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ABSTRACT 

After decades of pollution regulation in the United States, many pollutants exist in the 

environment below levels that cause mortality; even so, sublethal levels of environmental 

pollutants can still result in indirect mortality and reduced abundance of organisms.  

Understanding the consequences of pollution at chronic sublethal levels is one of the main goals 

in toxicology and in environmental risk assessment. This dissertation focuses on understanding 

the impacts on multiple fish species from environmentally relevant sublethal levels of two 

developmental neurotoxicants that commonly occur in aquatic environments, methylmercury 

(MeHg) and 3,3',4,4',5-pentachlorobiphenyl (PCB126).  The first chapter provides a background 

of fish behavior assays used in toxicology; gives background information on a commonly used 

fish species in toxicology, the Atlantic killifish (KF; Fundulus heteroclitus); and summarizes a 

relatively new technique to compare biological responses to chemical exposure, the Adverse 

Outcome Pathway (AOP).  The second chapter summarizes the impact of MeHg on fish larvae 

behaviors by conducting an analysis that combines recent research results into feeding, 

swimming and startle response behavior affects after exposure.  Mercury has long been known to 

cause neurological deficiencies especially during neurological development which can cause 

temporary and/or permanent impairments to brain function.  One way to assess these impacts is 

by examination of behavior after exposure.  This chapter analyzes fish larval behavior effects 

and constructs predictive models that could be used in future mercury risk assessments. The third 

chapter focuses on assessing changes in larval fish behavior after exposure to neurotoxicants 

using a new analytical approach.  Typically in toxicological behavior assays, fish behavior is 

summarized as an average response over the length of the assay.  However, average responses 

could miss more sensitive behavior changes brought on by chemical exposure.  New behavior 



 

 

models such as hidden Markov chain models (HMMs) could potentially detect more behavior 

alterations and allow for increased accuracy in chemical exposure assessments. This chapter 

analyzes impacts detected from both traditional and HMM behavior endpoints in yellow perch 

larvae (YP; Perca flavescens) and how they are altered by MeHg and PCB126 embryonic 

exposure.  The fourth chapter of this dissertation applies the new and traditional analytical 

techniques described in chapter 3 to the specific case of KF after embryonic exposure to MeHg 

and PCB126.  This species of killifish is unique because some populations have naturally 

evolved tolerance to industrial pollutants which could highlight the biological mechanisms 

behind this evolution through comparisons between non-adapted and adapted populations.  In 

this chapter, these comparisons are made using the AOP framework, allowing for visualization 

of molecular, organismal and population level effects from chemical exposure.  The fifth chapter 

in this dissertation investigates different aspects of the AOP framework, specifically whether 

different biological responses can be shared over three different fish species after exposure to 

MeHg and PCB126.  The AOP framework has been used to assess impacts across different 

species and chemicals by assuming common biological responses in organisms that share similar 

molecular, cellular and organ functions.  This chapter investigates the use of AOPs in assessing 

the similarity of biological responses in gene expression, larval behavior and predicted cohort 

survival and growth. This work advances our knowledge of the sub-lethal impacts of two 

common neurotoxicants in aquatic ecosystems and their impacts on multiple levels of biological 

organization in fish larvae. 
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CHAPTER 1: INTRODUCTION  

 

Abstract 

Chronic exposure to low levels of industrial pollutants commonly occurs in aquatic 

ecosystems, even after decades of regulation, and this exposure can be more harmful when the 

pollutant is a developmental neurotoxicant.  This can create an environment where fish embryos 

are exposed to neurotoxicants both through parental transfer and direct aquatic exposure after 

fertilization.  Understanding the sublethal effects on fish larva after embryonic exposure would 

allow us to better understand the risk imposed on these populations by human pollution.  

Methylmercury (MeHg) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) are two common aquatic 

industrial pollutants that are also developmental neurotoxicants.  By altering neurologic 

development, molecular and cellular functions can be periodically or permanently altered. These 

include gene expression and behavior, which could in turn affect fish survival and growth. This 

dissertation investigates the sublethal effects of fish embryonic exposure to MeHg and PCB126 

by collecting information at multiple levels of biological organization.  The first chapter explains 

a new analytical approach to assess yellow perch Perca flavescens larval behavior impacts from 

exposure. Then, a case study is presented using Atlantic killifish Fundulus heteroclitus where 

embryos were exposed to MeHg or PCB126 and biological impacts are assessed in larvae 

starting at brain gene expression, the resulting behavior, and finally modeled growth and 

survival.  Finally, a summary analysis is presented that examines the similarities between the 

previously mentioned biological responses from three fish species and both chemicals, to 

determine whether certain biological endpoints could be used as a measure of fish exposure to 

these pollutants and the utility of the adverse outcome pathway to extrapolate across 

contaminants and species.  
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Introduction 

Methylmercury (MeHg) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) are two common 

aquatic industrial pollutants that are also developmental neurotoxicants. Low levels of MeHg can 

impact a wide range of biological functions in both humans and animals, from widespread brain 

damage to subtle impairments in motor and sensory functions (Nogara et al. 2019; Pereira et al. 

2019; Yang et al. 2020). Methylmercury exposure results in altered calcium signaling, impaired 

mitochondrial function, and accumulation of oxidative stress, all of which can damage neurons 

(Caudle and Miller 2015). Methylmercury directly impacts neurotransmitter levels by altering 

acetylcholinesterase, sulfhydryl (thiol)-group protein binding, methylation (epigenetics) and 

neurogenesis (Sastry and Sharma 1980; Johansson et al. 2007; Bradbury et al. 2008; Farina et al. 

2011; Weber et al. 2012; Costa and Giordano 2012; Helmcke and Aschner 2012; Amara et al. 

2012; Bose et al. 2012; Ho et al. 2013; Kalueff et al. 2016). PCB126 is an aryl hydrocarbon 

receptor agonist and disrupts energy metabolism (Bandiera et al. 1982; Okey 2007; Zhang et al. 

2012; Gadupudi et al. 2016).  PCB126 alters multiple pathways in mammals that result in 

neurological changes including multiple behavioral endpoints in rats (Rice and Hayward 1998, 

1999; Rice 1999; Vitalone et al. 2010; Cauli et al. 2013) and fish (Couillard et al. 2011; Rigaud 

et al. 2013; Liu et al. 2015; Xu et al. 2015; Glazer et al. 2016). These two chemicals also alter 

calcium homeostasis, which is critical in neuron function (Piedrafita et al. 2008b; Costa and 

Giordano 2012).  

After decades of regulation, levels of MeHg and PCB126 rarely exist at lethal levels in 

the aquatic environment, but still persist at concentrations that affect sublethal processes 

(Murphy et al. 2012).  Although less severe, chronic exposure to sublethal levels of pollutants 

can still contribute to fish population declines, e.g. through delayed mortality, physical 
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deformities, cancer and impairments to feeding, reproduction, swimming, etc. (Sandheinrich and 

Atchison 1990; Baldwin et al. 2009; Hamilton et al. 2016; Morán et al. 2018). Because MeHg 

and PCB126 both impact brain function at molecular levels that could ultimately lead to 

population declines, a toxicological framework known as Adverse Outcome Pathway (AOP) may 

be a useful tool to assess the impact pathway from molecular to population level impacts of these 

two neurotoxicants. 

The concept of AOPs in toxicology was first introduced by Ankley et al. (2010) which set 

up a structured pathway concept using mechanistic data at multiple levels of biological 

organization to translate chemical impacts from molecular to population level adverse outcomes.  

Each pathway connection between the different levels of biological organization are modular and 

can be applied across chemicals and species (Villeneuve et al. 2014a, 2014b).  Adverse Outcome 

Pathway modularity allows for cross species and cross chemical applications of the same 

relationships linking different key events.  However, the application across species or chemicals 

should not be done without confirmation that those relationships apply to either species or 

chemical. The goal of this project is to illuminate areas where AOPs meet the assumptions that 

permit application for cross species and chemical extrapolations by examining three different 

fish species after exposure to sublethal environmentally relevant levels of MeHg and PCB126.   

Larval Fish Swimming Behavior Changes and Detection after Sublethal Exposure to 

Neurotoxicants 

The use of animal behavior to determine impacts of neurotoxicant exposure has been 

studied for more than 100 years (see review in Medved et al. 1964). It typically involves many 

hours of collecting detailed observational data sometimes on behavior endpoints that were 

specific to laboratory conditions that rarely translated into real world environments [e.g. 
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electroshock conditioning in goldfish (Weir and Hine 1970)].  With the advent of new animal 

tracking devices and software technologies, a new class of animal behavior studies has allowed 

scientists to study animals in situ, including new types of data analyses that are more precise at 

determining differing animal behavior states and how they relate to environmental variables 

(Hooten et al. 2017). These advancements in in-situ behavior analyses can also be applied to 

laboratory behavior experiments (Chon et al. 2010; Li et al. 2013), and by adapting these in-situ 

techniques, advances in high throughput toxicity testing can potentially increase precision for 

detecting behavior alterations from chemical exposure (Ågerstrand et al. 2020).  In addition, 

collecting and analyzing behavior data in the laboratory that directly apply to real world 

situations (i.e. eating prey, locomotion and responses to startle stimuli) can then be used to 

translate individual impacts from chemical exposure to whole populations using individual based 

modeling (Murphy et al. 2008; Armstrong et al. 2020). 

Chapter 3 of this dissertation applies a modern in-situ behavior analysis model to study 

the impacts on laboratory derived larval yellow perch Perca flavescens (YP) movement after 

exposure to environmental relevant sublethal levels of two neurotoxicants, PCB126 and MeHg.  

It also compares the estimates from these new models to more traditional behavior analysis 

estimates to determine if the new models are more sensitive to behavior impacts from exposure. 

Atlantic Killifish Alterations from Sublethal Exposure to Neurotoxicants: Connecting 

Different Levels of Biological Organization 

In toxicology, an AOP framework is a structured outline used to connect the chain of 

events from toxic exposure to molecular initiating event/s; then to key events in cellular, organ 

and organ systems; and finally to whole organism and/or population level impacts (Ankley et al. 

2010).  By structuring an environmental exposure event using the AOP framework, connections 
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and relationships can be made both chemically and biologically that could eventually lead to 

population level impacts.  In addition, both chemical and biological impacts that are common 

across animals could be shared between AOPs in a modular form (https://aopwiki.org/).  Adverse 

Outcome Pathway modularity allows for information sharing as a way to increase our knowledge 

to more than just the limited number of directly tested organisms. 

Atlantic killifish Fundulus heteroclitus (KF) have a long history in scientific research as 

toxicological test subjects and were even the first fish in space (von Baumgarten et al. 1975; 

Hoffman et al. 1977, 1978).  Easy to maintain in captivity, they are commonly found along the 

east and southeast coast of the U.S. in estuary habitat.  The evolution of KF in the highly variable 

estuarine habitats has resulted in the most genetically diverse species of fish yet studied and is in 

the 98th percentile of genetic diversity among vertebrates (Reid et al. 2017). In the U.S., KF also 

have a long history of living in heavily polluted coastal cities and industrial areas.  The pollution 

pressure combined with the high level of genetic diversity may have contributed to the 

observations that some populations of KF have an evolved tolerance to our pollution (Nacci et al. 

2016; Reid et al. 2017), particularly as it pertains to industrial pollutants that activate the aryl 

hydrocarbon receptor (AhR) such as dioxins and polychlorinated biphenyls (PCBs). Certain KF 

populations have an evolved tolerance through resistance to reactive oxygen species and cardiac 

teratogenesis (Arzuaga and Elskus 2010; Clark et al. 2010) mainly by skipping different 

components in the complex stress response network, which involves AhR and cytochrome P450 

gene expression (Nacci et al. 2016). 

Using the AOP framework, chapter 4 of this dissertation examines the multiple biological 

levels of KF response to environmental relevant sublethal levels of two neurotoxicants, PCB126 

and MeHg, including brain gene expression, larval behavior and modeled population metrics. 
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Two distinct populations of KF were examined, one with no history of pollution exposure and 

one known to have evolved resistance to pollution impacts.  This project investigated the 

connections between biological responses to these two neurotoxicants, explored commonalities 

between tolerant and intolerant KF populations, and identified possible connections between 

gene expression and fish behavior.   

Adverse Outcome Pathways: Application across Fish Species and Neurotoxicants 

The use of AOPs in toxicology has greatly increased our knowledge of how chemicals 

are impacting biological functions, especially as it pertains to the modular sharing aspect of the 

AOP framework (https://aopwiki.org/).  Many basic molecular and cellular functions and 

processes are common among different species, which is a main premise in the field of structural 

biology. In theory, sharing biological information between similar organisms has a long history 

of practice in science and is commonly referred to as surrogacy.  At a molecular and cellular 

level, surrogacy has become common practice in toxicology being fundamental to risk 

assessment, biomarkers, alternative animal testing methods and the use of model organisms such 

as zebrafish Danio rerio (ZF; Leonelli and Ankeny 2013; Bambino and Chu 2017; Gupta 2019). 

In conservation biology, organismal level surrogacy has a history of coming in and out of favor, 

currently being held to many restrictions [see review by (Murphy et al. 2011) for individual 

species surrogacy and (Beier and de Albuquerque 2015; Stewart et al. 2018) for biodiversity 

level surrogacy].  Restrictions with organismal level surrogacy is based on research that rarely 

finds similarity in responses between limited use laboratory animals (e.g. endangered or 

threatened species) and commonly used surrogates (e.g. species that are easily kept in captivity) 

(Jorgenson et al. 2015; Paula et al. 2016).  Use of the AOP framework may resolve this 

contradiction of surrogacy at different biological scales.  
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Chapter 5 of this dissertation examines the same set of sublethal biological endpoints 

discussed in the previous chapters in three different fish species after exposure to environmental 

relevant sublethal levels of two neurotoxicants, PCB126 and MeHg.  This chapter assesses the 

assumptions inherent in the AOP framework, mainly the assumption of agnostic species and 

chemicals, by summarizing the trends between ZF, a common surrogate, and two native species, 

YP and KF, and their responses to environmental relevant sublethal levels of two neurotoxicants, 

PCB126 and MeHg.  

Conclusion 

This work makes significant progress towards understanding responses of native fish 

species and laboratory surrogate fish species from exposure to environmentally relevant 

sublethal levels of two common neurotoxicants, PCB126 and MeHg.  Trends of these biological 

responses to increasing chemical doses broadens our understanding of how individual fish 

species are impaired by chronic sublethal neurotoxicant pollution, as well as commonalities in 

response between species. Additionally, this project begins to make connections between brain 

gene expression and organismal behaviors under chemical perturbation, which expands our 

knowledge about the links between gene expression and behavior, and how they can be impacted 

by the environment.  
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CHAPTER 2: MERCURY EFFECTS ON EARLY LIFE STAGE FISH BEHAVIOR 

 

Abstract 

Mercury is ubiquitous in the environment and can induce neurological disturbances in 

many life forms at very low doses, especially if exposure occurs during early development.  Prior 

research suggests that early life stage fish (ELSF) behavior has been impacted at methylmercury 

levels starting at 0.0002 ppm.  Here, we conducted a literature review, summarizing all available 

research results about ELSF behavior impacts from MeHg exposure and found different impacts 

on behavior types.  Feeding behaviors that were suppressed by MeHg exposure and swimming 

behaviors were affected by 26 and 17%, respectively, whereas feeding behaviors that were 

elevated after MeHg exposure and stimulus behaviors had a positive significant relationship with 

MeHg dose.  These results provide more information about the impacts on ELSF from mercury 

contamination and how different types of ELSF behaviors are impacted by MeHg exposure. 

.   
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Introduction 

Mercury contamination as a result of human activities continues to contribute to global 

contaminant loadings despite being identified as a serious problem over one hundred years ago.  

Two major reasons for concerns surrounding  mercury contamination is the ability of mercury to 

bioaccumulate and biomagnify in the food web (Bank 2012; Wentz et al. 2014) and mercury’s 

high neurotoxicity properties (Nabi 2014; Bradley et al. 2017; Yang et al. 2020).  Aquatic 

ecosystems are especially vulnerable since certain aquatic bacteria can change inorganic mercury 

into methylmercury (MeHg) under anaerobic conditions, which is a form that is highly toxic to 

biological organisms (Green and Planchart 2018; Yang et al. 2020).  Fish, because of their 

position in the aquatic food web, are mainly exposed to MeHg through food (≥ 90% of total 

update) and through the aqueous form as it is  absorbed through the gills (Sandheinrich and 

Wiener 2011).  Developmental timing of MeHg exposure is important in understanding 

toxicological effects on fish, where exposure at even very low levels during embryonic 

development can alter neural network function, sensorimotor and learning in fish (Weber et al. 

2012).  Adult fish can tolerate higher exposures of MeHg, but  will expose their offspring 

through maternal transfer in gonadal tissue (Mora-Zamorano et al. 2016a; Liu et al. 2016; Carvan 

et al. 2017).  Consequently, understanding MeHg exposure to early life stage fish (ELSF) is 

critical to our understanding the risk of mercury contamination in aquatic systems.   

Early life stage fish (embryo and larva) are more sensitive to MeHg exposure than 

juvenile and adult stages.  Dillon et al. (2010) summarized the effects of mercury (Hg) on hatch 

success, morphological abnormalities, growth and survival of adult and ELSF. They found 0.406 

ppm of Hg in fish tissues represent 10.9% injury in adult fish but 50% injury in ELSF using 

lethality-equivalent endpoints.  Furthermore, sublethal endpoints such as behavior are typically 
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more sensitive than lethality-equivalent (Scott and Sloman 2004; Dutra Costa et al. 2020) and 

when altered from developmental exposure, the effects can last for years (Fjeld et al. 1998).  

Because of the increased sensitivity of ELSF to neurotoxicants, ELSF behavior endpoints have 

become a popular way to examine chemical toxicity (Ågerstrand et al. 2020; Dutra Costa et al. 

2020).  

Early life stage fish behavior can be the most sensitive life stage and response endpoint at 

the organismal level, therefore the goal of this project was to conduct a literature review and 

summarize ELSF behavioral impacts from MeHg exposure.  We expanded on the lethality-

equivalent dose response MeHg relationships produced by Dillon et al. (2010) and conducted a 

similar analysis on the sublethal ELSF behavior injury over varying levels of MeHg exposure.  

The objectives of this study were to develop MeHg dose response relationship with larval 

behavior endpoint effects and determine whether these relationships change depending on the 

type of behavior. 

Methods 

Literature search and data collection 

A literature search was conducted using the search engine Web of Science© (Copyright 

Clarivate 2022) and the following terms: mercury, larv*, and/or behav*.  We also reviewed 

online toxicology databases such as ECOTOX (https://cfpub.epa.gov/ecotox/) for relevant 

studies. We accepted that the quality of the study was sufficient so long as it was published in a 

peer reviewed scientific journal and had reference control treatments.  We only included results 

from studies that exposed fish embryos to MeHg (i.e. MeHg or MeHg-chloride) since the 

inorganic forms of mercury can be less toxic than the organic forms (Korbas et al. 2012; Pereira 

et al. 2019).  All relevant research studies used in the analysis included a larval behavior 
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assessment that determined impacts on various behavior endpoints such as swimming, feeding, 

or a behavior response from a stimulus.  However, these types of research studies have 

methodologies that could impact result comparisons between studies such as exposure timing, 

evolved tolerance, etc.  Consequently, the following additional restrictions were used to limit the 

type of study included in the analysis to ensure the data from these studies are comparable. 

Life stage at the time of MeHg exposure can alter MeHg toxicity, with developmental 

exposures being the most toxic (Samson et al. 2001; Dillon et al. 2010).  This study focused on 

the most sensitive life stage, embryonic developmental exposure.  The included laboratory 

studies were restricted to only studies where exposure started at or within 24 hours after 

fertilization and exposure ended before hatching. Since fish embryos in situ are exposed to Hg 

via pre-fertilization gamete deposition (Alvarez et al. 2006; Mora-Zamorano et al. 2016a; 

Bridges et al. 2016a, 2016b; Carvan et al. 2017), laboratory studies that exposed parents and then 

tested F1 progeny for behavior effects were also included in the analysis.  Not included in the 

analysis were studies that exposed previously known isolated tolerant fish populations with a 

long-term history of in situ exposure [e.g. Atlantic killifish Fundulus heteroclitus collected from 

New Bedford Harbor, MA or Piles Creek, NJ (Ososkov and Weis 1996; Zhou and Weis 1998; 

Whitehead et al. 2012; Nacci et al. 2016)]. 

Fish larval behavior can be altered after chemical exposure as a consequence of visible 

gross physical deformities (e.g., spinal curvature) as well as nonvisible internal physiological 

changes (e.g., neuronal connections between brain and muscles).  Gross deformities are typically 

diagnosed using gross morphology assessments (e.g. Clark et al. 2010; Whitehead et al. 2010), 

and toxicological studies typically assess fish behavior using fish that do not have any obvious 
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gross physical malformations.  Consequently, studies that only assessed behavior on larvae 

without gross physical deformities were used in the analysis.  

Many different types of behavior endpoints can be determined using numerous types of 

behavior assays (Weis and Candelmo 2012; Ågerstrand et al. 2020; Dutra Costa et al. 2020).  

Our analyses only included the three most general behavior response types: feeding, response to 

a stimulus (referred to from now on as just stimulus), and swimming.  Feeding behaviors are 

used to assess effects of MeHg on the consumption of food, including but not limited to 

consumption rates, prey handling time or prey miss rates.  Stimulus type behaviors involved an 

external stimulus that triggers a measurable behavior response such as response time or response 

magnitude in visual motor response assays.  Swimming type responses include a multitude of 

different ways to characterize fish swimming such as speed, time spent swimming, or frequency 

of swimming bouts.  From each included research study, the behavior response was recorded 

from the control and treatment level behavior endpoint mean and the number of larvae that 

generated the mean.  If the mean had been transformed for statistical analysis, then the 

transformed mean was used to calculate the percent effect.  If the means were reported in a table 

than they were used as reported.  However, if the means were reported in a figure, than the 

values were collected from the figure using WebPlotDigitizer tool (Rohatgi 2019).  Studies that 

included changes in swimming turning angles were not included in the analysis since turning 

angles are usually measured in radian units and percent effect is not logical with this endpoint.   

Embryo tissue Hg concentration was not always reported in the included study 

documentation (6 out of 13 included studies), so the effect response was determined using MeHg 

dose levels.  When exposure occurred via parental transfer (Murphy et al. 2008; Mora-Zamorano 

et al. 2017; Ye and Fisher 2020; Albers et al. 2022a), then the parental wet weight tissue 
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concentration of mercury was used as the embryonic dose exposure level.  If exposure occurred 

via parental transfer and the parental tissue concentrations were not reported, then the wet weight 

embryo or egg tissue concentrations were used as the dose exposure level.  If wet to dry weight 

conversions were needed, we assumed 87% moisture content in fish egg or larva (Kneib 1993; 

Albers et al. 2022a, 2022d).   

As in Dillon et al. (2010), mean effect sizes were calculated relative to the controls.  

Percent control-normalized response (PCR) was defined as (treatment response ÷ control 

response) × 100. Similar to Dillon et al. (2010), we treated each PCR as an independent response 

measure, so each PCR was an independent observation in the dose response relationship.  Dillon 

et al. (2010) limited their assessment to binomial responses such as the presence or absence of 

death or malformations which always occur in a negative dose dependent manor.  Since behavior 

endpoints are a continuous sublethal response variable that can be higher or lower than the 

control after exposure, we deviated from Dillon et al. (2010) in the following ways. 1) Higher 

and lower trending PCRs were grouped separately.  The trend grouping was maintained 

throughout the analysis and was included as a factor in the models to test for trend grouping 

differences between behavior responses.  If the original PCR was calculated from non-

transformed values than the original lower or higher trend grouping was used.  However, if the 

original PCR was calculated from transformed values, then the back transformed lower or higher 

trend grouping was used.  By handling transformed values this way, the original trend relative to 

the control was maintained even though the effect magnitude was determined from the 

transformed values. 2) Any PCR that was more than 100 was kept as is, and not changed to 100, 

as was done in Dillon et al. (2010). 3) If more than one endpoint in the same behavior type was 

reported from the same group of fish in a study, we averaged the PCR using the following 
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hierarchy.  First, for any behavior endpoints that were repeatedly measured using the same 

parameter over time in the same study, the PCRs were averaged.  Second, if multiple kinds of 

behavior endpoints were measured that occurred within the same behavior type (i.e. stimulus, 

feeding, or swimming) then those PCRs were averaged.  The number of fish in each of these 

groupings were averaged in the same way.  Dillon et al. (2010) also averaged multiple endpoints 

within a study, but because they were using all lethality-equivalent endpoints the no hierarchical 

averaging structure was not required.  

The relationship between increasing MeHg dose and PCR were examined using a fully 

parameterized linear models (LM) that included the explanatory variables of MeHg dose, trend 

type factor (lower or higher relative to the control), and behavior type factor (feeding, stimulus, 

or swimming) as main effects and all two-way and three-way interactions.  Models examining 

the trends of MeHg effects within each behavior type were also constructed using LMs that 

included dose and trend as main effects and the two-way interactions.  To meet the normality of 

the residual assumption for LMs, the PCR was transformed using boxcox transformation (Mass 

R package) and dose was Log10 transformed. In addition, each model contained a weighting 

factor consisting of the average number of fish that were used to determine each PCR value.  

Alpha ≤ 0.05 was considered significant and alpha ≤ 0.10 was marginally significant. Benchmark 

dose (BMD) at 10% effect and effective dose at 50% were determined using the predicted means 

from the linear models.  The linear regression equations used to calculate BMDs are also 

reported so that any percent effect could be calculated 

Results 

The literature review resulted in 13 previously reported studies examining the impacts of 

MeHg on the ELSF behavior with multiple studies coming from the seven separate laboratories.  
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These studies examined MeHg impacts on five separate fish species: Atlantic killifish Fundulus 

heteroclitus, yellow perch Perca flavescens, Atlantic croaker Micropogonias undulates, 

sheepshead minnow Cyprinodon variegatus, and zebrafish Danio rerio (Table S2.1).  From these 

studies, 432 separate PCRs were measured from MeHg-Control comparisons. After hierarchical 

averaging, 109 observations were used in the statistical modeling.  The PCR distribution 

containing 109 observations was highly right skewed, so a boxcox transformation was used to 

normalize the residuals (lambda = 0.1121).  Length of exposure in the included studies varied 

from 24 hours to 21 days post fertilization, with the longest exposures occurring during the entire 

21-day embryonic development period for Atlantic killifish.  Between all the included studies, 

the dose of MeHg ranged from 0.0002 – 14.73 ppm MeHg, and when reported, these dose levels 

resulted in embryo or larval tissue concentrations between 0.00039 and 3.14 µg tHg/g wet 

weight (n = 18 different wet weight tissue samples, 7 of which were estimated from dry weight 

samples). 

The full model results indicate the dose response trend of PCR is different depending on 

the type of behavior examined, where all the two-way interactions were marginally significant: 

trend type and behavior type interaction (F(2,97) = 2.74, P-value = 0.0692), trend type and dose 

(F(2,97) = 3.74, P-value = 0.0560), and behavior type and dose (F(2,97) = 2.50, P-value = 0.0877).  

Consequently, a separate model predicting PCR was constructed for each type of behavior. 

Two thirds of the feeding behavior observations had a lower trend PCR after exposure to 

MeHg (n = 23 out of 34).  Both higher and lower trend groups of feeding behaviors were 

examined with a feeding only model, where PCR had a significant dose response interaction with 

feeding trend type (F(1,30) = 9.84, P-value = 0.0038).  Indicating the feeding PCRs had a different 

relationship with MeHg depending on the trend type, consequently we constructed a separate 
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model for each feeding trend type.  After running separate models for each feeding trend type, 

the higher trend feeding PCRs had a significant positive linear relationship with increasing 

MeHg dose (P-value = 0.0016, n = 11, adjusted R-squared = 0.65; Figure 2.1A).  Using the 95% 

predicted confidence intervals from the model, the estimated BMD10 for higher trend feeding 

behavior is 0.0047, and ED50 is 0.67 ppm MeHg (Figure 2.1A).  Whereas the lower trend 

feeding PCRs did not change with increasing MeHg dose (P-value = 0.7614, n = 23, adjusted R-

squared = -0.04, Figure 2.1B).  Consequently, feeding behaviors that are decreased by MeHg are 

on average affected 26.4% (back transformed mean of 3.95) relative to the control. 

The PCR of stimulus behaviors were evenly distributed between higher and lower trend 

groups (n = 13, 6 higher and 7 lower) after exposure to MeHg.  The stimulus-only behavior 

model indicated stimulus behaviors have a significant positive relationship with MeHg exposure 

(F(1,9) = 11.46, P-value = 0.0081).  The relationship was the same whether the stimulus behavior 

had a higher or lower trend group PCR [i.e. non-significant dose-trend interaction (F(1,1) = 2.76, 

P-value = 0.1309) and non-significant trend group main effect (F(1,1) = 2.61, P-value = 0.1410)].  

Consequently, the two trend group PCR types were combined and a model containing all 

stimulus PCRs was constructed (Figure2. 2).  Using the 95% predicted confidence intervals from 

the model, the estimated BMDL10 of the stimulus behavior type is 0.0201 and BMD10 is 0.3936 

ppm of MeHg (Figure 2.2). 

Sixty percent of the swimming behavior observations had a lower trend PCR after 

exposure to MeHg (n = 37 out of 62).  Both higher and lower trend groups of swimming 

behaviors were examined with a swimming only model, where PCR had no significant patterns 

with dose or trend type (overall model F(3,58) = 0.75, P-value = 0.5271).  Consequently, 
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swimming behaviors whether increased or decreased after MeHg exposure are on average 

affected 17.39% (back transformed mean of 3.37) relative to the control. 

Figure 2.1.  Linear relationship between the percent effect on early life stage fish feeding 

behaviors and methylmercury dose.  Panel A are feeding behaviors that were higher relative to 

the control and panel B are feeding behaviors that were lower.  Grey shaded area is the predicted 

95% confidence interval. Parameter variance reported in model equation is standard error.  
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Figure 2.2.  Linear relationship between the percent effect on early life stage fish stimulus 

behaviors and methylmercury dose.  Parameter variance is standard error.  

 

Discussion 

The numerous recent studies examining MeHg exposure impacts on ELSF behavior has 

allowed for a more diverse examination of environmental risk using sublethal behavior impacts.  

By understanding these individual level behavior changes, appropriate levels of risk can be 

applied to impacts from low levels of contaminants, and through population modeling, could be 

used to understand impacts on larger populations of fish (e.g. Murphy et al. 2008; Armstrong et 

al. 2020; Albers et al. 2022a).  This study surveyed the scientific literature and summarized 

MeHg effects on three general fish behavior types: feeding, stimulus and swimming behaviors.  

The effects summarized occurred on five different species of fish larva, at MeHg doses relevant 

to current aquatic ecosystems across the United States [0.0001 – 10 ppm; (Wentz et al. 2014)].  
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Not all behavior types examined exhibited a dose dependent relationship with increasing levels 

of MeHg dose, swimming and lowered feeding behaviors had a constant 17 and 26% effect 

across all doses of MeHg.  While the effect on these behaviors did not respond to increasing 

levels of MeHg, the change in behaviors is still relevant since PCR is calculated using an 

unexposed control group of fish within each study.  The PCR of stimulus and higher feeding 

behaviors of ELSF did have a positive dose dependent relationship with MeHg dose, with higher 

feeding behavior effects increasing almost four times faster than stimulus behaviors over the 

same level of MeHg increase.  As multiple studies in this review have demonstrated, increases in 

stimulus and feeding behaviors after MeHg exposure are not uncommon and may be due to 

multiple reasons.  First, depending on the behavior measured, an increase in response is not 

unexpected. For example, some of the increases in feeding behaviors included prey handling 

time, larva reaction distance to prey, time to react to environmental startle, etc.  Second, since the 

responses examined in these studies are sublethal effects, multiple biological compensatory 

mechanisms could result in a behavior response contrary to expectations, such as increases in 

activity requiring more energy, thus increases in prey capture probability.  Because mercury has 

multiple modes of action occurring in these complex organisms, reasons into why some behavior 

responses increase after exposure may never be determined.  But it is clear by this review that 

behavior endpoints are more complex and more difficult to summarize than the constant negative 

impact of lethality. 

The differences found in the study between the three behavior types (feeding, stimulus 

and swimming) and how they responded to MeHg may be contributed to the different parts of the 

brain used in the performance of each behavior and how mercury discriminately disrupts those 

areas.  Recent zebrafish (ZF) brain imaging techniques have shown that when ZF perform 
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different types of behaviors, different areas of the brain are stimulated.  During swimming bouts, 

ZF use a medial stripe of glycinergic neurons (Dunn et al. 2016; Severi et al. 2018).  In contrast, 

there is a localized area in the cerebellum whose activity correlates with a visual stimulus (Severi 

et al. 2018).  Feeding behavior is more complex, integrating four parts of the brain (Cong et al. 

2017);  where an area near the contralateral optical tectum is first activated during eye 

orientation on prey, the three addition groups of neurons in the hypothalamus, midbrain and 

hindbrain were activated as the fish orientated the head to prey, closed the distance to the prey, 

attempts to capture prey, and finally captures prey.  Mercury also differentially affects brain 

areas and cell types, with the cerebellum and visual cortex being primary targets, specifically 

granule cells in the cerebellum are very sensitive to MeHg induced neurotoxicity (Kaur et al. 

2012).  The combination of selective toxicity and behavior use of different parts of the fish brain 

could make different behavior endpoints more or less effected by MeHg exposure. 

The results from this study reiterate the sensitivity of ELSF behavioral endpoints to 

MeHg as compared to lethality-equivalent endpoints.  Dillon et al. (2010) found that growth and 

survival of ELSF was affected by MeHg starting at 0.02-0.05 ppm, whereas MeHg effects on 

ELSF behavior starting as low as 0.0002 ppm (Weis and Weis 1995b).  Very low levels of 

mercury are ubiquitous across the landscape, creating a background of low level contamination 

(Amirbahman and Fernandez 2012).  Indeed, we found the controls in the included studies had 

an average of 0.0076 ppm Hg (n=6) typically from laboratory feed contaminated fish food.  

Dillion et al. (2010) found that ELSF with 0% injury to lethality-equivalent endpoints had a 

median Hg tissue concentration of 0.05 mg/kg (n=7).  Using the relationships constructed in this 

study, a level of 0.05 ppm is predicted to alter increased feeding behaviors by 16%, 21% effects 

on decreased feeding behaviors, 7.5% effect on stimulus behaviors, and 12.8% on swimming 
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behaviors.  But most wild populations of fish across the U.S. are exposed to low levels of MeHg 

from the pervasive Hg pollution stored in the soil that is continually deposited from air pollution 

(Amirbahman and Fernandez 2012; Bank 2012; Pacyna et al. 2016; Blukacz-Richards et al. 

2017).  While the scale of mercury pollution is global, research suggests Hg levels can be 

lowered in aquatic environments if regulations and limitations are enacted (Pacyna et al. 2016; 

Blukacz-Richards et al. 2017; Blanchfield et al. 2022; Zolkos et al. 2022). 

Since sublethal endpoints are inherently more sensitive than lethal endpoints, we 

expected to find lower MeHg dose effect concentrations using sublethal ELSF behavior.  

However, impacts on ELSF behaviors in this study were found to be within the confidence 

intervals predicted for ELSF lethal-equivalent predictions (Dillon et al. 2010).  Using the 

reported tissue-dose levels, a tissue level of 0.1 ppm Hg wet weight is equivalent to ~0.004 ppm 

dose of MeHg (Mora-Zamorano et al. 2016a; Albers et al. 2022c, 2022d).  Using the 

relationships constructed in this study, a dose of 0.004 ppm MeHg resulted in 20% injury to 

decreased feeding behaviors, 4.5% injury to increased feeding behaviors, 5.3% stimulus 

behaviors, and 12% on swimming behaviors.  These fall with the 95% confidence intervals of 

predicted effect using the ELSF lethality-equivalent model by Dillon et al. (2010), where a tissue 

concentration of 0.1 ppm Hg would result in an increase of 19.8 (0.07-35.5) percent increase for 

ELSF.  In addition, the one ED50 calculated in this study for increasing feeding behaviors was 

also within the predicted confidence interval of the EC50 ELSF lethality-equivalent model by 

Dillon et al. (2010), suggesting ELSF may have a similar PCR sensitivity between lethal and 

sublethal endpoints.  The overlap of lethal and sublethal sensitivity may be from the higher 

variability of behavior expression relative to lethal endpoints which results in high variability in 

PCR predictions.  In addition, some behaviors had a constant effect regardless of the MeHg dose, 
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indicating that some behaviors are affected even at the lowest doses of MeHg.  Those behaviors 

that are constantly affected also add variability to any overall dose dependent relationship. 

One major limitation with the results of this study is from the use of MeHg dose to 

predict effects as compared to actual mercury concentration in the tissue of ELSF.  This study 

limitation was from the lack of reporting the tissue concentrations in 46% of the included studies. 

As evident by the three studies that reported tissue concentrations after ~5-32 hours post 

fertilization (hpf) embryonic exposure (Mora-Zamorano et al. 2016a; Albers et al. 2022c, 

2022d), tissue concentrations in larva are at least two orders of magnitude higher than the dose 

concentration.  Elevated MeHg tissue concentrations are caused by many factors including: 

bioaccumulation of MeHg; contaminated laboratory space from the prevalence of Hg in the air, 

soil and water; and/or contaminated commercially available foods (Weiss et al. 2005; Dorea 

2006; Alexander et al. 2008).  Because of the uncertainty with Hg dose and tissue concentrations, 

reporting tissue Hg concentrations from each treatment in every study is required to use and 

understand study results and implications.  We once again reiterate the importance that  all 

toxicologists  measure resulting tissue concentrations after any chemical dosing experiment 

(McCarty et al. 2011). 

Mercury is prevalent in the environment and can have neurological impacts at very low 

doses, especially if exposure occurs during development.  Exposure to ELSF is no exception, 

where results from this study show that some ELSF behaviors are altered at any level of MeHg 

embryonic exposure, while other behaviors have BMDL10 starting at 0.0049 ppm MeHg have 

been found to be more susceptible than adult or juvenile fish and ELSF behavior impacts has 

been impacted at MeHg levels starting at 0.0002 ppm.  We summarized all available research 

about ELSF behavior impacts from MeHg exposure and found differential impacts on behavior 
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types.  Swimming and feeding behaviors that were lowered by MeHg exposure had constant 

effects no matter the MeHg dose.  Whereas, stimulus behaviors and feeding behaviors that were 

increased after MeHg exposure had a positive relationship with dose.  Lastly, ELSF behavior 

effects after MeHg were within the same predicted range of ELSF lethality-equivalent effects. 

Because behavior is so crucial to ELSF survival (feeding, evading predators), perturbations can 

have significant population implications.  Knowing how different types of behaviors are 

impacted and which critical ones are impacted the most will give risk assessors the tools needed 

to better assess the impacts from mercury contamination to individuals and populations. 
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CHAPTER 3: ALTERED LARVAL YELLOW PERCH SWIMMING BEHAVIOR DUE 

TO METHYLMERCURY AND PCB126 DETECTED USING HIDDEN MARKOV 

CHAIN MODELS 

Reprinted with the permission from Albers, J. L., J. P. Steibel, R. H. Klingler, L. N. Ivan, N. 

Garcia-Reyero, M. J. Carvan, and C. A. Murphy. 2022. Altered Larval Yellow Perch Swimming 

Behavior Due to Methylmercury and PCB126 Detected Using Hidden Markov Chain Models. 

Environmental Science & Technology 56(6):3514–3523 DOI: 

https://doi.org/10.1021/acs.est.1c07505.  Copyright 2022 American Chemical Society  

Abstract 

 

Fish swimming behavior is a commonly measured response in aquatic ecotoxicology 

because behavior is considered a whole organism level effect that integrates many sensory 

systems.  Recent advancements in animal behavior models, such as Hidden Markov Chain 

models, suggest an improved analytical approach for toxicology.  Using both new and traditional 

approaches, we examined the sublethal effects of PCB126 and methylmercury on yellow perch 

larvae (Perca flavescens) using three doses.  Both approaches indicate larvae increase activity 

after exposure to either chemical.  The middle methylmercury-dosed larvae showed multiple 

altered behavior patterns.  1) Larvae had a general increase in activity, typically performing more 

behavior states, more time swimming and more swimming bouts per second.  2) When larvae 

were in a slow or medium swimming state, these larvae tended to switch between these states 

more often.  3) Larvae swam slower during the swimming bouts.  The upper PCB126-dosed 

larvae exhibited a higher proportion exhibited a fast swimming state, but the total time spent 

swimming fast decreased.  The middle PCB126-dosed larvae transitioned from fast to slow 

swimming states less often than the control larvae.  These results indicate developmental 

exposure to very low doses of these neurotoxicants alter yellow perch larvae overall swimming 

behaviors, suggesting neurodevelopment alteration.   
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Introduction 

Toxicologists use behavioral endpoints because they measure whole organism level 

effects of chemicals by integrating many sensory systems and generate a measurable physical 

manifestation that represents the health of an organism (Handy et al. 1999; Clotfelter et al. 2004; 

Campbell et al. 2005).  Although exhibited behaviors can be caused by many factors (i.e. 

physiological deformities, learned experiences, environment), they are critical in understanding 

impacts from exposure to neurotoxic chemicals.  Often the behavioral endpoints evaluated in a 

toxicological study are calculated using an overall generalized summary statistic over the entire 

assay.  For example, to determine mercury or PCB effects on fish larvae, studies have used 

behavior endpoints such as average swimming speed, total distanced traveled or total number of 

turns during the time period of the assay (Weis and Weis 1995b; Couillard et al. 2011; Péan et al. 

2013; Mora-Zamorano et al. 2016a, 2017; Bridges et al. 2016a).  While these endpoints are 

appropriate in determining general trends in activity, they may not detect subtle chemical 

alterations that affect how the larvae are swimming.  Fine scale behavioral discrimination is 

required because we are increasingly able to determine physiological mechanisms underlying 

behavior.  Recent zebrafish studies have made direct connections between functioning putative 

cholinergic efferent neurons, motor neurons and detailed swimming behavior [i.e. glide phase of 

burst and glide locomotion (Lunsford et al. 2019)] and that maturation of swimming occurs 

within the first few days of life (Roussel et al. 2020), suggesting embryonic exposure can be 

critical to measured effects on swimming endpoints.  

With advancements in behavior analyses, researchers can now more easily study animal 

movement strategies and transitions between behavior states (Egnor and Branson 2016; Edelhoff 

et al. 2016).  Discrete state-space models have become a common way to analyze animal 
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movement data that has consistent observation rates [see review by (Jonsen et al. 2013; 

McClintock et al. 2014)].  Hidden Markov chain models (HMM) are state space models that 

include components to determine direct and indirect behavioral influences (Zucchini et al. 2017).  

Hidden Markov Chain models have been used to find how different types of behavior (i.e. 

behavior states) performed by animals relate to such things as neural activity and habitat use [e.g. 

(McKellar et al. 2015; Dunn et al. 2016; Marques et al. 2020)].  Hidden Markov Chain models 

are often used in the analysis of human behavior including investigating changes due to chemical 

exposure [e.g. (Patzelt et al. 2014)] but only a few researchers have used HMMs to assess the 

effects of chemical exposure on fish behavior.  In the early 2010s before the recent proliferation 

of HMM computational tools were available, researchers confirmed applicability of HMMs in 

toxicology by comparing them with self-organizing maps and determined permutation entropy 

and fractal dimension of zebrafish (Danio rerio) decreased after exposure to formaldehyde (Liu 

et al. 2011; Li et al. 2013).  They also applied HMMs to data collected after exposure of 

zebrafish and Daphnia magna to Diazinon [O, O-diethyl-O-(2-isopropyl-6-methyl-pyrimidine-4-

yl) phosphorothioate], where zebrafish turned right more often but Daphnia magna movement 

was not altered (Chon et al. 2010; Nguyen et al. 2011).  To our knowledge, no recent studies 

have applied the new suite of HMM analytical tools to behavioral toxicology, which are a 

promising development, particularly given the recent focus of using behavioral endpoints in the 

regulation of chemicals and emphasis on population level relevant behaviors (Ågerstrand et al. 

2020). 

Methylmercury (MeHg) and PCB126 (3,3',4,4',5-pentachlorobiphenyl) are two common 

aquatic industrial pollutants that are also known developmental neurotoxicants.  Methylmercury 

exposure can lead to a range of adverse effects from widespread brain damage to subtle 
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impairments in motor and sensory functions in both humans and animal models including 

zebrafish (Nogara et al. 2019; Pereira et al. 2019; Yang et al. 2020).  Methylmercury tends to 

disrupt multiple cellular sites resulting in altered calcium signaling, impaired mitochondrial 

function, and accumulation of oxidative stress, all of which can damage neurons (Caudle and 

Miller 2015).  In addition to being an aryl hydrocarbon receptor agonist, PCB126 has 

demonstrated effects on multiple behavioral endpoints in rats (Rice and Hayward 1998, 1999; 

Rice 1999; Vitalone et al. 2010; Cauli et al. 2013) and fish (Couillard et al. 2011; Rigaud et al. 

2013; Liu et al. 2015; Xu et al. 2015; Glazer et al. 2016).  Similar to MeHg, PCB126 alters 

multiple pathways in mammals that result in neurological changes (Kodavanti et al. 1993; Seegal 

et al. 2005; Coccini et al. 2007; Piedrafita et al. 2008b; Ndountse and Chan 2009).  Fish 

embryonic exposure to PCB126 does not always lead to larval behavior changes, but can result 

delayed adult behavior changes (Glazer et al. 2016; Aluru et al. 2017).  

The goal of this study is to understand the neurotoxic effects on the expression of both 

overall behavior characteristics and of different behavioral states in yellow perch (YP; Perca 

flavescens) after exposure to low levels of MeHg and PCB126.  Our objective is to determine 

how neurotoxicant pollutants altered spontaneous swimming of larval fish by examining 

endpoints that summarize swimming characteristics over the entire behavioral assay and also 

those that examine swimming patterns that represent different behavior states within an assay 

such as different types of swimming.  These behavior observations could be used in future work 

to model impacts of pollution on the growth and survival of larval fish (e.g., (Murphy et al. 2008; 

Armstrong et al. 2020)). 
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Methods 

Fish dosimetry and husbandry 

Yellow perch embryo procurement, exposure and husbandry protocols from Mora-

Zamorano et al. (2017) were followed.  A general description and noted exceptions follow. All 

methods were approved by the University of Wisconsin at Milwaukee Institutional Animal Care 

and Use Committee (IACUC, #18-19#04).  All fish were spawned under controlled laboratory 

conditions.  For each years’ spawning, five pairs of fish were spawned and one egg ribbon per 

pair was obtained and maintained as biological replicates.  To minimize handling time, a subset 

of eggs were extracted from the egg ribbons (experimental replication) using a sterilized leather 

hole punch (Sona Enterprises #791LP; 6 egg masses per pair in 2016 and 10 egg masses per pair 

in 2017, totaling 240 egg masses).  These circular egg masses were plated in metal-free, plastic 

culture petri dishes (100 mm diameter × 25 mm depth) containing an average of 0.62 ml of 

media per egg [5/8" hole punch in 2016 (~81 eggs) and 3/4" hole punch in 2017 (~115 eggs)].   

This study chose exposure levels and timing that either mimicked parental transfer of 

MeHg or water transfer for PCB126 (Westerlund et al. 2000; Alvarez et al. 2006; Mora-

Zamorano et al. 2016a; Bridges et al. 2016a, 2016b; Carvan et al. 2017).  Due to the behavioral 

focus of this study, we used dose levels of these chemicals that did not create any observable 

physical deformities [e.g. Early Life-Stage Toxicity score (Heiden et al. 2005)] which would 

alter behavioral endpoints like swimming or eating.  To that end, a preliminary 

dosimetry/sensitivity study was used in addition to previous research results (e.g. (Mora-

Zamorano et al. 2017)) to determine dosing levels that met these criteria and all larvae exhibiting 

deformities or died with 24 hr after assay were removed from analysis.  Embryos in this study 

were exposed for 20 hours after plating [~7-27 hpf, starting at 2-4 cell stage] with either 0, 
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0.00021 and 0.02156 ppm MeHg (based on 0, 0.001 and 0.1 µM of MeHg; MeHgCl in a 100% 

ethanol solvent), or 0, 0.01 and 1ppm PCB126 (PCB126 in a 100% DMSO) [each 0 

concentration treatment (i.e. control) contained water and the appropriate solvent resulting in all 

treatments containing either 33.33ppm ethanol or 500ppm DMSO].  Yellow perch fertilized and 

dosed egg masses were rinsed 4 times with clean embryo medium to stop chemical exposure. See 

Supplemental section for more husbandry details. 

Directly after exposure in 2016, three fertilized egg masses were randomly chosen from 

the 30 egg masses in each dose and were removed from their petri dish and stored at -80°C until 

chemical analysis in either Eppendorf tubes for MeHg treatments or glass vials with Teflon 

coated tops for PCB126 treatments.  PCB126 treated samples were analyzed with GC/ECD using 

EPA method 8082 with a minimum detection limit of 0.5 pg of PCB126 in the 0.5 mL sample.  

MeHg treated samples were freeze-dried prior to acid digestion.  Total dry weight of mercury 

was detected using a MERX-T automated mercury system (Brooks Rand Instruments, Seattle, 

WA) with Mercury GuruTM software (version 4.7.6) via the manufacturer's protocol in 

accordance with EPA Method 1631(Carvan et al. 2017) (n=3, Table S3.1).  The precision of this 

instrument had a relative standard deviation of 2%, the Limit of Blank (LoB) was 2.19 pg.  

 

Swimming assay 

Typically, YP larvae initiate swimming at 17 dpf (Mora-Zamorano et al. 2017) at which 

point they were presented with food. We wanted to assess behavior at the point where larvae 

were independent and actively swimming and feeding.  Consequently, the locomotion assay was 

conducted when YP larvae were 27 dpf, where 10 larvae were placed in a square slanted side 
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petri-dish (outside dimensions of 72.5 x 72.5 mm, swimming area dimensions of 56 x 56 mm) 

with 25 ml of water (~8 mm water depth; see Table S3.2 for the number of assays and fish).  

Since previous locomotion assays indicated MeHg impacted YP larvae only during light periods 

(Mora-Zamorano et al. 2017), light levels were held constant during the entire locomotion assay 

and set to 69 lx (MacPhail et al. 2009).  Similar to previous studies(Mora-Zamorano et al. 2017), 

light was generated using an LCD computer monitor placed below the petri dish and set to 

illuminate the dish using pure white light (Red:255, Green:255, Blue:255).  Since LCD screens 

do no generate much heat, temperature in the petri dish was assumed to be similar to the room 

and water temperature (19-21 oC).  Assays were conducted during the afternoon between 1200 

and 1730 hr to minimize within day variability (MacPhail et al. 2009).  The swimming assay was 

performed within a testing chamber that isolated the 10 larvae in the petri dish from light and 

sound, has been described in three previous studies (Mora-Zamorano et al. 2016b, 2016a, 2017), 

and provided adequate light and video surveillance to view all individual movement.  Similar to 

previous studies(Mora-Zamorano et al. 2016b, 2016a, 2017; Carvan et al. 2017), the larvae were 

allowed to acclimate for 5 min, then spontaneous larval movement was constantly recorded at a 

rate of 30 frames per sec for 5 more minutes (8987 total frames after processing), resolution of 

650 x 650 pixels/mm with a final mean visual resolution of 7.77  pixels/mm (SD = 0.41, n=122).  

Spontaneous movement (movement not initiated by some external stimuli but by the fish’s inner 

impulse or inclination) was used in this assay in contrast to other common toxicological assays 

that use external stimuli to instigate fish movement.  Videos were saved as avi format using a 

Logitech C920 camera and MATLAB Image Acquisition Toolbox (R2012b).  
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Data collection 

Spontaneous movement of larvae was tracked using Ctrax software (version 0.5.18 

(Branson et al. 2009)).  Tracking errors were corrected using the Ctrax Fixerrors GUI (version 

0.2.24).  Manual correction was also required at locations where the fish ceased movement but 

the track did not (this occurred due to the mismatch between the precise tracking software and 

the pixelated video of small larvae and it presents as a type of sudden movement between two 

separate parts of the fish’s body, i.e. the track “jitters” rapidly back and forth).  Any track 

deviation greater than 1 pixel or 0.15 mm, was corrected to accurately represent the middle point 

of each larvae.  We used the Behavioral Microarray MATLAB Toolbox, 

compute_perframe_stats script (Branson et al. 2009; MATLAB 2017) to compute speed (i.e. 

velocity magnitude of fish center, not center of rotation) per frame for each individual fish from 

the corrected Ctrax trajectories.  Similar to Ingebretson and Masino (2013), the centroid location 

defined the individual larvae location and activity at each frame, where swimming was defined 

as movement that was at least 1 mm/sec or 0.03333 mm per frame (i.e. magnitude of velocity at 

larvae center) and lasted longer than 5 frames (0.166 sec).  Whereas the resting behavior 

occurred during frames where movement was less than 1 mm/sec or if greater than 1 mm/sec, 

lasted less than 5 frames.  Where resting behavior occurred, speed and distance for those frames 

were changed to zero. In addition, starting at frame three, we recalculated the turning angle using 

the same method as Ctrax, as the difference between the four-quadrant inverse tangent of the two 

trajectories where the first trajectory was constructed from the first two locations in the 

sequence, and the second trajectory from the second two locations in the sequence.  This results 

in a turning angle that ranges from -3.14 to 3.14, where zero is straight ahead movement, a 
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negative value indicates a right turn and a positive value indicates a left turn.  Larval orientation 

was assumed to be in the direction of movement. 

 

Behavior endpoints 

Twelve average behavioral endpoints were assessed from the swimming assay to 

determine effects from exposure (Table S3.3): number of swimming and extreme swimming 

bouts; swimming bout duration, speed and turning angle; total distance traveled and time 

swimming; number of fish lengths swam during entire assay; overall average step length and 

variability, turning angle and variability.  Extremely fast swimming bouts were used to indicate 

times of intense swimming behavior where fish were swimming almost half the length of the 

petri dish in one second (i.e. 30mm/s).  Even though fish were of similar size (average size of 7 

mm ± 1.15 SD, n= 1220), fish length was also measured and incorporated into the Fish Lengths 

endpoint (Table S3.3).  A pictorial diagram of the analytical steps taken in this study can be 

found in Figure S3.3. 

 

Hidden Markov model fitting 

In addition to the more general overall endpoints that summarize the entire assay, a state 

space model (HMM) was constructed for each larvae’s swimming track to determine whether 

there were multiple swimming behavior states occurring within each assay and the characteristics  

of the behavior states (Figure S3.3)  For each best fit HMM, the output parameters from that 

model were used to describe the different behavioral states and were used as additional behavior 

endpoints in our subsequent statistical analyses to determine how these states change after 

chemical exposure.  An HMM was not constructed for any individual larvae and excluded from 
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the subsequent analyses if the larvae did not have at least one swimming bout (10 larvae in 

MeHg treatments and 3 larvae in the PCB126 treatments were removed; Table S3.2).  Because 

the data collected in this study were precise locations taken at constant intervals, the R package 

moveHMM (Michelot et al. 2016; R Core Team 2019) was used to construct the HMMs that 

uses frequentist inferential tools to determine parameter estimates.  The HMMs were constructed 

using the same modified step lengths and turning angles calculated for the averaged endpoints as 

described in Table S3.3 (i.e. used the prepData function in moveHMM R package for object 

formatting only).  In addition, all HMMs did not contain any covariates since all fish were 

maintained in constant laboratory conditions and the main goal of this analysis was to test 

between exposure treatments. 

The HMM model fitting procedure consisted of testing a range of swimming states that 

contained a range of initial values, resulting in multiple fitted models to select the one best fit 

model from.  This procedure was conducted so that the resulting best fit model accurately 

represented the type of behavior each fish exhibited.  The range of potential models consisted of 

three different behavior states: slow, medium and fast swimming states where s1 HMMs 

contained only one behavior state, s2 HMMs contained any two behavior states, and s3 HMMs 

contained all three behavior states.  Using a potential of three behavior states, we constructed a 

list of 10 possible HMMs to test and from which to select the best fit model (Table S3.4).  These 

10 potential models differed in the number of behavior states and initial starting values for each 

state so as to encompass the range of behaviors exhibited by the individual larva. 

The initial values were either set as a constant or calculated from each larva’s swimming 

track (Table S3.4).  The slowest swimming state in the s1_slow, s2 and s3 HMMs had constant 

initial values which were based on the tracking location accuracy in this study (≤ 0.15 mm). 
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Initial values in these models for slow swimming mean step length was 0.1 mm, slow swimming 

step length standard deviation was 0.01, and the slow swimming turning angle mean was 0.  

Medium and fast swimming states in all HMMs had 0.01 for the percentage of zeros (i.e. 

distance moved equal to zero).  The rest of the initial values were determined from the individual 

larvae’s tracking data.  The percentage of zeros inputs were determined by the percentage step 

lengths ≤ 0.15 mm.  The initial parameter values for the s2 and s3 HMMs were calculated only 

when the larva was moving (i.e. step length > 0.15 mm) including mean step length, mean angle, 

standard deviation (i.e. Kappa) of the step length or angle, respectively.  For any behavior state 

other than slow swimming, a range of initial mean values were tested (25th, 50th, or 75th 

percentiles) and again based on time steps where step lengths were > 0.15 mm. 

 

Best fit hidden Markov model selection 

Once all 10 of the possible HMMs were fit for each larvae, a hierarchical selection for the 

best fitting model was conducted.  First, an HMM was rejected if it did not converge or 

parameter estimates from the HMM were unrealistic (i.e. infinite step variance or AIC, step 

length mean for any state > 50 mm, or a defined state never occurred; 56 out of 1207 larvae; see 

Table S3.2 for distribution across treatments).  Second, since HMMs contain different numbers 

of parameters corresponding to the number of behavior states, comparison between models was a 

two-step process.  First, the best fit model within each group of HMMs that have the same 

number of states (e.g. s1_slow, vs s1_25 vs s1_50 vs s1_75) was selected.  The model with the 

lowest AIC was used to select the best one, two and three state HMM for each larva.  Second, to 

select the best overall model for each larvae, we compared the AIC between the differing state 
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HMMs and choose the lowest AIC, so long as it was at least 10% lower than the next highest 

AIC (e.g. s1 vs. s2 vs. s3). 

 

Best fit hidden Markov model behavior state standardization 

To compare between individual larva, the HMM behavior states were standardized by 

reordering and renaming.  The HMM state initial values were set up in increasing step length 

means (slow, medium, fast), but the resulting best fit HMM output behavior states for each 

individual larvae did not always have increasing step length.  This is because the final HMM 

behavior state is defined by not only the step length but also turning angle characteristics and/or 

the behavior state that was performed first in the time series was what was used to label the state.  

The best fit HMM behavior states were subsequently standardized and reordered in two steps. 

First, for each larva’s best fit HMM, the states were reordered using the mean step length to 

describe them as slow, medium and faster swimming behavior states (i.e. changed the state 

label).  Second, we confirmed the behavior states reported from the s1 and s2 HMMs were 

correctly classified and labeled as slow, medium or fast.  To do this, the states in the s1 and s2 

HMMs were compared to the slow, medium and fast states produced by the s3 HMMs by 

constructing 12 Linear Discriminant Models (LDA), one base model for predicting s1 and s2 

within each of the 12 year/chemical dose combinations (Table S3.5).  The 12 LDA base 

predicting models were constructed using the lda function in the MASS package (Venables and 

Ripley 2002) and only using larvae with an s3 HMM.  The base predicting LDA models were 

constructed using the four HMM behavior descriptive parameters to predict the slow, medium 

and fast swimming behavior states (model equation: slow, medium and fast swimming = turning 

angle concentration + turning angle mean + step length mean + step length standard deviation).  
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The number of observations in the base predicting LDA models was the number of larvae times 

three (i.e. three behavior states) thus treating all within and between fish behavior states as 

independent of one another (Table S3.5). The 2016 MeHg middle dose treatment only had one 

larva where a s3 model was selected; therefore, there was no renaming of s1 or s2 states in this 

year/chemical dose group (i.e. 15 larvae; Table S3.5).  Linear Discriminant Models prediction 

accuracy for base predictive models was measured using cross validation where a random draw 

of 80% of the data was used to construct a model and then calculated prediction accuracy of the 

remaining 20% of the data.  This was done 50 times for each of the 11 groups of data to 

determine total accuracy over all predicted behavior states (59 ± 0.06 %) and within behavior 

state accuracy (slow state = 56 ± 0.15 %, medium state = 52 ± 0.24 %, and fast state = 69 ± 0.09 

%; Table S3.5).  Sometimes the LDA predicted the same state to occur more than once for a 

larva.  If that occurred, step length was used to reorder them.  For example, if two slow states or 

two medium speed states were predicted for the larva than the lower mean step length was 

assigned the slow state and the higher one a medium state (Table S3.5; MeHg: 111 out of 380 

larvae; PCB126: 108 out of 321 larvae).  If two fast states were predicted than the lower mean 

step length state was renamed to medium (Table S3.5; MeHg: 12 out of 380 larvae; PCB126: 5 

out of 321 larvae).  

After standardizing the behavior states using this LDA procedure, all larvae had states 

ordered using the mean step length to describe them as slow, medium and faster swimming 

behavior states. In addition, all larvae with a s1 and s2 HMM had behavior states that were 

labeled relative to those exhibited by larvae in s3 HMMs.  This standardization allowed for 

HMM results to be comparable between larvae and treatments.  For example, when examining 

effects of exposure levels on fast swimming states, this comparison only used fish that performed 
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the standardized fast swimming behavior making the number of larvae for each comparison 

unique (see Treatment Testing section below; Table S3.5). 

 

Treatment testing 

All behavioral endpoints were examined for chemical dose treatment differences using 

Bayesian statistical methods (see supplemental for additional details).  We choose to analyze 

each behavior endpoint independently in order to allow for comparisons of multiple individual 

behavior endpoints between analytical methods and determination of endpoint sensitivity to 

chemical exposure.  Since the multiple endpoints are from the same fish and collinearity may 

occur between them, we considered using a Multivariate model that combined all 12 behaviors 

and tested for treatment differences, however the currently available Bayesian software cannot 

handle such complexity and would likely not converge.  In addition, multiple individual behavior 

endpoints produced in this study are to be used as inputs for an Individual Based Model of young 

of year growth and survival.  All Bayesian models consisted of two main effects (treatment and 

year), main effect interaction, and a random batch effect since assays were ran in batches of 10 

larvae.  Due to high variability between years, a model containing a non-constant variance 

parameter was constructed that estimated each year variance separately.  Response variables and 

residuals were examined for normality using density distributions and Box Cox transformation 

were applied where needed in all non-negative response variables using the boxcox function in 

the MASS package (Table S3.6; Venables and Ripley 2002).  All responses that were normally 

distributed either with or without a transformation were predicted using a normal distribution 

model, whereas those that were severely right skewed were predicted using a t distribution model 

where degrees of freedom (df) was estimated with uniform distribution [dunif (3,30); Table S3.7 
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and S3.8, respectively].  Priors were set to be non-informative and all models were run with three 

chains (see supplemental material for detailed methods).  To facilitate future use of parameter 

estimates, both population and individual level parameter estimates were generated.  Lastly, a 

Chi-Square test from the R stats package (R Core Team 2019) was used to determine whether the 

proportion of s1, s2 and s3 HMMs selected were different between treatments.  Alpha level was 

set at 0.05. 

Results 

The amount of mercury found in larvae from the 0, 0.00021 and 0.02156 ppm dosed 

treatments were 0.39 ± 0.08, 3.34 ± 0.64 and 420.62 ± 88.02 ppb wet weight, respectively (Table 

S3.1; average accuracy of 98.06 ± 11.57%, n = 14 base standard samples).  Neither the PCB126 

control nor the 0.01 ppm PCB126 dosed larvae had any detectable levels of PCB126 in the 

whole embryo samples, but the 1 ppm dose had 0.006 ± 0.005 ppm PCB126 wet weight (Table 

S3.1, average detection limit of 0.000316 ± 0.000063 ppm, n = 9, maximum of 0.000478 ppm; 

average accuracy at 1µg/L of 110 ± 0.099%, n=2).  

On average 94.7 ± 0.06 % of larvae within each chemical/year/treatment group were 

successfully fitted with an HMM (Table S3.2).  The number of larvae that consisted of one, two, 

or three behavior states exhibited a consistent pattern within each treatment, where a s1 model 

was found the least, followed by a s3 model, and most larvae exhibiting a s2 model (i.e. two 

behavior states; Figure 3.1; Table S3.5).  The proportion of each HMM type changed as chemical 

levels changed, with the upper MeHg dose having significantly more s2s relative to s3s as 

compared to the middle MeHg dose (Chi-squared = 20.095, P-value = 0.0002; Figure 3.1).  In 

PCB126, the proportion of three behavior HMMs increased in the upper dose until the proportion 
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of s2 and s3 HMMs were almost even (control vs upper: Chi-squared = 12.82, P-value = 0.0036; 

middle vs upper: Chi-squared = 11.525, P-value = 0.0088; Figure 3.1).  

 

 

 

Figure 3.1.  Number of best fit hidden Markov models for yellow perch larvae that contained 

one, two, or three different behavior states and were exposed to sublethal levels of 

methylmercury (MeHg) and PCB126. * indicates significance at ≤ 0.05 

 

Of the 72 different behavior endpoints examined (36 for each chemical), 17 differed 

between the treatments (Table 3.1); four in the PCB126 tests and 13 in the MeHg tests.  By 

random chance, the number of tests that could be significant is ~4 (0.05 alpha level × 72 tests = 

3.6). None of the behavior endpoints tested had similar trends between chemicals.  However, the 

slow state step length exhibited the opposite trend between chemicals, with the MeHg middle 
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dose having the lowest step length variation in the slow state and the PCB126 middle dose 

having the highest. 

 

Table 3.1.  Significant results of the treatment effects on yellow perch larvae behavior after 

exposure to sublethal levels of methylmercury and PCB126.  Presented for each behavior 

endpoint and treatment is the mean (original or back-transformed), transformed mean, P-value in 

parentheses, and pattern of significant trends.  Trends are based on original mean trends. P-

values and trends are reported in the following order: first level is the trend between control and 

middle treatment, second is middle verses upper treatment and third is control vs upper treatment 

(neg = significant negative trend, pos = significant positive trend, ─ = no significant trend). 

 

Parameter Control 

Treatment 

Middle 

Treatment 

Upper 

Treatment 

Significant 

Trends 

Methylmercury 

Swimming Bouts (per sec) 0.105 0.174 0.119 Pos Neg ─    
63.71 48.51 60.33    

(0.0020) (0.0174) (0.4148) 

Swimming Bout Speed (mm/s) 5.59 3.77 4.77 Neg ─ ─    
38.96 45.77 41.63    

(0.0198) (0.1538) (0.2258) 

Swimming Bout Turning Angle 1.013 1.279 0.850 ─ Neg ─    
169 185.5 158.6    

(0.0780) (0.0061) (0.1626) 

Total Time Swimming (sec) 61.14 139.6 101 Pos Neg 

Pos 
   

(0.0002) (0.0016) (0.0388) 

Overall Turning Angle Variation 1.293 1.477 1.117 ─ Neg ─    
25.54 27.87 23.34    

(0.2368) (0.0280) (0.1811) 

HMM Model Parameters 
   

  
Slow State 

   

   
Step Length Variation 0.084 0.060 0.112 ─ Pos ─    

76.71 82.46 70.52    
(0.1406) (0.0039) (0.0708)  

Medium State 
   

   
Step Length (mm) 0.206 0.219 0.163 ─ Neg ─    

5.18 5.00 5.9    
(0.6356) (0.0348) (0.0660)   

Step Length Variation 0.172 0.172 0.127 ─ Neg Neg    
5.56 5.56 6.44    

(0.9968) (0.0388) (0.0192) 
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Table 3.1 (cont’d)  

           
Count 1292 1539 2063 ─ ─ Pos    

292.9 300.7 314.2    
(0.5372) (0.2966) (0.0058) 

       

       

        
Fast State 

   

   
Step Length (mm) 0.634 0.578 0.493 ─ ─ Neg    

4.34 4.61 5.06    
(0.8378) (0.7254) (0.0266)   

Turning Angle -0.172 0.075 0.153 ─ ─ Pos    
(0.6788) (0.890) (0.0286)  

State Transition Probabilities 
   

   
Medium -> Slow 0.034 0.046 0.030 Pos Neg ─    

59.31 49.58 63.1    
(0.0414) (0.0074) (0.3476) 

         
Slow -> Medium 0.0099 0.0146 0.0119 Pos ─ ─    

71.07 60.61 66.5    
(0.0351) (0.2664) (0.3916) 

       

PCB126 

Total Time Swimming (sec) 68.23 87 50.02 ─ Neg ─    
(0.3182) (0.0278) (0.2894) 

HMM Model Parameters 
   

  
Slow State 

   

   
Step Length Variation 0.079 0.113 0.064 ─ Neg ─    

82.78 76.53 85.66    
(0.1118) (0.0336) (0.5016)  

Fast State 
   

   
Count 1807 1753 806 ─ Neg Neg    

332 330 292    
(0.8988) (0.0124) (0.0057)  

State Transition Probabilities 
   

   
Fast -> Slow 0.016 0.009 0.015 Neg Pos ─    

58.0 74.2 58.7 

      (0.0242) (0.0412) (0.9214) 

 

When comparing the middle MeHg treatment to the control, YP larvae had more 

swimming bouts but swam slower, spent more total time swimming, and had a higher probability 
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switching between the medium to slow and slow to medium states (Table 3.1).  In comparison 

with the upper MeHg treatment, the middle MeHg treatment larvae had more swimming bouts 

with higher turning angle and variability, spent more total time swimming, had lower slow state 

step length variation, higher medium state step length and variation, and had a higher probability 

switching between the medium to slow and slow to medium states.  The YP larvae in the MeHg 

upper treatment (verses the control treatment) had lower medium state step length variation, 

more time performing the medium state, smaller fast state step lengths, and more left turns 

during the fast state.  Both MeHg treatments spent more time swimming than the control 

treatment, but the middle treatment was the highest. 

When comparing the middle PCB126 treatment to the control, YP larvae had a lower 

probability of switching from fast to slow state (Table 3.1).  In comparison with the upper 

PCB126 treatment, the middle PCB126 larvae spent more total time swimming, had a higher 

slow state step length variation, and a lower probability of switching from fast to slow state.  

Additionally, the upper PCB126 treatment spent less time in the fast state as compared to either 

the control or middle dose. 

The effect of year was significant in 44 out of 72 behavioral endpoint models, where 9 

out of the 44 had higher values in 2017 than 2016 (Table S3.9).  For this study, the effect of 

treatment was the only interest, consequently all other effects in the model were used to remove 

variation in the treatment effect estimate.  Batch variability ranged 1 – 69% of the total random 

variation for 2016 and 1-86% for 2017 with the higher levels associated with the overall 

behavior metrics (i.e. overall turning angle variation, swimming bout turning angle, total time 

swimming, etc.) versus the HMM swimming parameters (Table S3.9).  Consequently, depending 

on the response variable the impact of the random batch variable can be low to high, indicating 
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that accurate representation of data collection with a hierarchical model is essential in 

determining differences between treatments for some behavioral endpoints.  

 

Discussion 

This study investigated sublethal impacts to YP larval swimming behavior after 

developmental exposure to environmentally relevant neurotoxicants MeHg and PCB126.  After 

examining both traditional and new analytical techniques, more behavior endpoints were altered 

after MeHg exposure than PCB126.  In addition, the new HMM analytical techniques found 

more altered swimming characteristics than the traditional methods for both chemicals.  Many 

behavior endpoints did not exhibit a threshold response but a non-linear response (Lushchak 

2014) which may be an indication of a  compensatory mechanism that fish are known to have 

(e.g. neurogenesis (Calabrese 2008, 2016; Bhatia et al. 2019)).   

Using a well-known neurotoxicant MeHg, YP larvae behavior was altered by very low 

but environmentally relevant exposures during embryo development.  YP larvae that were 

exposed to MeHg during the first 24 hr of development had an increase in activity at 27 dpf but 

mainly in the middle dose, suggesting a nonlinear response.  YP larvae exposed to the middle 

dose spent more time swimming, performed more behavior states, more swimming bouts per 

second and switched between slow and medium swim states more often.  However, they swam 

slower during the swimming bouts and did not travel any more distance than the control larvae 

(measured either as total distance traveled or in fish lengths).  Most of these differences were not 

present when larvae are exposed to the higher dose with only an increase in total time swimming. 

Higher dosed larvae have decreased variability in the medium step length, perform the medium 

state more, the fast state less, and turn more often to the left during the fast state.  Additionally, 
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higher dosed YP larvae also increased activity more than control larvae but not to the same 

extent as middle dosed larvae with some aspects of locomotion performed at lower levels than 

the controls.  These changes indicate the middle dosed YP larvae are more active and have a 

more diverse set of swimming states than unexposed larvae but these effects can be somewhat 

reversed at higher doses.   

The MeHg nonlinear responses observed in this study could be permanent or just 

representing one later point in time of the recovery process (i.e. temporary response after 26 days 

of recovery).  Evidence to suggest the MeHg nonlinear responses are part of a threshold response 

in YP was observed by Mora-Zamorano et al. (2017), who found YP total distance traveled in a 

lighted environment decreased at 0.21 µg/g Hg in tissue (tested up to 3.29 µg/g), but no changes 

in activity or distance travel in a dark environment.  The 0.21 µg/g of Hg concentration in tissue 

was the highest level tested in our study, but we also included a dose at 0.02 µg/g Hg.  

Combining the results from this study and Mora-Zamorano et al. (2017) indicates that total 

distance traveled may be affected at a tissue concentration as low as 0.21 µg/g Hg, but 

swimming bout abundance and speed may be affected at tissue concentrations as low as 0.02 

µg/g Hg.  Conversely, there is evidence from Atlantic killifish (Fundulus heteroclitus) that 

suggest these results could be part of a recovery process.  Research on temporary alterations in 

fish behavior after embryonic mercury exposure has been observed with multiple studies on 

killifish that show recovery of some behaviors such as prey capture ability, predation and 

collisions [see review by (Weis 2014)].  Indeed, killifish have shown decreased sensitivity of 

individuals from sites with a history of mercury and PCB126 contamination (Zhou and Weis 

1998; Zhou, R. Scali, J. S. Weis 2001; Nacci et al. 2010), suggesting killifish have compensatory 

mechanisms for pollution (Oleksiak et al. 2011; Foster 2012).  However, examination of grayling 
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(Thymallus thymallus), zebrafish and Atlantic croaker (Micropogonias undulatus) show 

permanent impairments after embryonic mercury exposure [see review by (Weis 2014)], 

indicating dramatic differences in the ability of a fish species to recover from mercury exposure.  

Additional research is needed with YP that includes assessment at more time points before it is 

known whether the effects observed in this study are permanent.  Regardless, even if the effects 

are temporary, they still may impact larval survival, because these impairments are occurring in 

critical life stage (Vélez-Espino et al. 2006).  

Compared to MeHg, PCB126 neurotoxic effects are not as well studied in fish; even so, 

PCB126 did alter YP larvae locomotion behavior after embryonic exposure.  Yellow perch 

larvae that were exposed to very low concentrations of PCB126 during the first 24 hr of 

development had altered behavior, but to a lesser extent than those exposed to MeHg in this 

study.  At the upper PCB126 dose, a higher proportion of fish exhibited a fast state, but the total 

time spent in the fast state decreased.  In addition, the larvae exposed to the middle dose 

transitioned from fast to slow state less often than the control larvae.  This suggests at the high 

PCB126 dose in this study, PCB126 caused fish to swim in faster states but for a shorter time 

period, transitioning from fast to slow less often.  PCB126 has been found to increase larval 

activity in some fish species, but not all. Killifish larva swimming speed increased at 0.5 ppm 

PCB126 (dose level) but not total distance or activity (Couillard et al. 2011).  PCB126 increased 

adult rainbow trout (Oncorhynchus mykiss) swimming speed, but recovery time was impaired 

due to higher metabolic costs during recovery and muscle restoration (Bellehumeur et al. 2016).  

However, in 5 dpf larval zebrafish with 0.385 ppm of PCB126 exhibited decreased swimming 

activity (Di Paolo et al. 2015).  Since activity trends after PCB126 are mixed, inter-species 

differences may be a major factor in determining impacts of PCB126 exposure.  One caution 
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should be noted with the results from this study, which is the confounding effect of the dimethyl 

sulfoxide solvent (DMSO) on fish behavior (Hallare et al. 2006; Huang et al. 2018).  However, 

we feel this confounding effect was minimal because we used freshly purchased 500ppm DMSO, 

which at this concentration and quality has been shown to have small confounding effects. 

Multiple nonlinear dose responses were observed in this study as the chemical level 

increased, both positive and negative trends (Mattson 2008; Lushchak 2014); where one 

nonlinear dose response was observed after PCB126 exposure and six after MeHg exposure 

(Table 3.1; Figure 3.1).  This is not unexpected since fish are known to have compensatory 

mechanisms (e.g. neurogenesis) (Calabrese 2008, 2016; Bhatia et al. 2019).  These response 

endpoints may indicate the subset of behavior endpoints that involve sensory components that 

include compensatory mechanisms.  A linear response over both doses did not occur with any of 

the behavior endpoints in this study (Table 3.1; Figure 3.1), indicating the dose levels did not 

encompass the transition where compensatory mechanisms were overwhelmed or the behavior 

endpoint did not include any compensatory mechanism.  However, some behavior endpoints had 

the upper dose deviate significantly from the control or from the middle dose (Table 3.1).  These 

doses are potentially the lowest effect concentrations for these behavior endpoints.  

Until the recent expansion of tools that implement hierarchical modeling (e.g. HMM), 

behavior endpoints were typically calculated as an average over time.  Now with the choice of 

average endpoints or more specific within assay/behavior endpoints, the ability to detect 

behavior alterations due to toxicants has expanded.  In this study, the HMMs found more 

significant behavior differences between the control and treatments, more so with PCB126 than 

MeHg.  Taken individually, HMM results indicate MeHg decreased activity in the high dose 

(higher slow state step length and lower medium state step length), in contrast, the averaged 
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endpoints indicate increased activity in the middle dose (increased number of swimming bouts 

and total time swimming but lower bout speed; Table 3.1).  This may be the result of the 

nonlinear dose response with each method being sensitive to only one aspect of the dose 

response curve or due to the limited dose range. PCB126 results were more consistent between 

the two analytical methods, both indicating decreased activity in the higher dose (total time 

swimming, less fast state swimming; Table 3.1).  

These two different analytical approaches to summarizing behavior endpoints have 

advantages and disadvantages.  Overall behavior endpoints have been a common way of 

assessing toxicological effects on behavior and thus have previous research using a variety of 

toxicants and species describing how they are affected by exposure.  They are easy to calculate 

and apply to individual based population models that can simulate population level changes due 

to behavior [IBMs; e.g. (Rearick et al. 2018)].  However, they may not be sensitive enough to 

detect more nuanced behaviors or states within, such as with PCB126 in this study.  In 

comparison, HMMs consider, and adjust for, different behavior states and correlation between 

data points.  These properties of HMMs make them well suited for animal movement data 

(Hooten et al. 2017).  In this study, HMMs were used as an assessment tool to find differences 

between treatments, in addition to determining specific behaviors. Use of HMMs could be 

expanded to many toxicological behavior assays.  For example, HMMs could be used in 

behavior assays that examine the decision process (i.e. states) during y mazes or feeding assays 

(e.g. (Marques et al. 2020)), different startle states during VMRs, anxiety-related behavior during 

swimming or social assays, or feeding strategies during feeding assays (e.g. (Dunn et al. 2016)).  

However, HMMs can be difficult to construct, especially when you do not have a predefined 

behavior of interest because it is difficult to determine whether the defined behavior state is the 
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same type over individuals.  Data quality may also be an issue if the tracking algorithm is not 

sensitive to subtle movements or artificially adds movement when the animal is motionless.  In 

addition, HMMs require evenly timed relocations, which in field studies may be difficult, but is 

easy with laboratory video assays such as those used in this study.  Even so, the usefulness of 

HMMs for analyses of behavior in many different sizes and types of animals, bioinformatics and 

other time series data has increased their popularity (Escola et al. 2011; Zucchini et al. 2017). 

Having more sensitive behavior analytical tools will be important in multiple aspects of 

toxicology including advancing our understanding of sublethal effects to inform risk assessment, 

Adverse Outcome Pathway construction, and/or genetic sources of behavior.  For example, more 

sensitive behavior detection could assist with connections to other subtle key physiological 

events or allow for fine scale connections between gene expression and behavior performance.  

In addition, new artificial intelligence animal behavior tools continue to be developed that will 

aid in application of these methods to high throughput applications (Ingebretson and Masino 

2013; Reif et al. 2016; Villeneuve et al. 2018).  However, the key in applying individual animal 

behavior endpoints in management actions is making them relevant to the population level such 

as through growth and/or survival (Ågerstrand et al. 2020).  To date, application of individual 

behavior endpoints to population level impacts has mainly been through use of Individual Based 

Modeling (Murphy et al. 2008; Armstrong et al. 2020)  or Leslie matrix population models 

(Rearick et al. 2018); which the results from this study will be applied.  Consequently, 

combining random walk models within the Individual Based Modeling framework is needed in 

order to apply the HMM results from this study to population level impacts. 

As computing power increases, more innovative behavior analyses will be possible.  

These innovations will advance our understanding of how pollutants affect species and our 
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understanding of pollution risk.  As our understanding grows, research results should guide 

future regulation recommendations as well as risk assessment.    
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CHAPTER 4: IMPACTS ON ATLANTIC KILLIFISH FROM NEUROTOXICANTS: 

GENES, BEHAVIOR AND POPULATIONS 

 

Abstract 

To understand the biological risk of pollutants, connections, both correlative and 

mechanistic, are needed between the exposure event and key events at the molecular, cellular and 

organismal level.  This study examined gene expression, behavior and simulated cohort growth 

and survival from embryonic exposed fish larvae to neurotoxicants.  Atlantic killifish Fundulus 

heteroclitus from both contaminant adapted and non-adapted populations were exposed to 

sublethal-environmentally relevant levels of methylmercury (MeHg) and PCB126.  Non-adapted 

killifish from Scorton Creek, MA (SCO) exposed to MeHg exhibited brain gene expression 

changes in the si:ch211-186j3.6, si:dkey-21c1.4, scamp1 and klhl6 genes, which coincided with 

similar changes in feeding and swimming behaviors.  Embryos from SCO were also exposed to 

PCB126 had lower physical activity levels coinciding with a general upregulation in numerous 

nucleic and cellular brain gene sets (BGS) and down regulation in numerous signaling, nucleic 

and cellular BGS.  PCB126 exposures were repeated on toxic adapted larvae from New Bedford 

Harbor, MA (NBH).  The NBH had only subtly altered swimming behaviors that coincided with 

98% fewer altered BGS than SCO.  Ultimately, we predicted decreases in SCO and NBH cohort 

survival after only PCB126 exposure and only SCO larvae with decreases in growth after 

PCB126 exposure.  Overall, these results suggest connections between killifish larval brain gene 

expression and behavior, as well as decreases in modeled larval survival after embryonic 

exposure to PCB126, even for tolerant NBH populations. 

.   
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Introduction 

Sublethal levels of neurotoxic chemicals such as polychlorinated biphenyl (specifically 

3,3',4,4',5-pentachlorbiphenyl congener, PCB126) and methylmercury (MeHg) commonly exist 

in an industrial landscape as aquatic pollutants (Murphy et al. 2012).  However, there is limited 

ability to predict sublethal impacts or assess risk from these neurotoxic chemicals on individual 

fish, multiple species, or their populations.  One approach to solving this problem is to examine 

the neurobehavioral impacts through an Adverse Outcome Pathway (AOP) framework (Garcia-

Reyero and Murphy 2018) constructed using standard laboratory fish species along with local 

species of conservation.  Fundamental to the AOP framework is connecting the chain of events 

from toxic exposure, molecular initiating event/s, to key events in cellular, organ and organ 

systems; to whole organism and/or population level impacts (Ankley et al. 2010).  Adverse 

Outcome Pathways are constructed to be modular and chemically agnostic, where comparing the 

results from two different chemicals can illustrate areas of commonality but also differences 

(https://aopwiki.org/).  For example, PCB126 and MeHg potentially interrupt different 

neurological development pathways (Bradbury et al. 2008; Cambier et al. 2009; Xu et al. 2012; 

Ho et al. 2013); consequently similarities between these two chemicals at the molecular level 

may be limited.  However, similarities may increase as impacts are scaled up from molecular to 

the more integrative organism and population level effects. 

This study developed an AOP that starts at a neurotoxicant embryonic exposure and 

measured three types of endpoints or key events: 1) brain gene expression, 2) individual behavior 

and 3) predicted population impacts.  Using an AOP framework, these particular key events 

allow us to elucidate how environmental contaminants influence genes which in turn influences 

individual fish behavior (Hunt et al. 2019).  This research is approachable because of recent 
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advances in efficient gene expression tools and shows promise in pursuits that connect the 

environment to animal behavior (Walton et al. 2020), especially toxic environments.  

A well-known example of a fish species that demonstrates genetic modifications because 

of a toxic environment is found in populations of non-migratory small Fundulus heteroclitus 

(Atlantic killifish, KF) that have survived in the wild after long-term exposure to industrial 

pollution.  This model fish species is of interest to toxicologists because some populations have 

been found to have genetically adapted in the wild to dioxin-like contaminants (DLCs) (Nacci et 

al. 1999) and other populations continue to persist in mercury polluted environments (Weis et al. 

1981; Smith and Weis 1997; Pereira et al. 2019).  This study examined this unique species and 

compared two genetically distinct populations, one known to have chemical tolerance and one 

without ancestral exposure to pollutants.  Response differences between these two populations 

could lead to insight into the molecular machinery underlying this evolved tolerance.  Further, 

examining similarities between gene expression and behavior endpoints could indicate how brain 

gene expression drives behavior.  Consequently, this study determined differences of brain gene 

expression, behavior and cohort metrics after sublethal embryonic exposure to two 

neurotoxicants, MeHg and PCB126, in adapted and non-adapted KF populations.    

 

Methods 

Populations 

In this study, two populations of KF were used to assess effects of a model DLC, 

PCB126.  These KF populations had been found previously to be relatively PCB-sensitive 

(Scorton Creek, Barnstable, MA; SCO) or PCB-tolerant (New Bedford Harbor, MA; NBH), 

respectively (Nacci et al. 2010).  Disparities in MeHg sensitivity between these KF populations 
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have not been previously documented (Pereira et al. 2019); consequently, a subset of the SCO 

KF population were used to assess effects of MeHg exposure. 

 

Parental killifish husbandry and methylmercury exposure 

Killifish (100 – 200 fish) were collected from the wild using baited traps and maintained 

as previously described (e.g., Nacci et al. 2010).  In brief, KF were returned to US 

Environmental Protection Agency (EPA) Office of Research and Development marine aquarium 

facilities (Narragansett, RI), and held in ~250 L tanks supplied with free-flowing uncontaminated 

seawater.  Relatively uncontaminated KF from SCO (parental generation, P) were held in the lab 

for > six months before use as breeding stock in this study.  However, highly contaminated NBH 

killifish were held for > 2 year depuration before producing F1 progeny, which were grown to 

maturity (1 – 2 years) then used as breeding stock in this study.  All procedures using live 

vertebrate animals at the EPA were conducted in accordance with Animal Care and Use 

Protocols approved by the University of Wisconsin at Milwaukee Institutional Animal Care and 

Use Committee (IACUC, #18-19#04) and EPA ACUP # Eco23-03002 and Eco230-07-001. 

Before the onset of the adult KF dietary exposures (24 April 2017), selected KF were 

transferred to six ~250 L tanks (2 NBH F1 tanks, 4 SCO P tanks), acclimated up to 23o C 

(breeding temperature) and then held for 4 weeks.  Each tank held 36 (24 female and 12 male) 

size matched KF [~7 g mean wet weight (ww) or 1.75 g mean dry weight (dw)].  KF were fed 

constructed diets containing ~30% wild fish (ww/ww) and components such as Tetramin 

Tropical Flake, which supported healthy growth and reproduction in KF (unpublished data).  The 

diets included wild sockeye salmon Oncorhynchus nerka fillet (naturally low in MeHg) or wild 

tuna steak (naturally high in MeHg), which are believed to be relatively similar nutritionally 
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(Celia Chen, Dartmouth, personal communication).  Therefore, a tuna-based diet was used to 

produce high MeHg KF breeding stock and a salmon-based diet was used to produce low MeHg 

or reference (control) KF breeding stock since native SCO whole KF contain a low level of 

mercury [Hg; 186.10 ± 23.30 ng tHg/g dw KF, standard deviation (SD), n=5, sampled April 27, 

2017].  The low MeHg KF breeding stock received a daily estimated dose of ~ 300 ng tHg/g dw 

KF/day through their salmon-based diet. Adult KF in this treatment had a body concentration of 

Hg similar to the wild caught fish referenced above at 162.46 ± 20.21 ng tHg/g dw KF (SD, 

n=8); their larval progeny contained 9.80 ± 2.49 ng tHg/g dw KF at 3 days post fertilization (dpf, 

SD, n=9).  The high MeHg KF breeding stock received a daily estimated dose of ~ 3600 ng 

tHg/g dw KF/day through their tuna diet.  Adult KF in this treatment had a body concentration of 

564.09 ± 269.29 ng tHg/g dw KF (SD, n=5); their larval progeny contained 35.09 ± 17.06 ng 

tHg/g dw KF (SD, n=16) at 2 dpf.  Preliminary data (unpublished, Kate Buckman, Dartmouth 

College) demonstrated that maternal KF achieved tHg concentrations equivalent to their dietary 

consumption of ~1200 ng Hg/g dw by day 42 and produced embryos containing 35 - 100 ng 

Hg/g dw. 

 

Treatment groups of embryos from killifish breeding stock 

After adult KF dietary exposures (≥ 103 d) were completed, KF were strip spawned and 

mixed to produce embryos from each of these three KF breeding stocks: SCO Low MeHg diet, 

SCO High MeHg diet, NBH Low MeHg diet.  NBH larva were not tested for higher level MeHg 

impacts in this experiment because it was outside the scope of the study. Embryos were 

maintained during early development at the EPA as per KF Embryo Larval Assay (ELA) 

protocol, as described below.  Subsamples of the embryos from SCO Low MeHg diet and NBH 
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Low MeHg diet KF were exposed directly to PCB126 during development, 1 to 7 dpf.  Direct 

exposures to 40 or 400 ng/L nominal concentrations of PCB126 were selected to produce 

embryo concentrations equal to 0.1x or 1.0x, respectively, PCB126 measured in wild NBH 

killifish (189 ng/g dw) (Nacci et al. 1999).  However, the higher exposure was completely lethal 

to SCO embryos and produced some lethality in NBH embryos (Table 4.1), therefore these 

treatment groups were not assessed for behavior.  Since Hg tissue concentrations in the Low 

MeHg diet (salmon) were similar to wild caught SCO KF (see concentrations stated in previous 

section), the Low MeHg diet was labeled as the control.  Thus, there were five embryo treatment 

groups analyzed in the behavior sections of this study: 1) Embryos from SCO Low MeHg diet 

KF without further direct exposures (SCO-Ctrl); 2) Embryos from SCO High MeHg diet KF 

without further direct exposures (SCO-MeHg); 3) Embryos from SCO Low MeHg diet KF 

exposed directly to a low level (40 ng/L) of PCB126 (SCO-PCB); 4) Embryos from NBH Low 

MeHg diet KF without further direct exposures (NBH-Ctrl); 5) Embryos from NBH Low MeHg 

diet KF directly exposed to a low level (40 ng/L) of PCB126 (NBH-PCB) (Figure 4.1).  Of all 

the possible pairwise comparisons between the five treatments, this study was focused on only 

three types of comparisons.  1) The comparison that determined only High MeHg impacts, SCO-

Ctrl vs SCO-MeHg.  2) The four comparisons between the PCB treatments and KF populations 

[(a)SCO-Ctrl vs SCO-PCB, (b) SCO-Ctrl vs NBH-Ctrl, (c) SCO-PCB vs NBH-PCB, (d) NBH-

Ctrl vs NBH-PCB].  3) All five of these comparisons combined to determine if there were any 

responses that were similar between the two chemicals.  
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Table 4.1.  Embryo treatment groups used in larval behavioral assays, where Atlantic killifish larvae originated from adults from 

Scorton Creek, MA (SCO) or New Bedford Harbor, MA (NBH).  Larvae were fed low mercury (i.e. control) or high mercury 

(Hg) diets and exposed directly to PCB126 at nominal concentrations of 40 ng/L (Low PCB) or 400 ng/L (High PCB).  Endpoints 

reported include hatching, survival, and ratings for phenotypic abnormalities, including those specific to the heart.  Lethal 

treatment groups (PCB126 400 ng/L) were not used in larval behavior studies (DND = did not determine, NA = not applicable). 

Parents 

Parent or 

Offspring 

Treatment 

Treat-

ment 

Number 

PCB126 

ng/ga  

Mercury 

ng/g 

% 

Embryo 

Survival 

% 

Hatch 

% 

Larval 

Survival 

Phenotypic 

Abnorm-

alities 

Mean 

Score 

Heart 

Abnorm-

alities 

Mean 

Score 

SCO Controlb 1 0 9.8 ± 2.49 100 100 90 0 0 

 

Hg ~3600 ng 

tHg/g dw/day 

2 NA 35.09 ± 

17.06 

100 87.5 87.5 0.13 0 

 PCB126 40 ng/Lb 3 19 DND 100 100 87.5 0.25 0.63 

 

PCB126 400 

ng/Lb 
N/A 189 DND 100 0 0 4.6 4 

NBH Controlb 4 0 DND 100 100 100 0 0 

 PCB126 40 ng/Lb 5 19 DND 85.71 85.71 85.71 0 0 

  
PCB126 400 

ng/Lb 
N/A 189 DND 66.67 66.67 55.56 0.86 0.86 

a Estimated using previous experiments (Nacci et al 1999)       
b Also exposed to ~300 ng tHg/g dw/day through salmon-based diet      
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Figure 4.1.  Atlantic killifish larval treatment groups (labeled as in text) showing adult 

populations from Scorton Creek (S) or New Bedford (N) and fed diets low (control) or high 

in mercury (Hg), producing embryos (circles), subsets of which were exposed during 

development to PCB126. 

 

Embryo-larval assessments 

Routine rearing and monitoring of the early development of KF embryos, ELA methods, 

were conducted as described in Huang et al. (2019).  Briefly, one dpf embryos were transferred 

into individual vials containing 10 mL sea water, amended with acetone (0.01% acetone, Sigma 

Chemical, St. Louis, MO, USA) or chemical-acetone stocks of PCB126 (Accustandard, New 

Haven, CT).  At seven dpf, embryos were transferred to a 12-well disposable plate (Thermo 

Fisher Scientific, Rockville, MD, USA) containing uncontaminated sea water-dampened 20 mm 

Restek Cellulose filters made for ASE 200 extraction cells (Restek, Bellefonte, PA, USA).  A 

subset of embryos from each treatment group were sent to UWM for Hg or behavioral analyses.  

The remaining embryos from each treatment group remained at EPA (> 20) and incubated at 23° 

C. At 10 dpf, embryos were phenotyped microscopically for abnormalities in developmental 
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stage and features were noted (Clark et al. 2010; Whitehead et al. 2010).  At 14 dpf, sea water 

was added to each well and the plates were rocked gently to initiate hatching.  Individual larvae 

were maintained in single wells containing 3 mL sea water for all assessments, incubated at 23° 

C, fed 24-h hatched Artemia ad lib daily, and renewed with sea water on alternate days. 

Individuals were assessed daily for survival until seven days post hatching (dph) when the ELA 

was terminated (Table 4.1). 

To assess the degree of neurological impact, three different larval behavior assays were 

conducted: visual motor response assay (VMR), a free swimming locomotion assay, and a 

feeding assay (Figure 4.2).  From these assays, 83 different larval behaviors were measured, 48, 

30 and 5 endpoints, respectively.  See supplemental section for behavior assay details.   

 

 

Figure 4.2.  Behavior assays used in this study to collect data on Atlantic killifish larvae for 

assessment of chemical responses and for inputs into the Individual Based Model. 
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Behavior treatment testing 

All behavioral endpoints were examined for treatment differences using Bayesian 

statistical methods (see Supplemental section for additional details).  Bayesian models for 

locomotion behavior responses consisted of one main effect (treatment with 5 levels), covariate 

variable (time of test and/or dpf) and a random batch effect since assays were ran in batches of 

12-well dishes.  Bayesian models for feeding behavior were the same except no random batch 

was included since each assay was conducted with one larva.  Response variables and residuals 

were examined for normality using density distributions and Box Cox transformation were 

applied where needed in all non-negative response variables using the boxcox function in the 

MASS package (Table S4.4; Venables and Ripley 2002).  All responses that were normally 

distributed either with or without a transformation were predicted using a normal distribution 

model, responses that were severely right skewed were predicted using a t distribution model 

where degrees of freedom (df) was estimated with dunif (3, 30), and responses that were 

proportional were fit with a logistic distribution model (Tables S4.5, S4.6, S4.7 and S4.8, S4.9, 

respectively).  Priors were set to be non-informative and all models were ran with three chains 

(see supplemental material for detailed methods; Table S4.5).  To facilitate future use of 

parameter estimates, this study generated both overall population and individual level parameter 

estimates (Table S4.11).  Lastly, a Chi-Square test from the R stats package (R Core Team 2019) 

was used to determine whether the proportion of s1, s2 and s3 HMMs selected were different 

between treatments. 
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Brain gene expression 

Brain collection 

Brain collection was performed essentially as described by Vargas et al. (2011) on 17 dpf 

MeHg and PCB126 exposed larvae.  A random subset of larvae were removed after the VMR 

assay to contribute brain samples for gene expression at 16 dpf (n=69, 36 of whom had been 

through the VMR assay and 33 had not).  Larvae were gently transferred to a 60 mm petri dish 

and 4oC embryo medium was quickly added to provide anesthesia.  Five larvae were transferred 

to a new petri dish, water was removed, and individuals were immobilized in a drop of 2% low 

melting point agarose made with artificial cerebral spinal fluid (aCSF; 131 mM NaCl, 2 mM 

KCl, 1.25 mM KH2PO4, 2 mM MgSO4, 10 mM glucose, 2.5 mM CaCl2, 20 mM NaHCO3).  A 

dissection pin was used to mount the larvae in dorsal/ventral recumbency, just under the surface 

of the agarose.  Artificial cerebral spinal fluid was added and dishes were placed on ice. Intact 

brains were removed using dissection pins, transferred individually in 5µl aCSF to 1.5 ml 

microcentrifuge tubes, then frozen in liquid nitrogen prior to storage at -80oC.  

 

Brain gene analysis 

Genomic analysis was conducted at Mississippi State University, Institute for Genomics, 

Biocomputing and Biotechnology.  Total RNA was isolated from 6 embryos’ brains per 

treatment from individual 17 dpf embryos using the Qiagen RNeasy® Micro Kit (Germantown, 

MD, USA) following the Purification of Total RNA from Animal and Human Tissues protocol 

in the RNeasy® Micro Handbook with slight modifications.  The modification included 

homogenization of brain tissue in 350 µL of RLT buffer using a pellet pestle and elution of Total 

RNA using 15 µL of RNase-free water.  RNA quality was assayed using the Agilent High 
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Sensitivity RNA ScreenTape System (Waldbronn, Germany) for the Agilent 2200 TapeStation 

(Palo Alto, CA, USA), and RNA was quantified using the NanoDrop 2000 (ThermoFisher 

Scientific, Waltham, MA). 

The raw reads from 36 KF samples (6 groups with 6 reps) were mapped and quantified 

using salmon (Patro et al. 2017) (v1.3.0) against the reference transcriptome (see below).  

tximport (Soneson et al. 2015) (v1.16.1) was used to import transcript-level estimates from 

salmon summarize this data to the gene level.  These genes were filtered such that only genes 

with an average log Counts per Million > 1 across all samples were retained for differential 

expression. edgeR (v3.30.3) was used to determine differentially expressed genes (DEGs).  

OrthoFinder (v2.5.4) was used to find orthologous genes in D. rerio.  The GAGE R package 

(Luo et al. 2009) (v2.40.0) was used to perform gene-set enrichment analysis using D. rerio GO 

gene-sets, KEGG gene-sets and the D. rerio orthologs of genes that passed the filter.  Significant 

trends were determined using an alpha of 0.05 [false discovery rate (FDR) and q-value]. 

 

Behavior/gene expression comparisons 

Each endpoint response, either gene or behavior, was summarized over all treatments by 

first determining whether there was a significant difference found while testing the treatment 

comparisons.  When a significant difference was found, a positive (Pos) or negative (Neg) trend 

was indicated using the relative amount of the first treatment to the second treatment.  For 

example in the comparison between SCO-Ctrl vs SCO-PCB treatments, if the SCO-PCB 

treatment had a higher level than the SCO-Ctrl treatment, the summary is positive.  If the SCO-

PCB treatment had a lower level than the SCO-Ctrl treatment, the summary is negative.  The 

endpoint value used to determine the trend direction were the back-transformed treatment means.  
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The resulting summary pattern was used to group behavior and gene expression endpoints that 

responded the same together.  This approach is more robust than other data mining methods (e.g. 

PCA) because it 1) takes into account the treatment design of the experiment and the 

comparisons and 2) limits comparisons to only those endpoints that were determined to be 

statistically different from one another, which limits the excessive comparison of all endpoints. 

 

Individual based model 

A generalized Individual Based Model (IBM) was developed that incorporated the 

sublethal effects of MeHg and PCB126 on larval KF from two different populations known to 

have different exposure histories and responses to toxicants.  The model is described in Ivan et 

al. (unpublished), with brief details provided here.  Our IBM was adapted from a generalized 

larval fish model (Letcher et al. 1996) using bioenergetics equations for the California killifish F. 

parvipinnis (Deslauriers et al. 2017).  See Table S4.11 for all model parameter values. 

Briefly, the IBM tracked 2500 individual larvae (based on wild densities) from hatch to 

juvenile transition, defined at 24 mm (Abraham 1985) or after 100 days, whichever occurred first 

(Figure 4.3).  Daily, individuals forage, grow and experience mortality. KF forage on two types 

of prey.  Foraging consists of prey encounters, handling time, capture success and consumption 

of nauplii and/or copepods.  Swimming speed, handling time, larvae reactive distance and 

capture success all determine how many prey an individual KF larval consumes. KF then grow 

(Gj,d in g/d) as 

𝐺𝑗,𝑑 = 𝐶𝑗,𝑑 − 𝑅𝑗,𝑑 − 𝐹𝑗,𝑑 − 𝑈𝑗,𝑑 − 𝑆𝐷𝐴𝑗,𝑑 

where Cj,d (g/d) is the consumption of prey by larval fish j, Rj,d is respiration (g/d), Fj,d is 

egestion (g/d), Uj,d is the excretion (g/d) and SDAj,d (g/d) is the specific dynamic action.  
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Consumption is determined via the foraging but capped at Cmaxj,d (g/d) as determined from the 

Wisconsin Bioenergetic equations (Deslauriers et al. 2017).  Finally, KF are monitored for 

starvation and predation mortality.  Predators of KF are adult KF and their predation rates are 

temperature dependent (Deslauriers et al. 2017).  Fish that die are removed from the daily loop, 

as are fish that reach 24mm.  Output variables of interest are 1) the number of survivors (fry that 

reach the exit length within the 100 days) and 2) the mean growth rate (mm/d) of survivors.  

Sublethal effects of MeHg and PCB126 were incorporated into the model via multipliers 

which are based off of the Bayesian individual level predicted treatment posterior distributions 

(Table S4.12).  The individual level posterior distributions were used to create 10,000 random 

values from a truncated normal distribution.  If the posterior distribution was from a transformed 

behavior endpoint, than these random values were back transformed.  From these random values, 

the multiplier distributions were generated (S12).  Multipliers were placed on larval swimming 

speed from the locomotion assay; larval capture success of zooplankton, larval handling time of 

zooplankton, and larval reactive distance to zooplankton from the feeding assay.  At the start of 

each simulation (replication), each model individual j was assigned a multiplier for each of the 

above four variables.  For each simulated KF (j), a swimming speed multiplier (SMj) was 

generated as 

𝑆𝑀𝑗 =  𝑇𝐷𝑗/𝑀𝐷 

where TDj is the average speed (mm/s) by fish j and MD is the treatment mean average 

speed (mm/s). Multipliers for handling time (𝐻𝑀𝑗 =  𝑇𝐻𝑗/𝑀𝐻), capture success (𝐶𝑀𝑗 =

 𝑇𝐶𝑗/𝑀C) and reactive distance (𝑅𝑀𝑗 =  𝑇𝑅𝑗/𝑀R) were calculated for each experimental fish j 

as using the same procedure.  Finally, the amount of time a fish was active was determined by 

the proportion of time fish were active in the locomotion assay.  Proportions were derived from 
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the posterior distributions for each scenario.  If necessary, back-transformations were performed 

prior to the multiplier calculation.  Lastly, the proportion of time a KF was actively searching for 

food or encountering a predator was scaled to the percent of time active larvae were in the 

locomotion assay by randomly assigning a time scaler to each fish at the beginning of the 

simulation (i.e. multiply 12 hours by percent of time active in assay). 

The model was calibrated using SCO KF such that growth rates were set to be 

approximately 0.3mm/d (unpublished).  To determine if differences occurred between which 

season the adult fish spawn, we ran simulations for spring and summer runs.  For spring runs 

beginning on Julian day 110, the first fish reached 24mm around day 53 with several individuals 

still growing but under the size of 24mm at the end of the model run (Figure S4.2).  For the 

summer runs (Julian day 230), the first fish to reach 24mm at the end of the model run was on 

day 48 with few fish remaining in the simulation at the end of the model run (Figure S4.2).  For 

each scenario (population X toxicant effect) the model was run 10 times to account for 

stochasticity.  All results are reported as means of each simulation within a scenario.  In addition 

to the scenarios, we also examined the impacts of these toxicants on the two KF populations in 

two different simulated seasons. 
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Figure 4.3.  Model flow chart showing daily processes included in the generalized 

individual-based model to assess contaminant effects on Atlantic killifish larval cohorts.  

 

Results 

Behavior endpoints 

Many larval behaviors were either inherently different between the SCO and NBH 

populations or affected by MeHg in their parent’s diet, and/or exposure to PCB126 during 

development.  Of the 83 behavior endpoints tested, 49 had at least one treatment difference from 

chemical exposure (Table 4.2-4.4, S4.13 and S4.14).  By random chance, the number of 

significant tests that could be significant is ~4 (0.05 alpha level × 83 tests = 4.15).  More 

significant behavior patterns were found with behavior endpoints that examined swimming 
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characteristics (30) than were found with stamina/activity type behaviors (24), even though both 

had similar levels of testing over all assays (33 total swimming characteristics where examined, 

31 stamina/activity type behaviors, 2 startle, 5 feeding behavior types).  Although both the VMR 

and locomotion assay were examined for the same suite of 10 swimming endpoints (Table S4.2), 

the same set of swimming endpoints did not exhibit the same trends across treatments (Table 4.2, 

3).  The exceptions being 1) the overall swimming bout turning angle from the locomotion assay 

and the average swimming bout turning angle in light periods 2 and 4 of the VMR assay (Table 

4.2, ref 2); and 2) swimming bouts (per sec) and the number of swimming bouts per second in 

periods 2-5 in the VMR assay (Table 4.2, ref 3).  Endpoints such as swimming bout duration, 

total time swimming and total distance traveled did not consistently report treatment differences 

during lighted or dark periods in the VMR assay and the locomotion assay. 

Thirteen feeding, swimming and startle behavior endpoints were different between the 

control SCO and NBH populations (Table 4.2, ref 6-11, 15).  As compared to NBH, SCO larvae 

had higher swimming bout duration (Table 4.2, ref 9); total time swimming (Table 4.3, ref 7); 

transition probabilities from the medium to the fast state (Table 4.2, ref 9), slow to medium or 

fast states (Table 4.2, ref 11,15); medium state turning angle (Table 4.2, ref 11).  As compared to 

SCO, NBH larvae were higher in larval capture probability, reaction distance (Table 4.2, ref 8) 

and capture attempts (Table 4.2, ref 6); startle magnitude in period 3 (Table 4.2, ref 8); transition 

probability from slow to slow, medium to slow, and medium to medium state swimming (Table 

4.2, ref 10). 

Increased MeHg exposure altered SCO larvae behavior endpoints (Table 4.3).  For 

example, SCO larval capture probability, capture attempt ratio and reaction distance increased 

when higher MeHg levels were fed to their parents.  Mercury also increased the probability of a 
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SCO larva staying in the fast or medium swimming state.  In addition, MeHg exposure decreased 

SCO larva total distance traveled, step length and variation in the final VMR period; swimming 

bout duration and total time swimming in the VMR period 3; turning angle variation in the 

medium behavior state and the transition probability from the medium to fast state (Table 4.3). 

Occasionally both MeHg and PCB126 made certain behavior endpoints respond similarly 

in the SCO larvae (Table 4.4).  For example, both MeHg and PCB126 made SCO larvae 

increased the number of capture attempts, with PCB126 increasing it more than MeHg (Table 

4.4, ref 2).  Additionally, both chemicals decreased the duration of swimming bouts and total 

time swimming in VMR period 3 (Table 4.4, ref 1, 3).  Lastly, the probability of staying in the 

medium state response differed between the chemicals and populations, where MeHg increased 

it in the SCO larvae while PCB126 decreased it in the NBH larvae (Table 4.4, ref 4). 

Most behavior alterations found in this study were from PCB126 (Table 4.2).  For 

example, larval handling time of prey increased in every PCB126 treatment (Table 4.2, ref 1).  

While other behavior endpoints increased with PCB126 exposure but differed in severity 

between populations.  For example, PCB126 exposure resulted in SCO larvae proportionally 

missing more prey but NBH larvae missed even more (Table 4.2, ref 2).  Swimming bouts during 

light periods also changed with increases in the turning angle (Table 4.2, ref 2) and decreases in 

bout frequency (Table 4.2, ref 3) both in the locomotion and VMR assays; again more severely 

in the NBH larvae.  Some behavior endpoints were only altered in either the SCO or NBH 

population. For the SCO larvae, PCB126 decreased SCO larvae total time swimming (Table 4.2, 

ref 7) and total distance traveled in the locomotion assay and swimming bout duration in the 

VMR period 1 (Table 4.2, ref 5); total distance traveled, overall step length and variation in 

VMR period 3 (Table 4.2, ref 3).  PCB126 increased SCO larvae overall mean turning angle in 
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the VMR period 2 and variation in period 3, with the latter being higher in the NBH larvae but 

no different than the NBH controls (Table 4.2, ref 3, 4).  For only the NBH larvae, PCB126 

decreased the probability of staying in the slow or medium state in addition to medium to slow 

state transition probability (Table 4.2, ref 10); increased medium state turning angle and slow to 

medium, fast to slow and slow to fast state transition probabilities (Table 4.2, ref 11, 13, 15).  

Lastly, after PCB126 exposure, NBH larvae had a smaller mean and variation in the medium 

state step length in the locomotion assay, but the NBH mean medium step length was still higher 

than the SCO population (Table 4.2, ref 12, 14). 
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Table 4.2.  Summary of PCB126 significant treatment patterns found in Atlantic killifish 

behavior endpoints.  Significant trends are reported using the following comparisons: SCO-

Ctrl vs SCO-PCB, SCO-Ctrl vs NBH-Ctrl, SCO-PCB vs NBH-PCB, NBH-Ctrl vs NBH-

PCB (Tan = significant negative trend compared to control, Blue = significant positive trend 

compared to control, Black = no significant trend compared to control, HMM = Hidden 

Markov Chain model endpoint, TP = Transition Probability).  

Reference 
Number 

Significant Treatment Pattern   

SCO-
Ctrl vs 
SCO-
PCB 

 
SCO-Ctrl 
vs NBH-

Ctrl 

 
SCO-PCB 
vs NBH-

PCB 

 
NBH-Ctrl 
vs NBH-

PCB Behavior Endpoint 

1     Prey Handling Time 

2 
        Prey Miss Proportion, Overall Turning Angle Variation 

Period 1, Overall Turning Angle Variation Period 3 

3 

        Swimming Bouts (per sec), Swimming Bouts Period 1 (per 
sec),  Swimming Bouts Period 2 (per sec), Swimming Bouts 
Period 3 (per sec), Swimming Bouts Period 4 (per sec), 
Swimming Bout Speed Period 1 (mm/s), Total Distance 
Traveled Period 1 (mm), Total Time Swimming Period 1 
(sec), Overall Step Length Period 1 (mm), Overall Step 
Length Variation Period 1, Total Distance Traveled Period 
3 (mm), Overall Step Length Period 3 (mm), Overall Step 
Length Variation Period 3 

4         Overall Turning Angle Period 2 

5 
        Total Distance Traveled (mm), Swimming Bout Duration 

Period 1 (sec), Swimming Bout Duration Period 3 (sec) 
6         Capture Attempt Ratio 
7         Total Time Swimming (sec) 

8 
        Prey Capture Probability, Reaction Distance (mm), Startle 

Magnitude Period 2 
9         Swimming Bout Duration (sec), HMM Medium -> Fast TP 

10 
        HMM Slow -> Slow TP, HMM Medium -> Slow TP, HMM 

Medium -> Medium TP 

11 
        HMM Medium State Turning Angle, HMM Slow -> 

Medium TP 
12         HMM Medium State Step Length (mm) 
13         HMM Fast -> Slow TP 

14 
        HMM Medium State Step Length Variation, Swimming 

Bout Turning Angle 
15         HMM Slow -> Fast TP 

16 
        Swimming Bout Duration Period 2 (sec), Swimming Bout 

Duration Period 4 (sec) 

17 
        Startle Magnitude Period 4, Swimming Bout Turning Angle 

Period 3 
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Table 4.3.  Summary of mercury significant treatment patterns found in Atlantic killifish 

behavior endpoints, SCO-Ctrl vs SCO-MeHg (Tan = significant negative trend compared to 

control, Blue = significant positive trend compared to control, Black = no significant trend 

compared to control, HMM = Hidden Markov Chain model endpoint, TP = Transition 

Probability). 

SCO-Ctrl 
vs SCO-Hg Behavior Endpoint 

  Capture Attempt Ratio, Prey Capture Probability, Reaction 
Distance (mm), HMM Fast -> Fast TP, HMM Medium -> 
Medium TP 

  HMM Medium State Turning Angle Variation, HMM Medium 
-> Fast TP, Swimming Bout Duration Period 3 (sec), Total 
Time Swimming Period 3 (sec), Overall Step Length Period 4 
(mm), Overall Step Length Variation Period 4, Total Distance 
Traveled Period 4 (mm) 

 

Table 4.4.  Summary of mercury and PCB126 significant treatment patterns found in 

Scorton Creek and PCB126 effects on New Bedford Harbor Atlantic killifish behavior 

endpoints.  Significant trends are reported using the following comparisons: SCO-Ctrl vs 

SCO-MeHg, SCO-Ctrl vs SCO-PCB, SCO-Ctrl vs NBH-Ctrl, SCO-PCB vs NBH-PCB, 

NBH-Ctrl vs NBH-PCB (Tan = significant negative trend compared to control, Blue = 

significant positive trend compared to control, Black = no significant trend compared to 

control, HMM = Hidden Markov Chain model endpoint, TP = Transition Probability). 

  Significant Treatment Pattern   

Reference 
Number 

SCO-
Ctrl vs 
SCO-
Hg 

 SCO-
Ctrl vs 
SCO-
PCB 

 SCO-
Ctrl vs 
NBH-
Ctrl 

 SCO-
PCB vs 
NBH-
PCB 

 NBH-
Ctrl vs 
NBH-
PCB Behavior Endpoint 

1           Total Time Swimming Period 3 (sec) 

2           Capture Attempt Ratio 

3           Swimming Bout Duration Period 3 (sec) 

4           HMM Medium -> Medium Transition 
Probabilities 

 

Genetic endpoints 

On average, there were 64986960.22 fragments per sample, with a standard deviation of 

7013305.57.  The average mapping rate to the reference transcriptome was 80.49%. Of the 

26771 transcripts quantified, 16017 transcripts were retained after filtering.  The comparison of 
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two groups of fish with the most differentially expressed genes was between the SCO-Ctrl and 

NBH-Ctrl with 3220 (Table S4.15).  However, SCO and NBH larvae have only 210 differences 

in gene expression when both are exposed to the low dose of PCB126 (SCO-PCB 40 ng/L vs 

NBH-PCB 40 ng/L). SCO larvae had 383 altered genes as compared to the controls after 

exposure to the low PCB126 dose, which is 29 times more than the 8 altered genes found in the 

NBH larvae after low dose PCB126 exposure compared to the control.  Even though the NBH 

larvae had few gene alterations after exposure to the low dose PCB126, the high dose of PCB126 

altered the gene expression order of magnitude higher with 830 genes differentially expressed.  

This indicates that 5% of NBH larvae genes are altered by high levels of PCB126.  All 

differentially expressed genes and pathways found in this study are reported in Tables S4.16 and 

S4.17.  In addition, all patterns that were found to be similar between differentially expressed 

genes and behaviors can be found in Tables S4.19 and S4.20. 

 

Behavior/gene expression comparison 

The SCO KF who were exposed to either MeHg or PCB126 exhibited a change in the number 

of times the KF larvae attempted to capture prey and the duration of swimming bouts during period 

3 of the VMR (Table S4.18).  The same reaction to chemical exposure observed in these two 

behaviors was also observed in four genes including the scamp1 gene which is predicted to be 

involved in protein transport and degradation of the trans-Golgi network membrane.  

By itself, the higher dose of MeHg in the SCO parents created offspring that increased the 

frequency of multiple feeding behaviors such as capture attempt ratio, capture probability and 

reaction distance (Figure 4.4 and Table S4.19).  These increases coincided with the upregulation 

of 16 genes including si:ch211-186j3.6 which is thought to be involved with calcium ion binding 
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activity and homophilic cell adhesion.  The down regulation of six genes coincided with decreases 

in five different sustained swimming behaviors in the last two periods of the VMR as well as 

decreases in medium to fast swimming transition probability detected in the HMM analyses.  These 

six genes include si:dkey-21c1.4 (integral component of the membrane), scamp1 and klhl6 (B cell 

receptor signaling pathway and germinal center formation). 

The most changes observed after PCB126 exposure occurred in SCO larvae resulting in the 

most gene expression and behavior similarities in treatment trends (Figure 4.5 and S4.20).  Altered 

brain gene expression mainly occurred with nucleic functions followed by cellular, signaling, 

neural and metabolic functions.  These changes coincided with altered stamina swimming type 

behaviors such as total distance traveled and total time swimming, as well as capture attempt ratio.  

PCB126 also affected NBH larvae but with less alterations to gene expression and behaviors.  

PCB126 down regulated the cmc2 and rab4a genes in NBH larvae resulting in the perturbation of 

the metabolic KEGG pathway involved in oxidative phosphorylation (KEGG 190; Figure S4.3; 

Table 4.5).  This pathway is important in providing energy and regulating metabolism in the brain, 

and has been connected with multiple neurodegeneration diseases (Kawamata and Manfredi 2017; 

Area-Gomez et al. 2019).  In addition to these genomic changes, six HMM behaviors were also 

altered in NBH larvae mainly pertaining to transition probabilities between swimming states.  

The two populations of KF had numerous differences in gene expression (3088), gene sets and 

pathways (275) and behavior (11; Tables 4.2, S4.20 and S4.21).  Gene expression was most 

different between the two populations in the nucleic, cellular and signaling genes (Table S4.20), 

while nucleic, metabolic and cellular gene sets were most different (Table S4.21).  These 

genomic differences coincided with NBH larvae having lower swimming bout duration lengths, 

higher capture probability and longer reaction distance. 
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Table 4.5.  Significant PCB126 treatment patterns shared by gene expression and behavior endpoints in the New Bedford Harbor 

(NBH) Atlantic killifish found in this study.  Genes with unknown names and functions are only reported in Table S19. Both the 

original and opposite behavior endpoint trends are listed.  Significant trends are reported in the following order: SCO-Ctrl vs SCO-

PCB, SCO-Ctrl vs NBH-Ctrl, SCO-PCB vs NBH-PCB, NBH-Ctrl vs NBH-PCB (Tan = significant negative trend compared to 

control, Blue = significant positive trend compared to control, Black = no significant trend compared to control).  

Significant Treatment Pattern   Behavior Endpoint 

SCO-
Ctrl vs 
SCO-
PCB 

SCO-
Ctrl vs 
NBH-
Ctrl 

SCO-
PCB vs 
NBH-
PCB 

NBH-
Ctrl vs 
NBH-
PCB Gene Expression 

Original Treatment 
Pattern 

Opposite 
Treatment 

Pattern 

      

  

Metabolic: cmc2, rab4a HMM Medium State 
Step Length Variation, 
Swimming Bout 
Turning Angle 

HMM Fast -> 
Slow TP 

  

      Neural: avp, si:dkey-175g6.2, uba1, gad2, ext2, usp22, spata2 
Nucleic: polr2a, kdm2ab, rapgef1b, dyrk1b Signaling: pi4kab, plcl1, 
gareml, grin2ab, stx16, c2cd5, slc6a8, slc8a2b, kctd9a, prkab1a, 
si:ch211-168f7.5, slc30a1a Metabolic: arhgap1, mag, selenoi, 
epn3b, sucla2, plcxd3, elovl6, atp1b2b, arhgap25 Development: 
aldh1a2 Circulatory: b4gat1, pam, numb Cellular: ache, fam163ba, 
sec62, slc25a14, clptm1, coro7, bcat2, rusc1 Protein Binding and 
Synthesis: oat, znf598 Miscellaneous: abl2, klhl26, b3galt1b 

Swimming Bout 
Duration Period 3 
(sec), Total Distance 
Traveled (mm) 

Overall Turning 
Angle Period 2 

  

      Neural: grna, fam53b, psma6a, nusap1, scinla, pmm2, ckma 
Nucleic: nrm, anapc15, olig4, tead3b, msx1a, nsmce2, emx2, heyl, 
nt5c2l1, foxn4, rad51ap1, her12, pane1, cpsf3, pagr1, spi1b, ascl1b 
Signaling: myl1, adh5, si:dkey-148a17.6, fcer1g, mylz3, pvalb3, 
hvcn1, sparc Metabolic: naga, lcat, gch2, rgs18, rac2 
Development: acta1b, tnnt3a, vegfd, dla Sensory: vps28, lhfpl4b, 
bco1 Stress: slc25a39, cpn1 Circulatory: hcls1, ckmb, mb 
Transport: scamp4, cahz Cellular: nmrk1, mlc1, egln3, mibp, 
hs2st1b, vsir, rdh8a, tmem45a, si:dkey-9i23.16 Imunity: ctss2.1, 
tnfaip8l2b Protein Binding and Synthesis: sumf1 Miscellaneous: 
si:dkey-225f5.4, si:ch211-236d3.4, fam89b 

Overall Turning Angle 
Period 2 

Swimming 
Bout Duration 
Period 3 (sec), 
Total Distance 
Traveled (mm) 
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Table 4.5 (cont’d)  
 

        

    

    Neural: atcaya, ubap1, hectd1, rnf41, tulp4a, lrrc4.1, neurl1aa, 
desi1a, lnx1, sema3ab, zdhhc17, cntnap2a, usp24 Nucleic: fam98a, 
seta, senp3b, bhlhe41, rerea, rc3h1b, rprd2a, grid2ipa, evx2, 
khdc4, tent4a, kdm3b, arid2, fut9a, znf346, rfx1b, elk4, qkia, foxj3, 
srfb, zfr2, klf6a, larp4ab, pdik1l, ssbp4 Signaling: erbin, spred2a, 
crk, map3k9, ppp3ccb, nlk1, araf, gramd4a, ndrg3a, zmym2, 
bmp2k, slit1b, ppp2r5ca, iqsec2b, gpr63, pdpk1b, dusp8a, gnb1b 
Metabolic: tbc1d22b, gal3st3, arfgap1, casd1, atp8a2, cdk17, 
pitpnab, pdk3a, ralaa, ptdss1a, nudt3b Development: tmem65 
Stress: rlim, kmt2e Circulatory: mybpc2b Transport: atp1a3a, 
ptpn23a, scamp1, slc6a17, ap2b1 Cellular: ano8b, zgc:114120, 
tmem86a, asphd2, si:dkeyp-27e10.3, shank1, enah, ubap2a, 
kiaa1549la, tm9sf3, syt14a, zdhhc20b, clip3, tspan7b, klc2, ubap2l, 
dmtn Digestive: mtor Protein Binding and Synthesis: mcu, nlgn2a, 
bag6 Miscellaneous: ajm1, zgc:158464, scaf8 

Total Time Swimming 
(sec) 

Capture 
Attempt Ratio 

    

    Neural: stmn1b, im:7136398, slc25a1b, exosc8, snapin Nucleic: 
acin1a, znf207b, pithd1, eif2a Signaling: rgn, micu2 Metabolic: 
gpx1a, hibadhb, chchd3b, rasd1, ntpcr, ptcd2 Development: 
acvrl1, psenen, fgfbp3 Circulatory: acta2 Transport: crabp1a, 
chmp5b, stxbp3 Cellular: ccdc90b, ppcs, c18h3orf33, cd63, srr, 
tha1, srxn1, tspan14, atp6ap1a, tbce, tmem9b, tspan3a Digestive: 
scpep1 Imunity: ifi30 Protein Binding and Synthesis: alg3 

Capture Attempt 
Ratio 

Total Time 
Swimming 
(sec) 
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Figure 4.4.  Significant mercury response patterns shared by gene expression and behavior endpoints in Scorton Creek (SCO) 

Atlantic killifish found in this study.  Both the original and opposite behavior endpoint trends are listed. (HMM = Hidden Markov 

Chain model endpoint, TP = Transition Probability). 
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Figure 4.5.  Tally of the significant PCB126 response patterns shared by gene expression and behavior endpoints in the Scorton 

Creek (SCO) Atlantic killifish found in this study.  Both the original and opposite behavior endpoint trends are listed (HMM = 

Hidden Markov Chain model endpoint). 
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Individual based model 

The SCO and NBH simulated population growth and survival were different between 

toxicant treatments.  Control populations for both SCO and NBH experienced similar survival 

rates (1-2%) with SCO mean survival 28% higher than that of NBH (Figure 4.6; Table S4.22).  

Likewise, growth rates of SCO control populations were 2.3% higher than those of NBH 

(~0.3mm/d; Figure 4.6A).  The effects of MeHg on the SCO population were minimal, with 

MeHg treatment resulting in 9% higher survival than that of the control (Figure 4.6).  In contrast 

to MeHg, exposure to PCB126 produced substantial sublethal effects in both SCO and NBH. 

SCO populations exposed to PCB126 experienced almost no survival in any replicates after 100 

days (Figure 4.6).  NBH populations exposed to PCB126 had low survival at 0.4% (Figure 4.6), 

which was 38% lower than the control.  Growth rates between control and PCB treatments in 

NBH fish were the same at 0.29 mm/d (Figure 4.6).  Patterns between spring and summer runs 

were similar in both growth and survival for both populations and treatments.  One notable 

exception was the summer SCO populations that were exposed to PCB126 ended up with 0.29% 

higher survival after 100 days as compared to spring, but the growth rate remained 85% less than 

the control (Figure 4.6). 
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Figure 4.6.  Mean percent survival and growth (mm/d) of Atlantic killifish survivors for 10 

replicates of each treatment for spring and summer scenarios. SCO=Scorton Creek, 

NBH=New Bedford Harbor, Hg=methylmercury treatment, PCB = PCB126 treatment, C= 

control treatment.  

 

Discussion 

This study found numerous altered gene expressions and behaviors after exposure to 

MeHg or PCB126 KF in the embryonic stage.  In addition, multiple altered gene expressions and 

behaviors changed with the same pattern across the treatments, suggesting an association 

between the altered gene expression and performed behavior.  Lastly, these altered behaviors 

resulted in a reduction of predicted survival of PCB126 exposed KF larvae and reduced growth 

in SCO KF larvae.  The multiple key event alterations found in this study suggest multiple AOPs 

A B 

C D 
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after sublethal embryonic exposure of PCB126 or MeHg.  In addition, the two different KF 

populations responded differently to the same PCB126 exposure suggesting flexibility in KF 

population response that depended on ancestor exposure history.  

Both MeHg and PCB126 exposure produced down regulation in the scamp1 gene and 

decreases in capture attempts (Table S4.18).  PCB126 and MeHg are contaminants that 

commonly co-occur in polluted aquatic environments.  Multiple AOPs have been identified for 

each of these neurotoxicants, but it is unclear whether they share any AOPs (Liu et al. 2014; 

Calò et al. 2018; Nogara et al. 2019; Yang et al. 2020).  Research into each of these 

neurotoxicants as individuals and in combination has been a long standing human risk research 

question since there is the potential for human embryo exposure to both neurotoxicants after 

contaminated parental fish consumption.  Whether MeHg, PCB126 or MeHg + PCB126 

antagonize or potentiate impacts during embryo development is still an active research question, 

generating mixed answers in studies that used rats as test subjects.  Results so far indicate that 

depending on endpoint examined, age or sex of the rat, the combination of MeHg and PCB126 

exposure can be additive, synergistic, or dampening (Vitalone et al. 2008, 2010; Piedrafita et al. 

2008; Cauli et al. 2013; and references therein).  However, similarities between MeHg and 

PCB126 exposure on fish development has only just begun to be assessed, but using fish instead 

of rats may lead to the same ambiguous answer.  Our previous study that examined similar 

behavior endpoints in yellow perch (Perca flavescens) found no similarities between embryos 

exposed to either MeHg or PCB126 (Albers et al. 2022d), which is contrary to the results from 

this study using KF.  However, the gene set responses found between the MeHg and PCB126 

exposed KF larvae in this study could be important endpoints to study when investigating 

whether these two chemicals work in an additive, synergistic or dampening way.  Comparisons 
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between this study and a future study examining gene sets in larvae that are exposed to a mixture 

of MeHg and PCB126 may lead to direct determination of the type of chemical mixture 

interactions. 

Mercury exposed SCO parents produced offspring with altered gene expression and 

behaviors (Figure 4.4 and Table S4.19).  These changes involved four known genes involved in 

signaling, immunity, protein transport and metabolism that coincided with feeding behaviors, 

swimming characteristics and stamina.  The klhl6, scamp1, si:ch211-186j3.6 and si:dkey-21c1.4 

genes have not be previously reported as mercury sensitive genes.  Although behavior effects 

from these altered genes are likely since swimming is directly linking to fish metabolic and cell 

signaling processes, this study is the first to report that these genes had a connection to fish 

behavior endpoints.  These behavior endpoints included HMM behaviors (medium swimming 

state turning angle variation, staying in the fast swimming state, and transitioning from the 

medium to fast swimming state), fish larva stamina in the last period of the VMR assay (total 

distance traveled, step length and variation), feeding reaction distance, and the probability of 

capturing prey.  These MeHg effects on fish swimming behaviors were expected because MeHg 

exposure predominately affects the hippocampus region of the brain (Costa and Giordano 2012), 

the same region that regulates swimming behavior in fish (Godoy et al. 2015; McPherson et al. 

2016; Huang et al. 2016).  

The alterations in SCO KF larval gene expression and behaviors after MeHg exposure 

did not ultimately result in decreases in predicted cohort survival or growth.  The IBM in this 

study predicted MeHg had either no effect to slight increases in cohort survival and growth.  The 

averaged survival of simulated SCO KF in both spring and summer scenarios increased 0.16 or 

13% from the control treatment caused by an increase in both capture rates and increases in the 
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distance at which larvae detected prey; increases in these feeding metrics offset the loss in 

feeding from slower movement rates.  This resulted in a < 1% change in simulated cohort 

growth. Previous research has shown that MeHg exposure can increase or decrease fish larvae 

feeding metrics (see review in Albers et al. 2022a).  This may occur because feeding behavior is 

a combination of many different physical attributes such as swimming, perception and sight.  

Consequently, the IBM was a good tool to summarize changes to multiple behavior endpoints 

into an overall group level change showing an increase in survival and growth. 

Scorton Creek KF embryos exposed to PCB126 also had altered gene expression and 

behaviors, linking PCB126 embryonic exposure to both molecular and organism level effects as 

well as associating specific behaviors with certain gene expression (Figure 4.5 and Table S4.20).  

Scorton Creek KF larvae after exposure had lower physical activity levels that were associated 

with many altered genes, and showed general upregulation in numerous genes involved in 

nucleic and cellular brain functions and down regulation in signaling, nucleic and cellular 

functions.  Decreases in the total time swimming and total distance traveled were associated with 

an upregulation of nerve maintenance, development and neurotransmitters (e.g. genes lrrc4.1, 

atcaya, ext2, gad2), as well as brain ubiquitin processes (e.g. genes hectd1, lnx1, neurl1aa, 

rnf41, spata2, tulp4a, uba1, ubap1) and cellular functions.  Additionally, the decrease in activity 

coincided with a down regulation of brain DNA functions such as binding, splicing and 

transcription (e.g. elk4, fam98a, kdm2ab, seta); as well as brain metabolism (e.g. arfgap1, 

atp8a2, elovl6, pitpnab).  Previous research has also found links between PCB126 exposure and 

decreases in tissue energy supplies and impaired adult fish swimming ability (Nault et al. 2012; 

Bellehumeur et al. 2016). Aluru et al. (2017) found adult zebrafish exposed to PCB126 as 

embryos to also have enrichment of calcium signaling and MAPK signaling pathways and 
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downregulation of various metabolic pathways.  Other studies found PCB126 embryonic 

exposure did not alter larval behavior but impaired adult short- and long term habituation to 

novel environments (Glazer et al. 2016), suggesting that reprogramming gene expression 

patterns during development could extend impacts into adulthood.  

In this study, the SCO KF larvae had the most altered gene expression and behaviors 

compared to any other group, and this resulted in the highest predicted change in cohort survival 

and growth.  The behavior changes to SCO KF after exposure to PCB126 resulted in simulations 

with a 1.1 percent decrease in cohort survival (down 85% from control) and 36 percent decrease 

in growth (0.11 mm/day).  These results were from PCB126 having a large impact on SCO 

swimming and travel time, as well as handling time.  These behavior changes resulted in no 

survival in these scenarios, suggesting substantial decreases in population longevity in KF 

populations without any evolved tolerance.  This would ultimately suggest that all exposure 

levels of PCB126 in this study is lethal to the survival of young of year fish.  

Previous work in zebrafish suggests delayed mortality from embryonic exposure to 

PCB126 because of developmental effects on swim bladder inflation and cartilaginous tissues 

(Di Paolo et al. 2015).  While Glazer et al. (Glazer et al. 2016) found no effect on zebrafish 

swimming behaviors, they did find impairment in short- and long-term habituation to a novel 

environment in adult zebrafish.  Multiple molecular alterations have been implicated for these 

delays including reprograming of brain gene expression patterns resulting in adult brain 

metabolism and behavior (Aluru et al. 2017).  As well as the PCB126 altering liver 

gluconeogenic enzymes in rats leading to wasting disorders (Gadupudi et al. 2016).  These 

delayed affects are an important aspect in understanding population trends and risks to 
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population persistence while individuals of the population are being embryonically exposed to 

sublethal levels of PCB126.  

Although NBH larvae were collected from a known PCB tolerant wild population, the F1 

offspring in our study were still affected by PCB126. New Bedford Harbor KF larvae had subtle 

swimming characteristics that were altered after PCB126 exposure (Table 4.6), which coincided 

with a 98% fewer altered brain gene expressions as compared to SCO larvae (Figure 4.5 and 

Table S4.21).  However, with these fewer changes in behaviors and brain gene expression, this 

study still predicted NBH KF larva had decreased survival (54% relative to control), although 

not as extreme as the SCO exposed KF (Figure 4.6).  The decrease in NBH survival was from 

decreased swimming time, resulting in lower encounters with prey relative to the control cohort.  

Results from this study suggest NBH KF populations are susceptible to low levels of embryonic 

exposure to PCB126 even with evolved pollution tolerance which contradicts lethality and 

ethoxyresorufin-O-deethylase (EROD) activity endpoints examined in previous studies (see 

review Nacci et al. 2010).  These results suggest NBH KF may have evolved to withstand 

exposure levels that are lethal, but are still susceptible to sublethal impacts that alter individuals, 

but still allow the population to persist.  Possible reasons why this study found NBH KF were 

susceptible to PCB126 exposure include 1) use of behavior and genetic endpoints that are in 

general more sensitive to chemical exposure in fish than lethality or gross morphology (Little 

and Finger 1990; Melvin and Wilson 2013; Faimali et al. 2017).  2) Use of sensitive HMM 

behavior endpoints to detect larvae behavior alterations, as compared to traditional behavior 

endpoints, where HMM behavior endpoints have been shown to increase the sensitivity of 

toxicological behavior analyses (Albers et al. 2022d).  3) Examination of all differentially 

expressed genes in larval brain tissue and not just those genes known to be affected by DLCs.  



 

84 
 

Each of the two KF population examined in this study responded to PCB126 exposure in 

unique ways.  Killifish offspring from a population with no previously documented exposure to 

DLCs (SCO) had substantial alterations to their brain gene expression, behavior and predicted 

survival and growth after PCB126 exposure. While offspring from a KF population with a 

known tolerance to DLCs (NBH) were still affected but had different and fewer alterations to 

their behavior and brain gene expression, and not as severe reduction in predicted survival, 

relative to SCO KF.  In comparison to SCO larvae, NBH KF larvae appear to have an evolved 

oxidative phosphorylation pathway (KEGG 190), being already at a lower state before PCB126 

exposure relative to SCO and only altered in NBH after exposure, possibly from their ancestral 

history with DLCs.  These results are not unexpected since previous research suggests KF may 

be an emerging example of parallel contemporary evolutions driven by human-mediated 

pollution (Nacci et al. 2016), especially with DLCs (Nacci et al. 2010).  The KF ability to adapt 

seems to be driven by the extremely high genetic variation especially in genes associated with 

immune function and olfaction (Reid et al. 2017).  Indeed, the highest changes of differentially 

expressed genes were found when comparing the control groups between NBH and SCO at 3220 

(Table S4.8).  The lowest level of changes were observed between NBH control larvae and 

PCB126 (40 ng/L) treatments with only 8 DEGs. Previous research indicates that KF genes 

associated with neurological, development and cytoskeletal have changed the least, indicating 

they are required for population persistence (Reid et al. 2017).  Results indicate embryonic 

exposure to PCB126 impact these same gene types in both the non-adapted and adapted KF, but 

to a lesser extent in adapted KF.  

Even though NBH fish are known to have a tolerance to chemical pollutants, the 

mechanism of tolerance is yet to be fully understood.  Our results suggest the pollution tolerance 
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may be associated with a metabolic pathway (Table S4.21), as well as other possible evolved 

differences due to population isolation.  However, previous research into KF tolerance has 

mainly focused on cytochrome P450 (Cyp) and aryl hydrocarbon receptor (AhR) gene expression 

in gill and liver tissues (Arzuaga and Elskus 2010; Nacci et al. 2010, 2016; Clark et al. 2010; 

Whitehead et al. 2010; Aluru et al. 2011; Gräns et al. 2015; Celander et al. 2021).  NBH KF to 

have evolved tolerance through resistance of reactive oxygen species and cardiac teratogenesis 

(Arzuaga and Elskus 2010; Clark et al. 2010) mainly through bypassing components in the 

complex stress response network which involves AhR and Cyp gene expression (Nacci et al. 

2016).  The present study did not examine liver or gill tissue, but brain tissue where AhR 

regulates the timing of restorative neurogenesis and is crucial for the survival of newborn 

neurons (Di Giaimo et al. 2018).  Fish brain tissue contains AhR1 and AhR2 (Shankar et al. 2020) 

which are also the two forms of AhR that are suspected in producing KF tolerance (Reitzel et al. 

2014).  Similar results were found in the NBH larvae in the present study, where AhR2 

expression occurred in high enough levels in the brain to compare between PCB126 treated NBH 

larvae and controls.  But AhR2 expression was only increased in High PCB126 dose of NBH 

larva (400 ng/L) and no changes were detected in the SCO brains after exposure to 40 ng/L 

PCB126 (Table S4.16).  Additionally, Whitehead et al. (2012) found tolerant KF populations 

expressed AhR gene battery members in a dose dependent manor with PCB126 including 

glutathione S-transferase (GST) and forkhead box (FOX) Q1 genes.  Forkhead box proteins are 

transcription factors that regulate the expression of genes in cell growth, proliferation, 

differentiation and longevity; and are important to embryonic development (Katoh and Katoh 

2004; Hannenhalli and Kaestner 2009).  The GST gene family encodes genes important to 

detoxication and toxification mechanisms by conjugation of reduced glutathione (Nebert and 
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Vasiliou 2004).  We also found NBH control larva had higher baseline expression levels of gstt2 

and foxn4; as well as lower baseline expression levels of foxo6b, foxj3, foxp1b, foxo1a, foxp2 

and foxg1a, relative to SCO control.  Interestingly, the present study did not detect Cyp genes at 

a high enough level to test for differences between treatments, which also may be because this 

study only examined brain tissue. 

 The AOP framework that was the base of this study, facilitated the organization of 

biological connections, impacts from neurotoxicant exposure, and comparisons between two 

separate KF populations and two neurotoxicants.  The AOPs constructed here allow us to make 

connections between diverse biological endpoints such as gene expression, behavior and cohort 

population metrics.  By making these connections, the AOP framework conceptually 

demonstrates the potential paths of environmental pollutants impacting hierarchical levels of 

biological organizations that ultimately predict affects to fish populations and fitness.  Effects 

from both MeHg and PCB126 found in the present study will allow for appropriate levels of risk 

to be assigned to sublethal levels of neurotoxicants in our environment.  These results will 

provide a more diverse and complete understanding of how contaminants affects the response 

and long-term persistence of fish populations.  
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CHAPTER 5: HOW FAR CAN ADVERSE OUTCOME PATHWAYS TAKE US? 

LESSONS LEARNED FROM DEVELOPING A NEUROBEHAVIOR AOP 

 

Abstract 

Understanding the risk from sublethal impacts on fish populations from environmentally 

relevant pollution levels involves interpreting complex biological information collected from 

suborganismal and organismal levels of biological organization.  The Adverse Outcome Pathway 

framework (AOP) is a way to organize and predict impacts on populations using suborganismal 

processes.  The AOP framework has only been in existence for a decade and has proven useful 

for certain situations, but the limits of their usefulness are still being explored.  Adverse 

Outcome Pathway assumptions were examined in this study; specifically, whether the differing 

responses from multiple levels of biological organization were similar between two 

neurotoxicants [PCB126 and methylmercury (MeHg)], and whether multiple species would have 

similar responses to these neurotoxicants across the different levels of biological organization.  

After examining over 120,000 treatment-control biological endpoint tests, only the pyrimidine 

metabolism pathway (KEGG 2D:00240) was perturbed after exposure to MeHg or PCB126 in 

both yellow perch Perca flavescens (YP) and zebrafish Danio rerio (ZF).  After PCB126 

exposure, ZF and YP exhibited down regulated cyp1a gene and the previously mentioned 

perturbation in the pyrimidine metabolism KEGG 2D 240 pathway).  ZF and Atlantic killifish 

Fundulus heteroclitus (KF) also had increases in prey miss proportion and downregulation of the 

ndrg3a gene, the DNA metabolic process (GO:0006259), and in DNA replication 

(GO:0006260).  KF and YP were the least similar, both having a down regulation of the 

chromosome gene set (GO:0005694).  After MeHg exposure, KF and ZF were the most similar 

with 3 behavior endpoints that responded the same direction.  Findings from this study 

examining sublethal levels of exposure to two neurotoxicants suggest more similarities at lower 
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levels of AOPs between species and chemicals than at higher AOP levels.  Genomic endpoints 

were found to be the most similar between species and chemicals, consequently, genomics may 

be a relatively good tool to assess general trends from sublethal pollution.  The insights gained 

from this study increase our understanding of how AOPs can be used in risk assessment, by 

illuminating areas where species surrogacy and chemical agnostics could occur and where they 

may be inappropriate. 

.   
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Introduction 

Adverse Outcome Pathway framework (AOP) as a framework to organize toxicity 

pathways using mechanistic data at multiple levels of biological organization (from molecules to 

populations) was first introduced in 2010 (Ankley et al. 2010).  This framework has been proven 

successful with linking many different types of biological perturbations from chemical stressors 

to generate a very diverse group of biological pathways (https://aopwiki.org/).  One hypothesis in 

this framework is that each modular biological pathway can be used for any chemical that 

perturbs the same key events or species that share the same biological structure.  This modular 

pathway approach can assist with network analyses or help determine impacts from several 

chemicals with multiple modes of action and chemical mixtures (Villeneuve et al. 2014a, 2014b).  

This modular biological hypothesis has been supported for AOPs key events at molecular, 

cellular and organ levels (Knapen et al. 2015; Brockmeier et al. 2017; McBride 2018).  Tools 

have also been constructed to extrapolate the impacts observed on individuals to populations 

which are typically limited to modeling exercises that can be logistically difficult to confirm in 

situ and to extrapolate across species [see Key Event #360 entitled “Decrease Population Growth 

Rate” that has 56 AOPs linked to it at aopwiki.org (Villeneuve and Garcia-Reyero 2010)].  

Further,  recent examples with predicting impacts from dioxin-like compounds across bird and 

fish species using AOPs is very promising (Doering et al. 2018, 2020). 

One of the main goals in toxicology is to assess the environmental and human risk of the 

millions of manmade chemicals and to simplify this, the AOP the modular interchange of 

chemical impacts with similar modes of action is especially useful.  One example of this AOP 

flexibility may be demonstrated by the impacts of two well-known developmental 

neurotoxicants, methylmercury (MeHg) and 3,3',4,4',5-pentachlorobiphenyl (PCB126).  Both 
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have multiple mechanisms of action, some being shared between the two chemicals, while others 

are not.  These two chemicals alter calcium homeostasis which is critical in neuron function 

(Piedrafita et al. 2008b; Costa and Giordano 2012).  In addition, MeHg directly impacts 

neurotransmitter levels by altering acetylcholinesterase, sulfhydryl (thiol)-group protein binding, 

methylation (epigenetics) and neurogenesis (Sastry and Sharma 1980; Johansson et al. 2007; 

Bradbury et al. 2008; Farina et al. 2011; Weber et al. 2012; Costa and Giordano 2012; Helmcke 

and Aschner 2012; Amara et al. 2012; Bose et al. 2012; Ho et al. 2013; Kalueff et al. 2016).  

Whereas PCB126 is a aryl hydrocarbon receptor agonist and disrupts energy metabolism 

(Bandiera et al. 1982; Okey 2007; Zhang et al. 2012; Gadupudi et al. 2016).  Since MeHg and 

PCB126 could be impacting brain function through at least one similar pathway, an AOP 

framework may be a useful tool to assess the similarity on the biological impacts of these two 

neurotoxicants. 

The use of surrogate fish species in research is common practice especially when 

considering rare or difficult-to-culture fish species, but should always be done with caution [see 

review by Murphy et al. (2011)].  Surrogacy has also become common practice when research 

uses model organisms such as zebrafish Danio rerio (ZF; Leonelli and Ankeny 2013; Bambino 

and Chu 2017).  The ease of ZF culture, physical attributes and conscious pain status has allowed 

ZF to become a popular biological tool to discover many aspects of biology that are transferable 

to human applications (https://zfin.org/).  While ZF are a good tool to study different aspects of 

human biology, their use as a surrogate species for other native fish species remain uncertain 

(Van Veld and Nacci 2008; King-Heiden et al. 2012; Whitehead et al. 2012), especially as it 

relates to higher levels of biological organization such as behavior (Faimali et al. 2017; Dutra 

Costa et al. 2020).   
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One of the steps in using ZF as a surrogate is to first test whether the species of interest 

have similar responses as ZF.  Zebrafish surrogacy for two native U.S. fish species was 

investigated in this study, Atlantic killifish Fundulus heteroclitus (KF) and yellow perch Perca 

flavescens (YP).  Atlantic killifish have a long history in scientific research as toxicological test 

subjects.  They are commonly found along the east and southeast coast of the U.S. in estuary 

habitat, habitats that also has a long history of industrial pollution (Reid et al. 2017). This has 

resulted in some populations of KF evolving tolerance (Nacci et al. 2016; Reid et al. 2017), 

particularly as it pertains to industrial pollutants that activate the aryl hydrocarbon receptor 

(AhR) such as PCBs.  Yellow perch are common to the Great Lakes region and a popular sport 

fish.  Similar to the east and gulf coast of the U.S., the Great Lakes region also has a long history 

of industrial pollution resulting in the contamination of Great Lakes YP stocks (Wiener et al. 

2012).  Great Lakes industrial pollution is one of many possible causes behind fluctuations in 

Great Lakes YP populations (e.g. Visha et al. 2018).  

The AOP framework was used for three recent studies to provide a diverse suite of YP 

and KF biological responses after sublethal embryonic exposure to MeHg and PCB126 (Albers 

et al. 2022a, 2022b; Ivan et al. 2022).  These studies examined brain gene expression as a 

molecular/cellular response, larval behavior as an organismal response, and constructed an 

Individual Based Model (IBM) as a way to predict cohort response metrics.  These three 

previously published studies were developed to support this study’s goal of interrogating specific 

assumptions of the AOP framework.  For this study we combined results from three previous 

studies (Albers et al. 2022a, 2022b; Ivan et al. 2022) with new corresponding results from ZF 

and additional YP feeding behavior and gene expression results.  The objectives of this research 

are to 1) using an AOP framework, assess the impact of environmentally relevant sublethal 
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levels of two neurotoxicants on multiple fish species through multiple levels of biological 

organization; 2) determine whether the two neurotoxicants impact a diverse set of biological 

outcomes in a similar way; and 3) assess the similarities between the responses of three fish 

species in order to evaluate the surrogate potential of ZF for KF and YP.  These objectives will 

increase our understanding of the potential and limitations of the modular structure AOPs as it is 

applied across two neurotoxicants and three fish species.  Additionally, we will better understand 

risk from sublethal levels of pollution to fish populations and how and where it is appropriate to 

use information across chemicals and species. 

Methods 

Exposure and fish husbandry 

Multiple toxicity experiments were conducted on the embryos of three species of fish 

[ZF, YP and KF from Scorton Creek, MA] and two neurotoxicants (MeHg via MeHgCl and 

PCB126).  Embryonic exposure levels and dose timing focused on the embryo developmental 

stage and was either the actual or mimicked parental transfer of MeHg through gametes or water 

transfer of PCB126 by dosing embryos during the first 24 hr (ZF and YP) or actual parental 

transfer by parental dosing (KF) (Westerlund et al. 2000; Alvarez et al. 2006; Mora-Zamorano et 

al. 2016a; Bridges et al. 2016a, 2016b; Carvan et al. 2017).  Chemical dose levels were set to be 

very low so that larvae did not show any obvious physical deformities and also represented 

concentrations found in the waters of the United States, with tissue levels less than 3 µg/g 

mercury and 0.05 µg/g PCB126 wet weight (Rose et al. 2003; Grimes et al. 2008; Wiener et al. 

2012; Oziolor et al. 2018).  The YP and KF embryonic dosing and assay methods were described 

in detail in two previous articles (Albers et al. 2022a, 2022d) and similar methods were used for 

ZF and further YP behavior assays, which are described in detail in the supplemental section of 
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this paper.  Briefly, embryos were dosed with either MeHg or PCB126 during the first 24 hours 

of development using sublethal chemical levels.  At various points in larval development, 

different biological endpoints were sampled to represent different levels of biological 

organization.  Larval brain gene expression was collected and represents molecular and cellular 

responses to exposure, individual larval behavior represents the whole organism level response, 

and an Individual Based Model was used to estimate cohort survival and growth as KF and YP 

population level responses.  

Each fish species required different levels of external chemical embryonic exposure to 

obtain similar internal chemical tissue concentrations because individual species have unique 

sensitivity and biology.  Using the goal of no observable morphological deformities in larva as a 

guide (actual deformities, reduced swim bladder inflation and swim up, etc.), dosing levels for 

each species were determined using a combination of preliminary dosing test experiments 

(unpublished) and previous published research (Grimes et al. 2008; Mora-Zamorano et al. 2017).  

The highest external dose that did not result in any visible physical deformities in each species 

was used as the highest dose in each experiment, which ensured no overt visible toxicity in this 

study (Table 5.1).  Additionally, to ease comparisons between fish species, we adjusted sampling 

times of each endpoint to occur at the same larval developmental stage.  Embryo tissue collection 

for chemical concentration determination occurred soon after chemical exposure ended (1 dpf 

YP and ZF, 3 dpf KF; 3 batches for each treatment that contained multiple embryos).  Brain gene 

expression sample collection occurred the day behavior assays started (25 dpf YP, 17 dpf KF, 6 

dpf ZF; 6 larva per treatment).  Locomotion and Visual Motor Response (VMR) behavior assays 

were conducted just after larvae were actively swimming (6 dpf ZF, 16 and 17 dpf KF, 27 dpf 
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YP). Feeding assays occurred just after larvae started actively feeding (30-38 dpf YP, 23-24 dpf 

KF, 16 dpf ZF).  

Contaminant response endpoints from the embryonic exposures were collected at varying 

levels of biological organization during larval development.  Each of these endpoints were 

collected on a separate set of fish to maintain independence, with only a few exceptions 

occurring with the KF larvae (42% of fish in the locomotion assay had been in the VMR assay, 

all fish in the feeding assay had also been in the locomotion assay and 44% had also been 

through the VMR assay).  Larval brain gene expression was assessed at a developmental time 

point before the behavior assays were conducted (again an exception occurred with KF larvae 

where 52% of larvae that contributed brains for the gene expression had been through the VMR 

assay; see supplemental document for more details).  Each species brain transcriptome was 

analyzed, which contained genes unique to each species.  To compare between species, each 

non-ZF species was aligned with ZF orthologous genes and common ZF gene names were used 

for comparisons.  Gene expression from each species-treatment group were processed using 

Gene Ontology (GO) term gene sets and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways to determine alterations to gene groups.  

Larval behaviors were assessed using three types of behavior assays: feeding, locomotion 

and VMR.  Yellow perch larva behavior could not be assessed using the VMR because the larva 

did not survive in the small individual well plates required for the VMR.  Each behavior assay 

was conducted using the same methods for each species (see supplemental for details), and the 

same set of behavior endpoints were calculated for each species.  A subset of behavior endpoints 

were used to model KF and YP individual larvae behavior in an Individual Based Model: prey 

handling time, prey miss proportion, larva reaction distance to prey, swimming speed and total 
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swimming time (Albers et al. 2022a; Ivan et al. 2022).  A separate IBM run was conducted for 

each treatment using their treatment altered behaviors until they reached the juvenile stage [KF at 

24 mm (Abraham 1985) and YP at 20 mm (Auer 1982)], at which time individual larval growth 

and survival were estimated.  Albers et al. (2022a) estimated both spring and summer KF 

cohorts, but both resulted in similar treatment patterns, consequently, the summer treatment 

results were used in this study.  An IBM was not constructed for ZF because population impacts 

were not ecologically relevant. 

 

Analysis 

For each biological endpoint measured in each chemical treatment (e.g. KF feeding 

behavior in the middle MeHg dose), a test was conducted against a set of control larvae to 

determine if the biological endpoint was statistically increased or decreased after chemical 

exposure.  For the empirically measured endpoints, a statistical test was conducted using a 

Bayesian model that tested for differences between chemical treatments after removing the 

variation accounted for by multiple covariates (see Bayesian Model Analysis section in the 

supplemental material).  For the IBM estimated endpoints, treatments were compared with the 

controls using estimates that include uncertainty and if the 95% confidence intervals did not 

overlap, they were considered to be either an increase or decrease from the control.  All 

differentially expressed genes (DEGs), gene sets and pathway analyses used the false discover 

rate of 0.05 to compensate for multiple comparisons.  Only the behavior endpoint P-values were 

not adjusted for multiple comparisons.  Of the 424 behavior endpoint comparisons made in this 

study, 21 could be significant by random chance (0.05 alpha level × 424 tests = 21.2).  Some of 

the statistical test results used in this study have already been reported in previous articles 
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(Albers et al. 2022a, 2022d; Ivan et al. 2022).  All the ZF test results are presented in the 

supplemental (Tables S5.1-S5.17) with the YP transcriptomic analyses and feeding assay results 

(Tables S5.18-S5.23). 

Typically, AOP studies use correlations between endpoints to show causation or 

connections between biological endpoints.  Because only two chemical doses were deployed in 

this study, the biological causation between endpoints as chemical dose increases was limited 

(i.e. only three data points for each correlation).  In addition, the resulting internal chemical 

concentrations, which were not available until after endpoint data collection occurred, suggested 

a limited number of treatments have similar internal chemical levels, thereby further decreasing 

the number of appropriate comparisons.  Consequently, we limited our comparisons to only 

those treatments with similar internal chemical concentrations (see ‘Adjusted Treatment’ column 

in Table 5.1).  With one control-treatment comparison in each species-chemical combination, 

comparisons were limited to general increases or decreases in each measured endpoint.   

For this study, in the end, there were three main comparisons that remained and were 

used that measured endpoints and their relative change as compared to the control treatment.  1)  

Comparison of endpoint changes between chemicals and species.  The results from this 

comparison could suggest possible areas for future research into endpoints that are common 

across multiple species and neurotoxicants.  2) Comparison of endpoint changes between species 

within each chemical.  This will determine if certain species responded in a similar pattern, 

suggesting good species surrogates during similar toxicology studies.  3) Comparison of 

endpoint changes between chemicals within each species.  These results would suggest endpoints 

that are impacted by both neurotoxicants, i.e. shared AOPs between chemicals. 
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Table 5.1.  Summary of mercury from methylmercury (MeHg) treatments and 3,3',4,4',5-pentachlorobiphenyl (PCB126) tissue 

concentrations found in larvae from this study.  Relative lethality measures represented relative species sensitivity (ND = not detected; 

NA, not applicable; SCO = Scorton Creek killifish, MA). Italicized values are estimated using wet weight or results from previous 

studies.  

Chem-

ical 

Treat-

ment 

Level of 

Treatment, 

Dose 

Adjusted 

Treat-

ment     

Concentration in 

Solvent   

Dry Weight 

Tissue 

Concentration 

(n=3)   

Wet Weight 

Tissue 

Concentration 

(n=3) 
Units for 

Tissue 

Concentration 

Relative 

Lethality 

Measure 

(LD50 ppb 

dw; LC50 

ppb) (ppb) (µM)   Mean SD   Mean SD 

Yellow Perch 

MeHg Treatments             

 Control Control 0 0  5.26 1.16  0.391 NA ppb   

 Middle Middle 0.25 0.001  40.35 5.76  3.341 NA ppb   

 High  25.108 0.1  5251.5 1187.30  420.621 NA ppb   
PCB126 Treatments           LD50 1000c 

 Control Control 0 0  NA NA  ND NA ppb   

 Middle  10 30.63  NA NA  ND NA ppb   

 High Middle 1000 3063.42  11.82¹ NA  6.367 5.333 ppb   
Zebrafish 

MeHg Treatments           LC50 103.6f 

 Control Control 0 0  10.21¹ NA  5.5g 1.5g ppb   

 Middle Middle 0.25 0.001  36.01¹ NA  19.4g 3g ppb   

 High  25.108 0.1  5232.4¹ NA  2819.2g 457.2g ppb   
PCB126 Treatments           LD50 100c 

 Control Control 0 0  NA NA  ND NA ppb   

 Middle  0.1 0.31  NA NA  ND NA ppb   

 High Middle 10 30.63  NA NA  ND NA ppb   
Killifish 

MeHg Treatments           LC50 72.7e 

 

SCO - 

Control daily 

dose 

Control 300 1.194 
 

9.80 2.49 
 

1.701 NA ppb 

  

 

SCO - Hg 

daily dose 

Middle 3600 14.34 
 

35.09 17.06 
 

6.461 NA ppb 
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Table 5.1 (cont’d) 
         

PCB126 Treatments 
 

         LD50 10d 

 

SCO - 
PCB126 40 
ng/Lb 

Middle 0.04 0.12 
 

19a NA 
 

4.1¹ NA ppb 

  

  

SCO - 
PCB126 400 
ng/Lb   

0.4 1.23   189a NA   41.2¹ NA ppb 

    
a Estimated using previous experiments (Nacci et al. 1999) 
b Also exposed to ~300 ng tHg/g dw/day through salmon-based diet 
c Estimated based on relative TCDD potency (Spitsbergen et al. 1988; Elonen et al. 1998; Toomey et al. 2001) 
d D. Nacci unpublished data on fish from a relatively uncontaminated site. 
e (Sharp and Neff 1982) 
f (Selderslaghs et al. 2012) 
g (Carvan et al. 2017), n=9 
1 Estimated using percent moisture of 87% (Kneib 1993; Albers et al. 2022a, 2022d) 
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Results 

After aligning all treatment-control tests by the species’ internal tissue concentrations, 

there were 121,324 treatment-control tests performed in this study; 1,313 were found to have 

either a statistical increase or decrease in the biological endpoint after chemical exposure (Table 

5.2 and S5.24).  Of the 1,313 statistically significant comparisons found in this study, none of the 

biological endpoints measured in this study responded in the same direction in all species after 

both chemical exposures, including no similarity in trends of predicted cohort survival and 

growth (Table 5.2).  However, the pyrimidine metabolism pathway (KEGG 2D:00240) was 

perturbed after exposure to MeHg and PCB126 in both YP and ZF (Table 5.3).  This KEGG 2D 

pathway was also perturbed in KF but only significantly so after PCB126 exposure.  

Additionally, KEGG:00240 had significantly reduced activity in PCB126 exposed KF and MeHg 

exposed ZF (Table S5.24).  The most altered genes in this pathway for these species after 

exposure were polr2a and polr2j involved in RNA polymerase II activity and transcription; 

uck2a gene which is involved in kinase activity, cytidine 5'-triphosphate and uridine 

monophosphate salvage and phosphorylation; cmpk gene which is involved in nucleoside 

triphosphate biosynthetic process; and the nt5e gene which is predicted to have 5’-nucleotidase 

activity and involved in the response to copper ion (Bradford et al. 2022).  

After exposure to the same chemical, 21 biological endpoints had similar patterns in at 

least two fish species (Figure 5.1, Table 5.3), of which 14 were genes, gene sets, or gene 

pathways.  Out of the 21 common endpoints, 14 were from MeHg exposure, of which 11 

endpoints had the same response in both YP and ZF larvae to MeHg.  These 11 endpoints 

include 3 increased swimming behavior endpoints and 7 down regulated genomic endpoints, and 

the previously mentioned perturbation in the Pyrimidine metabolism KEGG 2D:00240 pathway.  
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After MeHg exposure, YP and KF were the least similar in their responses with no common 

trends among endpoints, whereas KF and ZF had 3 behavior endpoints that responded the same 

direction.  No biological endpoints responded in a similar direction in all three species after 

MeHg exposure.  

Out of the 21 common endpoints between multiple species, 7 occurred after PCB126 

exposure, none of which occurred in all three fish species (Figure 5.1, Table 5.3).  Where ZF and 

YP exhibited down regulated cyp1a gene and the previously mentioned perturbation in the 

pyrimidine metabolism KEGG 2D:00240 pathway).  After PCB126 exposure, ZF and KF also 

had increases in prey miss proportion and downregulation of the ndrg3a gene, the DNA 

metabolic process (GO:0006259) and in DNA replication (GO:0006260).  Lastly, KF and YP 

both had a down regulation of the chromosome gene set (GO:0005694).  

Within each fish species, at least one behavior and genomic endpoint were altered by 

each neurotoxicant (Table 5.3), and 27 endpoints responded with the same pattern after exposure 

to both chemicals indicating possible similarities in adverse outcome pathways (Figure 5.1, 

Table 5.3).  However, each species exhibited a different proportion of the endpoint types (i.e. 

genomic, behavior and population; Figure 5.1).  For example, KF responded to either exposure 

with decreases in scamp1 gene expression and two swimming characteristics in the VMR assay, 

as well as increases in prey capture attempt ratios and three gene expressions (currently 

unidentified genes), whereas YP had three KEGG 2D pathways that were perturbed by both 

neurotoxicants: DNA replication, pyrimidine metabolism and cell cycle (Table 5.3).  Lastly, ZF 

had 17 endpoints that responded in the same direction after exposure to either neurotoxicant, 15 

of which were genomic endpoints that involved decreased activity in DNA metabolism and 

replication, as well as perturbed KEGG 2D pathways (e.g. PPAR signaling, glutathione 
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metabolism, metabolism of xenobiotics by cytochrome P450, pyrimidine metabolism and drug 

metabolism; Table 5.3). 

 

Table 5.2.  Summary of the number of biological endpoints examined in this study and the 

number found to increase or decrease after embryonic exposure to environmentally relevant 

levels of methylmercury (MeHg) and 3,3',4,4',5-pentachlorobiphenyl (PCB126; KEGG = Kyoto 

Encyclopedia of Genes and Genomes, GO = Gene Ontology, IBM = individual based model). 

      Number of Biological Endpoints 

Species Chemical Endpoints Examined Increased Decreased 

Yellow 

Perch 

Perca 

flavescens  

MeHg Genes 17838 6 2 

 KEGG Gene Pathways 123 0 1 

 

KEGG 2D Gene 

Pathwaysa 123 3 NA 

 GO Term Gene Sets 2643 0 7 

 Behaviors 41 4 1 

 IBM 2 2 0 

 PCB126 Genes 17838 9 2 

  KEGG Gene Pathways 123 0 0 

  

KEGG 2D Gene 

Pathwaysa 123 4 NA 

  GO Term Gene Sets 2643 0 6 

  Behaviors 41 0 1 

  IBM 2 0 0 

Atlantic 

Killifish 

Fundulus 

heteroclitus  

MeHg Genes 16017 16 6 

 KEGG Gene Pathways 120 0 0 

 

KEGG 2D Gene 

Pathwaysa 120 0 NA 

 GO Term Gene Sets 2637 0 0 

 Behaviors 83 5 7 

 IBM 2 0 0 

 PCB126 Genes 16017 177 248 

  KEGG Gene Pathways 120 12 5 

  

KEGG 2D Gene 

Pathwaysa 120 0 NA 

  GO Term Gene Sets 2637 37 54 

  Behaviors 83 6 18 

  IBM 2 0 2 

Zebrafish 

Danio 

rerio 

MeHg Genes 16400 1 2 

 KEGG Gene Pathways 151 1 14 

 

KEGG 2D Gene 

Pathwaysa 151 15 NA 
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Table 5.2 (cont’d)  

 

        

 
 GO Term Gene Sets 4123 73 177 

  Behaviors 87 25 4 

  IBM 0 0 0 

 PCB126 Genes 16400 40 178 

  KEGG Gene Pathways 151 2 1 

  

KEGG 2D Gene 

Pathwaysa 151 14 NA 

  GO Term Gene Sets 4123 73 31 

  Behaviors 87 7 14 

    IBM 0 0 0 
a KEGG 2D pathways are perturbed which is a combination of increased and decreased 

gene expression 
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Table 5.3.  Summary of the biological endpoints that responded in the same direction across species or chemicals in this study (TP = 

Transition Probabilities, HMM = Hidden Markov Chain Model, sec = second, KF = Atlantic killifish Fundulus heteroclitus, YP = 

yellow perch Perca flavescens, ZF = zebrafish Danio rerio, MeHg = methylmercury, PCB126 = 3,3',4,4',5-pentachlorobiphenyl, 

KEGG = Kyoto Encyclopedia of Genes and Genomes, GO = Gene Ontology) 

Chemical Species 

Direction of 
Response 

after 
Exposure Endpoint 

Same Response Between Species 
PCB126 KF/YP Down Gene Sets: Nucleic: chromosome GO:0005694 

PCB126 KF/ZF Down Gene: ndrg3a Gene Sets: Nucleic: DNA metabolic process GO:0006259, DNA replication GO:0006260 

PCB126 KF/ZF Up Behavior: Prey Miss Proportion 

PCB126 YP/ZF Down Gene: cyp1a  

PCB126 YP/ZF Perturbed Gene Sets: Metabolic: Pyrimidine metabolism KEGG 2D:00240 

MeHg KF/ZF Down Behavior: HMM Medium State Turning Angle Variation 

MeHg KF/ZF Up Behavior: HMM Medium -> Medium TP, Prey Capture Probability 
MeHg YP/ZF Down Gene Sets: Nucleic: mitotic cell cycle GO:0000278, DNA metabolic process GO:0006259, DNA replication 

GO:0006260, DNA-dependent DNA replication GO:0006261, mitotic cell cycle process GO:1903047 Cellular: 
cell cycle process GO:0022402, Cell cycle KEGG:004110 

MeHg YP/ZF Perturmed or 
Up 

Gene Sets: Metabolic: Pyrimidine metabolism KEGG 2D:00240 Behavior: HMM Slow -> Medium TP, Swimming 
Bouts (per sec), Total Time Swimming (sec) 

Same Response Between MeHg and PCB126 
Both KF Down Gene: scamp1 Behavior: Swimming Bout Duration Period 3 (sec), Total Time Swimming Period 3 (sec) 

Both KF Up Gene: loc105917295, loc105924291, loc105934237 Behavior: Capture Attempt Ratio 

Both YP Perturbed Gene Sets: Nucleic: DNA replication KEGG 2D:03030 Metabolic: Pyrimidine metabolism KEGG 2D:00240 
Cellular: Cell cycle KEGG 2D:04110 

Both ZF Down Gene Sets: Nucleic: mitotic cell cycle GO:0000278, DNA metabolic process GO:0006259, DNA replication 
GO:0006260 

    

    



 

104 
 

Table 5.3 (cont’d)  
 

        

Both ZF Perturbed or 
Up 

Gene Sets: Signaling: PPAR signaling pathway KEGG 2D:03320 Metabolic: Glutathione metabolism KEGG 
2D:00480, Retinol metabolism KEGG 2D:00830, Metabolism of xenobiotics by cytochrome P450 KEGG 
2D:00980, Pyrimidine metabolismKEGG 2D:00240, Drug metabolism - other enzymes KEGG 2D:00983, Drug 
metabolism - cytochrome P450 KEGG 2D:00982 Cellular: ECM-receptor interaction KEGG 2D:04512 Imunity: 
Intestinal immune network for IgA production KEGG 2D:04672 Miscellaneous: Steroid biosynthesis KEGG 
2D:00100, Steroid hormone biosynthesis KEGG 2D:00140, Phototransduction KEGG 2D:04744 Behavior: HMM 
Medium State Step Length Variation, Overall Step Length Variation 
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Figure 5.1.  Summary of the biological endpoints that responded in the same direction after chemical exposure to methylmercury 

(MeHg) and 3,3',4,4',5-pentachlorobiphenyl (PCB126).   
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Discussion 

This study investigated multiple assumptions behind the AOP framework using multiple 

fish species, neurotoxicants and endpoints across three levels of biological organization after 

environmentally-relevant levels of exposure.  This allowed for numerous response comparisons 

across multiple chemical and biological levels, resulting in none of the endpoints responding in a 

similar way across all three fish species and two neurotoxicants examined.  The highest level of 

biological organization, the predicted fish cohort survival and growth, did not respond similarly 

between any of the groups.  The next lowest biological level tested, larval behavior, also did not 

show any similarities between all species and chemicals test; however, there were some behavior 

endpoints that responded the same between two species.  The most commonalities found in this 

study between species after either neurotoxicant exposure occurred with the lowest level of 

biological organization tested, the genomic endpoints: individual gene expression, GO gene sets, 

KEGG and KEGG 2D pathways.  The most similar responding genomic endpoints were the 

KEGG 2D pathways, with GO gene sets, individual genes and KEGG pathways occurring to a 

lesser extent.  The only common endpoint found in this study over multiple species and 

chemicals was the pyrimidine metabolism pathway (KEGG 2D:00240), which was perturbed 

after exposure to MeHg and PCB126 in both YP and ZF, as well as KF exposed to PCB126. 

Pyrimidine derivatives are the building blocks of DNA and RNA (i.e. cytosine, thymine 

and uracil), and the pyrimidine metabolism pathway ensures a balanced supply of purines and 

pyrimidines exists for DNA/RNA synthesis, thus becoming an important component of 

DNA/RNA repair mechanisms.  Both neurotoxicants used in this study directly and/or indirectly 

damage DNA.  PCB126 is an AhR agonist, where AhR activation leads to higher rates of cancer 

and DNA damage (Wang et al. 2020).  Oxidation of pyrimidines by hydroxyl radicals is a 
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common impact from heavy metals resulting in multiple adducts products in DNA (Jan et al. 

2015).  Heavy metals are hypothesized to create genome instability at low doses (Langie et al. 

2015) and the pyrimidine metabolism pathway in human salivary gland cells has been previously 

reported to be enriched after MeHg exposure (Nogueira et al. 2021).  With the increased 

prevalence of new omics tools, such as those used in this study, there is increased potential in 

understanding of how xenobiotics damage DNA using direct and indirect mechanisms [i.e. 

DNA/RNA damage repair mechanisms, DDRs (Langie et al. 2015; Costa 2022)].  While more 

research is needed before DDR can be used as biomarker [e.g. too sensitive to many types of 

pollution, or biased by natural repair pathways as suggested by Palmqvist et al. (2003)], it has the 

potential for widespread use since DDR applies to many species both eukaryotes and 

prokaryotes, since individual survival and species evolution requires efficient DNA repair 

mechanisms (Costa 2022).  

An important aspect to this study was the multiple ways in which species and treatments 

were aligned before comparisons were conducted.  First, dosing levels were unique to each 

species and set to a level that did not exhibit visible signs of physical malformations.  Second, 

endpoints were collected at the same stage of development between species, which was a 

different day post hatch.  Third, whole larvae tissue concentrations were used to align treatments 

between species.  These precautions were taken because previous research has shown that 

sublethal effects are not as consistent across species as lethal effects.  Sublethal effects often 

present with a non-linear response (Lushchak 2014), making internal chemical concentrations 

critical to compare the same part of the curve.  In addition, sublethal effects are not consistent 

through time; some impacts are temporary or delayed and only affect a certain life stage (Samson 

et al. 2001; Vitalone et al. 2008, 2010; Glazer et al. 2016), or are permanent (Fjeld et al. 1998; 
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Onishchenko et al. 2012; Nabi 2014), while others can only affect a certain group of individuals, 

such as effects on males and not females (Vitalone et al. 2010).  The ability of sublethal effects 

to be time and group dependent required multiple alignment procedures to make sure species 

comparisons were accurate.  Indeed, all three alignment procedures were required in this study 

before any similarities were found between all three species during analysis.  Consequently, we 

recommend that any comparisons in future studies between species should at minimum use 

tissue concentrations and similar developmental periods for endpoint collection as a basis for any 

species comparisons or when using species surrogates. 

After embryonic exposure to the same neurotoxicant, some fish species responded more 

closely to one another, indicating possible surrogacy, but these similarities were not consistent 

between the two neurotoxicants.  After MeHg exposure, YP and ZF responded in the same 

response direction with 11 different endpoints (42% of YP significant responses, 3% of ZF), 

suggesting ZF may be an appropriate MeHg surrogate for YP. With KF MeHg exposure, ZF 

responded the same direction in three endpoints (3% of all KF significant endpoints and 1% of 

ZF), suggesting ZF does not respond to MeHg in a similar way as KF.  After sublethal 

embryonic PCB126 exposure, ZF had two and four endpoints that responded in the same 

direction as YP and KF, respectively (10% and <1% of all altered endpoints), suggesting ZF 

could be a PCB126 surrogate for YP.  Overall, these results suggest that although ZF reacted in a 

similar pattern for some endpoints, ZF did not on many other endpoints.  Depending on the type 

of endpoint examined, different conclusions, possibly incorrect conclusions, could be made when 

using ZF as a surrogate for YP and KF after MeHg or PCB126 exposures.  These interspecies 

similarities were concluded using mostly genomic endpoints, but this study found little support 

of surrogates using behavior endpoints. Even so, the similarities found in this study using 
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transcriptomics supports the use of omics in determining other types of toxic surrogates and may 

explain the popularity of AOPs that use lower levels of biological organization (Brockmeier et 

al. 2017; McBride 2018; Seim et al. 2022).  The combination of each species’ molecular 

responses and different chemical modes of action between PCB126 and MeHg in this study, lead 

to different surrogate choices, and should be taken into consideration when using ZF as a toxic 

surrogate for any species.  Indeed, research on toxic surrogates has suggested that if toxic 

surrogates are to be effective, specific comparison conditions are needed that compare toxicant 

level (Banks et al. 2010), chemical mode of action (Jones et al. 1998; Zhang et al. 2010), and 

biological stage of comparison [e.g. sex or age (Jorgenson et al. 2015)]. 

While this study did find similarities between chemicals and species, the lack of 

similarities between all species and chemicals was unexpected. In this study, particular attention 

was given to conducting all tests using the same methodology across species and chemicals.  As 

well as including relatively large numbers of individual larvae (100s per treatment in behavior 

assays, 6 individuals for genetic endpoints) and endpoints, which would theoretically increase 

the number of similarities.  However, no similarities between all species and chemicals with this 

large effort suggests the results from this study are not because of low power, but a real lack of 

similarity.  Additionally, inconsistent responses across species and chemical occurred at the 

unexpected levels of biological organization.  Initially, one idea was that the population AOP 

level endpoints would integrate suborganismal and organismal levels of biological organization, 

and therefore would be more consistent over species and chemicals. However, none of the IBM 

endpoints were consistent across KF or YP or either chemical and only a few behavior endpoints 

and individual genes were consistent across chemicals.  One exception to this was the KEGG 

pathway analysis, which examines pathways in both a directional and holistic assessment (e.g. 
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KEGG 2D), and ended up being the most frequently consistent endpoints examined across 

species and chemicals 

The reasons why this study did not find more similarities could be attributable to multiple 

factors.  The limited number of chemical dosages may initially suggest a limited study scope, but 

more chemical doses would probably increase the number of differences based on current results, 

thus not increasing the chance of finding more similarities.  The fact that this study focused on 

sublethal endpoints may be one reason for the limited number of similarities.  Sublethal 

endpoints are much more variable than lethal endpoints, consequently, this would limit the 

ability to find similarities between species and chemicals.  Lastly, one possible reason for the 

limited similarities is that the chemicals and species used in this experiment are not similar 

enough in their modes of action (i.e. MeHg and PCB126 have too many dissimilar modes of 

action, or ZF, KF and YP are too genetically distinct species).  For example, in general, PCBs 

predominantly perturb the AhR pathway (Doering et al. 2018, 2020), whereas MeHg has 

multiple significant pathways including neurotransmitter disruption, calcium homeostasis, thiol 

modulation and DNA damage (Farina et al. 2011; Costa and Giordano 2012; Weber et al. 2012).  

The number of response similarities within chemicals and species were alike (383 for species and 

275 for chemicals), suggesting the same level of dissimilarity between chemicals and species. 

Regardless, this study was able to predict fish cohort changes in growth and survival, but since 

the IBM results were not consistent between YP and KF, thus limiting the ability to predict 

chemical impacts on across populations.  

Modeling of population level responses in AOPs is typically determined through some 

type of simulation exercise, with IBMs being a preferred technique (e.g. Stinckens et al. 2018; 

Armstrong et al. 2020).  This study used IBMs to predict cohort survival and growth during the 



 

111 
 

first 100 days for YP and KF, but none of the results from these simulations were similar 

between YP and KF.  If cohort responses for the same chemical are not similar between species, 

IBMs may not be suitable for this purpose or could be lacking important aspects.  For example, 

in this study only 5 of the 41 (YP) or 83 (KF) measured behaviors were used as inputs for the 

IBMs (prey handling time, prey miss proportion, prey reaction distance, swimming bout speed 

and total time swimming).  Four of these five behaviors were perturbed in KF, while only total 

time swimming was altered in YP.  These five endpoints may not be sufficient in capturing the 

breadth of perturbations that occurred in each species, where YP also had 14 more behaviors 

altered by either chemical and KF had 38.  For example, Rearick et al. (2018) used predator 

escape performance and predation rates to estimate impacts on fish larvae from oestrogen.  In 

addition, incorporation of the HMM behaviors may prove a useful addition to IBMs.  However, 

behavior endpoints alone may not be sufficient in transferring perturbations to the IBM, where 

more direct connections between the IBM and sub-organismal responses are required. 

Incorporating bioenergetics components into an IBM could be a very important aspect since 

dioxins are known to directly impact metabolism (Zhang et al. 2012; Gadupudi et al. 2016) and 

metabolomics can be a major AOP component (e.g. Davis et al. 2017).  Lastly, more diverse 

modeled endpoints are needed besides cohort survival and growth.  Sex ratios would be an 

important aspect of an AOP IBM, especially if pollutants discriminate between genders [e.g. 

dioxin-like PCBs, androgenic and oestrogenic substances (Cauli et al. 2013; Hazlerigg et al. 

2014; Gadupudi et al. 2016)].    

This study investigated multiple assumptions behind the AOP frameworks, namely the 

ability to apply AOPs to multiple species and chemicals.  Many different types of biological 

endpoints were evaluated for each of three fish species in this study including brain gene 
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expression, gene functional groups and gene pathways [KF results were reported in (Albers et al. 

2022a)]; traditional swimming, feeding and stimulus behaviors and newer state based behavior 

metrics from hidden Markov chain models (Albers et al. 2022b); and predicted larval growth and 

survival from IBMs [YP results were reported in (Ivan et al. 2022)].  While the results of this 

study are narrow in scope because limited number of chemical doses were examined, the results 

suggest that not all levels of biological organization respond in a similar patterns across ZF, YP 

and KF, as well as across two developmental neurotoxicants, MeHg and PCB126. Genomic 

endpoints did show some promise of consistency between species and chemicals, and could be 

used to indicate a perturbation is occurring, which then can be followed up with more detailed 

studies on what is affected and scope of the problem.  Additionally, multiple critical aspects of 

conducting similar AOP research were highlighted.  1) Innate species differences need to be 

considered and compensated for in order to properly compare differences between species.  2) 

Time points where biological endpoints are collected need to be thoroughly assessed during the 

design phase, since causality between key events is dependent upon closeness in time and space.  

3) More analytical tools are needed for comparing between species and chemicals.  These 

include comparisons between species and chemicals using nonlinear sublethal dose responses or 

gene functional analyses, disparate biological endpoints that are typically not linked to one 

another, finer population level metrics that are connected to molecular and cellular functions, and 

more direct ways to connect molecular functions like gene expression to organismal responses 

like behavior.   

By expanding the analytical tools to connect between different levels of biological 

organisms we will be able to more accurately predict risk from environmental pollutants using 

AOPs and protect organisms from detrimental exposures.  This study is an attempt to illustrate 
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all these connections and possible similarities between species and chemicals.  This is an 

important research need considering all the toxic chemicals in the environments, and this study 

was able to elaborate on lessons learned in this attempt.  Without the organizational structure of 

the AOP framework, it would be difficult to successfully present the study findings, and despite 

some AOP shortcomings, this study did find some similarities and contributes to the 

knowledgebase needed for more accurate risk assessments. 

The implications of this study suggest focusing on a set of current tools that continue to 

improve (i.e. genomics) as well as many new aspects of AOPs could be incorporated.  Results 

from the brain gene expression endpoints in this study were able to span species and chemicals, 

increasing the applicability of these types of endpoints especially in relation DDR.  

Understanding how DDR impacts brain cell function thus impacting behavior using functional 

imaging could make both spatial and temporal connections between genes and behavior that 

were not possible in this study.  In addition, this study used two chemicals that did not share 

many modes of action.  Expanding AOPs and AOP IBMs to more easily incorporate multiple 

modes of action may also increase AOP utility across chemicals.  Lastly, AOP IBMs may need 

to include more parameters with direct connections to molecular and cellular levels (e.g. omics).  

These direct connections may help in AOP IBM precision and flexibility for application across 

species and chemicals. 
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Table S2.1. List of included research studies and values collected from them used in the analysis.   

 

Submitted table as a sheet in an Excel file. 
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APPENDIX II 

 

Chapter 3 Supplementary Materials 
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Fish Husbandry 

To improve survival, egg masses were transferred into 9-L flow though fish tanks and 

secured to polyethylene mesh (which was wedged diagonally into the tank) using 2” zip ties.  

Tanks were supplied with continuous flow-through dechlorinated water using adjustable flow 

misting hoses (Orbit Drip Master Adjustable Flow Flex-Mist Sprayer #66190).  Egg masses from 

each parent and treatment group were randomly assigned into three replicate tanks for the 

remainder of the experiment.  As described by Mora-Zamorano et al. (2017), embryos started at 

10°C with a 14 hour light period and water temperature was increased by 1°C every second day 

until 20°C was reached.  At 12 dpf, hatching was assisted by vigorously pipetting eggs using a 

50 mL pipette and chorion debris and dead embryos were removed from each tank.  Following 

hatch, larvae were fed 3-4 times daily with a variety of live rotifers supplemented with Golden 

Pearl 50-100μm Reef and Larval Diet (Brine Shrimp Direct) and 24-h hatched Artemia.  At 

25dph, larvae were transferred to 3-L static tanks to allow easier access to fish for behavior 

studies.  Tanks were maintained at 20°C with daily water changes and fed as described for the 

remainder of the experiment.  A separate set of fish were used for each behavior assay, so no 

residual effects would occur between assays. 

 

Bayesian Treatment Testing 

Model Description 

For each behavioral endpoint we conducted a series of preliminary and final tests to 

determine whether there were differences between chemical dose treatments.  The model used 

for all behavior endpoints contained two main effect factors, chemical dose treatment and year, 

and the interaction of these.  The model also contained a random effect of batch due to the nested 
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structure of data collection where assays were conducted in batches of 10 larvae per petri dish. 

The Bayesian model used in this study was 

 
𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙

=  𝛼 + 𝛽𝑗 ∗ 𝑦𝑒𝑎𝑟𝑗 + 𝛿𝑘 ∗ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑘 + 𝛾𝑗𝑘 ∗ 𝑦𝑒𝑎𝑟: 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗𝑘

+ 𝜔𝑗𝑙 ∗ 𝑏𝑎𝑡𝑐ℎ𝑗𝑙(𝑖) + 휀𝑖𝑗𝑘𝑙 

where 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙 is the behavioral response metric on the ith individual, jth year, kth 

treatment and lth batch; 𝛼 is the intercept, 𝛽𝑗 is the year coefficient with a 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛽
2)  

distribution, 𝛿𝑘 is the treatment coefficient with a 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛿
2) distribution, 𝜔𝑗𝑙 is the year 

specific batch coefficient, and 휀𝑖𝑗𝑘𝑙 is the residual error with a 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) distribution.  

Treatment, year:treatment and batch are indicator variables containing 1 if the observation 

belongs to the corresponding factor category and 0 otherwise.  The assumption of constant 

variance between the main effects was rarely satisfied, so a non-constant variance model was 

used for all tests.  We assumed the 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙 could be distributed using one of 

two distributions.  The normal distribution model (Table S3.6) assumes the overall behavior 

response is distributed as a 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛽
2) distribution, with variance 𝜎𝛽

2~ 𝑝𝑜𝑤𝑒𝑟(𝜎𝛽 , −2); 

where the standard deviation 𝜎𝛽~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑎𝑗 , 𝑏𝑗).  In addition the year specific batch effect is 

distributed as a 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜔
2 ) distribution, where 𝜎𝜔

2  ~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑎𝑗𝑙 , 𝑏𝑗𝑙).  The Student’s t 

distribution model (Table S3.7) assumes the overall behavior response is disturbed as a 

𝑡(0, 𝜏𝑗 , 𝑑𝑓) distribution, with variance 𝜏𝑗~ 𝐼 − 𝐺𝑎𝑚𝑚𝑎(𝑐𝑗 , 𝑑𝑗) and degrees of freedom 

𝑑𝑓~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑒, 𝑓).  In addition the year specific batch effect is distributed as a 𝑡(0,  𝜏𝑗𝑙 , 𝑑𝑓𝑙) 

distribution, where τ𝑗𝑙  ~ 𝐼 − 𝐺𝑎𝑚𝑚𝑎(𝑐𝑗𝑙 , 𝑑𝑗𝑙) and degrees of freedom 𝑑𝑓𝑙~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑒𝑙, 𝑓𝑙).  
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The use of two possible distributions was necessary due to the behavior endpoints such as total 

distance traveled or fish length that were so highly right skewed that even Box Cox 

transformations were not successful in normalizing the data (see Table S3.5 for final 

transformation and model used for each behavior endpoint).  

Priors were needed for the α, year, treatment, year:treatment and batch effects.  For the 

both models, we used vague, flat priors for α, year, treatment and year:treatment effects and 

assumed a normal distribution with a mean of 0 and standard deviation of 1.0 x 106 (i.e. precision 

of 1.0 x 10-6).  For the normal distribution model, the prior for 𝜎2 was flat and vague as well, 

assuming a uniform distribution with a minimum of 0.01 (𝑎𝑗  or 𝑎𝑗𝑙) and maximum (𝑏𝑗or 𝑏𝑗𝑙) of 

100.  For the Student’s t distribution model we again used vague flat priors, where 𝜏𝑗 assumed an 

inverse scaled chi-squared distribution (i.e. I-gamma) with mean cj = 0.0001 and standard 

deviation dj = 10,000 (i.e. precision of 1.0 x 10-4); 𝜏𝑗𝑙 assumed an inverse scaled chi-squared 

distribution (i.e. I-gamma) with mean cj = 0.01 and standard deviation dj = 100 (i.e. precision of 

1.0 x 10-2).  The degrees of freedom assumed a uniform distribution with a minimum of 3 

degrees of freedom (e or 𝑒𝑙) and maximum of 30 (f or 𝑓𝑙). 

Model Fitting and Convergence Diagnostics 

Bayesian models were constructed using OpenBUGS version 3.2.3 rev 1012 (Lunn et al. 

2009), R version 3.6.0 (R Core Team 2019) and packages R2OpenBUGS version 3.2 (Sturtz et 

al. 2005) and coda version 0.19-2 (Plummer et al. 2005).  We also applied the boxcox function in 

the R MASS package to attempt to transform the behavioral endpoints (Table S3.5; Venables 

and Ripley 2002).  Using the basic model described above, behavior endpoints were normalized 

using the boxcox function in the R MASS package (Table S3.5; Venables and Ripley 2002).  We 

ran the basic model using three chains, each with a minimum of 10000 iterations, 1000 burn in, 
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and 1 thin, and monitored a subsample of variables: main year and treatment effects and 

interaction, overall mean, residuals, variance, tau and df.  Then we performed preliminary 

multiple MCMC chain convergence diagnostics using Trace plots.  If model did not converge, 

we increased either the number of iterations, burn in, or thin (maximum tested was 100000, 

75000, or 30, respectively).  Once the preliminary model trace plots were not showing any 

obvious convergence problems, further MCMC diagnostics were applied using a suite of tools to 

determine adequate run length, model convergence and fit.  1) Autocorrelation plots indicated 

the level of thinning required to remove any autocorrelation.  2) Gelman-Rubin-Brooks shrink 

factor plots indicated the adequate number of iterations needed for burn in.  3) Raftery and 

Lewis’s diagnostic tables were used to determine the number of additional iterations needed for 

accurate parameter estimation (default values of q = 0.025, r = ± 0.005 and s = 0.95).  4) Finally, 

model fit was evaluated residual diagnostics.   

Once a good fitting model had been determined, we reran the model with the appropriate 

settings and monitored a slightly different suite of parameters: overall mean; population level 

treatment, year and their interaction effects; variance and tau for both levels; all probabilities of 

difference; df; individual level predicted means.  With the model output and iteration levels we 

also determined effective sample size (effectiveSize function in coda R package), posterior 

distributions of parameters, and calculated a one-sided P-value from the two sided difference 

probabilities. 

Examples of Model Fitting issues encountered 

Skewed response variables are not uncommon in biological data collection.  For this 

study, most of the response variables had a non-normal distribution and thus did not meet the 

assumption for normally distributed residuals.  Traditionally, response data distribution is 
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normalized using a transformation but it can also be modified by using a different assumed 

distribution in the model.  For example, the total distance a larva traveled during an assay varied 

between 0 and 4252 mms (Figure S3.1A) with most fish swimming less than 1000 mm.  This 

resulted in a right skewed distribution that was difficult to normalize with a transformation.  

Consequently, we assumed the overall response for the model was best described using a 

Student’s t distribution with a mean, tau and degrees of freedom.  This resulted in the model 

residuals to have a more normal density distribution (Figure S3.1B).  We also applied the boxcox 

function in the R MASS package to attempt to transform the behavioral endpoints (Table S3.5; 

Venables and Ripley 2002).  For example, the average swimming bout speed for yellow perch 

larvae in the PCB126 treatments ranged from 0 when they did not swim to 33 mm/s, where most 

larvae swam less than 10 mm/s (Figure S3.2A).  Using the suggested Box-Cox transformation 

and scalar (see below), the density distribution was more normal (Figure S3.2C) as well as the 

residuals (Figure S3.2D). 

Model convergence can be difficult if the scale of your response variable is low.  For 

example, many of the behavior response variables examined in this study ranged from 1 to 2, 

especially after a Box-Cox transformation (Figure S3.2B).  Due to the number of parameters in 

the model, the model convergence is poor due the limited range of the response variable.  To 

solve this problem we multiplied the response variable by 10 or 100 to increase the 

variability/scale so as to allow the model to converge. 

A second model assumption that we did not always pass was that the variance remain 

constant over the different effects.  In this study there were large differences between years for 

some behavioral responses (e.g. average total distance traveled in 2017 MeHg control group was 

1060 mm whereas in 2016 control traveled and average of 141 mm; Table S3.8).  Reasons for 
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this may be due to the quality (e.g. size, fitness) of the hatch from year to year in the hatchery.  

Even though some larvae speeds from this study were slower, while others larger, than a 

previous study using the same laboratory techniques (Mora-Zamorano et al. 2017), the range did 

overlap with the only two previous studies (Houde 1969; Mora-Zamorano et al. 2017).  To 

remedy this problem, we constructed a model that estimated the variance separately for each year 

and used that year specific variance to predict the overall treatment effect means.  This allowed 

for variability between years without violating any assumptions. 

A third main assumption in the model used in this study is independence of observations, 

i.e. individual larvae.  This assumption usually is only considered during the experimental design 

process, but also needs to be addressed when constructing the model.  We added another 

continuous variable in the model to estimate the variability due to collecting data in batches.  

Each assay, the level of replication, contained 10 larvae.  It could be argued that these larvae are 

not independent from one another even if the larvae were randomly selected when put in the 

assay.  For example, one fish in one assay might be very active, thus impacting the activity levels 

in others.  Consequently, the lack of independence can be modeled using the batch effect and 

thus moving the variability due to batches from the other parameters into the batch effect.  

Allowing the treatment effects to be more accurately represented and tested; also making the 

independence violation less so.  

For some of the HMM behavior response tests, batch tau (tau.a) was very small with 

occasional spikes in the traceplots.  This suggested that batch tau was very close to zero.  To test 

this we reran the model with a smaller batch standard deviation (sdev.a) prior with a uniform 

distribution (minimum of 0.1 and maximum of 100) and examined whether the main factor 2.5 

and 97.5th percentiles changed.  If they were different, this would indicate the model is over 
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parameterized and the main effect estimates may be inaccurate.  This check was conducted on a 

subset of models, one in each behavior endpoint group, since the design was the same in each 

test and the only difference was the number of fish that had a slow, medium, or fast state 

identified.  No major changes in main effects were found, with 2.5 and 97.5th percentiles 

estimates varying less than 1.  Consequently, the final model contained a batch standard 

deviation prior (sdev.a) with a minimum of 0.01. 
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Table S3.1. Whole 24 hours post fertilization embryo tissue concentrations of PCB126 and mercury after 20 hour exposure found in 

this study.  Dose levels were mixed using MeHgCl and 100% ethanol for mercury treatments and PCB126 and 100% DMSO for the 

PCB126 treatments.  Total mercury and PCB126 levels were detected and reported. In 2016, three replicate tissue samples were 

collected from each treatment. NA, not applicable; ND, not detected. 

 

    

Concen-

tration in 

Solvent Dose 

Dry Weight Tissue 

Concentration 

(n=3)   

Wet Weight Tissue 

Concentration (n=3) units 

    (ppm) (µM) mean SD   mean SD   

MeHgCl Treatments         

 Control 0 0 5.26 1.16  0.39 0.08 ppb 

 Middle 0.00021 0.001 40.35 5.76  3.34 0.64 ppb 

 High 0.02156 0.1 5251.49 1187.30  420.62 88.02 ppb 

          

PCB126 Treatments         

 Control 0 NA NA NA  ND NA ppm 

 Middle 0.01 NA NA NA  ND NA ppm 

  High 1 NA NA NA   0.006367 0.005 ppm 
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Table S3.2. Summary of the number of assays and yellow perch larvae (Perca flavescens) that were used in this study. 

 

Chemical 
Treatment 

Level Year 

Locomotion Assay   HMMs 

Number 
of 

Assays 

Number 
of 

Larvae 
Total Length    
(mm ± SD) 

Total 
Numbe

r of 
Larvae   

Number of 
Larvae 

attempted 
Model Fitting 

Number 
of 

Larvae 
with 

Fitted 
Model 

Total 
Number 

of 
Larvae 

MeHg Control 2016 15 150 6.59 ± 1.45 621  147 141 592 

 Control 2017 5 50 6.93 ± 0.88   50 49  

 Middle 2016 2 20 4.67 ± 0.72   20 16  

 Middle 2017 18 181 6.64 ± 0.89   179 179  

 Upper 2016 18 180 6.51 ± 1.16   176 169  

 Upper 2017 4 40 6.65 ± 0.69   39 38  
PCB126 Control 2016 11 110 6.68 ± 1.51 599  110 106 559 

 Control 2017 9 90 6.71 ± 0.94   90 85  

 Middle 2016 9 90 6.36 ± 1.36   89 85  

 Middle 2017 11 110 6.75 ± 0.84   109 104  

 Upper 2016 4 40 7.74 ± 1.14   39 39  
  Upper 2017 16 159 6.66 ± 0.76     159 140   
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Table S3.3. Description of behavior endpoints examined in this study.  

Behavior Endpoint Definition 

Swimming Bouts (per sec) The number of active swimming bouts per second.  A 
swimming bout was defined as movement at least 1 mm/s for 
more than 5 frames (0.166 sec). 

Extreme Swimming Bouts (per sec) The number of extreme swimming bouts per second. An 
extreme swimming bout was defined as movement at least 30 
mm/s for more than 5 frames (0.166 sec). 

Swimming Bout Duration (sec) Duration of all swimming bouts averaged over the 5 min 
period. 

Swimming Bout Speed (mm/s) Per frame swimming speed averaged during a swimming bout; 
average bout speed averaged over the 5 min period.  

Swimming Bout Turning Angle Per frame absolute turning angle averaged during a swimming 
bout; average absolute turning angle averaged over the 5 min 
period. Range from 0 to 3.14, where 0 is straight ahead and 
3.14 is straight behind. 

Total Distance Traveled (mm) Total distanced traveled during swimming bouts for the entire 
5 min assay.  

Total Time Swimming (sec) Total time larvae were swimming during 5 min test. 

Fish Lengths The total distance traveled (mm) divided by fish length (mm). 

Overall Step Length (mm) Per frame distance traveled during a 0.033 sec period (one 
frame to the next) averaged over the entire 5 min test [i.e. 
includes zeros when fish moved less than 1 mm/s for more 
than 5 frames (0.166 sec)]. 

Overall Step Length Variation Standard deviation of distance traveled during 0.033 sec 
period (one frame to the next). 

Overall Turning Angle Turning angle during 0.033 sec period (one frame to the next) 
averaged over frames when fish were swimming. Ranges from 
-3.14 to 3.14, where negative values indicate right turns and 
positive values indicate left turns. 

Overall Turning Angle Variation Standard deviation of per frame turning angle during 0.033 sec 
period (one frame to the next). 

HMM Model Parameters 
 

 
Step Length (mm) Per frame distance traveled during a 0.033 sec period (one 

frame to the next); averaged over entire 5 min test while the 
larvae was in a behavior state.  

Step Length Variation Standard deviation of the per frame distance traveled during 
0.033 sec period (one frame to the next) while in a behavior 
state.   

Turning Angle Per frame turning angle; averaged over entire 5 min test while 
the larvae was in a behavior state. Ranges from -3.14 to 3.14, 
where negative values indicate right turns and positive values 
indicate left turns.  

Turning Angle Variation Angle concentration, i.e. kappa parameter in the von Mises 
distribution while in a behavior state. 
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Table S3.3 (cont’d)  
          

Count Number of frames a behavior was performed. 

  Slow -> Slow, Medium -> Slow, 
Slow -> Medium, Medium -> 
Medium, Fast -> Slow, Fast -> 
Medium, Slow -> Fast, 
Medium -> Fast, Fast -> Fast 

Transition probability from state to state (e.g. Medium -> Slow 
is the probability of a fish transitioning from a medium speed 
swimming state to a slow swimming state). 
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Table S3.4. List of all hidden Markov models examined for each larva in this study.  Data groupings or settings used to calculate 

initial parameter values for the hidden Markov models. SD = standard deviation. s1 HMMs contained one behavior state, s2 HMMs 

contained two behavior states, and s3 HMMs contained three behavior states. 

Model 
abbreviation 

Number 
of 

behavior 
states 

Initial behavior states values 

First Behavior State Second Behavior State Third Behavior State 

s1_slow 1 0.1 mm, SD = 0.01 NA NA 

s1_25 1  SDs and angle mean from all 
data, 25th percentile of all step 
lengths for step length mean 

NA NA 

s1_50 1  SDs and angle mean from all 
data, 50th percentile of all step 
lengths for step length mean 

NA NA 

s1_75 1  SDs and angle mean from all 
data, 75th percentile of all step 
lengths for step length mean 

NA NA 

s2_25 2 0.1 mm, SD = 0.01 SDs and angle mean from step lengths > 
0.15 mm; 25th step length percentile for 
step length mean from step lengths > 0.15 
mm; 

NA 

s2_50 2 0.1 mm, SD = 0.01 SDs and angle mean from step lengths > 
0.15 mm; 50th step length percentile for 
step length mean from step lengths > 0.15 
mm; 

NA 

s2_75 2 0.1 mm, SD = 0.01 SDs and angle mean from step lengths > 
0.15 mm; 75th step length percentile for 
step length mean from step lengths > 0.15 
mm; 

NA 

s3_25 3 0.1 mm, SD = 0.01 from step lengths > 0.15 mm and < 25th 
step length percentile 

from step lengths > 0.15 mm 
and > 25th step length 
percentile 
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Table S3.4 (cont’d)          
s3_50 3 0.1 mm, SD = 0.01 from step lengths > 0.15 mm and < 50th 

step length percentile 
from step lengths > 0.15 mm 
and > 50th step length 
percentile 

s3_75 3 0.1 mm, SD = 0.01 from step lengths > 0.15 mm and < 75th 
step length percentile 

from step lengths > 0.15 mm 
and > 75th step length 
percentile 

 

Table S3.5.  Linear Discriminant Models (LDA) cross validation results for different Hidden Markov Chain Model (HMM) behavioral 

states. N = 50 iterations, SD = standard deviation, s3 = three behavior state HMM, s2 = two behavior state HMM, s1 = one behavior 

state HMM. 

    

Num. 
of 

larvae 
with s3 
models 

Num. 
of 

larvae 
with s2 
models 

Num. 
of 

larvae 
with s1 
models 

Num. of 
obs./ 

behavior 
states in 
s3 LDA 

Total 
num. 

of 
obs./ 
behav

ior 
states 
in s1 
and 
s2 

Num. 
of 

rena
med 
beha
vior 

state
s in 
s1 

and 
s2 

Slow State 
Accuracy of s3 

LDA   

Medium State 
Accuracy of s3 

LDA   

Fast State 
Accuracy of s3 

LDA   

Total 
Accuracy of s3 

LDA 

Group Mean SD   Mean SD   Mean SD   Mean SD 

MeHg                  

 Control Dose - Year 2016 31 108 2 93 218 50 0.71 0.20  0.51 0.23  0.72 0.17  0.64 0.11 

 Control Dose - Year 2017 29 16 4 87 36 8 0.63 0.27  0.39 0.22  0.66 0.20  0.56 0.10 

 Middle Dose - Year 2016 1 15 0 3 30 0            

 Middle Dose - Year 2017 82 90 7 246 187 56 0.64 0.18  0.54 0.16  0.70 0.13  0.63 0.09 

 Upper Dose - Year 2016 22 140 7 66 287 141 0.44 0.30  0.72 0.24  0.68 0.24  0.61 0.14 

 Upper Dose - Year 2017 23 11 4 69 26 8 0.69 0.30  0.06 0.15  0.73 0.20  0.49 0.11 

PCB 126                  

 Control Dose - Year 2016 18 84 4 54 172 62 0.71 0.23  0.50 0.29  0.71 0.22  0.64 0.13 

 Control Dose - Year 2017 46 34 5 138 73 25 0.32 0.27  0.64 0.25  0.49 0.25  0.49 0.13 

 Middle Dose - Year 2016 16 66 3 48 135 28 0.73 0.27  0.39 0.30  0.79 0.23  0.64 0.13 

 Middle Dose - Year 2017 47 52 5 141 109 18 0.42 0.22  0.76 0.14  0.62 0.18  0.60 0.09 

 Upper Dose - Year 2016 10 26 3 30 55 20 0.53 0.29  0.31 0.32  0.84 0.28  0.56 0.15 

  Upper Dose - Year 2017 76 59 5 228 123 31 0.34 0.13   0.93 0.07   0.65 0.13   0.64 0.06 
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Table S3.6.  Model summary for each behavioral endpoint. 

            Number of 

Chemical Parameter 
BoxCox 
Transformation Distribution Larvae Chains Iterations Burnin Thin Sample 

MeHg Swimming Bouts (per sec) (y+1)^-4.5, y*100 Normal 621 3 70000 50000 30 60000 

 

Extreme Swimming Bouts (per 
sec) (y+1)^-30.8, y*100 Normal 621 3 95000 70000 30 75000 

 Swimming Bout Duration (sec) (y+1)^-0.6, y*100 Normal 621 3 80000 60000 30 60000 

 Swimming Bout Speed (mm/s) (y+1)^-0.5, y*100 Normal 621 3 95000 60000 30 105000 

 Swimming Bout Turning Angle (y+1)^0.75, y*100 Normal 611 3 145000 60000 30 255000 

 Total Distance Traveled (mm) NA Student's T 621 3 105000 50000 30 165000 

 Total Time Swimming (sec) NA Student's T 621 3 125000 80000 30 135000 

 Fish Lengths NA Student's T 621 3 100000 70000 30 90000 

 Overall Step Length (mm) (y+1)^-12.4, y*10 Normal 592 3 110000 80000 30 90000 

 Overall Step Length Variation (y+1)^-3.35, y*10 Normal 592 3 100000 80000 30 60000 

 Overall Turning Angle (y+1)^-0.65, y*100 Normal 592 3 110000 80000 30 90000 

 Overall Turning Angle Variation (y+1)^1.13, y*10 Normal 592 3 100000 30000 30 210000 

 HMM Model Parameters         

 

 
Slow State         

 

 

 Step Length (mm) (y+1)^-11.5, y*100 Normal 490 3 111000 50000 30 183000 

 

 

 Step Length Variation (y+1)^-3.3, y*100 Normal 485 3 103000 40000 30 189000 

 

 

 Turning Angle NA Normal 490 3 90000 60000 30 90000 

 

 

 Turning Angle Variation (y+1)^-0.8, y*100 Normal 490 3 110000 50000 30 180000 

 

 

 Count (y+1)^1.8, y/100000 Normal 490 3 95000 60000 20 105000 

 

 
Medium State         

 

 

 Step Length (mm) (y+1)^-3.5, y*10 Normal 530 3 130000 80000 30 150000 

 

 

 Step Length Variation (y+1)^-3.7, y*10 Normal 530 3 125000 70000 30 165000 

 

 

 Turning Angle NA Normal 530 3 130000 80000 30 150000 

 

 

 Turning Angle Variation (y+1)^-0.75, y*10 Normal 529 3 95000 50000 30 135000 

 

 

 Count (y+1)^0.13, y*100 Normal 530 3 105000 50000 20 165000 
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Table S3.6 (cont’d)          

 

 
Fast State         

 

 

 Step Length (mm) (y+1)^-1.7, y*10 Normal 328 3 75000 40000 30 105000 

 

 

 Step Length Variation (y+1)^-1.57, y*10 Normal 322 3 100000 70000 30 90000 

 

 

 Turning Angle NA Normal 328 3 190000 150000 30 120000 

 

 

 Turning Angle Variation (y+1)^-0.51, y*10 Normal 328 3 150000 90000 30 180000 

 

 

 Count (y+1)^0.15, y*100 Normal 328 3 315000 50000 30 795000 

 

 
State Transition 
Probabilities         

 

 

 Slow -> Slow asin(sqrt(y)), y*100 Normal 482 3 117000 50000 30 201000 

 

 

 Medium -> Slow (y+1)^-15.75, y*100 Normal 428 3 115000 50000 30 195000 

 

 

 Slow -> Medium (y+1)^-34.5, y*100 Normal 428 3 120000 50000 30 210000 

 

 

 Medium -> Medium (y+1)^23, y/100000 Normal 514 3 95000 40000 30 165000 

 

 

 Fast -> Slow (y+1)^-22, y*100 Normal 242 3 110000 40000 30 210000 

 

 

 Fast -> Medium (y+1)^-12.3, y*100 Normal 274 3 130000 40000 30 270000 

 

 

 Slow -> Fast (y+1)^-71, y*100 Normal 242 3 120000 40000 30 240000 

 

 

 Medium -> Fast (y+1)^-19, y*100 Normal 274 3 105000 30000 30 225000 

 

 

 Fast -> Fast (y+1)^21, y/100000 Normal 328 3 115000 40000 30 225000 

PCB 126 Swimming Bouts (per sec) (y+1)^-6.2, y*100 Normal 599 3 85000 60000 30 75000 

 

Extreme Swimming Bouts (per 
sec) (y+1)^-22.6, y*100 Normal 599 3 80000 60000 30 60000 

 Swimming Bout Duration (sec) (y+1)^-1, y*100 Normal 599 3 100000 80000 30 60000 

 Swimming Bout Speed (mm/s) (y+1)^0.05, y*100 Normal 599 3 95000 70000 30 75000 

 Swimming Bout Turning Angle (y+1)^-0.6, y*100 Normal 596 3 140000 60000 30 240000 

 Total Distance Traveled (mm) NA Student's T 599 3 884000 50000 30 2502000 

 Total Time Swimming (sec) NA Student's T 599 3 102000 70000 30 96000 

 Fish Lengths NA Student's T 599 3 120000 80000 30 120000 

 Overall Step Length (mm) (y+1)^-13.1, y*10 Normal 559 3 100000 90000 30 30000 

 Overall Step Length Variation (y+1)^-2.6, y*10 Normal 559 3 70000 50000 30 60000 

 Overall Turning Angle (y+1)^2.65, y*10 Normal 559 3 120000 100000 30 60000 

 Overall Turning Angle Variation (y+1)^-0.015, y*1000 Normal 559 3 100000 60000 30 120000 

 HMM Model Parameters         



 

152 
 

Table S3.6 (cont’d)          

 

 
Slow State         

 

 

 Step Length (mm) (y+1)^-14.5, y*100 Normal 471 3 104000 50000 30 162000 

 

 

 Step Length Variation (y+1)^-2.5, y*100 Normal 460 3 108000 40000 30 204000 

 

 

 Turning Angle NA Normal 471 3 150000 80000 30 210000 

 

 

 Turning Angle Variation (y+1)^-0.7, y*100 Normal 471 3 120000 50000 30 210000 

 

 

 Count (y+1)^1.58, y/10000 Normal 471 3 65000 40000 20 75000 

 

 
Medium State         

 

 

 Step Length (mm) (y+1)^-2.8, y*100 Normal 517 3 115000 50000 30 195000 

 

 

 Step Length Variation (y+1)^-2.8, y*100 Normal 517 3 120000 40000 30 240000 

 

 

 Turning Angle NA Normal 517 3 90000 60000 30 90000 

 

 

 Turning Angle Variation (y+1)^-0.87, y*10 Normal 515 3 100000 70000 30 90000 

 

 

 Count (y+1)^0.07, y*100 Normal 517 3 75000 50000 20 75000 

 

 
Fast State         

 

 

 Step Length (mm) (y+1)^-1.52, y*10 Normal 318 3 90000 60000 30 90000 

 

 

 Step Length Variation (y+1)^-1.43, y*10 Normal 317 3 110000 60000 30 150000 

 

 

 Turning Angle NA Normal 318 3 120000 90000 30 90000 

 

 

 Turning Angle Variation (y+1)^-0.31, y*10 Normal 318 3 85000 50000 30 105000 

 

 

 Count (y+1)^0.16, y*100 Normal 318 3 105000 40000 20 195000 

 

 
State Transition 
Probabilities         

 

 

 Slow -> Slow asin(sqrt(y)), y*100 Normal 466 3 105000 40000 30 195000 

 

 

 Medium -> Slow (y+1)^-20, y*100 Normal 434 3 95000 50000 30 135000 

 

 

 Slow -> Medium (y+1)^-63.5, y*100 Normal 434 3 70000 50000 30 60000 

 

 

 Medium -> Medium (y+1)^27, y/10000000 Normal 502 3 100000 60000 30 120000 

 

 

 Fast -> Slow (y+1)^-35, y*100 Normal 245 3 110000 50000 30 180000 

 

 

 Fast -> Medium (y+1)^-8.5, y*10 Normal 281 3 80000 40000 30 120000 

 

 

 Slow -> Fast (y+1)^-94, y*10 Normal 245 3 115000 50000 30 195000 

 

 

 Medium -> Fast (y+1)^-13.7, y*10 Normal 281 3 120000 60000 30 180000 

      Fast -> Fast (y+1)^-13.3, y*100 Normal 313 3 120000 40000 30 240000 
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Table S3.7.  Normal distribution OpenBUGS model containing treatment and year main effects 

and a random batch effect. 

 
#inits<-function(){ 
#  list(sdev=runif(2,0.01,100),sdev.a=runif#(2,0.01,100),batch.eff=runif(N2,-1000,1000))} 
#inits() 
 
model; 
{ 
 for(i in 1:N){ 
 y[i]~dnorm(mu[i],tau[year[i]]) 
 mu[i]<-mean+trt.eff[trt[i]]+year.eff[year[i]]+inter.eff[year[i],trt[i]]+batch.eff[batchid[i]] 
 } 
    mean~dnorm(0,1.0E-6) 
#make fixed main effect priors  
 trt.eff[1]<-0 
 for (i in 2:3){ 
 trt.eff[i]~dnorm(0,1.0E-6) 
 } 
 year.eff[1]<-0 
 year.eff[2]~dnorm(0,1.0E-6) 
#make random effect of batch priors 
  for (i in 1:N2){ 
 batch.eff[i]~dnorm(0,tau.a[year_of_batch[i]]) 
  } 
#year_of_batch is a data vector length of N2, where 1 is first year, 2 is second.  
#make fixed main effect interaction priors   
 inter.eff[1,1]<-0  
 inter.eff[1,2]<-0  
 inter.eff[1,3]<-0  
 inter.eff[2,1]<-0 
 for (i in 2:2){ 
 for(j in 2:3){ 
 inter.eff[i,j] ~dnorm(0,1.0E-6) 
 } 
 } 
#predict estimates using cell means model 
 for (i in 1:2){ 
 for(j in 1:3){ 
 Trt.by.yr.mean[i,j]<-mean+trt.eff[j]+year.eff[i]+inter.eff[i,j] 
 } 
 } 
#initial values 
 sdev[1]~dunif(0.01,100) 
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Table S3.7 (cont’d) 
 sdev[2]~dunif(0.01,100) 
 sdev.a[1]~dunif(0.01,100) 
 sdev.a[2]~dunif(0.01,100) 
 
 var[1]<-pow(sdev[1],2) 
 var[2]<-pow(sdev[2],2) 
 var.a[1]<-pow(sdev.a[1],2) 
 var.a[2]<-pow(sdev.a[2],2) 
 
 tau[1]<-pow(sdev[1],-2) 
 tau[2]<-pow(sdev[2],-2) 
 tau.a[1]<-pow(sdev.a[1],-2) 
 tau.a[2]<-pow(sdev.a[2],-2) 
#difference calculations 
 difyear<-year.eff[2]-year.eff[1] 
 pvalyear<-step(difyear) 
 
 trt1<-(Trt.by.yr.mean[1,1]+Trt.by.yr.mean[2,1])/2 
 trt2<-(Trt.by.yr.mean[1,2]+Trt.by.yr.mean[2,2])/2 
 trt3<-(Trt.by.yr.mean[1,3]+Trt.by.yr.mean[2,3])/2 
 
 diftrt2<-trt2-trt1 
 pvaltrt2_1<-step(diftrt2) 
 diftrt3<-trt3-trt1 
 pvaltrt3_1<-step(diftrt3) 
 diftrt3_2<-trt3-trt2 
 pvaltrt3_2<-step(diftrt3_2) 
 
 difinter1_1vs1_2<-inter.eff[1,1]-inter.eff[1,2] 
 pvalinter1_1vs1_2<-step(difinter1_1vs1_2) 
 difinter1_1vs1_3<-inter.eff[1,1]-inter.eff[1,3] 
 pvalinter1_1vs1_3<-step(difinter1_1vs1_3) 
 difinter1_2vs1_3<-inter.eff[1,2]-inter.eff[1,3] 
 pvalinter1_2vs1_3<-step(difinter1_2vs1_3) 
 difinter2_1vs2_2<-inter.eff[2,1]-inter.eff[2,2] 
 pvalinter2_1vs2_2<-step(difinter2_1vs2_2) 
 difinter2_1vs2_3<-inter.eff[2,1]-inter.eff[2,3] 
 pvalinter2_1vs2_3<-step(difinter2_1vs2_3) 
 difinter2_2vs2_3<-inter.eff[2,2]-inter.eff[2,3] 
 pvalinter2_2vs2_3<-step(difinter2_2vs2_3) 
#ratio calculations 
 ratiotrt2_1<-trt2/trt1 
 ratiotrt3_1<-trt3/trt1 
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Table S3.7 (cont’d) 
 ratiotrt3_2<-trt3/trt2 
#posterior model checking, generate new obs based on model params mu, tau. assume normal 
dist 
   for( i in 1 : N ) { 
     ypred[i] ~ dnorm(mu[i],tau[year[i]]) 
   } 
#generate individual level predictions 
     #indiv at the year level 

     ypred_1_y1 ~ dnorm(Trt.by.yr.mean[1,1],tau[1]) 
     ypred_2_y1 ~ dnorm(Trt.by.yr.mean[1,2],tau[1]) 
     ypred_3_y1 ~ dnorm(Trt.by.yr.mean[1,3],tau[1]) 
     ypred_1_y2 ~ dnorm(Trt.by.yr.mean[2,1],tau[2]) 
     ypred_2_y2 ~ dnorm(Trt.by.yr.mean[2,2],tau[2]) 
     ypred_3_y2 ~ dnorm(Trt.by.yr.mean[2,3],tau[2]) 

#ypred using averages 
 ypred_1<-(ypred_1_y1+ypred_1_y2)/2 
 ypred_2<-(ypred_2_y1+ypred_2_y2)/2 
 ypred_3<-(ypred_3_y1+ypred_3_y2)/2 
#compute residuals using the kurtosis formula for both orig data (e) and rep data 
   for( i in 1 : N ) { 
     e[i]<-y[i]-mu[i] 
    } 
  SSE<-inprod(e[],e[])#sum of squares which is e squared 
  ku<-sum(e[]) #sum up all values, there is one for each data point 
  kpred<-sum(ypred[]) 
difs<-kpred-ku #find difference 
difpval<-step(difs) #count how many times the rep data is larger than orig data 
} 
  



 

156 
 

Table S3.8.  Student’s t distribution OpenBUGS model containing treatment and year main 

effects and a random batch effect. 

 
#inits<-function(){ 
#  list(tau=runif(2,0,10),tau.a=runif(2,0,10),batch.eff=runif(N2,-1000,1000), df=runif(1,3,30), 
df.a=runif(1,3,30))} 
#inits() 
 
model; 
{ 
 for(i in 1:N){ 
 y[i]~dt(mu[i],tau[year[i]],df) 
 mu[i]<-mean+trt.eff[trt[i]]+year.eff[year[i]]+inter.eff[year[i],trt[i]]+batch.eff[batchid[i]] 
 } 
    mean~dnorm(0,1.0E-6) 
#make fixed main effect priors  
 trt.eff[1]<-0 
 for (i in 2:3){ 
 trt.eff[i]~dnorm(0,1.0E-6) 
 } 
 year.eff[1]<-0 
 year.eff[2]~dnorm(0,1.0E-6) 
#make random effect of batch priors 
  for (i in 1:N2){ 
 batch.eff[i]~dt(0,tau.a[year_of_batch[i]],df.a) 
  } 
#year_of_batch is a data vector length of N2, where 1 is first year, 2 is second. 
#make fixed main effect interaction priors   
 inter.eff[1,1]<-0  
 inter.eff[1,2]<-0  
 inter.eff[1,3]<-0  
 inter.eff[2,1]<-0 
 for (i in 2:2){ 
 for(j in 2:3){ 
 inter.eff[i,j] ~dnorm(0,1.0E-6) 
 } 
 } 
#predict estimates using cell means model 
 for (i in 1:2){ 
 for(j in 1:3){ 
 Trt.by.yr.mean[i,j]<-mean+trt.eff[j]+year.eff[i]+inter.eff[i,j] 
 } 
 } 
#initial values 
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Table S3.8 (cont’d) 
 df~dunif(3,30) 
 df.a~dunif(3,30) 
 
 tau.a[1]~dgamma(0.01,0.01) 
 tau.a[2]~dgamma(0.01,0.01) 
 tau[1]~dgamma(0.0001,0.0001) 
 tau[2]~dgamma(0.0001,0.0001) 
  
 var[1]<-1/tau[1] 
         var[2]<-1/tau[2] 
 var.a[1]<-1/tau.a[1] 
 var.a[2]<-1/tau.a[2] 
#difference calculations 
 difyear<-year.eff[2]-year.eff[1] 
 pvalyear<-step(difyear) 
 
 trt1<-(Trt.by.yr.mean[1,1]+Trt.by.yr.mean[2,1])/2 
 trt2<-(Trt.by.yr.mean[1,2]+Trt.by.yr.mean[2,2])/2 
 trt3<-(Trt.by.yr.mean[1,3]+Trt.by.yr.mean[2,3])/2 
 
 diftrt2<-trt2-trt1 
 pvaltrt2_1<-step(diftrt2) 
 diftrt3<-trt3-trt1 
 pvaltrt3_1<-step(diftrt3) 
 diftrt3_2<-trt3-trt2 
 pvaltrt3_2<-step(diftrt3_2) 
 
 difinter1_1vs1_2<-inter.eff[1,1]-inter.eff[1,2] 
 pvalinter1_1vs1_2<-step(difinter1_1vs1_2) 
 difinter1_1vs1_3<-inter.eff[1,1]-inter.eff[1,3] 
 pvalinter1_1vs1_3<-step(difinter1_1vs1_3) 
 difinter1_2vs1_3<-inter.eff[1,2]-inter.eff[1,3] 
 pvalinter1_2vs1_3<-step(difinter1_2vs1_3) 
 difinter2_1vs2_2<-inter.eff[2,1]-inter.eff[2,2] 
 pvalinter2_1vs2_2<-step(difinter2_1vs2_2) 
 difinter2_1vs2_3<-inter.eff[2,1]-inter.eff[2,3] 
 pvalinter2_1vs2_3<-step(difinter2_1vs2_3) 
 difinter2_2vs2_3<-inter.eff[2,2]-inter.eff[2,3] 
 pvalinter2_2vs2_3<-step(difinter2_2vs2_3) 
#ratio calculations 
 ratiotrt2_1<-trt2/trt1 
 ratiotrt3_1<-trt3/trt1 
 ratiotrt3_2<-trt3/trt2 
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Table S3.8 (cont’d) 
#posterior model checking, generate new obs based on model params mu, tau. assume t dist 
   for( i in 1 : N ) { 
     ypred[i] ~ dt(mu[i],tau[year[i]],df) 
    } 
#generate individual level predictions 
     #indiv at the year level 

     ypred_1_y1 ~ dt(Trt.by.yr.mean[1,1],tau[1],df) 
     ypred_2_y1 ~ dt(Trt.by.yr.mean[1,2],tau[1],df) 
     ypred_3_y1 ~ dt(Trt.by.yr.mean[1,3],tau[1],df) 
     ypred_1_y2 ~ dt(Trt.by.yr.mean[2,1],tau[2],df) 
     ypred_2_y2 ~ dt(Trt.by.yr.mean[2,2],tau[2],df) 
     ypred_3_y2 ~ dt(Trt.by.yr.mean[2,3],tau[2],df) 

#ypred using averages 
 ypred_1<-(ypred_1_y1+ypred_1_y2)/2 
 ypred_2<-(ypred_2_y1+ypred_2_y2)/2 
 ypred_3<-(ypred_3_y1+ypred_3_y2)/2 
#compute residuals using the kurtosis formula for both orig data (e) and rep data 
   for( i in 1 : N ) { 
     e[i]<-y[i]-mu[i] 
    } 
  SSE<-inprod(e[],e[])#sum of squares which is e squared 
  ku<-sum(e[]) #sum up all values, there is one for each data point 
  kpred<-sum(ypred[]) 
difs<-kpred-ku #find difference 
difpval<-step(difs) #count how many times the rep data is larger than orig data 
}  
 
 

 

Table S3.9. Posterior distributions for all model parameters and each yellow perch Perca 

flavescens behavioral endpoint. 
 

Submitted table as a sheet in an Excel file. 
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Figure S3.1.  Density plots of total distance traveled (mm) for yellow perch during a 5-minute 

assay from the PCB126 treatments.  A) Density plot of original data, B) Density plot of the 

model residuals using a Student’s t distribution. 

 
 

 

 

A 



 

160 
 

 
Figure S3.2.  Density plots of the average swimming bout speed (mm/sec) for yellow perch 

larvae in the PCB126 treatments.  A) Density plot of original data, B) Density plot of 

transformed data after applying a Box Cox transformation, C) Density plot of the transformed 

data after applying a scalar, D) model residuals.   

A B 

C D 
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Figure S3.3.  Analytical steps taken in this study showing the traditional route and the new method using Hidden Markov Chain 

Models. 
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APPENDIX III:  

 

Chapter 4 Supplementary Materials 
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Behavior Assay Methods 

After exposure, 7dpf embryos were rinsed in fresh seawater and transferred into 50-ml conical 

centrifuge tubes full of fresh seawater (< 50 embryos per tube) and shipped overnight to UWM, 

where they were placed in 12-well plates and maintained at 23° C (1-2 embryos per well with 1ml 

artificial seawater; Falcon® Corning, NY 12 well plate 85 x 128 mm, 22 mm diameter well).  At 

10 dpf, embryos were phenotyped microscopically when abnormalities in developmental stage and 

features were noted (Clark et al. 2010; Whitehead et al. 2010).  At 14 dpf, plates were rocked 

gently (~120rpm) and seawater added to each well to initiate hatching.  Individual larvae were 

maintained in single wells for all assessments containing 3 mL seawater, incubated at 23° C, fed 

24-h hatched Artemia ad lib daily, and renewed with seawater on alternate days. Individuals were 

assessed daily for survival until 23-24 dpf.  

During larvae development, multiple behavior assays were conducted to determine if chemical 

exposure altered important behavioral milestones.  Logistical constraints required two separate 

batches of fish to be produced (fertilized on August-8-2017 from parents on diets for 103 days and 

August-21-2017 from parents on diets for 115 days) and for some fish to be included in multiple 

assays. KF were exposed to MeHg as embryos via parental transfer and a portion of these were 

dosed with PCB126 1-7 dpf.  Embryos hatched at 14 dpf, assessed with the Visual Motor Response 

(VMR) assay at 16 dpf (n=144), a random subset contributed brain samples using lethal methods 

for gene expression at 16 dpf (n=69, 36 of whom had been through the VMR assay), assessed with 

Locomotion Behavior assay at 17 dpf (n=256, 108 of whom had been through the VMR assay), 

and feeding abilities were assessed at 23 or 24 dpf (n=192, 84 of whom had been through the VMR 

and Locomotion assay and 192 had been through the Locomotion assay; see Table S4.1 for the 

total number of fish in each assay and treatment).  
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VMR Assay 

Visual Motor Response (VMR) assays are a common test of fish neurological system function 

by startling the fish and evaluating their response (Emran et al. 2008).  VMRs were conducted 

using the same methodology as (Mora-Zamorano et al. 2017), where 16 dpf larvae were tested in 

a special behavior chamber while in the transparent 12-well microliter plates.  The testing chamber 

isolated the larvae from light and sound, as described in three previous studies (Mora-Zamorano 

et al. 2016b, 2016a, 2017) and provided adequate light and video surveillance to view all individual 

movement.  VMR assays were conducted between the hours of 1200 and 1800 to minimize within 

day variability (MacPhail et al. 2009).  KF larvae were positioned in a dark behavior chamber and 

acclimated in the dark for 10 minutes (did not use data during this period), after which they 

underwent two cycles of alternating 10 min light and dark periods for a total of 50 min.  This 

resulted in larvae used in the VMR analysis experiencing two startles each from dark to light and 

from light to dark and 4-10 minute periods differing light conditions: two dark and two light.  Light 

levels during the light periods were set to 69 lx based on the work by MacPhail et al. (2009; Fisher 

Scientific Traceable Dual-Range Light Meter, Pittsburgh, PA).   

Spontaneous movement of larvae was constantly recorded at a rate of 30 frames per sec and 

tracked using DanioVision© system version 8.0 (Noldus Information Technology, Leesburg, VA).  

Settings for tracking did not include smoothing of track.  The minimal distance before movement 

was recorded was set to 0.2 mm, at which time the direct distance between the two points was 

calculated.  Tracking errors were corrected by plotting all x, y coordinates and locating and 

correcting occurrences where the track indicated movement but the fish did not move or track was 

outside the boundary of the dish.  Occasionally when Ethovision lost a fish for 1 to 3 frames (4-
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SCO-MeHg, 3-NBH-Ctrl, 3-NBH-PCB), the equidistant point/s between the previous and next 

location were calculated and used as locations. 

Similar to Albers et al. (2022), this study used the censored fish locations to define individual 

larvae activity at each frame within each period.  Speed at each frame was calculated as mm per 

sec and distance traveled in mm.  Swimming was defined as larval movement that was at least 6 

mm/sec or 0.2 mm per frame (i.e. magnitude of velocity at larvae center) and lasted longer than 5 

frames (0.166 sec).  Whereas the resting behavior occurred during frames where movement was 

less than 1 mm/sec or if greater than 1 mm/sec, lasted less than 5 frames.  Where resting behavior 

was defined, speed and distance for those frames were changed to zero.  In addition, the turning 

angle associated with each frame of swimming was calculated using the difference between the 

four-quadrant inverse tangent of the two trajectories.  Where the first trajectory was constructed 

from the first two locations in the sequence, and the second trajectory from the second two 

locations in the sequence.  This results in a turning angle that ranges from -3.14 to 3.14, where 

zero is straight ahead movement, negative values indicate right turns and positive values indicate 

left turns.  Swimming bout characteristics (i.e. time between rest periods) were summarized using 

multiple metrics: number of bouts per second; the mean duration, speed and turning angle (See 

Table S4.2 for definitions).  The overall larval behavior during each period in the assay was also 

summarized using multiple overall summary metrics: total distance traveled, total time swimming, 

overall average step length and variation, overall turning angle and variation. 

The fish larvae responded to the visual startle from the light change as is typical of previous 

startle responses (Emran et al. 2008).  Consequently, two behavior endpoints were calculated 

specifically to determine how larvae responding to the visual startle of the light turning off and 

on.  To determine the magnitude of the response to the visual startle, we determined the frame 
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where the maximum speed was traveled within 5 seconds after the startle.  Then the difference 

between this maximum speed and the speed at the time of the startle was calculated to define the 

magnitude of the startle response.  Startle response time was calculated as the difference in time 

between the startle and the frame where the maximum speed was traveled.  

 

Locomotion Assay 

Typically, KF larvae initiate swimming soon after hatching (Weis and Weis 1995b).  The 

focus of this study was to assess larvae behavior at the point that larvae were independent and 

actively swimming.  Consequently, the locomotion assay was conducted when KF larvae were 17 

dpf (3 dph, 6.8 ± 0.67 mm in length, n=180), where each 12-well plate was transferred to the 

behavior testing chamber.  Since previous locomotion assays indicated some neurotoxicants 

impact larvae only during light periods (Mora-Zamorano et al. 2017), light levels were constant 

during the entire assay and set to 69 lx (MacPhail et al. 2009).  Assays were conducted during the 

afternoon between 1200 and 1730 hr  After an acclimation period of 5 min, spontaneous movement 

of larvae were tracked every 30th of a second using DanioVision© software 8.0 with the same 

settings described for the VMR assay.  Additionally, DanioVision© lost track of one fish for more 

than 300 frames, so this fish was not included in the analysis (treatment SCO-PCB).  

Using the censored fish locations, the same activity endpoints used the VMR assay were 

calculated: average swimming bout speed, duration, frequency, turning angle (Table S4.2).  

Additional behavior metrics that summarized other behaviors over the entire assay were also 

calculated: total distance traveled and swimming time, average step length and turning angle with 

their respective variations. 
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Using the same methods as Albers et al. (2022), a Hidden Markov Chain Model (HMM) was 

constructed for each fish in the locomotion assay (all fish swam at least once) to describe the 

different behavioral states and used them as additional behavior endpoints to determine effects 

from chemical exposure.  A brief description of the method follows.  For each larva and video 

frame, the step length and turning angle during the assay were used to construct multiple larval 

specific HMMs using the R package moveHMM (Michelot et al. 2016; R Core Team 2019).  

Multiple behavior state models were examined that contained three possible swimming states: 

slow, medium, and fast swimming states where s1 HMMs contained only one behavior state, s2 

HMMs contained any two behavior states, and s3 HMMs contained all three behavior states.  The 

best fit HMM for each larvae was determined from a suite of ten potential HMM models, differing 

in the number of behavior states and initial starting values for each state (see Albers et al. 2022 

Table S4.2 for model description and initial values). 

Once all 10 of the possible HMMs were completed, a hierarchical selection for the best fitting 

model was conducted, essentially using successfully converged models with the lowest AIC.  Even 

though the initial state values were set up in increasing step length means, the resulting best fit 

HMM state parameter estimates did not always have increasing step length for each additional 

behavior.  This is probably due to the final HMM behavior state being defined by not only the step 

length but also turning angle characteristics.  To make sure the behavior state comparisons were 

comparing similar states with the same name, the states were reordered and renamed in order to 

compare between larvae.  First, states were reordered using the mean step length to describe them 

as slow, medium and faster swimming behavior states (i.e. changed the state name).  Next a Linear 

Discriminant Model was constructed using the lda function in the MASS package  (Venables and 

Ripley 2002) and cross validation to compare between models using the s3 models as a reference. 
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LDA prediction accuracy for all models (s1, s2 and s3) was measured using cross validation where 

a random draw of 80% of the data was used to construct a model and then calculated prediction 

accuracy of the remaining 20% of the data.  This was done 50 times for each treatment group of 

data to determine overall accuracy (98 ± 0.02 %) and within state accuracy (slow state = 99 ± 0.01 

%, medium state = 99 ± 0.01 % and fast state = 95 ± 0.05 %; Table S4.3).  

When treatment level tests were conducted on slow, medium and fast states, this comparison 

was only conducted with fish that performed those states making the number of larvae used for the 

model (see Treatment Testing section below) different for each comparison (Table S4.1). 

 

Feeding Assay 

Typically, KF larvae initiate feeding at 17 dpf (Weis and Weis 1995a).  This study focused on 

assessing larvae behavior at the point that larvae were independent and feeding.  Consequently, 

feeding ability in KF was assessed when they were 23 or 24 dpf (9 or 10 dph; 10.6 ± 0.82 mm).  

Larva were transferred from the 22 mm diameter wells to 54 mm diameter petri dishes at 22 dpf 

(60 mm petri dish).  Feeding of Artemia continued morning and evening until ~24hr prior to the 

assay, so fish would be in a hungry state for the test.  Similar to locomotion assays, feeding assays 

were conducted over a two-day period between 1300 and 1920 hr at a light level of 69 lx.  Feeding 

assays were conducted in the same behavior chamber as the locomotion assay, when after 5 

minutes of acclimation, recording started and ~15 (range 13-19) live Artemia were added to the 

dish.  The test ended when 5 minutes had elapsed from when the Artemia were added to the dish. 

Feeding bouts consisted of multiple presentations; the characteristic curved body posture, 

continuously swimming straight or at rest by just opening their mouths.  For each of these 

presentations, the distance between the middle of the larva’s mouth and Artemia was measured at 
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the time the larva orientated toward the Artemia, with their either eyes or body.  This distance was 

termed reactive distance and was measured using ImageJ (version 1.51j8).  For each capture 

attempt toward an Artemia, we recorded whether the larva successfully captured the Artemia and 

the time it took the larva to handle and consume the Artemia.  Typically after a catching an Artemia, 

the larva sat or drifted momentarily and did not swim while it was consuming the prey.  Handling 

time was defined as the time between prey capture and when the larva resumed normal swimming 

activity.  Additionally, three consumption metrics were calculated: capture proportion defined as 

the number of captures divided by the total number of Artemia added to the dish, miss proportion 

defined as the number of feeding capture attempts that missed the Artemia divided by the total 

number of successful and unsuccessful capture attempts, and capture attempt ratio defined as the 

total number of feeding capture attempts (successful and unsuccessful) divided by the total number 

of Artemia added to the dish.  When two Artemia were consumed during one feeding capture 

attempt, the consumption of both Artemia were assigned the same measurements. 

 

Bayesian Model Analysis 

For each behavioral endpoint (Table S4.2), we conducted a series of preliminary and final 

tests to determine whether there were differences between chemical dose treatments.  The three 

different behavior assays and the number of behavior responses we measured were Feeding-5, 

Visual Motor Response (VMR) - 58, Locomotion - 30.  Behavior responses that were not already 

normally distributed, we attempted to normalize using the boxcox function in the R MASS 

package (Table S4.4; Venables and Ripley 2002).  Using a basic model containing only the 

treatment factor, behavior endpoints were transformed using the maximum lambda parameter for 

the exponential transformation suggested by the boxcox function in the R MASS package.  
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Below we describe the five different models that were used on the 93 behavior responses to 

determine differences between treatments, (see Table S4.4 for final transformation and model 

used for each behavior endpoint).  Fitting multiple model types was necessary due to the various 

behavior endpoints having distinctively different distributions such as a proportional, normal, or 

a skewed response that even Box Cox transformations were not successful in normalizing.  

Model Description 

The Bayesian models used in locomotion and VMR behavior response models consisted 

of one main effect (treatment with 5 levels), covariate variable time of assay and a random batch 

effect because assays were ran in batches of 24-well dishes.  The Bayesian model used for a 

locomotion and VMR behavior responses was 

 

𝐿𝑜𝑐𝑜𝑚𝑜𝑡𝑖𝑜𝑛 𝑜𝑟 𝑉𝑀𝑅 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙

=  𝛼 + 𝛽𝑗 ∗ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗 +  𝛿𝑘  ∗ 𝑎𝑠𝑠𝑎𝑦 𝑡𝑖𝑚𝑒𝑘(𝑖) + 𝜔𝑙 ∗ 𝑏𝑎𝑡𝑐ℎ𝑙(𝑖) + 휀𝑖𝑗𝑘𝑙 

where 𝐿𝑜𝑐𝑜𝑚𝑜𝑡𝑖𝑜𝑛 𝑜𝑟 𝑉𝑀𝑅 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙 is the behavioral response metric 

on the ith individual, jth treatment, kth assay time and lth batch; 𝛼 is the intercept, 𝛽𝑗 is the 

treatment coefficient with a 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛽
2) distribution, 𝛿 is the assay time coefficient with a 

𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛿
2) distribution, 𝜔𝑙 is the batch coefficient, and 휀𝑖𝑗𝑘𝑙 is the residual error.  Treatment 

and batch are indicator variables containing 1 if the observation belongs to the corresponding 

factor category and 0 otherwise.  Prior distributions for these two components are described in 

Table S4.5.  Additionally, priors were needed for the α, treatment and assay time effects. In all 

models, we used non-informative, flat priors.  For α, treatment and assay time we assumed a 
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normal distribution with a mean of 0 and standard deviation of at least 1.0 x 104 (i.e. precision of 

1.0 x 10-4).  OpenBUGS model code for these models is shown in Tables S4.6, S4.7 and S4.8. 

Two other Bayesian models were used to model the five feeding behavior responses that 

did not contain a batch effect since feeding assays were conducted one fish at a time.  

Additionally, days post fertilization (dpf) was included as a covariate since larvae were either 23 

or 24 dpf. Lastly, these models did include intercept, treatment and assay time as described for 

the locomotion and VMR behavior models. 

1) Normal response model 

𝐹𝑒𝑒𝑑𝑖𝑛𝑔 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙

=  𝛼 + 𝛽𝑗 ∗ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗  + 𝛿 ∗ 𝑎𝑠𝑠𝑎𝑦 𝑡𝑖𝑚𝑒𝑘(𝑖)  + 𝜔 ∗ 𝑑𝑝𝑓𝑙(𝑖) + 휀𝑖𝑗𝑘𝑙 

where 𝐹𝑒𝑒𝑑𝑖𝑛𝑔 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙 is the prey handling time, lunge ratio or 

reaction distance (Table S4.4) on the ith individual, jth treatment, kth assay time and lth dpf; 𝛼, 𝛽𝑗  

and, 𝛿 and their priors where described before, and 𝜔 is the dpf coefficient also with a non-

informative normal prior assuming a normal distribution with a mean of 0 and standard deviation 

of at least 1.0 x 104 (i.e. precision of 1.0 x 10-4).  Lastly, the residual error followed a normal 

distribution  휀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) with variance 
1

𝜎𝜀
2 = 𝜏𝑗~ 𝐼 − 𝐺𝑎𝑚𝑚𝑎(0.0001, 0.0001). 

OpenBUGS code is presented in Table S4.9. 

2) Binomial response model 

𝐹𝑒𝑒𝑑𝑖𝑛𝑔 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖𝑗𝑘𝑙, 𝑁𝑖𝑗𝑘𝑙) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑘𝑙) =  𝛽𝑗 ∗ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗(𝑖)  + 𝛿 ∗ 𝑎𝑠𝑠𝑎𝑦 𝑡𝑖𝑚𝑒𝑘(𝑖)  + 𝜔 ∗ 𝑑𝑝𝑓𝑙(𝑖) + 휀𝑖𝑗𝑘𝑙 
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where 𝐹𝑒𝑒𝑑𝑖𝑛𝑔 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙 is the prey capture probability or prey miss 

proportion (Table S4.7) on the ith individual, jth treatment, kth assay time and lth dpf and 𝑁𝑖𝑗𝑘𝑙 is 

the number of trials and 𝑝𝑖𝑗𝑘𝑙 is the probability of success distributed on a logit scale.  The priors 

for 𝛽𝑗, 𝛿 and 𝜔 where described before.  Lastly, the residual error followed a normal distribution 

 휀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) with variance 
1

𝜎𝜀
2 = 𝜏𝑗~ 𝐼 − 𝐺𝑎𝑚𝑚𝑎(0.01, 0.01). OpenBUGS code is 

presented in Table S4.10. 

 

Model Fitting and Convergence Diagnostics 

Bayesian models were constructed using OpenBUGS version 3.2.3 rev 1012 (Lunn et al. 

2009),  R version 3.6.0 (R Core Team 2019) and packages R2OpenBUGS version 3.2 (Sturtz et 

al. 2005) and coda version 0.19-2 (Plummer et al. 2005).  We fit the basic model using three 

chains, each with a minimum of 10000 iterations, 1000 burn in, and 1 thin, and monitored a 

subsample of parameters for convergence: treatment effects, overall mean, residuals, variance(s), 

precision parameter(s) and degree of freedom parameter(s).  Then we performed preliminary 

multiple MCMC chain convergence diagnostics using Trace plots.  If model did not converge, 

we increased either the number of iterations, burn in, or thin.  Once the preliminary model trace 

plots were not showing any obvious convergence problems, further MCMC diagnostics were 

applied using a suite of tools to determine adequate MCMC chain length, model convergence 

and fit.  1) Autocorrelation plots indicated the level of thinning required to remove any 

autocorrelation.  2) Gelman-Rubin-Brooks shrink factor plots indicated the adequate number of 

iterations needed for burn in.  3) Raftery and Lewis’s diagnostic tables were used to determine 

the number of additional iterations needed for accurate parameter estimation (default values of q 
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= 0.025, r = ± 0.005 and s = 0.95).  4) Finally, model goodness-of-fit was evaluated using 

residual diagnostics.  When alternative models were to be compared, the model with the best 

posterior predictive distributions of residuals and replicated observations was retained. 

Once a best-fitted model had been determined, we re-fit the model with the appropriate 

settings and monitored a slightly different suite of parameters: overall mean; population level 

treatment effects; variance and precision parameters; tail area probabilities of observing a 

difference; degrees of freedom; individual level predicted means, etc.  With the model output and 

iteration levels we also determined effective sample size (effectiveSize function in coda R 

package), posterior distributions of parameters, and calculated a one-sided tail area probabilities 

(Bayesian P-values) from the two sided difference of parameter distributions.  The summary 

output of this last model fit is presented in the results section of the paper and all relevant 

parameter posterior distributions can be found in Table S4.12. 

 

Results 

All larvae within each chemical/year/treatment group were successfully fitted with a 

HMM (Table S4.1).  The number of larvae that consisted of one, two, or three behavior states 

exhibited a consistent pattern within each treatment, where a one state behavior model was never 

the best, three fish exhibited a two state model, and the rest of the fish were best fit using a three 

state behavior model (253 fish; Figure S4.1).  
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Genetics 

Behavior Gene 

This study focused on finding behaviors that reacted in a similar pattern to either MeHg 

or PCB126 treatments.  In addition, we also tested individual genes and whether they responded 

in a similar pattern as any of the behavior endpoints.  These results are reported in Tables S4.16 

to S4.21.  
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Table S4.1.  Summary of the number of assays and Atlantic killifish larvae (Fundulus heteroclitus) used in this study 

 

Groups SCO-Ctrl SCO-Hg SCO-PCB NBH-Ctrl NBH-PCB 

VMRs      

 Number of Assays-Larvae 30 29 28 29 28 

Locomotion Assays      

 Number of Assays-Larvae 56 68 31 66 35 

HMMs      

 

Number of Larvae Attempted and Fitted a 

Model 56 68 31 66 35 

Feeding Assays      

 Number of Assays-Larvae 47 44 23 50 28 

 Total Length (mm ± SD) 10.78 (0.77) 10.63 (0.60) 9.80 (0.98) 10.81 (0.77) 10.35 (0.80) 

  

Number of Larvae that did not consume 

Artemia 0 1 0 0 0 
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Table S4.2.  Description of behavior endpoints examined in this study. 

Behavior Endpoint Definition 

Feeding Assay 
 

 
Prey Capture Probability The number of artemia captures divided by the total 

number of artemia added to the assay 

  

  
Prey Handling Time (sec) The number of seconds between the prey capture attempt 

and resuming normal activity, averaged over all feeding 

capture attempts during the 5 min assay  
Capture Attempt Ratio The total number of prey capture attempts divided by the 

total number of artemia added to the assay.  
Prey Miss Proportion The number of prey capture attempts that missed the 

artemia divided by the total number of prey capture 

attempts during the assay.  
Reaction Distance (proportion 

of body length) 

The distance (mm) between the artemia and larva when the 

larvae first orientates (notices) the artemia divided by the 

larva total length (mm), averaged over all the feeding 

capture attempts during the 5 minute assay. 

Visual Motor Response Assay 
 

 
Startle Magnitude (mm) Per frame maximum speed within 5 seconds after the 

startle minus the speed at the time of the startle.  
Startle Response time (sec) Difference in time between the startle and the maximum 

speed traveled within 5 seconds after the startle 

Locomotion and VMR Assay 
 

 
Swimming Bouts (per sec) The number of active swimming bouts per second.  

Swimming was defined as movement at least 1 mm/s for 

more than 5 frames (0.166 sec).  
Swimming Bout Duration 

(sec) 

Duration of all swimming bouts averaged over the 5 

minute period.  
Swimming Bout Speed (mm/s) Per frame swimming speed averaged during a swimming 

bout; average bout speed averaged over the 5 minute 

period.   
Swimming Bout Turning 

Angle 

Per frame turning angle averaged during a swimming bout; 

individual average bout turning angle averaged over the 5 

minute period. Ranges from -3.14 to 3.14, where negative 

values indicate right turns and positive values indicate left 

turns.  
Total Distance Traveled (mm) Total distanced traveled during swimming bouts for the 

entire 5 minute assay.   
Total Time Swimming (sec) Total time larvae were swimming during 5 minute test.  
Overall Step Length (mm) Per frame distance traveled during a 0.033 second period 

(one frame to the next) averaged over the entire 5 minute 

test [i.e. includes zeros when fish moved less than 1 mm/s 

for more than 5 frames (0.166 sec)]. 
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Table S4.2 (cont’d)  
          

Overall Step Length Variation Standard deviation of distance traveled during 0.033 

second period (one frame to the next).  
Overall Turning Angle Per frame turning angle averaged over frames when fish 

were swimming. Ranges from -3.14 to 3.14, where 

negative values indicate right turns and positive values 

indicate left turns.  
Overall Turning Angle 

Variation 

Standard deviation of per frame turning angle during 0.033 

second period (one frame to the next). 

   

HMM Model Parameters 
 

 
Step Length (mm) Per frame distance traveled during a 0.033 sec period (one 

frame to the next) while the larvae was in each behavior 

state.  
Step Length Variation Standard deviation of the per frame distance traveled 

during 0.033 second period (one frame to the next) while in 

each behavior state.   
Turning Angle Per frame turning angle while in each behavior state. 

Ranges from -3.14 to 3.14, where negative values indicate 

right turns and positive values indicate left turns.  
Turning Angle Variation Angle concentration, i.e. kappa parameter in the von Mises 

distribution while in each behavior state.  
Count Number of frames a behavior state was performed. 

  Slow -> Slow, Medium -> 

Slow, Slow -> Medium, 

Medium -> Medium, Fast -> 

Slow, Fast -> Medium, Slow -

> Fast, Medium -> Fast, Fast -

> Fast 

Per frame transition probability from state to state (e.g. 

Medium -> Slow is the probability of a fish transitioning 

from a medium speed swimming state to a slow swimming 

state). 
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Table S4.3.  LDA cross validation results for different HMM behavioral states. N = 50 iterations. SD = standard deviation 

 

  

Overall 

Accuracy s3   Slow State  

Medium 

State  Fast State   

Num. 

of 

obs. 

in s3 

LDA 

Total 

num. of 

behavior 

states in 

s1 and s2 

Num. of 

renamed 

state ID 

in s1 

and s2 

Num. 

of 

larvae 

with 

s3 

Num. 

of 

larvae 

with 

s2 

Num. 

of 

larvae 

with 

s1 

Group Mean SD   Mean SD   Mean SD   Mean SD   
      

NBH-Ctrl 1.00 0.01  1.00 0.00  1.00 0.00  0.98 0.03  198 0 0 66 0 0 

NBH-PCB 1.00 0.00  1.00 0.00  1.00 0.00  1.00 0.00  108 4 1 36 2 0 

SCO-Ctrl 1.00 0.10  1.00 0.01  1.00 0.01  0.99 0.02  168 0 0 56 0 0 

SCO-Hg 0.96 0.03  0.98 0.03  1.00 0.00  0.90 0.07  204 0 0 68 0 0 

SCO-PCB 0.99 0.02   1.00 0.00   0.98 0.05   0.97 0.06   90 2 0 30 1 0 

 

Table S4.4.  Model summary for each yellow perch Perca flavescens behavioral endpoint. 

 

Submitted table as a sheet in an Excel file. 

 

Table S4.5.  Distributions and priors for parameters in models used to determine differences in treatments for locomotion behavior 

responses. 

 
Model 

Table Residual Residual Variance Batch Effect Batch Effect Variance 

S4.6 휀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) 1

𝜎2 = 𝜏𝑗~ 𝐼 − 𝐺𝑎𝑚𝑚𝑎(0.0001,0.0001) 
휀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) 1

𝜎2 = 𝜏𝑗~ 𝐼 − 𝐺𝑎𝑚𝑚𝑎(0.01,0.01) 

S4.7 휀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) 
√𝜎2 = 𝜎   ~𝑈(0,01,1000) 

휀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) 
√𝜎2 = 𝜎   ~𝑈(0,01,1000) 

S4.8 휀~𝑆𝑡𝑢𝑑𝑒𝑛𝑡′𝑠 𝑇(0, 𝜎2, 𝑑𝑓) 1

𝜎2 = 𝜏𝑗~ 𝐼 − 𝐺𝑎𝑚𝑚𝑎(0.0001,0.0001) 
휀~𝑆𝑡𝑢𝑑𝑒𝑛𝑡′𝑠 𝑇(0, 𝜎2, 𝑑𝑓) 1

𝜎2 = 𝜏𝑗~ 𝐼 − 𝐺𝑎𝑚𝑚𝑎(0.01,0.01) 
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Table S4.6.  Normal distribution OpenBUGS model containing treatment and time of assay 

effects and a random batch effect used to analyze locomotion behavior endpoints. 

 

#inits<-function(){ 

#   list(batch.eff=runif(N2,-1000,1000),tau=runif(1,0,10),tau.a=runif(1,0,10))} 

#inits() 

model; 

{ 

 for(i in 1:N){ 

 y[i]~dnorm(mu[i],tau) 

 mu[i]<-mean+trt.eff[trt[i]]+time[i]*betta_mfn+batch.eff[batchid[i]] 

 } 

    mean~dnorm(0,1.0E-6) 

#make covariate effect priors 

 #time 

 betta_mfn~dnorm(0,0.0001) 

#make fixed main effect priors  

 trt.eff[1]<-0 

 for (i in 2:5){ 

 trt.eff[i]~dnorm(0,1.0E-6) 

 } 

#make random effect of batch priors 

  for (i in 1:N2){ 

 batch.eff[i]~dnorm(0,tau.a) 

  } 

#predict estimates 

#cell means models 

 for(j in 1:5){ 

 Trt.mean[j]<-mean+trt.eff[j] 

 } 

#initial values 

 var<-1/tau 

 var.a<-1/tau.a 

 tau~dgamma(0.0001,0.0001) 

 tau.a~dgamma(0.01,0.01) 

#difference calculations 

 trt1<-Trt.mean[1]#sco salmon-fed ctl 

 trt2<-Trt.mean[2]#sco tuna/hg fed 

 trt3<-Trt.mean[3]#sco salmon-fed pcb40 

 trt4<-Trt.mean[4]#nbh salmon-fed ctl 

 trt5<-Trt.mean[5]#nbh salmon-fed pcb40 

 diftrt2_1<-trt2-trt1 

 pvaltrt2_1<-step(diftrt2_1) 

 diftrt3_1<-trt3-trt1 

 pvaltrt3_1<-step(diftrt3_1) 

 diftrt3_2<-trt3-trt2 
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Table S4.6 (cont’d) 

 pvaltrt3_2<-step(diftrt3_2) 

 diftrt4_1<-trt4-trt1 

 pvaltrt4_1<-step(diftrt4_1) 

 diftrt5_4<-trt5-trt4 

 pvaltrt5_4<-step(diftrt5_4) 

 diftrt3_5<-trt3-trt5 

 pvaltrt3_5<-step(diftrt3_5) 

#ratio calculations 

 ratiotrt2_1<-trt2/trt1 

 ratiotrt3_1<-trt3/trt1 

 ratiotrt3_2<-trt3/trt2 

 ratiotrt4_1<-trt4/trt1 

 ratiotrt5_4<-trt5/trt4 

 ratiotrt3_5<-trt3/trt5 

#posterior model checking, generate new obs based on model params mu, tau. assume normal 

dist 

   for( i in 1 : N ) { 

     ypred[i] ~ dnorm(mu[i],tau) 

   } 

#generate individual level predictions 

     ypred_1 ~ dnorm(trt1,tau)#approximation of the individual observation, using average for 

other factors in the model.  

     ypred_2 ~ dnorm(trt2,tau)#randomly selected individual 

     ypred_3 ~ dnorm(trt3,tau) 

     ypred_4 ~ dnorm(trt4,tau) 

     ypred_5 ~ dnorm(trt5,tau) 

#compute residuals using the kurtosis formula for both orig data (e) and rep data 

   for( i in 1 : N ) { 

     e[i]<-y[i]-mu[i] 

    } 

  SSE<-inprod(e[],e[])#sum of squares which is e squared 

  ku<-sum(e[]) #sum up all values, there is one for each data point 

  kpred<-sum(ypred[]) 

difs<-kpred-ku #find difference 

difpval<-step(difs) #count how many times the rep data is larger than orig data 

}  
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Table S4.7.  Normal distribution OpenBUGS model containing treatment and time of assay 

effects and a random batch effect using uniform tau prior used to analyze locomotion behavior 

endpoints. 

 

#inits<-function(){ 

#  list(batch.eff=runif(N2,-1000,1000),sdev=runif(1,0.01,1000),sdev.a=runif(1,0.01,1000))} 

#inits() 

model; 

{ 

 for(i in 1:N){ 

 y[i]~dnorm(mu[i],tau) 

 mu[i]<-mean+trt.eff[trt[i]]+time[i]*betta_mfn+batch.eff[batchid[i]] 

 } 

 mean~dnorm(0,1.0E-6) 

#make covariate effect priors 

 #time 

 betta_mfn~dnorm(0,0.0001) 

#make fixed main effect priors 

 trt.eff[1]<-0 

 for (i in 2:5){ 

 trt.eff[i]~dnorm(0,1.0E-6) 

 } 

#make random effect of batch priors 

  for (i in 1:N2){ 

 batch.eff[i]~dnorm(0,tau.a) 

  } 

#predict estimates 

#cell means models 

 for(j in 1:5){ 

 Trt.mean[j]<-mean+trt.eff[j] 

 } 

#initial values 

 sdev~dunif(0.01,1000) 

 sdev.a~dunif(0.01,1000) 

 var<-pow(sdev,2) 

 var.a<-pow(sdev.a,2) 

 tau<-pow(sdev,-2) 

 tau.a<-pow(sdev.a,-2) 

#difference calculations 

 trt1<-Trt.mean[1]#sco salmon-fed ctl 

 trt2<-Trt.mean[2]#sco tuna/hg fed 

 trt3<-Trt.mean[3]#sco salmon-fed pcb40 

 trt4<-Trt.mean[4]#nbh salmon-fed ctl 

 trt5<-Trt.mean[5]#nbh salmon-fed pcb40 

 diftrt2_1<-trt2-trt1 

 pvaltrt2_1<-step(diftrt2_1) 
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Table S4.7 (cont’d) 

 diftrt3_1<-trt3-trt1 

 pvaltrt3_1<-step(diftrt3_1) 

 diftrt3_2<-trt3-trt2 

 pvaltrt3_2<-step(diftrt3_2) 

 diftrt4_1<-trt4-trt1 

 pvaltrt4_1<-step(diftrt4_1) 

 diftrt5_4<-trt5-trt4 

 pvaltrt5_4<-step(diftrt5_4) 

 diftrt3_5<-trt3-trt5 

 pvaltrt3_5<-step(diftrt3_5) 

#ratio calculations 

 ratiotrt2_1<-trt2/trt1 

 ratiotrt3_1<-trt3/trt1 

 ratiotrt3_2<-trt3/trt2 

 ratiotrt4_1<-trt4/trt1 

 ratiotrt5_4<-trt5/trt4 

 ratiotrt3_5<-trt3/trt5 

#posterior model checking, generate new obs based on model params mu, tau. assume normal 

dist 

   for( i in 1 : N ) { 

     ypred[i] ~ dnorm(mu[i],tau) 

   } 

#generate individual level predictions 

     ypred_1 ~ dnorm(trt1,tau)#approximation of the individual observation 

     ypred_2 ~ dnorm(trt2,tau)#randomly selected individual 

     ypred_3 ~ dnorm(trt3,tau) 

     ypred_4 ~ dnorm(trt4,tau) 

     ypred_5 ~ dnorm(trt5,tau) 

 

#compute residuals using the kurtosis formula for both orig data (e) and rep data 

   for( i in 1 : N ) { 

     e[i]<-y[i]-mu[i] 

    } 

  SSE<-inprod(e[],e[])#sum of squares which is e squared 

  ku<-sum(e[]) #sum up all values, there is one for each data point 

  kpred<-sum(ypred[]) 

difs<-kpred-ku #find difference 

difpval<-step(difs) #count how many times the rep data is larger than orig data 

} 
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Table S4.8.  Student’s t distribution OpenBUGS model containing treatment and time of assay 

main effects and a random batch effect used to analyze locomotion behavior endpoints. 

 

#inits<-function(){ 

#  list(batch.eff=runif(N2,-

1000,1000),df=runif(1,3,30),df.a=runif(1,3,30),tau=runif(1,0,10),tau.a=runif(1,0,10))} 

#inits() 

model; 

{ 

 for(i in 1:N){ 

 y[i]~dt(mu[i],tau,df) 

 mu[i]<-mean+trt.eff[trt[i]]+time[i]*betta_mfn+batch.eff[batchid[i]] 

 } 

 mean~dnorm(0,1.0E-6) 

#make covariate effect priors 

 #time 

 betta_mfn~dnorm(0,0.0001) 

#make fixed main effect priors 

 trt.eff[1]<-0 

 for (i in 2:5){ 

 trt.eff[i]~dnorm(0,1.0E-6) 

 } 

#make random effect of batch priors 

  for (i in 1:N2){ 

 batch.eff[i]~dt(0,tau.a,df.a) 

  } 

#predict estimates 

#cell means models 

 for(j in 1:5){ 

 Trt.mean[j]<-mean+trt.eff[j] 

 } 

#initial values 

 df~dunif(3,30) 

 df.a~dunif(3,30) 

 var<-1/tau 

 var.a<-1/tau.a 

 tau~dgamma(0.0001,0.0001) 

 tau.a~dgamma(0.01,0.01) 

#difference calculations 

 trt1<-Trt.mean[1]#sco salmon-fed ctl 

 trt2<-Trt.mean[2]#sco tuna/hg fed 

 trt3<-Trt.mean[3]#sco salmon-fed pcb40 

 trt4<-Trt.mean[4]#nbh salmon-fed ctl 

 trt5<-Trt.mean[5]#nbh salmon-fed pcb40 

 diftrt2_1<-trt2-trt1 
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Table S4.8 (cont’d) 

 pvaltrt2_1<-step(diftrt2_1) 

 diftrt3_1<-trt3-trt1 

 pvaltrt3_1<-step(diftrt3_1) 

 diftrt3_2<-trt3-trt2 

 pvaltrt3_2<-step(diftrt3_2) 

 diftrt4_1<-trt4-trt1 

 pvaltrt4_1<-step(diftrt4_1) 

 diftrt5_4<-trt5-trt4 

 pvaltrt5_4<-step(diftrt5_4) 

 diftrt3_5<-trt3-trt5 

 pvaltrt3_5<-step(diftrt3_5) 

#ratio calculations 

 ratiotrt2_1<-trt2/trt1 

 ratiotrt3_1<-trt3/trt1 

 ratiotrt3_2<-trt3/trt2 

 ratiotrt4_1<-trt4/trt1 

 ratiotrt5_4<-trt5/trt4 

 ratiotrt3_5<-trt3/trt5 

#posterior model checking, generate new obs based on model params mu, tau. assume normal 

dist 

   for( i in 1 : N ) { 

     ypred[i] ~ dt(mu[i],tau,df) 

   } 

#generate individual level predictions 

     ypred_1 ~ dt(trt1,tau,df)#approximation of the individual observation, using average for other 

factors in the model.  

     ypred_2 ~ dt(trt2,tau,df)#randomly selected individual 

     ypred_3 ~ dt(trt3,tau,df) 

     ypred_4 ~ dt(trt4,tau,df) 

     ypred_5 ~ dt(trt5,tau,df) 

#compute residuals using the kurtosis formula for both orig data (e) and rep data 

   for( i in 1 : N ) { 

     e[i]<-y[i]-mu[i] 

    } 

  SSE<-inprod(e[],e[])#sum of squares which is e squared 

  ku<-sum(e[]) #sum up all values, there is one for each data point 

  kpred<-sum(ypred[]) 

difs<-kpred-ku #find difference 

difpval<-step(difs) #count how many times the rep data is larger than orig data 

}  
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Table S4.9.  Normal distribution OpenBUGS model containing treatment, time of assay and days 

post hatch (dpf) effects used to analyze feeding behavior endpoints. 

 

#inits<-function(){ 

#  list(tau=runif(1,0,10))  

#} 

model; 

{ 

 for(i in 1:N){ 

 y[i]~dnorm(mu[i],tau) 

 mu[i]<-mean+trt.eff[trt[i]]+time[i]*betta_mfn+dpf[i]*betta_dpf 

 } 

 mean~dnorm(0,1.0E-6) 

#make covariate effect priors 

 #time 

 betta_mfn~dnorm(0,0.0001) 

 #dpf 

 #independent gaussian priors for the linear covariate 

 betta_dpf~dnorm(0,0.0001) 

#make fixed main effect priors  

 trt.eff[1]<-0 

 for (i in 2:5){ 

 trt.eff[i]~dnorm(0,1.0E-6) 

 } 

#back transform the outputs 

#cell means models 

 for(j in 1:5){ 

 Trt.mean[j]<-mean+trt.eff[j] 

 } 

#initial values 

 tau~dgamma(0.0001,0.0001) 

 var<-1/tau 

 trt1<-Trt.mean[1]#sco salmon-fed ctl 

 trt2<-Trt.mean[2]#sco tuna/hg fed 

 trt3<-Trt.mean[3]#sco salmon-fed pcb40 

 trt4<-Trt.mean[4]#nbh salmon-fed ctl 

 trt5<-Trt.mean[5]#nbh salmon-fed pcb40 

 diftrt2_1<-trt2-trt1 

 pvaltrt2_1<-step(diftrt2_1) 

 diftrt3_1<-trt3-trt1 

 pvaltrt3_1<-step(diftrt3_1) 

 diftrt3_2<-trt3-trt2 

 pvaltrt3_2<-step(diftrt3_2) 

 diftrt4_1<-trt4-trt1 

 pvaltrt4_1<-step(diftrt4_1) 
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Table S4.9 (cont’d) 

 diftrt5_4<-trt5-trt4 

 pvaltrt5_4<-step(diftrt5_4) 

 #diftrt6_4<-trt6-trt4 

 #pvaltrt6_4<-step(diftrt6_4) 

 #diftrt6_5<-trt6-trt5 

 #pvaltrt6_5<-step(diftrt6_5) 

 diftrt3_5<-trt3-trt5 

 pvaltrt3_5<-step(diftrt3_5) 

#ratio calculations 

 ratiotrt2_1<-trt2/trt1 

 ratiotrt3_1<-trt3/trt1 

 ratiotrt3_2<-trt3/trt2 

 ratiotrt4_1<-trt4/trt1 

 ratiotrt5_4<-trt5/trt4 

 #ratiotrt6_4<-trt6/trt4 

 #ratiotrt6_5<-trt6/trt5 

 ratiotrt3_5<-trt3/trt5 

#posterior model checking, generate new obs based on model params mu, tau. assume normal 

dist 

   for( i in 1 : N ) { 

     ypred[i] ~ dnorm(mu[i],tau) 

   } 

#generate individual level predictions 

     ypred_1 ~ dnorm(trt1,tau)#approximation of the individual observation, using average for 

other factors in the model.  

     ypred_2 ~ dnorm(trt2,tau)#randomly selected individual 

     ypred_3 ~ dnorm(trt3,tau) 

     ypred_4 ~ dnorm(trt4,tau) 

     ypred_5 ~ dnorm(trt5,tau) 

     #ypred_6 ~ dnorm(trt6,tau) 

#compute residuals using the kurtosis formula for both orig data (e) and rep data 

   for( i in 1 : N ) { 

     e[i]<-y[i]-mu[i] 

    } 

  SSE<-inprod(e[],e[])#sum of squares which is e squared 

  ku<-sum(e[]) #sum up all values, there is one for each data point 

  kpred<-sum(ypred[]) 

difs<-kpred-ku #find difference 

difpval<-step(difs) #count how many times the rep data is larger than orig data 

} 
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Table S4.10.  Binomial distribution OpenBUGS model containing treatment, time of assay and 

days post hatch (dpf) effects used to analyze feeding endpoints. 

 

#inits<-function(){ 

#  list(betta_mfn=runif(1,0,5),Trt.mean=runif(5,0,5),tau=runif#(1,0,10),betta_dpf=runif(1,0,5))  

#} 

#inits() 

model 

{ 

 for( i in 1 : N ) { 

 y[i] ~ dbin(p[i],bs[i])  

 e[i]~dnorm(0,tau)  

 logit(p[i]) <-time[i]*betta_mfn+dpf[i]*betta_dpf+Trt.mean[trt[i]]+e[i] 

 } 

#set priors  

 tau ~ dgamma(0.01,0.01) 

 var<-1/tau 

#make covariate effect priors 

 #time 

 betta_mfn~dnorm(0,0.0001) 

 #dpf 

 #independent gaussian priors for the linear covariate 

 betta_dpf~dnorm(0,0.0001) 

#make fixed main effect priors  

 for (i in 1:5){ 

 Trt.mean[i]~dnorm(0,1.0E-6) 

 } 

#back transform the outputs 

#cell means models 

 for(j in 1:5){ 

 trt.eff[j]<-Trt.mean[j]-Trt.mean[1] 

 } 

#other values 

 trt1<-1/(1+exp(-Trt.mean[1]))#sco salmon-fed ctl, back transformed trt mean, in the scale 

of the binomial prob. the probability of being attacked by the average population. do not back 

transformed 

 trt2<-1/(1+exp(-Trt.mean[2]))#sco tuna/hg fed 

 trt3<-1/(1+exp(-Trt.mean[3]))#sco salmon-fed pcb40 

 trt4<-1/(1+exp(-Trt.mean[4]))#nbh salmon-fed ctl 

 trt5<-1/(1+exp(-Trt.mean[5]))#nbh salmon-fed pcb40 

  

 diftrt2_1<-Trt.mean[2]-Trt.mean[1]#compare on linear scale logit 

 pvaltrt2_1<-step(diftrt2_1) 

 diftrt3_1<-Trt.mean[3]-Trt.mean[1] 

 pvaltrt3_1<-step(diftrt3_1) 

 diftrt3_2<-Trt.mean[3]-Trt.mean[2] 
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Table S4.10 (cont’d) 

 pvaltrt3_2<-step(diftrt3_2) 

 diftrt4_1<-Trt.mean[4]-Trt.mean[1] 

 pvaltrt4_1<-step(diftrt4_1) 

 diftrt5_4<-Trt.mean[5]-Trt.mean[4] 

 pvaltrt5_4<-step(diftrt5_4) 

 diftrt3_5<-Trt.mean[3]-Trt.mean[5] 

 pvaltrt3_5<-step(diftrt3_5) 

#ratio calculations 

 ratiotrt2_1<-trt2/trt1 #use the back transformed scale 

 ratiotrt3_1<-trt3/trt1 

 ratiotrt3_2<-trt3/trt2 

 ratiotrt4_1<-trt4/trt1 

 ratiotrt5_4<-trt5/trt4 

 ratiotrt3_5<-trt3/trt5 

#posterior model checking, generate new obs based on model params  

    for( i in 1 : N ) { 

       ypred[i] ~ dbin(p[i],bs[i]) 

    } 

#generate individual level predictions 

 #need to estimate error for each group 

 for(j in 1:5){ 

 ee[j]~dnorm(0,tau) 

 } 

      ypred_1 <- 1/(1+exp(-(Trt.mean[1]+ee[1]))) #probability of bs capture by a random 

individual in trt1 

      ypred_2 <- 1/(1+exp(-(Trt.mean[2]+ee[2]))) 

 ypred_3 <- 1/(1+exp(-(Trt.mean[3]+ee[3]))) 

 ypred_4 <- 1/(1+exp(-(Trt.mean[4]+ee[4]))) 

 ypred_5 <- 1/(1+exp(-(Trt.mean[5]+ee[5]))) 

 

} 
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Table S4.11.  A list of all parameters included in the individual-based model, units, equation reference and references (mm = 

millimeter, m = meter, d = day, g = gram, ◦C = celcius, J = joule, # = count, s = sec, hr = hour, µg = microgram, O2 = oxygen, W = 

weight, L = length, SD = standard deviation, ml = milliliter).  

Variable Value Units Explanation Reference 

Initialize larva 

Number of fish 2500 # Number of larva Smith et al. 2002 

Mean Length 5.96 mm Mean length Marteinsdottir and Able 1992 

Mean SD of Length 0.4 mm Standard deviation of length Marteinsdottir and Able 1992 

Length max 8 mm Maximum length Estimated 

Length min 5 mm Minimum length Estimated 

Length at which fish exists 

model 

24 mm Size at Exit Abraham 1985 

Time & physical 

Initial day of model 100 day Julian Date 
 

Number of days model runs 100 day 
  

Volume 1000 m3 Volume of the lake modeled 
 

Yolk-sac growth 

Yolk-sac growth 0.40 mm/d growth of yolk-sac larvae Marteinsdottir and Able 1992 

Length exogenous feeding 

begins 

4 days Days until switch to feeding Estimated 

W_L A parameter 0.0000015 g dry Length-weight intercept Kneib and Parker 1991 

W-L b parameter 3.25 g dry Length-weight slope Kneib and Parker 1991 

Bioenergetics (from Deslauriers et al. 2017 unless otherwise noted) 

CA 0.2 g/g Intercept of the mass dependence 

function for consumption 

 

CB -0.25 g/g/d Slope of mass dependence function 

for consumption 

CQ 2.22 g/g/d Temperature-dependent coefficient 

of consumption (approximates Q10) 

CTO 27 ◦C Optimal temperature for 

consumption 
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Table S4.11 (cont’d)  

 

        

CTM 34 ◦C Maximum consumption 

temperature 

 

RA 0.02 gO2/g Intercept of the mass dependence 

function for respiration 

RB -0.17 gO2/g/d Slope of mass dependence function 

for respiration 

RQ 2 gO2/g/d Temperature-dependent coefficient 

of respiration (approximates Q10) 

RTO 29 ◦C Optimal temperature for respiration 

RTM 36 ◦C Maximum respiration temperature 

Act 1.25 NA Activity multiplier on respiration 

SDA 0.1 NA Specific dynamic action coefficient 

FA 0.1 NA Egestion coefficient 

UA 0.06 NA Excretion coefficient 

ED 3000 J/g wet Energy density of larvae 

percent dry 0.2 % Dry to wet conversion Estimated 

Starvation 75 % Probability of starvation Letcher et al. 1996 

Prey 

Small prey density 0.0175 #/ml Copepods Fleeger et al. 2008 

Large prey density 0.008 #/ml Amphipods Estimated but based on 

ostracods in Fleeger et al. 

2008 

Small prey length 0.485 ml Copepods Fulford et al. 2006 

Large prey length 0.6 ml Amphipods Fulford et al. 2006 

Small Prey mass 1.215 µg dry Copepods Fulford et al. 2006 

Large prey mass 3.8 µg dry Amphipods Fulford et al. 2006 

Large prey energy density 2301.2 J/g wet Copepods Hartman and Brandt 1995 

Small prey energy density 4125.424 J/g wet Amphipods Hartman and Brandt 1995 
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Table S4.11 (cont’d)  

 

        

Foraging 

Ssa 0.776 mm/s Swimming speed intercept Letcher et al. 1996 

SSb 1.07 mm/s/mm Swimming speed slope Letcher et al. 1996 

Handling Time a 0.264 s Handling time intercept Letcher et al. 1996 

Handling Time a 7.0151 s Handling time slope Letcher et al. 1996 

Light 12 hr Active time during the day Letcher et al. 1996 

Killifish Predators (Adults) 

Number of predators 200 # Number of predators Calibrated 

Mean predator length 45 mm Mean predator length Assigned (Age 1 size) 

SD predator length 2.5 mm Standard deviation of length Estimated 

Min predator length 25.5 mm Minimum length Estimated 

Max predator length 96 mm Maximum length Valiela et al. 1977 

Predator CTM 34 ◦C Maximum temperature for 

consumption 

Madon et al. 2001 

Predator CTO 27 ◦C Optimum temperature for 

consumption 

Madon et al. 2001 

Predator CQ 2.22 g/g/d Temperature-dependent coefficient 

of consumption (approximates Q10) 

Madon et al. 2001 

Predator swimming speed 3 Body 

Lengths 

Multiplier on body lengths for 

distance swum in a second 

Cowan et al. 1996 

Predator reactive distance 0.8 mm Reactive distance multiplier Cowan et al. 1996 

Calibration 

Growth 0.31 mm/d 
 

Nacci unpublished data 
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Table S4.12.  A list of all behavior parameter distributions and resulting multipliers used to assess treatment impacts in the individual 

based model.  Posterior distributions are from the individual level predicted responses and multipliers were generated from back 

transformed values.  N indicates this behavior was significantly lower than the control, P indicates this behavior was significantly 

higher than the control.  

 

Killifish 

Group 

Chemical Variable Individual Level Distribution   Multipliers 

Mean SD Min. Max.   Mean SD Min. Max. 

SCO Control Prey Handling Time 27.89 8.186 11.88 43.67 
  

1.000 0.287 0.547 1.986 

SCO Control Prey Miss Proportion -2.674 1.308 -5.255 -0.1185 
  

1.000 0.110 0.589 1.105 

SCO Control Reaction Distance 

(mm) 

167.3 19.05 129.4 204.9 
  

1.000 0.232 0.464 1.510 

SCO Control Swimming Bout 

Speed (mm/s) 

137.1 27.9 82.41 191.7 
  

1.000 0.221 0.644 1.698 

SCO Control Total Time 

Swimming (sec) 

58.94 16.72 26.14 91.75 
  

0.547 0.168 0.194 0.943 

SCO MeHg Prey Handling Time 28.51 8.2 12.4 44.64 
  

0.972 0.281 0.530 1.924 

SCO MeHg Prey Miss Proportion -3.305 1.328 -5.952 -0.7121 
  

1.047 0.070 0.746 1.108 

SCO MeHg Reaction Distance 

(mm) 

177.7 19.1 139.9 215.3 p 
 

1.151 0.226 0.619 1.643 

SCO MeHg Swimming Bout 

Speed (mm/s) 

144.4 27.91 89.75 199.1 
  

0.936 0.194 0.614 1.547 

SCO MeHg Total Time 

Swimming (sec) 

53.25 16.69 20.48 85.98 
  

0.481 0.163 0.142 0.869 

SCO PCB126 Prey Handling Time 17.94 8.278 1.574 34.12 p 
 

1.662 0.827 0.756 7.003 

SCO PCB126 Prey Miss Proportion -1.346 1.327 -3.963 1.251 p 
 

0.826 0.211 0.247 1.090 

SCO PCB126 Reaction Distance 

(mm) 

172.3 19.32 134.6 209.9 
  

1.078 0.230 0.540 1.575 

SCO PCB126 Swimming Bout 

Speed (mm/s) 

142.8 28.13 87.5 197.8 
  

0.951 0.203 0.619 1.591 

SCO PCB126 Total Time 

Swimming (sec) 

48 16.85 14.91 81.09 n 
 

0.425 0.161 0.094 0.808 

NBH Control Prey Handling Time 27.89 8.162 11.74 43.84 
  

1.000 0.287 0.545 2.004 

NBH Control Prey Miss Proportion -3.003 1.308 -5.589 -0.4375 
  

1.000 0.083 0.657 1.076 
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Table S4.12 (cont’d) 

         

NBH Control Reaction Distance 

(mm) 

179.9 18.97 142.5 216.9 
  

1.000 0.190 0.557 1.414 

NBH Control Swimming Bout 

Speed (mm/s) 

141.5 27.87 86.93 196 
  

1.000 0.212 0.654 1.670 

NBH Control Total Time 

Swimming (sec) 

51.82 16.7 19.06 84.56 
  

0.466 0.163 0.130 0.851 

NBH PCB126 Prey Handling Time 23.22 8.243 6.883 39.16 p 
 

1.238 0.424 0.637 2.917 

NBH PCB126 Prey Miss Proportion -2.261 1.323 -4.893 0.314 
  

0.933 0.135 0.457 1.072 

NBH PCB126 Reaction Distance 

(mm) 

172 19.27 133.6 210 
  

0.907 0.198 0.446 1.339 

NBH PCB126 Swimming Bout 

Speed (mm/s) 

134.3 28.12 79.02 189.3 
  

1.073 0.243 0.682 1.856 

NBH PCB126 Total Time 

Swimming (sec) 

49.88 16.81 16.94 82.89     0.443 0.161 0.111 0.830 

 

Table S4.13.  Posterior distributions for all model parameters and each behavioral endpoint. 

 

Submitted table as a sheet in an Excel file. 

 

Table S4.14.  Significant results of the treatment effects on Atlantic killifish larvae behavior after exposure to sublethal levels of 

MeHg and PCB126.  Presented for each behavior endpoint and treatment is the mean (original or back-transformed), transformed 

mean, P-value in parentheses, and pattern of significant trends.  Trends are based on original mean trends.  P-values and trends are 

reported in the following order: SCO-Ctrl vs SCO-Hg, SCO-Ctrl vs SCO-PCB, SCO-Ctrl vs NBH-Ctrl, SCO-PCB vs NBH-PCB, 

NBH-Ctrl vs NBH-PCB (Neg = significant negative trend, Pos = significant positive trend, ꟷ = no significant trend, HMM = Hidden 

Markov Chain model endpoint). 

 

Submitted table as a sheet in an Excel file. 
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Table S4.15.  Total number of significantly differentially expressed genes (alpha = 0.05) found 

in the brains of Atlantic killifish Fundulus heteroclitus in this study. 

  

Treatment Comparison 

Number of 

Differentially Expressed 

Genes 

SCO-Ctrl vs SCO-Hg 22 

SCO-Ctrl vs SCO-PCB 40 ng/L 383 

SCO-Ctrl vs NBH-Ctrl 3220 

SCO-PCB 40 ng/L vs NBH-Ctrl 602 

SCO-PCB 40 ng/L vs NBH-PCB 40 ng/L 210 

SCO-PCB 40 ng/L vs NBH-PCB 400 ng/L 1348 

NBH-Ctrl vs NBH-PCB 40 ng/L 8 

NBH-Ctrl vs NBH-PCB 400 ng/L 830 

NBH-PCB 40 ng/L vs NBH-PCB 400 ng/L 896 

 

Table S4.16.  Significantly differentially expressed genes (alpha = 0.05) found in the brains of 

Atlantic killifish Fundulus heteroclitus in this study.  Significant trends and FDR value are 

reported (Neg = significant negative trend, Pos = significant positive trend).  Blanks indicate 

comparison was tested but did not result in a significant difference. 

 

Submitted table as a sheet in an Excel file. 

Table S4.17.  Significantly altered gene pathways (alpha = 0.05) found in the brains of Atlantic 

killifish Fundulus heteroclitus in this study.  Significant trends and FDR value are reported (Neg 

= significant negative trend, Pos = significant positive trend).  Blanks indicate comparison was 

tested but did not result in a significant difference. 

 

Submitted table as a sheet in an Excel file. 
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Table S4.18.  Significant treatment patterns from MeHg and PCB126 exposure shared by genes 

and behavior endpoints in Scorton Creek (SCO) and New Bedford Harbor (NBH) Atlantic 

killifish Fundulus heteroclitus found in this study.  Both the original and opposite behavior 

endpoint trends are listed. Significant trends are reported in the following order: SCO-Low Hg vs 

SCO-High Hg, SCO-Low Hg vs SCO-Low Hg – Low PCB, SCO-Low Hg vs NBH-Low Hg, 

SCO-Low Hg – Low PCB vs NBH-Low Hg – Low PCB, NBH-Low Hg vs NBH-Low Hg – Low 

PCB (neg = significant negative trend, pos = significant positive trend, - = no significant trend, 

HMM = Hidden Markov Chain model endpoint). 

 

Reference 
Number 

Significant Treatment Pattern   
Significant Treatment Pattern 

in a Behavior Endpoint 

SCO-
Ctrl vs 
SCO-
Hg 

SCO-
Ctrl vs 
SCO-
PCB 

SCO-
Ctrl vs 
NBH-
Ctrl 

SCO-
PCB vs 
NBH-
PCB 

NBH-
Ctrl vs 
NBH-
PCB Altered Gene 

Original 
Treatment 

Pattern 

Opposite 
Treatment 

Pattern 

1           LOC105917295, 
LOC105934237 

 

Swimming 
Bout 
Duration 
Period 3 
(sec) 

2           LOC105924291 Capture 
Attempt 
Ratio  

3           scamp1 

  

Capture 
Attempt 
Ratio 
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Table S4.19.  Significant MeHg treatment patterns shared by differentially expressed genes and 

behavior endpoints in Atlantic killifish Fundulus heteroclitus found in this study.  Both the 

original and opposite behavior endpoint trends are listed (Neg = significant negative trend, Pos = 

significant positive trend, - = no significant trend, HMM = Hidden Markov Chain model 

endpoint). 

Significant 
Treatment 

Pattern 

    

Gene Expression Behavior Endpoint 

  

LOC105915521, LOC105916522, LOC105917295, 
LOC105918273, LOC105922825, LOC105924291, 
LOC105934237, LOC105936060, LOC110366363, 
LOC110366373, LOC118559084, LOC118560703, 
LOC118560704, LOC118562969, LOC118563898, 
si:ch211-186j3.6 

HMM Fast -> Fast TP, Capture 
Attempt Ratio, HMM Medium -> 
Medium TP, Prey Capture 
Probability, Reaction Distance 
(mm) 

  

klhl6, LOC105915433, LOC105933875, 
LOC118566104, scamp1, si:dkey-21c1.4 

HMM Medium State Turning 
Angle Variation, HMM Medium -> 
Fast TP, Overall Step Length 
Period 4 (mm), Overall Step 
Length Variation Period 4, 
Swimming Bout Duration Period 3 
(sec), Total Distance Traveled 
Period 4 (mm), Total Time 
Swimming Period 3 (sec) 

 

Table S4.20.  Significant PCB126 treatment patterns shared by differentially expressed 

genes and behavior endpoints in Atlantic killifish Fundulus heteroclitus found in this study.  

Both the original and opposite behavior endpoint trends are listed.  Significant trends are 

reported in the following order: SCO-Ctrl vs SCO-PCB, SCO-Ctrl vs NBH-Ctrl, SCO-PCB 

vs NBH-PCB, NBH-Ctrl vs NBH-PCB (Neg = significant negative trend, Pos = significant 

positive trend, ꟷ = no significant trend, HMM = Hidden Markov Chain model endpoint, TP 

= Transition Probability). 

 

Submitted table as a sheet in an Excel file. 
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Table S4.21.  Significant mercury treatment patterns shared by gene pathways and behavior 

endpoints in Scorton Creek (SCO) Atlantic killifish found in this study.  Both the original and 

opposite behavior endpoint trends are listed.  Significant trends are reported in the following 

order: SCO-Ctrl vs SCO-MeHg (Tan = significant negative trend compared to control, Blue = 

significant positive trend compared to control, Black = no significant trend compared to control, 

HMM = Hidden Markov Chain model endpoint, TP = Transition Probability). 

 

Submitted table as a sheet in an Excel file. 

Table S4.22.  Individual based model results showing treatment means for individual larva 

survival and growth of Atlantic killifish Fundulus heteroclitus found in this study. 

    IBM Output Mean 

Scenario 

Survival 

(%) 

Growth 

(mm/d) 

Spring   

 SCO-Ctrl 1.512 0.29871 

 SCO-MeHg  1.648 0.29782 

 SCO-PCB 0.044 0.12975 

 NBH-Ctrl 1.084 0.29197 

 NBH-PCB 0.416 0.29251 

Summer   

 SCO-Ctrl 1.068 0.30167 

 SCO-MeHg  1.244 0.30697 

 SCO-PCB 0.288 0.25546 

 NBH-Ctrl 0.788 0.28597 

  NBH-PCB 0.42 0.28322 
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Figure S4.1.  Number of best fit hidden Markov models for Atlantic killifish larvae in the 

locomotion assay that contained two or three different behavior states. 
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Figure S4.2.  An example of the length (mm) verses simulation day for individual Scorton Creek 

control fish that were alive at the end of one run of a spring and summer scenario. 
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Figure S4.3.  Significant PCB126 treatment patterns shared by gene expression and behavior endpoints in the New Bedford Harbor 

(NBH) Atlantic killifish found in this study.  Both the original and opposite behavior endpoint trends are listed. (HMM = Hidden 

Markov Chain model endpoint, TP = Transition Probability). 
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APPENDIX IV:  

 

Chapter 5 Supplementary Materials 
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Methods used with zebrafish Danio rerio (ZF) and yellow perch Perca flavescens (YP) 

data collection are the same as those reported in (Albers et al. 2022a, 2022d), specific details 

follow. 

 

All Species Brain Gene Expression 

Brain collection 

Brain collection was performed essentially as described by Vargas et al. (2011) on a 

random subset of 25 dpf YP (n=36) and 6 dpf ZF (n=36), before any behavior assays.  The 

exception was for Atlantic killifish Fundulus heteroclitus (KF), where a random subset of 16 dpf 

larvae were removed after the VMR assay to contribute brain samples for gene expression 

(n=69), about half had been through the VMR assay (n=36) and half had not been through the 

VMR assay (n=33).  Larvae were gently transferred to a 60 mm petri dish and 4oC embryo 

medium was quickly added to provide anesthesia.  Larvae were transferred to a new petri dish, 

water was removed, and individuals were immobilized in a drop of 2% low melting point 

agarose made with artificial cerebral spinal fluid (aCSF; 131 mM NaCl, 2 mM KCl, 1.25 mM 

KH2PO4, 2 mM MgSO4, 10 mM glucose, 2.5 mM CaCl2, 20 mM NaHCO3).  A dissection pin 

was used to mount the larvae in dorsal/ventral recumbency, just under the surface of the agarose.  

aCSF was added and dishes were placed on ice.  Intact brains were removed using dissection 

pins, transferred individually in 5µl aCSF to 1.5 ml microcentrifuge tubes, then frozen in liquid 

nitrogen prior to storage at -80oC.  
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Brain Gene Analysis 

Total RNA was isolated from 6 embryos brains per treatment using the Qiagen RNeasy® 

Micro Kit (Germantown, MD, USA) following the Purification of Total RNA from Animal and 

Human Tissues protocol in the RNeasy® Micro Handbook with slight modifications.  The 

modification included homogenization of brain tissue in 350 µL of RLT buffer using a pellet 

pestle and elution of Total RNA using 15 µL of RNase-free water.  RNA quality was assayed 

using the Agilent High Sensitivity RNA ScreenTape System (Waldbronn, Germany) for the 

Agilent 2200 TapeStation (Palo Alto, CA, USA), and RNA was quantified using the NanoDrop 

2000 (ThermoFisher Scientific, Waltham, MA). 

The raw reads from (6 larvae from each treatment) were mapped and quantified using  

salmon (Patro et al. 2017) (v1.3.0) against the reference transcriptome (see below). tximport 

(Soneson et al. 2015) (v1.16.1) was used to import transcript-level estimates from salmon  

summarize the data to the gene level.  These genes were filtered such that only genes with an 

average log Counts per Million > 1 across all samples were retained for differential expression. 

edgeR (v3.30.3) was used to determine differentially expressed genes (DEGs).  OrthoFinder 

(v2.5.4) was used to find orthologous genes in D. rerio.  The GAGE R package (Luo et al. 2009) 

(v2.40.0) was used to perform gene-set enrichment analysis using D. rerio GO gene-sets, KEGG 

gene-sets and the D. rerio orthologs of genes that passed the filter.  Significant pathway trends 

were determined using a false discovery rate (FDR) of 0.05. 

 

Behavior/Gene expression comparisons 

Each endpoint response, either gene or behavior, were summarized over all treatments by 

first determining whether there was a significant difference found while testing the treatment 
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comparisons (alpha = 0.05).  When a significant difference was found, a positive (Pos) or 

negative (Neg) trend was indicated using the relative amount of the first treatment to the second 

treatment.  The endpoint value used to determine the trend direction were the back-transformed 

treatment means.  The resulting summary pattern was used to group behavior and gene 

expression endpoints that responded the same together.  This approach is more robust than other 

data mining methods (e.g. PCA) because it 1) takes into account the treatment design of the 

experiment and the comparisons and 2) limits comparisons to only those endpoints that were 

determined to be statistically different from one another, which limits the excess of comparing 

all endpoints. 

 

Zebrafish Dosimetry and Husbandry 

Zebrafish embryo procurement and husbandry protocols from Carvan et al. ( 2017) and 

exposure protocols from Albers et al. (2022) were followed.  A general description and noted 

exceptions follow.  All methods were approved by the University of Wisconsin at Milwaukee 

Institutional Animal Care and Use Committee (IACUC, #18-19#04).  Adult EK strain zebrafish 

were housed at a maximum density of 10 fish/L (~20 females + 10 males per 3L tank), in a flow-

through dechlorinated water system maintained at 26–29°C on a 14:10 hour light: dark 

photoperiod at the UWM School of Freshwater Sciences.  The evening before spawning, each 

tank of adult fish was transferred to its own static spawning tanks according to standard methods 

and allowed to spawn the following morning for approximately one hour.  For this study, tanks 

containing roughly 20 females and 10 males were spawned and eggs were collected ≤1 hpf and 

placed into metal-free, plastic culture dishes (100 mm diameter × 25 mm depth) in E2 medium 
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(pH 7.2; 1 L of E2 medium contained: 0.875 g NaCl, 0.038 g KCl, 0.120 g MgSO4, 0.021 g 

KH2PO4 and 0.006 g Na2HPO4).   

This study chose exposure levels and timing that either mimicked parental transfer of 

MeHg or water transfer for PCB126 (Westerlund et al. 2000; Alvarez et al. 2006; Mora-

Zamorano et al. 2016a; Bridges et al. 2016a, 2016b; Carvan et al. 2017).  Since behavior effects 

are a focus of this study, we used dose levels of these chemicals that did not create any 

observable physical deformities [e.g. Early Life-Stage Toxicity score; (Heiden et al. 2005)] 

which would alter behavioral endpoints like swimming or eating.  To that end, a preliminary 

dosimetry/sensitivity study was used in addition to previous research results [e.g. (Mora-

Zamorano et al. 2016a)] to determine dosing levels that met these criteria and all larvae 

exhibiting deformities or died with 24 hr after assay were removed from analysis.  Embryos in 

this study were collected ≤1 hpf and placed into plastic Petri dishes (100 mm diameter × 25 mm 

depth) in E2 medium.  The newly fertilized eggs were then counted into new dishes at a density 

of 200 eggs per plate and exposed to 40ml E2 medium containing MeHg or PCB126 (0.2mL 

media per embryo).  Embryos were exposed immediately following plating until ~24 hours post-

fertilization (~2-24 hpf, starting at 2-4 cell stage] with either 0, 0.00021 and 0.02156 ppm MeHg 

(based on 0, 0.001 and 0.1 µM of MeHg; MeHgCl in a 100% ethanol solvent), or 0, 0.1 and 

10ppm PCB126 (PCB126 in a 100% DMSO) [each 0 concentration treatment (i.e. control) 

contained water and the appropriate solvent resulting in all treatments containing either 

33.33ppm ethanol or 500ppm DMSO].  At 24 hpf, zebrafish eggs were rinsed 4 times with clean 

embryo medium to stop chemical exposure.  Embryos were maintained in culture plates and 

incubated at 26-28°C for 5 days (until 6dpf) and given fresh E2 medium daily.  At 6dpf, healthy 

larvae were transferred into 1L static tanks at a density of 60 larvae per tank where they were 
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maintained until all behavior assays were conducted.  Starting on day 6 post fertilization, larvae 

were fed 5–100 micron Golden Pearl Reef & Larval Fish Diet (Brine Shrimp Direct, Ogden, 

UT), as previously described (Carvan et al. 2017).  Platinum grade Artemia nauplii (Argent 

Laboratories, Redmond, WA) were added to the larval diet starting at 9 dpf. A separate group of 

ZF were used for each assay so no larva was used twice. 

Directly after exposure and rinsing, embryos were collected from 3 different clutches of 

eggs (biological replicates) and were removed from their petri dish and stored at -80°C until 

chemical analysis in glass vials with Teflon coated tops for PCB126 treatments.  PCB126 treated 

samples were analyzed with GC/ECD using EPA method 8082 with a minimum detection limit 

of 0.5 pg of PCB126 in the 0.5 mL sample.  Estimates of MeHg in ZF larva were assumed to be 

the same as those found in (Carvan et al. 2017) table S5.2 f0 generation. 

 

Movement Data collection 

Spontaneous movement of larvae was tracked using Ctrax software (version 0.5.18 (Branson 

et al. 2009)) or DanioVision© system version 8.0 (Noldus Information Technology, Leesburg, 

VA).  After reviewing the video in both assays, one major tracking error type was identified 

where artificial movement was added when the track bounced back and forth between two parts 

of the same fish.  The error occurred most frequently when the fish ceased movement but the 

track did not (this occurred from a mismatch between the precise tracking software and the 

pixelated video of small larvae and it presents as a type of sudden movement between two 

separate parts of the fish’s body, i.e. the track “jitters” rapidly back and forth).  This error type as 

well as incorrect fish identities were corrected using a combination of manual correction using 

the Ctrax Fixerrors GUI (version 0.2.24) and automatic corrections using a set of error 
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identifying criteria.  Manual correction was used to correct all types of tracking errors, where any 

track deviation greater than 1 pixel or 0.15 mm, was manually corrected to accurately represent 

the middle point of each larvae.  In addition, automated error correction first identified and 

flagged fish locations containing errors using the following criteria: turning angle between 

previous and future location was > 150 degrees and distance between previous and future 

location was < 0.2 mm.  During periods with high error occurrence, movement less than 0.2 mm 

was ignored.  Additionally, locations large erratic jumps were flagged using the following 

criteria: turning angle between previous and future location was > 160 degrees and distance 

between previous and future location was <= 0.7 mm and the distance traveled between the 

location and each of the previous and future locations was >= 2 mm and <= 30% difference in 

length.  Once locations of errors were identified as well as the occasional missing locations, the 

x, y coordinates were replaced using equidistance locations between the nearest two non-error 

locations.  

 

Locomotion Assay 

Typically, ZF larvae initiate swimming at 5 dpf and by 6 dpf ZF were independent and 

actively swimming.  Consequently, the locomotion assay was conducted on 6 dpf ZF larvae, 

where 10 larvae were placed in a square slanted side petri-dish (outside dimensions of 72.5 x 

72.5 mm, swimming area dimensions of 56 x 56 mm) with 25 ml of water (~8 mm water depth; 

see Table S5.1 for the number of assays and fish).  Since previous locomotion assays indicated 

some neurotoxicants impact larvae only during light periods (Mora-Zamorano et al. 2017), light 

levels were constant during the entire assay and set to 69 lux (MacPhail et al. 2009).  Similar to 

previous studies(Mora-Zamorano et al. 2017), light was generated using an LCD computer 
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monitor placed below the petri dish and set to illuminate the dish using pure white light (Red 

255, Green 255, Blue 255).  Since LCD screens do no generate much heat, temperature in the 

petri dish was assumed to be similar to the room and water temperature (19-21 oC).  Assays were 

conducted during the afternoon between 1200 and 1730 hr to minimize within day variability 

(MacPhail et al. 2009).  The swimming assay was performed within a testing chamber that 

isolated the 10 larvae in the petri dish from light and sound, has been described in three previous 

studies (Mora-Zamorano et al. 2016b, 2016a, 2017), and provided adequate light and video 

surveillance to view all individual movement.  Similar to previous studies (Mora-Zamorano et al. 

2016b, 2016a, 2017; Carvan et al. 2017), the larvae were allowed to acclimate for 5 min, then 

spontaneous larval movement was constantly recorded at a rate of 30 frames per sec for 5 more 

minutes (8987 total frames after processing), resolution of 640 x 640 pixels/mm with a final 

mean visual resolution of 7.38  pixels/mm (SD = 0.28, n=127).  Spontaneous movement data was 

collected (movement not initiated by some external stimuli but by the fish’s inner impulse or 

inclination) in contrast to other common toxicological assays that use external stimuli to instigate 

fish movement.  Videos were saved in avi format using a Logitech C920 camera and MATLAB 

Image Acquisition Toolbox (R2012b). 

Similar to Ingebretson and Masino (2013), the corrected centroid locations defined the 

individual larvae location and activity at each frame, where swimming was defined as movement 

that was at least 1 mm/sec or 0.03333 mm per frame (i.e. magnitude of velocity at larvae center) 

and lasted longer than 5 frames (0.166 sec).  Whereas the resting behavior occurred during 

frames where movement was less than 1 mm/sec or if greater than 1 mm/sec, lasted less than 5 

frames.  Where resting behavior occurred, speed and distance for those frames were changed to 

zero. In addition, starting at frame three, we calculated the turning angle using the same method 
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as Ctrax, as the difference between the four-quadrant inverse tangent of the two trajectories 

where the first trajectory was constructed from the first two locations in the sequence, and the 

second trajectory from the second two locations in the sequence.  This calculation results in a 

turning angle that ranges from -3.14 to 3.14, where zero is straight ahead movement, a negative 

value indicates a right turn and a positive value indicates a left turn.  Larval orientation was 

assumed to be in the direction of movement.  Twelve overall average behavioral endpoints were 

assessed from the swimming assay to determine effects from exposure (Table S5.2): number of 

swimming and extreme swimming bouts; swimming bout duration, speed and turning angle; total 

distance traveled and time swimming; number of fish lengths swam during entire assay; overall 

average step length and variability, turning angle and variability.  

Using the same methods as Albers et al. (2022), a hidden Markov chain model (HMM) was 

constructed for each ZF larva in the locomotion assay (all fish swam at least once) to describe 

the different behavioral states and used them as additional behavior endpoints to determine 

effects from chemical exposure.  A brief description of the method follows. For each larva and 

video frame, the step length and turning angle during the assay were used to construct multiple 

larval specific HMMs using the R package moveHMM (Michelot et al. 2016; R Core Team 

2019).  Multiple behavior state models were examined that contained three possible swimming 

states: slow, medium and fast swimming states where s1 HMMs contained only one behavior 

state, s2 HMMs contained any two behavior states, and s3 HMMs contained all three behavior 

states.  The best fit HMM for each larvae was determined from a suite of ten potential HMM 

models, differing in the number of behavior states and initial starting values for each state (see 

Albers et al. 2022 Table S.2 for model description and initial values). 



 

210 
 

Once all 10 of the possible HMMs were completed, a hierarchical selection for the best 

fitting model was conducted, essentially using successfully converged models with the lowest 

AIC.  Even though the initial state values were set up in increasing step length means, the 

resulting best fit HMM state parameter estimates did not always have increasing step length for 

each additional behavior, probably from the final HMM behavior state being defined by not only 

the step length but also turning angle characteristics.  To make sure the behavior state 

comparisons were comparing similar states with the same name, the states were reordered and 

renamed in order to compare between larvae.  First, states were reordered using the mean step 

length to describe them as slow, medium and faster swimming behavior states (i.e. changed the 

state name).  Next a Linear Discriminant Model was constructed using the lda function in the 

MASS package (Venables and Ripley 2002) and cross validation to compare between models 

using the s3 models as a reference. LDA prediction accuracy for all models (s1, s2 and s3) was 

measured using cross validation where a random draw of 80% of the data was used to construct a 

model and then calculated prediction accuracy of the remaining 20% of the data.  The LDA 

prediction was repeated 50 times for each treatment group of data to determine overall accuracy 

(75 ± 0.07 %) and within state accuracy (slow state = 95 ± 0.03 %, medium state = 69 ± 0.09 % 

and fast state = 60 ± 0.07 %; Table S5.3).  

When treatment level tests were conducted on slow, medium and fast states, they were only 

conducted with fish that performed those states making the number of larvae used for the model 

(see Bayesian Model Analysis section below) different for each comparison (Table S5.3). 
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Visual Motor Response Assay 

Visual Motor Response (VMR) assays are a common test of fish neurological system 

function by startling the fish and evaluating their response (Emran et al. 2008).  VMRs were 

conducted using the same methodology as (Mora-Zamorano et al. 2017), where 6 dpf ZF larvae 

were tested in a special behavior chamber while in the transparent 12-well microliter plates.  The 

testing chamber isolated the larvae from light and sound, as described in three previous studies 

(Mora-Zamorano et al. 2016b, 2016a, 2017) and provided adequate light and video surveillance 

to view all individual movement. VMR assays were conducted between the hours of 1200 and 

1800 to minimize within day variability (MacPhail et al. 2009).  ZF larvae were positioned in a 

dark behavior chamber and acclimated in the dark for 10 minutes (did not use data during this 

period), after which they underwent two cycles of alternating 10 min light and dark periods for a 

total of 50 min.  This procedure resulted in larvae used in the VMR analysis experiencing two 

startles each from dark to light and from light to dark and 4-10 minute periods differing light 

conditions: two dark and two light.  Light levels during the light periods were set to 69 lux based 

on the work by MacPhail et al. (2009; Fisher Scientific Traceable Dual-Range Light Meter, 

Pittsburgh, PA).  VMRs were not conducted on YP larvae since they did not survive the 

individual well plates. 

Spontaneous movement of larvae was constantly recorded at a rate of 30 frames per sec and 

tracked using DanioVision© system version 8.0 (Noldus Information Technology, Leesburg, 

VA).  Settings for tracking did not include smoothing of track. The minimal distance before 

movement was recorded was set to 0.2 mm, at which time the direct distance between the two 

points was calculated.  The same automated error correcting procedure described for the 

locomotion assay was also applied to VMR fish locations. The corrected and censored fish 
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locations were used to define individual larvae activity at each frame within each period.  Speed 

at each frame was calculated as mm per sec and distance traveled in mm.  Swimming was 

defined as larval movement that was at least 6 mm/sec or 0.2 mm per frame (i.e. magnitude of 

velocity at larvae center) and lasted longer than 5 frames (0.166 sec).  Whereas the resting 

behavior occurred during frames where movement was less than 1 mm/sec or if greater than 1 

mm/sec, lasted less than 5 frames.  Where resting behavior was defined, speed and distance for 

those frames were changed to zero.  In addition, the turning angle associated with each frame of 

swimming was calculated using the difference between the four-quadrant inverse tangent of the 

two trajectories.  Where the first trajectory was constructed from the first two locations in the 

sequence, and the second trajectory from the second two locations in the sequence.  This 

calculation results in a turning angle that ranges from -3.14 to 3.14, where zero is straight ahead 

movement, negative values indicate right turns and positive values indicate left turns.  

Using the censored fish locations, swimming bout characteristics (i.e. time between rest 

periods) within each VMR period were summarized using multiple metrics: number of bouts per 

second; the mean duration, speed and turning angle (See Table S4.2 for definitions).  The overall 

larval behavior during each period in the assay was also summarized using multiple overall 

summary metrics: total distance traveled, total time swimming, overall average step length and 

variation, overall turning angle and variation. In addition, fish larvae responded to the visual 

startle from the light change as is typical of previous startle responses (Emran et al. 2008).  

Consequently, two behavior endpoints were calculated specifically to determine how larvae 

responding to the visual startle of the light turning off and on.  To determine the magnitude of 

the response to the visual startle, we determined the frame where the maximum speed was 

traveled within 5 seconds after the startle.  Then the difference between the maximum speed and 
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the speed at the time of the startle was calculated to define the magnitude of the startle response. 

Startle response time was calculated as the difference in time between the startle and the frame 

where the maximum speed was traveled.  

 

Feeding Assay 

In this study, YP and ZF larvae initiate feeding at 13 and 6 dpf, respectively.  This study 

focused on assessing larvae behavior at the point that larvae were independent and actively 

feeding.  Consequently, feeding ability in YP and ZF was assessed when they were 30-38 and 16 

dpf, respectively (Table S5.1).  Larva were transferred from the rearing containers to 54 mm 

diameter round petri dishes (60 mm petri dish).  Feeding of Artemia to larvae continued morning 

and evening until ~24hr prior to the assay, so fish would be in a hungry state for the test.  The 

exception was with YP larvae that were feed 5 Artemia the morning of the feeding assay in order 

to not starve.  Similar to locomotion assays, feeding assays were conducted between 1130 and 

2130 hr at a light level of 69 lux. Feeding assays were conducted in the same behavior chamber 

as the locomotion assay, when after 5 minutes of acclimation, recording started and ~15 (range 

11-17) live Artemia were added to the dish.  The test ended when 5 minutes had elapsed from 

when the Artemia were added to the dish. 

Feeding bouts consisted of multiple presentations; the characteristic curved body posture, 

continuously swimming straight or at rest by just opening their mouths.  For each of these 

presentations, the distance between the middle of the larva’s mouth and Artemia was measured at 

the time the larva orientated toward the Artemia, with their either eyes or body.  This distance 

was termed reactive distance and was measured using ImageJ© (version 1.51j8).  For each 

capture attempt toward an Artemia, we recorded whether the larva successfully captured the 
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Artemia and the time it took the larva to handle and consume the Artemia.  Typically after a 

catching an Artemia, the larva sat or drifted momentarily and did not swim while it was 

consuming the prey.  Handling time was defined as the time between prey capture and when the 

larva resumed normal swimming activity.  Additionally, three consumption metrics were 

calculated: capture proportion defined as the number of captures divided by the total number of 

Artemia added to the dish, miss proportion defined as the number of feeding capture attempts 

that missed the Artemia divided by the total number of successful and unsuccessful capture 

attempts, and capture attempt ratio defined as the total number of feeding capture attempts 

(successful and unsuccessful) divided by the total number of Artemia added to the dish.  When 

two Artemia were consumed during one feeding capture attempt, the consumption of both 

Artemia were assigned the same measurements. 

 

Bayesian Model Analysis 

For each behavioral endpoint (Table S4.2), we conducted a series of preliminary and final 

tests to determine whether there were differences between chemical dose treatments.  The three 

different behavior assays and the number of behavior responses we measured were Feeding-5, 

Visual Motor Response (VMR) - 58, Locomotion - 30.  Behavior responses that were not already 

normally distributed, we attempted to normalize using the boxcox function in the R MASS 

package (Venables and Ripley 2002).  Using a basic model containing only the treatment factor, 

behavior endpoints were transformed using the maximum lambda parameter for the exponential 

transformation suggested by the boxcox function in the R MASS package.  Below we describe 

the five different models that were used on the behavior responses to determine differences 

between treatments, (see Table S5.4 for final transformation and model used for each behavior 
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endpoint).  Fitting multiple model types was necessary because of the various behavior endpoints 

having distinctively different distributions such as a proportional, normal, or a skewed response 

that even Box Cox transformations were not successful in normalizing.  

 

Model Description 

The Bayesian models used in locomotion and VMR behavior response models consisted 

of one main effect (treatment with 3 levels), covariate variable time of assay and a random batch 

effect because assays were ran in batches of 24-well dishes for the VMR or 10 fish in a petri dish 

for the locomotion assay.  The Bayesian model used for a locomotion and VMR behavior 

responses was 

𝐿𝑜𝑐𝑜𝑚𝑜𝑡𝑖𝑜𝑛 𝑜𝑟 𝑉𝑀𝑅 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙

=  𝛼 + 𝛽𝑗 ∗ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗 +  𝛿𝑘  ∗ 𝑎𝑠𝑠𝑎𝑦 𝑡𝑖𝑚𝑒𝑘(𝑖) + 𝜔𝑙 ∗ 𝑏𝑎𝑡𝑐ℎ𝑙(𝑖) + 휀𝑖𝑗𝑘𝑙 

where 𝐿𝑜𝑐𝑜𝑚𝑜𝑡𝑖𝑜𝑛 𝑜𝑟 𝑉𝑀𝑅 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙 is the behavioral response metric 

on the ith individual, jth treatment, kth assay time and lth batch; 𝛼 is the intercept, 𝛽𝑗 is the 

treatment coefficient with a 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛽
2)  distribution, 𝛿 is the assay time coefficient with a 

𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛿
2) distribution, 𝜔𝑙 is the batch coefficient, and 휀𝑖𝑗𝑘𝑙 is the residual error.  Treatment 

and batch are indicator variables containing 1 if the observation belongs to the corresponding 

factor category and 0 otherwise.  Prior distributions for these two components can be found in 

Albers et al. (2022; Table S5.5).  Additionally, priors were needed for the α, treatment and assay 

time effects. In all models, we used non-informative, flat priors.  For α, treatment and assay time 

we assumed a normal distribution with a mean of 0 and standard deviation of at least 1.0 x 104 
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(i.e. precision of 1.0 x 10-4).  OpenBUGS model code for these models was presented in Albers 

et al. (2022) Tables S5.6, S5.7 and S5.8. 

Two other Bayesian models were used to model the five feeding behavior responses that 

did not contain a batch effect since feeding assays were conducted one fish at a time.  

Additionally, days post fertilization (dpf) was included as a covariate in YP feeding assay 

endpoints larvae age ranged from 30-38 dpf (the dpf covariate was not included in ZF models 

since all ZF larvae were 6 or 16 dpf for locomotion and feeding assays, respectively).  Lastly, 

these models did include intercept, treatment and assay time as described for the locomotion and 

VMR behavior models. 

3) Normal response model 

 

𝐹𝑒𝑒𝑑𝑖𝑛𝑔 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙

=  𝛼 + 𝛽𝑗 ∗ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗  + 𝛿 ∗ 𝑎𝑠𝑠𝑎𝑦 𝑡𝑖𝑚𝑒𝑘(𝑖)  + 𝜔 ∗ 𝑑𝑝𝑓𝑙(𝑖) + 휀𝑖𝑗𝑘𝑙 

where 𝐹𝑒𝑒𝑑𝑖𝑛𝑔 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙 is the prey handling time, lunge ratio or 

reaction distance (Albers et al. 2022; Table S5.4) on the ith individual, jth treatment, kth assay time 

and lth dpf; 𝛼, 𝛽𝑗  and, 𝛿 and their priors where described before, and 𝜔 is the dpf coefficient also 

with a non-informative normal prior assuming a normal distribution with a mean of 0 and 

standard deviation of at least 1.0 x 104 (i.e. precision of 1.0 x 10-4).  Lastly, the residual error 

followed a normal distribution  휀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) with variance  
1

𝜎𝜀
2 = 𝜏𝑗~ 𝐼 − 𝐺𝑎𝑚𝑚𝑎(0.0001,

0.0001). OpenBUGS code can be found in Albers et al. (2022) Table S5.9. 

4) Binomial response model 

 

𝐹𝑒𝑒𝑑𝑖𝑛𝑔 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖𝑗𝑘𝑙, 𝑁𝑖𝑗𝑘𝑙) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑘𝑙) =  𝛽𝑗 ∗ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗(𝑖)  + 𝛿 ∗ 𝑎𝑠𝑠𝑎𝑦 𝑡𝑖𝑚𝑒𝑘(𝑖)  + 𝜔 ∗ 𝑑𝑝𝑓𝑙(𝑖) + 휀𝑖𝑗𝑘𝑙 
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where 𝐹𝑒𝑒𝑑𝑖𝑛𝑔 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗𝑘𝑙 is the prey capture probability or prey miss 

proportion (Albers et al. 2022; Table S5.7) on the ith individual, jth treatment, kth assay time and 

lth dpf and 𝑁𝑖𝑗𝑘𝑙 is the number of trials and 𝑝𝑖𝑗𝑘𝑙 is the probability of success distributed on a 

logit scale.  The priors for 𝛽𝑗, 𝛿 and 𝜔 where described before. Lastly, the residual error 

followed a normal distribution  휀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) with variance 
1

𝜎𝜀
2 = 𝜏𝑗~ 𝐼 − 𝐺𝑎𝑚𝑚𝑎(0.01,

0.01).  

 

Model Fitting and Convergence Diagnostics 

Bayesian models were constructed using OpenBUGS version 3.2.3 rev 1012 (Lunn et al. 

2009), R version 3.6.0 (R Core Team 2019) and packages R2OpenBUGS version 3.2 (Sturtz et 

al. 2005) and coda version 0.19-2 (Plummer et al. 2005).  We fit the basic model using three 

chains, each with a minimum of 10000 iterations, 1000 burn in, and 1 thin, and monitored a 

subsample of parameters for convergence: treatment effects, overall mean, residuals, variance(s), 

precision parameter(s) and degree of freedom parameter(s).  Then we performed preliminary 

multiple MCMC chain convergence diagnostics using Trace plots.  If model did not converge, 

we increased either the number of iterations, burn in, or thin.  Once the preliminary model trace 

plots were not showing any obvious convergence problems, further MCMC diagnostics were 

applied using a suite of tools to determine adequate MCMC chain length, model convergence 

and fit.  1) Autocorrelation plots indicated the level of thinning required to remove any 

autocorrelation.  2) Gelman-Rubin-Brooks shrink factor plots indicated the adequate number of 

iterations needed for burn in.  3) Raftery and Lewis’s diagnostic tables were used to determine 
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the number of additional iterations needed for accurate parameter estimation (default values of q 

= 0.025, r = ± 0.005 and s = 0.95).  4) Finally, model goodness-of-fit was evaluated using 

residual diagnostics.  When alternative models were to be compared, the model with the best 

posterior predictive distributions of residuals and replicated observations was retained. 

Once a best-fitted model had been determined, we re-fit the model with the appropriate 

settings and monitored a slightly different suite of parameters: overall mean; population level 

treatment effects; variance and precision parameters; tail area probabilities of observing a 

difference; degrees of freedom; individual level predicted means, etc.  With the model output and 

iteration levels we also determined effective sample size (effectiveSize function in coda R 

package), posterior distributions of parameters, and calculated a one-sided tail area probabilities 

(Bayesian P-values) from the two sided difference of parameter distributions.  The summary 

output of this last model fit is presented in the results section of the paper and all relevant 

parameter posterior distributions can be found in Table S5.5. 
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Table S5.1. Summary of the number of larval zebrafish larvae Danio rerio and yellow perch Perca flavescens that were used in this 

study (MeHg = methylmercury, PCB126 = 3,3',4,4',5-pentachlorobiphenyl, SD = standard deviation). 

Species Groups   

MeHg 
Control 

Treatment 

MeHg 
Low 

Treatment 

MeHg 
High 

Treatment 

PCB126 
Control 

Treatment 

PCB126 
Low 

Treatment 

PCB126 
High 

Treatment 

Yellow 
Perch Feeding Assays       

   Number of Larvae 57 51 52 44 44 44 

   Total Length (mm ± SD) 
11.69 
(1.25) 

11.42 
(1.31) 

11.67 
(1.31) 

11.88 
(1.39) 

11.61 
(1.40) 

12.03 
(1.36) 

   

Number of Larvae that did not 
consume Artemia 1 1 2 1 2 0 

Zebrafish Visual Motor Response Assays       

   Number of Larvae 124 127 126 129 126 127 

 Locomotion Assays       

   Number of Larvae 170 180 140 270 260 250 

   Total Length (mm ± SD) 
4.76 

(0.66) 
4.66 

(0.72) 
4.60 

(0.74) 
4.58 

(0.70) 
4.49 

(0.69) 
4.47 

(0.61) 

  Hidden Markov Chain Models       

   

Number of Larvae Attempted to Fit a 
Model 162 172 131 252 255 234 

   

Number of Larvae with a Fitted 
Model 162 172 131 252 255 234 

 Feeding Assays       

   Number of Larvae 35 41 39 41 43 21 

   Total Length (mm ± SD) 
5.83 

(0.69) 
6.05 

(0.64) 
6.28 

(0.73) 
5.91 

(0.69) 
6.08 

(0.78) 
5.27 

(0.78) 

      
Number of Larvae that did not 
consume Artemia 5 5 3 9 6 13 
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Table S5.2.  Description of behavior endpoints examined in this study 

Submitted table as a sheet in an Excel file. 

Table S5.3. Linear Discriminant Models (LDA) cross validation results for different Hidden Markov Chain Model (HMM) behavioral 

states (N = 50 iterations, MeHg = methylmercury, PCB126 = 3,3',4,4',5-pentachlorobiphenyl, SD = standard deviation, s3 = three 

behavior state HMM, s2 = two behavior state HMM, s1 = one behavior state HMM). 

    

Num. of 
larvae 

with s3 
models 

Num. of 
larvae 
with s2 
models 

Num. of 
larvae 
with s1 
models 

Num. of 
obs./be
havior 
states 
in s3 
LDA 

Total 
num. of 
obs./be
havior 
states 
in s1 

and s2 

Num. of 
renamed 
behavior 
states in 
s1 and s2 

Slow State 
Accuracy of s3 

LDA   

Medium State 
Accuracy of s3 

LDA   

Fast State 
Accuracy of s3 

LDA   

Total 
Accuracy of s3 

LDA 

Group Mean SD   Mean SD   Mean SD   Mean SD 

MeHg                  

 

Control 
Dose 89 71 2 267 144 65 0.93 0.05  0.70 0.09  0.84 0.07  0.82 0.04 

 

Middle 
Dose 88 83 1 264 167 36 0.91 0.06  0.78 0.09  0.60 0.12  0.75 0.05 

 

Upper 
Dose 71 58 2 213 118 56 0.96 0.04  0.78 0.12  0.77 0.14  0.83 0.07 

PCB 126                  

 

Control 
Dose 131 115 6 393 236 47 0.96 0.04  0.62 0.09  0.49 0.11  0.69 0.04 

 

Middle 
Dose 151 103 1 453 207 23 0.98 0.03  0.57 0.07  0.48 0.10  0.67 0.04 

  
Upper 
Dose 140 91 3 420 185 28 0.99 0.03   0.55 0.10   0.40 0.09   0.64 0.04 
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Table S5.4. Bayesian model summary for each behavioral response endpoint (MeHg = 

methylmercury, PCB126 = 3,3',4,4',5-pentachlorobiphenyl). 

Submitted table as a sheet in an Excel file. 

Table S5.5. Posterior distributions for all model parameters and each behavioral endpoint (MeHg 

= methylmercury, PCB126 = 3,3',4,4',5-pentachlorobiphenyl, Trt = treatment, vs = versus, sec = 

second, mm = millimeter). 

Submitted table as a sheet in an Excel file. 

Table S5.6. Total number of significantly differentially expressed genes (alpha = 0.05) found in 

the brains of zebrafish Danio rerio in this study (MeHg = methylmercury, PCB126 = 3,3',4,4',5-

pentachlorobiphenyl, vs = versus). 

Treatment Comparison 

Number of Differentially 

Expressed Genes 

MeHg-Control vs MeHg-Low 3 

MeHg-Low vs MeHg-High 1349 

MeHg -Control vs MeHg-High 1455 

PCB126-Control  vs PCB126-Low 162 

PCB126-Low vs PCB126-High 1418 

PCB126-Control vs PCB126-High 218 

 

Table S5.7. Significantly differentially expressed genes (alpha = 0.05) found in the brains of 

zebrafish Danio rerio in this study. Significant trends and FDR are reported (MeHg = 

methylmercury, PCB126 = 3,3',4,4',5-pentachlorobiphenyl, vs = versus, neg = significant 

negative trend, pos = significant positive trend). Blanks indicate comparison was tested but did 

not result in a significant difference. 

Submitted table as a sheet in an Excel file. 

Table S5.8. Significantly altered gene sets and pathways (alpha = 0.05) found in the brains of 

zebrafish Danio rerio in this study. Significant trends and FDR are reported (MeHg = 

methylmercury, PCB126 = 3,3',4,4',5-pentachlorobiphenyl, vs = versus, neg = significant 

negative trend, pos = significant positive trend). Blanks indicate comparison was tested but did 

not result in a significant difference. 

Submitted table as a sheet in an Excel file. 
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Table S5.9. Significant methylmercury treatment patterns by behavior endpoints in zebrafish 

Danio rerio found in this study. Significant trends are reported in the following order: first level 

is the trend between control and middle treatment, second is middle verses upper treatment and 

third is control vs upper treatment (neg = significant negative trend, pos = significant positive 

trend, - = no significant trend, HMM = hidden Markov chain model, TP = transition probability, 

sec = second, mm = millimeter). 

Significant 

Treatment 

Pattern Behavior Endpoint 

- - neg Prey Handling Time, Swimming Bout Speed Period 3 (mm/sec) 

- - pos HMM Fast State Step Length Variation 

- neg - Startle Magnitude Period 1, Startle Time Period 1, Startle Time Period 2, Startle 

Time Period 3 

- neg neg Overall Step Length Period 3 (mm), Overall Step Length Variation Period 3, 

Startle Magnitude Period 3, Swimming Bout Duration Period 3 (sec), 

Swimming Bouts Period 3 (per sec), Swimming Bouts Period 4 (per sec), Total 

Distance Traveled Period 3 (mm), Total Time Swimming Period 3 (sec) 

- pos - HMM Slow State Count 

- pos pos Swimming Bout Duration Period 2 (sec) 

neg - - HMM Fast -> Fast TP, HMM Medium State Turning Angle Variation 

neg - neg Prey Miss Proportion 

neg pos - HMM Medium -> Slow TP 

pos - - Fish Lengths, HMM Medium -> Medium TP, HMM Medium State Count, 

Overall Step Length (mm), Overall Step Length Variation Period 2, Overall 

Step Length Variation, Swimming Bout Duration (sec), Total Distance 

Traveled (mm) 

pos - pos Prey Capture Probability, Swimming Bout Speed Period 2 (mm/sec), 

Swimming Bout Speed Period 4 (mm/sec) 

pos neg - HMM Medium -> Fast TP, HMM Medium State Step Length Variation, HMM 

Slow -> Medium TP, Overall Step Length Period 2 (mm), Overall Step Length 

Period 4 (mm), Overall Step Length Variation Period 4, Swimming Bouts (per 

sec), Total Distance Traveled Period 2 (mm), Total Distance Traveled Period 4 

(mm), Total Time Swimming (sec), Total Time Swimming Period 2 (sec) 

pos neg 

neg 

Swimming Bouts Period 2 (per sec), Total Time Swimming Period 4 (sec) 

pos pos pos Swimming Bout Duration Period 4 (sec) 

 

  



 

223 
 

Table S5.10. Significant 3,3',4,4',5-pentachlorobiphenyl treatment patterns by behavior endpoints 

in zebrafish Danio rerio found in this study. Significant trends are reported in the following 

order: first level is the trend between control and middle treatment, second is middle verses 

upper treatment and third is control vs upper treatment (neg = significant negative trend, pos = 

significant positive trend, - = no significant trend, HMM = hidden Markov chain model, TP = 

transition probability, sec = second, mm = millimeter). 

Significant 

Treatment 

Pattern Behavior Endpoint 

- - neg Overall Step Length Variation Period 2, Overall Step Length Variation 

Period 4, Startle Magnitude Period 1, Swimming Bout Speed Period 2 

(mm/sec), Swimming Bout Speed Period 4 (mm/sec) 

- - pos HMM Fast State Step Length Variation, HMM Medium State Step 

Length Variation 

- neg - Overall Step Length Period 3 (mm), Overall Step Length Variation 

Period 3, Startle Magnitude Period 4, Swimming Bout Duration Period 3 

(sec), Total Distance Traveled Period 3 (mm), Total Time Swimming 

Period 3 (sec) 

- neg neg Capture Attempt Ratio, Prey Capture Probability, Startle Magnitude 

Period 3, Startle Time Period 1, Swimming Bout Speed Period 3 

(mm/sec) 

- pos - HMM Fast State Step Length (mm), Startle Time Period 2 

- pos pos Prey Miss Proportion 

neg - - HMM Fast -> Fast TP 

neg - neg HMM Slow State Turning Angle Variation, Overall Turning Angle 

Variation, Swimming Bout Turning Angle 

pos - - Fish Lengths, Overall Step Length (mm), Total Distance Traveled (mm) 

pos - pos HMM Medium State Turning Angle Variation, Overall Step Length 

Variation 

pos neg - Swimming Bouts (per sec), Total Time Swimming (sec) 

pos pos pos HMM Medium State Step Length (mm), Swimming Bout Speed 

(mm/sec) 

 

Table S5.11. Significant treatment patterns from methylmercury (MeHg) and 3,3',4,4',5-

pentachlorobiphenyl (PCB126) exposure by behavior endpoints in zebrafish Danio rerio found 

in this study. Significant trends are reported in the following order: first level is the trend 

between MeHg control and middle MeHg treatment, second is middle MeHg verses upper MeHg 

treatment, third is MeHg control vs upper MeHg treatment, forth level is the trend between 

PCB126 control and middle PCB126 treatment, fifth is middle PCB126 verses upper PCB126 

treatment and sixth is PCB126 control vs upper PCB126 treatment (neg = significant negative 

trend, pos = significant positive trend, - = no significant trend, HMM = hidden Markov chain 

model, TP = transition probability, sec = second, mm = millimeter).  

Submitted table as a sheet in an Excel file. 
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Table S5.12. Significant methylmercury treatment patterns shared by differentially expressed 

genes and behavior endpoints in zebrafish Danio rerio found in this study. Both the original and 

opposite behavior endpoint trends are listed. Significant trends are reported in the following 

order: first level is the trend between control and middle treatment, second is middle verses 

upper treatment and third is control vs upper treatment (neg = significant negative trend, pos = 

significant positive trend, - = no significant trend, HMM = hidden Markov chain model, TP = 

transition probability, sec = second, mm = millimeter). 

Submitted table as a sheet in an Excel file. 

Table S5.13. Significant 3,3',4,4',5-pentachlorobiphenyl treatment patterns shared by 

differentially expressed genes and behavior endpoints in zebrafish Danio rerio found in this 

study. Both the original and opposite behavior endpoint trends are listed. Significant trends are 

reported in the following order: first level is the trend between control and middle treatment, 

second is middle verses upper treatment and third is control vs upper treatment (neg = significant 

negative trend, pos = significant positive trend, - = no significant trend, HMM = hidden Markov 

chain model, TP = transition probability, sec = second, mm = millimeter). 

Submitted table as a sheet in an Excel file. 

Table S5.14. Significant treatment patterns from methylmercury (MeHg) and 3,3',4,4',5-

pentachlorobiphenyl (PCB126) exposure shared by differentially expressed genes and behavior 

endpoints in zebrafish Danio rerio found in this study. Both the original and opposite behavior 

endpoint trends are listed. Significant trends are reported in the following order: first level is the 

trend between MeHg control and middle MeHg treatment, second is middle MeHg verses upper 

MeHg treatment, third is MeHg control vs upper MeHg treatment, forth level is the trend 

between PCB126 control and middle PCB126 treatment, fifth is middle PCB126 verses upper 

PCB126 treatment and sixth is PCB126 control vs upper PCB126 treatment  (neg = significant 

negative trend, pos = significant positive trend, - = no significant trend, HMM = hidden Markov 

chain model, TP = transition probability, sec = second, mm = millimeter). 

Submitted table as a sheet in an Excel file. 

Table S5.15. Significant methylmercury treatment patterns shared by gene sets and behavior 

endpoints in zebrafish Danio rerio found in this study. Both the original and opposite behavior 

endpoint trends are listed. Significant trends are reported in the following order: first level is the 

trend between control and middle treatment, second is middle verses upper treatment and third is 

control vs upper treatment (neg = significant negative trend, pos = significant positive trend, - = 

no significant trend, HMM = hidden Markov chain model, TP = transition probability, sec = 

second, mm = millimeter). 

Submitted table as a sheet in an Excel file. 

Table S5.16. Significant 3,3',4,4',5-pentachlorobiphenyl treatment patterns shared by gene sets 

and behavior endpoints in zebrafish Danio rerio found in this study. Both the original and 

opposite behavior endpoint trends are listed. Significant trends are reported in the following 

order: first level is the trend between control and middle treatment, second is middle verses 

upper treatment and third is control vs upper treatment (neg = significant negative trend, pos = 

significant positive trend, - = no significant trend, HMM = hidden Markov chain model, TP = 

transition probability, sec = second, mm = millimeter). 
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Submitted table as a sheet in an Excel file. 

Table S5.17. Significant treatment patterns from methylmercury (MeHg) and 3,3',4,4',5-

pentachlorobiphenyl (PCB126) exposure shared by gene sets and behavior endpoints in zebrafish 

Danio rerio found in this study. Both the original and opposite behavior endpoint trends are 

listed. Significant trends are reported in the following order: first level is the trend between 

MeHg control and middle MeHg treatment, second is middle MeHg verses upper MeHg 

treatment, third is MeHg control vs upper MeHg treatment, forth level is the trend between 

PCB126 control and middle PCB126 treatment, fifth is middle PCB126 verses upper PCB126 

treatment and sixth is PCB126 control vs upper PCB126 treatment  (neg = significant negative 

trend, pos = significant positive trend, - = no significant trend, HMM = hidden Markov chain 

model, TP = transition probability, sec = second, mm = millimeter). 

Submitted table as a sheet in an Excel file. 

Table S5.18. Total number of significantly differentially expressed genes (alpha = 0.05) found in 

the brains of yellow perch Perca flavescens in this study (MeHg = methylmercury, PCB126 = 

3,3',4,4',5-pentachlorobiphenyl, vs = versus). 

Treatment Comparison 

Number of Differentially 

Expressed Genes 

MeHg-Control vs MeHg-Low 8 

MeHg-Low vs MeHg-High 1 

MeHg -Control vs MeHg-High 44 

PCB126-Control  vs PCB126-Low 19 

PCB126-Low vs PCB126-High 7 

PCB126-Control vs PCB126-High 11 

 

Table S5.19. Significantly differentially expressed genes (alpha = 0.05) found in the brains of 

yellow perch Perca flavescens in this study. Significant trends and FDR are reported (MeHg = 

methylmercury, PCB126 = 3,3',4,4',5-pentachlorobiphenyl, vs = versus, neg = significant 

negative trend, pos = significant positive trend). Blanks indicate comparison was tested but did 

not result in a significant difference. 

Submitted table as a sheet in an Excel file. 

Table S5.20. Significantly altered gene sets and pathways (alpha = 0.05) found in the brains of 

yellow perch Perca flavescens in this study. Significant trends and FDR are reported (MeHg = 

methylmercury, PCB126 = 3,3',4,4',5-pentachlorobiphenyl, vs = versus, neg = significant 

negative trend, pos = significant positive trend). Blanks indicate comparison was tested but did 

not result in a significant difference. 

Submitted table as a sheet in an Excel file. 

Table S5.21. Significant methylmercury treatment patterns shared by differentially expressed 

genes and behavior endpoints in yellow perch Perca flavescens found in this study. Both the 

original and opposite behavior endpoint trends are listed. Significant trends are reported in the 

following order: first level is the trend between control and middle treatment, second is middle 



 

226 
 

verses upper treatment and third is control vs upper treatment (neg = significant negative trend, 

pos = significant positive trend, - = no significant trend, HMM = hidden Markov chain model, 

TP = transition probability, sec = second, mm = millimeter). 

Submitted table as a sheet in an Excel file. 

Table S5.22. Significant 3,3',4,4',5-pentachlorobiphenyl treatment patterns shared by 

differentially expressed genes and behavior endpoints in yellow perch Perca flavescens found in 

this study. Both the original and opposite behavior endpoint trends are listed. Significant trends 

are reported in the following order: first level is the trend between control and middle treatment, 

second is middle verses upper treatment and third is control vs upper treatment (neg = significant 

negative trend, pos = significant positive trend, - = no significant trend, HMM = hidden Markov 

chain model, TP = transition probability, sec = second, mm = millimeter). 

Submitted table as a sheet in an Excel file. 

Table S23. Significant methylmercury treatment patterns shared by gene sets and behavior 

endpoints in yellow perch Perca flavescens found in this study. Both the original and opposite 

behavior endpoint trends are listed. Significant trends are reported in the following order: first 

level is the trend between control and middle treatment, second is middle verses upper treatment, 

and third is control vs upper treatment (neg = significant negative trend, pos = significant 

positive trend, - = no significant trend, HMM = hidden Markov chain model, TP = transition 

probability, sec = second, mm = millimeter). 

Submitted table as a sheet in an Excel file. 

Table S5.24. Significant biological endpoints found in this study (KF = Atlantic killifish 

Fundulus heteroclitus, YP = yellow perch Perca flavescens, ZF = zebrafish Danio rerio, HMM = 

hidden Markov chain model, TP = transition probability, sec = second, mm = millimeter). Note 

that KEGG 2D pathways are noted in this table as positive, but both positive and negative KEGG 

2D trends were used to find similarities with other endpoints. 

Submitted table as a sheet in an Excel file. 

 


