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ABSTRACT

Many-body nuclear physics is the bridge that takes us from the fundamental laws gov-

erning individual nucleons to understanding how groups of them interact to form the nuclei

that lie at the heart of all atoms - the building blocks of our universe. Many powerful

techniques of classical computation have been developed over the years in order to study

ever more complex nuclear systems. However, we seem to be approaching the limits of

such classical techniques as the complexity of many-body quantum systems grows expo-

nentially with system size. Yet, the recent development of quantum computers offers one

hope as they are predicted to provide a significant advantage over classical computers in

certain applications, such as the quantum many-body problem. In this thesis, we focus on

developing and applying algorithms to solve various many-body nuclear physics problems

that can be run on the near-term quantum computers of the current noisy intermediate-scale

quantum (NISQ) era. As these devices have small qubit counts and high noise levels, we

focus our algorithms on various many-body toy models in order to gain insight and build

a foundation upon which future algorithms will be built to tackle the intractable problems

of our time. First, we tailor current quantum algorithms to efficiently run on NISQ era

devices and apply them to three pairing models of many-body nuclear physics: the Lipkin

model, the Richardson pairing model, and collective neutrino oscillations. We estimate

the ground-state energy of the first two models and simulate the time evolution and char-

acterize the entanglement of the third. Then, we develop two novel algorithm to increase

the efficiency and applicability of current NISQ era algorithms: an algorithm to compress

circuit depth to allow for less noisy computation, and a variational method to prepare an

important class of quantum states called Dicke states. Error mitigation techniques used to



improve the accuracy of results are also discussed and employed. All together, this work

provides a road map to apply the quantum computers of tomorrow to solve what nuclear

phenomena mystify us today.
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CHAPTER 1

INTRODUCTION

Classical computation seems to be approaching the limit of its ability to simulate many-

body nuclear systems. Such systems are crucial to the understanding of nuclei, the heart of

every atom and thus one of the fundamental building blocks of our universe. The Hilbert

spaces of such systems grow exponentially with the number of particles in the system.

This often necessitates exponential growth of the computational complexity required to

solve such systems on a classical computer. Even modern methods, such as quantum

Monte Carlo, are hindered by problems, in this case, the fermion sign problem. The recent

development of quantum computers promises a plausible path forward to overcoming these

hurtles. Fault-tolerant quantum computers with a large enough number of qubits could

simulate large many-body quantum systems with ease. For example, Shor’s algorithm [75]

has been proven to be able to find the eigenenergies of a Hamiltonian with polynomial

complexity and time-evolution quantum algorithms benefit from a linear increase in qubits

with system size and access to quantum gates that simulate such evolution naturally.

However, today’s quantum computers are in what has been called the noisy intermediate-

scale quantum (NISQ) era, meaning that they have a small number of qubits (order 100)

and suffer from substantial noise due to qubit decoherence and measurement errors. Thus,

a large part of quantum computing research is currently focused on developing so called

near-term algorithms which can run on NISQ era quantum devices. Such algorithms are

often hybrid, meaning that they rely on both a quantum and a classical computer, and

variational, meaning that they are non-deterministic and rely on optimization algorithms

as a sub-routine. One such algorithm, the variational quantum eigensolver, has been used
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to solve for the ground state energy of molecules as large as BeH2 [49] using six qubits

and hydrogen chains as large as H12[64] with twelve qubits and 72 two-qubit gates. On the

nuclear physics side, the binding energy of the deuteron has been calculated on a quantum

computer [28]. In order to scale the applications of such algorithms to larger systems

which we cannot currently simulate classically, we will need to develope techniques that

allow for short depth circuit implementation on devices with limited qubit connectivity.

Furthermore, such algorithms will need to take advantage of specifics of the problem it is

simulating such as its symmetries and known approximations. Such is the central aim of

this thesis.

In this work, we develope and apply near-term algorithms to toy models of many-body

nuclear physics. The algorithms are used to estimate energy eigenvalues of the systems,

simulate time-evolution, and characterize entanglement. The techniques developed here

serve as a foundation uponwhich future algorithms can be developed to solve larger systems

whose simulation evades current classical computation. This thesis is organized as follows.

In chapters 2 and 3, we provide the background theory upon which the rest of the thesis

rests. Chapter 2 gives an overview of many-body nuclear theory, starting with quantum

mechanics itself, then going through the formalism used to describe many-body systems.

It ends with a review of classical computational techniques that are used to solve many-

body quantum problems. Chapter 3 gives an introduction to quantum computing including

its basic building blocks: qubits, gates, and circuits. It then gives an explanation of the

variational quantum eigensolver (VQE) and an overview of how to map problems from

fermionic space to the spin space required for quantum computation.

Chapters 4 through 6 are the heart of the thesis in that they develope techniques and
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apply near-term algorithms to three toy pairing models of quantum many-body nuclear

physics. Chapter 4 focuses on the Lipkin model. Various classical solutions to the model

are discussed before walking through potential ways to solve the model on a quantum

computer. While the Lipkin model has been modeled on a quantum computer before,

this thesis provides a novel, short-depth ansatz. In chapter 5, we turn our attention to

the pairing model, whose classical solutions are discussed and against which quantum

solutions are bench-marked. The model is mapped to quantum gates and a novel ansatz

is developed for shortening the depth of the quantum circuit on a quantum computer with

circular qubit connectivity. A novel algorithm for calculating the energies of excited states

is also developed along with a new ansatz for solving the model with a large pairing

strength. Various initializations of the ansatz are introduced and compared. In chapter 6,

we simulate the time evolution and characterize the entanglement of collective neutrino

oscillations. The Hamiltonian is partitioned and the ansatz is constructed in a clever way so

as to maximize the quality of the quantum computer’s results. Error mitigation techniques

are introduced and applied in order to depress the interference of noise in the calculations

of the quantum computer.

Next, chapters 7 and 8 introduce two novel quantum algorithms which can be generally

applied to various areas of quantum computing in order to improve results. Chapter 7 lays

out the quantum circuit squeezing algorithm (QCSA) which trades an increase in number

of qubits for a decrease in circuit depth, thus potentially decreasing the accumulation

of noise. Chapter 8 discusses a novel approach to prepare Dicke states variationally.

Finally, in chapter 9 we present our conclusions and perspective on potential future work

in applications of NISQ era algorithms to many-body nuclear physics.

3



CHAPTER 2

MANY-BODY NUCLEAR THEORY

2.1 Introduction

In this chapter, we introduce the underlying theory of many-body nuclear physics,

starting with the basics of quantum mechanics, upon which all else is built. We then

give an introduction of the formalisms required to represent many-body systems, including

second quantization and particle-hole formalism. Finally, we describe various classical

computation techniques that are used to solve such many-body systems.

2.2 Quantum Mechanics

2.2.1 Introduction

To understand many-body nuclear theory, we must first understand the theory underling

all of nuclear physics: quantum mechanics. While the theory, like many physical theories,

has no exact beginning, one of its formalisms was put forth by the 1920s by Erwin

Schrödinger [73]. It is the fundamental theory upon which all other physics is built, setting

forth the laws that physical phenomena must follow at the smallest of scales. Quantum

mechanics, unlike classical mechanics (the set of laws that physical phenomena follow

at large scales) is inherently probabilistic. This means that the equations of quantum

mechanics can only give us the probability distribution for the possible values of physical

observables not predict, with certainty, what values will be measured. To thoroughly

introduce the theory, we begin with the postulates of the theory.
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2.2.2 Postulates of Quantum Mechanics

Quantum mechanics is built on a set of postulates from which the rest of the theory is

constructed. The postulates are as follows:

Postulate 1: The state of a physical system is represented by a quantum state |Ψ〉 which

belongs to a Hilbert space �.

Postulate 2: Every observable physical quantity A is represented by a Hermitian

operator � acting in �.

Postulate 3: The result of measuring an observable A must be one of the eigenvalues

of its corresponding operator �.

Postulate 4: When an observable A is measured in the state |Ψ〉, the probability of

obtaining the eigenvalue 0= of � is given by the squared amplitude of its corresponding

eigen-vector |Φ=〉. One can expand the state |Ψ〉 in terms of |Φ=〉, the eigenvectors of �,

as follows

|Ψ〉 =
∑
=

2= |Φ=〉 . (2.1)

Thus %(0=), the probability of obtaining the eigenvalue 0= can be determined by

%(0=) = |2= |2 = |〈Φ= |Ψ〉|2. (2.2)

Postulate 5: If the measurement of an observable A results in 0= then the state

collapses to the normalized projection of |Ψ〉 onto the eigen-subspace associated with 0=

Ψ→ %= |Ψ〉√
〈Ψ|%= |Ψ〉

, (2.3)

where

%= =
∑
<

|Φ<〉 〈Φ< | , (2.4)
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and < sums over the eigenvectors that correspond to the eigenvector 0=.

Postulate 6: The state |Ψ〉 evolves in time according to the Schrödinger equation

8~
3

3C
|Ψ(C)〉 = � |Ψ(C)〉 . (2.5)

2.2.3 The Schrödinger Equation

It is often useful to think about the time-independent and time-dependent parts of a

system separately. To separate the Schrödinger equation into time-dependent and time-

independent components, we assume that the state |Ψ(G, C)〉 can be written as the product

of a time-independent |- (G)〉 and a time-dependent |) (C)〉 state:

|Ψ(G, C)〉 = |- (G)〉 |) (C)〉 . (2.6)

The sixth postulate of quantum mechanics tells us that the state |Ψ〉 of a system evolves in

time according to the Schrödinger equation (2.5). Plugging the separation (2.6) into the

Schrödinger equation (2.5) allows us to separate the differential equation:

8~
3

3C
|Ψ(G, C)〉 = � |Ψ(G, C)〉 , (2.7)

becomes

8~
3

3C
|- (G)〉 |) (C)〉 = � |- (G)〉 |) (C)〉 , (2.8)

which allows

1
|) (C)〉 8~

3

3C
|) (C)〉 = 1

|- (G)〉� |- (G)〉 = �, (2.9)
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where we were able to set both sides of (2.9) equal to the constant � because they each

exclusively depend on different parameters, namely position G an time C. From this, we

arrive at the time-independent Schrödinger equation (2.10) and time-evolution equation

(2.11) given below

� |- (G)〉 = � |- (G)〉 , (2.10)

8~
3

3C
|) (C)〉 = � |) (C)〉 . (2.11)

Solving the time evolution equation (2.11) yields the equation for the time-dependent state

|) (C)〉 = 4−8�C , (2.12)

where we’ve set ~ = 1. This implies that the full state is given by

|Ψ(G, C)〉 = 4−8�C- (G)

=

∞∑
==0

(−8C)=
=!

�=- (G)

=

∞∑
==0

(−8C)=
=!

�=- (G)

= * (C)- (G), (2.13)

where we’ve defined the time-evolution operator* (C) as

* (C) = 4−8�C . (2.14)

Here we’ve both assumed that � is time-independent and used the time-independent

Schrödinger equation (2.10).
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2.3 Many-Body Formalism

2.3.1 Introduction

Systems with multiple particles in quantum mechanics are called many-body systems.

The formalism describing such systemswas developedmost notably byVladimir Fock [34].

In this formalism, which is called second-quantization, one keeps track of the number of

particles contained in each state. It is a powerful tool for understanding large systems of

particles in quantum mechanics.

2.3.2 Single-particle states

We define the coordinate representation of a single-particle state

k? (G) = 〈G |?〉 , (2.15)

to mean that the particle labeled ? is occupying the state which is characterized by the

set of coordinates G. Consider a complete set of orthonormal, single-particle states % =

{?1, . . . , ?=}. The orthogonality of the set means that for any states ?, @ ∈ %, their inner

product is equal to the Kronecker delta,

X?,@ = 〈? |@〉 =
∫

3G 〈? |G〉 〈G |@〉 =
∫

3Gk∗? (G)k@ (G). (2.16)

The completeness of the set means that any single particle state can be expanded as a linear

combination of the set

|k〉 =
∑
?

2? |?〉 , (2.17)

where

2? = 〈? |k〉 =
∫

3Gk∗? (G)k(G). (2.18)
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2.3.3 Multi-particle states

We now wish to consider a system of multiple identical fermions, each of which lives

in a Hilbert space �. Such a multi-particle systems lives in the Fock space � (�) which

is the direct sum of the anti-symmetric tensor product of the single-particle Hilbert spaces

�,

� (�) =
∞⊕
#=0

(−�
⊗# , (2.19)

where (− anti-symmetrizes tensors. Each tensor product of single-particle Hilbert spaces

�⊗# = � ⊗ . . . ⊗ �︸         ︷︷         ︸
# times

contains multi-particle states

#⊗
8=1

k?8 (G8) = 〈G1 · · · G# |?1 · · · ?#〉 = |?1 · · · ?#〉 , (2.20)

where |?1 · · · ?=〉 =
⊗#

8=1 |?8〉. As indicated above, 〈G1 · · · G# | is often dropped, and

assumed to always be in order (1, . . . , #). Thus, if particles are permuted according to

a permutation matrix f, the state |?f1 · · · ?f#
〉 = 〈G1 · · · G# |?f1 · · · ?f#

〉 implies that

particle labeled ?f8 is in the state characterized by the set of coordinates G8. The spaces

�⊗# are anti-symmetrized because, according to the spin-statistics theorem, fermionic

wave-functions must be anti-symmetric with respect to the exchange of particles; that is��· · · ? 9 · · · ?8 · · ·〉 = − ��· · · ?8 · · · ? 9 · · ·〉 , (2.21)

which says that if particles ?8 and ? 9 swap states, the corresponding many-body state picks

up a minus sign. In general, a multi-particle fermionic state can pick up a factor of a

negative one depending on the permutation of the particles. That is��?f1 . . . ?f#

〉
= (−1)f |?1 · · · ?#〉 , (2.22)
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where

(−1)f =


+1 if f is an even permutation

−1 if f is an odd permutation.
(2.23)

Thus, each anti-symmetric tensor product of single-particle Hilbert spaces (−�⊗# contains

anti-symmetrized multi-particle states

|{?1 . . . ?# }〉 =
√
#!� |?1 . . . ?#〉 , (2.24)

where � is called the anti-symmetrizer and is defined as

� =
1
#!

∑
f∈(#
(−1)ff, (2.25)

and (# is the symmetric group of order # . Applying the definition of the anti-symmetrizer

(2.25) to the definition of the anti-symmetrized multi-particle states (2.24) yields

|{?1 . . . ?# }〉 =
1
√
#!

∑
f∈(#
(−1)ff |?1 . . . ?#〉 (2.26)

=
1
√
#!

∑
f∈(#
(−1)f |?f1 . . . ?f#

〉 (2.27)

=
1
√
#!
|% |, (2.28)

where % is an # × # matrix whose entries are equal to %8 9 = k? 9
(G8); that is

|{?1 · · · ?# }〉 =
1
√
#!

�������������

k?1 (G1) k?2 (G1) · · · k?# (G1)

k?1 (G2) k?2 (G2) · · · k?# (G2)
...

...
...

k?1 (G# ) k?2 (G# ) · · · k?# (G# )

�������������
. (2.29)
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The above determinant is called a Slater determinant [77]. One can see that this state

is anti-symmetric with respect to the exchange of two particles as this corresponds to

exchanging two columns of the determinant, which picks up a factor of negative one. One

can see that the set of anti-symmetrized multi-particle states is orthonormal as, for any two

multi-particle state |{?1 · · · ?=}〉 , |{@1 · · · @=}〉 ∈ (−�⊗# their overlap is

〈{?1 · · · ?=}|{@1 · · · @=}〉 =
1
#!
|%† | |& | = 1

#!
|%†& | =


1 if ?8 = @8 for all 8 = 1, . . . , #

0 otherwise,

(2.30)

as the entries of %†& are given by

(%†&)8 9 =
#∑
:

%
†
8:
&: 9 =

#∑
:

k∗?8 (G: )k@ 9
(G: ) = 〈?8 |@ 9 〉 = X?8@ 9

, (2.31)

which implies

|%†& | =
∑
f∈(#
(−1)f

#∏
8=1

X?8@f8 . (2.32)

Additionally, the set of anti-symmetrized multi-particle states is also complete. This means

that any anti-symmetrized multi-particle state can be expanded as

|k〉 =
∑

?1,...,?#

2?1,...,?# |{?1 · · · ?# }〉 , (2.33)

where the coefficients 2?1,...,?# are given by

2?1,...,?# = 〈{?1 · · · ?# }|k〉 =
∫

3G1 . . . 3G=k
∗
?1 (G1) . . . k∗?# (G# )k(G1, . . . , G# ). (2.34)

2.3.4 Second Quantization

Second quantization (occupation number representation) is a formalism in whichmulti-

particle systems are described with the information of how many particles are in each state.
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Its central ideas where first introduced by in 1927 Paul Dirac [24]. A fermionic multi-

particle state is described in second quantization as

|{?1 . . . ?# }〉 = |. . . =?1 . . . =?# . . .〉 , (2.35)

where

=8 =


1 if ?8 ∈ {?1, . . . , ?# }

0 if ?8 ∉ {?1, . . . , ?# }.

Note that the occupation numbers =8 can only be 0 or 1 as, according to the Pauli exclusion

principle, each state can contain at most one fermion. In this representation, it is convenient

to introduce creation (0†) and annihilation (0) operators which add and remove particles

from states, respectively. Acting on a fermionic single-particle state, they behave as follows:

0† |0〉 = |1〉 , 0† |1〉 = 0, (2.36)

08 |0〉 = 0, 08 |1〉 = |0〉 .

It can be seen that trying to increase the number of particles in a state above 1 or decrease the

number of particles in a state below 0 results in 0, reflecting the Pauli-exclusion principle.

Their behavior on multi-fermionic states is as follows:

0
†
8
|=1 . . . ==〉 = (−1)#8 (1 − =8) |=1 . . . =8−11=8+1 . . . ==〉 , (2.37)

08 |=1 . . . ==〉 = (−1)#8=8 |=1 . . . =8−10=8+1 . . . ==〉 , (2.38)

where #8 =
∑8−1
9=1 = 9 . The (−1)#8 factor comes from the anti-commutation relations of the

fermionic operators {
08, 0

†
9

}
= X8 9 ,
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{
08, 0 9

}
= {0†

8
, 0
†
9
} = 0, (2.39)

which, in turn, come from the fact that exchanging fermions picks up a factor of negative

one. Note that these operators can be used to create arbitrary fermionic multi-particle

states from the vacuum |0〉 as follows:
#∏
8=1

0†?8 |0〉 = |{?1 · · · ?# }〉 . (2.40)

One popular combination of these operators is the number operator

#? = 0
†
?0?, (2.41)

which counts the number of particles in a state (?),

#?
��· · · =? · · ·〉 = =? ��· · · =? · · ·〉 . (2.42)

These operators can also be used to represent arbitrary :-body operators in second

quantization as follows:

$: =

(
1
:!

)2 ∑
?1...?:
@1...@:

〈?1 . . . ?: |>: |@1 . . . @:〉A 0†?1 . . . 0
†
?:
0@: . . . 0@1 , (2.43)

where the anti-symmetrized :-body matrix element is defined as

〈?1 . . . ?: |>: |@1 . . . @:〉� = 〈{?1 . . . ?: }|>: |@1 . . . @:〉 = 〈?1 . . . ?: |>: |{@1 . . . @: }〉 ,

(2.44)

where

〈?1 . . . ?: |>: |@1 . . . @:〉

=

∫
3G1 . . . 3G:k

∗
?1 (G1) . . . k∗?: (G: )>: (G1, . . . , G: )k@1 (G1) . . . k@: (G: ). (2.45)

13



Note that from here on out in this thesis we will drop the brackets in Dirac-ket notation

when referring to anti-symmetrized states as we will be dealing exclusively with fermions

(whose states are always anti-symmetric). That is, from now on all |G〉 should be taken to

mean |{G}〉.

2.3.5 Particle-Hole Formalism

When dealing with a large number of particles, it can become convenient to introduce

a reference state (|Φ0〉) other than the vacuum (|0〉). To do this, we define a Fermi level

(�) below which all states are assumed to be occupied and above which, all states are

assumed to be unoccupied. We call the states below the Fermi level hole states and those

above, particle states. The hole states are indexed with 8, 9 , :, ... while the particle states

are indexed with 0, 1, 2, .... If we wish to remain ambiguous as to whether or not a state is

a particle or hole state, we index with ?, @, A, .... Thus, our reference state

|Φ0〉 = |{8182 . . . 8=}〉 , (2.46)

in this case with = hole states, acts as the new vacuum state. Because our new vacuum

already contains some particles, the notions of creation and annihilation must be redefined.

This is because, for example, annihilation of a particle that exists in the reference state

vacuum does not go to zero like it would if acting upon the true vacuum. Therefore, we

introduce particle-hole creation and annihilation operators

1†? =


0
†
? if ? > �

0? if ? ≤ �
, 1? =


1? if ? > �

1
†
? if ? ≤ �

. (2.47)

In this way, applying a particle-hole creation operator (to the reference state) for a particle

in the reference state can be thought of as creating a hole (when, in reference to the true
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vacuum, it destroys a particle), and vise verse.

2.3.6 Contractions

When calculating quantities with a large number of particles, it can become tedious to

manipulate the expression via successive applications of the fermionic anti-commutation

relations (2.39). One tool to alleviate this is the contraction. The contraction of two

operators - and . is defined as

-. = -. − # (-. ), (2.48)

where # (-. ) indicates the normal order of -. . The normal order of a string of operators is

the one that vanishes when its expectation value is taken in the vacuum: 〈0| # (-. ) |0〉 = 0.

The normal order of pairs of the fermionic operators are

# (0?0@) = 0?0@, (2.49)

# (0†?0†@) = 0†?0†@, (2.50)

# (0†?0@) = 0†?0@, (2.51)

# (0?0†@) = −0†@0? . (2.52)

It follows that the contractions of the fermionic operators are

0?0@ = 0, (2.53)

0†?0
†
@ = 0, (2.54)

0†?0@ = 0, (2.55)

0?0
†
@ = X?@ . (2.56)
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In the particle-hole formalism, our normal orderings change as we have redefined the

vacuum: # (-. ) = 〈Φ0 | -. |Φ0〉. The normal order of pairs of particle-hole operators are

# (0001) = 0001, # (080 9 ) = 080 9 , (2.57)

# (0†00†1) = 0001, # (0†
8
0
†
9
) = 080 9 , (2.58)

# (0†001) = 0†001, # (0†
8
0 9 ) = −0†908, (2.59)

# (000†1) = −0
†
1
00, # (080†9 ) = 0

†
8
0 9 . (2.60)

It follows that the contractions of the fermionic operators are

0001 = 0, 080 9 = 0, (2.61)

0†00
†
1
= 0, 0

†
8
0
†
9
= 0, (2.62)

0†001 = 0, 0
†
8
0 9 = X8 9 , (2.63)

000
†
1
= X01, 080

†
9
= 0. (2.64)

One important theorem involving contractions is Wick’s theorem [86] which states that

a string of operators ����... can be written as a sum of normal-ordered strings involving

all possible contractions; that is

����... = # (����...) +
∑
singles

# (����...) +
∑

doubles
# (����...) + ..., (2.65)

where the sums over singles and doubles refer to all the possible ways the string of operators

can be contracted once and twice, respectively. Wick’s theorem is especially useful for

calculating expectation values as only the fully-contracted terms in the sum survive (all

other terms have leftover normal order terms which, by definition, have an expectation

value of zero). For example

〈0| ���� |0〉 = 〈0| ���� |0〉 + 〈0| ���� |0〉 . (2.66)
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2.4 Classical Computation Techniques

2.4.1 Full Configuration Interaction

Consider the time-independent Schrodinger equation

� |k〉 = � |k〉 . (2.67)

Expanding |k〉 it in terms of an orthonormal basis {|=〉}

|k〉 =
∑
=

2= |=〉 , (2.68)

and inserting it into the Schrodinger equation (2.67), yields∑
=

2=� |=〉 = �
∑
=

2= |=〉 . (2.69)

Inserting the identity
∑
: |:〉 〈: | into the left-hand side yields∑

=

�:=2= |:〉 = �
∑
=

2= |=〉 , (2.70)

where �:= = 〈: |� |=〉. Left-multiplying both sides by 〈< | yields∑
=

�<=2= = �2<, (2.71)

which can be written in matrix form

�� = ��. (2.72)

Thus, diagonalizing � will yield the eigenvalues � and corresponding eigenfunctions

which are constructed from the coefficients 2= according to (2.68).
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2.4.2 Symmetry Method

While full-configuration interaction theory can, in theory, be applied to any problem,

the trade-off is that, in order for this to be true, FCI is a problem agnostic theory. That is, it

does not take advantage of any of the information about the Hamiltonian itself. Without this

information, one is left to diagonalize a 22Ω × 22Ω matrix whose size grows exponentially

with the number of states Ω. However, if one incorporates some information about the

Hamiltonian, such as its symmetries, then one will only have to diagonalize several, small

matrices. The reason why will be seen in the following explanation of the symmetry

method.

In the symmetry method, one starts by identifying the symmetries (: of the Hamilto-

nian, elements of the symmetry groups ( that commute with the Hamiltonian

[(: , �] = 0. (2.73)

The states are labeled by the quantum numbers corresponding to the irreducible represen-

tations of the symmetry groups. The Hamiltonian matrix is a block-diagonal matrix, with

one block for each irreducible representation. The proof is as follows: Let (: be an element

of a symmetric group ( which commutes with the Hamiltonian. Also, let (: |k=〉 = B= |k=〉.

Then

〈k= |� |k<〉 =
1
B<
〈k= |�(: |k<〉 (2.74)

=
1
B<
〈k= |(:� |k<〉 (2.75)

=
B=

B<
〈k= |� |k<〉 , (2.76)

which implies that (B< − B=)�=< = 0. Thus, either B= = B< or �=< = 0 and B= ≠ B< (|k〉=
and |k〉< don’t have the same eigenvalue with respect to (: ). Thus, the Hamiltonian matrix
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is block diagonal.

2.4.3 Hartree-Fock Theory

Hartree-Fock theory attempts to approximate the ground state of a system by treating

it as a collection of non-interacting particles subject to a mean-field potential that ap-

proximates their interaction. In the theory, which was finalized in 1935 by Hartree [40],

one varies the single-particle orbital basis of a single Slater-determinant |Φ〉 in order to

minimize the energy of that state; that is, the Hartree-Fock energy �HF is defined as

�HF = min
|Φ〉

〈Φ|� |Φ〉
〈Φ|Φ〉 . (2.77)

The variational principle guarantees that �HF ≥ �0 where �0 is the ground state energy of

�. Minimizing the functional will yield a set of equations which can be solved to determine

the Hartree-Fock Hamiltonian and its eigenvalues (single-particle energies) [55]. A small

variation in |Φ〉

|Φ〉 → |Φ〉 + |XΦ〉 , (2.78)

leads to the following variation in the energy

〈Φ|� |Φ〉
〈Φ|Φ〉 →

〈Φ|� |Φ + XΦ〉
〈Φ|Φ + XΦ〉 (2.79)

=
〈Φ|� |Φ〉

〈Φ|Φ〉 + 〈Φ|XΦ〉 +
〈Φ|� |XΦ〉

〈Φ|Φ〉 + 〈Φ|XΦ〉 (2.80)

=
〈Φ|� |Φ〉
〈Φ|Φ〉

(
1 − 〈Φ|XΦ〉〈Φ|Φ〉

)
+ 〈Φ|� |XΦ〉〈Φ|Φ〉 + O

(
〈Φ|XΦ〉2

)
(2.81)

= � + X�, (2.82)

up to first order in 〈Φ|XΦ〉, where

X� = 〈XΦ|� − � |Φ〉 , (2.83)
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since � |Φ〉 = � |Φ〉 and 〈Φ|Φ〉 = 1. The energy is stationary when

0 = X� = 〈XΦ|� − � |Φ〉 . (2.84)

To make it so, we must first determine the form of |XΦ〉. With

|Φ〉 =
=∏
8=1

0
†
8
|0〉 , (2.85)

infinitesimally varying the basis

0
†
8
→ 0̃

†
8
=

∑
?

(X8? + n8?)0†?, (2.86)

leads to the following variation in the wavefunction

|Φ̃〉 =
=∏
8=1

0̃
†
8
|0〉 (2.87)

=

=∏
8=1

[∑
?

(X8? + n8?)0†?

]
|0〉 (2.88)

=

=∏
8=1

[
0
†
8
+

∑
?

n8?0
†
?

]
|0〉 (2.89)

=

=∏
8=1

0
†
8
|0〉 +

∑
?

©«
=∏

9=8+1
0
†
9

ª®¬ n8?0†? ©«
8−1∏
9=1

0
†
9

ª®¬
 |0〉 + O(n2) (2.90)

= |Φ〉 + |XΦ〉 , (2.91)

up to first order in n where

|XΦ〉 =
∑
?

©«
=∏

9=8+1
0
†
9

ª®¬ n8?0†? ©«
8−1∏
9=1

0
†
9

ª®¬
 |0〉 , (2.92)

which we can rewrite as

|XΦ〉 =
∑
0

©«
=∏

9=8+1
0
†
9

ª®¬ n800†0080†8 ©«
8−1∏
9=1

0
†
9

ª®¬
 |0〉 (2.93)
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=
∑
0

n800
†
008

©«
=∏

9=8+1
0
†
9

ª®¬ 0†8 ©«
8−1∏
9=1

0
†
9

ª®¬
 |0〉 (2.94)

=
∑
0

n800
†
008 |Φ〉 , (2.95)

since ? must be a particle state in order for |XΦ〉 ≠ 0 and

080
†
8

©«
8−1∏
9=1

0
†
9

ª®¬ |0〉 = ({08, 0†8 } − 0†8 08) ©«
8−1∏
9=1

0
†
9

ª®¬ |0〉
= (1 − 0†

8
) ©«

8−1∏
9=1

0
†
9

ª®¬ 08 |0〉
=

©«
8−1∏
9=1

0
†
9

ª®¬ |0〉 . (2.96)

Having determined the form of |XΦ〉, we can plug it into the condition that the energy is

stationary (2.84) to yield

0 = 〈XΦ|� − � |Φ〉 (2.97)

=
∑
0

n80 〈Φ| 0†8 00 (� − �) |Φ〉 (2.98)

=
∑
0

n80

(
〈Φ| 0†

8
00� |Φ〉 − ��������

〈Φ| 0†
8
00 |Φ〉

)
, (2.99)

which holds if

0 = 〈Φ| 0†
8
00� |Φ〉 (2.100)

=
∑
?@

C
?
@ 〈Φ| 0†8 000

†
?0@ |Φ〉 +

1
4

∑
?@AB

E
?@
AB 〈Φ| 0†8 000

†
?0
†
@0B0A |Φ〉 (2.101)

=
∑
?@

C
?
@ 〈Φ| 0†8 000

†
?0@ |Φ〉

+ 1
4

∑
?@AB

E
?@
AB

[
〈Φ| 0†

8
000

†
?0
†
@0B0A |Φ〉 + 〈Φ| 0†8 000

†
?0
†
@0B0A |Φ〉
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+ 〈Φ| 0†
8
000

†
?0
†
@0B0A |Φ〉 + 〈Φ| 0†8 000

†
?0
†
@0B0A |Φ〉

]
(2.102)

=
∑
?@

C
?
@ X?0X@8 +

1
4

∑
?@AB

E
?@
AB (ℎ(B)X?0X@BXA8 − ℎ(B)X?BX@0XA8

+ ℎ(A)X?0X@AXB8 − ℎ(A)X?AX@0XB8) (2.103)

= C08 +
1
4

∑
9

(
E
0 9

8 9
− E 90

8 9
− E0 9

98
+ E 90

98

)
(2.104)

= C08 +
∑
9

E
0 9

8 9
, (2.105)

which can be written as 〈0 |�HF |8〉 = 0 by defining the Hartree-Fock Hamiltonian

�HF = C +
∑
AB8

E
? 9

@8
|A〉 〈B | . (2.106)

The single-particle energies are the eigenvalues of the Hartree-Fock Hamiltonian

n? = 〈? | �HF |?〉 (2.107)

= C
?
? +

∑
8

E
?8

?8
, (2.108)

where we’ve relabeled 9 ↔ 8.

2.4.4 Many-Body Perturbation Theory

To go beyond Hartree-Fock, we introduce many-body permutation theory [52] which

adds in correlations between particles as perturbations to the Hartree-Fock wavefunction.

Analogous to single-body perturbation theory, it is possible to approximate the energy of

a system by writing the Hamiltonian as the sum of two terms, one of which is readily

diagonalizable. An introduction of this theory is given here as its results will be used to

inform our initialization of the variational quantum algorithms which will be used later.

Our aim is to solve the Schrödinger equation

� |Ψ0〉 = � |Ψ0〉 . (2.109)
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For perturbation theory, we assume that our Hamiltonian � can be written as the sum of

an unperturbed Hamiltonian �0 and an interacting Hamiltonian ��

� = �0 + �� , (2.110)

where the Schrödinger equation for �0

�0 |Φ=〉 = �= |Φ=〉 , (2.111)

is easily solvable. We expand the exact wave-function |Ψ0〉 in terms of the unperturbed

wave-function

|Ψ0〉 = |Φ0〉 +
∞∑
==1

�= |Φ=〉 . (2.112)

Employing intermediate normalization 〈Φ0 |Ψ0〉 = 1, along with equations (2.109) through

(2.111), we can derive

� = 〈Φ0 |� |Ψ0〉 = 〈Φ0 |�0 |Ψ0〉 + 〈Φ0 |�� |Ψ0〉 = �0 + 〈Φ0 |�� |Ψ0〉 , (2.113)

from which we define

Δ� = � − �0 = 〈Φ0 |�� |Ψ0〉 . (2.114)

We now introduce the following operators

% = |Φ0〉 〈Φ0 | , (2.115)

& =

∞∑
==1
|Φ=〉 〈Φ= | . (2.116)

Noting that % +& = 1 and using the expanded form of the exact wave-function (2.112) we

can rewrite the exact wave-function as

|Ψ0〉 = (% +&) |Ψ0〉 = |Φ0〉 +& |Ψ0〉 . (2.117)
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To determine the second term, note that by plugging in the summed version of the Hamil-

tonian (2.110) into the exact Schrödinger equation (2.109), rearranging, and adding the

term �0 |Ψ0〉 (for Rayleigh-Schrodinger perturbation theory) to both sides, one arrives at

(�0 − �0) |Ψ0〉 = (�� − Δ�) |Ψ0〉 , (2.118)

where we’ve used the definition of Δ� (2.114). Applying & to both sides implies

& |Ψ0〉 =
&

�0 − �0
(�� − Δ�) |Ψ0〉 . (2.119)

Plugging this into (2.117) yields

|Ψ0〉 = |Φ0〉 +
&

�0 − �0
(�� − Δ�) |Ψ0〉 , (2.120)

Inserting this equation into itself iteratively yields

|Ψ0〉 =
∞∑
==0

[
&

�0 − �0
(�� − Δ�)

]=
|Φ0〉 , (2.121)

which, when plugged into the expression for the energy (2.114), yields

Δ� =

∞∑
==0
〈Φ0 | ��

[
&

�0 − �0
(�� − Δ�)

]=
|Φ0〉 . (2.122)

Note that since & commutes with �0 and Δ� is constant, we have that &Δ� |Φ0〉 =

Δ�& |Φ0〉 = 0 and thus the energy becomes

Δ� = 〈Φ0 |�� |Φ0〉 +
∞∑
==1
〈Φ0 | ��

[
&

�0 − �0
(�� − Δ�)

]=−1
&

�0 − �0
�� |Φ0〉 . (2.123)

Perturbatively expanding in term of �� , which is assumed to be small, we can write

Δ� =

∞∑
==1

Δ� (=) . (2.124)
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Comparing (2.123) and (2.124), we identify

Δ� (1) = 〈Φ0 |�� |Φ0〉 , (2.125)

Δ� (2) = 〈Φ0 |��
&

�0 − �0
�� |Φ0〉 , (2.126)

Δ� (3) = 〈Φ0 |��
&

�0 − �0
��

&

�0 − �0
�� |Φ0〉 , (2.127)

− 〈Φ0 |��
&

�0 − �0
〈Φ0 |�� |Φ0〉

&

�0 − �0
�� |Φ0〉 , (2.128)

where we’ve used (2.114) for the last expression. Recall that we assumed that our Hamil-

tonian

� =
∑
?@

C
?
@ 0
†
?0@ +

1
4

∑
?@AB

E
?@
AB 0
†
?0
†
@0B0A , (2.129)

could be partitioned (2.110) as � = �0 + �� where �0 is easily solvable. There are

several ways to partition the Hamiltonian as such. The one we will consider here is called

Hartree-Fock partitioning [80] in which we set the unperturbed Hamiltonian �0 equal to

the Hartree-Fock Hamiltonian (2.106) since it can easily be diagonalized as

�0 =
∑
?

n?0
†
?0?, (2.130)

where n? are the single-particle energies (2.107) which are given by n? = C ?? +
∑
8 E

?8

?8
. With

this partitioning, the interacting Hamiltonian �� becomes

�� = � − �0

=
∑
?@

(C ?@ − n?X?@)0†?0@ +
1
4

∑
?@AB

E
?@
AB 0
†
?0
†
@0B0A . (2.131)

Applying the unperturbed Hamiltonian �0 (2.130) to the reference state |Φ0〉 yields

�0 |Φ0〉 =
∑
?

n?0
†
?0?

(∏
=

0†@=

)
|0〉 (2.132)
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=
∑
?

n?

∑
<

0†?0?
(
<−1∏
==1

0†@=

)
0†@<

(
#∏

==<+1
0†@=

) |0〉 (2.133)

=
∑
?

n?

∑
<

(−1)<−1X?@<0
†
?

(∏
=

0†@=

)
|0〉 (2.134)

=
∑
?

n?

∑
<

X?@<

(∏
=

0†@=

)
|0〉 (2.135)

=
∑
<

n@< |Φ0〉 , (2.136)

which implies that, with the notation �0 |Φ0〉 = �0 |Φ0〉, we have

�0 =
∑
=

n=, (2.137)

where we’ve relabeled < → =. Using (2.136), we can see that applying �0 to excited

forms of the reference state yields

�
01...0=
81...8=

���Φ01...0=
81...8=

〉
= �0

���Φ01...0=
81...8=

〉
(2.138)

=
©«

∑
@=∉{81,...,8=}

n@= +
=∑

<=1
n0<

ª®¬ |0〉 (2.139)

=

(∑
@=

n@= +
=∑

<=1
n0< −

=∑
<=1

n8<

)
|0〉 (2.140)

=

(
�0 − n01...0=

81...8=

)
|0〉 , (2.141)

which implies that

�0 − �01...0=
81...8=

= n
01...0=
81...8=

, (2.142)

where we’ve defined

n
01...0=
81...8=

=

=∑
<=1

(
n8< − n0<

)
. (2.143)
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With Hartree-Fock partitioning, we can use (2.142) to write the correlation energies (2.125

- 2.127) more explicitly. Starting with Δ� (2) (2.126) we have

Δ� (2) = 〈Φ0 | ��
&

�0 − �0
�� |Φ0〉 , (2.144)

and noting that

&

�0 − �0
= & (�0 − �0)−1& (2.145)

=
∑
=,<=1

|Φ=〉 〈Φ= | (�0 − �0)−1 |Φ<〉 〈Φ< | (2.146)

=
∑
=,<=1

X=< |Φ=〉 (�0 − �<)−1 〈Φ< | (2.147)

=
∑
==1
|Φ=〉 (�0 − �=)−1 〈Φ= | (2.148)

since & is idempotent, we have that∑
08

〈Φ0 |�� |Φ08 〉 〈Φ08 |�� |Φ0〉
n0
8

+
∑

0<1,8< 9

〈Φ0 |�� |Φ018 9 〉 〈Φ018 9 |�� |Φ0〉
n01
8 9

, (2.149)

as any higher terms would be automatically zero as � only includes up to two-body

interactions. The only non-zero contribution is

〈Φ018 9 |�� |Φ0〉 =
∑
?@

E
?@
AB 〈Φ0 | {0†8 0

†
9
0001}{0†?0†@0B0A} |Φ0〉 (2.150)

=
1
4

∑
?@

E
?@
AB 〈Φ0 | {0†8 0

†
9
0001}{0†?0†@0B0A} |Φ0〉

+ 〈Φ0 | {0†8 0
†
9
0001}{0†?0†@0B0A} |Φ0〉

+ 〈Φ0 | {0†8 0
†
9
0001}{0†?0†@0B0A} |Φ0〉
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+ 〈Φ0 | {0†8 0
†
9
0001}{0†?0†@0B0A} |Φ0〉 (2.151)

=
1
4

∑
?@

E
?@
AB (X8AX 9 BX0@X1? − X8BX 9AX0@X1?

− X8AX 9 BX0?X1@ + X8BX 9AX0?X1@) (2.152)

=
1
4

(
E108 9 − E1098 − E018 9 + E0198

)
(2.153)

= E0198 . (2.154)

In an analogous manner, one can compute 〈Φ0 |�� |Φ018 9 〉 = E
98

01
which yields

Δ� (2) =
∑

0<1,8< 9

E01
8 9
E
8 9

01

n01
8 9

. (2.155)

The same procedure can be carried out for higher order terms [53]. For example, the third

order contribution to the correlation energy is given by

Δ� (3) =
∑
8< 9<:
0<1<2

E
8 9

01
E1:
82
E02
8:

n01
8 9
n02
8:

+
∑
8< 9

0<1<2<3

E
8 9

23
E23
01
E01
8 9

n01
8 9
n 23
8 9

+
∑

8< 9<:<;
0<1

E01
:;
E:;
8 9
E
8 9

01

n01
8 9
n01
:;

. (2.156)

2.4.5 Coupled Cluster Theory

Coupled cluster theory (CC) was first developed to study nuclear physics by Coester

and Kümmel [32] in the 1950’s. The ansatz for the theory is given by

|Ψ〉 = 4) |Φ0〉 , (2.157)

where |Φ0〉 is the reference state and ) , the cluster operator, is defined as

) =

�∑
?==

)=, (2.158)
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where � is the maximum number of particle-hole excitations and each term in the sum is

given by

)= =
1
=!

∑
81...8=
01...0=

C
01...0=
81...8=

0†01 . . . 0
†
0=
08= . . . 081 . (2.159)

Often the cluster operator is truncated to a small number of terms. A common example

is to truncate to # = 2 leading to ) = )1 + )2; this is the so-called singles and doubles

approximation (CCSD). Starting with the time-independent Schrödinger equation

� |Ψ〉 = � |Ψ〉 , (2.160)

inserting the coupled cluster ansatz (2.157) and left-multiplying both sides by 4−) , and

then left-multiplying by either the reference state or an excited state yields

� = 〈Φ0 |� |Φ0〉 , (2.161)

0 = 〈Φ01...0=
81...8=

|� |Φ0〉 , (2.162)

respectively. Here �̄ is the similarity transformed Hamiltonian

� = 4−)�4) . (2.163)

Additionally, the excited states notation is as follows

|Φ01...0=
81...8=

〉 = 0†01 . . . 0
†
0=
081 . . . 08= |Φ0〉 . (2.164)

Finally, after defining the reference energy

�ref = 〈Φ|� |Φ〉 , (2.165)
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we define the correlation energy (Δ�) to be the difference between the CC energy � as

defined in 2.161 and the reference energy

Δ� = � − 〈Φ|� |Φ〉 , (2.166)

which subtracts of the reference energy. Note that the energy (2.161) depends on the cluster

amplitudes C01...0=
81...8=

, which can be obtained deterministically by solving the amplitude equa-

tions (2.162). In order to do so, one often expands the similarity transformed Hamiltonian

� (2.163) using the Baker-Campbell-Hausdorff (BCH) identity

4−)�4) = 4ad)�

=

∞∑
==0

1
=!
ad=)�

= � + [�,)] + 1
2
[[�,)], )] + · · · , (2.167)

where ad01 = [1, 0]. When one plugs this expansion into energy expression (2.161) it

can be shown that, when the reference state |Φ0〉 is a single determinant, the expansion

terminates at fourth order (= = 4). Coupled cluster with single determinant reference states

usually performs well at equilibrium configurations but poorly for strongly correlated

systems. This shortcoming can be overcome with unitary coupled cluster theory.

2.4.6 Pair Coupled Cluster Doubles Theory

In pair coupled cluster doubles theory [42], often abbreviated as pCCD, the cluster

operator (2.158) is set to a variant of )2 called )? which is restricted to moving pairs of

fermions. That is, ) = )?, where

)? =
∑
80

C08 �
†
0�8 . (2.168)
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Here, �† and � are the pair fermionic creation and annihilation operators, respectively,

defined as

�†? = 0
†
?+0
†
?− (2.169)

�? = 0?−0?+, (2.170)

where ?+ and ?− index the spin-up and spin-down fermions in the ?th energy level,

respectively. The coupled cluster equations (2.161 and 2.162) become

� = 〈Φ0 |� |Φ0〉 (2.171)

0 =
〈
Φ08

�����Φ0
〉
, (2.172)

where the similarity transformed Hamiltonian � is

� = 4−)?�4)? , (2.173)

and the excited state 〈Φ0
8
| is obtained by

〈Φ08 | = 〈Φ0 | �†8 �0 . (2.174)

Note that we truncated the amplitude equation (2.162) to a single excited state for the pair

coupled cluster doubles amplitude equations.

2.4.7 Unitary Coupled Cluster Theory

In unitary coupled cluster (UCC) theory [8], the cluster operator ) is replaced with the

purely imaginary operator ) − )†, leading to the unitary exponential ansatz

|Ψ〉 = 4)−)† |Φ0〉 . (2.175)
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This ansatz is variational and thus the ground state energy �0 can be obtained from the

variational principle

�0 = min
C
〈Φ0 |� |Φ0〉 , (2.176)

where C are the cluster amplitudes, of which ) is a function, and � is the similarity

transformed Hamiltonian

� = 4)
†−)�4)−)

†
. (2.177)

While unitary coupled cluster theory overcomes someweaknesses of coupled cluster theory,

it is not classically tractable to implement. One can see this by expanding, analogously to

(2.167), the similarity transformed Hamiltonian for UCC using the BCH identity,

4)
†−)�4)−)

†
=4ad) −) †� (2.178)

=

∞∑
==0

1
=!
ad=
)−)†�

= � + [�,)] − [�,)†] + 1
2
( [[�,)], )] + [[�,)†] , )†]

− [[�,)] , )†] − [[�,)†] , )] ) + · · · , (2.179)

which, unlike the expansion for CC, does not naturally truncate. Thus, it is classically

intractable to solve the resulting amplitude and energy equations. Fortunately, unitary

operators are implementable on quantum computers (indeed, as all quantum gates must be

unitary). Thus, UCC is a viable candidate ansatz for the so-called Variational Quantum

Eigensolver (VQE), a quantum algorithm which is discussed in the following chapter.
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CHAPTER 3

QUANTUM COMPUTING

3.1 Introduction

The idea of quantum computing was first put forth in 1982 by Richard Feynman [33].

The initial motivation was to simulate quantum mechanics itself because, as Feynman said

“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better

make it quantum mechanical...” Quantum computers use qubits, rather than bits, as their

fundamental units. A qubit is an abstraction of a quantum binary event. The states qubits

are manipulated by physical processes whose abstractions are referred to as quantum gates.

Today’s quantum computers have of order 100 qubits and can implement of order 1000

gates [19] before the accrued noise becomes insurmountable.

3.2 Qubits

The bit is the basic unit of information in classical computing. It is the abstraction

of a binary logical state. One denotes the two possible states as 0 and 1. That is, a bit 2 is

2 = 0 OR 1. (3.1)

A bit can be realized physically by a classical binary event, a classical event that has exactly

two distinct outcomes. Examples include the toss of a coin, the presence or absence of a

hole in a paper card, or (as used in modern computers) two levels of electric charge stored

in a capacitor. Multiple bits are written together as a bit-string

2 = 2022 . . . 2=−1, (3.2)

where 28 = 0, 1 for 8 = 0, 1, . . . , = − 1. Thus, = qubits can represent 2= distinct logical

states.
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The qubit, by contrast, is the basic unit of information in quantum computing. It is

the abstraction of a quantum binary event. Examples include an electron being spin-up or

spin-down or a quantum system being in one of two energy states. The state of a qubit is

spanned by the computational basis which consists of the following two quantum states

|0〉 =
©«
1

0

ª®®¬ , (3.3)

|1〉 =
©«
0

1

ª®®¬ . (3.4)

Thus, a qubit is a two-level quantum state which can be written as a superposition of the

computational basis states, |0〉 and |1〉. That is, a qubit |@〉 can be written as

|@〉 = 0 |0〉 + 1 |1〉 , (3.5)

where 0, 1 ∈ C, under the restriction that

|0 |2 + |1 |2 = 1. (3.6)

One convenient way to represent the state of a single qubit |@〉 is on the Bloch sphere [4].

To do so, one parameterizes the state’s coefficients with two angles \ and q as

|k〉 = cos
\

2
|0〉 + sin

\

2
48q |1〉 . (3.7)

Then, the qubit |k〉 can be represented on the Bloch sphere as a vector with polar angle \

and azimuthal angle q as depicted in Figure 3.1. Note that the coefficient of the |0〉 term in

3.7 does note contain a complex phase. This is because the global phase of a qubit’s state

is irrelevant and thus the relative phase of the |0〉 state can always be absorbed into such a

global phase.
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Figure 3.1: Depiction of the state |k〉 on the Bloch sphere [20].

As two by one, complex-valued vectors, qubits can be “multiplied" in several important

ways. To explain these manipulations, we must first introduce the adjoint of a qubit. Given

a qubit

|@〉 =
©«
0

1

ª®®¬ , (3.8)

its adjoint 〈@ | is given by its Hermitian conjugate

〈@ | = |@〉† =
(
0∗ 1∗

)
. (3.9)

The inner-product of two qubits |@1〉 and |@2〉 is defined as

〈@1 |@2〉 =
(
0∗1 1∗1

) ©«
02

12

ª®®¬ = 0∗102 + 1∗112. (3.10)
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The outer-product of two qubits |@1〉 and |@2〉 is defined as

|@1〉 〈@2 | =
©«
01

11

ª®®¬
(
0∗2 1∗2

)
=

©«
010
∗
2 011

∗
2

110
∗
2 111

∗
2

ª®®¬ . (3.11)

Finally, the tensor-product of two-qubits is defined as

|@1@2〉 = |@1〉 ⊗ |@2〉 =
©«
01

11

ª®®¬ ⊗
©«
02

12

ª®®¬ =
©«

01
©«
02

12

ª®®¬
11

©«
02

12

ª®®¬

ª®®®®®®®®®¬
=

©«

0102

0112

1102

1112

ª®®®®®®®®¬
. (3.12)

3.3 Quantum Gates

Quantum gates are abstractions of the physical actions applied to the physical systems

representing qubits. Mathematically, they are complex-valued, unitary matrices which act

on the complex-valued, normalized vectors that represent qubits. As the quantum analog

of classical logic gates (such as AND and OR), there is a corresponding quantum gate for

every classical gate; however, there are quantum gates which have no classical counterpart.

They act on a set of qubits, changing the qubit’s state in the process. That is, if * is a

quantum gate and |@〉 is a qubit, then acting the gate* on the qubit |@〉 transforms the qubit

as follows:

|@〉 *→ * |@〉 . (3.13)

This action can be represented via the following quantum circuit

|@〉 * * |@〉 (3.14)
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Quantum circuits are diagrammatic representations of quantum algorithms. The horizontal

dimension corresponds to time; moving left to right corresponds to forward motion in time.

They consist of a set of qubits |@=〉 which are stacked vertically on the left-hand side of

the diagram. Lines, called quantum wires, extend horizontally to the right from each

qubit, representing its state moving forward in time. Additionally, they contain a set of

quantum gates that interrupt to the quantum wires, implying that they are applied to the

corresponding qubit. Gates are applied chronologically, left to right. With this, we can see

that the quantum circuit above (3.15) implies that the quantum gate* is being applied to a

qubit in state |@〉.

To explain what quantum circuits represent mathematically, consider the following

circuit

|@0〉 � �

|@1〉 � �

(3.15)

which implies the following mathematical statement

|@0@1〉 → (� ⊗ �) (� ⊗ �) |@0@1〉 (3.16)

→ (��) ⊗ (��) |@0@1〉 (3.17)

→ �� |@0〉 �� |@1〉 . (3.18)

Note that mathematical form is in reverse order from circuit form (�� ↔ ��). This is

because the operator closest to the state mathematically (furthest to the right on a quantum

circuit) acts first. Additionally, we are able to write the actions of the top two and bottom

two gates as acting separately on each qubit as every gate here is a single-qubit gate (acting

on only one qubit). The same would not be true for certain two-qubit gates which entangle
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the states of the two qubits, not allowing their state to be written in a separable form.

Finally, we define the depth of a quantum circuit as the number of columns of gates. The

circuit above thus has a depth of two because it contains two columns of gates, namely

� ⊗ � and � ⊗ �.

3.3.1 Single-Qubit Gates

A single-qubit gate is the abstraction of a physical action that is applied to one qubit.

It can be represented by a matrix * ∈ SU(2). Any single-qubit gate can be parameterized

by three angles: \, q, and _ as follows

* (\, q, _) =
©«

cos \2 −48_ sin \
2

48q sin \
2 48(q+_) cos \2

ª®®¬ . (3.19)

A common set of single-qubit gates is the set of Pauli gates, whose members correspond

to the Pauli matrices

� =
©«
1 0

0 1

ª®®¬ , (3.20)

- =
©«
0 1

1 0

ª®®¬ , (3.21)

. =
©«
0 −8

8 0

ª®®¬ , (3.22)

/ =
©«
1 0

0 −1

ª®®¬ , (3.23)

which satisfy the relation

[f, g] = 8nfghh, (3.24)
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for f, g, h ∈ {-,., /}. These gates form a basis for the algebra su(2). Exponentiating

them will thus give us a basis for SU(2), the group within which all single-qubit gates live.

These exponentiated Pauli gates are called rotation gates 'f (\) because they rotate the

quantum state around the axis f = -,., / of the Bloch sphere (Figure 3.1) by an angle \.

They are defined as

'- (\) = 4−8
\
2 - =

©«
cos \2 −8 sin \

2

−8 sin \
2 cos \2

ª®®¬ , (3.25)

'. (\) = 4−8
\
2. =

©«
cos \2 − sin \

2

sin \
2 cos \2

ª®®¬ , (3.26)

'/ (\) = 4−8
\
2 / =

©«
4−8\/2 0

0 48\/2

ª®®¬ . (3.27)

Because they form a basis for SU(2), any single-qubit gate can be decomposed into three

rotation gates. Indeed

'I (q)'H (\)'I (_) =
©«
4−8q/2 0

0 48q/2

ª®®¬
©«
cos \2 − sin \

2

sin \
2 cos \2

ª®®¬
©«
4−8_/2 0

0 48_/2

ª®®¬ (3.28)

= 4−8(q+_)/2
©«

cos \2 −48_ sin \
2

48q sin \
2 48(q+_) cos \2

ª®®¬ , (3.29)

which is, up to a global phase, equal to the expression for an arbitrary single-qubit gate

(3.19).

3.3.2 Two-Qubit Gates

A two-qubit gate is the abstraction of a physical action that is applied to two qubits. It

can be represented by a matrix* from the group SU(4). One important class of two-qubit
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gates are the controlled gates, which work as follows: Suppose* is a single-qubit gate. A

controlled-* gate (�*) acts on two qubits: a control qubit |G〉 and a target qubit |H〉. The

controlled-* gate applies the identity � or the single-qubit gate * to the target qubit if the

control gate is in the zero state |0〉 or the one state |1〉, respectively. The control qubit is

acted upon by the identity �. This can be represented as follows:

�* |GH〉 =


|GH〉 if |G〉 = |0〉

|G〉* |H〉 if |G〉 = |1〉
. (3.30)

The action of a controlled-* gate (�*) can be represented via quantum circuit as follows

|G〉 • |G〉

|H〉 *


|H〉 , |G〉 = |0〉

* |H〉 , |G〉 = |1〉

(3.31)

It can be written in matrix form by writing it as a superposition of the two possible cases,

each written as a simple tensor product

�* = |0〉 〈0| ⊗ � + |1〉 〈1| ⊗ * (3.32)

=

©«

1 0 0 0

0 1 0 0

0 0 D00 D01

0 0 D10 D11

ª®®®®®®®®¬
. (3.33)

where D8 9 (for 8, 9 ∈ 0, 1) are the matrix elements of *. One of the most fundamental

controlled gates is the CNOT gate. It is defined as the controlled-- gate �- and thus flips
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the state of the target qubit if the control qubit is in the zero state |0〉. It can be written in

matrix form as follows:

CNOT =

©«

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®®®®®®®¬
. (3.34)

A widely used two-qubit gate that goes beyond the simple controlled function is the SWAP

gate. It swaps the states of the two qubits that it acts upon

SWAP |GH〉 = |HG〉 , (3.35)

as depicted in the quantum circuit below

|G〉 × |H〉

|H〉 × |G〉

(3.36)

and has the following matrix form

SWAP =

©«

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

ª®®®®®®®®¬
. (3.37)

It can be decomposed into a series of three CNOTs, each of which has its directionality

flipped from the previous

|G〉 • • |H〉

|H〉 • |G〉

(3.38)
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As for arbitrary two-qubit gates * ∈ SU(4), they can be optimally decomposed (up to a

global phase) into the following sequence [83] fifteen elementary one-qubit gates and three

CNOT gates

*1 • 'H (\1) 'H (\2) • *3

*2 'I (\3) • *4

(3.39)

where*1,*2,*3,*4 are single-qubit gates, each of which requires three parameters as each

can be decomposed into three elementary one-qubit gates (rotation gates). Additionally,

the parameters \1, \2, \3 are determined by the arbitrary two-qubit gate to be decomposed.

Two-qubit gates that are restricted to * ∈ SO(4) can be decomposed into a shorter depth

circuit consisting of just twelve elementary single-qubit gates and two CNOT gates

'I (c/2) 'H (c/2) • *1 • '∗H (c/2) '∗I (c/2)

'I (c/2) *2 '∗I (c/2)

(3.40)

3.4 Variational Quantum Eigensolver

3.4.1 Introduction

One of the first algorithms developed to estimate the eigenenergies of a Hamiltonian

was quantum phase estimation [50]. In the algorithm, one encodes the eigenenergies, one

binary bit at a time (up to = bits), into the complex phases of the quantum states of theHilbert

space for = qubits. It does this by applying powers of controlled unitary evolution operators

to a quantum state that can be expanded in terms of the Hamiltonian’s eigenvectors. The
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eigenenergies are encoded into the complex phases in such a way that taking the inverse

quantum Fourier transformation of the states into which the eigenenergies are encoded

results in a measurement probability distribution that has peaks around the bit strings that

represent a binary fraction which corresponds to the eigenenergies of the quantum state

acted upon by the controlled unitary operators. While quantum phase estimation (QPE) is

provably efficient, non-hybrid, and non-variational, the number of qubits and circuit length

required to execute it is too great for our NISQ era quantum computers. Thus, QPE will

only be efficiently applicable on large, fault-tolerant quantum computers that likely won’t

exist in the near future.

Therefore, a different algorithm for finding the eigenenergies of a quantumHamiltonian

was put forth in 2014 called the variational quantum eigensolver [63], commonly referred

to as VQE. The algorithm is hybrid, meaning that it requires the use of both a quantum

computer and a classical computer. It is also variational, meaning that it relies, ultimately,

on solving an optimization problem by varying parameters and thus is not deterministic

like QPE. The variational quantum eigensolver is based on the variational principle: The

expectation value of a Hamiltonian � in a state |k(\)〉 parameterized by a set of angles \,

is always greater than or equal to the minimum eigenenergy �0. To see this, let |=〉 be the

eigenstates of �

� |=〉 = �= |=〉. (3.41)

We can then expand our state |k(\)〉 in terms of said eigenstates

|k(\)〉 =
∑
=

2= |=〉, (3.42)
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and take the expectation value of the Hamiltonian in this state to yield

〈k(\) |� |k(\)〉 =
∑
=<

2∗<2=〈< |� |=〉

=
∑
=<

2∗<2=�=〈< |=〉

=
∑
=<

X=<2
∗
<2=�=

=
∑
=

|2= |2�=

≥ �0
∑
=

|2= |2

= �0, (3.43)

which implies that we can minimize over the set of angles \ and arrive at the ground state

energy �0:

min
\
〈k(\) |� |k(\)〉 = �0. (3.44)

Figure 3.2: Schematic of the Variational Quantum Eigensolver.

Using this fact, VQE can be broken down into the following steps, as noted in Figure

3.2:
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1. Prepare the variational state |k(\)〉 on a quantum computer.

2. Measure this circuit in various bases and send these measurements to a classical

computer.

3. Post-processes the measurement data on the classical computer to compute the

expectation value 〈k(\) |� |k(\)〉

4. Vary the parameters \ according to a classical minimization algorithm and send them

back to the quantum computer which runs step 1 again.

This loop continues until the classical optimization algorithm terminates which results in

a set of angles \min that characterize the ground state |q(\min)〉 and an estimate for the

ground state energy �0 = 〈k(\min) |� |k(\min)〉.

3.4.2 Expectation Values

To execute the second step of VQE, we need to understand how expectation values of

operators can be estimated via quantum computers by post-processing measurements of

quantum circuits in different basis. To rotate bases, one uses the basis rotator �f which is

defined for each Pauli gate f to be

�f =



�, if f = -

�(†, if f = .

�, if f = /

. (3.45)

Note the following identity of the basis rotator

�†f/�f = f, (3.46)

45



which follows from the fact that �/� = - and (-(† = . . With this, we see that the

expectation value of an arbitrary Puali-gate f in the state |k〉 can be expressed as a linear

combination of probabilities

�k (f) = 〈k |f |k〉

= 〈k |�†f/�f |k〉

= 〈q|/ |q〉

= 〈q|©«
∑

G∈{0,1}
(−1)G |G〉 〈G |ª®¬|q〉

=
∑

G∈{0,1}
(−1)G |〈G |q〉|2

=
∑

G∈{0,1}
(−1)G%( |q〉 → |G〉), (3.47)

where |q〉 = |�fq〉 and %( |q〉 → |G〉) is the probability that the state |q〉 collapses to the

state |G〉 when measured. This can be extended to any arbitrary Pauli string as follows:

consider the string of Pauli operators % =
⊗

?∈& f? which acts non-trivially on the set of

qubits & which is a subset of the total set of = qubits in the system. Then

�k (%) = 〈k |
©«
⊗
?∈&

f?
ª®¬ |k〉

= 〈k | ©«
⊗
?∈&

f?
ª®¬ ©«

⊗
@∉&

�@
ª®¬ |k〉

= 〈k | ©«
⊗
?∈&

�†f?
/?�f?

ª®¬ ©«
⊗
@∉&

�@
ª®¬ |k〉

= 〈k | ©«
⊗
?∈&

�†f?

ª®¬ ©«
⊗
?∈&

/?
ª®¬ ©«

⊗
@∉&

�@
ª®¬ ©«

⊗
?∈&

�f?

ª®¬ |k〉
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= 〈q | ©«
⊗
?∈&

/?
ª®¬ ©«

⊗
@∉&

�@
ª®¬ |q〉

= 〈q | ©«
⊗
?∈&

∑
G?∈{0? ,1?}

(−1)G?
��G?〉 〈

G?
��ª®¬ ©«

⊗
@∉&

∑
H@∈{0@ ,1@}

��H@〉 〈
H@

��ª®¬ |q〉
= 〈q | ©«

∑
G∈{0,1}=

(−1)
∑

?∈& G? |G〉 〈G |ª®¬ |q〉
=

∑
G∈{0,1}=

(−1)
∑

?∈& G? |〈G |q〉|2

=
∑

G∈{0,1}=
(−1)

∑
?∈& G?%( |q〉 → |G〉), (3.48)

where |q〉 =
���⊗?∈& �f?

k

〉
. Finally, because the expectation value is linear

�k

(∑
<

_<%<

)
=

∑
<

_<�k (%<), (3.49)

one can estimate any observable that can be written as a linear combination of Puali-string

terms.

3.4.3 Measurement

To estimate the probability %( |q〉 → |G〉) from the previous section, one prepares the

state |q〉 on a quantum computer and measures it, and then repeats this process (prepare

and measure) several times. The probability %( |q〉 → |G〉) is estimated to be the number

of times that one measures the bit-string G divided by the total number of measurements

that one makes; that is

%( |q〉 → |G〉) ≈
"∑
<=1

G<

"
, (3.50)
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where

G< =


1 if the result of measurement is G

0 if the result of measurement is not G.
(3.51)

By the law of large numbers [11], the approximation (3.52) approaches equality as " goes

to infinity

%( |q〉 → |G〉) = lim
"→∞

"∑
<=1

G<

"
. (3.52)

As we obviously do not have infinite time nor infinite quantum computers to be run in

parallel, we must truncate our number of measurement " to a finite, but sufficiently large

number. More precisely, for precision n , each expectation estimation subroutine within

VQE requires O(1/n2) samples from circuits of depth O(1) [85].

3.5 Transformations

While many-body nuclear physics operators are written in terms of fermionic operators,

quantum computers work with Pauli operators. Thus, in order to simulate many-body

nuclear physics on a quantum computer, we need a transformation between the two sets

of operators. Several such transformations exist [74] (each with their own advantages and

disadvantages) of which we list three here: Jordan-Wigner, Parity-Basis, and Bravyi-Kitiav.

Transformation Basis # of Operators Locality
Jordan-Wigner Occupation Number O(#) Local
Parity-Basis Parity O(#) Local
Bravyi-Kitiav Mixed O(log(#)) Non-local

Table 3.1: Comparison of basis, number of operators, and locality the of Jordan-Wigner,
parity-basis, and Bravyi-Kitiav transformations.

Jordan-Wigner works in the occupation number representation which is naturally map-

able to the computational basis set of a quantum computer. However, it requires long
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strings of operators. Its main advantage for near-term devices is that it is local and hence

implementable on quantum computers with linear qubit-connectivity. The parity-basis

transformation is similar to Jordan-Wigner except that it works in the parity-basis. The

Bravyi-Kitiav transformation is a mix between the Jordan-Wigner and the parity-basis

transformations that allows for a shorter number of operators but which comes with the

cost of being non-local and hence not suitable for quantum computers with limited qubit-

connectivity. In this work, we use the Jordan-Wigner transformation because, although

it requires more operators (O(#)) it uses the occupation number representation, which is

naturally implementable on a quantum computer. Additionally, it is local, making it more

easily implementable on devices with limited qubit connectivity, which describes most

near-term devices. Here, qubit connectivity refers to which qubits are connected to which

other qubits. Two qubits are connected if one can implement a two-qubit gate between

them.

3.5.1 Jordan-Wigner Transformation

The Jordan-Wigner transformation was originally developed by Pascual Jordan and

Eugene Wigner for one-dimensional lattice models [48]. The transformation is a mapping

between fermionic and Pauli operators which stores information locally in the occupation

number basis. It is given below as

0†? =

(
?−1∏
==1

/=

)
&−? , (3.53)

0? =

(
?−1∏
==1

/=

)
&+?, (3.54)

where

&±? =
-? ± 8.?

2
, (3.55)
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and

f? =

(
?−1⊗
==1

�

)
⊗ f ⊗ ©«

#⊗
==?+1

�
ª®¬ , (3.56)

where f = �, -,. , / is a Pauli operator and # is the number of qubits in the system. To

gain some intuition for the mapping, note that the action on many-fermionic states (2.37)

is preserved by the transformation

0
†
8
|=1 . . . ==〉 =

(
?−1∏
==1

/=

)
&−? |=1 . . . ==〉 = (−1)#? (1 − =?)

��=1 . . . =?−11=?+1 . . . ==
〉
,

(3.57)

08 |=1 . . . ==〉 =
(
?−1∏
==1

/=

)
&+? |=1 . . . ==〉 = (−1)#?=?

��=1 . . . =?−10=?+1 . . . ==
〉
, (3.58)

where #? =
∑?−1
<=1 =<, since

/ |=〉 = (−1)= |=〉 , (3.59)

&− |=〉 = (1 − =) |1〉 , (3.60)

&+ |=〉 = = |0〉 , (3.61)

where = = 0, 1. The mapping holds because it obeys the fermionic anti-commutation

relations (2.39) as verified below: First, consider the case ? = @. In this case, the anti-

commutation relations are

{0?, 0†?} =
{(

?−1∏
==1

/=

)
&+?,

(
?−1∏
==1

/=

)
&−?

}
=

(
?−1∏
==1
{/=, /=}

)
{&+?, &−?} = �? (3.62)

{0?, 0?} =
{(

?−1∏
==1

/=

)
&+?,

(
?−1∏
==1

/=

)
&+?

}
=

(
?−1∏
==1
{/=, /=}

)
{&+?, &+?} = 0 (3.63)

{0†?, 0†?} =
{(

?−1∏
==1

/=

)
&−? ,

(
?−1∏
==1

/=

)
&−?

}
=

(
?−1∏
==1
{/=, /=}

)
{&−? , &−?} = 0, (3.64)
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which follow from the fact that

{&±? , &∓?} =
1
4
{-? ± 8.?, -? ∓ 8.?}

=
1
4
({-?, -?} ∓ 8{-?, .?} ± 8{.?, -?} + {.?, .?} ) = �?, (3.65)

while

{&±? , &±?} =
1
4
{-? ± 8.?, -? ± 8.?}

=
1
4
({-?, -?} ± 8{-?, .?} ± 8{.?, -?} − {.?, .?} ) = 0. (3.66)

Second, consider the case ? ≠ @. Without loss of generality, we can set ? < @. In this

case, the anti-commutation relations are

{0?, 0†@} =
{(

?−1∏
==1

/=

)
&+?,

(
@−1∏
==1

/=

)
&−?

}
(3.67)

=

(
?−1∏
==1
{/=, /=}

)
{&+?, /−? }

©«
@−1∏

<=?+1
{�=, /<}

ª®¬ {�@, &−@ } = 0 (3.68)

{0?, 0@} =
{(

?−1∏
==1

/=

)
&+?,

(
@−1∏
==1

/=

)
&+?

}
(3.69)

=

(
?−1∏
==1
{/=, /=}

)
{&+?, /−? }

©«
@−1∏

<=?+1
{�=, /<}

ª®¬ {�@, &+@} = 0 (3.70)

{0†?, 0†@} =
{(

?−1∏
==1

/=

)
&−? ,

(
@−1∏
==1

/=

)
&−?

}
(3.71)

=

(
?−1∏
==1
{/=, /=}

)
{&−? , /−? }

©«
@−1∏

<=?+1
{�=, /<}

ª®¬ {�@, &−@ } = 0, (3.72)

which follow from the fact that{
&±? , /?

}
=

1
2
{- ∓ 8. , /} = 1

2
({-, /} ∓ 8{., /}) = 0 (3.73)
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3.5.2 Pair Jordan-Wigner Transformation

The Jordan-Wigner transformation is simplified when dealing with pair fermionic

operators:

�†? = &
−
? , (3.74)

�? = &
+
?, (3.75)

#? = �? − /? . (3.76)

Namely, the string of / operators preceding the &± operator is dropped. This is one of the

main advantages of working with the nuclear pairing model. Because it can be written in

terms of pair fermionic operators, its mapping to quantum operators is greatly simplified.

This mapping holds because it obeys the pair fermionic commutation relations (5.6 - 5.8)

as verified below:

[�?, �†@] = [&+?, &−@ ]

=
1
4
[-? + 8.?, -@ − 8.@]

=
1
4
( [-?, -@] − 8[-?, .@] + 8[.?, -@] + [.?, .@] )

= X?@/?

= X?@ (�? − #?), (3.77)

and

[#?, �†@] = [�? − /?, &−@ ]

=
1
2
[�? − /?, -@ − 8.@]

=
1
2
( [�?, -@] − 8[�?, .@] − [/?, -@] + 8[/?, .@] )
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= X?@

(
-? − 8.?

2

)
= X?@�

†
?, (3.78)

and

[#?, �@] = [�? − /?, &+@]

=
1
2
[�? − /?, -@ + 8.@]

=
1
2
( [�?, -@] + 8[�?, .@] − [/?, -@] − 8[/?, .@] )

= X?@

(
-? + 8.?

2

)
= X?@�? . (3.79)
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CHAPTER 4

LIPKIN MODEL

4.1 Introduction

The Lipkin model is an exactly solvable, many-body toy-model, first introduced in

1965 by Lipkin, Meschkov, and Glick [56]. It is often used to test the validity of nuclear

many-body methods. The version we consider here describes pairing interactions between

two levels (with the same 9-value that straddle the Fermi level). The model consists of #

nucleons, distributed over two, Ω-degenerate levels which are indexed by f = ±1; here

Ω = 2 9 + 1. The model is depicted schematically in Figure 4.1 below. The solid lines

represent the available energy levels while the dashed line represents the Fermi-level. The

model is described by the following Hamiltonian

� =
1
2
n
∑
=f

f0†=f0=f −
1
2
+

∑
=<f

0†=f0
†
<f0<f̄0=f̄, (4.1)

where =, < = 1, 2, ...,Ω and f = ±1 (with f̄ = −f). The single-particle energy 4 is the

amount of energy required to move a nucleon between the lower-level (f = −1) which

has energy −n/2 to the upper-level (f = +1) which has energy n/2. Additionally, the

interaction strength + is the energy required to move a pair of nucleons between the lower

and upper levels. Note that in this model, nucleons must move between levels in pairs,

either two in the lower level moving together to the upper or vice verse; this is why it is

Figure 4.1: Schematic of Lipkin Model.
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described as a pairing model.

4.2 Classical Solutions

4.2.1 Full Configuration Interaction

The Lipkin model can be exactly solved via the full configuration interaction (FCI)

method described in subsection (2.4.1). The FCI basis consists of the Slater determinants

|=〉 = |=1 · · · =2Ω〉 = (0†1)
=1 ...(0†2Ω)

=2Ω |0〉 , (4.2)

where =: = 0, 1 is the occupation number of the state with index < = b:/2c and f = 2[:

(mod 2)] − 1, for : = 1, 2, ..., 2Ω. That is, even (odd) values of : index the upper (lower)

level, respectively. For # nucleons, the FCI basis consists of all states |=〉 with a Hamming

weight of #; that is, =: = 1 for # values of : . The size of the basis is thus
(2Ω
#

)
. The

diagonal Hamiltonian matrix elements are given by

〈<1 · · ·<2Ω |� |=1 · · · =2Ω〉 =
n

2
(#+ − #−) , (4.3)

where =: = <: for all : . Here

#+ =
Ω−1∑
:=0

=2:+1, (4.4)

#− =
Ω−1∑
:=0

=2: , (4.5)

are the number of nucleons in the upper and lower levels, respectively. The off-diagonal

matrix elements are given by

〈<1 · · ·<2Ω |� |=1 · · · =2Ω〉 = −
+

2
, (4.6)

where =2:=2 9=2:+1=2 9+1 = GGḠḠ and <2:<2 9<2:+1<2 9+1 = ḠḠGG for exactly one pair (:, 9)

from : ≠ 9 = 0, ...,Ω − 1, and =; = <; for all ; ≠ 2:, 2: + 1, 2 9 , 2 9 + 1. Here, G = 0, 1
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with 0̄ = 1 and 1̄ = 0. The eigenvalues and eigenvectors are then found through direct

diagonalization of the Hamiltonian matrix � which has elements

�=1...=2Ω,=1...=2Ω = 〈<1 · · ·<2Ω |� |=1 · · · =2Ω〉 . (4.7)

The eigenvalue energies are computed for the caseΩ = # = 4 against various values of the

interaction strength + . They are depicted as lines in Figure 4.2. This was the largest value

of Ω that could be solved in a reasonable amount of time on my laptop, underscoring the

exponential time-scaling of the FCI method.

Figure 4.2: The energy eigenvalues (�) of the Lipkin model, are plotted for various
interaction strengths (+). The level degeneracy Ω and particle number # are both four
while the single-particle energy n is one. The different energies 4: for : = 0, 1, ..., 6 are
depicted by different colors, labeled in the plot itself. The solid lines are the results of the
FCI method while the dots are the results of the symmetry method.
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4.2.2 Symmetry Method

Following the procedure of the symmetry method laid out in subsection (2.4.2), we

start by identifying the symmetries of the Lipkin Hamiltonian. The first symmetry is the

particle-number. The particle number operator

# =
∑
=f

0†=f0=f, (4.8)

commutes with the Lipkin Hamiltonian. This can be seen by examining the Hamiltonian

(4.1) and noticing that the one-body part simply counts particles while the two-body term

moves particles in pairs. Thus, the Hamiltonian conserves particle number. To find more

symmetries, we rewrite the Lipkin Hamiltonian in terms of SU(2) operators

� = n�I +
1
2
+ (�2

+ + �2
−), (4.9)

via the mapping

�I =
∑
=

9
(=)
I , (4.10)

�± =
∑
=

9
(=)
± , (4.11)

where

9
(=)
I =

1
2

∑
f

f0†=f0=f, (4.12)

9
(=)
± = 0

†
=±0=∓. (4.13)

These operators obey the SU(2) commutation relations

[�+, �−] = 2�I, (4.14)

[�I, �±] = ±�±, (4.15)
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as justified in Appendix A. Here, the ladder operators are defined as �± = �G ± 8�H. With

this rewriting, we can see that the total spin operator �2, which is defined as

�2 = �2
G + �2

H + �2
I =

1
2
{�+, �−} + �2

I , (4.16)

commutes with the Hamiltonian since the Hamiltonian is written explicitly in terms of

SU(2) operators and �2 is the center of SU(2), meaning that it commutes with all the

group’s elements. Finally, we note that the signature operator

' = 48c�I , (4.17)

commutes with the Hamiltonian, which can be explained as follows: Writing �I as

�I =
1
2
(#+ − #−), (4.18)

where #± =
∑
=± 0

†
=±0=±, allows us to see that it measures half the difference between the

number of particles in the upper and lower levels. Thus, the possible eigenvalues A of the

signature operator are

A =



+1, 9I = 2=

+8, 9I = 2= + 1
2

−1, 9I = 2= + 1

−8, 9I = 2= + 3
2

(4.19)

for = ∈ Z. Note that A is real or imaginary if the number of particles # is even or odd,

respectively. Since, as discussed above, the Lipkin Hamiltonian conserves # , A cannot

jump between being real and imaginary. Additionally, because particles must be moved in
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pairs, and �I measures half the difference between particles in the upper and lower levels,

9I can only change by as

9I →
1
2
[(#+ ± 2=) − (#− ∓ 2=)]

= �I ± 2=. (4.20)

We have determined that the symmetry operators # , �, and ' commute with the Hamilto-

nian. Let their eigenvalues be =, 9 , and A, respectively. These become our new quantum

numbers. Starting with the particle number operator # , because � cannot mix states

from one particle number to another ( 〈# |� |#′〉 = 0 if # ≠ #′) the Hamiltonian matrix

is block diagonal with # blocks. Each block corresponds to a different particle number

(= = 0, 1, ..., 2Ω) with size =2/4+=. This is a direct result of the particle number symmetry.

We now move on to the total-spin operator. Because the Hamiltonian cannot mix states

with different �, we have that 〈� |� |�′〉 = 0 for � ≠ �′. Now, for a given # , we label our

basis states | 9 9I〉 where 9I = − 9 ,− 9 + 1, ..., 9 − 1, 9 . The non-zero Hamiltonian matrix

elements are

〈��I | �
���′�′I〉 = X�� ′n 9I, (4.21)

〈��I + 2| � |��I〉 = −
+

2
√
[ 9 ( 9 + 1) − 9I ( 9I + 1)]

×
√
[ 9 ( 9 + 1) − ( 9I + 1) ( 9I + 2)], (4.22)

〈��I − 2| � |��I〉 = −
+

2
√
[ 9 ( 9 + 1) − 9I ( 9I − 1)]

×
√
[ 9 ( 9 + 1) − ( 9I − 1) ( 9I − 2)], (4.23)

since the operators that make up the Hamiltonian act on the basis states as follows:

�I |��I〉 = 9I |��I〉 , (4.24)
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�± |��I〉 =
√
9 ( 9 + 1) − 9I ( 9I ± 1) |��I ± 1〉 , (4.25)

Note that the maximum possible value of 9I is #/2 which would correspond to the state

where all # particles are spin up:

9I |↑ · · · ↑〉 =
1
2

∑
<f

#<f |↑ · · · ↑〉 =
#

2
. (4.26)

Therefore, the maximum value of 9 is also #/2 and thus its possible values are 9 =

#/2, #/2 − 1, ..., 1 if # is even and 9 = #/2, #/2 − 1, ..., 1/2 if # is odd. For each 9 ,

the possible values of 9I are 9I = 9 , 9 − 1, ...,− 9 . Thus, there are 2 9 + 1 possible values

of 9I for each 9 . This implies that each =-block of the Hamiltonian matrix is itself a block

diagonal matrix consisting of b#/2c blocks. Each block corresponds with a total spin

value ( 9 = #/2, #/2 − 1, ...) and has length 2 9 + 1. This is the direct result of the total

spin symmetry. Finally, we move to the signature '. Each 9-block is again, itself a block

diagonal with two blocks (A = ±1 if # is even or A = ±8 if # is odd) which have size 9 and

9 +1, respectively. The energies are computed by direct diagonalization of the Hamiltonian

matrix we’ve been describing above.

One can see in Figure 4.2 that the energies computed via the symmetrymethod (depicted

as block dots) exactly match the results of the FCI method. This is a demonstration that

the symmetry method is indeed a valid, exact solution. The symmetry method is also used

to solve the Lipkin Hamiltonian for the case of Ω = # = 10. With the FCI method, this

would involve diagonalizing a size
(20
10
)
∼ 105, square matrix. But, with the symmetry

method, one need only diagonalize several smaller square matrices, the largest of which

is size 30, which is 9 ( 9 + 1) for 9 = #/2. The eigenvalues of the Lipkin Hamiltonian for

single-particle energy n = 1 are plotted against various pairing strengths + in Figure 4.3.
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Figure 4.3: The energy eigenvalues (�) of the Lipkin model, computed via the symmetry
method, are plotted for various interaction strengths (+). The level degeneracy Ω and
particle number # are both ten while the single-particle energy n is one. The solid and
dashed lines correspond to signature numbers A = +1 and A = −1, respectively. The colors
yellow, magenta, cyan, red, green, and blue correspond to 9 = 0, 1, ..., 5, respectively.

Each color represents a different value of 9 . For example, the eigenvalue energies

plotted in blue were the result of diagonalizing the 9 = 5 block. The lines are solid and

dashed to correspond to the signature A = +1 and A = −1, respectively. We note that for

+ = 0, there are 11 = # + 1 values that the energies can take, corresponding to the fact

that the Lipkin model with no interaction strength is simply n�I; thus the Hamiltonian

simply counts half the difference between the number of particles in the two levels, a

number which has 11 possible values: 9I = 0,±1,±2,±3,±4,±5. However, as the pairing

strength is turned on, the energies start to bend and split. We notice that as + increase, the

energies for A = +1 and A = −1 start to pair up and equal one another, their states becoming

degenerate.
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4.2.3 Hartree-Fock Method

As mentioned in subsection 2.4.3, the ansatz we use for the variational method is the

particle-number conserving product state which, for the Lipkin model, is labeled as

|g〉 = exp

(∑
=

g=+=−0
†
=+0=−

)
#∏
:=1

0
†
:
|0〉 , (4.27)

where g=+=− is a variational parameter. This is motivated by Thouless’s theorem which

states that such an ansatz can rotate any Slater determinant into any other. Since we are only

considering single Slater determinants, this is exactly what we desire. Here, we consider

the half-filled case # = Ω. Thus, we can start the ansatz in the state

#∏
:=1

0
†
:
|0〉 = |� − �〉 . (4.28)

However, because the Lipkin Hamiltonian treats all (=+, =−) pairs equivalently (the two-

body coefficient + is independent of = and f) we can set

g=+=− = g, (4.29)

a new variational parameter, for all =. With this, the normalized ansatz becomes

|g〉 = (1 + |g |2)�4g�+ |0〉 , (4.30)

where the normalization is determined in Appendix B. We now calculate the expectation

value of the Hamiltonian in the ansatz. Using Appendix C, we derive

� (g) = 〈g |� |g〉 = Ω
2

n
|g |2 − 1
|g |2 + 1

−+ (Ω − 1) g2 + ḡ2(
|g |2 + 1

)2

 ,
= −1

2
nΩ

(
cos \ + j

2
sin2 \ cos 2q

)
, (4.31)
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Figure 4.4: The expectation value of the Lipkin Hamiltonian in the SU(2) coherent state
ansatz (4.30) is plotted vs theta for various values of j which are distinguished by different
colors, labeled on the plot itself. The black dots represent the minimum energy (4.38).

where we’ve defined the coupling strength j to be

j =
+

n
(Ω − 1). (4.32)

This energy profile � (g) = 〈g |� |g〉 is plotted for various values of j in Figure 4.4. The

plot shows the symmetry breaking that occurs when j becomes greater than 1. For j ≤ 1,

there is only one \min (namely \min = 0). However, for j > 1, there exists two values of

\min which give the same, correct ground-state energy, and are symmetric about \ = 0. To

minimize � (g), we first set its derivatives to zero, resulting in the following expressions:

0 =
m�

m\
=

1
2
nΩ sin \ (1 − j cos \ cos 2q), (4.33)

0 =
m�

mq
=

1
2
nΩj sin2 \ sin 2q, (4.34)

the first of which implies either \min = 0, c or cos \min cos 2qmin = 1/j and the second

of which implies either \min = 0, c or qmin = 0, c/2. Second, we demand that its second

derivatives are positive

0 <
m2�

m\2 =
1
2
nΩ(cos \ − j cos 2\ cos 2q), (4.35)
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0 <
m2�

mq2 = nΩj sin2 \ cos 2q, (4.36)

which implies (assuming, without loss of generality, that j > 0) −c/3 < \min < c/3 and

qmin < c/4. And third, we set the cross-derivative equal to zero

0 =
m2�

m\mq
= nΩj cos 2\ sin 2q, (4.37)

which implies \min = 0, c. Combining all these conditions implies

\min =


0, if 0 < j ≤ 1

cos−1
(

1
j

)
, if 1 < j

, (4.38)

qmin = 0. (4.39)

Theminimumvariational parameter is thus, gmin = g(\min, qmin)where g(\, q) = tan(\/2)4−8q,

as defined in Appendix C. Finally, we plug these minimum parameters (4.38 and 4.39)

back into � (g) (4.31) to find the Hartree-Fock ground state energy to be

�0 =


− n2Ω, if 0 < j < 1

− n4Ω
(
j + 1

j

)
, if 1 < j.

(4.40)

The Hartree-Fock method is bench-marked against the exact answer in Figure 4.5. The

Hartree-Fock calculated ground-state energy (4.40) is plotted against various values of the

coupling strength j. Alongside it we plot the exact ground state energy computed using

the symmetry method. We more precisely inspect the performance of the Hartree-Fock

method by plotting the relative error between the Hartree-Fock and exact energies in Figure

4.6. We note that the two methods start in exact agreement at j = 0. The magnitude of

the relative error increases until just after 1. It then decreases as j increases past 1 and
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Figure 4.5: The Hartree-Fock and exact energies of the Lipkin are plotted against various
values of j.

Figure 4.6: The relative difference between the Hartree-Fock and exact energies is plotted
against various values of j.

seems to asymptotically approach a small error. Thus, one could say that the Hartree-Fock

method is a good approximation for either very small or very large j.

4.3 Quantum Solutions

To solve the Lipkin model with a quantum computer, the first step is to map the system

to a set of qubits. We’ll restrict ourselves here to the half-filled case where the number of

particles # equals the degeneracy of the states Ω. One could assign each possible state
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(=, f) to a qubit such that the qubit being in the state |1〉 or |0〉 would imply that the state

(=, f) is occupied or unoccupied, respectively. This mapping scheme (which we’ll call

occupation mapping) requires 2Ω qubits. Additionally, any ansatz that would restrict the

minimization search to the correct subspace of constant Hamming weight # (since the

number of particles # is conserved) would necessitate the use of at least four-qubit gates.

This is because moving a pair of particles in this scheme would require two annihilation

operators on the states from which the pair particles move and two creation operators on

the states to which the pair of particles move. That is, it takes a four-qubit gate to change

between the states |1100〉 and |0011〉, for example. And, as discussed in the chapter of

quantum computing, it is only known how to efficiently decompose up to two-qubit gates.

Thus the involvement of four qubit gates would necessitate a longer depth circuit than one

involving only two and one qubit gates, creating more noise and less accurate results.

However, because there are only two energy levels in the Lipkin model, another natural

mapping is possible. In this mapping scheme (which we’ll call level mapping) each doublet

((=, +1), (=,−1)) would be assigned a qubit such that the qubit being in the state |0〉 or |1〉

would imply that the particle is in the (=, +1) or (=,−1) state, respectively. Note that these

are the only two possible configurations of the doublet as we are restricting ourselves to the

half-filled case and the Lipkin Hamiltonian only moves particles between energy levels, not

degenerate states. Thus the level mapping only requires Ω qubits which is half that of the

occupation mapping. Additionally, any ansatz that would restrict the minimization search

to the correct subspace of constant Hamming weight # requires at most, only two-qubit

gates. This is because moving a pair of particles in this scheme only changes the state

of two doublets (and therefore qubits). That is, it only takes a two-qubit gate to change
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between the states |00〉 and |11〉, for example. As an efficient decomposition two-qubit

gates is known, the ansatz for this mapping would be shorter (and thus less noisy) than that

of the previous mapping.

One could imagine a third mapping scheme which would require even less qubits in

which each of the possible states in the spin basis |��I〉 is mapped to a single qubit. In

this spin mapping, there are only 2� + 1 possible states (since �I = −�,−� + 1, ..., � − 1, �)

for each value of �. And, since the Hamiltonian is block diagonal (with a different block

for each �) the eigenvalues of the Hamiltonian are simply the eigenvalues of each block,

which may be calculated separately. Since the maximum value of � is �max = #/2, the

largest number of qubits would be 2�max + 1 = # + 1. However, b#/2c different circuit

would need to be used for minimization for all possible values of �, to explore the entire

Hilbert space. (The minimum of the set of minimum energies that each circuit finds would

be the ground state energy of the entire system.) This increases, linearly, the amount of

time required to find the ground state energy.

After reviewing the three possible mappings, it is our view that the level mapping [17]

is the best suited for NISQ era devices given its low qubit count and ability to search the

entire relevant Hilbert space with one circuit (which reduces time to solution) and the fact

that at most, only two-qubit gates are required of the ansatz, leading to shorter depth (and

thus less noisy) circuits. With this mapping, the Hamiltonian takes the form utilized in the

symmetry method (subsection 4.2.2) which was given by equation (4.9) as

� = n�I +
1
2
+ (�2

+ + �2
−). (4.41)

Plugging the mapping from the total � operators to individual 9 operators (equations 4.12
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and 4.13) yields

� = n
∑
=

9
(=)
I +

1
2
+


(∑
=

9
(=)
+

)2

+
(∑
=

9 (=)−

)2 (4.42)

= n
∑
=

9
(=)
I +

1
2
+

∑
=,<

(
9
(=)
+ 9

(<)
+ + 9 (=)− 9 (<)−

)
(4.43)

= n
∑
=

9
(=)
I + 2+

∑
=<<

(
9
(=)
G 9

(<)
G − 9 (=)H 9

(<)
H

)
, (4.44)

where we’ve used the definitions

9
(=)
± = 9

(=)
G ± 8 9 (=)H . (4.45)

To convert to Pauli matrices, we’ll make the transformations

9
(=)
G → -=/2, (4.46)

9
(=)
H → .=/2, (4.47)

9
(=)
I → /=/2, (4.48)

which preserves the SU(2) commutation relations (4.14 and 4.15) and thus is allowable.

This transforms our Hamiltonian into

� =
1
2
n

=∑
:=1

/: +
1
2
+

#∑
8≠ 9=1
(-:- 9 − .:. 9 ). (4.49)

With this form, we can clearly see that the first (one-body) term in the Hamiltonian returns

the energy −n/2 or +n/2 if the qubit representing the particle of a doublet is in the ground

(|1〉) or excited (|0〉) state, respectively. The action of the second (two-body) term in the

Hamiltonian can be determined by noting that

1
2
(-- − .. ) |00〉 = |11〉 , (4.50)
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1
2
(-- − .. ) |01〉 = 0, (4.51)

1
2
(-- − .. ) |10〉 = 0, (4.52)

1
2
(-- − .. ) |11〉 = |00〉 . (4.53)

That is, the two-body term moves a pair of particles between the ground states |00〉 and the

excited states |11〉 of their respective doublets.

To construct an efficient ansatz, we must determine the subspace within which the

Hamiltonian lives. To begin, note that particles are only ever moved between energy levels

in pairs. This implies that all possible states have a Hamming weight of constant parity

(odd or even); this is the same as the signature A being conserved. Further, note that the

Hamiltonian’s coefficients (n and +) are state independent (do not depend on the indices =

or <) as the states labeled by these indices are degenerate and thus have the same energy

level. Thus, the Hamiltonian treats all states with the same number of excited particles

(Hamming weight of the state) as the same. Therefore, the following ansatz forms exactly

cover the subspace within which the #-degenerate Hamiltonian explores:

|keven〉 =
b=/2c∑
:=0

22:
���=

2:
〉
, (4.54)

|kodd〉 =
b=/2c∑
:=0

22:+1
���=

2:+1
〉
. (4.55)

Here
���=

:

〉
represents a Dicke state which is defined as equal superposition of all =-qubit

states with Hamming weight : . That is���=
:

〉
=

1√(=
:

) ∑
G∈ℎ=

:

|G〉 , (4.56)
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where ℎ=
:
= {|G〉 | l(G) = =, wt(G) = :}. One way to prepare these ansatzes is to do so

exactly as it is known how to deterministically prepare Dicke states with linear depth [9].

The reference provides an algorithm for preparing a set of gates *=
:
that prepares a Dicke

state from a product state of Hamming weight :; that is

*=
: |1〉

⊗: |0〉⊗=−: =
���=

:

〉
. (4.57)

It then describes how to one can create an arbitrary superposition of Dicke states, which

we modify here to restrict ourselves to a Hamming weight of constant parity. The circuit

to construct such a state (for the : = 6 case, as an example) is given below

|0〉 'H (\0) • 'I (q0)

*=
:

|0〉 •

|0〉 'H (\1) • 'I (q1)

|0〉 •

|0〉 'H (\2) • 'I (q2)

|0〉

(4.58)

The 'H gates and CNOT gates prepare an arbitrary real superposition of product states with

even Hamming weight :; then the 'I gates add arbitrary phases to each of the states

|000000〉 → cos(\0/2) |000000〉

+ sin(\0/2) cos(\1/2)48\0 |110000〉

+ sin(\0/2) sin(\1/2) cos(\2/2)48(\0+\1) |111100〉

+ sin(\0/2) sin(\1/2) sin \2/2)48(\0+\1+\2) |111111〉 . (4.59)
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Finally,*=
:
converts each product state to its corresponding Dicke state. Thus, all together

the circuit acts as

|000000〉 → cos(\0/2)
���6

0
〉

+ sin(\0/2) cos(\1/2)48\0
���6

2
〉

+ sin(\0/2) sin(\1/2) cos(\2/2)48(\0+\1)
���6

4
〉

+ sin(\0/2) sin(\1/2) sin \2/2)48(\0+\1+\2)
���6

6
〉
. (4.60)

The circuit (4.58) can be extended naturally for any even value of : . For odd values of

: , one need simply add a single-qubit to the top of the circuit for : − 1 and apply the

- gate to it. Although this ansatz has linear depth, the circuit for *=
:
involves several

double-controlled gates which involve the usage of several CNOT gates to decompose. As

the CNOT gate is often the noisiest gate in NISQ era quantum computers, it is best to

minimize their use.

4.4 Results

In this section, we test out ansatz 4.58 for the Lipkin model with parameters. Ω = 4,

4 = 1 and E = 1. One can see if Figure 4.7 that running VQE with our ansatz matches

the exact energy for the most part, and always performs better than Hartree-Fock. Because

the simulations of VQE were noiseless, we hypothesize that the slight variations in some

of the VQE dots (red) off of the exact energy line (blue) could be due to the minimization

algorithm failing to converge properly. Finding a set of initial parameters that would

initialize us to a state with a large overlap with the ground state would be beneficial.
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Figure 4.7: Comparison of energies for the Lipkin model calculated through direct diago-
nalization (Exact), Hartree-Fock (HF), and the variational quantum eigensolver (VQE).

4.5 Conclusion

In this section, we introduced the Lipkin model which serves as a toy model in nuclear

physics with which to benchmark new techniques. We first solve the problem through var-

ious classical avenues including the full configuration interaction, symmetry, and Hartree-

Fock methods. We then discussed the different ways to map the problem from its fermionic

space to the spin space with which which quantum computers deal. We gave a novel way

to construct one form of the ansatz for the model, implemented it as the ansatz for VQE

and compared the quantum results to the classical results. This section served as a first

example of how quantum computers can be used to solve a toy nuclear pairing model.
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CHAPTER 5

PAIRING MODEL

5.1 Introduction

There exists an intriguing phenomenon in physics called pairing in which fermions

"pair up", meaning that they move close together in space and tend to move energy levels

together. The phenomenon of nuclear pairing can be understood from a simple symmetry

argument. Since nucleons are fermions, the overall wavefunction of a pair nucleons

must be anti-symmetric. Any such wavefunction can be written as the product of three

separable wavefunctions: a spatial function, a spin function, and an isospin function.

Pairing occurs between two fermions of opposite spin, which necessitates that the spin

(( = 0) function of their combined system be anti-symmetric. Additionally, pairing occurs

most strongly between two nucleons of the same type (proton-proton or neutron-neutron)

which is described by an isospin of ) = 1, necessitating that the isospin function of

their combined system be symmetric. The spin function being anti-symmetric and the

isospin function being symmetric implies that the spatial function must be symmetric (to

preserve the overall anti-symmetry of the pair). This occurs when the angular momentum

component of the spatial wavefunction is zero, ; = 0, resulting in a wavefunction whose

density has a strong peak near A = 0, where A is the separation between the two nucleons.

Thus, the two nucleons tend to stick close together and can be approximated as a pair that

moves together. Pairing occurs most strongly when � = 0 because � = ( + ! and we

determined above that ! = ( = 0. Because of this, a large energy gap is produced between

the � = 0 and � > 0 states by the nuclear force between identical nucleons. Therefore,

one may approximate such a system via the so-called pairing interaction which only acts
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on the paired � = 0 state [22]. As we are approximating the residual interaction between

identical nucleons, the pairing approximation is only suitable for semi-magic nuclei with

valence nucleons of a single type [47]. Indeed, this paring approximation has been used

to approximate such systems in heavy nuclei [27]. It will be seen that models that include

only pairing interactions in their two-body forces are computationally simpler to solve and

yet, as just mentioned, still applicable to real-world systems. Thus, such models serve as an

area of interest for applications of NISQ era quantum computing. The pairing interaction

was first introduced by Racah for atomic physics [65]. The algebra of identical nucleon

pairs (isospin C = 0) is found to be isomorphic to SU(2) and is thus called quasi-spin.

This is advantages for quantum computers whose qubits live in SU(2). One of the earliest

applications of pairing was by Bardeen, Cooper, and Schrieffer in their famous model

(BCS) of superfluidity in condensed matter in 1957 [7]. The idea was adapted to pairing

in nuclei by Bohr, Mottelson, and Pines in 1958 [12].

In 1963, R.W. Richardson proposed a model consisting of fermions occupying non-

degenerate energy levels which interact solely through the pairing force ([1] and [66]). We

refer here to his model as the pairing model. It consists of %, non-degenerate energy levels,

occupied by # pairs of fermions. Each pair consists of two fermions of opposite spin,

occupying the same energy level. It’s Hamiltonian is given by

�? =
∑
?f

3?0
†
?f0?f +

∑
?@

6
?
@0
†
?+0
†
?−0@−0@+. (5.1)

Here, the indices ? and @ sum over the set {0, ..., % − 1}, representing the various energy

levels. Additionally, the index f sums over the set {−, +}, representing the spin of each

fermion. The coefficient 3? represents the single particle energy corresponding to energy

level ?. The coefficients 6?@ are the so-called pairing strengths which represent the energy
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Figure 5.1: Example schematic of the paring model with % = 4 energy levels and # = 2
pairs of fermions. Shown are four energy levels with single-particle energies 30, 31, 32, 33
of which the bottom two are initially filled by pairs of fermions. The dashed line represents
the Fermi level which divides the energy levels with single-particle energies 30 and 31 (the
hole states) from those with 32 and 33 (the particle states).

associated with moving a pair of fermions from the @th to the ?th energy level. We will

consider various sets of pairing strengths in this section. An example of the model is

represented schematically in Figure 5.1.

To simplify the pairing model, its Hamiltonian can be rewritten in terms of pairing

operators as

�? =

=∑
?=1

3?#? +
=∑

?,@=1
6
?
@ �
†
?�@ . (5.2)

Here, #? is the pair number operator which counts the number of fermions occupying the

?th energy level. Furthermore, �†? and �? are the pair fermionic creation and annihilation

operators, respectively, which create and annihilate pairs of fermions on the ?th energy

level. These operators are defined in terms of fermionic creation and annihilation operators

as follows

#? =
∑
f

0†?f0?f (5.3)

�†? = 0
†
?+0
†
?− (5.4)

�? = 0?−0?+, (5.5)
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where f sums over the set {+,−}. The purpose of this rewriting becomes clear once

one notices that these operators satisfy the SU(2) algebra described by the following

commutation relations

[�?, �†@] = X?@ (1 − #?), (5.6)

[#?, �†@] = 2X?@�†?, (5.7)

[#?, �@] = −2X?@�? . (5.8)

which are proven in Appendix F.

5.2 Classical Solutions

Here we solve the pairing model via various classical techniques against which we will

benchmark our quantum techniques.

5.2.1 Exact Solution

If one restricts the pairing strength coefficients of the pairing model Hamiltonian (5.2)

to be constant

� =

%∑
?=1

3?#? + 6
%∑

?,@=1
�†?�@, (5.9)

then there exists an exact solution, discovered by R.W. Richardson in 1963 [1]. The ansatz

that solves the model with # pairs is given by

|Ψ〉 =
#∏
U=1

�†U |0〉 , (5.10)

where

�†U =
%∑̂
=1

1
23^ − �U

�†^ , (5.11)
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which, when plugged into the Schrodinger equation leads to a set of equations (the Richard-

son equations) which we shall re-derive here [46]. First, plugging the ansatz 5.10 into the

Schrodinger equation and rewriting, yields

� |Ψ〉 = � |Ψ〉

= �

#∏
U=1

�†U |0〉

= [�,
#∏
U=1

�†U] |0〉 , (5.12)

since � |0〉 = 0. The commutator can be expanded as follows

[�,
#∏
U=1

�†U] =
#∑
U=1

©«
U−1∏
V=1

�
†
V

ª®¬ [�, �†U] ©«
#∏

W=U+1
�†W

ª®¬
 , (5.13)

the inner commutator of which is given by

[�, �†U] = [
%∑
?=1

3?#? + 6
%∑

?,@=1
�†?�@,

%∑̂
=1

1
23^ − �U

�†^] (5.14)

=

%∑̂
=1

1
23^ − �U

©«
%∑
?=1

3? [#?, �†^] + 6
%∑

?,@=1
[�†?�@, �†^]

ª®¬ (5.15)

=

%∑̂
=1

1
23^ − �U

©«
%∑
?=1

2X?^3?�†? + 6
%∑

?,@=1
X@^�

†
? (1 − #@)

ª®¬ (5.16)

=

%∑̂
=1

1
23^ − �U

©«23^�†^ + 6
%∑
?=1

�†? (1 − #^)
ª®¬ (5.17)

=

%∑̂
=1


(

�U

23^ − �U
+ 1

)
�†^ +

6

23^ − �U

%∑
?=1

�†? (1 − #^)
 (5.18)

= �U�
†
U +

%∑
?=1

�†?

(
1 + 6

%∑̂
=1

1 − #^
23^ − �U

)
. (5.19)
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Plugging this back into the Schrodinger equation (5.12) and applying it to the vacuum

yields

� |Ψ〉 = [�,
#∏
U=1

�†U] |0〉

=

#∑
U=1

©«
U−1∏
V=1

�
†
V

ª®¬
�U�†U +

%∑
?=1

�†?

(
1 + 6

%∑̂
=1

1 − #^
23^ − �U

) ©«
#∏

W=U+1
�†W

ª®¬
 |0〉

= � |Ψ〉

+
#∑
U=1



(
1 +

%∑̂
=1

6

23^ − �U

)
%∑
?=1

�†?

 ©«
#∏

V=1,V≠U
�
†
V

ª®¬
 |0〉

−
#∑
U=1

©«
U−1∏
V=1

�
†
V

ª®¬

(
%∑̂
=1

6

23^ − �U
#^

)
%∑
?=1

�†?

 ©«
#∏

W=U+1
�†W

ª®¬
 |0〉 , (5.20)

where we’ve defined � =
∑=
U=1 �U and used the definition of |Ψ〉 (5.10) to simplify the first

term, which implies that the Schrodinger equation is satisfied if
#∑
U=1


(
1 +

%∑̂
=1

6

23^ − �U

)
#∏

V=1,V≠U
�
†
V

 |0〉
−

#∑
U=1

©«
U−1∏
V=1

�
†
V

ª®¬
(
%∑̂
=1

6

23^ − �U
#^

) ©«
#∏

W=U+1
�†W

ª®¬
 |0〉 = 0, (5.21)

where we’ve divided through by the constant term
∑
? �
†
?. Note that the second term from

above can be re-written as
#∑
U=1

©«
U−1∏
V=1

�
†
V

ª®¬
(
%∑̂
=1

6

23^ − �U

)
[#^,

#∏
W=U+1

�†W]
 |0〉 , (5.22)

since #^ |0〉 = 0. We’ll now expand the commutator from the above expression

[#^,
#∏

W=U+1
�†W] =

#∑
W=U+1

©«
W−1∏
`=U+1

�†`
ª®¬ [#^, �†W] ©«

#∏
a=W+1

�†a
ª®¬
 , (5.23)
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the inner commutator of which is

[#^, �†W] =
%∑
_=1

1
23_ − �W

[#^, �†_] (5.24)

=

%∑
_=1

2
23_ − �W

X^_�
†
^ (5.25)

=
2

23^ − �W
�†^ . (5.26)

Plugging this back into the second term (5.22) yields

#∑
U=1

©«
U−1∏
V=1

�
†
V

ª®¬
#∑

W=U+1

©«
W−1∏
`=U+1

�†`
ª®¬
(
%∑̂
=1

26
(23^ − �U) (23^ − �W)

�†^

) ©«
#∏

a=W+1
�†a

ª®¬

 |0〉 .

(5.27)

Applying partial fraction decomposition to the inner sum

1
(23^ − �U) (23^ − �W)

=
1

�U − �W

(
1

(23^ − �U)
− 1
(23^ − �W)

)
, (5.28)

turns the second term (5.27) into

#∑
U=1

©«
U−1∏
V=1

�
†
V

ª®¬
#∑

W=U+1

©«
W−1∏
`=U+1

�†`
ª®¬
[

26
�U − �W

(�†U − �†W)
] ©«

#∏
a=W+1

�†a
ª®¬

 |0〉 , (5.29)

which can be written as
#∑
U=1

#∑
W=U+1


(

26
�U − �W

) ©«
#∏

V=1,V≠W
�†a

ª®¬
 |0〉

−
#∑
U=1

#∑
W=U+1


(

26
�U − �W

) ©«
#∏

V=1,V≠U
�†a

ª®¬
 |0〉 . (5.30)

Switching the order of summation of the first term and swapping indices U ↔ W followed

by merging sums yields

−
#∑
U=1

U−1∑
W=1


(

26
�U − �W

) ©«
#∏

V=1,V≠U
�†a

ª®¬
 |0〉
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−
#∑
U=1

#∑
W=U+1


(

26
�U − �W

) ©«
#∏

V=1,V≠U
�†a

ª®¬
 |0〉 (5.31)

= −
#∑
U=1

#∑
W=1,W≠U


(

26
�U − �W

) ©«
#∏

V=1,V≠U
�†a

ª®¬
 |0〉 . (5.32)

Finally, plugging this back into the condition that satisfies the Schrodinger equation (5.21)

yields

#∑
U=1

©«1 +
%∑̂
=1

6

23^ − �U
+

#∑
W=1,W≠U

26
�U − �W

ª®¬ ©«
#∏

V=1,V≠U
�
†
V

ª®¬
 |0〉 = 0, (5.33)

which yields the Richardson equations

1 +
%∑̂
=1

6

23^ − �U
+

#∑
V=1,V≠U

26
�U − �V

= 0, (5.34)

where we’ve relabeled W → V. This is a set of coupled, non-linear equations from which

one solves for the terms �U and sums them to find the energy; recall

� =

#∑
U=1

�U . (5.35)

However, the Richardson equations are notoriously difficult to solve, due to the presence

of singularities. Additionally, the pairing model can be solved exactly [60] if the single-

particle energies are degenerate (3? = 3 for all ?) and the pairing strength is separable

(6?@ = 6?6@ for all ? and @); that is

� = 3

%∑
?=1

#? +
%∑

?,@=1
6?6@�

†
?�@ (5.36)

However, no exact solution has been discovered for the pairing model with both arbitrary,

non-degenerate single-particle orbits 3? and arbitrary pairing strengths 6?@ (5.2), save for

the case (% = 2) with only two-energy levels [5]. This lack of an exact solution for the

arbitrary case is what motivates the usage of computational techniques.
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5.2.2 Full Configuration Interaction

The pairing model can be solved through exact diagonalization. In this method, the

pairing Hamiltonian written in terms of pair fermionic operators (5.2) is represented as a

matrix with elements

�?8 ? 9 ,@8@ 9
= 〈Φ@8@ 9

|� |Φ?8 ? 9
〉

= X?8@8X? 9@ 9
[2(?8 + ? 9 ) + 6?8? 9

]

+ X?8@8 (1 − X? 9@ 9
)6? 9

@ 9
+ (1 − X?8@8 )X? 9@ 9

6
?8
@8 , (5.37)

where |Φ?8 ? 9
〉 = 0†?80

†
? 9
|0〉. Here, 8 > 9 and |0〉 is the true vacuum. This Hamiltonian

matrix is then diagonalized, its eigenvalues equal to the possible energies of the system.

5.2.3 Pair CCD

In this section, we apply the method of pair coupled cluster doubles theory (pCCD)

to the pairing model. The pCCD equations (2.161 and 2.162) for the pairing model

Hamiltonian 5.2 become

� = 〈Φ0 |�? |Φ0〉 , (5.38)

0 = 〈Φ08 |�? |Φ0〉 , (5.39)

where the similarity transformed pairing Hamiltonian is

�? = 4
−)?�?4

)? , (5.40)

which can be expanded via the BCH identity as

�? = �? +
[
�?, )?

]
+ 1

2
[ [
�?, )?

]
, )?

]
+ · · · . (5.41)
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Though this expression is infinite, it can, in this case, be truncated to just the first three

terms. This is because, after the expanded form of the similarity transformed pairing

Hamiltonian (5.41) is inserted into the pCCD equations (5.38 and 5.39), one can truncate

the resulting expressions by noting that only certain terms in the infinite sum (those which

can be fully contracted) are non-zero. The truncated pCCD equations are

� = 〈Φ| �? ++? ++?)? |Φ〉 , (5.42)

0 = 〈Φ08 |+? + �?)? ++?)? +
1
2
+?)

2
? − )?+?)? |Φ〉 , (5.43)

where

�? =
∑
?

3?#?, (5.44)

+? =
∑
?@

6
?
@ �
†
?�@, (5.45)

with the partitioning of the pairing model Hamiltonian a single-body and two-body term:

�? = �? + +?. We can save ourselves some work by recognizing that the first two terms

of the truncated pCCD energy equation (5.42) equal the reference energy, and hence the

pCCD correlation energy equation is

Δ� = 〈Φ|+?)? |Φ〉 . (5.46)

Using Wick’s theorem, we calculate the truncated pCCD energy equation (5.42)

〈Φ|+?)? |Φ〉 =
∑
?@80

6
?
@ C
0
8 〈Φ|�†?�@�†0�8 |Φ〉

=
∑
?@80

6
?
@ C
0
8 〈Φ|0

†
?+0
†
?−0@−0@+0

†
0+0
†
0−08−08+ |Φ〉
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=
∑
?@80

6
?
@ C
0
8 X?8X@0

=
∑
80

680C
0
8 . (5.47)

Turning our attention now to the truncated pCCD amplitude equation (5.42), we start with

〈Φ08 |+? |Φ〉 =
∑
?@

6
?
@ 〈Φ|�†8 �0�

†
?�@ |Φ〉

=
∑
?@

6
?
@ 〈Φ|0†8+0

†
8−00−00+0

†
?+0
†
?−0@−0@+ |Φ〉

=
∑
?@

6
?
@ X?0X@8

= 608 . (5.48)

To compute the next term 〈Φ0
8
|�?)? |Φ〉, instead of writing out all possible contractions, it

will be easier to compute the un-truncated term from which the this term comes, namely

〈Φ0
8
| [�?, )?] |Φ〉. We do so by using the commutation relations (5.7 and 5.8) as follows

〈Φ08 | [�?, )?] |Φ〉 =
∑
? 91

3?C
1
9 〈Φ08 | [#?, �

†
1
� 9 ] |Φ〉

=
∑
? 91

3?C
1
9 〈Φ08 | ( [#?, �

†
1
] � 9 − �†1 [#?, � 9 ] ) |Φ〉

= 2
∑
? 91

3?C
1
9 (X?1 − X? 9 ) 〈Φ08 | �

†
1
� 9 |Φ〉

= 2
∑
9 1

(31 − 3 9 )C19 〈Φ| �
†
8
�0�

†
1
� 9 |Φ〉

= 2
∑
9 1

(31 − 3 9 )C19 〈Φ|0
†
8+0
†
8−00−00+0

†
1+0
†
1−0 9−0 9+ |Φ〉

= 2
∑
9 1

(31 − 3 9 )C19 X8 9X01
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= 2(30 − 38)C08 . (5.49)

The same is true for the next term 〈Φ0
8
|+?)? |Φ〉 and so it will be calculated analogously

〈Φ08 | [+?, )?] |Φ〉 =
∑
?@ 91

6
?
@ C
1
9 〈Φ08 | [�†?�@, �

†
1
� 9 ] |Φ〉

=
∑
?@ 91

6
?
@ C
1
9 〈Φ08 | (�†?�

†
1�����[�@, � 9 ] + �†? [�@, �†1] � 9

+ �†
1
[�†?, � 9 ] �@ +�����[�†?, �†1] � 9 �@) |Φ〉

=
∑
?@ 91

6
?
@ C
1
9 〈Φ08 | (X@1�†? (1 − #1)� 9 + X? 9 �

†
1
(# 9 − 1)�@) |Φ〉

=
∑
?@ 91

6
?
@ C
1
9 〈Φ08 | (X@1�†? (1 − #1)� 9 + X? 9 �

†
1
�@ (# 9 − 1) − 2X? 9X@ 9 �†1� 9 ) |Φ〉

=
∑
9 1

C19 〈Φ| �
†
8
�0 (6?1 �

†
?� 9 + 6

9
@�
†
1
�@ − 26 9

9
�
†
1
� 9 ) |Φ〉

=
∑
9 1

C19 (6
?

1
〈Φ|0†

8+0
†
8−00−00+0

†
?+0
†
?−0 9−0 9+ |Φ〉

+ 6 9@ 〈Φ|0†8+0
†
8−00−00+0

†
1+0
†
1−0@−0@+) |Φ〉

− 26 9
9
〈Φ|0†

8+0
†
8−00−00+0

†
1+0
†
1−0 9−0 9+) |Φ〉

=
∑
9 1

C19 (6
?

1
X8 9X0? + 6 9@X8@X01 − 26 9

9
X8 9X01)

=
∑
1

601C
1
8 +

∑
9

6
9

8
C09 − 2688 C

0
8 , (5.50)

where we’ve used the facts that [#1, � 9 ] = 0, [# 9 , �@] = −2X@ 9 � 9 , and (1 − #1) |Φ〉 =

(# 9 − 1) |Φ〉 = 1. We will skip the penultimate term for now, the reasons for which will
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become clear later, and compute the final term first

−
〈
Φ08

��)?+?)? ��Φ〉
(5.51)

= −
∑
?@ 9 :12

6
?
@ C
1
9 C
2
: 〈Φ|�

†
8
�0�

†
1
� 9 �

†
?�@�

†
2�: |Φ〉

= −
∑
?@ 9 :12

6
?
@ C
1
9 C
2
: 〈Φ|0

†
8+0
†
8−00−00+0

†
1+0
†
1−0 9−0 9+0

†
?+0
†
?−0@−0@+0

†
2+0
†
2−0:−0:+ |Φ〉

= −
∑
?@ 9 :12

6
?
@ C
1
9 C
2
:X8 9X01X?:X@2

= −
∑
:2

6:2 C
0
8 C
2
:

= −
∑
9 1

6
9

1
C08 C

1
9 , (5.52)

where we’ve relabeled : → 9 and 2 → 1. We now come to the final term 〈Φ0
8
|+?)2

? |Φ〉,

which we left for last as it is most easily solved through diagrammatic methods due to the

large number of possible contractions. The term is calculated up to the point of contractions

as

1
2
〈Φ08 |+?)2

? |Φ〉

=
1
2

∑
?@ 9 :12

6
?
@ C
1
9 C
2
: 〈Φ| �

†
8
�0�

†
?�@�

†
1
� 9 �

†
2�: |Φ〉

=
1
2

∑
?@ 9 :12

6
?
@ C
1
9 C
2
: 〈Φ| 0

†
8+0
†
8−00−00+0

†
?+0
†
?−0@−0@+0

†
1+0
†
1−0 9−0 9+0

†
2+0
†
2−0:−0:+ |Φ〉 ,

(5.53)

at which point we use a novel extension of Goldstone diagrams (which I’ve named pair-

Goldstone diagrams) to continue.

In standard Goldstone diagrams, vertices represent macro-operators (like �?, +?, and

) as defined above) while lines between vertices represent contractions between fermionic

85



operators containedwithin themacro-operators represented by said vertices. Lines directed

to the right or left represent contractions between hole and particle operators, respectively.

The resulting expressions can be read directly from the diagrams by identifying lines

entering or leaving a vertex as the lower or upper index of the prefactor represented by said

vertex, respectively.

However, standard Goldstone diagrams do not visually capture additional Kronecker

delta’s that can be created when dealing with pairing Hamiltonians. To demonstrate,

consider Figure 5.2a which is a traditional Goldstone diagram that represents one possible

set of contractions that result from (5.53) which comes from the term 〈Φ0
8
|+?)2

? |Φ〉. In this

diagram, the top left vertex represents the excitation operator � 80 = �
†
8
�0 (which creates

the excited state 〈Φ| � 80 = 〈Φ08 |), the bottom left vertex represents +?, and the top and

bottom right diagrams represent the two )? diagrams. This particular diagram represents

the contractions that result in the product

X8+ 9+X0+1+X0−1−X8−:−X?− 9−X@−2−X@+2+X?+:+, (5.54)

which results in the following transformation∑
?@ 9 :12

6
?
@ C
1
9 C
2
: →

∑
92

682C
0
8 C
2
8 , (5.55)

which is equivalent, upon relabeling 2 → 1, to∑
9 1

681C
0
8 C
1
8 , (5.56)

which is immediately read from the diagram when labeling the rightward facing arrows

(from top to bottom) 8+, 8−, 9−, and 9+ and the leftward facing arrows (from top to bottom)

0+, 0−, 1−, and 1+.
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Figure 5.2: Pair-Goldstone contraction schematic.

Note that we actually reduced the number of summed indices by three despite only

having eight contractions (which would normally result in a reduction of 2 indices). This

occurs because we are working with a pair operators. To see this, note that the products

X8+ 9+X8−:− and X?− 9−X?+:+ imply X?8X 98X:8. That is, the indices ?, 9 , and : , all go to 8. This

"additional" contraction is not immediately obvious from the traditional Goldstone diagram

(Figure 5.2a). However, it is in the pair-Goldstone diagram representation (Figures 5.2b

and 5.2c). Here, each vertex is replaced with a solid line, one end of which is exclusively

for particle lines while the other is exclusively for hole lines. There will always be two

lines attached to each end; one for the + state of the pair and the other for the − state. This

allows one to visually capture the phenomenon of pairs of fermionic operators contracting

to operators with differing indices. Notice that in Figure 5.2b, the hole lines of the top )?

operator are 8+ and 9−, while the hole lines of the bottom )? operator are 8− and 9+. This

clearly implies that the bottom indices of both C terms should be 8. This is visually shown

in the "contracted diagram" Figure 5.2c, in which the hole ends of the )? lines have been

brought or "contracted" together. This additionally results in the merging of the 8+ and

9− lines, as well as the 8− and 9+ lines. The lines are now labeled (from top to bottom)
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8+, 0+, 0−, 1−, 1+, 8−. Note that because of all this, the final expression (5.56) can be

immediately read from the pair-Goldstone representation (Figure 5.2c).

We now use pair-Goldstone diagrams to calculate the term 〈Φ0
8
|+?)2

? |Φ〉 (5.53). That

is, the pair-Goldstone diagrams from Figure 5.3 result in the following expressions

0) → 2
∑
1 9

6
9

1
C19 C

0
8 (5.57)

1) → 2
∑
1 9

6
9

1
C09 C

1
8 (5.58)

2) → −4
∑
1

681C
1
8 C
0
8 (5.59)

3) → −4
∑
9

6
9
0C
0
9 C
0
8 (5.60)

4) → 4680C08 C
0
8 . (5.61)

The minus signs in front of the expressions resulting from diagrams c) and d) come from

the fact that their pre-contracted diagrams (see for example Figure 5.2b) contain an odd

number of crossings. This can be immediately obtained from the contracted diagrams by

counting the number of pairs of ends of lines that have been merged; in diagrams c) and d),

one pair of ends has been merged (either the hole ends or the particle ends) resulting in a

prefactor sign of (−1)1, while in diagram e), two pairs of ends have been merged (both the

hole ends and the particle ends) resulting in a prefactor sign of (−1)2. The pre-factors of the

expressions resulting from diagrams a) and b) can be determined by counting the number

of symmetries in each diagram (the same as in standard Goldstone diagrams) for which

each is 2. The pre-factors of the contracted diagrams c), d), and e) can be determined

by counting the number of unique ways that each of these diagrams can be created by

contracting the un-contracted diagrams, a) and b), for which each is four (two from each
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Figure 5.3: Pair-Goldstone diagrams for the pairing model.

un-contracted diagram).

Plugging these resulting expression (5.57)-(5.61) into equation (5.53) gives us

1
2
〈Φ08 |+?)2

? |Φ〉 =
∑
1 9

6
9

1
C19 C

0
8 +

∑
1 9

6
9

1
C09 C

1
8 − 2

∑
1

681C
1
8 C
0
8 − 2

∑
9

6
9
0C
0
9 C
0
8 + 2680C08 C

0
8 .

(5.62)

All together, the pCCD correlation energy equation (5.46) becomes

Δ� =
∑
80

680C
0
8 , (5.63)

while the pCCD amplitude equations (5.43) become

0 = 608 + 2
(
30 − 38 − 688 + 680C08 −

∑
1

681C
1
8 −

∑
9

6
9
0C
0
9

)
C08 +

∑
1

601C
1
8 +

∑
9

6
9

8
C09 +

∑
1 9

6
9

1
C09 C

1
8 .

(5.64)
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In practice, the amplitudes C are solved for by solving the amplitude equation (5.64), which

is non-linear and coupled, via an iterative root finding algorithm such as Newton’s method

and plugging them into the energy equation (5.63).

Although we were able to skip over deriving the reference energy of the pairing model

in the previous section because we only cared about the correlation energyΔ� , wewill need

an expression for the reference energy when we turn to implementing unitary pair coupled

cluster (UpCC) theory as the ansatz for the variational quantum eigensolver (VQE). Thus,

we derive said expression here using Wick’s theorem as here

�ref = 〈Φ|�? |Φ〉

= 〈Φ|�? |Φ〉 + 〈Φ|+? |Φ〉

=
∑
?f

3? 〈Φ|0†?f0?f |Φ〉 +
∑
?@

6
?
@ 〈Φ|0†?+0†?−0@−0@+ |Φ〉

= 2
∑
?

3?ℎ(?) +
∑
?@

6
?
@ ℎ(?)X?@

=
∑
8

(238 + 688). (5.65)

In order to find the amplitudes C, Newton’s method must converge, which requires a good

initial guess for each C. To find one, we turn to many-body perturbation theory.

5.2.4 Many-body Perturbation Theory

The single particle energies n? (2.107) for the pairing Hamiltonian are given by

n? = C
?
? +

∑
8

E
?8

?8
(5.66)

= 3? +
∑
8

X?86
?
? (5.67)

= 3? + ℎ(?)6?? , (5.68)
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and the interacting Hamiltonian �� is given by

�� =

%∑
?=1
(3? − n?)#? +

%∑
?,@=1

6
?
@ �
†
?�@ . (5.69)

For the pairing model, the second and third order energy correlation contributions (2.155

- 2.156) are

Δ� (2) =
∑
08

60
8
680

n0
8

=
1
2

∑
08

60
8
680

38 − 30 + 688
, (5.70)

and

Δ� (3) =
∑
801

68
1
6106

0
8

n0
8
n1
8

+
∑
8 90

60
9
6
9

8
680

n0
8
n0
9

=
1
4

∑
801

68
1
6106

0
8(

38 − 30 + 688
) (
38 − 31 + 688

) +∑
8 90

60
9
6
9

8
680(

38 − 30 + 688
) (
3 9 − 30 + 6 99

) . (5.71)

One good initial guess for C can be found by mathcing the pCCD correlation energy (5.63)

with the second order contribution to the correlation energy from MBPT (5.70)∑
80

680C
0
8
(0)
=

∑
80

680
60
8

n0
8

, (5.72)

which allows us to identify

C08
(0)
=
60
8

n0
8

=
1
2

60
8

38 − 30 + 688
, (5.73)

for the pairing model. Many-body perturbation theory provides a more tractable, yet still

approximate, solution.
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5.3 Quantum Solutions

5.3.1 Mapping the Hamiltonian

To solve the pairing model on a quantum computer, we must first determine a mapping

of our problem to qubits. To do so, we simply let qubit ? represent energy level ?. In our

pairing scheme, the qubit being in state |0〉 or |1〉 implies that its corresponding energy

level is completely unoccupied or occupied by a pair of fermions, respectively. Note that

there is no possibility for broken pairs in this mapping. Now that we’ve chosen a qubit

mapping, wemust transform the Hamiltonian accordingly, from fermionic operators to spin

operators. To do so, we’ll first separate the pairing Hamiltonian (5.2) into strict one-body

and two-body terms, as follows

� =
1
2

%∑
?=1
(23? + 6??)#? +

%∑
?,@=1
?≠@

6
?
@ �
†
?�@, (5.74)

which follows from the fact that, when ? = @ in the second sum of (5.2), it results in the

operator

�†?�? =

(
-? − 8.?

2

) (
-? + 8.?

2

)
(5.75)

=
�? − /?

2
(5.76)

=
#?

2
. (5.77)

Using the pair-fermionic anti-commutation relation (5.6) and applying the Jordan-Wigner

transformation to (5.77) yields

#?

2
=

1
2

(
�? − X?@ [�?, �†@]

)
(5.78)

=
1
2

(
�? −

1
4
X?@ [-? + 8.?, -@ − 8.@]

)
(5.79)
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=
�? − /?

2
. (5.80)

To deal with the second term of (5.74), we note that the sum can be broken up as

%∑
?,@=1
?≠@

6
?
@ �
†
?�@ =

%∑
?,@=1
?<@

6
?
@ �
†
?�@ +

%∑
?,@=1
@<?

6
?
@ �
†
?�@ (5.81)

=

%∑
?,@=1
?<@

6
?
@ �
†
?�@ +

%∑
?,@=1
?<@

6
?
@ �
†
@�? (5.82)

=

%∑
?,@=1
?<@

6
?
@ (�†?�@ + �?�†@), (5.83)

where we’ve swapped the indices ? ↔ @ to obtain (5.82) and used the fact that [�?, �†@] =

0 for ? ≠ @ (which ? < @ implies) to obtain (5.83). Applying the Jordan-Wigner

transformation to (5.83) yields

�†?�@ + �?�†@ =
(
-? − 8.?

2

) (
-@ + 8.@

2

)
+

(
-? + 8.?

2

) (
-@ − 8.@

2

)
(5.84)

=
-?-@ + .?.@

2
. (5.85)

All together, the pairing Hamiltonian (5.74), after Jordan-Wigner transformation, becomes

� =
1
2

%∑
?=1
(23? + 6??) (�? − /?) +

1
2

∑
?,@=1
?<@

6
?
@ (-?-@ + .?.@). (5.86)

5.3.2 Mapping the Ansatz

As an ansatz for the pairing model, we choose the unitary pair coupled cluster doubles

(UpCCD) ansatz, which is the unitary version of the pair coupled cluster doubles (pCCD)

ansatz. It is chosen because any quantum ansatz must be unitary (as all quantum gates
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must be unitary), it is a pairing ansatz, and includes only up to doubles which allows for

the use of, at most, efficiently decomposable two-qubit gates. It is given by

|Ψ〉 = 4)?−)
†
? |Φ〉 . (5.87)

Recalling that )?, as defined in (2.168), is given by

)? =
∑
80

C08 �
†
0�8, (5.88)

turns the ansatz into the variational form

|Ψ(C)〉 = exp

{∑
80

C08

(
�†0�8 − �0�†8

)}
|Φ0〉 , (5.89)

where we’ve used the fact that [�0, �†8 ] = 0 for since, by definition 0 ≠ 8. Applying the

Jordan Wigner transformation to the operators yields

�†0�8 − �0�†8 =
(
-0 − 8.0

2

) (
-8 + 8.8

2

)
−

(
-0 + 8.0

2

) (
-8 − 8.8

2

)
(5.90)

=
8

2
(-0.8 − .0-8). (5.91)

Plugging this back into the ansatz (5.89) yields

|Ψ(C)〉 = exp

{
8

2

∑
80

C08 (-0.8 − .0-8)
}
|Φ0〉 . (5.92)

As it is not known how to efficiently decompose n-qubit operators where = is greater than

two, we must write our ansatz as a sum of two-qubit operators. To achieve this, we employ

a simple Suzuki-Trotter approximation [82], which we truncate to a single first-order step

in order to minimize the depth of the quantum circuit that will implement it. Doing so

yields

|Ψ(C)〉 =
∏
80

�08 |Φ0〉 , (5.93)
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where we’ve defined the two-qubit operator

�08 = exp
{
8

2
C08 (-0.8 − .0-8)

}
, (5.94)

which is efficiently decomposable. One could consider higher order Trotterizations or

multiple Trotter steps; however, employing these would substantially increase the depth

of the circuit. Additionally, it will be seen later that our simple Trotter approximation

provides a sufficient ansatz for VQE to be able to minimize the energy. The operator �0
8

takes the following matrix form

�08 =

©«

1 0 0 0

0 cos C80 sin C80 0

0 − sin C80 cos C80 0

0 0 0 1

ª®®®®®®®®¬
. (5.95)

From this matrix form, one can see that �0
8
acts non-trivially only in the two-qubit subspace

{|01〉 , |10〉} and is closed in said subspace. This means that as long as we initialize our

quantum circuit to a bit-string state with Hamming weight equal to the number of particles,

we’re guaranteed (save for noise) to only search the relevant subspace of the Hamiltonian.

5.3.3 Implementing the Ansatz

Now that we’ve mapped the ansatz to spin operators, we must now determine how to

efficiently decompose it into a quantum circuit given the limitations of qubit connectivity

and circuit depth allowed on NISQ era devices. Here, we give two such methods; the first

is for a quantum computer with linear connectivity while the second is for one with circular

connectivity.

To define these two connectivity terms, consider a quantum computer with # qubits.

Label and order the qubits as 0, 2, ..., # − 1. A quantum computer has linear connectivity
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@1 @2 · · · @#

Figure 5.4: Linear qubit-connectivity schematic.

@1

@2

· · ·

@#

Figure 5.5: Circular qubit-connectivity schematic.

when each of its qubits, except for the first and last, is connected to its left and right

neighboring qubits. The first and last qubits are connected to their only neighboring qubit.

This is visualized in Figure 5.4 where the qubits are connected if the circles representing

them are connected in the graph. A quantum computer has circular connectivity when

each of its qubits (including the first and last) is connected to its left and right neighboring

qubits. This is visualized in Figure 5.5. The ansatz is implemented using what we’ll call

the particle-hole swap network (phsn) technique which has both a linear connectivity [30]

and a novel circular connectivity version. An illustration of the circuits for the four-particle,

five-hole system for both connectivities are given in Figure 5.6.

In said circuits, ( is the SWAP gate 3.37 and �80 is the two qubit operator defined

in (5.94). Because (�80 ∈ SO(4), it can be efficiently mapped to a depth five circuit

consisting of two CNOTs and twelve single-qubit gates [83]. With % being the number of

energy levels and # being the number of energy levels that are initially filled, the number

of two-qubit gates (�80 is equal to � = %(% − #). The depth of the linear particle-hole

swap network is � (lphsn) = % − 1 where % is the number of qubits (energy-levels in

the pairing model). The depth of the circular particle-hole swap network, however, is
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(a) (b)

Figure 5.6: a) Linear particle-hole swap network (lphsn) for a four-particle, five-hole
system. b) Circular particle-hole swap network for a four-particle, five-hole system (cphsn).
See Figure 5.7 for schematic representation.

� (cphsn) = max(#, % − #) where # is the number of particles (Hamming weight of the

initial state). Because # is bounded as 1 ≤ # ≤ %, we have that the depth of the cphsn is

bounded as d%/2e ≤ � (cphsn) ≤ % − 1. The depth decreases as # approached %/2 from

either direction, achieving aminimumof d%/2e. Thus, we have that� (cphsn) ≤ � (lphsn).

That is, the circular connectivity enables a circuit with depth less than or equal to that of

a circuit constrained by linear connectivity, up to reduction by a factor of 2. Shortening

the depth of the circuit is vital for decreasing noise on NISQ era devices. The algorithm to

implement the linear particle-hole swap network is given below.

5.3.4 Initialization

AsVQE involves a minimization algorithm, it is important that we choose a good initial

guess for the variational parameters C0
8
so as to give the classical minimization algorithm

the best chance of finding the ground state energy quickly and with high precision. The
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(a) (b)

Figure 5.7: a) Schematic representation of the linear particle-hole swap network (lphsn) for
a four-particle, five-hole system. b) Schematic representation of the circular particle-hole
swap network (cphsn) for a four-particle, five-hole system. Each circle represents a qubit
and a slot (particle/hole). The particles are labeled ?0, ..., ?3 and are colored blue while
the holes are labeled ℎ0, ..., ℎ4 and are colored red. The first and last columns of circles
are the initial and final positions of the qubits/slots. A rectangle around a pair of circles
(?8, ℎ 9 ) denotes that the gate (�?8ℎ 9 has been applied between the corresponding qubits. See
Figure 5.6 for circuit representation.

initial guess we will be using is

C08
(0)
=

1
2

60
8

38 − 30 + 688
, (5.96)

from (5.73) which was computed by comparing the pCCD correlation energy with the

second order contribution to the correlation energy from MBPT in subsection 5.2.4. This

provides a good initial guess because we know that it results in an energy that is close

to the second order contribution to the correlation energy from MBPT, which in turn is

a good approximation to the true ground state. This means that our minimizer will start

close to the correct solution in the energy landscape through which it must transverse. It

also implies that, barring degeneracy, an ansatz initialized to C0
8
(0) should have a significant

overlap with the true ground state wavefunction.
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Algorithm 5.1 Linear Particle-Hole Swap Network
Input: Number of energy levels ?, number of initially filled energy levels =,
gates SA80, and qubit order list
> = [1, 2, ..., =].
Output: Quantum circuit implementation of lphsn.
C = = − 1 ⊲ index of highest qubit acted upon
1 = = ⊲ index of lowest qubit acted upon
ℎ = 1 ⊲ height (# of gates per column)
3C = −1 ⊲ top direction
31 = 1 ⊲ bottom direction
for 0 ≤ 8 ≤ = − 1 do

apply gate - to qubit 8
end for
while ℎ ≠ 0 do

for 0 ≤ 8 ≤ ℎ − 1 do
G = C + 28
apply SA>[G]

>[G+1] to qubits G and G + 1
>[G], >[G + 1] = >[G + 1], >[G]

end for
if C = 1 then

3C = 1
end if
if 1 = ? then

31 = −1
end if
C += 3C , 1 += 13 , ℎ = (1 − C + 1)/2

end while

Figure 5.8 compares initial correlation energies 〈k(\) |� |k(\)〉 between the casewhere

the initial parameters C0
8
are chosen randomly and where they are informed by many-body

perturbation theory, C0
8
= C0

8
(0) (5.96); It uses the pairing model with % = 4 energy levels

and # = 2 pairs of particles. It can be seen from said figure that the initial correlation

energy resulting from C0
8
= C0

8
(0) (E_calc_ia) is much closer to the correct ground state

correlation energy (E_true) than the initial correlation energy resulting from random initial
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Algorithm 5.2 Circular Particle-Hole Swap Network
Input: Number of energy levels ?, number of initially
filled energy levels =, gates SA80, and qubit order list
> = [1, 2, ..., =].
Output: Quantum circuit implementation of cphsn.
3 = max(=, ? − =) ⊲ depth of circuit
ℎ = min(=, ? − =) ⊲ height (# of gates per column)
for 0 ≤ 8 ≤ = − 1 do

apply gate - to qubit 28
end for
if = ≥ d?/2e then

for 0 ≤ 8 ≤ ? − 1 do
apply gate - to qubit 8

end for
end if
for 0 ≤ 8 ≤ 3 − 1 do

for 0 ≤ 8 ≤ ℎ − 1 do
G = (8 + 2 9) mod ?

apply SA>[G]
>[G+1] to qubits G and G + 1

>[G], >[G + 1] = >[G + 1], >[G]
end for

end for

parameters (E_calc_rand). In fact, the randomness of the initial parameters case seems to

carry over to the corresponding initial correlation energy as it produces a noisy line that

is way above the correct correlation energies. Here, we’ve defined the initial correlation

energies as

�calc_ia =
〈
Φ

(
C08
(0)

)�������Φ (
C08
(0)

)〉
, (5.97)

�calc_rand = 〈Φ (Crand) |� |Φ (Crand)〉 , (5.98)

�true = 〈Φ (Cmin) |� |Φ (Cmin)〉 , (5.99)

where Crand is a set of random parameters while Cmin is the set of parameters that minimize

the energy.
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Figure 5.8: Initial correlation energies for the pairing model with % = 4 energy levels
and # = 2 pairs of fermions are compared to E_true, the true ground state correlation
energy. E_calc_ia uses the initial parameters informed by MBPT (5.96) and E_calc_rand
uses random initial parameters.

Because (E_calc_ia) is so much closer to (E_true) than (E_calc_rand), the optimization

portion of the algorithm should not have to go through as many iterations when using

C0
8
= C0

8
(0) as opposed to C0

8
= Crand which is confirmed by Figure 5.9. This illustrates

the importance of initializing one’s variational parameters in an informative way than just

doing so randomly. This requires knowledge about the specific system that one is trying to

solve. In this case, we were able to use information from many-body perturbation theory

and coupled cluster theory to inform ourselves of a good initial guess.

Finally, Figure 5.10 compares the minimized correlation energy between the two ini-

tialization cases, showing that the MBPT informed (5.96) initial parameterization leads to

more accurate predictions of the ground state correlation energy.

5.3.5 Results

To start, we compare the performances of the classical solution (pCCD) with the

quantum solution (UpCCD via VQE). In Figure 5.11 we see such a comparison for the
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Figure 5.9: The number of iterations required to minimize the correlation energy (averaged
over 10 trials) are compared for the pairing model with % = 4 energy levels and # = 2
pairs of particles. itr_rand and itr_ia are the number of iterations required to minimize the
correlation energy for random initial parameters and initial parameters informed by MBPT
(5.96), respectively.

Figure 5.10: VQE calculated ground state correlation energies compared between the case
of random initial parameterization (E_calc_rand) and the case of MBPT informed (5.96)
initial parameterization (E_calc_ia).

pairing model with % = 4 energy levels, # = 2 pairs, linearly increasing singular particle

energies 3? = ?, and constant pairing strength 6?@ = 6. The VQE results were computed

via a noiseless simulation on a classical computer. We see that for small values of 6 the
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Figure 5.11: Pairing strength vs ground state correlation energy obtained through exact
diagonalization (blue line), the variational quantum eigensolver (red dots) and pair coupled
cluster doubles theory (green dots) for the pairing model with % = 4 energy levels, # = 2
pairs, linearly increasing singular particle energies 3? = ?, and constant pairing strength
680 = 6.

two methods perform relatively similarly. However, as the magnitude of 6 grows, we can

clearly see that the quantum solution gives a better estimate of the ground state correlation

energy than the classical solution.

Additionally, we test our VQE ansatz on a non-constant pairing strength pairing model.

Here, we choose the separable function 680 = 6(80/(max (8)max (0))) which is a more

realistic approximation to real-world nuclei whose nuclear forces are often modeled to be

separable. The function is divided by the maximums of the energy level indices 8 and 9 so

that the values of 6 don’t vary too wildly. In Figure 5.12 we see how pCCD performs well

for small absolute values of 6 but fails for larger values, unlike VQE which gets close to

the true correlation energy values for all values of 6.
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Figure 5.12: Pairing strength vs ground state correlation energy obtained through exact
diagonalization (blue line), the variational quantum eigensolver (red dots) and pair coupled
cluster doubles (green dots) for the pairing model with % = 4 energy levels, # = 2
pairs, linearly increasing singular particle energies 3? = ?, and constant separable pairing
strength 680 = 6(80/(max(8) (max(0)).

5.3.6 Iterative Quantum Excited States Algorithm

The following is a novel method to compute the eigenstates of a Hamiltonian and their

corresponding energies. Let |k:〉 represent the : th eigenstate of the Hamiltonian � with

energy �=. That is � |k=〉 = �= |k=〉. Assume that |k:〉 can be parameterized by the set of

angles \: , that is |k:〉 = |k(\: )〉. This algorithm is iterative, meaning that to find �: , one

must first use the algorithm to compute �0 through �: and \0 through \: . Assuming that

one has already done this, recall that any state |k(\)〉 can be expanded in terms of the #

eigenstates of �. That is

|k(\)〉 =
#∑
==0
〈k(\=) |k(\)〉 |k(\=)〉 . (5.100)

Then, note that the expectation value of � of an arbitrary state |k(\)〉 can be written as

〈k(\) |� |k(\)〉 (5.101)
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=

#∑
=,<=0

〈k(\) |k(\<)〉 〈k(\=) |k(\)〉 〈k(\<) | � |k(\=)〉 (5.102)

=

#∑
=,<=0

�= 〈k(\) |k(\<)〉 〈k(\=) |k(\)〉 〈k(\<) |k(\=)〉 (5.103)

=

#∑
=,<=0

�= 〈k(\) |k(\<)〉 〈k(\=) |k(\)〉 X=< (5.104)

=

#∑
==0

�= |〈k(\=) |k(\)〉|2, (5.105)

which allows

〈k(\: ) |� |k(\: )〉 −
:−1∑
==0

�= |〈k(\=) |k(\: )〉|2 (5.106)

=

#∑
==0

�= |〈k(\=) |k(\: )〉|2 −
:−1∑
==0

�= |〈k(\=) |k(\: )〉|2 (5.107)

=

#∑
==:

�= |〈k(\=) |k(\: )〉|2 (5.108)

≥�:
#∑
==:

|〈k(\=) |k(\: )〉|2 (5.109)

=�:

[
1 −

:−1∑
==0
|〈k(\=) |k(\: )〉|2

]
, (5.110)

since
∑#
==0 |〈k(\=) |k(\: )〉|

2 = 1. This implies that

�: = min
\:

〈k(\: ) |� |k(\: )〉 −
∑:−1
==0 �= |〈k(\=) |k(\: )〉|

2

1 −∑:−1
==0 |〈k(\=) |k(\: )〉|

2 . (5.111)

The denominator can cause one trouble as small variations near zero would cause wild

jumps in �: . To get around this, we can instead minimize the following function

�: = min
\:
〈k(\: ) | (� − Δ) |k(\: )〉 −

:−1∑
==0

�= |〈k(\=) |k(\: )〉|2, (5.112)
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where here Δ is a large positive number which hopefully shifts the entire energy spectrum

of � negative. Note that to apply this algorithm, one must be able to calculate the following

two types of quantities:

• The expectation value of � in the 8th state |k(\8)〉:

〈k(\8) |� |k(\8)〉 , (5.113)

• The absolute square of the overlap between two states |k(\8)〉 and |k(\ 9 )〉:��〈k(\8)��k(\ 9 )〉��2. (5.114)

The process to calculate the first quantity, the expectation value of �, is explained in

section 3.4.2. The technique to efficiently calculate the second quantity, the absolute square

of the overlap between two states, is explained in Appendix E.

As the algorithm is iterative, one starts with the case : = 0, in which case the algorithm

reduces to the variational quantum eigensolver for the ground state energy

min
\0
〈k(\0) |� |k(\0)〉 = �0. (5.115)

After obtaining \0 and �0 through minimization, one uses these quantities to apply the

algorithm for : = 1.

min
\1
〈k(\1) | (� − Δ) |k(\: )〉 − �0 |〈k(\0) |k(\0)〉|2 = �1. (5.116)

After minimizing, one obtains \1 and �1. One then continues this process for : = 2, ..., # ,

ultimately resulting in knowledge of the parameters \0, ..., \# that paramaterize all of the

eigenstates of� and all of their corresponding energies �0, ..., �# . Thus the eigenspectrum
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Figure 5.13: Comparison of correlation energies calculated using the iterative quantum
excited states algorithm and direct diagonalization for the pairing model with % = 4 energy
levels, # = 2 pairs, linearly increasing singular particle energy 3? = ?, and constant
pairing strength 680 = 6.

of � can be fully calculated. We have tested this algorithm for the first two states of the

pairing model with (%, #) = (4, 2). In Figure 5.13, one can see that while the algorithm

estimates the ground state quite well, the estimation for the first excited states grows worse

for larger values of 6. We hypothesize that this is due to the accumulation of errors

present in this algorithm (5.112) for large values of 6 as such values make it harder for the

minimization algorithm to succeed. If the algorithm’s estimate for the ground state energy

and/or the ground state are slightly off, this error will become compounded in estimations

for the energies of higher energy levels.

5.3.7 Multi-Configuration Method

We have observed that in the constant 6 case, classical pCCD (and to a lesser but still

significant extent) VQE with the UpCCD ansatz, have a harder and harder time finding
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the true ground state as 6 grows. This is because the eigenfunction of the ground state

becomes more and more entangled as 6 increases and begins to overtake the strength of the

single-particle energies 3?. Such entangled states heuristically take a larger circuit depth

to employ. In the limiting case of 6 → ∞, the one-body term of � can be disregarded,

leading to a Hamiltonian that mixes states and yet is not state dependent (6 is constant).

Heuristically, such a Hamiltonian would have, as its ground state, the equal superposition

of all possible states, due to symmetry. Such a state is called a Dicke state. Recall that the

Dicke state [23] has the following recursive form���=
:

〉
=

√
:

=

���=−1
:−1

〉
|1〉 +

√
= − :
=

���=−1
:

〉
|0〉 . (5.117)

We will now prove that the Dicke state
���=

:

〉
is indeed an eigenvector of + (the limiting

case of � where 6 →∞) where

+= = 6

=∑
?≠@=1

�†?�@ . (5.118)

Specifically

+=
���=

:

〉
= 6: (= − :)

���=
:

〉
. (5.119)

The proof is by induction. First, we prove the base case (=, :) = (2, 1).

+2
���2

1
〉
=
6
√

2
(�†0�1 + �†1�0) ( |10〉 + |01〉) = 6

���2
1
〉
. (5.120)

Next, we assume the induction hypothesis

+=
���=−1

:

〉
= 6: (= − : − 1)

���=−1
:

〉
, (5.121)

and use it to prove the statement as follows

+=
���=

:

〉
= 6

©«
=∑

?≠@=1
�†?�@

ª®¬
(√

:

=

���=−1
:−1

〉
|1〉 +

√
= − :
=

���=−1
:

〉
|0〉

)
(5.122)
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= 6


=−1∑
?≠@=1

�†?�@ + �†=
©«
=−1∑
@=1

�@
ª®¬ + ©«

=−1∑
?=1

�†?
ª®¬ �=


×

[√
:

=

���=−1
:−1

〉
|1〉 +

√
= − :
=

���=−1
:

〉
|0〉

]
(5.123)

= 6
©«
=−1∑
?≠@=1

�†?�@
ª®¬
(√

:

=

���=−1
:−1

〉
|1〉 +

√
= − :
=

���=−1
:

〉
|0〉

)

+ 6
�†= ©«

=−1∑
@=1

�@
ª®¬
√
= − :
=

���=−1
:

〉
|0〉 + ©«

=−1∑
?=1

�†?
ª®¬ �=

√
:

=

���=−1
:−1

〉
|1〉

 (5.124)

= (: − 1) (= − :)
√
:

=

���=−1
:−1

〉
|1〉 + : (= − : − 1)

√
= − :
=

���=−1
:

〉
|0〉

+ (= − :)
√
:

=

���=−1
:−1

〉
|1〉 + :

√
= − :
=

���=−1
:

〉
|0〉 (5.125)

= : (= − :)
(√

:

=

���=−1
:−1

〉
|1〉 +

√
= − :
=

���=−1
:

〉
|0〉

)
(5.126)

= : (= − :)
���=

:

〉
. (5.127)

In this proof we have used the following lemmas:

=∑
?=1

�†?
���=

:

〉
=

√
(= − :) (: + 1)

���=
:+1

〉
, (5.128)

=∑
?=1

�
���=

:

〉
=

√
: (= − : + 1)

���=
:−1

〉
, (5.129)

which themselves are proven inductively in Appendix D.

We can see how close the actual ground state of the pairing model (with 3? = ?) is

to the Dicke state as 6 grows by plotting their overlap squared. In Figure 5.14) we see

such a plot for various energy levels ? (with = = b?/2c). The plot shows that by the time

6 reaches about 2.5, the overlap squared of the two states is above 0.9 for all values of ?
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Figure 5.14: Plot of the overlap squared between the actual ground state and corresponding
Dicke state for pairing models with various values of ? and = = b?/2c over increasing
values of constant pairing strength.

considered. It is also clear that the ground states for smaller values of ? become closer to

the Dicke state
��� ?

=

〉
at a faster rate than for larger values of ?.

This suggests that, for sufficiently large 6, one may consider the following ansatz for

the pairing model: Use the deterministic [9] or variational (chapter 8) method to initialize

one’s quantum circuit to the Dicke state
��� ?

=

〉
for a pairing model with ? energy levels

and = pairs of fermions. Then, slowly increase the number of layers of variational gates

in a "brick wall" fashion (6.1), running VQE on the ansatz each time, until the result no

longer substantially improves. These extra variational gates are there to slightly perturb

the Dicke state to hopefully approximate the true ground state of the pairing model. This

is a so-called "adaptive" ansatz as it can change throughout the process of VQE. We tested

such an ansatz for the pairing model with % = 4 energy levels and # = 2 pairs of fermions,
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whose circuit representation is given below

|0〉

*4
2

�(\0)
|0〉

�(\2)
|0〉

�(\1)
|0〉

(5.130)

where the gate*4
2 prepares the corresponding Dicke state:

*4
2 |0000〉 =

���4
2
〉
, (5.131)

and � is defined the same as the two-qubit operators for the UpCCD ansatz (5.94) except

that the their parameters \8 (for 8 = 0, 1, 2) are completely free. That is

�(\) = exp {8\ (-0.8 − .0-8)} , (5.132)

which, as analyzed previously, restricts the minimization algorithm’s search to the correct

Hamming weight subspace. The results of using such an ansatz for VQE can be seen in

Figures 5.15 and 5.16. The first shows a comparison between the VQE estimated and exact

correlation energies while the second shows the relative error between the two from the

first plot. As expected, this multi-configuration ansatz described above works better for

larger absolute values of 6, because we start in a state (the Dicke state) that has a significant

overlap with the ground state. We name the ansatz the multi-configuration ansatz as it is

initialized to the superposition of multiple initial configurations of the fermion pairs (or,

bit-string states).

In future work, it would be of interest to explore if one can get away with preparing a

Dicke like state (equal superposition of bit-string states but with incorrect phases, such as

those prepared in chapter 8) or even partial Dicke states (the equal superposition of some of
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Figure 5.15: Plot of VQE estimated versus exact correlation energies for the pairing model
with % = 4 energy levels and # = 2 pairs of fermions using the multi-configuration ansatz.

Figure 5.16: Plot of relative error between VQE estimated and exact correlation energies
for the pairing model with % = 4 energy levels and # = 2 pairs of fermions using the
multi-configuration ansatz.
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the bit-string states that make up an entire Dicke states). One could also explore this ansatz

for a larger number of energy levels % and different formulas of the single particle energies

3?. Finally, on might consider using the first few layers of the UpCCD ansatz to try to

minimize the pairing model with 3? = 0 which should get one close to a Dicke state. Then

add in the rest of the layers and minimize to the pairing model that one desires, initializing

the initial layers to the parameters that the minimization algorithm found approximated the

Dicke state.

5.4 Conclusion

In this section, we introduced the pairing model, a toy model for many-body nuclear

physics upon which many new techniques are tested. First, we explored ways to solve the

problem on a classical computer, including through the use of many-body perturbation

theory and coupled cluster theory. These two methods served to help us in the next section

by informing a good set of initial guesses for our variational circuit. In the aforementioned

section, we walked through how to map the pairing model Hamiltonian and an extension

of the unitary coupled cluster ansatz from pair fermionic operators to spin operators via an

extension to the Jordan-Wigner transformation. We then presented our results of applying

VQE to the pairing model and bench-marked it against classical coupled cluster theory. We

went on to extend VQE in two novel ways: first, we introduced the novel iterative quantum

excited states algorithm to search for the energy levels of excited states of the pairing

model. We then introduced the novel multi-configurational ansatz for pairing models with

large constant pairing strengths 6. In the future, one might like to compare our excited

states algorithms to similar algorithms and also test various relaxed forms of the multi-

configurational ansatz that involve the initialization of Dicke-like states. Finally, one may
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wish to apply the VQE solution to the pairing problem to approximate an actual nucleus

that has strong pairing interactions such as ones with doubly-magic shells with valence

electrons of a single type. Here, we have given a springboard off of which future research

may be accomplished as quantum computing tackles evermore complexmany-body nuclear

physics systems.
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CHAPTER 6

COLLECTIVE NEUTRINO OSCILLATIONS

6.1 Introduction

The next system we will consider is that of collective neutrino oscillations, which

has Hamiltonian that is mathematically similar to that of the previous pairing models

considered. Instead of using quantum algorithms to determine the energy spectrum of

the Hamiltonian, as done in the two previous cases, we will instead use them to simulate

the time-evolution of the system and measure its entanglement properties. Neutrinos are

nuclear particles in the sense that they interact via the weak nuclear force (and gravity). The

motivation for studying this system comes from the flavor evolution of neutrinos in dense

astrophysical environments. It has been pointed out by Pantelone, Raffelt, and Sigl [61,

76] and others that neutrinos can exchange their flavors through forward scattering. If one

starts with an anisotropic initial distribution of energy and/or angle (as found in supernovae,

neutron star mergers, or the early universe), then the neutrino energy flux versus energy and

flavor may be impacted by this non-trivial quantum many-body evolution. This can in turn

affect the dynamics of these environments and other observables, including nucleosynthesis

in the ejected material [25, 18].

Most often, these quantum equations have been treated on the mean-field level by

replacing one of the spin operators in equation (6.1) by its expectation value, yielding a

set of non-linear coupled differential equations. This makes the calculations tractable for

several hundred energies and angles on modern computers [26]. More recently, studies

of neutrino propagation as a quantum many-body problem have appeared, including for

example [10, 35, 72, 62, 71, 16, 68, 67]. These works highlight the importance of

115



understanding the role of quantum correlations, such as entanglement, in order to quantify

beyond mean-field effects in out-of-equilibrium neutrino simulations. A direct solution of

the Schrödinger equation in equation (2.13), for a system of # configurations in energy

and angle, incurs a computational cost that is exponential in # . This has limited early

explorations of the problem to systems with # = O(10) neutrinos. An alternative to

reach larger system sizes, explored recently [68, 67], employs a matrix product state

representation for |Φ(C)〉 which allows one to track the exact time evolution in situations

where entanglement never grows too much. For conditions leading to strong entanglement

instead, simulations on digital/analog quantum computers have the potential to tackle the

full neutrino dynamics while still enjoying a polynomial computational cost in system size

# [54].

In this section, we explore the time-dependent many-body evolution and entanglement

of neutrinos on a current-generation digital quantum computer. In section 6.2 we introduce

in more detail the SU(2) spin model used to describe collective neutrino oscillations and an

implementation of the time evolution operator appearing in equation (2.13) suitable for an

array of qubits with linear connectivity. We present the results obtained for a small system

with # = 4 neutrino amplitudes in section 6.4 and provide a summary and conclusions in

section 6.8.

6.2 Hamiltonian

The Hamiltonian for neutrino flavor evolution in a dense neutrino environment includes

three terms:

1. �E | the vacuummixing that has been determined from solar and accelerator neutrino

experiments [38]
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2. �B | the forward scattering in matter leading to the well known MSW effect [87, 57]

3. �= | neutrino-neutrino forward scattering

The first simplification we make is to truncate the neutrino flavors involved from three

to two. That is, we only consider the oscillation of two flavors which, without loss of

generality, we choose to be a4 and aG . Here aG describes either a` or ag which we assume

evolve similarly. This simplification allows for the neutrino-neutrino interaction �= to be

proportional to the dot product f8 · f9 of the SU(2) Pauli matrices describing the different

flavor amplitudes of the two neutrinos

(�=)8 9 ∝
(
1 −

@8 · @ 9
‖@8‖‖@ 9 ‖

)
f8 · f9 . (6.1)

where @: is the momentum of the :-th neutrino and f: = (-: , .: , /: ) is the vector of

Pauli operators acting on its amplitude. The neutrino-neutrino interaction can exchange

flavors of two neutrinos and, as can be seen above, has a forward scattering amplitude that

depends on the angle between their momenta. Generalization to the three-flavor case is

straightforward in principle.

We are working in the neutrino flavor basis, whose fermionic operators are related to

those of the mass basis via the rotation

©«
04 (?)

0G (?)

ª®®¬ =
©«

cos \ sin \

− sin \ cos \

ª®®¬
©«
01(?)

02(?)

ª®®¬ . (6.2)

In this basis the vacuum term �E includes diagonal contributions describing the mass

differences between different neutrino flavors and an off-diagonal term characterized by a

mixing angle \E, while forward scattering term �B is diagonal in the flavor basis.
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For the simplified two-flavor case studied here, the state of the system can be described

as an amplitude for a neutrino of each energy �8 (equal to the magnitude of momentum

‖@8‖) and direction of momentum (denoted by @8), with U↑ and U↓ describing the amplitude

of being in the electron flavor or in the heavy G (` or g) flavor respectively. These two

amplitudes can be encoded in an SU(2) spinor basis. In this basis, the Hamiltonian can be

written in terms of Pauli operators as the sum of a one-body term, describing both vacuum

oscillations and forward scattering in matter,

�1 =
1
2

∑
8

[
(−Δ8 cos 2\E + �) fI8 + Δ8 sin 2\EfG8

]
, (6.3)

and a two-body term, coming from the neutrino-neutrino forward-scattering potential +8 9

from equation (6.1), which takes the following form [62]

�2 =
∑
8< 9

[[1 − @̂8 · @̂ 9 ]f8 · f9 . (6.4)

In the one-body term, \E represents the vacuum mixing angle, while the strength is given

by Δ8 = X<2/(2�8) with X<2 the mass squared difference for neutrinos of different flavor.

The matter potential enters as the diagonal contribution in the one-body term through the

constant � =
√

2��=4, with �� the Fermi coupling constant and =4 the electron density.

As described in the introduction, the two-body term is a sum over spin-spin interactions

with a coupling depending upon the relative angle between them. The overall strength

depends on the neutrino density as

[ =
��√
2+

=
��=a√

2#
, (6.5)

with # the number of neutrino momenta considered, given by the neutrino density =a times

the quantization volume + . We can transform from fermionic flavor operators to flavor
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isospin operators via the Jordan-Schwinger mapping:

�+? = 0
†
4 (?)0G (?), (6.6)

�−? = 0
†
G (?)04 (?), (6.7)

�I? =
1
2

(
0†4 (?)04 (?) − 0†G (?)0G (?)

)
, (6.8)

which obey the SU(2) commutation relations

[�+? , �−@ ] = 2X?@�I? (6.9)

[�I?, �±@ ] = ±X?@�
?<
? , (6.10)

and are thus isomorphic to the Pauli-spin matrices. Note that we can transform to Cartesian

coordinates through the definition

�±? = �
G
? ± 8�

H
? (6.11)

The term of the Hamiltonian that describes vacuum oscillations �a is given by

�a =
∑
?

(
<2

1
2?
0
†
1(?)01(?) +

<2
2

2?
0
†
2(?)02(?)

)
, (6.12)

in the mass basis. To transform it to the Pauli basis, we first subtract it by the following

term ∑
?

<2
1 + <

2
2

4?

(
0
†
1(?)01(?) + 0†2(?)02(?)

)
, (6.13)

which can be done without consequence as it is proportional to the identity (for a given

number of particles) since the total number of neutrinos in each momentum mode is

constant. This follows from the fact that forward scattering only exchanges the neutrino’s

momenta. Subtracting said term transforms the vacuum oscillation term (6.12) into

�a =
∑
?

Δ<2

4?

(
0
†
2(?)02(?) − 0†1(?)01(?)

)
, (6.14)
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where Δ2
< = <

2
2 − <

2
1. Applying the inverse of the mapping between the flavor and mass

bases (6.2) yields

�a =
∑
?

Δ<2

4?

[
(sin \0†4 (?) + cos \0†G (?)) (sin \04 (?) + cos \0G (?))

− (cos \0†4 (?) − sin \0†G (?)) (cos \04 (?) − sin \0G (?))
]

(6.15)

=
∑
?

Δ<2

4?

[
sin 2\

(
0†4 (?)0G (?) + 0†G (?)04 (?)

)
− cos 2\

(
0†4 (?)04 (?) − 0†G (?)0G (?)

) ]
, (6.16)

which can be mapped to the Pauli basis via (6.6)-(6.8), resulting in

�a =
∑
?

� · f?, (6.17)

where

� =
Δ<2

2?
(sin 2\, 0,− cos 2\). (6.18)

We’ve written the Hamiltonian in terms of Paul operators instead of the SU(2) operators

�± and �I as the two are isomorphic. The neutrino-neutrino scattering term is given by

�aa =
��√
2+

∑
?@

(1 − cos q?@)
[
0†4 (?)0G (?)0†G (@)04 (@) + 0†G (?)04 (?)0†4 (@)0G (@)

+ 0†4 (?)04 (?)0†4 (@)04 (@) + 0†G (?)0G (?)0†G (@)0G (@)
]
,

(6.19)

which can also be mapped to the Pauli basis via (6.6)-(6.8), resulting in

�aa =
��√
2+

∑
?@

(1 − cos q?@)
(
f+?f

−
@ + f−@ f+? + fI?fI@

)
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=
∑
?@

�?@f? · f@, (6.20)

with

�?@ =

√
2��

+
(1 − cos q?@), (6.21)

where we’ve disregarded the term 0
†
4 (?)04 (?)0†G (@)0G (@) + 0†G (?)0G (?)0†4 (@)04 (@) as it

is proportional to the identity. Note that, again, this is given in terms of Pauli spin matrices

as opposed to angular momentum operators as the two are isomorphic as they obey the

same SU(2) commutation relations. Putting the two terms together, the Hamiltonian for

collective neutrino oscillations becomes

� =
∑
?

� · f? +
∑
?<@

�?@f? · f@, (6.22)

where we’re able to restricted to sum to ? < @ as the ? = @ term is proportional to the

identity and restricting ? ≠ @ to ? < @ only picks up a factor of two which can be absorbed

into the constant �?@. We note that the Hamiltonian is similar to the Heisenberg model

except that the two-body term is all-to-all rather than nearest neighbor; that is, it sums over

both ? and @ rather than summing over ? and @ = ? + 1. Its coupling strength [ ∝ 1/#

assures that the energy of the system is extensive. This allows us to obtain a well-defined

many-body solution, in the limit of large numbers of neutrino momenta by extrapolating

in system size # .

Because NISQ era quantum computers must have a relatively limited circuit depth in

order to not be too noisy, the maximum time to which we can simulate time-evolution

is also limited. Therefore, we consider a test case where the one-body and two-body

interaction terms are set to be similar in magnitude, allowing flavor oscillations to occur
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rapidly. An example of this case is the environment of order 100km from the surface of a

proto-neutron star in a core collapse supernova. Here, the background matter density has

decreased to the point where its contribution to the Hamiltonian is similar in magnitude to

the neutrino-neutrino forward scattering. The relative angles of neutrino propagation are

fairly small as neutrinos are emitted from a typical proto-neutron star radius of order 10km.

In the neutrino bulb model [26] one further assumes that the evolution in a supernova

depends only on the energy and the angle from the normal. Averaging over the azimuthal

angles results in an average coupling 〈1 − @̂8 · @̂ 9 〉 = 1 − cos(\8) cos
(
\ 9

)
.

For our test case, we take a monochromatic neutrino beam with energy �a = X<2/(4[)

and measure energies in units of the two-body coupling [. In order to avoid the symmetries

introduced by the single angle approximation, we employ an anisotropic distribution of

momentum directions using a simple grid of angles with

q?@ = arccos(0.9) |? − @ |
# − 1

. (6.23)

This is similar to the standard bulb model as the relative couplings 1 − cos q?@ are small.

Additionally, we choose \ = 0.195 so that the one-body and two-body terms are of relative

strength. This leads the parameters to have the following numerical values:

� =

(√
1 − 0.9252, 0,−0.925

)
(6.24)

�?@ =

[
1 − cos

(
arccos 0.9

|? − @ |
# − 1

)]
. (6.25)

6.3 Connection to the Pairing Model

Beforewe go any further, we’d like to show here how collective neutrino oscillations can

be viewed as a pairing model, thus justifying its use as an application of the pairing model.
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This connection can be seen by writing the collective neutrino oscillation Hamiltonian in

the mass basis. To do so, we introduce the mass isospin operators

 +? = 0
†
1(?)02(?) (6.26)

 −? = 0
†
2(?)01(?) (6.27)

 I? =
1
2

(
0
†
1(?)01(?) − 0†2(?)02(?)

)
, (6.28)

which are analogous to the flavor isospin operators (6.6-6.8). This allows the vacuum

oscillation term (6.14) to be readily identified as

�a =
∑
?

Δ<2

4?

(
0
†
2(?)02(?) − 0†1(?)01(?)

)
=

∑
?

l? 
I
?, (6.29)

where

l = −Δ<
2

2?
. (6.30)

In order to deal with the neutrino neutrino interaction term (6.17), wemust find themapping

between flavor isospin operators andmass isospin operators which follow from themapping

between flavor fermionic operators and mass fermionic operators (6.2):

�+? = 0
†
4 (?)0G (?)

= [cos \0†1(?) + sin \0†2(?)] [cos \02(?) − sin \01(?)]

= cos2 \0†1(?)02(?) − sin2 \0†2(?)01(?) −
1
2

sin 2\ [0†1(?)01(?) − 0†2(?)02(?)]

= cos2 \ +? − sin2 \ −? − sin 2\ I, (6.31)

�−? = 0
†
4 (?)0G (?)
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= [cos \0†2(?) − sin \0†1(?)] [cos \01(?) + sin \02(?)]

= cos2 \0†2(?)01(?) − sin2 \0†1(?)02(?) −
1
2

sin 2\ [0†1(?)01(?) − 0†2(?)02(?)]

= cos2 \ −? − sin2 \ +? − sin 2\ I, (6.32)

�I? =
1
2

(
0†4 (?)04 (?) − 0†G (?)0G (?)

)
=

1
2
{[cos \0†1(?) + sin \0†2(?)] [cos \01(?) + sin \02(?)]

− [cos \0†2(?) − sin \0†1(?)] [cos \02(?) − sin \01(?)]}

=
1
2
{cos 2\ [0†1(?)01(?) − 0†2(?)02(?)] + sin 2\ [0†1(?)02(?) − 0†2(?)01(?)]}

= cos 2\ I? +
1
2

sin 2\ ( +? +  −? ), (6.33)

which can be expressed succinctly in matrix form, for reference, as

©«
�+?

�−?

�I?

ª®®®®®¬
=

©«
cos2 \ − sin2 \ − sin 2\

− sin2 \ cos2 \ − sin 2\
1
2 sin 2\ 1

2 sin 2\ cos 2\

ª®®®®®¬
©«
 +?

 −?

 I?

ª®®®®®¬
. (6.34)

This implies that the dot product of the total flavor isospin operators is equal to the dot

product of the total mass isospin operators:

�? · �@ =
1
2
(�+?�−@ + �−? �+@ ) + �I?�I@

=
1
2

(
�+? �−? �I?

) ©«
�−?

�+?

2�I?

ª®®®®®¬
=

1
2

(
 +?  −?  I?

) ©«
cos2 \ − sin2 \ 1

2 sin 2\

− sin2 \ cos2 \ 1
2 sin 2\

− sin 2\ − sin 2\ cos 2\

ª®®®®®¬
©«

cos2 \ − sin2 \ − sin 2\

− sin2 \ cos2 \ − sin 2\

sin 2\ sin 2\ 2 cos 2\

ª®®®®®¬
©«
 −?

 +?

 I?

ª®®®®®¬
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=
1
2

(
 +?  −?  I?

) ©«
1 0 0

0 1 0

0 0 2

ª®®®®®¬
©«
 −?

 +?

 I?

ª®®®®®¬
=

1
2
( +? −@ +  −? +@ ) +  I? I@ (6.35)

=  ? ·  @ . (6.36)

Thus, the neutrino-neutrino interaction term (6.20) can be written in terms of total mass

isospin operators as

�aa =
∑
?@

�?@ ? ·  @ . (6.37)

Putting the terms (6.29 - 6.37) together gives us the Hamiltonian in terms of mass isospin

operators

� =
∑
?

l? 
I
? +

∑
?@

�?@ ? ·  @ . (6.38)

Consider now the single-angle approximation, where we assume that neutrinos travel-

ing in different directions undergo the same flavor evolution, implying that the term∑
?@ cos q?@�? · �@ (and therefore also

∑
?@ cos q?@ ? ·  @) averages to zero, which (after

recalling �?@ = `(1 − cos q?@)) leads to the Hamiltonian

� =
∑
?

l? 
I
? + `

∑
?@

 ? ·  @, (6.39)

which can be written as

� =
∑
?

l? 
I
? + 2`

∑
?<@

( G? ·  G@ +  
H
? ·  H@ ), (6.40)
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where we’ve dropped the terms `
∑
?@  

I
? ·  I@ and `

∑
?=@ ( G? ·  G@ +  

H
? ·  H@ ) = 2`

∑
? �?

as they are both proportional to the identity (for a fixed number of neutrinos) and therefore

have no effect on the time-evolution of the system. Recall now the pairing Hamiltonian in

terms of Pauli spin operators (5.86) which in the case of constant pairing strength (6?@ = 6)

we can write as

� = −1
2

%∑
?=1
(23? + 6)/? +

1
2
6

∑
?,@=1
?<@

(-?-@ + .?.@), (6.41)

by dropping the term 1
2
∑%
?=1(23? + 6)�? as it is proportional to the identity. With this,

we can see that, since the mass isospin operators and Pauli-spin operators are isomorphic

(share the same commutation relations), the collective neutrino oscillation Hamiltonian in

the single-angle approximation (6.40) is equivalent (up to terms proportional to the identity)

to the pairing Hamiltonian with constant pairing strength (6.41) if we set 3? = l? − 6/2

and 6 = 4`. This implies that the two systems evolve identically in time.

6.4 Time Evolution

One of the challenges in implementing the time evolution of the collective neutrino

oscillation Hamiltonian (6.22) on a quantum computer is to find an accurate approximation

to the time evolution operator (2.14)

* (C) = exp{−8�C}, (6.42)

that can be decomposed efficiently into quantum gates [54]. In this work, we accomplish

this by using a first-order Trotter-Suzuki decomposition [78] of the time evolution operator.

This decomposition requires partitioning the Hamiltonian. A naive partitioning would be

to simply keep the Hamiltonian (6.22) written as is which would lead to the following
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approximation for the time-evolution operator

*1(C) =
#∏
?=1

4−8C�·f?

#∏
?<@=1

4−8C�?@f? ·f@ . (6.43)

Instead, we choose the pair propagation partition, in which we rewrite the Hamiltonian

(6.22) as a strictly two-body term

� =

#∑
?<@

ℎ?@, (6.44)

where

ℎ?@ =
1

# − 1
� · (f? + f@) + �?@f? · f@, (6.45)

which is permitted, as
=∑
?<@

(f? + f@) =
=∑
?=1

=∑
@=?+1

(f? + f@)

=

=∑
?=1

=∑
@=?+1

f? +
=∑
@=2

@−1∑
?=1

f@

=

=∑
?=1
(= − ?)f? +

=∑
@=1
(@ − 1)f@

=

=∑
?=1
[(= − ?) + (? − 1)] f?

= (= − 1)
=∑
?=1

f? . (6.46)

This leads to the pair-propagation time-evolution operator approximation*2, defined as

*2(C) =
#∏
?<@

D?@ (6.47)

where

D?@ = 4
−8Cℎ?@ , (6.48)
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which is correct up to additive error n = O(C2). This partitioning is motivated by past

experience with the Euclidean version of this evolution operator in quantum Monte Carlo

which suggests that this partitioning yields a better approximation to the time-evolution

operator * (C) (see eg. [15, 14]). The main reason we choose this partitioning, however, is

that it has better error scaling than the original partitioning *1, as detailed below. While

asymptotic scaling of the approximation error n is quadratic in the time-step C for both

approximations [78], the pair approximation is expected to perform better in practice for

cases where an accurate description of pair evolution is important due, for instance, to

strong cancellations between the one-body and two-body contributions in the Hamiltonian.

In the neutrino case, these situations can occur with appropriate initial conditions so that,

for typical states in the evolution, we have for most pairs that��〈 ?@〉 + 〈+?@〉�� � ��〈 ?@〉�� + ��〈+?@〉�� (6.49)

where we have used the short-hand

〈 ?@〉 =
1

# − 1
� · 〈f? + f@〉 (6.50)

〈+?@〉 = �?@ 〈f? · f@〉. (6.51)

Since the difference between the two approximations is not expected to hold for a generic

initial state, standard error measures like the matrix norm of the difference with the exact

propagator exp (−8C�) −*1/2(C)
 (6.52)

are not expected to capture the effect. This is, in fact, found in practice for our system. In

panel (a) of Figure 6.1 we show the estimate from equation (6.52) for the # = 4 neutrino

model considered in this work. This error estimate indicates that the*1 approximation has
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a smaller maximum error than*2 up to long times. We can look at a more direct measure

of accuracy for our specific setup by considering instead the state fidelity

5 (C) =
��〈Ψ1,2(C) |Ψ(C)〉

��2 (6.53)

between the exact state |Ψ(C)〉 at time C and one of its approximations
��Ψ1,2(C)

〉
, defined as��Ψ1,2(C)

〉
= *1,2 |Ψ(0)〉 . (6.54)

We show 5 (C) for both approximations in panel (b) of Figure 6.1. The result here suggest

that instead the pair approximation produces a state with a higher fidelity with the true state

than the simple linear propagator*1, especially at relatively long time-steps C ∈ [4, 8].
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Figure 6.1: Panel (a) shows the error in matrix 2-norm equation (6.52) of the two approx-
imations *1 and *2 described in the text. Panel (b) shows the state fidelity and the right
panels show results for the inversion probability %inv(C). Panel (c) is for neutrino one while
panel (d) is for neutrino 2.

Finally, since we are mostly interested in flavor observables diagonal in the computa-

tional basis, we also show a direct comparison of the inversion probability for two out of
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the # = 4 neutrinos using both approximations and the exact propagator (panels (c) and

(d)). The details of how we compute the inversion probability are forthcoming but these

selected results were included here first to show more clearly that the pair approximation

allows us to correctly describe the evolution of flavor for substantially longer times than the

*1 approximation. The results reported here do depend on the specific choice of ordering

of qubits in the time evolution layers shown in Figure 6.2. In both the present analysis

and the simulation results we used the best ordering which we empirically found to be

(1, 3, 2, 4) as one would’ve expected based on the initial state and the criterion equation

(6.49) above. A more rigorous discussion of the relative accuracy between the canonical

first order and the pair approximation, together with the effect of ordering choices, could

be explored in future work.

Because our Hamiltonian (6.44) sums over all ? < @, a naive implementation would

require either a device with all-to-all qubit-connectivity (like a trapped ion systems [58])

or an extensive use of the SWAP gate (3.37). Recall that the SWAP operation exchanges

the states of the two qubits upon which it acts. It can therefore be used to bring the states

of any pair of qubits next to one another in the physical qubit space, allowing one to apply

two-qubit interactions between them on a device with linear qubit-connectivity. This would

naively require a sequence of order # SWAP gates. However, we will show that, since we

need to apply all possible pair interactions, it is actually possible to carry out a complete

Trotter step of the time-evolution operator (6.47) without incurring any overhead due to the

application of the SWAP operations. The scheme is inspired by the more general fermionic

swap network construction presented in [51].

We illustrate this idea using the diagram shown in Figure 6.2 for a simple case with
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# = 4 neutrinos. Starting from the initial state on the left, we first apply the unitaries D?@

from equation (6.47) to the odd bonds: for the # = 4 case, these are the bonds between the

(1, 2) and (3, 4) pairs of qubits. Before moving to the next pairs, we also apply a SWAP

operation to the same pairs upon which we just acted. The resulting unitary operation is

denoted as a double line joining circles (qubits) in Figure 6.2 and the net effect is that at the

next step the qubits that have interacted get interchanged. As any two-qubit unitary can be

efficiently decomposed into a sequence of gates involving three CNOTs and 15 single qubit

rotations (3.39), we see that by decomposing D?@SWAP in this manner, we may apply the

SWAP gates without incurring any additional gates or depth.

Figure 6.2: Pictorial representation of the swap network used in our simulation in the case
of # = 4 neutrinos.

At the end of a sequence of # such combined operations we will have implemented

the full unitary in equation (6.47) while, at the same, we inverted the ordering of qubits, as

shown in Figure 6.2. This approach requires exactly the minimum number
(#

2
)
of nearest-

neighbor pair operations, while the shifted ordering can be controlled completely, and

efficiently, by classical means. Note that if we were to repeat at this point the same swap
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network in reverse order, the full unitary will correspond to a second order step for time

2C and the final ordering of qubits will be restored to its original one. This is the strategy

used in Refs. [68, 67] to study the neutrino Hamiltonian with matrix product states. In this

first implementation on quantum hardware, we focus instead on a single, linear-order, time

step.

Note that since we are only using nearest neighbor two-qubit gates, the total number

of entangling gates required for a full time evolution step is bounded from above by 3
(#

2
)

while the maximum number of single qubit operations is bounded by 15
(#

2
)
. As we will

see in the results presented below, the presence of a large number of arbitrary single qubit

rotations seems to be the limiting factor in implementing this scheme on the quantum

device we used in this exploration.

In order to study the build up of correlations and entanglement generated by the time-

evolution under the Hamiltonian in (6.22) we first initialize a system of # = 4 qubits to the

following product state

|Φ0〉 = |4〉 ⊗ |4〉 ⊗ |G〉 ⊗ |G〉 = |0011〉 (6.55)

We then preform one step of time evolution for time C by applying the # layers of nearest-

neighbor gates as described above. This corresponds to a single Trotter-Suzuki step for

different values of the time-step C. The four SU(2) spins representing the neutrinos are

mapped to qubits (2, 1, 3, 4) on the IBMQ Vigo quantum processor [45], whose connec-

tivity is schematically depicted in Figure 6.3. The resulting qubits are linearly connected,

allowing us to natively carry out the complete simulation scheme depicted in Figure 6.2

above.

The first observable we compute is the inversion probability %inv(C), the probability that
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Figure 6.3: Layout of the IBM Quantum Canary Processor Vigo [45]. Shown are the five
qubits, labeled from 0 to 4, and their connectivity denoted as solid black lines.

a neutrino is measured to not be in its original flavor state, of each individual neutrino as a

function of time. Note that under the simultaneous exchanges 1↔ 4 and 2↔ 3, while the

Hamiltonian in (6.22) is invariant, the flavor content of the initial state |Φ0〉 gets reversed.

Therefore, in the limit of no error, %inv(C) should be the same for the pairs of neutrinos

(1, 4) and (2, 3). The errors in the approximation of the propagator (6.47) do not exactly

follow this symmetry, with deviations in the range 3− 7%. We show the results for %inv(C)

obtained via the approximate evolution operator *2(C) as solid black lines in Figure 6.4,

for the pair (1, 4), and in Figure 6.5 for the pair (2, 3). The ideal, and symmetric, result is

shown instead as a purple dashed line. We see that the approximation error is very small

up to relatively large time [C ≈ 6. As discussed earlier, this is in large part an effect of

using the pair propagator*2(C) instead of the naive first order formula in equation 6.43.

The results shown in Figure 6.4 and Figure 6.5 were obtained using either the real quan-

tum device (right panels denoted QPU) or a local virtual machine simulation employing

the noise model implemented in Qiskit [3] (left panels denoted by VM) initialized with

calibration data from the device. In both plots we report the results (denoted by [bare])

obtained directly from the simulation and including only statistical errors coming from a

finite sample size (here and in the rest of the section we use 8192 repetitions, or “shots",

for every data point), as well as results obtained after performing error mitigation (denoted
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obtained after error mitigation (see text). The left panel (VM) are virtual machine results
while the right panel (QPU) are results obtained on the Vigo [45] quantum device.
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Figure 6.5: Inversion probability %inv(C) for neutrinos two and three. The notation is the
same as for Figure 6.4.

by [mit]). This corresponds to a final post-processing step that attempts to reduce the in-

fluence of the two main sources of errors: the read-out errors associated with the imperfect

measurement apparatus and the gate error associated with the application of entangling

gates. The latter error is dealt with using a zero noise extrapolation strategy (see [31, 29]

and section 6.6 for additional details).

As seen in previous similar calculations [70, 69], the VM results obtained using the
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Figure 6.6: Inversion probability %inv at the initial time C = 0 for the first neutrino. Black
solid circles are results from the Vigo QPU [45] while the red squares correspond to
results obtained using the VM with simulated noise. Also shown are extrapolations to the
zero noise limit, for both the QPU (green line) and the VM (blue line), together with the
extrapolated value (greed triangle up and blue triangle down respectively). The dashed
orange line denotes the result for a maximally mixed state.

simulated noise are much closer to the ideal result than those obtained with the real device.

This is also reflected in the fact that the error mitigation protocol is not as successful with

the real QPU data as it is with the simulated VM data. This behavior is possibly linked to

the substantial noise caused by the presence of a large number of single qubit operations

(up to 90 degree rotations for time evolution and two for state preparation) together with

the relatively large CNOT count of 18. In fact, the performance of error mitigation for the

results with the largest state preparation circuits presented in [69] is superior to the one

obtained here, despite the use of the same device, the same error mitigation strategy and

a comparable number of entangling gates (15 CNOT in that case) while the number of

rotations was only 14. This suggests coherent errors constitute a considerable fraction of

the overall error seen in the results above.

In order to highlight the difficulties encountered when performing noise extrapolation

for this data, we plot in Figure 6.6 the results obtained from both the QPU (black circles)
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and the VM (red squares) for the inversion probability of the first neutrino at the initial time

C = 0 together with a linear extrapolation using the first two points for the QPU (green line)

and the first three points for the VM (blue line). The exact result is of course %inv(0) = 0

and we see that neither strategy is able to predict the correct value. The horizontal dashed

line is the value expected when the system is in the maximally mixed state, corresponding

to full depolarization. As shown in the data, for the real QPU results, only the first level

of noise extrapolation contains useful information and a more gentle noise amplification

strategy, like the one proposed in [41], could provide a substantial advantage over the

strategy adopted here.

6.5 Dynamics of entanglement

In order to track the evolution of entanglement in the system we perform complete state

tomography for each of the six possible qubit pairs in our system by estimating, for each

pair (:, @), the 16 expectation values

"
:,@

U,V
(C) = 〈Φ(C) |%U: ⊗ %

V
@ |Φ(C)〉, (6.56)

with %U
:
∈ {�, -,. , /} being a Pauli matrix acting on the : th qubit and |Φ(C)〉 the state

obtained from |Φ0〉 by applying the time-evolution operator as in equation (2.13). In

principle, we may reconstruct the density matrix for the pair of qubits (:, @) directly from

these expectation values as

d�:@ (C) =
4∑
U=1

4∑
V=1

"
:,@

U,V
(C)%U: ⊗ %

V
@ . (6.57)

In practice however, we can only estimate the matrix elements " :,@

U,V
(C) to some finite

additive precision, and the approximation in equation (6.57) is not guaranteed to be a

physical density matrix (positive definite and trace equal to 1). In this work we use the
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common approach (see eg. [6]) of performing a maximum-likelihood (ML) optimization,

while enforcing the reconstructed density matrix d"!
:@
(C) to be physical. We note in

passing that it is possible to devise operator bases that are more robust than the choice used

in equation (6.56) (see eg. [21]) but we don’t explore this further in our work.

In order to propagate the effect of statistical errors into the final estimator for d"!
:@
(C), we

use a re-sampling strategy similar to what was introduced in [69] but using a Bayesian ap-

proach to determine the empirical posterior distribution. We provide a detailed description

of the adopted protocol in subsection 6.6.1.

6.5.1 Entanglement Entropies

As we mentioned in the introduction, one of the main differences between a mean field

description and the full many-body description of the dynamics of the neutrino cloud is

the absence of quantum correlations, or entanglement, in the former. Past work on the

subject [16, 71] looked at the single spin entanglement entropy defined as

(: (C) = −Tr
[
d: (C) log2 (d: (C))

]
, (6.58)

with d: (C) the reduced density matrix of the :-th spin. A value of the entropy (: (C)

different from zero indicates the presence of entanglement between the :-th neutrino and

the rest of the system.

In our setup, we compute the one-body reduced density matrix from the maximum-

likelihood estimator of the pair density matrix defined above, explicitly

("!:;@ (C) = −Tr
[
d"!:;@ (C) log2

(
d"!:;@ (C)

)]
, (6.59)

where the reduced density matrices are computed from

d"!:;@ (C) = Tr@
[
d"!:@ (C)

]
, (6.60)
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Figure 6.7: Single spin entanglement entropy for neutrino 2. Black squares are bare
results obtained from the QPU, red triangles are results obtained by amplifying the noise
to n/n0 = 3, the blue circles are obtained using Richardson extrapolation, the turquoise
plus symbols indicate results obtained using the standard exponential extrapolation and the
green diamonds correspond to the results obtained from a shifted exponential extrapolation
using the maximum value of the entropy (indicated as a dashed orange line).

and Tr@ denotes the trace over the states of the @-th qubit. We combine the three val-

ues obtained in this way for each neutrinos as follows: the estimator for the single-spin

entanglement entropy is obtained from the average

(
avg
:
(C) = 1

3

∑
@

("!:;@ (C), (6.61)

summing over pairs containing the k-th spin, while as an error estimate we use the average

of the three errors.

As for the case of the inversion probability %inv(C) studied in the previous section, the

substantial noise present in the QPU data prevents us from using the full set of results at

the four effective noise levels. In order to overcome this difficulty, we have performed

zero noise extrapolations using only results for effective noise levels A = n/n0 = 1, 3 and

performed a Richardson extrapolation (in this case equivalent to a simple linear fit as

done in [29]), a two point exponential extrapolation [31], and an exponential extrapolation
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with shifted data. The latter technique consists in shifting the data for the entropy by −1

(its maximum value) so that the result, in the limit of large noise, tends to 0 instead of

log2(2) = 1. We then shift back the result obtained after extrapolation. The exponential

extrapolation method is well suited for situations where expectation values decay to zero

as a function of the noise strength n , while maintaining a consistent sign, and this shift

allows us to make the data conform to this ideal situation (section 6.6 for more details on

the method). The impact on the efficacy of the error mitigation is dramatic as can be seen

in the results presented in Figure 6.7 for the entropy of the second neutrino (the entropies

for the other neutrinos follow a similar pattern; see subsection 6.7 for all four results).

The results with the standard exponential extrapolation are presented as the turquoise plus

symbols; they are almost the same as those obtained using Richardson extrapolation (blue

circles) and show a significant systematic error. On the contrary, the results obtained with

the shifted exponential extrapolation (green diamonds) are much closer to the expected

results with our pair propagator partition (solid black curve). We expect more general

multi-exponential extrapolation schemes, like those proposed in Refs. [37, 13], to enjoy a

similar efficiency boost in the large noise limit achieved with deep circuits.

Using the reconstructed pair densitymatrix d"!
:@
(C), we can clearly also directly evaluate

the entanglement entropy of the pair

("!:@ (C) = −Tr
[
d"!:@ (C) log2

(
d"!:@ (C)

)]
. (6.62)

In Figure 6.8 we show the result of this calculation for the pair (1, 2), which started as

electron flavor at C = 0, and the pair (2, 4) which started instead as heavy flavor states.
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Figure 6.8: Pair entanglement entropy for the neutrino pair (1, 2) starting as |4〉 ⊗ |4〉
(left panel) and pair (2, 4) which starts as the flavor state |4〉 ⊗ |G〉 (right panel). Results
obtained directly from the QPU are shown as black squares (A = 1) and red triangles
(A = 3) while blue circles and green diamonds indicate mitigated results using Richardson
and the shifted exponential extrapolations respectively. For the shifted exponential ansatz
we use the maximum value of the entropy (indicated as a dashed orange line).The magenta
triangle indicates a mitigated result with shifted exponential extrapolation below zero
within errorbars.

6.5.2 Concurrence

In order to better understand these quantum correlations, we also compute the concur-

rence [88] for all the pair states. This measure of entanglement is defined for a two-qubit

density matrix as

� (d) = max {0, _0 − _1 − _2 − _3} , (6.63)

where _8 are the square roots of the eigenvalues, in decreasing order, of the non-Hermitian

matrix

" = d (. ⊗ . ) d∗ (. ⊗ . ) , (6.64)

with the star symbol indicating complex conjugation. The usefulness of this measure is

its relation with the entanglement of formation [43, 88], which is the minimum number of

maximally-entangled pairs needed to represent d with an ensemble of pure states [43].
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The definition of concurrence in equation (6.63) does not lend itself as easily to be

adapted in an error extrapolation procedure as the one we used to obtain the mitigated

results in the previous sections. This is due to the presence of the max function in the

definition of the concurrence: when the error is sufficiently strong to make the difference

in eigenvalues

�̃ (d) = _0 − _1 − _2 − _3 (6.65)

negative, the concurrence in equation (6.63) ceases to carry information about the error

free result. For this reason, we will regard �̃ as an “extended concurrence" which varies

smoothly for large error levels and perform the truncation to positive values only after the

zero noise extrapolation. The results obtained from the simulation on the Vigo QPU are

shown in Figure 6.9 for two pairs of neutrinos: pair (1, 2) starting as like spin at C = 0 and

pair (2, 4) which started as opposite flavors. The complete set of results for all pairs can

be found in Figure 6.10 in subsection 6.7.
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Figure 6.9: Extended concurrence �̃ for two pairs of neutrinos, (1, 2) in the left and (2, 4)
in the right panel. The convention for the curves and date point used here is the same as in
Figure 6.8. The gray area indicates the region where the concurrence � (d) is zero. The
maximum value for the concurrence is shown as a dashed orange line.
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The bare results are shown as black squares and we can immediately notice why the

definition of �̃ is so important in our case: the only bare data point with a measurable

concurrence � (d) is at C ≈ 6.7[−1 for pair (2, 4) (the right panel in Figure 6.9) while

all the other results, including those obtained with a larger noise level (red triangles), are

compatible with zero. In this situation, no mitigation of � (d) would be possible.

By keeping the negative contributions, we see that the bare results often contain a

substantial signal, while those at a higher error rate are already almost at the asymptotic

value �̃ = −0.5 expected for a completely depolarized system. Note that our results seem to

converge to a larger asymptotic value of �̃ ≈ −0.44 instead of �̃ = −0.5. We can empirically

explain this difference as the effect of statistical fluctuations. This allowed us to perform

error extrapolation using both the Richardson and shifted exponential ansatz. Similarly

to what we observed for the entanglement entropies in the previous section, the shifted

exponential ansatz (with shift −0.5) produces consistently better results than Richardson

extrapolation. This indicates that we are more close to the asymptotic large error regime

than the small error limit used to motivate a polynomial expansion. The resilience of the

exponential extrapolations to large errors, especially augmented by an appropriate shift,

is seen here to be critical in extracting physical information from quantum simulations

carried out near the coherence limit of the device used for implementation.

6.6 Error mitigation

6.6.1 Propagation of statistical uncertainties

In this section we describe the procedure we have adopted for propagating statistical

errors in the results reported previously. We found that careful treatment of statistical

errors was important for non linear functions of the expectation values like entropy and
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concurrence of a reconstructed density matrix.

In the following, we will symbolically denote as 〈$〉, expectation values of Pauli

operators which can be measured directly on the device. These are, for instance, the

expectation values 〈--〉, 〈-.〉, etc. needed to reconstruct a two-qubit density matrix.

We use a Bayesian approach to perform inference from the bare counts obtained from

the device. The idea is best described initially for the simple case of a single qubit

measurement. The probability of obtaining < measurements of the state |1〉 out of a total

of " trials can be modelled as a binomial distribution

%1 (<; ?) =
(
"

<

)
?< (1 − ?)"−<, (6.66)

with ? the probability of a |1〉 measurement. In order to infer the parameter ? from a given

sample <8 of measurement outcomes, we use Bayes’ theorem

%(? |<8) =
%(<8 |?)%(?)∫
3@%(<8 |@)%(@)

. (6.67)

For the single qubit measurement, we use the binomial distribution as likelihood %(<8 |?)

and, in order to obtain a posterior %(? |<8) in closed form, we use the conjugate prior of

the binomial: the beta distribution

%V (?;U, V) = Γ(U + V)
Γ(U)Γ(V) ?

U−1(1 − ?)V−1 . (6.68)

Here U, V > 0 are the parameters defining the distribution and with U = V = 1 we obtain a

uniform distribution. The advantage of using the Beta distribution as a prior is that, after a

measurement <8 of the system is available, the parameters (U0, V0) of the prior distribution

get updated as

U8 = U0 + <8 V8 = V0 + " − <8 . (6.69)
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Intuitively we can interpret the parameters (U0, V0) of the prior as assigning an a-priori

number of measurements to the measurement outcomes, which are then updated as more

measurements are performed. In this work we used a simple uniform prior corresponding

to the choice U0 = V0 = 1 for the prior parameters.

After the inference step described above, we calculate the expectation value of a generic

non-linear function 〈� [$]〉 by sampling new outcomes<′
:
using the posterior distribution.

More in detail, we generate a new artificial measurement <′
:
after the measured <8 by the

following procedure

• sample a value ?′
:
from the posterior %(?′

:
|<8)

• sample a new measurement outcome <′
:
from the likelihood %1 (<′: ; ?

′
:
)

The new measurements <′
:
obtained in this way are then samples from the predictive

posterior distribution.

Using an ensemble of size ! obtained in this way, we compute 〈� [$]〉 by taking an

average of the results obtained for each individual sample

〈� [$]〉 ≈ 1
!

!∑
:=1

� [$: ] . (6.70)

The error bars reported previously are 68% confidence intervals which we found in most

cases where well approximated by a Gaussian approximation.

This scheme is complete only for single qubit measurements but a generalization to

generic multi-qubit observables can be obtained in a straightforward way. In the situation

where we are estimating expectation values over # qubits, the probability of measuring

a specific collection of # bit strings <8 in " repeated trials can be described with a

multinomial distribution with # probabilities. We use this distribution as the likelihood
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%(<8 | ®?) in Bayes theorem and, for similar reasons as above, we take its conjugate prior

distribution: the Dirichlet distribution (also initialized as uniform as for the Beta above).

The procedure we follow is otherwise exactly equivalent to what we described above.

6.6.2 Read-out mitigation

The qubit measurements on a real device are not perfect and it is therefore important to

understand the associated systematic errors. We refer the reader to Appendix H.1 of [69]

for a more detailed derivation of the exact procedure we employ and the motivations behind

it. Here, we instead describe the main difference with the scheme described there which

comes from the use of the Bayesian inference scheme described in the previous subsection.

In the calculations presented here, wework under the assumption that read-out errors are

independent on each qubit and perform a set of 2# calibration measurements 28 (requiring

two separate executions) to extract the parameters ( ®40, ®41) of the noise model (see Eq.(H1)

of [69]). In order to consistently propagate the statistical uncertainties associated from the

finite sample statistic used to estimate the noise parameters, we use an additional layer of

Bayesian sampling using a binomial prior for the two error probabilities (4=0, 4
=
1) associated

to each qubit =.

Using a single pair of error probability vectors n8 = ( ®40, ®41)8, obtained either by direct

measurement or by sampling from the posterior, we can generate a linear transformation C8

that maps a set of (in general multi-qubit) measurements <8 to a new set <̃8 with reduced

read-out errors (see [69] for more details).

The complete procedure thatwe use to generate an ensemble ofmeasurements {<̃′
8
}with

read-out mitigation starting from a single calibration measurement 28 and Pauli operator

measurement <8 is as follows
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• sample a value ?′
:
from the posterior %(?′

:
|<8)

• sample a new measurement outcome <′
:
from the likelihood %1 (<′8; ?′: )

• for each qubit = = {1, . . . , #}

– sample a pair (4′=0 , 4
′=
1 ) of error probabilities from the posterior %(4=0, 4

=
1 |28)

• use the sampled error probabilities ( ®4′0, ®4
′
1) to generate the linear transformation C′

:

• apply the sampled correction matrix C′
;
to <′

:
to obtain the read-out mitigated

estimator <̃′
:

The resulting ensemble of measurements can be used directly to estimate expectation

values and confidence intervals as described above. In this way, we avoid having to

explicitly construct the variance of the correction matrix C′
;
using maximum likelihood

estimation and then propagating the error perturbatively to arbitrary observables as done

in [69].

6.6.3 Zero-noise-extrapolation

For observables like inversion probability, we adopt the procedure developed in [69].

For entanglement observables we adopt a two point shifted exponential extrapolation that

we briefly describe here. We denote the entanglement observable as 〈� [$]〉 (!) (A) where

! is the number of samples used and A denotes the noise level of the circuit, proportional

to the number of CNOT gates in the circuit. We first note that in the case of very high

noise levels, denoted here with 〈� [$]〉(A → ∞) the density matrix corresponds to the

maximally mixed state given by 1/4. Therefore, the concurrence in this case is −1/2 and

the pair entanglement saturates to 2.
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Using an estimate for the large noise expected value 〈� [$]〉(A → ∞), we can then

consider a simple exponential extrapolation of the form

〈� [$]〉 (!) (A) − 〈� [$]〉(A →∞) = �(!)
�
4−UA , (6.71)

with U and �(!)
�

the parameters of the model which can be obtain using results at two

different noise levels A and A′. The zero-noise extrapolated result in this model corresponds

to the limit A → 0 and is given simply by the estimated �(!)
�

. More explicitly this becomes

�
(!)
�
= 〈� [$]〉 (!) (A)

(
〈� [$]〉 (!) (A′)
〈� [$]〉 (!) (A)

)A/(A−A ′)
, (6.72)

and the zero noise extrapolated observable is

〈� [$]〉 (!) (0) = �(!)
�
+ 〈� [$]〉(A →∞) . (6.73)

Finally, the estimated statistical error is obtained by calculating the standard deviation of

the ! copies as above.

6.7 Additional data for concurrence and entanglement entropy

Here we show the full set of results for both entanglement entropy and concurrence

for all the other pairs of qubits not shown earlier. We denote with a magenta triangle,

data-points that fall below zero for the entropy as in Figure 6.9.
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Figure 6.10: Single spin entanglement entropy for all four neutrinos. Black squares
are bare results obtained from the QPU, the blue circles are obtained using Richardson
extrapolation and the green diamonds correspond to the results obtained from a shifted
exponential extrapolation using the maximum value of the entropy (dashed orange line).
The magenta triangle indicates a mitigated result with shifted exponential extrapolation
below zero within errorbars.
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Figure 6.11: Pair entanglement entropy for all pairs of neutrinos. Black squares are bare
results obtained from the QPU, red triangles are results obtained by amplifying the noise
to n/n0 = 3, the blue circles are obtained using Richardson extrapolation and the green
diamonds correspond to the results obtained from a shifted exponential extrapolation using
the maximum value of the entropy (indicated as a dashed orange line). The magenta
triangle points are mitigated results with shifted exponential extrapolation below zero
within errorbars.
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Figure 6.12: Entanglement concurrence for all the pairs of qubits. The maximum value
for the concurrence is shown as a dashed orange line.

6.8 Conclusion

In this chapter, we presented the first digital quantum simulation of the flavor dynamics

in collective neutrino oscillations using current quantum technology. The results reported

for the evolution of flavor and entanglement properties of a system with # = 4 neutrino

amplitudes show that current quantum devices based on superconducting qubits are starting

to become a viable option for studying out-of-equilibrium dynamics of interacting many-

body systems. The reduced fidelity in the results obtained here, compared to the simulations

reported previously in [69] employing the same quantum processor and a comparable

number of entangling gates, points to the importance of controlling unitary errors associated

with the imperfect implementation of arbitrary single-qubit rotations (on average < 1% for

the device used in both works). In future work we plan to explore the use of more advanced

error mitigation strategies, such as Pauli twirling [84] or symmetry protection [81], to

achieve a better overall fidelity.

We showed the zero-noise error extrapolation using a shifted Gaussian ansatz to be

remarkably efficient in predicting the expected error-free estimator of observables. Given
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the large circuits employed in this section, past experience with zero-noise extrapolations

(see e.g. [70, 69]) suggest the exponential ansatz to be appropriate due to the large noise

rates, and we find it to indeed outperforms Richardson extrapolation in this regime. Using

the pair concurrence together with the entropy provides a robust way to detect entanglement

even in the presence of substantial noise, like in the results shown here. We expect these

insights, and the mapping of the neutrino evolution problem into a swap network, to

prove very valuable in future explorations of out-of-equilibrium neutrino dynamics with

near-term, noisy, quantum devices.
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CHAPTER 7

QUANTUM CIRCUIT SQUEEZING ALGORITHM

7.1 Introduction

The quantum circuit squeezing algorithm (QCSA) is a novel quantum algorithm devel-

oped in this thesis which compresses the depth of a quantum circuit, with the trade-off of

increased qubit size and required runs. The algorithm relies on two fundamental properties

of maximally entangled states: the ricochet property and entanglement swapping. QCSA

uses the combination of these two properties to replace horizontal lines of gates on a set of

qubits to a vertical line of gates on a larger set of qubits.

7.2 Maximal Entanglement

QCSA relies extensively on maximally entangled states, a state whose entanglement

entropy is maximal. A state |k〉 is maximally entangled if the partial trace of its density

matrix d = |k〉 〈k | is equal to a multiple of the identity �; mathematically

Tr�d�� = 2��, (7.1)

where 2 is a constant. The partial trace can be defined as follows: Let {|08〉} and {|18〉}

be the bases of Hilbert spaces �� and ��, respectively. Let d�� ∈ �� ⊗ �� be a density

matrix which can be decomposed as

d�� =
∑
8 9 :;

28 9 :; |08〉 〈0 9 | ⊗ |1:〉 〈1; | , (7.2)

where 28 9 :; are constants. Then the partial trace over � is given by

Tr� (d��) =
∑
8 9 :;<

28 9 :; 〈0< |08〉
〈
0 9

��0<〉
⊗ |1:〉 〈1; | (7.3)
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=
∑
8 9 :;<

28 9 :;
〈
0 9

��0<〉
〈0< |08〉 ⊗ |1:〉 〈1; | (7.4)

=
∑
8 9 :;

28 9 :;
〈
0 9

��08〉 ⊗ |1:〉 〈1; | . (7.5)

One orthonormal set of maximally entangled states for two qubits, is the Bell state basis.

It contains the following four states��q±〉 = 1
√

2
( |00〉 ± |11〉) (7.6)��k±〉 = 1

√
2
( |01〉 ± |10〉) , (7.7)

which can be prepared on a quantum computer with the following short-depth circuit

|@0〉 � •

|@1〉

(7.8)

where the initial state of the pair of qubits |@0@1〉 leads to the different Bell states as follows

|00〉 →
��q+〉 , (7.9)

|10〉 → |q−〉 , (7.10)

|01〉 →
��k+〉 , (7.11)

|11〉 → |k−〉 . (7.12)

Each Bell state is maximally entangled because the partial trace of its density matrix is

�/2. Note that preparing any of the initial states |@0@1〉 listed above does not increase the

depth of the circuit as their preparation requires at most the application of a column of two

- gates, the top of which can be combined with the � gate to form a single-qubit gate and

the bottom of which can be executed in parallel with this new single-qubit gate. The notion
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of a maximally entangled state can be expanded to = qubits. One such state is what we’ll

call the generalized Bell state
��q+=〉 which we’ll define to be��q+=〉 = 1

√
2=

∑
G∈ℎ=
|GG〉 , (7.13)

where ℎ= = {G | ; (G) = =} is the set of all bitstrings of length =. The states formed from

this set �= = {|G〉 | G ∈ ℎ=}, which we’ll call the bit-string states, are an orthonormal basis

for the Hilbert space of =-qubits. The state
��q+=〉 can be prepared with the following circuit

of depth two:

|01〉 � •

|02〉 � •
...

|0=〉 � •

|0=+1〉

|0=+2〉
...

|02=〉

(7.14)

where the column of = Hadamard gates � places the top half of the qubits in the equal

superposition of the states of �= while the ladder of CNOT gates "copies" each state of the

top half of the qubits to the state of the bottom half, maximally entangling the two sets of

qubits. The circuit is depth two because all of the CNOT gates can be run in parallel as they

each act on disjoint pairs of qubits. Note that this is simply = copies of the quantum circuit

that prepares |q+〉, (7.8) with |@0@1〉 = |00〉. The proof of the maximum entanglement of��q+=〉 is given below:
Tr�

(��q+〉 〈
q+

��) = Tr�
©« 1

2=
∑
G,H∈ℎ=

|GG〉 〈HH |ª®¬
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=
1
2=

∑
G,H∈ℎ=

〈G |H〉 |G〉 〈H |

=
1
2=

∑
G,H∈ℎ=

XGH |G〉 〈H |

=
1
2=

∑
G∈ℎ=
|G〉 〈G |

=
1
2=
� . (7.15)

The maximally entangled states introduced here serve as the building blocks for QCSA.

We will now discuss the two properties of maximally entangled states that will be used to

build the algorithm.

7.3 Ricochet Property

The first property of maximally entangled states that will be used in QCSA is the

Ricochet property. It states that, for any =-qubit gate �, the following equality holds

(� ⊗ �)
��q+=〉 = (� ⊗ �) ) ��q+=〉 , (7.16)

where one will recall
��q+=〉 to be our previously defined (7.13) maximally entangled state

for = qubits. The ricochet property can be proven as follows: First, write � in terms of the

orthonormal basis of =-qubits �= (which was defined as the set of all possible bit-string

states of length =)

� =

=∑
8, 9∈ℎ=

08 9 |8〉 〈 9 | , (7.17)

where 08 9 are the matrix element of �. Then, plug this rewriting of � into the left hand

side (LHS) of the ricochet property definition (7.16)

(� ⊗ �)
��q+=〉 = 1

√
=

=∑
8 9 :

08 9 ( |8〉 〈 9 | ⊗ �) |::〉 (7.18)
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=
1
√
=

=∑
8 9

08 9 |8 9〉

=
1
√
=

=∑
8 9 :

08 9 (� ⊗ | 9〉 〈8 |) |::〉

=

(
� ⊗ �)

) ��q+=〉 . (7.19)

The ricochet property for single-qubit gates can be expressed via quantum circuits as:

|0〉 � • � |0〉 � •

|0〉
=
|0〉 �)

(7.20)

The key insight here is that one can use this property to change two gates applied in series

on a single qubit to two gates applied in parallel on two qubits. This process, which we’ll

call squeezing, can be seen in terms of quantum circuits below

|0〉 � • � � |0〉 � • �

|0〉
=
|0〉 �)

, (7.21)

or, mathematically

(�� ⊗ �)
��q+=〉 = (� ⊗ �) [(� ⊗ �) ��q+=〉] (7.22)

= (� ⊗ �)
[
(� ⊗ �) )

��q+=〉]
= (� ⊗ �) )

��q+=〉 .
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The ricochet property for the =-qubit case, using
��q+=〉 can be visualized in terms of quantum

circuits as follows

|0〉 � •

�

|0〉 � •

|0〉 � • |0〉 � •
...

|0〉 � • |0〉 � •
=

|0〉 |0〉

�)
|0〉 |0〉
...
|0〉 |0〉

, (7.23)

and the squeezing process can additionally be visualized as

|0〉 � •

� �

|0〉 � •

�
|0〉 � • |0〉 � •
...

|0〉 � • |0〉 � •
=

|0〉 |0〉

�)
|0〉 |0〉
...
|0〉 |0〉

(7.24)

So far, we’ve only been able to squeeze (reduce) our circuit depth by a factor 2. In order to

do better, we’ll need to introduce the second property of maximally entangled states upon

which QCSA relies, entanglement swapping.
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7.4 Entanglement swapping

The property of maximally entangled states that allows one to extend the benefits of

the ricochet property to be able to squeeze the depth of a circuit by more than half is called

entanglement swapping. To express it mathematically, let me first introduce the notation��q=
01

〉
to mean that the generalized Bell state

��q+=〉 (7.13) is applied to qubit sets 0 and 1;

that is ��q=01〉 = 1
√

2=
∑
G∈ℎ=
|G0G1〉 , (7.25)

where ℎ= = {G | ; (G) = =} is the set of all bitstrings of length =, while 0 and 1 are

sets of =-qubits. For example, for # = 2, 0 = {0, 1}, and 1 = {2, 3}, we would have

ℎ= = {00, 01, 10, 11} and the generalized Bell state would be��q=01〉 = 1
√

22

∑
G∈ℎ2

|G{0,1}G{2,3}〉 =
1
2
( |0000〉 + |0101〉 + |1010〉 + |1111〉) . (7.26)

With this notation in hand, the entanglement swapping property can then be stated as

follows: 〈
q=12

��q=01q=23〉 = 1
2=

��q=03〉 , (7.27)

which can be proven by inserting into it the definition of the generalized Bell state (7.25),

which yields

〈
q=12

��q=01q=23〉 = (
1
√

2=
∑
G∈ℎ=
〈G1G2 |

) ©« 1
2=

∑
H,I∈ℎ=

|H0H1I2I3〉
ª®¬ (7.28)

=
1

√
23=/2

∑
G∈ℎ=
|H0〉 〈G1 |H1〉 〈G2 |I2〉 |I3〉

=
1

√
23=/2

∑
G∈ℎ=

XGHXGI |H0〉 |I3〉
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=
1
2=

(
1
√

2=
∑
G∈ℎ=
|G0G3〉

)
=

1
2=

��q=03〉 . (7.29)

Taking the complex conjugate squared of both sides of the entanglement swapping property

(7.27) ��〈q=12��q=01q=23〉��2 = 1
4=

〈
q=03

��q=03〉 = 1
4=
, (7.30)

implies that the probability of measuring qubit sets 1 and 2 to be in the state
��q+=〉 is 1/4=.

One can test whether qubit sets 1 and 2 are in the state
��q+=〉 by applying (*=

12
)† to said

qubits, measuring them, and checking if they were both measured to be in the all zero state

|0〉⊗=. Here, we’ve defined *=
01

as the quantum gate that takes qubit sets 0 and 1 from all

zero states to the generalized Bell state
��q=
01

〉
; that is

*= |0〉⊗=0 |0〉⊗=1 =
��q=01〉 . (7.31)

To get a better feel for the entanglement swapping property, we show here the property in

terms of quantum circuits for the = = 1 case:

|00〉 � • |00〉 � •

|01〉 • �

|02〉 � •
1/4
−−→

|03〉 |03〉

, (7.32)

whose mathematical description matches that of the = = 1 case of the definition of the

property (7.27)

〈00| (*=
12)
†*=

01*
=
12 |0000〉 = 1

2=
��q=03〉 (7.33)
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〈
q=12

��q=01q=23〉 = 1
2=

��q=03〉 , (7.34)

where we’ve used the definition 7.31. Here the arrow with 1/4 above it from 7.32 implies

that qubits 1 and 2 were measured to be 00 with probability 1/4. Additionally, qubits 1 and

2 have been discarded in the circuit to the right of the arrow as they have been measured

and are therefore no longer relevant. Note that, in the = = 1 case considered above *=
GH

is simply the quantum circuit that prepares |q+〉 given in 7.8 (with G = @0 and H = @1);

that is, a Hadamard applied to the top qubit G and a CNOT with the qubits G and H being

the control and target qubits, respectively. We’ll now consider the arbitrary = case (7.27).

Here, *=
GH is the quantum circuit given in (7.14). This case is given in the quantum circuit

representation below, in which the arrow with a 1
4= above it implies that the qubit sets 1
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and 2 were measured to be in the all zero state |0 . . . 0〉:

|0〉 � • |0〉 � •

|0〉 � • |0〉 � •
...

|0〉 � • |0〉 � •

|0〉 • �

|0〉 • �

...

|0〉 • � 1
4=−−→

|0〉 � •

|0〉 � •
...

|0〉 � •

|0〉 |0〉

|0〉 |0〉
...
|0〉 |0〉


0


1


2


3

(7.35)

7.5 Dicke Subspace Modification

The quantum circuit squeezing algorithm can be modified for circuits that preserve

Hamming weight (for example, ansatzes in second quantization for systems that preserve

particle number) so that the increase in additional measurements is reduced. To describe

this modification, let us first define what we’ll call the Dicke-Bell state |q=
:
〉, which can be
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thought of as a maximally entangled state in the sub-space of the Hilbert space for = qubits

containing only the bit-string states that have a Hamming weight of : . Mathematically��q=:〉 = 1√(=
:

) ∑
G∈ℎ=

:

|GG〉 , (7.36)

where ℎ=
:
= {G | l(G) = =,wt(G) = :}; that is the set of all bit-strings G with length = and

Hamming weight : . For example,��q4
2
〉
=

1
√

6
( |1100〉 ⊗ |1100〉 + |1010〉 ⊗ |1010〉 + |1001〉 ⊗ |1001〉 (7.37)

+ |0110〉 ⊗ |0110〉 + |0101〉 ⊗ |0101〉 + |0011〉 ⊗ |0011〉). (7.38)

It is analogous to the state
��q+=〉 defined in (7.13) with G being drawn from the set ℎ=

:
instead

of ℎ=. The states created from the latter, �= = {|G〉 |G ∈ ℎ=}, are an orthonormal basis

for the Hilbert space of =-qubits. This is as opposed to the states created from the former,

�=
:
= {|G〉 |G ∈ ℎ=

:
}, which is an orthonormal basis for �=

:
, the subset of the Hilbert space

for =-qubits containing only quantum states formed from bit-string states with a Hamming

weight of : . The Dicke-Bell state |q=
:
〉 can be formed from the following circuit

|0〉

*=
:

•

|0〉 •
...
|0〉 •

|0〉

|0〉
...
|0〉

(7.39)

where*=
:
takes the =-qubit all-zero state to the =, : Dicke state; that is

*=
: |0〉

⊗= = |�=
:〉 , (7.40)
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where the Dicke state |�=
:
〉 is defined as the equal superposition of all bit-string states of

length = and Hamming weight :; that is

|�=
:〉 =

1√(=
:

) ∑
G∈ℎ=

:

|GG〉 . (7.41)

The reason we’ve named the resulting state the Dicke-Bell state is now revealed; it is the

entanglement of a Dicke-state into a maximally entangled state for a constant Hamming

weight subspace. Finding a short-depth circuit decomposition for *=
:
(to prepare a Dicke

state) is an active area of research. It has been shown how to construct*=
:
with O(=) depth

and O(:=) gates ([9] and [2]). While linear depth is certainly not as good as the constant

two depth circuits (7.14) we shall see that using the subspace modification (which requires

the preparation of Dicke states) provides a significant advantage in terms of amount of shots

(runs of quantum circuits) required. Additionally, more efficient preparation methods may

be discovered, including our novel method considered in chapter 8.

It can be shown that the ricochet property still holds for |q=
:
〉. That is, for any = by

= matrix �: that preserves the Hamming weight (:) of any state upon which it acts, the

following equality holds

(� ⊗ �)
��q=:〉 = (� ⊗ �) ) ��q=:〉 . (7.42)

It can be proven analogously to the proof of the original ricochet property (7.18) by writing

� in terms of the orthonormal basis ℎ=
:

�: =
∑
G,H∈ℎ=

:

0GH |G〉 〈H | , (7.43)

and calculating

(�: ⊗ �)
��q=:〉 = 1√(=

:

) ∑
GHI

0GH ( |G〉 〈H | ⊗ �) |II〉 (7.44)
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=
1√(=
:

) ∑
GH

0GH |GH〉

=
1√(=
:

) ∑
GHI

0GH (� ⊗ |H〉 〈G |) |II〉

=

(
� ⊗ �):

) ��q=:〉 ,
where G, H, I sum over the set ℎ=

:
. The quantum circuit representation of this ricochet

property is given below

|0〉

*=
:

•

�

|0〉

*=
:

•

|0〉 • |0〉 •
...
|0〉 • |0〉 •

=
|0〉 |0〉

�)
|0〉 |0〉
...
|0〉 |0〉

(7.45)

Because �: preserves Hamming weight, it sees the subspace �=
:
the same way that �

sees �=, as the entire space that it can explore. In other words, �=
:
is closed under the

application of �: just as �= is closed under the application of �. Mathematically, ∀G ∈ �=
:
,

�:G ∈ �=
:
just as ∀G ∈ �=, �G ∈ �=.

Entanglement swapping also holds for |q=
:
〉. To explain, let me first introduce the

notation |q=:
8 9
〉 to mean that the Dicke-Bell state |q=

:
〉 is applied to qubits 8 and 9 ; that is���q=:8 9 〉 = 1√(=

:

) ∑
G∈ℎ=

:

��G8G 9 〉 . (7.46)
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Then, the analogous entanglement swapping property is〈
q=:12

��q=:01q=:23〉 = 1(=
:

) ��q=:03〉 , , (7.47)

which can be proven by inserting into it the definition of the Dicke-Bell state (7.46) which

yields

〈
q=:12

��q=:01q=:23〉 = ©«
1√(=
:

) ∑
G∈ℎ=

:

〈G1G2 |
ª®®¬
©« 1(=
:

) ∑
H,I∈ℎ=

:

|H0H1I2I3〉
ª®¬ (7.48)

=
1(=
:

)3/2

∑
G,H,I∈ℎ=

:

|H0〉 〈G1 |H1〉 〈G2 |H2〉 |I3〉 (7.49)

=
1(=
:

)3/2

∑
G,H,I∈ℎ=

:

XGHXGI |H0〉 |I3〉 (7.50)

=
1(=
:

) ©«
1√(=
:

) ∑
G∈ℎ=

:

|G0〉 |G3〉
ª®®¬ (7.51)

=
1(=
:

) ��q=:03〉 . (7.52)

Taking the complex conjugate squared of both sides of the entanglement swapping property

(7.27) ��〈q=:12 ��q=:01q=:23〉��2 = 1(=
:

)2

〈
q=:03

��q=:03〉 = 1(=
:

)2 , (7.53)

implies that the probability of measuring qubit sets 1 and 2 to be in the state
��q=
:

〉
is 1
(=:)2

.

Note that the probability of success (every qubit in the qubit sets 1 and 2 was measured to

be zero) has gone from scaling exponentially with = (7.27) to scaling linearly with = (7.47),

the benefits of which will become clear soon. The entanglement swapping property can

be viewed in terms of quantum circuits below, in which the arrow with a 1/
(=
:

)2 above it
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means that the probability of equivalency is 1/
(=
:

)2. The dashed line is to delineate between

the circuit between the section that entangles sets of qubits and the section that rotates the

basis as to allow one to measure in the Dicke-Bell basis.

|0〉

*=
:

• |0〉

*=
:

•

|0〉 • |0〉 •
...
|0〉 • |0〉 •

|0〉 •

(*=
:
)†|0〉 •

...

|0〉 • 1
(=:)2−−−→

|0〉

*=
:

•

|0〉 •
...

|0〉 •

|0〉 |0〉

|0〉 |0〉
...
|0〉 |0〉

(7.54)

7.6 Entanglement Swapping Recursion

As we’ve seen, the procedure of entanglement swapping can be used to reduce the

length of a circuit by the order of a factor of two. However, we can further reduce the

circuit length by extending entanglement swapping in a recursive manner: First, we define
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the base case:

〈0|*†
12
*01*23 |0〉 =

√
?*03 |0〉 , (7.55)

where

*01 |0〉 = |q01〉 , (7.56)

with |q01〉 defined as a general maximally entangled state which is maximally entangled

in some subspace �. We define it generally here so as to cover the previously explored

cases: when � = �=, the full Hilbert space of = qubits, and when � = �=
:
, the subspace

of �= restricted to states of Hamming weight : . (However, � can be any subspace of �=.)

The state formed by applying *01 to the vacuum and the probability ? are determined by

�. For example, when � = �=, we have*01 |0〉 = |q=01〉 and ? = 1/4=. Meanwhile, when

� = �=
:
, we have *01 |0〉 = |q=:01〉 and ? = 1/

(=
:

)2. This base case can be represented by

the following quantum circuit diagram.

|0〉

*

|0〉

*

...
...

|0〉 |0〉

|0〉

*†

...

|0〉

|0〉

*

?
−→

...

|0〉

|0〉 |0〉
...

...
|0〉 |0〉

0


1


2

3

(7.57)
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The recursive extension of entanglement swapping can be stated mathematically as

〈0|
#−1∏
:=1

*
†
2:−1,2:

#∏
:=1

*2:−2,2:−1 |0〉 =
√
?#−1*0,2#−1 |0〉 , (7.58)

where the indices of * refer to qubit sets. To prove this, we assume as the induction

hypothesis, that (7.58) is true and proceed to show that the statement holds when we take

# → # + 1:

〈0|
#∏
:=1

*
†
2:−1,2:

#+1∏
:=1

*2:−2,2:−1 |0〉 ; (7.59)

pulling out the : = # term from the first product and the : = # and : = # + 1 terms from

the second product yields

〈0|
#−1∏
:=1

*
†
2:−1,2:

#−1∏
:=1

*2:−2,2:−1 |0〉 〈0|*†2#−1,2#*2#−2,2#−1*2#,2#+1 |0〉 ; (7.60)

using the base case yields

√
? 〈0|

#−1∏
:=1

*
†
2:−1,2:

#−1∏
:=1

*2:−2,2:−1 |0〉*2#−2,2#+1 |0〉 ; (7.61)

relabeling qubit set 2# + 1 → 2# − 1 (which is allowed as qubit set 2# − 1 has been

measured) yields

〈0|
#−1∏
:=1

*
†
2:−1,2:

#∏
:=1

*2:−2,2:−1 |0〉 ; (7.62)

applying the induction hypothesis gives√
?#*0,2#−1 |0〉 (7.63)

which completes the proof. The quantum circuit representation of entanglement swapping

recursion for the case # = 3 is given below. The arrow with the ? above it implies that
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the following circuit is equivalent to the previous with probability ?. Between the first and

second circuit, the entanglement swapping property is applied amongst the first four sets

of qubits while between the second and third circuit, the entanglement swapping property

is applied amongst the remaining sets of qubits.

|0〉

*

|0〉

*

|0〉

*

...
...

...
|0〉 |0〉 |0〉

|0〉

*†

...

|0〉

|0〉

*

?
−→

...

|0〉

|0〉

*†

|0〉

*†

...
...

|0〉 |0〉

|0〉

*

|0〉

*

?
−→

...
...

|0〉 |0〉

|0〉 |0〉 |0〉
...

...
...

|0〉 |0〉 |0〉

(7.64)
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7.7 The Algorithm

We will now combine everything introduced thus far (ricochet property, entanglement

swapping property, and entanglement swapping recursion) in order to construct the quantum

circuit squeezing algorithm (QCSA). Before we give a formal definition, we’ll walk through

the algorithm for single-qubit gates and a single recursion step in quantum circuit form:

Let �, �, �, � be arbitrary single-qubit gates. Then the QCSA circuit is given by

|0〉 � • �)

|0〉 � • �

|0〉 � • �)

|0〉 �

(7.65)

Since the qubit pairs (0, 1) and (2, 3) are each in the |q+〉 state, one can apply the ricochet

property to move the middle two gates (� and �) ) outward

|0〉 � • �) �)

|0〉 • �

|0〉 � •

|0〉 � �

(7.66)

The entanglement swapping identity then tells us that, with a probability of 1/4, measuring

the middle two qubits will collapse them to the state |00〉, which would result in the

following circuit

|0〉 � • �) �)

|0〉 � �

(7.67)
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where the middle two qubits have been discarded. Since the two qubits left are in the state

|q+〉, the ricochet property can be applied again to move the top two gates (�) and �) )

down to the bottom qubit.

|0〉 � •

|0〉 � � � �

(7.68)

One then measures the first qubit. With probability 1/2, one will measure 0 which implies

that the second qubit is in the state |0〉, since the two qubits are in the entangled state |q+〉.

Thus, with probability 1/2, the above circuit is equivalent to the following circuit

|0〉 � � � � (7.69)

QCSA’s benefit can now be understood: If one desires to run the circuit (7.69), one can

instead run the squeezed circuit (7.65) which allows one to apply the four single-qubit gates

�, �, �, � in parallel instead of series (with the trade-off of the usage of more qubits and

the circuits only being equivalent one fourth of the time). While these two circuits have

the same depth, we will see that for a large initial depth, the depth of the squeezed circuit

can be decreased substantially through the use of QCSA. Since the final circuit (7.69) is

only equivalent to the first circuit (7.65) with probability 1/8, one must run the first circuit

eight times the number of runs one desires to run the first circuit. Assuming that these runs

cannot be done in parallel, this increases the total run time by a factor of eight. However,

we shall see later that the factor by which the run time increases need not necessarily scale

exponentially with the depth of the original circuit.

We now walk through a more robust example of QCSA. Here we will use * and |Φ〉

so as to keep the description of the algorithm general. That is, |Φ〉 can refer to either the
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generalized Bell state
��q+=〉 (7.25) or the Dicke-Bell state |q=

:
〉 (7.36), with * being the

operator that transforms the all zero state into the chosen version of |Φ〉. The algorithm

works the same for both cases, the only difference being the probability ? of one each

subsequent circuit being equivalent after measurement. However, this probability ? will

be given for both cases at each such step as we continue. In (7.70) we start on the left hand

side (LHS) with an initial circuit which consists of six sets of qubits (B0 through B5). These

six sets are entangled pairwise into three maximally entangled states |Φ01Φ23Φ45〉 via the

application of*01*23*45. Then we apply a column of the six gates that we actually wish to

run (�0 through �5), transposing the even-indexed ones. Finally, we apply*† to the inner

two pairs of qubit sets (B1,B2) and (B3,B4). To get to the right hand side (RHS) of (7.70),

we apply the ricochet property between pairs of qubit sets (B0,B1) and (B2,B3). Doing so

ricochets �1 from qubit set B1 up to qubit set B0 and ricochets �)2 from qubit set B2 down

to qubit set B3. This leaves space for *†12 to be next to *01 and *23, allowing us to apply
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the entanglement swapping identity to the set of qubit sets {B0, B1, B2, B3}.

|0〉

*

�)0

|0〉

*

�)1 �)0
...

...
|0〉 |0〉

|0〉
�1

*†

|0〉

*†

...
...

|0〉 |0〉

|0〉

*

�)2

|0〉

*

...
...

|0〉 |0〉

|0〉
�3

*†

=
|0〉

�2 �3

*†

...
...

|0〉 |0〉

|0〉

*

�)4

|0〉

*

�)4
...

...
|0〉 |0〉

|0〉
�5

|0〉
�5...

...
|0〉 |0〉

B0


B1


B2

B3

B4

B5

(7.70)

This means that the RHS of the circuit above (7.70) is equal to the LHS of the circuit below

(7.71) with probability ?. The probability ? is given by ? = 1/4= if * prepares
��q+=〉 or

? = 1/
(=
:

)2 if * prepares
��q=
:

〉
. Here = is the number of qubits in each qubit set B8 and :

is the Hamming weight that one can set as desired. To get to the LHS of (7.71) we apply

the ricochet property between pairs of qubit set (B0, B3) and (B4, B5). Doing so ricochets

�2 and �3 from qubit set B3 up to qubit set B0 and ricochets �)4 from qubit set B4 down to

qubit set B5. This leaves space for *†34 to be next to *03 and *45, allowing us to apply the
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entanglement swapping identity on qubit sets {B0, B3, B4, B5}.

|0〉

*

�)1 �)0

|0〉

*

�)3 �)2 �)1 �)0
...
|0〉 |0〉

|0〉
�2 �3

*†

|0〉

*†

...
=

|0〉 |0〉

|0〉

*

�)4

|0〉

*

...

|0〉 |0〉

|0〉
�5

|0〉
�4 �5...

|0〉 |0〉

B0


B3


B4

B5

(7.71)

This means that the RHS of the circuit above (7.71) is equal to the LHS of the circuit below

(7.72) with probability ?, defined the same as before. To get to the LHS of (7.72) we apply

the ricochet property between qubit set B0 and B5.

|0〉

*

�)3 �)2 �)1 �)0
...
|0〉

|0〉
�4 �5...

|0〉

B0

B5

(7.72)

Applying the ricochet property between qubit sets @0 and @5 gives us the circuit below the
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next circuit (7.73)

|0〉

*

...

|0〉

|0〉
�0 �1 �2 �3 �4 �5...

|0〉


B0

B5

(7.73)

Finally, we measure the qubit set B0. The circuit above (7.73) is equal to the circuit below

(7.74) with probability @. If * prepares
��q+=〉, then @ = 1/2=. If * prepares |q=

:
〉 then

@ = 1/
(=
:

)
.

|0〉
�0 �1 �2 �3 �4 �5...

|0〉

B5

(7.74)

Working backwards, this implies that if one desires to run the circuit above (7.74), one can

instead run the shorter depth squeezed circuit (7.74). All together, the probability ? of

these two circuits being equal is ? = 1/25= if * prepares
��q+=〉 or ? = 1/

(=
:

)5 if * prepares

|q=
:
〉.

We now describe the QCSA algorithm in full. The algorithm takes as an input, a depth

= quantum circuit consisting of < qubits and an even integer 3 between 1 and < + 1. The

algorithm returns as an output, a depth d=/3e (squeezed) quantum circuit consisting of

3<. To begin, one groups the = gate columns of the input circuit into = mod 3 groups of

depth d=/3e and 3 − (= mod 3) groups of depth b=/3c. We label these 3 groups of gate

columns �0, . . . , �3−1. With this grouping, the algorithm is described via pseudo-code in

Algorithm 7.1, below.
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Algorithm 7.1 Quantum Circuit Squeezing Algorithm
Input: A quantum circuit consisting of < qubits (@8 for 8 ∈ 0, . . . , <−1) and 3 groups

of gate columns (�8 for 8 ∈ 0, . . . , =− 1). An even factor 3 by which the depth of the layers
of gates will be shortened.

Output: Squeezed quantum circuit consisting of 3< qubits and d=/3e layers of gates.
success = False
while success = False do

Initialize squeezed quantum circuit with 3< qubits.
for 0 ≤ 8 < 3/2 do

Apply* to qubit set {@2<8, . . . , @2<(8+1)−1
end for
for 0 ≤ 8 < 3 do

if 8 is even then
apply �)

8
to the qubit set {@<8, . . . , @<(8+1)−1}

end if
if 8 is odd then

apply �8 to the qubit set {@ (<(28+1) , . . . , @<(28+3)−1}
end if

end for
for 0 ≤ 8 < 3/2 − 1 do

apply*† the to qubit set {@ (<(28+1) , . . . , @<(28+3)−1}
end for
for 0 ≤ 8 < (3 − 1)< do

Measure qubit @8 to bit 28
end for
if 28 = 0 for all 8 ∈ {0, . . . <(3 − 1) − 1 then

success = True
Discard measured qubits and return circuit

end if
end while

We will now prove QCSA (Algorithm 7.1) by induction. For this proof, we define the

following parameters: let B8 (for any 8) denote an <-qubit set; let �8 (for any 8) denote a

group of gate columns, and let 3 be an even positive integer. With this, QCSA for arbitrary
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3 can be stated mathematically as(
3−2∏
:=1
〈0B: |

) (
3/2−2∏
:=0

*†B2:+1,B2:+2

) (
3/2−1∏
:=0
(�)2: )B2:

)
×

(
3/2−1∏
:=0
(�2:+1)B2:+1

) (
3/2−1∏
:=0

*B2: ,B2:+1

) (
3−1∏
:=0
|0B: 〉

)
=

√
?3/2−1

(
3−1∏
:=0
(�: )B23−1

)
*B0,B23−1

��0B00B3−1

〉
. (7.75)

The base case (3 = 2) for QCSA is〈
0B10B2

��*†B1B2 (�
)
0 )B0 (�1)B1 (�)2 )B2 (�3)B3*B0B1*B2B3

��0B00B10B20B3

〉
(7.76)

= ?(�)0 �
)
1 )B0 (�)3 �

)
2 )B3*B0B3

��0B00B3

〉
, (7.77)

which can be proved as follows: first, we apply the ricochet property on qubit set pairs

{B0, B1} and {B2, B3}, which results in

*†B1B2 (�
)
0 �

)
1 )B0 (�)3 �

)
2 )B3*B0B1*B2B3

��0B00B10B20B3

〉
(7.78)

= (�)0 �
)
1 )B0 (�)3 �

)
2 )B3*

†
B1B2*B0B1*B2B3

��0B00B10B20B3

〉
. (7.79)

Next, we apply the entanglement swapping property on the set of qubit sets {B0, B1, B2, B3},

which leads to

√
?(�)0 �

)
1 )B0 (�)3 �

)
2 )B3*B0B3

��0B00B3

〉
, (7.80)

where

? =


1

4< , if* prepares |q+=〉

1
(<: )2

, if* prepares |q<
:
〉.

(7.81)
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To prove QCSA, we assume as the induction hypothesis, that (7.75) is true. Taking

3 → 3 + 2 in (7.75) yields(
3∏
:=1
〈0B: |

) (
3/2−1∏
:=0

*†B2:+1,B2:+2

) (
3/2∏
:=0
(�)2: )B2:

)
×

(
3/2∏
:=0
(�2:+1)B2:+1

) (
3/2∏
:=0

*B2: ,B2:+1

) (
3+1∏
:=0
|0B: 〉

)
. (7.82)

We now pull out of their respective products: the last two* terms
(
*B3−2,B3−1 and*B3 ,B3+1

)
,

the last four � terms
(
(�)

3−2)B3−2 , (�3−1)B3−1 , (�)3 )B3 , and(�3+1)B3+1
)
, and the last *† term(

*
†
B3−1,B3

)
. This yields(

3∏
:=1
〈0B: |

) (
3/2−2∏
:=0

*†B2:+1,B2:+2

) (
3/2−2∏
:=0
(�)2: )B2:

) (
3/2−2∏
:=0
(�2:+1)B2:+1

)
×

(
3/2−1∏
:=0

*B2: ,B2:+1

) [
*†B3−1,B3 (�

)
3−2)B3−2 (�3−1)B3−1 (�)3 )B3 (�3+1)B3+1 (7.83)

×*B3−2,B3−1*B3 ,B3+1

(
3+1∏
:=0
|0B: 〉

) ]
. (7.84)

Using the base case yields

√
?

(
3∏
:=1
〈0B: |

) (
3/2−2∏
:=0

*†B2:+1,B2:+2

) (
3/2−2∏
:=0
(�)2: )B2:

) (
3/2−2∏
:=0
(�2:+1)B2:+1

)
×

(
3/2−1∏
:=0

*B2: ,B2:+1

) [(
�)3−2�

)
3−1

)
B3−2
(�3+1�3)B3+1 *B3−2,B3+1

] (
3+1∏
:=0
|0B: 〉

)
. (7.85)

Absorbing the bracketed terms back into the products by relabeling B3+1 → B3 , �3+1�3 →

�3−1, and �)3−2�
)
3−1 → �)

3−2 yields

√
?

(
3∏
:=1
〈0B: |

) (
3/2−2∏
:=0

*†B2:+1,B2:+2

) (
3/2−1∏
:=0
(�)2: )B2:

)
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×
(
3/2−1∏
:=0
(�2:+1)B2:+1

) (
3/2−1∏
:=0

*B2: ,B2:+1

) (
3+1∏
:=0
|0B: 〉

)
. (7.86)

Applying the induction hypothesis (7.75) yields√
?3/2

(
3−1∏
:=0
(�: )B23−1

)
*B0,B23−1 |0〉 , (7.87)

which completes the proof. The final step is to measure the the first qubit set B0. If the

measurement succeeds (returns all zeros: 01 . . . 0<) then the circuit is in the state√
? (3+1)/2

(
3−1∏
:=0
(�: )B23−1

)
*B0,B23−1 |0〉 . (7.88)

because the probability of success is √?.

7.8 Scaling

In this section we discuss the scaling of various parameters involved in the QCSA

algorithm. Let the initial circuit that one wishes to "squeeze" have <8 qubits and a depth

of =8. Let the final (squeezed) circuit have < 5 qubits and a depth of = 5 . Let 3 be an even

integer between 1 and < + 1 and the factor by which the initial circuit is squeezed. The

parameters of the final circuit (< 5 and = 5 ) are given in terms of the parameters of the initial

circuit (<8 and =8) as follows:

< 5 = 3<8, (7.89)

= 5 = $

(=8
3

)
. (7.90)

by the pigeon hole principle. The depth comparison equation (7.90) is written in big O

notation because the true depth of the final circuit is
⌈
=8
3

⌉
plus 23 (*), twice the depth of

*. If * prepares |q+<〉 then 3 (*) = 2. If * prepares |q<
:
〉 then 3 (*) = O(<) if * is

decomposed deterministically [9]. However, see the following chapter (8) for a potentially
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shorter depth decomposition. In any case, for small<8 and large =8, the term
⌈
=8
3

⌉
outweighs

23 (*). With these scalings (7.89 and 7.90) we can see that QCSA is most beneficial if

one wishes to run a small-qubit, long-depth circuit on a large-qubit quantum computer that

only allows short-depth circuits (and is substantially noisy). Fortunately, this is likely the

direction that many NISQ era quantum computers are going [79].

We must also consider the scaling of the time it takes to run QCSA. Recall, that QCSA

is a probabilistic algorithm, which means that it only succeeds with a certain probability.

For the full or subspace version of QCSA (* prepares |q+<〉 or |q<: 〉, respectively) the

probabilities of success (?full or ?sub, respectively) are

?full =
1

2<8 (3−1) = O
(

1
2<83

)
, (7.91)

?sub =
1(<8

:

)3−1 = O
(

1
<:3
8

)
. (7.92)

Note that this implies that the number of shots (runs of the quantum circuit) that are required

for the results of the squeezed circuit to match the quality of the results of the original

circuit scales inversely proportionally with ?. That is, because the squeezed circuit is only

equivalent to the original circuit (when run) with probability ?, one must (on average) run

the squeezed circuit ? times to equal one run of the original circuit. Thus, the number of

shots (Bfull or Bsub) required for each version of QCSA (full or subspace, respectively) is

given by

Bfull =
1
?full

= O
(
2<83

)
, (7.93)

Bsub =
1
?sub

= O
(
<:3
8

)
. (7.94)

The time (C) it takes to run the experiment (run the quantum circuit B times) is given by the

product of the time it takes to run the quantum circuit once (which scales as the depth =)
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and the number of shots B. Thus, the experiment times for the initial and final circuits of

full QCSA (C (full)
8

and C (full)
5

, respectively) scale as

C
(full)
8
∝ =8, (7.95)

C
(full)
5
∝ Bfull= 5 = O

(
2<83

3

)
=8, (7.96)

whereas the experiment times for the initial and final circuits of subspace QCSA (section

7.5), which are given byC (sub)
8

and (C (sub)
5

respectively, scale as

C
(sub)
8
∝ =8, (7.97)

C
(sub)
5
∝ Bsub= 5 = O

(
<:3
8

3

)
=8 . (7.98)

Thus, the factor by which the experiment times increase can be expressed via

C
(full)
5

= O
(
2<83

3

)
C
(full)
8

, (7.99)

C
(sub)
5

= O
(
<:3
8

3

)
C
(sub)
8

. (7.100)

It can thus be seen that the subspace version of QCSA only takes polynomially longer to

run as the number of qubits < increases, which is as compared to the full version of QCSA

which takes exponentially longer to run. This is the main advantage of the subspace version

of QCSA. The trade off is the longer circuit depth of *. Thus, the full version of QCSA

should only be used for a very small number of qubits <. Note that both version’s times

grow exponentially with the squeezing factor 3. Thus, although it would be wonderful to

choose 3 = = (the circuit depth) and squeeze our circuit to as short a depth as possible, this

would not be advisable given the scaling of 3. One potential sweet spot for 3 would be as

a logarithm, that is

3full =
log2 =8

<8
, (7.101)
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3sub =
log<8

=8

:
. (7.102)

This choice of 3 for full QCSA would require the initial depth =8 to be exponential in the

initial number of qubits <8 (that is, =8 = 22<8 ) in order for 3 = 2 (with 2 > 1). However,

this choice of 3 for subspace QCSAwould only require the initial depth =8 to be polynomial

in the initial number of qubits <8 (that is, =8 ∝ <2:8 ) to achieve the same. Plugging these

values of 3 into 7.103 and 7.104, respectively, yields

C
(full)
5

= O
(

=8

log2 =8

)
C
(full)
8

, (7.103)

C
(sub)
5

= O
(

=8

log<8
=8

)
C
(sub)
8

, (7.104)

which is sub-linear scaling. All of this again reiterates that QCSA is best suited for circuits

are much deeper than they are tall (number of qubits).

Finally, we discuss the qubit-connectivity required to run QCSA. Assuming that all gate

columns � only require linear connectivity, then the full version of QCSA only requires

grid connectivity. For example, the following squeezed quantum circuit for full QCSA

with (<8, =8, 3) = (2, 4, 2):

|@0〉 � •
�)

|@1〉 � •

|@2〉
�

• �

|@3〉 • �

|@4〉 � •
�)

|@5〉 � •

|@6〉
�

|@7〉

(7.105)
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Figure 7.1: Graph of grid qubit-connectivity. Circled numbers represent qubits, black lines
represent that two qubits are connected, and black rectangles represent gates �.

can be run on a quantum computer with the grid architecture found on Figure 7.1, where

the black rectangles represent the two-qubit gates (�) , �, �) , and �). They inscribe the

qubits upon which their corresponding two-qubit gate acts. In the case of subspace QSCA,

as long as * can prepare
��q=
:

〉
with linear-connectivity (reference [9] and chapter 8), then

the algorithm itself only requires linear connectivity 5.4.

7.9 Demonstration

Here we given a demonstration of QCSA. We have developed code that performs

QCSA: taking in an arbitrary quantum circuit and transforming it to the squeezed version

of itself. We tested the algorithm using the following procedure: for various initial circuit

depths (=), we estimated the density matrix (dest) of the final state of each circuit (original

and squeezed) using quantum state tomography (6.56) and compared its corresponding

exact density matrix (dext) by taking the fidelity of the two. The definition of fidelity that

we used can be defined as follows. Let d and f be two density matrices, where the density

matrix d of a state |q〉 is defined as (d = |k〉 〈k |). Then their fidelity � (f, d) is defined as
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the trace of their product

Tr(fd). (7.106)

Quantum state tomography is the process by which the density matrix of a =-qubit state

|k〉 is estimated as

d =
1
2=

3∑
U1,...,U==0

(U1,··· ,U=f
(U0) ⊗ . . . ⊗ f (U=) , (7.107)

where f0 = �, f1 = - , f2 = . , and f3 = / are the Pauli operators and

(U1,...,U= = 〈k |f (U0) ⊗ . . . ⊗ f (U=) |k〉 , (7.108)

are the expectation values of the Pauli-strings f (U0) ⊗ . . .⊗f (U=) which are estimated using

the method described in subsection 3.4.2. We studied the case with three initial qubits

(<8 = 3), a squeezing factor of 3 = 2, and let the initial depth run over =8 = 2, 3, . . . , 18.

The original circuits were populated with random three-qubit gates and each estimation of

fidelity was averaged over five runs. The number of shots used for the squeezed circuit

B 5 was B 5 = 2<(3−1)B8 = 8B8 where B8 = 211 is the number of shots used for the original

circuit. The results were obtained from a noisy simulation of the quantum circuits on

a classical computer. It can be seen in Figure 7.2 that the the fidelity estimated from

the squeezed circuit is always greater than that estimated from the original circuit, the

difference becoming more pronounced as the absolute difference in their depths grows

with the increase in the original circuits depth =8. As the squeezing factor was 3 = 2,

that means the ratio of the circuit depths = 5 /=8 approaches 2 as =8 grows. Here, = 5 is the

squeezed circuit depth.
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Figure 7.2: Comparison of fidelities of estimated and exact densitymatrices of both original
and squeezed circuits.

7.10 Conclusion

In this chapter, we have presented the quantum circuit squeezing algorithm (QCSA),

a novel quantum algorithm that trades more qubits and shots for a shorter circuit depth.

To explain the algorithm, we first introduced the concepts of maximal entanglement, the

ricochet property, and the entanglement swapping property. It was then shown how the

entanglement property can be extended recursively. Additionally, a modification of QCSA

to deal with Hamming weight preserving subspaces was introduced which ultimately

improved the time scaling qubit connectivity requirements of the algorithm. It was then

shown how all of these techniques could be combined to create QCSA. An analysis of the

scaling of various complexities of the algorithm was conducted. Finally, we demonstrated

the algorithm by running noisy simulations of it to show that the resulting squeezed circuits

were less affected by the noise due to their shorter depth. As NISQ era devices require

short depth circuits due to their high noise levels and are rapidly growing in their number
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of qubits, QCSA has the potential to be very beneficial in the near future by allowing

researchers to run quantum circuits that otherwise would have been lost to the noise of our

era’s quantum machines.
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CHAPTER 8

VARIATIONAL PREPARATION OF DICKE STATES

8.1 Introduction

Several chapters of this thesis involve the use of Dicke states. Chapter 4 used them

to construct the ansatz for one mapping of the problem and again used them to map the

problem to a smaller set of qubits. Additionally, chapter 5 used them as an initialization

strategy for a novel type of ansatz to solve a model in an extreme case. Finally, chapter

7 relied on the construction of them for a modification of the algorithm for Hamming

weight preserving gates. Therefore, it is clear that an efficient algorithm to construct Dicke

states would be very beneficial to many areas of the application of NISQ era algorithms to

many-body nuclear physics. While a deterministic method exists to do so that is linear in

the number of qubits ([9] and [2]) the quantum circuit constructed is often still too long to

be implemented on noisy quantum devices of the NISQ era. As an alternative we present

here a short-depth, variational algorithm with the potential to prepare Dicke states with a

shorter depth than the previously mentioned algorithm.

First, let us start with a few definitions. Recall that a Dicke state |�=
:
〉 is the equal

superposition of all =-qubit states |G〉 with Hamming weight wt(G) = :; that is

���=
:

〉
=

(
=

:

)− 1
2 ∑
G∈{0,1}=
wt(G)=:

|G〉 . (8.1)

For example,���4
2
〉
=

1
√

6
( |1100〉 + |1010〉 + |1001〉 + |0110〉 + |0101〉 + |0011〉 .) (8.2)
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A Dicke-like state
���;=

:
(<)

〉
is the equal superposition of <, =-qubit states |G〉 with

Hamming weight wt(G) = : up to possible relative phases of +1,

���;=:〉 = (
=

<

)− 1
2 ∑
G∈{0,1}=
wt(G)=:

(−1) 5 (G)6(G) |G〉 , (8.3)

where 6(G) = 0, 1 such that 6(G) = 1 only for < states G. Thus a Dicke-like state is a

phased Dicke state that’s missing some bit-string states in its superposition. An example

would be ���;42 (4)〉 = 1
√

6
( |1100〉 − |1010〉 + |1001〉 − |0110〉 .) (8.4)

As discussed in the motivation section, we seek to find a quantum circuit that prepares the

Dicke states with the shortest circuit depth possible. Here I propose a hybrid quantum-

classical algorithm called the Variational State Preparation Algorithm (VSPA) to find

such a circuit. VSPA is hybrid because it uses both a quantum and classical computer.

The quantum computer’s role is to implement a parameterized quantum circuit that tries to

implement aDicke state. Uponmeasurement of the quantumcomputer, a classical computer

does post-measurement calculations to calculate a cost function which characterizes the

overlap of the prepared statewith the desiredDicke state. A classical optimization algorithm

varies the parameters of the quantum circuit in order to minimize the cost function as much

as possible. This results in the quantum circuit preparing a quantum state that has a desired

overlap with the desired Dicke state.

8.2 The Algorithm

The variational quantum circuit is parameterized by a set of parameters that are tuned by

the classical optimization algorithm. The circuit consists of two parts: alternating :-state
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preparation and variational mixing. First, the quantum computer is put into an alternating

:-state which is a particular quantum state with Hamming weight : . For = qubits, the

alternating :-state of type C = I, II, III, |�=
:
〉C is the quantum state whose qubits alternate

between 1 and 0 for the middle 2: qubits and are all 0 for the rest,

���=:〉I = |... 5 (8)...〉 |

5 (8) = 8 + 1 (mod 2),

⌊
=
2 − 1

⌋
− (: − 1) ≤ 8 ≤

⌊
=
2 − 1

⌋
+ (: − 1)

5 (8) = 0, otherwise

(8.5)

���=:〉II = |... 5 (8)...〉 |

5 (8) = 8 (mod 2),

⌊
=
2 − 1

⌋
− (: − 1) ≤ 8 ≤

⌊
=
2 − 1

⌋
+ (: − 1)

5 (8) = 0, otherwise

(8.6)���=:〉III = 1
√

2

(���=:〉I + ���=:〉II) , (8.7)

where : = 1, ..., b:/2c. For example���6
2
〉
I = |010100〉 , (8.8)���6

2
〉
II = |001010〉 , (8.9)���6

2
〉
III = |0〉

|1010〉 + |0101〉
√

2
|0〉 . (8.10)

To prepare |�=
:
〉C for : = b:/2c + 1, ..., = one would finish by applying - gates to all qubits

since ���==−:〉C = -⊗= ���=:〉C . (8.11)

For = qubits, the alternating :-state of type I (II) can be prepared on a quantum computer

by applying an - gates to all qubits that must be 1 (a quantum circuit of depth one). The
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alternating :-state of type III can be preparedwith a circuit of depth 3with grid connectivity

and depth O(=) with linear connectivity: Given a grid architecture, the =-qubit alternating

:-state of type III can be implemented with the following constant (2) depth circuit. For

example, the circuit for
���6

2
〉
is shown below for six qubits:

|0〉 � • •

|0〉 - •

|0〉 •

|0〉 •

|0〉

|0〉

(8.12)

The first two rows prepare the Bell state |k+〉 = ( |01〉 + |10〉)/
√

2 and each subsequent pair

of CNOTs “copies” the state of each term of the Bell state and adds it onto that term. Given

a linear nearest-neighbor (LNN) architecture the =-qubit alternating :-state of type III can

be implemented with the following 2= + 1 depth circuit. For example, the circuit for
���6

2
〉

is shown below for six qubits:

|0〉 � • •

|0〉 - × ×
|0〉 × • × •
|0〉 × ×
|0〉 × • ×
|0〉

(8.13)

Once an alternating :-state has been prepared, the next step is to apply layers of

parameterized, two-qubit, Hamming weight preserving gates called partial-SWAP gates.
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The partial-SWAP gate parameterized by \ is defined to be

pSWAP(\) = 48\ (-.−.-)/2 =

©«

1 0 0 0

0 cos \ − sin \ 0

0 sin \ cos \ 0

0 0 0 1

ª®®®®®®®®¬
. (8.14)

Being in the group ($ (4), the pSWAP gate can be decomposed into a circuit of depth

at most five, containing at most two CNOTs and twelve single-qubit rotations gates [4].

Note that pSWAP(\) corresponds to a rotation in the subspace {|01〉 , |10〉 by the angle \

(leaving the subspace {|00〉 , |11〉 unchanged):

pSWAP(\) |00〉 = |00〉 (8.15)

pSWAP(\) |01〉 = cos \ |01〉 + sin \ |10〉 (8.16)

pSWAP(\) |10〉 = cos \ |10〉 − sin \ |01〉 (8.17)

pSWAP(\) |11〉 = |11〉 , (8.18)

thus preserving Hamming weight. Using pSWAP gates as mixing gates will always result

in a Dicke-like state since there are no complex phases in their matrix representation (only

a minus sign). A mixing layer is defined to be a single column of parameterized pSWAP

gates being applied in parallel. The variational mixing part of the VSPA algorithm consists

of several mixing layers. The first layer is applied to the middle 2: qubits. Each subsequent

layer is applied to two additional qubits than the layer before - the qubit directly above and

the qubit directly below the previous set of qubits (unless such qubit does not exist). The

pseudo-code for the variational mixing part is given below:
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Algorithm 8.1 Variational Mixing Algorithm
Input: Number of qubits =, Hamming weight : , number of layers ;, set of angles {\}.
Output: Quantum circuit implementation of variational mixing section of VSPA.
index_list = [ ]

8 =
⌊
=
2 − 1

⌋
− (: − 1)

while 8 ≤
⌊
=
2 − 1

⌋
+ (: − 1) do

index_list.append(i)
8+ = 2

end while

theta_index = 0
for 0 ≤ ; ≤ layer do

if ; ≠ 0 then new_index_list = [ ]
for 8 in index_list do

new_index_list.append(8 − 1)
end for
new_index_list.append(8 + 1)
index_list=new_index_list

end if
for @ in index_list do

if 0 ≤ @ < = − 1 then
Append pSWAP(\[theta_index]) to qubits @ and @+1 of the quantum circuit
theta_index + = 1

end if
end for

end for

8.3 Calculating a Cost Function

As discussed above, our use of pSWAP gates as mixing gates will always result in a

state that is the superposition of terms that all have the same Hamming weight. This should

make it easier to minimize a cost function that measures the overlap of the variationally

prepared state and a desired Dicke-like state. One good cost-function to quantify how close
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a variationally prepared state is to an =-qubit, <-term Dicke-like state
���;=

:
(<)

〉
would be:

5cost( |k〉) = Var{|〈G |k〉|2 |G ∈ {0, 1}= |wt(G) = :}, (8.19)

That is, the variance of the list of probabilities of measuring every possible |G〉 with

Hamming weight : . The variance makes a good cost function as it measures the deviations

of a set from their average and the set of probabilities of an exact Dicke state would all be

exactly zero, thus having a variance of zero. The closer the probabilities are to their average,

the smaller the variance will be. These probabilities can be estimated by preparing and

measuring the VSPA circuit multiple times and dividing the number of times one measured

|G〉 by the total number of measurements made. The variance of the coefficients’ absolute

value squared is minimized when they are all equal (equal super-position) and is a measure

of how close they are to being equal. Now, there are two variables to play with here

that one may like to control: 6= = 1 − ∑
G 6(G) and 5= = 1 − ∑

G 5 (G). Minimizing the

first means maximizing the number of terms in the Dicke-like state, making the state a

closer approximation to a true Dicke state. Minimizing the second means minimizing the

number of terms that have a minus sign in front of them, again making the state a closer

approximation to a true Dicke state. Another good candidate for a cost-function would be

5cost( |k〉) = 1 − 1
|G(;′) |

©«
∑
G∈G(; ′)

√
|〈G |k〉|2ª®¬

2

, (8.20)

where ;′ ≤ ;, which is one minus the square of the sum of the square roots of the

probabilities. It is equal to one minus the overlap between our prepared state |k〉 and

a desired non-phased Dicke-like state if one assumes no phases in the prepared state.

Even if the prepared state does have phases, it should still serve as a good cost-function

because it minimizes the difference between the absolute squares of the coefficients. Note
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that 5= cannot be controlled using either of these cost function alone because using the

probabilities (absolute values squared) of the coefficients erases all plus-or-minus phase

information. However, it may be discovered that having plus-or-minus phased Dicke

states is still beneficial in some circumstances such as in the multi-configuration method

(subsection 5.3.7 of chapter 5) as the solution to the pairing model for large 6 is not exactly

a Dicke state but one close to it anyways.

8.4 Results

First, we created code to deterministically prepare Dicke states using the method given

in [9]. We the created code to run my novel VSPA algorithm using either of the first

two cost-functions discussed above. We have used this algorithm to prepare Dicke state

approximations to |�=
2〉 (where = = 4, 5, 6) that each have a higher overlap with the

true Dicke state than their deterministically ([9]) prepared counterparts when simulated

with noise (Figure 8.1). This is because, as seen in Figure 8.2, while the deterministic

preparation would in theory, create a perfect Dicke state, its depth is so much longer than

our variational circuit that, when noise is included, creates a worse approximation to the

true Dicke state. The idea is that, even though the variational method may not be able

to exactly prepare an exact Dicke state (which would require exactly minimizing the cost

function in a noisy environment), it has the potential to get closer than the deterministic

method once one accounts for the extra noise that befalls the latter. In the bottom half of

Figure 8.2, we have a histogram of the measurements obtained through noisy simulation.

The measurements that have a Hamming weight of two (the only ones which should have

been measured) are highlighted in red. All non-feasible (with a Hamming weight other

than two) are highlighted in blue. With this, it can clearly be seen that in this case, the

193



Figure 8.1: Overlap of deterministically and variationally prepared Dicke-states with true
Dicke-state.

variational method is much less affected by noise as the non-feasible states are measured

with much less frequency than in the deterministic method. Next, the number of CNOTs

is noted to be significantly less for the variational method, likely due to the large number

of the three-qubit, double controlled gates that had to be decomposed into several CNOTs

each for the deterministic method. This was also a likely factor in improving the results

as the CNOT is noisier than the single-qubit gates. Finally, we note the high number

of CNOTs in the the deterministic method circuit which connect non-neighboring qubits.

As we simulated the results on a noisy model that assumed only linear connectivity of

qubits, the compiler for the deterministic method’s circuit had to add several more swap

gates (which require 3 CNOTs) compared to the variational method’s in order to move the

non-neighboring qubits next to one another. This is because the deterministic method’s

circuit has six non-neighboring CNOTs, compared to the variational method’s two.

8.5 Conclusion

In this section, we developed the variational Dicke state preparation algorithm (VSPD),

a novel variational algorithm to prepare Dicke and Dicke-like states. We laid forth a short-
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Figure 8.2: Comparison of deterministic and variational methods to prepare the Dicke state
|�4

2〉.

depth variational ansatz which can efficiently search the appropriate Hamming weight

restricted subspace. We also discussed different cost functions which could be used for the

minimization subroutine. Finally, we presented results obtained from testing the algorithm

with noisy simulations and bench-marked them favorably against a previously developed

deterministic method [9]. In the future, one might wish to compare and contrast different

ansatz and cost functions to prepare Dicke state |�=
:
〉 for even more values of = and : .

Additionally, one could look into determining a way to fix the phases 5 (G) of the terms of

the variational Dicke state prepared. One potential way to do this would simply to have the

ansatz and cost-function be identical to that introduced for the pairing model in chapter 5)

with the pairing strength 6 set to zero. This is because, as proven in subsection 5.3.7, the

Dicke states are the eigenstates of said model. We conclude this section by reiterating the

widespread potential use of Dicke states: both as part of ansatz construction for many-body

nuclear models, and as part of the entangling process of the subspace QCSA algorithm.
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CHAPTER 9

CONCLUSION

In this thesis, we have provided the basis for which future quantum algorithms can be

developed to solve many-body nuclear problems. For the Lipkin model, we developed

techniques to make the ansatz for different mappings of the problem lower-depth. We

also developed a mapping that cut the number of required qubits in half. For the pairing

model, we estimated the ground state energy with the variational quantum eigensolver

(VQE) and bench-marked the results against the classical algorithm pair coupled cluster

theory (pCCD).We also developed techniques to reduce the circuit depth for the unitary pair

coupled cluster doubles (UpCCD) ansatz for quantum computers with circular connectivity

that has a lower depth than the ansatz for devices with linear connectivity (5.4). We also

developed an algorithm for finding the energies of excited states for the model. Finally, we

developed a novel ansatz in which one starts the quantum computer in a Dicke state in order

to solve the pairing model for large values constant pairing strength 6. In the collective

neutrino oscillations chapter, we presented the first digital simulation of the model on a

real quantum computer. We used this to study the time-evolution and entanglement of the

system. We applied error mitigation techniques to improve the accuracy of our results.

Then we presented the quantum circuit squeezing algorithm and showed how it could be

used to reduce the circuit depth and therefore improve the results of arbitrary quantum

circuits. Finally, we presented our novel algorithm to variationally prepared Dicke states.

As this work was meant to serve as a springboard of which future developments in the

field could be accomplished, we discuss here several future extensions and applications of

this work. For the Lipkin model, one could explicitly compare the different mappings and
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ansatzes discussed to have better evidence that the one we choose to pursue is truly the

best choice. One could do this by running tests on the gradients of the wave-function to

see if either of the methods lends itself more easily to the problem of the barren plateau

(exponentially vanishing gradients). In terms of the pairing model, one would desire to

compare our iterative quantum excited states algorithm to other algorithms that attempt

to accomplish the same thing. Additionally, one would like to run the VQE algorithms

of this section on the quantum computers of the near future (via the cloud) that would

allow for the frequent calls to the quantum computer that is required for VQE. As for the

collective neutrino oscillation simulations, one would like to compare various permutations

of the Trotter terms that make up the ansatz to see if putting the terms with the highest

commutator with the Hamiltonian first would improve the results on an actual quantum

computer. The reasoning behind this is that, because the qubits decohere exponentially,

putting the most important terms of the ansatz first would give said terms the least noisy

effect on the quantum state. For the quantum circuit squeezing algorithm, one could apply

it to a pre-existing algorithm like VQE to see if it improves the accuracy of the results.

Finally, the variational preparation of Dicke states could similarly be applied to pre-existing

algorithms that would benefit from the initialization of their circuits into a Dicke state. In

the far future, one would like to see the improved quantum computers of that time be

used to tackle the problems of nuclear physics that are too complex for today’s classical

computers, serving as a light in the deep hole of our ignorance, shone towards the hidden

treasures buried deep below.
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APPENDIX A

SU(2) COMMUTATION RELATIONS

In this appendix we prove the mapping between the angular momentum SU(2) operators

(�+, �−, and �I) and the fermionic creation and annihilation operators (0 and 0†). The

mappings (4.10) and (4.11) are shown to hold through the demonstration that the SU(2)

commutation relations (4.14) and (4.15) hold under the substitution of fermionic operators

for SU(2) operators from the mappings. Here we define 9<± = 0†<±0<∓. We have that

[�+, �−] = [
∑
<

9<+,
∑
=

9=−]

=
∑
<=

[ 9<+, 0†=−0=+]

=
∑
<=

(
[ 9<+, 0†=−] 0=+ + 0†=− [ 9<+, 0=+]

)
=

∑
<=

X<=

(
0
†
<+0=+ − 0†=−0<−

)
=

∑
<

(
0
†
<+0<+ − 0†<−0<−

)
= 2�I, (A.1)

and

[�I, �±] = [
1
2

∑
<f

f0†<f0<f,
∑
=

9=±]

=
1
2

∑
<=f

f[0†<f0<f, 9=±]

=
1
2

∑
<=f

f

(
0†<f [0<f, 9=±] + [0†<f, 9=±] 0<f

)
=

1
2

∑
<=f

f

(
Xf±0

†
<f0=∓ − X−f±0†=±0<f

)
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= ±
∑
<

0
†
<±0<∓

= ±�±, (A.2)

where we’ve used the commutations of the SU(2) ladder operator and the fermionic oper-

ators which are derived below[
9?f, 0

†
@g

]
=

[
0†?f0?−f, 0

†
@g

]
= 0†?f

[
0?−f, 0

†
@g

]
+

[
0†?f, 0

†
@g

]
0?−f

= 0†?f

({
0?−f, 0

†
@g

}
− 20†@g0?−f

)
+

({
0†?f, 0

†
@g

}
− 20†@g0†?f

)
0?−f

= X?@X−fg0
†
?f − 2

{
0†?f, 0

†
@g

}
0?−f

= X?@X−fg0
†
?f (A.3)

[
9?f, 0@g

]
= −

[
0@g, : ?f

]
= −

[
:†?f, 0

†
@g

]†
= −

[
: ?−f, 0

†
@g

]†
= −(X?@Xfg0†?−f)†

= −X?@Xfg0?−f . (A.4)
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APPENDIX B

NORMALIZED HARTREE-FOCK ANSATZ

In this appendix we derive the normalization of the Hartree-Fock ansatz. The definition of

a coherent state, applied to the group SU(2), gives that the SU(2) coherent state takes the

form

|g〉 = 4Z�+−Z̄ �− |0〉 , (B.1)

where b = (\/2)4−8q. We wish to write the coherent state in the form

|g〉′ = #4g�+ |0〉 , (B.2)

which we will do through the use of the SU(2) generating function

〈g | 4g4U0�04U−�− |g〉 (B.3)

= (1 + |g |2)−2�
[
4U0/2 |g |2 + 4−U0/2(U+g∗ + 1) (U−g + 1)

]2�
, (B.4)

and the BCH equation

4Z�+−Z̄ �− = 4g�+4ln(1+|g |
2)�04−ḡ�− . (B.5)

If the two forms of the coherent state are equal, then

1 (B.6)

= 〈g |g〉 ′ (B.7)

= # 〈g | 4g�+ |0〉 (B.8)

= # 〈g | 4g�+4−(Z�+−Z̄ �−) |g〉 (B.9)

= # 〈g | 4ln(1+|g |
2)�04ḡ�− |g〉 (B.10)

209



= (1 + |g |2)−2�
[
4ln(1+|g |

2)/2 |g |2 + 4−ln(1+|g |
2)/2(1 + |g |2)

]2�
(B.11)

= (1 + |g |2)−2�
[
(1 + |g |2) 1

2 |g |2 + (1 + |g |2)− 1
2 (1 + |g |2)

]2�
(B.12)

= (1 + |g |2)� , (B.13)

which implies that # = (1 + |g |2)−� .
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APPENDIX C

LIPKIN HAMILTONIAN FOR HARTREE-FOCK

In this appendix, we derive the matrix element 〈g |� |f〉 where� is the Lipkin Hamiltonian

and

|g〉 = (1 + |g |2)−Ω2 4g�+ |0〉 , (C.1)

|f〉 = (1 + |f |2)−Ω2 4f�+ |0〉 , (C.2)

are two arbitrary (* (2) coherent states. Here |0〉 = |� − �〉, g = tan(\/2)4−8q, f =

tan(\′/2)4−8q′, and Ω = �/2. Expanding

〈g | � |f〉 = (1 + |f |)−Ω2 〈g | �4f�+ |0〉 (C.3)

= (1 + |g |) Ω2 (1 + |f |)−Ω2 〈g | �4(f−g)�+ |g〉 (C.4)

= (1 + |g |) Ω2 (1 + |f |)−Ω2 (C.5)

×
[
n 〈g | �04

(f−g)�+ |g〉 − 1
2
+ 〈g | (�2

+ + �2
−)4(f−g)�+ |g〉

]
. (C.6)

Using the SU(2) generating function

〈g | 4U−�−4U0�04U+�+ |g〉 (C.7)

= (1 + |g |2)−Ω
[
4−U0/2 + 4U0/2(ḡ + U−) (g + U+)

]Ω
, (C.8)

we calculate each term separately, starting with

〈g | �04
(f−g)�+ |f〉

=
m

mU0
〈g | 4U0�04(f−g)�+ |g〉

����
U0=0

=
1

(1 + |g |2)Ω
m

mU0

[
4−U0/2 + ḡf4U0/2

]Ω ����
U0=0
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=
Ω/2

(1 + |g |2)Ω
(fḡ4U0/2 − 4−U0/2) (fḡ4U0/2 + 4−U0/2)Ω−1

�����
U0=0

=
Ω/2

(1 + |g |2)Ω
(fḡ − 1) (fḡ + 1)Ω−1, (C.9)

followed by

〈g | �2
+4
(f−g)�+ |f〉

=
m2

mU2
+
〈g | 4(U++f−g)�+ |g〉

����
U+=0

=
1

(1 + |g |2)Ω
m2

mU2
+
[1 + ḡ(U+ + f)]Ω

����
U+=0

=
Ω(Ω − 1)
(1 + |g |2)Ω

(ḡ2) [1 + ḡ(U+ + f)]Ω−2
����
U+=0

=
Ω(Ω − 1)
(1 + |g |2)Ω

(ḡ2) (1 + ḡf)Ω−2, (C.10)

followed by

〈g | �2
−4
(f−g)�+ |f〉

=
m2

mU2
−
〈g | 4U−�−4(f−g)�+ |g〉

����
U−=0

=
1

(1 + |g |2)Ω
m2

mU2
−
[1 + (ḡ + U−)f]Ω

����
U−=0

=
Ω(Ω − 1)
(1 + |g |2)Ω

(f2) [1 + (ḡ + U−)f]Ω−2
����
U−=0

=
Ω(Ω − 1)
(1 + |g |2)Ω

(f2) (1 + ḡf)Ω−2. (C.11)

Combining yields

〈g | � |f〉 = (Ω/2) [(1 + |g |2) (1 + |f |2)]−Ω2

×
[
n (fḡ − 1) (fḡ + 1)Ω−1 −+ (Ω − 1)

(
ḡ2 + f2

)
(1 + ḡf)Ω−2

]
. (C.12)
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APPENDIX D

DICKE STATE LEMMAS

In this appendix, we inductively prove the following two lemmas involving Dicke states
=∑
?=1

�†?
���=

:

〉
=

√
(= − :) (: + 1)

���=
:+1

〉
, (D.1)

=∑
?=1

�
���=

:

〉
=

√
(= − : + 1) (:)

���=
:−1

〉
, (D.2)

The base case for the first lemma (D.1) is given by the case (=, :) = (1, 0) below

�
†
1
���1

0
〉
= �

†
1 |01〉

= |11〉

=
���1

1
〉

=
√
(1 − 0) (0 + 1)

���1
1
〉
. (D.3)

Similarly, the base case for the second lemma (D.2) is given by the case (=, :) = (1, 1)

below

�1
���1

1
〉
= �1 |11〉

= |01〉

=
���1

0
〉

=
√
(1 − 1 + 1) (1)

���1
1
〉
. (D.4)

We prove the first lemma first by assuming, as our induction hypothesis, that (D.1) is true

and show that it still holds when we take =→ = + 1, as follows

=+1∑
?=1

�†?
���=+1

:

〉
=

©«
=∑
?=1

�†? + �†=+1
ª®¬
(√

:

= + 1
���=

:−1
〉
|1〉 +

√
= − : + 1
= + 1

���=
:

〉
|0〉

)
, (D.5)

213



where we took out the = + 1 term from the sum and used the recursive definition of the

Dicke state (5.117). Using the first base case (D.3) yields©«
=∑
?=1

�†?
ª®¬
(√

:

= + 1
���=

:−1
〉
|1〉 +

√
= − : + 1
= + 1

���=
:

〉
|0〉

)
+

√
= − : + 1
= + 1

���=
:

〉
|1〉 . (D.6)

Applying the induction hypothesis (D.1) and then combining the first and last terms yields

(: + 1)
√
= − : + 1
= + 1

���=
:−1

〉
|1〉 +

√
(= − :) (: + 1)

√
= − : + 1
= + 1

���=
:

〉
|0〉 (D.7)

=
√
(= − : + 1) (: + 1)

(√
: + 1
= + 1

���=
:−1

〉
|1〉 +

√
= − :
= + 1

���=
:

〉
|0〉

)
(D.8)

=
√
(= − : + 1) (: + 1)

���=+1
:+1

〉
, (D.9)

which completes the proof.

We now prove the second lemma first by assuming, as our induction hypothesis, that

(D.2) is true and show that it still holds when we take =→ = + 1, as follows
=+1∑
?=1

�?
���=+1

:

〉
=

©«
=∑
?=1

�? + �=+1
ª®¬
(√

:

= + 1
���=

:−1
〉
|1〉 +

√
= − : + 1
= + 1

���=
:

〉
|0〉

)
, (D.10)

where we took out the = + 1 term from the sum and used the recursive definition of the

Dicke state (5.117). Using the second base case (D.4) yields©«
=∑
?=1

�?
ª®¬
(√

:

= + 1
���=

:−1
〉
|1〉 +

√
= − : + 1
= + 1

���=
:

〉
|0〉

)
+

√
:

= + 1
���=

:−1
〉
|0〉 (D.11)

Applying the induction hypothesis (D.2) and then combining the first and last terms yields√
: (= − : + 2)

√
: − 1
= + 1

���=
:−2

〉
|1〉 + (= − : + 2)

√
:

= + 1
���=

:−1
〉
|0〉 (D.12)

=
√
: (= − : + 2)

(√
: − 1
= + 1

���=
:−2

〉
|1〉 +

√
= − : + 2
= + 1

���=
:−1

〉
|0〉

)
(D.13)

=
√
: (= − : + 2)

���=+1
:−1

〉
, (D.14)

which completes the proof.
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APPENDIX E

STATE-OVERLAP ALGORITHM

In this appendix we explain the efficient state-overlap algorithm that is used to find the

eigenenergies of excited states. Consider two states |k〉 = 0 |0〉+1 |1〉 and |q〉 = 2 |0〉+3 |1〉.

The overlap between these two states is

|〈k |q〉|2 = (0∗2 + 1∗3) (02∗ + 13∗) (E.1)

= |0 |2 |2 |2 + |1 |2 |3 |2 + 0∗123∗ + 01∗2∗3. (E.2)

Now consider the circuit

|k〉 • �

|q〉

(E.3)

The progression of the state through the above circuit is

|kq〉 = 02 |00〉 + 03 |01〉 + 12 |10〉 + 13 |11〉 (E.4)

→ 02 |00〉 + 03 |01〉 + 12 |11〉 + 13 |10〉 (E.5)

→ 1
√

2

[
(02 + 13) |00〉 + (03 + 12) |01〉 (E.6)

+ (02 − 13) |10〉 + (03 − 12) |11〉
]
. (E.7)

The probability that |kq〉 = |11〉 is

%11 =
1
2
(03 − 12) (03 − 12)∗ (E.8)

=
1
2

[
|0 |2 |3 |2 + |1 |2 |2 |2 − 01∗2∗3 − 0∗123∗

]
. (E.9)
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Note that

%00 + %01 + %10 − %11 (E.10)

=1 − 2%11 (E.11)

=1 −
[
|0 |2 |3 |2 + |1 |2 |2 |2 − 01∗2∗3 − 0∗123∗

]
(E.12)

=|0 |2 |2 |2 + |1 |2 |3 |2 + 01∗2∗3 + 0∗123∗ (E.13)

=|〈k |q〉|2, (E.14)

where we’ve used the fact that 1 = |0 |2 + |1 |2. This can be generalized to

• · · · �

|k〉
• · · · �


...

...

· · · • �

· · ·

|q〉
· · ·


...

...

· · ·

, (E.15)

as explained in [36].
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APPENDIX F

PAIR COMMUTATION RELATIONS

In this appendix, we use the fermionic anti-commutation relations (2.39) to prove the pair

fermionic commutation relations (5.6-5.8). The first commutation relation is proved as

follows

[�?, �†@] = [0?−0?+, 0†@+0†@−] (F.1)

= 0?−0
†
@+ [0?+, 0†@−] + 0?− [0?+, 0†@+] 0†@−

+ 0†@+ [0?−, 0†@−] 0?+ + [0?−, 0†@+] 0†@−0?+ (F.2)

= 0?−0
†
@+������{0?+, 0†@−} − 20?−0†@+0†@−0?+

+ 0?−{0?+, 0†@+} 0†@− − 20?−0†@+0?+0†@−

+ 0†@+{0?−, 0†@−} 0?+ − 20†@+0†@−0?−0?+

+������{0?−, 0†@+} 0†@−0?+ − 20†@+0?−0†@−0?+ (F.3)

= X?@ (0?−0†@− + 0†@+0?+)

− 20?−0†@+������{0†@−, 0?+} − 20†@+{0†@−, 0?−} 0?+ (F.4)

= X?@ (0?−0†@− − 0†@+0?+) (F.5)

=


0?−0

†
?− − 0†?+0?+ if ? = @

0 if ? ≠ @
, (F.6)

which we now compare to

X?@ (1 − #?) = X?@ (X?−?− − 0†?+0?+ − 0†?−0?−) (F.7)

= X?@ (0†?−0?− + 0?−0†?− − 0†?+0?+ − 0†?−0?−) (F.8)

= X?@ (0?−0†?− − 0†?+0?+) (F.9)
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=


0?−0

†
?− − 0†?+0?+ if ? = @

0 if ? ≠ @
, (F.10)

and note that they match, thus proving the first pair anti-commutation relation (5.6). The

second pair anti-commutation relation is proved as follows

[#?, �†@] = [
∑
f

0†?f0?f, 0
†
@+0
†
@−] (F.11)

=
∑
f

[0†?f0?f, 0†@+0†@−] (F.12)

=
∑
f

0†?f0
†
@+ [0?f, 0†@−] + 0†?f [0?f, 0†@+] 0†@−

+ 0†@+ [0†?f, 0†@−] 0?f + [0†?f, 0†@+] 0†@−0?f (F.13)

=
∑
f

(0†?f0†@+{0?f, 0†@−} − 20†?f0
†
@+0
†
@−0?f

+ 0†?f{0?f, 0†@+} 0†@− − 20†?f0
†
@+0?f0

†
@−

+ 0†@+{0†?f, 0†@−} 0?f − 20†@+0†@−0†?f0?f

+ {0†?f, 0†@+} 0†@−0?f − 20†@+0†?f0†@−0?f) (F.14)

=
∑
f

[X?@ (Xf+0†?f0†@− + Xf−0†?f0†@+)

− 2(0†?f0†@+{0†@−, 0?f} + 0†@+{0†@−, 0†?f} 0?f)] (F.15)

= X?@

∑
f

[Xf+0†?f0†@− + Xf−0†?f0†@+ − 2Xf−0
†
?f0

†
@+] (F.16)

= X?@ (0†?+0†@− + 0†?−0†@+ − 20†?−0
†
@+) (F.17)

= X?@ (0†?+0†@− − 0†?−0†@+) (F.18)

=


20†?+0

†
?− if ? = @

0 if ? ≠ @
, (F.19)
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since {0†?+, 0†?−} = 0, which we now compare to

2X?@�†? = 2X?@0†?+0†?− (F.20)

=


20†?+0

†
?− if ? = @

0 if ? ≠ @
, (F.21)

and note that they match, thus proving the second pair anti-commutation relation (5.7).

The third anti-commutation relation (5.8) can be derived from the second (5.7) as follows[
#?, �@

]
= −[#?, �†@]

† (F.22)

= −2X?@�†?, (F.23)

since #†? = #?.

219


