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ABSTRACT 

Both extensive (share of insured acres in total insurable acres) and intensive (coverage 

level choice) margin participation rates in the U.S. crop insurance program have increased due to 

generous subsidies. On a national scale, this program has been well rated to satisfy the actuarial 

fairness requirement by USDA Risk Management Agency. However, sizeable spatial 

heterogeneity remains across the Great Plains and Corn Belt regions. If subsidies were to be 

reduced in the future because of financial constraints, such heterogeneity might be detrimental to 

the sustainability of the crop insurance program. A central theme of this dissertation is to 

investigate how farmers make participation decisions when risk factors exist. In a separate but 

related line of work, this dissertation also explores the irrigation water usage in the Great Lakes 

region because farmers' irrigation behavior reflects their risk preferences and impacts their 

incentives for enrolling in the program. The dissertation consists of three essays on farmers' 

decisions regarding premium mispricing, basis risk, and irrigation water usage.  

The first essay proposes a novel resampling procedure to estimate farm-level actuarially 

fair premiums. The resampling procedure mainly contains two parts: (i) semi-parametric quantile 

regression; and (ii) rejection method. Many previous studies explore whether county-level 

mispricing exists based on the historical loss ratio records. However, we can identify farm-level 

mispricing by imputing actuarially fair premiums based on historical yield records, consistent 

with theory. We find that farmers with lower land quality cropland paid fewer premiums than 

they should, but a contrary case happens for farmers with higher land quality cropland. Empirical 

evidence shows farmers may be more concerned about mispricing than subsidy transfer. 

Regression results support a conclusion that such farm-level mispricing deters farmers’ crop 

insurance demand. Our analysis sheds light on the policy-making that: (i) mispricing may be a 



 

substitution of subsidy so mitigating mispricing can maintain high participation while saving 

subsidies; and (ii) imputation of premiums based on historical yield records can apply. 

The second essay focuses on the impact of basis risk on participation rates in the U.S. 

crop insurance program. In recent years, basis risk has been increasingly recognized as an 

essential driver for deterring insurance uptake. Most research concentrates on index insurance 

contracts; however, few investigate the effect of mismatch between cash and futures markets on 

farmers’ insurance decisions. We first build a conceptual model to show farmers’ acreage 

response to basis risk within the expected utility framework. Next, we apply the Fractional Probit 

with Control Function for the empirical analysis and find that the effects of basis risk on 

participation rates are significantly negative for nearly all insurance contracts. Our analysis 

implies that: (i) to remove basis risk, revision for revenue contract may be considered; (ii) 

subsidy structure may be adjusted to be consistent with the underlying basis risk.  

The third essay investigates irrigation water usage in the Great Lakes region. Although 

the water conservation policy was implemented, there has been an upward trend in irrigation 

water demand from 2003 to 2018, including irrigated acres and total water usage. We employ 

firm-level irrigation data to examine what factors impact farmers' response to irrigation water 

usage. We find that: (i) price elasticities vary significantly according to model specifications and 

water costs; (ii) demand at both extensive (irrigated acres) and intensive (water application per 

acre) margins is input price inelastic; and (iii) price elasticities are homogeneous across crops but 

heterogeneous across states. For the policy-making, if there is a 10% tax on irrigation water cost, 

total water usage decreases by about 4% for corn and soybean, respectively.  
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INTRODUCTION 

Understanding farmers’ decision-making in the crop insurance program is crucial because 

the federal government has provided generous subsidies for the development of the program. The 

dual goals of the federal government are higher crop insurance participation and coverage levels 

(USGAO 2015). However, although participation rates have been boosted over twenty years, 

significant regional disparities still exist in the Great Plains and Corn Belt regions (Babcock et al. 

2004; Glauber 2004; Woodard et al. 2012; Chen et al. 2020). Suppose subsidies were to be 

reduced in the future due to financial constraints. In that case, such heterogeneity might be 

detrimental to the sustainability of the crop insurance program because farmers with lower risks 

might opt out of this program. One potential consequence is that the insurance pool will become 

very risky, and indemnity will be far beyond premiums. This dissertation explores how farmers 

make insurance purchasing decisions when yield or price risks exist. Our analysis might shed 

light on policymaking for premium rate-setting, contract design, and irrigation water restriction. 

The first essay explores whether systematic mispricing exists in the yield contract and 

how farmers respond to such a bias when choosing among multiple coverage level choices. The 

motivation is that many studies investigate farmers’ coverage choices, assuming farmers’ 

premiums (including subsidies) are actuarially fair (Du et al. 2017; Jensen et al. 2018). Although 

some papers contribute to a deep understanding of rating methods of USDA Risk Management 

Agency (Goodwin 1993; Babcock et al. 2004; Woodard et al. 2011), to our best knowledge, 

there is no research investigating whether farmer’s premiums are actuarially fair based on yield 

records. Therefore, one contribution of this study is that we propose a novel resampling 

procedure to estimate farm-level actuarially fair premiums at all coverage choices (see, for 

example, Chen and Yu 2016; Price et al. 2019). With the estimated premiums, we can identify 
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the mispricing for each coverage level choice for each farm. Unlike many previous studies which 

examine the mispricing based on loss ratio, our analysis is based on actual yields, consistent with 

theory. After comparing premiums charged by USDA Risk Management Agency and the 

estimated actuarially fair premiums, we find that a farm with lower (higher) quality cropland in a 

county has a better (worse)-than-actuarially-fair premium, which implies that a farm with lower 

(higher) quality cropland paid fewer (more) than they should. Regression results show that such 

mispricing deters farmers’ crop insurance demand (i.e., coverage level choices). Our analysis 

shows that the adjustment of mispricing might be a supplement of federal subsidies.  

The second essay investigates how farmers respond to the basis risk when participating in 

the crop insurance program. Many previous studies have explored whether basis risk impedes 

insurance uptake for index contracts (Doherty and Richter 2002; Deng et al. 2007; Cole et al. 

2014; Cai et al.2020; Ohashi 2022). The basis risk in index contracts is the imperfect association 

between experienced losses and indemnification based on index values (Jensen et al. 2018). This 

essay investigates whether the mismatch between cash and futures markets affects farmers’ 

insurance decisions. The reason is that the crop revenue contract has been the most popular 

product offered by the U.S. Federal Crop Insurance Corporation. The mismatch between cash 

and futures prices is inherent in revenue contracts because of contract designs. As in the 

literature, we define basis as the difference between cash and futures prices and basis risk as 

basis variation. We develop a conceptual model within the expected utility framework to identify 

farmers’ acreage response to basis risk. With elevator-level basis data, we apply the Fractional 

Probit with Control Function and find that basis risk deters farmers’ insurance demand for nearly 

all contracts. Our analysis implies that mitigating basis risk by revising revenue contract designs 

might be an option to maintain high participation rates while reducing the subsidies. 
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In the third essay, we turn to investigate irrigation water usage in the Great Lakes region 

because there has been an upward trend from 2003 to 2018. Such increased water withdrawal 

induces a concern regarding the future’s water scarcity, especially in the context that current 

water restriction policies are inefficient. With the farm-level irrigation data, this essay constructs 

two water costs (average energy cost and marginal irrigation cost) to estimate various price 

elasticities of irrigation water usage. The marginal irrigation cost is widespread in studies for 

U.S. western states (Casewell and Zilberman 1986; Gonzalez-Alvarez et al. 2006; Mieno and 

Brozović; 2017), but some current research, such as Ito (2014), finds that consumers are more 

concerned about average cost than marginal cost. Therefore, we extend Kornelis and Norris 

(2020) with marginal irrigation cost, error tolerances, model specifications, and state-specific 

price elasticities. Our findings are: (i) AEC and MIC have similar performance for extensive 

(irrigated acres) and intensive (water application per acre) margins, although price elasticities 

based on MIC are slightly smaller; (ii) for crop-specific values, price elasticities based on MIC 

are sensitive to error tolerances and might be underestimated; (iii) demand at both extensive and 

intensive margins are input price inelastic; (iv) price elasticities are homogeneous across crops 

but heterogeneous across states; and (v) If there is an arbitrary 10% tax on irrigation water cost, 

total water usage (acre-inch) will decrease by 4% for corn and soybean, respectively. 
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CHAPTER 1 Crop Insurance Rate Making, Land Quality, and Adverse Selection 

Abstract 

Over the past two decades, the U.S. federal government has devoted considerable efforts 

to encouraging participation rates in the crop insurance program. However, many farmers within 

a county still feel that their premium rates are too high even after large subsidies have been 

provided. This paper proposes a novel resampling procedure based on large volumes of unit-

level yield data to estimate actuarially fair premiums at all coverage level choices, consistent 

with theory. By comparing RMA's premiums with our estimated actuarially fair premiums, we 

find a systematic mispricing situation in the U.S. crop insurance program. That is, farmers with 

higher quality cropland have worse-than-actuarially-fair premiums, implying that farmers 

owning good land quality pay more premiums than they should. We find that farmers might be 

more concerned about mispricing than subsidy transfer. The regression results show that such 

mispricing deters farmers' crop insurance demand. Therefore, the adjustment of mispricing might 

be a supplement to federal subsidies.   
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Introduction 

The U.S. federal crop insurance was authorized in the 1930s, and the Federal Crop 

Insurance Corporation (FCIC) was created in 1938 to carry out the whole program. The crop 

insurance program was experimental for a long time, and participation rates were low. After the 

2000 Agricultural Risk Protection Act (ARPA), the number of insurance products and 

participation rates have been boosted due to increased premium subsidies. The increased 

individual-level loss experience provides crucial information for future loss expectations. USDA 

Risk Management Agency (RMA) relies on historical loss experience data to evaluate underlying 

yield risks, aiming to obtain actuarially sound premium rates equal to expected indemnities. 

Actuarial fairness is required for this program, and the loss ratio equal to 1.0 is the target in the 

2008 Farm Bill. Over the past two decades, the crop insurance program has been well-rated 

nationally, indicating that the total premiums (including subsidies) equal the total indemnities. 

However, significant regional disparities of participation rates exist while the aggregate actuarial 

fairness has improved (Babcock et al. 2004; Glauber 2004; Sherrick et al. 2004; Woodard et al. 

2012; Chen et al. 2020).  

 

Figure 1.1 The Extensive and Intensive Margin Participation Rates for Corn Over 1989-2020. 

Note: The extensive margin is defined as the ratio of insured acres to total insurable acres; the 

intensive margin is defined as the acreage-weighted coverage level choices.  
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Actuarial fairness is quite crucial because it matters to the program's sustainability. 

Without the generous subsidies, producers whose expected indemnities exceed the premiums 

costs are more likely to purchase insurance; those whose costs exceed their expected indemnities 

are less likely to purchase (Glauber 2004). After generous subsidies were provided, farmers 

enrolled in the program if the expected indemnities exceeded their self-paid premiums. In other 

words, generous subsidies can cover the potential mispricing and support high participation rates. 

However, an adverse selection problem might exist if subsidies were reduced and farm-level 

premiums were not actuarially sound. Farmers with higher expected yields or lower risks might 

opt out of the crop insurance program. Then the entire insurance pool becomes risky, and 

indemnities might exceed premiums, which will be detrimental to the development of the 

program (Skees and Reed 1986; U.S. General Accounting Office 1993; Coble and Knight 2002; 

Babcock et al. 2004; Glauber 2004). In addition, due to the increased indemnities, RMA might 

adjust the premium rating upward and crowd more farmers with good land quality out of the 

insurance pool, further exacerbating the program (Coble et al. 2010; Price et al. 2019).  

Many previous studies have explored multiple topics regarding USDA RMA’s 

ratemaking approach. For example, there are the Actual Production History (APH) rating method 

(Goodwin 1993), assumption of constant rate relativities across coverage levels (Babcock et al. 

2004), actuarial implications of the loss cost ratio (LCR) rate-making methodology (Woodard et 

al. 2011), and improvement of rating efficiency with integrating widely available high-resolution 

soil data (Woodard and Verteramo‐Chiu 2017). However, most research directly focuses on the 

historical premiums and indemnities because the targeted loss ratio (expected indemnity/ 

premium) is 1.0. One disadvantage of the USDA/RMA loss ratio approach is that expected 

indemnity is estimated based on the limited length of time for which historical experience is 
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available. However, in theory, expected indemnity should be estimated based on yield 

distribution. Therefore, we employ large volumes of farm-level actual yield records to estimate 

the actuarially fair premiums, with which systematic mispricing can be identified. 

Therefore, this study aims to: (i) estimate farm-level actuarially fair premiums at all 

coverage choices; (ii) investigate whether actuarially unfairness exists; and (iii) examine the 

impact of the unfairness on farmers’ coverage choices. The motivation to investigate mispricing 

is that many previous studies analyse farmers’ choices assuming premiums are actuarially fair 

(LaFrance et al. 2002; Du et al. 2017; Jensen et al. 2018). However, the assumption of actuarial 

fairness might be too restrictive to obtain a proper conclusion.  

Our analysis builds on and contributes to three primary works of literature. First, we 

propose a novel resampling procedure to have a representative subsample, with which the 

underlying risk might be estimated reasonably. Many methods regarding yield distributions have 

been applied in the literature, including parametric distribution (Babcock and Blackmer 1992; 

Borges and Thurman 1994; Babcock and Hennessy 1996; Coble et al. 1996; Sherric et al. 2004; 

Claassen and Just 2011), and nonparametric distribution (Goodwin and Ker 1998; Ker and 

Goodwin 2000; Ker and Coble 2003; Woodard et al. 2011; Zhu et al. 2011). Due to limited 

subsidies, participation rates in the crop insurance program were meager before 1999. Therefore, 

if we estimated yield distribution directly based on yield records, actuarially fair premiums might 

be underestimated because there was no disaster between 1999 and 2008, the time interval most 

observations lie in. The advantages of our proposed resampling procedure are that it: (i) 

effectively imputes missing observations before 1999; and (ii) reweights farms based on long-

term county-level historical records. Our procedure mainly includes two parts: (i) semi-

parametric quantile regression associated with penalized B-splines (see, for example, Chen and 
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Yu 2016); and (ii) the rejection-acceptance method. 

Second, this study highlights whether systematic rate bias exists and how such bias 

impacts farmers’ insurance purchasing decisions. After obtaining a representative subsample, we 

estimate county-level actuarially fair premiums and then adjust county-level to individual-level 

premiums at all coverage choices per RMA’s rules (Coble et al. 2010; Price et al. 2019). Finally, 

there are RMA premiums and estimated actuarially fair premiums at all coverage level choices 

(see, for example, Du et al. 2017). We then construct a wedge variable, the ratio of RMA’s 

premium to the estimated actuarially fair premium. Since the premiums are always positive, the 

wedge range is from zero to positive infinity, and the wedge equal to 1 indicates that RMA’s 

premium is actuarially sound. Conversely, a wedge higher (lower) than 1 indicates farmers paid 

more (less) than they should. With farm-level RMA’s and estimated actuarially fair premiums, 

we can identify that: (i) whether farms with better (worse) land quality have higher (lower) 

wedges; and (ii) whether counties with better (worse) land capability have higher (lower) 

wedges. More information about wedges (e.g., distribution) can help policymakers understand 

the potential actuarial unfairness, which might help improve the rate-setting procedure in the 

crop insurance program. 

Third, our analysis provides insights into saving subsidies while maintaining high 

participation rates. Large subsidies have been provided to encourage a high participation rate and 

to ensure the sustainability of the crop insurance program. From 2007 to 2027, the Federal Crop 

Insurance Program has cost and will cost the federal government about $7.5 billion yearly (Rosa 

2018a; Rosa 2018b). In this study, farmers may not be concerned about the subsidy transfer as in 

some previous studies (see, for example, Du et al. 2017). However, the empirical evidence shows 

that farmers might be concerned about actuarial fairness because the coverage level with the 



 

9 

lowest wedge is the most popular. Regression results robustly support the conclusion that 

mispricing adversely affects farmers’ coverage level choice. Therefore, the mitigation of 

mispricing can supplement subsidy, which implies that the subsidy structure can be adjusted to 

increase farmers’ crop insurance demand while providing lower subsidies (Babcock et al. 2004).   

The rest of this paper is organized as follows. In section 2, we apply the standard 

expected utility framework to derive how actuarial fairness affects farmers’ coverage level 

choices. Section 3 reports all data employed in this study. Section 4 shows empirical evidence 

for our hypotheses and regression results. Section 5 is the final part concluding with some 

discussions. 

Basic Model 

This study focuses on yield contracts because only yield risk is contained. On the other 

hand, revenue contracts include the price risk, making the analysis hard, although our main 

conclusion will not be changed. Let 𝑧 denote the approved yield history (i.e., the institutional 

estimate of farm-level mean yield), which represents land quality on a given insured unit and is 

used to estimate insurance premium cost by RMA. Let 𝜑 denote the coverage level with 0 <

𝜑 < 1, for a stochastic yield 𝑦 on a given insured unit, the actuarially fair premium (expected 

payout) can be calculated as: 

(1.1) Γ(𝜑, 𝑧) = 𝐸[max(𝜑𝑧 − 𝑦, 0)] = ∫ (𝜑𝑧 − 𝑦)𝑑𝐹(𝑦)
𝜑𝑧

0
, 

where 𝐸[∙] is the expectation operator; 𝜑𝑧is guaranteed yield below which farmers will receive 

indemnities from insurers; 𝐹(𝑦) is a cumulative distribution function with the density function; 

𝑓(𝑦) on 0 < 𝑦 < +∞. Without loss of generality, we assume the crop price is equal to 1 and 

total liability is 𝜑𝑧.1 The response of actuarially fair premium to coverage level is 

 
1 In the empirical part, we assume the corn price is $4/bu and the soybean price is $10/bu. 
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𝑑Γ(𝜑, 𝑧)/𝑑𝜑 ≡ Γ𝜑(𝜑, 𝑧) = 𝑧𝐹(𝜑𝑧).  

We define a wedge factor as 𝑤(𝜑) = 𝐴𝑃𝑅(𝜑)/𝑂𝑃𝑅(𝜑), where 𝐴𝑃𝑅(𝜑) is actual 

premium rate made by RMA at coverage level 𝜑 and 𝑂𝑃𝑅(𝜑) is the estimated actuarially fair 

premium rate. 2 The wedge range is (0, +∞) because both 𝐴𝑃𝑅(𝜑) and 𝑂𝑃𝑅(𝜑) are positive. 

Then, a farmer’s actual premium payment (including subsidy) is 𝑤(𝜑)Γ(𝜑, 𝑧), and the response 

to coverage level is 𝑤𝜑(𝜑)Γ(𝜑, 𝑧) + 𝑤(𝜑)Γ𝜑(𝜑, 𝑧), where 𝑤𝜑(𝜑) and Γ𝜑(𝜑, 𝑧) are the 

appropriate function derivatives. Denote 𝑠(𝜑) as the subsidy rate for coverage level 𝜑 with 0 <

𝑠(𝜑) < 1. The subsidy’s dollar value is 𝑆(𝜑, 𝑧) = 𝑠(𝜑)𝑤(𝜑)Γ(𝜑, 𝑧), which represents the 

portion undertaken by federal government. Finally, a farmer’s self-paid premium is 𝜒(𝜑, 𝑧) =

[1 − 𝑠(𝜑)]𝑤(𝜑)Γ(𝜑, 𝑧).  

Denote 𝑠𝜑(𝜑) and 𝑤𝜑(𝜑) as the derivative of subsidy rate function and wedge function, 

respectively, then we have the responses of subsidy’s dollar value 𝑆(𝜑, 𝑧) and farmer’s self-paid 

premium 𝜒(𝜑, 𝑧) to coverage level 𝜑 as 

(1.2a) 𝑆𝜑(𝜑, 𝑧) = [
𝑠𝜑(𝜑)

𝑠(𝜑)
+
𝑤𝜑(𝜑)

𝑤(𝜑)
+
𝑧𝐹(𝜑𝑧)

Γ(𝜑,𝑧)
] × 𝑆(𝜑, 𝑧); 

(1.2b) 𝜒𝜑(𝜑, 𝑧) = 𝑤𝜑(𝜑)Γ(𝜑, 𝑧) + 𝑤(𝜑)𝑧𝐹(𝜑𝑧)
⏞                  

WedgeEffect

− 𝑆𝜑(𝜑, 𝑧)
⏞    

SubsidyTransferEffect

. 

When RMA premium rates are actuarially fair, then 𝑤(𝜑) ≡ 1 and 𝑤𝜑(𝜑) ≡ 0, which 

indicates that the wedge effect vanishes. Then Eqn.(1.2a) becomes  

(1.2a’) �̃�𝜑(𝜑, 𝑧) = [
𝑠𝜑(𝜑)

𝑠(𝜑)
+
𝑧𝐹(𝜑𝑧)

Γ(𝜑,𝑧)
] × 𝑆(𝜑, 𝑧). 

 
2 In the literature, wedge is sometimes defined as the difference between actual premium payout 

and actuarially fair premium (i.e., expected indemnity) for an insurance product (see more in 

Deng et al. 2007). As in Du et al. (2017), the actual premium payout equals actuarially fair 

premium multiplied by (1 + loading factor). The wedge factor in this study is the same as (1 + 

loading factor). 
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Denote 𝑈(∙) as the Bernoulli utility function for farmer’s income 𝜋; denote 𝑈𝜋(∙) and 

𝑈𝜋𝜋(∙) as appropriate first and second derivative functions respectively with 𝑈𝜋(∙) > 0 >

𝑈𝜋𝜋(∙). Let 휀 represent other sources of individual farm’s income with a cumulative distribution 

function 𝐺(휀) on a compact set [휀, 휀]. Then, if purchasing the yield insurance, the farmer’s 

income is 𝜋(𝜑, 𝑧, 𝑦, ε) ≡ max(𝜑𝑧, 𝑦) − 𝐶(𝜑, 𝑧, 𝑐, 휀), where 𝐶(𝜑, 𝑧, 𝑐, 휀) ≡ 𝜒(𝜑, 𝑧) + 𝑐̅ − 휀, and 

𝑐̅ is fixed cost. Therefore, the farmer’s expected utility is:  

(1.3) 𝐸[𝑈(𝜋)] = 𝐹(𝜑𝑧)∫ 𝑈(𝜑𝑧 − 𝐶(𝜑, 𝑧, 𝑐, 휀))𝑑𝐺(휀)
𝜀

𝜀
 

  +∫ ∫ 𝑈(𝜋(𝜑, 𝑧, 𝑐, 휀))𝑑𝐹(𝑦)𝑑𝐺(휀).
+∞

𝜑𝑧

𝜀

𝜀
 

Suppose a farmer is a rational and risk-averse EU maximiser, the first derivative of 

𝐸[𝑈(∙)], with regard to coverage level 𝜑 will be  

(1.4) 
𝜕𝐸[𝑈(∙)]

𝜕𝜑
= 𝑧𝐹(𝜑𝑧) ∫ 𝑈𝜋(𝜑𝑧 − 𝐶(𝜑, 𝑧, 𝑐̅, 휀))𝑑𝐺(휀)

𝜀

𝜀

⏞                        
InsuranceEffect

⏟                        
≥0

− 𝜒𝜑(𝜑, 𝑧)𝐸[𝑈𝜋(𝜋(𝜑, 𝑧, 𝑦, 휀))]
⏞                  

WedgeEffect−SubsidyTransferEffect

⏟                    
?

 

where 𝐸[𝑈𝜋(𝜑, 𝑧, 𝑦, 휀)] = ∫ ∫ 𝑈𝜋(𝜋(𝜑, 𝑧, 𝑦, 휀))𝑑𝐹(𝑦)𝑑𝐺(휀)
+∞

𝜑𝑧

�̅�

𝜀
≥ 0. 

We define the first term of Eqn.(1.4) as Insurance Effect because both subsidy rate and 

wedge factor are not included. The second term of Eqn.(1.4) shows the difference between 

Wedge Effect and Subsidy Transfer Effect. If premium rates are actuarially fair, the second term 

of Eqn.(1.4) degenerates to the condition that only Subsidy Transfer Effect is included (see, for 

example, Du et al. 2017). If premium rates are not actuarially fair and 𝜒𝜑(𝜑, 𝑧) ≤ 0 (i.e., Case 2 

of Figure 1.2), then 𝜕𝐸[𝑈(∙)] 𝜕𝜑⁄ > 0 and a rational farmer will choose the highest coverage 

level because marginal utility increases as the coverage level increases. However, we know this 

is not true in the real world because it indicates that farmers can pay less premiums when they 

choose higher coverage levels. Therefore, we will assume 𝜒𝜑(𝜑, 𝑧) > 0 (i.e., Case 1 of Figure 
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1.2), which implies that farmers’ self-paid premium increases as the coverage level increases. 

 

Figure 1.2 Possible Relationships Between Farmer’s Self-Paid Function and Coverage Level. 

Note: In case 1, χφ > 0; in case 2, χφ < 0. The farmer’s self-paid premium is the premium rates 

after subsidy.  

 

Remark 1. Given 𝜒𝜑(𝜑, 𝑧) > 0, suppose 𝜒𝜑𝜑(𝜑, 𝑧) > 0, if ∃�̅� with 0 < �̅� < 1, s.t 𝜒�̅� =

𝑧𝐹(𝜑𝑧) ∫ 𝑈𝜋(𝜑𝑧 − 𝐶(∙))𝑑𝐺(휀)
𝜀

𝜀
𝐸[𝑈𝜋(𝜋(∙))]⁄ , then  

i) an interior solution exists whenever 𝜒𝜑=0.50 < 𝜒�̅� < 𝜒𝜑=0.85;  

ii) coverage level 0.50 will be chosen whenever 𝜒�̅� < 𝜒𝜑=0.50;  

iii) coverage level 0.85 will be chosen whenever 𝜒�̅� > 𝜒𝜑=0.85.  

Hypothesis 1 (H1). Farmers’ coverage choices were either clustered at one single 

coverage level or two adjacent levels. 

We now turn to investigate the effect of the wedge factor 𝑤(𝜑) on the subsidy’s dollar 

value 𝑆(𝜑, 𝑧). The motivations are: (i) the subsidy transfer is considered as an incentive for 
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farmers to choose higher coverage level (see, for example, Du et al. 2017; Cai et al. 2020); (ii) as 

in Eqn.(1.2a), the subsidy transfer is impacted by subsidy rate 𝑠(𝜑) and wedge factor 𝑤(𝜑). 

Back to Eqn. (1.1), we obtain 𝑧𝐹(𝜑𝑧) Γ(𝜑, 𝑧) ≥ 1 𝜑⁄⁄ . Then, Eqn.(1.2a) can be re-written as 

𝑆𝜑(𝜑, 𝑧) =⏞
sign

𝑠𝜑(𝜑) 𝑠(𝜑) + 𝑤𝜑(𝜑) 𝑤(𝜑)⁄⁄ + 1 𝜑⁄ , which implies that the sign of 𝑆𝜑(𝜑, 𝑧) only 

depends on subsidy rate, wedge factor, and their first derivative functions. Assume that 

𝑆𝜑(𝜑, 𝑧) > 0 since the higher subsidies are used to offset the excessive premium charge and 

make higher coverage levels more attractive (Babcock et al. 2004). Then, we have 

Remark 2. A sufficient condition for 𝑆𝜑(𝜑, 𝑧) > 0 is  

(1.5) 
𝜑𝑠𝜑(𝜑)

𝑠(𝜑)
+
𝜑𝑤𝜑(𝜑)

𝑤(𝜑)
≡ ∆𝑠(𝜑) + Λ𝑤(𝜑) > −1 

where Δ𝑠(𝜑) and Λ𝑤(𝜑) are the elasticities of subsidy rate 𝑠(𝜑) and the wedge factor 𝑤(𝜑) with 

respect to 𝜑 respectively. 

 

Table 1.1 Premium Subsidies on Yield Contracts for BaU and OpU. 

Coverage Level 𝜑 CAT 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 

 
𝑠(𝜑) 1 0.67 0.64 0.64 0.59 0.59 0.55 0.48 0.38  

Source: The 2014 Farm Bill. BaU represents Basic Unit; OpU represent Optional Unit. 

 

As in Table 1.1, RMA subsidy rate 𝑠(𝜑) decreases when coverage level 𝜑  increases, 

which implies that 𝑠𝜑(𝜑) ≤ 0. Since 0 < 𝜑 < 1 and 𝑠(𝜑) > 0, then Δ𝑠(𝜑) ≤ 0. Suppose 

Eqn.(1.5) holds, the lower bound of Λ𝑤(𝜑) will be −1 − Δ𝑠(𝜑). Since 𝑤(𝜑) > 0, we have: (i) 

when Δ𝑠(𝜑) < −1, Λ𝑤(𝜑) > 0 and 𝑤𝜑(𝜑) > 0; and (ii) when Δ𝑠(𝜑) > −1, the sign of Λ𝑤(𝜑) 

is undecided, which implies that 𝑤𝜑(𝜑) may also be negative and positive. We may ask why 

discussion for the above elasticities is important. This is because if premium is assumed to be 
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actuarially fair, then 𝑤𝜑(𝜑) ≡ 0, which implies that the sufficient condition for 𝑆𝜑(𝜑, 𝑧) > 0 is 

only Δ𝑠(𝜑) > −1. Therefore, a confusing situation will exist if farmers do not choose highest 

coverage levels when Δ𝑠(𝜑) > −1. Our analysis helps explain the confusing case by exploring 

the role of actuarial unfairness - 𝑤(𝜑) and 𝑤𝜑(𝜑).  

Hypothesis 2 (H2). Farmers choose the highest coverage level, at which the sum of the 

elasticities of subsidy rate and wedge factor is larger than 1, i.e., ∆𝑠(𝜑) + Λ𝑤(𝜑) > −1. 

The H2 is proposed based on a predetermined belief that farmers prefer higher subsidy 

transfer, i.e., 𝑆𝜑(𝜑, 𝑧) > 0. If ∆𝑠(𝜑) + Λ𝑤(𝜑) ≤ −1, then 𝑆𝜑(𝜑, 𝑧) ≤ 0 implying that higher 

coverage level will not be attractive to farmers, which violates RMA’s target. It is noteworthy 

that the subsidy rate is readily obtained from USDA/RMA. However, the wedge factor is only 

maintained by farmers if assuming farmers know their underlying production risks. As such, we 

may ask whether farmers are more concerned about the wedge information.  

Hypothesis 3 (H3). Farmers choose the coverage level at which the wedge (including 

subsidies) arrives at the minimum value. 

If H3 holds, there will be a crucial policy implication that the federal government may 

investigate the wedge conditions experimentally and adjust wedges at all coverage levels. For 

example, suppose the federal government's goal is still encouraging farmers to purchase the 

higher coverage levels. Then, wedges at higher coverage levels can be adjusted downwards to 

make higher coverage levels more attractive. If farmers can be aware of the wedge, as discussed 

above, we can further investigate the effect of the wedge on farmers’ coverage level choices in 

different quality cropland.  

Hypothesis 4 (H4). Farmers with higher (lower) land quality pay more (fewer) 

premiums than they should. In other words, a county's higher (lower) quality cropland has a 
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worse (better)-than-actuarially-fair premium rating. 

In what follows, we will test our hypotheses based on the estimation of the wedge factor, 

which is the ratio of RMA premium to the estimated actuarially fair premium. The wedge values 

can be observed at all coverage levels. We will provide the empirical evidence to test H1-H4. 

Furthermore, to examine the effect of wedge factor on coverage level choice, we employ the 

Ordered Logit Model (OLM) for farm-level coverage choice; Ordinary Least Squares (OLS) and 

Weighted Least Square (WLS) for county-level coverage choices. 

Data Description 

We focus on APH yield contracts in this study because yield contracts only contain yield 

risk and crop prices are constant. 3 If revenue contracts are included, unnecessary modeling 

complications will also be introduced. When price risks are in a limited range, the analysis in this 

study can be extended to revenue contracts, although all conclusions are based on yield contracts.  

 

Table 1.2 Definition of Variables. 

  Variable Description 

Premium 𝐴𝑃𝑅 Premium rates (including subsidies) from RMA 

 𝑂𝑃𝑅 
Estimated actuarially fair premium rates  

based on RMA actual yield data 

Wedge 𝑤𝑖 Farm-level wedge at each coverage level 

 ∆𝑤𝑖 
Farm-level wedge differential between higher and lower 

coverage levels 
 𝑤𝑐 County-level average wedge (acreage-weighted) 

  ∆𝑤𝑐 
County-level wedge differential between higher and lower 

coverage levels (acreage-weighted) 

Land Capability 𝐿𝐶𝐶 Percentage of Class I-II in Class I-VIII 

Weather Determinants �̅�𝑐 Average GDD over 1989-2007 

  𝑆�̅� Average SDD over 1989-2007 

 

The targeted area is the twelve states in Midwest and Great Plain region (IL, IN, IA, KS, 

 
3 Insurance plan code is 90; abbreviation is APH; the name is Actual Production History. 
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MI, MN, MO, NE, ND, OH, SD and WI). Corn and soybean are selected for crop-specific 

analysis. The Table 1.2 reports the definition of main variables, including premiums, wedge 

factors, land capability and weather determinants. The Table 1.3 reports the statistics summary of 

main variables.  

 

Table 1.3 Summary of Main Variables. 

  Variable Obs. Mean Std.Dev. Min Max 

Corn  𝐴𝑃𝑅(φ = 0.65) 94,401 22.27 13.85 6.83 174.66 
 𝑂𝑃𝑅(φ = 0.65) 94,401 15.42 14.75 2.31 282.94 
 𝑤𝑖 94,401 1.73 0.65 0.17 20.76 
 ∆𝑤𝑖 94,401 0.06 0.17 -9.24 1.02 
 𝑤𝑐 818 1.72 0.51 0.43 4.35 
 ∆𝑤𝑐 818 0.04 0.15 -0.91 0.47 

Soybean 𝐴𝑃𝑅(φ = 0.65) 108,792 6.23 3.27 2.22 66.9 

 𝑂𝑃𝑅(φ = 0.65) 108,791 3.84 3.63 0.85 196.1 

 𝑤𝑖 108,791 2.07 0.99 0.14 19.18 

 ∆𝑤𝑖 108,791 0.11 0.19 -7.12 1.95 

 𝑤𝑐 791 1.88 0.87 0.15 9.26 

 ∆𝑤𝑐 791 0.095 0.16 -0.43 0.67 

Land Capability 𝐿𝐶𝐶 2,902 0.25 0.21 0.00006 0.93 

Weather Determinants �̅�𝑐 1,006 1248.7 191.1 186.6 1692.2 

  𝑆�̅� 1,006 20.48 22.9 0 126.02 

 

Estimated Actuarially Fair Premium Rates by RMA Rules 

Denote 𝑂𝑃𝑅𝑖,𝑐(𝜑) as the estimated premium rate for coverage level 𝜑 for farm 𝑖 in 

county 𝑐; 𝐴𝑃𝐻𝑖 as Actual Production History reflecting the institutional estimate of mean yield 

by USDA/RMA; refyieldc as county average yield; −𝐸𝑐as the exponent reflecting the 

correlation between county and individual yields; 𝑈𝐿𝑅𝑐(𝜑)as county unloaded rate estimated 

from our proposed procedure, which is also the main independent variable in this study; 

𝑓𝑖𝑥𝑒𝑑𝑙𝑜𝑎𝑑c as the load reflecting potential disaster and production failure; 𝑐𝑜𝑣𝑑𝑖𝑓𝑓(φ)as 
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coverage level differential used to adjust rates from the base 65% coverage to other coverage 

levels. Then our estimated farm-level premium rate at each coverage level φ is as: 

(1.6) 𝑂𝑃𝑅𝑖,𝑐(𝜑) = (
𝐴𝑃𝐻𝑖

refyieldc
)
−𝐸𝑐

× 𝑈𝐿𝑅𝑐(𝜑) + 𝑓𝑖𝑥𝑒𝑑𝑙𝑜𝑎𝑑c × 𝑐𝑜𝑣𝑑𝑖𝑓𝑓(φ) 

In Eqn.(1.6), our proposed procedure is used to estimate the county-level unloaded 

premium rate 𝑈𝐿𝑅𝑐(𝜑) at the coverage level 𝜑 with 𝜑 ∈ {0.50,… ,0.85}. All other parameters 

are from USDA/RMA. It is noteworthy that in RMA’s methodology, county-level unloaded 

premium rate 𝑈𝐿𝑅𝑐 is only for a 65% coverage level (see Coble et al. 2010). Premium rates at 

other coverage levels are obtained by applying coverage level differentials 𝑐𝑜𝑣𝑑𝑖𝑓𝑓(φ). For 

example, in RMA’s methodology, the premium at 𝜑 = 0.75 equals to 𝑈𝐿𝑅(𝜑 = 0.65) ×

𝑐𝑜𝑣𝑑𝑖𝑓𝑓(𝜑 = 0.75). Since our procedure can estimate the county-level premium rates at all 

coverage levels, coverage level differential will impact the farm-level premium rates only 

through the county-level fixed load 𝑓𝑖𝑥𝑒𝑑𝑙𝑜𝑎𝑑c.  

Now we turn to introduce how 𝑈𝐿𝑅𝑐(𝜑) is estimated from the 2008 USDA/RMA farm-

level yield data. In this yield dataset, each farm has a specific APH and four-to-ten-year yield 

historical records. There are 18 yield types including actual yield, transitional yield, the 

exceptional transitional yield for a new producer, and simple average transitional yield for added 

land. In this study, we only employ the actual yield because other types are RMA’s imputation, 

accounting for a small proportion in the whole sample (less than 20% in western Great Plains 

and less than 15% in Corn Belt). Finally, there are about 9 million yield records in 882 counties 

for corn and about 8.6 million records in 828 counties for soybean. 

Our proposed procedure contains four parts: (i) yield detrend: all historical farm- and 

county-level actual yields are adjusted to the 2009 technological level; (ii) semiparametric 
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quantile regression imputation (SQRI): impute missing observations over 1970-1998 based on 

penalized B-splines and quantile regression approaches, because the most observations in the 

yield dataset lie between 1999 and 2008 and no extreme climate change happens in this 10-year 

interval; (iii) rejection sampling: a more representative sample with farm-level records can be 

obtained from long-term county-level yields; and (iv) actuarially fair premium estimation: 

impute 𝑈𝐿𝑅𝑐(𝜑) at all coverage levels based on the univariate penalized B-spline method.  

After obtaining 𝑈𝐿𝑅𝑐(𝜑), we employ the 2009 USDA/RMA farm-level contract choice 

data to obtain farm-level premiums as in Eqn.(1.6). The primary Information in this dataset 

contains the farm’s location information (state and county), coverage level chosen, the premium 

rate paid (including subsidies), insured acres, elected crop price, approved production history 

(APH), actual yield, and various parameters such as fixed load or coverage differential. 

Figure 1.3 reports the coefficient of variation (i.e., standard deviation/mean value) of 

actual yields for corn in each Crop Reporting Region (CRD). The upper panel of Figure 1.3 

shows the coefficient of variation for the original data; the lower panel shows that for the 

resampling data. We find that the pattern of coefficient of variation does not change after our 

resampling procedure, implying no systematic bias. Figure 1.4 reports county-level yield 

distribution after the resampling procedure. We find that the yield distributions in the main 

production area (e.g., IA, IL, IN) have the similar patterns. However, the distribution becomes 

dispersed as one move towards the western Great Plains. 4 

 
4 After resampling, we obtain 1,000 yields records in a county. Denote 𝑦det as the detrended 

farm-level yields, then the nonparametric kernel estimates at a given point 𝑦 can be defined as 

ĝ(𝑦) = (1 𝑁ℎ⁄ )∑ 𝐾[(𝑦𝑖
det − 𝑦) ℎ⁄ ]𝑁

𝑖=1 , where 𝑁 = 1,000; 𝐾(∙) is the Gaussian kernel function 

which is nonnegative and satisfies ∫𝐾(𝑧)𝑑𝑧 = 1, ∫ 𝑧𝐾(𝑧)𝑑𝑧 = 0, ∫ 𝑧2𝐾(𝑧)𝑑𝑧 < ∞. Parameter 

ℎ is the smoothing parameter which can be defined as ℎ̂ = 0.9 × min[𝜎𝑦, 𝐼𝑄𝑅𝑦 1.34⁄ ] × 𝑁−0.2, 

where 𝜎𝑦 is the standard deviation; 𝐼𝑄𝑅𝑦 is the interquartile range (i.e., the difference between 

25th and 75th quantiles) of 𝑦det. 
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Figure 1.3 Coefficient of Variation from Original and Resampling Data for Corn by Crop 

Reporting District (CRD). 

 

Wedge Factor 

RMA’s premium rates at all coverage levels can be imputed from the 2009 USDA/RMA 

farm-level contract choice data (see, for example, Du et al.2017). After obtaining the estimated 

actuarially fair premium rates, we can measure farm- and county-level actuarial fairness. Denote 

𝐴𝑃𝑅𝑖(𝜑) as RMA’s actual premium rates (including subsidies) at the coverage level 𝜑 for farm 

𝑖,; 𝑂𝑃𝑅𝑖(𝜑) as the actuarially fair premium rates; 𝑎𝑖,𝑐 represents insured acreages of farm 𝑖; 

𝑠𝑖,𝑐 = 𝑎𝑖,𝑐 ∑ 𝑎𝑖,𝑐𝑖⁄  represents a weight. 𝑚corresponds to the coverage level with 𝜑1 = 0.5 until 

𝜑8 = 0.85. Then four wedge factors can constructed as: 

(1.7a) farm average:  𝑤𝑖 =
∑ 𝐴𝑃𝑅𝑖(𝜑𝑚)
8
𝑚=1

∑ 𝑂𝑃𝑅𝑖(𝜑𝑚)
8
𝑚=1

; 

(1.7b) farm differential: ∆𝑤𝑖 =
∑ 𝐴𝑃𝑅𝑖(𝜑𝑚)
8
𝑚=5

∑ 𝑂𝑃𝑅𝑖(𝜑𝑚)
8
𝑚=5

−
∑ 𝐴𝑃𝑅𝑖(𝜑𝑚)
4
𝑚=1

∑ 𝑂𝑃𝑅𝑖(𝜑𝑚)
4
𝑚=1

; 

(1.7c) county average: 𝑤𝑐 =
∑ ∑ 𝐴𝑃𝑅𝑖(𝜑𝑚)×𝑠𝑖,𝑐

8
𝑚=1𝑖

∑ ∑ 𝑂𝑃𝑅𝑖(𝜑𝑚)×𝑠𝑖,𝑐
8
𝑚=1𝑖

; 

(1.7d) county differential: ∆𝑤𝑐 =
∑ ∑ 𝐴𝑃𝑅𝑖(𝜑𝑚)×𝑠𝑖,𝑐

8
𝑚=5𝑖

∑ ∑ 𝑂𝑃𝑅𝑖(𝜑𝑚)×𝑠𝑖,𝑐
8
𝑚=5𝑖

−
∑ ∑ 𝐴𝑃𝑅𝑖(𝜑𝑚)×𝑠𝑖,𝑐

4
𝑚=1𝑖

∑ ∑ 𝑂𝑃𝑅𝑖(𝜑𝑚)×𝑠𝑖,𝑐
4
𝑚=1𝑖

. 
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Figure 1.4 Detrended Unit-Level Imputed Yield Densities for Corn by County and States. 

Note: “dashed curve” shows density for each county; “yellow curve” shows density for the state 

(randomly draw from all observations in this state). 
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Figure 1.5 Distributions of Farm-level Wedges (before and after subsidies) for Corn and Soybean 

at the 65% Coverage Level. 

Note: The green curve shows the normal distribution. The red line shows the actuarial fairness 

condition (loss ratio=1). 
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The average wedges (Eqn.(1.7a) and (1.7c)) capture the farmer's response to the 

systematic pricing bias; the differential wedges (Eqn.(1.7b) and (1.7d)) can capture farmers' 

response to benefits from higher coverage levels. The motivation for constructing both average 

and differential wedges is that USDA RMA encourages farmers to choose higher coverage 

levels. Therefore, wedges at higher coverage levels may differ from those at lower coverage 

levels.  

Figure 1.5 shows the distributions of the farm-level wedges (before and after subsidies) 

for corn and soybean at the 65% coverage level. By comparing Panel A with B, we know the 

effect of subsidies on the farm-level wedges for corn. Before subsidy, most farm-level wedges 

are larger than the actuarial target (i.e., 1), which indicates that RMA’s premiums in most farms 

are higher than the actuarial fair premiums. After subsidy, most farm-level wedges are less than 

1, which indicates that subsidy policy may cover actuarial unfairness. 5 A similar pattern is also 

applied to soybeans (Panels C and D). 

An inquiry may be generated because it seems that RMA’s premiums (including subsidy) 

are systematically higher than our estimated premium. To investigate whether and why the 

systematic bias happens, we compare the inverse of wedge and loss ratio as in Figure 1.6. In our 

construction, the inverse of the wedge is the ratio of expected indemnity (the estimated 

actuarially fair premium) to RMA’s premium, which is the loss ratio used by RMA. Therefore, 

the inverse of the wedge and loss ratio should be consistent. Panel A and B of Figure 1.6 report 

the inverse of wedge and loss ratio for corn, respectively. We find that: first, the actuarially fair 

premiums (i.e., expected payout) are higher than actual indemnities in the Corn Belt region, 

 
5 For example, the mean wedge before subsidy for corn is 1.732, which is changed to 0.71 after 

subsidy, consistent with the subsidy rate at a 65% coverage level (0.71=1.73*(1-0.59)). 
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implying RMA’s premiums might be underestimated in the main production area; second, the 

inverses of the wedge are lower than the loss ratios when moving outside the main production 

area, implying that RMA’s premiums might be overestimated. Patterns for soybean are similar 

(Panel C and D of Figure 1.6). The findings above indicate that actuarial unfairness might be 

correlated with land quality.  

To examine whether wedge is related to land quality, we set six quantiles of land quality 

(10th,25th,50th,75th, 90th, and 95th) based on the farm’s APH in each Cropping Record District 

(CRD). It is noteworthy that we are interested in whether the farmer with higher quality cropland 

receives a worse-than-actuarially-fair rating. Therefore, the 5th quantile of land quality is not 

included. Finally, we may ask why the quantiles are divided in each CRD. The reasons are that: 

first, yields corresponding quantiles are not too concentrated so that we can avoid many same 

observations being divided into one pool; second, yield risk in one CRD is similar, so yields 

corresponding quantiles are not too dispersed. 

Figure 1.7 reports the wedge means for each quantile land quality. We find: (i) wedge 

(before subsidy) decreases with coverage level in lower land quality, but a contrary case exists in 

higher land quality; (ii) wedge (after subsidy) increases with coverage level in all land qualities; 

(iii) wedges (after subsidy) in lower land quality (10th and 25th quantiles) are less than 1 

(actuarial fair target), but some wedges in higher land quality are higher than 1; and (iv) for 

higher land quality (50th -95th quantiles), wedges (after subsidy) increase with coverage level and 

intersect with 1 at 80% coverage level.  
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Figure 1.6 Comparison between Expected Loss Ratio (1/Wedge) and Average Loss Ratio. 

Note: As the construction in this study, 1/Wedge represents the ratio of expected indemnity to 

actual premium, which means that 1/Wedge is expected loss ratio. 

 

Land Capability 

Soil quality data are from National Resource Inventory (NRI). As in USDA (2015), there 

are eight Land Capability Classes (LCC). To be specific, Class I soils have limitations that 

restrict their use. However, Class VIII soils and miscellaneous areas have limitation that 

precludes their use for commercial plant production and limits their use for recreation, wildlife, 

water supply, or aesthetic purposes. As in the literature, we measure the land capability by 

calculating the percentage of good land in total land. We employ Class I-II as in Goodwin et 



 

25 

al. (2004), although Du et al. (2017) choose Class I-IV.  

We now turn to show whether actuarial unfairness exists in a macro-level region since 

land capability has inter-county heterogeneities. As in Figure 1.8, the x-axis shows the ranking of 

land capability (01-lowest; 12-highest) and state name. The distribution in each state shows 

county-level wedge heterogeneities at the 65% coverage level. For corn, we find that wedges 

(before subsidies) are lower in states with lower land capability (e.g., WI, SD, MN); however, 

wedges (before subsidies) are higher in the main production area (e.g., IA, IL, IN). This pattern 

implies that the wedge (before subsidies) might be inversely correlated with land quality. It is 

noteworthy that: (i) for corn, some states with lower land capability have high wedges, e.g., MO, 

MI, and NE; (ii) for soybean, the relationship between wedges and land capabilities is not 

entirely clear. Therefore, we will apply empirical methods for further analysis. 

Weather Determinants 

As in the literature (e.g., Schlenker and Roberts 2009; Xu et al. 2013), we construct two 

variables-Growing Degree Days (GDD) and Stress Degree Days (SDD)-to represent beneficial 

heat and heat stress during the growing season (April to September) as below: 

(1.8a) 𝐺𝐷𝐷𝑐,𝑡 = ∑ [0.5 (𝑚𝑖𝑛(𝑚𝑎𝑥(𝑇𝑐,𝑑,𝑡
𝑚𝑎𝑥, 𝑇𝑙), 𝑇ℎ) + 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑇𝑐,𝑑,𝑡

𝑚𝑖𝑛, 𝑇𝑙), 𝑇ℎ)) − 𝑇𝑙]𝑑∈Ω𝑡  

(1.8b) 𝑆𝐷𝐷𝑐,𝑡 = ∑ [0.5 (𝑚𝑎𝑥(𝑇𝑐,𝑑,𝑡
𝑚𝑎𝑥 , 𝑇𝑘) + 𝑚𝑎𝑥(𝑇𝑐,𝑑,𝑡

𝑚𝑖𝑛, 𝑇𝑘)) − 𝑇𝑘]𝑑∈Ω𝑡  

where 𝑐 is county; 𝑑 is day; Ω𝑡 is the set of growing season days in year 𝑡. The thresholds 

are 𝑇𝑙 = 10°𝐶, 𝑇ℎ = 30°𝐶 and 𝑇𝑘 = 32.2°𝐶. We use climatological normal around 20 years 

{1989,… ,2007} to control for weather effect on coverage level choice as: 

(1.9a) �̅�𝑐 = (1/19)∑ 𝐺𝐷𝐷𝑐,𝑗
2007
𝑗=1989 ; 

(1.9b)  𝑆�̅� = (1/19)∑ 𝑆𝐷𝐷𝑐,𝑗
2007
𝑗=1989 . 
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Figure 1.7 Comparisons of Wedges (before and after subsidies) among Different Land Qualities 

for Corn. 

Note: Land quality is measured by farm-level APH within a Cropping Record District. The 

tolerance is 20 bushels for each quantile. For instance, suppose the 25th quantile of APH is 112, 

then observations who own APH within the interval (102, 122) will be used for the 25th quantile 

part. 
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Figure 1.8 Wedge Comparison at 65% Coverage Level. 

Note: The distribution on each box is based on farm-level observations in each state. Central 

mark is median; edges are 25th (Q1) and 75th (Q3) quantiles respectively. Upper and lower 

whiskers include data points within (+)- 1.5×IQR where IQR=Q3-Q1. The distribution is based 

on farms in each state. 
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Empirical Results 

Evidence on Hypotheses 

We now turn to examine the hypotheses H1-H4. Recall that H1 states that farmers’ 

coverage choices are clustered at one single coverage level or two adjacent levels. From Table 

1.4, we find that farmers choosing 65% and 70% coverage levels account for over 55% of the 

whole sample, which supports the H1. This conclusion holds for different crops and unit types. 

Furthermore, the inner solution indicates that the gradient of the self-paid premium function (𝜒𝜑) 

is between the two end coverage levels (0.5 and 0.85). 

 

Table 1.4 Evidence for H1. 

Crop 
Plan 

90 

% obs.  

at 50% 

% obs.  

at 55% 

% obs.  

at 60% 

% obs.  

at 65% 

% obs.  

at 70% 

% obs.  

at 75% 

% obs.  

at 80% 

% obs.  

at 85% 

Corn All 0.12 0.02 0.05 0.30 0.25 0.18 0.06 0.03 
 OpU 0.10 0.01 0.05 0.29 0.27 0.18 0.06 0.03 

  BaU 0.14 0.02 0.05 0.32 0.21 0.18 0.06 0.03 

Soybean All 0.12 0.01 0.04 0.30 0.25 0.18 0.06 0.03 
 OpU 0.10 0.01 0.05 0.28 0.28 0.19 0.06 0.03 

  BaU 0.14 0.02 0.05 0.33 0.21 0.17 0.06 0.02 

Note: the sample only includes OpU and BaU.  

 

Recall that H2 states farmers choose the highest coverage level, at which sum of 

elasticities of subsidy rate and wedge factor is larger than −1. To test this hypothesis, we first 

define two common elasticities as: 

(1.10a)  Conservative:  ∆1
𝑠(𝜑) =

𝑠(𝜑+)−𝑠(𝜑−)

𝜑+−𝜑−
×

𝜑+

𝑠(𝜑+)
, 

Λ1
𝑤(𝜑) =

𝑤(𝜑+)−𝑤(𝜑−)

𝜑+−𝜑−
×

𝜑+

𝑤(𝜑+)
; 

(1.10b)  Arc Elasticity:  ∆2
𝑠(𝜑) =

𝑠(𝜑+)−𝑠(𝜑−)

𝜑+−𝜑−
×

𝜑++𝜑−

𝑠(𝜑+)+𝑠(𝜑−)
; 
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Λ2
𝑤(𝜑) =

𝑤(𝜑+)−𝑤(𝜑−)

𝜑+−𝜑−
×

𝜑++𝜑−

𝑤(𝜑+)+𝑤(𝜑−)
,  

where 𝜑+ and 𝜑− are adjoining coverage levels with 𝜑+ > 𝜑− and 𝜑+, 𝜑− ∈ {0.5, … ,0.85}. Both 

elasticities are employed to eliminate the potential mismeasurement due to the different start and 

end points. From Table 1.5, 75% should be farmers’ favorite coverage level because the 75% 

coverage level is the highest level satisfying the sum of elasticities larger than −1. Since the 

percentage of observations at the 65% coverage level is the highest in Table 1.4, H2 is not 

supported, which implies that we cannot conclude that farmers are concerned about the subsidy 

transfer.  

Table 1.5 reports evidence for H3, which states that farmers choose the coverage level at 

which the wedge (including subsidies) arrives at the minimum value. Wedges for corn and 

soybeans arrive at the minimum levels at the 65% coverage choices, implying that farmers are 

concerned about wedges (including subsidies). Therefore, policymakers might consider adjusting 

actuarial unfairness rather than maintaining large subsidies. For example, if the federal 

government's target encourages farmers to choose higher coverage levels, wedges at higher 

levels can be adjusted downward. It is noteworthy that the adjustment of wedges cannot be 

uniform nationwide. If the actuarially fair premiums are constant, the downward adjustment of 

wedges indicates RMA's premiums should be reduced, which might increase the loss ratio.  

Recall that H4 states farmers with higher (lower) land quality cropland pay more (fewer) 

premiums than they should. However, as in Figure 1.9, the mean values of RMA’s premiums 

(before subsidy) are higher than that of the actuarially fair premiums for all land qualities. 

Moreover, the difference between RMA’s and actuarially fair premiums becomes more 

significant as the coverage level increases. Therefore, H4 is not robustly supported if we 

compare the mean values of RMA’s premiums and the actuarially fair premiums.  
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Table 1.5 Evidence for H2 and H3. 

Coverage Level   CAT 50% 55% 60% 65% 70% 75% 80% 85% 

Subsidy Rate ( )s   1 0.67 0.64 0.64 0.59 0.59 0.55 0.48 0.38 

1 ( )s     -0.52 0 -1.32 0 -1.09 -2.33 -4.47 

2 ( )s     -0.48 0 -1.02 0 -1.02 -2.11 -3.84 

Corn Wedge ( )w   NA 1.73 1.72 1.69 1.66 1.71 1.75 1.78 1.80 

1 ( )w     -0.12 -0.18 -0.24 0.43 0.37 0.26 0.18 

2 ( )w     -0.12 -0.18 -0.23 0.42 0.36 0.25 0.17 

Soybeans Wedge ( )w   NA 1.93 1.89 1.85 1.82 1.87 1.93 1.98 2.02 

1 ( )w     -0.27 -0.24 -0.26 0.43 0.44 0.40 0.35 

2 ( )w       -0.25 -0.23 -0.25 0.42 0.43 0.39 0.34 

Corn          

1 1( ) ( )s w  +     -0.64 -0.18 -1.56 0.43 -0.72 -2.07 -4.29 

2 2( ) ( )s w  +    -0.60 -0.18 -1.25 0.42 -0.66 -1.86 -3.67 

Soybeans          

1 1( ) ( )s w  +     -0.79 -0.24 -1.58 0.43 -0.65 -1.93 -4.12 

2 2( ) ( )s w  +      -0.73 -0.23 -1.27 0.42 -0.59 -1.72 -3.50 

 

Table 1.6 Coverage Choices by Land Qualities. 

Land Quality 

(quantile) 

Coverage Level 

% obs.  

at 50% 

% obs. 

at 55% 

% obs.  

at 60% 

% obs.  

at 65% 

% obs.  

at 70% 

% obs.  

at 75% 

% obs.  

at 80% 

% obs.  

at 85% 

Corn         

10th 12.8 1.9 6.5 36.9 28.5 11.3 1.8 0.2 

25th 11.7 1.8 6.2 32.7 28.0 16.3 2.8 0.6 

50th 11.7 1.6 4.8 27.9 25.6 20.5 5.5 2.5 

75th 10.4 1.4 3.6 26.0 21.1 22.8 9.4 5.2 

90th 10.6 1.2 4.0 26.2 20.9 21.6 9.5 6.1 

95th 11.4 1.4 3.7 25.0 20.8 20.9 10.5 6.3 

Soybeans                 

10th 7.8 1.0 3.9 46.8 31.9 7.8 0.6 0.1 

25th 11.3 1.3 6.1 39.7 31.3 8.3 1.8 0.2 

50th 13.1 1.6 5.4 33.5 28.5 14.8 2.5 0.5 

75th 14.7 1.5 4.4 28.2 24.7 19.6 5.2 1.8 

90th 13.3 1.5 4.3 25.9 20.6 22.3 8.3 3.8 

95th 10.2 1.6 3.6 24.3 19.9 23.6 10.6 6.2 
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Figure 1.9 RMA Premiums (including subsidies), Farm’s Self-Paid Premium and Our Estimated 

Actuarially Fair Premiums for Corn. 

Note: Only mean values are reported here. 
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Table 1.6 reports the farmer’s choices in terms of land qualities. We find that: (i) the 65% 

coverage level is the most popular level for all land qualities, and (ii) the percentage for higher 

coverage level choices increases when land quality increases. For example, the percentage of 

75% coverage level for the 10th land quality is 11.3, but that for the 95th land quality increases to 

20.9. Results in Table 1.6 imply that farmers with better land quality are inclined to choose 

higher coverage levels. 

Regression Results 

We first employ the ordered logit model (OLM) to analyse the farm-level coverage 

choice. The dependent variable is each farm’s actual coverage choice; the independent variables 

of most interest are average wedge across all coverage levels (i.e., 𝑤𝑖) and wedge differential 

(i.e., ∆𝑤𝑖). The model specification we employed is as follows: 

(1.10a)  𝑃𝑟𝑜𝑏(𝜑𝑖 = 𝜑1|𝐗𝒊, 𝐛, 𝑐) = 1 −
𝑒𝑥𝑝(𝐗𝐢𝐛−𝑐1)

1+𝑒𝑥𝑝(𝐗𝐢𝐛−𝑐1)
; 

(1.10b)  𝑃𝑟𝑜𝑏(𝜑𝑖 = 𝜑𝑗|𝐗𝒊, 𝐛, 𝑐) =
𝑒𝑥𝑝(𝐗𝐢𝐛−𝑐𝑗−1)

1+𝑒𝑥𝑝(𝐗𝐢𝐛−𝑐𝑗−1)
−

𝑒𝑥𝑝(𝐗𝐢𝐛−𝑐𝑗)

1+𝑒𝑥𝑝(𝐗𝐢𝐛−𝑐𝑗)
, 𝑗 = 2,3, … ,7; 

(1.10c)  𝑃𝑟𝑜𝑏(𝜑𝑖 = 𝜑8|𝐗𝒊, 𝐛, 𝑐) =
𝑒𝑥𝑝(𝐗𝐢𝐛−𝑐7)

1+𝑒𝑥𝑝(𝐗𝐢𝐛−𝑐7)
, 

where 𝑖 ∈ {1,2, … ,𝑁} is the index of each farm in the sample; 𝜑 ∈ {0.5, … ,0.85} with 𝜑1 = 0.5, 

𝜑2 = 0.55 until 𝜑8 = 0.85; 𝐗𝐦 is the vector of the exogenous variables {𝑤𝑖, ∆𝑤𝑖, 𝐿𝐶𝐶, �̅�𝑐, 𝑆�̅�}; 𝐛 

is the coefficient vector;  , 1,...,7jc j  are cut points of the distribution. To investigate the 

effect of land quality on farmer’s coverage level choice, we add an indicator variable 

𝑖𝑛𝑑𝑒𝑥_𝐶𝑅𝐷 showing quantiles of land quality in a Cropping Report District. Specifically, 

𝑖𝑛𝑑𝑒𝑥_𝐶𝑅𝐷 = 1 represents 10th quantile and 𝑖𝑛𝑑𝑒𝑥_𝐶𝑅𝐷 = 6 represents 95th quantile. For the 

robustness checks, we also employ a county’s longitude and lattitude in order to control for some 

non-climate features such as technological adoption and infrastructure availability. 
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Next, by calculating weights based on farm-level insured acres, we investigate that how 

wedges (i.e., 𝑤𝑐 and ∆𝑤𝑐) affect coverage choices from a county-level perspective. We employ 

Ordinary Least Squares (OLS) for the primary estimation, and use Weighted Least Squares 

(WLS) for robustness checks. In WLS estimation, suppose the model specification be 𝑦 =

𝐗𝐓𝛃 + 휀 and 휀2 = 𝐗𝐓𝛄 + 𝑢, we employ a procedure as: i) regress 𝑦 on 𝐗 by OLS and have 

residuals 휀̂ ; ii) run 휀̂2 on 𝐗 and have �̂�; and iii) use 1 √𝐗𝐓�̂�⁄  as the weight to correct 

heterogeneity in 휀.  

Table 1.7 reports the regression results for the farm-level coverage choices. The farmers’ 

coverage choice responses to wedge average and wedge differential are significantly negative for 

corn, although they are unclear to soybean. However, land quality variables – land quantile and 

land capability- have significantly positive effects on farmers’ choices, implying that farmers 

with better land quality are inclined to choose higher coverage levels.  

Table 1.8 reports OLS estimation results, and Table 1.9 reports the WLS results. Again, 

like the farm-level analysis, the wedge effect (average) on county-level coverage choice is 

significantly negative for corn but unclear for soybean. As in Table 1.8, for corn, the coefficient 

of wedge average is around -1.3, indicating the marginal effect of wedge average is also around -

1.3 since we use OLS estimation. Then the semi-elasticity of coverage choice is -2.2, implying 

that the mean coverage level will increase to 0.69 from 0.67 if the wedge average decreases by 

1%. Furthermore, the wedge effect (differential) is unclear for corn and soybean. 

Conclusion 

Over the past twenty years, participation rates in the U.S. federal crop insurance program 

have improved nationwide; however, significant regional disparities still exist. This study 

contributes to the literature by proposing a novel resampling procedure, estimating the 
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actuarially fair premiums at all coverage levels, and then examining the effect of actuarial 

unfairness on farmers’ insurance demand.  

We find that: first, farmers are more concerned about the actuarial unfairness than the 

subsidy transfer, implying that mitigation of mispricing supplements the subsidy; second, 

actuarial unfairness is positively correlated with land quality, indicating that farmers with higher 

land quality cropland pay more premiums than they should. Finally, regression results show that 

such mispricing deters farmers’ insurance uptake, which is robust from the farm- or county-level 

perspectives. 

Our analysis might help the sustainability of the crop insurance program because an 

adverse selection problem might exist if federal subsidies were to be reduced in the future. When 

farm-level mispricing exists and subsidy reduction starts, farmers with higher land quality 

cropland will opt out of the program. If this is the case, the entire insurance pool becomes risky, 

and indemnities might exceed premiums, which will be detrimental to the development of the 

program. In addition, due to the increased indemnities, RMA might adjust the premium rating 

upward and crowd more farmers with good land quality out of the insurance pool, further 

exacerbating the program. 

The effect of mispricing on coverage level choice is significant for corn but not for 

soybean. According to our estimation, if the wedge (=RMA’s premium/the actuarially fair 

premium) decreases by 10%, county-level coverage choices of corn will increase by 0.2 

percentage points. Therefore, the mitigation of mispricing provides an opportunity to adjust the 

current subsidy structure. 
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Table 1.7 Estimation Results for Ordered Logit Model. 

Dependent Variable Farm-Level Coverage Choice 

Estimation Method Ordered Logit Model 

Crop Corn Soybeans 

Wedge Average -0.082*** -0.090*** -0.074*** -0.081*** 0.020*** 0.020*** 0.008 0.009 
 (-7.42) (-8.01) (-6.66) (-7.15) (3.36) (3.38) (1.26) (1.49) 

Wedge Differential   -0.158***  -0.133***  -0.007  -0.125*** 
   (-3.49)  (-2.93)  (-0.22)  (-3.76) 

Land Quantile 0.007 0.010** 0.009** 0.012*** 0.039*** 0.040*** 0.036*** 0.039*** 
 (1.63) (2.29) (2.17) (2.69) (9.22) (9.13) (8.47) (9.07) 

Land Capability 1.349*** 1.367*** 1.353*** 1.368*** 1.887*** 1.888*** 1.879*** 1.883*** 
 (36.93) (36.98) (36.95) (36.94) (54.50) (54.42) (53.75) (53.81) 

Control Variable                 

Growing Degree Days -0.000*** -0.000*** 0.000 0.000 -0.001*** -0.001*** -0.000*** -0.000** 
 (-3.02) (-2.76) (0.30) (0.37) (-16.74) (-16.68) (-2.62) (-2.52) 

Stress Degree Days -0.014*** -0.014*** -0.011*** -0.011*** -0.008*** -0.008*** -0.005*** -0.005*** 
 (-24.52) (-24.75) (-15.47) (-15.69) (-14.46) (-14.13) (-8.38) (-7.85) 

Longitude    0.025*** 0.025***   0.014** 0.011** 
    (4.71) (4.72)   (2.48) (1.97) 

Latitude    0.081*** 0.079***   0.176*** 0.178*** 
    (8.61) (8.38)   (23.81) (23.97) 

State FE Yes Yes Yes Yes Yes Yes Yes Yes 

Obs. 81,088 81,088 81,088 81,088 104,209 104,209 104,209 104,209 

Pseudo R2 0.042 0.042 0.042 0.042 0.046 0.046 0.048 0.048 

Note: The t-statistics are in the parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
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Table 1.8 The OLS Estimation Results for County-Level Choice. 

Dependent Variable Acreage-Weighted Coverage Choice 

Estimation Method OLS 

Crop Corn Soybeans 

Wedge Average -1.288*** -1.314*** -1.222*** -1.244*** -0.406* -0.362 -0.409* -0.357 
 (-3.79) (-3.83) (-3.66) (-3.69) (-1.81) (-1.58) (-1.84) (-1.58) 

Wedge Differential  -0.740  -0.614  -0.851  -1.027 
  (-0.63)  (-0.52)  (-0.72)  (-0.86) 

Land Capability 5.053*** 5.111*** 4.918*** 4.967*** 4.022*** 4.030*** 3.949*** 3.955*** 
 (4.77) (4.80) (4.68) (4.69) (4.58) (4.58) (4.51) (4.51) 

Growing Degree Days -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000 -0.000 
 (-0.72) (-0.67) (-0.46) (-0.43) (-0.58) (-0.56) (-0.09) (-0.05) 

Stress Degree Days -0.031* -0.032* -0.041** -0.041** 0.003 0.002 -0.001 -0.002 
 (-1.71) (-1.74) (-2.09) (-2.10) (0.16) (0.14) (-0.08) (-0.11) 

Longitude   -0.503* -0.493*   -0.377 -0.392 
   (-1.94) (-1.92)   (-1.52) (-1.57) 

Latitude   0.040 0.035   0.456 0.474 
   (0.09) (0.08)   (1.04) (1.09) 

State FE Yes Yes Yes Yes Yes Yes Yes Yes 

CRD FE Yes Yes Yes Yes Yes Yes Yes Yes 

Obs. 776 776 776 776 751 751 751 751 

Pseudo R2 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 

Note: The t-statistics are in the parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
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Table 1.9 The WLS Estimation Results for County-Level Choice. 

Dependent Variable Acreage-Weighted Coverage Choice 

Estimation Method WLS 

Crop Corn Soybeans 

Wedge Average -1.305*** -1.305*** -1.253*** -1.25*** -0.257 -0.218 -0.241 -0.193 
 (-3.95) (-3.94) (-3.76) (-3.69) (-1.09) (-0.92) (-1.02) (-0.81) 

Wedge Differential  0.001  0.119  -1.167  -1.349 
  (-0.00)  (0.11)  (-1.06)  (-1.22) 

Land Capability 4.453*** 4.452*** 4.375*** 4.367*** 3.636*** 3.614*** 3.554*** 3.526*** 
 (5.14) (5.12) (4.99) (4.96) (4.13) (4.11) (3.96) (3.93) 

Growing Degree Days -0.001 -0.001 -0.001 -0.001 0.00001 0.0001 0.003 0.001 
 (-0.61) (-0.60) (-0.37) (-0.39) (0.01) (-0.08) (0.23) (0.35) 

Stress Degree Days -0.025 -0.025 -0.031 -0.03** 0.011 0.01 0.005 0.004 
 (-1.28) (-1.28) (-1.49) (-1.48) (0.51) (0.48) (0.23) (0.17) 

Longitude   -0.317 -0.32   -0.31 -0.34 
   (-1.29) (-1.3)   (-1.2) (-1.30) 

Latitude   0.011 0.01   0.12 0.15 
   (0.03) (0.03)   (0.32) (0.39) 

State FE Yes Yes Yes Yes Yes Yes Yes Yes 

CRD FE Yes Yes Yes Yes Yes Yes Yes Yes 

Obs. 770 770 770 770 733 733 733 733 

Pseudo R2 0.52 0.52 0.52 0.52 0.50 0.50 0.50 0.50 

Note: The t-statistics are in the parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
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APPENDIX A: Resampling and Premium Estimation 

Step 1: Detrended Yields 

Let 𝑦𝑖,𝑐,𝑡 be the unit-level yield for farm 𝑖 in county 𝑐 and year 𝑡, 𝑦𝑐,𝑡 be the county-level 

yield. Two log-linear trend equations will be estimated as (Miranda and Glauber 1997; Deng et 

al. 2007):  

(A1.1)  log(𝑦𝑖,𝑐,𝑡) = 𝛽0 + 𝛽1(2009 − 𝑡) + 휀;  

(A1.2)  log(𝑦𝑐,𝑡) = 𝛾0 + 𝛾1(2009 − 𝑡) + 𝑢, 

where 𝑡 ∈ {1970,… ,2008} for unit-level yields and 𝑡 ∈ {1951,… ,2018} for county-level yields. 

The reason is that long-term county-level historical yields may represent the long-term variation 

and be more convincible. Then the detrend unit- and county-level yields will be calculated as: 

(A1.3)  𝑦𝑖,𝑐,𝑡
𝑑𝑒𝑡 =

𝑦𝑖,𝑐,𝑡

�̂�𝑖,𝑐,𝑡
× �̂�𝑖,𝑐,2009 

(A1.4)  𝑦𝑐,𝑡
𝑑𝑒𝑡 =

𝑦𝑐,𝑡

�̂�𝑐,𝑡
× �̂�𝑐,2009 

where �̂�𝑖,𝑐,𝑡 is the predicted unit-level yield, and �̂�𝑐,𝑡 is the predicted county-level yield. Both 

yields are adjusted to 2009 technological level. 

Step 2: Semiparametric Quantile Regression Imputation (SQRI)  

Observations in our yield sample are from 1970 to 2008 but mostly lie between 1999 and 

2008. This may induce temporal bias since no extreme climate change happens in the 10-year 

time interval. Aiming to making the sample more representative for a long-term period, we 

adopted semi-parametric quantile regression imputation using penalized B-splines as in Chen 

and Yu (2016). 

Consider a model for (𝑥𝑖, 𝑦𝑖)
𝑇, 𝑖 ∈ {1,… , 𝑛}  that is a set of . .i i d  observations of random 

variable (𝑋, 𝑌),  where 𝑌 is the response variable that may be subject to missing, and 𝑋 is an 



 

44 

univariate variable that can be observed. Let 𝑞𝜏(𝑥) be the unknown conditional 𝜏 − 𝑡ℎ quantile 

of response 𝑌 given 𝑋 = 𝑥. For a given 𝜏 ∈ (0,1), the conditional quantile function 𝑞𝜏(𝑥) is 

defined as: 𝑃(𝑌 < 𝑞𝜏(𝑥)|𝑋 = 𝑥) = 𝜏. Then 

(A1.5)  𝑞𝜏(𝑥) = argmin
ℎ(𝑥)

𝐸{𝜌𝜏(𝑌 − ℎ(𝑥))|𝑋 = 𝑥}, 

where 𝜌𝜏(𝑢) = 𝑢 × (𝜏 − 𝐼(𝑢 < 0)) = {
𝜏|𝑢|𝑢 ≥ 0
(1 − 𝜏)𝑢 ≤ 0

 is the check function (see more in 

Koenker and Bassett 1978). 

Here 𝑞𝜏(𝑥) will be estimated with penalized B-spline and ℎ(𝑥) will be represented vias 

basis expansion. Let 𝐾𝑛 − 1 be the number of knots within the support of 𝑋, and 𝑝 be the degree 

of B-splines. Define equidistantly located knots as 
1 , 1,...,k n nK k k p K p −= = − + + . As such, the 

p-th B-spline basis is 

(A1.6)  𝐵(𝑥) = (𝐵−𝑝+1
[𝑝] (𝑥), 𝐵−𝑝

[𝑝](𝑥),… , 𝐵−𝑝
[𝑝](𝑥))

𝑇

 

where 𝐵𝑘
[𝑝](𝑥), 𝑘 = −𝑝 + 1,… , 𝐾𝑛 are defined recursively as: 

o For 𝑠 = 0: 

(A1.7)  𝐵𝑘
[0](𝑥) = {

1,𝜅𝑘−1 < 𝑥 < 𝜅𝑘
0,otherwise

  where 𝑘 ∈ {−𝑝 + 1,… , 𝐾𝑛 + 𝑝}; 

o For 𝑠 ∈ {1,2, … , 𝑝}: 

(A1.8) 𝐵𝑘
[𝑠](𝑥) =

𝑥−𝜅𝑘−1

𝜅𝑘+𝑠−1−𝜅𝑘−1
𝐵𝑘
[𝑠−1](𝑥) +

𝜅𝑘+𝑠−𝑥

𝜅𝑘+𝑠−𝜅𝑘
𝐵𝑘+1
[𝑠−1](𝑥), 

where 𝑘 ∈ {−𝑝 + 1,… , 𝐾𝑛 + 𝑝 − 𝑠}. 

The estimated conditional quantile regression function is: 

(A1.9)  �̂�𝜏(𝑥) = 𝐵
𝑇(𝑥)�̂�(𝜏) 

Where �̂�(𝜏) is a (𝐾𝑛 + 𝑝) × 1 vector obtained by:  
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(A1.10) �̂�(𝜏) = argmin
𝑏(𝜏)

∑ 𝛿𝜏𝜌𝜏[𝑦𝑖 − 𝐵
𝑇(𝑥)�̂�(𝜏)] +

𝜆𝑛

2

𝑛
𝑖=1 𝑏𝑇(𝜏)𝐷𝑚

𝑇𝐷𝑚𝑏(𝜏), 

Where 𝜆𝑛(> 0) is the smoothing parameter, 𝛿𝜏 is the “learning rate”, 𝐷𝑚 is the 𝑚 − 𝑡ℎ 

difference matrix and is (𝐾𝑛 + 𝑝 −𝑚) × (𝐾𝑛 + 𝑝) dimensional with its element defined as 

(A1.11) 𝑑𝑖𝑗 = {
(−1)|𝑖−𝑗| (

𝑚
|𝑖 − 𝑗|) , 0 ≤ 𝑗 − 𝑖 ≤ 𝑚

0,otherwise
, 

where (
𝑚
𝑘
) is the choose function given by (𝑘! (𝑚 − 𝑘)!)−1𝑚!; 𝑚 is the order of penalty. The 

difference penalty 𝑏𝑇(𝜏)𝐷𝑚
𝑇𝐷𝑚𝑏(𝜏) is to solve computational difficulty as in Yoshida (2013).  

As shown above, smoothing penalties will vary as 𝜆𝑛 changes. From a Bayesian 

viewpoint, �̂�(𝜏) is a posterior mode for true parameter 𝑏(𝜏). As in Wood et al. (2016), the 

conditional distribution of 𝑏(𝜏) based on 𝑦 is 𝑏(𝜏)|𝑦~𝑁 (�̂�(𝜏), (𝛯 + (𝐷𝑚
𝑇𝐷𝑚)

𝜆)
−1
) where Ξ is 

the expected negative Hessian of the log-likelihood at �̂�(𝜏) and log-likelihood is 

𝑙(𝑏(𝜏), 𝑞𝜏(𝑥)) = log𝑓(𝑦|𝑏(𝜏), 𝑞𝜏(𝑥)) where 𝑓𝜆 is given by 𝑁(0, (𝐷𝑚
𝑇𝐷𝑚)

𝜆−). Then smoothing 

parameters 𝜆𝑛 can be estimated by maximizing the log marginal likelihood  

(A1.12) 𝑉(𝜆) = log ∫ 𝑓(𝑦|𝑏(𝜏)) 𝑓𝜆(𝑏(𝜏))𝑑𝑏(𝜏) 

Ideally, 𝜏 should be randomly drawn from [0,1]. To save computational time, the 

alternative procedure for semi-parametric quantile regression imputation is:  

▪ Divided [0,1] into 𝐽 = 100  equally distance sub-intervals; 

▪ Obtain �̂�(𝜏𝑗) 𝑗 ∈ {1,… , 𝐽 − 1} by using best “learning rate” i  and the smoothing 

parameter 𝜆𝑛 as in Wood (2016); 

▪ For a given detrended county-level yield 𝑦𝑐,𝑡 where 𝑐 represents county and 𝑡 represent 

year, the imputed detrended unit-level yield at 𝜏 − 𝑡ℎ quantile is 𝑦𝑗,𝑐,𝑡
det∗ = 𝐵𝑇(𝑦𝑐,𝑡

det)�̂�(𝜏𝑗) 

. Randomly draw 1,000 observations from all years for one county. For instance, if 𝑡 ∈
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{1970,… ,2008}, there are total 39 years and 3,861 (=39*99) imputed unit-level yield for 

this county, then 1,000 observations will be chosen. 

Step 3: Rejection Sampling 

Based on SQRI using penalized B-splines, we have 1,000 unit-level yields for each 

county in 12 states (IA, IL, IN, KS, MI, MN, MO, NE, ND, OH, SD and WI). The imputed 

yields in one county consist of the target density for resampling. Rejection sampling method will 

be adopted in this paper to get a more representative sample. The steps are as follows: 

▪ All yields are adjusted to 2009 technological level. Let 𝑦𝑐
∗ be imputed unit-level yield for 

county 𝑐 in the SQRI part and set the distribution 𝑓(𝑦𝑐
∗) as the target distribution 

▪ Let 𝑦𝑐 be the detrended unit-level yield for county 𝑐 with an auxiliary distribution 𝑓(𝑦𝑐)
1 

▪ Set the “envelope constant” 𝐴, such that 0 < 𝐴 < +∞ and multiply by the auxiliary 

distribution to create a “blanket function”, 𝐴𝑓(𝑦𝑐). The selection of 𝑓(𝑦𝑐) and 𝐴 must 

satisfy the condition: 𝐴𝑓(𝑦𝑐) ≥ 𝑓(𝑦𝑐
∗) 

▪ Choose 𝑦𝑐 by the criteria: when 𝐴𝑓(𝑦𝑐) ≥ 𝑓(𝑦𝑐
∗) then 𝑦𝑐 will be accepted, when 𝐴𝑓(𝑦𝑐) ≤

𝑓(𝑦𝑐
∗) then 𝑦𝑐 will be rejected. For the sake of desired sample size, we will still randomly 

choose 1,000 observations for each county 

Step 4: Actuarially Fair Premium 

After the Steps 1-3 are finished, there is a more representative sample for each county 

and then each sample has 1,000 observations. Here we will calculate the actuarially fair premium 

based on the new sample and the procedure in Price et al. (2019). The main idea is to use a 

modified stochastic yield function:  

(A1.13) 𝑦𝑖,𝑐,𝑡
det = 𝛼0 +𝑚(𝑧𝑖) + 𝜎(𝑧𝑖)휀𝑖,𝑡 

 
1 Both distributions are obtained by “density” and “approxfun” in R with the default setting. 
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where 𝑦𝑖,𝑐,𝑡
det  is the detrended farm-level yield for farm 𝑖 in county 𝑐 in year 𝑡; 𝑚(𝑧𝑖) and 𝜎(𝑧𝑖) are 

respectively yield mean and yield standard deviation functions which depend on the unit’s four-

to-ten-year average actual yield (APH) labelled as 𝑧𝑖; residual 휀 has zero mean and CDF 

𝐺(휀): [휀, 휀] → [0,1]. Here, the distribution of residuals is not restricted. 

Let 𝐸[∙] be the expectation operator, 𝜓 = [𝜑𝑧 − 𝑚(𝑧)]/𝜎(𝑧), the actuarially fair 

premium rate from buyer’s perspective (i.e., expected indemnity) is: 

(A1.14) 𝑈𝐿𝑅(𝜑, 𝑧) =
𝐸[max(𝜑𝑧−𝑦,0)]

𝜑𝑧
=
𝜎(𝑧)𝐸[max(𝜓−𝜀,0)]

𝜑𝑧
=
𝜎(𝑧)

𝜑𝑧
∫ 𝐺(휀)𝑑휀
𝜓

𝜀
, 

where 𝑈𝐿𝑅 is County Unloaded Rate; 𝑦 is actual yield for each unit; 𝑧 is county yield in 2009; 𝜑 

is coverage level. 

It is clear that �̂�(𝑧), �̂�(𝑧) and �̂�(휀) need to be estimated from the regression equation. 

Insured price 𝑝 is calculated by averaging out February futures prices for upcoming year’s 

harvest contracts (December contracts for corn and November contracts for soybean). The 

procedure to obtain those estimators is: 

▪  Regress 𝑦𝑖,𝑐,𝑡
det  on 𝑧𝑖 using the univariate penalized B-spline method to estimate coefficients 

for mean function �̂�(𝑧); 

▪  Extract residuals �̂�𝑖,𝑡 from step 1 and regress �̂�𝑖,𝑡
2  on 𝑧𝑖 with the penalized B-spline method 

to estimate �̂�(𝑧); 

▪  Standardize the residuals as 휀�̂�,𝑡 = �̂�𝑖,𝑡 𝜎(𝑧)⁄  and obtain the empirical cumulative density 

function estimate �̂�(휀𝑖,𝑡)1; 

▪  Integrate the cumulative density function estimate and obtain the actuarially fair premium 

for each (coverage level, APH) pair. 

 
1 See “ecdf” function in R. 
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Parameters are specified as: (a) degree of spline, 𝑝 , is 3, i.e., cubic B-spline; (b) degree 

of penalty, 𝑚, is 2 as in Yoshida (2013); (c) number of knots is 5; (d) smoothing parameter λ is 

determined by GCV (generalized cross-validation). 

Let 𝑧 be median APH in resampling data, then we have reference rate 𝑈𝐿𝑅 for all 

coverage levels. By a slight modification of Base Producer Rate (BPR) as in Coble and Goodwin 

(2010), the estimated actuarially fair BPR will be: 

(A1.15) 𝛤𝑖(𝜑, 𝑧𝑖) = (
𝑧𝑖

refyield𝑖,𝑐
)
−𝐸𝑐

× 𝑈𝐿𝑅𝑐(𝜑) + fixedload × covdiff(φ) 

where 𝑧𝑖 is Actual Production History of farm 𝑖; refyield𝑖,𝑐 is the reference yield in county 𝑐 

where farm 𝑖 locates in; −𝐸𝑐 is the negative exponent provided by RMA by which a farm with 

better land quality will have a low premium rate; 𝑈𝐿𝑅𝑐(𝜑) is the county unloaded rate we have 

estimated; fixedload includes prevented planting rate load, replant rate load, quality adjustment 

rate load and state catastrophic rate load; cov diff is equal to 1 when 𝜑 = 0.65. 
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APPENDIX B: Supplemental Figures and Tables 

 

Figure 1B.1 Imputed County-Level Densities for Soybeans. 
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Figure 1B.2 Comparisons of Wedges (before and after subsidies) among Different Land 

Qualities for Soybean. 
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Figure 1B.3 RMA Premiums (including subsidies), Farm’s Self-Paid Premium and Estimated 

Actuarially Fair Premiums for Soybean. 

Note: Only mean values are reported here. 
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CHAPTER 2 Basis Risk and Farmers’ Participation in the U.S. Federal Crop Insurance 

Program: A Conceptual Framework and its Application 

Abstract 

Since 2000, both insured acres and coverage level choices in U.S. Federal Crop Insurance 

Program have been boosted due to generous subsidy policies. However, spatially heterogeneous 

participation patterns exist across the Great Plains and Corn Belt regions. Recently, the basis risk 

has been increasingly recognized as an essential driver for deterring the crop insurance uptake of 

weather index contracts. This study investigates whether the basis risk inversely affects the 

insurance demand for revenue and yield contracts. We build a conceptual model to explore 

farmers’ acreage response to basis risk within an Expected Utility framework. With elevator-

level basis risk, we apply Fractional Probit with Control Function and find that the effects of 

basis risk on participation rates are significantly negative for nearly all insurance contracts. Our 

analysis implies that: (i) to remove basis risk, revision for revenue contract may be considered; 

and (ii) subsidy structure may also be adjusted to be consistent with the underlying basis risk. 

The policy adjustments for basis risk might help save large subsidies while keeping high 

participation rates. 
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Introduction 

Famers face multiple risks that can generate large fluctuations in their income. The U.S. 

government provides large subsidies to boost participation rates in the Federal Crop Insurance 

Program (FCIP) to shield farmers from risks. Crops and contracts have also been expanded to 

satisfy farmers’ demand for diversification. The 2000 Agricultural Risk Protection Act (ARPA) 

provides $8.2 billion for expanding participation through increased premium subsidies (Goodwin 

2001; Coble and Goodwin 2010). Unsurprisingly then, both extensive (share of insured acres in 

total insurable acres) and intensive (coverage level choice) margin participation rates have 

increased over the past twenty years (Che et al. 2020). However, one concern increases because 

significant regional disparities in insurance uptake exist, especially across the Great Plains and 

Corn Belt (Innes and Ardila 1994; LaFrance et al. 2002; Goodwin et al. 2004; Clark 2016; 

Jensen et al. 2018). 

In this study, we focus on the effect of basis risk on the participation rate. As in the 

literature, the basis is defined as the difference between spot and futures prices, and then basis 

risk is the variation of the basis which can be defined as, for example, the standard deviation of 

the basis. Our motivation mainly comes from (i) basis risk is inherent in the revenue contracts 

because indemnity measurement is based on futures price, but farmer's sales revenue is based on 

cash price; (ii) crop revenue insurance, first introduced in the 1990s, has been the most popular 

product offered by Federal Crop Insurance Corporation (Du et al. 2014; Goodwin and 

Hungerford 2014); and (iii) many studies explore the effect of basis risk on insurance uptake 

focuses on weather index insurance products (Doherty and Richter 2002; Deng et al. 2007; 

Cole et al. 2014; Jensen et al. 2018; Cai et al. 2020; Gaurav and Chaudhary 2020; Lichtenberg 

and Martinez 2022; Ohashi 2022), but few studies investigate this topic using information from 



 

54 

the cash and futures markets. 

There is considerable interest in whether basis risk impedes crop insurance uptake in the 

United States. Clarke (2016) provides a formal analysis of how and why downside basis risk can 

discourage farmers’ purchase of index insurance and then argues that basis risk may pose a 

considerable obstacle to designing index insurance programs. The reason is that index insurance 

decreases farmers’ income in the wrong states of nature (suffer losses but are not indemnified) 

and increases it in the good states of nature (do not suffer losses but are indemnified). Then risk-

averse farmers have little incentive to purchase index insurance (Miranda and Farrin 2012; 

Jensen and Barrett 2017; Lichtenberg and Martinez 2022). In this study, the best state of nature 

(no basis risk) is a perfect match between cash and futures prices, and the worst state of nature 

(considerable basis risk) is that a fundamental mismatch happens. If basis risk exists, weakening 

(strengthening) basis indicates farmer’s income will decrease (increase) compared to the best 

state of nature. 

Spatial disparities of participation rates show that: first, extensive margin (share of 

insured acres in total insurable acres) is in general highest in North Dakota and decreases when 

moving from west-southwest toward the eastern Corn Belt; second, intensive margin (coverage 

level choice) is highest in the central and eastern Corn Belt, especially in central Illinois and 

northern Indiana, but decreases when moving outside this region. The linkage between 

participation rate and basis risk may exist because basis risk is low in the production center of 

gravity (e.g., Corn Belt region) and increases when moving outside the main production area 

(Figlewski 1984; Haushalter 2000; Doherty and Richter 2002). 

Our analysis builds on and contributes to three main pieces of literature. First, our study 

provides insights on observed spatial disparities in the participation rate in U.S. Federal Crop 
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Insurance Program. Existing research has analyzed factors impacting insurance up-take, such as 

expected return to insurance (Gardner and Kramer 1986; Goodwin 1993), premium expenditures 

(Binswanger-Mkhize’s 2012; Cole et al. 2013; Du et al. 2017), recency effects (Cole et al. 2014; 

Gallagher 2014; Kousky 2017; Stein 2018; Che et al. 2020), premium payment at harvest rather 

than planting time (Casaburi and Willis 2018; Liu et al. 2020) and farmer’s Willingness-to-Pay 

(Feng et al. 2020). However, to our knowledge, little research has investigated the effect of basis 

risk (mismatch between cash and futures markets) on participation rates. 

Second, our empirical results contribute to the literature on the effect of basis risk on 

participation rates. Regression results show that basis risk inversely affects the participation 

rates, regardless of the extensive or intensive margin of insurance demands. This conclusion is 

robust even though changing model specifications or controlling for more variables. Results 

imply that revising insurance contract design to eliminate the basis risk can improve participation 

rates. Furthermore, if farmers’ indemnity is calculated based on cash rather than futures price, 

basis risk will vanish, and participation rates will increase. Therefore, eliminating basis risk 

supplements the subsidy structure, which might help save large subsidies while maintaining high 

participation rates. 

Third, this study sheds light on the impact of basis risk on farmers’ willingness-to-pay 

with the Monte Carlo simulation associated with the Multivariate Gaussian Copula (MGC) 

method. This method allows a dependence structure for multiple risk sources such as futures 

price, cash price, and actual yield. We employ unpublished farm-level insurance purchasing data 

maintained by USDA Risk Management Agency (RMA). Then we estimate the farmer’s WTP 

($/acre) at all individual coverage levels when assuming a constant absolute risk aversion 

(CARA) utility function (see, for example, Lapan and Moschini 1994; Babcock and Hennessy 
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1996; Du and Hennessy 2012; Feng et al. 2020). As in our conceptual framework, a farmer’s 

WTP should decrease when basis risk increases. The implication is that a farmer will be inclined 

to insure fewer acreages under a high basis risk than a low risk. We assume that a state should be 

ranked highly (towards 12) in participation rate when ranked lowly (towards 1) in basis risk. 

Simulation results partly support our argument, but further analysis is needed because the risk-

averse coefficient is set as a constant across all states, which may not be the case in the real 

world.  

This paper is organized as follows. First, a conceptual model will be derived to explain 

the effect of basis risk on the participation rate within a standard Expected Utility framework. 

Then, some testable hypotheses will be provided for further investigations. A subsequent section 

describes the data and approaches we employed to construct variables of interest, such as 

participation rates and basis risks. In the empirical section, we report the empirical results. The 

final section contains concluding comments. 

A Conceptual Model 

This section aims to better understand the effects of basis risk on both extensive (share of 

insured acres in total insurable acres) and intensive (coverage level) margin participation rates. 

As in Feng et al. (2020), within the expected utility setting, a farmer’s WTP for insured acres (or 

coverage level) can be implicitly estimated by equating the expected value of the objective 

function value with and without insurance products. Such WTP is equivalent to a farmer’s 

desirability to enroll in the crop insurance program. Given a coverage level and a pre-determined 

USDA/RMA premium, a high (low) WTP can raise (deter) crop insurance demand, which also 

indicates that extensive margin participation rate will go up (down).  

Revenue Protection with the Harvest Price Exclusion (RPHPE) is a simple revenue 
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contract since the revenue guarantee is based on the projected price only, and so we commence 

with analyzing this contract form. At harvesting time, two-income sources should be realized: (a) 

income from crop sales (cash price actual yield); and (b) indemnity payment after any crop loss. 

If actual income is lower than the revenue guarantee, the difference will be paid from the insurer 

to the insured, or 0 otherwise. Denote 𝑝(𝜑) as insurance premium price and 𝑐 as production cost, 

the farmers’ net revenue after purchasing a corn crop revenue insurance product is: 

(2.1) �̃�In = −𝑐 − 𝑝(𝜑) + �̃�Oc
𝑐 �̃�⏞

Revenuein
localmarket

+𝑚𝑎𝑥[𝜙𝐹De,Fe𝑦𝐴𝑃𝐻 − �̃�De,Oc�̃�, 0]
⏞                    

Indemnitybasedonfutures
pricesandactualyields

, 

where tilde indicates variables random at planting time, �̃�Oc
𝑐  is the local cash price when the crop 

is sold, which is presumed to be October, �̃�De,Oc is the harvest contract futures price,8 𝐹De,Fe is 

the Springtime price (i.e., the projected price) for corn December futures contract,9 �̃� is actual 

yield in the harvesting time, 𝜙 is coverage level with 𝜙 ∈ {0.5, … ,0.85}, and 𝑦𝐴𝑃𝐻 is the 

approved production history (APH) for each farm. With �̃�Oc
𝑐 = �̃�Oc

𝑐 − �̃�De,Oc as the basis in 

October in county 𝑐, then (2.1) may be rewritten as  

(2.2) �̃�In = −𝑐 − 𝑝(𝜑) + �̃�Oc
𝑐 �̃� + �̃�De,Oc

𝑐 �̃� + max[𝜙𝐹De,Fe𝑦
𝐴𝑃𝐻 − �̃�De,Oc�̃�, 0] 

    = −𝑐 − 𝑝(𝜑) + �̃�Oc
𝑐 �̃� + max[𝜙𝐹De,Fe𝑦

𝐴𝑃𝐻, �̃�De,Oc�̃�] 

       = −𝑐 − 𝑝(𝜑) + {
�̃�Oc
𝑐 �̃� + �̃�De,Oc�̃�,whenevernoloss;

�̃�Oc
𝑐 �̃� + 𝜙𝐹De,Fe𝑦

𝐴𝑃𝐻,otherwise;
 

To account for basis risk, we assume that basis follows a location-scale family with 

�̃�Oc
𝑐 (𝜎) ≡ �̅� + 휀̃𝜎 where 𝐸[휀̃|�̃�] = 0 and 𝜎scales basis risk such that risk vanishes whenever 

 
8 The Harvest price for a revenue contract is usually defined as the average of futures contract 

price during October. For more information, please refer to: 

https://www.extension.iastate.edu/agdm/crops/html/a1-54.html.  
9 For soybean, the futures contract for new crop is November.  

https://www.extension.iastate.edu/agdm/crops/html/a1-54.html
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𝜎 = 0 (Sandmo 1971; Meyer 1987; Meyer and Rasche 1992). Requirement 𝐸[휀̃|�̃�] = 0 is the 

independent background risk assumption. Re-writing Eqn. (2.2) then we have  

(2.3) �̃�In = −𝑐 − 𝑝(𝜑) + �̃�Oc
𝑐 (𝜎)�̃� + max[𝜙𝐹De,Fe𝑦

𝐴𝑃𝐻, �̃�De,Oc�̃�] 

       = −𝑐 − 𝑝(𝜑) + (�̅� + 휀̃𝜎)�̃� + max[𝐾, �̃�𝐷𝑒,𝑂𝑐�̃�];  𝐾 ≡ 𝜙𝐹De,Fe𝑦
𝐴𝑃𝐻 

We may ask what is WTP to remove basis risk? Then WTP as a function of basis risk and 

coverage level, 𝑊(𝜎; 𝜙), may be defined implicitly as  

(2.4) 𝐸 [𝑈 ([�̅� + 휀̃𝜎]�̃� + max[𝐾, �̃�De,Oc�̃�] − 𝑊(𝜎; 𝜙) − c − p(𝜙))] 

 = 𝐸 [𝑈 (�̅��̃� + max[𝐾, �̃�De,Oc�̃�] − 𝑐 − 𝑝(𝜙))], 

where independent background risk (Gollier and Pratt, 1996) affects both sides through random 

yield. A crucial point to note is that if the distributions of �̃�De,Oc and �̃� do not change then the 

right-hand term is constant at, say, value 𝜅. Eqn. (2.3) provides a key observation for 

understanding the role of basis risk. 

Observation 1: For RPHPE, the expected value of the outside option of no insurance is 

independent of basis risk while the expected value of RPHPE depends on basis risk only through 

its effect on basis times yield. 

Thus, we may write  

(2.5) 𝐸 [𝑈 ([�̅� + 휀̃𝜎]�̃� + max[𝐾, �̃�De,Oc�̃�] − 𝑊(𝜎; 𝜙) − c − p(𝜙))] = 𝜅 

Applying the implicit function theorem, we obtain: 

(2.6) 𝐸 [𝑈′ (�̃�In −𝑊(𝜎;𝜙)) 휀̃�̃�] − 𝐸 [𝑈′ (�̃�In −𝑊(𝜎;𝜙))]
𝑑𝑊(𝜎;𝜙)

𝑑𝜎
= 0, 

and so, using the covariance relation 𝐸[𝑥1𝑥2] = 𝐸[𝑥1]𝐸[𝑥2] + Cov(𝑥1, 𝑥2), it follows that 

(2.7) 
𝑑𝑊(𝜎;𝜙)

𝑑𝜎
=
𝐸[𝑈′(�̃�In−𝑊(𝜎;𝜙))�̃��̃�]

𝐸[𝑈′(�̃�In−𝑊(𝜎;𝜙))]
=
𝐸{𝐸[𝑈′(�̃�In−𝑊(𝜎;𝜙))�̃�|�̃�]}𝐸{𝐸[�̃�|�̃�]}⏞      

=0

𝐸[𝑈′(�̃�In−𝑊(𝜎;𝜙))]
 



 

59 

 +
𝐸{𝐶𝑜𝑣[𝑈′(�̃�In−𝑊(𝜎;𝜙))𝑦,̃�̃�|�̃�]}

𝐸[𝑈′(�̃�In−𝑊(𝜎;𝜙))]
=
𝐸{𝐶𝑜𝑣[𝑈′(�̃�In−𝑊(𝜎;𝜙))𝑦,̃�̃�|�̃�]}

𝐸[𝑈′(�̃�In−𝑊(𝜎;𝜙))]
, 

where the |�̃� notation indicates conditional on �̃�. 

Observe that 𝑑휀̃ 𝑑휀̃⁄ > 0 while 𝑑 [𝑈′ (�̃�In −𝑊(𝜎;𝜙)) �̃�] 𝑑휀̃⁄ = 𝑈′′ (�̃�In −

𝑊(𝜎;𝜙)) 𝜎�̃� ≤ 0 whenever 𝑈′′(∙) ≤ 0.  Therefore, by the covariance rule (Gollier 2001, p. 32), 

𝐶𝑜𝑣 [𝑈′ (�̃�In −𝑊(𝜎;𝜙)) �̃�, 휀̃|�̃�] ≤ 0∀�̃� and so 𝐸 {Cov [𝑈′ (�̃�In −𝑊(𝜎;𝜙)) �̃�, 휀̃|�̃�]} ≤ 0. 

Therefore,  

(2.8) 
𝑑𝑊(𝜎;𝜙)

𝑑𝜎
≤ 0, 

a strong inference given the presence of independent background risk. Eqn.(2.8) indicates that 

farmers’ WTP will decrease as basis risk increase if the coverage level is constant.  

Hypothesis 1: Given a coverage level, a farmer’s WTP for crop insurance will decrease 

whenever basis risk increases.  

Standard revenue insurance (without harvest price exclusion, and labelled as RP) may be 

written as: 

(2.9) �̃�In = −𝑐 − 𝑝(𝜑) + �̃�Oc
𝑐 (𝜎)�̃� + max[𝜙max[𝐹De,Fe, �̃�De,Oc]𝑦

𝐴𝑃𝐻, �̃�De,Oc�̃�] 

       = −𝑐 − 𝑝(𝜑) + (�̅� + 휀̃𝜎)�̃� + max[𝜙max[𝐹De,Fe, �̃�De,Oc]𝑦
𝐴𝑃𝐻, �̃�De,Oc�̃�]. 

Specification Eqn.(2.9) shows that Observation 1 applies also for RP in that basis risk 

matters only through its effect on basis times yield. In summary then  

Proposition 1: All else equal, under expected utility preferences whenever a location has 

larger futures market basis risk as measured by 𝜎 then willingness to pay for revenue insurance 

will be smaller. This is true for both standard revenue insurance and revenue insurance with 

harvest price exclusion.  
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A natural question to ask is whether basis risk has the same role for yield insurance. 

Yield insurance indemnifies yield shortfalls at a fixed price rather than at some measure of 

market price. Letting the fixed price be the February price for the December maturity contract 

(for corn) then total revenues become 

(2.10) �̃�In = −𝑐 − 𝑝(𝜑) + �̃�Oc
𝑐 �̃�⏞

Revenuein
localmarket

+max[𝜙𝐹De,Fe𝑦𝐴𝑃𝐻 − �̃�De,Oc�̃�, 0]
⏞                    

Indemnitybasedonfutures
pricesandactualyields

 

= −𝑐 − 𝑝(𝜑) + �̃�Oc
𝑐 �̃� + �̃�De,Oc�̃� + 𝐹De,Femax[𝜙𝑦

𝐴𝑃𝐻 − �̃�, 0] 

= −𝑐 − 𝑝(𝜑) + �̃�Oc
𝑐 �̃� + (�̃�De,Oc − 𝐹De,Fe)�̃� + 𝐹De,Femax[𝜙𝑦

𝐴𝑃𝐻, �̃�] 

= −𝑐 − 𝑝(𝜑) + {
�̃�Oc
𝑐 �̃� + �̃�De,Oc�̃�,whenevernoloss;

�̃�Oc
𝑐 �̃� + (�̃�De,Oc − 𝐹De,Fe)�̃� + 𝜙𝐹De,Fe𝑦

𝐴𝑃𝐻,otherwise;
 

Observation 1 applies, but with the addendum that a random number of futures contract 

payoffs (�̃�De,Oc − 𝐹De,Fe)�̃�also enters grower returns in addition to a revenue guarantee. 

Does the distaste for basis risk apply when preferences are other than those under the 

expected utility paradigm? As we shall show below, there is reason to believe so. Consider the 

version of prospect theory most relevant to insurance choices, third generation prospect theory 

(Schmidt, Starmer and Sugden 2008) where the point of reference is a contract absent basis risk. 

Loss relative to the reference point will then be basis risk times yield, �̃�Oc
𝑐 (𝜎)�̃� = (�̅� + 휀̃𝜎)�̃�, as 

given above when 𝜎 = 1. Following a modification of Firpo et al. (2020), we suppose that the 

value function, 𝑣(𝑥), for relative gains/losses is differentiable on its domain of reals, 𝑥 ∈ ℜ, and 

satisfies: 

(2.11) 1.𝑣(𝑥)𝑥 ≥ 0∀𝑥 ∈ ℜwith𝑣(0) = 0 (preferences for gains over losses); 

2. 𝑣′(𝑥) ≥ 0∀𝑥 ∈ ℜ   (monotonicy); 

3. − 𝑣(−𝑥) ≥ 𝑣(𝑥)∀𝑥 > 0  (loss aversion). 
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The first condition separates the loss and gain domains while the second states that more 

profit is preferred to less. The third condition, which replaces 𝑣′(−𝑥) ≥ 𝑣′(𝑥) in Firpo et al. 

(2020), codifies loss aversion because, loss of a given magnitude is more detrimental than a gain 

of the same magnitude is beneficial. With joint distribution function 𝐺(휀̃, �̃�), then expected value 

is  

(2.12) 𝑊[𝑣(∙); 𝐺(휀̃, �̃�)]|𝜎=1 = ∫𝑣(휀̃�̃�)𝑑 (휀̃, �̃�). 

Suppose then that basis is independent of yield and the distribution of basis is symmetric 

around zero. In light of point 3. in Eqn. (2.11) above it can be readily shown that, for each yield 

outcome and each basis outcome, loss in the loss domain dominates the equally probable gain in 

the gain domain so that basis risk depresses expected value.  

Returning to Eqn. (2.7) above, and so to the RPHPE contract, we now ask how the WTP 

response to basis risk is affected by coverage level. In order to do so we must ask how premium 

is affected by coverage level. Supposing that the premium is actuarially fair, with payout 

max[𝜙𝐹De,Fe𝑦
𝐴𝑃𝐻 − �̃�De,Oc�̃�, 0] and with joint distribution function 𝐺(�̃�De,Oc, �̃�), the premium 

function is  

(2.13) 𝑝(𝜙) = 𝐸 [max[𝜙𝐹De,Fe𝑦
𝐴𝑃𝐻 − �̃�De,Oc�̃�, 0]] 

= ∫ (𝜙𝐹De,Fe𝑦
𝐴𝑃𝐻 − �̃�De,Oc�̃�)

𝜙𝐹De,Fe𝑦
𝐴𝑃𝐻

0
𝑑𝐺(�̃�De,Oc, �̃�), 

where the lower and upper limits of the integral are 0 and 𝜙𝐹De,Fe𝑦
𝐴𝑃𝐻 respectively. Eqn.(2.13) 

indicates that the indemnity 𝜙𝐹De,Fe𝑦
𝐴𝑃𝐻 − �̃�De,Oc�̃� will be paid by insurers to farmers when 

farmer’s actual revenue in the market �̃�De,Oc�̃� is less than the guaranteed income 𝜙𝐹De,Fe𝑦
𝐴𝑃𝐻. 

In this sense, actuarially fair premium 𝑝(𝜙) should be equal to the expected payout. So that the 

derivative with respect to 𝜙 is:  
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(2.14) 𝑝′(𝜙) = 𝐹De,Fe𝑦
𝐴𝑃𝐻prob[𝜙𝐹De,Fe𝑦

𝐴𝑃𝐻 ≥ �̃�De,Oc�̃�]. 

Eqn.(2.14) indicates that premium rate monotonically increases as coverage level 

increases because the probability of revenue loss is always non-negative. An extreme case is that 

farmer’s revenue is always more than guaranteed income of the revenue contract, then there will 

be no insurance demand. A differentiation of Eqn. (2.6), and using identity (2.2) with �̃�net =

�̃�
In
−𝑊(𝜎;𝜙), generates: 

(2.15) 
𝑑2𝑊(𝜎;𝜙)

𝑑𝜎𝑑𝜙
=

1

𝐸[𝑈′(�̃�
net
)]

𝑑𝐸[𝑈′(�̃�
net
)�̃��̃�]

𝑑𝜙
−
𝐸[𝑈′(�̃�

net
)�̃��̃�]

{𝐸[𝑈′(�̃�
net
)]}

2

𝑑𝐸[𝑈′(�̃�
net
)]

𝑑𝜙
 

=
1

𝐸[𝑈′(�̃�net)]

𝑑𝐸[𝑈′(�̃�net)휀̃�̃�]

𝑑𝜙
−

1

𝐸[𝑈′(�̃�net)]

𝑑𝑊(𝜎; 𝜙)

𝑑𝜎

𝑑𝐸[𝑈′(�̃�net)]

𝑑𝜙
 

=⏞
sign𝑑𝐸[𝑈′(�̃�net)휀̃�̃�]

𝑑𝜙
−
𝑑𝑊(𝜎;𝜙)

𝑑𝜎

𝑑𝐸[𝑈′(�̃�net)]

𝑑𝜙
 

Now  

(2.16) 
𝑑[�̃�

net
]

𝑑𝜙
=

{
 
 

 
 𝐹De,Fe𝑦

𝐴𝑃𝐻 −
𝑑𝑊(𝜎;𝜙)

𝑑𝜎
− 𝑝′(𝜙),whenever𝐹De,Fe𝑦

𝐴𝑃𝐻 > �̃�De,Oc�̃�;

undefined,whenever𝐹De,Fe𝑦
𝐴𝑃𝐻 = �̃�De,Oc�̃�;

−
𝑑𝑊(𝜎;𝜙)

𝑑𝜎
− 𝑝′(𝜙),otherwise.

 

With 𝐼[𝐴] as an indicator function conditional on 𝐴 and with �̃�nor ≡ �̃�De,Oc�̃� 𝐹De,Fe𝑦
𝐴𝑃𝐻⁄  

, Eqn.(2.15) may be written as 

(2.17) 
𝑑2𝑊(𝜎;𝜙)

𝑑𝜎𝑑𝜙
=⏞
sign

𝐸 [𝑈′′(�̃�net)휀̃�̃� (𝐹De,Fe𝑦
𝐴𝑃𝐻𝐼[𝜙 ≥ �̃�nor]—

𝑑𝑊(𝜎;𝜙)

𝑑𝜎
− 𝑝′(𝜙))] 

 −
𝑑𝑊(𝜎;𝜙)

𝑑𝜎
𝐸 [𝑈′′(�̃�net) (𝐹De,Fe𝑦

𝐴𝑃𝐻𝐼[𝜙 ≥ �̃�nor] −
𝑑𝑊(𝜎;𝜙)

𝑑𝜎
− 𝑝′(𝜙))] 

= 𝐹De,Fe𝑦
𝐴𝑃𝐻𝐸 [𝑈′′(�̃�net)휀̃�̃� (𝐼[𝜙 ≥ �̃�nor] −

𝑑𝑊(𝜎; 𝜙)

𝑑𝜎

1

𝐹De,Fe𝑦
𝐴𝑃𝐻

—prob[𝜙 ≥ �̃�nor])] 

−𝐹De,Fe𝑦
𝐴𝑃𝐻

𝑑𝑊(𝜎; 𝜙)

𝑑𝜎
𝐸 [𝑈′′(�̃�net)(𝐼[𝜙 ≥ �̃�nor] −

𝑑𝑊(𝜎;𝜙)

𝑑𝜎

1

𝐹De,Fe𝑦
𝐴𝑃𝐻

− prob[𝜙 ≥ �̃�nor])] 
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=⏞
sign

𝐸 [𝑈′′(�̃�net)휀̃�̃� (𝐼[𝜙 ≥ �̃�nor] −
𝑑𝑊(𝜎; 𝜙)

𝑑𝜎

1

𝐹De,Fe𝑦
𝐴𝑃𝐻

—prob[𝜙 ≥ �̃�nor])] 

−
𝑑𝑊(𝜎; 𝜙)

𝑑𝜎
𝐸 [𝑈′′(�̃�net)(𝐼[𝜙 ≥ �̃�nor] −

𝑑𝑊(𝜎;𝜙)

𝑑𝜎

1

𝐹De,Fe𝑦
𝐴𝑃𝐻

− prob[𝜙 ≥ �̃�nor])] 

If farmers choose coverage level to maximize expected utility, where any coverage level 

were possible, and if Constant Absolute Risk Aversion applied, 

−𝑈′′ (�̃�In −𝑊(𝜎; 𝜙)) 𝑈′ (�̃�In −𝑊(𝜎; 𝜙))⁄ =positive constant, then the last expectation would 

equal zero in light of the first-order condition.10 To see this, return to Eqn.(2.4) and solve  

(2.18) max
𝜙
𝐸 [𝑈 (�̅��̃� + max[𝜙𝐹De,Fe𝑦

𝐴𝑃𝐻, �̃�De,Oc�̃�] − 𝑐 − 𝑝(𝜙))] 

with first-order condition that 

(2.19) 𝐸[𝑈′(�̃�In) × (𝐼[𝜙 ≥ �̃�
nor
] − prob[𝜙 ≥ �̃�

nor
])] = 0 

So under optimality for coverage level choice and constant absolute risk aversion then 

Eqn. (2.14) resolves to  

(2.20) 
𝑑2𝑊(𝜎;𝜙)

𝑑𝜎𝑑𝜙
=⏞
sign

𝐸 [𝑈′′ (�̃�
In
) 휀̃�̃�(𝐼[𝜙 ≥ �̃�nor] − prob[𝜙 ≥ �̃�nor])] 

As this expression involves multiple random variables and as two terms, 휀̃ and 

𝐼[𝜙 ≥ �̃�nor] − prob[𝜙 ≥ �̃�nor], are not uniform in sign, establishing a sign on the expectation is 

challenging.  

Remark 1: Farmer’s coverage level choice is undetermined when basis risk increases. 

The relationship between basis risk and coverage level choice may not be robust.  

 

 
10 There is strong evidence that they do not. See Du et al. (2017),  Rationality of choices in 

subsidized crop insurance markets, X Du et al., American Journal of Agricultural Economics 99 

(3), 732-756. 
 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=uPcYLD8AAAAJ&citation_for_view=uPcYLD8AAAAJ:2P1L_qKh6hAC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=uPcYLD8AAAAJ&citation_for_view=uPcYLD8AAAAJ:2P1L_qKh6hAC
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Figure 2.1 Assumptions for the Effect of Basis Risk on Participation Rates. 

Note: the y-axis represents the farmer’s willingness to pay and RMA’s premiums, both of which 

are measured as $/acre. The x-axis represents the farmer’s coverage level choice. 𝑝∗represents a 

predetermined premium. The upper (lower) curve represents farmers’ willingness to pay under a 

low (high) basis risk condition. “In the market” and “Out of the market” indicate whether farmers 

will participate in the federal crop insurance program. “A” and “B” show the optimized coverage 

choices and corresponding WTPs under different conditions, but the two coverage choices are 

not necessarily the same. 

 

Figure 2.1 explains farmers' acreage response when they face the basis risk. First, we set 

the farmer's WTP as a quadratic coverage level function, implying that farmers prefer medium 

coverage levels over end levels. The set-up is consistent with participation rates in the real world. 

Second, farmers' WTP decreases when basis risk increases (low 𝜎→  high 𝜎), given a coverage 

level. It is noteworthy that the optimal coverage choices under different basis risks might not be 

identical. For example, the optimal choice 𝐴 may be on the left or right side of 𝐵. Third, if the 

premium rate is set as 𝑝∗, the blue area's ratio to total area (sum of blue and red) decreases when 

basis risk increases (see bars under the x-axis). The downside ratio of the blue area indicates that 
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a farmer will choose to insure fewer acres in the market. An extreme case is that if a farmer's 

WTP at the optimal coverage level is lower than the premium rate 𝑝∗, this farmer will eventually 

move out of the market and insure zero acres. 

Data Description 

This study focuses on participation rates for Buy-Up contracts in U.S Federal Crop 

Insurance Program. Unlike the CAT contract, the Buy-Up contracts allow farmers to choose one 

among multiple coverage levels. The targeted area contains 12 Midwest and Great Plain states 

(IL, IN, IA, KS, MI, MN, MO, NE, ND, OH, SD, and WI). Two dependent variables of most 

interests in the empirical analysis are: (i) the share of insured acres to total insurable acres (e.g., 

planted acres), which represents the extensive margin participation rate; and (ii) acreage-

weighted coverage level choices, which represents the intensive margin participation rate. An 

extensive margin participation rate for yield and revenue contracts cannot be obtained directly 

because total insurable acres were not reported. 

Our primary research question is this: does basis risk affect participation rates? One of 

our main works is constructing county-level basis risk based on elevator-level daily basis data. 

The reason why elevator-level data are employed is that various county-level basis risks can be 

constructed and compared. We follow the literature and include several variables intended to 

control land capability (the share of good land in total land), Growing Degree Days (GDD), 

Stress Degree days (SDD), yield risk, and geographic location. A general form of the model 

specification for both participation rates (extensive and intensive margins) is: 

(2.21) ParticipationRate𝑙𝑐 = 𝑓 (
BasisRisk𝑙𝑐, LandCapability𝑙𝑐, GrowingDegreeDays𝑙𝑐
StressDegreeDays𝑙𝑐 , YieldCV𝑙𝑐 , GeographicLocation𝑐

), 

where 𝑓(∙) is a function mapping the effect of drivers on participation rates.  
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Table 2.1 Definition and Summary for Main Variables. 

Description Data Source Crop Variable Obs. Mean  Std.Dev 

Participation Rate   
 

   

Share of insured acres in 

total insurable acres 
NASS, FSA, SOB Corn 𝑒1 775 0.85 0.12 

 
  𝑒2 775 0.82 0.13 

   𝑒3 775 0.83 0.13 
  Soybeans 𝑒1 735 0.82 0.13 
   𝑒2 735 0.81 0.12 

Acreage-weighted 

average coverage level 
SOB Corn 𝜙yi 775 0.70 0.06 

   𝜙re 775 0.76 0.04 
  Soybeans 𝜙yi 735 0.70 0.07 
   𝜙re 735 0.76 0.04 

Basis             

Normalized Basis risk  Bids Data Corn 𝜎 747 0.006 0.005 
  Soybeans 𝜎 728 0.004 0.004 

Elevator amount  

per county 
Bids Data Corn 𝐸𝑙𝑒𝐴𝑚𝑡 775 5.17 4.27 

  Soybeans 𝐸𝑙𝑒𝐴𝑚𝑡 735 4.87 4.00 

Years of elevator  

records per county 
Bids Data Corn 𝐴𝑣𝑒𝑌𝑒𝑎𝑟 775 3.90 1.50 

    Soybeans 𝐴𝑣𝑒𝑌𝑒𝑎𝑟 735 3.85 1.50 

Yield Risk and Stock    
   

Coefficient of Variation NASS Corn 𝑌𝑅 775 0.18 0.07 

 
 Soybeans 𝑌𝑅 735 0.18 0.06 

Ratio of Ending Stock  

to Production  
NASS Corn 𝑅𝑎𝐸𝑆 775 0.56 0.06 

 
 Soybeans 𝑅𝑎𝐸𝑆 735 0.46 0.01 

Land Capability             

Percentage of acres for 

Class I-II in total acres for 

Class I-VIII 

NRI   𝐿𝐶𝐶 2,902 0.25 0.21 

Weather Determinant   
 

   

Growing Degree Days NOAA  �̅� 1,016 1248.63 194.56 

Stress Degree Days NOAA   𝑆̅ 1,016 20.06 22.95 

Note: (1) NASS: National Agricultural Statistics Service; (2) FSA: Farm Service Agency; (3) 

SOB: USDA Summary of Business; (4) NRI: National Resource Inventory; (5) NOAA: National 

Oceanic and Atmospheric Administration. Bids Data represent elevator-level daily basis data 

which are purchased from a company. 
 

As discussed above, the effect of basis risk on extensive margin participation rate should 

be negative, but that on intensive margin is unclear. The effects of production risks (i.e., weather 
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determinants and yield risk) are expected to be contrary to extensive and intensive margins. The 

contrary cases happen because exacerbation of production conditions impacts farmers’ trade-off 

between extensive and intensive margins. For example, bad weather conditions encourage 

farmers to enroll in the crop insurance program, but the coverage level might be low because 

farmers’ subjective probability of catastrophe may be high. Therefore, for an extensive 

(intensive) margin participation rate, the effect of GDD is expected to be negative (positive); 

however, those of SDD and yield risk are expected to be positive (negative). 

Furthermore, we will not consider the recency effect of loss events because all variables 

in this study are aggregate measures from 2009 to 2020. The main reasons for cross-sectional 

rather than panel analysis are: first, basis variation in a year might not be appropriate to measure 

basis risk; second, participation rates in a region (e.g., county) are maintained at a relatively 

constant level, so yearly variation maybe not enough. A summary of the main variables is 

provided in Table 2.1. 

Measuring Participation Rates 

Denote 𝑛𝑟𝑙𝑡𝑐 as the total insured acres for contract 𝑟 ∈ 𝑅 = Yi ∪ Re where Yi and Re 

represent sets including yield and revenue contracts respectively, and crop 𝑙 ∈ 𝐿 = {Corn, Soy} 

in year 𝑡 in county 𝑐. Table 2.2 reports the product categories for yield and revenue contracts. 

For each insurance contract, e.g., revenue contract, we can construct the yearly coverage level as 

𝜙Re
𝑙𝑡𝑐 = ∑ 𝜙𝑟

𝑙𝑡𝑐 ×𝑤r
𝑙𝑡𝑐

𝑅𝑒  where 𝜙𝑟
𝑙𝑡𝑐 is coverage level with 𝑟 ∈ Re and 𝑤r

𝑙𝑡𝑐 = 𝑛𝑟𝑙𝑡𝑐 ∑ 𝑛𝑟𝑙𝑡𝑐Re⁄  

representing weights. In this study, all intensive margin participation rates are acreage-weighted 

coverage levels. Let 𝑇 = {2009,… ,2020}, the intensive margin participation rate for revenue 

contracts will be 𝜙Re
𝑙𝑐 = ∑ ∑ 𝜙𝑟

𝑙𝑡𝑐 × (𝑛𝑟𝑙𝑡𝑐 𝑛𝑙𝑐⁄ )Re𝑇  where 𝑛𝑙𝑐 = ∑ 𝑛𝑙𝑡𝑐𝑇 . It is noteworthy that 

both 𝜙Re
𝑙𝑐  and 𝜙Yi

𝑙𝑐  represent the spatial-only variations. All insurance data are from USDA Risk 
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Management Agency (RMA) Summary of Business (SOB). 11  

 

Table 2.2 Information for Crop Insurance Plan. 

Plan Code Abbreviation Name  Contract 

Period: 2008-2010  

12 GRP Group Risk Plan Yield  

25 RA Revenue Assurance Revenue 

42 IP Income Protection Revenue 

44 CRC Crop Revenue Coverage Revenue 

45 IIP Indexed Income Protection Revenue 

73 GRIP Group Risk Income Protection Revenue 

90 APH Actual Production History Yield 

Period: 2011-2020   

01 YP Yield Protection Yield 

02 RP Revenue Protection Revenue 

03 RPHPE 
Revenue Protection with Harvest Price 

Exclusion 
Revenue 

04 
GRP Group Risk Plan Yield 

AYP Area Yield Protection Yield 

05 ARP Area Revenue Protection Revenue 

06 ARPHP 
Area Revenue Protection with Harvest 

Price Exclusion 
Revenue 

Note: see Du et al. (2017) for period 2008-2010; see USDA RMA (2022) for period 2022-2020. 

 

Measuring acreage response is challenging because there is no direct measure of a 

county's eligible acres (Goodwin et al. 2004). In our case, SOB cannot be merged with any other 

data directly to match between insured acres and total eligible (insurable) acres. Therefore, we 

employ data from USDA National Agricultural Statistics Service (NASS) 12 and Farm Service 

Agency (FSA) 13 for more information, such as planted, prevented, or failed acres. We may ask 

why both NASS and FSA are needed in this study. First, the FSA dataset only includes farm 

operators who participate in the government programs, but the NASS survey tries to cover each 

 
11 Data can be downloaded from https://www.rma.usda.gov/SummaryOfBusiness. 
12 Data can be downloaded from https://quickstats.nass.usda.gov. 
13 Data can be downloaded from https://www.fsa.usda.gov/news-room/efoia/electronic-reading-

room/frequently-requested-information/crop-acreage-data/index. 

https://www.rma.usda.gov/SummaryOfBusiness
https://quickstats.nass.usda.gov/
https://www.fsa.usda.gov/news-room/efoia/electronic-reading-room/frequently-requested-information/crop-acreage-data/index
https://www.fsa.usda.gov/news-room/efoia/electronic-reading-room/frequently-requested-information/crop-acreage-data/index
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farm; as such, NASS is more representative than FSA. Second, the FSA dataset has prevented 

and failed acres; however, NASS does not provide such information.  

Denote 𝑎𝑁1, 𝑎𝑁2, 𝑎𝑁3 as planted, harvested, and silage acres from USDA/NASS; 

𝑎𝐹1, 𝑎𝐹2, 𝑎𝐹3 as FSA planted, prevented, and failed acres. Extensive margin participation rates 

can be constructed as:  

(2.22a) 𝑒1 =
𝑛

max(𝑎𝑁1,𝑎𝐹1)+𝑎𝐹2+𝑎𝐹3
; 

(2.22b) 𝑒2 =
𝑛

max(𝑎𝑁1,𝑎𝐹1+𝑎𝐹3)+𝑎𝐹2
; 

(2.22c) 𝑒3 =
𝑛

max( 𝑎𝑁1−𝑎𝑁3⏟      
removecornsilage

,𝑎𝐹1+𝑎𝐹3)+𝑎𝐹2
. 

All elements in (2.22a)-(2.22c) have subscript 𝑟𝑙𝑡𝑐  to signify contract, crop, year and 

county information. It is noteworthy that NASS planted acres are not necessarily close to FSA 

planted acres although both of them are labeled as “planted”. In some counties, NASS harvested 

acres are larger than FSA planted acres. Therefore, we construct 𝑒1 and 𝑒2 for both corn and 

soybeans. Another concern is that NASS records contain acres for corn silage.14 We construct 𝑒3 

for corn grain by removing corn silage from NASS planted acres. Since acres for corn silage are 

non-negative, i.e., 𝑎𝑁3 ≥ 0, then 𝑒3 will exceed 𝑒2. 

As in Figure 2.2, many measures are more significant than the theoretical maximum 

value (i.e., 1.0). It is noteworthy that states outside the main production area have more outliers 

(extreme values), e.g., North Dakota and Nebraska. When moving from west to east, extensive 

margin has a decreasing trend, but on the contrary, intensive margin seems to have an increasing 

trend (see Figures 2.3 and 2.4).  

 
14 In general, silage is usually made from maize, sorghum or other cereals. As one of them, corn 

silage is a high-quality, popular forage crop for dairy farms and beef cattle farms. 
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Figure 2.2 Extensive Margin Participation Rates over 2009-2020. 

Notes: On each box, the central mark is median. Denote 𝑥[25] and 𝑥[75] as the 25th and 75th 

percentiles, then upper and lower adjacent lines represent 𝑥[75] + 1.5 × 𝐼𝑄𝑅 and 𝑥[25] +

1.5 × 𝐼𝑄𝑅, respectively, where 𝐼𝑄𝑅 = 𝑥[75] − 𝑥[25]. Dots represent other observations outside 

the range above. 
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Figure 2.3 Extensive Margin Participation Rates from West to East. 

Note: Each point represents one county. For convenience, we just choose 𝑒1. 
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Figure 2.4 Intensive Margin Participation Rates from West to East. 

Note: Each point represents one county. Only revenue contracts are included here. Yield 

contracts will be adopted in the empirical analysis. 
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Measuring Basis Risk 

Recall that in the conceptual model, we define basis as 𝐵Oc
𝑐 (𝜎) ≡ �̅� + 휀𝜎 where Oc 

indicates the harvesting time (October); �̅� indicates the geographical heterogeneity which are 

county-level constants due to locations; 휀 is a random variable with 𝐸[휀] = 0; 𝜎 measures basis 

risk. Therefore, a simple transformation shows that  𝜎𝐵 ≡ 𝜎 × 𝜎𝜀  here 𝜎𝐵 = √var (𝐵Oc
𝑐 (𝜎)), 

and 𝜎𝜀 = √var(휀). Without loss of generality, we normalize 𝜎𝜀 = 1 so that 𝜎𝐵 = 𝜎. Therefore, 

basis risk can be measured based on the observed cash and futures prices. 

Corn December and Soybeans November futures contracts are employed for our analysis. 

Denote 𝑃Oc
𝑙𝑐,𝑛𝑡𝑑

 as cash price at the harvesting time (October) for elevator n  on trading day 𝑑 for 

crop 𝑙 in county 𝑐 and year 𝑡; 𝐹𝑙,𝑡𝑑 as futures price. Then the expression of normalized basis risk 

is 𝐵Oc
𝑙𝑐,𝑛𝑡𝑑 = (𝑃Oc

𝑙𝑐,𝑛𝑡𝑑 − 𝐹𝑙,𝑡𝑑) 𝐹𝑙,𝑡𝑑⁄ . The motivation for normalization is that we are inclined to 

have scale-free numbers as best possible because participation rates are measured on the interval 

[0,1]. Other normalization techniques can be found in the literature (see more in Nayak et al. 

2014); however, these techniques may not be appropriate because they only focus on one input 

variable. 

With normalized basis 𝐵Oc
𝑙𝑐,𝑛𝑡𝑑

, we turn to constructing the county-level basis risk. Denote 

𝐷𝑡 as a set including total trading days in year 𝑡; 𝑁𝑐 as a set including total elevators and 𝑇𝑐 as a 

set including total years in county 𝑐. Then the basis risk can be constructed as: 

(2.23a) elevator-level yearly basis  �̅�𝑙𝑐,𝑛𝑡 = (1 𝐷𝑡⁄ )∑ 𝐵Oc
𝑙𝑐,𝑛𝑡𝑑𝐷𝑡

𝑑=1 ; 

(2.23b) elevator-level yearly variation 𝜎𝑙𝑐,𝑛𝑡 = [(𝐷𝑡 − 1)
−1∑ (𝐵𝑙𝑐,𝑛𝑡𝑑 − �̅�𝑙𝑐,𝑛𝑡)

2𝐷𝑡
𝑑=1 ]

1/2

; 

(2.23c) county-level basis risk  𝜎𝑙𝑐 =
1

𝑁𝑐𝑇𝑐
∑ ∑ 𝜎𝑙𝑐,𝑛𝑡

𝑁𝑐
𝑛=1

𝑇𝑐
𝑡=1 . 
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We may ask whether there are other alternatives to measure basis risk because elevator-

level basis can be readily aggregated to county-level basis. we first define three bases as: 

(2.24a) county-level daily basis  𝐵𝑙𝑐,𝑡𝑑 = (𝑁𝑐)
−1∑ 𝐵𝑙𝑐,𝑛𝑡𝑑

𝑁𝑐
𝑛=1 ; 

(2.24b) county-level yearly basis  𝐵𝑙𝑐,𝑡 = (𝐷𝑡)
−1∑ 𝐵𝑙𝑐,𝑡𝑑

𝐷𝑡
𝑑=1 ; 

(2.24c) county-level long-term average 𝐵𝑙𝑐 = (𝑇𝑐)
−1∑ 𝐵𝑙𝑐,𝑡

𝑇𝑐
𝑛=1 . 

Then three alternatives for basis risk can be constructed as: 

(2.25a)  𝜎𝑙𝑐
𝐴1 = (1 𝑇𝑐⁄ )∑ 𝜎𝑙𝑐,𝑡

⊕𝑇𝑐
𝑡=1  with 𝜎𝑙𝑐,𝑡

⊕ = [
1

𝐷𝑡−1
∑ (𝐵𝑙𝑐,𝑡𝑑 − 𝐵𝑙𝑐,𝑡)

2𝐷𝑡
𝑑=1 ]

1/2

; 

(2.25b)  𝜎𝑙𝑐
𝐴2 = [

1

𝑇𝑐𝐷𝑡−1
∑ ∑ (𝐵𝑙𝑐,𝑡𝑑 − 𝐵𝑙𝑐)

2𝐷𝑡
𝑑=1

𝑇𝑐
𝑡=1 ]

1/2

; 

(2.25c)  𝜎𝑙𝑐
𝐴3 = [

1

𝑇𝑐−1
∑ (𝐵𝑙𝑐,𝑡 − 𝐵𝑙𝑐)

2𝑇𝑐
𝑡=1 ]

1/2

. 

Figure 2.5 shows the kernel density estimations (KDE) for all four basis risks. We find 

that the first basis risk   has the minimum means and standard deviations among all 

measurements. In light of large heterogeneities of scale, it is natural to ask which basis risk is the 

most appropriate one for our analysis. We assume that elevators in a county are homogenous, 

and farmers are sensitive to the cash prices of elevators nearby. If this is the case, the variable 

averaged out from elevator-level yearly variation might capture the true basis risk. As such, 

county-level basis risk 𝜎 in Eqn.(2.23c) will be used (red curve in Figure 2.5). The first three 

basis risks are highly correlated because corr(𝜎, 𝜎𝐴1) = 0.8, corr(𝜎, 𝜎𝐴2) = 0.7 and 

corr(𝜎𝐴1, 𝜎𝐴2) = 0.7. However, the last one 𝜎𝐴3  is nearly uncorrelated with the others. 

Figure 2.6 shows spatial disparities of basis risk. We find that the basis risk for corn is 

more dispersed than soybeans, which is reasonable because the interstate basis for corn has a 

more extensive range than soybeans (see Figure 2.7). The scale of basis (i.e., the absolute value 

of basis) increases in general as one moves away from the main production areas (e.g., IA, IL, 
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IN), which can be explained due to various costs (e.g., storage or transportation). However, we 

cannot conclude the basis risk pattern because interstate and intrastate basis risks are dispersed. 

As in Figure 2.8, a general pattern is that participation rates seem high in areas where basis risk 

is low, although some states in the western Great Plains (e.g., North Dakota and South Dakota) 

need to be discussed further. 

Table 2.3 provides more information on the elevator-level basis data, including number 

of counties, operating years and elevator count. We find that: (i) the percentage of counties with 

at least one elevator to entire counties in a state is highly correlated with elevator county. The 

correlation coefficient between “Percent” column of Panel A and “Mean” column of Panel C is 

0.72; and (ii) the percentage (“Percent” column of Panel A) seems not correlated with the 

operating years (“Mean” column of Panel B) because their correlation coefficient is just 0.11. 

Spatial disparities in elevator count and operating years are shown in Figure 2A.1. 

Land Capability 

Land capability data are from National Resource Inventory (NRI). As in USDA (2015), 

there are eight Land Capability Classes (LCC). Specifically, Class I soils have no limitations 

restricting their use. However, Class VIII soils and miscellaneous areas have the limitation that 

precludes their use for commercial plant production and limits their use for recreation, wildlife, 

water supply, or esthetic purposes. As in the literature, we measure the soil quality by calculating 

the percentage of good land in total land. We employ Class I-II as the good land as in Goodwin 

et al. (2004), although Du et al. (2017) choose Class I-IV.  
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Figure 2.5 Kernel Density Estimation (KDE) for Four Basis Risks. 

Notes: The Gaussian kernel is employed. Bandwidth is the optimal one that is selected to 

minimize the mean integrated square error. Distribution stands for spatial heterogeneity across 

12 states.  
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Figure 2.6 County-Level Basis Risks from West to East. 

Note: Only points between 5th and 95th quantiles are included in this figure.   
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Figure 2.7 Patterns of Mean Normalized Basis for 12 States. 

Note: Mean normalized basis is the mean value of all counties within a state per year. The goal 

here is to exhibit the heterogeneity in different states. 
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Figure 2.8 Basis Risk and Participation Rates. 
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Table 2.3 Elevator Information for 12 States. 

State 
Panel A: Number of Counties Panel B: Operating Years Per County Panel C: Elevator Count Per County 

Total Elevator 1 Percent Mean Std. Dev Min Max Mean Std. Dev Min Max 

Illinois 102 90 88.2% 3.71 1.07 1.5 6 6.22 5.22 1 24 

Indiana 92 70 76.1% 4.84 1.64 1 8.5 2.7 1.74 1 8 

Iowa 99 96 97.0% 4.43 1.43 1.5 8.64 9.52 5.24 1 23 

Kansas 105 100 95.2% 3.46 1.63 1 8.33 5.09 4.09 1 23 

Michigan 83 38 45.8% 3.98 1.43 1.5 8 2.45 1.27 1 6 

 Minnesota 87 64 73.6% 3.73 1.1 1.4 6.29 6.16 3.45 1 15 

Missouri 115 58 50.4% 3.58 1.54 1 10 2.45 1.58 1 8 

North Dakota 53 40 75.5% 3.3 1.18 1 5 3.53 2.63 1 13 

Nebraska 93 81 87.1% 4.05 1.36 1 8.2 6.2 4.2 1 20 

Ohio 88 64 72.7% 4 1.23 2 8.5 4.01 3.38 1 13 

South Dakota 66 55 83.3% 4.06 2.1 1 10 3.75 2.16 1 8 

Wisconsin 72 56 77.8% 3.34 1.24 1 6 3.34 2.27 1 10 

Note: County-level mean operating years and total elevators are summarized at first. The intra-state distribution shows heterogeneities 

for those counties that have at least one elevator. 
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Weather Determinants 

As in the literature (e.g., Schlenker and Roberts 2009; Xu et al. 2013), we construct two 

variables-Growing Degree Days (GDD) and Stress Degree Days (SDD)-to represent beneficial 

heat and heat stress during the growing season (April to September). The formulas for variable 

GDD and SDD in the year 𝑡 are: 

(2.26a) 𝐺𝐷𝐷𝑐,𝑡 = ∑ [0.5 (min(max(𝑇𝑐,𝑑,𝑡
max, 𝑇𝑙), 𝑇ℎ) + min(max(𝑇𝑐,𝑑,𝑡

min, 𝑇𝑙), 𝑇ℎ)) − 𝑇𝑙]𝑑∈Ω𝑡  

(2.26b) 𝑆𝐷𝐷𝑐,𝑡 = ∑ [0.5 (max(𝑇𝑐,𝑑,𝑡
max, 𝑇𝑘) + max(𝑇𝑐,𝑑,𝑡

min, 𝑇𝑘)) − 𝑇𝑘]𝑑∈Ω𝑡  

where 𝑐 is county; 𝑑 is day; Ω𝑡 is the set of growing season days in year 𝑡. The thresholds 

are 𝑇𝑙 = 10°𝐶, 𝑇ℎ = 30°𝐶 and 𝑇𝑘 = 32.2°𝐶. In this study, we use climatological normal around 

30 years to control for weather effect on coverage level choice. The time length we selected is 

{1990,… ,2019} and then �̅�𝑐 = (1/30)∑ 𝐺𝐷𝐷𝑐,𝑗
2019
𝑗=1990 , 𝑆�̅� = (1/19)∑ 𝑆𝐷𝐷𝑐,𝑗

2019
𝑗=1990 . 

Yield Risk 

We use coefficient of variance (CoV) to control for yield risk as in Goodwin et al. 

(2004). Denote 𝑦𝑐𝑡 be the actual county-level yield recorded by USDA NASS for county 𝑐 and 

year 𝑡. As in Deng et al. (2007), we employ the trend equation log(𝑦𝑐𝑡) = 𝜆0 + 𝜆1(2020 − 𝑡) +

𝑢, where 𝑡 ∈ Tdet = {1971,… ,2020} and 𝑢 is the error term. We predict �̂�𝑐𝑡  and �̂�𝑐,2020, and 

then construct detrended county-level yield as 𝑦𝑐𝑡
det = 𝑦𝑐𝑡 × �̂�𝑐,2020 �̂�𝑐𝑡⁄ . In final, yield risk can 

be measured as 𝑌𝑅𝑐 = 𝜎𝑦det
𝑐 𝜇

𝑦det
𝑐⁄ , where 𝜎

𝑦det
𝑐 = √

1

Tdet−1
∑ (𝑦𝑐𝑡

det − �̅�𝑐
det)

2

𝑡∈𝑇det  and 𝜇
ydet
𝑐 =

(1 Tdet⁄ )∑ 𝑦𝑐𝑡
det

𝑡∈Tdet . 

We may ask why the time length for detrending is 50-year (Tdet ∈ {1971,2020}), but 

that for the empirical analysis is only 12 years (T ∈ {2009,… ,2020}). First, different time length 

does not affect our cross-sectional analysis. Recall that all variables in this study only show 
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spatial variations. Second, longer yield records can better capture the underlying yield risk 

because a more extended time length contains more information such as technological 

development, disaster, and policy adjustments. 

Ratio of Ending Stock to Production 

We construct the ratio of ending stock to production as an instrumental variable. The 

literature concludes that: (i) the relationship between supply and demand affects the basis level in 

each market (e.g., Jiang 1997); and (ii) there is an inverse relationship between basis and the 

stocks to storage capacity ratio (Karlson et al. 1993). For instance, when a massive volume of 

production puts pressure on storage in a market, the basis will weaken, and the farmer’s revenue 

expectation will decrease.  

To our best knowledge, county-level supply and demand data are hard to obtain. 

However, we are motivated to employ state-level data because USDA NASS provides state-level 

quarterly stock data (i.e., Mar, Jun, Sep, and Dec). Denote 𝐸𝑆Ma
𝑙𝑠𝑡  as the ending stock of crop 𝑙 in 

state 𝑠 in March of year 𝑡 and 𝑃𝐷𝑙𝑠𝑡  as actual production. we construct 𝑅𝑎𝐸𝑆𝑙𝑠 =

∑ 𝐸𝑆Ma
𝑙𝑠𝑡

𝑡∈𝑇 ∑ 𝑃𝐷𝑙𝑠𝑡𝑡∈𝑇⁄  representing a ratio of ending stock to production. We assume that the 

effect of this ratio on the basis is negative, which indicates that the more the storage, the weak 

the basis (see Figure A2 for state-by-year variations over 2009-2020). We find: (i) the ratios for 

corn are higher than those for soybeans in general; and (ii) ratios in the main production area 

seem higher than in other regions. 

Unit Choice Data for Simulation 

We employ USDA RMA's 2009 farm-level contract choice data for our simulation. This 

dataset contains farm-level actual yield, approved historical yield, coverage level choice, 

premium payment, and location information (state and county). We may ask why such dated data 
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are still adopted in this study. The reasons are: (i) there are not many changes in participation 

rates after 2009, so we assume farmers' behavior does not have distinct changes as well; and (ii) 

observations are enough for simulation (corn: 687,274; soybeans 567,711). Therefore, the 

farmer's WTP will be implicitly estimated as in Eqn. (2.5). 

Empirical Results 

Estimation Method 

We will employ Fractional Probit with Control Function (FPCF) for the empirical 

analysis. First of all, Fractional Probit is more appropriate than linear model because the 

participation rate is measured as a fraction. Second, potential endogeneity issues induced by 

omitted variables may exist. Some unobserved variables, e.g., farmer’s subjective probability for 

future’s loss, affect supply and demand in the local market, which then impact participation rate 

and basis risk.  

Denote 𝑒𝑙𝑐 and 𝜙𝑙𝑐 as extensive (the share of insured acres in total insurable acres) and 

intensive margin (acreage-weighted coverage choices) participation rates for crop 𝑙 in county 𝑐; 

𝜎𝑙𝑐 as basis risk; 𝐗𝐥𝐜 as a vector of explanatory variables with 𝐗𝐥𝐜 = {𝑆𝑄, �̅�, 𝑆̅, 𝑌𝑅}; 𝐙𝐥𝐜 as a 

vector of instrumental variables with 𝐙𝐥𝐜 = {EleAmt, AveYear, RaES}. Then the model 

specification is: 

(2.27a) Control Function 𝜎𝑙𝑐 = 𝐙𝐥𝐜𝚷 + 𝐗𝐥𝐜𝛃
(𝟏) + 𝑣𝑙𝑐; 

(2.27b) Fractional Probit 𝐸[ratelc|𝜎𝑙𝑐 , 𝑋𝑙𝑐, 휂𝑙𝑐] = Φ(𝛾𝜎𝑙𝑐 + 𝐗𝐥𝐜𝛃
(𝟐) + 휂𝑙𝑐), 

Where rate𝑙𝑐 ∈ Pa = {𝑒𝑙𝑐, 𝜙𝑙𝑐}, 𝐸[∙] is the expectation operator, 휂𝑙𝑐 is an omitted 

variable with cov(𝜎𝑙𝑐 , 휂𝑙𝑐) ≠ 0. Explanatory variables are chosen as in the literature (e.g., 

LaFrance et al. 2002; Goodwin et al. 2004; Du et al. 2014; Yu and Sumner 2018; Che et al. 

2020). As to the instrumental variables, we assume elevator operation and aggregate ending 
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stock are not correlated with the omitted variables such as farmer’s subjective belief.  

The estimation procedure for Fractional Probit with an Endogenous Explanatory Variable 

(EEV) has been discussed extensively in the literature (see Papke and Wooldridge 1996, 2008; 

Wooldridge 2015). If (𝑣𝑙𝑐 , 휂𝑙𝑐) is jointly normal then a two-step control function method can be 

processed as: (i) regress 𝜎𝑙𝑐 on 𝐙𝐥𝐜, 𝐗𝐥𝐜 and obtain the residuals 𝑣𝑙𝑐; (ii) use “Probit” of rate𝑙𝑐 on 

𝜎𝑙𝑐 , 𝐗𝐥𝐜, 𝑣𝑙𝑐 to estimate scaled coefficients, say 𝛾𝑠𝑐𝑎𝑙𝑒 , �̂�𝐬𝐜𝐚𝐥𝐞
(𝟐)

, 𝛿𝑠𝑐𝑎𝑙𝑒. Denote �̂�𝜂𝑙𝑐
2  as the variance of 

the omitted variable, then 𝛾𝑠𝑐𝑎𝑙𝑒 = 𝛾 (1 + �̂�𝜂𝑙𝑐
2 )

1/2
⁄ , which is also applied to �̂�𝐬𝐜𝐚𝐥𝐞

(𝟐)
 and 𝛿𝑠𝑐𝑎𝑙𝑒. 

The coefficient on 𝑣𝑙𝑐, labeled as 𝛾𝑠𝑐𝑎𝑙𝑒, can provide a simple t test for the fixed effect with null 

hypothesis H0: 𝛾 = 0 (exogeneous test).  

Empirical Results 

Table 2.4 reports semi-elasticities of insurance demand, which explains the change in the 

participation rate for a proportional change in basis risk. For extensive margin (𝑒1, 𝑒2, 𝑒3) 

participation rate, Fractional Probit with Control Function is an appropriate approach because all 

residuals are significant at a 1% significance level (p-value of the residual is less than 0.01). The 

semi-elasticities of insurance demand for corn are lower than -0.300, and for soybean are lower 

than -0.769, which implies that the share of insured acres in all insurable acres will increase by at 

least 3 and 7.7 percentage points for corn and soybean, respectively, when the basis risk 

decreases by 10%.  

However, for the intensive margin participation rate, Fractional Probit with Control 

Function is just appropriate for the corn revenue contract, but Fractional Probit is appropriate for 

corn yield contract, soybean revenue, and yield contracts. The semi-elasticity of insurance 

demand for the corn revenue contract is -0.043, implying that the coverage level will increase by 

0.4 percentage points if the basis risk decreases by 10%. The semi-elasticities for the soybean  
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Table 2.4 Semi-Elasticities for Corn and Soybeans. 

Estimation Method Fractional Probit Fractional Probit with CF 

Dependent Variable 𝑒1 𝑒2 𝑒3 𝜙yi 𝜙re 𝑒1 𝑒2 𝑒3 𝜙yi 𝜙re 

Corn                

Normalized Basis risk 0.003 0.003 0.003 -0.001 -0.001 -0.300+ -0.330+ -0.359+ -0.032 -0.043+ 
 (0.004) (0.004) (0.004) (0.002) (0.001) (0.076) (0.076) (0.081) (0.025) (0.013) 

Land Capability 0.061+ 0.078+ 0.067+ 0.035+ 0.023+ 0.083+ 0.102+ 0.094+ 0.037+ 0.026+ 
 (0.009) (0.009) (0.009) (0.005) (0.002) (0.011) (0.011) (0.012) (0.005) (0.002) 

Growing Degree Days -0.261+ -0.094* -0.205+ 0.083+ 0.126+ -0.317+ -0.160+ -0.270+ 0.078+ 0.119+ 
 (0.050) (0.050) (0.049) (0.023) (0.009) (0.050) (0.052) (0.049) (0.022) (0.009) 

Stress Degree Days 0.032+ 0.029+ 0.026+ -0.016+ -0.020+ 0.026+ 0.021+ 0.017+ -0.018+ -0.022+ 
 (0.005) (0.006) (0.006) (0.002) (0.001) (0.006) (0.006) (0.006) (0.003) (0.001) 

Yield Risk 0.132+ 0.132+ 0.129+ -0.040+ -0.027+ 0.183+ 0.189+ 0.192+ -0.036+ -0.020+ 
 (0.014) (0.017) (0.016) (0.005) (0.003) (0.021) (0.023) (0.023) (0.007) (0.004) 

residual (p-value)        0.000 0.000 0.000 0.222 0.001 

Obs. 747 747 747 747 747 747 747 747 747 747 

Soybeans             

Normalized Basis risk 0.002 0.002  -0.004* -0.002+ -0.769+ -0.807+  -0.042 -0.044 
 (0.004) (0.004)  (0.002) (0.001) (0.184) (0.183)  (0.058) (0.029) 

Land Capability 0.067+ 0.066+  0.050+ 0.024+ -0.016 -0.020  0.046+ 0.019+ 
 (0.010) (0.010)  (0.006) (0.002) (0.022) (0.022)  (0.009) (0.004) 

Growing Degree Days -0.247+ -0.216+  0.032 0.058+ 0.772+ 0.854+  0.083 0.113+ 
 (0.050) (0.050)  (0.030) (0.011) (0.251) (0.250)  (0.081) (0.040) 

Stress Degree Days 0.019+ 0.013**  -0.010+ -0.017+ -0.114+ -0.131+  -0.017 -0.024+ 
 (0.006) (0.006)  (0.003) (0.001) (0.031) (0.032)  (0.011) (0.005) 

Yield Risk 0.090+ 0.087+  -0.056+ -0.021+ 0.186+ 0.188+  -0.051+ -0.016+ 
 (0.017) (0.017)  (0.011) (0.003) (0.030) (0.030)  (0.013) (0.004) 

residual (p-value)        0.000 0.000  0.501 0.143 

Obs. 728 728   728 728 728 728   728 728 

Note: (1) standard errors in parentheses; (2) * p<0.10, ** p<0.05, + p<0.01. 
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yield and revenue contracts are -0.004 and -0.002, respectively, implying that the coverage levels 

will increase by 0.04 and 0.02 percentage points if the basis risk decreases by 10%. 

Conclusion 

The basis is defined as the difference between spot and futures prices. Therefore, the 

basis risk measures the mismatch between cash and futures markets. Due to the crop insurance 

contract design, the basis and the basis risk exist, which might deter farmers’ insurance uptake 

for both extensive and intensive margins. Understanding the effect of basis risk is crucial 

because crop revenue insurance, first introduced in the 1990s, has been the most popular product 

offered by Federal Crop Insurance Corporation.  

In this study, we first develop a conceptual model to analyze farmers' acreage response to 

basis risk. Given a coverage level, a farmer's willingness to pay for insurance products increases 

when basis risk decreases, which implies that a farmer is inclined to pay a higher premium per 

acre or insure more acres when the basis risk is lower. Next, we employed Fractional Probit with 

Control Function for the empirical analysis. Regression results show that when the basis risk 

decreases by 10%: (i) the share of insured acres in all insurable acres will increase by at least 3 

and 7.7 percentage points for corn and soybean respectively; (ii) coverage level choice will 

increase by 0.4 and 0.02 percentage points for corn revenue and soybean revenue contracts, 

respectively. 

The effect of basis risk on participation rate might shed light on adjusting federal 

policies. If the revenue contract is revised to remove the basis, basis risk will decrease by 100%. 

Given the current subsidy structure, the shares of insured acres in total insurable acres for corn 

and soybean will be more significant than 1 (theoretically, the maximum is 1); coverage level 

choice for the corn revenue contract increases from 0.76 to 0.803; coverage level choice for the 
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soybean revenue contract rises from 0.76 to 0.762. 

Besides removing the basis, policymakers might adjust the subsidy structure to be 

consistent with the underlying basis risk. The regression results show that the lower the basis 

risk, the higher the intensive margin participation rate. Therefore, the subsidy rate might be 

reduced in the areas with low basis risks but increased in the areas with high basis risks. 
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APPENDIX A: Monte Carlo Simulation 

1. Estimation for Farmer’s Willingness to Pay 

We employ Monte Carlo simulation associated with Gaussian Copula Method to measure 

farmers’ WTP ($/acre) at all coverage levels. Given a coverage level, a high WTP indicates that 

a farmer would like to pay a high premium per acre or insure more acres. The main hypothesis 

we will test is that farmers’ WTP decreases when basis risk increases (H1).  

First of all, we use the Copula method to draw a unit-level subsample. As in the literature 

(Yan 2007; Du and Hennessy 2012; Goodwin and Hungerford 2015), we assume that a 

dependence structure exists among yield, spot, and futures prices. Our motivation is to estimate 

crop-specific farmers’ WTP without considering other effects such as crop rotation. Therefore, 

the three-dimensional Multivariate Gaussian Copula (MGC) will be used, which indicates that 

the dimension of variance-covariance matrix is 3 3 (see more details in Appendix B).  

Denote 𝑦𝑠𝑡, 𝑃𝑠𝑡 and 𝐹𝑠𝑡 as yield, cash and futures prices with 𝑠 ∈ {IL, IN,… ,WI} and 𝑡 ∈

𝑇det = {1971,… ,2020}. Yield and cash price data are from USDA NASS; futures price data are 

from Chicago Board of Trade (CBOT). Three main steps are used in the simulation: (i) assume 

yield model specification 𝑦𝑠𝑡 = 𝛽0 + 𝛽1(2020 − 𝑡) + 휀𝑠𝑡  where 휀𝑠𝑡 is the random variation. 

After estimating �̂�0, �̂�1, and 휀�̂�𝑡 via OLS, we can normalize yield variation by 휀�̂�𝑡 = 𝑦𝑠𝑡 �̂�𝑠𝑡⁄   

where �̂�𝑠𝑡 = 𝑦𝑠𝑡 − 휀�̂�𝑡. Denote by 휀�̅� and 𝜎𝜀, respectively, the mean and standard deviation of 

{휀𝑠𝑡}𝑡∈𝑇det . Then the upper support of 휀�̂�𝑡 can be constructed as 휀�̂�,max = 휀�̅� + 3𝜎𝜀 and the lower 

support 휀�̃�,min can be imposed as 0. As such, a standard beta random variable 𝜉 can be 

constructed as 𝜉𝑠𝑡 = (휀𝑠𝑡 − 휀�̃�,min) (휀�̃�,max − 휀�̃�,min)⁄  with 𝜉𝑠 = 1 whenever 휀𝑠𝑡 > 휀�̃�,max; (ii) 

assume difference of logarithm of prices in 2 consecutive years, 휁̃𝑠𝑡 = 𝑙𝑜𝑔(𝑃𝑠,𝑡) − 𝑙𝑜𝑔(𝑃𝑠,𝑡−1) 

and 휂̃𝑠𝑡 = log(𝐹𝑠𝑡) − log(𝐹𝑠,𝑡−1) to be normally distributed; and (iii) with 𝜉𝑠𝑡, 휁̃𝑠𝑡 and 휂̃𝑠𝑡, we 
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draw 5,000 records from the 2008 unit-level NASS/RMA yield dataset. Five input variables 

contain state-level spot price, futures price in October, futures price in February, actual yield and 

approved historical yield (APH). 

Second, we employ Constant Absolute Risk Aversion (CARA) utility function 𝑢(𝑤) =

1 − 𝑒−𝐴𝑤 where 𝑤 is farmer’s income and 𝐴 is a risk-averse coefficient. Farmer’s income can be 

set as $400/acre, which requires that price and yield for corn (soybeans) are $4/bushel 

($10/bushel) and 100 bushel/acre (40 bushel/acre). Then we assume that a farmer encounters a 

normal year in which the farmer’s gamble size ℎ is $200. As the Eqn.(4) in Babcock et al. 

(1993), we obtain the risk premium 휃 which reflects how much money a farmer can give up for 

the potential risk. Babcock and Hennessy (1996) use risk premiums of 20% and 40%. In our 

case, we set the risk premium as 0.20 and then the farmer’s WTP as $40/acre, which is consistent 

with the mean value of premiums farmers paid for revenue contracts over 2009-2020. For 

robustness checks, we also set other three risk premiums 0.10, 0.06 and 0.02, which correspond 

to farmer’s WTP $20, $12 and $4. As such, we will employ four risk-averse coefficients – 0.008, 

0.004, 0.002 and 0.0008- to correspond the four risk premiums 0.20, 0.10, 0.06 and 0.02.  

Figure 2A.3 shows farmer’s WTP when the risk-averse coefficient 𝐴 is set as 0.004. We 

show the results with a format “rank of basis risk - state name – rank of extensive margin 

participation rate” on the y-axis. The range of ranking is from “01” to “12” where “01” and “12” 

represent the lowest and highest orders respectively. In our case, the ideal result is “01-state 

name-12” (“12-state name-01”) which means that a state with the lowest (highest) basis risk has 

the highest (lowest) extensive margin participation rate. Furthermore, the x-axis reports farmers’ 

WTP measured as $ per acre. The ideal result is that given a coverage level, a farmer’s WTP 

decreases when the ranking of basis risk increases.  
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Results in Figure 2A.3 seem not to support our argument robustly. Figures 2A.4 and 2A.5 

show farmers’ WTP for all four risk-averse coefficients for all states. We can then find: (i) 

farmer’s WTP increases as coverage level increases; (ii) given a coverage level, farmer’s WTP at 

four risk coefficients may intersect; and (iii) given a coverage level and a risk-averse coefficient, 

differential of farmer’s WTP in different states seem not distinct.  

Reasons for failure in the simulation may contain: (i) risk-averse coefficients are 

heterogenous in 12 states; (ii) county-level simulation should be employed rather than state-level 

simulation; (iii) basis risk cannot be effectively controlled because there are other confounding 

factors such as yield risk or subsidy effect. Hence, a regression analysis is needed to further 

identify the effect of basis risk on participation rates. 

2. Copula Method 

Yield, cash price and future price are three continuous random variables in our 

simulation, which can be denoted as 𝑋𝑌, 𝑋𝐶 , 𝑋𝐹. Suppose the joint distribution function is 

𝐹(𝑥𝑌, 𝑥𝐶 , 𝑥𝐹) and marginal distribution functions are 𝐹𝑌, 𝐹𝐶 , 𝐹𝐹, then a 3-copula ( )C   satisfies: 

(A2.1) 𝐹(𝑥𝑌, 𝑥𝐶 , 𝑥𝐹) = 𝐶(𝐹𝑌(𝑥𝑌), 𝐹𝐶(𝑥𝐶), 𝐹𝐹(𝑥𝐹)) for (𝑥𝑌, 𝑥𝐶 , 𝑥𝐹) ∈ (−∞,+∞)
3 

Where 𝐹𝑖 = 𝑢𝑖 ∈ [0,1] with 𝑖 ∈ {𝑌, 𝐶, 𝐹}. Let 𝐹𝑖
−1 be the inverse distribution function 

with 𝐹𝑖
−1 = 𝑠𝑢𝑝{𝑥𝑖|𝐹𝑖(𝑋𝑖) ≤ 𝑢𝑖}, the Multivariate Gaussian Copula (MGC) can be constructed 

as 

(A2.2) 𝐶𝑀𝐺𝐶(𝑢𝑌, 𝑢𝑐 , 𝑢𝐹; 𝑅) = Φ(𝐹𝑌
−1(𝑢𝑌), 𝐹𝐶

−1(𝑢𝐶), 𝐹𝐹
−1(𝑢𝐹); 𝑅), 

Where 𝑅 is a symmetric, positive definite matrix with 

(A2.3) 𝑅 = [

1 𝜌𝐶𝑌 𝜌𝐹𝑌
𝜌𝐶𝑌 1 𝜌𝐹𝐶
𝜌𝐹𝑌 𝜌𝐹𝐶 1

] 

Where 𝜌𝑚 with 𝑚 ∈ {𝐶𝑌, 𝐹𝑌, 𝐹𝐶} is the dispersion parameter. Let 𝛽 and 𝜌 be the vectors 
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of marginal distribution and the copula’s dispersion parameters, then estimated parameter vector 

is 휃 = (𝛽𝑇 , 𝜌𝑇)𝑇. Given 𝑁 observations, the corresponding log-likelihood function can be 

specified as (Yan, 2007):  

(A2.4) 𝑙(휃) = ∑ log𝑐{𝐹𝑌(𝑋𝑌,𝑖; 𝛽), 𝐹𝐶(𝑋𝐶,𝑖; 𝛽), 𝐹𝐹(𝑋𝐹,𝑖; 𝛽); 𝜌}
𝑁
𝑖=1  

  +∑ ∑ log𝑓𝑖(𝑋𝑗,𝑖; 𝛽)𝑗∈{𝑌,𝐶,𝐹}
𝑁
𝑖=1  

where 𝑐(𝑢𝑌, 𝑢𝐶 , 𝑢𝐹) = 𝑓[𝐹𝑌
−1(𝑢𝑌), 𝐹𝐶

−1(𝑢𝐶), 𝐹𝐹
−1(𝑢𝐹)] ∏ 𝑓𝑗[𝐹𝑗

−1(𝑢𝑗)]𝑗∈{𝑌,𝐶,𝐹}⁄  is the 

copula density function; while 𝑓(∙) and 𝑓𝑖(∙) represent the multivariate and the univariate 

marginal density functions, respectively. The ML estimator of 휃 is 휃̂𝑀𝐿 = argmax
𝜃∈Θ

𝑙(휃). We 

apply the two-step estimation method called Inference Functions for Margins (IFM) as in Joe and 

Xu (1996): 

(A2.5a) �̂�𝐼𝐹𝑀 = argmax
𝛽
∑ ∑ log𝑓𝑖(𝑋𝑗,𝑖; 𝛽)𝑗∈{𝑌,𝐶,𝐹}
𝑁
𝑖=1  

(A2.5b) �̂�𝐼𝐹𝑀 = argmax
𝜌
∑ log𝑐{𝐹𝑌(𝑋𝑌,𝑖; �̂�𝐼𝐹𝑀), 𝐹𝐶(𝑋𝐶,𝑖; �̂�𝐼𝐹𝑀), 𝐹𝐹(𝑋𝐹,𝑖; �̂�𝐼𝐹𝑀); 𝜌}
𝑁
𝑖=1  

The first step (A.5.a) consists of an ML estimation for each marginal distribution 𝑗 ∈

{𝑌, 𝐶, 𝐹}: 

(A2.5c)  �̂�𝑗,𝐼𝐹𝑀 = argmax
𝛽𝑗
∑ log𝑓𝑖(𝑋𝑗,𝑖; 𝛽𝑗)
𝑁
𝑖=1  

3. Monte Carlo Method 

The procedure of simulation is employed as in Du and Hennessy (2012):  

(a) we first simulate 3 independent random variates 𝑥 = (𝑥𝑌, 𝑥𝐶 , 𝑥𝐹)
𝑇 from the standard 

distribution 𝑁(0,1).  

(b) Generate 𝑣 = 𝐴𝑥 where 𝐴 is the Cholesky decomposition of the estimated MGC 

dispersion matrix �̂�, then 𝑣 = (𝑣𝑌, 𝑣𝐶 , 𝑣𝐹)
𝑇. 

(c) Set 𝑢𝑗 = Φ(𝑣𝑗), 𝑗 ∈ {𝑌, 𝐶, 𝐹} where Φ denotes the univariate 𝑁(0,1) distribution 

function.  
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(d) Set �̃�𝑗 = 𝐹𝑗
−1(𝑢𝑗), 𝑗 ∈ {𝑌, 𝐶, 𝐹} where 𝐹𝑗

−1 denotes the inverse of the marginal 

cumulative density function, then a realization is �̃� = (�̃�𝑌, �̃�𝐶 , �̃�𝐹)
𝑇. We repeat this procedure to 

obtain 5,000 realizations for each state 𝑆, 𝑆 ∈ {IL, IN,… ,WI}.  
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APPENDIX B: Supplemental Figures and Tables 

 

 

Figure 2A.1 Elevator Count and Operating Years. 

Note: Elevator Year = (1 𝑁𝑐⁄ )∑ 𝑦𝑒𝑎𝑟𝑖,𝑐
𝑁𝑐
𝑖=1  where 𝑦𝑒𝑎𝑟𝑖,𝑐 is the number of years for elevator 𝑖 in 

county 𝑐; 𝑁𝑐 is the elevator count. Both variables represent the elevator history in each county. 
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Figure 2A.2 Ratio of Ending Stocks to Production. 

Note: Ratio of ending stock to production here is a state-by-year variable. The distribution in a 

state shows state-level temporal variation over 2009-2020. 
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Figure 2A.3 Willingness-to-Pay for A = 0.004 (i.e., risk premium = 0.1). 

Note: Number before and after state’s name represent ranks of basis risk and extensive margin 

participation rates. The “01” and “12” indicate the lowest and highest values respectively. 
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Figure 2A.4 Farmers’ Willingness-to-Pay for Corn. 
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Figure 2A.5 Farmers’ Willingness-to-Pay for Soybeans. 
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CHAPTER 3 Extensive and Intensive Margins of Irrigation Water Demand In the Great 

Lakes Region 

Abstract 

The literature has explored water irrigation issues in arid regions; however, few studies 

investigate irrigation water usage in relatively water-rich areas such as the Great Lakes. 

Although the water conservation policy was implemented in recent years, there has been an 

upward trend in irrigation water demand from 2003 to 2018, including irrigated acres, number of 

pumped wells, and average depth to water. We employ firm-level data from USDA Farm and 

Ranch Irrigation Survey (FRIS) and Irrigation and Water Management Survey (IWMS) to 

examine what factors impact farmers' response to irrigation water usage. The findings are: (i) 

price elasticities of irrigation water usage vary significantly according to model specifications 

and water costs; (ii) the water usage at both extensive (irrigated acres) and intensive (water 

application per acre) margins are input price inelastic; and (iii) price elasticities of water usage 

are homogeneous across crops but heterogeneous across states. Our estimates of price elasticities 

of water usage can be used to calculate the cost of irrigation water reduction through water 

pricing, which might shed light on long-term water sustainability. 
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Introduction 

The literature has explored irrigation water issues in the arid regions (U.S. western 

states), including water conservation (Neigri and Hanchar 1989; Huffaker et al. 1998), the 

economic impacts of climate change (Deschênes and Greenstone 2007), the effect of electricity 

subsidies on groundwater extraction (Badiani and Jessoe 2013), the impact of irrigation 

technology on reduction of groundwater extraction (Pfeiffer and Lin 2014), precision irrigation 

(Adeyemi et al. 2017), and price elasticities for irrigation water (Howitt et al. 1980; Moore et 

al. 1994; Hooker and Alexander 1998; Hendricks and Peterson 2012; Mieno and Brozović, N. 

2017). However, few studies investigated the issues regarding irrigation water demand in a 

relatively water-rich area, e.g., the Great Lakes region. 

In 2008, the Great Lakes-St. Lawrence River Basin Water Resources Compact became 

law, requiring the eight U.S. states (IL, IN, MI, MN, NY, OH, PA and WI) to work together to 

protect water resources in this region. Per this inter-state Compact, all eight states have 

implemented many regulations for future water management (Lautenberger and Norris 2016). 

Although the goal of the rules is water conservation, there has been an upward trend in irrigation 

water demand from 2003 to 2018, including irrigated acres, the number of pumped wells, and the 

average water depth (see Table 3.1). Investigating why farmers increase water demand is crucial 

because the depressed water levels might induce costly treatment of a bottomless aquifer 

groundwater supply. 

In this study, we investigate irrigation water usage using farm-level survey data from 

USDA National Agricultural Statistics Service (NASS) overlying the Great Lakes region. Our 

motivations mainly come from that: (i) the increasing water demand may induce a concern 

regarding water scarcity; (ii) current policies to restrict water usage do not seem to be efficient, 
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so it is necessary to examine the own-price elasticity of irrigation water demand since it is the 

critical parameter in determining the impacts of change in water-related policies (Hendricks and 

Peterson 2012); (iii) the literature commonly adopts marginal irrigation cost (MIC) (Casewell 

and Zilberman 1986; Gonzalez-Alvarez et al. 2006; Mieno and Brozović 2017), and many recent 

studies use average energy cost (AEC) (Ito 2014; Kornelis and Norris 2020); however, no 

research investigates which water cost is appropriate in the Great Lakes region; (iv) what 

underlying factors affect farmer’s behavior on groundwater extraction.  

 

Table 3.1 Summary of Water Usage in the Great Lakes Region. 

State 

Acres Irrigated  

(thousands) 

Acre-feet Water Applied  

(thousands)  
2003 2008 2013 2018 2003 2008 2013 2018  

Illinois 375 457 542 566 237 231 368 333  

Indiana 276 404 455 583 132 199 235 248  

Michigan  433 532 588 827 218 298 313 458  

Minnesota 435 504 517 555 294 334 324 249  

Ohio 14 19 42 39 16 9 26 17  

Wisconsin 392 396 473 518 357 322 388 294  

State 
Number of Pumped Wells 

Average Depth to Water  

(feet) 

 

 
2003 2008 2013 2018 2003 2008 2013 2018  

Illinois 3,204 3,857 5,252 5,095 111 117 117 129  

Indiana 2,318 2,746 4,133 5,056 83 85 95 96  

Michigan  4,031 4,097 7,554 9,691 121 117 105 121  

Minnesota 3,797 4,312 5,385 5,905 130 122 131 136  

Ohio 975 215 1,064 1,203 123 135 110 103  

Wisconsin 3,002 3,192 6,169 5,166 155 147 149 166  

Data Source: USDA Farm and Ranch Irrigation Survey (2003,2008,2013); Irrigation and Water 

Management Survey (2018). 

 

There is an increasing research interest in the issues regarding water withdrawal and 

induced water scarcity in the water-abundant region. Grannemann et al. (2000) note that the 

available freshwater supply is more than adequate to meet the Great Lakes region's agricultural, 



 

105 

industrial, residential, and ecological needs. However, some findings and anecdotes exist to 

presage a potential water scarcity in this region. De Loe and Kreutzwiser (2000) note that climate 

changes are likely to increase the frequency of shallow levels in the Great Lakes region. 

Gronewold and Stow (2014) remind that the federal agencies from the United States and Canada 

documented the lowest water levels recorded on Lakes Michigan and Huron in January 2013. 

For the Kalamazoo River watershed in Southwest Michigan, Mubako et al. (2013) noted that 

irrigation water withdrawals in water-abundant regions can lead to surface water scarcity due to 

seasonal and spatial concentration during low-flow summer months. Kornelis and Norris (2020) 

investigate price elasticities and climatic determinants of irrigation water demand in the Great 

Lakes region.  

We build on Kornelis and Norris (2020) but further contribute to three primary pieces of 

literature. First, our analysis provides evidence to understand which kind of water cost is 

appropriate in the Great Lakes region. Marginal irrigation cost is commonly adopted in studies 

that analyze water demand in the U.S western states. However, many studies argue that 

consumers respond to average rather than marginal costs due to the complexity of electricity 

pricing schedules (Foster and Beattie 1979; Foster and Beattie 1981; Borenstein 2009; Ito 2014). 

Kornelis and Norris (2020) adopt average energy cost directly but do not provide how marginal 

irrigation cost performs in the empirical analysis. Since energy employed in western states and 

the Great Lakes region are the same (e.g., electricity, diesel, and natural gas), we may ask 

whether marginal irrigation cost is a good predictor for irrigation water usage.  

Second, we contribute to estimating price elasticity in the Great Lakes region with 

multiple model specifications. Price elasticity depends on the water cost construction and model 

specifications adoption. Our analysis provides evidence that policymakers may overestimate the 
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price elasticities if they only employ the Tobit Model, which may induce ineffective policies. We 

compare price elasticities from Heckman Selection Model, Tobit Model and of extensive 

(irrigated acres/irrigated share) and intensive (water application per acre) margins of irrigation 

water usage (see, for example, Moore et al. 1994; Mullen et al. 2009). Per estimated price 

elasticities, we further calculate the cost of reducing irrigation water usage through water pricing. 

Third, our analysis provides the estimations of price elasticity with different tolerances of 

measurement error. The first measurement error is the misreporting of energy expenditure and 

water application, which generates extremely high or low water costs (outliers). Kornelis and 

Norris (2020) address the first measurement error by dropping firms with average energy costs 

above the 95th percentile and below the 5th percentile. The second measurement error exists in 

extensive and intensive margins of water usage. Farmers report total and crop-specific values for 

irrigated acres and water application in the questionnaire, but two values may be inconsistent. 

Kornelis and Norris (2020) address the second measurement error by dropping observations with 

a difference between two values less than 5 percent. We find that extensive margin is more 

precise than intensive margin. The reason is that extensive margin can be more readily measured 

than intensive margin. To obtain robust estimations, we adopt many tolerances of measurement 

error for the empirical analysis. The third measurement error exists when we impute marginal 

irrigation cost- as in Mieno and Brozović (2017), omitting the pressure head in the engineering 

equation will underestimate marginal irrigation cost. Therefore, we first impute Total Dynamic 

Head (TDH) and then drop outliers. 

The rest of this paper is organized as follows. Section 2 reports all data and variables 

which are employed in this study. Empirical results are in section 3, and then section 4 

concludes. 
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Data and Main Variables 

Six states (IL, IN, MI, MN, OH, WI) were selected as our targeted area. The most 

important data used in this study are from USDA Farm and Ranch Irrigation Survey (FRIS: 

2003/2008/2013) and Irrigation and Water Management Survey (IWMS:2018), which follow the 

latest Census of Agriculture (COA: 2002/2007/2012/2017). Specifically, all farms with irrigation 

behavior can be identified in COA, and a sample was drawn with a targeted size. Farms are 

different in each survey, so our sample is not a panel dataset. 

 

Table 3.2 Summary of Sample Size. 

  2018 2013 2008§ 2003 

Panel A: National Level 

Targeted sample size 35,000 35,000 35,000 NA 

Final sample size 34,783 34,966 33,085 25,014 

certainty 1,340 2,095 2,738 1,823 

noncertainty 33,443 32,871 30,347 23,191 

Panel B: Great Lakes Region 

Illinois 329 913 599 569 

Indiana 359 886 585 580 

Michigan 541 1,103 613 584 

Minnesota 412 873 685 695 

Ohio 382 697 241 314 

Wisconsin 403 905 513 513 

Note: “NA” indicates the missing value. “§” means that the sample design in 2008 contains two 

parts: (1) for the general sample, the targeted sample size is 25,000 and the final sample size is 

23,089; (2) for horticulture sample, the targeted sample size is 10,000 and the final sample size is 

9,996. Hence, in Panel B of 2008, state-level values represent farms from the final sample with 

23,089 farms.  

 

FRIS/IWMS issued a targeted sample size every survey year, e.g., 35,000 in 2018 (first 

column of Table 3.2). All targeted farms were selected in terms of a stratification strategy: (i) a 

certainty stratum (with probability 1); and (ii) the remaining strata (with probability less than 1). 

Table 3.2 reports the information of the final sample and the farms in the Great Lakes region. 

One noteworthy thing is that farms in 2018 in each state of the Great Lakes region declined to 
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around 50% in 2013 (see Panel B of Table 3.2). However, farms in some western states, e.g., 

CA, CO, NE, and TX, increased significantly (see Figure 3A.2). FRIS/IWMS did not clearly 

explain why sample sizes in the Great Lakes region have been changed. In the empirical part, we 

employ weights provided by USDA FRIS/IWMS to estimate price elasticities. 

Sample Selection 

There were 13,465 farms in the 4 survey years in total. We dropped farms: (i) without 

planting acres because there is no irrigation behavior on these farms; and (ii) without crop-

specific records because these records can be used to address measurement errors. In final, there 

are 7,936 farms left for our analysis.  

Kornelis and Norris (2020) compare total water usage and the sum of crop-specific water 

usage, then select farms with a difference of less than 5 percent. Per a similar method, we 

compare the total and the sum of crop-specific water usage for extensive (irrigated acres) and 

intensive (water application per acre) margins, respectively. Let 𝑇𝐸𝑖 denote the total irrigated 

acres for the farm 𝑖; 𝑇𝐼𝑖 denote the total water use (acre-inch). Let 𝐶𝐸𝑖 and 𝐶𝐼𝑖 denote the sum of 

crop-specific irrigated acres and water usage, respectively. We then construct two indexes - 

𝐷𝐸𝑖 = |𝐶𝐸𝑖 𝑇𝐸𝑖 − 1⁄ |  and 𝐷𝐼𝑖 = |𝐶𝐼𝑖 𝑇𝐼𝑖 − 1⁄ | - for our subsample selection. These two indexes 

measure the difference between the total value and the sum of crop-specific values. For example, 

when 𝐷𝐸𝑖 = 0, that means farm 𝑖 precisely reported irrigated acres; when 𝐷𝐸𝑖 = 0.1, the sum of 

crop-specific irrigated acres may be higher or lower than the total irrigated acres by 10 percent. 

We can call 𝐷𝐸 and 𝐷𝐼 as tolerances for extensive and intensive margin water usages, 

respectively. It is noteworthy that total water usage record for each farm contains groundwater, 

on-farm surface water and off-farm water. 

Table 3.3 reports the observations for 4 error tolerance criteria - 0, 0.01, 0.05 and 0.1. We 
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find that measurement for extensive margin (irrigated acres) is more accurate than intensive 

margin (water application per acre). For example, farms satisfying the condition “𝐷𝐸 = 0” are 

6,837, accounting for 86.2% of the sample; however, those satisfying the condition “𝐷𝐼 = 0” 

only account for 29.1%. For each error tolerance, the farms for extensive margin are more than 

those for intensive margin. One possible explanation is that measurement of water application is 

not precise due to a lack of tools such as flow meters. We will do empirical analysis for 

subsamples from all four tolerances to avoid biased estimations. 

 

Table 3.3 Summary for Different Precision Conditions. 

Irrigated Acres Water Application 
Obs. of Intersection 

Condition Obs. Condition Obs. 

𝐷𝐸 = 0 6,837 𝐷𝐼 = 0 2,309 2,281 

𝐷𝐸 ≤ 0.01 6,916 𝐷𝐼 ≤ 0.01 2,795 2,753 

𝐷𝐸 ≤ 0.05 7,063 𝐷𝐼 ≤ 0.05 3,903 3,827 

𝐷𝐸 ≤ 0.1 7,177 𝐷𝐼 ≤ 0.1 4,695 4,605 

Total 7,936 

Note: 0, 0.01, 0.05 and 0.10 represent error tolerances. For example, “0” indicates that each farm 

in this sub-sample has a perfect match between the total value and sum of crop-specific values. 

Water application is measured as acre-inch/acre. “Obs. of Intersection” shows both conditions 

are satisfied at the same time. For example, the 2,281 (the first row and last column) indicates 

how many farms report the exact records for both extensive and intensive margins. 

 

Water Use - Extensive and Intensive Margins 

This study analyses two types of water use: extensive margin (irrigated acres) and the 

intensive margin (water application per acre). Extensive margin reflects the cropland allocation 

decisions, and intensive margin reflects short-run water application decisions (Moore et al. 

1994). 

Figure 3.1 shows state-by-year irrigated acres for five selected states. Ohio is omitted 

because irrigated acres are much smaller than in other states. Panel A of Figure 3.1 said that 
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Figure 3.1 Irrigated Acres by Crop, State and Year. 

Data Source: FRIS (2003, 2008, 2013) and IWMS (2018) summary report. 

Note: Ohio is not included due to the small value of irrigated acres, but it will be in the empirical 

analysis. 
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Figure 3.2 Water Application by Crop, State, and Year. 

Data Source: Farm-level records in FRIS (2003, 2008, 2013) and IWMS (2018). 

Note: The middle point indicates the mean value of firm-level water applications in each (state, 

year) pair. The range indicates 1 standard deviation. This sample includes all observations with 

an error tolerance 0.1.  
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irrigated and non-irrigated acres have an increasing trend in each state. The crop-specific 

irrigated acres have a similar pattern (see Panel B of Figure 3.1). In this study, we select corn and 

soybeans as the targeted crops for two reasons: (i) both crops account for a large percentage of 

the total irrigated acres; and (ii) amounts of farms planting corn and soybeans are far beyond that 

of other crops (see Table 3A.1). 

Figure 3.2 shows state-by-year water applications (acre inch per acre) with a tolerance of 

0.1. More error tolerances will be employed in the empirical analysis. Different from irrigated 

acres, water applications are variable across years. There are two interesting points: (1) from 

2003 to 2013, water usage has an increasing trend in nearly all states except Illinois and Ohio; 

(2) between 2013 and 2018, a decreasing trend exists except for Michigan and Ohio. We may 

argue that: (i) Illinois improved irrigation efficiency or had high energy cost in 2008; (ii) after 

2013, irrigation efficiency has improved quite a lot. 

Irrigation Water Cost 

In the literature, there are two irrigation water costs for estimating price elasticities. The 

first water cost is the marginal irrigation cost calculated from an engineering equation; the 

second water cost is the average energy cost calculated based on energy expenditure and water 

usage. Kornelis and Norris (2020) adopt the average cost approach by assuming that the average 

water cost may approximate the marginal cost when there are no significant changes in energy 

prices during the irrigation season. Farmers report energy expenses and parameters for irrigation 

in the FRIS/IWMS, such as well depth and pumping capacity. Therefore, we are motivated to 

compare average energy cost and the imputed marginal irrigation cost because: (i) marginal 

irrigation cost is commonly used in the studies for U.S. western states (Moore et al. 1994; 

Gonzalez-Alvarez et al., 2006; Mullen et al., 2009; Hendricks and Peterson 2012; Pfeiffer and 
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Lin 2014); and (ii) price elasticity based on different irrigation water cost may help policymakers 

better understand the potential consequences of tax structure. 

Let 𝐴𝐸𝐶𝑖 denote average energy cost for farm 𝑖; 𝑇𝑜𝑡𝐸𝑥𝑝𝑒𝑛𝑖 denote total energy 

expenditure; 𝑇𝐼𝑖 denote the total water usage defined as above. The formula for average energy 

cost is 𝐴𝐸𝐶𝑖 = 𝑇𝑜𝑡𝐸𝑥𝑝𝑒𝑛𝑖 𝑇𝐼𝑖⁄ , which is measured as dollars per acre inch. Now we turn to  

construct marginal irrigation costs based on Static Water Level and Total Dynamic Head, 

respectively. Why are two irrigation costs imputed? Mieno and Brozović (2017) note that the 

total dynamic head contains static water level, draw-down, and pressure head, so omitting 

components in the Total Dynamic Head will induce an underestimation of marginal cost. 

Let 𝑀𝐼𝐶𝑆 denote marginal irrigation cost based on static water level; 𝑀𝐼𝐶𝑇 denote the 

marginal irrigation cost based on Total Dynamic Head; 𝑆𝑊 denote the static water level; 휂 

denote the pumping efficiency, 𝐸𝑃 denote the energy price. 𝑊𝐻𝑃 denote water horsepower (i.e., 

size of engine Horse-Power); 𝐺𝑃𝑀 is pumping capacity measured as gallon/min. As in Rogers 

and Alam (2006), we employ 𝑇𝐷𝐻 = 𝑊𝐻𝑃 × 3,960/𝐺𝑃𝑀. Then the two imputed marginal 

irrigation costs are  

(3.1a)  𝑀𝐼𝐶𝑠 = 𝑆𝑊 × 휂 × 𝐸𝑃, 

(3.1b)  𝑀𝐼𝐶𝑇 = (𝑊𝐻𝑃 × 3,960 𝐺𝑃𝑀⁄ ) × 휂 × 𝐸𝑃 

Table 3.4 The 100% Nebraska Performance Criteria (NPC) for Pumping Plant. 

Fuel Type Fuel Unit 
NPC for  

Pumping Plants 

Fuel Units for Lifting  

1 acre-foot of water 1 foot 

Electricity kWh 0.885 whp-hr/kWh 1.551 

Natural Gas  

(925 BTU/cf) 
mcf 61.7 whp-hr/MCF 0.0223 

Diesel gal 12.50 whp-hr/gal 0.1098 

Propane gal 6.89 whp-hr/gal 0.1993 

Note: kWh represents the kilowatt hour. whp-hr represents water horsepower hours. 1 mcf = 

1,032 cubic feet. gal represents gallon.  
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Table 3.5 Average Electricity and Diesel Prices (May-September). 

Electricity 

(cents/kWh) 
IL IN MI MN OH WI 

Diesel 

($/gal) 

GGE 

(kWh/gal) 

Diesel 

(cents/kWh) 

2003 8.08 6.44 8.11 7.49 7.94 7.93 2.36 37.95 6.22 

2008 6.49 4.77 5.96 5.2 5.39 5.77 3.72 37.95 9.8 

2013 5.53 6.14 7.23 6.51 5.74 6.9 3.54 37.95 9.34 

2018 6.66 7.3 7.09 7.67 6.99 7.43 3.14 37.95 8.27 

Note: All price values are adjusted to USD 2018 with the irrigation-seasonally (May to 

September) average Consumer Price Index (CPI) for all urban consumers. The CPI data are from 

U.S. Bureau of Labor Statistics. GGE represents Gasoline Gallon Equivalent. 

 

Table 3.6 Farms by Energy Sources and Error Tolerance. 

Energy Source Obs. With Only One  All Obs. Percentage (All Obs./Total) 

No Condition (No constraint; Total=7,936)  

Electricity 3,720 5,971 75.2 

Natural Gas 16 64 0.8 

LP Gas, Propane 39 220 2.8 

Diesel Fuel 1,448 3,667 46.2 

Gasoline 170 264 3.3 

Condition 1 (𝐷𝐸 = 0;𝐷𝐼 = 0; Total=2,281)  

Electricity 1,043 1,604 70.3 

Natural Gas 7 13 0.6 

LP Gas, Propane 14 71 3.1 

Diesel Fuel 533 1,099 48.2 

Gasoline 34 50 2.2 

Condition 2 (𝐷𝐸 ≤ 0.01; 𝐷𝐼 ≤ 0.01; Total=2,753)  

Electricity 1,243 1,951 70.9 

Natural Gas 10 23 0.8 

LP Gas, Propane 15 88 3.2 

Diesel Fuel 642 1,350 49.0 

Gasoline 39 59 2.1 

Condition 3 (𝐷𝐸 ≤ 0.05; 𝐷𝐼 ≤ 0.05; Total=3,827)  

Electricity 1,720 2,830 73.9 

Natural Gas 14 41 1.1 

LP Gas, Propane 20 119 3.1 

Diesel Fuel 805 1,914 50.0 

Gasoline 46 76 2.0 

Condition 4 (𝐷𝐸 ≤ 0.1; 𝐷𝐼 ≤ 0.1; Total=4,605)  

Electricity 2,070 3,476 75.5 

Natural Gas 15 45 1.0 

LP Gas, Propane 24 140 3.0 

Diesel Fuel 916 2,321 50.4 

Gasoline 47 82 1.8 
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The parameters for irrigation, i.e., 𝑆𝑊,𝑊𝐻𝑃, 𝐺𝑃𝑀, can be obtained from farm-level 

FRIS/IWMS datasets. Pumping efficiency is Nebraska Performance Criteria (NPC) for Pumping 

Plants with 100% efficiency (see Table 3.4), commonly used in the literature. State-by-year 

energy price data are from the U.S. Energy Information Administration (EIA) (see Table 3.5), all 

of which are adjusted to the 2018 dollars. The electricity price measured as cents/kWh is 

monthly average retail price in the industrial sector. The diesel price is weekly Midwest No.2 

diesel retail price measured as $/gal. We impute the marginal irrigation cost for farms which: (i) 

have at least one well; and (ii) use electricity, diesel, or both. The reasons are that farms using 

other energy sources account for a low percentage in the sample (see Table 3.6). It is noteworthy 

that both imputed irrigation water costs are the costs for groundwater extraction and that surface 

water is not considered. 
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Figure 3.3 Kernel Density Estimation (KDE) for Three Water Costs. 

Note: The kernel function is Gaussian function. Bandwidth is calculated by minimizing the mean 

integrated squared error. Observations with values larger than 20 are excluded. 

 

Figure 3.3 shows the kernel density estimations (KDE) for three irrigation water costs - 

𝐴𝐸𝐶, 𝑀𝐼𝐶𝑇 , 𝑀𝐼𝐶𝑠. We find that: (i) 𝐴𝐸𝐶 and 𝑀𝐼𝐶𝑇 are flatter than 𝑀𝐼𝐶𝑠, indicating irrigation 

water cost based on static water level is underestimated; (ii) the distribution difference between 

𝐴𝐸𝐶 and 𝑀𝐼𝐶𝑇 is not distinct, although 𝑀𝐼𝐶𝑇 seems more concentrated around its mode. Figure 

3.4 provides the comparison between 𝐴𝐸𝐶 and 𝑀𝐼𝐶𝑇 by state and year. The difference between 

both water costs is not distinct as well. 

Since there are farm-level observations for both water costs, we are motivated to have a 

paired t-test to examine whether the mean difference between 𝐴𝐸𝐶 and 𝑀𝐼𝐶𝑇 is different from 0. 

The null hypothesis is that 𝐸[𝐴𝐸𝐶𝑖 −𝑀𝐼𝐶𝑖
𝑇] = 0 where 𝑖 represents farms and 𝐸[∙] is 

expectation operation. The t-statistic is 12.15 with 5,972 degrees of freedom. The corresponding 

two-tailed p-value is 0.00 that is less than 0.01. Therefore, 𝐴𝐸𝐶 is statistically different from 



 

117 

𝑀𝐼𝐶𝑇, although their distributions are much close.  

 

 

Figure 3.4 Irrigation Water Costs by State and Year. 

Note: The middle point indicates the mean value of firm-level water costs in each (state, year) 

pair. The range indicates 1 standard deviation. 
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Crop Price 

High crop prices are expected to incentivize farmers' irrigation behavior. As a result, 

farmers might irrigate more acres or increase water application (ac-in/ac) as a profit maximizer. 

Since the farmer's decision depends on the expected crop prices before the planting time, we 

employ state-level February price received data published by USDA National Agricultural 

Statistics Service (NASS). All data are adjusted to 2018 dollars with urban consumers' annual 

average Consumer Price Index (CPI) from the U.S. Bureau of Labor Statistics.  

Weather Determinants 

In the literature, many studies have investigated the effects of climate determinants on 

cropland allocation (Moore et al. 1994; Schlenker and Roberts 2006; Schlenker and Roberts 

2009), water quality (Fausey et al. 1995), water management (De Loe and Kreutzwiser 2000), 

agricultural production (Deschênes and Greenstone 2007), irrigation technology adoption 

(Loe and Kreutzwiser 2000; Pfeiffer and Lin 2014), and irrigation water demand (Hendricks 

and Peterson 2012; Kornelis and Norris 2020).  

Temperature data employed in this study are from National Oceanic and Atmospheric 

Administration (NOAA). As in the literature (e.g., Xu et al. 2013; Che et al. 2020), we construct 

two variables-Growing Degree Days (GDD) and Stress Degree Days (SDD)-to represent 

beneficial heat and heat stress during the growing season (April to September) respectively. The 

formulas for variable GDD and SDD in year t  are: 

(3.2a) 𝐺𝐷𝐷𝑐,𝑡 = ∑ [0.5 (min(max(Tc,d,t
max, Tl), Th) + min(max(Tc,d,t

min, Tl), Th)) − 𝑇𝑙]𝑑∈Ω𝑡  

(3.2b) 𝑆𝐷𝐷𝑐,𝑡 = ∑ [0.5 (max(𝑇𝑐,𝑑,𝑡
𝑚𝑎𝑥, 𝑇𝑘) + max(𝑇𝑐,𝑑,𝑡

𝑚𝑖𝑛, 𝑇𝑘)) − 𝑇𝑘]𝑑∈Ω𝑡  

Where 𝑐 is county; 𝑑 is day; Ω𝑡 is the set of growing season days in year 𝑡. The 
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thresholds are 𝑇𝑙 = 10°𝐶 (lower bound), 𝑇ℎ = 30°𝐶 (upper bound) and 𝑇𝑘 = 32.2°𝐶. Let �̅�𝑐 =

(1/14)∑ 𝐺𝐷𝐷𝑐,𝑗
2002
𝑗=1989  and  𝑆�̅� = (1/14)∑ 𝑆𝐷𝐷𝑐,𝑗

2002
𝑗=1990  denote the climatological normals 

before 2003. Two variables can be constructed for the climate variablity: 

(3.3a)  𝐺𝐷𝑐,𝑡 = 𝐺𝐷𝐷𝑐,𝑡 − �̅�𝑐 

(3.3b)  𝑆𝐷𝑐,𝑡 = 𝑆𝐷𝐷𝑐,𝑡 − 𝑆�̅� 

Land Capability 

Land capability data are from National Resource Inventory (NRI). There are eight Land 

Capability Classes (LCC), where Class I represents the best land and Class VIII represents the 

worst land. Therefore, land capability can be measured as the percentage of the first two Classes 

in all Classes (acres for Class I-II/total acres for Class I-VIII).  

Farm Size 

Hendricks and Peterson (2012) note that the short-run response to water use is smaller 

than the long-run response because irrigators can respond to price changes by adjusting irrigation 

capital. We select two indexes - the value of sales or total acres - to control the farm size. The 

effect of the scale of farm size on the extensive margin (irrigated acres) is expected to be positive 

because irrigation practice helps increase yields. On the other hand, the effect of the scale of 

farm size on the intensive margin (water application per acre) is expected to be negative because 

larger farms are inclined to improve irrigation efficiency by adopting better equipment. 

Considering the potential multicollinearity of both variables, we will employ total acres as the 

primary variable controlling for the farm size and use the sales value for the robustness check. 

Empirical Analysis 

In this empirical part, the dependent variables of most interest are extensive margin 

(irrigated acres) and the intensive margin (water application per acre). The primary independent 
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variables are average energy cost and imputed marginal irrigation cost. We will estimate state-

level price elasticities of irrigation water usage with different model specifications.  

Extensive Margins 

Table 3.7 shows that 2,676 farms plant corn without irrigation and 4,423 farms plant 

soybean without irrigation, accounting for 33.7% and 55.7%, respectively. Because of the 

censored data, we will start from the Tobit model and then employ a generalized Tobit model-the 

Cragg hurdle regression. 

 

Table 3.7 Summary of Main Variables. 

Variable Obs. Mean Std.Dev 

I. Dependent Variable 

Total Irrigated Acres 7,936 606 1,142 

Total Water Application (ac-in/ac) 7,818 6.90 4.56 

Crop-Specific Irrigation Acres    

Corn ( 0 ) 7,936 290.37 574.56 

Corn ( 0 ) 5,260 438.10 658.30 

Soybean ( 0 ) 7,936 106.36 252.94 

Soybean ( 0 ) 3,513 240.27 335.22 

Crop-Specific Water Application (ac-in/ac)    

Corn ( 0 ) 7,936 4.55 4.58 

Corn ( 0 ) 5,260 6.87 3.98 

Soybean ( 0 ) 7,936 2.77 4.22 

Soybean ( 0 ) 3,513 6.26 4.29 

II. Water Irrigation Cost ($/ac-in) 

Average cost 7,434 4.44 3.70 

Marginal Cost 6,282 3.77 2.70 

III. Control Variable 

Crop Price (Feb, $/bu)    

Corn 7,936 4.74 1.30 

Soybean 7,936 10.89 1.77 

Weather Determinant    

GD 7,063 -12.59 116.99 

SD 7,063 -2.27 4.78 

Total Planted Acres 7,936 1466.92 2154.68 

Land Capability 7,932 0.40 0.21 
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Let 𝑛𝑖𝑡𝑙
∗  denote the latent irrigated acres for farm 𝑖 for crop 𝑙 in year 𝑡; Cost𝑖𝑡 denote 

irrigation water costs, including average energy cost and imputed marginal irrigation cost; 𝑃𝑠𝑡𝑙,Fe  

denote the crop price in state 𝑠 in February (projected price before the planting time); 𝐙𝐢𝐭 denote 

a set of explanation variables including county-level weather determinants (GD and SD), county-

level land capability and farm-level total acres; 휀𝑖𝑡 denote the error term with 휀𝑖𝑡~𝑁[0, 𝜎𝜀
2]. Then 

the Tobit model specification is: 

(3.4) 𝑛𝑖𝑡𝑙
∗ = 𝛼0 + 𝛼1𝑃𝑠𝑡𝑙,Fe + 𝛼2Cost𝑖𝑡 + 𝐙𝐢𝐭

′ �̃� + 휀𝑖𝑡 with 𝑛𝑖𝑡𝑙 = {
𝑛𝑖𝑡𝑙
∗ , if𝑛𝑖𝑡𝑙

∗ > 0

0,if𝑛𝑖𝑡𝑙
∗ > 0

 

For the Cragg Hurdle (Double-Hurdle) model, we let 𝑠𝑖𝑡𝑙
∗  denote a selection variable for 

farm 𝑖 for crop 𝑙 in year 𝑡; 𝑢1,𝑖𝑡𝑙 and 𝑢2,𝑖𝑡𝑙 are error terms with (
𝑢1,𝑖𝑡𝑙
𝑢2,𝑖𝑡𝑙

)~𝑁 [(
0
0
) , (

1 0
0 𝜎2

)], then 

the hurdle model specification is as: 

(3.5a) first hurdle:  𝑠𝑖𝑡𝑙
∗ = 𝛾0 + 𝛾1𝑃𝑠𝑡𝑙,Fe + 𝐙𝐢𝐭

′ 𝛄 + 𝑢1,𝑖𝑡 with  𝑠𝑖𝑡𝑙 = {
1, if𝑠𝑖𝑡𝑙

∗ > 0

0, if𝑠𝑖𝑡𝑙
∗ < 0

, 

(3.5b) second hurdle:  𝑛𝑖𝑡𝑙
∗ = 𝛽0 + 𝛽1Cost𝑖𝑡 + 𝐙𝐢𝐭

′ 𝛃 + 𝑢2,𝑖𝑡, 

Where 𝐙𝐢𝐭 is the same as in the Tobit model. The Eqn.(3.5a) and (3.b) generate probit 

estimator (first hurdle) and Tobit estimator (second hurdle), respectivley. In the Eqn. (3.5a), we 

assume that farmers’ irrigation decisions (whether to irrigate) depend on the projected crop 

prices. Notably, the correlation of error terms in two hurdle equations is assumed as 0. 

Intensive Margin 

As discussed, misreporting for the intensive margin (water application) is not uncommon 

(see Table 3.4). As in the literature, the OLS estimator would be unbiased when the dependent 

variable is mismeasured (Bound and Krueger 1991; Bound et al. 1994; Hausman 2001). 

Therefore, we employ the OLS estimation for water application per acre 𝑤𝑖𝑡𝑙 for farm 𝑖 for crop 



 

122 

𝑙 in year 𝑡. The reduced form equation is as 

(3.6) 𝑤𝑖𝑡𝑙 = 𝜅0 + 𝜅1Cost𝑖𝑡 + 𝜅2𝑃𝑆𝑡𝑙,Fe + �̃�𝐢𝐭
′ 𝛋 + 𝑐𝑖 + 𝛾𝑠 + 𝜅𝑡 + 𝑢𝑖𝑡𝑙,  𝑤𝑖𝑡𝑙 > 0 

The OLS estimation is unbiased if cov(Cost𝑖𝑡, 𝑐𝑖) = 0 which satisfies the exogenous 

condition. However, the condition that the pumping cost is exogenous to the farmer is too 

restrictive because some firm-level characteristics such as well depth indeed affect the pumping 

costs (see, for example, Hendricks and Peterson 2012). For robustness checks, we also provide 

regression results from Tobit model. 

Empirical Results 

In the sample selection, we consider farmers’ misreporting for irrigated acres and water 

application. Another measurement error is from farmers’ misreporting for energy expenditure. 

Kornelis and Norris (2020) dropped the firms above the 95th percentile and below the 5th 

percentile for the average energy cost of water. In our data, the 5th and 95th percentiles for 

average energy cost are $0.53 and $25, respectively; those for imputed marginal irrigation cost 

based on Total Dynamic Head are $1.11 and $19.1. Therefore, we employ average energy cost 

and marginal irrigation cost between the 5th and 95th percentiles for our analysis, and then use 

other percentiles for the robustness checks.  

Based on FRIS/IWMS survey weights, we first use the Tobit model for the sum of crop-

specific irrigated acres, and the Pooled OLS for total water application. Table 3.8 reports 

regression results for all four error tolerances (0, 0.01, 0.05, 0.1) for two water costs while 

controlling for other determinants. We find that: (i) elasticities from AEC are a little larger than 

those from MIC in general, no matter for extensive or intensive margins; (ii) AEC has a better 

performance than MIC for irrigated acres (see F-value of regression), but there is a contrary case 

for water application (see R2 of regression); and (iii) estimation results are consistent when the 
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error tolerances change.  

Now we turn to examine crop-specific price elasticities. For the extensive margin of 

irrigation water usage for corn, as in Table 3.9, the price elasticities of the MIC are lower than 

those of the AEC. The underestimation of price elasticities of the MIC might induce a high tax 

structure when the policymakers' target for the reduction of irrigated acres is pre-determined. The 

price elasticities of the Cregg Hurdle model (around 0.163) are half that of the Tobit model 

(about 0.29), which implies that policies based on estimation results in the Tobit model might 

overestimate the outcome of water reduction.  

The upper panel of Figure 3.5 shows the price elasticities for the extensive margin by 

state, crop, and model specification based on average energy cost. The findings are: (i) price 

elasticities of OH are higher than that of other states; (ii) for corn, price elasticities of the Tobit 

model are higher than that of the Cregg Hurdle model in IN, MI, MN, and WI, but the contrary 

case happens in IL, and OH; and (iii) for soybean, price elasticities of the Tobit model are higher 

than that of the Cregg Hurdle model in all states except OH.  

Kornelis and Norris (2020) report that the price elasticities of water application (ac-in/ac) 

for corn and soybeans are -0.3 and -0.3, respectively, consistent with our results (see Table 3.10). 

However, we find that interstate heterogeneity exists. As in the lower panel of Figure 3.5, OH 

has the maximum value of price elasticity (-0.08), and MI has the minimum value (-0.28), which 

implies that water reduction will differ among states if a uniform tax structure on average energy 

cost is provided. 

The Effect of Potential Tax Structure on Water Reduction 

Estimated price elasticities can be used for predicting water reduction under 

different tax structures. Price elasticities for extensive margin (irrigated acres) are from 
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the Cregg Hurdle model, and those for intensive margin (water application) are from 

Pooled OLS estimation. We set a hypothetical scenario that there is a 10% tax for average 

energy cost. All else being equal (e.g., equipment count and irrigation efficiency), the tax 

on average energy cost is equivalent to that on energy price. The irrigated acres, water 

application, and total water usage in 2018 are employed as the benchmark. Total water 

usage is the multiplication of irrigated acres and water application.  

Table 3.11 reports that: (i) average water reductions for corn and soybean are 

4.2% and 4.1%, respectively; (ii) The corn change is stabler than soybean because 

changes in total water usage for corn are around 4% in all states except OH, but those for 

soybean vary over 2.6%-8.3%. The 10% tax on average energy cost is arbitrarily 

selected. When a higher tax is chosen by policymakers, e.g., 20%, average water 

reductions for corn and soybean will be 7.2% and 8.1%, respectively.  
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Table 3.8 Price Elasticities for Extensive and Intensive Margins. 

Dependent Variable Total Irrigated Acres  

Estimation Method Tobit (lower bound=1) 

Tolerance 0 0.01 0.05 0.1 0 0.01 0.05 0.1 

Average Energy Cost -0.053*** -0.053*** -0.051*** -0.049***     

Marginal Irrigation Cost       -0.039*** -0.039*** -0.038*** -0.037*** 

Land Capability -0.06*** -0.06*** -0.06*** -0.06*** -0.07*** -0.08*** -0.08*** -0.08*** 

Total Acres (,000) 0.24*** 0.24*** 0.25*** 0.25*** 0.26*** 0.27*** 0.27*** 0.27*** 

GD -0.0005 -0.0005 -0.0006 -0.0006 -0.002 -0.0002 -0.0003 -0.0003 

SD 0.008*** 0.007*** 0.007** 0.007** 0.008*** 0.007** 0.007** 0.007** 

Obs.  5,410 5,476 5,578 5,666 4,588 4,648 4,745 4820 

Population Size 23,306 23,537 24,093 24,653 17,870 18,110 18,596 19,073 

F-value of Regression 40.72 40.85 42.05 43.88 17.95 18.07 19.29 20.16 

Dependent Variable Water Application (ac-in/ac) 

Estimation Method Pooled OLS 

Tolerance 0 0.01 0.05 0.1 0 0.01 0.05 0.1 

Average Energy Cost -0.26*** -0.26*** -0.23*** -0.23***     

Marginal Irrigation Cost       -0.21*** -0.19*** -0.18*** -0.17*** 

Land Capability 0.03 0.005 -0.06 -0.07* -0.33*** -0.38*** -0.51*** -0.49*** 

Total Acres (,000) -0.03*** -0.03*** -0.03*** -0.02*** 0.65*** 0.65*** 0.81*** 0.78*** 

GD -0.003 -0.001 -0.0001 -0.0001 0.05** 0.04** 0.01* 0.004** 

SD -0.03** -0.02** -0.014** -0.014** -0.0002 -0.01 -0.001 0.006 

Obs.  1,803 2,186 3,097 3,748 1,515 1,855 2,661 3,252 

Population Size 7,308 8,802 11,970 14,488 5,419 6,629 9,285 11,434 

R2 of Regression 0.17 0.17 0.15 0.15 0.23 0.28 0.35 0.33 

Note:*,** and *** represent 10%, 5% and 1% significance levels, respectively. All regressions include state fixed effect controlling 

for macro-level shock and year fixed effect controlling for the yearly differential. 
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Table 3.9 Price Elasticities of Extensive Margins for Corn. 

Dependent Variable Irrigated Acres  

Crop Corn 

Estimation Method Tobit (lower bound=0) 

Tolerance 0 0.01 0.05 0.1 0 0.01 0.05 0.1 

Average Energy Cost -0.293*** -0.297*** -0.29*** -0.29***      

Marginal Irrigation Cost  
   -0.178*** -0.179*** -0.179*** -0.171*** 

Land Capability 0.17*** 0.17*** 0.17*** 0.18*** 0.17*** 0.17*** 0.17*** 0.17*** 

Total Acres (,000) 0.49*** 0.49*** 0.51*** 0.51*** 0.50*** 0.50*** 0.53*** 0.53*** 

GD -0.002 -0.002 -0.002 -0.002 0.0002 0.0003 -0.0002 -0.0002 

SD 0.02** 0.02** 0.02** 0.02** 0.02** 0.02** 0.02** 0.02** 

Obs.  5,410 5,476 5,578 5,666 4,588 4,648 4,745 4,820 

F-value 44.4 44.97 44.7 43.82 32.36 32.8 33.98 34.52 

Estimation Method Cregg Hurdle (lower bound=0) 

Tolerance 0 0.01 0.05 0.1 0 0.01 0.05 0.1 

Average Energy Cost -0.164*** -0.164*** -0.163*** -0.162***      

Marginal Irrigation Cost     -0.117*** -0.125*** -0.132*** -0.132*** 

Land Capability 0.19*** 0.19*** 0.19*** 0.19*** 0.20*** 0.20*** 0.20*** 0.20*** 

Total Acres (,000) 0.51*** 0.51*** 0.51*** 0.51*** 0.5*** 0.5*** 0.5*** 0.5*** 

GD 0.009*** 0.009** 0.009*** 0.009*** 0.01** 0.01** 0.01** 0.01** 

SD 0.03** 0.03*** 0.03*** 0.03*** 0.02** 0.02** 0.02** 0.02** 

Obs.  5,410 5,476 5,578 5,666 4,588 4,648 4,746 4,820 

Pseudo R2 0.034 0.034 0.034 0.034 0.032 0.032 0.032 0.032 

p-value of lnsigma 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Note: *, ** and *** represent 10%, 5% and 1% significance levels respectively.  Linearized standard errors are in the parenthesis. 
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Table 3.10 Price Elasticities of Intensive Margins for Corn. 

Dependent Variable Water Application (ac-in/ac) 

Crop Corn 

Estimation Method Tobit (lower bound=0) 

Tolerance 0 0.01 0.05 0.1 0 0.01 0.05 0.1 

Average Energy Cost -0.27*** -0.28*** -0.27*** -0.27***     

Marginal Irrigation Cost       -0.10*** -0.11*** -0.056 -0.051 

Land Capability -0.11** -0.13** -0.16** -0.16** -0.1* -0.17*** -0.21*** -0.19*** 

Total Acres (,000) -0.003 -0.009 -0.001 -0.004 -0.016 -0.024 -0.011 -0.01 

GD 0.011* 0.005* 0.002* -0.001* 0.0103 0.002 0.0049 0.00007 

SD -0.03*** -0.03*** -0.02*** -0.02*** -0.05*** -0.014 -0.19* -0.02* 

Obs.  1,328 1,621 2,345 2,888 1,196 1,467 2,143 2,647 

F-value 19.46 17.38 24.89 30.16 3.03 3.34 5.89 4.73 

Estimation Method Pooled OLS 

Tolerance 0 0.01 0.05 0.1 0 0.01 0.05 0.1 

Average Energy Cost -0.27*** -0.29*** -0.27*** -0.27***      

Marginal Irrigation Cost       -0.11*** -0.12*** -0.06 -0.06 

Land Capability -0.11** -0.13*** -0.16*** -0.16*** -0.1* -0.18*** -0.23*** -0.21*** 

Total Acres (,000) -0.003 -0.01 -0.002 -0.004 -0.017 -0.025 -0.012 -0.01 

GD 0.01* 0.01 0.002 -0.001 0.01 0.003 0.005 0.0001 

SD -0.04*** -0.03*** -0.02*** -0.02*** -0.05*** -0.02 -0.02* -0.02* 

Obs.  1,328 1,621 2,345 2,888 1,196 1,467 2,143 2,647 

R2 0.26 0.24 0.22 0.21 0.08 0.07 0.05 0.04 

Note: *, ** and *** represent 10%, 5% and 1% significance levels respectively.  Linearized standard errors are in the parenthesis. 
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Figure 3.5 Price Elasticities for Extensive and Intensive Margins. 

Note: Water cost used is average energy cost. Standard errors are estimated by Taylor 

linearization with weights from USDA NASS. The range of each estimation represents 95% 

confidence interval. Average Energy Cost are employed for the estimation. Price elasticities are 

estimated when other variables are at their mean values.
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Table 3.11 Predicted Water Reduction with Estimated Price Elasticities based on Average Energy Cost. 

      IL IN MI MN OH WI 

Corn         

 Year 2018 Irrigated Acres (,000) 313.4 317.2 378.7 280.4 8.0 142.9 
  Water Application (ac-in/ac) 7.2 4.8 6.0 6.0 8.4 6.0 
  Total Water Usage (ac-in) 2256.5 1522.6 2272.2 1682.4 67.2 857.4 

 10% Tax for  

Average Energy Cost 
Irrigated Acres (,000) 308.5 312.3 372.3 275.8 7.4 140.8 

  Water Application (ac-in/ac) 7.0 4.7 5.8 5.8 8.3 5.9 
  Total Water Usage (ac-in) 2160.4 1461.8 2170.6 1613.4 61.5 823.7 
 Change of Total Water Usage (%) -4.3 -4.0 -4.5 -4.1 -8.5 -3.9 

Soybean                 
 Year 2018 Irrigated Acres (,000) 184.4 175.3 192.5 104.2 4.7 73.8 
  Water Application (ac-in/ac) 6.0 6.0 6.0 4.8 2.4 4.8 
  Total Water Usage (ac-in) 1106.4 1051.8 1155.0 500.2 11.3 354.2 

 10% Tax for  

Average Energy Cost 
Irrigated Acres (,000) 179.4 174.5 188.8 103.2 4.4 72.5 

  Water Application (ac-in/ac) 5.8 5.9 5.9 4.7 2.4 4.7 
  Total Water Usage (ac-in) 1045.5 1024.9 1105.4 482.7 10.3 338.2 

  Change of Total Water Usage (%) -5.5 -2.6 -4.3 -3.5 -8.3 -4.5 

Data Source: USDA Farm and Ranch Irrigation Survey (2003,2008,2013); Irrigation and Water Management Survey (2018). 

Estimated price elasticities are from empirical analysis.  
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Conclusion 

Few studies focus on the potential water scarcity issue in a water-rich region. As 

such, more research is needed better to understand irrigation water issues in the Great 

Lakes region. By employing USDA FRIS/IWMS data from 2003 to 2018, we investigate 

what kind of water cost farmers respond to, estimate multiple price elasticities of 

irrigation water usage, and predict the effect of a potential tax on irrigation water 

reduction. 

Our findings contain that: (i) AEC and MIC have similar performance for values 

(extensive and intensive margins) which include all crops, although price elasticities 

based on MIC are slightly smaller; (ii) for crop-specific values, price elasticities based on 

MIC might be underestimated and be sensitive to error tolerance; (iii) if a 10% tax 

structure on average energy cost were employed by policymakers, the total water usage 

will decrease by about 4% for both corn and soybean; and (iv) when average energy cost 

increases by 20% due to a tax policy, the total water usage will decrease by 7.2% and 

8.1% for corn and soybean, respectively. 

The external validities of our findings are that: (i) price elasticities in previous 

studies investigating U.S. western states might be underestimated because of the adoption 

of a uniform irrigation pumping efficiency; (ii) model specification impacts the 

estimations of price elasticity of extensive margin water usage, and (iii) interstate price 

elasticities are heterogeneous, so a uniform tax structure will induce a differential of 

water reduction when all else is equal. 
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APPENDIX 

Table 3A.1 Crop-Specific Farm Amounts (N=7,936). 

  Crop Obs.   Crop Obs. 

01 Corn for grain or seed 5,260 07 Wheat for grain or seed 347 

02 Soybeans for beans 3,513 08 Beans, dry edible 267 

03 Alfalfa and alfalfa mixtures 750 09 Sorghum for grain or seed 21 

04 Potatoes 679 10 Rice 6 

05 All berries 661 11 Cotton 3 

06 Corn for silage or greenchop 512 12 Peanut 0 

Note: Observations in our final sample are 7,936. 12 crop categories are selected in this table 

with the rank of farm amounts.  

 

 
Figure 3A.1 Water Usage by Source in 2013 and 2018. 

Note: Data are from 2013 FRIS and 2018 IWMS summary report. 
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Figure 3A.2 Percentage of State-Level Sample Size over 2003-2018. 

Note: The yellow curve indicates the targeted area in this study. For example, “MI 1.6” means 

farm size of Michigan accounts for around 1.6% in the national farm size (=541/34,783). 

Source: USDA FRIS/IMWS. 
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Figure 3A.2 (cont’d). 

 

 

 

 

 


