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ABSTRACT 

 
Accelerometers are frequently used to measure physical activity (PA) in children, which is 

important for overall health and development. Lack of uniformity in data processing methods, 

such as the metric used to summarize accelerometer data, limits comparability between studies. 

The objective was to determine the convergent validity of five accelerometer metrics for 

characterizing the intensity and temporal patterns of first and second graders’ (n=88) recess PA. 

At a 5-s epoch level, Pearson’s correlations between various metrics ranged from 0.69 to 0.98. 

When each epoch was classified into one of four activity levels based on quartiles, agreement 

between metrics as indicated by weighted kappa ranged from 0.81 to 0.96. When collapsed to 

time spent in each activity level, metrics were most often statistically equivalent for estimating 

time spent in quartile 3 or 4. Children were ranked from least to most active, and agreement 

between metrics was strong with Spearman’s correlation coefficients of over r=0.86. Temporal 

patterns were characterized using five fragmentation indices calculated using each of the five 

metrics. Pearson’s correlations between metrics ranged from r=0.53 to 0.99, with the strongest 

associations for number of high activity bouts. Most fragmentation indices were not statistically 

equivalent between metrics. While metrics captured similar trends in activity intensity and 

temporal patterns, caution is warranted when making comparisons of point estimates derived 

from different metrics. However, all metrics were able to similarly capture higher intensity 

activity (i.e., quartile 3 or 4), the most common outcome of interest in intervention studies
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INTRODUCTION 

 
 Regular physical activity (PA) participation during childhood is associated with improved 

cognition, increased bone density and muscular strength, and decreased risk of developing 

noncommunicable disease in later life (Loprinzi et al., 2012). Despite these and other benefits, 

many children fail to meet the recommendations set forth in the National Physical Activity 

Guidelines for Americans, which state that children aged 6- through 17-years should engage in at 

least 60-minutes∙day-1 of moderate-to-vigorous physical activity (MVPA) (Health and Human 

Services, 2018). Unfortunately, only about 25% of school-aged children meet PA 

recommendations according to both parent-report and device-based measures of PA 

(Katzmarzyk et al., 2016; Troiano et al., 2008). This is a major public health concern, thus 

prompting investigation into the underlying causes of insufficient PA levels among children. 

 Interventions aimed at promoting and increasing children’s PA often occur in the school 

setting due to the bulk of time children spend in school. There are few opportunities for children 

to engage in PA during the school day; however, some opportunities for PA include physical 

education (Meyer et al., 2013), classroom activity breaks (Carlson et al., 2015), or after-school 

programs (Arundell et al., 2015). The outdoor recess period, however, is often the only 

opportunity for children to engage in a developmentally important type of play called 

unstructured free-play PA, in which children are able to determine the structure and intensity of 

play without a high degree of adult influence (Ginsberg, 2007). This type of play, along with the 

benefits from regular PA engagement, contributes to children’s social, emotional, and physical 

development (Ginsberg, 2007). Therefore, efforts to optimize the unstructured free play PA that 

the outdoor recess period provides is salient in improving the overall well-being of children.  
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 Research on children’s PA during recess has primarily focused on overall PA levels 

(Ridgers et al., 2005; Mota et al., 2005; Holmes et al., 2012) or differences amongst groups (e.g., 

boys vs girls; Trost et al., 2002; Mota et al., 2005; Pate et al., 2013). Interventions to promote PA 

during recess have included strategies like modifications to the physical environment (e.g., 

painted markings; Ridgers et al., 2007; Blaes et al., 2013) and addition of portable equipment 

(e.g., playground balls, jump ropes; Ridgers, Fairclough, & Stratton, 2010). However, little 

research has considered the chronological succession of children’s activity over time, or the 

temporal patterns of PA. It is known that children do not maintain the same level of PA over the 

recess period (McKenzie et al., 1997); therefore, better understanding of the temporality of PA 

can highlight critical periods when children are most and/or least active during recess. Further 

research into how these temporal patterns of recess PA differ by participant demographic or 

environmental factors is warranted as this information can be used to create activity-promoting 

interventions to optimize PA participation during the recess period.  

 Accelerometry is an ideal method to capture children’s PA due to its ability to capture the 

timing, frequency, intensity, and duration of movement, as well as the temporality of children’s 

PA. However, there are a multitude of decisions required to process the accelerometer data, and 

lack of consistency amongst processing methods limits data harmonization and comparability 

across studies. Accelerometers measure acceleration in gravitational units (g; 1 g = 9.8 ms -2), 

which has historically been filtered, rectified, and summed over a specific period, or epoch (e.g., 

5-s) as activity counts (Farrahi et al., 2019; Strath et al., 2012). Each of the epochs can then be 

assigned an activity intensity of light, moderate, or vigorous depending on the count value using 

population-specific thresholds called cut points, ultimately allowing researchers to determine 

time spent in each PA intensity.  
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 Over the years, advances in accelerometry have resulted in the shift from vertical axis 

(VA) counts to triaxial counts measured across three planes (i.e., anteroposterior, mediolateral, 

vertical), aggregated as vector magnitude (VM) counts. However, the proprietary nature of the 

manufacturer-specific algorithms used to calculate the count-based metrics has greatly reduced 

generalizability of results across studies, particularly when studies use different device 

manufacturers (Duncan et al., 2016; Rowlands et al., 2014). A proposed solution to this issue 

was the development of open-source metrics based upon the raw acceleration – not activity 

counts – to determine activity intensities (Farrahi et al., 2019; Clevenger et al., 2020). Since 

researchers gained access to raw acceleration data around a decade ago (John & Freedson, 2012), 

several acceleration-based metrics have emerged. Specifically, three commonly used 

acceleration-based metrics are mean amplitude deviation (MAD) (Vähä-Ypyä et al., 2015; 

Aittasalo et al., 2015), the Euclidean norm minus one (ENMO) (van Hees et al., 2013; 

Hildebrand et al., 2017), and the activity index (AI) (Bai et al., 2016).  

 Previous research in adults has investigated the comparability of these metrics for 

assessing overall PA participation (Sasaki et al., 2013; Bakrania et al., 2016; Karas et al., 2022) 

but there is a paucity of information regarding the comparability of these acceleration-based 

metrics compared to count-based metrics in populations of children, who participate in more 

sporadic and variable PA compared to adults (Bailey et al., 1995; Welk, Corbin, & Dale, 2000). 

Furthermore, little research has investigated whether these metrics similarly capture temporal 

patterns of activity. Therefore, the overall purpose of this study is to determine the convergent 

validity of count- and acceleration-based metrics to measure the overall levels and temporality of 

children’s PA during recess. Two specific aims and their respective hypotheses will be 

examined. 
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Aim 1: To determine the convergent validity of VM, VA, MAD, ENMO and AI when 

characterizing children’s PA intensity during recess, at both the epoch and participant level. 

 Hypothesis 1A: At the epoch-level, acceleration-based metrics will show moderate to 

high correlations with each other (r  0.60) and count-based metrics will show moderate to high 

correlation with each other (r  0.60) but not with acceleration-based metrics (r  0.60).  

 Hypothesis 1B: Time spent in each quartile of activity intensity will be equivalent 

between all metrics and agreement at the epoch-level will be substantial (k = 0.61 to 0.80). 

 Hypothesis 1C: At the participant-level, rank-order of children’s overall PA will be 

similar amongst all metrics (  0.80) 

 Aim 2: To determine comparability of VM, VA, MAD, ENMO and AI when 

characterizing temporal patterns of children’s PA during recess.  

 Hypothesis 2A: Temporal patterns, as assessed using fragmentation indices (transition 

probabilities, mean fragment duration, and number of fragments), will be moderately to highly 

correlated amongst all metrics (r  0.60). 

 Hypothesis 2B: Fragmentation indices will be statistically equivalent among 

accelerometer metrics.  

Investigation into these aims will help characterize the comparability of accelerometer 

metrics for measuring both overall activity levels and the temporal pattern of PA, thus adding to 

the growing body of literature utilizing acceleration-based metrics instead of traditional count-

based approaches to capturing PA. This information can inform future study design and enhance 

PA researchers understanding of comparability amongst studies.  
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LITERATURE REVIEW 

 
 It has been thoroughly substantiated that regular participation in PA during childhood is 

important in reducing risk of noncommunicable disease (Lee et al., 2012). The school setting is 

an attractive environment to analyze children’s PA because children spend about 30-hours per 

week in school (Nettlefold et al., 2011). One of the most commonly used tools for measurement 

of PA is the accelerometer (Trost & O’Neil et al., 2014). However, there is little uniformity when 

it comes to processing and analyzing the acceleration data produced from these devices, leading 

to misinterpretation of study results and inability to generalize findings across studies. Following 

an overview of the nature, benefits, and context of children’s physical activity with a focus on 

the school recess setting, this literature review will discuss analysis of accelerometer data for 

capturing PA intensity and characterizing temporal patterns of children’s PA. 

Nature of Children’s Physical Activity  

 
 In their seminal paper from 1995, Bailey and colleagues highlighted the highly transitory 

nature of children’s PA which occurs in bouts lasting no more than 15-s at a time. Currently, the 

precise reasoning behind this pattern of PA innate to children is unknown. One prominent theory 

posits that the spontaneous PA movements demonstrated by children provides the central 

nervous systems with adequate stimulation, information about one’s environment, and helps 

maintain homeostasis via energy balance and metabolic regulation (Hills, King, & Armstrong, 

2007). Because children’s PA is inherently different than adult PA (Bailey et al., 1995), special 

attention must be made when selecting an appropriate method of PA measurement in children to 

ensure it is being accurately captured.  

 While PA is largely responsible for children’s physical development, regular 

participation in PA during childhood is also positively associated with children’s cognitive and 
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socio-emotional development, as problem-solving and social skills are developed through play 

interaction with other children (Bjorklund & Brown, 1998; Pellegrini & Smith, 1998). Therefore, 

encouragement of PA is important to facilitate typical growth and development of children 

overall (Rowland, 1998). While the developmental benefits of PA participation are abundantly 

clear, more than half of children in the United States struggle to meet the National Physical 

Activity Guidelines for Americans (Katzmarzyk et al., 2016; Troiano et al., 2008; HHS, 2018). 

This is a major public health concern and has led to the development and implementation of PA 

interventions aimed at increasing children’s PA levels.  

 The context in which PA occurs is an important factor to consider when promoting 

children’s PA. Many PA-promoting interventions are focused on the school setting because most 

children spend the bulk of their time in school. While there are other opportunities for PA during 

the school day like physical education or active classroom breaks, recess is of particular interest 

because it is often the only opportunity for unstructured PA during the otherwise structured 

school day (Mota et al., 2005). Recess contributes about 20% of children’s daily PA, although 

children spend approximately half of recess participating in MVPA (Rooney, 2018). Common 

interventions to promote PA during recess include addition of painted playground markings 

(Stratton & Mullan, 2005; Ridgers et al., 2007) or portable equipment (Ridgers, Fairclough, & 

Stratton, 2010; Yu, Kulinna, & Mulhearn, 2021). However, a more thorough understanding of 

the temporal patterns of recess PA could provide useful information to inform novel activity-

promoting interventions, since children’s PA does not occur at a continuous rate over the course 

of recess (McKenzie et al., 1997; Holmes, 2012). Understanding the temporality of children’s 

PA can highlight periods and or patterns of high and low PA and ultimately provide PA 
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researchers with ways to maintain PA levels over the recess period and increase children’s 

overall PA.  

Measurement of Children’s Physical Activity  

 There are a multitude of ways to measure children’s PA. Some of the most common 

methods are direct observation, self- or proxy-reported measures like questionnaires or daily 

activity logs, and device-based measures like pedometry or accelerometry. Direct observation is 

considered a gold standard method of PA measurement, particularly when observers are 

thoroughly trained. However, direct observation inherently has a high degree of researcher 

burden (i.e., time-consuming, high-energy cost) making it an unattractive option in large-scale 

studies (Gardner, 2000; Sylvia et al., 2013; Rachele et al., 2013). Self-reported measures like 

questionnaires in young populations are often obscured by children’s attention spans and 

tendency to inaccurately recount their daily activities, particularly if the recall period is longer 

than one week, while proxy-reports are often not feasible since children are not always with their 

parent or guardian (Sylvia et al., 2013; Corder et al., 2013; Biddle et al., 2011). While 

pedometers are relatively inexpensive, they are unable to capture horizontal or upper limb 

movements, as well as the frequency, intensity, timing, and duration of PA, all of which are key 

contributors to overall PA and can ultimately result in inaccurate quantification of PA (Rowlands 

& Eston, 2007; Sylvia et al., 2013; Butte et al., 2012). While all methods of PA measurement 

have their respective strengths, weaknesses, and uses, accelerometry is a device-based method of 

measurement with specific traits that make it ideal when capturing children’s PA patterns. 

Accelerometry 

 Accelerometry is frequently used to capture PA of children due to its high sampling rates 

and ability to collect and store large amounts of data. One of the most commonly used 
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manufacturers of research-grade accelerometers in PA research is ActiGraph (Actigraph LLC, 

Pensacola, FL). ActiGraph has produced several generations of activity monitors with each 

iteration receiving updates in physical appearance, storage capacity, hardware and firmware, 

Bluetooth capability, and number of axes (e.g., uniaxial versus triaxial) (Grydeland et al., 2014). 

ActiGraph’s hallmark monitor, the wGT3x-BT, has been validated in age groups spanning from 

preschool to older adulthood, in populations with physical disabilities, and across multiple wear-

locations (e.g., hip, wrist, ankle) (Albaum et al., 2019; Hänggi et al., 2014; Johansson et al., 

2015; Johansson et al., 2016; Karaca et al., 2021; McGarty, Penpraze, & Melville, 2016; 

Nyström et al., 2017; Pate et al., 2013; Peterson et al., 2015; Sylvia et al., 2013; Trost & O’Neil, 

2014). Accelerometry can detect information about the frequency, intensity, timing, and duration 

of PA across a variety of participants and settings. Lastly, this high-resolution data can be 

collected for weeks at a time, stored, and analyzed at a later date, making accelerometers a 

particularly advantageous tool in large scale epidemiological studies.  

 There are several decisions to be made when collecting and analyzing accelerometer data, 

and each will impact the data collected and, ultimately, the harmonization of data and 

comparability of results across studies. One decision that must be made is the ‘accelerometer 

metric,’ or the way in which raw acceleration data are summarized, which can subsequently be 

used to identify activity intensity. For example, acceleration data can be summarized as 

variability in acceleration or total magnitude of the acceleration. While the accelerometer metric 

will be the focus of this literature review, other decisions include (but are not limited to) device 

brand, wear location, and epoch length.  

Accelerometer metrics are often summarized over a time interval, usually ranging from 1 

to 60-s, called an epoch. From there, “intensity bins” called cut points can be used to classify 
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each epoch as a certain activity intensity. Many PA measurement researchers have created their 

own cut points to classify activity intensities, and selection of the “right” or “best” cut point 

greatly depends on researcher judgement in relation to other published work in the same 

population (Kim et al., 2012). For example, Freedson et al. (2005), Evenson et al. (2008), and 

Puyau et al. (2002) have all developed their own cut points for moderate-to-vigorous PA 

(MVPA) intensity for children aged 6- through 10-years. Not only do these cut points often yield 

considerably different estimates of activity intensities, they are often validated under dissimilar 

conditions, such as different age groups (e.g., 5-8 y vs. 6-18 y) (Trost et al., 2012; Evenson et al., 

2008; Pfeiffer et al., 2006; Clevenger et al., 2020), different wear locations (e.g., hip vs waist) 

(Crotti et al., 2020; Hangii et al., 2013; Montoye et al., 2018), and different epoch lengths 

(Hilsop et al., 2012) making it nearly impossible to equate findings across studies.  

Count-Based Metrics  

 Activity counts or count-based metrics have been the standard since accelerometers were 

first used to capture movement. Counts are derived from the raw acceleration and summed over 

the three axes. From there, the counts are aggregated to a user-specific time interval ranging 

from 1 to 60-s, called an epoch. Next, upper and lower thresholds are applied to the count data 

called cut points to separate the data into light, moderate, and vigorous intensity activity. Cut 

points are created by PA researchers and often times validated against criterion measures such as 

oxygen consumption or heart rate to determine intensity level. However, since the count data 

originate from the software-specific proprietary algorithms that for many years were not open-

sourced, transparency and comparability of estimates of time spent in activity intensities from 

various device brands, and various applied cut points, is not possible.  
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Vertical Axis Counts 

 Vertical axis (VA) counts are the uniaxial count values produced exclusively from the 

vertical axis (i.e., y-axis). In the early years of development, VA were widely used and have their 

own validated cut points (Freedson, Melanson, & Sirard, 1998). However, typical human 

movement does not occur exclusively in one plane of motion, and utilization of VA disregards 

important acceleration produced from the other planes of motion (Howe, Staudenmayer, & 

Freedson, 2009), urging the use of triaxial vector magnitude counts. Despite their potential 

shortcomings, VA are still the most used metric in children (Migueles et al., 2017).  

Triaxial Vector Magnitude Counts  

 Triaxial vector magnitude (VM) counts are defined as the square root of the sum of the 

squared count values across each axis. The equation to calculate VM is:  

 
 

 
Where a1

 equals the axis 1 (vertical) counts, a2
 equals axis 2 (mediolateral) counts, and a3 equals 

axis 3 (anteroposterior) counts. Compared to uniaxial VA, triaxial VM is less dependent on 

monitor orientation as the metric encompasses all three axes, making it advantageous to use in 

children.  

Acceleration-Based Metrics 

In 2009, a council of PA measurement scholars at the Objective Measurement of Physical 

Activity Expert Consensus Meeting expressed the need for a more transparent and open-sourced 

method to process accelerometer data (Troiano, 2005; Welk et al., 2012; Rowlands, 2018). From 

this meeting emerged the shift to raw acceleration-based metrics, which are calculated using the 

data obtained by the raw signal before any other processing has occurred (e.g., reintegration into 
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activity counts) (Rowlands, 2018). The use of raw acceleration data is attractive for a variety of 

reasons. Until recently, the algorithms used to calculate activity counts were proprietary to each 

device manufacturer, which greatly limited transparency of processing methods and 

generalizability of data sets. Using the raw acceleration theoretically allows findings to be 

equated across studies regardless of device manufacturer (Aittasalo et a., 2015) and, ultimately, 

create more meaningful ways to interpret PA data obtained via surveillance and/or intervention 

research (Rowlands, 2018). Assuming the accelerometer has been appropriately calibrated, has 

similar dynamic range, and sampling rate, among other factors, the acceleration output should, 

theoretically, be comparable across brands (e.g., ActiGraph, GENEActiv, Hookie) due to the fact 

that data are collected in the same unit (i.e., g), and that there is no opaque filtration or 

processing (Rowlands, 2018; Aittasalo et a., 2015; Rowlands et al., 2018). While acceleration-

based metrics may still rely on cut points to determine activity intensities, the cut points 

themselves are no longer derived from the arbitrary activity counts.  

 A variety of acceleration-based metrics have gained popularity throughout the years as 

the call to switch to metrics utilizing the raw acceleration has grown. While machine learning 

approaches (e.g., random forests, artificial neural networks) for raw acceleration have also been 

developed, they will not be included in this literature review. A non-exhaustive list of metrics 

that have gained traction among PA researchers in recent years are as follows: Euclidean norm of 

the high-pass filtered signals (HFEN), HFEN plus Euclidean norm of the low-pass filtered 

signals minus 1 g (HFEN+), Euclidean norm minus one with negative values set to zero (ENMO) 

(van Hees et al., 2013), mean amplitude deviation (MAD) (Aittasalo et al., 2015; Vähä-Ypyä et 

al., 2015), and the activity index (AI) (Bai et al., 2016). In its conception paper, HFEN+ 

outperformed metrics HFEN and ENMO when detecting total PA energy expenditure (van Hees 
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et al., 2013). However, HFEN+ proved to be too computationally complex for understanding and, 

ultimately reproduction, compared to ENMO, thus, halting its development (van Hees et al., 

2013). Therefore, MAD, ENMO, and the AI have been selected for this proposed master’s thesis 

and will be the only acceleration-based metrics discussed in the remainder of the literature 

review.  

Mean amplitude deviation 

 Mean amplitude deviation (MAD), measured in milli-gravitational units (mg), is a raw 

acceleration metric that captures the variation around the mean of the raw acceleration signals 

(Aittasalo et al., 2015; Vähä-Ypyä et al., 2015). The equation to calculate MAD is: 

 
 

 
 

Where n is the number of samples in each epoch,  is the resultant acceleration in the ith 

timepoint, and  is the mean resultant acceleration value of the entire epoch. The resultant 

acceleration is defined as the vector magnitude of acceleration in the three axes (Vähä-Ypyä et 

al., 2015).  

MAD has been developed and validated in a variety of populations, but the most 

applicable to the current thesis was in a population of 20 healthy adolescents aged 13- to 15-

years (female=10; age=14.2) (Aittasalo et al., 2015). Participants wore a heart rate monitor at the 

chest and two accelerometers, an ActiGraph GT3X at the left hip and Hookie AM13 at the right 

hip, on an elastic belt while performing a variety of free-living activities (e.g., sitting while 

working on computer, lying supine) as well as walking and jogging around a 100-m indoor track. 

The MAD values obtained via the ActiGraph and Hookie monitors exhibited a strong linear 
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correlation with heart rate (0.97 and 0.96, respectively). For the ActiGraph, three intensity-

specific cut points were determined to separate sedentary, light, moderate, and vigorous activity 

(26.9, 332.0, 558.3 mg).  

 Despite using two different manufacturers (e.g., ActiGraph and Hookie), the MAD cut 

points obtained from both devices were mostly consistent and differed, at most, by 45.5 mg 

(558.3 mg vs 603.8 mg for ActiGraph and Hookie, respectively) at the vigorous intensity. 

Aittasalo et al. (2018) state that this dissonance could be due in part to Hookies’ higher sampling 

frequency of 100Hz, compared to ActiGraph’s 30Hz sampling rate at the time of the study. Since 

this study, ActiGraph monitors have the ability to sample at 100Hz, which may result in even 

more precise MAD performance between brands.  

Euclidean norm minus one 

 Euclidean norm minus one (ENMO), reported in milli-gravitational units (mg), is a 

second raw acceleration metric that is calculated as the square root of the sum of the squared 

accelerations values in each axis, minus 1, as an adjustment for gravity, and with the negative 

values rounded to zero (van Hees et al., 2013; Hildebrand et al., 2014). Some researchers 

calculate ENMO after conducting an auto-calibration procedure (van Hees et al., 2014). 

 
  

 
where negative values are rounded to zero after subtraction 

 
 
Where a1

 equals axis 1 acceleration, a2
 equals axis 2 acceleration, and a3 equals axis 3 

acceleration. ENMO was developed and validated in children and adults aged 7- through 11-

years and 18- through 65-years, respectively (Hildebrand et al., 2014). Participants completed 

eight activities of varying intensities (e.g., lying, sitting, running) while wearing an ActiGraph 
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and GENEActiv accelerometer at the right hip and non-dominant wrist. Oxygen consumption 

(VO2) was measured via portable metabolic unit and metabolic equivalents (METs) were used as 

the criterion measure for development of ENMO thresholds. MET values were classified as light 

(<3 METs), moderate (>3 but <6 METs), or vigorous (6 METs)  intensity activity for both 

children and adults (Ainsworth et al., 2011).  

 Overall, the ENMO metric exhibited strong correlations with VO2 (Hildebrand et al., 

2014). The intensity classification accuracy of the developed ENMO cut points was highest 

when detecting sedentary/light intensity activities, correctly identifying 93-96% of values, and 

lowest at moderate intensity activities, correctly identifying 54-59% of values. Between brands, 

ENMO performed well, demonstrating no main differences in adults or children. 

Activity index 

 The activity index (AI) is the final acceleration-based metric of interest that will be used 

in the current investigation. AI is a unitless metric and is calculated as the variance of the 

acceleration value along the three axes (Bai et al., 2016). The equation to calculate the AI is: 

 

Where  is the variance of the participant i’s acceleration signals along each axis, m (m=1, 2, 3), in 

the window of length H starting at t. The value , called sigma, is the systematic noise variance 

which is calculated when the device is not moving.  
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 The AI was developed and validated by Bai et al. (2016) in a sample of healthy adult 

women between 60- and 91-years of age. Participants wore an ActiGraph accelerometer at the 

right hip and performed activities of daily living (e.g., sitting, doing laundry, washing dishes) 

and more intense activities like brisk walking. Oxygen consumption (VO2) was measured via 

portable metabolic unit and METs were used as the criterion measure to which both the AI and 

VM were compared. MET values <1.5 were classified as sedentary, ≥1.5 but less than 3 were 

classified as light PA, and values ≥3 were classified as MVPA. Unlike metrics MAD and 

ENMO, the AI was not validated in children, and findings from the study by Bai et al. (2016) 

cannot be applied to younger populations. Therefore, a study utilizing the AI in populations of 

children is warranted to understand normative values of the AI metric.  

Comparability of Metrics 

 Despite the shifted interest in developing and validating acceleration-based metrics, little 

work has been done on the comparability of these metrics to each other or to established count-

based metrics. This is crucial in overall metric development, as this supports the basis of data 

harmonization. For example, surveillance PA data from the United States has primarily been 

collected in the activity counts metric (Luke et al., 2011) while surveillance data from Finland 

has used the acceleration-based metric MAD (Husu et al., 2016) and large-scale epidemiological 

studies in the United Kingdom use ENMO (Doherty et al., 2017). This makes harmonization 

problematic, and comparisons cannot be made between PA data sets on the country-wide level.  

 Some work that has been done regarding comparability of metrics has demonstrated 

inconclusive results. A study done in 2016 by Bai and colleagues comparing acceleration-based 

metric ENMO and count-based VM against their newly developed acceleration-based metric, the 

AI, added to the literature demonstrating the ability of acceleration-based metrics to outperform 
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count-based metrics. Bai and colleagues (2016) found that the AI was a better classifier of 

sedentary/light activity, but not MVPA, when compared to ENMO. Furthermore, the AI metric 

outperformed VM when classifying all activity intensities as demonstrated by receiver operating 

curve (ROC) analyses (Bai et al., 2016). Bai et al. (2016) also found that ENMO outperformed 

traditional activity counts when detecting MVPA, but activity counts demonstrated better 

classification of sedentary/light activities compared to ENMO.  

Other studies have compared count- and acceleration-based metrics amongst themselves 

in free living and without a criterion measure. Migueles and colleagues (2019) reported 

significantly higher estimations of time spent in MVPA produced by VM when compared to 

estimations of MVPA derived from VA and the acceleration-based metric ENMO. A recent 

paper from Karas and colleagues (2022) compared VM to MAD, ENMO, AI, and a fourth 

acceleration summary metric, the Movement-Independent Movement Summary (MIMS-unit) 

(John et al., 2019). Using data from the Baltimore Study of Longitudinal Aging, Karas and 

colleagues found strong minute-level Pearson’s correlations across all metric comparisons, 

ranging from 0.87 (MIMS vs ENMO) to 0.99 (VM vs MIMS). Both the acceleration- and count-

based metrics yielded similar graphical curves when estimating minute-level patterns of daily PA 

(Karas et al., 2022). However, drawing conclusions on the performance of acceleration- versus 

count-based metrics is difficult due to the lack of studies directly comparing estimates of PA as 

produced by each metric.  

In addition to the limited number of studies in this area, existing literature often does not 

comprehensively compare multiple metrics. This presents a considerable problem as researchers 

continue to develop and utilize new metrics without understanding the strengths and limitations 

of other acceleration-based metrics. Furthermore, there are no studies that provide comparability 
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data on these metrics in populations of children. Performance of different metrics is critical when 

attempting to look at patterns of PA overtime, as different data reduction techniques via different 

metrics may alter overall PA.  

Temporal Patterns of Physical Activity  

 Another aspect of PA that should be considered but for which we have limited 

information are temporal patterns, which are defined as the chronological succession of PA over 

time (De Baere et al., 2015). The context and temporality of PA, particularly during the recess 

period, can provide useful insight into what drives or deters unstructured free play PA in 

children. Previous research regarding the temporality of recess PA indicate that PA is higher 

during the transition to and start of recess, and gradually declines as the recess period continues 

(McKenzie et al., 1997; Holmes, 2012). However, more specific, recent information about 

temporal patterns of PA is not available due to limited work in this area.  

Measurement of Temporal Patterns 

 Accelerometry is an ideal method for capturing temporal patterns of movement behaviors 

because data are time-stamped and collected at a high resolution. These data can be processed 

using machine learning approaches like clustering or by quantifying the frequency and intensity 

of bouts. Activity fragmentation is an approach that is used to identify patterns of fragmented 

activity, and or continuous or discontinuous PA patterns via accelerometry with a focus on 

length and duration of active or inactive bouts (Wanigatunga et al., 2019; Palmberg et al., 2020; 

Tian et al., 2021). The activity fragmentation approach can be operationalized or quantified in a 

number of ways with some of the more common methods being identification of transition 

probabilities (e.g., active-to-sedentary, sedentary-to-active) (Schrack et al., 2019), number of 

activity fragments, and mean duration of activity fragments (Chastin et al., 2012).  
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 Previously, activity fragmentation has been used primarily in populations of older adults 

to illustrate the inverse relationship between more fragmented PA and worse functional health 

(Wanigatunga et al., 2019; Palmberg et al., 2020; Tian et al., 2021). While activity fragmentation 

is a relatively new approach, and no prior research has used activity fragmentation metrics in 

children, activity fragmentation may manifest differently in children and prove be a useful tool 

for quantifying the temporal patterns of children's PA by providing a numerical representation of 

continous or discontinous PA. Investigation into the temporal patterns of children’s recess 

activity, for example by using activity fragmentation metrics, can be used to highlight beneficial 

or detrimental patterns, as well as group differences, that can further inform PA interventions. 

However, because children’s PA occurs in transient bouts lasting approximately 20-s (Bailey et 

al. 1995), important fluctuations of children’s PA would be lost if PA was condensed over a 60-s 

epoch, as is standard practice in adults. As shorter epochs capture more accurate estimates of PA 

when reducing accelerometry data in children (Aadland et al., 2020), use of a 5-s window length 

for calculating activity fragmentation metrics (i.e., classifying bouts and transitions) may be 

more appropriate in children. 

In populations of adolescents and adults, activity fragmentation has been calculated using 

traditional count-based metrics (Schrak et al., 2019; Del Pozo Cruz & Del Pozo-Cruz, 2021), as 

well as acceleration-based metrics ENMO (Osborn et al., 2018) and MAD (Palmberg et al., 

2020), but no research on comparability of activity fragmentation calculated from different 

accelerometer metrics has been done. Similar to the issue with accelerometer metrics and 

quantification of PA, it is unknown if different metrics similarly capture the temporal nature of 

activity fragmentation metrics and should be investigated as popularity of acceleration-based 

metrics grow.  
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Conclusions 

 In summary, the use of count-based metrics was an important contribution to the field of 

PA measurement via accelerometry but is outdated as between-manufacturer and between-study 

comparisons cannot be made. Using metrics generated from raw acceleration facilitates 

uniformity, transparency, and comparability between devices and studies, and is a critical step 

for the development of PA measurement research. Further investigation into the comparability of 

the acceleration metrics of interest, MAD, ENMO, and the AI, for capturing both overall 

intensity and temporality of PA is warranted. Accelerometer metrics in combination with activity 

fragmentation can provide crucial information regarding children’s recess PA levels in order to 

develop more effective strategies to optimize the PA obtained during outdoor recess, further 

contributing to children’s overall health and development.  
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METHODS 

 
Setting and Participants  

 Three elementary schools in East Lansing, Michigan agreed to participate in this study. 

Children (N=88; age=7.8±0.7 yrs) from five classrooms per school, including seven 1st grade 

(n=50) and eight 2nd grade (n=38) classrooms, participated. All children enrolled in 1st or 2nd 

grade at the time of data collection were eligible to participate. One parent/guardian provided 

written informed consent and each child provided verbal and written assent on the first day of 

data collection.  

Data collection occurred during May and June 2019, when the average temperature was 

72 degrees Fahrenheit. Each school provided two, 20-minute recess periods per day with one 

recess in the morning and one in the afternoon for a total of 40-minutes per day of scheduled 

outdoor recess. Recess took place on the schoolyard, which consisted of an open grassy field, 

fixed equipment (e.g., slides, swings), and asphalt areas used for games like basketball or 

foursquare. 

Data Collection  

Each child participated in up to four days of data collection. However, to reduce 

inconsistencies in the amount of data per child due to absences and to limit the hierarchical 

nature of the data, one recess period per child was selected using a random number generator for 

inclusion in the analyses.  

Children wore a triaxial accelerometer (ActiGraph, LLC, Pensacola, FL) on an elastic 

belt at the right hip, the most commonly used accelerometer wear location in this age group 

(Migueles et al. 2017). The accelerometer was an ActiGraph wGT3X-BT (firmware v1.9.2; n = 

50), GT3X+ (firmware v3.2.1; n = 24), wGT3X+ (firmware v3.2.1; n = 9), or a GT9X Link 
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(v1.7.2; n = 5). Multiple generations of ActiGraphs were used due to limited availability of 

accelerometers at the time of the study. The GT3X+ and wGT3X+ devices have a slightly 

different dynamic range (±6g) and internal processing steps compared to the wGT3X-BT and 

GT9X (dynamic range of ±8g). Clevenger et al. (2020) demonstrated that, despite these small 

differences, data are comparable across multiple generations of ActiGraph devices. Furthermore, 

the goal of the current study was to compare metric outcomes within a participant from the same 

device, so differences in accelerometer models should not affect the findings. Accelerometers 

were initialized to record raw acceleration data at 30 Hz with the same start time using ActiLife 

software (version 2.0.0). After each day, accelerometers were returned to a study member and 

data were downloaded using the ActiLife software and stored on a computer in a protected 

location on Michigan State University campus as raw acceleration and activity counts per 5-s 

Data Processing 

Only data from the selected recess periods were included in the present analysis. Recess 

start/end times were identified using the schedule provided by each school and video recordings 

of the schoolyard. The start of each recess period was determined by the first child in the camera 

angle that set foot outside the school building and onto the schoolyard. Similarly, the end of 

recess was determined by the last child in the camera angle that set foot inside the school 

building. Attendance logs completed by research staff were used to determine each child’s 

presence/absence during each recess period.  

Physical Activity Intensity 

Count and raw data from the accelerometers were loaded into RStudio (version 1.3.1056) 

as “.csv” files using the “AGread” package (version 1.1.1) (Hibbing, 2018), which was also used 

to calculate ENMO (Hildebrand et al., 2014). MAD was calculated as the variability in the 
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triaxial acceleration about the mean (Aittasalo et al., 2015). AI (Bai et al., 2016) was calculated 

the variance of the acceleration value along the three axes (Bai et al., 2016) using the package 

“SummarizedActigraphy” (version 0.5.0). All five accelerometer metrics (VM, VA, MAD, 

ENMO, and AI) were calculated over a 5-s epoch and are continuous variables wherein higher 

values indicate higher intensity activity. For each metric, all 5-s epoch data across all participants 

was used to identify quartiles. Each 5-s epoch was then assigned a value of 1 through 4 based on 

these quartile thresholds as a proxy for activity intensity. For each participant, the average of 

each metric (e.g., mean VM) and time spent in each quartile according to each metric was 

calculated over the participant’s selected recess period. Finally, each child was ranked from most 

to least active using the mean of each of the five metrics and these rankings were used to further 

classify children as least active, below average, above average, or most active.  

Temporal Patterns 

 For each participant, five fragmentation indices were calculated for each metric using 

modified code from the “GGIR” package (version 2.6) (van Hees et al., 2022). The number of 

active fragments were calculated by segmenting epoch-level data into active (quartiles 2 to 4) or 

inactive (quartile 1). Number of high activity fragments were calculated similarly but were 

defined as epochs classified as quartiles 3 to 4. Mean duration of high activity fragments were 

calculated in seconds. Inactivity-to-physical-activity transition probability, which represents the 

likelihood of switching from inactivity to activity, was calculated as 1 divided by the mean 

duration of inactive fragments. Physical-activity-to-inactivity transition probability was 

calculated as the reciprocal of the mean duration of activity fragments.  

Statistical Analyses  

 Pearson’s (r) correlations were used to assess the strength of the association between 
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metrics at the epoch-level and were interpreted as poor (r=0.20 to 0.30), fair (r=0.30 to 0.50), 

moderate (r=0.60 to 0.70), strong (r=0.80 to 0.90), and perfect (r=1.0) (Chan, 2003). Weighted 

kappa was () was calculated using the “irr” package (version 0.84.1) (Gamer, Lemon, & Singh, 

2012) to assess agreement between metrics in the assigned quartile of each epoch (i.e., 1-4) and 

interpreted as no agreement (=0 to 0.20), minimal (=0.21 to 0.39), weak (=0.40 to  0.59), 

moderate (=0.69 to 0.79), strong (=0.80 to 0.90), and almost perfect (=>0.90) (McHugh, 2012). 

Weighted kappa is appropriate because it accounts for ordering of the categories (Cohen, 1968). 

For example, a misclassification of a quartile 4 epoch as quartile 1 is more greatly penalized than 

a quartile 4 epoch misclassified as quartile 3.  

Once collapsed to the participant level, Pearson’s r correlation coefficients were used to 

compare the mean of each metric, time spent in each quartile, and the five fragmentation indices 

between metrics. Two one-sided tests of equivalence were performed using the “TOSTER” 

package (version 0.4.0) (Lakens, 2017) and assessed equivalence in percent of time spent in each 

quartile and the fragmentation indices between the five metrics. Equivalence testing is more 

appropriate than traditional hypothesis testing when a meaningful difference is not expected 

between comparison group averages (Dixon et al., 2018). Equivalence bounds were determined 

as five percent of the mean of each metric. Spearman’s rho was used to the assess associations of 

each child’s ranking based on the mean of each metric. Confusion matrices were created using 

the package “caret” (version 6.0-86) (Kuhn, 2008) to assess agreement between metrics when 

categorizing children as least active, below average, above average, or most active.  
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RESULTS 

 
Participant characteristics  

 The final study sample consisted of 50 first graders and 38 second graders across all 3 

schools (N=88) with a mean age of 7.8 years (SD=0.7). School 1 had 52 children participate; 

School 2 had 16 participants; and School 3 had 20 children participate. Three children were 

excluded from the present analysis (one child dropped out due to behavioral issues, two children 

did not wear the accelerometer belt). Overall, there were more female participants (74%; n=65) 

than males (26%; n=23). Children included in the final analyses had an average of 25.9 3.0 

minutes of data for the randomly selected recess period.  

Aim 1 

Physical activity intensity  

 Mean values per 5-s epoch and per participant for the five accelerometer metrics are 

reported in Table 1. At the epoch-level, correlation coefficients for the association between 

metrics ranged from moderately high (r=0.69, VM vs ENMO) to high (r=0.98, AI vs ENMO, AI 

vs MAD, MAD vs ENMO) (Table 2). Weighted kappa indicated that agreement between each 5-

s epoch ranged from strong to almost perfect, with the weakest agreement between VM and 

ENMO ( = 0.81) and the strongest agreement between AI and MAD ( = 0.96) (see Table 2). 
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Table 1. Means  SD for metrics at the epoch- and participant-level.  
Metric Epoch-level Participant-level 

VM (counts/5s) 305.3  327.6 308.4  146.9 

VA (counts/5s) 154.4  224.9 156.5  89.7 

ENMO (mg) 135.8  188.4 137.8  77.9 

MAD (mg) 192.7  241.9 195.4  104.1 

AI  1.1  1.2 1.1  0.5 

VM = vector magnitude; VA = vertical axis; ENMO = Euclidean norm minus one; MAD = mean 
amplitude deviation; AI = activity index 
Note: AI is a unit less metric. 
 
Table 2. Pearson’s  (r) correlations and weighted kappa () for all metrics when compared at a  
5-s epoch.  

Comparison Pearson’s r Kappa 

AI vs VM 0.70 0.87 

AI vs ENMO 0.98 0.93 

AI vs MAD 0.98 0.96 

AI vs VA 0.70 0.87 

MAD vs ENMO 0.98 0.94 

MAD vs VM 0.72 0.84 

MAD vs VA 0.75 0.86 

VM vs ENMO 0.69 0.81 

VM vs VA 0.94 0.90 

ENMO vs VA 0.72 0.83 

AI = activity index; VM = vector magnitude; ENMO = Euclidean norm minus one;  
MAD = mean amplitude deviation; VA = vertical axis 
 

Participant-level correlations between mean metrics ranged from moderately high 

(r=0.77, AI vs VM) to high (r=0.99, ENMO vs MAD, r=0.99, MAD vs AI). Participant-level 
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correlations between time spent in each quartile ranged from small (r=0.29, ENMO vs VA 

quartile 2) to high (r=0.99, MAD vs AI quartiles 1 and 4). Percent of time spent in quartile 1 was 

equivalent for five of the ten pairwise metric comparisons (AI vs VM, AI vs MAD, AI vs VA, 

VM vs MAD, VM vs VA) (Table 3). Similarly, percent of time spent in quartile 2 was equivalent 

for five metric comparisons (AI vs VM, AI vs MAD, AI vs VA, VA vs VM, VA vs MAD) 

(Table 4). All metrics were equivalent when estimating percent of time spent in quartile 3 (Table 

5) while percent of time spent in quartile 4 was equivalent for all but three comparisons (VM vs 

AI, VM vs MAD, and VM vs ENMO) (Table 6).  

 
Table 3. Equivalence between metrics in percent of time spent in quartile 1 activity level.  

AI = activity index; VM = vector magnitude; MAD = mean amplitude deviation; ENMO = 
Euclidean norm minus one; VA = vertical axis  
Confidence intervals were compared to an equivalence bound of -1.230, 1.230 (5% of the mean) 
to determine equivalence.  
 

 Bias  Equivalence Test 

Comparison Mean SE Confidence Interval Equivalent 

AI vs. VM 0.11 0.34 -0.45, 0.67 Yes 

MAD vs. ENMO -0.15 1.51 -2.67, 2.36 No 

VM vs. MAD 0.15 0.50 -0.68, 0.99 Yes 

ENMO vs. VM <0.00 1.52 -2.53, 2.54 No 

VA vs. ENMO 0.15 1.55 -2.44, 2.73 No 

AI vs. ENMO 0.11 1.49 -2.37, 2.58 No 

MAD vs. AI -0.04 0.22 -0.41, 0.33 Yes 

VA vs. AI 0.25 0.51 -0.60, 1.10 Yes 

VM vs. VA -0.14 0.41 -0.82, 0.53 Yes 

MAD vs. VA 0.30 0.62 -0.73, 1.32 No 
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Table 4. Equivalence between metrics in percent of time spent in quartile 2 activity level. 

 AI = activity index; VM = vector magnitude; MAD = mean amplitude deviation; ENMO = 
Euclidean norm minus one; VA = vertical axis  
Confidence intervals were compared to an equivalence bound of -1.248, 1.248 (5% of the mean) 
to determine equivalence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Bias  Equivalence Test 

Comparison Mean SE Confidence Interval Equivalent 

AI vs. VM -0.10 0.66 -1.14, 1.04 Yes 

MAD vs. ENMO 0.24 1.39 -2.10, 2.54 No 

VM vs. MAD -0.09 0.76 -1.35, 1.17 No 

ENMO vs. VM 0.15 1.48 -2.32, 2.62 No 

VA vs. ENMO 0.13 1.43 -2.25, 2.51 No 

AI vs. ENMO -0.20 1.36 -2.46, 2.10 No 

MAD vs. AI 0.04 0.28 -0.42, 0.50 Yes 

VA vs. AI -0.10 0.59 -1.05, 0.92 Yes 

VM vs. VA 0.02 0.54 -0.88, 0.91 Yes 

MAD vs. VA -0.11 0.65 -1.19, 0.98 Yes 
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Table 5. Equivalence between metrics in percent of time spent in quartile 3 activity level.  

 AI = activity index; VM = vector magnitude; MAD = mean amplitude deviation; ENMO = 
Euclidean norm minus one; VA = vertical axis  
Confidence intervals were compared to an equivalence bound of -1.254, 1.254 (5% of the mean) 
to determine equivalence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Bias  Equivalence Test 

Comparison Mean SE Confidence Interval Equivalent 

AI vs. VM -0.03 0.52 -0.88, 0.84 Yes 

MAD vs. ENMO -0.08 0.42 -0.78, 0.61 Yes 

VM vs. MAD 0.02 0.57 -0.95, 0.95 Yes 

ENMO vs. VM -0.09 0.70 -1.25, 1.08 Yes 

VA vs. ENMO -0.14 0.64 -1.20, 0.92 Yes 

AI vs. ENMO 0.07 0.47 -0.71, 0.85 Yes 

MAD vs. AI -0.02 0.25 -0.44, 0.40 Yes 

VA vs. AI -0.08 0.45 -0.83, 0.68 Yes 

VM vs. VA 0.06 0.52 -0.81, 0.93 Yes 

MAD vs. VA -0.06 0.48 -0.86, 0.74 Yes 
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Table 6. Equivalence between metrics in percent of time spent in quartile 4 activity level. 

 AI = activity index; VM = vector magnitude; MAD = mean amplitude deviation; ENMO = 
Euclidean norm minus one; VA = vertical axis  
Confidence intervals were compared to an equivalence bound of -1.268, 1.268 (5% of the mean) 
to determine equivalence. 
 

When children were ranked from most to least active using each of the five accelerometer 

metrics, agreement between metrics was very strong 0.87 (Table 7). When these rankings were 

used to classify children into one of four groups (least active, below average, above average, 

most active), the highest agreement was seen for classifying the least active children, wherein 

82-95% of children were categorized as least active by both the referent and comparison metric 

(e.g., VA classification and VM classification). There was more variability when examining the 

below average (50-91% concordance) and above average (50-86% concordance) groups. Finally, 

64-91% of children were categorized as most active by the referent and comparison metrics in 

their respective comparisons (Table 8).  

 Bias  Equivalence Test 

Comparison Mean SE Confidence Interval Equivalent 

AI vs. VM -0.04 0.77 -1.32, 1.24 No 

MAD vs. ENMO < -0.00 0.26 -0.44, 0.43 Yes 

VM vs. MAD -0.06 0.80 -1.40, 1.27 No 

ENMO vs. VM -0.07 0.80 -1.40, 1.27 No 

VA vs. ENMO -0.13 0.62 -1.16, 0.90 Yes 

AI vs. ENMO 0.02 0.30 -0.48, 0.53 Yes 

MAD vs. AI 0.02 0.26 -0.41, 0.45 Yes 

VA vs. AI -0.11 0.64 -1.18. 0.96 Yes 

VM vs. VA 0.07 0.46 -0.70, 0.83 Yes 

MAD vs. VA -0.13 0.60 -1.13, 0.87 Yes 
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Table 7. Association between the ranking of children’s activity level during recess by five 
accelerometer metrics (Spearman’s rho).  

 VM Rank MAD Rank ENMO Rank VA Rank 

VM Rank -    

MAD Rank 0.88 -   

ENMO Rank 0.87 0.99 -  

VA Rank 0.97 0.90 0.89 - 

AI Rank 0.87 0.99 0.98 0.87 

VM = vector magnitude; MAD = mean amplitude deviation; ENMO = Euclidean norm minus 
one; VA = vertical axis; AI = activity index 
 
 
Table 8. Confusion matrix showing agreement in the classification of each child’s overall 
activity level as least active, below average activity, above average activity, and most active 
according to five accelerometer metrics. The metric in the left-most column served as the 
referent group and numbers are represented as raw number (percent) of children within each 
activity group according to the referent group that were also classified as that activity group by 
the other metric. 
 VA Classification 
VM Classification  Least Below Average Above Average Most 

Least 19 (86) 3 (14) 0 (0) 0 (0) 
Below Average 3 (14) 15 (68) 4 (18) 0 (0) 
Above Average 0 (0) 4 (18) 16 (73) 2 (9) 
Most 0 (0) 0 (0) 2 (9) 20 (91) 

 MAD Classification 
VM Classification Least Below Average Above Average Most 

Least 18 (82) 4 (18) 0 (0) 0 (0) 
Below Average 4 (18) 12 (55) 4 (18) 2 (9) 
Above Average 0 (0) 5 (23) 11 (50) 6 (27) 
Most 0 (0) 1 (5) 7 (32) 14 (64) 

 ENMO Classification 
VM Classification Least Below Average Above Average Most 

Least 18 (82) 4 (18) 0 (0) 0 (0) 
Below Average 4 (18) 11 (50) 5 (23) 2 (9) 
Above Average 0 (0) 6 (27) 11 (50) 5 (23) 
Most 0 (0) 1 (5) 6 (27) 15 (68) 

 AI Classification 
VM Classification Least Below Average Above Average Most 

Least 19 (86) 3 (14) 0 (0) 0 (0) 
Below Average 3 (14) 12 (55) 6 (27) 1 (5) 
Above Average 0 (0) 5 (23) 11 (50) 6 (27) 
Most 0 (0) 2 (9) 5 (23) 15 (68) 
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Table 8 (cont’d) 

    

 VA Classification 
ENMO Classification Least Below Average Above Average Most 

Least 18 (82) 4 (18) 0 (0) 0 (0) 
Below Average 4 (18) 13 (59) 4 (18) 1 (5) 
Above Average 0 (0) 5 (23) 10 (45) 7 (32) 
Most 0 (0) 0 (0) 8 (36) 14 (64) 

 AI Classification 
ENMO Classification Least Below Average Above Average Most 

Least 21 (95) 1 (5) 0 (0) 0 (0) 
Below Average 1 (5) 19 (86) 2 (9) 0 (0) 
Above Average 0 (0) 2 (9) 19 (86) 1 (5) 
Most 0 (0) 1 (5) 1 (5) 21 (95) 

 MAD Classification 
ENMO Classification Least Below Average Above Average Most 

Least 21 (95) 1 (5) 0 (0) 0 (0) 
Below Average 1 (5) 19 (86) 1 (5) 0 (0) 
Above Average 0 (0) 2 (9) 18 (82) 2 (9) 
Most 0 (0) 0 (0) 2 (9) 20 (91) 

 AI Classification 
MAD Classification Least Below Average Above Average Most 

Least 21 (95) 1 (5) 0 (0) 0 (0) 
Below Average 1 (5) 20 (91) 1 (5) 0 (0) 
Above Average 0 (0) 1 (5) 19 (86) 2 (9) 
Most 0 (0) 0 (0) 2 (9) 20 (91) 

 VA Classification 
MAD Classification Least Below Average Above Average Most 

Least 19 (86) 3 (14) 0 (0) 0 (0) 
Below Average 3 (14) 15 (68) 4 (18) 0 (0) 
Above Average 0 (0) 3 (14) 11 (50) 8 (36) 
Most 0 (0) 1 (5) 7 (32) 14 (64) 

 AI Classification 
VA Classification Least Below Average Above Average Most 

Least 18 (82) 4 (18) 0 (0) 0 (0) 
Below Average 4 (18) 13 (59) 5 (23) 0 (0) 
Above Average 0 (0) 3 (14) 11 (50) 8 (36) 
Most 0 (0) 2 (9) 6 (27) 14 (64) 

VM = vector magnitude; VA = vertical axis; MAD = mean amplitude deviation; ENMO = 
Euclidean norm minus one; AI = activity index 
Least = Children whose overall activity level fell into the lowest quartile  
Most = Children whose overall activity level fell into the highest quartile  
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Aim 2  

Temporal characteristics  
 
 Accelerometer metrics are plotted over the randomly selected recess periods by school 

(i.e., school 1, 2, and 3) in Figures 1 to 3. Time in number of 5-s epochs is shown on the x-axis 

and metrics are plotted on the y-axis, with the right side of the y-axis displaying the unitless 

metric AI. Means and standard deviations for fragmentation indices are displayed in Table 9.  

 
Figure 1. Five accelerometer metrics plotted over randomly selected recess periods for school 1. 

VM = vector magnitude; VA = vertical axis; MAD = mean amplitude deviation;  
ENMO = Euclidean norm minus one; AI = activity index  
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Figure 2. Five accelerometer metrics plotted over randomly selected recess periods for school 2. 

VM = vector magnitude; VA = vertical axis; MAD = mean amplitude deviation;  
ENMO = Euclidean norm minus one; AI = activity index  
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Figure 3. Five accelerometer metrics plotted over randomly selected recess periods for school 3. 

VM = vector magnitude; VA = vertical axis; MAD = mean amplitude deviation;  
ENMO = Euclidean norm minus one; AI = activity index  
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Table 9. Fragmentation indices derived from five accelerometer metrics.  

Metric Mean  SD 

Transition 

Probability Physical 

Activity to Inactivity 

Number of High Activity 

Fragments 

 (Q3-4) 

Number of Activity 

Fragments 

 (Q2-4) 

Mean Duration of 

High Activity 

Fragments in 

Seconds 

VM 308.4  146.9 0.36  0.10 62.30  23.38 41.65  21.34 22.61  11.79 

VA 156.5  9.7 0.35 0.09 60.82  23.06 43.05  21.64 23.08  10.39 

MAD 195.4  104.5 0.31  0.09 51.36  21.24 34.85  19.80 29.25  20.18 

ENMO 137.8  77.9 0.30  0.11 50.91  21.42 34.18  22.01 33.03  43.95 

AI 1.1  0.5 0.32  0.10 52.75  22.14 37.84  20.58 28.58  19,93 

VM = vector magnitude; VA = vertical axis; MAD = mean amplitude deviation; ENMO = Euclidean norm minus one; AI = activity 
index 
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The lowest physical-activity-to-inactivity transition probabilities (Figure 4) were 

observed with acceleration-based metrics ENMO, MAD, and AI (30, 31, 32%, respectively). The 

highest physical-activity-to-inactivity transition probabilities were seen with metrics VA and 

VM, 35 and 36%, respectively. Similar trends were observed with the inactivity-to-physical-

activity transition probability shown in Figure 4. Number of high activity fragments (Figure 5) 

and activity fragments (Figure 6) was highest for VM (62.30) and lowest for ENMO (50.91). 

Mean duration of high activity fragments according to 5-s epochs was highest for ENMO (6.61 

5-s epochs) and lowest for VM (4.52 5-s epochs) (Figure 7).  

 
Figure 4. Probability of transitioning from inactivity to activity according to five accelerometer 
metrics.  
 

VM = vector magnitude; VA = vertical axis; MAD = mean amplitude deviation;  
ENMO = Euclidean norm minus one; AI = activity index 
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Figure 5. Probability of transitioning from activity to inactivity according to five accelerometer 
metrics. 

VM = vector magnitude; VA = vertical axis; MAD = mean amplitude deviation;  
ENMO = Euclidean norm minus one; AI = activity index  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 38

Figure 6. Number of high activity fragments reported according to five accelerometer metrics. 
 

 
VM = vector magnitude; VA = vertical axis; MAD = mean amplitude deviation;  
ENMO = Euclidean norm minus one; AI = activity index  
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Figure 7. Number of activity fragments according to five accelerometer metrics. 
 

 
VM = vector magnitude; VA = vertical axis; MAD = mean amplitude deviation;  
ENMO = Euclidean norm minus one; AI = activity index  

 

Correlations for each of the fragmentation indices are displayed in Table 10. Correlations 

for number of high activity fragments were all high (r=0.80). For number of activity fragments, 

correlations were lowest for VA vs ENMO (r=0.67, moderately high), and highest for MAD vs 

AI (r=0.97, high). Correlations for mean duration of high activity fragments in number of 5-s 

epochs ranged from moderate (r=0.53, ENMO vs VM) to high (r=0.99, MAD vs AI).  
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Table 10. Pearson’s correlations for fragmentation indices as reported by comparison of each of 
the five metrics. 

AI = activity index; VM = vector magnitude; MAD = mean amplitude deviation;  
ENMO = Euclidean norm minus one; VA = vertical axis  

 

Equivalence of various fragmentation indices as categorized by each metric are show in 

Tables 11-15. Only two comparisons (MAD vs AI, VM vs VA) were equivalent when comparing 

transition probability of activity to inactivity. One comparison (VM vs VA) was equivalent when 

comparing transition probability of inactivity to activity. For number of high activity fragments, 

only two comparisons were equivalent (MAD vs ENMO, MAD vs AI). None of the comparisons 

were equivalent for number of activity fragments. MAD vs AI and MAD vs VA were the only 

equivalent comparisons for mean duration of high activity fragments in number of 5-s epochs.  

 

Comparison 

Transition 

Probability 

Physical 

Activity to 

Inactivity 

Transition 

Probability 

Inactivity to 

Physical 

Activity 

Number of 

High Activity 

Fragments 

 (Q3-4) 

Number of 

Activity 

Fragments 

 (Q2-4) 

Mean 

Duration of 

High Activity 

Fragments in 

Seconds  

AI vs. VM 0.91 0.92 0.92 0.96 0.87 

MAD vs. ENMO 0.84 0.82 0.97 0.78 0.73 

VM vs. MAD 0.90 0.89 0.91 0.92 0.84 

ENMO vs. VM 0.78 0.73 0.89 0.69 0.53 

VA vs. ENMO 0.77 0.78 0.89 0.67 0.54 

AI vs. ENMO 0.83 0.84 0.96 0.73 0.71 

MAD vs. AI 0.98 0.96 0.99 0.97 0.99 

VA vs. AI 0.91 0.92 0.92 0.95 0.82 

VM vs. VA 0.92 0.92 0.95 0.96 0.88 

MAD vs. VA 0.90 0.89 0.92 0.92 0.82 
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Table 11. Equivalence of five metrics for determining transition probability of activity to 
inactivity. 

AI = activity index; VM = vector magnitude; MAD = mean amplitude deviation; ENMO = 
Euclidean norm minus one; VA = vertical axis  
Confidence intervals were compared to an equivalence bound of -0.0163, 0.0163 (5% of the 
mean) to determine equivalence. 
 
 

 

 

 

 

 

 

  

 Bias  Equivalence Test 

Comparison Mean SE Confidence Interval Equivalent 

AI vs. VM -0.04 <0.01 -0.04, -0.03 No 

MAD vs. ENMO -0.01 0.01 -0.02, 0.003 No 

VM vs. MAD -0.05 <0.01 -0.06, -0.04 No 

ENMO vs. VM -0.06 <0.01 -0.07, -0.05 No 

VA vs. ENMO 0.05 <0.01 0.04, 0.06 No 

AI vs. ENMO 0.02 <0.01 0.006, 0.03 No 

MAD vs. AI 0.01 <0.01 0.007, 0.01 Yes 

VA vs. AI -0.03 <0.01 -0.04, -0.03 No 

VM vs. VA <0.01 <0.01 -0.01, 0.005 Yes 

MAD vs. VA 0.05 <0.01 0.04, 0.05 No 
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Table 12. Equivalence of five metrics for determining transition probability of inactivity to 
activity. 

AI = activity index; VM = vector magnitude; MAD = mean amplitude deviation; ENMO = 
Euclidean norm minus one; VA = vertical axis 
Confidence intervals were compared to an equivalence bound of -0.0176, 0.0176 (5% of the 
mean) to determine equivalence. 
 

 

 

 

 

 

 

 
 
 
 

 Bias  Equivalence Test 

Comparison Mean SE Confidence Interval Equivalent 

AI vs. VM -0.02 <0.01 -0.03, -0.008 No 

MAD vs. ENMO -0.02 <0.01 -0.03, 0.002 No 

VM vs. MAD -0.03 <0.01 -0.04, -0.02 No 

ENMO vs. VM -0.02 0.01 -0.03, 0.002 No 

VA vs. ENMO 0.06 0.01 0.04, 0.07 No 

AI vs. ENMO 0.03 <0.01 0.01, 0.04 No 

MAD vs. AI 0.02 <0.01 0.007, 0.02 No 

VA vs. AI -0.02 <0.01 -0.04, -0.02 No 

VM vs. VA <0.01 <0.01 -0.004, 0.02 Yes 

MAD vs. VA 0.04 <0.01 0.03, 0.05 No 
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Table 13. Equivalence of five metrics for determining number of high activity fragments. 

AI = activity index; VM = vector magnitude; MAD = mean amplitude deviation; ENMO = 
Euclidean norm minus one; VA = vertical axis 
Confidence intervals were compared to an equivalence bound of -2.781, 2.781 (5% of the mean) 
to determine equivalence. 
 
 

 

 

 

 

 

 
 
 
 

 Bias  Equivalence Test 

Comparison Mean SE Confidence Interval Equivalent 

AI vs. VM -9.55 1.0 -11.14, -7.94 No 

MAD vs. ENMO -0.45 0.60 -1.44, 0.53 Yes 

VM vs. MAD -10.93 1.04 -12.67, -9.19 No 

ENMO vs. VM -11.39 1.15 -13.29, -9.48 No 

VA vs. ENMO 9.91 1.14 8.01, 11.81 No 

AI vs. ENMO 1.84 0.65 0.75, 2.93 No 

MAD vs. AI 1.39 0.37 0.77, 2.00 Yes 

VA vs. AI -8.07 0.97 -9.68, -6.45 No 

VM vs. VA -1.48 0.79 -2.79, -0.17 No 

MAD vs. VA 9.45 0.99 7.81, 11.10 No 
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Table 14. Equivalence of five metrics for determining number of activity fragments. 

AI = activity index; VM = vector magnitude; MAD = mean amplitude deviation; ENMO = 
Euclidean norm minus one; VA = vertical axis  
Confidence intervals were compared to an equivalence bound of -1.916, 1.916 (5% of the mean) 
to determine equivalence. 
 

 

 

 

 

 
 
 
 
 
 
 
 
 

 Bias  Equivalence Test 

Comparison Mean SE Confidence Interval Equivalent 

AI vs. VM -3.81 0.62 -4.84, -2.77 No 

MAD vs. ENMO -0.67 1.52 -3.20, 1.86 No 

VM vs. MAD -6.80 0.90 -8.30, -5.30 No 

ENMO vs. VM -7.47 1.83 -10.51, -4.42 No 

VA vs. ENMO 8.86 1.89 5.71, 12.01 No 

AI vs. ENMO 3.66 1.66 0.89, 6.42 No 

MAD vs. AI 2.99 0.51 2.13, 3.84 No 

VA vs. AI -5.20 0.73 -6.42, -3.99 No 

VM vs. VA 1.39 0.69 0.24, 2.56 No 

MAD vs. VA 8.19 0.91 6.68, 9.71 No 
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Table 15. Equivalence of five metrics for determining mean duration of high activity fragments. 

AI = activity index; VM = vector magnitude; MAD = mean amplitude deviation;  
ENMO = Euclidean norm minus one; VA = vertical axis  
Confidence intervals were compared to an equivalence bound of -0.273, 0.273 (5% of the mean) 
to determine equivalence. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 Bias  Equivalence Test 

Comparison Mean SE Confidence Interval Equivalent 

AI vs. VM 1.19 0.69 0.79, 1.59 No 

MAD vs. ENMO 0.75 0.69 -0.39, 1.90 No 

VM vs. MAD 1.33 0.26 0.90, 1.76 No 

ENMO vs. VM 2.10 0.83 0.70, 3.46 No 

VA vs. ENMO -1.99 0.84 -3.38, -0.69 No 

AI vs. ENMO -0.89 0.70 -2.06, 0.28 No 

MAD vs. AI -0.13 0.06 -0.24, -0.03 Yes 

VA vs. AI 1.10 0.27 0.65, 1.55 No 

VM vs. VA 0.09 0.12 -0.11, 0.30 No 

MAD vs. VA -0.13 0.06 -0.23, -0.03 Yes 
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DISCUSSION 

 
 Accelerometers can capture high resolution information about the frequency, intensity, 

duration, and timing of children’s physical activity. Disparities in how these data are summarized 

(i.e., which metric is used) can impede harmonization across data sources or comparability of 

results from different studies or surveillance systems. The present analysis provides preliminary 

evidence regarding the convergent validity of five count- and acceleration-based metrics at both 

the epoch- and participant-level for capturing both overall activity levels and temporal patterns. 

While metrics were often strongly associated, they were not always statistically equivalent. 

Continued use and development of various acceleration-based metrics is warranted to provide an 

open-source and device-independent alternative to count-based metrics while maintaining 

comparability to past and future research, as well as providing reliable estimates of time spent in 

activity levels across studies.  

We found strong epoch-level (r=0.69-0.98) and overall (r=0.77-0.99) correlations 

between metrics. While there is limited prior research on the comparability of the five 

accelerometer metrics used in the present study, particularly in children or utilizing a 5-s epoch, 

the findings of the present study are comparable to studies using samples of adults, and therefore, 

longer epochs. Specifically, correlations in the present study were similar to or stronger than 

those reported by Migueles et al (2019) who compared both acceleration- and count-based 

metrics at the right hip during waking hours ENMO and MAD (r=0.74 vs 0.98 in the present 

study), VM and ENMO (r=0.48 vs 0.69), and VM and MAD (r=0.81 vs 0.72) in a sample of 

free-living young adults. Furthermore, a study of older adults by Karas et al (2022) found 

stronger correlations between activity counts and acceleration-based metrics ENMO (r=0.87), 

MAD (r=0.91), and AI (r=0.97) than the present study (r=0.69, 0.82, and 0.70, respectively). 
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While the current and past studies support positive associations between metrics across different 

age groups, more research is needed to clarify the strength of this association. 

While all metrics were at least moderately associated, relationships were stronger 

amongst acceleration-based metrics (all r=0.98) and between the two count-based metrics  

(r=0.94), while weaker associations were found between acceleration based and count-based 

metrics (r=0.69-0.75). The limited prior research in this area precludes us from making final 

conclusions about this finding, but this indicates that comparisons between data or research using 

different types of metrics (acceleration- versus count-based) should be done more cautiously than 

comparisons when using similar types of metrics. This finding also supports the increased use of 

acceleration-based metrics in future studies; in addition to supporting comparability across 

studies because they can be calculated using any device brand, our findings indicate that these 

metrics capture similar trends in activity intensity even when the acceleration data are processed 

differently.  

In addition to correlating the five metrics to each other, we compared time spent in four 

quartiles of activity intensity. While we did not use existing cut-points due to lack of availability 

for all five metrics in this population, these quartiles may serve as a proxy for sedentary, light, 

moderate, and vigorous intensity. For example, the most used cut-point in this age group for 

classifying MVPA is the Evenson cut-point of ≥1003 VA counts∙15-sec-1 (≥334 counts∙5-sec-1), 

compared to the quartile 3 cut-off of 224 counts∙5-sec-1. When extrapolated to a 20-min recess 

period, differences between metrics in time spent in each quartile were less than 5-minutes. 

Whether these differences are too large in magnitude may depend on the research question, but a 

review of physical activity interventions reported changes of 1.2 to 2-minutes of MVPA, on 

average (Parrish et al., 2020). However, the equivalence tests revealed that metrics almost or 
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almost always captured similar amount of time spent in quartile 3 and quartile 4. Coupled with 

the fact that all metrics were able to similarly rank and classify children as most or least active, 

the ability of all five metrics to capture the highest intensity activities is promising because these 

are the outcomes of interest for future intervention research.  

In addition to activity intensity, accelerometers are capable of capturing rich information 

about temporal features of physical activity but whether different accelerometer metrics similarly 

capture these patterns was previously unknown. The fragmentation indices used in the present 

study have proven useful in samples of older adults but have been underutilized in younger 

samples. While not directly comparable due to the focus on recess, number of activity fragments 

and high activity fragments in the current study were compared to prior work from Wanigatunga 

et al (2019), and transition probabilities in the current study were compared to prior work from 

Schrak et al (2019) indicating that children's recess activity was more fragmented than adult’s 

free-living PA, which is to be expected.  

Findings from the activity fragmentation metrics in the current study also corroborate 

findings from Bailey et al (1995), in that children exhibit highly transient activity, particularly at 

higher intensities. In their study, Bailey et al (1995) used direct observation and reported that the 

majority of high intensity activities generally lasted no longer than 15-s. The current study found 

that average high activity bout duration was also quite short and lasted no longer than 30-s. This 

supports the idea that accelerometer-measured activity fragmentation metrics are able to detect 

highly fragmented bouts, similar to what has been seen in previous literature. This may be an 

advantageous approach for further characterizing recess PA overall and by group (e.g., by sex) 

with the overarching goal of informing activity-promoting interventions.  
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 All five accelerometer metrics captured similar trends in fragmentation indices, as 

indicated by correlation coefficients from 0.53 to 0.99. The strongest associations were found for 

number of high activity bouts (≥0.89), indicating this metric could be used comparably in future 

studies employing different processing techniques. Conversely, mean duration of ENMO and 

VM resulted in the weakest correlations between metrics (≥0.53), indicating this metric should 

be used and compared between studies more cautiously. Despite overall associations, count-

based metrics demonstrated slightly higher fragmentation than acceleration-based metric and 

many comparisons were not equivalent between metrics. Notably, because we did not have a 

criterion measure, we cannot conclude whether any particular metric (or type of metric) most 

accurately captured the temporal patterns of children’s behavior.  

Despite overall associations, many metrics were not statistically equivalent for the 

fragmentation indices. However, future analysis is needed to better understand what equivalence 

bounds would be relevant or meaningful in this sample and setting, as the equivalence bounds 

used in the present study (5% of the mean) may have been too stringent. For example, bias for 

mean duration of high activity bouts ranged from 0.1 to 2.1-s, which may be an acceptable level 

of difference for this outcome. Those interested in applying different equivalence bounds can do 

so by comparing the equivalence bound of interest to the confidence intervals reported in Tables 

5-8. For instance, the confidence interval for the comparison of mean duration of high activity 

bouts determined using AI and VM was 0.79-1.59, which would be equivalent if using an 

equivalence bound of ±5.0-s. Associating the fragmentation indices with outcomes like weight 

status or cardiometabolic health would elucidate clinically relevant equivalence bounds to be 

used in future research.  
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Strengths & Limitations  

 The use of an unstructured, free play environment is a strength of the current study, as 

this non-laboratory setting offers greater external validity. While all five accelerometer metrics 

have been previously validated and compared to criterion measures (e.g., heart rate, energy 

expenditure), the current study is the first of its kind to compare metrics to each other in this 

population and setting. However, the current study is not without limitations. First, only hip-

worn devices were employed in the present study. Accelerations produced from the hip, and 

therefore, the results of the current study, may not be generalizable to wrist-worn devices in 

children. While this is the most common wear location (Migueles et al., 2017), wrist-worn 

devices are becoming increasingly popular to improve wear compliance. Lastly, only one recess 

period was selected per child for analyses. Each recess period was 20-minutes long and occurred 

during the warmer spring months in Michigan. These are factors that contribute to ideal PA 

conditions and may have influenced the pattern and intensity of PA. However, the primary 

purpose of the study was not to describe typical recess PA, but simply to compare PA and 

temporal patterns recorded by the five accelerometer metrics. Lastly, the use of recess periods 

alone is only a snapshot of the entire PA profile and is not generalizable to 24-hour PA patterns.  

Future Directions  

 The present study provides preliminary support for the comparability of five 

accelerometer metrics for capturing activity intensity and temporal characteristics. However, 

there may be other metrics, like Monitor-Independent Movement Summary (MIMS) units, which 

should be included in future analyses. Further, fragmentation indices which capture other 

temporal characteristics that are more relevant to children could be created, such as median bout 
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duration as reported by Bailey et al. (1995). Finally, further work is needed to determine 

meaningful equivalence bounds for these temporal metrics. 
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