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ABSTRACT

This dissertation focuses on predicting the system responses and using them to improve the automo-

tive system performance based on the data-driven based algorithms. Two applications included are

multivariable borderline knock prediction and control and tire-road friction coefficient estimation.

Internal combustion engines are core components of traditional and hybrid passenger vehicles

and also widely used for off-road applications. When the combustion is limited by the engine knock,

it is desired to operate it as close to its borderline knock limit as possible to optimize combustion

efficiency. Traditionally, this limit is detected by sweeping tests of related control parameters, which

is expensive and time-consuming; and also, the detected borderline knock limit often is relatively

conservative. When more advanced control parameters (subsystems) are added, these sweeping

tests lead to tremendous higher test cost. An intelligent and efficient way to predict borderline knock

without detailed knowledge of combustion dynamics is proposed. This supervised-learning based

Bayesian optimization method is assisted by a surrogate model trained based on the system statistic

properties. A two-control-parameter (spark timing and intake valve timing) case is demonstrated

for optimizing two competing objectives (knock intensity (KI) and fuel economy).

A complete borderline knock control structure is proposed and divided into three parts. The first

part is about offline training with necessary modifications of the Bayesian optimization algorithm.

Engine tests are conducted under two different operational conditions to obtain knock borderline

limit, indicating the proposed algorithm is able to reduce required experimental budget (cost and

time) significantly. The predicted mean Pareto front and its variance can be used to find the optimum

control parameters at borderline knock limit for the best fuel economy possible. Smooth response

surfaces of surrogate models can also be used as the initial model to be updated in real-time.

The second part is an online updating process, based on the offline-trained surrogate model,

using modified likelihood ratio controller. Principal component analysis indicated that spark timing

is the most sensitive factor affecting the Pareto front. A two-buffer design was proposed to update

the surrogate model under different rates so that both short-term compensation for environment

changes and long-term for slow engine aging effect are covered. Both simulation and engine test



results indicate that the proposed control strategy is able to update the machine-learned surrogate

models in real-time, which outperforms the conventional knock control strategy and offline-trained

knock limit, and especially reduces the conservativeness of borderline knock control significantly.

Finally, to reduce cycle-to-cycle combustion variations, a real-time cycle-wised knock compen-

sation scheme is developed based on the measured exhaust temperature when the engine is operated

close to its knock borderline. To make model-based control possible, 𝑞-Markov COVER (COVari-

ance Equivalent Realization) system identification was used to obtain a linearized engine exhaust

temperature model from change of spark timing to associated variations of exhaust temperature and

knock intensity (KI). Accordingly, a Linear–Quadratic–Gaussian (LQG) controller is designed to

minimizing the KI fluctuations based on change (𝛿) of exhaust temperature. For the entire control

architecture, results of three test scenarios indicated that the spark timing can be further advanced

while maintaining the same knock intensity level due to reduced knock combustion variations.

For the vehicle dynamics research, estimation of tire-road friction coefficient is very important

due to new active safety control systems, especially for autonomous vehicles that rely on the

accurate estimation of road surface conditions to find vehicle operational boundary and achieve

the best performance possible. Several cause- and effect-based methods were proposed with their

own limitations. A new evaluation criterion associated with slip-ratio is found based on CarSim

simulation data on different road conditions; and strong correlation between proposed criterion

and tire-road friction under different road surface conditions is observed. Note that the data-driven

based method proposed in this dissertation only utilizes the statistic information from existing

production vehicle sensors without increasing hardware cost. A computational cheap black-box

model of proposed criterion and tire-road friction can be obtained and augmented with the existing

dual-Kalman filter estimation algorithm, which improves tire-road friction estimation.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
Automotive control technologies play a significant role in the sustainable development of automotive

industry. Many researchers have devoted themselves to the field of advanced automotive controls

for a long time. Thus, a few classical approaches have been developed and implemented for

estimation and control of engines, drivelines and vehicles [1]. With the gradual increment of

utilizing machine learning and intelligent algorithms along with the year-to-year improvement

of micro-controller hardware, data-driven methodologies have the potential of replacing and/or

enhancing the performance of existing estimation and control algorithms at both vehicle subsystem

(component) and system levels.

From the component level, the internal combustion (IC) engine is one of the key automotive

powertrain components. IC engines have been widely used in automotives since 1860s, superseding

the steamed engines gradually [2]. As the world entered into the 21st century, electrical vehicle (EV)

attracted more attention in the automotive industry around the world due to policies of slowing

down climate change such as the latest Carbon-Neutral demand. However, several challenges

still exist regarding EV’s life span emissions and energy consumption, such as CO2 emissions

generated during battery production and end-life recycling, battery durability and safety. During

this transition period, hybrid vehicles equipped with both battery-electrical-motor and internal

combustion (IC) engine could become the mainstream powertrain in the 21 century [3] before all

the technical barriers of EVs are overcome. In addition, many off-highway applications still require

IC engines. Therefore, it is still valuable and necessary to improve IC engine efficiency to satisfy the

ever-increasing stringent emission requirements. Various technological innovations for improving

combustion efficiency continued, where some engine subsystems, such as exhaust gas recirculation

(EGR), homogeneous charge compression ignition (HCCI), and turbocharger are used along with

the associated control strategies. These technologies were integrated into products through both

hardware and software changes, resulting in a significant improvement in combustion efficiency
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over the past decades. Combustion process needs to be accurately controlled (or calibrated) to

further improve its efficiency. A good prediction of associated parameters and performances will

lead to an improved control. Ideally, the engine is calibrated to deliver maximum brake torque

(MBT) for a given fuel flow rate. However, the biggest obstacle for an SI (spark-ignited) engine

to achieve MBT is its knock tendency, which drives our research in this dissertation. Knock is an

undesirable combustion phenomenon caused by spontaneous ignition of a significant portion of

end gas in the unburned zone, which releases extremely rapid heat and generates high magnitude

pressure waves that may damage the engine [2]. Therefore under certain operational conditions

(mainly, at the region with low engine speed and high load), the engine optimum control parameters

are limited by engine knock [4]. In this case, the control parameters (such as spark timing, intake

and/or exhaust valve timing(s) [5], EGR) need to be optimized to achieve the highest combustion

efficiency (best fuel economy) possible without violating the knock constraint, resulting in a multi-

variable optimization problem under a given operational condition. That is, to prevent engine

damage, instead of operating the engine at its MBT timing, the engine shall be operated as close to

its borderline knock limit as possible. In other words, maintaining knock intensity (KI) stays below

a desired level while maximize the combustion efficiency. Note that KI can be calculated based on

in-cylinder pressure and knock sensor signals [6].

Traditionally, the borderline knock limit can be detected by the engine mapping process on an

engine dynamometer experimentally, and the optimal solutions can be found based on mapped test

results. But this process is heavily dependent on user experience to generate good test points, and

it also requires a high number of function evaluations or tests for a complex system. Normally

the EGR rate and valve timings are controlled in an open-loop and spark timing is controlled in a

closed-loop based on cycle-to-cycle knock intensity signal(s) detected from accelerometer-based

knock sensor(s) to avoid engine knock [7] when the engine is knock limited. Due to the stochastic

nature of engine knock, the borderline knock limit is often very conservative, leading to a loss

of certain combustion efficiency due to excessive spark timing retarded. On the other hand, as

more and more engine control parameters are used, to predict (find) the borderline knock limit will
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consume a lot of time and test budget by running sweeping tests.

In order to maximize the engine combustion efficiency within the safe operational region,

stochastic characteristics or statistic information of knock combustion can be utilized for knock

control. The knock intensity distribution and its tolerance level were utilized for stochastic knock

control in [8] and map-learning-based control in [9] so that engine can be operated close to its

knock borderline limit stably. However, both studies only use one control parameter, spark timing,

for knock control without considering the effect of other control parameters and system variations.

From the control perspective, various control-oriented combustion model were developed for

validating combustion control strategies and/or estimating combustion dynamics in real-time. They

can provide an estimation of burn rate, in-cylinder temperature and pressure with high computational

efficiency, when the computational capability of microprocessors became feasible. The estimation

capability of these models can also be utilized for knock borderline prediction.

A detailed survey was conducted to better understand the applications of control-oriented

combustion models [10]. They can be divided into two categories: physics-based models and

black-box models developed mainly based on system input and output correlations obtained from

either simulations or experiments [11]. They are also referred as physical models and input-output

models [12, 13]. The main distinction of these two model groups is the level of model transparency

or the level of physical system knowledge used. The input-output model is also labeled as a black

box one [14] since it is based entirely on the system inputs and its responses (outputs) without clear

knowledge of system internal dynamics. The black box model is a pure data-driven based model

because the model is expressed using an empirical function calibrated by the experimental data

only. Some typical methods, such as polynomial assumption [15, 16], Gaussian correlation [17, 18],

or low-order parameterized function [19], are described, respectively, in the modeling literature.

Each model group has its own applicable scenarios. Among all these control-oriented models,

it is worth to introduce that , a reaction-based control-oriented combustion model along with a

pressure wave model [6, 20] was developed with a strong capability of predicting engine knock,

but it still requires significant calibration efforts. Note that the black-box model is cheap to evaluate
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and widely used in machine learning [16] recently to predict the steady-state characteristics of the

engine combustion process within the operating range of training data set. With the advancement

and widespread adoption of machine learning methods for control applications, it is now possible

to use a black-box model with its intelligence to efficiently predict knock borderline and develop

online control based on it without the knowledge of system dynamics. This is one of the main

contributions in this research.

On the other hand, the knock intensity varies cycle-to-cycle even over a fixed operational

condition with fixed control parameters. The statistic-based algorithms discussed above do not

provide any immediate control action to reduce cyclic variations caused by the inherent combustion

dynamics. Therefore, the recommended optimal baseline control parameters are set for ’averaged’

cycle behavior and are relatively conservative. The cyclic combustion variations are caused by

many factors [2] such as variations in gas motion, amount, composition, and temperature of gas

and fuel mixture, and engine design (combustion chamber shape).

Some detailed investigations are conducted in reference [21]. The percentages of knock and

cycle-to-cycle variations under different intake temperature levels are studied using extensive ex-

perimental data, which shows that high temperature at intake valve closing increases the knock

occurrence percentage and significantly influence the knock cycle-to-cycle variability. These vari-

ations also reflect different burn-rates in the combustion process which is important since they

are correlated with engine torque and performance. Note that normally the fastest burning cycle

determines the engine compression ratio limit; while the slowest one affects the most retarded spark

timing. Under certain engine operational conditions such as operated close to borderline knock, the

combustion variations are much higher due to the high-frequency shock and pressure waves in the

combustion chamber caused by uneven heat distribution that have been visualized in reference [22]

using high-speed camera. The visualization results indicate that strong shock waves exist in knock

combustion. The consequence of these large variations is more significant when engine is run close

to its knock borderline. For example, the faster burning cycles have substantially higher values of

peak cylinder pressure than these with slower burning cycles; and with faster burning cycles, peak
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pressure occurs earlier, and closer to top dead center, most-likely leading to knock combustion.

The simulation-based study in reference [20] provides a new insight about cycle-to-cycle varying

knock characteristics using reaction-based combustion model and pressure wave model [20]. It

shows strong correlations among current-cycle exhaust valve open (EVO) temperature, next cycle

intake valve closing (IVC) temperature and knock intensity. It can be explained as follows: the

high current-cycle intake manifold temperature will lead to heavy knock, which leads to short

combustion duration with high combustion temperature and large heat loss to the wall and results

in low trapped gas temperature; and as a result, low trapped gas temperature would consequently

reduce the in-cylinder mixture temperature at IVC of the next-cycle, which further influences the

next-cycle knock intensity. An experimental research [23] confirms knock prediction using exhaust

gas temperature. It shows that when the engine has knock combustion, the exhaust gas temper-

ature decreases considerably. The heavier knock will cause higher heat loss than that of normal

combustion. The main reasons for this decrement are that knock combustion is relatively short

and knock pressure wave changes the thermal exchanges on the cylinder wall. These early results

inspire our work about model-based prediction of next cycle knock intensity based on the measured

combustion parameters (such as exhaust temperature) at the current-cycle.

With the gradual adoption of machine learning and intelligent algorithms, data-driven methodol-

ogy has demonstrated its potential of enhancing the estimation and control performances. Consistent

progress has been made to improve the vehicle system estimation and control [24, 25, 26, 27, 28],

which plays a significant role in improving automotive performance [1]. Note that the controlled

tire traction torque determines the vehicle dynamic performance [29] and is heavily dependent on

the tire-road interaction [30, 31]. Therefore, an accurate estimation of road condition in terms of

tire-road friction coefficient is a key factor for optimizing vehicle performance such as reducing the

skid, delivering maximum available torque, and maintaining vehicle stability.

Road condition can be represented by normalized traction force (also called the coefficient of

traction) [32, 33]. It is defined as the ratio of longitudinal and normal forces exerted on the wheel
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when only the longitudinal vehicle dynamics is considered.

𝜌 =
𝐹𝑥

𝐹𝑧
(1.1)

where 𝐹𝑥 and 𝐹𝑧 are the longitudinal and normal forces, respectively. The maximum value of

the normalized traction force needs to be estimated in real-time for an advanced accurate traction

force control. This maximum value, namely the tire-road friction coefficient 𝜇 [32], is an index

representing the road surface characteristic, such as icy, snow, wet and dry. Accordingly, the

value of it varies between zero and one for different road conditions [32]. It is important to have

a better understanding of the road friction coefficient so that both the vehicle active and passive

safety [32, 34] associated with traction performance can be further enhanced. For example, a

correct real-time estimation of the tire-road friction coefficient would allow an anti-lock brake

system to start barking with the optimal brake pressure which will provide an efficient way to stop

the vehicle at a shorter distance. Also it will be useful to control the torque profile of the engine

and/or motor to deliver the maximum allowed torque for the best tracking performance.

For estimating the tire-road friction coefficient, several approaches have been discussed and

reviewed in literature [32, 34, 35, 36, 37], and are summarized below briefly. The estimation

methods can be mainly divided into two approaches: ’cause-based’ and ’effect based’. The cause-

based approach uses special sensors (for example, optical/image sensor for detecting road surface,

accelerometer for tire vibration) to identify friction related condition such as dry, wet, snow, or ice

road based on the correlation between sensor information and road condition. Note that changes

of estimation parameters are resulted by the cause of corresponding tire-road friction coefficient.

It is able to estimate road condition even when the vehicle is operated under a constant speed, but

it often fails under certain conditions, for instance, with bad quality of image. Meanwhile, the

required sensors, such as optical sensor(s) or camera(s), are generally expensive and not available

for most of production vehicles.

The effect-based (also called model-based) approach focuses on response behaviour excited by

the tire-road friction, which can be divided into three groups: a) wheel and vehicle dynamic based,

b) tire model-based, and c) slip-slope based. For the wheel and vehicle dynamic based approach,
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vehicle motion dynamics is utilized to estimate friction coefficient, where some vehicle states can

be acquired directly from sensors, while some need to be estimated using different estimation algo-

rithms (recursive Least Squares, extended Kalman filter (EKF)) [30]. Tire models [36] are widely

used to estimate tire forces after model parameters are calibrated. Based on the measured/estimated

tire force, the maximum tire road friction coefficient in the tire model can be solved. The slip-slope

based method assumes linear relationship within the small slip-ratio region. For all these models,

accurate vehicle velocity is essential to calculate the slip-ratio, which may require additional high-

accuracy GPS or other vehicle speed sensors. However, in the production vehicles, the velocity

is often derived from these sensors indirectly measuring the vehicle speed such as wheel speed

signals and it is often not accurate enough for precise slip-ratio calculation, leading to inaccurate

estimation of friction coefficient. In summary, the ’cause-based’ approach is not practical for

production vehicles due to requirement of additional sensor(s), and the ’effect-based’ approach is

more attractive.

Based on all the discussion above, this dissertation focuses on investigating new methods to

address these concerns: 1) to improve the engine efficiency by predicting knock borderline and

cycle-to-cycle variations; 2) strengthen the traction performance by estimating the road friction

coefficient. A data-driven methodology is going to be introduced for two different application

scenarios. Based on different applications, it will either replace or assist the current predictions

obtained by the existing algorithms; see Figure 1.1. The detailed approaches are introduced in the

next section.

1.2 Research Approaches Using Data-driven Based Algorithm
In the last section, motivations of this dissertation are reviewed regarding the importance of esti-

mation and control for automotive systems in the rapid development era of data-driven learning

algorithms. The specific research topics about estimations in both engine and vehicle areas are dis-

cussed with their limitations highlighted. Two different approaches using the data-driven algorithm

are proposed for two applications: engine borderline knock detection and vehicle tire-road friction

estimation.
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Application Scenario Two

Application Scenario One

Current/Traditional 
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Inputs

Data-Driven Based 

Algorithm
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Current/Traditional 

Estimation Algorithm

Inputs Output 1

Data-Driven Based 

Algorithm

Inputs Output 2

Final

Estimations

Output 1

Output 2

Final 

Estimations

Figure 1.1 Application scenarios using a proposed data-driven estimation algorithm

1.2.1 Scenario One: Engine Borderline Knock Detection

This subsection focuses on engine borderline knock prediction and cycle-wised variation control for

spark ignited engines. As introduced, the majority of existing work focuses on one control parameter

for knock borderline limit management with massive calibration efforts and does not consider short-

term and long-term environmental and system variations. Especially, there is no control scheme

developed for real-time cyclic combustion variation compensation. In other words, the proposed

algorithm needs to address three main issues for knock borderline control. First is to significantly

reduce the expensive engine test budget used to solve the multi-dimensional optimization problem;

second is to compensate the possible environmental changes and engine aging after offline training;

the last (third) is to reduce cycle-to-cycle variations caused by the inherent combustion dynamics. To
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address these three challenges, the proposed borderline knock prediction and control architecture is

divided into three parts as shown in Figure 1.2. Note that the shaded-blue block, the first part, is the

offline training process for predicting the knock borderline limit under multiple control parameters

utilizing the stochastic knock profile knock. An intelligent Bayesian optimization method is used

and assisted by the statistic models trained with the paired data set; and the shaded-green block,

the second part, is used for online updating process to compensate the environmental changes and

engine aging utilizing the trained Kriging models; finally, the shaded-red block, the third part, is

used for reducing the cycle-wised variation by developing a cycle-based knock intensity model

through data-driven system identification and model-based control for cycle-to-cycle deviation of

spark timing, which is complement to the ’averaged’ cycle behavior. The detailed algorithm for

each part will be introduced in the corresponding chapter.

Stochastic Surrogate 

Model Offline Trained

(Bayesian Optimization 

Algorithm)

Stochastic Surrogate Model 

Online Learning

(Likelihood Ratio Controller)

Provide Borderline

Control Parameters

Data for online 

updating

Data Set for offline 

training and online 

updates

In
p

u
t 

D
a

ta

Output Data

Other Factors

Data for offline 

training

Spk, VVT

KI-DP, ISFC

Engine

Generate 
Compensation

ID Linear Model 
LQG Controller

δ𝑇𝑒𝑥ℎδSpk

(Cycle-wised Compensation)

Figure 1.2 Overall architecture of proposed knock control algorithm

For the offline training process in this research, it focuses on minimizing two competing

objectives, knock intensity (KI) and indicated specific fuel consumption (ISFC), with two control

parameters (spark and intake valve timings). Solving multi-objective optimization problems has

a long history and many distinguished methods have been developed [38], where one of the most

successful methodologies is to use a surrogate-model (or meta-model), developed based on high

fidelity simulation (or experimental) evaluations [39], to approximate the objective function. In

this dissertation, a surrogate-model was adopted to assist the entire Bayesian optimization process,
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which is called surrogate-model assisted optimization (SMAO). The whole optimization process

starts from a supervised training-based surrogate-model development process using an initial data

set, and then, the maximum expected improvement of the next sample point [40] is estimated

by actively learning the cost landscape from all previously tried points to improve (optimize) the

model accuracy and/or to obtain an improved solution. The uncertainty of the next sample point is

predicted by the assumption of Gaussian distribution. The active learning process is sequentially

run until the convergence criterion or computational budget is met. The high potential efficiency

of SMAO process has been validated in terms of low cost and fast convergence by using classical

test problems [41] and SMAO has been used for different applications such as groundwater reactive

transport [42] and aerodynamic problems [43] with limited applications to the automotive industry.

Recently, Pal et al. [44, 45] successfully optimized the diesel engine calibration process using the

SMAO method.

There is no existing work, to the best of our knowledge, implementing the stochastic Bayesian

optimization methodology for engine knock prediction and control. The capability of using Kriging

model to predict mean and variance inspires us to apply this method to knock prediction and control.

It is expected that, after the SMAO, a tradeoff (Pareto front) between two competing objectives,

knock intensity (KI) and fuel economy, will be generated, as shown in Figure 1.3. Note that when the

engine MBT spark timing is limited by knock combustion in the advanced direction after all control

parameters are optimized, the higher the KI is, the higher the combustion efficiency (low ISFC).

Hence, a tradeoff, called Pareto front [46], between KI and ISFC can be obtained by non-dominant

sorting after Bayesian optimization. The offline trained Kriging model is a Gaussian process model

providing both mean and variance, so the further decision can be made by evaluating the mean

Pareto front and associated variances along the front (see Figure 1.3); The region enclosed by lower

and upper boundaries can be formed using predicted mean and variance of Kriging model, which

corresponds to the 99.7% confidence range of log-normal distribution using the empirical three-

sigma rule in statistics. The knock borderline considering the given allowed KI level (see desired

KI level in Figure 1.3) can be predicted as the solid-dot along the mean Pareto front in Figure 1.3.
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This point can be projected back to the design space to find the optimal control parameters in the

design space with the engine KI staying below the desired KI (in this study, 1 bar). This makes

it possible to operate the engine below the desired knock limit by using the recommended control

parameters (spark and intake valve timings) with minimal sacrifice of engine combustion efficiency.

On the other hand, the obtained upbound varies due to the engine environment changes as shown in

the shaded yellow region of Figure 1.3, leading to the adaptive change of corresponding optimum

design sites.

KI

mean Pareto 

front

Desired KI 

level

99.7% region of 

lognormal distribution

ISFC

Three-sigma 

Boundaries offline 

trained results

Variation due to 

environmental change

Figure 1.3 Pareto front of KI and ISFC

Since the data-driven black-box model is extremely cheap to evaluate, it can be updated in

real-time to compensate for engine aging and operational environmental changes such as fuel type,

temperature, humidity, etc. The proposed online update process (the second part) integrates the

off-line trained surrogate models using a modified likelihood controller. The relationships between

offline trained surrogate models and online updating process is shown in Figure 1.4.

A principal component analysis (PCA) was conducted for the data points along the Pareto

front. PCA results indicated that spark timing is the most sensitive factor affecting the Pareto front

used to determine the borderline knock limit. A likelihood ratio controller with two buffers was

proposed for updating the surrogate model. Offline trained surrogate model provides a Pareto front
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scenario
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Figure 1.4 Online updating structure

as the baseline when engine is operated at knock limited condition. Next, the new optimum knock

borderline intersection can be located by comparing the updated KI upbound with the given KI

limit after mapping the updated KI upbound from Gaussian back to log-nominal distribution.

Further advance the spark timing for improved fuel economy over the traditional knock control

logic can be achieved by reducing the combustion cycle-to-cycle variations (the third part). The

developed control strategy reduces the knock intensity variations while maintaining the knock

intensity (KI) below a desired level for spark ignition engines when it is operated close to or at

knock borderline. The PRBS (pseudo-random binary sequence) 𝑞-Markov COVER (COVariance

Equivalent Realization) system identification was used in this dissertation to obtain linearized model

from 𝛿 spark timing to 𝛿 exhaust temperature and KI. This method has been shown to work well

for different applications with complex nonlinear dynamics [47, 48, 49]. A 4𝑡ℎ order linear system

model from deviated spark timing to deviate exhaust temperature and KI was identified after using

PRBS as spark timing excitation. Note that the identified model captures the dynamic tendency of

𝛿 exhaust temperature and KI excited by 𝛿 spark timing, and an LQG (linear quadratic Gaussian)
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controller was designed based on the identified model accordingly for reducing KI variations using

𝛿 exhaust temperature as feedback. By adding this compensation loop into the entire knock control

architecture (shown in Figure 1.2), the baseline spark timing, obtained through offline trained

stochastic surrogate model [50] and online updating with likelihood ratio controller, can be further

optimized.

1.2.2 Scenario Two: Vehicle Tire-road Friction Coefficient Estimation

For vehicle applications, this dissertation covers the tire-road friction coefficient estimation assisted

by the data-driven model. As discussed, all the existing estimation algorithms have their own

limitations, including but are not limited to the following aspects: 1) adopting empirical model

with intensive calibration, 2) requiring additional sensors with added cost to production vehicles,

3) not guaranteeing slip-ratio estimation accuracy due to the error of vehicle speed measurement,

and 4) low estimation accuracy due to not enough excitation. The proposed algorithm is expected

to only utilize the data from available production sensors with system and measurement noises.

A new stochastic-based evaluation criterion based on existing vehicle wheel shaft sensor signals

with the help of data-driven Kriging model is proposed, along with a sequential extended Kalman

filter (S-EKF) based on a vehicle dynamic model (an existing model-based approach), to form an

estimation fusion structure as shown in Figure 1.5.

Acc signals

Wheel speed

𝑚𝑢𝐸𝐾𝐹

𝑚𝑢𝑛𝑒𝑤

Confident 
coefficient 𝛼1

Confident 
coefficient 𝛼2

Signal fusion 
algorithm

Existed algorithm using EKF 
and vehicle model

New algorithm with 
proposed statistic model

𝑚𝑢𝑓𝑖𝑛𝑎𝑙

Figure 1.5 Structure of proposed algorithm for tire-road friction coefficient estimation

As demonstrated in Figure 1.5, two estimation algorithms work in parallel and independently.
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A classical vehicle dynamic model with extend Kalman filter (EKF) algorithm is used to estimate

friction coefficient (the top path); and the proposed algorithm only uses the vehicle acceleration

and wheel speed signals, available for almost all current production vehicles to train a statistic

model and provide a new estimation (the lower path). More details can be referred in Chapter 6.

The proposed data driven model requires much less calibration efforts, comparing with the EKF

approach. Unlike other model-based approaches, this statistic model does not require any physical

model. To integrate two predictions, a weighted algorithm is used to obtain the final predicted

friction coefficient; see Equation (1.2)

𝜇 𝑓 𝑖𝑛𝑎𝑙 = (𝛼1 ∗ 𝜇𝐸𝐾𝐹 + 𝛼2 ∗ 𝜇𝑛𝑒𝑤) /(𝛼1 + 𝛼2) (1.2)

where 𝛼1 and 𝛼2 are two confident level coefficients assigned to each algorithm based on a certain

predefined logic, respectively. The proposed estimation method is verified using both CarSim𝑇𝑀

and vehicle test data in Chapter 6.

This section provides an entire picture of applying data-driven model-based algorithms to auto-

motive estimation and control in our research. First one reduces the existing exhaustive calibration

efforts required for the engine knock borderline prediction with multiple control parameters, where

a supervised-learning based Bayesian optimization method, assisted by data-driven based surrogate

model, is proposed and Kriging model is used due to its ability to predict statistic features of the

objectives including both mean and variance. This surrogate model and offline training results are

continually integrated with online updating and cycle-to-cycle control scheme. Second application

is to offset the existing algorithm for predicting tire-road friction by using a data-driven model along

with a novel evaluation criterion for tire-road friction estimation based on statistic information of

vehicle acceleration and wheel speed signals. This data-driven based black-box model needs little

calibration efforts as well.

1.3 Contributions
Overall, the main contributions of research work conducted in this dissertation are applying the

data-driven model-based approaches to classical automotive estimation and control problems,

especially for engine knock borderline control and tire-road friction estimation. The statistical
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characteristics of the associated systems are well studied by considering system and measurement

noises. The proposed prediction and control algorithms improve estimation and control efficiency

and their robustness to the operational environment and system aging. The major contributions of

this dissertation can be summarized as below.

1) The Bayesian learning algorithm is modified to predict engine knock borderline along with as-

sociated optimized control variables. The main modifications include a dual-surrogate-model

structure and log-normal to Gaussian distribution mapping. A dual-surrogate architecture

is proposed to obtain stochastic information of Kriging model with unknown noise charac-

teristics that is true for real-world applications; and a distribution mapping is proposed to

implement the transformation between actual system log-normal KI distribution and Gaussian

one assumed in the Bayesian optimization algorithm.

2) The entire learning algorithm is implemented into a physical engine test bench for performing

experimental optimization with actual system and measurement noises. Experimental results

indicate that the active learning logic, embedded in this algorithm, efficiently predicts the

optimum operational conditions with a significantly reduced test budget, compared with

more than 200 tests used in the conventional sweeping process. Using the Bayesian learning

algorithm, a mean Pareto front can be generated along with its upper and lower boundaries

obtained based on estimated variances and three sigma rules statistically. By using the final

trained surrogate model, a smooth Pareto front can be found. Compared with a predefined

desired knock limit, control variables in the design space can be found with the best engine

efficiency possible. This provides a new perspective about the knock borderline prediction

and control.

3) An online surrogate-model updating scheme is proposed using the offline learned Kriging

models based on a principle component analysis result beforehand. A likelihood controller

with two different buffers is integrated into the model updating structure to compensate the

knock intensity variations caused by both the short- term and long-terms effects, respectively.

The proposed scheme is verified through both co-simulations and tests on an actual engine.
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The results confirm the effective compensation with a relatively advanced averaged spark

timing.

4) The properties of pseudo random binary signals (PRBS) and 𝑞Markov COVER are utilized to

identify a linear control design model with 𝛿 spark timing as input and 𝛿 exhaust temperature

and KI as outputs. Accordingly, an LQG regulator is designed to reduce KI cycle-to-

cycle variations based on measured 𝛿 exhaust temperature. This compensation strategy is

successfully integrated into the complete knock control architecture, and implemented onto

the engine bench test. The validation results indicate that the LQG cycle-wised control with

exhaust temperature feedback is able to reduce KI variation by 28.6%, which is able to further

advance the spark timing for improved fuel economy.

5) A new evaluation criterion associated with the derivative of slip-ratio is introduced. The

proposed new criterion is fully investigated through the simulation studies and experimental

validation will follow. Both simulation and test results confirm the capability of proposed

new criterion for friction coefficient estimation. With this new criterion, a statistic model

could be trained when more test data is available. Finally, it is combined with the traditional

estimation method to further improve the prediction accuracy of tire-road friction coefficient.

1.4 Dissertation Structure
This complete dissertation is organized as shown in Figure 1.6. Chapter 2 starts with a basic

introduction of data statistic characteristics, and then provides a detailed discussion about the

development of stochastic and deterministic Kriging models trained by input-output paired data.

Finally, a Bayesian optimization methodology along with the acquisition function selected for the

stochastic scenario with the unknown noise level and the proposed distribution mapping for this

specific application to engine knock borderline prediction.

Chapter 3 presents the first application scenario about using the data driven models during the

prediction process using both simulation and actual engine test results. The simulation study of

proposed training algorithm is developed before applying to the actual engine test bench. The

simulation studies were run using two selected test problems and one reaction-based combustion
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Figure 1.6 Structure of dissertation

model. A detailed introduction about the hardware and software configurations is introduced

and followed with a sweeping test for comparison purpose in Chapter 3. Two different operational

conditions are selected and 40 iterative training process is defined. After analyzing the experimental

data from the engine test, the corresponding response surfaces (Kriging models) are presented. Due

to the simplicity of obtained surrogate-model, it can be further updated for online compensations.

Chapter 4 discusses the extension of utilizing the offline trained surrogate models and the

associated online updating structure. The entire chapter describes the likelihood ratio control

strategy and the corresponding control scheme using two buffers used for this specific application.

The simulation studies for the proposed online update algorithm are conducted in a LabView

and Simulink co-simulation environment. After discussing the simulation results, the engine

experimental validation results are presented under different scenarios.

Chapter 5 provides a brief review about the PRBS 𝑞-Markov COVER system identification and

LQG control and the high pass-filter design of exhaust temperature signal for real-time sampling

of 𝛿 temperature, then a preliminary test for studying the properties of exhaust temperature and

associated 𝛿 one is presented. At last, the system identification results are studied with designed

open-loop test and the identified model is verified using impulse test data, followed by the cycle-

to-cycle compensation strategy implemented to the physical engine with and without the online
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updating structure.

The second application of data-driven algorithm to assist estimation of tire-road friction coef-

ficient is introduced in Chapter 6. A review of the existing estimation algorithm is provided first,

followed by a discussion of associated drawbacks. A sequential EKF model with the slope method

is verified through the CarSim simulations. Simulation results match with estimation of associated

parameters based on simulated actual vehicle speed using carefully calibrated models. However,

this algorithm comes up with some issues when it is applied to test data without accurate vehicle

speed measurement. A new criterion for estimating tire-road friction is proposed in detail with

verification using CarSim simulation data. By using both simulation and vehicle test data, the

proposed criterion provides a strong correlation to tire-road friction coefficient.

Finally, Chapter 7 provides conclusions of proposed research, along with recommendations for

future study.
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CHAPTER 2

DATA-DRIVEN BASED MODELING AND BAYESIAN TRAINING ALGORITHM

The last chapter portrayed the whole picture of proposed research. It is essential to introduce the

basic statistic features behind the proposed data-driven algorithms before final results are presented,

especially for those modifications proposed in the dissertation.

This chapter starts with basic concepts of statistic characteristics and detailed derivation of

deterministic and stochastic Kriging models. Note that a Kriging model is not only a data-

driven statistic process model, but also the key part of the intelligent iterative SMAO algorithm.

Besides the Kriging model, a high fidelity model and an acquisition function constitute the whole

SMAO algorithm in a closed-loop. The details of proposed algorithm, the motivation of using

dual surrogate model structure, and distribution mapping are further discussed for our specific

application. These theories with modifications form a foundation for implementing the algorithm

presented in the next chapter.

2.1 Data Statistic Features

Note that data is the core for data-driven based algorithm. The system dynamics and measurement

noises are the sources of uncertainties or variations of the sampled data. Statistics provide tools

to understand and interpret the source of variations embedded in the empirical data. A few basic

concepts will be used throughout the rest of dissertation.

Probability is a mathematical property used to describe uncertain events and plays a key role

in statistics. Probability is a number used to describe how likely these specific events will occur

for a given experiment or input. The distribution of probability is described by the probability

density function (PDF). In a more precise sense, the PDF is used to specify the probability of a

random event falling within a particular range of values. For example, if the engine runs for 100

cycles at a fixed operational condition, the knock intensity (KI) of each cycle is distributed across

a band with its possible outcomes due to the cycle-to-cycle stochastic characteristic of combustion.

The KI distribution is shown with several bars in the histogram plot of Figure 2.1, where each bar

represents the relative number of observations within the bar range. Note that the sum of bar areas
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is equal to one. Since the width of bin is the same, the higher the bar is, the larger possibility of a

KI event stays within the bin.

Figure 2.1 Knock intensity (bar) PDF

The data distribution information is important for data driven based algorithms, since it reveals

the statistic tendency out of ’random’ surroundings. There are two important indexes regarding

the central tendency and dispersion of a probability distribution in statistics: mean and variance.

In this dissertation, ‘mean’ is referred to the concept of arithmetic mean, which is the average of

collected data. On the other hand, the variance measures the level of deviations away from the

mean value for all sampled data, which is important information for data mining, machine learning,

and so on. The variance is defined as the mean of squared differences between mean and sampled

data in the distribution. Note that square root of variance is the standard deviation. In statistics,

the empirical 3-sigma rule means that nearly all values stay within three standard deviations of

mean, and thus it is empirically useful to treat 99.7% probability as the confidence level. For a
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stochastic process, a well-trained statistic model is expected to predict both the mean and variance

of unknown parameters. By utilizing the 3-sigma rule of thumb, the final estimation and control

with a 99.7% confidence level can be decided within a safe zone.

2.2 Kriging Model Development
A surrogate-model is simple to evaluate since it does not include the physical dynamics that maps

from inputs to outputs. How to train a black-box surrogate-model based on a collection of input-

output data, obtained from either simulating a detailed physical model or conducting experiments on

a physical system, is reviewed in reference [42]. Among these methods, Kriging (Gaussian Process)

model has been widely-used recently since it predicts not only mean value but also variance that

includes both the intrinsic uncertainty inherent in a stochastic process and extrinsic uncertainty of

the unknown response surface [51].

The standard Kriging model is deterministic as it only includes model uncertainty, also called

extrinsic uncertainty, and does not consider system intrinsic noises. It is an interpolation model

based on the Gaussian process governed by prior covariances, and can provide the best unbiased pre-

diction of mean and normally distributed variance for unsampled locations. Several literature have

discussed the Kriging modeling in detail [52] with few modified for stochastic processes [53, 51].

In a stochastic Kriging model, by allowing the Kriging model to regress the data instead of interpo-

lating, some researchers have extended the original deterministic approach to a broad one by adding

a regression constant, also called regularization constant, to the leading diagonal of the Kriging

correlation matrix 𝑅𝑑 [53], which is shown in Equation (2.3) and will be explained in the model

development part later. For its application to knock prediction, a stochastic Kriging model is needed

due to the cycle-to-cycle knock variation caused by inherent stochastic combustion characteristics.

Both deterministic and stochastic Kriging models are introduced in this dissertation and modeled

based on the extension of Design and Analysis of Computer Experiments (DACE) Matlab toolbox

by Nielsen [54] and the extension SK code package developed by Nelson’s group [51]. For our

application to knock borderline prediction and the selected acquisition function, both deterministic

and stochastic surrogate models are needed. The reasons of using both models in this research will
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be explained in the next section.

Basically, a scalar stochastic Kriging model includes three terms (see Equation (2.1)), where

the first term, f𝑇 (x)𝜷, is a function of input vector x to capture the general trend; the second,

𝑧(x), is a realization of a zero mean random field so that the response of unknown design sites is

modeled within a statistical framework; and the third, the last term, 𝜖 (x), is introduced for system

and measurement noise consideration to model the nature of stochastic processes. The probabilistic

form of a scalar response surface model is shown in Equation (2.1).

𝑦(x) = f𝑇 (x)𝜷 + 𝑧(x) + 𝜖 (x) (2.1)

where x is a 𝑝 dimensional vector of design variables; f(x) is a 𝑞 dimensional vector of known

functions; 𝜷 is a constant parameter vector to be determined with compatible dimension; 𝑧(x)

is a statistical model of a random process with zero mean and covariance based on a spatial

correlation function between two design points x𝑖 and x 𝑗 , where 𝑖, 𝑗 ∈ [1, 𝑛] and 𝑛 is a total number

of evaluation points; 𝜖 (x) is an intrinsic noise that is assumed to be Gaussian with its variance

𝜆2(x) = 𝑉𝑎𝑟 (𝜖 (x)), and it is also called as the regularization constant.

Without noise term 𝜖 (x), the expression for elements of 𝑛 sample covariance matrix 𝑅𝑛 can be

expressed in Equation (2.2) below.

[𝑅𝑛 (𝑖, 𝑗)] = [Cov{𝑧(x𝑖), 𝑧(x 𝑗 )}] = 𝜎2𝑅𝑑
(
𝜃, x𝑖, x 𝑗

)
(2.2)

where 𝜎2 is the variance of process to be determined, 𝑅𝑑 is an 𝑛 × 𝑛 correlation function matrix

based on the spatial distance for all pairs x𝑖 and x 𝑗 (𝑖, 𝑗 ∈ [1, 𝑛]). For Kriging model, 𝑅𝑑 is

a Gaussian correlation function and can be calculated using Equation (2.3) based on the spatial

distance. The correlation between points decreases as their distance increases.

[𝑅𝑑 (𝑖, 𝑗)] = [Cor 𝑧(x𝑖), 𝑧(x 𝑗 )] = [𝑒𝑥𝑝(−
𝑝∑︁
𝑙=1

𝜃𝑙 |𝑥𝑖𝑙 − 𝑥
𝑗

𝑙
|2)] (2.3)

where 𝜃𝑙 and 𝑥𝑖
𝑙

are the 𝑙𝑡ℎ elements of parameter vector 𝜽 associated with the width of Gaussian

function and design variable vector x𝑖, respectively. The effect of parameter vector 𝜽 can be thought

of determining how quickly the function changes as x 𝑗 moves away from x𝑖. A large 𝜃𝑙 implies a

significant activity or low correlation in dimension 𝑙. From this, with the known input-output data

set 𝐷 formed by 𝑛 input points, an 𝑛 × 𝑛 covariance matrix 𝑅𝑛 = 𝜎2R𝑑 can be constructed. For
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a stochastic case with independent noises, the corresponding covariance matrix R𝑠 is obtained by

adding a regulation constant to the diagonal components such that R𝑠 = 𝜎
2R𝑑 +𝜆2I. With all these,

the model has three unknowns to be solved for the Kriging model and they are scalar 𝜎, parameter

vectors 𝜷 and 𝜽 . They are determined by maximizing the likelihood function over the observed

points. To simplify the likelihood maximization, normally the natural logarithm will be taken to

have
ln 𝐿 (𝜎, 𝜷, 𝜽) = −1

2

[
nln

(
2𝜋𝜎2

)
+ ln(det(Rs))

+(Y − F𝜷)𝑇Rs
−1(Y − F𝜷)/𝜎2] (2.4)

where Rs is a covariance matrix for the observed points; and Y =
[
𝑦
(
x1) , . . . , 𝑦 (x𝑁 ) ]𝑇 and

F =
[
f𝑇

(
x1) , . . . , f𝑇 (x𝑛)]𝑇 are vectors of 𝑛 observed function responses and vector function

matrix evaluated at 𝑛 design vectors, respectively. After the likelihood function is maximized, the

stochastic Kriging model is obtained. Accordingly, the predicted mean 𝜇 and mean square error 𝑠2

for 𝑦(x) are predicted by the following Equations:

𝜇𝑦 (x) = f(x)𝑇 𝜷 + r𝑇 (x)Rs
−1(Y − F𝜷) (2.5)

𝑠2
𝑦 (x) = 𝜎2 + u𝑇 (x)

(
F𝑇R−1

𝑠 F
)−1

u(x)

−r𝑇 (x)R−1
𝑠 𝑟 (x)

(2.6)

where r𝑇 (x) = 𝜎2 [𝑅𝑑 (x, x1) , . . . , 𝑅𝑑 (x, x𝑁 ) ] and u(x) = f(x) − F𝑇R−1
𝑠 𝑟 (x). Note that the exact

stochastic property of 𝑧(x) is not modeled in this process, instead, the stochastic property of

𝑦(x), required for optimization, is. The general structure of deterministic and stochastic Kriging

models are summarized in Figure 2.2. For the deterministic case, variance 𝜆2 is set to zero to

obtain predicted mean and mean square errors, where each point provides an exact correlation

with itself, forcing the predictor to interpolate evaluated points. Detailed derivative is presented

in reference [52]. Note that existing research has shown that the regression function used in the

Kriging model has less impact on the model performance [55]. People usually start with 0-th

order regression function (which is a constant mean), assuming that there is not any knowledge

of the system behavior. However, the zero-order function in the ordinary Kriging model was

proven to be erroneous for certain nonlinear applications [56]. When the regression function is
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believed to have a trend or some application-specific parametric structure, a polynomial regression

function is taken as the mean function often with a low-order polynomial format. The universal

Kriging model adopts the polynomial functions, mostly linear or quadratic, as the regression part

to capture the simple spatial trend [56, 57]. A polynomial function with an order higher than two

should be avoided because complicated data trends are better described by the stochastic model

component (Gaussian process) [57]. Based on the observed trend for the sweep-test results shown

in Figure 3.10 in Chapter 3 (see Section of Test Results under T1 condition), a smooth response

surface was obtained with a second order polynomial regression component for the Kriging model.

With all these details, a surrogate Kriging model can be developed. Initial parameters for both

Kriging models developed in Chapter 3 are shown in Table 2.1.
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Figure 2.2 Structure of deterministic and stochastic Kriging models

2.3 Bayesian Training Algorithm with Modifications
For the first application to knock borderline prediction using a data-driven based methodology, a

Bayesian optimization algorithm with the help of a data-driven based surrogate model is adopted
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Table 2.1 Parameter setting for Kriging Model

Parameter Value
Correlation function 𝑅𝑑 Gaussian (𝜽)
Regression function f(x) 2nd order polynomial

Initial 𝜃𝑙 of likelihood function 10 (𝑙 = 1, 2, ..., 𝑝)
Range of 𝜃𝑙 (𝑙 = 1, 2, ..., 𝑝) [ 0.01 100]

due to its efficient ability to obtain the optimum points of an expensive-to-evaluate high fidelity

model, such as physical engine calibration. The essence of Bayesian statistics is to update a previous

belief about the distribution over the objective function after obtaining new data. Accordingly, a

posterior distribution is formed. The detailed algorithm with necessary modifications is going to

be introduced along with the formulated problem for knock borderline prediction.

2.3.1 Problem Formulation and Bayesian Training Algorithm

The current research focuses on the engine’s feasible operational condition when it is constrained by

the borderline knock limit. The goal for engine knock control calibration is to maximize the engine

thermal efficiency or minimize indicated specific fuel consumption (ISFC) and at the same time,

maintain the engine knock intensity (KI) below a desired threshold. When the engine combustion

is knock limited, there is a tradeoff between KI and ISFC. That is, reducing ISFC leads to an

increment of KI. Therefore, a two-objectives min-min optimization problem of KI-ISFC can be

formulated and described following.

Minimize 𝑦1(x), 𝑦2(x) ∈ R

subject to 𝑔1(x), 𝑔2(x), 𝑔3(x) ∈ R

x = [𝑥1, 𝑥2]𝑇 ∈ R2

(2.7)

where 𝑦𝑖 (𝑖 = 1, 2) are two objectives, namely KI and ISFC; 𝑔𝑖 (𝑖 = 1, 2, 3) are three constrains

that are predefined lower and upper bounds (𝑔1 and 𝑔2) of two design variables (𝑥1 and 𝑥2),

and combustion stability constraint (𝑔3) in terms of Coefficient of Variation (𝐶𝑜𝑉𝑖𝑚𝑒𝑝) based on

indicated mean effective pressure (IMEP) to be less than 2.5%; and 𝑥1 and 𝑥2 are two control

parameters in the design space, spark timing and VVT which is intake valve opening (IVO) timing,

forming a design variable vector x. Minimizing two competing objectives will generate a Pareto

front in the objective space. Note that constraints imposed on control variables are used to avoid
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engine running in the infeasible region, thus a safe operational region is defined in the design

space. To solve this optimization problem, a full-factorial design of experiments (DOE) method is

normally used for finding the optimal solution systematically in the past. Using this DOE-based

method, each control parameter is divided into multiple bins distributed uniformly over the design

space. This method is simple, but it results in a large number of evaluating points when variable

resolutions are high. This will increase the evaluation cost, which is a challenge for physical

engine tests due to limited resource and high test cost. In order to solve the optimization problem

efficiently, surrogate-model-assisted optimization (SMAO) algorithm is adopted. Note that most

of the existing work on SMAO is simulation based without considering measurement noises. The

main goal of this study is to find tradeoff between KI and ISFC within limited engine bench tests

using the SMAO algorithm, considering measurement and system noises.

The overall SMAO learning process is depicted in Figure 2.3, utilizing both mean 𝜇𝑦 (x) and

variance 𝑠2
𝑦 (x) estimated by the Kriging model. The active learning process based on Bayesian

optimization can be implemented iteratively in the following 5 steps with evaluations of high fidelity

models or plants:

S1. Evaluate the high fidelity model (or physical system) with a predetermined parameter set in

the design space, for example, generating test data set using points generated by the Latin

hypercube method.

S2. Construct an initial Kriging model of the objective function using optimized hyper parameters

(𝜎, 𝜷, and 𝜽) by maximizing the likelihood function (2.4).

S3. Find new location(s) in the design space that maximizes the expected improvement calculated

by the acquisition function (see the next subsection).

S4. Add evaluation point(s) recommended from S3. Train the Kriging model using the new

expanded experimental data point(s).

S5. Repeat S3 and S4 until the iteration budget is consumed or the error criterion has been met.

As shown in Figure 2.3, both stochastic and deterministic Kriging models need to be developed

in a sequential iterative loop in this paper. For the engine knock prediction problem, a stochastic
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Figure 2.3 Iterative sequential optimization process

surrogate model is necessary due to its intrinsic cycle-to-cycle variations. To train this stochastic

surrogate model, the data set includes an input vector in the design space (spark timing and

VVT) and output data in terms of calculated mean and variance of two objectives (KI and ISFC).

Kriging model training process follows the main center path shown in Figure 2.3. Then an iterative

optimization process, called Bayesian optimization, is used to make it converge to the mean Pareto

front assisted by an additional deterministic surrogate model (see the right side of Figure 2.3).

Using two parallel surrogate models is mainly due to the calculation of acquisition function (to

be explained later) for generating a new input vector in the design space to be evaluated by high

fidelity model (or experimental data) so that the training process can be continued as described in

Steps S3 and S4 of Bayesian optimization process. This new input vector is supposed to be in the

design space with corresponding objective outputs closer to the true mean Pareto front.

Note that in the selected acquisition function, all the predicted mean values, extrinsic uncertainty,

and intrinsic variance are required for calculating the maximum expected improvement of an un-

sampled design point. This calculation would be more straightforward for the deterministic case

because intrinsic variance is zero and other two required variables can be predicted by the Kriging
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model; but for the stochastic Kriging model, the predicted mean squared error consists of both

system uncertainty and intrinsic variance that cannot be separated. This problem did not occur in

associated stochastic literature in which the intrinsic noise variance is assumed to be a function of

mean value, which is not true for practical applications. In reference [51], an intuitive theoretical

idea is proposed to address this issue, where the intrinsic variance is represented by a spatial

correlation model and fitted by a standard deterministic Kriging model. However, this idea was

not actually verified in the literature. In this report, this idea is implemented for both test problems

and actual engine bench test. To be more specific for our application of knock prediction, first, the

deterministic surrogate model is trained using the data set including the input data (spark timing

and VVT) and output data (KI and ISFC variances) as shown in Figure 2.3; and second, for knock

prediction, the adopted cycle-to-cycle variance of the unknown site is important so that the engine

can run strictly under the knock limit without unnecessary loss of efficiency. The deterministic

model is used to predict the intrinsic variance after completing the training process.

2.3.2 Acquisition Function

As shown in Equations (2.5) and (2.6), both mean and uncertainty at any unknown point can be

estimated. An intelligent search for next candidate(s) in the design space is performed using those

estimations and current best solutions. Several acquisition functions are expressed in a closed form

in the literature, and thus, are cheap to calculate. The main difference behind each method is the

logic to balance the exploration in an unknown region and exploitation in the local region with

the current best value. Focusing on exploration would lead to slow convergence but provide more

room to achieve the global optima; on the other hand, focusing on exploitation will accelerate the

convergent process but very likely be stuck in local optima. Out of all the methods, the standard

expected improvement (EI) [58] is the most common one that reaches the balance and is originally

developed for a single deterministic objective problem. The corresponding acquisition function for

the stochastic Kriging model is an extension of the standard EI function. Note that the acquisition

function is defined to guide the search towards the global optimal region, e.g., the Pareto front of two

competing objectives, after balancing exploration and exploitation. This characteristic indicates
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that the approximated surrogate model cannot fully replace the high fidelity model, but it is accurate

enough to predict responses along the Pareto front that is essential for making the final decision of

knock borderline.

For single deterministic objective problems, the definition of an EI function for the 𝑖-th objective

function is shown in Equation (2.8).

𝐸𝐼𝑖 (x) = 𝐸
{
max

[
𝑦𝑖 (x∗) − 𝑌𝑝,𝑖 (x), 0

]}
(2.8)

where x∗ is the current best solution, 𝑦𝑖 (x∗) is the corresponding best value of the 𝑖-th objective

function, 𝑌𝑝,𝑖 (x) ∼ 𝑁
[
𝜇𝑖 (𝑦𝑖 (x)), 𝑠2

𝑖
(𝑦𝑖 (x))

]
. Note that 𝑌𝑝,𝑖 (x) can be interpreted as the Bayesian

estimation for the posterior distribution of an unknown function. However in the context of multi-

objective with stochastic functions, there are two challenges of calculating expected improvement:

1) expensive calculation due to multi-variable integration in improvement function and 2) the current

best solution is not well defined for a stochastic case with exact values unknown. Based on the

promising work developed in references [41, 59, 45], the standard EI functions 𝐸𝐼𝑖 (𝑖 = 1, 2, ..., 𝑚)

are extended to a single augmented matrix-based EI (AMEI) function to counter these two issues

for multi-objective stochastic case. The closed expression of AMEI function for the 𝑛𝑡ℎ unknown

design vector x𝑛 is formulated by Equation (2.9) below.

𝐴𝑀𝐸𝐼 (x𝑛) =
𝑘

min
𝑗=1

[ 𝑚∏
𝑖=1

(𝑟𝑖 + 𝑀𝐸𝐼 𝑗𝑖 (x𝑛) − 𝜇
𝑗

𝑖
) −

𝑚∏
𝑖=1

(𝑟𝑖 − 𝜇 𝑗𝑖 )
]

(2.9)

where 𝑟𝑖 is the self-chosen reference point for objective 𝑖 = 1, 2, ...𝑚 (𝑚 = 2 for our study) and

should be dominated by all points in the current mean Pareto front, 𝑘 is the total number of "effective

best solutions" (to be defined later in Equation (2.12)), 𝜇 𝑗
𝑖

is the current 𝑖𝑡ℎ objective value estimated

by a surrogate model with the 𝑗 𝑡ℎ "effective best solutions", 𝑀𝐸𝐼 𝑗
𝑖
(x𝑛) is the element at the 𝑖𝑡ℎ

column and 𝑗 𝑡ℎ row of the matrix-based function as shown in Equation (2.10) below and is obtained

by adding a multiplication factor to the matrix based expected improvement function 𝐸𝐼 𝑗
𝑖 𝑛𝑒𝑤

(x𝑛).

This multiplication factor is suggested in reference [41] for discouraging the repetition of points

after several function evaluations.

𝑀𝐸𝐼
𝑗

𝑖
(x𝑛) = 𝐸𝐼 𝑗𝑖 𝑛𝑒𝑤 (x𝑛) (1 − 𝜆𝑖 (x𝑛)√︁

𝑠𝑖
2(x𝑛) + 𝜆𝑖2(x𝑛)

) (2.10)
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where 𝜆𝑖 (x𝑛) and 𝑠𝑖2(x𝑛) is the estimation of noise and mean squared error of the 𝑖𝑡ℎ objective at

any unknown point, respectively. 𝐸𝐼 𝑗
𝑖 𝑛𝑒𝑤

(x𝑛) is a modified matrix-based expected improvement

function of unknown point x𝑛 relative to the 𝑗 𝑡ℎ effective best solution. Its value delegates the

expected improvement of an unknown design point x𝑛 for the 𝑖𝑡ℎ objective value with respect to the

𝑗 𝑡ℎ "effective best solution". In terms of two-objective problem in this paper, the 𝑗 𝑡ℎ row represents

the EIs in all objectives (KI and ISFC) at the 𝑗 𝑡ℎ "effective best solution", and the 𝑖𝑡ℎ column

represents the EIs in the 𝑖𝑡ℎ objective at all the "effective best solution". The expression of the new

EI for stochastic Kriging model is:

𝐸𝐼
𝑗

𝑖 𝑛𝑒𝑤
(x𝑛) = ℎ(x∗∗

𝑗
, x𝑛)Φ

(
ℎ(x∗∗

𝑗
, x𝑛)/𝑠𝑖 (x𝑛)

)
+

𝑠𝑖 (x𝑛)𝜙
(
ℎ(x∗∗

𝑗
, x𝑛)/𝑠𝑖 (x𝑛)

)
ℎ(x∗∗

𝑗
, x𝑛) = 𝜇𝑖 (x∗∗𝑗 ) − 𝜇𝑖 (x𝑛)

(2.11)

where x∗∗
𝑗

is defined as the 𝑗 𝑡ℎ "effective best solution" set x∗∗ over these observed points using

Equation (2.12), Φ and 𝜙 represent cumulative distribution and probability density functions,

respectively.

x∗∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 [−𝜇𝑖...𝑚 (x) − 𝑐𝑠𝑖...𝑚 (x)] (2.12)

where 𝑐 = 1 is used in this report.

As shown from Equations (2.9) to (2.12) for calculating the acquisition function, the predicted

mean value 𝜇𝑖, total uncertainty 𝑠𝑖 and intrinsic noise 𝜆𝑖 at unknown points are required to complete

the calculation. The proposed structure of two parallel Kriging models is able to provide all required

unknown information. After creating the acquisition function, optimization is performed to decide

candidates for the next iteration. The AMEI approach aggregates the matrix based MEI function

into a scalar value to measure the overall improvement of the studying unknown point. To solve a

single-objective optimization problem, evolutionary optimization algorithm (for example, genetic

algorithm) is widely used. In this paper, the "real-coded Genetic Algorithm (rGA)" developed

by Deb [60] is used to maximize the AMEI acquisition function due to its high efficiency. This

algorithm is easy to use because the crossover and mutation operators are applied directly to real

parameters instead of the typical binary-coded value [60]. Parameters for the optimization process

are listed in Table 2.2.
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Table 2.2 Parameters used in "rGA" algorithm

Parameter Value
Population size 20 × 𝑛 (𝑛 = 2 - design variable #)

Total generation # 100
Pcrossover 0.9
Pmutation 1/n

2.3.3 Distribution Mapping

Kriging model is a Gaussian process model and the extrinsic variance of unknown location in-

troduced before is also assumed to be Gaussian, as shown in Figure 2.4. This figure shows the

prediction with a vertical Gaussian distribution which represents the uncertainty of this prediction.

The center and spread of this Gaussian distribution are the mean and variance predicted by the

Kriging model. This uncertainty is useful for the calculation of expected improvement and the

final decision after training process with 3-sigma rules considered. However, this assumption of

Gaussian distribution does not always valid for practical applications. A non-Gaussian distribution

needs to be transformed to a Gaussian one.

y

𝑥

Prediction at unknow point 

Current known point at true function

Figure 2.4 Graphical demo about the Gaussian distribution of the intrinsic variance
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For the knock application in this dissertation, KI distribution with its corresponding statistic

features is vital for Kriging borderline knock model since the final selection of control parameters

depends on the predicted means and variances from the Kriging model. Our early study on

stochastic knock control [8] revealed that the knock intensity probability density function (PDF) is

not symmetric and obviously not a Gaussian random process, but has a log-nominal KI distribution

that was also verified by other researchers [61]. Thus a distribution mapping is necessary to make it

possible to implement the Bayesian learning process. Referring to our test data obtained by running

the engine close to the knock borderline, the knock intensity distribution matches the log-nominal

distribution better than the Gaussian one, as shown in Figure 2.5. It can be noticed that in the

region with high KI, Gaussian distribution has a very large error. If a Gaussian distribution were

used during the optimization of KI surrogate model, the high KI event would not be included, and

therefore, knock prediction based on Gaussian distribution Kriging model would likely cause heavy

engine damage.

Figure 2.5 Knock intensity (bar) PDF with proposed distributions

Before starting the iterative learning process, the log-nominal distribution KI data is mapped to

the Gaussian one to meet the assumption for Bayesian learning algorithm; and after completing the

learning, the predicted values (means and variances) are mapped back to the original log-normal

distribution using the exponential mapping method. The mapping function can be referred to
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Figure 2.6. If 𝑥 ∼ 𝑁
(
𝜇𝑥 , 𝑠

2
𝑥

)
, 𝑦 = 𝑒𝑥 ∼ ln

(
𝜇𝑦, 𝑠

2
𝑦

)
and its mean and variance are given in Equation

(2.13). Then the interval containing 99.7% of probability can be obtained according to the 3-sigma

rules in the statistic. Conversely, 𝜇𝑥 and 𝑠2
𝑥 are found from 𝜇𝑦 and 𝑠2

𝑦.
𝜇𝑦 = 𝑒

𝜇𝑥+ 1
2 𝑠

2
𝑥

𝑠2
𝑦 = 𝑒

2𝜇𝑥+𝑠2
𝑥

(
𝑒𝑠

2
𝑥 − 1

) (2.13)

Gaussian PDF

Lognormal PDF

Nonlinear mapping

μ

e
μ

Figure 2.6 Knock intensity (bar) PDF transformation

2.4 Summary
In this chapter, a few key statistic concepts were introduced, which are important roles in our

proposed data-driven based research. After that, the data-driven model and algorithm is elaborated

with the analysis of one specific application. The development of the Kriging model and its role

in the SMAO algorithm is described in detail. The modified workflow of SMAO is explained,

which includes two essential adjustments for fitting the stochastic variation of knock combustion.

With all these modifications, the proposed data-driven based estimation algorithm is ready for

implementation in the next a few chapters.
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CHAPTER 3

IMPLEMENTATION OF ALGORITHM THROUGH SIMULATION AND REAL TIME
ENGINE BENCH TEST

The previous chapter introduces the Kriging model along with its associated algorithm. The

development and characteristics of deterministic and stochastic Kriging models have been fully

discussed along with the essential modifications, including the dual surrogate model structure for

the stochastic environment and distribution mapping for a non-Gaussian noise. The implementation

of the learning algorithm will be made available for both simulation-based model (function) and

actual physical engine.

Before being applied to a physical engine bench, it is important to verify the algorithm under

some simulation scenarios. This chapter starts with simulation study for two selected problems

and reaction-based combustion model. Meanwhile, the engine bench is developed at MSU Energy

and Automotive Research Laboratory, where the associated algorithm was implemented under two

different operating conditions. Based on the analysis of test data, the effect of proposed algorithm

is discussed and the conclusion is drawn at the end of this chapter. The obtained surrogate model

is going to be used for online updating process in the next chapter.

3.1 Verification of Algorithm on Test Problem and Combustion model
Two classical numerical problems (with and without constraints), along with a control-oriented

reaction-based combustion model, are selected for the simulation-based verification, respectively.

Note that Gaussian noise with zero mean is added to the true functions/models for both scenarios.

Therefore, for this simulation study, there is no distribution mapping required.

For both test problems, firstly a noise level is assumed to be known in the calculation process

of the acquisition function. The results will be compared with the proposed dual surrogate model

structure when the noise level is assumed to be unknown. The reaction based combustion model [20]

is previously developed in our research group which is a control-oriented two zone combustion

model with a real-time zero dimensional knock pressure wave model for spark ignited engines.

The knock pressure wave model is capable of predicting the in-cylinder pressure oscillations under
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knocking combustion and can be used for model-based knock prediction and control. For our

verification purpose, the proposed learning algorithm is applied to the combustion model for both

deterministic and stochastic cases.

3.1.1 Simulation on Numerical Test Problems

The proposed method is first validated on standard multiobjective numerical test problems available

in literature [46]. Two standard problems, ZDT1 and BNH, are selected for unconstrained and

constrained cases, respectively. For test problems, a predefined noise level is added to the true

problem. The noise level is set to 6% of the mean value at each point. The comparison simulation

was run for two different settings. Firstly, the noise is assumed to be known and is fed into the

acquisition function while in the second scenario, the noise is unknown and the dual surrogate

model structure is used for the calculation of acquisition function. The optimization results for two

test problems are shown in Figures 3.1 and 3.2.
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Figure 3.1 Simulation for ZDT1 problem with predefined noise level

As shown in both figures, the proposed algorithm was able to explore the unknown regions

of the objective space and finally find a few points along the Pareto front within 100 high fidelity
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Figure 3.2 Simulation results for BNH problem with predefined noise level

evaluations. Primarily, we can notice that it can still track the Pareto front well by using the dual

surrogate model structure, comparing with the front obtained by using the known noise level. Note

that a conventional optimization search algorithm, such as NSGA-II [46], would take a few hundred

iterations to find the true Pareto front [62].

3.1.2 Simulation on Reaction-Based Combustion Model

The reaction-based combustion model was developed for real-time knock control research to predict

the SI engine knock, which was fully calibrated and validated by experimental data. It can provide

knock intensity and in-cylinder pressure under different control inputs. Spark timing and EGR

rate are defined as two control parameters for this model. Thus, this model is useful for verifying

two things: 1) The existence of trade-off relationship between KI and fuel economy with varying

two control parameters. For this model, the brake-specific fuel consumption (BSFC) is selected as

the index of fuel economy; and 2) The ability to detect the Pareto front within limited simulation

budgets after the noise is added.

The combustion model was built in the Simulink platform, and it is a deterministic model.
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Using the deterministic surrogate model directly, the simulation result is shown in Figure 3.3. The

result shows that within 100 iterations, the detected Pareto front is approaching the true one. The

efficiency of algorithm is significant after we compared it with the baseline Pareto front which is

obtained by using 450 sweeping simulations. Since the stochastic characteristic of knock is ignored

in this run, the results cannot help us to find the upper bound of KI.
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Figure 3.3 Simulation results of reaction-based model without noise

Next, the external noises are added to the outputs of two objectives to make the process stochastic

(realistic). The simulation results are shown in Figures 3.4 and 3.5, indicating that more iterations

(200) are required for detecting the true Pareto front. Meanwhile, the statistic variance bar in

Figure 3.5 can provide useful information of KI upper bound for further knock borderline control.

3.2 Experimental Configuration
The above discussions are associated with the simulation-based studies. To validate the modified

Bayesian learning algorithm and the future online updating process for borderline knock prediction

and control, an engine test bench is needed with the necessary software and hardware configurations.

An 1.5L four-cylinder turbocharged gasoline engine was installed on an MSU dynamometer for
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Figure 3.4 Simulation results of reaction-based model with noise
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Figure 3.5 Simulation results of reaction-based model with variance bar
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validating the learning algorithm of borderline knock limit. Note that a sweeping test was made

firstly for comparison purpose before implementing the learning algorithm under two different

operational conditions. The specification of the test engine is shown below in Table 3.1, and the

main hardware and sensors used are listed in Table 3.2.

Table 3.1 Engine spec list

Item Value
Engine Type 1.5L, 4cycle, Gasoline
Configuration L4
Displacement >0.95

Bore 75mm
Stroke 84.8mm

Compression Ratio 9.5
Fire Order 1-3-4-2

Fuel Injection Port

Table 3.2 Configuration table for dyno test

Item Number Name Type or
Model Number Producer Usage

1 Dyno System Sakor Sakor Speed control and torque measurement

2 Controller ECM 5554/0904 Prod MotoTron

Controlling the following key variables:
dwell, short, synchronization,
coolant valve, pedal position,
safety control, CAN definition

3 PCM 32 bits controller FIT Controlling all other engine variables
4 Coolant System NA MSU Controlling the coolant temperature
5 CAN Box NA FIT Communication between host PC and PCM
6 Data Acquisition USB 6361 NI Data sampling and recording at 100kHz
7 Ion Circuit Board NA MSU Generating dwell, short and ion signals

8 Pressure Sensor
and Amplifier 6118CF-5CQ02-4-1 Kistler Measuring in-cylinder pressure

9 Current Sensor NA MSU Monitoring dwell currents (all cylinders)
10 AFR Recorder 1200A AFrecorder Monitoring downstream air-to-fuel ratio

11 Hall Senor
and Encoder NA MSU Measuring cam and crank positions

The entire engine test bench configuration is shown below in Figures 3.6 and 3.7. From the

engine side, an alternating current (AC) dynamometer (dyno) coupled with an engine crankshaft,

is used to supply and absorb engine power and maintain the engine speed. Note that the dyno is
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operated under speed control mode. Necessary harnesses are made for the signal communication

among the controllers, sensors, and actuators. From the control side, two controllers are used.

One is an open-source engine control unit (ECU), MotoTron, which is used to send control signals

to peripheral devices, such as cooling valve, fuel pump, ion detection circuit boards. MotoTron

module is also responsible to send the commanded pedal position signal to the second controller,

engine control module (ECM), for the desired engine load. The ECM also sends out the command

for fuel injection quantity, injection timing, intake valve timing and other actuators based on

current engine speed and pedal position. The calibration of production ECM can be accessed by

its calibration software similar to ETAS INCA [62]. A few sensors are attached to the engine for

different functions. In Table 3.2, key sensors with the corresponding type and model numbers

are listed. For checking the work status of the engine during test, fuel pressure and level, oil

pressure, ion signal, dwell current, air fuel ratio, coolant temperature and engine torque delivered

are monitored to make sure the engine is ignited in the correct phase and run smoothly. On the

other hand, the in-cylinder pressure, exhaust temperature and knock signal are recorded for further

analysis and control purposes. Note that, only the 3𝑟𝑑 cylinder pressure is measured by a Kistler

spark-plug pressure transducer. A bare-wire thermal couple with a short time constant is installed

on the exhaust manifold close to the exhaust port of the 3𝑟𝑑 cylinder. The in-cylinder pressure

signal passes through the Kistler charge amplifier and is sent to an NI USB6361 data acquisition

system. Crank synchronization is programmed in MotoTron using the signal from the installed hall

effect sensor and 60-2 teeth encoder. A test GUI is designed in LabView for data visualization and

communication among MotoTron controller, engine PCM and host PC graphic user interface. The

recorded data and control command is across multiple devices, therefore CAN communication is

implemented among the MotoTron module, NI DAQ system, and ECM computer. In this way, data

can be shared on the CAN bus; and thus NI LabView interface can be used for data communication,

control and calibration.

Regarding the implementation of machine-learning algorithm into dyno control system, the

entire data communication flow is shown in Figure 3.8. A Kistler piezoelectric in-cylinder pressure
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Figure 3.6 Engine test bench configuration

sensor was installed in the 3𝑟𝑑 cylinder to monitor the combustion process and its signal is recorded

by NI USB6361 at a sample rate of 100 kHz. The pressure signal is sent to the learning algorithm

in Matlab for further analysis. A bare-wire thermal couple with a 0.003s response time is installed

close to the exhaust valve of the 3𝑟𝑑 cylinder. The exhaust temperature data will be investigated in

Chapter 5. An open-source MotoTron engine controller is utilized to accept ignition dwell timing

from the algorithm and send it to the engine; and all other actuators are controlled by the original

engine control module (ECM), for example, closed-loop control of stoichiometric air-to-fuel ratio,

variable valve timing (VVT), fuel injection, etc. The engine was running under two different

operation conditions summarized in Table 3.3. For all tests discussed in this chapter, the engine

speed was kept constant using regular E10 gasoline.
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Figure 3.7 Engine on the MSU dyno
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Figure 3.8 Signal flow of engine testing system
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Table 3.3 Engine operational conditions for the learning algorithm

Test # Speed (rpm) Load (Nm) VVT (◦) Spark Timing,
deg BTDC

T1 1200 90 [20,30] [0, 7]
T2 1500 80 [20,30] [0, 8]

3.3 Sweeping Test
In order to verify the functionality of the proposed algorithm for knock borderline prediction,

the engine needs to be operated at a region where the MBT (maximum brake torque) timing is

limited by the knock borderline. Early research [63] indicated that when 50% mass fraction burned

(MFB) crank location, denoted by CA50, is around 9 deg after TDC (DATDC), the MBT timing

is achieved [63]. A fast real-time CA50 calculation method [64] was used for all engine tests. For

example, when the engine is run at 1200 rpm (T1 in Table 3.3), a sweep spark timing test with a

fixed VVT was conducted; see Figure 3.9 for detailed results. Note that at the most advanced spark

timing of 6 deg before TDC (DBTDC), CA50 (blue circle) is about 12.5 DATDC, a few degrees

away from the MBT CA50 location around 9 DATDC; however, the knock intensity (KI), based on

maximum peak-to-peak bandpass-filtered pressure [65, 66] (KI-DP shown in red-star of Figure 3.9)

is greater than 1 bar, indicating that under this operational condition, MBT timing is not reachable

due to borderline knock limit. The bandpass filter frequencies used are 4 and 20 kHz. For the rest

of this dissertation, the KI-DP denotes the knock intensity index calculated using the maximum

peak-to-peak bandpass-filtered pressure. KI (or KI-DP) and ISFC are selected to be two competing

objectives in our study. For multi-objective optimization based on meta-modeling, a taxonomy was

summarized in reference [67]. Out of all the available methods, the "M1" method is utilized in this

dissertation so that the mean and variance of each objective can be predicted by its own surrogate

model, respectively.

Spark sweeping tests under three different fixed VVT positions were implemented, respectively,

for comparison purposes under the T1 condition. For the sweep test, spark timing was swept from

0 to 7 deg BTDC and VVT was fixed at 20, 25 and 30 deg BTDC, respectively. Note that when

the spark timing is between 0 and 4 degrees BTDC, the spark timing sample interval is 0.5 degree,

43



0 1 2 3 4 5 6

Spk timing (DBTDC)

12

14

16

18

20

22

C
A

5
0
 (

D
A

T
D

C
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

K
I-

D
P

 (
b
ar

)

CA50

Mean KI-DP

Max KI-DP

Figure 3.9 CA50 calculation

and when it is between 4 and 7 degrees BTDC, the sample interval is 0.25 degree. Since the

engine controller has a spark timing control resolution of 0.1 degree, these four samples within one

degree are selected as 0.0, 0.2, 0.5, and 0.8 degree. The total test budget is 21 × 3 = 63, where

21 represents total different spark timings within the predefined VVT range and 3 represents total

different VVT timings. These input-output relationships are plotted in Figure 3.10 that provides

information regarding the spatial trend of the response surface.

As shown in Figure 3.10, both ISFC and KI-DP are nonlinear functions of spark timing and

VVT. Regression surfaces using the first- and second-order polynomials were compared as well. It

shows that the Kriging model using the second order regression function captures the mean trend

better than that using the first-order one. Especially, for the objective of KI-DP, the response of

the 1𝑠𝑡 order regression shows a multi-modal curve which is not the case of our gasoline engine.

A Pareto front, which is the tradeoff relationship between KI and ISFC, is obtained by performing

non-dominated sorting on all evaluated points; see red stars in Figure 3.11a. The competing

relationship of these two objectives is clear as expected.

However it is not clear if these obtained results are optimum under the influence of two pre-
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Figure 3.10 Response surface based on sweep-test data under T1 condition

defined factors. As shown in Figure 3.11b, most of the VVT locations tested along the Pareto front

are at 20 deg BTDC. Thus, under this operational condition, the optimal VVT could be within

the region [20, 25) or (25, 30] through learning process. If a DOE test matrix (VVT and spark

timing) was used to find the global optimal region(s), test budget would be very high obviously.

For example, if one deg step size was used for VVT timing, the required total number of tests is

21 × 11 = 231. The efficient learning algorithm proposed in this paper is expected to significantly

reduce the required number of tests.

3.4 Implementation of Learning Algorithm onto Engine Bench

Engine tests are expensive in terms of cost and human efforts. In order to make full use of the

limited test resource, the Bayesian optimization algorithm with proposed modifications is utilized
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Figure 3.11 Sweep test results

under the same operational conditions as shown in Table 3.3. An improved Pareto front is expected

with fewer test iterations consumed.

3.4.1 Test Results under T1 Condition

Using Bayesian optimization process sequentially, the learning algorithm makes a decision about

updating the design variables. As shown in Figure 2.3, both spark timing and VVT candidates are

determined based on the optimized acquisition function at each iteration. As described in Chapter

2, the algorithm starts by creating an initial input data set using any method available in literature.

It is an important step of forming the initial response surface, which could very well direct the

optimal search process based on the developed initial surrogate-model. Therefore, it is important

to have a good initial model, spanning the points over the entire design space. Latin Hypercube

Sampling (LHS) is a widely used method for creating uniformly distributed points throughout the

design space. Under T1 condition, at the beginning of the test (step S1 in Figure 2.3), the initial
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training input data set is generated by the LHS method and evaluated by running the engine to form

a complete initial training data set including both inputs in design space and outputs in objective

space shown in Figures 3.12a and 3.12b, respectively, where red points marked with sequential

numbers are these points along the initial Pareto front. It is found that for the initial data set,

there are 6 points along the final Pareto front (see Figures 3.13 and 3.14) and after completing the

learning process, the Pareto front was formed by 11 test points. It can be observed that the VVT

along the Pareto front is between 20 and 22 deg BTDC under operational condition T1.
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Figure 3.12 Test results using initial data set under T1 condition
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After Step S1, continuing running the engine at each new test point generated by carrying out

the procedure from Steps S2 to S4 in the learning algorithm, more points along the Pareto front

are expected to be found through exploration and exploitation processes. After consuming all

predefined test budget of 40, the resulting input and output points in design and objective spaces,

respectively, are shown in Figures 3.13 and 3.14, where blue squares represent the infilled points

by optimizing acquisition function during iterations. Among them, these green stars are the new

points along the Pareto front and their tendency is consistent with the initial data set but provides

a better spread or diversity of the Pareto front. We can conclude that under this engine operational

condition, the design space parameters along the Pareto front mainly depends on the spark timing

where the VVT timing is less sensitive.
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Figure 3.13 Design space of final training data set under T1 condition

After a total of 20 iterations (40 total test point budget), not only scatter points along the Pareto

front can be obtained, but also the surrogate Kriging model can provide an approximated Pareto

front. Two smooth response surfaces are shown in Figure 3.15 and Figure 3.16 , where 𝑥1 is spark

timing in 𝑑𝑒𝑔 BTDC, 𝑥2 is VVT in 𝑑𝑒𝑔𝐵𝑇𝐷𝐶, 𝑦1 is ISFC in 𝑔/𝑘𝑊ℎ, and 𝑦2 is KI-DP in 𝑏𝑎𝑟.

Accordingly, the Pareto front of the surrogate-model and its corresponding design space are

shown in Figure 3.17 and Figure 3.18, respectively.
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Figure 3.14 Two objectives of final training data set under T1 condition

Figure 3.15 Response surface (ISFC) of trained surrogate model under T1 condition

In the design space (Figure 3.17), a similar optimal combination of spark timing and VVT can

be found, where these red stars are the same points as those in Figure 3.13 and the blue circles are

generated by the surrogate model. On the other hand, the Pareto front of the surrogate model is

converging to the lower left corner during the iteration process, guided by the learning algorithm

(see direction pointed by arrows in Figure 3.18) with three different regions circled. When spark
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Figure 3.16 Response surface (KI) of trained surrogate model under T1 condition
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Figure 3.17 Design space of surrogate model

timing is relatively less advanced or more retarded, the VVT plays a main role in affecting the

knock intensity with relatively high ISFC. As the spark timing advances, knock intensity is mainly

affected by spark timing and is less sensitive to VVT with relatively small ISFC.

The comparison of sweep test and learning results is shown in Figure 3.19. An improved final

Pareto front (shown as green crosses) can be observed with only a total of 40 test points (pink
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Figure 3.18 Objective space of surrogate model

squares) during the learning process, indicating the efficiency of proposed algorithm.
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Figure 3.19 Comparison of sweep test and learning test results

After the learning process, the obtained surrogate Kriging models can provide both mean front

(green curve) with upper and lower limits (pink curve) generated using the variance information

from the Kriging model; see Figure 3.20.

The purple lines, corresponding to the mean value plus and minus three times of standard
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Figure 3.20 Train results with log-normal distribution under T1 condition

deviation for each point along the Pareto front, represent the upper and lower bounds with 99.7%

confidence statistically. Without considering the desired KI limit, all the points along the Pareto

front are the mean optimal responses with a tradeoff relationship between ISFC and KI. For a given

KI upper bound, an intersection of the given KI bound and estimated upper bound can be found,

and this point is projected back to the design space to find the optimal control parameters (spark

timing and VVT), guaranteeing that the actual engine KI stays below the desired upper bound (1

bar in this case). As shown in Figure 3.15 and Figure 3.16, the smooth response surface of each

objective can be approximated which is obviously not a multi-modal surface. The property of

non-multimodal guarantees the existence of a unique mapping process. In other words, the design

and objective spaces are one-to-one projections, therefore unique solutions of control parameters

(spark timing and VVT) can be obtained for any given pair of ISFC and KI. Note that the upper limit

from the log-nominal distribution predicts the maximum possible knock intensity (red star), which

guarantees that using the corresponding control parameters the engine will be operated below the

knock limit with the best fuel economy possible. However, if a Gaussian distribution model were

used for Kriging model (shown in black curves), maximum KI prediction would be far below the

actual one, indicating that using normal distribution would put the engine at a high risk due to
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failed knock control.

3.4.2 Test Results under T2 Condition

The proposed algorithm was also used for the engine operated under T2 condition for further

verification. The proposed algorithm was implemented on the engine starting from an initial data

set. The initial training data set is shown in design space and objective space in Figures 3.21a and

3.21b, respectively. Within these two plots, red points marked with sequential numbers are points

along the Pareto front. It is found that, within this initial data set, there are 8 points located on the

Pareto front out of 14 total points along the final Pareto front obtained after the learning process.

Before starting the training process, the initial data set has provided a pattern for design variables

and responses along the Pareto front. A linear combination of spark timing and VVT is noticed in

the region formed by points 1 to 5, where the mean KI is lower than 0.1 bar. Beyond this point,

points 6 to 8 form a new region.

By using the learning algorithm, more points along the Pareto front are expected to be found

through exploration and exploitation processes and final results are shown in Figures 3.22a and

3.22b. Note that, all legends in the two figures are the same, but are only presented in Figure 3.22b.

The same total iterative test budget of 40 was used for T2 condition. There are six more points

found along the Pareto front through the iterative learning process, where blue squares are the

infilled points by optimizing acquisition function at each iteration, and green stars are new points

found along the final Pareto front after 20 iterations. Under this test condition, the overall KI is

lower than that under the T1 condition. It is also found that less exploration is guided in the high

KI region by the acquisition function.

Under the T2 condition, after completing the learning process, the same approximation process

is used to acquire smooth response surfaces for KI and ISFC; see Figure 3.23 and Figure 3.24,

respectively.

Accordingly, the Pareto front of the surrogate model and corresponding design space variables

are shown in Figures 3.25a and 3.25b. As shown in these circled areas, under this operational

condition, the effect of spark and intake valve timings to engine knock is obvious. Especially, on
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Figure 3.21 Test results using initial training data set (T2)
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Figure 3.22 Test results (𝐶𝑜𝑉 < 1.9%) using final training data set under T2 condition
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Figure 3.23 Response surface (ISFC) of trained surrogate model under T2 condition

Figure 3.24 Response surface (KI) of trained surrogate model under T2 condition

the right side of the green circle, spark timing starts dominating the effect of engine knock. Since

the overall KI is low under this operational condition, the change of Pareto front is small during the

iteration process, but the converging trend is still noticeable.

Similar to the case under T1 condition, the obtained surrogate Kriging models can provide both

mean front and upper and lower KI limits; see Figure 3.26, and the design space control variables
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Figure 3.25 Pareto front and corresponding design space of surrogate model under T2 condition
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can be found by locating the intersection of desired knock limit (1 bar) and Kriging upper KI limit.
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Figure 3.26 Train results with log-normal distribution at T2 condition

3.5 Test Verification with Predicted Knock Borderline
Both Kriging models obtained under two test conditions show that this algorithm is capable of

predicting the knock upper limit relative to a given level of KI allowed for the best fuel economy

possible with very low test budget. Additionally, the surrogate-model with predicted variance can

be used to generate a safe operational region in the design space summarized in Table 3.4. The

100-cycle KI values when the engine operated under both recommended conditions are shown in

Figure 3.27.

Table 3.4 Engine operation condition recommended by the learning algorithm

Test # T1 condition T2 condition
Speed (rpm) 1200 1500
Load (Nm) 90 80

Recommended VVT (DBTDC) 21 25.8
Recommended Spark Timing (DBTDC) 4 7
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Figure 3.27 Cycle-to-cycle KI results with recommended design parameters

These test results show that the recommended design control variables make engine KI close to

the knock borderline limit but strictly below the desired knock limit. If a Gaussian distribution of KI

were used, the selected design control variables would be too aggressive to cause engine damage.

On the other hand, using the current selected design control variables as shown in Table 3.4, under

Gaussian distribution assumption, the upper bound of KI predicted by the Kriging model would be

only 0.6 and 0.5 bar under T1 and T2 conditions, respectively, which are much smaller than actual

test data of 1 bar.

3.6 Conclusions
In this chapter, the Bayesian optimization algorithm with the dual-surrogate-model was imple-

mented by running simulation studies on both test problem and combustion model firstly. All

the simulation results show the efficiency of optimization algorithm and the effectiveness of these

proposed modifications for the stochastic cases. The significant cost reduction for performing the

multi-variable optimization under a stochastic environment is confirmed. The concept of using the

predicted statistic information for knock prediction is demonstrated clearly. Further verification

of the proposed learning algorithm in real-time is successfully conducted on a practical engine
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bench test for predicting engine knock borderline. Note that some modifications are made in

the learning algorithm to fit the knock borderline application, for example, dual-surrogate-model

structure and log-normal to Gaussian distribution mapping. A dual-surrogate-model structure is

proposed to make it possible for solving stochastic information of Kriging model with unknown

noise characteristics; and a distribution mapping is proposed to convert the actual log-normal KI

distribution to Gaussian one so that Bayesian optimization algorithm can be used. For performing

experimental optimization, inspired by the multi-variable Bayesian optimization, two objectives

are chosen for optimization, namely knock intensity (KI) and ISFC (indicated specific fuel con-

sumption). Experimental results indicate that the active learning logic embedded in this algorithm

efficiently predicts the optimum operational conditions with a significantly reduced test budget of

40 points, compared with more than 200 points using the conventional sweeping process. Using

the Bayesian learning algorithm, a mean Pareto front can be generated along with its upper and

lower limits obtained based on estimated variances. By using the final trained surrogate model,

a smooth Pareto front can be found. Compared the predicted statistic features with a predefined

desired knock limit, the associated optimum control variables in the design space can be found with

the best engine efficiency possible. Since the approximated surrogate model is cheap to evaluate,

it has the potential to be updated online for compensating engine aging and operational condition

variations.

60



CHAPTER 4

ONLINE UPDATING OF SURROGATE MODEL

After a few verification simulations, the learning algorithm was finally implemented onto the

engine dyno bench in the previous chapter. Through the iterative intelligent search, the algorithm is

converged to the Pareto front formed by two competing objectives (KI and ISFC). The approximated

surrogate models provide a promising smooth response surface. This offline training process helps

to obtain optimum design parameters. These parameters need to be adaptive to the environmental

changes and engine aging.

The offline trained Kriging model is a Gaussian process model providing both mean and

variance. Due to the simplicity of data-driven model, it can be updated in real-time to compensate

for engine aging and operational environmental changes such as fuel type, temperature, humidity,

etc. The main content of this chapter is to design an online updating structure utilizing the offline

learned surrogate model. The simulation study will be implemented under both LabView and

Matlab environments, which is the same software platform used for real-time tests. The updating

process can be simplified by conducting the principal component analysis (PCA) to find dominated

control variable. The results of PCA indicated that the spark timing is the most sensitive factor

affecting the Pareto front used to determine the borderline knock limit. A likelihood ratio controller

is adopted to capture knock variations caused by engine aging and other factors. The goal is

to update the upbound of Pareto front according to the calculated likelihood ratios. Thus after

mapping the predicted values from Gaussian back to log-nominal distribution, the knock borderline

limit can be located on the intersection between predicted KI upper bound and given KI limit.

This chapter initially talks about the concept of likelihood ratio control followed by the proposed

online updating scheme. Sections 2 and 3 present configurations of co-simulation environment and

the simulation results utilizing a stochastic SI engine knock intensity model with the log-nominal

distributed mean and variance obtained experimentally. Physical engine dynamometer tests under

different scenarios are presented in Section 4. Finally, conclusions are drawn in Section 5.
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4.1 Likelihood Ratio
As described in the previous chapter, a desired KI limit is defined. When the pressure oscillation

magnitude is above 1 bar, it is assumed to be an undesired knock event. Therefore the knock events

have a binomial distribution which is a type of distribution that has two possible outcomes, knock

or no knock. Given a target knock probability, 𝑝, the probability of obtaining 𝑘 knock events within

𝑛 cycles of observations can be calculated using Equation (4.1) below. For our project, the target

probability is 𝑝 = 0.3% which corresponds to the knock probability on the basis of log-normal

distribution and 3-sigma rules. However, this probability is not a direct tool for knock control or

the online updating process [68].

𝑃𝑛 (𝑘) =
©­­«
𝑛

𝑘

ª®®¬ 𝑝𝑘 (1 − 𝑝) (𝑛−𝑘) (4.1)

The concept of likelihood ratio, 𝐿𝑛 (𝑘), was first introduced for knock control in 2010 [68]. The

likelihood ratio delegates the ratio between likelihood level evaluated using the target knock rate

and the maximum likelihood estimation of the current knock probability. To be specific, it is used to

evaluate the ratio between expected knock probability(𝑝 = 3%) obtained from the offline learning

algorithm and the observed knock probability (𝑝𝑜𝑏𝑠 = 𝑘/𝑛) obtained from the actual knock rate,

which maximizes the likelihood. It can be expressed as below.

𝐿ℎ =
𝐿 (𝑝 | 𝑁𝑘 )
𝐿 (𝑝𝑜𝑏𝑠 | 𝑁𝑘 )

=

©­­«
𝑛

𝑘

ª®®¬ 𝑝𝑘 (1 − 𝑝) (𝑛−𝑘)

©­­«
𝑛

𝑘

ª®®¬ 𝑝𝑘𝑜𝑏𝑠 (1 − 𝑝𝑜𝑏𝑠) (𝑛−𝑘)

(4.2)

where 𝑁𝑘 is the observed knock event sequence; 𝑘 is the number of knock events in 𝑁𝑘 ; and 𝑛

is the number of engine cycles. Later, two buffers will be defined and 𝑛 would be the size of

buffer. There are several likelihood ratio applications; see [68, 69, 70, 71]. Most of them only

used one buffer that is directly used to decide the spark timing direction without considering the

statistic characteristic of the knock combustion. Meanwhile the effect of short term environmental
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changes and long term engine aging cannot be predicted in the Kriging model. We propose to use

the concept of likelihood ratio to update the predicted surrogate models. A plot of the likelihood

ratio as a function of engine cycle number is shown in Figure 4.1 using our target knock rate. The

plot shows relationships between the likelihood ratio and cycle numbers when a pre-defined knock

occurs. As expected, the likelihood ratio peaks when the observations match with the assumed

knock rate. For example, the likelihood ratio is almost one at 300 cycles in the one knock event

curve; when the cycle number is different from 300 cycles, the likelihood ratio would be lower than

one. However, if the cycle number is smaller than 300 cycles, the knock rate or the observed knock

probability would be larger than the target rate. Inversely, the knock rate would be lower. Thus, this

observation inspires us to use both knock rate and likelihood ratio to design updating scheme for

short term compensation using a dynamic-sized buffer, which will be discussed in the next section.
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Figure 4.1 Likelihood ratio vs cycle numbers (𝑝 = 0.3%)

A two-buffer design is proposed in this research. In order to better understand the effect of buffer
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size, a plot of the likelihood ratio as a function of knock event is shown in Figure 4.2 regarding

different buffer sizes.
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Figure 4.2 Likelihood ratio vs number of knock events (𝑝 = 0.3%)

As indicated in the plot, when buffer size is small, the likelihood ratio decreases monotonically

as the number of knock events increases. Note that, if the buffer size is too small (less than one

hundred), the change of amplitude of likelihood ratio would be too small to identify. On the other

hand, when buffer size is large, the monotonic relationship disappears, but the likelihood ratio is

distinguishable. For our application, we want to have a relative quick response for short term effects

and slow adjustment for long term factors. Therefore, two different buffer sizes are proposed for

this purpose. One buffer will have a flexible or dynamic size which really depends on the time

when one knock event occurs. As described before, if the knock occurs within a short period, the

likelihood ratio would monotonically decrease to a relatively low value, which requires a quick
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and large compensation action. The other buffer will have a relatively large buffer size (e.g., 6000

cycles) for a long-term consideration. To save the memory on the micro-controller, a special design

would be used for this buffer. Since the target ratio is 0.3% and the turning point is clear when the

buffer size is 300 cycles, thus a 300-cycle buffer is chosen as the base bin for the long buffer. Thus

20 bins together will be extended to a total 6000 cycles buffer. The detailed buffering and control

strategies will be introduced in the next section.

4.2 Principal Component Analysis and Proposed Online Updating Scheme

4.2.1 Principal Component Analysis

After the offline training process, an optimum design parameter set was detected. The trained

surrogate models present smooth response surfaces and have the potential to be used in real-time

applications. Note that the upper bound of Pareto front is affected by several factors such as

environmental conditions and fuel type. To accurately control the combustion process, the Pareto

front and its upper boundary of surrogate model needs to be updated to adapt to those changes. To

reduce computational load of real-time model updating, a further data analysis is required to reduce

number of control parameters so that the key factor in the model is preserved. Principal component

analysis (PCA) [72] is one of the widely used method. It computes the principal components and

uses them to reduce the input dimension while preserving dominated statistical function, where

only the first few principal components are going to be kept forming a lower-dimensional model.

In this research, there are two control inputs 𝑥1 (spark timing)and 𝑥2 (VVT). Before applying

PCA, it’s a standard practice to perform mean normalization on each dimension so that the control

inputs should have zero mean, and comparable ranges of values using the equation below.

𝑥𝑖 =
𝑥𝑖 − 1

𝑛

∑𝑛
𝑗=1 𝑥

𝑗

𝑖

max (𝑥𝑖) − min (𝑥𝑖)
(4.3)

where 𝑥 𝑗
𝑖

is the 𝑗 𝑡ℎ point of the 𝑖𝑡ℎ dimension; and 𝑛 is the total number of evaluation points. After

this sort of data pre-processing, the PCA algorithm can be applied. First, compute covariance

matrix Σ of design parameters, which is a symmetric positive definite matrix.

Σ =
1
𝑚

x̃𝑇 x̃ (4.4)
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where x̃ is an 𝑛 × 𝑙 matrix; 𝑛 is the number of data points; and 𝑙 is the number of input dimensions.

Singular value decomposition (SVD) is used to obtain eigenvector matrix𝑈 and eigenvalue matrix

[𝑈, 𝑆,𝑈∗] = svd(Σ) (4.5)

To reduce the input data dimension from 𝑙 down to 𝑘 , the first 𝑘 column vectors of 𝑈 are

selected. The total variation, which is computed by equation below, is used to determine value of

𝑘 .

Var =
∑𝑘
𝑖=1 𝑆𝑖𝑖∑𝑙
𝑖=1 𝑆𝑖𝑖

(4.6)

where 𝑉𝑎𝑟 denotes how much of the variance is retained or at most 1 − 𝑉𝑎𝑟 average squared pro-

jection error after dimension reduction. Normally, the error below 5% is acceptable for dimension

reduction. For our case, PCA is implemented for these points along the Pareto front. When the

dimension of spark timing is chosen, the total variations is 97.3% with a 2.7% projection error.

Thus, only spark timing is the leading factor for online updating the surrogate Kriging model that

is used to determine the borderline knock limit along the Pareto front in real-time.

4.2.2 Online Updating Strategy

The scheme used for the online updating process is going to be fully discussed in this section.

Equation (4.7) is proposed to update the upbound of Pareto front estimated by the offline machine-

learned surrogate models.

𝑦 = 𝛽
(
𝛼𝑦prem + (1 − 𝛼)𝑦reg

)
(4.7)

where 𝑦prem and 𝑦reg are outputs of offline trained Kriging models when the engine runs with

regular (worst KI case) and premium fuel (best KI case), respectively; 𝛼 and 𝛽 delegate the outputs

of each buffer and are updated based on the likelihood ratios. In our structure, two different buffer

sizes are used to assist in updating the surrogate model under different rates. The fast buffer with

a flexible size is used to interpret the surrogate models between the premium and regular fuel, and

changes brought by other environmental changes. For long term consideration, such as engine

aging or other slow changing phenomena, a slow buffer with a fixed size (relatively long) is used

to update these outputs of surrogate-models.
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As shown in Equation (4.7), output 𝛼 is mainly dominated by the short-term effects such as fuel

Octane level and temperature. Other factor or variation could cause 𝛼 to fluctuate around certain

point; and 𝛽 is mainly caused by long-time effects such as engine aging. Without considering the

possible engine aging, two boundary conditions (best and worst) need to be considered. 𝛼 = 1

means that the output is fully affected by the best surrogate-model (𝑦best), for instance, using fuel

with a very high Octane level at low engine temperature; and output with 𝛼 = 0 is dominated by the

worst model (𝑦worst), for example, using the extremely low Octane fuel at high engine temperature.

When 𝛼 is between 1 and 0, the engine is operated in the middle of best and worse knock conditions.

For example, the vehicle is fueled with high Octane fuel mixed with low Octane fuel remained in

tank so that the engine is in a transition from low Octane fuel to high one. Other short-term factors

will cause 𝛼 fluctuating within a narrow range. We need to extend our updating structure (see

Equation (4.8)) to cover all scenarios, especially for the two boundary conditions. This extension

has an advantage when we define the detailed updating strategies according to the likelihood ratios.

That is, when 𝛼 is changing (increasing or decreasing), output 𝑦 would remain in the same updating

direction (aggressive or conservative).

𝑦 = 𝛽
(
𝑀𝑖𝑛((2 − 𝛼), 1.2)𝑦𝑝𝑟𝑒𝑚

)
𝛼 ⩾ 1

𝑦 = 𝛽
(
𝛼𝑦𝑝𝑟𝑒𝑚 + (1 − 𝛼)𝑦𝑟𝑒𝑞

)
0 < 𝛼 < 1

𝑦 = 𝛽(𝑀𝑎𝑥((1 − 𝛼),−1.2)𝑦𝑟𝑒𝑔) 𝛼 ≤ 0

(4.8)

After the KI upper bound along the Pareto front is updated, the new intersection point with

the desire knock limit can be located which will be directly mapping back to the design space for

selecting the corresponding spark timing. The updated design parameter will be forward to the

engine controller.

4.2.2.1 Updating Logic for 𝛼

Based on the definition of likelihood ratio and proposed updating structure, the logics for updating

𝛼 and 𝛽 using the likelihood ratio information is presented below, respectively.

For short-term compensation coefficient 𝛼, a safety region is defined with a range of [200,500]

cycles. Within this range, one light knock event is tolerable. Instead of a fixed size buffer, a dynamic
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buffer is used, which can be assumed as a counter. The counter will accumulate the number of no-

knock cycles. Once a knock is detected, 𝛼 value will be updated based on the calculated likelihood

ratio and knock rate from counted cycles. After this, the counter will be reset. The basic rule

is that if likelihood ratio approaches unity, it indicates a relatively good match between the target

knock rate predicted by the surrogate model and the observed knock events, so no control action

(model-update) is required; if the ratio is small, a large mismatch exists, and therefore, a correction

(model update) is required. The detailed updating scheme for 𝛼 is shown in Figure 4.3.
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(0,k)

No knock is detected 
within k cycles

L>0.4

P=0

L<0.4

P=0

(1,k)

One knock is detected within 
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L<0.9

P>p0

L>0.9

P=0

L<0.9

P<p0

K<300

K>300

K<200

K>500

200<k<500

No change

No change

Retard

Advance

Advance

Figure 4.3 Updating scheme for 𝛼

For the counter output, it will only have two categories regarding the number of knock events:

one knock or no knock. For no knock case, 300-cycle location is the dividing line. When the

counted cycle is less than 300 cycles, the likelihood ratio is larger than 0.4 (see the monotonically

decreasing tendency of likelihood ratio in Figure 4.1), but this does not give enough information

about the possibility of knock in the future, so no action is required; on the other hand, if the cycle

number is larger than 300 cycles, the likelihood ratio would be smaller than 0.4, which means

that there is certain room to advance. The step size is controlled by the amplitude of likelihood

ratio naturally. For one knock case, it includes three branches divided by the safety zone. If the

counted number is within the safety region, there is no updating needed. Out of this region, it will
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be divided into two scenarios. When the cycle number is less than 200 cycles, the likelihood ratio

would be less than 0.9, but knock rate 𝑝 will be larger than the target one 𝑝0. Inversely, when the

cycle number is larger than 500 cycles, the knock rate would be less while the likelihood ratio is

also less than 0.9. Therefore, the sign of difference between the actual knock and target rates can

be used to control the updating direction (best or worst) which can also be called aggressive or

conservative. To realize this updating logic, the following equation (4.9) is used to update the 𝛼 as

required. Otherwise, 𝛼 will remain unchanged.

𝛼𝑖 = 𝛼𝑖−1 + 𝑠𝑔𝑛(𝑝0 − 𝑝) (1 − 𝐿)𝐾𝑔𝑎𝑖𝑛Δ𝐾𝐼 (4.9)

where 𝑖 and 𝑖 − 1 are the current and previous steps; 𝑝0 is target knock rate and 𝑝 is the actual

knock rate; 𝐿 is the counter likelihood ratio; 𝐾𝑔𝑎𝑖𝑛 is a calibration parameter; 𝑠𝑔𝑛 represents the

sign function used to determine updating direction; and Δ𝐾𝐼 is the difference between measured

and estimated means.

4.2.2.2 Updating Logic for 𝛽

The updating logic for 𝛽 is different from that for 𝛼. In order to efficiently record history data for

the long-term engine aging effect, a 300-cycle buffer with a 20 first-in-first-out (FIFO) recorder is

shown in Figure 4.4.

300 cycles

FIFO 20 bins

𝐿𝑖

𝐿𝑖−19

𝐿𝑎𝑣𝑒 = 𝑚𝑒𝑎𝑛(𝐿𝑖 , … 𝐿𝑖−19)

Knock Events Likelihood ratio

Figure 4.4 Updating scheme for 𝛽
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The fixed size (300 cycles) buffer is used to calculate the likelihood ratio every 300 cycles.

The calculated likelihood ratio is stored in the short FIFO recorder updated every 300 cycles. The

average of total 20 values will be calculated. Note that engine aging and other slow changing factors

could change the knock tendency. For example, deteriorate piston rings reduce the effective engine

compression ratio, and/or increased Carbon deposits on piston could also increase the effective

compression ratio. Therefore the direction of 𝛽 can be decided by the difference between actual

mean and baseline mean of KI, which can also drive the Pareto front to the related direction. The

following updating equation is proposed and 𝛽 is updated based on the averaged likelihood ratio

and likelihood threshold.

𝛽𝑖 = 𝛽𝑖−1 + 𝑠𝑔𝑛(𝐾𝐼𝑚𝑒𝑎𝑛 − 𝐾𝐼𝑏𝑎𝑠𝑒)

(𝐿𝑡ℎ𝑟 − 𝐿𝑎𝑣𝑒)𝐾𝑔𝑎𝑖𝑛2 𝐿𝑎𝑣𝑒 < 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝛽𝑖 = 𝛽𝑖−1 𝐿𝑎𝑣𝑒 ≥ 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

(4.10)

where 𝑖 and 𝑖 − 1 are the current and previous steps; 𝐾𝐼𝑚𝑒𝑎𝑛 is the actual KI mean; 𝐾𝐼𝑏𝑎𝑠𝑒 is

the baseline KI mean; 𝐿𝑎𝑣𝑒 is the averaged likelihood ratio of the FIFO; 𝐾𝑔𝑎𝑖𝑛2 is a calibration

parameter; and 𝐿𝑡ℎ𝑟 is a threshold.

4.3 Simulations Study in LabVIEW and Simulink Using Proposed KI Statis-
tic Model

The co-simulation configuration in LabView and Simulink provides an effective approach to validate

the proposed algorithm before its implementation for real-time application. Note that the co-

simulation structure, in terms of signal communication and execution of updating scheme, is the

same as that for real-time engine tests.

4.3.1 Configurations for Co-simulation Environments

Instead of using a complex combustion model to generate engine knock, a statistic knock simulator is

used to generate the KI-DP. This simulator uses a lookup table to generate random knock intensities

with the log-normal distribution for given mean and variance. Inputs to the lookup table are the

spark timing and intake valve timing (IVT) and outputs of the table are mean and variance of the

KI-DP that matches with the trained model based on experimental data. Both mean and variance

70



will be sent to the knock generator to shape the log-nominal distribution. Even though this is not

a true engine combustion model, it can delegate the interested knock variations from the stochastic

perspective. A block diagram of this arrangement is shown in Figure 4.5.

KI Simulator

Interface built with 
Model Interface 

Toolkit 

SPK
VVT Kgain,

Thresholds

KI-DP

Likelihood ratio 
controller

+
Surrogate 

models

Labview based interface

Simulink based model

SPK
VVT

Manual input 
calibration parameters

(Gain and Threshold)

Figure 4.5 Configuration of co-simulation in LabView and Simulink

As shown in Figure 4.5, the updating logics for 𝛼 and 𝛽, surrogate models and knock simulator

are modeled in Simulink. The NI LabView provides the communication interface. A model

interface toolkit is used to compile the model, and the generated dynamic link library (dll) file

provides the communication between LabView and Simulink. The Simulink based model accepts

the control commands from LabView interface. Based on the spark timing and IVT, the knock

simulator generates the corresponding random KI-DP. Calculated model coefficients 𝛼 and 𝛽

updates the upper boundary of surrogate in the aggressive or conservative direction so that both

spark timing can be updated accordingly. This co-simulation process provides a good foundation
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for the future tests since the proposed updating strategy is programmed in the same NI LabView

system.

4.3.2 Simulation Results

The simulation study starts with the knock simulator adopting the mean and variance from regular

fuel (Octane = 87) to simulate the worst knock case. Now the short-term variation factor 𝛼 would

be updated in the simulation environment when the mean and variance used in the knock simulator

changes. In order to activate the updating process early, a low predefined KI upper bound (0.95

bar) for the likelihood ratio control is set in the LabView. A 3000-cycle simulation is conducted

and the associated results are presented in Figures 4.6, 4.7, and 4.8, respectively.
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Figure 4.6 𝛼 value during the simulation with regular fuel

The updated 𝛼 adjusts the surrogate-model (4.7) due to change of knock occurrences with a

threshold set at 0.95 bar for the likelihood controller. Spark timing is updated accordingly and has

a consistent tendency as 𝛼. It shows that most of time, spark timing locates at a relative advanced

position. Although, 𝛼 fluctuates during the simulation since KI-DP passed the predefined lower

bound, most of actual KI-DP values stay within our desired KI limit (one bar). There are about 11
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Figure 4.7 Spark timing during the simulation with regular fuel
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Figure 4.8 Delta pressure (KI) during the simulation with regular fuel
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points slightly beyond 1 bar limit over 3000 cycles, which is very close to our target tolerance of

1/300.

The same simulation study was also conducted with the table of knock simulator using mean

and variance from high Octane fuel to simulate the best knock case. Note that the initial 𝛼 is set

to 0, which corresponding to regular fuel (the worst case). The simulation results are shown in

Figures 4.9, 4.10, and 4.11, respectively. It shows that the spark timing gradually converges to a

relative advanced position and the knock rate is also within the tolerable region.
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Figure 4.9 𝛼 value during the simulation with premium fuel

These simulation results show a successful updating process for 𝛼 using the proposed updating

logic. The obtained profile shows that the updated surrogate-model is able to operate the engine at

a more advanced spark timing position. Meanwhile, the resulting knock delta pressure (KI-DP) is

within the range of desired distribution and tolerance with only light knock events occurred. For

long-term effect, a threshold of 𝛽 is used to trigger the long-term compensation. A 4% increment

of KI is added to the knock simulator when the combustion cycle reaches 7000 cycles to simulate a

slight increment of engine compression ratio due to heavy carbon deposites. The simulation results

are shown below in Figures 4.12 and 4.13. It shows that 𝛽 value gradually converges to a new value
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Figure 4.10 Spark timing during the simulation with premium fuel
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Figure 4.11 KI-DP during the simulation with premium fuel
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after the 7000 cycles. After that, spark timing gradually converges to a lightly retarded region due

to increased knock level caused by increased compression ratio.
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Figure 4.12 Simulated spark timing with long-term affects

4.4 Engine Bench Test Results
The proposed online updating algorithm is also verified on MSU engine test bench. Note that the

overall test configuration is almost the same as the co-simulation one except that the KI simulator is

replaced by the physical engine. The KI-DP can be obtained by bandpass filtering the in-cylinder

pressure signal in real-time. The overall architecture is the same as the configurations shown in

Figure 3.8. The engine was running under different scenarios at a fixed speed and load condition

(1200 rpm and 90Nm) summarized in Table 4.1.

Table 4.1 Test scenarios for online updating at fixed speed and load condition

Case Number Fuel type KI Threshold for
likelihood ratio calculation, bar

Coolant Temperature
deg C Test Purpose

1 regular 0.95 90 short term effect
2 regular 1 90 short term effect
3 premium 1 90 short term effect
4 mixed 0.95 90 transient case
5 premium 0.95 90 to 95 long term effect

As listed in Table 4.1, a fixed fuel type is used to verify the short-term compensation from Cases

76



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Engine Cycle

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

KI
-D

P,
ba

r

KI-DP
Desired limit

Figure 4.13 Simulated KI-DP with long-term affects

1 to 3, where the change of system operational environment causes the deviation from the offline

trained surrogate model (baseline). Among them, a different KI threshold is tuned and verified

when these tests were running using regular fuel in Cases 1 and 2. A smaller value means an earlier

updating action is expected. The results are shown below in Figures 4.14 and 4.15.
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Figure 4.14 Engine test using regular fuel with small control threshold

When the KI threshold is set to a small value, the model updating takes action early. Accordingly,

this adjusts the spark timing to a relative retard (conservative) location mostly. In general, the KI is

controlled within the desire knock limit. As observed, the spark timing updates with the calculated
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Figure 4.15 Engine test using regular fuel with large control threshold

𝛼. Increase the threshold close to one bar, the overall KI is higher than before. Accordingly, the

controller is expected to update the model in a relative aggressive way. The test results show that

the spark timing is at an advanced position most of the time, and the KI is still under the desired

limit with a few events above the threshold. While using the premium fuel, the threshold was kept

at 1 bar for the likelihood ratio controller. The test results are shown below in Figure 4.16. It is

obviously that engine has stable combustion status and the spark timing finally converges to a stable

position. The 𝛼 also varies less after it converges.
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Figure 4.16 Engine test using premium fuel with large control threshold

The proposed updating scheme is able to not only adapt to environment changes with a fixed

fuel, but also help to updating control parameters when fuel transmits from one to another. As

shown in Case 4, the premium fuel is added when the fuel tank is about 10% full during the test.
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As shown in Figure 4.17, the gradual decreasing process of KI is noticeable. It took about 1500

cycles (2.5 minutes) to advance the spark timing, and 𝛼 is updated during the transition process

from regular to premium fuel. Note that the KI threshold was set as 0.95 bar for this test.
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Figure 4.17 Engine test with transient fuel mixed

In order to verify the long-term compensation strategy, the control valve of coolant system was

adjusted so that the coolant temperature is increased from 90 to 95 deg C during the test. This

is used to simulate the engine aging process with increased knock intensity. The test results are

shown below in Figure 4.18, indicating that when long-term compensation starts work, the spark

timing converges to a relative retarded position. Both 𝛼 and 𝛽 values converge, and spark timing is

updated accordingly.
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Figure 4.18 Engine test with high coolant temperature

The proposed online updating strategy for knock feedforward control is successfully validated
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on a physical engine under five different predefined test scenarios in real-time assisted by CAN

communication between original ECM and knock control module. By changing the fuel type,

coolant temperature and KI threshold, the proposed online knock control architecture demonstrated

its effectiveness for both short- and long-term compensation at quasisteady- and transient-status.

The provided calibration parameters in the updating scheme could also be used for other engine ap-

plications since they contain information such as engine aging and its current operational condition.

4.5 Conclusions
This chapter proposes an online updated feedforward knock control architecture to adapt to en-

gine aging and varying operational environment, where the worst and best surrogate models are

trained offline. During the offline training process, a multi-variable Bayesian learning algorithm

is modified for knock borderline application with a dual-surrogate-model structure and log-normal

to Gaussian distribution mapping. The proposed offline training algorithm is implemented into

a physical engine test bench for predicting engine knock borderline limit along with associated

control parameters. After the offline training, well-trained best-and-worst-case Kriging models

are obtained with smooth response surfaces. Utilizing the potential of Kriging model, an online

updating scheme is designed with the assistance of principle component analysis and updated

likelihood ratio controller. Both short- and long-term coefficients are designed to compensate fast

environmental change and slow engine aging, respectively. A statistic knock simulator is imple-

mented for co-simulation in LabView-Matlab for verifying proposed online updating scheme. The

same configurations are used for performing engine experiments. Five different typical scenarios

are tested to verify the proposed engine knock borderline control structure and online updating

scheme. The simulation and test results indicate the ability of updating the Kriging model in

real-time to adapt to engine aging and its current operational condition. This online updating

control scheme extends the potential usage of offline trained Kriging models. The recommended

baseline control parameters provide an improved knock borderline limit for real-time feedforward

control. It is easy to implement and can be further integrated with other closed-loop knock control

algorithms.
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CHAPTER 5

CYCLE-BASED LQG KNOCK REGULATION USING IDENTIFIED EXHAUST
TEMPERATURE MODEL

In the previous two chapters, control algorithms are developed based on statistic properties of

the history data. They do not provide any immediate control action to reduce cyclic variations

caused by the inherent combustion dynamics. In this chapter, the designed control strategy will

reduce the knock intensity variations while maintaining the knock intensity (KI) below a desired

level for spark ignition engines when it is operated close to or at knock borderline. The exhaust

temperature data is studied for analysing the knock combustion variations. Several model-based

prediction methods have been conducted for complex exhaust temperature dynamics, such as

estimation of temperature drop in the manifold using mean value model [73, 74] and estimation of

transient gas temperature [75]. However, these models have two main limitations: a) mean-value

model without cycle-to-cycle variations, making it not suitable for cycle-based knock compensation

and b) high-complex and nonlinear physics-based models that cannot be used for model-based

real-time control. To simplify the physics-based modeling process, several data-driven system

identification methodologies [76, 48] came to the rescue in these scenarios, which generate black-

box linear models based on a set of input-output data, where deviation (𝛿) of spark timing, associated

deviation (𝛿) of KI and exhaust temperature are used for our application. The exhaust temperature

measurement is important since its fluctuation represents the current-cycle KI variations and will

be utilized as control feedback. A detailed study was conducted for measuring exhaust temperature

using three different thermal couples [77, 78], which shows that the sealed thermal couple can only

obtained averaged temperature due to its large time constant, and only bare-wire thermal couple

is fast enough to catch accurate pulsations of exhaust temperature. In our research, a bare-wire

thermal couple is installed on the exhaust manifold close to exhaust port of interested cylinder.

5.1 Q-Markov COVER and LQG Introduction
This section introduces the main system identification method (PRBS 𝑞-Markov COVER) and con-

trol scheme (LQG) used in this dissertation, which develops the guidance for system identification
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open-loop tests and for closed-loop tests of cycle-based knock compensation.

5.1.1 Q-Markov COVER Algorithm

The 𝑞-Markov COVER algorithm, originally developed for model reduction using white noise

test signal, which is unrealizable accurately in experiments [79]. A pseudo random binary signal

(PRBS) [79] was proposed to replace the white noise as the excitation and the corresponding output

responses could be observed. The input-output data set is used to generate the first 𝑞 Markov

parameters, along with covariance matrices, of the original system (for example, engine dynamics

in this paper), and a reduced-order linear model with the equivalent Markov parameters can be

generated using a series of well-proved formulations. PRBS is a periodic signal with magnitude

𝑎 and period of 2𝑚, where 𝑚 is the length of PRBS defined as 𝑚 = 2𝑛 − 1 and 𝑛 is the order of

PRBS. The exhaust temperature itself have a relatively slow response to the PRBS signal (𝛿 spark

timing), so a 7𝑡ℎ order PRBS signal is selected so that the duration of PRBS is long enough to cover

the temperature variation. The detailed description of PRBS signal can be found in reference [48].

The generated PRBS is then used to evaluate the system outputs, which are then used for system

identification.

A brief discussion of the state-space representation for an unknown linear dynamic system is

described below. A detailed linear algebra derivation of PRBS 𝑞-Markov COVER can be referred

to reference [48] for thorough understanding. A discrete asymptotically stable system can be

represented below in a standard state-space format:

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐷𝑤(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐻𝑤(𝑘)
(5.1)

where 𝑥 ∈ 𝑅𝑛𝑥 , 𝑤 ∈ 𝑅𝑛𝑤 and 𝑦 ∈ 𝑅𝑛𝑦 are state, input and output vectors, respectively. Considering

𝑋 to be the solution of the following Lyapunov equation:

𝑋 = 𝐴𝑋𝐴𝑇 + 𝐷𝑊𝐷𝑇 (5.2)

where𝑊 is the covariance matrix of white noise input 𝑤. The system Markov parameter matrices

(𝐻𝑖, 𝑖 = 1, 2, ..., 𝑞) and the associated covariance matrices (𝑅𝑖, 𝑖 = 1, 2, ..., 𝑞) are defined as:

𝐻0 = 𝐻 , 𝐻𝑖 = 𝐶𝐴
𝑖−1𝐷 𝑖 = 1, 2, ... (5.3)
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𝑅𝑖 = 𝐶𝐴
𝑖𝑋𝐶𝑇 + 𝐻𝑖𝑊𝐻𝑇 𝑖 = 0, 1, 2, ... (5.4)

Note that these parameter matrices are dependent on system matrices 𝐴, 𝐵, 𝐶, and 𝐷. They will

be calculated based on the input-output data and its auto-correlations. Thus inversely, the results

will further be used to generate the system state-space model.

Since PRBS vector 𝑤 is a periodic signal with period 2𝑚, its system steady-state responses are

also periodic with the same period as defined below in equations (5.5) and (5.6).

𝑥
𝑗
𝑠 (𝑘 + 𝑖) = 𝐴𝑘+𝑖𝑥 𝑗𝑠 (0) +

𝑘+𝑖−1∑︁
𝑛=0

𝐴𝑘+𝑖−1−𝑛𝐷𝑒 𝑗𝑢(𝑛) (5.5)

where 𝑥 𝑗𝑠 (0) is the steady-state periodic response at time zero. The associated system output

responses are

𝑦
𝑗
𝑠 (𝑘 + 𝑖) = 𝐶𝑥 𝑗𝑠 (𝑘 + 𝑖) + 𝐻𝐷𝑒 𝑗𝑤(𝑘 + 𝑖) (5.6)

for 𝑖 = 0, 1, ..., 𝑞−1, where 𝑒 𝑗𝑤 selects the 𝑗 𝑡ℎ PRBS input 𝑤 and 𝑒 𝑗 is the 𝑗 𝑡ℎ standard base vector.

With all equations above from (5.1) to (5.6), we have

𝑄𝑞𝑦
𝑗
𝑞 (𝑘) = 𝑄𝑞𝑂𝑞𝑥

𝑗
𝑠 (𝑘) +𝑄𝑞𝐻𝑞𝑤

𝑗
𝑞 (𝑘) (5.7)

where 𝑄𝑞 is a block diagonal matrix with 𝑞 blocks of positive definite output weighting matrix 𝑄,

and

𝑦
𝑗
𝑞 (𝑘) =



𝑦
𝑗
𝑠 (𝑘)

𝑦
𝑗
𝑠 (𝑘 + 1)
...

𝑦
𝑗
𝑞 (𝑘 + 𝑞 − 1)


, 𝑤

𝑗
𝑞 (𝑘) =



𝑒 𝑗𝑤(𝑘)

𝑒 𝑗𝑤(𝑘 + 1)
...

𝑒 𝑗𝑤(𝑘 + 𝑞 − 1)


(5.8)

𝑂𝑞 =



𝐶

𝐶𝐴

...

𝐶𝐴𝑞−1


, 𝐻𝑞 =



𝐻0 0 · · · 0

𝐻1 𝐻0 · · · 0
...

...
. . .

...

𝐻𝑞−1 𝐻𝑞−2 · · · 𝐻0


(5.9)

Taking the expectation over one PRBS period from both side of equation (5.7) yields the following

equations from (5.10) to (5.15) for any 𝑞 > 0.

𝑄𝑞𝑅𝑞𝑄
𝑇
𝑞 = 𝑄𝑞𝑂𝑞𝑋𝑂

𝑇
𝑞𝑄

𝑇
𝑞 +𝑄𝑞𝐻𝑞𝑊𝐻

𝑇
𝑞𝑄

𝑇
𝑞 +𝑄𝑞Δ𝑞𝑄

𝑇
𝑞 (5.10)
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where Δ𝑞 is the error term caused by finite period number 𝑚 of the PRBS and based upon Theorem

3.1 in reference [79], the Frobenius norm of Δ𝑞 goes to zero as 𝑚 goes to ∞. The rest of matrices

are defined below.

𝑅𝑞 =



𝑅𝑦𝑦 (0) 𝑅𝑦𝑦 (1) · · · 𝑅𝑦𝑦 (𝑞 − 1)

𝑅𝑦𝑦 (1) 𝑅𝑦𝑦 (0) · · · 𝑅𝑦𝑦 (𝑞 − 2)
...

...
. . .

...

𝑅𝑦𝑦 (𝑞 − 1) 𝑅𝑦𝑦 (𝑞 − 2) · · · 𝑅𝑦𝑦 (0)


(5.11)

𝑅𝑦𝑦 (𝜏) =
𝑛𝑤∑︁
𝑗=0

1
2𝑚

2𝑛𝑤𝑚−1∑︁
𝑘=0

𝑦
𝑗
𝑠 (𝑘 + 𝜏) [𝑦 𝑗𝑠 (𝑘)]𝑇 (5.12)

𝑋 =

𝑛𝑤∑︁
𝑖=0

1
2𝑚

2𝑛𝑤𝑚−1∑︁
𝑛=0

𝑥
𝑗
𝑠 (𝑛 + 𝜏) [𝑥 𝑗𝑠 (𝑛)]𝑇 (5.13)

𝑊𝑞 =



𝑊 (0) 𝑊 (1) · · · 𝑊 (𝑞 − 1)

𝑊 (1) 𝑊 (0) · · · 𝑊 (𝑞 − 2)
...

...
. . .

...

𝑊 (𝑞 − 1) 𝑊 (𝑞 − 2) · · · 𝑊 (0)


(5.14)

𝑊 (𝜏) =


(
𝑛𝑟 − 𝜏𝑚−1

𝑚

)
diag

[
𝑎2

1, . . . , 𝑎
2
𝑛𝑤

]
, 𝜏 < 𝑛𝑟

0𝑛𝑟×𝑛𝑟 𝜏 ≥ 𝑛𝑟
(5.15)

where 𝑛𝑟 is the sample period ratio of PRBS and system. As a result, for sufficient large 𝑚,

𝑄𝑞𝑅𝑞𝑄
𝑇
𝑞 = 𝑄𝑞𝑂𝑞𝑋𝑂

𝑇
𝑞𝑄

𝑇
𝑞 +𝑄𝑞𝐻𝑞𝑊𝑞𝐻

𝑇
𝑞𝑄

𝑇
𝑞 (5.16)

which allow the use of PRBS to develop a q-Markov COVER for system identification by obtaining

these system matrices in (5.1) following these brief steps of identification algorithm described

below. More details can be found in reference [48].

1) Determine the PRBS input order𝑚 and magnitude 𝑎 based on knowledge of system dynamics

and conduct experiments to obtain the corresponding steady-state input-output responses.
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2) Calculate auto-correlation and cross-correlation matrices 𝑅𝑦𝑦 (𝑖) and 𝑅𝑦𝑤 (𝑖) using following

equations

𝑅𝑦𝑦 (𝑖) =
1

2𝑚

𝑛𝑤∑︁
𝑗=0

2𝑚−1∑︁
𝑘=0

𝑦
𝑗
𝑠 (𝑘 + 𝑖) [𝑦 𝑗𝑠 (𝑘)]𝑇 (5.17)

𝑅𝑦𝑤 (𝑖) =
1

2𝑚

𝑛𝑤∑︁
𝑗=0

2𝑚−1∑︁
𝑘=0

𝑦𝐼𝑠 (𝑘 + 𝑖)𝑤𝑖 (𝑘) [𝑒 𝑗 ]𝑇 (5.18)

where 𝑤𝑖 (𝑘) is the PRBS input and 𝑦 𝑗𝑠 (𝑘) is the steady-state system responses with only the

𝑗 𝑡ℎ input excited by 𝑤 𝑗 (𝑘). The system Markov matrices can be then computed by

𝐻𝑖 = 𝑅𝑦𝑤 (𝑖)𝑊−1;𝑊 = 𝐼𝑎2 (5.19)

3) Select 𝑞 and form matrices 𝑅𝑞, 𝑀𝑞, and 𝐻𝑞, where 𝑀𝑞 can be calculated as below.

𝑀𝑇
𝑞 =

[
𝐻𝑇1 , 𝐻

𝑇
2 , . . . , 𝐻

𝑇
𝑞−1

]
(5.20)

4. Form matrix 𝑃𝑞 by

– Computing D𝑞 = R𝑞 −H𝑞𝑊𝑞H𝑇
𝑞 , where

𝑊𝑞 = block-diag[𝑊, . . . ,𝑊];𝑊 = 𝐼𝑎2 (5.21)

– and doing the Schur decomposition of 𝐷𝑞 to obtain

D𝑞 =
[
P̂𝑞 P̃𝑞

] 
Λ 0

0 Λ̃



P̂𝑇

P̃𝑇

 (5.22)

such that the diagonal elements of block diag [Λ,Λ] are in a decreasing order, and Λ is

chosen such that 𝜎̄∥Λ̂∥ << 𝜎∥Λ∥, where Λ ∈ 𝑅𝑟𝑥𝑟

– letting P𝑞 = P̂𝑞Λ1/2

5) Construct 𝑃, 𝑃̄, and 𝑉𝑃𝑈𝑉𝑇𝑃 by

– defining

𝑃𝑇𝑞 = [𝑃𝑇0 , 𝑃
𝑇
1 , · · · , 𝑃

𝑇
𝑞−1],

𝑃𝑇 = [𝑃𝑇0 , 𝑃
𝑇
1 , · · · , 𝑃

𝑇
𝑞−1],

𝑃̄𝑇 = [𝑃𝑇0 , 𝑃
𝑇
1 , · · · , 𝑃

𝑇
𝑞−1]

(5.23)
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– and making the singular value decomposition of 𝑃 and [𝑃̄, 𝑀𝑞]

𝑃 =

[
𝑈𝑎 𝑈𝑏

] 
Σ𝑎 0

0 0



𝑉𝑇𝑎

𝑉𝑇
𝑏


[𝑃̄, 𝑀𝑞] =

[
𝑈𝑐 𝑈𝑑

] 
Σ𝑐 0

0 0



𝑉𝑇𝑐

𝑉𝑇
𝑑


(5.24)

– If 𝑃 is full rank, letting 𝑉𝑝𝑈𝑉𝑇𝑃̄ = 0, and else,

𝑉𝑝𝑈𝑉
𝑇

𝑃̄
= 𝑉𝑏𝑈𝑉

𝑇
𝑑 (5.25)

where𝑈 is an arbitrary unitary matrix

6) Compute 𝐴̂,𝐷̂,𝐶̂,𝐻̂ for identified system by letting

𝐴̂ = 𝑃+𝑃̄ +𝑉𝑝𝑈𝑉𝑇𝑃̄ 𝐼1, 𝐼1 = [𝐼𝑟 , 0];

𝐷̂ = 𝑃+𝑀𝑞 +𝑉𝑝𝑈𝑉𝑇𝑃̄ 𝐼2, 𝐼2 = [0, 𝐼𝑛𝑤 ];

𝐶̂ = 𝑄−1𝑃0, 𝐻̂ = 𝑄−1𝐻0

(5.26)

Note that reference [79] shows that if the system responses are from a nonlinear system, the

identified system model represents a linearized model of that nonlinear system.

5.1.2 LQG Control

The identified linear system model based on PRBS open-loop system responses can be used for

model-based control such as LQR (linear quadratic regulator). However, state feedback LQR

cannot be implemented since not all system states of identified model can be measured directly.

The linear–quadratic–Gaussian (LQG) control, one of the most popular optimal control strategies,

is used in this study with unknown states. The LQG control can be used for a class of linear systems

with additive white Gaussian measurement noise. The LQG regulator uses the noisy measurements

to estimate the system states and then generate a state feedback control signal based on estimated

states to regulate the system output to zero. The resulting LQG controller is a combination of a

Kalman filter (linear quadratic state estimator) and an LQR [80, 81]. Note that both Kalman filter

and LQR can be designed based on the identified model. The theory of LQG control is introduced

below in brief and more details can be found in literature [80, 81].
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When all system states are known, a linear quadratic regulator law is shown below in Equa-

tion (5.27) that minimizes the integrated quadratic cost function in Equation (5.28).

𝑢 = −𝐾𝑥 (5.27)

𝐽𝐿𝑄𝑅 =
1
2

∫ ∞

0

(
𝑥𝑄𝑥𝑇 + 𝑢𝑇𝑅𝑢

)
𝑑𝑡 (5.28)

For LQG control, it is assumed that the physical system is excited by system disturbance (process

noise) 𝑤 (see (5.1)) with the following system model

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐷𝑤(𝑘)

𝑦(𝑘) = 𝐶𝑦𝑥(𝑘) + 𝐻𝑦𝑤(𝑘)

𝑧(𝑘) = 𝐶𝑧𝑥(𝑘) + 𝑣(𝑘)

(5.29)

where 𝐵 = 𝐷; 𝐶𝑦 and 𝐻𝑦 are part of the identified𝐶 and 𝐻, respectively, associated with KI output;

𝐶𝑧 is part of 𝐶 associated with 𝛿 exhaust temperature; and 𝑣(𝑘) is the measurement noise. Since

states of identified system cannot be measured directly, the LQR relies on the estimated state vector

𝑥(𝑘) based on noisy measurements 𝑧 using a Kalman filter defined in Equation (5.30), which forms

the LQG regulator. The Kalman filter is an optimal estimator when dealing with Gaussian white

measurement noise that minimizes the covariance lim
𝑡→∞

𝐸
(
(𝑥 − 𝑥) (𝑥 − 𝑥)𝑇

)
of estimation error 𝑥−𝑥.

𝑢 = −𝐾𝑥 (5.30)

where 𝑥 is the estimated state by Kalman filter. Its state-space representation is

¤̂𝑥 = [𝐴 − 𝐿𝑀 − (𝐵 − 𝐿𝐷)𝐾]𝑥̂ + 𝐿𝑧 (5.31)

where 𝑧 is the vector of system measurements and 𝐿 is the Kalman gain. Control gain 𝐾 is obtained

by using the unique stabilizing solution of the corresponding Riccati equation [82]. The structure

of this LQG regulator in our application is shown below in Figure 5.1.

The physical meanings of these two algorithms with application to knock cycle-to-cycle com-

pensation using measured delta exhaust temperature as feedback will be detailed in the next section.

5.2 Exhaust Temperature Study
The same engine bench architecture, as shown in Figure 3.8, is utilized. Note that the engine was

running at a fixed speed and load condition (1200 rpm and 90 Nm) for all the tests in this chapter.
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Figure 5.1 LQG control architecture

A bare-wire thermal couple with a 0.003s response time is installed close to the exhaust valve of

the 3rd cylinder; see Figure 5.2.

Figure 5.2 Thermal couple installation location

In order to better understand the engine combustion dynamics under small spark timing pertur-

bation, some preliminary tests were conducted for the purpose of analyzing exhaust temperature

signal when the input spark timing changes. The structure of open-loop test is shown below in
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Figure 5.3 when 𝛿 spark timing is added to the baseline one. Note that this configuration will also

be used for system identification based on PRBS 𝑞-Markov COVER.

Figure 5.3 Architecture of open-loop test system

Since the thermal couple is installed close to the 3𝑟𝑑 cylinder, only spark timing of the 3𝑟𝑑

cylinder will be adjusted to affect the combustion so that the corresponding exhaust temperature

changes could be detected. The step spark timing test results are shown in Figures 5.4 and 5.5

while the 𝛿 spark timing of 1 and 2 deg are commanded as a step input, respectively.

Figure 5.4 Exhaust temperature with unit 𝛿 spark timing step
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Figure 5.5 Exhaust temperature with two-degree 𝛿 spark timing step

The test data shows the obvious effect of step 𝛿 spark timing. A larger step in the advanced

direction causes a larger exhaust temperature drop. This observation also confirms that the engine

is excited successfully by the step input and the exhaust temperature response can be captured by

the installed bare-wire thermal couple. The unit step input test data will be later used to validate the

identified model by 𝑞-Markov COVER. Note that the absolute temperature is not a good indication

of 𝛿 spark timing change since the absolute value would not be consistent even under the same

operational condition (speed and load) due to the test environmental change and sensor noise. The

𝛿 temperature, defined as measured exhaust temperature minus the cycle-wised mean one, will

be used for the system identification and its fluctuations represents the cycle-to-cycle combustion

variations. The 𝛿 temperature of each cycle is plotted in Figures 5.6 and 5.7, corresponding to the

previous test results of step 𝛿 spark timing inputs shown in Figures 5.4 and 5.5.

For offline post-data processing, the 𝛿 temperature can be easily obtained after some signal

processing. However, this would not be possible in real-time, because the dynamic temperature

data would not be maintained at a fixed mean value under different test conditions. Therefore,
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Figure 5.6 Δ exhaust temperature response with unit 𝛿 spark timing step
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Figure 5.7 Δ exhaust temperature response with two-degree 𝛿 spark timing step
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a high-pass (HP) filter is proposed to get rid of the mean component in the exhaust temperature

signal. These two methods are compared in Figure 5.8 and both processed signals are fairly close.
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Figure 5.8 Δ exhaust temperature obtained by two different approaches

Figure 5.8 shows that the selected HP filter is able to obtained the accurate 𝛿 exhaust temperature.

For the engine test, the sampled exhaust temperature signal from the bare-wire thermal couple is

buffered in NI data acquisition system over a given window for cylinder #3 every cycle; and the

cycle mean of temperature can be calculated and used as the high-pass filter input. The output of

high pass filter is the desired 𝛿 temperature to be used for system identification and model-based

control.

5.3 System Identification Open Loop Tests and Model Verification

5.3.1 Configuration for System Identification

As proposed, the model-based control will be developed for cycle-to-cycle compensation. An

open-loop test is designed and implemented for system identification. The test structure is the same

as that shown in Figure 5.3. The baseline spark timing is fixed and 𝛿 spark timing from PRBS

is added to the baseline and all three signals (𝛿 spark timing, 𝛿 exhaust temperature and KI) are

collected for 𝑞-Markov COVER system identification. In this paper, a 7𝑡ℎ order PRBS with 1
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degree magnitude is sent to the engine controller as the 𝛿 spark timing. One period of the 7𝑡ℎ order

PRBS is shown below in Figure 5.9, where the pattern of PRBS sequence among each cycle can be

noticed in zoom-in box.
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Figure 5.9 The 7th order PRBS (one period)

The length of PRBS signal is 𝑙 = 2 ∗ (27 − 1) = 254 engine cycles. When engine is running

at 1200 rpm, it takes 25.4 seconds for completing one PRBS cycle. Since steady-state exhaust

temperature and KI signals are needed for 𝑞-Markov COVER system identification (to make sure

Δ𝑞 is close to zero) and exhaust temperature has a slow response to the PRBS signal, engine tests

of five continuous PRBS cycles are conducted to make sure that the engine is at the steady-state

over the fifth PRBS cycle. Only the signals of the last (fifth) PRBS cycle are used for system

identification.

5.3.2 Model Verification

Two modifications are made so that the identification algorithm can be used for this specific appli-

cation (knock control). Firstly, the 𝑞-Markov COVER identification algorithm assumes Gaussian

noise and excitation. However, Our early study on knock stochastic properties [8] shows that the
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knock intensity probability density function (PDF) is not a symmetric Gaussian random process

but has a log-nominal distribution, which was also verified by other researchers [61]. Thus a

distribution conversion [50] is necessary to make it possible to implement the system identifica-

tion algorithm. On the other hand, the fluctuation and absolute amplitude of 𝛿 temperature has a

much larger range than that of the knock intensity; see Figures 5.6 and 5.8. If these two signals

are not scaled properly, large system identification error of the signal with small magnitude will

occur. Therefore a weighting matrix 𝑑𝑖𝑎𝑔[0.7, 0.1] is added to the outputs signals (KI and delta

temperature) after the iterative tuning processes.

For the identification process, 𝑞 needs to be selected for the best identification results. Note that

the physical meaning of 𝑞 is that the first 𝑞 Markov parameters of identified model match with these

of physical system. Therefore, the larger 𝑞 is, the better the approximation of identified model to

the real engine system. However, large 𝑞 could increase computational cost and cause model over

fitting. By trial and error, 𝑞 = 20 was selected to achieve minimal identification error. Similarly,

higher order identified model can reduce modeling error, but it may not realistic for further real-time

control implementation since it will lead to a high order LQG controller. A 4𝑡ℎ order model is

adopted to balance the model accuracy and proper real-time controller order. For the 4𝑡ℎ order

model, the identified error was increased, and the identified KI magnitude is far below the actual

one. However the overall oscillation trends of 𝛿 temperature and KI still present a good tendency

and shall be useful for future cycle-to-cycle compensation. The identified results are shown below

in Figures 5.10 and 5.11 for KI and 𝛿 exhaust temperature, respectively.

The accuracy of identified model needs to be verified. The step response of the identified

model is compared with the test data with the same unit step input, where the step responses of

the identified model are shown in Figure 5.12. The results show that positive 𝛿 KI and negative

𝛿 temperature with a positive step input. An obvious anti-phase phenomenon can be observed

between the 𝛿 KI and temperature, which further verified the early observation of the relationship

between the 𝛿 KI and exhaust temperature.

As highlighted earlier, the ID model cannot track the exact amplitude of 𝛿 exhaust temperature
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Figure 5.10 KI-DP of ID model
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Figure 5.11 Δ exhaust temperature of ID model
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Figure 5.12 Step responses of ID model

due to identification error, but its general tendency aligns with the test data and same for the

fluctuation frequency. For the purpose of comparison with the ID model, a band-stop filter is

applied to the test data to filter out the large peaks caused by exhaust pipe pressure waves without

sacrificing the overall trend. The comparison results are shown in Figure 5.13. The compared

results show that the response frequency of test data is close to that of identified 4𝑡ℎ order linear

model with 𝑞 = 20. The 4𝑡ℎ order system model, obtained from the proposed 𝑞-Markov COVER,

is able to recreate the fluctuation behavior of the nonlinear engine combustion dynamics. Its

state-space model matrices is shown below in Equations (5.32) to (5.35). Thus LQG controller

can be designed accordingly. The output of LQG controller is 𝛿 spark timing which is sent to

the MotoTron engine controller. For the actual engine operation, LQG regulator tries to reduce

the 𝛿 exhaust temperature down to zero. If that is positive, which means the exhaust temperature

is increasing due to a late or slow combustion with a relative retard spark position, therefore, the

spark timing is expected to be moved in an advanced direction. Conversely, if the 𝛿 temperature

is negative, which means the engine is running at a relative advanced position than the baseline, a
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retard compensation is required.
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Figure 5.13 Comparison of step responses

𝐴 =



0.9880 −0.1279 −0.0042 −0.0444

0.1032 0.9557 −0.2010 −0.0322

−0.0065 0.1321 0.9248 −0.2939

0.0443 0.0601 0.2709 0.9283


(5.32)

𝐵 =

[
−0.0747 −0.1819 −0.1754 −0.0244

]𝑇
(5.33)

𝐶 =


−0.0311 −0.0660 −0.0457 −0.0926

0.0753 0.1549 0.11460 0.0848

 (5.34)

𝐷 =


5.2708𝑒 − 05

−0.0235

 (5.35)

5.4 Test Results with Cycle-based Knock Control
In order to verify the effect of proposed cycle-to-cycle LQG compensation strategy based on the

identified linear model, three different tests were designed as listed in Table 5.1.
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Table 5.1 Test scenarios for LQG cycle-to-cycle compensation at fixed speed and load condition

Case Number Cycle-based algorithm Online updating strategy Coolant Temperature
deg C

1 Yes No 90
2 Yes Yes 90
3 Yes Yes 95

As shown in Table 5.1, all three test cases use the proposed cycle-based LQG algorithm. Note

that Case 1 demonstrates the LQG control along with a fix baseline spark timing. Note that in our

early research, an online likelihood strategy was proposed to online-update the baseline control

parameter (spark timing) according to the engine KI stochastic variations; see reference [83] for

details. For Cases 2 and 3, the LQG compensation strategy is integrated with the online updating

strategy using the architecture in Figure 1.2 to form the complete knock control architecture. After

combining the online updating strategy with the cycle-to-cycle LQG compensation, tests of Cases

2 and 3 were run under two different coolant temperature levels (90 and 95 deg C), respectively.

These test results are discussed in the following sections, respectively.

5.4.1 Test Results with ID Model Only - Case 1

Firstly, test results with LQG control only is shown in Figure 5.14. At the beginning phase shown in

the purple box, it can be noticed that the black line (𝛿 spark timing) is a straight line, which means

that cycle-based LQG control is not activated and the engine runs close to the knock borderline

with a fixed baseline spark timing. After that period, the LQG control is enabled (see the blue box)

and the spark timing starts to fluctuate within the range of [-0.6, 0.6] degree. It can be seen that

KI variance is reduced from 0.014 to 0.010 (a 28.6% reduction) after the LQG control is activated,

which indicated that the overall combustion stability is improved by 28.6%.

This LQG control has suppressed the KI variation, therefore it has a potential to be integrated

with previously developed online updating process so that the mean spark timing can be further

advanced for improved engine performance.

5.4.2 Test Results After Integration with Online Updating Strategy (Cases 2 and 3)

After integrating the LQG spark timing control strategy with online updating scheme, the final

engine knock control structure as shown in Figure 1.2 is configured. The overall spark timing
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Figure 5.14 Test results with LQG control only(Case 1)

control is expected to be further advanced when coolant temperature is at normal condition (same

temperature as that in Case 1). Two different test scenarios are defined to verify the entire knock

borderline control structure: a) using the regular fuel with normal coolant temperature (90 degree

C) and b) using the same fuel with elevated coolant temperature (95 degree C).

As shown in Figure 5.15, the changing tendencies of spark timing and exhaust temperature are

obvious. When spark timing (baseline plus 𝛿 spark timing) is advanced, the exhaust temperature

decreases. The spark timing is zoomed in Figure 5.16, where the 𝛿 spark timing compensation

(from LQG control) is activated all the time and baseline spark timing is compensated accordingly.

The relative larger modulation of the baseline spark timing is caused by the online updating control

scheme developed earlier, which can be referred to the changes of 𝛼 (a model parameter updated

online). Its value is calculated based on the online updating strategy. More details of model

updating strategy can be found in Chapter 4 or reference [83]. The minor (𝛿) fluctuations are added

to the baseline spark timing. It can be noticed that the 𝛿 spark timing varies within the range of

+/-1 degree. The effect of these varying spark timing tuning can be viewed in Figure 5.17. The
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large change is triggered by the fact that the earlier segment of KI stochastic properties are lower

than the offline calibrated results. LQG compensation assists to reduce the cycle-wise variations so

the spark timing can be further optimized (advanced) with the overall KI staying within the defined

probability (1/300).
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Figure 5.15 Spark timing and exhaust temperature with normal coolant temperature (Case 2)

When the coolant temperature is adjusted to 95 degree C in Case 3, the spark timing converges to

a relative retarded position due to the likelihood algorithm: see Figure 5.18. Since the adjustment of

spark timing is relatively small, the general change of exhaust temperature is also not as significant

as before. From the perspective of cycle-wised spark timing compensation, minor spark timing

changes are added (see Figure 5.19) based on the feedback of 𝛿 exhaust temperature. While the

spark timing is stabilizing, the LQG controller continuously reduces overall KI variance. The time

series of KI can also be viewed in Figure 5.20.

In summary, all three test cases show that the proposed control algorithm is able to provide

the 𝛿 spark timing added to the baseline one for suppressing cycle-to-cycle knock variations. The

LQG controller works well in real-time by utilizing the feedback of exhaust temperature data.
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Figure 5.16 Spark timing modulations with normal coolant temperature (Case 2)
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Figure 5.17 Spark timing and KI with normal coolant temperature (Case 2)
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Figure 5.18 Spark timing and exhaust temperature with increased coolant temperature (Case 3)
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Figure 5.19 Spark timing modulations with increased coolant temperature (Case 3)
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Figure 5.20 Spark timing and KI with increased coolant temperature (Case 3)

Additionally, it can be easily integrated with existing baseline algorithm without any issue under

different scenarios. This indicates that it can be further extended to other applications in terms of

the engine knock/combustion control.

5.5 Conclusions
This chapter proposes an cycle-based knock compensation architecture to suppress the cycle-to-

cycle knock variation based on an LQG controller designed based on identified exhaust temperature

deviation model using 𝑞-Markov COVER (COVariance Equivalent Realization). For the model

identification, 𝛿 spark timing is selected as the model input, 𝛿 exhaust temperature and knock

intensity (KI) as system outputs. An open-loop experiment was first conducted for collecting data

to be used for system identification. Five continuous periods of the 7𝑡ℎ order of PRBS (pseudo

random binary signal) is used as 𝛿 spark timing excitation for the engine system, and only the steady-

state data set (last period) is collected and used for system identification. An engine test bench

is configured and assisted by the LabView-Matlab model communication interface for performing

open-loop experiments and closed-loop engine control test later to verify the proposed algorithm.
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During the system identification process, a log-normal to Gaussian distribution mapping and

weighting matrix are used to modify the 𝑞-Markov COVER algorithm for the specific application.

A 4𝑡ℎ order linear model is identified and verified using model impulse response, which shows that

their frequency of 𝛿 exhaust temperature signal is very close. This is important for the proposed LQG

regulation since the model will be used for designing the model-based LQG control strategy. Three

different scenarios are tested to verify the proposed LQG engine knock variation compensation

strategy independently and with integration to early developed online updating scheme. The test

results indicate that the LQG cycle-wised control with exhaust temperature feedback is able to

reduce KI variation by 28.6%, which is able to further advance the spark timing for improved fuel

economy over the traditional knock control logic. The proposed LQG control strategy is also easy

to implement.
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CHAPTER 6

TIRE-ROAD FRICTION COEFFICIENT ESTIMATION

In previous chapters, the data-driven based model embedded in a Bayesian algorithm is used to

replace the traditional low efficient and high cost method for engine calibration and control, so

that the entire process of knock borderline prediction and control becomes simple. Meanwhile,

the cheap computational ability of Kriging model is utilized for the online updating process. As

we discussed in Chapter 1, the data-driven based model can also be used to assist the estimation

of an existing algorithm. This chapter covers this application scenario for estimating the tire-road

friction coefficient.

In this chapter, significance of tire-road friction coefficient to the vehicle dynamics is high-

lighted. After that, a conventional vehicle and wheel dynamic models and sequential extended

Kalman filter (S-EKF) are introduced in brief. After that, the S-EKF scheme using the Carsim𝑇𝑀

simulated data is conducted and followed by a study for test data under different road conditions.

A detailed derivation process and analysis of the proposed new evaluation criterion is presented,

along with the signal fusion estimation scheme that is verified by using CarSim𝑇𝑀 and test data set,

respectively. Conclusions are drawn lastly.

6.1 Tire Road Friction Coefficient Introduction
Vehicle dynamics has attracted lots of research attention for a long period since the appearance

of first car. Continuous progress has been made to improve the vehicle handling performance

through vehicle control schemes, such as anti-block control [24], traction control [24, 25], stability

control [26, 27], trajectory following [28], and so on. Nowadays, autonomous vehicles have even

high requirements for vehicle safety, stability and control. Note that control efforts (forces) imposed

on a vehicle play a crucial role in determining the vehicle dynamics [29]. The dominant forces

applied to a vehicle are generated by tire-road interactions. It is intuitive that tire properties (such

as tire material and texture, inflation pressure, and temperature) and road properties (dry, wet,

snow, and ice) affect the force generation. For a given vehicle with all available information, an

accurate estimation of road condition, that interacts with the vehicle, is the essential for vehicle
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control to achieve optimized performance. At the same time vehicle skid can be avoided and its

stability is enhanced. The characteristics of road surface can be represented by the tire-road friction

coefficient, 𝜇, which is the maximum of normalized traction force (see Equation (1.1)) and it varies

under various road conditions such as dry, wet, snow, and ice. Profiles of friction coefficient 𝜇 on

different road surfaces as a function of the tire slip ratio is plotted in Figure 6.1 as an example.

Note that the longitudinal slip-ratio 𝜆 is normally defined by the following Equation (6.1).

𝜆 =

{
1 − 𝑅𝑒 ·𝜔

𝑉𝑥
, if 𝑉𝑥 ⩾ 𝑅𝑒 · 𝜔, ·𝑉𝑥 ≠ 0

1 − 𝑉𝑥
𝑅𝑒 ·𝜔 , if 𝑉𝑥 < 𝑅𝑒 · 𝜔, 𝜔 ≠ 0

(6.1)

where 𝑅𝑒 is the effective tire radius; 𝜔 is the angular wheel speed; and𝑉𝑥 is the longitudinal vehicle

speed.
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Figure 6.1 Friction coefficient curve for different surfaces

From the aforementioned Figure 6.1, the top curve corresponds to a road condition with dry

rough surface. The middle and bottom curves in Figure 6.1 represent wet and snow road conditions.

The corresponding slip-ratio (𝜇𝑚𝑎𝑥) is called the optimal slip. For a specific road, there is a linear

stable region with relatively small slip-ratio. In this region, a constant slope rate 𝑘 = 𝜇/𝜆 (see
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red-dashed lines in Figure 6.1) can be used to describe the relationship between 𝜇 and 𝜆 for

identifying the road condition. However, if the slip-ratio is too small (e.g., 𝜆 < 0.005) with very

low excitation under normal driving, the correlation is fairly low [33]. On the other hand, at high

slip-ratio, it is relatively easy to determine the road condition due to the obvious deviations among

each curve. Beyond the optimal slip ratio, the normalized traction force is gradually saturated and

slowly decreasing.

As reviewed in the beginning of this section, several different approaches have been proposed

in literature for real-time estimation of tire-road friction coefficient. The ’cause-based’ approach is

too expensive due to its requirement of additional sensors, while the ’effect-based’ approach based

on a dynamic model is more attractive to be used in an actual production vehicle. In the model-

based algorithm, researchers mostly utilize measurements of vehicle motion to obtain the expected

estimation. Two types of vehicle dynamic model are normally considered, including longitudinal

and lateral vehicle dynamics. Reference [84] discusses lateral vehicle motion-based estimation,

where a cornering effect is added to the estimation algorithm. However, a measurement from a high-

accuracy global positioning system (GPS) and a gyroscope is required, and the proposed algorithm

was not verified for different roads. The longitudinal motion-based method is more general for

the normal vehicle acceleration or deceleration. The vehicle model states can be obtained by

either direct measurements or estimations using recursive Least Squares algorithm or observers

developed. After these states are obtained, the relationship between actual friction coefficient and

slip-ratio can be found. Based on this relationship, traditional model-based algorithm can be used

to provide the maximum available friction coefficient. In order to get the current friction coefficient,

both longitudinal force and vertical forces should be calculated first; and slip ratio can be calculated

using Equation (6.1), based on the estimated (or measured) vehicle speed, measured wheel speed

and effective tire radius. In this dissertation, an extended Kalman filter (EKF) based on a vehicle

dynamic model will be developed as the traditional model-based algorithm. This model can be

verified easily using CarSim simulations; however, it has certain issues when dealing with for test

data. A new evaluation criterion of friction coefficient will be proposed based on data mining and
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a Kriging model will be developed to fix these issues from these traditional algorithms.

6.2 Dynamic Model and Extended Kalman Filter
This section describes the vehicle mathematical model used and the structure of sequential EKF

models for state estimation.

6.2.1 Vehicle and Wheel Model

A four-wheel vehicle dynamic model [35, 85] with a tire free body schematic is shown in Figure 6.2.

Note that, both pitch and roll motions are not considered.
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Figure 6.2 Vehicle and tire schematics

The corresponding dynamic equations defining longitudinal, lateral and yaw motions are listed

below from Equations (6.2) to (6.4) :

𝑀 ( ¤𝑣𝑥 − 𝑣𝑦 ¤𝜑) =𝐹 𝑓 𝑙
𝑥 cos 𝛿𝑙 − 𝐹 𝑓 𝑙

𝑦 sin 𝛿𝑙 + 𝐹 𝑓 𝑟
𝑥 cos 𝛿𝑟

− 𝐹 𝑓 𝑟
𝑦 sin 𝛿𝑟 + 𝐹𝑟𝑙𝑥 + 𝐹𝑟𝑟𝑥 − 𝐹𝑎𝑥

(6.2)

𝑀 ( ¤𝑣𝑦 + 𝑣𝑥 ¤𝜑) =𝐹 𝑓 𝑙
𝑦 cos 𝛿𝑙 + 𝐹 𝑓 𝑙

𝑥 sin 𝛿𝑙 + 𝐹 𝑓 𝑟
𝑦 cos 𝛿𝑟

+ 𝐹 𝑓 𝑟
𝑥 sin 𝛿𝑟 + 𝐹𝑟𝑙𝑦 + 𝐹𝑟𝑟𝑦

(6.3)
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𝐼𝑧 ¥𝜑 =(𝐹 𝑓 𝑙
𝑦 cos 𝛿𝑙 + 𝐹 𝑓 𝑙

𝑥 sin 𝛿𝑙 + 𝐹 𝑓 𝑟
𝑦 cos 𝛿𝑟 + 𝐹 𝑓 𝑟

𝑥 sin 𝛿𝑟)𝑙 𝑓

− (𝐹𝑟𝑟𝑦 + 𝐹𝑟𝑙𝑦 )𝑙𝑟 − 0.5(𝐹 𝑓 𝑙
𝑥 cos 𝛿𝑙 − 𝐹 𝑓 𝑙

𝑦 sin 𝛿𝑙

− 𝐹 𝑓 𝑟
𝑥 cos 𝛿𝑟 + 𝐹 𝑓 𝑟

𝑦 sin 𝛿𝑟)𝑏 𝑓 − 0.5(𝐹𝑟𝑙𝑥 − 𝐹𝑟𝑟𝑥 )𝑏𝑟

(6.4)

where 𝑀 is the vehicle mass; 𝑣𝑥 and 𝑣𝑦 are the longitudinal and lateral vehicle speeds, respectively;

𝜑 is the yaw angle; 𝛿 is the steering angle; 𝐹𝑎𝑥 is the air drag force; and 𝐹𝑖 𝑗𝑥 and 𝐹𝑖 𝑗𝑦 represent the

longitudinal and lateral forces of each wheel, respectively, where 𝑖 denoted for the front and rear

axles and 𝑗 for the left and right wheels. The tire behavior is described in Equation (6.5) below [37].

𝐼𝑟 ¤𝑤 = 𝑇𝑡 − 𝑇𝑏 − 𝑀𝑟 − 𝐹𝑥𝑅𝑒 (6.5)

where 𝐼𝑟 is the wheel moment of inertial; 𝑤 is the wheel speed; 𝑇𝑡 and 𝑇𝑏 are the traction and brake

torque, respectively; 𝑀𝑟 is the rolling resistance associated with the tire pressure and wheel speed;

and 𝑅 is the tire radius.

6.2.2 Structure of Sequential Extended Kalman Filters

Note that vehicle speed can be obtained by integrating accelerometer signal, using GPS or wheel

speed signals, or through sensor fusion. However, direct integrating acceleration leads to signal drift

due to signal bias; and high-accuracy GPS sensor is often not available for production vehicles.

Wheel speed could be used to approximate vehicle velocity, which could lead to using single

signal source for slip-ratio calculation (see Equation (6.1)) since this calculation requires accurate

difference between wheel and vehicle speed signals. In addition, tire forces are not available for all

production vehicles, and it is necessary to estimate unknown states accurately.

The Kalman filter [82] is an algorithm that estimates system states from measurements. It uses

a two-step process: estimating system states based on the system model and then correcting the

estimation using noisy measurements. A S-EKF approach was proposed in [35] and adopted in this

dissertation as a model-based algorithm for friction coefficient estimation. The S-EKF estimation

signal flow is shown in Figure 6.3.

Note that in the first Kalman filter block, the random walk model in [35] is used.
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Figure 6.3 Schematics of sequential EKF algorithm

𝑣𝑥 (𝑡) = 𝑣𝑥 (𝑡 − 1) + Δ𝑡
(
𝑎𝑥 (𝑡 − 1) + 𝑣𝑦 (𝑡 − 1) ¤𝜑(𝑡 − 1)

)
𝑣𝑦 (𝑡) = 𝑣𝑦 (𝑡 − 1) + Δ𝑡

(
𝑎𝑦 (𝑡 − 1) − 𝑣𝑥 (𝑡 − 1) ¤𝜑(𝑡 − 1)

)
¤𝜑(𝑡) = ¤𝜑(𝑡 − 1); 𝑎𝑥 (𝑡) = 𝑎𝑥 (𝑡 − 1); 𝑎𝑦 (𝑡) = 𝑎𝑦 (𝑡 − 1)

(6.6)

where system state vector is chosen as 𝑥𝑠 = [𝑣𝑥 , 𝑣𝑦, 𝑎𝑥 , 𝑎𝑦, ¤𝜑]𝑇 and system input vector as 𝑢 =

[𝑎𝑦, 𝑎𝑥 , ¤𝜑]𝑇 ; system outputs are the same as states, among with the estimated longitudinal and

lateral velocities; the acceleration and yaw rate are filtered as part of inputs to the second EKF

followed. In the second EKF, a random walk model 𝐹𝑖 𝑗𝑥 (𝑡) = 𝐹𝑖 𝑗𝑥 (𝑡 − 1) is used for modeling force

dynamics using outputs from the first EKF along with the wheel speed and steering angle. The

wheel forces [𝐹 𝑓 𝑟
𝑥 , 𝐹 𝑓 𝑙

𝑥 , 𝐹 𝑓
𝑦 , 𝐹𝑟𝑟𝑥 , 𝐹𝑟𝑙𝑥 , and 𝐹𝑟𝑦 ]𝑇 are states and system outputs, respectively.

6.3 CarSim Simulation and Result Discussion Using Test Data

It is straightforward to utilize CarSim𝑇𝑀 [86] simulation data to verify the S-EKF, since it is able

to provide vehicle dynamics based on predefined scenarios (driver inputs and road surface). An

acceleration event along a straight line is simulated (see in Figure 6.4) and the vehicle velocity and

forces are estimated well using S-EKF. Accordingly, the slip ratio and friction coefficient can be

calculated and its relationship can be found in Figure 6.5.

Two observations are highlighted below based on simulation results:
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1) CarSim𝑇𝑀 simulation environment assumes ideal driving situation without any road and

sensor noises. White measurement noises can be added, but it cannot match with prac-

tice application scenario. A further verification using test data set with both system and

measurement noises is necessary;

2) The simulation generates large slip-ratio data when vehicle is operated in an unstable region

so that a complete nonlinear friction curve can be obtained. However, in practice, it is desired

to operate the vehicle within a stable region (normal driving condition with small slip-ratio).

Therefore, it is expected to use the slope method to estimate friction coefficient based on test

data in practice.

Based on discussions above, three acceleration test data sets under different road conditions are

used for validating the S-EKF algorithm. The acceleration profiles are shown in Figure 6.6 and the

estimated linear slope is shown in Figure 6.7. A calibrated Magic formula based tire model [87]

is used so that the projection between slope and friction coefficient can be constructed as shown in

Figure 6.8.
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From these results, it is noticed that the calculated slip-ratio becomes negative even under

acceleration condition. Note that the estimation errors are mainly from two sources: a) there is

no directly measured vehicle velocity available and its estimation is often based on wheel speed,

leading to large slip-ratio calculation errors (for example, negative slip ratio shown in the figure);

and b) the model used in S-EKF algorithm needs to be calibrated for different road conditions, and

tuning a single estimation model to fit all road conditions is not possible. Another drawback of

this algorithm is that the selected range of data points affects the slope approximation and the final

estimated friction coefficient.

6.3.1 New Evaluation Criterion and Its Validation Using CarSim Data

Note that slip-ratio is a direct consequence of road condition variation. Let us revisit slip-ratio

Equation (6.1) under acceleration, where the tire radius is assumed to be a constant for given specific

tire and wheel speed can be measured accurately from the installed sensors used for anti-lock brake

system (ABS); only the vehicle velocity needs to be estimated accurately. If this estimation could be

avoided, the entire calculation and estimation process would be simplified without any new sensor.

The derivative of slip-ratio is shown below.

¤𝜆 =
𝑅2
𝑒 ¤𝜔𝑣𝑥 − 𝑅𝑒𝜔 ¤𝑣𝑥

(𝑅𝑒𝜔)2 =
𝑅2
𝑒 ¤𝜔𝜔(1 − 𝜆) − 𝑅𝑒𝜔 ¤𝑣𝑥

(𝑅𝑒𝜔)2 (6.7)

In this equation, all the variables can be obtained from the available sensor set of production

vehicles (wheel speed and vehicle acceleration) except slip-ratio 𝜆 itself. If this term can be ignored

(set to zero), calculations can be completed based on only available sensors. In the practical

application scenarios, the vehicle is normally controlled within stable region, leading to a fairly

small slip ratio. As a result, 𝜆 in the numerator of Equation (6.7) can be neglected, and derivative

of slip-ratio can be approximated by the following format:

¤𝜆 =
𝑅2
𝑒 ¤𝜔𝜔 − 𝑅𝑒𝜔 ¤𝑣𝑥

(𝑅𝑒𝜔)2 (6.8)

The difference before and after neglecting the 𝜆 term is plotted using CarSim𝑇𝑀 data; see

Figure 6.9. After neglecting the term 𝜆, the absolute amplitude deviates from the true value, but the

general trend does not change much. Especially, when slip ratio is small (less than 0.1), the blue
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and black lines are almost the same with minor difference, which confirms the previous assumption

for Equation (6.8). The deviation becomes more eminent when the slip-ratio is large. Another

observation of slip-ratio derivative is that, there is a turning point similar to the relationship between

friction coefficient and slip-ratio, which encourages us to investigate the possibility of using the

slip-ratio derivative as a new evaluation criterion for tire-road friction coefficient estimation. A

correlation between proposed criterion and friction coefficient needs to be developed.

0 0.1 0.2 0.3 0.4 0.5 0.6

slip ratio

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

de
riv

at
iv

e 
sl

ip
ra

tio

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

F
ri

ct
io

n 
C

oe
ff

ic
ie

nt

Friction coefficient curve

Derivative of slip ratio without slip term

Derivative of slip ratio with slip term

Figure 6.9 Derivative of slip-ratio

In order to investigate the potential of the proposed criterion, an acceleration event along

a straight line is simulated in CarSim𝑇𝑀 when friction coefficient is set to 0.25,0.5 and 0.85,

respectively. As shown in Figure 6.10, the fluctuation of slip-ratio derivative under different road

conditions is quite different, although the environment and measurement noises are not included in

this simulation. It is noticed that the lower the road friction coefficient is, the larger the oscillation

magnitude. Thus the mean and standard deviation of slip-ratio derivative is expected to have high

correlation with the road condition (friction coefficient).

Next, five different friction coefficients are set for CarSim𝑇𝑀 simulations. The corresponding

statistic circles are plotted in Figure 6.11, where the center of circle is the mean value of proposed
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Figure 6.10 Derivative of slip-ratio on different road

criterion and the radius is associated with its variance information. Due to confidential requirements

of sponsored project, only numerical pattern is presented, and the actual values of each signal cannot

be shown. Note that each circle delegates the statistic information of slip-ratio derivative under

a specific road condition. It is obvious that the radius of circle is strongly correlated to the road

surface condition.

A data-driven Kriging model is used to generate relationship between the slip-ratio derivative

and friction coefficient. The model is trained based on the known paired inputs (radius of statistic

circle) and outputs (tire-road friction coefficient) data sets. The detailed development process

of Kriging model can be found in Chapter 2 and [50]. Note that during the training process of

Kriging model, a spatial distance Gaussian correlation is used for unknown design sites, which

means the correlation between points decreases as their distance increases. The mean value curve

of approximated Kriging model using CarSim𝑇𝑀 data, along with validation results, is shown in

Figure 6.12. Note that four data points is selected for training process, and the radius obtained

when 𝜇 equals to 0.55 is kept aside for validation purpose. The estimation (red dot in the figure) is
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Figure 6.11 Statistic circles of new evaluation index on different road

close to true value (green dot in figure).

6.3.2 Proposed signal fusion estimation scheme

The estimation results perceived based on simulation data provide the useful information about

using a slip-ratio derivative, calculated based on only production sensor signals, to estimate tire-

road friction coefficient. A dual-path integrated estimation algorithm is proposed for friction

coefficient estimation, which combines the S-EKF and statistic methods together. Note that the S-

EKF algorithm is accurate with small slip-ratio and the proposed criterion is good under relatively

larger slip-ratio. Therefore, these two criteria can be complemented each other. The proposed

structure is shown in Figure 6.13 in details. For the top path, the traditional S-EKF algorithm

is used with slope method, where the range of slip ratio (less than 0.1) is used to trigger the

algorithm and confident coefficient 𝛼1 is also calculated based on root mean squared error (RMSE)

of approximated slope which delegates the goodness of fitted slope. In the bottom path, the

proposed statistic information of slip ratio derivative is calculated and used to estimate the friction

coefficient, where acceleration threshold (greater than 0.1𝑚/𝑠2) is used to activate this algorithm
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Figure 6.12 Surrogate model for new evaluation criterion and tire-road friction coefficient estimation
using CarSim𝑇𝑀 data

for estimating the friction coefficient estimation and the weighting coefficient 𝛼2 will be calculated

based on the variance predicted by surrogate model.

In this structure, once the required signals satisfy the pre-defined trigger signal, a fusion

algorithm is used to provide the final predicted friction coefficient; see Equation (1.2) in introduction

section and repeat here in Equation (6.9).

𝜇 𝑓 𝑖𝑛𝑎𝑙 = (𝛼1 ∗ 𝜇𝐸𝐾𝐹 + 𝛼2 ∗ 𝜇𝑛𝑒𝑤) /(𝛼1 + 𝛼2) (6.9)

where 𝛼1 and 𝛼2 are two coefficients provided by a calibrated correlations as shown in Figure 6.14.

6.3.3 Validation Using Test Data

The validation results based on CarSim𝑇𝑀 simulation data indicate that the proposed criterion is

able to estimate the road friction coefficient using only production sensor signals. In practice,

the road surface is not uniform, measurement noise exists, and acceleration signal fluctuates. As

a result, validation using physical vehicle test data is necessary for the proposed criterion and
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Kriging model. For this validation, vehicle acceleration tests were conducted on four different road

conditions: dry, wet, icy and snow. Using Equation (6.8), slip-ratio derivative is calculated for

each road condition, and time series data is shown in Figure 6.15. As shown in the zoom-in plot,

the fluctuation changes associated with different road conditions are obvious and consistent with

the phenomenon observed using CarSim𝑇𝑀 data.
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Figure 6.15 Slip-ratio derivative of test data on different road conditions

This phenomenon can be explained using the relationship between longitudinal force 𝐹 and

slip ratio 𝜆. As stated in [88], for small tire slip-ratio, longitudinal force 𝐹 can be approximated by

𝐹 = 𝐶𝜆, where𝐶 is the tire longitudinal stiffness. A tire on the road with low friction coefficient has

a relative low composite stiffness if tire and road are assumed to be serially-connected rigid system.

Therefore, with the same longitudinal forces generated, a low friction road leads to high slip-ratio,

and vice versa. This leads to a intensive slip variation before vehicle gets stable, which corresponds

to a large slip-ratio change rate or magnitude of slip-ratio derivative for the data obtained under a

low friction road surface.

Similar to CarSim𝑇𝑀 validation results, the corresponding statistic circles are plotted in Fig-

ure 6.16. Compared with the CarSim𝑇𝑀 simulation environment, except difference in terms of
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environment noise, the actual road surface does not maintain a fixed friction coefficient. For ex-

ample, it could be any value within the range from 0.8 to 0.9 for a dry road condition. Therefore,

there could be several circles corresponding to the same road condition as shown in Figure 6.16.

However, the differences or boundaries of circles for different road conditions are distinct.
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Figure 6.16 Statistic circles of new evaluation criterion on different road using test data

In order to obtain an one-to-one projection between radius of statistic circle and tire-road friction

coefficient, mean radius of each road condition is calculated and used for training a deterministic

Kriging model. This model is used in the lower path of proposed dual-path estimation algorithm

for predicting unknown road surface. The mean and variance predicted by the trained Kriging

model are shown in Figure 6.17. Note that, the variance of unknown region is smaller than those

shown in Figure 6.12, which depends on the spatial distance between different design sites (radius

of statistic circle). A closer distance generates a less variance between each two design sites. By

averaging test data, the radius difference among the neighboring data points is less than those of

simulation data.

Two additional tests are run over different road conditions, respectively. The target tire-road

friction coefficient of unknown road is expected to be within [0.80, 0.95] for new test data one and

121



0

radius

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

fr
ic

ti
o
n
 c

o
e
ff
ic

ie
n
t

training data set

prediction of Kriging model

variance of prediction

predicted value for new test data one

predicted value for new test data two

Figure 6.17 Surrogate model of proposed evaluation criterion using test data

[0.3, 0.5] for new test data two. The estimates using the surrogate model are 0.95 and 0.44 (see

Figure 6.17); and corresponding statistic circles are also shown in Figure 6.16. The estimates for

two new test data using S-EKF are 0.70 and 0.53, respectively. Accordingly the final results after

signal fusion are 0.825 and 0.485.

6.4 Conclusions
This paper starts with a full review of existing algorithms for tire-road friction coefficient estimation.

A S-EKF based on vehicle model and slope method is studied as the baseline method using

CarSim𝑇𝑀 and test data. After discussing about the drawbacks of S-EKF method, a new evaluation

criterion based on slip ratio derivative is proposed and fully investigated by utilizing its statistic

features observed from both simulation and test data sets. These statistic features provide a new

approach for tire-road friction coefficient estimation in terms of improved accuracy, simplified

implementation, and reduced cost. The proposed evaluation criterion shows a strong correlation

to road condition and a data-driven Kriging model can be trained for estimation. A signal fusion

scheme is also proposed based both S-EKF and slip ratio derivative methods, which provides a

reliable estimation under different road conditions. The data-driven based Kriging model has a
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potential to be used for real-time estimation of tire-road friction coefficient, which is very important

for vehicle dynamic control.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In summary, this dissertation presents two different application scenarios in the automotive esti-

mation and control field using the data-driven based algorithm. These data-driven methods assist

our current algorithm to improve the system performance. For the application of engine knock

borderline prediction, a Bayesian optimization algorithm with the Kriging model is used to replace

the earlier mapping-based method. Both simulation and experimental results shown in Chapter

3 demonstrated the applicability of data-driven surrogate model assisted optimization method for

reducing overall evaluation budget. For this specific application, experiments were conducted and

show the efficacy of proposed algorithm for predicting knock borderline, after necessary modi-

fications are made to fit statistic information. The potential of using obtained surrogate models

integrated with likelihood ratio controller for real-time updating is also validated in Chapter 4

through both simulation and experimental studies. In Chapter 5, a compensation strategy is added

to the baseline control within proposed knock control architecture. The cycle-to-cycle knock vari-

ation is reduced obviously by using the feedback of exhaust temperature and model based LQG

controller. Finally, in Chapter 6, the vehicle level application of tire-road friction coefficient estima-

tion was presented. Utilizing this new criterion, a Kriging model can be trained based on the data

set. The statistic information of a new evaluation criterion is discussed and studied in simulations.

The results demonstrated potential of this new criterion for estimating tire-road friction, leading to

the proposed scheme that combines two estimation algorithms together.

Through the whole process, it is easy to notice that the great role of statistic information (includ-

ing mean, variance, 3-sigma rules and probability distribution) when the data-driven methodology

is used. All these statistic characteristics, coupled with other matured algorithms plus certain

necessary modifications, provide a novel perspective to many traditional problems. Both predic-

tion efficiency and accuracy are improved. In this dissertation, the current research only presents

these results in specific areas of engine and vehicle systems, but the potential of using statistic

principles and data-driven model is foreseeable. They can be further applied to other real-time
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vehicle applications to improve the estimation efficiency and accuracy, which will be helpful for

rapid development in autonomous vehicle industry.

Following future work is recommended within the scope of novel performance prediction

algorithms for automotive systems using statistic features of data-driven models.

• Future work for offline calibration using SMAO algorithm includes extending the current

design space to a dimension higher than two, so that more control parameters could be added

for optimizing the borderline knock. A systematic method, that determines the sensitive

factors affecting knock borderline, needs to be developed for different applications.

• For cycle-wised compensation, now it is only applied for a fixed operation condition. An

open problem is to study the proposed approach under different speed and load conditions.

Among different operational conditions, a single identified model currently used may not be

able to provide an accurate prediction. A parameter varying model may need to be developed

for this. Furthermore, a linear parameter varying (LPV) control could be a solution for this

real-time control problem under dynamic operational condition.

• The current verification through CarSim data shows that the proposed criterion could be used

to estimate the road conditions using only production sensors. This algorithm provides an

estimation based on the history data. It can be extended to predict the future road condition.

This challenge could be achieved by utilizing information over vehicle-to-vehicle (V2V) and

cloud network. The predicted information can be shared among vehicles and stored in cloud

and the prediction from these vehicles in front could be used for estimating the friction

coefficient of target vehicle.
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