
WEIGHTED ENSEMBLE ORIENTED METHOD DEVELOPMENT FOR INCREASED
EFFICIENCY OF DRUG DESIGN

By

Nicole Marie Roussey

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Biochemistry and Molecular Biology – Doctor of Philosophy

2022



ABSTRACT

In drug design, there are many biologically relevant values of interest such as (un)binding

rates and free energies. Recent works show that values such as the unbinding rate, koff , may

be equally as important to the drug design process as the free energy, ∆G. This is due the

relationship between koff and the residence time (RT) for a given drug, as RT can be a

predictor of drug efficacy. In order to determine koff , information about the transition path

ensemble is required, but the instability and short lifespan of this state makes it difficult to

gain atomic level insights with experimental methods. Many computational methods oriented

around Molecular dynamics (MD) have been developed to predict these values. However,

events of interest, such as binding and unbinding events necessary to compute rates and

energies, are rare and often occur on prohibitively long timescales ranging from milliseconds

to hours. This is problematic as most straight-forward MD simulations are computation-

ally limited to the microsecond timescale. Enhanced sampling algorithms such as the path

sampling method Weighted Ensemble (WE) permit the simulation of these pathways in less

computational time, through the resampling process of merging away redundant trajectories

in an ensemble, and cloning trajectories of interest. In this thesis, a new resampling algo-

rithm that is based on the Jarzynski Equality (JE) for use with the WE method is developed

that allows the use of short, efficient, nonequilibrium simulations to predict (un)binding free

energies with a Lennard-Jones pair. This method is found to be generally inefficient with

larger, more protein-ligand like test systems called Statistical Assessment of Modeling of

Proteins and Ligands (SAMPL) systems (host-guest pairs). In order to better this method,

solvent-based features of these systems are studied in detail, and it is determined that high-

probability events of interest have very little guest-ion interaction. This is of great interest

due to the prevalence of SAMPL systems in method development. It is also found that there

is a physical point in the unbinding path for these systems that represents a ”point of no re-

turn“, or a commitment to unbinding point. With this in mind, a new resampling algorithm

based off of the preexisting Resampling of Ensembles by Variation Optimization (REVO)



algorithm is developed. This prevents cloning operations from occurring on trajectories that

have surpassed the commitment to unbinding point. This allows the probabilities of these

trajectories to remain high when the target state is reached and leaves room open in the

ensemble for the exploration of other pathways. This new resampler called ”cutoff-REVO“

produces far fewer, but much higher probability unbinding events than its predecessor and

more accurately and consistently predicts both ∆G and koff for four systems of interest.

Overall, this work has provided insights into systems of interest and new means of obtaining

information essential to the drug design process.
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CHAPTER 1

INTRODUCTION

1.1 The Significance of Ligand (Un)binding Kinetics in Drug Design

In drug design, ligand efficacy is often predicted by measuring thermodynamic values for

a molecule of interest. The significance of one of these values, free energy (∆G), for biological

systems of interest has long since been established. Free energy is the key thermodynamic

quantity that determines the reversibility of a process and is the is used to describe many

biological functions of interest, including but not limited to protein-protein interactions

and conformational changes, permeability, and ligand (un)binding[1]. The determination of

binding affinity for a molecule-pair has been used in the design and understanding of drugs

in many cases [2, 3, 4] through means often done under equilibrium conditions.

While these methods may be efficient, the body lacks a true equilibrium as it works to

maintain homeostasis. This can be seen in the case of a drug being administered: while some

of the drug is still being absorbed and distributed throughout the body, the body is also

working to metabolize and excrete the drug. To compensate for this, it has been suggested

that the “residence time” (RT) which is equal to 1
koff

(where koff is the off rate), or the

amount of time it takes the ligand to unbind, should be a key feature considered during the

optimization process, a methodology referred to as “kinetics oriented drug design”[5, 6, 7, 8,

9]. This is because of how RT often correlates linearly with drug efficacy (Figure 1.1A). An

example of such a relationship can be seen in Lu 2009[10, 11] where the relationship between

the RT of an antibiotic (specifically a Fabl enoyl-reductase inhibitor) and drug efficacy or

survival of the model organism used is observed to be nearly linear. It is important to note

that in some cases while this relationship is linear, the relationship with binding affinity

(and potentially efficacy) may not be. An example of these non-linear affinity and linear

RT relationships can be seen in Costa, 2016[12] with the Translocator Protein (TSPO) and

various ligands. If a drug has high affinity but a very low RT, it is possible for efficacy to be

low, as the drug will frequently unbind making it regularly susceptible to being metabolized
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or excreted.

For a drug to be effective, a minimum concentration that varies on a drug-by-drug ba-

sis must be reached and maintained. This value is the “minimum effective concentration”,

whereas the “maximum effective concentration (minimum toxic concentration)” is the highest

concentration possible prior to the onset of toxic effects from the drug[13] (Figure 1.1B). The

issue of toxicity from a drug can arise when the drug induces off target effects through the

interaction with molecules other than the intended target, or when a drug is administered

orally or through injection and absorption speeds cannot be easily controlled[13]. Between

the minimum and maximum effective concentrations exists the “therapeutic window”, where

a drug can work effectively within the body[14].

Figure 1.1: Essential Drug Characteristics in Drug design A) The relationship between the
RT and efficacy of a drug. B) The amount of drug in the blood changing with time for a
short RT drug (gray) and a long RT drug (black). The minimum concentration required
for an effect is shown as a yellow line, and the maximum, nontoxic concentration is show in
red. C) The log of drug concentration over time following peak concentration. The slope of
C is the elimination rate of the drug.

It is of significant interest to both increase the time the drug concentration remains within

the therapeutic window as well as to increase the overall size of that window. One of the key

means of increasing the length of time a drug is present at a concentration within this window

is by increasing the drug’s half-life (τ1/2) within the body. The half-life represents the time it

takes for half of the drug to be metabolized or excreted from the body. The longer the drugs

half-life, the lower the frequency with which it will need to be administered. The half-life

of a drug within the body can be calculated by first determining the elimination rate, kelim
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(Figure 1.1 C). This is done by finding the concentration of the drug in the blood at various

time points following the maximum concentration being met and determining the slope of

this plot. τ1/2 can then be found as log(2)
kelim

(or ln(2)
koff

)[15]. The half-life can be increased by

optimizing the ligand in such a way that its koff is altered. This can be done through ligand

modifications that increase affinity for a receptor to such an extent that pharmacokinetic

values change[16, 17].

These drug modifications should aim to lower the koff and subsequently increase the

drug’s RT. This helps make the drug less vulnerable to elimination as it will spend more

time bound to the target. If the RT can be increased to a time that is longer than the drugs

half-life, it is possible to maintain drug action within the body after much of the drug has

been expelled[6], reducing the need for regular administration of the drug.

Due to the significance of RT in ligand behavior, there is growing interest in understanding

and optimizing ligand kinetics in drug design. This method adds another option to the

existing tools for drug designers to use as new tools can permit breakthroughs in druggability

[18]which may be particularly beneficial as only ∼10% of the human genome has thus far

been found to be druggable[19].

1.2 In-Silico Methods for the Determination of Kinetics and Free
Energies

There are many methods available experimentally to determine values of interest for both

drug design and numerous other biological motions of interest, such as fluorescence assays[20,

21, 22] and radio-ligand binding[23, 24, 25]. Despite the advances made in biochemistry

techniques for the determination of rates and free energies, we are limited by the loss of

knowledge of the mechanism or pathway taken in the unbinding process at the atomistic

level.

Currently, experimental characterization of points of interest in the unbinding pathway

such as the transition state ensemble is not readily doable due to the incredibly short lifespan

of this state. Other than protein-ligand structural information, experimental methods also
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do not provide information on the various other factors that can influence the unbinding

process, such as fluctuations in solvent microstates. The fluctuations would include factors

such as ion densities around the protein or the ligand, varying densities of waters within the

binding pocket, amongst other factors. These fluctuations are known to have an impact on

the (un)binding process [26] for small molecules, and in the future may become an factor

for consideration in the drug design process. The importance of structural information in

the drug design process has necessitated the development of various computational methods

to simulate the (un)binding process. In this thesis, a method called “molecular dynamics”

is used. This method permits the simulation of numerous biomolecules including proteins,

DNA, RNA, lipids, carbohydrates, etc., at atomic resolution, thus allowing us to observe

(un)binding pathways and many other processes of interest.

Molecular Dynamics

MD is a highly powerful computational algorithm that is used for the simulation of atomic

movement and interactions at the atomistic level[27, 28]. The original MD algorithm was

first developed in 1957[29] with the use of hard-sphere representations of atoms. Since its

development, major advances have happened in both hardware and software available for

running MD simulations that have permitted the study of far more complex and biologically

relevant systems. This method was selected for use here, as it now permits the study and

generation of ensembles of long timescale events such as ligand (un)binding and unstable

states of interest (such as transition states) at atomic resolution in feasible timelines[28].

In recent years, MD has been used for the study of numerous biological motions and

actions of interest, including but not limited to, the opening and closing of the SARS-CoV-2

spike protein[30], unbinding of ligands from proteins[9, 31, 32], DNA-ion interactions[33],

rRNA-ion interaction[34], and large, charged systems such as water-model dependent diffu-

sion through biological membranes[35, 36].

A brief explanation of a general MD simulation is as follows. Initially, the positions and

velocities are first set for all atoms in the system, often set to match the temperature of the
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simulation. Using this information, the force on each atom is then determined via:

F (t) = −∇U(Γ(t)), (1.1)

in which U is the potential energy at time t for all atomic positions in set Γ (a trajectory at

time t).

Often, U is reported in kcal
mol

, the force is in kcal/molÅ (or nm), the respective positions

are presented in either nm or Å with this unit often depending on the MD engine used for

the simulation, and the time is frequently reported in femtoseconds (10−15s).

Force Fields

The specifics of the potential energy function used above are dependent on the choice of

another essential algorithm called a “force field” that is used. Numerous force field options

exist, with some of the most commonly used ones including the AMBER[37, 38] force fields

and the CHARMM[39, 40] force fields, with the CHARMM36m force field being used for the

work done in this thesis. Generally speaking, force field calculations of forces on an atom in-

clude terms that include electrostatic and Lennard-Jones energies (non-bonded interactions)

as well as bonds, angles, dihedral angles and Urey-Bradley terms (bonded interactions). Fol-

lowing the determination of the force on each atom, Newton’s equations of motion can then

be used to determine the corresponding change in positions and velocities (v, in Å or nm per

femtosecond) for each atom in space for the respective time step. This process is repeated

N times per cycle of dynamics, where N is the desired number of dynamic steps per cycle.

Integration

The goal of force fields is often to maintain a constant energy in the simulation as an NVE

or NPE ensemble (N = constant number of atoms, E = constant energy, and V and P = either

constant volume or pressure). However, it is common practice for simulations of biological

systems to be done at a constant temperature T (as an NPT or NVT ensemble) as in done

in this work. This is done to better compare with experiments at constant temperature. In

order to maintain a constant temperate in a simulation, it is necessary to use a “thermostat”.
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In the work done in this thesis, the Langevin Integrator that uses Langevin dynamics is

utilized[41].

In Langevin dynamics, the force on each atom is calculated with a modified form of the

equation shown above, where force is solved as:

F (t) = −∇U(Γ(t))− γmv(t) +
√

2mγkbTR(t), (1.2)

in which T is the temperature of the system in Kelvin, the Boltzmann constant is represented

as kb in kcal
molK

, γ, a value most often set to 1, is a friction coefficient for the system in ps−1, and

the R(t) variable is a 0 centered Gaussian distribution used for the addition of randomness

to the system. In this equation, the first term is the standard force term. The added

second and third term (whose sum maintains temperature) are as follows: the second term

removes energy from the system as friction, and the third term adds randomness to the

system as represented by thermal fluctuations[42] through the addition of energy back into

the simulation.

Overall, the MD method is an incredibly powerful tool that can be utilized to learn about

a vast array of biological activities and systems of interest. Despite this, MD does come with

one major limitation. The timescales possible to simulate at atomisitic levels are quite short

due to these simulation being performed with very small time steps; whereas biological events

such as ligand (un)binding often occur on the millisecond to minute timescale. That being

said, significant advancements in both hardware and software have greatly increased both

what systems can be simulated and the sampling range possible. Hardware advancements

range from increased graphics processing unit (GPU) power (allowing for the simulation

of up to hundreds of nanoseconds per day [32, 9]) to the development of supercomputers

dedicated to MD simulations (such as D.E. Shaw’s Anton series of computers[43]) capable of

even greater simulation power. Despite these incredible improvements in computing power

since the conception of the original MD algorithm, there are still limitations on timescales

that can be simulated. Consequently, there is a need for the development of software that
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can greatly increase simulation timescales and sufficiently utilize modern hardware.

Enhanced Sampling and Other Simulation Techniques

While the MD method is able to simulate (un)binding events and many other biological

events of interest, there is still a limitation presented by the timescales of biological motions of

interest. Many natural phenomena of interest occur on timescales (seconds to minutes) longer

than currently possible to simulation with standard brute force dynamics. To overcome this

limitation, many “enhanced sampling” and alchemical algorithms have been developed to

either simulate these long time scale events or to more efficiently determine values of interest

such as ∆G.

There are many types of algorithms and simulation techniques that have been developed,

including alchemical methods[1], altered potential energy methods[44, 45], and trajectory

parallelization methods[46]. These methods present us with a means of gaining informa-

tion about long timescale processes through the use of short-timescale simulations that can

feasibly be run on modern computers.

Alchemical Methods

Taking a brief turn away from focusing on rates, there are numerous simulation types

that take advantage of unphysical events to quickly obtain free energies of transitions of-

ten without the simulation of complete paths. In these methods, it is common for the

(un)binding process to not be directly simulated. Hence the name ”alchemical“, often a

ligand is transformed into either another molecule or a non-interacting entity through an

arbitrary intermediate [47]. These methods are beneficial in that they are often computa-

tionally inexpensive when compared to other methods[47] that explicitly simulate reactive

paths. There are numerous simulation techniques that take advantage of these methods, in-

cluding but not limited to free energy perturbation (FEP) and nonequilibrium work (NEW)

methods [1].

The concept of FEP calculations, comes from the identity e−β∆A = ⟨e−β∆U⟩eq0 [48] where
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∆U ≡ U(Γ, λ1)− U(Γ, λ0) [1] where the angled brackets represent an equilibrium ensemble

average and β = 1/kBT (where T is the temperature the process is performed at, and kB is

the Boltzmann constant). λn in this case represents the state of the system where λ0 is used

to signify an initial state, and λ1 a final state. λ is a malleable variable and can represent,

for example, a system beginning with side chain A at λ0 and ending with side chain B at λ1.

FEP determines the difference in free energy between two states, A and B through

mutating the system from one state to another through unphysical intermediates. This can

be done to determine relative binding free energies by morphing one ligand into another or

absolute binding free energies by eliminating ligands from a binding pocket[1]. While this is

a powerful tool, FEP calculations are generally limited to mutations between ligands with

the same charge, and only converge well for systems with small differences[1].

NEW methods rely on driving systems away from equilibrium. The identity for this

method is the JE, ⟨e−βW ⟩ = e−β∆F , which is explained further in Section 1.3. In this

method, systems begin in some state λ0 and end in λ1, and the work (W ) applied is the work

required to move the system from one value of λ to the next. This can be measured as the

work required to update forces on the system. Bidirectional forms of both of these methods

exist and can prove highly beneficial for determining accurate and converged free energies.

For NEW, the bidirectional starting point is the Crooks Fluctuation Theorem[1, 49].

While these methods are widely used for varying systems[1, 50, 51, 52], some sources

of error for alchemical methods include residual charges from the vanishing atoms in single

topology methods and the overlap of groups in a system in double topology models[1].

Alchemical methods are also limited in that they take advantage of ∆G being a state function,

in that only the initial and final states matter. Therefore, these methods only determine the

free energy differences between the points of interest for a transition, and subsequently do

not produce free energy profiles for the unbinding/transition pathway of interest nor do they

permit the determination of rates. These are not limitations for many of the other methods

discussed here.
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Altered Potential Energy Methods

There are many types of altered potential energy techniques that have been developed,

including but not limited to metadynamics[45, 53], umbrella sampling[44], and accelerated

MD methods such as temperature accelerated MD [54, 55]. While all of these methods may

work differently, they all accelerate the simulation of long time scale events through the

addition of biasing forces applied along one or more collective variable (CV)s that describe

the transition of interest. Biasing along these CVs helps the system cross high energy barriers

faster. In each method the biasing force is added in a different way. Despite these differences,

in all of these methods, the addition of a bias to the system changes the potential energy U

to:

Usys = U + Ubias, (1.3)

where Usys is the new potential energy and Ubias is the energy added by the biasing forces.

In a general implementation of the metadynamics method, one trajectory is run at a time

over a CV that describes the free energy landscape. To explain how the bias is added to

this system, an analogy of adding sand to a landscape until valleys are filled and peaks are

crossed is used. As the low energy basins, or valleys fill, a system can more easily cross the

corresponding peak. The simulation equivalent to this analogy is as follows: as the system

reaches a new location along the CV, a Gaussian, or addition of energy, located at that CV is

added to the energy of the system. As the simulation moves forward, these energy additions

accumulate in low energy basins until the system has been “elevated” enough to cross the

barrier. In contrast to the single simulation run in metadynamics, umbrella sampling runs

multiple simulations at points along the CV called windows. In each of this independent

windows, a harmonic force is added to the system, to even out the free energy landscape at

that point along the CV and lock the system in to that given value of the CV. The data

from each of these windows can be combined through various methods including Weighted

Histogram Analysis Method (WHAM)[56, 57].

Despite the benefits of these methods, there are various drawbacks to each of them. One
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of the main drawbacks is the need to have a CV for the unbinding process (or other process

of interest) for the system which requires prior knowledge of the reaction coordinate that the

system follows, or user intuition to develop a potentially correct CV[58]. CVs can also miss

out on important aspects of the unbinding process, leading to incorrect or unphysical events

to occur within the system and subsequently result in incorrect free energy calculations.

One reason this can happen is because relaxation of systems along “orthogonal degrees of

freedom” or degrees of freedom that are independent of the CV used can be very slow. An

example of this issue can be seen when simple distance based CVs are used for pulling charged

molecules (such as peptides) through a hydrophobic core of a membrane. This results in poor

convergence of the free-energy with the most significant hysteresis happening as the peptide

enters and exists the core - a crucial step associated with a very large free energy barrier[59].

The bias must also be removed from the system for the determination of rate constants

if they are of interest, and the assumption must be made that this bias did not impact

system dynamics at critical points such as the transition state[53]. To overcome the complex

issue of determining a proper CV, numerous methods have been developed to predict a CV

for a system or reaction. This includes and is not limited to AMINO [60], DiffNets [61],

Deep-TICA [62], SGOOP [63], and VAMPnets [64].

Trajectory Parallelization Methods

The above simulation methods all take advantage of potentially unphysical events through

the addition or removal of various energies from the systems. This has implications for the

validity of the dynamics that are derived from these simulations, the accuracy of the poses

and pathways sampled, and what values can be determined. As stated above, the altered

potential energy methods also require prior knowledge of the reaction of interest which can

be very difficult to accurately predict. However, a group of methods exists that does not

make modifications to the total energy of the system.

In these methods, no bias is added to the system and the trajectories are continuous

which results in the generation of complete pathways and permits the determination of rate
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constants. Trajectories are run at once in parallel, and then combined through means such as

Markov state modeling, run with mid simulation checkpoints, or analyzed via trajectory and

cycle specific probabilities[46]. These are methods such as milestoning[65, 66, 67] and the

weighted ensemble method[68, 69, 32, 70] among others including Markov state modeling[71],

transition path sampling[72], and forward flux sampling[73, 46]. These methods use multiple

parallel trajectories to sample as much of the free energy landscape as possible.

The milestoning method connects two end points of interest that represent predefined

basins for a reaction. Between these basins, there are numerous bins that connect the basins,

and to define these bins and basins prior knowledge of the reaction coordinate is required.

This method aims to determine the flux moving from one bin to another and using this flux,

bin-to-bin rates can be determined. These individual rates can then be combined to find

the rate constant for the transition between basins. A similar method called WE, is used in

this thesis. In the WE method[68, 70, 69, 32] which runs semi-independent trajectories in

parallel, trajectories are periodically “resampled”, a process where the number of interesting

trajectories is increased via “cloning” and their probability drops with the goal of escaping

a local energy minimum, and redundant trajectories are “merged” away. Newly developed

versions of this method have been created that do not require the use of a CV. This method

has been heavily used and further developed in our lab[74, 31, 9, 75, 32, 76, 26] and will be

described in greater detail in the section below.

Weighted Ensemble

In the previous section, various types of enhanced sampling algorithms designed to in-

crease the breadth of sampling from MD simulations were explored. Here, we will go into

greater detail about the enhanced sampling algorithm utilized for all simulations in this the-

sis, the WE algorithm. WE is a rare-event oriented method that works to focus sampling

on low-probability states that are relevant to some system-specific process of interest. In

the original development of this method (created in 1996 by Huber and Kim [68]), Brow-

nian motion between a product and reactant basin was simulated through the division of
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conformational space into bins. Modern use of this method is more often interested in low-

probability events such as ligand (un)binding processes, with various methodologies having

been developed including bin-less options. While ligand unbinding is a common use case for

the WE method [9, 74, 31, 32, 77] it is not the only one. The WE method has also been used

at atomistic and coarse-grained levels for many other biologically relevant motions of inter-

est [70] including but not limited to ion permeation[78], large-scale protein conformational

changes[79, 80], protein-protein binding [81], and protein folding [82].

Figure 1.2: The WE Algorithm. Each circle represents a trajectory in the ensemble. The
colors represent conformations of the system and the circle size represents the trajectory
weight. All trajectories start with the same conformation and weight. In the dynamics
step, the trajectories are moved forward in time by the molecular dynamics algorithm for a
predetermined number of steps. In the resampling step, merging and cloning operations
can be performed on members of the trajectory set. The dynamics-resampling procedure
repeats until the end of the simulation.

In a general overview of the method, simulations run with the WE algorithm have two

distinct steps: a cycle of MD, followed by a “resampling” step (Figure 1.2). If a trajectory is

selected to be resampled in this step, it can undergo one of two operations. One operation

is merging, where trajectories i and j that are similar based on a system-specific feature of

interest have their weights w combined, where wi+wj = wij, and one of their two conforma-

tions is kept. The other operation, cloning, is where a trajectory k that is underrepresented

based on a system-specific feature of interest has its conformation duplicated, and its weight

12



evenly distributed amongst its clones.

As previously mentioned, the standard format of the WE algorithm is to break down

conformational space into “bins” along a predetermined reaction coordinate for resampling

purposes. In this format, resampling is done to maintain a constant number of trajectories in

each bin, where cloning can be done to increase the number of trajectories in a bin, and merg-

ing to decrease. While effective, this method is hindered by applications to high-dimensional

spaces (such as ligand (un)binding processes and other biologically relevant motions of in-

terest) that require a large number of bins/trajectories, as this becomes computationally

less feasible [69]. Many modifications have been made to this method including the cre-

ation of bins in hierarchical Voronoi polyhedra[69] and bin-less resampling algorithms [32]

to circumvent these issues.

Resampling of Ensembles by Variation Optimization

The WE simulation method is able to generate reactive trajectories for (un)binding paths

and other long timescale processes without the addition of external biasing forces. However,

the traditional WE algorithm divides the landscape into bins to guide the resampling pro-

cess. Many modifications have been made to this method, including the WExplore method

[69], that breaks down space into exponentially increasing numbers of Voronoi polyhedra.

However, even these modified methods often have high dimensionality resulting in a high

computational cost. To combat these common issues, a bin-less WE algorithm was devel-

oped: Resampling of Ensembles by Variation Optimization (REVO) [32].

In the REVO algorithm, the merging and cloning process is guided by the “trajectory

variation” function, where the variation (V ) is defined as:

V =
∑
i

Vi =
∑
i

∑
j

(
dij
d⋆

)α

ϕiϕj, (1.4)

where, Vi is the trajectory variation contributed by walker i. dij is the distance, calculated by

the distance metric, between walker i and walker j. d⋆ is a “characteristic distance”, which is

equal to the mean of the distance metric after one cycle of dynamics, and is used to make the
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variation function unitless. This does not impact resampling behavior and is implemented

for ease of comparison between different distance metrics for the same system. The ϕi term,

is a “novelty” term that describes the significance of individual walkers in the ensemble.

The term balances the “exploration” (distance) term with the “exploitation” (novelty) in the

REVO algorithm. The novelty term ϕ is often defined according to the walker weight, wi,

represented by the function:

ϕi = log(wi)− log
(pmin

100

)
, (1.5)

where pmin is the predefined minimum weight allowed. The pmin value is often set to 1∗10−12.

Figure 1.3: The REVO Algorithm. First, the dynamics are run and the all-to-all distances
are calculated for the ensemble (cyan, purple boxes). The variation is calculated (blue).
The the best options for cloning (least central trajectory) and merging (most central
trajectory to closest neighbor) are determined (gray). The new trajectory variation is
calculated as if this step has been performed and if the new variation is larger than the old
variation, the step is performed; however, if the new variation is smaller than the old
variation, resampling is ended (black) and dynamics are run again.

After a cycle of dynamics has been run and the distances calculated, the REVO algorithm,

Figure 1.3, guides merging and cloning by first calculating V . Then, walkers are proposed

for cloning and merging operations. To clone some walker i, it must have the highest Vi and

a cloned-weight greater than pmin. To merge some walkers j and k, their distance djk must
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be within a predefined cutoff value called the “merge distance”. The sum of their weights,

wjk, needs to be below the predefined maximum weight, pmax (often set to 0.1). Once walker

selection is complete, V is recalculated as though the merging and cloning operation was

performed. If the value of V increases, the merging and cloning operations are performed.

This resampling process repeats until V has been maximized. Once V is maximized (it does

not increase after a proposed merging and cloning step), resampling is ended and a new cycle

of MD is run.

Ensemble Splitting for the Determination of Rates

Depending on the simulation method used to learn about the binding and unbinding

kinetics of a system, it may be possible to determine the ∆G of (un)binding for the system

directly from the binding and unbinding paths generated. If the WE method (Section 1.2)

is utilized, a process called ensemble splitting[74, 83, 84, 85, 86] can be done to efficiently

determine ∆G, kon, koff , the RT, and the binding affinity or Kd for the system. This method

can technically be utilized with straight forward trajectories; however, this would likely be

very inefficient.

In this method, we divide the ensemble of trajectories into “binding” and “unbinding”

ensembles where the “unbinding ensemble” consists of trajectories that have most recently

been in the bound basin, and the “binding ensemble” consists of the trajectories that have

most recently been in the unbound basin. These basins do not overlap and can be described

based on a system-appropriate definition of bound and unbound. In this thesis, applicable

simulations fall into either only the unbinding or the binding ensemble and the corresponding

simulations are conducted separately in either the "binding" or "unbinding" ensemble. When

a trajectory exits its ensemble by entering the other basin, its probability is saved and in using

these threshold crossing probabilities, we can determine transition rates between the basins.

If rates are calculated for both the binding and unbinding processes, we can subsequently

determine the ∆G of unbinding as well. The transition rates are calculated directly from the

trajectory flux that exits one ensemble and enters the other: koff (4.4), kon (4.5) and ∆G
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(4.6) can be determined as:

koff = ϕu =

∑
i∈U wi

T
=

1

RT
, (1.6)

kon =
ϕb

C
=

∑
i∈R wi

CT
, (1.7)

∆G = kT ln
koff
C0kon

. (1.8)

Here, ϕb and ϕu are the binding and unbinding “flux”. These fluxes are equivalent to the kon

and koff rates for the system. T is the elapsed time for all corresponding transitions from

one ensemble to another, the summed values are the total probabilities for the corresponding

transitions, and C is the standard concentration of 1 mol/L.

1.3 The Jarzynski Equality (The Jarzynski Nonequilibrium Work
Theorem)

The JE, or the Jarzynski Nonequilibrium Work Theorem is another means of calculating

the free energy for a process of interest. To first understand the JE, one must first understand

the exploitation of the relationship between ∆F and the work (W ) applied to a system by

some nonequilibrium force. This applied force could be used for a process that, for example,

drives a system from some state A to some state B.

In a nonequilibrium process, the ensemble average of work necessary for said process,

⟨W ⟩, must be greater than or equal to the difference in free energy, ∆F , between the initial

and final states of the process[87] as referred to as the Maximum Work Theorem (MWT):

⟨W ⟩ ≥ ∆F. (1.9)

For microscopic trajectories, even small differences between the starting and subsequent

states can be significant, and can necessitate drastic differences in the necessary amount

of work required to perform some process. While the majority of iterations of this process

will result in an amount of work done that is greater than ∆F between the initial and final

states of interest, the work required can be less than the ∆F between those two states (which

appears to violate the second law of thermodynamics[88, 87]).
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Repeating an applied-work process on a system will result in the generation of a statis-

tical distribution of the work values (p(W )) obtained for that process. Once generated, a

statistical distributions of W can be assessed through an "equality transformation" of the

MWT [87] referred to as the “Jarzynski Equality”[88] which is as follows:

⟨e−βW ⟩ = e−β∆F , (1.10)

where, β = 1/kBT , T is the temperature the process is performed at, and kB is the Boltzmann

constant. The JE thus provides a means of determining equilibrium properties, such as

unbinding free energies, from continuous, potentially short, nonequilibrium trajectories. The

JE also does not require that the final state of the system is equilibrated.

However, the JE has one major hindrance. In p(W ) most iterations of a process will

result in the generation of a "typical" work value near the peak of the p(W ). However,

⟨e−βW ⟩ is dominated by values of W near the peak of i(W ) = p(W )e−βW [89] (Fig. 2.1),

where i(W ) as the "importance" value of some specific value of work. The importance is a

measurement of the contribution for some work value to ⟨e−βW ⟩ and consequently to ∆F in

Eq. 1.10.

The JE has been utilized in many applications, including the determination of binding

free energies for simple host-guest systems used in the SAMPL6 Challenge[90] as well as in

combination with Steered Molecular Dynamics (SMD) for complex biological systems such

as TSPO to construct PMF profiles and find binding free energies for different ligands[91].

In this thesis, the JE is used with the WE method in two ways to determine unbinding

free energies for a Lennard-Jones pair (a simple two-atom test system). The first method

developed is a combination of the JE and WE in the form of a new resampler. We refer

to this method as “Importance Resampling”, where a resampling framework that focuses

resampling on trajectories with a high value of i(W ) is developed with the aim of increasing

the number of trajectories in an ensemble with a high importance. The other method

developed is history-REVO Resampling, a variation on the REVO resampler that considers
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the work done for a whole trajectory for resampling purposes that resamples with the aim

of diversifying the work distribution for an ensemble of trajectories.

1.4 SAMPL Systems

Briefly, the SAMPL systems used in this thesis are small molecule pairs that come from

the SAMPL Challenges[92, 93]. These systems are used to test and develop new computa-

tional methods used for the prediction of properties that are relevant to drug discovery (of

particular interest, the unbinding free energy, ∆G). Relevant work with these systems can

be submitted to the SAMPL Challenges officially, such as the SAMPL6[90, 94] Challenge,

or used in general method development.

Figure 1.4: Host-guest systems. Hosts are shown on top, and guests are shown on bottom.
A) The CB8 host and its ligand, G3. B) The OA host and its guests, G6 (left) and G3
(right). C) The β-CD host and its corresponding ligand, PMZ. All panels use the default
“atom name” coloring scheme from VMD [95]: white=Hydrogen, cyan=Carbon,
blue=Nitrogen, red=Oxygen, and yellow=Sulfur.

The systems used in this thesis include the OA-G6, OA-G3, and CB8-G3, systems from

the SAMPL6[96] Challenge and the β-CD-PMZ system from the SAMPL9[97] Challenge.

OA (octa-acid), CB8 (cucurbit[8]uril) and β-CD (β-cyclodextrin) are “host” molecules with

binding pockets to which their corresponding “guests”, G6 (4-methyl pentanoic acid) and
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G3 (5-hexenoic acid), G3 (quinine), and PMZ (promazine hydrochloride), respectively, bind

(Figure 1.4). The OA molecule has a −8 charge and four-fold symmetry along the vertical

axis. Its guests G6 and G3 are both small molecules with an explicit −1 charge. The

CB8 host is a neutral molecule (as is its quinine quest) with two-fold symmetry along the

horizontal axis, and eight-fold symmetry along the vertical axis. β-CD is a neutral host

molecule with seven-fold symmetry along its vertical axis and no net charge. Its guest, PMZ

has an explicit charge of +1.

1.5 Outline of Work

The overall goal of this thesis is to develop new methods for use with the weighted

ensemble enhanced sampling method to increase the accuracy and efficiency of simulations

for the purpose of efficient, kinetics oriented drug design. More specifically, the goals are:

• Combine the JE with WE to develop methods that will allow us to determine unbinding

free energies from short, low computational-cost, nonequilibrium simulations.

• Learn important solvent-based features of host-guest test system (un)binding pathways

to guide (un)binding simulations.

• Use features learned about host-guest unbinding with a new variation of the REVO

method to decrease variation between simulations of the same system and increase

confidence in values determined, such as ∆G.

We first combine the JE with the WE method - more specifically the REVO method

described in Chapter 2. In this work we utilize a Lennard-Jones Pair, a two atom test

system used to test and validate the methods developed. This system is ideal as it is smaller

than most other common test systems such as host-guest pairs or other common biological

test systems, and provides an analytical solution for the binding free energy. Two methods

are developed here, with those methods being:
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• Importance Resampling: A resampler that focuses resampling on trajectories with a

high value of Jarzynski-importance.

• history-REVO Resampling: A variation on the resampler that considers the work done

for a whole trajectory for resampling purposes.

The convergence of free energies, work curves, and importance curves calculated by the

history-REVO method are compared to straight-forward simulations. The methods devel-

oped are also compared to Diffusion Monte Carlo (DIFFMC) method, an established path

sampling method that uses unperturbed dynamics and resamples based on a “potential” de-

termined from the applied work. From this work we found that the Importance Resampler

method had only sporadic success due to the ever-changing value of work for a trajectory,

but found promising results with the the broad work distributions generated by the history-

REVO resampler.

Following the completion of this project, a large amount of unpublished work was done

using the history-REVO method and the host-guest system OA-G6. This host-guest system

consists of two small molecules that have non-covalent interactions to form a complex. The

larger molecule containing the binding pocket is referred to as the host, and the smaller

molecule that (un)binds is referred to as the guest. In this work, it was found that the history-

REVO method was inefficient with larger systems, likely due to insufficient descriptors for

the unbinding of the system. More specifically, we found that very large variations existed

between simulations of the same length and setup, with free energies varying up to +/− 15

kcal/mol from the known unbinding free energy for the system.

Due to these issues, we proceeded to learn about the important solvent-based features

of unbinding for the host-guest system, as shown in Chapter 3 for use in our simulation

to increase the accuracy of the free energy calculations performed. Specifically, we were

interested in the solvent-based differences between the high and low probability unbinding

events. High weight events are of particular interest due to the fact that they strongly
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influence ensemble properties, and the generation of many high weight unbinding events can

lead to more accuracy and consistency between data-sets. For our analysis we took advantage

of large WE datasets that had previously been generated for our host-guest systems of interest

OA-G6 and OA-G3 (described in more detail in Chapter 3). Using this data, a time and

weight, or probability based analysis is done on physical features of interest, including but

not limited to:

• The number of waters in the binding site.

• The number of ions around the negatively charged regions of the host.

• The number of ions around the guest molecule.

It is found that there is a significant difference in A) the guest-ion interactions and B) the local

ion densities between the high and low weight unbinding events. Specifically, high weight

unbinding events average less than 0.5 ions present in the region of space that guest enters

when it leaves the binding pocket. This results in the high weight events quickly hitting

the boundary condition and the trajectory ending with a higher weight than had it been

repeatedly cloned. Importantly, we also find that there is a "commitment to unbinding"

point for all reactive trajectories in this data-set, which is found to be a center of mass

(COM)-to-COM distance of 0.7 nm. We refer to this point as t0.

Using the concept of this t0 point, a new resampler based off of the REVO resampler is

developed that we call ‘cutoff-REVO‘, which is explored in Chapter 4. In this work, t0, or

more broadly a commitment to event-of-interest point is added to the REVO resampler as

a cutoff point for cloning operations. This is done because once a trajectory commits to an

event of interest, cloning it only reduces its weight and takes up more room in the ensemble

that could have otherwise been used to explore other paths. In this work specifically, once

a system-specific COM-to-COM distance is reached for a trajectory, it is no longer eligible

to undergo a cloning operation during the resampling step of a WE simulation. For four

SAMPL systems (OA-G6, OA-G3, CB8-G3, and β-CD-PMZ), we compare:
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• The accuracy of the unbinding free energy to the computational and experimental

reference values when available.

• The convergence of the koff rate.

• The differences in the distribution of the unbinding-event weights.

• Differences in resampling patterns between traditional REVO and cutoff-REVO.

From this work we find that the cutoff-REVO resampler produced significantly fewer un-

binding events for all systems, but the events produced have much higher weights. This

promotes faster convergence of the koff value for the systems and resulted in more accurate

free energies of unbinding. In the final Chapter, 5, we revisit the highest level goals of this

thesis and assess the progress, pitfalls, innovations, and potential steps for improvements to

the methods developed.
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CHAPTER 2

ENHANCED JARZYNSKI FREE ENERGY CALCULATIONS USING
WEIGHTED ENSEMBLE

This is work reproduced from “Nicole M. Roussey and Alex Dickson, “Enhanced Jarzyn-

ski free energy calculations using weighted ensemble”, The Journal of Chemical Physics.

153, 134116 (2020) https://doi.org/10.1063/5.0020600”[76] with the permission of AIP Pub-

lishing. The work is presented here as published except that the supplemental figures are

included in the appendix.

2.1 Introduction

The importance of free energy calculations from atomic simulations has been well estab-

lished for many biological and chemical applications. The free energy of a transition in a

biological system is the key thermodynamic quantity governing the transition’s reversibility

and the work required to perform the transition in an unfavorable direction. In this way, free

energy forms the theoretical underpinnings of a range of biological processes including ligand

(un)binding, protein folding, solubility, and biologically significant conformational changes in

protein structures[1]. Free energy calculations also provide a means of estimating other rel-

evant values for biological processes such as permeability coefficients and rate constants [1].

Due to the significance of this value, new, computationally efficient methods of calculating

free energies are always of interest.

Increases in computational power, new developments in enhanced sampling, and advances

in statistical mechanics have led to the development of a wide variety of methods to calculate

free energies (see reviews [1, 98, 99]). Despite decades of systematic improvement, there are

complications and drawbacks associated with each method. Relative binding free energies

can now be routinely calculated by FEP, with robust computational tools available (e.g.

FEP+, Schrodinger [100]), however these are limited to sets of ligands with high similarity

[101]. There are also a set of methods to calculate the absolute binding free energy for a

protein-ligand or protein-protein complex. This can either be done through physical sam-
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pling of the unbinding pathway (e.g. umbrella sampling [102, 103], Markov state modeling

[104, 105], Metadynamics [106, 107], Milestoning [108, 109] and weighted ensemble strate-

gies [68, 110]) or through alchemical transformations[111] (e.g. using double decoupling [112]

with thermodynamic integration [113] or Hamiltonian replica exchange [114]). and varying

combinations of these free energy estimators and methods. The two main obstacles of phys-

ical sampling strategies are i) convergence of the free energy estimate, and ii) projection of

the binding process onto one or more order parameters. In alchemical transformations, single

topology models are hindered by residual charges from the vanishing atoms that can create

large forces in the system and double topology models can have overlap between groups

leading to instability in the system [1]. Alchemical transformations also only predict the free

energy difference of the endpoints and cannot produce complete free energy profiles. Even for

small systems such as host-guest pairs used in recent SAMPL challenges[94], computational

free energies obtained with these methods are often not consistent with each other, and can

deviate by several kcal/mol from experimentally determined values [94, 90].

An alternative method for calculating the free energy of a process at equilibrium (∆F )

is to exploit a relationship between ∆F and the work applied to a system by a nonequilib-

rium force (W ). The maximum work theorem states that in a nonequilibrium process, the

ensemble average of work required, ⟨W ⟩, is greater than the difference in free energy, ∆F ,

between the initial and final states of the process[87]:

⟨W ⟩ ≥ ∆F. (2.1)

Differences between individual trajectories are significant in microscopic systems and can

result in very different values of work being observed for the same process. For most realiza-

tions of a process, the work done is greater than ∆F ; however, the work can be smaller than

the free energy difference (seemingly violating the second law of thermodynamics)[88, 87].

Performing many realizations of a process produces a statistical distribution of work values

for that process. These statistical distributions of W can be accounted for in an "equality
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transformation" of the maximum work theorem [87] referred to as the Jarzynski Equality[88]:

⟨e−βW ⟩ = e−β∆F , (2.2)

where, β = 1/kBT , where kB is the Boltzmann constant and T is the temperature at which

the transformation process is performed. Remarkably, this equation generates equilibrium

properties from short, continuous, nonequilibrium trajectories that have little sensitivity to

the quality of the reaction coordinate. Another appealing aspect of the Jarzynski Equality is

that the equilibration of the final state of the system is not required, as it would not change

the measured nonequilibrium work.

The Jarzynski Equality has been utilized in a broad range of applications. Procacci

and Guarnieri [115] determined water-octanol partition coefficients for small molecules using

the solvation free energies in both solvents. Binding free energies have been found using

Jarzynski-based unidirectional estimators for small host-guest systems, such as those used

in SAMPL6[90]. Similarly, SMD has been used with more complex systems, such as the

TSPO, in tandem with the Jarzynski Equality to reconstruct PMF profiles and determine

∆Foff for different ligands[91]. Xiong et al [116] applied the Jarzynski Equality in a number

of contexts: calculating free energies with QM-MM to study conversion reactions by the

enzyme chorismate mutase; mechanical unfolding of the Ace-Alanine8-NMe biopolymer; and

creating free energy profiles for ligand diffusion in globin proteins.

Unfortunately, the trajectories that dominate the expectation value in Eq. 2.2 are those

with low (or negative) values of W , which occur rarely and can be difficult to observe

in simulation. These dominant trajectories in a forward process occur with a probability

roughly approximated as

Pf ∼ e−β⟨W r
d ⟩ (2.3)

where W r
d is the dissipative work of the reverse process, as estimated by Jarzynski[89]. This

value is equal to 1

Nf
c
, where N f

c the number of realizations of a processes necessary for

convergence of free energy. This suggests that the number of realizations required for a
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process increases relative to the exponential of the average work and therefore the system

size[117, 89, 118]. In pulling experiments done to determine helix propensities for different

amino acids, the Ala12 peptide was found to require ∼ 105 realizations for convergence of

free energy for the forward process (and thus a ∼ 10−5 probability of a dominant realization

occurring) and ∼ 107 realizations for convergence of free energy for the reverse process [119].

Efforts have been made previously to apply path sampling algorithms to preferentially

generate trajectories with lower values of work. One difficulty is that of the algorithms that

have been developed to sample low probability events, only a small subset of these are appli-

cable to nonequilibrium systems. Transition Path Sampling (TPS) methods [72, 120] have

been applied to generate ensembles of trajectories with lower work values that contribute

most significantly to the ensemble average [120, 121, 122]. One challenge of this approach

is that TPS is only able to select low-work trajectories after they have been generated and

does not aim to accelerate their production. Also it is difficult to sample new low-work

trajectories as there are typically substantial free energy barriers that separate different low-

work pathways. Other methods compatible with nonequilibrium systems – Nonequilibrium

Umbrella Sampling (NEUS) [123, 83] and DIFFMC [124] – have also been applied to prefer-

entially sample low-work trajectories for model systems [125, 126]. The WE method[68, 127]

– which utilizes a set of weighted, unbiased trajectories that can be cloned and merged – is

another path sampling algorithm that is applicable to nonequilibrium systems and has been

used to increase the chances of observing rare biomolecular conformations and to simulate

long-timescale processes such as protein folding[128], large conformational transitions[129],

and ligand (un)binding[130, 9, 131].

Here we investigate the capability of the WE method to enhance the sampling of rare

trajectories, specifically those with atypical values of work. Doing so requires a customized

WE algorithm that considers the whole trajectory history during resampling. We adapt

our recently developed algorithm called REVO (“Resampling Ensembles by Variation Op-

timization”) [32] for this purpose. We also implement a new resampling algorithm that
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explicitly considers the importance of individual trajectories and specifically focuses sam-

pling on trajectories with the most significant work values. This new algorithm includes a

tunable parameter we call "amplification" that governs the depth to which the method will

dig into the work distribution tail. We apply these methods to unbinding trajectories of a

two-particle Lennard-Jones system with well depths ranging from 2 to 20 kcal/mol. The

efficiency of these different resampling strategies is then analyzed for systems over a wide

range of binding free energies. We also compare these results to the DIFFMC approach,

where the applied work is used as the selection potential [132]. Finally, we conclude with

a discussion of this Enhanced Jarzynski method and history based resampling, including

future calculations of protein-ligand binding free energies.

2.2 Methods

Generalized outline of Weighted ensemble sampling

The framework for a generalized WE algorithm includes two main steps: the propagation

of a group of trajectories (or "walkers") forward in time by MD, and resampling, which

performs merging and cloning operations on the ensemble of walkers. Resampling operations

function with the goal of cloning walkers with desirable features and merging together less-

desirable walkers based on some feature of interest.

In a WE simulation, all walkers have a statistical weight or probability. When a walker is

cloned, two independent walkers are created that have the conformation of the original cloned

walker and half of its weight. In a merging operation, two walkers, A and B, are combined

to create walker C with a weight of wC = wA + wB, and C takes on the conformation of

either A or B with a probability proportional to their weights. A resampling function takes

in an ensemble of walkers and returns a new ensemble with conformations drawn from the

original input ensemble. In general, the returned ensemble can have the same or different

number of walkers, but the sum of walker weights, typically equal to one, is unchanged. In

this work we maintain a constant number of walkers over the course of all simulations.
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History-Dependent REVO Resampling

To perform work-based resampling simulations, the Resampling of Ensembles by Varia-

tion Optimization, or REVO [32] resampler is used. This method is briefly described below,

with specific details regarding this application in Section 2.2. REVO governs cloning and

merging through the maximization of an objective function called the "trajectory variation"

(V ), which is a scaled sum of all-to-all pairwise distances between the walkers:

V =
∑
i

Vi =
∑
i

∑
j

(
dij
d0

)α

ϕiϕj (2.4)

where dij is the distance between two walkers i and j, α is an exponent that modifies the

distances’ influence on the overall value of V , and d0 is a "characteristic distance" that does

not affect merging and cloning and serves to make V unitless. The distance metric is defined

to capture the system-specific event of interest and is described below. ϕ is a non-negative

function that measures the relative importance of each walker and can again be designed in a

system-specific fashion based on walker attributes, such as conformation, history, or weight.

Here ϕ is defined as:

ϕi = log(wi)− log(
pmin

100
) (2.5)

where pmin is the minimum statistical weight that a walker can hold, and wi is the current

weight of walker i. Setting a value of pmin is useful to avoid spending simulation time on

trajectories that will not contribute meaningfully to the observables you wish to calculate.

Similarly, a maximum value of the walker weight pmax is also useful to prevent the agglom-

eration of all of the weight into a single walker. Both pmin and pmax are enforced by simply

preventing the resampling algorithm from suggesting at-risk walkers for cloning and merg-

ing, respectively. The overall goal of the REVO resampler is the optimization of V . To do

this, walkers with a high Vi (Eq. 3.1) are selected for cloning, and walkers with a low Vi are

selected for merging.

While REVO is designed with high-dimensional systems in mind, here we found it suf-

ficient to compute distance in a one-dimensional space, where dij is simply the difference
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in the sum of the time-elapsed work (as explained in Section 2.2) between a pair of walk-

ers i and j. Notably, this distance metric relies on the entire history of a trajectory and

not just the instantaneous conformation of the system. These history-dependent quantities,

which we refer to as “activities” can be utilized with the wepy simulation package [133] and

the wepy-activity plugin [134]. The value of the activity, in this case, the work, for each

walker is calculated after every cycle of dynamics. This value is then added to a running sum

of work for that walker. The value of the running sum is then passed to a distance metric

to do resampling.

Importance Resampling

Multiple realizations of a process will result in the generation of a statistical distribution

of work values (p(W )). While most realizations of a process result in a "typical" work

value near the peak of p(W ), ⟨e−βW ⟩ is dominated by realizations near the peak of i(W ) =

p(W )e−βW [89] (Fig. 2.1). We refer to i(W ) as the "importance" of a specific work value, as

it measures the extent to which that work value contributes to the ensemble average ⟨e−βW ⟩

and subsequently to ∆F using Eq. 2.2.

Figure 2.1: Probability and importance curves. Most values of work observed are near the
peak of p(W ), or around the mean of the work distribution, W . Values of work that
dominate ⟨e−βW ⟩ occur near the peak of i(W ), around W ‡.

With this in mind we introduce a new trajectory ensemble resampling algorithm, "Impor-
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tance Resampling", for the WE framework that works with the WEPY simulation package.

The overall goal of this process is to generate an ensemble with multiple trajectories that

have weights at or around the peak of the importance curve. The Importance resampler

uses a new algorithm to select walkers for merging and cloning, which is comprised of two

selection steps, one based on trajectory importance, and another based on weight. Note that

resampling based on selection (rather than cloning and merging) in a weighted ensemble

context was described previously in Ref. [135, 136]. For importance-based selection, NI tra-

jectories are randomly selected with a probability proportional to their relative importance

of that trajectory:

Ij =
wje

−µβWj∑
k

wke−µβWk
, (2.6)

where Ij is the relative importance of trajectory j, wi is the weight of trajectory i, and Wi is

the total work applied to the system so far in trajectory i. Eq. 2.6 also includes an additional

factor called the "amplification" (µ). This can be set to any positive number to tune the

strength with which we want to amplify the importance of low-work walkers. We examine

different values of µ below. If a walker is selected once, it retains its weight for the next

cycle. If a walker is selected more than once, its weight is divided evenly among the clones.

The remainder of the slots (NW = N − NI) are reserved for walkers that are selected

based on walker weight. All walkers that were not chosen by importance are eligible for

weight-based selection. Once selected, each walker takes on the probability:

pW =
1

NW

(
1−

∑
i∈I

wi

)
(2.7)

where I is the set of walkers that were selected based on their importance. Note that weight-

based selection is necessary for the importance-based trajectories to maintain the proper

relative walker weights. While, intuitively, low NW values would lead to better sampling

of the high-importance walkers, here we aim to maintain a number of weight-based walkers

(e.g. NW = 5) to ensure some diversity in the weight-based ensemble. A schematic of the

Importance resampler is shown in Fig. 2.2 for one round of resampling.
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Figure 2.2: Importance resampler schematic. Each walker is represented by a different
colored circle. The walker weight is represented by circle size and different colors indicate
different conformations of the system. In resampling, importance based walkers are
selected randomly with a probability proportional to their relative importance. The weight
of walkers selected by their importance is equal to the weight of the parent walker divided
by the number of times that walker was selected. Weight based walkers are selected
randomly with a probability proportional to their weight. Each walker selected by weight is
given an equal weight, given by Eq. 2.7. In this schematic, NI = 3 and NW = 4.

Lennard-Jones Pair Test System and Simulation Setup

We use a Lennard-Jones pair test system modified from the LennardJonesPair module

of OpenMMTools [137] to analyze the performance of both the REVO resampler and the

Importance resampler. We chose this system due to its simplicity and the fact that its

difficulty can be easily tuned by changing ϵ, the depth of the inter-particle interaction energy

well.

VLJ = 4ϵ

((σ
r

)12
−
(σ
r

)6)
, (2.8)

The default values of particle mass and σ – 39.9 daltons and 3.35 Å respectively – were used

for all simulations with a box size set to 40 Å with the NonBondedForce set to CutOffPeriodic.

ϵ was varied from 2 to 20 kcal/mol. For this system, the target free energy as a function of

the inter-particle separation, r, can be analytically solved as:

Fr = −2kT ln(r) + VLJ . (2.9)
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Using this system, nonequilibrium pulling simulations were performed without resampling

(referred to as “straightforward MD”), with the REVO resampler, and with the Importance

resampler. All simulations were run with OpenMM[138] version 7.4.0 and OpenMMTools

version 0.18.3. The system is run at a constant pressure of 1 atm and temperature of 300

K using Langevin dynamics with a friction coefficient of 1 ps−1 and an integration step-size

of 2 fs. For REVO simulations, a minimum and maximum walker weight (pmin and pmax) of

10−100 and 0.5, respectively, were used with a maximum merging distance of 2.5 kJ/mol and

α = 4. For Importance resampler simulations, 5 of 50 slots were designated for weight-based

walkers (NW = 5 and NI = 45).

To perform the pulling simulations, a harmonic CustomBondForce from OpenMM is

applied to the system. The force applied is:

U(x⃗; r0) =
k

2
(r(x⃗)− r0)

2, (2.10)

where k is a spring-constant with a constant value of 2000 kJ/mol/nm2, r0 is the target in-

teratomic distance for that cycle with a starting value of 0.32 nm, and r(x⃗) is the interatomic

distance calculated from a state vector x⃗. After every cycle of dynamics, the value of r0 is

updated for all trajectories by a predefined value, ∆r0 = (rf0 − ri0)/nc, where rf0 is the final

separation distance (2.0 nm) and nc is the number of cycles, set to either 500 (examined first

in Results section below), or 53 (examined later).

Starting positions for each well depth are generated from straightforward simulations

run at ri0. A set of 1000 starting positions was generated using the final positions of 1000

independent, 20 ns trajectories. These positions were saved and are used to randomly initiate

pair starting positions for the nonequilibrium simulations.

The Work Equation and Free Energy Surfaces

The nonequilibrium trajectories use a set of biasing potentials (Eq. 2.10), to restrict the

system to progressively increasing values of r0. The potential energy related to this biasing

force at cycle t is denoted: U(x⃗t; r
t
0), and depends on both the current state of the system
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x⃗t (in this case used to calculate r, the observed interatomic distance) and the location of

the biasing force r0 at cycle t, which we denote as rt0.

Both the REVO resampler and the Importance resampler require that work is calculated

after every cycle by an activity metric and added to a running sum. For the REVO resampler

this total activity is then used for determining distances for the resampling process. For the

Importance resampler, the total activity is passed to resampler to determine importance

values for each walker. The work observed along a trajectory (Wt) up to and including cycle

t is calculated as follows:

Wt =
t∑

c=0

U(x⃗c, r
c+1
0 )− U(x⃗c, r

c
0) (2.11)

where the work from cycle c in the summand is equal to the resultant energy change from

instantaneously changing the control parameter r0 [49].

Using work values and walker weights, free energy surfaces can be generated for pulling

simulations using a nonequilibrium adapted weighted histogram method [139] [140]. Here we

adapt Eq. 8 from Hummer and Szabo[139] to incorporate averages over weighted trajectory

sets as:

F0(r) = −kT ln

∑
t

⟨δ(r−r(x⃗t))e−βWt ⟩
⟨e−βWt ⟩∑

t

e−βU(r;rt0)

⟨e−βWt ⟩

. (2.12)

where r denotes a specific value of the interparticle separation. Here, ⟨...⟩ indicates an

ensemble average for a specific timepoint, t, which for weighted ensemble simulations is

calculated as:

⟨f(x⃗t)⟩ =
1

Nruns

∑
runs

N∑
i=1

wif(x⃗i
t) (2.13)

where N is the number of walkers, and x⃗i
t is the state vector of walker i at cycle t. The free

energy (F0) in Eq. 2.12 is calculated for each value of r and is used here to generate a free

energy profile.

As this is a simple system, the target free energy profile for the Lennard-Jones pair can

be solved for analytically using Eq. 2.9. To analyze convergence of binding free energies,
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we define ∆F as the difference in free energy between the interatomic distances of 0.38 nm

and 1.5 nm. We then track ∆∆F as a function of simulation time, which is the difference

between the target ∆F determined analytically and the ∆F determined from simulation.

Diffusion Monte Carlo

An existing path sampling method, called Diffusion Monte Carlo, is similar to the Im-

portance Resampler in a number of ways. Both use an ensemble of trajectories (of size Ntraj)

that evolve according to unperturbed dynamics and are periodically resampled. Diffusion

Monte Carlo, a quantum Monte Carlo method, uses a "selection potential" for each tra-

jectory in an ensemble that can be determined from the applied work after each cycle of

dynamics. Briefly, dynamics are run, the work increment for each trajectory is calculated,

and a weighting factor for each trajectory, is determined as wi = e−βWinc , where Winc is the

incremental work for that trajectory. Note that these weights wholly determined by this

work increment and are unrelated to the weights resulting from resampling in the weighted

ensemble algorithm.

Following determination of the weight, a resampling process is done by determining

branching numbers for each trajectory according to their weighting factors, and choosing

the resulting trajectories for the next cycle using a stochastic process, where the average

number of times a trajectory is chosen is equal to wi/
∑

j wj.

For a given cycle of dynamics (say, c), the average weight is determined and saved as

a variable, zc =
∑

i wi/Ntraj. The z values calculated for an ensemble can be utilized for

analysis with Eq. 2.12 through the substitution of the running product of these terms

(Zc =
∏c

i=0 zi) for the existing e−βW term for each cycle. A full explanation of the algorithm

implemented in this work can be found in Algorithm 6.3 from Rousset et al[132].
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2.3 Results

Reconstruction of free energy curves

We first ran a set of 200 independent simulations with 50 walkers each for both straight-

forward dynamics (with no resampling) and the REVO resampler. Separate sets were run for

ϵ = 2, 5, 10 and 20 kcal/mol (or 8.37, 20.9, 41.8 and 83.7 kJ/mol). All simulations are 500

cycles in length with 100 steps per cycle and were set up as described in Section 2.2. Figure

2.3 shows free energy predictions as well as target free energy curves computed analytically

(see Eq. 2.9), for each value of ϵ. Both straightforward and REVO simulations accurately

recreate the target free energy surfaces for all values of ϵ. Free energies are calculated from

simulation using the Hummer and Szabo equation above (Eq. 2.12).

A

B

Figure 2.3: Calculated free energy curves. Reconstructions of free energy surfaces are
shown as a function of inter-particle separation (r) for (A) straightforward resampling and
(B) REVO. Four different well-depths, ϵ = 2, 5, 10 and 20 kcal/mol are shown. In each
panel the target free energy for each ϵ is shown as a thick line.
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Figure 2.4: Probability distributions of applied work and trajectory importance. (A) The
corresponding work distributions for 2.3 are shown for ϵ = 2, 5, 10, and 20 kcal/mol.
Probability peaks are marked by dashed blue lines and are found at -4.02, 9.14, 29.12, and
88.48 kJ/mol, respectively. (B) The probability distribution for the importance
(i(W ) = p(W )e−βW ) are shown for ϵ = 2, 5, 10, and 20 kcal/mol. Importance peaks are
marked by dashed green lines and are found at -5.6, 5.3, 24, and 53 kJ/mol, respectively.

Fig. 2.4A shows probability distributions for the cumulative work applied to the system

during the dissociation process. We observe that REVO more extensively samples the tails

of the work distributions for all four values of ϵ. These also show how the most probable

values of work depend on the depth of the free energy well. For ϵ = 20, large values of

applied work are necessary to perform dissociation, while for ϵ = 2 many trajectories can

be observed with low, or even negative applied work. Importantly, we also observe that

the probability distributions of applied work are not Gaussian, especially at higher values

of ϵ. This indicates that direct sampling of low-work trajectories is important to obtaining

accurate free energies with the JE.

As noted above, the importance of a given work value can be calculated as i(W ) =

p(W )e−βW [89]. Importance distributions are averaged over the entire trajectory set and

shown in Fig. 2.4B. As expected, peaks in i(W ) (dashed green lines) do not correspond
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to the peaks in p(W ) (solid blue lines). They are shifted to lower work values by a gap

that increases with ϵ. For all values of ϵ, both methods are able to successfully sample the

peak of the importance distributions; however, for ϵ = 20, this peak lies at the limit of the

distribution sampled by straightfoward dynamics.

The REVO method is thus able to sample both the high and low tails of the work

distribution more effectively than straightforward dynamics. To visualize how the ensemble

of trajectories in REVO evolves in time, we show a “resampling tree”, which is a directed

acyclic graph where the nodes represent walker states at each cycle and the edges show how

walkers are cloned during REVO resampling (Fig. 2.5). Note that the bottom of the tree

shows the initial state of the walkers and the time axis is in the upward direction. The

highest weight walkers have a final value of work between 80-100 kJ/mol, which corresponds

to the peak of the ϵ = 20 probability curve in Fig. 2.4A. Low weight walkers have values

of work that represent the high and low tails of the work distribution. This tree shows how

REVO identifies and amplifies low-work walkers early on in the simulation, leading to better

sampling of the final work distribution and more efficient calculation of binding free energies.

Convergence of free energy predictions

To analyze the relative efficiency of history-based REVO, we study the convergence of the

free energy profile towards the target profile as a function of simulation time. Rather than

considering the whole free energy curve, we monitor the free energy difference, between two

points, one for the bound state (r = 0.38 nm) and one for the unbound state (r = 1.5 nm).

We denote this as ∆F and refer to it as the unbinding free energy. ∆∆F is the difference

between the unbinding free energy determined from simulation and the unbinding free energy

for the analytically determined solution given by Eq. 2.9. Figure 2.6 shows expectation values

of the root mean squared ∆∆F and its uncertainty for both straightforward dynamics and

REVO simulations.

For smaller numbers of trajectories straightforward dynamics generally outperforms REVO,

although this difference is not statistically significant for ϵ = 20. The final root mean square

37



Figure 2.5: A REVO resampling tree. A resampling tree for a single REVO simulation for
ϵ = 20. Node color and size correspond to work and walker weight, respectively. For clarity,
we show here a 53 cycle simulation, which generally samples a wider distribution of work
values than 500 cycle simulations shown in Fig. 2.4A. This figure was made with
Gephi[141].
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error (RMSE)s for 8000 trajectories are roughly equivalent for ϵ = 2 and 5. For a well depth

of 10 kcal/mol, REVO performs significantly better than straightforward dynamics after 400

trajectories. For ϵ = 20, higher error is observed for both methods throughout, although

REVO outperforms SF at long times, obtaining a final RMSE (0.49 kJ/mol) that is roughly

half of the final value obtained with straightforward dynamics (0.78 kJ/mol).
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Figure 2.6: Error vs Time. The convergence of the binding free energy for ϵ = (A) 2, (B) 5,
(C) 10, and (D) 20 kcal/mol for straightforward (SF) and REVO as a function of the total
number of walkers used to calculate each free energy value. For REVO simulations an
ensemble of 50 was used, and multiple simulations are combined to reach the number of
walkers shown. The shaded areas show the uncertainty calculated at each point using
standard error of the mean over 15 trajectory sets.

Importance resampler results

Although REVO is able to broadly enhance sampling of the work distribution, we inves-

tigate whether a method that specifically amplifies sampling of walkers at the peak of the

importance distribution would more efficiently calculate ∆F . The Importance resampler is
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described in Section 2.2 and uses a parameter, µ, to govern how deeply it samples low-work

trajectories. Five sets of 200 independent, 50 walker simulations were run for multiple values

of µ, for each ϵ analyzed above. Datasets were generated for simulations with both 53 cycles

and 500 cycles and setup as described in Section 2.2. We found that values of µ < 1 perform

best, with the RMSE gradually increasing with µ for simulations with 53 cycles. Errors

were consistently within a small range for increasing values of µ for 500 cycle simulations

(Fig. A.1). However, these errors were in general larger than those observed for both SF

and REVO for similar numbers of trajectories.

There is variability across different sets of trajectories obtained with the same value of

µ as shown in Fig. A.2 for µ = 0.1. This is true even for very large trajectory sets. We

find that this is due to differences in the sampling of the work distribution as shown for two

different, 10000-trajectory sets in Fig. 2.7. In Fig. 2.7A, the free energy surfaces for two sets

of data for ϵ = 20 with µ = 0.4 are compared, with one set outperforming the other with a

lower overall RMSE. The work distributions for these datasets (Fig. 2.7B) show differences

in work values below ∼65 kJ/mol, and it is seen in 2.7C, that these low-work values have very

high importance (consistent with results in Fig. 2.4B). The dataset with higher resolution

in the low-work tail (blue) has lower RMSE in the free energy surface.

A B C

Figure 2.7: Comparison of two importance sampling trajectory sets with µ = 0.4. The (A)
free energy surfaces, (B) work distributions, and (C) importance curves for two sets of 53
cycle simulations.

For 500 cycle simulations, Importance resampling performed the worst among the three

resampling strategies examined here, for all values of ϵ. However, we wanted to investigate
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whether it could be useful for shorter simulations, in systems where generating sufficiently

long trajectories is computationally demanding. Figures A.2 and A.3 analyze the efficiency

of the convergence of the error of free energy profile (∆∆F ) in comparison to straightforward

dynamics and REVO for 53 cycle simulations. Broadly, Importance resampling performs with

comparable efficiency to REVO and straightforward using 53 cycle simulations, although it

performs poorly for ϵ = 20 kcal/mol. Individual values of µ were found to outperform both

SF and simulations for each value of ϵ; however, the performance was inconsistent between

different independent sets of 200 simulations with the same value of µ as shown in Fig. A.2

for µ = 0.1.

To show the differences in work distributions sampled by all methods as well as the effect

of µ in the Importance resampler, work distributions and corresponding importance curves

for 53 and 500 cycle simulations are shown in Fig. 2.8. Each curve shown is an average

over 1000 trajectories each. In the 53 cycle simulations the Importance resampler can more

thoroughly sample the tails of the work distribution, with a depth that can be tuned by

µ. This results in a bimodal distribution of work values with one group of low-work, low-

probability trajectories, and another group of average-work, high-probability trajectories.

As µ increases, the separation between the two halves of the bimodal distribution increases

with peaks moving further into both the low and high work values. However, for 500 cycle

simulations, the Importance resampler only samples a limited range of work values, similar

to that of straightforward dynamics. For longer simulations, the peak of the importance

curve is not reached for all values of µ.

To further visualize µ’s effects on resampling, Figure 2.9 shows resampling trees for

µ = 0.5 and 5.0. For low values of µ, nearly all walkers have high final values of work. In

this case, the majority of these end walkers originate from a single early cloning event of a

high work walker roughly 1/3 of the way through the simulation. At this point the weight of

the low-work walkers decreased enough that the high-weight, high-work walker had a larger

i(W ) value. This does not accomplish the original goals of importance-based resampling,
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and results in final distributions that are similar to those obtained with straightforward

resampling.

A

B

53 cycles

53 cycles

500 cycles

REVO
SF
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Figure 2.8: Work and importance curves for 53 and 500 cycle simulations. The work curves
for (A) 53 and (B) 500 cycle simulations is shown for REVO, SF and Importance
resampling with three different amplification factors (µ). Corresponding importance curves
shown in (C) and (D).

For high values of µ there is a stark separation of the weight-based and importance-based

walkers beginning early on in the simulation. The weight-based walkers maintain high val-

ues of work throughout the remainder of the simulation whereas the value of work for the

importance-based walkers increases and then decreases over time. For high µ, many cloning

events also occur en masse from single walkers in some cycles. High µ, 500 cycle simulations

have very limited sampling of the work distribution, unlike 53 cycle simulations. Although

resampling patterns for these simulations initially resemble their 53 cycle counterparts, even-

tually many cloning events from the high-weight, high-work walkers overwhelm the low-work

walkers. This results in final work distributions that resemble straightfoward data (Fig. 2.8B)

and again is not able to accomplish the goals of importance-based resampling.
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Comparison with Diffusion Monte Carlo

To analyze the relative efficiency of REVO in comparison to Diffusion Monte Carlo, we

study convergence towards the target free energy profile, as above in Fig. 2.6. For both

methods 800 simulations with 50 walkers each are run with ϵ = 20 kcal/mol. All simulations

are 500 cycles in length with 100 steps per cycle. REVO simulations were run as described in

Sec. 2.2, and Diffusion Monte Carlo simulations were run in a similar fashion, but using the

Diffusion Monte Carlo resampling algorithm and free energy calculation strategy described

in Sec. 2.2. Resampling was done every cycle, which corresponds to a relative entropy cutoff

of 0.
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Figure 2.9: Resampling trees for a low and high value of µ. Resampling trees for µ = (A)
0.5 and (B) 5 for ϵ = 20 simulations with 53 cycles. Node color and size correspond to work
and weight, respectively.
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Figure 2.10: Error vs Time for REVO and Diffusion Monte Carlo. The convergence of the
binding free energy for ϵ = 20 kcal/mol for straightforward (SF), REVO, and DIFFMC as
a function of the total number of trajectories used to calculate each free energy value. For
REVO and DIFFMC simulations an ensemble size of 50 was used, and multiple simulations
are combined to reach the number of trajectories shown. The shaded areas show the
uncertainty calculated at each point using the standard error of the mean over 15
independent trajectory sets.

DIFFMC out-performs both straightforward dynamics as well as REVO for low numbers

of trajectories. While Diffusion Monte Carlo performs well for smaller datasets, the rate of

RMSE decrease appears to slow for larger trajectory sets, whereas REVO and straighfor-

ward dynamics continue to gradually decrease. After this point, Diffusion Monte Carlo and

straightforward dynamics obtain similar final values of 0.77± 0.08 and 0.78± 0.06 kJ/mol,

respectively with REVO obtaining a final value of 0.51± 0.10 kJ/mol.

2.4 Discussion

The Jarzynski Equality generally requires a very large number of realizations of a process

to converge the free energy due to the low probability of observing high-importance work val-

ues. Due to the potentially large computational cost, this is a major limiting factor in the use

of the nonequilibrium work theorem for calculating free energies. The results above demon-

strate that thorough sampling of the tails of work distributions can increase the accuracy of

free energy calculations, potentially unlocking the promise of the Jarzynski Equality. This

can be achieved through the use of a promising combination of methods – weighted ensemble
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rare-event algorithms with short duration nonequilibrium simulations – that efficiently gen-

erates a work distribution with low-probability tails. A history-dependent REVOresampler

generally outperformed direct straightforward sampling of unbinding trajectories especially

for dissociation events with large free energy barriers.

We also examined a novel Importance-based resampler that showed sporadic success

using short trajectories, but generally failed to work as designed. The efficiency of the

Lennard-Jones pair allowed us to run many simulations at increasing amplification factors

for the Importance resampler. While the inclusion of the amplification factor allowed for

further exploration into the tails of the work distribution, it presented a puzzling result.

As amplifications increased beyond ∼1, the accuracy of free energy calculations began to

decrease for shorter simulations (53 cycles in duration). As is shown in Fig. 2.9A, although

the importance resampler is able to sample trajectories with extremely low work values,

in practice it underestimates the probability of these trajectories. This occurs at higher

amplifications because the resampler picks one or two high-importance trajectories each

round to be cloned repeatedly, although these often have a change in work that results in a

lower importance in the next cycle. In contrast, the REVO algorithm only seeks to diversify

the work values at each cycle, picking not only the highest importance walkers but a more

diverse group. This results in a more thorough sampling of the whole work distribution, and

indicates that the REVO resampler will be more efficient to work with and develop further

moving forward.

REVO is also compared to an existing Diffusion Monte Carlo algorithm and was found

to show smaller errors in free energy for large ensembles of trajectories for the ϵ = 20 kcal/-

mol system. In these calculations, for comparative purposes we used the same parameters

between the REVO, Importance Resampler and Diffusion Monte Carlo algorithms, when-

ever possible. In theory, a more exhaustive search of parameter space, such as the use of

a nonzero entropy trigger may improve the results obtainable by Diffusion Monte Carlo.

Larger trajectory sets may also be beneficial for improving results, as it has been shown that
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the (intrinsic) RMSE of Diffusion Monte Carlo goes to zero as the number of trajectories

goes to infinity[132]. It could be surprising that REVO, which enhances sampling of the

entire work distribution, including higher-work trajectories, would outperform an algorithm

that explicitly focuses only on those trajectories that are most important for the calculation

of the work distribution. However, like the Importance Resampler, Diffusion Monte Carlo

is making predictions of the overall importance of a trajectory based on incomplete work

histories. These results imply that maintaining a set of trajectories with diverse work values

can result in better sampling of low work trajectories at the end of the simulation. We expect

this behavior to be even more important when moving to protein-ligand systems with more

orthogonal degrees of freedom.

We note that there is an interesting connection between the amplification factor used

in the Importance resampler and large deviation theory, in which paths are re-weighted

according to a factor e−sA, where A is an activity measured along a path and s is the

strength of an applied field [142]. This has been used previously to study dynamical phase

transitions, where the ⟨A⟩ or its derivative shows a discontinuity as a function of s, that

give insight into phenomena such as glass transitions [143, 144], synchronization to external

fields [84], and kinetic trapping during protein folding [145]. Methods such as Transition

Path Sampling can apply the e−sA field directly in their path acceptance step and sample

paths within a given s-ensemble. In contrast, in the Importance resampler only a subset

of the weighted ensembles are chosen according to I(W ). This said, the possibility of a

dynamical phase transition of ⟨βW ⟩ in response to µ is an intriguing direction for future

work.

To further improve upon the promising results of the REVO resampler for work calcu-

lations, new distance metrics can be created that focus on increasing the cloning of the low

work values exclusively. Based on these results we also anticipate that traditional weighted

ensemble binning of the work distribution would also perform well. However, unlike REVO,

suitable bins would need to defined along the work axis, which would be different for each
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system and would be difficult to predict beforehand. In addition, sampling efficiency and ac-

curacy could be improved by performing simulations in both the forward and reverse direction

[146]. The potential for REVO to accelerate free energy calculations within a bi-directional

framework will be studied in future work.

Here we use the notion of a trajectory “activity”, which is a history-dependent observable

associated with each trajectory. This is implemented with the WEPY software package and

can be written to be system specific and work with either a distance metric (e.g. in the

REVO algorithm) or directly with a specific resampler (e.g. in the Importance resampler).

The utilization of activities in weighted ensemble resampling could find use in systems looking

at mobility. For instance, glass transitions could be studied using an activity measuring mean

squared displacement, and ion transport could be studied using an activity measuring ion

flux through a pore. Another example of a trajectory activity is the classical action, which

could be used to calculate probabilities of trajectories[147].

In this work we examine a very simple two-atom system with umbrella potentials defined

by the inter-particle separation. For larger, more complex systems (protein-peptide, protein-

ligand), there can be many possible (un)binding pathways [148, 149]. While general reaction

coordinates, such as the inter-particle separation, can be used to describe the unbinding

process, the efficiency of generating low-work trajectories will likely depend on the proper

choice of reaction coordinate. Fortunately, the combinations of methods presented here

offer many opportunities for modification. For instance, the functional form of the pulling

force could be changed, such as making it a double-well potential that gradually destabilizes

the bound state. The REVO resampling algorithm could also take into account distances

between unbinding trajectories to promote a diversity of transition paths as well as work

values. Alternatively, instead of restraint potentials, small, randomly oriented forces can be

applied to an unbinding ligand, such as in the Random Accelerated Molecular Dynamics

(RAMD) method [150]. This could allow for efficient free energy calculations while requiring

no previous knowledge of the unbinding pathway.
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CHAPTER 3

LOCAL ION DENSITIES CAN INFLUENCE TRANSITION PATHS OF
MOLECULAR BINDING

This work is reproduced from “Nicole M. Roussey and Alex Dickson, Local Ion Densities

can Influence Transition Paths of Molecular Binding, Frontiers in Molecular Biosciences.

9, (2022) https://doi.org/10.3389/fmolb.2022.858316”[26]. The work is presented here as

published except that the supplemental figures are included in the appendix.

3.1 Introduction

Atomistic simulations are a broadly used method to better understand the microscopic

interactions that govern ligand binding and unbinding and to calculate critical values such as

transition rates and free energies. Both rates and free energies can in principle be computed

with straightforward molecular simulations, starting in either the bound or unbound state.

However, the cost required to simulate binding transition paths is typically prohibitive due to

high energetic barriers separating the bound and unbound states. To overcome these barriers,

a variety of enhanced sampling techniques can be employed, which commonly require the use

of a predefined reaction coordinate: a single collective variable that describes the progress

of the (un)binding reaction.

The use of proper reaction coordinates can lead to improvements in the convergence of

free energies for enhanced sampling methods [63] and is necessary for accurate path-based

free energy calculations in biological systems [151]. Many methods have been developed to

seek out optimal reaction coordinates including but not limited to VAMPnets [64], DiffNets

[61], Deep-TICA [62], SGOOP [63], and AMINO [60]. All of the above methods construct

a reaction coordinate from a set of candidate features that are either predefined or require

user intuition of the (un)binding process.

Significant effort has been dedicated to understanding the role of water in the ligand

(un)binding process, including binding pocket solvation effects and bulk and single molecule

effects [152, 153, 154, 155]. Water molecule density has been included in reaction coordi-
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nates through the utilization of Deep-LDA [156]. This method successfully found a complex

reorganization of the water structure in unbinding for use as a reaction coordinate and has

been able to produce accurate binding free energies [155]. The role of ions along molecular

binding pathways is much less understood. Ion distributions surrounding molecules such as

double stranded DNA [33] and RNA [34] have been studied and it has been found that ion

affinity for molecules such as cyclodextrins and DNA is dependent on the force field used [35]

as well as the water model employed [33]. A difference in unbinding rates has been found

between implicit and explicit ions in simulation, with implicit ion representations overesti-

mating unbinding rates across a broad range of ion concentrations [157]. However, it appears

that little is known about the effects of changes in ion densities along ligand (un)binding

pathways.

Recent studies have demonstrated that adaptations of the WE method [68, 69, 32] can

efficiently generate ligand binding and unbinding pathways that can then be used to de-

termine rates and binding free energies [74, 9, 158]. Specifically, an extensive analysis was

conducted on a series of host-guest systems containing small, organic guest molecules (“G3”

and “G6”) interacting with “octa-acid” hosts (“OA”) (Fig. 3.1), which were originally part of

the SAMPL6 (Statistical Assessment of the Modeling of Proteins and Ligands) SAMPLing

challenge [94, 90]. The REVO variant of the weighted ensemble method allowed for efficient

generation of large numbers of binding and unbinding events without employing biasing

forces that could perturb the (un)binding mechanism. This is notable as mean first passage

times of unbinding ranged up to hundreds of seconds for these systems. It accomplishes this

by running an ensemble of trajectories and periodically “resampling” this ensemble to shift

computational emphasis toward unique trajectories that are moving towards a target state,

and adjusting the probabilities of the trajectories accordingly. As a result, each unbind-

ing pathway has an associated statistical weight (ranging from 10−12 to 10−6) that governs

how strongly it contributes to the calculation of observables, including the unbinding rate

constant, koff .
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During these resampling steps, only the geometric relationship between the host and

guest molecules was used; the positions of the water molecules and ions were neglected.

Here, a time- and probability-dependent analysis of solvent based features including wa-

ter and ions is presented for unbinding trajectories from the OA-G3 and OA-G6 SAMPL

systems. We explore the significant differences in guest-ion interactions between high- and

low-probability unbinding events, also referred to as “exit points”, as well as differences in

spatial arrangements of ions during unbinding. In these simulations, we have found that the

generation of the most probable reactive paths requires fluctuations toward low ion densities

within certain regions of the simulation box, particularly in the space immediately above the

binding pocket. Differences in these ion densities along transition paths are associated with

up to 106-fold differences in unbinding probabilities, which motivates the future inclusion of

ion densities in (un)binding progress variables.

OA G3

G6

Figure 3.1: The OA-G3 and OA-G6 systems.The OA host molecule (left). The G3 (top
right) and G6 (bottom right) guest molecules.

3.2 Materials and Methods

Weighted Ensemble Sampling

The simulations analyzed here were previously generated [74, 158] with a variant of the

WE [68] method called "REVO" [32] utilizing the Wepy [75] software package. A generalized
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framework for WE is as follows (Fig. 3.2). WE uses an ensemble of trajectories that are

evolved forward in time in a parallel fashion. Each trajectory carries with it a statistical

weight (w) that governs the extent to which it contributes to ensemble averages. Generally,

WE simulations include two main steps: 1) An MD simulation step that moves trajectories

forward in time by a predetermined time interval, and 2) a resampling step that include

cloning and merging operations. Resampling is designed to both use cloning to increase the

number of trajectories that have a desirable value for a feature of interest, and to decrease re-

dundancy by merging trajectories that are similar based on the feature of interest. Together,

this process aims to diversify the trajectories within the ensemble with the goal of increas-

ing the probability of sampling rare or long-timescale events of interest for a given system.

When cloning a trajectory, two new independent trajectories with the same conformation are

created with half the probability, or weight (w) of the original. Merging two trajectories A

and B leads to the creation of trajectory C with weight wc = wa+wb. Trajectory C inherits

either conformation A or B with a probability proportional to wa or wb, respectively.

A central feature of a WE simulation is the resampling function (also referred to as a

“resampler”) that determines which trajectories are selected for cloning and which are selected

for merging. The resampler takes in an initial set of trajectories and returns a new set, which

is the outcome of a series of merging and cloning steps following the rules described above.

These new trajectories thus have conformations that are a subset of the initial conformation

set and the sum of trajectory weights is unchanged (typically equal to 1).

In order to determine transition rates, these WE simulations were run in a nonequilibrium

ensemble, where trajectories are created in the bound state and terminated in the unbound

state. The unbound state was defined using a boundary condition boundary condition (BC)

that is satisfied when the minimum host-guest distance is greater than 1.0 nm, following

previous work [148]. When the BC is reached, the trajectory contributes to the reactive

flux calculation according to its weight at the time of crossing, which we refer to as its

“exit point probability”. The exit point probability can be anything between the minimum
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and maximum values set when the simulation was run. An exit point or unbinding event

being considered “high-weight” or “low-weight”is relative, with this being dependent on the

weights of all exit points within the dataset. The weights of trajectories vary because they

are changed during the resampling steps that are done between rounds of dynamics in the

weighted ensemble algorithm.

Figure 3.2: General WE Framework. Every circle represents a trajectory in the ensemble.
Colors represent conformations and circle size represents probability, with all trajectories
beginning with the same conformation and probability. Trajectories are run for a
predetermined number of steps (dynamics), followed by a resampling step containing
merging and cloning procedures. This cycle repeats until the end of the simulation.

Resampling of Ensembles by Variation Optimization (REVO)

REVO [32] is a resampling algorithm for use with Wepy that works by maximizing a

function called the trajectory variation (V ). V is a scaled sum of the all to all pairwise

distances between trajectories in the ensemble (Eq. 3.1), where dij is the distance between

trajectory i and trajectory j and Vi is the variation for trajectory i.

V =
∑
i

Vi =
∑
i

∑
j

(
dij
d⋆

)α

ϕiϕj (3.1)
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The measurement of distance between two trajectories can be arbitrarily defined in the

REVO method. In this case it was defined as the root mean squared deviation of the ligand

after aligning the host molecules. As the host molecules have four-fold symmetry, four sep-

arate distances were calculated after aligning the hosts in the four symmetrically-equivalent

positions, upon which the smallest such distance was used for dij. ϕi is a non-negative func-

tion referred to as a “novelty” that signifies the importance of individual trajectories. In

this work is was solely a function of walker weight. d⋆, the “characteristic distance” is the

average distance after one cycle of dynamics, and is only used to make the variation function

unitless. The α parameter balances the value of the distance and novelty terms and was

set equal to 4. Other methodological details pertinent to data generation are available in

Ref. [74] and Ref. [158]. The overall goal of REVO is to optimize the value of V by cloning

trajectories with a high value of Vi and merging trajectories with a low value of Vi. See Ref.

[32] for more details of the REVO method.

Dataset information

The weighted ensemble data used for this analysis comes from papers published in 2020

[158] (the primary OA-G6 data set) and 2018 [74] (OA-G3 data set and a secondary OA-G6

data set). Briefly, the primary OA-G6 data set contains 10 simulations with 48 trajectories

each and 1500 cycles per trajectory that begin in the initial OA-G6-0 pose provided in the

SAMPL6 SAMPLing challenge [90]. The 2018 data sets contain five simulations each with 48

trajectories and 2000 cycles per trajectory, each beginning at one of the five initial poses for

the corresponding system. Reactive paths begin in the bound state and end in the unbound

state when a BC is hit. The BC is defined as a 1.0 nm minimum distance between the host

and guest molecules.

3.3 Results

We find that each reactive path can be split into two phases: i) initial departure from

the bound state, and ii) full separation of the host and guest. There are often many cycles
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between the guest physically leaving the binding pocket of the host and the BC being hit. It

was determined that in all of the reactive paths generated, a COM-to-COM distance of 0.7

nm indicated an irreversible transition between these two parts (Fig. B.1). This can be seen

as a physical “commitment to unbinding” point after which rebinding does not occur, where

the guest has just been released from the partially solvated binding pocket (Fig. 3.3A). The

cycle corresponding to this point is found for all reactive paths and used for analysis; we

refer to this point as t0.
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Figure 3.3: Analysis of t0 poses. A) The OA host molecule with the G6 ligand in the
starting pose (multi-color) and example t0 poses (pastels). Some atoms from the host have
been removed in A for clarity. B) Average probabilities from -30 cycles to the final
unbinding event organized by unbinding probability for the 2020 OA-G6 data set. C) The
average number of cycles between t0 and the unbinding event for OA-G3 (blue) and the
2020 OA-G6 data set (gray) organized by unbinding probability.

When the BC is hit for the reactive paths, the unbinding probabilities varied between

10−12 and 10−6 for OA-G3 and between 10−12 and 10−7 for OA-G6. The low probability exit

points are highly abundant for both OA-G6 and OA-G3, whereas the high probability exit

points occur with a very low frequency for both systems.

Overall, the number of exit points increases as the probability of the exit points decreases

(Table 3.1).At and before the t0 point, the probabilities of the reactive paths are roughly the same,

with a value of 10−3 with only the probabilities following t0 varying based on exit point

probability (Fig. 3.3B). The number of cycles between t0 and the unbinding event also

correlates to the exit point probability, with high probability exit points having ∼5 cycles

between the two points, and ∼20 cycles for low probability exit points (Fig. 3.3C). There is
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Table 3.1: The number of observed unbinding events grouped by exit point probability.
The OA-G6 row corresponds to the OA-G6 2020 dataset.

Number of Unbinding Events
System 10−6 10−7 10−8 10−9 10−10 10−11 10−12

OA-G6 0 7 17 112 359 652 2220
OA-G3 10 18 88 195 483 1116 4103

a steady increase in the average number of cycles between t0 and the unbinding event as the

probability of the trajectories decreases.

These differences prompt the question: are there differences in physical features associ-

ated with this large variation in exit point probability? To answer this question, a set of

physical features was chosen and the values of those features were calculated for every cycle

of every reactive path generated. The features in question include the number of waters in

the binding site of the host, the number of ions around the upper negative charges of the

host molecule, the number of ions around the guest, and the number of waters around the

guest molecule (Fig. 3.4A). To calculate these features, a continuous logistic function was

used: f(r) = 1 − 1
1+(e−S(r−r0))

, where r is the minimum atomic distance between the two

entities. We use two different sets of values for the interaction radius (r0) and steepness (S)

parameters: r0 = 3 Å, S = 17 or r0 = 5 Å and S = 12) (Fig. 3.4A). The sum of f(r)

across all ions (or waters) is a continuous count of the number of molecules of that species

surrounding the host (or guest) for that cycle.

It was found that some features were consistent or had only a slight variation across

all exit point probabilities, such as the number of binding site waters and the number of

waters surrounding the guest molecule (Fig. B.2). However, some features were found to

show trends that differentiated the high- and low-probability exit points. These features

included the total number of positive ions surrounding the upper negative charges of the

host (Fig. 3.4B and C) and the number of positive ions surrounding the guest molecule (Fig.

3.4D and E). In both OA-G6 and OA-G3 there is a general trend of the number of ions

surrounding the upper negative charges of the host increasing as the exit point probability
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increases, although this is not observed for 1e−7 exit points in the OA-G6 dataset. There is

also a clear trend of increasing guest-Na+ interaction as the exit point probability decreases

including before, at, and after the t0 point. Similar trends were observed for features on the

3 Å scale (Fig. B.3).
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Figure 3.4: Feature Analysis. A) A visualization of the region of space considered for the
guest-ion features using the G6 ligand. The maximum distance for the 5 Å scale is in gray
and the 3 Å scale is in blue (top). The two logistic functions used to determine the
molecule counts (bottom). B-E) Molecule counts for Na+ ions with results organized by
both time and exit point probability. The legend in C applies to all four plots. The average
total ion count (5 Å scale) around the upper negative charges of the host for B) OA-G6
and C) OA-G3. The average total ion count (5 Å scale) around the guest for D) OA-G6
and E) OA-G3. OA-G6 results correspond to the 2020 data set.

As we find that the interaction between the guest and Na+ ions correlates with the

probability of the unbinding trajectories, we now examine Na+ ion densities in the region of

space directly above the host. Specifically, we examine a cylindrical region of space beginning

immediately above the host and ending at the top of the box (Fig. 3.5A). We find that this

region is critical to determine the outcome of dissociation trajectories that have reached t0.

The autocorrelation of ion density in this region (C(τ)) is surprisingly long-lived; it follows
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a single exponential decay with a timescale of 77 ns (Fig. 3.5B).

Fig. 3.5C shows the average number of ions in the cylinder for cycles [t0 − 3, t0 + 3]

for each reactive trajectory. An average of 1.47 ions was found in upper cylinder space

when averaged over all available data (including reactive and non-reactive trajectories). The

cylinder ion densities of reactive trajectories were found to be significantly lower than the bulk

average regardless of exit point probability. A striking relationship was observed between

this ion density and the exit point probability that was consistent across all data sets with

highly weighted exit point probabilities (Fig. 3.5C), where highly-weighted exit points had

a significantly lower average number of ions in the cylinder. Overall, highly weighted exit

points had less ions above the host, and subsequently near the guest at t0, with this number

gradually increasing as the exit point probability decreased (Fig. B.4).
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Figure 3.5: Ion Density Analysis. A) A diagram showing the simulation box and the
cylindrical space above the host where the number of ions (η(t)) is determined. The
equation for calculating the autocorrelation of this quantity (C(τ)) is shown. B) An
autocorrelation plot of the cylindrical ion density (η(t)) is calculated using all reactive and
non-reactive trajectory data. C) The average number of ions in the cylinder space above
the host for OA-G3 (dark blue), OA-G6 (2020, gray), and OA-G6 (2018, cyan). The
average from 4500 random simulation cycles is shown in red.

To explain these findings, we first analyzed the electrostatic forces on the guest molecule

for all OA-G6 reactive trajectories at the t0 point for one ensemble of the OA-G6 2020 data

set. This was done by first removing all forces from the system other than the nonbonded

(electrostatic) forces. Then the force on the ligand was determined at key points along the

unbinding trajectories and average forces were determined for each exit point probability
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group. Results are shown for the initial bound cycles (cycles 0-6) and for the t0-surrounding

cycles used for the cylinder-ion analysis (Fig. B.5). We find that the net electrostatic

force is pushing the guest outward from the host, and that the magnitude of this force is

about 20 kJ/mol/Å higher in the initial pose (80 kJ/mol/Å) than it is at t0 (60 kJ/mol/Å).

No significant difference is found for exit points of different weights for both the overall

magnitude of the electrostatic force or the z-axis contribution to the force (B.5 A and B).

We found no significant difference at t0 across all exit point probabilities despite the difference

in cylinder ion-occupancy.

An alternative explanation is that differences in occupancy change the likelihood of ion

interaction after the t0 point. This is consistent with our observations in Fig. 3.4D and E and

would increase the number of cycles required to hit the BC (Fig. 3.3C) as well as the extent

of their exploration of the simulation box. Exit point locations were determined for both

the highest and lowest probability exit points for both OA-G6 (10−7 and 10−12) and OA-G3

(10−6 and 10−12). For both systems, it was found that for high probability exit points, most

guest molecules reach the BC directly above the host, whereas the low probability exit points

hit the BC at a wide distribution of points surrounding the host molecule (Fig. 3.6).

A B

Figure 3.6: Exit Point Analysis. A) Unbinding event locations for exit points with
probabilities 10−7 (red) and 10−12 (gray VolMap) for OA-G6. B) Unbinding event locations
for exit points with probabilities 10−6 (red) and 10−12 (gray VolMap) for OA-G3. The
surfaces show a density contour (Isoval) of 0.0001 in both panels.
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3.4 Discussion

In summary, we find that location-dependent ion densities play a significant role in the

unbinding process for the OA-G6 and OA-G3 systems. These systems are widely used

for both the testing and development of force fields and numerous computational methods

[90, 94, 74, 159, 160, 161] necessitating a thorough understanding of the mechanics of their

unbinding. It is likely that ion densities play such a prominent role due to the charged nature

of these systems (-8 for the host and -1 for the guest). Similar effects might also be observed

in biological systems with even more significant charge densities such as calsequestrin [162],

a protein necessary for muscle relaxation/contraction, with a net charge of -64, as well as

systems with nucleic acids, which have a charge of -1 per nucleotide.

Further exploration and utilization of the effects of ion densities on ligand (un)binding

could be done via various methods. Constraints on spatial densities of ions could be included

in simulations to further examine the relationship between ion densities and unbinding rates

or free energies. One possible strategy would be to conduct 2D Umbrella Sampling [163, 164]

simulations that include a direct descriptor of (un)binding, such as the host-guest center-of-

mass distance, and the ion density added as a second collective variable. Ion densities (and

other features of interest) could also be utilized for resampling purposes for weighted ensemble

simulations for the determination of distances between trajectories. This could encourage

cloning operations of trajectories with ions in desirable locations, potentially allowing for

more efficient generation of high probability unbinding events.

In weighted ensemble sampling, the equilibrium probability of a state is obtained by

summing over the weights of all trajectories that have visited that state. This is similarly

true for reactive paths: the overall probability of a path is determined by a weighted sum of

trajectories. The analysis above breaks down a reactive trajectory set by weight, but it is

important to note that relationship between the weight of a trajectory and the probability of

the corresponding reaction path is not one-to-one. While high-weight trajectories in general

sample from high-probability regions of space, it is possible that a low-weight trajectory could
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visit a high-probability reaction path. For this reason, we should consider the low-probability

trajectories (e.g. p = 10−12) as a heterogeneous group that could contain observations

of high-probability reaction paths. However, the high-weight trajectories (by definition)

correspond only to high-probability paths.

Overall, these results suggest that greater attention may be required for ligand-ion inter-

actions across various simulation methods, including those that require a predefined reaction

coordinate. We find that there are many microscopic trajectories that contribute to the un-

binding path ensemble, some of which are much more likely than others. Methods that only

sample unlikely reactive paths could have difficulty computing accurate measurements of

transition rates and free energies. In addition, incorrect transition states (including inaccu-

racies in solvent degrees of freedom) can lead to incorrect hypotheses about the molecular

interactions that govern kinetics. This work underscores the importance of proper consider-

ation of ion densities along unbinding pathways, especially for charged systems.
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CHAPTER 4

QUALITY OVER QUANTITY: SAMPLING HIGH PROBABILITY RARE
EVENTS WITH THE WEIGHTED ENSEMBLE ALGORITHM

This work has been published as a pre-print and is currently under review. The work

is presented here as submitted except that the supplemental figures are included in the

appendix.

4.1 Introduction

The prediction of ligand (un)binding free energies and rates is important to make sys-

tematic improvements in potency during the pre-clinical stages of drug design [165]. Over

the years, numerous computational methods have been developed to predict both relative

and absolute binding free energies (and more recently, their binding and unbinding rates, kon

and koff , as well) [48, 166, 88, 114, 167, 168, 127, 169, 170]. These methods make different

assumptions that affect accuracy [1, 171] and methodological errors are compounded by more

general sources of error such as approximations in force-fields or the choice of water model.

The performance of free energy predictors can be rigorously examined by comparison with

experimental quantities [172, 173]. However, reported retrospective predictions are often

overly optimistic. A more authentic way of assessing these tools is through participation

in blind challenges such as the Statistical Assessment of Modeling of Proteins and Ligands

(SAMPL): a series of challenges for the prediction of quantities such as unbinding free en-

ergies for small molecule (host-guest) pairs [90, 94]. In this challenge, the computational

predictions are made without knowledge of the experimental results. Methods for the deter-

mination of free energies used in the SAMPL challenges vary from path sampling algorithms

such as weighted ensemble [90, 74] to alchemical perturbation techniques such as double

decoupling methods with thermodynamic integration or Hamiltonian replica exchange [90].

While there have been significant improvements in the methods used to determine free

energies, all methods come with limitations and drawbacks. Even for small systems including

the host-guest pairs provided by the SAMPL challenge, computationally calculated values of
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∆G for processes such as ligand (un)binding are often inconsistent, and can vary up to several

kcal/mol from experimental reference values [90, 94]. Efforts to determine “computational

reference values” using extensive sampling for a given set of conditions (e.g. force field, bind-

ing pose, temperature) are important to isolate methodological sources of error for competing

approaches. In the SAMPL6 challenge, the results of the OpenMM/HREX method – double

decoupling with Hamiltonian Replica Exchange – were used as the computational reference

value and were primarily used for the determination of relative efficiencies of different meth-

ods. It was found that even for simulations with seemingly converged predictions for ∆G

and nearly identical simulation parameters, results varied up to ∼1.0 kcal/mol, and while

sources of methodological error were determined, the exact source of these discrepancies was

unknown.

For alchemical methods, a major bottleneck is achieving adequate sampling of different

binding modes [174]. In addition, include the residual charges of vanishing atoms in single

topology methods or overlap of groups in the system in double topology models can also

be significant sources of error [1]. Alchemical methods also have the major drawback of

only determining free energy differences between the points of interest, and subsequently

do not provide free energy profiles for the unbinding/transition pathway of interest. Phys-

ical sampling methods, such as metadynamics [106, 107], umbrella sampling [103, 44], and

weighted ensemble (WE) [68, 69, 32, 175, 76], can determine these free energy profiles, but

are limited by the determination of collective variables and convergence issues. In partic-

ular, the WE method allows for the generation of continuous trajectories between points

of interest without employing any biasing forces. It does this by iteratively “resampling”

a collection of otherwise independent trajectories, referred to as “walkers”, each of which

carrying a statistical weight. The resampling process clones walkers in underrepresented

regions of interest – dividing their weight evenly among the clones – and merges walkers in

overrepresented regions – combining their weights in order to conserve probability. The use

of the “REVO” resampler (Resampling of Ensembles by Variation Optimization) [32] builds
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upon these benefits as it resamples trajectories based upon their distances to one another,

instead of constructing a set of bins. This makes it easier to sample high-dimensional spaces

of collective variables, while avoiding exponential increases in simulation time associated

with regularly-spaced bins.

Weighted ensemble methods are particularly useful for determining binding and unbind-

ing rates. This is done by measuring the transition flux into either the bound or unbound

state as the sum of walker weights per unit time. These binding and unbinding rates

are interesting in their own right, as they are necessary to model drug behavior in typi-

cal nonequilibrium conditions. In addition, the unbinding rate (or equivalently, its inverse,

the residence time) is the crucial quantity in some systems to determine drug efficacy in

vivo [6, 12, 74]. Although much progress has been made in the calculation of residence

times for pharmaceutically-relevant ligands, as of now there are no blind challenges for the

prediction of binding or unbinding kinetics. While researchers can compare to experimental

data, as discussed above sampling errors are hard to isolate, and connecting computational

and experimental models (for instance, in the definition of the bound and unbound states)

is not trivial. For this reason our approach is to indirectly validate the transition rate

calculations by using them to calculate binding affinities in the SAMPL challenges. Specif-

ically, we calculate the binding free energy (∆Gb) as a function of transition rates using:

∆Gb = −kT ln koff/(C0kon).

Although weighted ensemble has been successful in simulating a wide variety of long-

timescale events ranging from seconds, such as the opening of the SARS-CoV-2 spike pro-

tein [30] to multi-minute long events such as ligand unbinding [9, 31], a common problem

is the high variation of walker weights between independent replicates, which causes large

uncertainties in calculated observables such as free energies and rate constants [74]. REVO

itself was developed as a way to lower the variation between independent replicates, how-

ever previous applications of REVO to the same systems used in this work yielded rate

calculations with large differences from one run to another [74, 158]. This is caused by
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the rare occurance of high probability walkers crossing into the unbound state in unbinding

simulations, which introduces large jumps in transition fluxes and unbinding rates. Interest-

ingly, our previous work sought to identify microscopic determinants of these differences in

probability and found that there was a correlation between guest-ion interactions and the

unbinding weight of a given trajectory for several SAMPL systems [26]. Specifically, rare

high-probability trajectories that contributed most significantly to the unbinding rate had a

lower amount of guest-ion interaction than the far more numerous low-probability trajecto-

ries. By tracking the center of mass (COM)-to-COM distance (dCOM), we also found that the

high- and low-probability trajectories could be distinguished even relatively early on in the

unbinding pathway (dCOM = 7Å) based on their guest-ion interaction, prior to there being

a discernible difference in the trajectory weight. This dCOM distance also corresponded to

a “commitment to unbinding” point, where reactive trajectories left the the binding pocket

and no re-crossings were observed. This observation implies that the final weight of an un-

binding trajectory was, to some extent, already determined early on. If so, it suggests that

cloning trajectories with dCOM > 7Å is wasteful, as it is known that these trajectories are

going to unbind and cloning them takes up unnecessary space in the ensemble that could be

used to observe other pathways and events. Therefore, we believed that it may be beneficial

to prevent cloning of trajectories that had already reached dCOM = 7Å, as this leaves more

spots available in the ensemble for other events to occur and will result in the generation of

a high weight unbinding events.

Here, we determine unbinding free energies for four systems through binding and un-

binding simulations with a slightly modified version of the REVO algorithm. Three of these

systems come from the SAMPL6 challenge [90, 94]: “OA-G6”, “OA-G3”, and “CB8-G3”. For

these systems, we had prior knowledge of ∆G, however the binding free energy for a fourth

system, β-CD-PMZ, was predicted prospectively as part of the SAMPL9 challenge. To de-

termine these free energies, a modification of REVO [32] was used for unbinding simulations.

In this method, which we refer to as cutoff-REVO, cloning is prevented for trajectories that
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have met a predefined physical requirement that, when reached, means the system is likely

to commit to some activity of interest (here, unbinding). In the case of this work, that

requirement is a system-specific dCOM distance between the host and guest molecules. This

cloning cutoff value is determined from previously run standard REVO simulation data.

The use of a cloning cutoff produced ensembles with fewer unbinding events, but with much

higher weights. Using these simulations, koff , kon, and ∆G are calculated for all systems for

both standard and cutoff-REVO. The ∆G values are compared to computational (SAMPL6

systems) and experimental (all systems) reference values. Differences in resampling pat-

terns between standard REVO and cutoff-REVO are also analyzed and visualized using a

network algorithm. A comprehensive tutorial for running standard REVO unbinding simula-

tions, cutoff-REVO unbinding simulations, and rebinding simulations (along with all relevant

code) is provided along with this paper [176].

4.2 Methods

Host-Guest Systems

The SAMPL systems used here are small molecule pairs that come from the SAMPL6

and SAMPL9 challenges. These are artificial systems whose primary purpose is to test

the accuracy and efficiency of new computational methods for the prediction of binding

free energy. The systems used here include the OA-G6, OA-G3, and CB8-G3, systems from

SAMPL6 and β-CD-PMZ from SAMPL9 (Figure 4.1 and Figure C.1. These are all host-guest

systems, where the host molecules are referred to as: OA (octa-acid), CB8 (cucurbit[8]uril)

and β-CD (β-cyclodextrin). The SAMPL6 guest molecules are named according to their

index in the challenge: OA-G6 refers to 4-methyl pentanoic acid, OA-G3 refers to 5-hexenoic

acid, and CB8-G3 is quinine. PMZ refers to promazine hydrochloride.

The OA host molecule has a four-fold symmetry along the vertical axis and a −8 charge.

Its guest molecules, G6 and G3 are both small molecules with an explicit charge of −1. The

CB8 host has eight-fold symmetry along the vertical axis and two-fold symmetry along the
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horizontal axis. CB8, as well as its quinine guest are both neutral molecules. The β-CD

host has no net charge and seven-fold symmetry along its vertical axis. Its guest, PMZ, has

a +1 explicit charge.

A B C

OA

G6 G3

CB8

G3

β-CD

PMZ

Figure 4.1: Host-guest systems. Hosts are shown on top, and guests are shown on bottom.
A) The OA host and its guests, G6 (left) and G3 (right). B) The CB8 host and its ligand,
G3. C) The β-CD host and its ligand, PMZ. All panels use the default “atom name”
coloring scheme from VMD [95]: cyan=Carbon, white=Hydrogen, red=Oxygen,
blue=Nitrogen and yellow=Sulfur.

The Weighted Ensemble method

The WE [68] method is an unbiased path sampling method that allows for the efficient

generation of (un)binding paths. A generalized framework for this two-step method is as

follows: in the first step an ensemble of trajectories, also called “walkers”, are independently

propagated forward in time by molecular dynamics (MD), and in the second step these are

“resampled”, using merging and cloning operations. The purpose of resampling is to clone

walkers that are desirable and to merge walkers that are less desirable; this was originally

guided by the populations of a set of bins that spanned the conformation space, but can

be thought of more generally, as we discuss below. The goal of cloning, generally, is to

help increase the chance of escaping local energy minima and observe a process of interest.

The goal of merging is to reduce redundant trajectories in the ensemble and decrease the
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computational cost of the simulation.

In a WE simulation, all of the walkers have a probability, or a statistical weight. When a

walker undergoes a cloning operation, two new independent trajectories are created with the

same conformation as the original walker and half of its weight. When two walkers A and B

undergo a merging operation they are combined to create walker C with weight wc = wA+wB.

Walker C takes on either the conformation of walker A or B, with a probability proportional

to their weights. Generally, a resampling algorithm can be thought of as a function that

takes in the ensemble of trajectories, guides the merging and cloning process, and returns

a new ensemble where the conformations are taken from the input ensemble. In this new

ensemble, while the number of returned walkers can vary, the sum of the walker weights

(most often
∑n

i=1wi = 1), remains unchanged.

REVO

The resampling algorithm used to perform both the binding and unbinding simulations in

this work is the REVO (Resampling Ensembles by Variation Optimization) resampler [32].

After a cycle of dynamics has been run, REVO guides the merging and cloning operations

for an ensemble by maximizing the “trajectory variation”, V (Eq. 4.1), which is a scaled sum

of the all-to-all distances between the walkers in the ensemble.

V =
∑
i

Vi =
∑
i

∑
j

(
dij
d⋆

)α

ϕiϕj, (4.1)

where Vi is the “trajectory variation” for walker i, dij is a distance calculated between walkers

i and j, and ϕi is a “novelty” term that describes the significance of each individual walker

in the ensemble. The distance metric dij is different for unbinding and rebinding REVO

simulations, each of which is described below. The variable d⋆ is a “characteristic distance”,

which is used to make the variation function unit-less, and is equal to the mean of the

distance metric after one cycle of MD. Note that this value does not have an impact on

resampling behavior and is used for ease of comparison between varying distance metrics

for the same system. α is a parameter that balances the “exploitation” (novelty) with the
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“exploration” (distance) in the REVO algorithm. The novelty term, ϕ, is usually defined

according to the walker weight, wi, as follows:

ϕi = log(wi)− log
(pmin

100

)
, (4.2)

where pmin is the predefined minimum walker weight allowed in the simulation. This should

be set according to the anticipated probability of the events of interest. Here we set pmin to

a value of 10−12 to be consistent with previous work [74, 158].

After a cycle of dynamics has been run and the distances have been calculated, REVO

guides merging and cloning operations by first calculating the value of V . Walkers are then

proposed for merging and cloning as follows. The walker i is proposed for cloning which has

the highest Vi and a weight greater than 2pmin. A walker j, with the lowest value of Vj and

a weight less than pmax (here, set to 0.1) is chosen for merging. The walker k that is closest

to j with a weight such that wj + wk < pmax is identified as its merging partner. In order

to proceed, their distance djk must be less than or equal to a predetermined value referred

to as the “merge distance”. Once these three walkers have been selected for resampling, V

is recalculated as though the merging and cloning operations have been performed. If V

increased, the proposed resampling operations are carried out and the process of proposing

merging and cloning steps repeats until V no longer increases, or suitable walkers cannot

be found. At that point we terminate the resampling process and run the next cycle of

dynamics.

The cutoff-REVO algorithm

Here we examine a modified version of the REVO resampler, referred to as cutoff-REVO.

Overall, this algorithm works the same as the standard REVO algorithm described above,

but with an additional criterion used to determine if a trajectory in the ensemble should

be eligible for cloning. In this work, the eligibility function was a dCOM distance between

the host and guest (with the value specifically-determined for each system). If a trajectory

had a dCOM distance equal to or greater than the cutoff value, it was not eligible for cloning
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in that cycle. This cutoff value was determined from dCOM plots of unbinding events from

standard REVO simulations (described further in Section 4.3).

Although the eligibility function was based on COM in this work, in general, it is highly

flexible and can be customized on a system by system basis. For instance, this criterion can

be based on physical features such as RMSD, number of interactions or contacts, solvation of

binding pockets, or other non-structural features such as energies or work. We implemented

this eligibility function in the wepy software package [75]. Similar to other wepy objects,

such as distance metrics or boundary conditions, the eligibility function is implemented in

a modular fashion: users can implement and use their own customized eligibility function

without changing the source code for the REVO resampler.

Simulation details

All of the simulations here were run with wepy [75] and OpenMM [138]. The following

parameters were used for all simulations: 3000 cycles, 10000 dynamics steps per cycle with a

2 fs timestep, and a temperature of 300 K. Langevin integration was used for all simulations.

The β-CD-PMZ system was built with CHARMM-GUI [177, 178, 179], and the SAMPL6

systems were built with the Gromacs input files provided by the challenge organizers [90].

The β-CD-PMZ system was run at constant pressure of 1 bar, and OA-G6, OA-G3, and

CB8-G3 were run at constant volume.

For each SAMPL6 system, five potential binding poses were provided by the challenge

organizers. In previous work we found that the choice of initial binding pose is inconse-

quential as all poses quickly interconvert with one another [74]. Here we chose pose 0 as

the initial positions for all walkers in the REVO simulations for the OA-G6, OA-G3 and

CB8-G3 systems. For β-CD-PMZ, we generated our own starting poses for the unbinding

simulations. Three copies of the β-CD-PMZ system were built with the multicomponent

assembler in CHARMM-GUI [177, 178, 179]. Following the 1 ns initial OpenMM simulation,

a bound conformation was produced (Figure 4.2). The final frame of the bound run of the

three initial simulations was used to initialize unbinding simulations.
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BA

Figure 4.2: The β-CD-PMZ starting pose. A and B) Two different views of the binding
pose obtained where the dimethylamino tail of PMZ is in the binding pocket of β-CD.
Some atoms have been removed from β-CD in A for clarity. Both panels use the default
“atom name” coloring scheme from VMD [95] for the host molecule: cyan=Carbon,
white=Hydrogen, and red=Oxygen.

For the SAMPL6 systems, five “standard” REVO unbinding simulations were run (with-

out the eligibility criterion). The distance metric between walkers, dij, is calculated as the

RMSD of the guest atoms after alignment of the hosts. Note that in contrast to previous

work [74, 158], the distance calculations did not take into account the symmetries of the host

(4-fold for OA and 8-fold for CB8), for simplicity. The distance metric was implemented

using the ReceptorDistance class in wepy. We use the standard unbinding boundary condi-

tion UnbindingDistance where warping occurs when the closest host-guest atomic distance

is greater than 1 nm. In addition, five cutoff-REVO simulations were run, with a cutoff de-

termined from the reactive trajectories in the standard REVO simulations (more information

is available in Figure C.2) and the same distance metric and unbinding boundary conditions

as the standard REVO simulations. For the β-CD-PMZ system we ran 5 standard REVO

simulations and 5 cutoff-REVO simulations, using the same approach.

In the rebinding simulations, starting poses were taken from the unbinding events of

the standard REVO simulations. For simplicity, we used a different distance metric in the
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rebinding simulations for the β-CD-PMZ system, defined as follows:

dij =
1

dCOM,i

− 1

dCOM,j

. (4.3)

This is similar to the RebindingDistance metric used in Dixon et al [74], but is based on

the host-to-guest dCOM instead of the RMSD to a native structure. The difference of the

inverse is used in order to emphasize difference between smaller values of dCOM . In addition

we use a binding boundary condition that is also based on the dCOM . For this boundary

condition, binding events were triggered when dCOM < 0.4 nm. This value was determined

from Figure C.2, which shows a subset of the COM distances for the whole bound to unbound

transitions for all four systems. For OA-G6, OA-G3, and CB8-G3, we use rebinding data

that was previously generated in Ref. [74].

Figure C.2 was also used to determine the cutoff value for cloning eligibility. Coinci-

dentally, the determined “commitment to unbinding” points for all four systems was 0.7

nm. While it appears that the cutoff COM distance chosen could have been reduced for

the OA-G6 and OA-G3 systems, it was found in previous work (Ref. [26]) that for these

systems, rebinding can often occur below a 0.7 nm dCOM distance. The tutorial repository

associated with this article [176] contains everything needed to reproduce the results here,

including: code for the custom distance metric and boundary condition, scripts to run the

binding and unbinding simulations, scripts to plot the dCOM for reactive trajectories, and

scripts to extract the rebinding simulation starting poses.

Calculation of rates and free energies

With the WE method, rates and subsequently free energies can be calculated through a

method called “ensemble splitting” [74, 83, 84, 85, 86]. In this method, the equilibrium en-

semble is split into “binding” and “unbinding” ensembles. The binding ensemble is composed

of the trajectories that have most recently been in the unbound basin, and the unbinding

ensemble is composed of the trajectories that have most recently been in the bound basin.

This technique can be used with any set of non-overlapping basins. Here, the unbound
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basin is defined as a set of structures where the minimum host-guest interatomic distance

is greater than 1 nm, and the bound basin is either defined as a set of structures where the

dCOM distance is below 0.4 nm (for β-CD-PMZ) or when the ligand RMSD to the native

structure is < 0.1 nm (OA-G6, OA-G3, and CB8-G3).

Here, simulations are conducted entirely in either the binding or unbinding ensemble.

When a walker leaves its ensemble by entering the other basin, its weight is saved, and

the structure, which is recorded as an “exit point” then undergoes a process called warping.

When a trajectory warps, it is set back to its starting pose but its weight remains unchanged.

In this work, for the unbinding ensemble, the starting structure is the initial bound pose, and

for the binding ensemble, the starting structure is one of the initial unbound poses. Rates

are calculated via the trajectory flux that leaves one ensemble for the other: koff (4.4), kon

(4.5) and ∆G (4.6)can be determined as:

koff = ϕu =

∑
i∈U wi

T
, (4.4)

kon = ϕb =

∑
i∈R wi

CT
, (4.5)

∆G = kT ln
koff
C0kon

, (4.6)

where, ϕb and ϕu are the binding and unbinding flux, T is the elapsed time, the sum is the

sum of weights for the corresponding exit points, and C is the concentration of the guest

molecule. The code for this analysis is provided in the associated tutorial.

4.3 Results

Resampling trees show differences in merging and cloning behavior

For each host-guest system used, five unbinding simulations were run for both the stan-

dard REVO resampler and the cutoff-REVO resampler. In this Section, we focus on resam-

pling differences in the β-CD-PMZ system, as these are representative of the other systems as

well. We find that these resamplers have significant differences in their cloning and merging

behavior, which we visualize using “resampling trees” (Figure 4.3). These are directed acyclic
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graphs where each cycle of each walker is represented by a node. The nodes for each cycle

are evenly spaced along the vertical direction, with the earliest timepoints at the bottom of

the resampling tree. Connections between nodes show the continuation of walkers over time:

multiple connections between cycles show cloning events, and the absence of connections to

the next cycle indicates that the walker was merged into one of the other walkers. The sizes

of each node represent the weights of the walkers at a given timepoint, and in Figure 4.3 the

nodes are colored according to their dCOM value.
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Figure 4.3: Resampling trees for A) REVO and B) cutoff-REVO. Each tree shows the
cloning and merging behavior during their respective simulation, where each node
represents a walker at a given point in time. The trees move forward in time from bottom
to top. Nodes and edges are colored according to dCOM distance. Data from β-CD-PMZ.
For clarity, only the first 50 cycles are shown from a single run. Similar behavior was
observed in other runs.

We find that standard produces fewer cloning events per cycle (⟨nwc⟩ < 1), with slightly

fewer replicates (⟨R⟩) produced at each of these events, whereas cutoff-REVO has more

cloning events per cycle (⟨nwc⟩ = 1.9) with slightly more replicates produced at each event,
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on average (Table 4.1). As the simulation progresses the number of cloning events for stan-

dard REVO significantly decreases. This is in contrast to cutoff-REVO, where ⟨nwc⟩ stays

consistent over the entire simulation (Figure 4.4). After the first walker leaves the binding

site in standard REVO, we find that the majority of cloning events focus on high dCOM walk-

ers. This is consistent with REVO’s goal of maximizing the variation in the ensemble, but

this limits our ability to clone walkers that are closer to the binding site and generate new,

independent unbinding events. In contrast, for cutoff-REVO we see more consistent cloning

of trajectories that are earlier in the unbinding process. This is due to the lack of mass

cloning events that fragment the more unbound trajectories. Preventing this fragmentation

results in more slots being available for early-unbinding cloning events, as the trajectories of

interest that are beyond the cutoff are not taking up these spaces. Preventing the fragmen-

tation of unbound walkers results in the generation of fewer, but higher-weighted unbinding

events.

A BREVO cutoff-REVO

Figure 4.4: ⟨nwc⟩ over time for β-CD-PMZ using A) REVO and B) cutoff-REVO. The
average number of cloning events per cycle (⟨nwc⟩) broken down by simulation time (300
cycles per bin). Values are averaged over 5 runs and error are the standard error of the
mean.

The average dCOM distance for a cloning event for standard REVO across the five β-

CD-PMZ runs was found to be 1.1 nm ± 0.008, whereas it was 0.35 ± 0.0008 nm for

cutoff-REVO. As expected, the maximum dCOM of a cloning event was also much larger for
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Table 4.1: The average number of walkers cloned per cycle (⟨nwc⟩) and the average number
of replications made per cloning event (⟨R⟩) is shown. In addition, we show the average
(⟨dCOM⟩c), the minimum (Min. dCOM) and the maximum (Max. dCOM) value of dCOM in
the set of cloned walkers. Values are shown separately for REVO and cutoff-REVO. These
numbers are averaged across five runs and the errors are computed as the standard error of
the mean across the set of runs.

Method ⟨nwc⟩ ⟨R⟩ ⟨dCOM⟩c (nm) Min. dCOM

(nm)
Max. dCOM

(nm)
REVO 0.52 ± 0.14 2.71 ± 0.07 1.1 ± 0.008 0.14 ± 0.006 2.3 ± 0.013
cutoff-
REVO

1.90 ± 0.38 3.25 ± 0.03 0.35 ± 0.0008 0.10 ± 0.005 0.76 ± 0.004

REVO (2.3±0.013 nm) than for cutoff-REVO (0.76±0.004 nm). By shifting the emphasis of

the cloning events to lower dCOM walkers, cutoff-REVO also shifts emphasis towards higher

weighted walkers. The relationship between the dCOM and walker weights are shown in Figure

C.3. Figure C.3A shows that walkers with a weight < 10−7 are mostly in the unbound state,

with an average dCOM > 1.0 nm. As cutoff-REVO avoids the cloning of these walkers, the

emphasis is dramatically shifted from low- to high-weight walkers (Figures C.3C and C.3D).

Unbinding events, free energy, and rate analysis

All of these simulations generate numerous unbinding events, but with stark differences in

both the probabilities of the unbinding events and their number as seen in Figure C.4 (results

for OA-G3 and CB8-G3 shown in Figure C.4). For all four systems, standard REVO unbind-

ing simulations produce numerous unbinding events, although most of these had extremely

low probabilities. The highest weighted unbinding events are particularly important as they

dominate the calculation of unbinding rates in Eq. 4.4. For β-CD-PMZ, the highest weight

event obtained was 10−2 for both standard REVO and cutoff-REVO. We observe differences

in the highest weights for other systems: such as 10−7 and 10−3 (OA-G6), 10−6 and 10−3

(OA-G3), and 10−8 and 10−7 (CB8-G3), where the higher weights are always obtained by

the cutoff-REVO algorithm. Interestingly, the number of unbinding events for cutoff-REVO

did not increase as the exit point weight decreased; instead the unbinding event weights

were roughly normally distributed. The number of unbinding events for all systems also
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significantly decreased for all four systems as summarized in Table 4.2.

Table 4.2: The highest exit point weight obtained and the total number of unbinding
events observed for all four systems for both standard REVO and cutoff-REVO over five
simulations.

System REVO cutoff-REVO

Max. Wt. Total Max. Wt. Total

β-CD-PMZ 10−2 5303 10−2 137
OA-G6 10−7 16597 10−3 69
OA-G3 10−6 22901 10−3 224
CB8-G3 10−8 1246 10−7 93
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Figure 4.5: Unbinding walker weights for both methods. Walker weights at the time of
unbinding for standard REVO (left) and cutoff-REVO (right) for the β-CD-PMZ system
(A and B) and the OA-G6 system (C and D). The standard REVO algorithm showed a
much larger quantity of unbinding events. The total number of unbinding events in each
panel is as follows: A) 5303, B) 137, C) 16597, and D) 69.

The binding and unbinding rates for all systems were determined through the use of

the “ensemble splitting” method as described in Section 4.2. The binding rate is found by

dividing the rebinding trajectory flux by the guest concentration, where C = 1
NaV

and V

is the box volume (Eq. 4.5). Rolling estimates of the koff , kon, and ∆G are shown for

all systems in Figure C.5 for standard results and Figure C.6 for cutoff-REVO. We observe
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differences between the standard REVO and cutoff-REVO results in both the accuracy of the

final ∆G obtained and the consistency between runs as seen for koff values in Figure 4.6 and

Table 4.3. For the SAMPL6 systems, these values are compared to computational reference

values determined through OpenMM-Hamiltonian Replica Exchange [94, 90] simulations

that were run by the SAMPL organizers as a means to compare the effeciency of methods.

No computational reference value is available for the β-CD-PMZ system. Experimental

reference values are also available for all four systems. For the SAMPL6 systems, this value

was determined with isothermal titration calorimetry [94, 180]. The same method was used

to determine the free energy of unbinding for β-CD-PMZ, with more information on the

method used at the SAMPL9 GitHub page [181].

Table 4.3: The off-rates from REVO and cutoff-REVO simulations. All koff values are in
s−1. The mean first passage times are in ms. The uncertainties are calculated as the
standard error of the mean of the log of koff . They can be interpreted as the breadth of
the uncertainty in orders of magnitude.

System koff (REVO) REVO Error koff (c-REVO) c-REVO Error
OA-G6 3.3x103 0.89 2.5x104 1.48
OA-G3 2.1x103 0.85 1.5x104 0.64
CB8-G3 1.77 1.54 2.38 0.39

β-CD-PMZ 5.0x105 2.26 5.5x105 1.15

For cutoff-REVO, all systems have a final value of ∆G that is very close to either the

computational (OA-G3 and CB8-G3) or experimental (β-CD-PMZ and OA-G6) reference

value. Standard REVO obtained a very similar final ∆G to cutoff-REVO for the β-CD-

PMZ system, however standard REVO has a large uncertainty, with koff estimates varying

between runs by up to six orders of magnitude. The final ∆Gs obtained for CB8-G3 for both

methods were very similar; however, cutoff-REVO produced highly consistent runs for this

system with minimal error in ∆G (Figure 4.7), whereas standard REVO had an uncertainty

of 1.01 kcal/mol. The final free energies for REVO and cutoff-REVO as well as all available

reference values are shown in Table 4.4, with plots available in Figures C.5 and C.6. The

errors shown in Table 4.4 are the standard error for the final values determined for ∆G across

all five runs for each data set. Coincidentally, both OA-G6 and β-CD-PMZ have exactly the
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cutoff-REVOREVO
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βCD-PMZ

B

OA-G6

C

OA-G3

D

CB8-G3

Figure 4.6: Comparison of unbinding rates for REVO and cutoff-REVO for all systems.
Individual runs are shown as thin lines. Average unbinding rates are shown as thick grey
lines and uncertainties, computed using the standard error of the mean across the 5 runs,
are shown as the shaded grey regions. A)β-CD-PMZ.B) OA-G6. C) OA-G3. D) CB8-G3.
The horizontal axis represents trajectory length and not aggregate simulation time.
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same experimental binding free energy. With this in mind, both REVO and cutoff-REVO

provide the best rank ordering possible for these systems.

Table 4.4: Binding free energies calculated for all systems, as well as experimental and
computational reference values, where available. Computational reference values were
calculated using extensive Hamiltonian Replica Exchange simulations (Ref. [90]). All ∆G
values are in kcal/mol.

System ∆G (REVO) ∆G (c-REVO) ∆G (comp. ref.) ∆G (exp.)
OA-G6 -6.55 ± 0.53 -5.21 ± 0.81 -7.18 ± 0.06 -4.97 ± 0.02
OA-G3 -7.69 ± 0.55 -6.49 ± 0.41 -6.71 ± 0.05 -5.18 ± 0.02
CB8-G3 -11.35 ± 1.01 -11.17 ±0.13 -10.80 ± 0.20 -6.45 ± 0.06

β-CD-PMZ -5.05 ± 1.51 -5.00 ± 0.66 N/A -4.97 ± 0.02
RMSE (comp.) 0.74 1.2 - -
RMSE (exp.) 2.9 2.5 - -

The root mean squared error for REVO and cutoff-REVO are also shown in Table 4.4 as

compared to both the computational reference and experimental benchmarks. On average,

the REVO calculations agree to the computational reference to within 0.74 kcal/mol, which

is slightly lower than the cutoff-REVO RMSE of 1.2 kcal/mol. The difference between

these RMSE values is comparable to the uncertainties of the free energy estimates. The

lower computational reference RMSE for REVO is primarily due to better performance

on the OA-G6 system, which is higher for cutoff-REVO (−5.21 kcal/mol). Conversely,

the RMSE measured to experimental benchmarks is slightly lower for cutoff-REVO (2.5

kcal/mol) compared to standard REVO (2.9 kcal/mol). However, both of these values are

driven higher by large over-estimates of the free energy for CB8-G3. As this is consistent with

the computational reference, this suggests that force-field inaccuracies or some other feature

of the computational model (e.g. protonation states, oligomerization states) is inconsistent

with the experimental conditions. If this system is removed the RMSE drops to 1.7 kcal/mol

for standard REVO and 0.77 kcal/mol for cutoff-REVO.

4.4 Discussion

The predicted free energies of unbinding from the cutoff-REVO algorithm improved upon

those predicted by REVO in both their consistency across runs and their agreement with
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benchmark values. For OA-G3 and CB8-G3 the agreement with the computational refer-

ence values was improved, significantly in the case of OA-G3. For CB8-G3, both REVO

and cutoff-REVO showed good agreement with computational reference values, although

the consistency across runs was significantly improved for cutoff-REVO. For the OA-G6 sys-

tem, although agreement with the computational reference decreased for cutoff-REVO, the

∆G moved closer to the experimental value. We are only cautiously optimistic about the

agreement with experiment in this case, as we also observe the largest uncertainties in ∆G

for this system. In general, we view agreement with computational reference values as more

meaningful, as they separate out inaccuracies of the forcefield.

βCD-PMZ OA-G6

OA-G3 CB8-G3

A B

C D

Figure 4.7: Prediction of cutoff-REVO unbinding free energy for all systems. Individual
runs are shown as thin lines. Average free energies are shown as thick grey lines and
uncertainties, computed using the standard error of the mean across the 5 runs, are shown
as shaded grey regions. A) β-CD-PMZ, B) OA-G6, C) OA-G3, and D) CB8-G3 systems.
The horizontal axis represents trajectory length and not aggregate simulation time.

We also prospectively predicted the binding free energy for the β-CD-PMZ system and
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observe excellent agreement with the experimental quantity. This was achieved in a “blinded”

fashion, where we did not have knowledge of the quantity at the time of prediction. Re-

markably, the results in Figure 4.7A show that 4 of the 5 runs converged closely to the

experimental quantity by the second half of the simulation, and the ensemble estimates of

both REVO and cutoff-REVO agreed with the experimental value to within 0.1 kcal/mol.

While we are encouraged by this agreement, we are again cautiously optimistic, as it is possi-

ble this resulted from fortuitous cancellation of error. However, a more complete assessment

of REVO and cutoff-REVO requires prediction across a larger set of ligands, such as the

complete ligand set in the SAMPL9 challenge, but this was not feasible in this work due to

the computational costs involved.

Another factor to consider for the β-CD-PMZ system is the bound starting structure used

to initialize the unbinding simulations. This was unknown beforehand, and was generated

using short, straight-forward simulations, initialized in the unbound state. While β-CD has a

ring-like structure similar to CB8, it is not C2-symmetric around the horizontal axis, allowing

for distinct bound poses in the top and bottom of the ring. In addition, the PMZ ligand

has many feasible modes of interaction with β-CD in addition to that shown in Figure 4.2,

with the dimethylamino group inserted into the ring. In previous work on SAMPL6 systems,

we found that five different starting poses were “kinetically indistinguishable”: they quickly

interconverted with one another on a timescale that was much faster than the unbinding

process [74]. In contrast, our previous work on the PK-11195 ligand dissociating from the

TSPO membrane protein showed six poses that were not all able to interconvert before

unbinding, and thus had pose-specific unbinding rates [31]. At this point, it is unclear which

scenario applies to β-CD-PMZ, although we plan to address this in more detail in future

work.

cutoff-REVO is slightly more computational expensive than standard REVO, due to the

necessity of running a standard simulation to generate the data necessary to determine both

a cutoff feature and its correspondingly value (if this information is not already known).
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The feature used for cloning eligibility is highly flexible and can be whatever physical aspect

of the system is relevant to the process that the user wants to observe. This could be a

given number of contacts, RMSD to a reference structure, dCOM distances, energies, work,

specific residue interactions etc., applicable a wide range of biological activities of interest

such as ligand (un)binding, protein-protein interactions, or conformational changes, amongst

others. The value of the cutoff used can be seen as a knob that can be turned, changing the

eligibility function’s influence on the resampling patterns and subsequently the boundary

crossing weights generated in the simulation. Overall, this method provides improvements

in the prediction of free energies using complete transition paths.

4.5 Conclusions

Restricting the cloning behavior in the REVO sampling method resulted in dramatic

changes in the resampling behavior. As a result, the new “cutoff-REVO” algorithm heavily

emphasized cloning of walkers at the early stages of unbinding. Although this affected the

number of unbinding events observed by the algorithm, the total weight of the unbound

trajectories was higher for all four systems examined here. As such, cutoff-REVO was able

to generate unbinding events with weights up to 104 times higher than standard REVO for

the same system, indicating that these unbinding pathways occur with higher probability. As

cutoff-REVO consistently outperformed standard REVO, we determine that for unbinding

events, quality matters more than overall quantity.
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CHAPTER 5

SUMMARY, IMPACTS, & OUTLOOK

In section 1.5, the goals of this thesis were outlined. We can now go back and discuss these

goals with a focus on what was accomplished, what could have potentially been improved,

and the overall impacts of this collection of work.

The first goal of this thesis was to combine the JE with WE to determine unbinding free

energies from short, nonequilibrium simulations. In this work two different methods were

developed, one which focused resampling on trajectories with a high value of importance

(Importance Resampling), and another method (history-REVO) that takes a trajectory’s

entire history of work into account for resampling purposes.

In Chapter 2 we tested these two different methods against straight forward simulations

as well as a brief comparison to DIFFMC. We found that the Importance Resampler method

was extremely sporadic. This is the result of one major pitfall of this method: regardless of

how ‘important‘ a trajectory is in one cycle, this does not necessarily mean that that tra-

jectory would be equally/more ‘important‘ in the following cycle(s). To better this method,

we implemented an ‘amplification factor‘ to assist exploration of the tails of the work dis-

tributions, but it was found that as this value increased beyond 1, the unbinding energies

determined decreased in accuracy. This occurs at higher amplifications because the Impor-

tance Resampler selects several high-importance trajectories at each resampling step to be

cloned repeatedly, and these trajectories would often have a change in work occurring in the

next dynamics step that results in a lowered importance in the next cycle, the same issue

previously found.

However, we found that the history-REVO method was faster to converge to the correct

unbinding free energy than the Importance Resampler and straight-forward dynamics. This

method initially appeared promising as a potential future method for the determination of

unbinding free energies for systems of interest. It is worth noting that the history-REVO

method is innovative in that the ‘distance‘ between trajectories was not directly dependent
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on root mean square deviation (RMSD)s between positions (or wholly position dependent

in general) and considered an ‘activity‘ based distance. Also, this method is noteworthy as

it considers the entire history of the trajectory in the resampling process represented by a

running sum of work. These advancements open the door to be able to resample trajectories

based off numerous, non-atom-index oriented features of a system. These features could

include things such as agreement with desired quantities, ion transport, etc. among many

other options relevant to biochemical systems.

While this method is a promising development, certain changes could increase both its im-

pactfulness and overall success, such as obtaining a more complete picture of the (un)binding

process. This would allow us to have a more system-specific and descriptive λ parameter to

potentially increase the accuracy of free energy calculations. While the COM-to-COM pa-

rameter used can describe unbinding, it cannot distinguish between high- and low-probability

pathways and consequently may generate low-probability pathways that require higher ap-

plied work. As we found with the work done on the OA-G6 system, a COM-to-COM only

λ parameter was insufficient to describe the unbinding of the system and more detail could

have been a mitigating factor for variability between simulations.

In Chapter 3, we aimed to learn important solvent-based features of the host-guest un-

binding pathway. In this work we studied several differences between high- and low-weight

unbinding events for the host-guest systems OA-G6 and OA-G3. In particular, we found

differences between the guest-ion interactions, with high-weight unbinding events having

fewer of these interactions. We also found that there are differences in ion densities in the

simulation box with high-weight unbinding events having fewer ions in regions of space rel-

evant to unbinding. Also discovered was what we called t0, or a commitment to unbinding

point for both of these systems fairly early in the unbinding pathway. This is of significance

due to the number of papers published on the (un)binding of these systems and their use

in the development of new computational methods. In addition, as these weight-based dif-

ferences are related to the charged nature of the host and guest, these results could give
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insight into interactions involving highly charged biologically relevant molecules of interest

such as DNA and RNA. This work is also of current relevance as learning more accurate

descriptors of transitions and unbinding paths is an area of ongoing work. Many methods

are currently being developed to define collective variables that represent these paths that

can be used in resampling, such as VAMPnets [64], DiffNets [61], Deep-TICA [62], AMINO

[60],and SGOOP [63] and these methods should include solvent based features. This work

helped to show the importance of the role of solvent and ions along (un)binding pathways.

On the notion of t0 and commitment to unbinding points, we reached the third goal

of this thesis as discussed in Chapter 4, which was to use features learned about host-

guest unbinding with a new variation of the REVO method to decrease variation between

simulations of the same system and increase accuracy of ∆G calculations. In this work, a new

modification to REVO was developed called cutoff-REVO. In this method, when the COM-

to-COM distance between a molecule pair of interest reaches a certain value, that trajectory

becomes ineligible for cloning operations during the resampling step in simulation. This was

implemented because it was found in previous work that some systems commit to an action

of interest (here, unbinding) early in the pathway. The prevention of cloning following this

point allows trajectories to reach their desired state at a much higher weight and leave room

open in the ensemble for the exploration of other pathways.

In this work, we found that REVO produces thousands of unbinding events for our

systems of interest, whereas cutoff-REVO produces often one hundred or less for the same

amount of sampling time. The key difference was that the events produced by REVO were

of significantly lower weight, resulting in less weight reaching the unbound state despite

the difference in the number of events. Subsequently, cutoff-REVO produced more accurate

and/or lower error ∆G predictions for all four systems tested, and had better convergence

of koff , a critical value in the drug design process.

Two of the systems tested, OA-G6 and β-CD-PMZ obtained ∆G values that were very

close to the experimental unbinding free energies. While this is an exciting result, it must
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be seen with cautious optimism as these simulations (OA-G6) were run with the same pa-

rameters as the computational reference values, and the result may by due to a cancellation

of errors.

To build upon this work, more time could be dedicated to determining the correct starting

pose for the β-CD-PMZ system. Due to the non-symmetrical nature of both the host and

guest in this system, there are numerous other poses possible that could be the correct

starting pose. Analysis of rebinding simulations could be one means of determining the

accuracy of our starting pose. Despite these potential pitfalls, this new cutoff-REVO method

was more accurate and consistent than its predecessor REVO, and was only slightly more

computationally expensive. The determination of both rates and free energies at the same

time is challenging. This work is one of the first to try this in a blind challenge, and presents

a starting point for developing best practices for a complex goal. Due to the highly flexible

nature of what the cutoff can be, this algorithm can also be used to implement REVO in

a way that considers things such as location of the walkers on the energy landscape, e.g.

committor probability, and even the estimated Mean First Passage Time to the target, the

latter of which has found to be an extremely effective binning strategy for WE[182].

Overall, the goal of the work done in this thesis was to learn about systems of interest

and to develop new methods for the determination of values of interest such as ∆G and

koff . While some of the initial work with the JE was fairly unsuccessful when applied to

more realistic systems, this work led to the development of other efficient and successful

methods. To better the JE method, much was learned about highly-utilized test systems,

for which knowledge of the (un)binding pathways is very important. In the study of this

topic, the commitment-to-unbinding point was discovered. Using this information, a new

resampling algorithm was developed that permitted accurate and consistent ∆G and koff

predictions. koff predictions are of particular interest due to the value’s relationship with RT

and subsequently drug efficacy. The work done in this thesis provides insights into systems

of interest and provides new, efficient means of obtaining information critical to the drug
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design process.
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APPENDIX A: ENHANCED JARZYNSKI FREE ENERGY
CALCULATIONS USING WEIGHTED ENSEMBLE
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Figure A.1: Error in ∆∆F for importance resampling for multiple amplification values (µ).
Error is shown for ϵ = 20 for 1000-trajectory sets using 53 and 500 resampling cycles. Error
bars show uncertainty calculated using three sets of trajectories. Horizontal lines represent
the equivalent values obtained for straightforward and REVO for 1000 trajectories (error
not shown). For 53 cycle simulations, we found that values of µ < 1 perform best, with the
RMSE gradually increasing as the value of µ increased For 500 cycle simulations, the
RMSE stayed within a smaller range with smaller error bars.
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Figure A.2: Error per dataset. The convergence of the unbinding free energy for ϵ = (A) 2,
(B) 5, (C) 10, and (D) 20 kcal/mol for five separate sets of IMP simulations as a function
of the total number of walkers used to calculate each free energy value for all values of ϵ.
For IMP simulations, µ = 0.1. The horizontal lines represent the value (error not shown)
obtained from 8000 trajectories for straight forward and REVO simulations.
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Figure A.3: Error vs Time. The convergence of the unbinding free energy for ϵ = (A) 2,
(B) 5, (C) 10, and (D) 20 kcal/mol for straightforward, REVO, and IMP as a function of
the total number of walkers used to calculate each free energy value for all values of ϵ. For
IMP simulations, µ = 0.1. For IMP, files were randomly selected from all five sets of data
shown in A.2.
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APPENDIX B: LOCAL ION DENSITIES CAN INFLUENCE TRANSITION
PATHS OF MOLECULAR BINDING
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Figure B.1: Center of Mass to Center of Mass Distances. The COM-to-COM distance
between the host and guest is shown for several hundred unbinding events for OA-G6.
Rebinding only occurs below 0.7nm (orange line).
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A B
OA-G6, 5Å
Bind. Site Wat.

OA-G3, 5Å
Bind. Site Wat.

OA-G6, 5Å
Guest Wat.

OA-G3, 5Å
Guest Wat.

Figure B.2: 5Å Analysis of Water Based Features. Molecule counts for waters with results
organized by exit point probability. The legend in Fig. B.3 applies to all four plots. The
average total water count (5Å) in the binding site of the host for A) OA-G6 and B) OA-G3.
The average total water count (5Å) around the guest for C) OA-G6 and D) OA-G3.
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Upper Host – Na+

OA-G6, 3Å
Guest – Na+
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Figure B.3: 3Å Analysis of Ion Features. Molecule counts for Na+ ions with results
organized by exit point probability. The legend in A applies to all four plots. The average
total ion count (3Å) around the upper negative charges of the host for A) OA-G6 and B)
OA-G3. The average total ion count (3Å) around the guest for C) OA-G6 and D) OA-G3.
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Figure B.4: Z-Axis Ion Density. The average number of ions in the region of space above
the host, at host level, and below the host for the t0 adjacent cycles ([t0 − 3, t0 + 3]) for all
OA-G3 exit points. Corresponding errors by weight are as follows:
+/− 0.78401176, 0.77167242, 0.52423166, 0.35946138 , 0.21856345, 0.14066211, 0.07147705.
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C D

Figure B.5: Electrostatic Analysis. A) The magnitude and B) the z-axis contribution of
the electrostatic force for the initial cycles (cyan) and t0 cycles. The average of the initial
cycles is shown as a horizontal red line. C) The force vectors for the initial cycles. D) The
force vectors at t0. For both C and D, the gray bar is the Z axis. Red, orange, yellow,
green, blue and violet correspond to 10−7 to 10−12 exit point probabilities.
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APPENDIX C: QUALITY OVER QUANTITY: SAMPLING HIGH
PROBABILITY RARE EVENTS WITH THE WEIGHTED ENSEMBLE

ALGORITHM

A

B

C D

Figure C.1: Structures of the four ligands used. The four ligands used in the simulation
where A) is G6, or 4-methyl pentanoic acid, B) is G3 from the OA-G3 system, or
5-hexanoic acid, C) is G3, or quinine, from the CB8-G3 system and D) is PMZ, or
promazine hydrochloride.
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Figure C.2: dCOM distances. Host to guest dCOM distance used to determine cutoff values
for all four systems used. For all systems, a subset of unbinding events for one run is
plotted. The horizontal line represents 0.7 nm. A) COM distances for OA-G6 B) OA-G3
C) CB8-G3 D) and β-CD-PMZ.
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Figure C.3: Cloning event dCOM distances and weights. The average cloning dCOM distance
organized by event weights across five simulations is shown for β-CD-PMZ for A) REVO
and B) cutoff-REVO. The orange horizontal line in B represents the cloning cutoff (0.7
nm). The total number of cloning events per weight bin across five simulations is shown for
C) REVO and D) cutoff-REVO.
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Figure C.4: Warped walker weights for both methods. Walker weights at the time of
unbinding for standard REVO (left) and cutoff-REVO (right) for A and B) the OA-G3
system (22901 events total for REVO and 224 total for cutoff-REVO) and for C and D) the
CB8-G3 system (1246 events total for REVO and 93 total for cutoff-REVO).
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Figure C.5: Rates and free energies for standard REVO.The free energy, koff , and kon for
all systems. Legend in A applies to all plots. Dashed lines in B, C, and D are
computational reference values. A)β-CD-PMZ.B) OA-G6. C) OA-G3. D) CB8-G3. The X
axis represents trajectory length and not aggregate simulation time.
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Figure C.6: Rates and free energies for cutoff-REVO.The free energy, koff , and kon for all
systems. Legend in A applies to all plots. Dashed lines in B, C, and D are computational
reference values. A)β-CD-PMZ.B) OA-G6. C) OA-G3. D) CB8-G3. The X axis represents
trajectory length and not aggregate simulation time.
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