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ABSTRACT

Motion and Pose estimation are a widely studied research problem area in the field of com-

puter vision. Despite major progress that has been made in pursuing this area, pose es-

timation is still a largely unsolved problem. Many challenging, practical, and real-world

applications need to be taken into consideration when developing new estimation solutions

for this research area. These challenges include low Signal to Noise Ratio (SNR), local

optimal solutions, and other related practical issues. Therefore, accurate and robust pose

estimation solutions are needed, especially for time-critical and sensitive applications such

as medical surgeries and space robot applications.

In this thesis, we focus on one important class of pose estimation solutions that are

based on fusion techniques. We focus on solutions that exploit depth cues, color information,

and wearable sensor, which can be fused to enhance accuracy and robustness of the pose

estimation system. Furthermore, we explore graphical inference models, such as Loopy Belief

Propagation methods, that can enhance pose and motion estimation accuracy. Consequently,

in this thesis, we present our findings regarding various fusion techniques and graphical

inference methods to solve the pose estimation problem. We further apply these techniques

in the estimation of Parkinson’s Disease tremors, rigid object pose estimation, and robot

localization. Additionally, we have developed a prototype by using Kinect v2, which is

capable of tracking motion of Parkinson’s Disease patients. The proposed system can lead

to cost-effective and efficient motion tracker for medical applications.
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Chapter 1 

Introduction and Motivation

Computer vision has been actively evolved to abundant and modern applications for auto-

mated motion and pose estimation, human-computer interaction, augmented reality, per-

ception, sport analysis, and other fields. Therefore, many algorithms are proposed to find 

solutions to applications. Abundance of real world applications require automated motion 

and pose estimation that helps to autonomous driving.

Motion and pose estimation refers to the task of estimating pose parameters that enable 

to find location of objects in real world. Pose estimation is computed to find trajectory, 

motion and relative pose from frames. Pose estimation is widely studied research topic 

and applicable to humans and rigid objects. Though many researchers studied pose esti-

mation algorithms, it still remains a open research area because there is limited number of 

training data sets, generalization problems, blurring and illumination problems, occlusions, 

cluttering, sensor noises, incorrect pose matches etc. Therefore, research community deeply 

study and propose new algorithms to enhance accuracy and robustness of motion and pose 

estimation applications.

Parkinson’s Disease (PD) is a progressive nervous system disorder that creates drawbacks 

for PD patients and societies, decreases life quality of patients and costs to societies due to 

treatment and work loss. Therefore, it is required to track and evaluate some of symptoms 

PD patients. It is very common that PD causes tremor symptoms on patients especially on
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their arms and legs, and PD tremors can come and go. Human motion and pose estimation

requires to estimate human body parts configuration from a multiple frames, so tremor

motion can be tracked. As average human age increases, number of PD patients increase

and severeness of PD can be increased. There are many different devices and algorithms

that collect and estimate tremors on PD patients. Wearable units required charge and may

not be stationary on patient. Wearable units can change and add some noise on tremor

measurements. Therefore, there is a requirement for continual and remote monitoring that

can provide a feedback measures for health professionals regarding stage and severeness of

PD. Camera systems can be utilized for remote monitoring. Many algorithms developed for

N-joint kinematic skeleton model and seek to estimate pose of the human body where each

vertex represents a human joint. We have focused to estimate limb tremor motion where

tremors are most explicit and severe. Tremor motion analysis can provide feedback measure

for doctors to check progress of PD.

Pose estimation is an important and widely studied research topic for robot applications

as well. Robots can work autonomously, and complete some tasks where humans may not

be able to. Some robots work at the space duty to grasp and release objects, some robots

work on micro surgeries to assist doctors where it is required to make sensitive movement

on defective human skins and organs, some robots can haul heavy objects etc. In order to

complete those tasks, a robot needs to work autonomously, know relative pose of the objects,

and position of itself in the outside environment. Therefore, robots need to compute pose

of the objects in outside environment and robot needs to find its position at the environ-

ment continuously. Robot pose estimation and position localization methods can provide

relative position information of objects and location of robots which is important process of
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autonomous applications.

There are several different type of motion capture devices that collects raw pose or motion

data as wearable units like accelerometers, magnetometers, and gyroscopes; remote units as

camera sensors, laser scanners, lidars, and radar devices etc. Raw data can be processed,

motion and pose information can be computed. Though accelerometers and gyroscopes can

be utilized to detect orientation of the objects, they have some drawbacks for single use.

Accelerometers can give good collection of orientation for small motions, but accelerometers

can include noisy measurements for rapid movements due to noise at high frequencies. Gy-

roscopes are effective for rapid motion and rotations, but measurements drift which causes

accumulation of error. These drawbacks can be solved by applying some algorithms such

as Extended Kalman Filter (EKF). Combination of accelerometer and gyroscopes can be

utilized to collect acceleration and orientation measurements, so they can be processed to

recover pose of the moving objects or persons. Therefore, accelerometer and gyroscope

measurements can be fused for pose estimation. Though wearable units are used to collect

motion directly, and don’t suffer for occlusions and illuminations, wearable units generally

require cable connection or battery charge which may not be preferable in some applications

where continual measurement is important. Therefore, alternative pose estimation methods

are also studied widely by using remote sensors. Some applications can be required remote

measurement and monitoring such as biomedical and robot applications, so camera systems,

radars, lidar sensors can be preferable for continuous and non-touch measurement. Image

features, markers, depth cues can be extracted from camera frames and RF wave data can

be collected from radars. Motion and pose information can be recovered by processing image

or radar measurements.
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Feature based pose estimation algorithms generally extracts image features and computes

pose by processing feature correspondences on model and target imagery. Point cloud based

methods extract depth from model and target object, computes pose iteratively finding

minimum error of the point cloud distance such as ICP algorithm. Some algorithms finds

pose by modeling point clouds as data points and GMM centroids and seeks to find pose

by fitting data points and GMM centroids which maximizes likelihood. Some researchers

studies artificial neural networks such as CNN’s. CNN based approaches needs to be trained

with public datasets and CNN networks can be produced accurate pose matches depending

of learning. However, CNN based methods can be suffered for generalization where pose of

non-trained samples will be estimated.

There are many different approaches for motion and pose estimation problems. Pose can

be found for rigid object that refers all points of the object moves in same parameters as a

vehicles, robots . Non-rigid pose refers that pose parameters are varied on the object points

and points on the object aren’t moved in same value as human cell motion or limb pose

estimation. Pose estimation can be 2D or 3D depending on dimension of output parameters.

Pose estimation can be 2D which is found by processing x and y motion of RGB images.

Pose estimation can be found 3D which can be computed adding depth information, so 3D

pose estimation seeks to predict a three dimensional spatial arrangement of human body

parts for a final output.

In this thesis, we have studied human limb motion estimation algorithms and we have

applied our method to PD patients to estimate PD limb tremors. RGBD camera system was

placed stationary and accelerometer were placed to tremorous limbs. PD data was collected

from patients that stretched their arms. We have applied our algorithm to single person
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or object motion and pose estimation. We have collected PD data from MSU clinic and 

PD data is studied. We found motion trajectory of the moving limb that helps doctors to 

evaluate level of PD. We have also utilized wearable units as well for providing ground truth 

measurements. In extension of our research, we have studied pose estimation of rigid objects 

by processing point cloud information from RGBD imagery and our approach is applicable 

to robot pose estimation problems.

1.1 Problem Formulation

We have studied PD tremor estimation, pose from wearable units, point cloud based pose 

estimation of rigid objects. We have formulated motion and pose problems for rigid and non-

rigid object pose estimation problems. Accelerometer was placed to patients’ arm for PD 

tremor estimation problem. Therefore, motion of the wrist and elbow need to be estimated 

and arm motion can be found explicitly. Frame set can be defined as S and sample number 

n is termed as F k . We need to find set of samples set, S:

S =
{
F 1, F 2, ..., F n

}
(1.1)

Limb poses are specified by their 3D end-points. We termed the forearm with elbow ue,

and wrist, uw, arm motion is somewhere between arm and wrist. Therefore, we need to find

motion where accelerometer was placed. Motion of arm can be found at RGBD imagery

and can be projected to camera coordinate system. Camera projection can be termed as P ,

elbow location at RGB image termed as xe, and location of wrist at the RGB image termed

as xw. Arm motion at camera coordinate system can be termed, ua, can be found by elbow
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and wrist projections:

ue = P (xe) (1.2)

uw = P (xw) (1.3)

Then, ua can be found through interpolation of motions: ue and uw.

At second part of our research problem, we have studied Loopy Belief Propagation (LBP)

algorithm that can give accurate localization for mobile robot applications. LBP is a method

that infers hidden information through message passing rule and inference is computed by

product of set of neighbour messages. Inference probability can be formulates as,

Simultaneous Localisation and Mapping (SLAM) is the process of finding map of an

environment of a mobile robot, and SLAM problem can be defined as conditional probabil-

ity distribution where x defines vehicle location, m defines landmark, Z defines landmark

observation, U defines control inputs.

p(xk,m|Z0:k, U0:k, x0) (1.4)

At third part of our research problem, we have studied rigid object pose estimation. To

estimate pose of the rigid objects, we have utilized from point cloud measurements from

model and target object. Pose parameter can be termed as θ, model geometry can be

termed as X and target observation can be termed as Y for problem formulation. And,

Joint distribution of X and Y , p(X, Y, θ), can be defined as:
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P (X, Y, θ) ∝ ϕkinematic(X, θ)ϕgeometric(X, Y ) (1.5)

Pose parameter, θ, can be estimated by maximization of likelihood function, (L):

L =
∑M

i=1 log(
∑N+1

j=1 P (yj)P (xi(θ|yj)) (1.6)

1.2 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we presented literature survey of 

IMU and camera sensor based PD tremor motion estimation, and rigid object pose estima-

tion algorithm and applications. In Chapter 3, we presented an efficient and accurate limb 

tremor estimation algorithm. Chapter 4, we presented a graphical probabilistic inference 

method for robot localization problems. Chapter 5, we presented a unstructured 3D shape 

matching method that estimates relative pose of the rigid objects. In Chapter 6, we pre-

sented Experimental Results regarding our research problems. In Chapter 7, we presented 

conclusions of the studies performed and discusses our future work.
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Chapter 2

Related Study

Most current limb tremor monitoring is performed through wearable sensors by applying 

series of process on raw data and extracting amplitude and frequency characteristics of PD 

tremors [1, 2, 3, 4]. Wearable sensors can be used to quantify limb tremors with less than 1 cm 

amplitude error through sensor fusion algorithms [1], and wearable sensors provided 0.12 Hz 

mean frequency difference for severe PD samples [2]. These typically rely on accelerometers, 

gyroscopes, and magnetometers for measuring postural limb tremor frequencies in the range 

of 1 – 10 Hz, and provide tremor data regardless of body pose or location. Wearable sensors 

enable to direct PD tremor measurement which provides some advantages for measurement 

and quantification. However, wearable sensors have a number of drawbacks for 

tracking PD tremor symptoms; they can be uncomfortable due to contact to patients, 

have limited battery power that needs to be replaced and charged again, multiple sensors 

attachment to PD patient is required to be placed for each limb being monitored, and 

the patient may forget to wear those sensors.

A contactless sensor can be addressed problems on wearable sensors, and the Kinect 2 

is potentially suitable device as it can automatically detect and track limb motion for up 

to six individuals in video imagery. However, while the Kinect has demonstrated robust 

large-motion pose estimations, Obdrzalek et al. [5] reported poor accuracy for finer scale 

motions of under a centimeter amplitude. This presents a problem for tremor measurement
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and quantification, as PD tremors can often be only several millimeters amplitude levels

[6, 7]. This low accuracy motion tracking prevents the Kinect being directly used for small

amplitude tremor monitoring and analysis as biomedical applications.

We address the low accuracy of the Kinect for small limb motion measurement by propos-

ing an algorithm to super-resolve the PD tremor tracking accuracy of the Kinect. We have

proven that the proposed algorithm improves the accuracy of the Kinect’s limb tracking

capacity for small-amplitude PD tremors. In so doing we make it possible to use the Kinect

as a fully contactless PD tremor monitoring system.

Kinect relies primarily on its depth sensor measurements for human pose estimation [8].

While this enables robust pose estimation, it also limits the precision of its joint position

estimates. Here we propose to leverage the higher angular resolution Kinect color imagery

to improve the precision of small PD limb tremor estimates. The depth and color modalities

in the Kinect have previously been fused, for example, to achieve real-time map building

applications [9]. Our fusion goal is different than previous applications; rather than improved

3D estimation, it is to obtain improved small amplitude tremor estimation. To achieve

this goal, we leverage the Kinect’s coarse depth-based motion and supplement it with a

precise optical flow estimation from the color imagery. We provide quantitative comparisons

between our method and the Kinect using ground truth from both a marker and from an

accelerometer.

There are two primary contributions of this research.

1. We proposed a tremor measurement method that operates on human limbs in natu-

ral poses and is both contactless and automatic, without requiring wearable sensors

attachment to tremulous limbs or human supervision to use.
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2. While the Kinect’s motion detection accuracy is poor for tremors which are below 10

mm amplitude, the proposed method upgrades the sensitivity to achieve detection and

analysis for tremor motion down to 2 mm amplitude for both healthy subjects and PD

patients.

While there are other commercial and remote sensor-based trackers that have sufficient

accuracy for PD measurement and monitoring, such as Vicon and OptiTrack, these de-

vices actually require markers be worn, and so they are not truly contactless measurement.

Moreover, they are expensive and require careful installation to human body and system cal-

ibration. In contrast, the Kinect is fully contactless, inexpensive and very simple to install

and use. Use of proposed algorithm with the Kinect will enable accurate tremor measure-

ment in homes and hospitals with no worn sensors, markers etc. Resulting measurements can

be utilized by clinicians to monitor PD patient’s symptoms, and assist doctors in adjusting

dosage levels and frequency of PD medication etc.

Wearable sensors have been investigated as a way to collect limb motions and PD tremors

that makes it a potential tracker for applications. Dutta et al. [3] used a Bayesian network

to estimate grasp and grip efficiency with sensor data by utilizing smart gloves. Aşuroğlu et

al. [4] used shoe-attached sensors to monitor PD patients’ symptoms, and they developed

a regression model from labeled PD tremor data and their algorithm estimates the severity

of PD based on gait features. Niazmand et al. [10] utilized from wearable devices, and

placed two accelerometers into wirelessly connected smart gloves to evaluate frequency and

rigidity of tremors based on frequency levels. Szumilas et al. [11] present a vibration sensor

that monitors PD tremors by measuring mechanical activities of the limb muscles and their

sensor is attachable to many points of human body and they presented a qualitative signal
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comparison method to verify functionality of the device by using linear correlation and Pear-

son’s distance. Camara et al. [12] collected data through surface implanted electrodes from

patients suffered from PD, and their algorithm classifies resting tremors and identifies PD

tremors. They extract features from tremor signal and apply down-sampling and filtering

on raw tremor data, and the classification task is done with neural networks. Salarian et al.

[13] developed an ambulatory system that is comprised of multiple miniature gyroscopes that

quantifies tremors and they statistically analyzed their PD tremor measurements. Ji et al.

[14] used multiple wearable and wireless sensors to measure arm motion and trajectories, they

modeled arm motion that presents motion from wrist to shoulder joints. Castillo et al. [15]

used a wearable sensor that collects sensor measurements from patients during daily activi-

ties. Their algorithm first extracts voluntary motion by applying adaptive algorithm. Then,

their algorithm subtracts voluntary motion from total motion to find PD tremors. Gallego et

al. [16] measured wrist tremors with couple of gyroscopes. Their algorithm extracts tremor

pattern from gyroscope measurements. Their algorithm collects voluntary motion including

PD tremors from daily activities. Their algorithm applies g-h filter and Kalman Filter for

estimating voluntary part and extracts tremorous motion by modeling tremor with weighted

fourier linear combiners (WFLC). Then, their algorithm models tremors by using weighted

linear combiners. Olivares et al. [17] used Inertial Measurement Units (IMUs) which are

connected via wireless and their algorithm fuses accelerometer, gyroscope and magnometer

measurements by utilizing KF and LMS filters, estimates gait and body posture. Bakstein et

al. [18] used surface implanted electrodes which are implanted to head and their algorithm

extracted temporal and spectral features from brain signals. Then, neural network based

algorithm identifies PD tremors. Joshi et al. [19] utilized from PD from gait signals and
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applied signal transformation approach and they applied combination of discrete wavelet

features and a SVM that can give efficient PD tremor classification. Schäffer et al. [20]

applied a Kalman filter to fuse optical flow, IMU, and GPS information within a FPGA in a

wearable sensor that give 3D pose estimation. PD tremors measured with wearable sensors

[21, 22] often require manual downloading and external processing.

While our research shares the same goals of many of these studies, it differs in that we

aim for remote PD tremor measurement without requiring any wearable sensors. Numer-

ous studies have investigated the Kinect’s reliability, accuracy and suitability for healthcare

applications, and have developed algorithms and integrated on the Kinect [23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. Kinect based tracking is sufficiently precise

to enable interactive abdominal surgical guidance with 2D shape matching algorithm [29],

balance development on elderly patients [30], and measuring upper limb motion for rehabil-

itation exercises that require large motion [31]. Nevertheless, the reliability of the Kinect

in estimating pose can be poor and insufficient relative to the needs of some biomedical

applications [32, 33, 34, 35, 36, 37]. Xu et al. [32] found that Kinect can be utilized for gait

analysis depending of the accuracy level of the application, and the magnitude of the pose is

not accurate due to substantial errors. Wochatz et al. [33] tested Kinect for lower limb ex-

tremities, and concluded that Kinect produces poor results for small amplitude motions and

poor-to-fair alignment with the Vicon. The Kinect produces discrepancies on measurements

of shoulder motion [34], it has a modest reliability on transitional motion as sitting, standing,

and stepping measurements [35], and it produces poor results in measuring gait asymmetry

[36]. Joint pose estimation accuracy is quantified in [37] and it is stated that Kinect can be

used for medical applications with some limitations. Diaz-Monterrosaz et al. [24] compared
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Kinect with other motion capture devices and reported that Kinect has poor estimates for

joint location and rotation estimates. Grooten et al. [23] investigate the Kinect for medical

applications, and find poor performance for human posture estimates. Casacanditella et al.

[25] evaluate the Kinect for measuring PD tremor frequency with Laser Doppler Vibrom-

eter and find a mean frequency error of 0.31 Hz which is close to our frequency analysis.

Pöhlmann et al. [27] claims that the Kinect has a potential device for healthcare imaging

and applications. Pagliari et al. [39] statistically analyzed versions of Kinect’s depth mea-

surements and find that the Kinect II has improved stability and precision over the Kinect

I. Torres et al. [28], Sooklal et al. [40] and Galna et al. [41] utilized from the Kinect to

measure large limb tremors (greater than 1 cm amplitude) and compared with Vicon. In

contrast, our goal is to extend the Kinect’s capability to estimate PD tremor frequencies

which can be sub-centimeter amplitudes.

Color camera based tracking systems have been investigated in detail, such as Ishii et

al. [42], which can provide promising motion estimates, but their algorithm require manual

target identification. Pressigout et al. [43] developed a hybrid tracker that outperformed

classical edge based trackers, and their proposed algorithm used optical flow displacements

and edge features of the object. Krupicka et al. [44] developed a 3D stereo camera based

system that measures tremor frequency and amplitude characteristics, but their proposed

system requires that the limb be positioned in a volume sized 40 x 40 x 30 cm3. Wei et al.

[45] developed a tracker that tracks human motion automatically with depth cameras, and

was implemented on a GPU to make it real-time device. Soran et al. [46] studied motion

detection using motion filters and Support Vector Machines (SVM’s). Their algorithm first

detects skin pixels from color imagery, extracts features from skin pixels, and detects forearm
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motion. Chen et al. [47] collected tremor motion with a non-contact optical device from

patients suffered for essential tremors, and they quantified tremor amplitude and frequency

characteristics.

Limb tremors can also be measured remotely and accurately with other sensors as radar

and lasers. Blumrosen et al. [48] studied tremor signal characterization with low power

wideband radar and they analyzed reflected radar signals from human limbs, their system

is able to measure small tremors accurately. However, radar systems are expensive devices,

and so application to home settings is limited. Laser based systems can be potential de-

vices to measure tremors remotely. Chang et al. [21] studied tremor estimation integrated

on laser systems, and they utilized from CMOS sensor based systems for PD tremor mea-

surement. Their system projects laser beams on to a patient’s hand, CMOS sensor detects

hand tremors, and their computer software measures tremor frequency accurately. Yang et

al. [22] developed a tremor detection system that works based on the laser line triangula-

tion method. The laser projector sends the laser beam to patient’s tremulous hand, and

CMOS image sensor detects reflected lights from the patient’s hand. They tested their laser

sensor-based system by measuring hand tremors on PD patients. In contrast, our approach

leverages the Kinect, an inexpensive, consumer device that can easily be mounted at home

or in a clinic.

Rigid object pose estimation algorithms can be divided into three main methods: Tem-

plate based methods, feature based methods, and machine learning based methods. There

are different approaches to solve pose estimation depends on image data and algorithm. Some

algorithms utilize depth image and computes pose by searching minimum distance locally

through point cloud information such as an ICP algorithms, some algorithms utilize from
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RGB frames and solve pose from global optimization methods such as image correspondence

matching methods.

One solution for pose estimation problem is to apply template matching methods, the

image template is created by rendering 3D shape model from tracked object. Template

based pose estimation algorithms such as ICP, CPD, and NDT are widely studied in the

literature that can produce hi-accuracy estimations [49, 50] ICP algorithm converges to local

minimum iteratively, and proposes high accuracy estimates in some cases. Upon reaching

to local minimum distance, ICP computes pose estimates by determining the closest dis-

tance and computes spatial transformation for point sets. Chen et al. [51] developed a

variant of pose estimation algorithm is point to plane ICP algorithm that searches point

correspondences and minimizes the defined error metric. Although, the approach can yield

promising estimates, performance of ICP algorithm is relatively lower for planar surfaces,

non-Gaussian noisy measurements, occlusions, and erroneous point clouds. There are also

variants and different fusion techniques of ICP algorithm, Iversen et al [52] proposed shape

descriptors to ICP that decreased computation time of the ICP, Presnov et al. [53] fused ICP

pose estimates with Inertial Measurement Unit (IMU) measurements by linearizing problem

using Extended Kalman Filter (EKF), Aghili et al. [54] integrated a fusion method by com-

bining IMU measurements to ICP algorithm by utilizing Adaptive Kalman Filter (AKF)

for space craft pose problem. Myronenko [50] proposed a probabilistic registration method

termed as CPD algorithm, CPD finds registration of point clouds by modeling one point

cloud as a Gaussian Mixture Model (GMM) and other point cloud as data point set and

finding maximum GMM posteriori probability. finds, Delavari et al. [55] utilized from mesh

construction of objects and added new model parameters to CPD algorithm, their algorithm
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was applied their modified CPD algorithm to medical liver data that gave enhanced regis-

tration accuracy, Liu et al. [56] implemented likelihood field model to CPD algorithm that

improves the algorithm to find pose of the far away objects with sparse point clouds. Biber

et al. [57] developed Normal distance transform (NDT) algorithm that transforms point

clouds to probabilistic distributions and compute pose in probabilistic manner. NDT algo-

rithm models point cloud as a set of 2D normal distribution and second scan to the NDT is

defined as maximizing sum that defines score on the density for second scan. Hong et al. [58]

upgraded NDT by truncating and fusing Gaussian components of point cloud that enhanced

the pose estimation accuracy. Liu et al. [59] studied on NDT, they upgraded by clustering

Gaussian distribution transform that adds point clustering and k-means clustering to match

points. Despite upgrades on NDT algorithm, there are still problems regarding poor conver-

gence. Opromolla et al. [60] utilized from LIDAR point clods, they find centroid of LIDAR

measurements and pose is computed from defined correlation measure of point clouds, their

algorithm requires template models and finds pose for space robot applications. Picos et

al. [61] applied to correlation filters that estimates locations and orientation of the target

frame by iteratively finding highest correlation between model and target frames. Philips

et al. [62] developed an algorithm on LIDAR sensor for excavator 6 DoF pose estimation,

their algorithm utilizes from maximum evidence strategy infers pose is likely equals to most

consistent LIDAR measurements.

CAD model-based methods grasp 3D environment and uses CAD model for shape match-

ing, it presents a noiseless and ideal representation of object model that can be enhanced to

pose estimation accuracy. He et al. [63] developed a template based pose estimation algo-

rithm that extracts key points, their algorithm utilizes from CAD model and finds pose by
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error minimization method. Tsai et al. [64] integrated template matching and Perspective-

n-Point (PnP) pose estimation, their algorithm extracts and matches image key points, their 

algorithm can be used in Augmented Reality (AR) applications. Song et al. [65] devel-

oped a CAD model based pose estimation algorithm, their pose estimation algorithm filters 

depth images to remove noisy measurements, and random bin picking infers pose from RGB 

imagery.

2.1 Summary of the Chapter

In this chapter, we have presented and discussed the literature research for the PD tremor 

monitoring and rigid object pose estimation problem. Wearable and remote sensor based 

PD measurement methods are explained including advantages and disadvantages. Also, 

rigid object pose estimation approaches are presented in detail. In the next chapter, we will 

explain and discuss our PD tremor measurement algorithm.
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Chapter 3

Accurate Tremor Detection and Quantification Algorithm

3.1 Introduction

Limb tremor measurements are one factor utilized to characterize and quantify the severity of 

neurodegenerative disorders. These tremor measurements can also provide dosage-response 

feedback to guide medication treatments of PD patients. Here, we propose a system to 

automatically measure limb tremors in home or clinic settings. The key feature of proposed 

method is that it is contactless; not requiring a user to wear or hold a sensing device or 

a marker. Our base sensor is a Kinect 2, which measures color and depth images, and 

estimates rough joint positions of human for indoor environments. We show that its pose 

accuracy is poor for small limb tremors which are below 10 mm amplitude, and so we propose 

an additional level of PD tremor tracking method that recovers limb motion at a higher 

precision down to 2 mm amplitude. We include empirical experiments and measurements 

showing improved PD tremor amplitude and frequency estimation using our proposed Pose 

and Optical Flow Fusion (POFF) algorithm.
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3.2 Kinect Based Sensing

The Kinect is used in this work for three primary purposes. First, it automatically detects 

a patient and determines his or her pose in indoor settings with varying lighting. This is a 

challenging problem to automate, and there has been significant research into it including [8, 

44, 46]. For this application the Kinect provides a comparatively high quality and real-time 

solution. Second, the Kinect provides person 3D limb pose tracking without requiring marker 

attachment, or manual initialization. The Kinect technology is used in many computer 

vision applications such as pose estimation, object recognition, object tracking, fall detection, 

virtual reality, and indoor 3D mapping problems etc [66, 67, 68, 69, 70]. Person tracks from 

the Kinect are a key input to our algorithm. And third, the Kinect is an inexpensive 

consumer device that can be readily interfaced with a PC. This enables us to easily build a 

portable system for a tracker.

The key limitation that prevents a Kinect being useful for tremor measurement is its 

poor accuracy in estimating small (sub-centimeter) limb motions. This accuracy limitation 

is due in part to the depth sensor resolution (512 x 424), and also in part due to the robust, 

but not so precise, 3D shape fitting algorithm by Shotton et a l. [8] used to estimate human 

pose.

A benefit o f u sing t he K inect’s c olor c amera i s t hat i t h as h igher a ngular resolution, 

18.2 pix/degree, compared to the depth camera, 6.6 pix/degree. Also, the color and depth 

cameras are synchronized, and their intrinsic and relative extrinsic camera parameters are 

known from calibration so that depth pixels can be projected onto the color image. The 

result is that processing performed on the color images can be easily used to update motion 

estimates in the depth image.

19



3.3 Method

The goal of this research is to upgrade the second-generation Kinect’s rough position es-

timates to obtain precise limb tremor estimations. Our key insight is that for small limb 

motions we only need relative pose, and not absolute pose, to characterize PD tremor symp-

toms for short intervals. This enables us to leverage differential measurement from the color 

camera in addition to the absolute pose estimates from the Kinect. We focus on PD arm 

tremor detection and evaluation. This is because arm tremors have particularly high im-

pact on patient’s functionality [71], and also because they exhibit relatively larger amplitude 

motions being distal joints [72].

This section describes steps of our Pose and Optical Flow Fusion (POFF) algorithm, 

summarized at Figure 3.1. We first define the notation and then explain each of our algorithm 

steps.

3.3.1 Notation and Parameters

Each frame, F i, of Kinect, indexed by a superscript frame number , i includes a depth 

image, color image and automatically estimated body-pose skeletons for persons in the field 

of Kinect’s view, as illustrated in Figure 3.2 (a). Motion analysis is performed on a sequence, 

S = F 1, F 2, .., F N containing sequential Kinect’s frames collected over a short time interval, 

t , at 30 fps. Since we seek limb tremors in the frequency range of 1 to 10 Hz, we selected a 

time interval of t = 4 seconds for limb tremor analysis.

There are two modes of the POFF algorithm. A low computation mode will only perform 

optical flow e stimation a fter a  s tationary o r s lowly-moving l imb i s d etected, a nd restrict 

the optical flow e stimation i n t he c ropped r ectangular r egion a round t he t remulous limb,
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Figure 3.1: POFF seeks for small tremors. Once it detects small limb tremors, POFF starts
for further processing for remote PD tremor quantification.

(a) (b)

Figure 3.2: Once limb is tremulous, POFF finds flow inside ROI and finds depth correspon-
dences of those flow measurements.
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as illustrated Figure 3.2, over the buffered frames along the N . This keeps optical flow

estimation computation low at the cost of a slightly delayed tremor detection. A real-

time mode performs optical flow estimation continuously over the full image, and buffers

the optical flow estimation with along the image sequence, S. In each case, optical flow

estimation is computed between each pair of sequential frames, see Figure 3.2 (b), to obtain

a dense 2D motion vector, j, for each limb pixel between frames, i and i+ 1.

ue = P (xe) (3.1)

uw = P (xw) (3.2)

Limb poses are specified by their 3D limb end-points. Here, we consider the forearm 

with elbow, xe , and wrist, xw , locations estimated as 3D vectors by the Kinect. It is 

straightforward to extend this method to any limb detected by the Kinect. When needed, 

a superscript index in parentheses will indicate the frame number. Joint coordinates are 

projected into the color camera image space with a camera projection function, P , giving 

2D pixel coordinates , see Eq 3.1 and , Eq 3.2.

3.3.2 Stationary Limb Detection

We focused on estimating limb tremors for stationary (or slowly moving) limbs. By recording 

forearm endpoints, xe , and xw, over time intervals t, it is straight forward to measure the 

maximum wrist motion. When the total motion is under 10 cm, the tremulous limb is 

determined to be stationary, and the next step tremor analysis is performed on the color
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imagery.

3.3.3 Region of Interest Flow

A region inside the color image is determined that covers the target limb region throughout 

the interval, t. Optical flow estimation is computed inside the region of interest (ROI) over 

the interval using the method in [73], which is freely available online, and works well even for 

low-textured image regions. The ROI is illustrated in Figure 3.2 (b), bounded in the black 

rectangle, and it provides a vector field of pair-wise motion estimates of tremulous limb and 

the background.

3.3.4 Tremor Tracking

POFF algorithm tracks limb tremors in the image plane. Using Eq 3.3, the image coordinates 

of the wrist, u(wi), can be found for any frame. However, as we show in the results section, 

these tracks are unreliable for sub-centimeter amplitude tremors. Instead, we use just the 

image coordinates in the first frame. uw(1), and rely on optical flow estimation for tracking. 

This is done by linearly interpolating the flow field to obtain a motion vector v(wi) 
of the wrist 

location and predicting its location in the subsequent frame as:

u
(i+1)
w = u

(i)
w + v

(i)
w (3.3)

Performing this over all color frames in the sequence generates an image-track of the wrist.

This 2D trajectory is converted into a 1D signal by projecting it onto the line orthogonal

to the forearm in image-space, namely orthogonal to: uw − ue. In this way POFF models

primarily rotational tremors around the elbow. The magnitude of the trajectory is scaled
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by the depth of the wrist position, xw, and divided by the focal length to generate a tremor 

measurement in millimeters.

3.3.5 Tremor Motion Modeling

We assume a rigid limb and thus expect horizontal and vertical displacements of the tem-

plates will vary linearly across limb as in Eq 3.4. Here the arm positions , y∗ are explained with 

parameters, β0 ,β1 and noise (ε). Performing linear regression gives a fit on multi-ple data 

points. We then replace the estimated motion y∗ with its linear estimate in our frequency 

analysis.

Larger sample sizes provide more accurate mean values, identify outliers that could skew 

the data in a smaller sample and provide a smaller margin of error on motion and frequency 

estimates. As a result, larger sample motion estimates can be tracked over arm positions 

because it will provide more accurate mean values and identify outliers that could cause 

skew on measurements in a smaller sample size and present smaller error. Therefore, those 

arm points can be fitted f or l ower e rror e stimates t hat c an i mprove f requency a nalysis in 

case measurements can be noisy.

y∗ = β0x+ β1 + ε (3.4)

3.3.6 Frequency Estimation

Typical postural tremor frequencies are in the range of 1 to 10 Hz [74]. We selected a 

four-second interval, as this is sufficient to estimate frequencies in this range. The POFF 

algorithm first filters the limb tremors in the range 1 to 10 Hz. Band-pass filtering can add
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Figure 3.3: Tremulous signal is extracted for period of time and 2 seconds of interval is
extracted from tremor signal.

transient effects to the start and end parts that can be amplified, as illustrated in Figure 3.3.

Thus, subsequent to filtering, 1-second intervals are removed from the start and end of the

4-second interval, leaving a 2-second, filtered tremor signal.

The dominant frequency is a key measure for characterizing PD symptoms [75], and our

analysis focuses on estimating dominant tremor frequencies. Following the work in [76],

we use Burg’s auto-regressive model to fit the tremor signal and obtain a power spectral

density (PSD) estimate of the perpendicular limb motion, see Figure 3.4. We utilized the

Matlab 2019 pburg function, developed by MathWorks. The PSD describes how power of the

tremor is distributed in frequency components and can be computed through periodogram

of signal segments of the time. PSD is typically used to characterize signals whose frequency
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components can be changed over time. The dominant frequency of the tremor is estimated 

from the location of the peak value of the PSD.

In addition to peak frequency estimate, we can estimate the amplitude of the tremor 

parallel to the image plane. This is because the depth measurement on the limbs enable 

image-motion to be transformed into 3D motion. These motions are illustrated in Figure 3.5.

These five steps constitute our proposed POFF algorithm. Those steps provide fully 

automated tremor detection and quantification algorithm for small tremors as PD.

3.4 Evaluation Techniques

We propose two simple and inexpensive ways for evaluating the POFF algorithm. While 

others [77] have used the Vicon for ground truth for tremors, it is both expensive and 

not easily transported to a clinic setting. Tremors can be tracked by utilizing markers and 

wearable devices. Our first method uses a green marker that observed by the Kinect’s camera 

and the second method uses an accelerometer that can measure tremors. A marker-based 

tracker is utilized as a baseline method for comparison. An accelerometer, able to measure 

sub-millimeter PD tremors without requiring a camera, provided the ground truth. These 

are described at next.

3.4.1 Marker Tracking

A direct way to measure limb motion is through a marker attached to patient’s wrist. Since 

the Kinect includes a color camera, we use a green marker affixed directly to the subject’s 

wrist. The following semi-automated procedure was used to detect the marker in color

27



images. Marker position is tracked to measure wrist tremors, and trajectory of the marker 

gives a baseline method for comparing our results.

In order to track a marker motion, it is required to extract the marker pixels as a fore-

ground and other pixels as a background. We utilized from Linear Discriminant Analysis 

(LDA) algorithm for classification task [78]. LDA c lassifies we ll when clusters’ class condi-

tional densities are close to Gaussian distribution which is the expected case for classification 

of the marker and skin pixels inside the ROI. LDA finds a  d iscriminating hyperplane be-

tween target pixels and the background. A 4-dimensional data space is used that consisted 

of the image region transformed to hue-saturation-intensity (HSV) color space plus a radial 

distance from the approximate target center position. This approximate center is obtained 

manually in the first i mage f rame a nd a s t he e stimated c entroid o f t he p revious f rame in 

subsequent frames assuming small motion. Once LDA is trained on the sample frame, it can 

be utilized to reliably detect target pixels on the marker on the sequence.

Once target image pixels are detected in a given frame, its image-centroid is computed. 

Then, its 3D position is obtained by projecting the centroid ray using the mean depth on 

the marker pixels. The result is that we obtain accurate 3D limb position tracks to compare 

with the POFF algorithm.

3.4.2 Accelerometer Motion

Our ground-truth source is a light-weight, inexpensive, 3-axis accelerometer called a Slam 

Stick X. It is general purpose for testing motion and vibration data for robotics, automobile 

industry etc. It is sensitive to small motions, vibration, gravity, and shock which is fabricated 

with high performance piezoelectric material. This was affixed behind the forearm, and
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Figure 3.5: (a) PD tremor is measured with 4 methods. Person stands 2.2 m far away from
Kinect; (b) PSD estimations are plotted with 4 techniques; (c) Person is standing 3.2 m far
away from Kinect; (d) Kinect’s PSD result diverges more than 1 Hz; (e) Person standing 4
m far away from Kinect; (f) Accelerometer, marker, and our tracker show good agreement;
(g) Person is standing 3.1 m far away and amplitude is more than 1 cm; (h) PSD results
show good agreement for all.
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sampling frequency is 200 Hz.

Accelerometers can measure linear accelerations on 3-axis and can be utilized for a 3D

motion and pose estimation device, see Eq 3.5 and Eq 3.6. Then, angular rotation can be

found by using gravity measurement at 3-axis. However, Accelerometer measurements can

be suffered for high frequency noise and drift. Therefore, motion and rotation estimates from

accelerometer can be erroneous.


gx

gy

gz

 = Rx(ϕ)Ry(θ)Rz(ψ)


0

0

1

 (3.5)


gx

gy

gz

 =


− sin θ

cos θ sinϕ

cos θ cosϕ

 (3.6)

In order to eliminate noise and drift problems from accelerometer, we applied series of

process on accelerometer measurements. Recovering exact motion from this is not feasible

due to noisy measurements. However, our goal for this is not to recover full limb motion

with the accelerometer, but rather capturing close motion estimate and pattern for frequency

analysis. In order to find motion estimate, we have applied series of process to accelerometer

measurement. Since accelerometer placed parallel to arm and PD patients stretched their

arm during data collection, accelerometer orientation is approximated as perpendicular to

x-z axis [0, 1, 0]. Dominant tremor frequency measurements for position and acceleration

are different because acceleration is numerically equal to twice differentiation of motion that

can shift frequency estimations, see Figure 3.4. In order to compare frequency estimates,
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accelerometer measurements are transformed to position. With this goal in mind, we devel-

oped a sequence of filtering, mean subtraction, and numerical integration steps to achieve

quasi - periodic motion analysis.

There are three obstacles in the way of utilizing an accelerometer signal for PD tremor

frequency analysis. The first is that the power distribution of a signal’s acceleration differs

from that of the raw signal. Secondly, integrating acceleration to obtain translation adds

significant drift over time. Thirdly, there is in general a temporal offset between the Kinect

and accelerometer which needs to be calibrated. The latter issue is addressed, and our

solution to the first two concerns are described in this section.

The accelerometer’s PSD is not directly useful since its peak frequency may differ from

the wrist motion’s peak frequency. This is due to the power of a signal’s temporal derivative

being a function of the frequency. A simple sinusoidal signal illustrates this: φ = sinωt with

frequency ,ω, will have a time derivative, φ = ω cosωt, and so the power of the derivative

depends on ω. More general signals that are superpositions of multiple frequencies will have

complex dependencies on the frequencies. The consequence for this work is that we need to

integrate the accelerations to translations in order to obtain a ground-truth frequency.

Now integrating acceleration measurements to estimate translation leads to erroneous

drift that can be accumulated over time. Fortunately, this drift is an offset that is not

oscillatory, and so can be filtered without impacting our peak frequency values. Therefore,

the following five-step procedure is used to transform a periodic acceleration signal to a

periodic translation signal:

1. The acceleration is integrated,

2. The mean velocity is subtracted,
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3. The velocity is integrated,

4. The mean position is subtracted

5. A band-pass filter is applied

This procedure removes voluntary motion (including amplified noise) as well as frequen-

cies below that of interest for PD. Finally, to remove transient effects of the band-pass 

filtering, the first and last second of the signal are discarded. What remains is a translation 

signal containing quasi-periodic frequencies representative of the PD tremors.

3.4.3 Motion from IMUs

Motion and pose information can also be computed by utilizing IMU measurements and 

fusing IMU measurements with EKF. Also, IMU and camera sensor measurements can be 

fused to overcome limitations of IMU only pose and camera only pose estimations. KF 

can only predict linear functions. When estimated motion is a non-linear function, KF 

will produce bad predictions on estimated signal. To predict non-linear functions, EKFs 

can be utilized. The EKF handles non-linearity by applying as a Gaussian approximation 

to the joint distribution of states, x, and measurements, z, utilizing from Taylor series 

expansions and predicts next estimates. Therefore, PD tremors can be estimated by EKFs. 

IMUs can give acceleration and orientation information that can be utilized for PD tremor 

quantification.

The EKF can be divided into two main steps as Prediction, see Eq 3.7 and Eq 3.8 and 

Correction step, see Eq 3.9, Eq 3.10, Eq 3.11, Eq 3.12, and Eq 3.13.

Prediction Step:
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x̂t = f(xt−1, ut) (3.7)

P̂t = F (xt−1, ut)Pt−1F
T (xt−1, ut) +Qt

(3.8)

Correction Step:

vt = zt − h(xt) (3.9)

St = H(xt)P̂tH
T (xt) +Rt

(3.10)

Kt = P̂tH
T (xt)S

−1
t

(3.11)

xt = x̂t +Ktvt (3.12)

Pt = (I4 −KtH(xt))P̂t
(3.13)

where predicted state is termed as xt, the residual of the prediction, vt, f is the nonlinear

dynamic model function, h is the nonlinear measurement model function. St is prediction co-

variance, Kt is Kalman Gain, Q is noise covariance matrix. The matrices F is state transition

matrix and H is observation matrix which are the Jacobians of f and h, respectively.
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3.5 Results

3.5.1 Healthy Subjects

We use a collection of tremor-motion examples to illustrate the performance of POFF, the 

raw Kinect tracker and our baseline marker position estimate, see Figure 3.5 (a-h). In addi-

tion, the twice-integrated, twice mean subtracted, and band-pass filtered accelerometer are 

shown. For each of these the Burg PSD is shown, from which we can estimate the dominant 

tremor frequency. In the small tremor examples, plots (a), (c) and (e), the peak frequency 

of the Kinect has greater error than POFF, see (b), (d), and (f), using the accelerometer, as 

ground truth. Results are similar regardless of range to target: 2.2 m for (a), 3.1 m for (c), 

and 4.1 m for (e). On the other hand, for large tremors of greater than 1 cm, shown in (g) 

and (h), all methods had close frequency estimates.

Next, a series of ablation studies were performed comparing the Kinect’s estimates with 

our method and the marker method. These studies vary the amplitude of tremors, distance 

from sensor, the patient pose, and clothing. In each case, the filtered accelerometer frequency 

is used as ground truth for frequency estimations. Results are plotted in Figure 3.6, and 

explained in detail. These studies are discussed individually below.

Results in Figure 3.6 (a) show a significant impact of tremor amplitude on a ccuracy. The 

distance to the person is fixed at 3.1 m, and limb tremors have amplitudes of approximately 

4, 6, and 15 mm. The Kinect performs well for large tremor amplitudes (15 mm), achieving 

0.031 Hz mean absolute error. However, its performance degrades by an order of magnitude 

for small amplitude tremors (under 6 mm). This degradation is the motivation for this work. 

On the other hand, the POFF and marker methods show similar accuracy as the Kinect for
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large tremors, and maintain this accuracy for small tremors.

Figure 3.6 (b) compare accuracy as a function of distance from sensor, in the range of 2 to

4 m. We find little dependence on distance, with POFF and the marker method maintaining

much smaller mean absolute frequency errors than the Kinect.

Results for small tremors with varying pose and clothing are shown in Figure 3.6 (c)

to (f). These have larger error than the out-stretched arm for all methods, although the

pattern remains in which our method significantly out-performs the Kinect. The POFF

algorithm, Kinect, and marker method all provide good motion estimation for limb tremors

which are above a centimeter range, and all methods share close peak frequency estimations,

see Figure 3.6 (g-h).

We also analyzed limb tremor estimates for limb-touching surfaces, which are more chal-

lenging poses than a out-stretched arm pose, and clothing variation, see Figure 3.6 (c-h).

Both the Kinect and POFF’s performance degrade for nearby-limb touching surfaces, and

wearing plain jacket because person’s upper body is occluded by the forearm and the jacket,

see Figure 3.6 (e-h). Nevertheless, the POFF algorithm significantly out-performs the Kinect

on small-tremor experiments, see Figure 3.6 (c-h).

Our combined result for all experiments with small tremors (under 10 mm) is 0.159 Hz

error where Kinect produces 0.661 Hz frequency difference. The marker-less POFF accuracy

is close to the baseline marker method, while the Kinect has close to six times the mean

absolute error of the POFF.
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Figure 3.6: (a)Our tracker and Kinect’s error is plotted; (b)Our tracker and Kinect’s error is
plotted for different amplitudes; (c)Person stands about 3.2 m far away and his limb is close
to his body; (d)Mean frequency error (MFE) is scattered (c); person’s limb is close to his
body (e)person stands about 3.2 m far away; (f)MFE are scattered for 3 different methods.
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3.5.2 PD Patients

We collected tremor data from nine patients previously diagnosed as PD, during their regular 

visit the clinic for treatment. They include six males and three females and are all seniors. 

Tremors varied from mild to severe (up to 5 cm). Patients stood with one arm extended 

laterally about 3 m from the Kinect. Postural tremor data is collected from the PD patients 

for 10 minutes. Data were recorded from the Kinect and from an accelerometer placed at 

patients’ wrist for ground truth. The POFF algorithm is able to measure wrist tremors 

up to a 2 mm tremors, see Figure 3.7, and peak frequency is estimated coherent with the 

ground truth, see Figure 3.8. Both the POFF algorithm and the Kinect fail to measure 

tremors which are below a millimeter amplitude, see Figure 3.9, and peak frequency is 

estimated which deflects from the ground truth, see Figure 3.10. A summary of tremor 

frequency results is in Figure 3.11, and frequency error as a function of amplitude is shown 

in Figure 3.12. At 1 cm amplitude the Kinect performs well, but it degrades at lower 

amplitudes while the POFF algorithm performs well. Below about 1 mm amplitude the 

POFF error grows significantly. An error scatter plot is shown in Figure 3.12, and frequency 

estimates have larger errors below 2 mm amplitude. This is consistent with experiments on 

healthy subjects which showed effective tremor estimation down to 2 mm. No markers were 

attached to patients; only an accelerometer to measure ground truth. Data statistics are 

plotted in Figure 3.13, showing significant reliability improvement of POFF over the Kinect. 

Hypothesis can be tested with statistical tests. Using the Student t-test on the PD 

results, we tested and rejected the hypothesis that the mean absolute errors of the Kinect 

and POFF are equal with p-value 0.0014. Next, we hypothesized that the mean absolute 

frequency error of the Kinect is at least 0.25 Hz higher error than POFF, and found a p-value
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Figure 3.7: Limb tremors roughly 3 mm amplitude are recovered well with POFF algorithm.
In this case, Kinect’s motion measurements are poor.
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Figure 3.8: PSD computed for 3 different methods for PD tremor at Fig. 3.7. POFF and the
accelerometer share close peak frequency, but the Kinect’s diverges from the accelerometer.
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Figure 3.9: For submillimeter tremors, neigher the POFF nor the kinect can recover the
tremors well, see Fig. 3.10 PSD estimation is plotted for motion measurements at Fig. 3.9.
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Figure 3.10: PSD estimation is plotted for motion measurements at Fig. 3.9. In this case,
amplitude of motion is sub-mm level, both POFF algorithm and Kinect fail to capture tremor
frequency.
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Figure 3.11: Frequencies regarding PD patients are plotted. Three set of sample is measured
for each PD patients. Patient’s wrist motion is measured with three different methods.
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Figure 3.12: Frequency error comparison between the Kinect and POFF for PD patients.
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of 0.96. Finally, we confirmed that POFF has a mean absolute error less than 0.25 Hz with

p-value 0.936. This gives us confidence in using POFF for small-tremor estimation.

3.6 Discussion

We have presented our findings from results and statistical analysis of small PD tremor 

detection and quantification problem. The following are six findings from our experiments:

1. The POFF algorithm obtained accurate dominant frequency estimates (error ¡ 0.25

Hz) for small, outstretched-arm, PD-patient tremors under 10 mm amplitude levels.

2. In contrast, the Kinect’s pose tracking resulted in at least 0.25 Hz larger frequency

estimate errors than POFF for the same PD tremors.

3. The accuracies of both POFF and the Kinect are insensitive to distance from 2 to 4

m.

4. Accuracy is highest for all methods for outstretched forearm pose, and has some degra-

dation for other poses.

5. For small PD tremors, POFF significantly out-performs the Kinect and achieves accu-

racy very close to a baseline method which relies on a marker.

6. The PD patients’ tremors have a correlation coefficient with the ground truth of 0.90

for the Kinect and 0.97 for POFF algorithm.

We have interpreted our findings on PD tremor detection and quantification:
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Figure 3.13: Distribution of frequency estimates relative to accelerometer ground truth.
The boxes span the distribution between the 25 th and 75 th percentiles, with maximum
and minimum lines shown (black) that exclude outliers (red crosses). The median values,
(red lines), are closer to zero for POFF indicating lower bias than the Kinect. Also, the
much tighter spread of POFF between the 25 th and 75 th percentiles reflects its improved
reliability for small tremors.

1. Findings (1) and (2) are the primary reasons showing the need for, and utility of, the

POFF algorithm.

2. Findings (3) and (4) agree with previous work on Kinect-only tracking. Gonzales-Jorge

et al. [79] found constant pose accuracy as a function of range, and [80] found higher

accuracy for standing-stretched arm poses than sitting stretched arm poses.

3. Finding (5) give us confidence that our contactless PD tremor measurement method

is comparable to a wearable, marker-based method.
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3.7 Conclusion

While the Kinect 2 has robust person detection, and human body joint tracking capabilities, 

the results presented show that the pose estimates are too coarse for mm level amplitude 

limb tremor measurements. POFF algorithm uses the Kinect’s initial pose estimates, and 

upgrades them to obtain mm-level precision needed for tracking small PD limb tremors. 

This is achieved by combining optical flow in the color images with initial pose estimates 

from the depth images.

As part of this work, we developed a baseline method by utilizing from a marker, and in-

expensive ground truth frequency values by integrating accelerometer measurements. These 

will be useful for further refinements to PD tremor e stimates. Marker motion and the POFF 

algorithm are compared to obtain additional mean frequency errors.

Our goal is to measure PD patients’ tremors accurately to evaluate any limb tremors 

because tremor is a health disorder that can be an indicator of serious diseases and degrade 

patients’ quality of life. We collected data from health subjects at laboratory and PD patients 

from the clinic. Then, we tested the POFF algorithm on both datasets. For both test results, 

the POFF algorithm is able to capture limb tremors down to 2 mm amplitude.

Obtaining accurate tremor measurements with a passive, remote monitoring device, as is 

obtained with the Kinect using the POFF algorithm, will enable improved, continual health 

monitoring and treatments. This has particular potential for tracking progress of neurode-

generative disease symptoms to provide feedback for treatments. Limb tremor amplitude 

and frequency characteristics are related to their severity [81], and continually monitoring 

them can aid in tailoring treatments to the PD patients [82].

The POFF method has the following limitations on small tremor measurement. So far
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we have demonstrated accurate frequency estimation for small tremors of at least 2 mm 

amplitude. POFF can not measure finger t remors, a nd o perates o nly i n w ell-lit indoor 

environments without exposed to direct sunlight due to limitations of the Kinect. Also, the 

POFF’s operation distance is limited to between 2 and 4 m. In future work, we intend to 

extend our POFF algorithm to measure other limbs and fusing POFF with wearable devices. 

Finger tremors would require a higher resolution camera systems or wearable devices.

As a contactless tremor measurement system, the proposed POFF algorithm with the 

Kinect and a computer can be utilized both in home settings to passively assess PD patients’ 

limb tremor symptoms, and in clinical settings where PD patients could be assessed prior to 

a doctor visits and ambulatory device for medication. The proposed algorithm avoids the 

problems that come with wearable devices including discomfort, non-continual assessment, 

charging, loss, and forgetting to wear them.

3.8 Alignment Method

3.8.1 Heterogeneous Sensor Alignment

The Kinect and the accelerometer operate asynchronously, with different sampling frequen-

cies, and produce different measurement units. Therefore, we need to align these sensors 

temporally in order to utilize the accelerometer as a ground truth device for our experi-

ments, see Figure 3.14. This section describes proposed method to align accelerometer and 

the Kinect’s tremor measurements temporally.

The initial steps are a pre-processing of PD tremors into the same motion units. The 

Kinect’s position is transformed into approximate acceleration measurements by differenti-
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Figure 3.14: (a) Kinect’s and accelerometer’s measurements are not aligned temporally.
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Figure 3.15: Sensors are aligned by computing NCC for the Kinect and accelerometer mea-
surements, and temporal shifting accelerometer.
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ating position estimates for twice, and then it is interpolated to the accelerometer’s sampling

frequency of 200 Hz. This process can be produced some noise on acceleration, but noise

can be filtered. As a result, we gathered acceleration measurements for the Kinect and the

accelerometer with same sampling frequency. The differentiation removes zero frequency

element which is a DC component of the Kinect’s measurements. The twice-differentiated

Kinect’s measurements are smoothed and band-pass filtered to remove the gravity, drift

effect, and frequency components above 10 Hz.

In order to measure temporal difference between the Kinect and the accelerometer mea-

surements, PD patients created an artificial oscillation by voluntarily shaking their tremulous

wrists for several times which created a relatively higher amplitude oscillations than limb

tremors. The voluntary oscillations created a unique trace in tremor measurements which

were utilized for calibration using Normalized Cross Correlation (NCC), see Eq 3.14. CC

and NCC give high similarity measure when two signal are similar each other and this is

expected when samples are aligned on time.

NCC is a reliable way of matching two patterns and frequently used in template based

image matching algorithms for finding position of a pattern and time series data etc [83]. CC

can compare two time series sample set. Similarly, NCC compare two time series sample set

using a different scoring result and NCC can vary between -1 to 1 where 1 equals to maximum

similarity of template and target image location. NCC multiplies mean subtracted sample

sets and normalizes sample sets with square root of multiplication of variances.

We utilized NCC to align 1D position estimations temporally for the Kinect and ac-

celerometer. We tested NCC to find temporal difference, and it produced higher precision

for alignment of sensors with than Cross-Correlation (CC) method. NCC is computed for the
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Kinect’s and accelerometer’s measurements that gives highest peak at the location of sample

difference, so sample difference is computed. Then, temporal difference found by dividing

sample difference to the sampling frequency of the accelerometer (200 Hz). Then, Kinect and

Vicon can be aligned in time. After sensor measurements are temporally aligned, tremor am-

plitude and frequency measurements of symptoms are comparable for the Kinect, proposed

POFF algorithm, and the marker. Temporal alignment is computed semi-automatically since

the accelerometer is connected to the computer manually, and temporal difference computed

automatically.

Let denote a(x) is acceleration obtained through twice differentiating the Kinect’s rough

position measurements, then
∑

x au(x)− āu is the mean-normalized motion measurements

at location, u, where āu is the mean acceleration value. Similarly, let ˜A(x) is the template to

match Kinect’s measurements, and ˜A(x) indicates the accelerometer measurements, normal-

ized by the mean measurement value over the whole accelerometer measurement interval.

This gives the following formula for NCC at the sample location, u.

ϕ(a,A) =
[
∑

x au(x)−au].[Ã(x−u)]

((
∑

x au(x)−a2u)
2.(

∑
x Ã(x−u))2).5

(3.14)

The estimated sample difference, u∗, is obtained by maximizing the normalized cross

correlation, namely: u∗ = argmaxϕu(a,A). The temporal difference is computed by dividing

sample difference by the sampling frequency. Then, signal shifted and the result is a pair

of heterogeneous sensors aligned temporally; the Kinect and accelerometer, see Figure 3.15.

Then, heterogeneous sensors are ready for further processing steps.
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3.8.2 Verification of the Accelerometer

We used the accelerometer as a simple and inexpensive ground truth of peak frequency 

measurements of PD tremors. After integrating and low pass filtering accelerometer to 

find position measurements, we are able to estimate tremor frequency accurately. Vicon 

motion capture device provides accurate trajectory profile of target objects by capturing 

non-symmetrically attached markers on human body and Vicon provides a gold standard 

motion and pose estimates in 3D. Also Vicon provides tunable frequency that enables to 

easy alignment with proposed trackers. Therefore, we verified the accelerometer’s frequency 

estimates by comparing with the Vicon which measures motion in sub-mm accuracy. We 

placed a green marker to the subject’s wrist and the accelerometer. We collected limb tremor 

symptoms from PD patients’ wrist for twenty seconds of duration. Vicon and the accelerom-

eter measurements are aligned temporally, and two seconds of tremor symptoms utilized for 

computing frequency estimations for the Vicon and the accelerometer’s measurements. Af-

ter systematically evaluating POFF algorithm, we concluded that the accelerometer’s peak 

frequency estimates are very close to that of the Vicon.

3.9 Summary of the Chapter

In this chapter, we have discussed fusion of depth and RGB images by utilizing depth 

and optical flow measurements. We have utilized from the Kinect as a remote sensor and 

utilized from accerometers for finding ground-truth motion for PD tremors. Additionally, we 

utilized from a green marker to create a baseline method for PD tremor measurement. We 

have tested our proposed tremor quantification algorithm on both PD tremors and healthy
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samples that created small limb motions. In the next chapter, we will discuss graphical

inference methods.
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Chapter 4

Robot Localization Through Graphical Inference Method

4.1 Introduction

Inference problems are widely studied research field for finding route for robots, audio signal 

processing, image recognition, navigation, indoor positioning etc. Probabilistic graphical 

methods can be utilized for inference. Due to abundance and importance of robot applica-

tions, accuracy and robustness of the inference algorithms are important for applications. 

Markov Random Filed (MRF) is a probabilistic model that typically modeled with graphs. 

Bayesian inference is a classic probabilistic inference approach similar to MRF and can be a 

powerful inference method with known conditional and prior probabilities of samples. How-

ever, Bayesian inference can be failed for problems with independent assumptions, complex 

problems, and inferring hidden variables where proper prior probabilities are not known 

properly. In this cases, probabilistic graphical inference models can improve prediction ac-

curacy.

Probabilistic graphical models defines probability distribution of samples are dependent 

to neighbor samples in the network. Information can be defined on a matrix as a proba-

bilistic graphical model and joint probability of samples can define information of a model.
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Probabilistic graphical model can be defined with M  variables X  = (x1, x2, x3, .., xm) where 

m equals to number of image pixels. Joint probability of graphical model samples can convey 

hidden variable information. It is required to be collected some observations from graphi-

cal model and hidden variable can be estimated. Therefore, given P(y) prior probabilities, 

graphical models seeks to estimate conditional probability P (xi|y). P (xi|y) can be found 

by marginalization, and P (xi|y) can define d epth o f u nobserved p ixel f or i mage inference 

problems, channel estimation of communication system etc.

We explain basic principles of graphical network and mechanism. We have studied Belief 

Propagation (BP) which can be effectively solve hidden values for network problems. Images 

can be defined as a network that comprised of nodes, states, and edges. Image pixels can be 

defined as a node and every node has a state value. If two nodes are dependent, those nodes 

are connected to each other with edges. If nodes are statistically independent, those nodes 

are not connected with edges. The network information can be spread to neighbor nodes 

with message passing mechanism, shown in Figure 4.1. Messages can flow through edges that 

connects nodes and message passing mechanism can recursively spread information through 

updating local computations at the nodes. Then, information at the nodes are updated 

through message passing.

4.1.1 Message Passing Rule

Messages convey state value of the nodes that passes to neighbor nodes from node j to node i. 

Message from node j to i can be calculated with sum of products and there is a rules to be 

completed for message passing, see Eq 4.1. It is need to be multiplied all messages coming to 

node j, multiply with compatibility function ψij (xi, xj ), and marginalize over the variable xj .
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Figure 4.1: Messages passing from one node to neighbours, so information flows to neighbor
nodes.
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denote neighbors of node j. Probability of a node is equal to product of all coming messages

to the node at Eq 4.2. Node send message to its all neighbors. Then, messages flow from

edges to all directions and state of the nodes are computed and updated for inference. BP

can be run through loops, so it is termed as Loopy Belief Propagation (LBP). LBP can be

run until it converges and stopped where there is no significant change on nodes.

mji(xi) =
∑

xi
ψij(xi, xj)

∏
kϵn(j)\imkj(xj) (4.1)

Pi(xi) =
∏

jϵn(j)\imji(xi) (4.2)

4.2 Summary of the Chapter

In this chapter we have presented (LBP). LBP is a dynamic programming approach and idea 

behind LBP is to run LBP on a graph containing loops until convergence. Convergence is not 

guaranteed and LBP can oscillate between states at nodes when network is singly connected. 

LBP algorithms can be utilized for simultaneous localization and mapping (SLAM) problems 

which can be enhance prediction performance.
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Chapter 5

Unstructured 3D Shape Matching Algorithm

5.1 Rigid Object Pose Estimation

An important component of scene understanding involves detecting objects and estimating 

their poses, namely their positions and orientations. Now in dynamic scenes, where objects 

are displaced or move on their own, estimating change in pose of objects becomes critical to 

enable humans and robots to safely operate in and environment and to interact with objects. 

This is evidenced by numerous applications involving active pose estimation including au-

tonomous vehicles, robot navigation, biomedical robots, human-machine interaction, action 

recognition [84, 85, 86, 87, 88, 89, 90, 91, 92] etc. Pose estimation has been, and continues 

to be, an important focus of computer vision research as is challenging for a number of 

reasons. Instances of the same category of objects can vary greatly in appearance making 

pose comparisons difficult. With a single sensor only a portion of an object is visible to 

an observer and occlusions can reduce this further, limiting data available to infer pose. 

And most importantly, ambiguities and indeterminacies due to camera projection limit pose 

accuracy; these include the scale-depth ambiguity, and the similar effect of small rotations 

and translations. Consequently accurate pose estimation is not yet solved and remains an
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important research topic.

Relative pose estimation can be distinguished from absolute pose estimation. The latter

involves a prior model of an object that defines a fixed origin and orientation. A good

example is a car where the coordinates at the center of its 3D bounding box can specify

its absolute pose. Acquiring models from which absolute pose can be determine may be

data intensive, as in 3D vehicle detection [93], and may be ambiguous or impractical to

define for objects with variable shapes such as tables, chairs and utensils. On the other

hand, relative pose captures the change in pose of an object from one time point to another.

Estimating relative pose does not require a prior shape model or even object recognition.

At the same time relative pose estimation can be used as an input to object tracking and

for applications such as collision avoidance, robotic grasping, remote motion estimation with

accuracy being particularly important. This research focuses on achieving high accuracy

relative pose estimation. Therefore, accurate and partial object model based relative pose

estimation is of great importance for space craft robots, medical surgery, and autonomous

vehicles.

One solution for pose estimation problem is 3D template matching method, the image

template is created by rendering a 3D shape model of an object. Template based pose

estimation algorithms such as CPD are widely studied in literature [94], [95]. CPD models

model point cloud as a mixture of gaussians and models target as data points and seeks

maximum likelihood. Some algorithms estimates pose from point cloud information, ICP

utilizes point clouds and converges to local minimum distance of point clouds iteratively,

and proposes high accuracy estimates in some cases. Upon reaching the local minimum

distance, ICP computes pose estimates by determining the closest distance and computes
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spatial transformation for point sets. Chen et al. [96] developed a variant of pose algorithm is

point to plane ICP algorithm that searches point correspondences and minimizes the defined

error metric. Although the approach can yield promising estimates, performance of ICP

algorithm is lower for planar surfaces, non-Gaussian noisy measurements, occlusions, and

outliers on points.

Feature based pose estimation methods have a wide range of applications. The general

idea is to estimate feature matches and descriptors from model and target frames which is

expected to be robust to image deformations in an object then estimate pose measures of the

object by error minimization, voting scheme etc. Feature based pose estimation methods can

be divided to local and global methods. To capture accurate poses, image frames are required

to have sufficiently enough texture on model and target object of interest. Chen et al. [47]

utilized optical flow measurements that help to find large displacements and their algorithm

finds poses by combining template warping and using Scale Invariant Feature Transform

(SIFT) feature correspondences. Liu et al. [56] proposes a novel feature called P2P-TL and

their algorithm models target appearance that reduces computation time and increases accu-

racy of pose estimation. Teng et al. [97] developed an algorithm for finding poses of aircrafts,

their algorithm extracts line features and pose parameters are computed by processing line

correspondences. Quan et al. [98] proposed a novel voxel based binary descriptor that makes

3D binary characterization on object geometry and their algorithm computes pose estima-

tion and fine registers by matching features of point cloud. Liu et al. [99] developed an

algorithm and finds pose by matching edge features, their algorithm’s estimation accuracy

is highly dependent to representative edge features and object geometric shape. Contour

based methods are also widely studied in pose estimation algorithms, contours can present
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accurate edge information on a model object. Leng et al. [100] proposed a pose estimation

algorithm extracts model and target contours from gray image, and iteratively searches for

matching until convergence. Schlobohm et al. [101] utilized contours and proposed projected

features that increased accuracy of the pose estimation, their algorithm finds pose by global

optimization method. Zhang et al. [102] proposed an algorithm that utilizes shape and

image contour. Their algorithm finds inliers, rejects outlier points intensively and finds the

pose of the object. Similarly, Wang et al. [103] also utilized from image contours and edge

features, their algorithm applies particle filter searches for improved matches. In doing so,

their algorithm produces robust pose estimations in cluttered conditions.

Recently, machine learning based pose estimation algorithms have been proposed exten-

sively, those methods need pre-training, present automatic segmentation, and pose estima-

tion. Machine learning based methods aim to learn feature descriptors or find pose of the

object with CNN’s. Zeng et al. [104] developed a Convolutional Neural Networks (CNN)

based pose estimation algorithm for robotic manipulators, the algorithm is implemented to

robot that able to pick and place tasks automatically. Le et al. [105] proposed a CNN

network that segments object and applied pose estimation tasks to robotic applications.

Brachmann et al. [106] developed a pose estimation algorithm method by utilizing a random

forest algorithm for pixel classification of RGBD frames. Kendall et al. [107] fine-tuned pre-

trained network (GoogLeNet) and proposed a CNN network computes camera pose through

color imagery. Hua et al. [89] developed a human pose estimation algorithm utilizing color

imagery and hourglass networks, they added a residual attention module to the network as

a residual connections structure. Giefer et al. [108] developed an algorithm comprised of

two cascade CNNs for one localization of object and second network is to compute pose of
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the object. Though learning based pose estimation methods have a high potential, they can

be limited for learning different geometric poses, invariances, and computational time.

In this study, we have tested our proposed algorithm (Flow Filter) on BigBird public

dataset that includes large scale 3D database for multiple object’s pose information that can

be freely accessible online [109]. Rigid objects are placed on a circular and rotational desk

that rotated from 0 to 180 degree with respect to center of rotational desk. The dataset

provides a ground truth pose measurements, five RGBD camera frames (Carmine sensor),

meshes, and camera parameters. Additionally, BigBird dataset also provides high resolution

RGB camera (Canon) frames for object poses. To test Flow Filter algorithm on a more

challenging task, we have tested proposed algorithm on low resolution RGBD images that

provided from Carmine sensor.

Rigid object pose defines finding best alignment of model and target object and transfor-

mation of rigid object can be quantified in terms of a R and a T . Our proposed algorithm

computes relative pose from RGBD frames (model and target), doesn’t require pre-defined

CAD model, markers, wearable units, cable connection, and object training. Partial or com-

plete object frame is enough to compute relative pose estimation. Our Flow Filter algorithm

utilizes from extracted point cloud and optical flow information, doesn’t utilize from im-

age features. Our proposed algorithm integrated on to FilterReg pose estimation algorithm

that produces fast and robust matching [110], and Flow Filter upgrades FilterReg to higher

accuracy pose estimation method.

In the remainder of this Chapter, we have explained related publications in Section 1,

we addressed problem definition and details of Flow Filter algorithm at Section 2. We

explained experiments at Section 3 and summarized our findings and future development
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and contributions at Section 4.

5.2 Proposed Framework

We proposed a relative pose estimation algorithm (Flow Filter) that fuses flow measurements 

and 3D point cloud information and integrated on FilterReg pose estimation algorithm. Pose 

estimation can be computed without priori information, flow and point coordinate informa-

tion can be utilized to refine 3D pose. Flow Filter algorithm can be depicted, see Figure 5.1 

and the algorithm can be shown series of steps, see Figure 5.2. Flow Filter is applied to 

compute relative pose estimation for rigid objects. We have tested our algorithm on Big-

Bird public dataset, and it has shown that our proposed algorithm produces enhanced pose 

estimation accuracy with respect to related pose estimation algorithms. Flow Filter algo-

rithm computes relative pose through two main steps. Details of the Flow Filter algorithm 

is explained in the remainder of this section.

We can define initial pose (model pose) of the object (R1, T1), define secondary pose 

(target pose) of the object (R2, T2), and relative pose (R1
2, T12) can be found from model and 

target pose, see Eq 5.1 and Eq 5.2. Model point cloud data (Pm) and the target point cloud 

data (Pt) can be defined as point c louds and we can transform model to target point cloud 

by using relative Rotation (R1
2) and translation (T12), see Eq 5.3. R matrix can be defined 

function of angles and can be termed as Eq 5.4 and T can be defined w ith displacements 

in 3D, see Eq 5.5. Accuracy of our algorithm can be tested and quantified w ith ground 

truth pose estimates. T12 can be defined a s a  v ector a nd c an b e t ermed a s T12(tx, ty, t z) . 

In our case, rigid objects are positioned on the center of rotational desk, R1
2 will change in 

single axis and T12 equals to zero with respect to origin of rotational desk. R1
2 can be defined
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Figure 5.1: Relative pose is refined through FilterReg that treats target points as a GMM.
Maximum likelihood is estimated from point cloud registraion on GMM, point clouds are
created and projected on color imagery. Optical flow measurements are fused with point
cloud
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Figure 5.2: Proposed algorithm utilizes from RGBD imagery, fuses depth and optical flow
information, refines relative pose.
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with a single angle and can be quantified as axis-angle value, so we have transformed R2
1 to

axis-angle values.

R2
1 = R2.R

−1
1

(5.1)

T 2
1 = T2 − T1 (5.2)

Pt = R2
1.Pm + T 2

1
(5.3)

R2
1 =


cos β cos γ sinα sin β cos γ − cosα sin γ cosα sin β cos γ + sinα sin γ

cos β sin γ sinα sin β sin γ − cosα cos γ cosα sin β sin γ + sinα cos γ

− sin β sinα cos β cosα cos β

 (5.4)

T 2
1 = [tx, ty, tz]

T (5.5)

5.2.1 Depth Pixel Transformation and Projection

Flow Filter algorithm needs to know depth camera points and corresponding RGB coordi-

nates for model and target. Since we have camera intrinsic and extrinsic parameters for 

depth and color cameras, the algorithm projects depth points to temporary coordinates de-

fined somewhere in our depth camera. Then, projected depth point cloud in temporary 

coordinate system is projected on color camera coordinate system. Then, points which are
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defined on color camera system projected on to color imagery required to be inside the model 

object boundary. The algorithm transforms and projects depth image pixels on color image 

that gives depth pixels and corresponding color image pixels. Point projection can create 

noise on object boundaries which may lead to incorrect pose matches, so our proposed algo-

rithm filters noisy and far away points from model and target object. Target depth image 

can include some sparse points projected color images. To find all depth values inside ob-

ject boundary, our proposed algorithm applies linear interpolation and masking on target 

imagery, Figure 5.3. Then, Flow Filter finds 3D point cloud on color imagery that presents 

the rigid object in model and target frames.

5.2.2 Pose Estimation

Model and target object depth point projection on color imagery have been completed at 

prior step and we have no priori pose estimation. Proposed algorithm also required to know 

optical flow measurements. Optical flow is computed from color image frame with the method 

that works based on image warping and CNN networks [111], and their algorithm produces 

promising estimations for low-textured objects and small motions. Our proposed algorithm 

uses optical flow from model to target frame that gives 2D color image correspondences. 

Flow Filter masks flow points inside of the object boundary and fuses optical flow with 

corresponding 3D point cloud information. Finally, our proposed algorithm is integrated 

on FilterReg algorithm [110], and computes relative pose by modeling and registering point 

clouds as a probabilistic point set method. We termed point cloud information as (X, Y, X) 

which is gathered from depth projection. (Xf , Yf , Zf ) denotes the combination of optical 

flow point cloud correspondences of projected and interpolated depth map.

66



(x, y) = P (X, Y, Z) (5.6)

(xf , yf ) = f(x, y) (5.7)

Update Point Cloud:

(Xf , Yf , Zf ) = P−1(xf , yf ) (5.8)

(X, Y, Z) = (Xf , Yf , Zf ) (5.9)

E step:

M0
xi
=

∑
yk
N(xi(θ

old); yk,
∑

xyz)
(5.10)

M1
xi
=

∑
yk
N(xi(θ

old); yk,
∑

xyz)yk
(5.11)

M step:

∑
xi

M0
xi

M0
xi
+c
(xi(θ)−

M1
xi

M0
xi

)T
∑−1

xyz(xi(θ)−
M1

xi

M0
xi

) (5.12)

where θ defines motion parameters, X defines model point cloud in 3D and Y defines

target point cloud, P defines projection of 3D camera coordinates to image pixel coordinates

see Eq 5.6, f defines optical flow pixels in 2D and used to find displacements Eq 5.7 and can

be projected to camera coordinates, see Eq 5.9. M0
xi

and M1
xi
, are computed at E-step see
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Figure 5.3: Depth points are masked, so object depth measurements and color image coor-
dinates are known.

Eq 5.10, Eq 5.11 and M step minimizes the objective function, see Eq 5.12.

5.3 Experiments

We have tested our Flow Filter algorithm on Bigbird object pose dataset and test results have 

been compared with CPD and FilterReg pose estimation algorithms. We have completed 

tests on 12 objects and test objects have varied sizes, shape, color, and texture properties, 

see Figure 5.4. Test objects are rotated from 3 to 30 degrees. Since objects are not trans-

lated, rotated on single axes, we have reported results in terms of angle error values of test 

objects. Rigid objects are placed on a circular and rotational desk that rotated from 0 to 

180 degree with respect to center of rotational desk. The dataset provides ground truth
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Figure 5.4: Relative Pose of rigid objects which are different shaped and textured are com-
puted with our algorithm, CPD, and FilterReg. Pose estimations are compared with ground
truth.
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Figure 5.5: Axis angle of R is plotted for Ground truth, proposed algorithm, FilterReg, and 
CPD for canned fish.

pose measurements, five RGBD camera frames (Carmine sensor), meshes, and camera pa-

rameters. Additionally, BigBird dataset also provides high resolution RGB camera (Canon) 

frames for object poses. To test Flow Filter on a more challenging task, we have tested the 

algorithm on low resolution RGBD images that are provided from Carmine sensor.

5.4 Results

We have tested our Flow Filter algorithm to evaluate rotation estimations by comparing 

ground truth poses. Mean absolute error results have been quantified for Flow Filter, Fil-

terReg, and CPD by utilizing ground truth measurements. The model object is rotated and
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Figure 5.6: Axis angle of R is plotted for pepto liquid bottle, proposed algorithm includes
decreased error with respect to FilterReg and CPD.
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Figure 5.7: Pose estimation gives good matches and low error in terms of axis angle for
proposed algorithm, FilterReg, and CPD for Granola box.
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Figure 5.8: Pose estimation gives enhanced estimation accuracy in terms of axis angle with
respect to FilterReg and CPD for Chicken noodle box.
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not translated. It is quantified that Flow Filter algorithm computes pose of the rigid object

in enhanced accuracy than FilterReg and CPD algorithm. Instead of using plain depth mea-

surements of model and target frames, Flow Filter enables higher accuracy pose estimations

by fusion of depth measurements and corresponding flow displacements. Rotational error is

quantified in terms of angle of R, so we have computed angle of error by finding axis-angle

values of R. Mean absolute errors are computed from axis-angle values and results have

been reported.

Advil box is alike canned fish in terms of object size which causes limited number of data

points. Angle error is quantified as 2.95, 8.69, and 5.8 for proposed algorithm, FilterReg,

and CPD respectively. Though our proposed algorithm estimation is less than 3 for advil

box and produces higher accuracy with respect to FilterReg and CPD algorithms. Object

shape information can be impacted estimation accuracy. Canned fish is a small sized object

as advil box, canned fish is a cylindrical shaped object that can be hard to track due to

shape and limited number of points on the object. Therefore, pose results have shown that

all pose estimation algorithms suffer for relative pose estimation, see Figure 5.5. Angle error

is quantified as 11.12, 20.62, and 16.43 for Flow Filter, FilterReg, and CPD respectively.

Optical flow can be suffered as angle of R increases that increases noise on object data points.

Flow Filter produces 2.19 angle error for Pepto liquid bottle, see Figure 5.6. FilterReg and

CPD produces less than 1 angle error for few samples, but amplitude of error enhances as

angle of R enhances because partial target object shape differs from target frame. FilterReg

produced 7.57 angle error and CPD produced 10.69 angle error. Our proposed algorithm,

FilterReg and CPD produces promising results for Quaker granola box because the object

shaped as a rectangular prism and textured surface which can be relatively easier to track
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pose because object has a simple and regular shape that point cloud sets can converge to 

minimum, see Figure 5.7. Angle errors are quantified as 0.32, 0.91, and 1.37 for proposed 

algorithm, FilterReg, and CPD respectively. Chicken noodle box has some texture on the 

package, and we have tested pose estimation algorithms, see Figure 5.8. Flow Filter produces 

1.51 angle error for chicken noodle box. FilterReg produces much higher error than proposed 

algorithm, quantified as 8.0 mean angle error. Similarly, CPD algorithm produces false 

alignment for chicken noodle box, produces 9.33 angle error. Overall mean angle error values 

are equal to 3.03, 8.0, 9.33 for our proposed algorithm, FilterReg, and CPD respectively. As 

it can be seen results on variety of test objects, it is clearly seen that amplitude of angle 

error can be changed depending on object size, shape, and texture properties of test objects.

5.5 Summary of the Chapter

Depth cameras are generally lower resolution than color cameras, so pose estimation from 

depth only measurements can be suffered from accuracy and robustness that can be problem 

for error sensitive applications. RGB images cameras are generally higher resolution and 

cheaper than depth cameras. Therefore, RGB cameras can be combined to depth cameras 

which enhances pose estimation accuracy. Low resolution cameras give a limited number of 

data points on tracked objects that can decrease estimation accuracy. Similarly, object shape 

and texture information impacts pose estimation accuracy. To present cheap and accurate 

pose estimation, Flow Filter utilizes pre-calibrated cameras and RGBD images. Flow Filter 

fuses color and depth information and rejects outliers that produce robust and enhanced pose 

accuracy which can be a solution for error critical applications. Flow Filter algorithm can be 

implemented on RGBD sensors as Kinect that enables cheap and efficient pose estimation 
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: (a) model RGB image (b) target RGB image (c) model and target image clouds
(d) alignment from CPD includes pose shift (e) alignment with FilterReg includes pose shift
(f) alignment with proposed algorithm matches.
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for indoor environments. We have tested Flow Filter algorithm for low resolution depth

and RGB images and Flow Filter algorithm provided decreased pose error than CPD and

FilterReg algorithms. Other algorithms such as CPD can produce false matches for R. Flow

Filter utilizes optical flow and our algorithm’s accuracy decreases for large rotations due to

problems for optical flow. Flow Filter can be applied to real time applications and relative

pose estimation applications.
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Chapter 6

Experimental Results

In this chapter, we present the experimental results of the proposed frameworks. We com-

pared our results with ground truth and comparable algorithms. We have tested our algo-

rithms for series of experiments that can be affected estimation accuracy. We have tested 

our proposed algorithms for data gathered from laboratory and public datasets.

6.1 Results And Discussion

Firstly, We presented our results on PD tremors which are collected from MSU clinic and 

results are given, see Table. Secondly, we presented our results for rigid object relative pose 

estimation problem and our proposed frameworks has been tested on BigBird pose dataset.

6.1.1 PD Tremor Estimation Problem

We apply our POFF algorithm to capture PD tremors which can come and go, and can be 

small or high amplitude. Amplitude of motion, pose of patients, distance, and clothing can 

be affected motion estimation accuracy. Therefore, we have tested our POFF algorithm for 

series of detailed experiments, see Table 6.1. To track small tremors, our method utilizes 

from RGB imagery and depth projections that gives higher resolution than commercial depth 

cameras. We have applied our POFF algorithm and our POFF produced promising results
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on PD tremors, see Table 6.2.

Table 6.1: Results are reported for tremor estimation. Amplitude, distance, pose, clothing
have been changed and tested for detailed experiments.

Kinect POFF Marker
Amplitude < 5 mm 0.51 0.057 0.061

5-10 mm 0.415 0.095 0.037
> 10 mm 0.032 0.031 0.045

Distance 2 m 0.485 0.051 0.087
3 m 0.461 0.068 0.049
4 m 0.313 0.056 0.069

Pose stretched arm 0.405 0.063 0.05
Vertical arm 0.557 0.15 0.126
Limb touching 0.668 0.138 0.073

Clothing t-shirt 0.485 0.051 0.087
Sleeve 0.461 0.068 0.049
Jacket 0.313 0.056 0.069

Combined Amplitude < 10 mm 0.4612 0.0775 0.0688

Table 6.2: Frequency errors are given for stretched arm, frequency difference from ground
truth has been found as an error.

Kinect POFF
Stretched arm 0.661 0.159

6.1.2 Rigid Object Pose Estimation Problem

First, we apply our proposed methodologies to rigid object pose dataset and our proposed

algorithm produced higher accuracy than CPD and FilterReg pose estimation algorithms,

our pose matches fit with ground truth pose, see Table 6.3.
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Table 6.3: Errors found by finding angle difference of algorithms and ground truth angles.
Our algorithm produces decreased error than comparable algorithms.

Ours FilterReg CPD
Mean Error (angle) 3.032 8.01 9.33

6.2 Summary of the Chapter

In this chapter we have presented detailed experiments on test the problems using all the 

frameworks presented in this thesis. We have also presented results on proposed motion 

and pose estimation algorithms. Our POFF algorithm enhanced Kinect’s motion estimation 

accuracy. POFF algorithm able to recover PD tremors up to 2 mm amplitude. However, 

Kinect’s estimations are noisy and incorrect under 1 cm amplitude tremors.

Our proposed rigid object pose estimation algorithm extracts object camera coordinates 

and fuses 3D camera coordinates with optical flow. A s a  r esult, o ur p roposed algorithm 

estimates relative pose in higher accuracy.
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Chapter 7

Conclusion and Future Work

In this chapter, we state concluding remarks of this research and we present some future 

research plans for solving motion and pose estimation problems including PD limbs tremors 

and rigid objects.

7.1 Conclusion

In this thesis, we found some real world problems regarding motion and pose estimation. 

Therefore, we have studied fusion methods for motion-pose estimation problems and robot 

localization problems by utilizing from graphical inference methods.

To be particular, we have studied PD motion and pose estimation methods which pro-

vided enhanced pose estimation results on data-sets. We proposed a data fusion technique 

that helps to estimate small PD tremors and we have fused accelerometer and RGBD cam-

era motion estimates with Extended Kalman Filter that applicable to homogeneous sensor 

readings. Our algorithm provided a method that able to track mm-level tremor estimates. 

Additionally, we presented temporal calibration method that can be applicable to align het-

erogeneous sensor measurements.

We have fused depth and color measurements that gave accurate pose estimation results 

on BigBird data-set. We have tested our algorithm for 12 different o bjects a nd w e have

81



concluded that our algorithm estimates include lower error than CPD, FilterReg. we can 

achieve better results in terms of accuracy and robustness for pose estimation problems using 

RGBD camera.

Multi sensor fusion techniques can be studied and that can enhance motion and pose 

estimations. EKF, Particle Filters, Extended Kalman Particle Filter algorithms are popular 

and can be efficiently applicable to wearable and visual sensor fusion problems.

7.2 Future Work

In future, we would like to extend our work in the following way:

• In the literature, we have seen most of the researchers utilized from EKF to fuse

accelerometer and gyroscope readings which can enhance pose or motion estimation

accuracy. EKF, Particle Filters can be utilized to fused sensors. We are planning to

use EKF to fuse gyroscope and acceleromater readings from a wearable sensor. In

addition to this, Particle Filters can be applicable to fuse wearable unit motion and

camera based pose estimations which can give robust, accurate, and efficient results.

• Laser sensors can be applicable PD tremor estimate problems. Laser scans can be

utilized to extract contour feature extraction of limbs and background information

can be filtered. Then, point cloud based pose estimation methods can be utilized to

find contour association of model and target templates that can provide accurate limb

tremor estimates.

• We are studying on Robot Localization methods and we have studied0 graphical in-

ference methods such as LBP. We plan to apply LBP algorithm to robot localization
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problems that can give accurate results because LBP can give good inference for image

based problems.

• An interesting application of pose estimation is for tracking human motion for interac-

tive gaming applications. That can help developing interactive control of robots and

machines etc.

• Deep neural network (DNN) can be used to automatic pose estimation and dataset for

heat maps of human motion can be utilized to train DNN’s. Therefore, DNN can be

studied in future and applicable to PD tremor estimations and robot pose estimation.

Also, DNN networks can be trained for multi-person PD tremor estimation problem.
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