0.064   

Note. AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), CFI 
(Comparative Fit Index), TLI (Tucker Lewis Index), RMSEA (Root Mean Square Error of 
Approximation) 

 



34  

3.3 Using MOB to grow a tree 
 

The above unconditional model can be used as a template model to grow trees with 

available potentially informative covariates by partitioning recursively. The idea of this study 

was introduced by Zeileis (2020). Thus, most of the details of how to connect two R packages of 

partykit and lavaan is referenced by his paper. The detailed R codes for this empirical 

analysis was presented in Appendix. There are two ways to determine the optimal size of the 

node. The first option is to set up the minimal size per subgroup in advance. The second option is 

to use post-pruning strategy that prunes splits back using information criteria such as BIC as 

described earlier. The partitioning algorithm stops when there is no significant parameter 

instability based on pre-specified Type-I error rate (e.g., a = 0.05 with Bonferroni correction 

controlling for familywise error rate), however, small differences can be identified as they are 

significant with large size dataset like this study. To avoid such large number of terminal nodes 

with small sizes, a post-pruning method adopting BIC is employed. Additionally, the minimum 

sample size per node is set to 250 to get stable parameter estimates for each subgroup. Previous 

literature suggests to have minimum sample size of 250 to correctly detect nonlinear changes 

with four time points (Diallo et al., 2014). Indeed, when the minimum number of nodes was set 

as less than 250 (e.g., 100, 150, or 200), there were negatively estimated variances of the linear 

slope for a specific terminal node. The test statistic for the ordinal covariate was set to use either 

the weighted double maximum (𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂) or the adapted 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂 because the results were the 

same. However, using the test statistic of the categorical covariate for the ordinal covariate, 

which is the default option in partykit, was not the same as the above two. This different 

feature was investigated in the simulation study. The following is the specific procedure how 

MOB is used to grow a tree.  
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Firstly, the model was fitted with default options without both limiting the number of 

subgroups and post pruning of using BIC. The default option for the ordinal covariate was to use 

the test statistic of the categorical covariate. The resulting tree produced 57 terminal nodes, 

which is too large to interpret the resulting tree. Also, the number of sample size of the smallest 

subgroup was 36. This would not be acceptable to say that the parameter estimates are stable. 

Furthermore, there are a lot of subgroups in a tree. It is neither meaningful to interpret the tree 

nor concise to have better understanding about the composition of the subgroups. 

Secondly, the model was fitted with the same options of the above with adding the 

minimum sample size of 250. The resulting tree produced 25 terminal nodes, which was smaller 

than the above. The first choice of splitting covariate was the SES as well. Still, there were a lot 

of overlapped subgroups in terms of trajectories. In addition, the tree structure was very 

complicated. Next, the same model was fitted with both limiting the number of subgroups and 

post pruning of using BIC. The default option for the ordinal covariate was used again. The 

resulting tree produced 9 terminal nodes, which is concise and meaningful to interpret the 

resulting tree. The first covariate used for splitting was SES again. Interestingly, the ordinal 

covariates were not used to split the subgroups in a tree so far. Only the continuous and 

categorical covariates were used for splitting. 

Finally, the option using test statistic of  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 which is used for the ordinal 

covariates, was added to the existing other options of the above. The resulting tree produced 13 

terminal nodes, which was larger than the above. More importantly, the ordinal covariates, such 

as HACT and FLUNCH covariates, were used to split the groups. The parameter estimates of 

MOB with the quadratic LGCM for each subgroup are presented in Table 6. The first column 

represents the composition of the subgroups with the node number. The substantive 
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interpretation of the results can be accomplished by using the Table 6 along with Figures 5 and 6. 

First, the subgroup that shows the lowest mean intercept was the group of students who 1) spent 

more than one hour on extracurricular activities on typical school day, 2) have less than or equal 

to -1.2 scale score of the school motivation, 3) have less than or equal to 0.6 scale score of socio-

economic status, and 4) attending a school in which the percentage of students who receive free 

or reduced-price lunch is more than 20%  (Node 18: HACT > 1H & FLUNCH > 20% & 

BEHAVSCH  ≤ -1.2 & SES ≤ 0.6). This group shows dramatic decrease of GPA score from the 

first to the second year, and then it increases from the third to the fourth year looking at the 

Figure 6. Second, the subgroup that shows the highest mean intercept was the group of female 

students who 1) spent more than one hour on extracurricular activities on typical school day, 2) 

have larger than 0.5 scale score of socio-economic status, and 3) attending a school in which the 

percentage of students who receive free or reduced-price lunch is less than or equal to 20%  

(Node 14: HACT > 1H & FLUNCH ≤ 20% & SES > 0.5 & Female). This group shows slight 

decrease of GPA score from the first to the second year, and then it slightly increases from the 

third to the fourth year looking at the Figure 6.  

There are distinct subgroups showing notable different trajectories compared to other 

subgroups. Looking at the Figure 6, purple and pink lines show gradual increase of GPA score 

across the school years. Using the information from the Table 6, these groups are node 6 (purple) 

and node 5 (pink). The Node 6 is the group of students who 1) spent less than or equal to one 

hour on extracurricular activities on typical school day, 2) have larger than -0.1 scale score of the 

school motivation, and 3) have larger than 0.1 scale score of socio-economic status (HACT ≤ 1H 

& BEHAVSCH > -0.1 & SES > 0.1). The Node 5 is the group of students who 1) spent less than 

or equal to one hour on extracurricular activities on typical school day, 2) have larger than -0.1 
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scale score of the school motivation, and 3) have smaller than 0.1 scale score of socio-economic 

status (HACT ≤ 1H & BEHAVSCH > -0.1 & SES ≤ 0.1). The only difference between these two 

groups is the socio-economic status, making the difference of the mean intercept of GPA score in 

the first year. These groups spent less than one hour on extracurricular activities though, they had 

higher behavioral motivation in school on average, leading to gradual increase of GPA score 

across years. The interesting finding is that the overall GPA scores of these groups are higher 

than the ones of the node 3 group (HACT ≤ 1H & BEHAVSCH ≤ -0.1) across years. The node 3 

group had lower behavioral motivation in school on average, leading to the second lowest overall 

GPA score across years regardless of their socio-economic status.  
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Table 6. Parameter estimates of the LGCM tree of MOB using all covariates  
Subgroup composition (Node #) 𝜇𝜇𝐼𝐼 𝜇𝜇𝑆𝑆 𝜇𝜇𝑄𝑄 𝜎𝜎𝐼𝐼2 𝜎𝜎𝑆𝑆2 𝜎𝜎𝑄𝑄2 𝜎𝜎𝐼𝐼𝐼𝐼 𝜎𝜎𝐼𝐼𝐼𝐼 𝜎𝜎𝑆𝑆𝑆𝑆 𝜎𝜎𝜀𝜀2 

HACT > 1H & FLUNCH > 20% &  
BEHAVSCH  ≤ -1.2 & SES ≤ 0.6 (18) 2.450 -0.261 0.083 0.456 0.067 0.007 -0.042 0.005 -0.018 0.189 

HACT ≤ 1H & BEHAVSCH  ≤ -0.1 (3) 2.474 -0.154 0.057 0.494 0.106 0.013 -0.018 -0.010 -0.031 0.128 
HACT ≤ 1H & BEHAVSCH  > -0.1 & SES ≤ 0.1 (5) 2.748 0.000 0.014 0.484 0.095 0.009 -0.039 -0.004 -0.024 0.113 
HACT > 1H & FLUNCH > 20% &  
BEHAVSCH  > -1.2 & SES ≤ 0.6 (19) 

2.771 -0.146 0.050 0.424 0.044 0.007 0.007 -0.015 -0.014 0.108 

HACT > 1H & FLUNCH ≤ 20% &  
BEHAVSCH  > 0.0 & SES ≤ 0.5 (10) 2.780 -0.153 0.053 0.383 0.040 0.006 0.014 -0.014 -0.012 0.091 

HACT > 1H & FLUNCH > 20% &  
BEHAVSCH  > 0.3 & Others or Black or 
Hispanic (22) 

2.866 -0.033 0.021 0.450 0.047 0.004 -0.032 -0.005 -0.010 0.090 

HACT > 1H & FLUNCH > 20% & BEHAVSCH  
> 0.3 & SES < -0.3 & Asian or White (24) 3.001 -0.068 0.032 0.439 0.084 0.008 -0.040 -0.003 -0.021 0.073 

HACT ≤ 1H & BEHAVSCH  > -0.1 & SES > 0.1 (6) 3.138 -0.039 0.023 0.384 0.048 0.006 0.002 -0.012 -0.015 0.063 
HACT > 1H & FLUNCH ≤ 20% &  
BEHAVSCH  > 0.0 & SES ≤ 0.5 (11) 3.177 -0.055 0.020 0.320 0.023 0.003 0.006 -0.010 -0.007 0.057 

HACT > 1H & FLUNCH > 20% &  
BEHAVSCH  ≤ 0.3 & SES > 0.6 (20) 3.198 -0.163 0.052 0.341 0.039 0.005 -0.004 -0.005 -0.011 0.072 

HACT > 1H & FLUNCH ≤ 20% &  
SES > 0.5 & Male (13) 3.240 -0.039 0.012 0.261 0.026 0.004 0.005 -0.007 -0.008 0.045 

HACT > 1H & FLUNCH > 20% & BEHAVSCH  
> 0.3 & SES > -0.3 & Asian or White (25) 3.349 -0.088 0.033 0.260 0.033 0.004 0.017 -0.013 -0.010 0.063 

HACT > 1H & FLUNCH ≤ 20% &  
SES > 0.5 & Female (14) 3.479 -0.063 0.022 0.206 0.041 0.004 -0.008 -0.006 -0.010 0.032 

Note. FLUNCH, HACT, and MISBEHAV are ordinal variables. FLUNCH =  categorized percentage of students enrolled in the school 
who receive free or reduced-price lunch, HACT = hours spent on extracurricular activities on typical school day. SES = socio-
economic status scale score. BEHAVSCH = student’s school motivation scale score.  
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Figure 5. A LGCM tree of MOB with minimum size of 250 per node and pruning of BIC using 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 statistic (BLK = Black, HIP = 
Hispanic, OTS = Others, ASA = Asian, WHT = White, mi = 𝜇𝜇𝐼𝐼; mean intercept, ms = 𝜇𝜇𝑆𝑆; mean linear slope, mq = 𝜇𝜇𝑄𝑄; mean quadratic 
slope). 
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Figure 6. Expected GPA changes over four years of the 13 distinct subgroups (nodes). 
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CHAPTER 4. METHODS 

 
 

This chapter describes how to evaluate the performance of model-based recursive 

partitioning (MOB) with latent growth curve model (LGCM) under a population model. The 

simulated datasets are also analyzed using growth mixture model (GMM) to compare the results 

each other. The data generation and analysis of MOB with LGCM were conducted using R 4.0.5 

software (R Core Team, 2021) with the two suggested packages of partykit (Hothorn & 

Zeileis, 2015) and lavaan (Rosseel, 2012). Also, MplusAutomation (Hallquist & Wiley, 

2018) and Mplus version 8 (Muthén & Muthén, 1998-2017) were used together in R software to 

fit GMM.   

4.1 Population model for data generation 
 

A plausible population model was chosen to simulate datasets based on the result of the 

empirical analysis described in Chapter 3. The values of the parameters are presented in Table 7. 

This study only considers the differences of the mean intercept because the results of the 

empirical analysis showed that most of the subgroups had similar change trajectories across time. 

Moreover, the random effects of the subgroups were very similar to each other (see Table 6). 

Thus, this study tries to mimic the empirical results.  

The number of true subgroups is set to four. The four subgroups are determined by 

three covariates having interaction effect. This study presumes that the four subgroups have only 

different intercepts depending on the effect size with little variance. There are two reasons for 

this scenario. The first reason of considering one population model is that the purpose of this 

study is to investigate the performance of MOB with LGCM under a few different conditions 
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and other available options for researcher need to choose. This helps ones to not only interpret 

the results more concisely, but also focus on the practical options that needed to be investigated. 

The second reason is that the mean intercept difference dramatically increased when the amount 

of the random effect of the intercept was large. This is unrealistic in practice. Therefore, the 

random effect is set to small imitating the empirical results as well. All the remaining parameters 

including the linear and quadratic slopes as well as their variance-covariance components were 

assumed to be the same across four groups for the purpose of study.  

 

Table 7. Parameters of a population model  
Parameters Coefficients 
Means Intercept (𝜇𝜇𝐼𝐼) 2.800 
 Linear slope (𝜇𝜇𝑆𝑆) -0.100 
 Quadratic slope (𝜇𝜇𝑄𝑄) 0.060 
Variances Intercept (𝜎𝜎𝐼𝐼2) 0.471 
 Linear slope (𝜎𝜎𝑆𝑆2) 0.057 
 Quadratic slope (𝜎𝜎𝑄𝑄2) 0.007 
Covariances I ~ S (𝜎𝜎𝐼𝐼𝐼𝐼) 0.001 
 I ~ Q (𝜎𝜎𝐼𝐼𝐼𝐼) -0.012 
 S ~ Q (𝜎𝜎𝑆𝑆𝑆𝑆) -0.016 
Variances Residuals (𝜎𝜎𝜀𝜀2) 0.084 

 

The mean intercept was varied across subgroups systematically using the Cohen’s 

effect size to enhance interpretation. Based on the values of the effect size, the mean intercept 

values were calculated to have different values. The Cohen’s effect size is obtained by the mean 

difference between two groups (𝜇𝜇1𝐼𝐼 − 𝜇𝜇2𝐼𝐼) divided by the pooled standard deviation (𝜎𝜎𝐼𝐼) as the 

equation (4-1) where I indicates the intercept.  
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𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑛𝑛′𝑠𝑠 𝑑𝑑 =
𝜇𝜇1𝐼𝐼 − 𝜇𝜇2𝐼𝐼

𝜎𝜎𝐼𝐼
. (4-1) 

Since the effect size is ranged from 0.2 to 1.0, their corresponding mean intercept 

differences are 0.14, 0.27, 0.41, 0.55, and 0.69. Thus, the expected GPA score changes of the 

four subpopulations over four years can be represented as Figure 7. While the mean intercept is 

different across four subgroups, the change trajectory is not different from each other. The 

specific population mode with the parameters to simulate datasets for each group across the 

effect size is presented in Table 8.  

Table 8. Parameters of fixed effects for each subgroup depending on effect size 
Effect 
size 

Subgrou
p Intercept (𝜇𝜇𝐼𝐼) Linear slope (𝜇𝜇𝑆𝑆) Quadratic slope (𝜇𝜇𝑄𝑄) 

0.2 G1 2.660 -0.100 0.060 
 G2 2.800 -0.100 0.060 
 G3 2.940 -0.100 0.060 
 G4 3.080 -0.100 0.060 

0.4 G1 2.530 -0.100 0.060 
 G2 2.800 -0.100 0.060 
 G3 3.070 -0.100 0.060 
 G4 3.340 -0.100 0.060 

0.6 G1 2.390 -0.100 0.060 
 G2 2.800 -0.100 0.060 
 G3 3.210 -0.100 0.060 
 G4 3.620 -0.100 0.060 

0.8 G1 2.250 -0.100 0.060 
 G2 2.800 -0.100 0.060 
 G3 3.350 -0.100 0.060 
 G4 3.900 -0.100 0.060 
1 G1 2.110 -0.100 0.060 
 G2 2.800 -0.100 0.060 
 G3 3.490 -0.100 0.060 
 G4 4.180 -0.100 0.060 

Note. G1-G4 are names of subgroups. The variance-covariance components and residuals 
are the same across subgroups as the population model.  
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Figure 7. The expected GPA changes over four years of the four subpopulations depending on 
effect size. 

 

The four repeated outcomes are generated by the quadratic latent growth curve model 

for each subgroup. Three informative covariates are used to differentiate the four subgroups 

showing interaction effects of the covariates. Three types of covariates, which are categorical, 

ordinal, and continuous covariates, are used. In addition, four noise variables (two continuous, 

one ordinal and one categorical variables) are generated regardless of the subgroups. A true tree 

structure of the four subgroups with the cut-points is visualized in Figure 8. Within the square 

boxes at the bottom of the tree, all the parameter values of the specific subgroup are presented. 

Looking at the tree, the first splitting covariate is the ordinal covariate with the cut point of 2. 

The first subgroup from the left has the lowest mean intercept of 2.660, and this group has an 

interaction between the ordinal and continuous covariates. That is, if the informative ordinal 

covariate is less than or equal to 2, the whole samples are divided into subsamples first, then the 
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subsamples are again divided into two subsamples if the informative continuous covariate is less 

than or equal to -0.7. If the informative continuous covariate is more than -0.7, the second 

subgroup from the left has higher mean intercept than the first subgroup. Back to the top of the 

tree, if the informative ordinal covariate is larger than 2, the subsamples are divided into the right 

part of the tree. Then, the subsamples are divided into two subgroups based on the values of the 

informative categorical covariate. The splitting points of these informative covariates are the 

same across simulation conditions.  

 

 

Figure 8. A true tree structure of four subgroups using the effect size of 0.2. 
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4.2 Simulation design 
 

This study considered five simulation conditions; a) effect size (0.2, 0.4, 0.6, 0.8, and 

1.0), b) sample size (1,000, 2,000, 5,000, 10,000, and 20,000), c) treatment of ordinal covariate 

with different test statistic (chi-square test statistic, adapted maximum Lagrange multiplier, and a 

weighted double maximum), d) minimum sample size per subgroup (250 vs. none), and e) post-

pruning option (BIC vs. none). Crossing the conditions fully (5 x 5 x 3 x 2 x 2), there are 300 

conditions. The number of replications was 100. Since the conditions of c), d), and e) are the 

options of MOB, 2,500 (5 x 5 x 100) datasets in total were simulated and analyzed by MOB with 

LGCM and GMM, respectively.  

The third purpose of this study is to investigate how well GMM extracts the true 

number of subgroups (latent class in GMM) with the same datasets generated from the 

population model. Unconditional GMM without covariates was fitted to the data to enumerate 

the number of latent classes (subgroups). The covariates were not used to predict the latent 

classes because it is infeasible to make all possible interaction effects among the three 

informative and four noninformative covariates, which was considered for the population model. 

Moreover, GMM requires several more steps to find the best fitting model among multiple 

candidate models, which has one, two, three, four, or five classes. In addition, it is suggested to 

increase the number of initial random starts and final stage optimization to avoid local maxima 

solutions, ensuring that the best likelihood was replicated. Thus, the number of 1,000 and the 

number of 100 were chosen for the initial random starts and the final stage optimization, 

respectively. In sum, five candidate models were fitted to the same data and the best fitting 

model was chosen with the lowest value of BIC and significant statistical testing of Lo-Mendell-

Rubin likelihood ratio test (Chen et al., 2017; Lo et al., 2001; Nylund et al., 2007). That is, if a 
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model shows the lowest BIC value as well as the significant LRT result which the p-value is less 

than 0.05, the model was chosen to be the best fitting model and the relevant estimates were 

stored to be evaluated. Entropy was also examined, but it was not considered to determine the 

number of classes.  

4.3 Evaluation criteria 
 

For each condition, a) recovery of  the true number of subgroups, b) overall 

classification accuracy and precision of the subgroups, c) accuracy of the splitting points of the 

covariates, d) average bias and root mean squared error (RMSE) of focal fixed effects, which is 

the mean intercept estimate, and e) desirable options for test statistic of the ordinal covariates, 

post pruning method using BIC, and limiting minimum sample size per a subgroup, were 

evaluated.  

First, the recovery of the true number of subgroups was evaluated using two statistics, 

the mean number of estimated subgroups (MNS) and the statistical power (SP) to correctly 

recover the true number of subgroups (𝐶𝐶𝑇𝑇) among the number of the estimated subgroups (𝐶̂𝐶𝑟𝑟). 

𝑆𝑆𝑆𝑆 can be calculated as the sum of the number of estimated subgroups that is equal to the true 

number of subgroups (P), where r is the rth replication and R is the total number of replications. 

While the former statistic informs whether the number of subgroups is overestimated or 

underestimated, the latter one informs the power to recover the true number of subgroups. These 

statistics, however, do not tell whether the composition of the subgroups is correctly recovered or 

not.  

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑅𝑅

� 𝐶̂𝐶𝑟𝑟

𝑅𝑅=100

𝑟𝑟=1

 (4-2) 
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𝑆𝑆𝑆𝑆 =  � |𝐶̂𝐶𝑟𝑟

𝑅𝑅=100

𝑟𝑟=1

∈ 𝐶𝐶𝑇𝑇| (4-3) 

 

Second, overall classification accuracy and precision of the subgroups were calculated 

using the information from a confusion table presented in Table 4.3. The confusion matrix 

provides a tabular summary of the actual subgroup labels versus the predicted ones. Since this 

study has the four number of subgroups, the confusion table consists of 4 x 4 matrix. Let 𝑁𝑁 be 

the total number of samples in the confusion table. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is defined as the number of correctly 

classified samples per subgroup. This produces a vector of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = [𝑁𝑁11,𝑁𝑁22,𝑁𝑁33,𝑁𝑁44]. The 

number of samples per subgroup is a vector of 𝑇𝑇𝑇𝑇 = [𝑇𝑇𝑇𝑇1,𝑇𝑇𝑇𝑇2,𝑇𝑇𝑇𝑇3,𝑇𝑇𝑇𝑇4] and the number of 

predictions per subgroup is a vector of 𝑃𝑃𝑃𝑃 = [𝑃𝑃𝑃𝑃1,𝑃𝑃𝑃𝑃2,𝑃𝑃𝑃𝑃3,𝑃𝑃𝑃𝑃4].  

 

Table 9. Confusion table 
  Predicted subgroup 
  G1 G2 G3 G4 Total 

True 
subgroup 

G1 N11 N12 N13 N14 TN1 
G2 N21 N22 N23 N24 TN2 
G3 N31 N32 N33 N34 TN3 
G4 N41 N42 N43 N44 TN4 

Total PN1 PN2 PN3 PN4 N 
Note. G1-G4 are names of subgroups. N11-N44 are the number of samples in each cell.  

 

The overall classification accuracy is regarded as a metric to evaluate overall 

performance of the model. This can be calculated as the total number of correct predictions 

divided by the total number of predictions made for the dataset, which represented in the (4-4) 

equation. The prediction is the number of positive subgroup predictions that actually belong to 

the positive subgroup. This is obtained by the equation (4-5), which is the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 divided by 𝑃𝑃𝑃𝑃. 
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The recall is the number of positive subgroup predictions made out of all positive individuals in 

the dataset. This is obtained by the equation (4-6), which is the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 divided by 𝑇𝑇𝑇𝑇. The F1 is a 

single score that balances both the concerns of precision and recall in one number. This is the 

harmonic average of recall and precision. This can be obtained by two times precision multiplied 

by recall divided by the sum of the precision and recall as presented in the equation (4-7). All 

metrics are ranged between 0 and 1.  

The precision, recall, and F1 score are the subgroup-specific metrics, which produces 

vectors having four values, respectively. Since this study aims to evaluate the overall 

performance of the classification, those three metrics (precision, recall, and F1) are averaged 

over four subgroups rather than using subgroup-specific metrics, resulting in macro-averaged 

precision, recall, and F1 score from the equations (4-8) - (4-10).  

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
∑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑁𝑁

=
𝑁𝑁11 + 𝑁𝑁22 + 𝑁𝑁33 + 𝑁𝑁44

𝑁𝑁
, (4-4) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑃𝑃𝑃𝑃

, (4-5) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑇𝑇𝑇𝑇

, (4-6) 

𝐹𝐹1 =  
2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

, (4-7) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐴𝐴𝐴𝐴) = �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗
1
4

 (4-8) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴𝐴𝐴𝐴) = �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗
1
4

 , (4-9) 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹1 (𝑀𝑀𝑀𝑀𝑀𝑀1) = �𝐹𝐹1 ∗
1
4

 , (4-10) 
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Then, the evaluation was conducted by calculating the average of each metric over the 

replication for the simulation study, which are the mean accuracy, mean macro averaged 

precision, mean macro averaged recall, and mean macro averaged F1 represented by the 

equations (4-11) - (4-14).  

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑀𝑀𝑀𝑀) =  
1
𝑅𝑅

� 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟

𝑅𝑅=100

𝑟𝑟=1

 (4-11) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑀𝑀𝑀𝑀𝑀𝑀) =  
1
𝑅𝑅

� 𝐴𝐴𝐴𝐴𝑟𝑟

𝑅𝑅=100

𝑟𝑟=1

 (4-12) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑀𝑀𝑀𝑀𝑀𝑀) =  
1
𝑅𝑅

� 𝐴𝐴𝐴𝐴𝑟𝑟

𝑅𝑅=100

𝑟𝑟=1

 (4-13) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹1 (𝑀𝑀𝑀𝑀𝑀𝑀1) =  
1
𝑅𝑅

� 𝐴𝐴𝐴𝐴1𝑟𝑟

𝑅𝑅=100

𝑟𝑟=1

 (4-14) 

 

Third, it is also important to make sure if the composition of the estimated subgroups is 

correct. This is evaluated by checking the splitting points of the covariates. The accuracy of the 

splitting (cut) points can be calculated using an average of split point where S stands for splitting 

point.  

 

𝑀𝑀𝑀𝑀 =  
1
𝑅𝑅

� 𝑆̂𝑆𝑟𝑟

𝑅𝑅=100

𝑟𝑟=1

 (4-8) 

 

Fourth, it is necessary to examine the parameter estimates of each subgroup if the 
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estimates are unbiased and efficient. This also can be evaluated using bias and RMSE of the 

estimates. Since the population model focuses on the differences of the mean intercept, only the 

mean intercept was evaluated using below two equations.  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸 =  
1
𝑅𝑅

� 𝜃𝜃�𝑟𝑟 − 𝜃𝜃𝑇𝑇

𝑅𝑅=100

𝑟𝑟=1

 (4-9) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 =  �
1
𝑅𝑅
��𝜃𝜃�𝑟𝑟 − 𝜃𝜃𝑇𝑇�

2
𝑅𝑅

𝑟𝑟=1

 (4-10) 

Fifth, a simulation is parallelly conducted with unconditional GMM using the same 

datasets, and the results of MOB are compared with the ones of GMM. The insights from the 

comparative study reveal how different approaches can be useful. 
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CHAPTER 5. RESULTS 

 
 

This chapter presents the results of the simulation study organized into six sections 

corresponding to the research questions described in Chapter 1. The first four sections show the 

results of the comprehensive simulation studies that investigate the performance of MOB with 

LGCM from a certain population model under considered conditions. Statistical power to detect 

the true number of subgroups, classification accuracy and precision, accuracy of splitting point 

of the covariates, and bias and root mean squared error of parameter estimates are presented. The 

fifth section reveals desirable several options of test statistic for ordinal covariates, post pruning 

option using BIC, and setting the minimum sample size per a subgroup. The last section briefly 

presents the results of comparison between MOB and GMM primarily focusing on the number of 

subgroups. 

5.1 Statistical power to recover the true number of subgroups 
 

This section is to answer the second research question that how well MOB correctly 

determine the true number of subgroups for a given population model. Table 10 shows the results 

of the average number of the estimated subgroups and the statistical power to recover the true 

number of subgroups. The analysis was conducted using 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 test statistic that is the weighted 

double maximum for ordinal covariate. The results show that as the magnitude of effect size and 

the sample size increase, the statistical power increases with the post pruning method using BIC. 

The highlighted cells in the table with green color indicate 95-100% of recovery rate of the true 

number of subgroups. Without the pruning option using BIC, there was a tendency to over 

extract the number of subgroups. Even without setting up the minimum sample size per 

subgroup, using BIC as the pruning method worked to recover the true number of subgroups 
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with conditions that the effect size is larger than or equal to 0.4 and the sample size is larger than 

or equal to 10,000.  

With the small effect size of 0.2, the sample sizes of 1,000 and 2,000 were not 

sufficient to recover the true number of subgroups. The average number of estimated subgroups 

is ranged from 1.00 to 2.15 in this condition. As the sample sizes increase to 5,000, 10,000, and 

20,000, the average number of the estimated subgroup and the power increase as well. However, 

the power was ranged from 75% to 84%, which was not enough to correctly detect the true 

number of subgroups. When the effect size is small, post pruning option makes less the number 

of subgroups, which the power is 0%.  

With the conditions of medium effect size of 0.4 and 0.6 using BIC pruning option, the 

sample sizes of 10,000 and 5,000, respectively, were sufficient to recover the true number of 

subgroups. The mean estimated number of subgroups with the sample size of 2,000 and the 

minimum sample size of 250 without the BIC pruning option was 4.0, which is the same with the 

true number of subgroups, and its power to recover it was 94%. With the large effect sizes of 0.8 

and 1.0, the results with sample sizes of 1,000 and 2,000 show that the true number of subgroups 

without pruning and with the minimum sample size of 250 was perfectly recovered. This feature 

of options will be described in the fifth section in detail.  
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Table 10. Mean of estimated number of subgroups (MNS) and statistical power (P) to recover 
true number of subgroups using WDMO statistics 
 

Effect 
Size 

Min 
# 

Prunin
g 

N=1,000 N=2,000 N=5,000 N=10,000 N=20,000 
MN

S 
P 

MN
S 

P 
MN

S 
P 

MN
S 

P 
MN

S 
P 

0.2 No No 2.13 1 2.15 2 3.47 35 4.27 78 4.24 80 

  BIC 1.00 0 1.00 0 2.00 0 2.00 0 2.00 0 

 250 No 2.02 0 2.09 0 3.50 41 4.18 84 4.33 75 
    BIC 1.00 0 1.03 0 2.00 0 2.00 0 2.00 0 
0.4 No No 2.48 8 4.13 84 4.17 86 4.16 85 4.19 84 

 
 BIC 2.00 0 2.00 0 2.04 0 4.00 

10
0 4.00 

10
0 

 250 No 2.88 17 4.00 94 4.21 81 4.11 90 4.14 87 

   BIC 2.00 0 2.00 0 2.05 0 4.00 10
0 4.00 10

0 
0.6 No No 4.16 84 4.22 83 4.23 80 4.27 79 4.27 78 

  BIC 2.00 0 2.11 1 4.00 10
0 4.00 10

0 4.00 10
0 

 250 No 3.98 98 4.03 97 4.15 87 4.23 84 4.14 87 

    BIC 2.00 0 2.12 3 4.00 10
0 4.00 10

0 4.00 10
0 

0.8 No No 4.16 84 4.32 74 4.21 82 4.23 78 4.18 84 

  BIC 2.17 2 4.00 10
0 4.00 10

0 4.00 10
0 4.00 10

0 

 250 No 4.00 10
0 4.02 98 4.19 85 4.12 89 4.21 83 

    BIC 2.15 2 4.00 10
0 4.00 10

0 4.00 10
0 4.00 10

0 
1.0 No No 4.12 88 4.26 79 4.25 77 4.22 84 4.19 85 

  BIC 3.99 99 4.00 
10
0 4.00 

10
0 4.00 

10
0 4.00 

10
0 

 250 No 4.00 10
0 4.00 10

0 4.17 84 4.27 78 4.17 83 

    BIC 4.00 
10
0 4.00 

10
0 4.00 

10
0 4.00 

10
0 4.00 

10
0 

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
MNS = mean number of estimated subgroups. P = statistical power.  
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5.2 Overall classification accuracy and precision 
 

This section is to answer the third research question that how well MOB accurately and 

precisely classify the true subgroups for a given population model. Tables 11 - 15 show the 

results of the classification accuracy, macro-averaged precision, recall, and F1 score using 

𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 test statistic which is the weighted double maximum for ordinal covariate. The tables are 

presented in the order of effect size. Since the values of recall and F1 score were very similar to 

the accuracy and precision, this section focuses on describing the accuracy and precision.  

First, looking at the Table 11, most of the means of classification accuracy is below 

0.90. The maximum of the classification accuracy was 0.90 with the sample size of 20,000 

without both minimum sample size and BIC pruning option. Some cells with the sample sizes of 

1,000 and 2,000 empty because those conditions did not even recover the four true subgroups 

once. As sample size increases, the classification accuracy, precision, recall, and F1 score tend to 

increase. When the effect size was 0.2, the classification accuracy and precision were around 

0.90 and 0.98, respectively without BIC pruning option. Even though the power to recover the 

true number of subgroups was ranged from 75 - 84% without the BIC pruning option for the 

sample sizes of 10,000 and 20,000 in this condition, their classification accuracy and precision 

were ranged from 0.89 - 0.99.  

Second, Table 12 shows the results of the effect size of 0.4. For the cells of perfectly 

recovering the true number of subgroups, their classification accuracy and precision were also 

100%. These conditions are the sample sizes of 10,000 and 20,000 with the BIC pruning option. 

Interestingly, classification accuracy and precision were 0.97 and 0.98, respectively, for the 

sample size of 2,000 using minimum sample size option without pruning method. As the effect 
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size increases from 0.4 to 0.6, the classification accuracy and precision tend to increase as well 

under relatively small sample sizes, such as 1,000 and 2,000 with the option of setting minimum 

sample size of 250. As presented in Table 13, the performance of MOB in terms of the 

classification accuracy and precision was almost perfect under smaller sample sizes (1,000 and 

2,000) with the option of setting the minimum sample size of 250 rather than with BIC pruning 

option. However, the performance was reversed under larger sample sizes (5,000 - 20,000) with 

the BIC pruning option regardless of the minimum sample size of 250.  

Third, the results of large effect sizes (0.8 and 1.0) are presented in Tables 14 and 15, 

respectively. There were conditions that perfectly classified the subgroups with smaller sample 

sizes, such as 1,000 and 2,000. For the sample size of 1,000, MOB performed perfectly with the 

option of minimum sample size of 250 without BIC pruning when the effect sizes were 0.8 and 

1.0. As the sample size increases to 2,000, MOB performs perfectly except one condition that 

there are no options of setting minimum sample size and BIC pruning. As the sample size 

increases more than 5,000, MOB requires pruning option using BIC to perfectly classify the 

subgroups. This is because MOB tends to over-estimate the number of subgroups without 

pruning with the larger sample size as presented in Table 10.  
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Table 11. Means of classification accuracy (MA), macro-averaged precision (MAP), recall 
(MAR), and F1 (MAF1) using WDMO statistics (Effect size=0.2) 
 

Sample Size Min # Pruning Effect Size = 0.2 
MA MAP MAR MAF1 

1,000 No No 0.27 0.27 0.51 0.51 

  BIC 0.25 0.25 - - 

 250 No 0.25 0.25 0.50 0.50 
    BIC 0.25 0.25 - - 
2,000 No No 0.27 0.27 0.51 0.51 

  BIC 0.25 0.25 - - 

 250 No 0.27 0.27 0.52 0.52 
   BIC 0.25 0.25 - - 
5,000 No No 0.66 0.72 0.79 0.79 

  BIC 0.25 0.25 0.50 0.50 

 250 No 0.69 0.74 0.81 0.81 
    BIC 0.25 0.25 0.50 0.50 
10,000 No No 0.89 0.97 0.89 0.89 

  BIC 0.25 0.25 0.50 0.50 

 250 No 0.90 0.95 0.90 0.90 
    BIC 0.25 0.25 0.50 0.50 
20,000 No No 0.90 0.99 0.90 0.90 

  BIC 0.25 0.25 0.50 0.50 

 250 No 0.87 0.95 0.87 0.87 
    BIC 0.25 0.25 0.50 0.50 

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
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Table 12. Means of classification accuracy (MA), macro-averaged precision (MAP), recall 
(MAR), and F1 (MAF1) using WDMO statistics (Effect size=0.4) 
 

Sample Size Min # Pruning Effect size = 0.4 
MA MAP MAR MAF1 

1,000 No No 0.35 0.35 0.58 0.58 

  BIC 0.25 0.25 0.50 0.50 

 250 No 0.61 0.64 0.82 0.82 
    BIC 0.25 0.25 0.50 0.50 
2,000 No No 0.91 0.95 0.92 0.92 

  BIC 0.25 0.25 0.50 0.50 

 250 No 0.97 0.98 0.97 0.97 
   BIC 0.25 0.25 0.50 0.50 
5,000 No No 0.92 0.97 0.92 0.92 

  BIC 0.27 0.27 0.52 0.52 

 250 No 0.92 0.97 0.92 0.92 
    BIC 0.26 0.25 0.51 0.51 
10,000 No No 0.93 0.96 0.93 0.93 

  BIC 1.00 1.00 1.00 1.00 

 250 No 0.94 0.96 0.94 0.94 
    BIC 1.00 1.00 1.00 1.00 
20,000 No No 0.91 0.95 0.91 0.91 

  BIC 1.00 1.00 1.00 1.00 

 250 No 0.92 0.96 0.92 0.92 
    BIC 1.00 1.00 1.00 1.00 

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
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Table 13. Means of classification accuracy (MA), macro-averaged precision (MAP), recall 
(MAR), and F1 (MAF1) using WDMO statistics (Effect size=0.6) 
 

Sample Size Min # Pruning Effect size=0.6 
MA MAP MAR MAF1 

1,000 No No  0.88   0.92   0.89   0.89  

  BIC  0.25   0.25   0.50   0.50  

 250 No  1.00   1.00   1.00   1.00  
    BIC  0.25   0.25   0.50   0.50  
2,000 No No  0.90   0.95   0.90   0.90  

  BIC  0.29   0.29   0.54   0.54  

 250 No  0.98   0.99   0.98   0.98  
   BIC  0.29   0.29   0.53   0.53  
5,000 No No  0.90   0.94   0.90   0.90  

  BIC  1.00   1.00   1.00   1.00  

 250 No  0.93   0.96   0.93   0.93  
    BIC  1.00   1.00   1.00   1.00  
10,000 No No  0.87   0.93   0.87   0.87  

  BIC  1.00   1.00   1.00   1.00  

 250 No  0.91   0.95   0.91   0.91  
    BIC  1.00   1.00   1.00   1.00  
20,000 No No  0.89   0.94   0.89   0.89  

  BIC  1.00   1.00   1.00   1.00  

 250 No  0.92   0.99   0.92   0.92  
    BIC  1.00   1.00   1.00   1.00  

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
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Table 14. Means of classification accuracy (MA), macro-averaged precision (MAP), recall 
(MAR), and F1 (MAF1) using WDMO statistics (Effect size=0.8) 
 

Sample Size Min # Pruning Effect size=0.8 
MA MAP MAR MAF1 

1,000 No No 0.91 0.95 0.91 0.91 

  BIC 0.29 0.29 0.54 0.54 

 250 No 1.00 1.00 1.00 1.00 
    BIC 0.30 0.30 0.55 0.55 
2,000 No No 0.89 1.00 0.89 0.89 

  BIC 1.00 1.00 1.00 1.00 

 250 No 0.98 0.99 0.98 0.98 
   BIC 1.00 1.00 1.00 1.00 
5,000 No No 0.92 0.98 0.92 0.92 

  BIC 1.00 1.00 1.00 1.00 

 250 No 0.89 0.92 0.89 0.89 
    BIC 1.00 1.00 1.00 1.00 
10,000 No No 0.90 0.96 0.90 0.90 

  BIC 1.00 1.00 1.00 1.00 

 250 No 0.95 0.97 0.95 0.95 
    BIC 1.00 1.00 1.00 1.00 
20,000 No No 0.92 0.97 0.92 0.92 

  BIC 1.00 1.00 1.00 1.00 

 250 No 0.91 0.99 0.91 0.91 
    BIC 1.00 1.00 1.00 1.00 

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  



61  

Table 15. Means of classification accuracy (MA), macro-averaged precision (MAP), recall 
(MAR), and F1 (MAF1) using WDMO statistics (Effect size=1.0) 
 

Sample Size Min # Pruning Effect size=1.0 
MA MAP MAR MAF1 

1,000 No No  0.96   0.99   0.96   0.96  

  BIC  1.00   1.00   1.00   1.00  

 250 No  1.00   1.00   1.00   1.00  
    BIC  1.00   1.00   1.00   1.00  
2,000 No No  0.87   0.93   0.87   0.87  

  BIC  1.00   1.00   1.00   1.00  

 250 No  1.00   1.00   1.00   1.00  
   BIC  1.00   1.00   1.00   1.00  
5,000 No No  0.90   0.98   0.90   0.90  

  BIC  1.00   1.00   1.00   1.00  

 250 No  0.91   0.94   0.91   0.91  
    BIC  1.00   1.00   1.00   1.00  
10,000 No No  0.92   0.96   0.92   0.92  

  BIC  1.00   1.00   1.00   1.00  

 250 No  0.87   0.92   0.87   0.87  
    BIC  1.00   1.00   1.00   1.00  
20,000 No No  0.93   0.97  0.93   0.93  

  BIC  1.00   1.00   1.00   1.00  

 250 No  0.90   0.96   0.90   0.90  
    BIC  1.00   1.00   1.00   1.00  

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
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5.3 Accuracy of splitting points of covariates 
 

This section investigates how accurate the composition of the subgroups is by 

evaluating the mean of the splitting points of covariates. Firstly, it was investigated if the noise 

covariates were used for splitting at any stages. The results show that the noise covariates were 

not selected as the splitting covariates under all conditions. Thus, those results are not presented 

in this section. The averages of the splitting points of the informative covariates are presented in 

Table 16. If the number of the detected subgroups is not equal to four, it is not possible to 

calculate the means of all splitting points of the informative covariates. This is because not only 

is the structure of the tree different from the true tree, but also the number of replications is not 

sufficient to calculate the mean. Since the first splitting point is 2 for the informative (true) 

ordinal covariate, the means of them are calculated across replications if the number of the 

detected subgroups is larger than 1. If MOB did not differentiate the true subgroups, leading to 

produce just one subgroup, there was not the splitting point. The splitting point of the ordinal 

covariate is presented in the column of O in Table 16. The results show that the true splitting 

point of 2 for the true informative ordinal covariate was correctly detected for the first splitting 

under most of the conditions except two conditions of the effect size of 0.2 and the sample sizes 

of 1,000 and 2 000 with BIC pruning option.  

The second true splitting is done by both a continuous covariate and a categorical 

covariate as described in Figure 8. The true splitting point of the continuous covariate is -0.7. 

The composition of the categorical covariate was also investigated though, the splitting 

composition was perfect if the average estimated number of subgroups was four and correctly 

recovered. If the number of the determined subgroups under some conditions is larger than 4, 

such as 5 or 6 or 7, the subgroup was divided into additional subgroups according to the values 
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of the continuous covariate.  

 

Table 16. Mean of splitting points of covariates (MS) using WDMO statistics 

Effect Size Min # Pruning N=1,000 N=2,000 N=5,000 N=10,000 N=20,000 
O C O C O C O C O C 

0.2 No No 2 - 2 - 2 - 2 - 2 - 

  BIC - - - - 2 - 2 - 2 - 

 250 No 2 - 2 - 2 - 2 - 2 - 
    BIC - - - - 2 - 2 - 2 - 
0.4 No No 2 - 2 - 2 - 2 - 2 - 

  BIC 2 - 2 - 2 - 2 -0.69 2 -0.70 

 250 No 2 - 2 - 2 - 2 - 2 - 
   BIC 2 - 2 - 2 - 2 -0.69 2 -0.70 
0.6 No No 2 - 2 - 2 - 2 - 2 - 

  BIC 2 - 2 - 2 -0.69 2 -0.70 2 -0.70 

 250 No 2 -0.70 2 -0.64 2 - 2 - 2 - 
    BIC 2 - 2 - 2 -0.70 2 -0.70 2 -0.70 
0.8 No No 2 - 2 - 2 - 2 - 2 - 

  BIC 2 - 2 -0.68 2 -0.69 2 -0.70 2 -0.70 

 250 No 2 -0.70 2 -0.65 2 - 2 - 2 - 
    BIC 2 - 2 -0.67 2 -0.70 2 -0.70 2 -0.70 
1.0 No No 2 - 2 - 2 - 2 - 2 - 

  BIC 2 -0.74 2 -0.67 2 -0.69 2 -0.70 2 -0.70 

 250 No 2 -0.70 2 -0.68 2 - 2 - 2 - 
    BIC 2 -0.70 2 -0.70 2 -0.70 2 -0.70 2 -0.70 

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
O = splitting point of ordinal covariate. C = splitting point of continuous covariate.  
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5.4 Bias and RMSE of parameter estimates 
 

To further check the unbiasedness and efficiency of the parameter estimates, bias and 

root mean squared error (RMSE) were calculated. Since it is infeasible to calculate the bias and 

RMSE if the number of estimated subgroups is not the same with the true number of subgroups, 

only the results of the conditions that perfectly recovered the true number of subgroups are 

presented in Tables 17 - 20 for bias and 21 - 24 for RMSE, respectively. Also, means of 

intercept, linear slope, and quadratic slope with their variances are presented in this section 

because the biases of covariances and residuals are close to zero across all conditions.  

When the effect size is 0.4, the conditions that perfectly recovered the number of true 

subgroups are when the sample sizes are 10,000 and 20,000 with BIC post pruning option. 

Looking at the bias of these conditions in Table 17, the range of all bias in this condition is from 

-0.003 to 0.003. Focusing on the values of the mean intercept, the range of bias for the mean 

intercept is from -0.003 to 0.002. Since the values of the mean intercept parameters with the 

effect size of 0.4 are 2.53 (G1), 2.80 (G2), 3.07 (G3), and 3.34 (G4) for each true subgroup, the 

relative magnitude of bias (which is calculated by the bias divided by the corresponding 

parameter value times 100) is ranging from -0.09% to 0.09%.  Table 21 shows the RMSE of 

these conditions, and the values are close to zeros.  

When the effect size is 0.6, the conditions that perfectly recovered the number of true 

subgroups are when the sample sizes are 5,000, 10,000, and 20,000 with BIC post pruning 

option. Looking at the bias of these conditions in Table 18, the range of all bias in this condition 

is from -0.005 to 0.004. Focusing on the values of the mean intercept, the range of bias for the 

mean intercept is from -0.002 to 0.002. Since the values of the mean intercept parameters with 

the effect size of 0.6 are 2.39 (G1), 2.80 (G2), 3.21 (G3), and 3.62 (G4) for each true subgroup, 
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the relative magnitude of bias is ranging from -0.21% to 0.17%. Table 22 shows the RMSE in 

these conditions, and the values are very close to zeros.  

When the effect size is 0.8, the conditions that perfectly recovered the number of true 

subgroups additionally included the sample sizes of 1,000 and 2,000 in certain pruning methods. 

Specifically, when the sample size is 1,000, setting the minimum sample size of 250 without the 

post pruning option using BIC recovered the true number of subgroups. Other conditions 

recovered the true number of subgroups include the post pruning option using BIC regardless of 

the minimum sample size of 250 across different sample sizes (2,000, 5,000, 10,000, and 

20,000). Looking at the bias of these conditions in Table 19, the range of all bias in this 

condition is from -0.011 to 0.01. Focusing on the values of the mean intercept, the range of bias 

for the mean intercept is from -0.011 to 0.008. Since the values of the mean intercept parameters 

with the effect size of 0.8 are 2.25 (G1), 2.80 (G2), 3.35 (G3), and 3.90 (G4) for each true 

subgroup, the relative magnitude of bias is ranging from -0.29% to 0.24%. Table 23 shows the 

RMSE in these conditions, and the values are very close to zeros.  

When the effect size is 1.0, the conditions that perfectly recovered the number of true 

subgroups included two more conditions than the ones of the effect size of 0.8. These conditions 

are when 1) sample size of 1,000 setting the minimum size of 250 per subgroup with the post 

pruning method using BIC, 2) sample size of 2,000 setting the minimum size of 250 per 

subgroup without the pruning method using BIC. Likewise, other conditions recovered the true 

number of subgroups include the post pruning option using BIC regardless of the minimum 

sample size of 250 across all sample sizes (1,000, 2,000, 5,000, 10,000, and 20,000). Looking at 

the bias of these conditions in Table 20, the range of all bias in these conditions is from -0.012 to 

0.013. Focusing on the values of the mean intercept, the range of bias for the mean intercept is 
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from -0.009 to 0.008. Since the values of the mean intercept parameters with the effect size of 

1.0 are 2.11 (G1), 2.80 (G2), 3.49 (G3), and 4.18 (G4) for each subgroup, the relative magnitude 

of bias is ranging from -0.38% to 0.24%. Table 24 shows the RMSE in these conditions, and the 

values are very close to zeros.  

 
Table 17. Bias of parameter estimates of conditions perfectly recovered true subgroups using 
WDMO statistics (Effect size=0.4) 

N Min # Pruning Subgroups mi ms mq vi vs vq 
10,000 No BIC G1 0.002 -0.001 0.000 0.003 -0.002 0.000 

   G2 0.002 0.001 0.000 0.002 0.001 0.000 
   G3 0.002 -0.001 0.000 0.003 0.001 0.000 
   G4 0.001 0.001 0.000 0.000 0.002 0.000 
 250 BIC G1 -0.002 0.000 0.000 0.002 -0.002 0.000 
   G2 -0.001 -0.001 0.000 0.001 -0.002 0.000 
   G3 -0.002 0.000 0.000 0.002 -0.002 0.000 
   G4 -0.003 0.002 0.000 0.003 0.001 0.000 

20,000 No BIC G1 0.001 0.000 0.000 0.002 0.000 0.000 
   G2 0.002 -0.002 0.000 0.001 0.000 0.000 
   G3 0.002 0.000 0.000 0.000 0.001 0.000 
   G4 0.001 0.001 0.000 0.000 -0.001 0.000 
 250 BIC G1 0.001 0.000 0.000 -0.001 0.002 0.000 
   G2 0.001 0.001 0.000 0.000 0.000 0.000 
   G3 0.001 0.001 0.000 -0.001 0.000 0.000 
   G4 0.001 -0.001 0.000 -0.001 0.000 0.000 

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
mi = mean intercept. ms = mean linear slope. mq = mean quadratic slope.  
vi = variance of intercept. vs = variance of linear slope. vq = variance of quadratic slope.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
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Table 18. Bias of parameter estimates of conditions perfectly recovered true subgroups using 
WDMO statistics (Effect size=0.6) 

N Min # Pruning Subgroups mi ms mq vi vs vq 
5,000 No BIC G1 0.004 0.001 -0.001 0.003 0.001 0.000 

   G2 0.003 0.000 0.000 0.004 -0.001 0.000 
   G3 0.001 0.000 0.000 0.003 -0.001 0.000 
   G4 0.001 0.002 -0.001 0.002 -0.004 0.000 
 250 BIC G1 -0.005 0.001 0.000 0.001 -0.001 0.000 
   G2 -0.001 -0.001 0.000 0.004 0.000 0.000 
   G3 -0.002 -0.002 0.001 0.003 -0.004 0.000 
   G4 -0.004 0.001 0.000 -0.001 0.003 0.000 

10,000 No BIC G1 0.001 -0.002 0.001 -0.001 0.000 0.000 
   G2 0.000 0.000 0.000 -0.001 0.000 0.000 
   G3 0.002 -0.002 0.001 -0.002 0.000 0.000 
   G4 -0.001 0.003 -0.001 -0.004 0.000 0.000 
 250 BIC G1 -0.001 -0.001 0.001 -0.003 0.002 0.000 
   G2 -0.001 0.000 0.000 -0.002 -0.001 0.000 
   G3 -0.002 0.001 0.000 -0.005 0.001 0.000 
   G4 0.000 -0.001 0.000 -0.004 0.000 0.000 

20,000 No BIC G1 0.002 0.001 0.000 -0.002 0.000 0.000 
   G2 0.003 0.001 0.000 -0.001 0.000 0.000 
   G3 0.004 0.001 0.000 -0.001 0.000 0.000 
   G4 0.003 0.001 -0.001 0.000 0.000 0.000 
 250 BIC G1 0.000 0.000 0.000 -0.001 -0.002 0.000 
   G2 -0.001 -0.001 0.000 0.000 0.001 0.000 
   G3 -0.001 0.001 0.000 0.000 0.000 0.000 
   G4 -0.001 -0.001 0.000 -0.002 -0.001 0.000 

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
mi = mean intercept. ms = mean linear slope. mq = mean quadratic slope.  
vi = variance of intercept. vs = variance of linear slope. vq = variance of quadratic slope.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
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Table 19. Bias of parameter estimates of conditions perfectly recovered true subgroups using 
WDMO statistics (Effect size=0.8) 

N Min # Pruning Subgroups mi ms mq vi vs vq 
1000 250 No G1 0.004 0.005 -0.001 -0.004 -0.002 0.000 

   G2 0.005 0.006 -0.002 0.010 0.001 0.000 
   G3 0.008 0.002 0.000 -0.003 -0.002 0.000 
   G4 0.007 0.005 -0.002 0.003 -0.005 0.000 

2000 No BIC G1 -0.006 -0.002 0.001 0.000 -0.003 0.000 
   G2 -0.008 0.000 0.001 0.000 0.000 0.000 
   G3 -0.005 0.002 -0.001 0.001 -0.004 0.000 
   G4 -0.011 0.006 -0.002 0.002 -0.005 -0.001 
 250 BIC G1 -0.002 -0.005 0.002 -0.007 -0.006 -0.001 
   G2 -0.004 -0.003 0.002 -0.006 -0.001 0.000 
   G3 0.001 -0.010 0.003 -0.008 -0.004 0.000 
   G4 -0.003 -0.004 0.001 -0.004 -0.001 0.000 

5000 No BIC G1 -0.003 0.004 -0.001 0.002 -0.001 0.000 
   G2 0.000 0.002 -0.001 0.001 -0.001 0.000 
   G3 0.000 0.002 -0.001 0.003 -0.002 0.000 
   G4 0.000 -0.003 0.001 0.003 0.001 0.000 
 250 BIC G1 0.004 0.002 -0.001 -0.004 -0.002 0.000 
   G2 0.005 -0.001 -0.001 -0.003 0.000 0.000 
   G3 0.003 0.001 0.000 -0.002 0.000 0.000 
   G4 0.004 0.000 0.000 -0.004 -0.001 0.000 

10000 No BIC G1 0.001 0.000 0.000 0.001 0.000 0.000 
   G2 0.000 0.003 -0.001 0.002 -0.002 0.000 
   G3 0.001 0.000 0.000 0.000 0.000 0.000 
   G4 -0.001 0.003 0.000 0.002 -0.003 0.000 
 250 BIC G1 -0.001 -0.002 0.001 -0.002 -0.001 0.000 
   G2 0.001 -0.002 0.001 -0.001 0.001 0.000 
   G3 0.000 -0.001 0.000 -0.003 0.002 0.000 
   G4 0.000 -0.002 0.001 -0.004 0.001 0.000 

20000 No BIC G1 -0.001 -0.001 0.000 0.001 0.000 0.000 
   G2 -0.001 -0.001 0.000 0.001 0.000 0.000 
   G3 -0.001 -0.001 0.000 0.002 0.000 0.000 
   G4 -0.001 0.000 0.000 0.002 0.000 0.000 
 250 BIC G1 -0.001 -0.001 0.000 0.001 0.001 0.000 
   G2 -0.001 0.000 0.000 -0.001 -0.001 0.000 
   G3 0.000 -0.001 0.000 -0.001 0.000 0.000 
   G4 -0.001 0.000 0.000 -0.001 0.001 0.000 

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
mi = mean intercept. ms = mean linear slope. mq = mean quadratic slope.  
vi = variance of intercept. vs = variance of linear slope. vq = variance of quadratic slope.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
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Table 20. Bias of parameter estimates of conditions perfectly recovered true subgroups using 
WDMO statistics (Effect size=1.0) 

N Min # Pruning Subgroups mi ms mq vi vs vq 
1000 250 No G1 0.004 0.001 -0.001 0.002 -0.004 0.000 

  No G2 -0.001 0.002 0.000 0.007 0.004 0.000 
  No G3 0.004 -0.007 0.003 0.000 -0.002 0.000 
  No G4 0.006 -0.012 0.004 0.004 0.001 0.000 
 250 BIC G1 -0.005 0.005 0.000 0.007 -0.002 0.000 
  BIC G2 0.001 -0.004 0.002 0.009 -0.001 0.000 
  BIC G3 -0.002 0.001 0.000 0.013 0.002 0.000 
  BIC G4 0.000 -0.004 0.002 0.003 0.002 0.000 

2000 No BIC G1 -0.008 0.003 0.000 0.004 0.003 0.000 
  BIC G2 -0.009 0.003 -0.001 0.001 -0.002 0.000 
  BIC G3 -0.007 -0.001 0.001 0.001 -0.001 0.000 
  BIC G4 -0.007 -0.001 0.000 -0.002 0.001 0.000 
 250 No G1 -0.005 0.006 -0.002 0.004 0.000 0.000 
  No G2 -0.004 0.004 -0.001 0.000 -0.003 0.000 
  No G3 -0.002 -0.001 0.001 0.007 -0.003 0.000 
  No G4 -0.001 0.000 0.000 0.003 0.001 0.000 
 250 BIC G1 0.001 -0.005 0.002 -0.004 -0.007 0.000 
  BIC G2 -0.001 0.003 -0.001 -0.007 -0.007 -0.001 
  BIC G3 0.000 -0.003 0.001 -0.003 -0.002 0.000 
  BIC G4 -0.002 0.001 0.000 0.001 -0.003 0.000 

5000 No BIC G1 -0.001 -0.001 0.000 -0.004 -0.002 0.000 
  BIC G2 -0.001 -0.001 0.000 -0.005 0.001 0.000 
  BIC G3 -0.001 -0.002 0.001 -0.003 -0.002 0.000 
  BIC G4 0.001 -0.005 0.001 -0.004 0.002 0.000 
 250 BIC G1 -0.001 0.001 0.000 0.003 -0.003 0.000 
  BIC G2 0.000 0.000 0.000 0.000 -0.006 0.000 
  BIC G3 0.002 -0.001 0.000 0.004 -0.002 0.000 
  BIC G4 0.000 0.001 0.000 0.001 -0.001 0.000 

10000 No BIC G1 0.002 0.000 0.000 -0.003 0.001 0.000 
  BIC G2 0.004 -0.005 0.001 0.000 0.000 0.000 
  BIC G3 0.002 -0.002 0.000 0.000 0.002 0.000 
  BIC G4 0.002 0.000 0.000 -0.002 0.002 0.000 
 250 BIC G1 0.001 -0.002 0.001 -0.001 -0.001 0.000 
  BIC G2 0.000 -0.001 0.001 -0.002 -0.003 0.000 
  BIC G3 0.003 -0.002 0.001 0.000 -0.001 0.000 
  BIC G4 0.000 -0.001 0.000 -0.001 -0.002 0.000 
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Table 20 (cont’d) 
 

20000 No BIC G1 0.003 0.000 0.000 0.000 0.000 0.000 
  BIC G2 0.002 0.000 0.000 0.000 0.000 0.000 
  BIC G3 0.002 -0.001 0.000 0.000 -0.001 0.000 
  BIC G4 0.003 -0.001 0.000 0.001 0.000 0.000 
 250 BIC G1 0.001 0.001 0.000 0.003 0.000 0.000 
  BIC G2 0.002 0.001 0.000 0.001 -0.001 0.000 
  BIC G3 0.003 0.000 0.000 0.003 -0.001 0.000 
  BIC G4 0.001 0.001 0.000 0.001 0.002 0.000 

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
mi = mean intercept. ms = mean linear slope. mq = mean quadratic slope.  
vi = variance of intercept. vs = variance of linear slope. vq = variance of quadratic slope.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
 
 
 
Table 21. RMSE of parameter estimates of conditions perfectly recovered true subgroups using 
WDMO statistics (Effect size=0.4) 

N Min # Pruning Subgroups mi ms mq vi vs vq 
10,000 No BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 

   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.000 0.000 0.000 0.000 0.000 0.000 
 250 BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.000 0.000 0.000 0.000 0.000 0.000 

20,000 No BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.000 0.000 0.000 0.000 0.000 0.000 
 250 BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.000 0.000 0.000 0.000 0.000 0.000 

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
mi = mean intercept. ms = mean linear slope. mq = mean quadratic slope.  
vi = variance of intercept. vs = variance of linear slope. vq = variance of quadratic slope.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
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Table 22. RMSE of parameter estimates of conditions perfectly recovered true subgroups using 
WDMO statistics (Effect size=0.6) 

N Min # Pruning Subgroups mi ms mq vi vs vq 
5,000 No BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 

   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.000 0.000 0.000 0.001 0.000 0.000 
 250 BIC G1 0.001 0.000 0.000 0.000 0.000 0.000 
   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.001 0.000 0.000 
   G4 0.000 0.000 0.000 0.000 0.000 0.000 

10,000 No BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.000 0.000 0.000 0.000 0.000 0.000 
 250 BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.000 0.000 0.000 0.000 0.000 0.000 

20,000 No BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.000 0.000 0.000 0.000 0.000 0.000 
 250 BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.000 0.000 0.000 0.000 0.000 0.000 

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
mi = mean intercept. ms = mean linear slope. mq = mean quadratic slope.  
vi = variance of intercept. vs = variance of linear slope. vq = variance of quadratic slope.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
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Table 23. RMSE of parameter estimates of conditions perfectly recovered true subgroups using 
WDMO statistics (Effect size=0.8) 

N Min # Pruning Subgroups mi ms mq vi vs vq 
1000 250 No G1 0.002 0.001 0.000 0.004 0.001 0.000 

   G2 0.002 0.001 0.000 0.004 0.001 0.000 
   G3 0.002 0.001 0.000 0.003 0.001 0.000 
   G4 0.002 0.001 0.000 0.003 0.001 0.000 

2000 No BIC G1 0.001 0.000 0.000 0.001 0.001 0.000 
   G2 0.002 0.000 0.000 0.001 0.001 0.000 
   G3 0.001 0.001 0.000 0.001 0.000 0.000 
   G4 0.002 0.001 0.000 0.001 0.000 0.000 
 250 BIC G1 0.001 0.001 0.000 0.001 0.000 0.000 
   G2 0.001 0.000 0.000 0.002 0.000 0.000 
   G3 0.001 0.001 0.000 0.001 0.001 0.000 
   G4 0.001 0.000 0.000 0.001 0.001 0.000 

5000 No BIC G1 0.001 0.000 0.000 0.000 0.000 0.000 
   G2 0.001 0.000 0.000 0.000 0.000 0.000 
   G3 0.001 0.000 0.000 0.000 0.000 0.000 
   G4 0.001 0.000 0.000 0.000 0.000 0.000 
 250 BIC G1 0.001 0.000 0.000 0.000 0.000 0.000 
   G2 0.001 0.000 0.000 0.001 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.001 0.000 0.000 0.001 0.000 0.000 

10000 No BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.000 0.000 0.000 0.000 0.000 0.000 
 250 BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.000 0.000 0.000 0.000 0.000 0.000 

20000 No BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.000 0.000 0.000 0.000 0.000 0.000 
 250 BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
   G2 0.000 0.000 0.000 0.000 0.000 0.000 
   G3 0.000 0.000 0.000 0.000 0.000 0.000 
   G4 0.000 0.000 0.000 0.000 0.000 0.000 

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
mi = mean intercept. ms = mean linear slope. mq = mean quadratic slope.  
vi = variance of intercept. vs = variance of linear slope. vq = variance of quadratic slope.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
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Table 24. RMSE of parameter estimates of conditions perfectly recovered true subgroups using 
WDMO statistics (Effect size=1.0) 

N Min # Pruning Subgroups mi ms mq vi vs vq 
1000 250 No G1 0.002 0.001 0.000 0.003 0.001 0.000 

  No G2 0.002 0.001 0.000 0.003 0.001 0.000 
  No G3 0.002 0.001 0.000 0.002 0.001 0.000 
  No G4 0.002 0.001 0.000 0.003 0.001 0.000 
 250 BIC G1 0.002 0.001 0.000 0.002 0.001 0.000 
  BIC G2 0.002 0.001 0.000 0.002 0.001 0.000 
  BIC G3 0.002 0.001 0.000 0.002 0.001 0.000 
  BIC G4 0.002 0.001 0.000 0.003 0.001 0.000 

2000 No BIC G1 0.001 0.001 0.000 0.001 0.000 0.000 
  BIC G2 0.001 0.001 0.000 0.001 0.000 0.000 
  BIC G3 0.001 0.001 0.000 0.001 0.000 0.000 
  BIC G4 0.001 0.000 0.000 0.002 0.000 0.000 
 250 No G1 0.001 0.001 0.000 0.001 0.000 0.000 
  No G2 0.001 0.001 0.000 0.001 0.001 0.000 
  No G3 0.001 0.000 0.000 0.002 0.001 0.000 
  No G4 0.001 0.001 0.000 0.001 0.000 0.000 
 250 BIC G1 0.001 0.001 0.000 0.001 0.001 0.000 
  BIC G2 0.001 0.000 0.000 0.001 0.000 0.000 
  BIC G3 0.001 0.001 0.000 0.001 0.000 0.000 
  BIC G4 0.001 0.000 0.000 0.001 0.001 0.000 

5000 No BIC G1 0.001 0.000 0.000 0.000 0.000 0.000 
  BIC G2 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G3 0.001 0.000 0.000 0.001 0.000 0.000 
  BIC G4 0.001 0.000 0.000 0.001 0.000 0.000 
 250 BIC G1 0.000 0.000 0.000 0.001 0.000 0.000 
  BIC G2 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G3 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G4 0.000 0.000 0.000 0.000 0.000 0.000 

10000 No BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G2 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G3 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G4 0.000 0.000 0.000 0.000 0.000 0.000 
 250 BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G2 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G3 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G4 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 24 (Cont’d) 
 

20000 No BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G2 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G3 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G4 0.000 0.000 0.000 0.000 0.000 0.000 
 250 BIC G1 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G2 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G3 0.000 0.000 0.000 0.000 0.000 0.000 
  BIC G4 0.000 0.000 0.000 0.000 0.000 0.000 

Note. 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = a test statistic of weighted double maximum for ordinal covariate.  
mi = mean intercept. ms = mean linear slope. mq = mean quadratic slope.  
vi = variance of intercept. vs = variance of linear slope. vq = variance of quadratic slope.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
 
 
 
5.5 Several desirable options 

This section focuses on differences of the results stem from several available options. 

As I described before, three options were considered in this study: 1) three different test statistic 

for the ordinal covariate (𝐿𝐿𝐿𝐿, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂, and 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂), 2) an option of pre-pruning option 

whether or not to limit the minimum sample size per subgroup, and 3) an option whether or not 

to use post pruning using BIC. The mean of estimated number of subgroups and the statistical 

power to recover the true number of subgroups were presented as an order of effect size in 

Tables 25 - 29.  

5.5.1 Test statistics of ordinal covariates 
 

Regardless of treating the ordinal covariates as categorical or ordinal, there was not 

noticeable significant difference in terms of the mean of estimated number of subgroups and the 

statistical power to recover the true number of subgroups between three different test statistic 

across most of conditions except a few conditions. There were minor discrepancies between the 

different test statistic when the sample sizes were relatively small (1,000 and 2,000) with the 
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medium or large effect sizes (0.4, 0.6, 0.8, 1.0).  

First, Table 26 shows the results of the effect size of 0.4. When the sample size was 

2,000 with limiting the minimum size per subgroup without post pruning using BIC, the means 

of the estimated subgroups were 3.96 for the 𝐿𝐿𝐿𝐿 (test statistic for categorical covariate), 4.02 for 

the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂(LM test statistic for ordinal covariate), and 4.00 for the 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 (double maximum 

test statistic for ordinal covariate), respectively. Their statistical powers were 94%, 96%, and 

94%, respectively. However, this discrepancy was due to the informative continuous covariate, 

which means that the split point of the ordinal covariate was 2 for all conditions. Thus, the 

condition of the effect size of 0.4 with the sample size of 2,000 sufficiently works well to recover 

the true number of subgroups with the pre-pruning option of setting the minimum sample size of 

250 in this study even though it was not perfectly recovered. However, with the same conditions 

of the options, the number of estimated subgroups increased as the sample size increases 

regardless of the different test statistic for the ordinal covariate.  

Second, Table 27 shows the results of the effect size of 0.6. When the sample size was 

1,000 with limiting the minimum size per subgroup without post pruning using BIC, the means 

of the estimated subgroups across three test statistic of 𝐿𝐿𝐿𝐿, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂, and 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 were 3.98, 

3.99, and 3.98, respectively, and their statistical powers were also 98%, 99%, and 98%, 

respectively. With the same condition, as the sample size was 2,000, the means of the estimated 

subgroups across three options were 4.01, 4.00, and 4.03 with their corresponding statistical 

powers of 99%, 100%, and 97%, respectively. Likewise, this was due to the informative 

continuous covariate not by the informative ordinal covariate. Thus, the condition of the effect 

size of 0.6 with the sample size of 1,000 or more sufficiently works well to recover the true 

number of subgroups with the options of pre-pruning of setting the minimum sample size of 250 
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without post-pruning method using BIC. However, with the same conditions of the options, the 

number of estimated subgroups tend to increase as the sample size increases regardless of the 

different test statistic for the ordinal covariate like the results of the effect size of 0.4.  

Third, Table 28 shows the results of the effect size of 0.8. When the sample size was 

1,000 with limiting the minimum size per subgroup without post pruning using BIC, the means 

of the estimated subgroups across three test statistic of 𝐿𝐿𝐿𝐿, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂, and 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 were the same 

as 4.00 showing 100% of statistical powers. With the same condition, as the sample size was 

2,000, the means of the estimated subgroups across three options were 4.00, 4.02, and 4.02 with 

their corresponding statistical powers of 100%, 98%, and 98%, respectively. Likewise, this was 

due to the informative continuous covariate not by the informative ordinal covariate. However, 

with the same conditions of the options, the number of estimated subgroups tend to increase as 

the sample size increases regardless of the different test statistic for the ordinal covariate like the 

results of the effect sizes of 0.4 and 0.6. The powers were less than 90% with this condition. 

Thus, when there is mean difference with the effect size of 0.8 and the sample sizes of 1,000 or 

2,000, MOB sufficiently works well to recover the true number of subgroups with the options of 

pre-pruning of setting the minimum sample size of 250 without post-pruning method using BIC. 

Looking at Table 29, the results of the effect size of 1.0 show a similar pattern of the results of 

the effect size of 0.8 except one condition. This condition will be discussed next section. Like the 

other results, there were not discrepancies of the results between three test statistic.  

5.5.2 Post pruning method using BIC 

The post pruning option with BIC plays a key role to determine the final number of 

subgroups. With or without it produces different number of subgroups under most of the 

conditions. Across most of the conditions, the mean of estimated number of subgroups tends to 
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increase without the post pruning option, which means that MOB tends to over-extract the 

number of subgroups. When the effect size was 0.2, there were no cells which correctly 

recovered the true number of subgroups even if the sample size was large. Looking at the Table 

25, the means of estimated number of subgroups increase as the sample size increase without the 

post pruning option. Even if MOB was used with setting the minimum size of 250 without post 

pruning of BIC, the mean of estimated number of subgroups increased. This is because tiny 

parameter instabilities can be detected with large sample sizes. Using post pruning of BIC 

consistently reduced the number of subgroups compared to the one without it. When the sample 

sizes were 1,000 or 2,000, the averages of determined number of subgroups were around 1, 

which MOB failed to differentiate the group differences that improve the model fit statistically. 

Their statistical power was also zero across conditions. In addition, as the sample size increases 

to 5,000 or more, the averages of determined number of subgroups were around 2 with the post 

pruning using BIC. That is, even though MOB might differentiate distinct subgroups with around 

80% statistical powers at first, the model fit of the subgroups did not improve compared to the 

model without the subgroups, determining the number of subgroups as two instead of four. 

Next, when the effect size was 0.4, using post pruning with BIC works well to recover 

the true number of subgroups under the sample sizes of 10,000 and 20,000. Looking at Table 26, 

with the increased effect size of 0.4 compared to 0.2, the statistical powers to recover the true 

number of subgroups nearly 99-100% where there are 10,000 samples or more regardless of 

setting the minimum sample size per subgroup. As the effect size increases, required sample size 

for recovering the true number of subgroups decreases. Looking at Table 27, when the effect size 

was 0.6, the average number of estimated subgroups was nearly 4.00 and the statistical power 

was nearly 100% with the 5,000 of sample size using post pruning method. When the effect size 
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was 0.8, the 2,000 of sample size was sufficient to recover the true number of subgroups as 

presented in Table 28. When the effect size was 1.0, the 1,000 of sample size was sufficient to 

recover the true number of subgroups as presented in Table 29. Cleary, post pruning using BIC 

helps to avoid over-fitting issues (growing large tree) under certain conditions.  

5.5.3 Limiting minimum sample size per subgroup 

Limiting the minimum sample size per subgroup as 250 was used to correctly detect the 

nonlinear changes with four time points and get stable parameter estimates for each subgroup. 

Without this, smaller sample size per subgroup can be used to fit the quadratic latent growth 

curve model. Two notable findings how limiting the minimum size works are when the effect 

sizes are 0.6 and 0.8 with the sample size of 1,000. Looking at Table 27, the average of estimated 

number of subgroups was ranged from 3.98 to 3.99, and their statistical power was ranged from 

99% to 100% without post pruning using BIC. However, when the post pruning of BIC was used 

with the same condition, the average of estimated number of subgroup and the statistical power 

were 2.00 and 0%, respectively. Also, when the sample size increases to 2,000, the average of 

estimated number of subgroups and statistical power were ranged from 4.00 to 4.03 and from 

97% to 100%, respectively. When the effect size was 0.8 in Table 28, the average of estimated 

number of subgroups and the statistical power were 4.00 and 100% with 1,000 samples, 

respectively, and the average of estimated number of subgroups was ranged from 4.00 to 4.02 

and the statistical power was ranged from 98% to 100% with 2,000 samples. However, as the 

sample size increases more than 2,000, MOB without the post pruning using BIC over-extracted 

the number of subgroups. This means that when the effect sizes are medium (0.4 - 0.6) with 

relatively small sample size, such as 2,000, limiting the minimum sample size per subgroup 

works better than post pruning using BIC to recover the true number of subgroups.   
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Table 25. Mean of estimated number of subgroups (MNS) and statistical power (P) to recover 
true number of subgroups (Effect size = 0.2) 
 

Min # Pruning Ordinal N=1,000 N=2,000 N=5,000 N=10,000 N=20,000 
MNS P MNS P MNS P MNS P MNS P 

No No 𝐿𝐿𝐿𝐿  2.06 0 2.15 2 3.13 31 4.19 83 4.19 82 

  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.06 1 2.09 1 3.41 34 4.25 80 4.24 80 

  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.13 1 2.15 2 3.47 35 4.27 78 4.24 80 
 BIC 𝐿𝐿𝐿𝐿  1.00 0 1.00 0 2.00 0 2.00 0 2.00 0 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  1.00 0 1.01 0 2.00 0 2.00 0 2.00 0 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  1.00 0 1.00 0 2.00 0 2.00 0 2.00 0 
 No 𝐿𝐿𝐿𝐿  1.96 0 2.11 0 3.35 31 4.19 82 4.29 78 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.00 0 2.10 0 3.48 40 4.20 83 4.23 78 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.02 0 2.09 0 3.50 41 4.18 84 4.33 75 
 BIC 𝐿𝐿𝐿𝐿  1.00 0 1.04 0 2.00 0 2.00 0 2.00 0 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  1.00 0 1.03 0 2.00 0 2.00 0 2.00 0 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  1.00 0 1.03 0 2.00 0 2.00 0 2.00 0 
250 No 𝐿𝐿𝐿𝐿  2.06 0 2.15 2 3.13 31 4.19 83 4.19 82 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.06 1 2.09 1 3.41 34 4.25 80 4.24 80 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.13 1 2.15 2 3.47 35 4.27 78 4.24 80 
 BIC 𝐿𝐿𝐿𝐿  1.00 0 1.00 0 2.00 0 2.00 0 2.00 0 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  1.00 0 1.01 0 2.00 0 2.00 0 2.00 0 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  1.00 0 1.00 0 2.00 0 2.00 0 2.00 0 
 No 𝐿𝐿𝐿𝐿  1.96 0 2.11 0 3.35 31 4.19 82 4.29 78 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.00 0 2.10 0 3.48 40 4.20 83 4.23 78 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.02 0 2.09 0 3.50 41 4.18 84 4.33 75 
 BIC 𝐿𝐿𝐿𝐿  1.00 0 1.04 0 2.00 0 2.00 0 2.00 0 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  1.00 0 1.03 0 2.00 0 2.00 0 2.00 0 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  1.00 0 1.03 0 2.00 0 2.00 0 2.00 0 

Note. 𝐿𝐿𝐿𝐿 = Lagrange multiplier (LM) type test statistic for categorical covariate. 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂= Test statistic of adapted maximum of 𝐿𝐿𝐿𝐿 for ordinal covariate. 
𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = Test statistic of weighted double maximum for ordinal covariate.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
MNS = mean number of estimated subgroups. P = statistical power.  
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Table 26. Mean of estimated number of subgroups (MNS) and statistical power (P) to recover 
true number of subgroups (Effect size = 0.4) 
 

Min # Pruning Ordinal N=1,000 N=2,000 N=5,000 N=10,000 N=20,000 
MNS P MNS P MNS P MNS P MNS P 

No No 𝐿𝐿𝐿𝐿  2.47 5 4.11 79 4.27 78 4.17 83 4.22 86 

  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.39 5 4.12 86 4.15 87 4.27 78 4.28 78 

  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.48 8 4.13 84 4.17 86 4.16 85 4.19 84 
 BIC 𝐿𝐿𝐿𝐿  2.00 0 2.00 0 2.03 0 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.00 0 2.00 0 2.03 0 3.99 99 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.00 0 2.00 0 2.04 0 4.00 100 4.00 100 
 No 𝐿𝐿𝐿𝐿  2.73 12 3.96 94 4.21 82 4.23 78 4.28 78 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.86 12 4.02 96 4.22 79 4.17 84 4.19 84 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.88 17 4.00 94 4.21 81 4.11 90 4.14 87 
 BIC 𝐿𝐿𝐿𝐿  2.00 0 2.00 0 2.06 0 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.00 0 2.00 0 2.07 1 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.00 0 2.00 0 2.05 0 4.00 100 4.00 100 
250 No 𝐿𝐿𝐿𝐿  2.47 5 4.11 79 4.27 78 4.17 83 4.22 86 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.39 5 4.12 86 4.15 87 4.27 78 4.28 78 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.48 8 4.13 84 4.17 86 4.16 85 4.19 84 
 BIC 𝐿𝐿𝐿𝐿  2.00 0 2.00 0 2.03 0 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.00 0 2.00 0 2.03 0 3.99 99 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.00 0 2.00 0 2.04 0 4.00 100 4.00 100 
 No 𝐿𝐿𝐿𝐿  2.73 12 3.96 94 4.21 82 4.23 78 4.28 78 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.86 12 4.02 96 4.22 79 4.17 84 4.19 84 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.88 17 4.00 94 4.21 81 4.11 90 4.14 87 
 BIC 𝐿𝐿𝐿𝐿  2.00 0 2.00 0 2.06 0 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.00 0 2.00 0 2.07 1 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.00 0 2.00 0 2.05 0 4.00 100 4.00 100 

Note. 𝐿𝐿𝐿𝐿 = Lagrange multiplier (LM) type test statistic for categorical covariate. 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂= Test statistic of adapted maximum of 𝐿𝐿𝐿𝐿 for ordinal covariate. 
𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = Test statistic of weighted double maximum for ordinal covariate.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
MNS = mean number of estimated subgroups. P = statistical power.  
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Table 27. Mean of estimated number of subgroups (MNS) and statistical power (P) to recover 
true number of subgroups (Effect size = 0.6) 
 

Min # Pruning Ordinal N=1,000 N=2,000 N=5,000 N=10,000 N=20,000 
MNS P MNS P MNS P MNS P MNS P 

No No 𝐿𝐿𝐿𝐿  4.13 85 4.14 88 4.21 84 4.23 79 4.23 79 

  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.15 87 4.21 82 4.26 78 4.31 73 4.20 82 

  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  4.16 84 4.22 83 4.23 80 4.27 79 4.27 78 
 BIC 𝐿𝐿𝐿𝐿  2.00 0 2.21 3 4.00 100 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.00 0 2.15 4 4.00 100 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.00 0 2.11 1 4.00 100 4.00 100 4.00 100 
 No 𝐿𝐿𝐿𝐿  3.98 98 4.01 99 4.20 81 4.31 77 4.26 77 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  3.99 99 4.00 100 4.29 73 4.18 84 4.21 81 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  3.98 98 4.03 97 4.15 87 4.23 84 4.14 87 
 BIC 𝐿𝐿𝐿𝐿  2.00 0 2.11 3 4.00 100 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.00 0 2.15 2 4.00 100 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.00 0 2.12 3 4.00 100 4.00 100 4.00 100 
250 No 𝐿𝐿𝐿𝐿  4.13 85 4.14 88 4.21 84 4.23 79 4.23 79 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.15 87 4.21 82 4.26 78 4.31 73 4.20 82 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  4.16 84 4.22 83 4.23 80 4.27 79 4.27 78 
 BIC 𝐿𝐿𝐿𝐿  2.00 0 2.21 3 4.00 100 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.00 0 2.15 4 4.00 100 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.00 0 2.11 1 4.00 100 4.00 100 4.00 100 
 No 𝐿𝐿𝐿𝐿  3.98 98 4.01 99 4.20 81 4.31 77 4.26 77 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  3.99 99 4.00 100 4.29 73 4.18 84 4.21 81 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  3.98 98 4.03 97 4.15 87 4.23 84 4.14 87 
 BIC 𝐿𝐿𝐿𝐿  2.00 0 2.11 3 4.00 100 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.00 0 2.15 2 4.00 100 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.00 0 2.12 3 4.00 100 4.00 100 4.00 100 

Note. 𝐿𝐿𝐿𝐿 = Lagrange multiplier (LM) type test statistic for categorical covariate. 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂= Test statistic of adapted maximum of 𝐿𝐿𝐿𝐿 for ordinal covariate. 
𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = Test statistic of weighted double maximum for ordinal covariate.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
MNS = mean number of estimated subgroups. P = statistical power.  
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Table 28. Mean of estimated number of subgroups (MNS) and statistical power (P) to recover 
true number of subgroups (Effect size = 0.8) 
 

Min # Pruning Ordinal N=1,000 N=2,000 N=5,000 N=10,000 N=20,000 
MNS P MNS P MNS P MNS P MNS P 

No No 𝐿𝐿𝐿𝐿  4.19 82 4.28 75 4.16 84 4.23 83 4.27 76 

  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.24 79 4.19 83 4.15 86 4.25 81 4.28 78 

  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  4.16 84 4.32 74 4.21 82 4.23 78 4.18 84 
 BIC 𝐿𝐿𝐿𝐿  2.20 3 4.00 100 4.00 100 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.19 5 4.01 99 4.00 100 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.17 2 4.00 100 4.00 100 4.00 100 4.00 100 
 No 𝐿𝐿𝐿𝐿  4.00 100 4.00 100 4.21 82 4.20 84 4.24 82 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.00 100 4.02 98 4.20 81 4.22 81 4.30 74 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  4.00 100 4.02 98 4.19 85 4.12 89 4.21 83 
 BIC 𝐿𝐿𝐿𝐿  2.15 3 4.00 100 4.00 100 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.11 3 4.00 100 4.02 99 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.15 2 4.00 100 4.00 100 4.00 100 4.00 100 
250 No 𝐿𝐿𝐿𝐿  4.19 82 4.28 75 4.16 84 4.23 83 4.27 76 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.24 79 4.19 83 4.15 86 4.25 81 4.28 78 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  4.16 84 4.32 74 4.21 82 4.23 78 4.18 84 
 BIC 𝐿𝐿𝐿𝐿  2.20 3 4.00 100 4.00 100 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.19 5 4.01 99 4.00 100 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.17 2 4.00 100 4.00 100 4.00 100 4.00 100 
 No 𝐿𝐿𝐿𝐿  4.00 100 4.00 100 4.21 82 4.20 84 4.24 82 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.00 100 4.02 98 4.20 81 4.22 81 4.30 74 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  4.00 100 4.02 98 4.19 85 4.12 89 4.21 83 
 BIC 𝐿𝐿𝐿𝐿  2.15 3 4.00 100 4.00 100 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  2.11 3 4.00 100 4.02 99 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  2.15 2 4.00 100 4.00 100 4.00 100 4.00 100 

Note. 𝐿𝐿𝐿𝐿 = Lagrange multiplier (LM) type test statistic for categorical covariate. 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂= Test statistic of adapted maximum of 𝐿𝐿𝐿𝐿 for ordinal covariate. 
𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = Test statistic of weighted double maximum for ordinal covariate.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
MNS = mean number of estimated subgroups. P = statistical power.  
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Table 29. Mean of estimated number of subgroups (MNS) and statistical power (P) to recover 
true number of subgroups (Effect size = 1.0) 
 

Min # Pruning Ordinal N=1,000 N=2,000 N=5,000 N=10,000 N=20,000 
MNS P MNS P MNS P MNS P MNS P 

No No 𝐿𝐿𝐿𝐿  4.13 89 4.22 80 4.29 77 4.14 88 4.24 80 

  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.22 84 4.15 86 4.28 76 4.34 74 4.23 82 

  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  4.12 88 4.26 79 4.25 77 4.22 84 4.19 85 
 BIC 𝐿𝐿𝐿𝐿  3.99 99 4.00 100 4.00 100 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.00 100 4.00 100 4.00 100 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  3.99 99 4.00 100 4.00 100 4.00 100 4.00 100 
 No 𝐿𝐿𝐿𝐿  4.00 100 4.01 99 4.17 84 4.27 76 4.29 77 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.00 100 4.01 99 4.11 89 4.17 86 4.25 80 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  4.00 100 4.00 100 4.17 84 4.27 78 4.17 83 
 BIC 𝐿𝐿𝐿𝐿  4.00 100 4.00 100 4.00 100 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.00 100 4.00 100 4.00 100 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  4.00 100 4.00 100 4.00 100 4.00 100 4.00 100 
250 No 𝐿𝐿𝐿𝐿  4.13 89 4.22 80 4.29 77 4.14 88 4.24 80 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.22 84 4.15 86 4.28 76 4.34 74 4.23 82 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  4.12 88 4.26 79 4.25 77 4.22 84 4.19 85 
 BIC 𝐿𝐿𝐿𝐿  3.99 99 4.00 100 4.00 100 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.00 100 4.00 100 4.00 100 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  3.99 99 4.00 100 4.00 100 4.00 100 4.00 100 
 No 𝐿𝐿𝐿𝐿  4.00 100 4.01 99 4.17 84 4.27 76 4.29 77 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.00 100 4.01 99 4.11 89 4.17 86 4.25 80 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  4.00 100 4.00 100 4.17 84 4.27 78 4.17 83 
 BIC 𝐿𝐿𝐿𝐿  4.00 100 4.00 100 4.00 100 4.00 100 4.00 100 
  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂  4.00 100 4.00 100 4.00 100 4.00 100 4.00 100 
  𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂  4.00 100 4.00 100 4.00 100 4.00 100 4.00 100 

Note. 𝐿𝐿𝐿𝐿 = Lagrange multiplier (LM) type test statistic for categorical covariate. 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂= Test statistic of adapted maximum of 𝐿𝐿𝐿𝐿 for ordinal covariate. 
𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 = Test statistic of weighted double maximum for ordinal covariate.  
Min # = minimum sample size per a subgroup. Pruning = post pruning method using BIC.  
MNS = mean number of estimated subgroups. P = statistical power.  
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5.6 Results of growth mixture model 

The same simulated datasets were fitted to growth mixture model parallelly. The results 

show that the number of classes (subgroups) was only two across all the conditions. That is, 

GMM failed to recover the true number of subgroups as the best fitting model across all the 

conditions. Specifically, the models showing the lowest BIC values were the two-class solutions. 

In addition, the Lo-Mendell-Rubin likelihood ratio test was not significant for three-, four-, and 

five- class solutions across more than 97 replications and all the conditions. When the effect size 

was 0.8 or 1.0 and the sample size was 10,000 or 20,000, GMMs produced significant LRT 

results for the four-class models even though the values of BIC of these models were higher than 

the ones of the two-class model. More importantly, when I look at the composition of the 

classified four classes, the proportions of the sample size of four-class model were approximately 

49.8%, 0.01%, 50%, and 0.01% for each class, which is most of the subjects were classified into 

two classes. Furthermore, the parameter estimates were not consistent over the replication. Since 

the best solutions were the two-class model, it was not possible to calculate the classification 

accuracy and precision as well as the bias and RMSE of the parameter estimates. However, 

except means intercept, linear slope, and quadratic slope, their variances and covariances as well 

as the residuals were close to the parameter values because they were fixed across classes as the 

population model.   
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CHAPTER 6. CONCLUSION AND DISCUSSION 
 
 
 
6.1 Summary of findings 
 

This study had three main research purposes. First, it aimed to introduce and 

demonstrate how to use model-based recursive partitioning (MOB) approach combined with 

latent growth curve model (LGCM) for longitudinal study to uncover heterogeneous 

subpopulation. Since this approach was not introduced in the field of education and psychology, 

I used an empirical representative longitudinal data in education as an illustrative purpose. The 

procedures, findings and interpretations were presented in Chapter 3. The second purpose of this 

study was to investigate the performance of MOB with the quadratic latent growth curve model 

having two interactions among three types of covariates, one is between an ordinal and 

continuous covariate and another is between the ordinal and categorical covariate. Based on the 

results from the Chapter 3, a population model was chosen for data generation. Effect size and 

sample size were varied to simulate datasets, and three options in the estimation were considered 

as simulation conditions. A simulation study was conducted to answer seven research questions 

under 300  conditions from fully crossed five factors. Lastly, it aimed to compare the results of 

MOB with the ones of unconditional growth mixture model (GMM). There are six key findings 

from both illustrative analysis and simulation study to address the research questions.  

First, the result of empirical study using HSLS:09 to find distinct subgroups showing 

different trajectories and initial status of GPA score suggests that using both options of post 

pruning with BIC and limiting the number of sample size per subgroup makes the resulting tree 

more concise and easier to interpret the composition of subgroup. In addition, using the test 

statistic of 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 for the ordinal covariate is more likely to makes MOB to use the ordinal 
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covariates for splitting the groups as it produces more accurate p-values than the test statistic of 

the categorical covariate. If there are available ordinal covariates that are strongly related to the 

outcomes in a parametric model and the order of the values are important to be considered in a 

study, it is highly suggested to declare them as ordinal and to use corresponding test statistic in 

software. In addition, connecting two packages should be accomplished by user’s own function 

because commercial software is not available yet.  

Second, a simulation study was conducted to investigate the performance of this 

approach for a given population model under five factors. The results show that the true 

number of subgroups was perfectly recovered when the effect size was equal to 1.0 with both 

sample size of 1,000 and BIC post pruning option. With the effect size of 0.8, the required 

sample size was 2,000 to recover the true number of subgroups perfectly. As the effect sizes 

of the mean intercept decrease to medium sizes, including 0.6 and 0.4, the required sample 

sizes also increase to 5,000 and 10,000, respectively. When the effect size was small (0.2), the 

maximal statistical power to recover the true number of subgroups was 84% with the sample 

size of 10,000.  

Third, if the number of subgroups was perfectly recovered, the overall accuracy and 

precision were also 1.00. Even if the number of subgroups was not perfectly recovered, when 

the effect size and the sample size were 0.4 and 2,000, respectively, the overall accuracy and 

macro-averaged precision were 0.97 and 0.98, respectively. Furthermore, four noises 

covariates were not chosen for splitting subgroups at any conditions indicating that MOB 

works well to find splitting points as designed. Only the informative continuous covariate was 

additionally used to split the subgroups if the number of estimated subgroups was larger than 

4. The splitting points of the informative ordinal and categorical covariates were nearly close 
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to the true point of 2 for the former and (10,20) vs. (30,40) for the latter if the number of 

subgroups was perfectly uncovered. The true splitting point of 2 for the informative ordinal 

covariate was correctly detected for the first splitting under most of the conditions except two 

conditions that the effect size is 0.2 and the sample sizes are 1,000 and 2 000 with BIC pruning 

option. This is because the uncovered number of subgroups was 1 under these conditions. 

Besides, the parameter estimates were also unbiased and efficient for those conditions that the 

number of estimated subgroups was nearly equal to four, and their statistical power was close to 

100%.  

Fourth, the simulation study shows that there is no evident difference among the test 

statistic for the ordinal covariates. This result is partly because the population model includes the 

main effect of the ordinal covariate only. The remained continuous and categorical covariates 

have the interaction effects only with the ordinal covariate. In addition, the population model is 

straightforward to differentiate the subgroups using one cut point only. This would make no 

difference among the three test statistic. However, the procedure and result of the empirical study 

show that if the test statistic for the ordinal covariate is used, the MOB obviously selects the 

ordinal covariate first to split the samples. Even though the relationship between the outcome 

and the ordinal covariate was strong, using the default option for the test statistic of categorical 

covariate as the ordinal covariate did not select the ordinal covariate at both the first stage and 

any other splitting stage. Thus, it is highly desirable for researchers to use all available options 

for the test statistic of the ordinal covariate. If there are strong relationships between the outcome 

and the splitting candidate ordinal covariates, it would be preferred for them to use either 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂 or 𝑊𝑊𝑊𝑊𝑊𝑊𝑂𝑂 rather than 𝐿𝐿𝐿𝐿.  

Fifth, based on the results of both empirical and simulation study, using post pruning 



88  

option of BIC helps to avoid over-fitting issues resulting in growing large size of tree generally. 

Moreover, it works better than limiting the number of subgroups. With smaller sample size of 

1,000 and medium to large effect sizes (0.6 and 0.8), however, using the post pruning option of 

BIC reduced the number of subgroups unnecessarily. Limiting the number of subgroups did not 

impact to determine the true number of subgroups. However, it is suggested to know the 

adequate or required number of sample size for a certain parametric model to be used as a 

template model in advance. As described in the results of the empirical study, there were huge 

number of subgroups in a tree without limiting the sample size per subgroup. Since a parametric 

model is fitted to the samples of each subgroup, the adequate sample size is required to get stable 

and correct parameter estimates. Having a rationale to determine the adequate sample size for the 

specific parametric model is a task for each researcher as this study did.   

Last but not least, GMM did not differentiate the true subgroups under all conditions 

considered in this study for a given population model of LGCM. The model fit of the four-class 

solution was not the best based on the value of BIC. Likelihood ratio test also did not produce 

significant result supporting that there are four classes in a population in terms of growth 

trajectories. Even if GMM finds the four latent classes as the best fitting model at a few times 

under certain conditions, the classification accuracy and precision were very poor because most 

of the samples were divided into two subgroups only and there were a few samples within the 

remained two subgroups. This would be partly due to the fact that the data generation was not 

based on the mixture model. Since the purpose of this study is not to compare the performance of 

these two approaches directly, it is not true that MOB performs better than GMM. Each method 

has its own research purposes and the approach, assumption, and conceptual framework of 

GMM to enumerate the number of subgroups is totally different from MOB. To better find the 
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best fitting model for GMM, more rigorous steps and approaches should be required. The focus 

of this study was to examine if MOB not only finds complex interactions between informative 

covariates including their cut points, but also determines the true number of subgroups correctly. 

Thus, the above results support the claim that the research goals are met.  

6.2 Discussions 
 

The findings of this study have several significant implications for advancements of 

quantitative methodology in education research. As the machine learning techniques and their 

algorithms are getting popular and widely used by social scientist in these days, incorporating the 

machine learning and a variety of statistical models can be one of great analytic tools for 

handling big data in the study of education.  

First, it introduces a general framework of MOB and detailed procedures how to use it 

for social and behavioral researchers. Through the illustrative example, they can be guided when 

MOB can be useful and how it can be applied to different research questions and settings. Within 

the framework of MOB, the definition of covariate is broader than the one commonly used in 

statistics. A covariate can be regarded as a variable that is potentially related to the interested 

outcome(s) in the available datasets. Thus, this methodological approach is especially beneficial 

when researchers handle very large samples, such as more than 10,000, to explore unknown 

composition of subpopulations and uncover them with many variables that are potentially related 

to the interested outcome(s) and have interaction effects with other variables. Besides, the results 

of simulation study provide quantitative methodology community with statistical evidence of 

how well MOB recovers true subgroups, making them to be equipped with this analytic tool in 

hand. Yet, this approach would not be helpful for relatively smaller sample sizes, such as 1,000 

or 2,000, because it would be unrealistic to have such a huge strong effect sizes (more than 0.8) 
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in social science. In fact, if there is a good theoretically established statistical model that fits data 

well with adequate sample size, then there is no need to consider using MOB. However, if there 

is a less established theoretical model and you have huge amount of variables with large sample 

sizes, then MOB would be a natural candidate as one of useful analytic tools. Thus, it is 

suggested to start with fitting the theoretical model to the whole sample of data, and then to 

consider the further suspected potential covariates for splitting the data to determine the 

subgroups. Practically, those subgroups can be either directly interpreted to explain the 

discrepancy of the interested outcome or a source to be analyzed as separate subsamples for any 

other further steps if necessary. Therefore, the number of subgroups totally depends on the 

purpose of study. 

Second, novel but important research questions can be postulated and answered. 

Disparities in educational opportunities and achievements exist among students of different 

gender, race/ethnicity, SES, and other demographics including environmental factors. When 

these characteristics are considered interdependently, for example, White female student from 

high-SES background and Black male student from low-SES background, the educational 

inequalities may be found to be worse than simply examining subgroup differences by gender or 

race/ethnicity. In this regard, an emerging framework of intersectionality in education research 

attends to these layered marginalization of student populations. Yet, such subpopulations are 

mostly defined by researchers’ own decisions or based on an established theory, often resulting 

in arbitrary groups, not empirically identified. Methodologically, MOB showed its strengths to 

detect and find meaningful subgroups and advance our understanding of the complex social 

mechanisms through examining those interaction effects. Furthermore, the resulting tree of MOB 

can be visualized to describe the composition of the subgroups in a tree or a trend of change, 
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which is very interpretable, intuitive, and straightforward. Moreover, as big data is becoming 

more available in education research, it is critical to begin investigating other unveiled contextual 

factors (e.g., average housing prices in the neighborhood) that are contributing to the increasing 

gap in educational opportunities. If there exist some informative covariates that are already found 

to be related to the outcomes, those can be included in the population model. In this case, the 

former covariates are not used for splitting the samples because they are already in the statistical 

template model. Other unveiled potential covariates then would be used for splitting the 

subgroups. Thus, this study ultimately contributes to informing various education policy 

stakeholders to make data-driven decisions holding statistical properties. 

Third, this study has numerous potentials to be extended to other various statistical 

models, such as causal inference methods that aim to test possible heterogeneous treatment 

effects of candidate covariates. Although the simulation study was conducted for a given 

population having specific parameter values within a context of longitudinal study, the findings 

of this study can also be similarly applied to other popular statistical models. In fact, the existing 

approach so called SEM Trees is tailed for the SEM models specifically. This study will thus 

play a critical role to lay the groundwork of extending the application of MOB into various 

statistical models by investigating its performance regarding complex covariate effects to find 

subgroups.  

Fourth, MOB has several options to optimize the size of subgroups with pre- and post-

pruning options. This study examined their desired options under different conditions though, 

pruning itself totally depends on the purpose of the study. If the purpose of study is to get 

insights on different complex effects of the covariates on the outcome, larger number of 

subgroups would give ones all the details and direct interpretation of them like the traditional 
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regression model. Also, the interpretation of the results of MOB with large number of subgroups 

would not be different from the regression model if the interaction effects are not complex. On 

the other hands, if the purpose of study is to find a few meaningful subpopulations showing 

distinct different distribution and pattern of the outcome(s), optimizing the size of subgroups 

with pre- and post- pruning options in MOB would help reduce the number of subgroups, leading 

to more concise larger subgroups. In this case, a few certain targeted demographics and other 

background variables would be beneficial.  

6.3 Limitation and future research 

This study has certain limitations as followings. First, it is assumed that individuals are 

independent for the purpose of study even if it is not true. That is, the empirical data used in this 

study has multilevel (nested) data structure. However, this analytic approach using machine 

learning is an exploratory data analytic tool and has a complementary nature to existing 

traditional statistical models. Thus, it is not necessary to consider the multilevel data structure at 

this stage. If the interaction effects of covariates are detected through this analysis, the terms can 

be reflected in a statistical multilevel modeling and estimated for statistical inference as the 

second step.  

Second, this study considered a specific population model. Different population model 

could result in different results in terms of performance because MOB is basically data-driven 

method, meaning that it depends on the available data and the parametric model used. In 

addition, the parametric model used in this study does not include any established covariates 

even if it is possible. In other words, the covariates are only used for splitting the samples. The 

future step would consider this population model that includes covariates that would not be used 
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for splitting. It also considered two types of interactions, which is the one between the ordinal 

and continuous covariates and another between the ordinal and categorical covariates. In this 

case, only the main effect of the ordinal covariate is strongly associated with the outcome. 

However, it is not fully addressed in literature if MOB can detect the higher-order interaction 

effects of the covariates when the main effects of those are not associated with the outcomes. 

Thus, this study is limited to the cases having interaction effects when the main effects are also 

associated.   

Based on the limitations, this study has several next steps. The first possible extension 

of this study can be adopting the multilevel structural equation models accounting for a nested 

data structure. Distinct subgroups may be uncovered according to the higher-level covariates 

such as school type, districts, geographical information, or even states. The current study does 

not consider the multilevel structure for the simplicity. As stated earlier, any parametric models 

can be utilized as a template model to examine the associations between the focal model 

parameters and the covariates.  

Secondly, even though it is not common in social science, there would be cases where 

there is no main effect, but it may interact with other covariates to have effects on the outcomes, 

producing higher order interactions. If there exist empirical data showing this particular 

interaction effect in educational and psychological study, a simulation condition with a different 

population model needs to be added to examine the performance of MOB. 

Thirdly, the effects of post-pruning method are not fully examined yet in the previous 

literature. For large-scale datasets, post-pruning is strongly suggested to reduce the number of 

terminal nodes (subgroups), improving interpretability and stability of parameter estimates 

depending on the number of parameters and sample size. Thus, a comparative study between two 
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packages of semtree and partykit is also desired because each has distinct features in 

terms of how to split the subgroups and available options.  

Lastly, there is a need to rigorously design a comparative study to compare GMM and 

MOB for different population models. Although the third part of this study dealt with whether 

GMM also recovers the true number of subgroups, the data generation under a given population 

model did not fully reflect the nature of heterogeneity of parameters for GMM. The next step is 

to compare the performance between two approaches under various population models as well as 

conditions.  
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APPENDIX 
 

R CODES CONNECTING LAVAAN AND PARTYKIT 
 
# List of packages # 
rm(list=ls()) 
library(MASS) 
library(sandwich) 
library(lavaan) 
library(partykit) 
library(strucchange) 
library(plyr) 
library(MplusAutomation) 
 
# Quadratic model with free covariances and fixed residuals # 
QLGM <- ' 
  inter =~ 1*GPA9 + 1*GPA10 + 1*GPA11 + 1*GPA12; 
  slope =~ 0*GPA9 + 1*GPA10 + 2*GPA11 + 3*GPA12; 
  quadr =~ 0*GPA9 + 1*GPA10 + 4*GPA11 + 9*GPA12; 
  inter ~~ vi*inter; inter ~ mi*1; 
  slope ~~ vs*slope; slope ~ ms*1; 
  quadr ~~ vq*quadr; quadr ~ mq*1; 
  inter ~~ cis*slope; 
  inter ~~ ciq*quadr; 
  slope ~~ csq*quadr; 
  GPA9 ~~ res*GPA9; GPA9 ~ 0*1; 
  GPA10 ~~ res*GPA10; GPA10 ~ 0*1; 
  GPA11 ~~ res*GPA11; GPA11 ~ 0*1; 
  GPA12 ~~ res*GPA12; GPA12 ~ 0*1; 
' 
 
# Fit function for SEM # 
lavaan_fit <- function(model) { 
  function(y, x = NULL, start = NULL, weights = NULL, offset = NULL, 
..., estfun = FALSE, object = FALSE) { 
    require(lavaan) 
    lgcm <- lavaan::lavaan(model = model, data = y, start = start) 
    list( 
      coefficients = stats4::coef(lgcm), # coefficients 
      objfun = -as.numeric(stats4::logLik(lgcm)), # negative log-
likelihood 
      estfun = if(estfun) sandwich::estfun(lgcm) else NULL, # score 
matrix including empirical estimating functions 
      object = if(object) lgcm else NULL 
    ) 
  } 
} 
 
# A function for concise results #  
node_format <- function(node) { 
  c("", 
    sprintf("n = %s", node$nobs), 
    
capture.output(print(cbind(node$coefficients[c("mi","ms","mq","vi","vs",
"vq","cis","ciq","csq","res")]), digits = 1L))[-1L]) 
} 
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# Latent growth curve model with mob algorithm # 
 
pop.control=mob_control(alpha=0.05,bonferroni=TRUE,minsize=250,ytype="da
ta.frame",ordinal="max") # ordinal variable option = max 
 
# Chapter 3 model with all covariates # 
pop.mod <- mob(GPA9+GPA10+GPA11+GPA12 ~ 
SEX+RACE5+LOCA+HACT+SES+MATEFF+BEHAVSCH+SCHCLI+FLUNCH+MISBEHAV, 
               data = dat, 
               fit = lavaan_fit(QLGM), 
               control = pop.control) 
 
plot(tr, drop = TRUE, tnex = 2,FUN=node_format) # terminal nodes 
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R CODES FOR SIMULATION STUDY 
 
# Parameters of population model 
mean.isq=c(2.8,-0.1,0.06) 
cov.isq=matrix(c(0.471,0.001,-0.012,0.001,0.057,-0.016,-0.012,-
0.016,0.007),3,3) # covariance matrix 
par=c(mean.isq,diag(cov.isq),cov.isq[upper.tri(cov.isq, diag = 
F)],0.084) # parameters for evaluation 
 
# Store gmm results # 
gmm.NG=list() # number of groups (sub-populations/classes) 
gmm.M=list() # model fit information 
gmm.C=list()# classification accuracy 
gmm.E=list() # estimates of coefficients 
gmm.times=list() 
 
# Store mob results #  
res.NG=list() # number of groups (sub-populations/classes) 
res.cls=list() # classification accuracy 
res.est=list() # estimates of coefficients 
res.split=list() # split points 
res.times=list() 
 
# Simulation conditions # 
size=c(1000,2000,5000,10000,20000) # sample size = 5 
effectsize=c(0.2,0.4,0.6,0.8,1.0) # Cohen's d effect size = 5 
mean.diff=round(effectsize*sqrt(cov.isq[1,1]),2);mean.diff # mean 
difference based on Cohen's effect size 
ordinal.option=c("chisq","L2","max") # ordinal = 3 
minsize=c("min.No","min.250") # minimum size of node = 2 
prune=c("prune.No","prune.BIC") # pruning = 2 
 
# data generation # 
set.seed(10) 
REP=1:100 # replication number  
 
# Simulation start # 
for(s in 1:length(mean.diff)){ 
  # parameters matrix; intercept only difference 
  # Scenario 1: Four groups having different intercepts 
  pars=matrix(c(c(par[1]-mean.diff[s],par[-1]), # G1 parameters 
                c(par[1]+0*mean.diff[s],par[-1]), # G2 parameters 
                c(par[1]+mean.diff[s],par[-1]), # G3 parameters 
                c(par[1]+2*mean.diff[s],par[-
1])),nrow=4,ncol=10,byrow=T) # G4 parameters 
  
colnames(pars)=c("mi","ms","mq","vi","vs","vq","cis","ciq","csq","res") 
  for(i in 1:length(size)){ 
    for(kk in 1:length(minsize)){ 
      for(pp in 1:length(prune)){ 
        for(o in 1:length(ordinal.option)){ 
         # replication start # 
             for(r in REP){ 
        tem=NA  
        N=size[i] 
        factors<-mvrnorm(N/4,mean.isq,cov.isq) # four subgroups 
        G1<-as.data.frame(matrix(NA,N/4,4)) # four time points 
        G2<-as.data.frame(matrix(NA,N/4,4)) # four time points 
        G3<-as.data.frame(matrix(NA,N/4,4)) # four time points 
        G4<-as.data.frame(matrix(NA,N/4,4)) # four time points 
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        colnames(G1)=c(paste0("GPA",9:12)) 
        colnames(G2)=c(paste0("GPA",9:12)) 
        colnames(G3)=c(paste0("GPA",9:12)) 
        colnames(G4)=c(paste0("GPA",9:12)) 
         
        # intercept (fixed effect) only different models depending on 
effect size 
        for(t in 1:4){ 
          G1[,t]=1*(factors[,1]-mean.diff[s])+(t-1)*factors[,2]+(t-
1)^2*factors[,3]+rnorm(N/4,0,sqrt(0.084)) 
          G2[,t]=1*factors[,1]+(t-1)*factors[,2]+(t-
1)^2*factors[,3]+rnorm(N/4,0,sqrt(0.084)) 
          G3[,t]=1*(factors[,1]+mean.diff[s])+(t-1)*factors[,2]+(t-
1)^2*factors[,3]+rnorm(N/4,0,sqrt(0.084)) 
          G4[,t]=1*(factors[,1]+2*mean.diff[s])+(t-1)*factors[,2]+(t-
1)^2*factors[,3]+rnorm(N/4,0,sqrt(0.084)) 
        } 
 
        # 3 Informative covariates 
        G1$ORDINAL=as.ordered(sample(c(1:2),size=N/4,replace=T)) 
        G1$CONTINUOUS=sample(seq(from=-3.5,to=-
0.7,by=0.1),size=N/4,replace=T) # continuous 
        G1$CATEGORY=as.factor(sample(c(10,20,30,40),size=N/4,replace=T)) 
        G2$ORDINAL=as.ordered(sample(c(1:2),size=N/4,replace=T)) 
        G2$CONTINUOUS=sample(seq(from=-
0.6,to=3.5,by=0.1),size=N/4,replace=T) # continuous 
        G2$CATEGORY=as.factor(sample(c(10,20,30,40),size=N/4,replace=T)) 
        G3$ORDINAL=as.ordered(sample(c(3:5),size=N/4,replace=T)) 
        G3$CONTINUOUS=sample(seq(from=-
3.5,to=3.5,by=0.1),size=N/4,replace=T) # continuous 
        G3$CATEGORY=as.factor(sample(c(10,20),size=N/4,replace=T)) 
        G4$ORDINAL=as.ordered(sample(c(3:5),size=N/4,replace=T)) 
        G4$CONTINUOUS=sample(seq(from=-
3.5,to=3.5,by=0.1),size=N/4,replace=T) # continuous 
        G4$CATEGORY=as.factor(sample(c(30,40),size=N/4,replace=T)) 
        tem=rbind(G1,G2,G3,G4) 
 
        # 4 NOISE VARIABLES # 
        tem$N.ORDINAL=as.ordered(sample(c(1:5),size=N,replace=T)) 
        tem$N.CONTINUOUS1=sample(seq(from=-
3.5,to=3.5,by=0.1),size=N,replace=T) 
        tem$N.CONTINUOUS2=round(rnorm(N, mean = 0, sd = 1),1)# 
continuous 
        
tem$N.CATEGORY=as.factor(sample(c(10,20,30,40,50),size=N,replace=T)) 
        True.G=as.factor(rep(c("a","b","c","d"),each=N/4)) 
        tem=data.frame(tem,True.G) # generated data 
        #  
        # # GMM using Mplus # 
        write.table(tem,"mydat.dat",col.names = F,row.names = T, 
quote=F) 
        runModels(dir) # running GMM through Mplus 
        out=readModels(dir,what="all") # reading Mplus output 
        gmm.res=do.call("rbind.fill",sapply(out,"[","summaries")) 
        
mod.fit=gmm.res[,c("BIC","Entropy","T11_LMR_PValue","NLatentClasses")] 
        mod.fit.best=mod.fit[order(mod.fit$BIC),] # the lowest BIC 
        bc=mod.fit.best$NLatentClasses[1] 
 
        # Number of classes 
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gmm.M[[paste0(effectsize[s],"_",size[i],"_",ordinal.option[o],"_",minsiz
e[kk],"_",prune[pp])]][[r]]=mod.fit.best 
        
gmm.NG[[paste0(effectsize[s],"_",size[i],"_",ordinal.option[o],"_",minsi
ze[kk],"_",prune[pp])]][r]=bc 
 
        # gmm class membership 
        gmm.cls=out[[bc-1]]$savedata 
        gmm.cls$tg=tem$True.G 
 
        # classification accuracy of gmm 
        cm=table(gmm.cls$tg,gmm.cls$C) # confusion matrix 
        n = sum(cm) # number of instances 
        nc = nrow(cm) # number of classes 
        diag = diag(cm) # number of correctly classified instances per 
class 
        rowsums = apply(cm, 1, sum) # number of instances per class 
        colsums = apply(cm, 2, sum) # number of predictions per class 
        p = rowsums / n # distribution of instances over the actual 
classes 
        q = colsums / n # distribution of instances over the predicted 
classes 
 
        # Overall classification accuracy 
        accuracy = sum(diag)/ n # the total number of correct 
predictions divided by the total number of predictions made for a 
dataset. 
 
        # Per-class precision, recall, and F-1 
        precision = diag / colsums # the number of positive class 
predictions that actually belong to the positive class. 
        recall = diag / rowsums # the number of positive class 
predictions made out of all positive examples in the dataset. 
        f1 = 2 * precision * recall / (precision + recall) # a single 
score that balances both the concerns of precision and recall in one 
number. 
 
        #Macro-averaged metrics 
        macroPrecision=mean(precision) 
        macroRecall=mean(recall) 
        macroF1=mean(recall) 
        CA=c(accuracy,macroPrecision,macroRecall,macroF1) 
        
gmm.C[[paste0(effectsize[s],"_",size[i],"_",ordinal.option[o],"_",minsiz
e[kk],"_",prune[pp])]][[r]]=CA 
 
        # gmm estimates 
        gmm.est=out[[bc-1]]$parameters$unstandardized 
        gmm.est2=matrix(NA,nrow=bc,ncol=11) 
        for(gm in 1:bc){ 
          m=subset(gmm.est,LatentClass==gm & paramHeader=="Means")[,3] 
          v=subset(gmm.est,LatentClass==gm & 
paramHeader=="Variances")[,3] 
          sw=subset(gmm.est,LatentClass==gm & paramHeader=="S.WITH")[,3] 
          qw=subset(gmm.est,LatentClass==gm & paramHeader=="Q.WITH")[,3] 
          rv=subset(gmm.est,LatentClass==gm & 
paramHeader=="Residual.Variances")[,3] 
          gmm.tem=c(m,v,sw,qw,rv[1],gm) 
          gmm.est2[gm,]=gmm.tem 
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        } 
        gmm.est3=as.data.frame(gmm.est2[order(gmm.est2[,1]),]) 
        
gmm.E[[paste0(effectsize[s],"_",size[i],"_",ordinal.option[o],"_",minsiz
e[kk],"_",prune[pp])]][[r]]=gmm.est3 
        End=Sys.time() 
        
gmm.times[[paste0(effectsize[s],"_",size[i],"_",ordinal.option[o],"_",mi
nsize[kk],"_",prune[pp])]][[r]]=difftime(End, Start, units = "secs") 
        rm(out) 
        ############### 
        # MOB fitting # 
        ############### 
         
        # control option here # 
        if(kk==1 & pp==1) 
          
pop.control=mob_control(alpha=0.05,bonferroni=TRUE,ytype="data.frame",or
dinal=ordinal.option[o],vcov="opg") # minsize option  
        if(kk==1 & pp==2) 
          
pop.control=mob_control(alpha=0.05,bonferroni=TRUE,ytype="data.frame",pr
une="BIC",ordinal=ordinal.option[o],vcov="opg") # minsize option 
        if(kk==2 & pp==1) 
          
pop.control=mob_control(alpha=0.05,bonferroni=TRUE,ytype="data.frame",mi
nsize=250,ordinal=ordinal.option[o],vcov="opg") # minsize option 
        if(kk==2 & pp==2) 
          
pop.control=mob_control(alpha=0.05,bonferroni=TRUE,ytype="data.frame",mi
nsize=250,prune="BIC",ordinal=ordinal.option[o],vcov="opg") # minsize 
option 
        # Fit the data and run MOB 
        Start <- Sys.time() 
        tr <- mob(GPA9+GPA10+GPA11+GPA12 ~ 
ORDINAL+CONTINUOUS+CATEGORY+N.ORDINAL+N.CONTINUOUS1+N.CONTINUOUS2+N.CATE
GORY, 
                  data = tem, 
                  fit = lavaan_fit(QLGM), 
                  control = pop.control) 
 
        # number of subgroups # 
        
res.NG[[paste0(effectsize[s],"_",size[i],"_",ordinal.option[o],"_",minsi
ze[kk],"_",prune[pp])]][r]=width(tr) 
        # estimates # 
        if (width(tr)==1) 
          
est=round(coef(tr)[c("mi","ms","mq","vi","vs","vq","cis","ciq","csq","re
s")],3) else 
          
est=round(coef(tr)[,c("mi","ms","mq","vi","vs","vq","cis","ciq","csq","r
es")],3) 
        
res.est[[paste0(effectsize[s],"_",size[i],"_",ordinal.option[o],"_",mins
ize[kk],"_",prune[pp])]][[r]]=est 
         
        # split points # 
        ni=nodeids(tr) 
        ni_terminal=nodeids(tr, terminal = TRUE) # terminal node ids 
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        ni_inner=ni[!ni %in% ni_terminal] # inner node ids 
        a=sapply(ni_inner, function(x) 
split_node(node_party(tr[[x]]))$breaks) 
        
res.split[[paste0(effectsize[s],"_",size[i],"_",ordinal.option[o],"_",mi
nsize[kk],"_",prune[pp])]][[r]]=unlist(a) 
         
        # Classification accuracy # 
        cm=table(tem[,"True.G"],predict(tr,newdata=tem,type="node")) # 
confusion matrix 
        n = sum(cm) # number of instances 
        nc = nrow(cm) # number of classes 
        diag = diag(cm) # number of correctly classified instances per 
class  
        rowsums = apply(cm, 1, sum) # number of instances per class 
        colsums = apply(cm, 2, sum) # number of predictions per class 
        p = rowsums / n # distribution of instances over the actual 
classes 
        q = colsums / n # distribution of instances over the predicted 
classes 
         
        # Overall classification accuracy 
        accuracy = sum(diag)/ n # the total number of correct 
predictions divided by the total number of predictions made for a 
dataset. 
         
        # Per-class precision, recall, and F-1 
        precision = diag / colsums # the number of positive class 
predictions that actually belong to the positive class. 
        recall = diag / rowsums # the number of positive class 
predictions made out of all positive examples in the dataset. 
        f1 = 2 * precision * recall / (precision + recall) # a single 
score that balances both the concerns of precision and recall in one 
number. 
         
        #Macro-averaged metrics 
        macroPrecision=mean(precision) 
        macroRecall=mean(recall) 
        macroF1=mean(recall) 
        CA=c(accuracy,macroPrecision,macroRecall,macroF1) 
        
res.cls[[paste0(effectsize[s],"_",size[i],"_",ordinal.option[o],"_",mins
ize[kk],"_",prune[pp])]][[r]]=CA 
        End <- Sys.time() 
        
res.times[[paste0(effectsize[s],"_",size[i],"_",ordinal.option[o],"_",mi
nsize[kk],"_",prune[pp])]][[r]]=difftime(End, Start, units = "secs") 
        rm(tr) 
        print(paste0(Sys.time(), 
effectsize[s],"_",size[i],"_",ordinal.option[o],"_",minsize[kk],"_",prun
e[pp],"_REP = ",r)) 
        } # one replication  
}}}}} 
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