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ABSTRACT 

The Great Lakes and the streams draining to them provide an abundance of ecosystem 

services, including habitat, water resources, and recreational opportunities. The success and 

wellbeing of these water bodies are impacted by a variety of factors, including invasive species 

and septic systems. Along the shoreline of the Great Lakes, invasive species, such as Phragmites 

and Typha, are a major concern to the coastal wetlands. Within the inland river systems, near-

shore septic systems can create elevated levels of nutrients that can have a collection of negative 

impacts. Both of these threats ultimately relate back to the presence and application of nutrients 

such as nitrogen and phosphorus.  

We first address the landscape conditions that allow for coastal wetland invasion. Using 

machine learning algorithms, we were able to quantify relationships between the presence of 

invasive species in coastland wetlands, and a variety of landscape scale variables – primarily the 

nutrient loads of nitrogen and phosphorus. We determined that high invasion is most strongly 

associated with nitrogen loading above 118 kg/ha/yr within the watersheds derived from the 

invaded wetlands. We then address how septic systems could be contributing to nutrient loads 

within the Manistee and Au Sable Rivers of Michigan. We modeled groundwater flow and the 

transport of nutrients to assess how competently septic systems are retaining nutrients. On 

average, septic systems allow 88% of introduced nitrogen, and 49% of phosphorus, to enter 

groundwater. These findings will inform watershed management and provide a better 

understanding of the effectiveness of septic systems. 
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CHAPTER 1:  
QUANTIFYING LINKAGES BETWEEN WATERSHED FACTORS AND COASTAL 

WETLAND PLANT INVASION IN THE US GREAT LAKES  

1.1. Abstract 

Freshwater coastal wetlands provide numerous ecosystem services, including habitat, 

nutrient uptake, coastal stabilization, and aesthetic value, but the integrity of these ecosystems is 

threatened by invasion of non-native competitors. Invasive species, such as Phragmites and 

Typha, are a concern in these wetlands, as they can dominate and outcompete native species. 

This work sets out to understand the conditions that allow invasive species to dominate. This will 

allow for better management of landscapes and wetlands. We bring together two datasets to 

relate landscape conditions to coastal wetland invasion: 1) a spatially explicit map of nutrient 

inputs (SENSEmap) across the US Great Lakes Basin, and 2) a satellite land use map that 

includes explicit classifications of wetlands. Using machine learning algorithms, we quantified 

correlations between wetland plant invasion along the coastline to nutrient loads (both N and P) 

and other landscape scale variables (hydraulic conductivity, slope, imperviousness, land use, and 

land cover) across multiple influence zones. We find that high invasion is typically associated 

with nitrogen loading above 118 kg/ha/yr within the watersheds of the invaded wetlands. Forest 

cover of <27% is associated with high invasion. Conversely, nearshore slope of >2.6% and 

phosphorus loads <2.8 kg/ha/yr are associated with low invasion. Through N:P ratios, 

phosphorus was further identified as important. Overall, areas more anthropogenically impacted 

were more associated with invasion. We conclude that high nitrogen and low forest cover are 

correlated with invasion. These conclusions will inform management, as well as future efforts to 

identify linkages between landscapes and coastal invasion.  

 



2 

 

1.2. Introduction 

Although wetlands only make up a small proportion (<6%) of global land cover, 24% of 

the world’s invasive plants are wetland species (Zedler & Kercher 2004). Specifically, invasive 

species pose a significant threat to coastal wetlands, as they can grow in dense, monolithic 

stands, outcompeting native species and altering wetland vegetation structure (Marks et al. 1994; 

Zedler & Kercher 2004). Rapid expansion of invasive species such as Phragmites australis and 

Typha x glauca is occurring across North America (Tulbure et al. 2007). The Laurentian Great 

Lakes and their associated wetlands and waterways are at increasing risk of invasion by these 

species due to high exposure to conditions that promote successful invasion such as 

anthropogenic nutrient applications to the landscape, typically as fertilizer and other non-point 

sources, and land use change from natural to agricultural or urban landscapes (Danz et al. 2007; 

King et al. 2007). As invasion increases, the ecosystem services these wetlands provide are at 

risk, threatening habitat, water filtration, biodiversity, and recreation. 

The characteristics that make these species successful invaders also threaten natural 

ecosystem function. Phragmites is a hollow grass that can grow upwards of two meters. It grows 

in a wide range of conditions, from alkaline or brackish waters to freshwater ecosystems, making 

it a strong competitor in most environments (Marks et al. 1994). It has become a dominant 

species in wetlands, due to its ability to rapidly reproduce and thrive in high nitrogen 

environments; as a result, it has the propensity to form dense monolithic stands, aided by its 

opportunist nature to take advantage of canopy gaps (Marks et al. 1994; Zedler & Kercher 2004; 

Mozdzer & Zieman 2010). Typha x glauca is an invasive cattail, formed as a hybrid of native T. 

latifolia and exotic T. angustifolia. This species spreads rapidly and reduces native biodiversity 

by also forming monocultures (Tilman 1990; Angeloni et al. 2006; Geddes et al. 2014). Typha is 
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also opportunistic and thrives in increased water depth as well as rapidly flowing water (Zedler 

& Kercher 2004). Both species leave behind copious litter after senescence, making a thick 

thatch that challenges native plants’ reestablishment (Minchinton et al. 2006; Farrer & Goldberg 

2009; Vaccaro et al. 2009; Larkin et al. 2012). Invasion by these species threatens wildlife. By 

altering the structure and function of integral ecosystems and reducing plant biodiversity, 

nutrient cycles are altered and can cause native species extirpation or even extinction (Marks et 

al. 1994; Pimentel et al. 2000; Zedler & Kercher 2004; Farrer & Goldberg 2009; Larkin et al. 

2012; Geddes et al. 2014).  

Wetlands have been studied to examine how invasion is facilitated, focusing on the role 

of nutrients, land cover, and disturbance. It is relatively well accepted that nitrogen levels play a 

role in facilitating plant invasions (Knops et al. 1999). Invasive plants reach optimal size, have 

better success, and are harder to manage in areas that have high nitrogen supply (Ehrenfeld 2003; 

Minchinton & Bertness 2003; Elgersma et al. 2017; Goldberg et al. 2017; Uddin et al. 2018). At 

the site scale, a nitrogen influx near 10 g/m2 considerably increased net primary productivity of 

both Phragmites and Typha, compared to those treated with lower nitrogen concentrations 

(Martina et al. 2016; Goldberg et al. 2017). Prior studies by Rickey & Anderson (2004) and 

Kettenring et al. (2011) further corroborate this point by indicating that higher nitrogen loads 

result in greater biomass of Phragmites. Other studies have shown a link between different types 

of land use and land cover (LULC) and plant invasion. Forested land tends to correlate with 

lower amounts of invasion, while higher proportions of urban or agricultural land were strongly 

associated with higher invasion (Danz et al. 2007; King et al. 2007; Trebitz & Taylor 2007). 

Specifically, shoreline armoring creates a disturbed coastline that can allow for increased 

invasion (Silliman & Bertness 2004; Sciance et al. 2016). Combining altered LULC with 
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increased nitrogen loads can compound their individual effects, resulting in more highly invaded 

wetlands (Silliman & Bertness 2004). Additionally, the disturbance of a wetland ecosystem, 

through water level changes or other direct intervention, often reduces biodiversity, and provides 

an opening for invasive species (Keddy & Reznicek 1984; Rapport & Whitford 1999; Chambers 

et al. 1999; Herrick & Wolf 2005; Lishawa et al. 2010). When water levels in the Great Lakes 

fall, it exposes lakebeds that are not currently inhabited by wetland plants. This provides an 

opportunity for invasive species, such as Phragmites and Typha, to expand into new areas 

(Tulbure et al. 2010; Wilcox 2012). Overall, these changes in a wetland, such as increased 

nitrogen loads, changed land cover, or disturbance, can allow invasive species to propagate. 

The bulk of the research dedicated to wetland invasion has been carried out on a site-

specific scale. Typically, plots or transects were taken and evaluated over time to measure the 

change in invasive area (Silliman & Bertness 2004; King et al. 2007; Tulbure & Johnston 2010). 

A multiple-regression model was used to connect expanding Phragmites patches to increased 

nitrogen availability and soil salinity in Narragansett Bay, Rhode Island (Silliman & Bertness 

2004). Classification and regression trees (CART) have also been used to evaluate specific 

wetland transects. The transects nearest a highly developed area, resulted in the highest 

occurrence of Phragmites within the study region (King et al. 2007). Mixed models have also 

been used to explore relationships between the change in Phragmites cover and various wetland 

characteristics at specific sites (Tulbure et al. 2007). 

While many studies have investigated small-scale cases, far fewer have analyzed large 

coastal wetland regions. Building upon work by Richards et al. (1996), Johnson et al. (2010) 

used statistical analyses and models to assess how landscape scale processes are connected to 

wetlands and lakes. Sciance et al. (2016) detailed a similar study in the Chesapeake Bay that 
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utilized regression trees to show the relationship between agriculture and other variables and the 

presence of Phragmites. Mazur et al. (2014) used coastal wetland land use data from Bourgeau-

Chavez et al. (2013) to link landscape characteristics within 10 km of the coastline to Phragmites 

invasion within the US Great Lakes. Using the statistical method boosted regression trees (BRT) 

and in stream nutrient data from SPARROW (Spatially Referenced Regressions on Watershed 

Attributes), they found that minimal topographic relief, proximity to urban centers, and poorly 

drained soils were most closely associated with Phragmites expansion.  

Coastal wetlands are unique in that they receive waters from three distinct sources: 1) 

local groundwater, streams, and runoff draining directly to the wetlands, 2) larger stream systems 

emptying into adjacent littoral waters draining significant watershed areas, and 3) lake/ocean 

pelagic waters mixed with those and other littoral water sources. Essentially, Mazur et al. (2014) 

included primarily the first, local source of water via the 10 km buffer selected for their analysis. 

Here, we develop a framework to address multiple sources of water and nutrients to coastal 

wetlands from the landscape, explicitly and separately including both local sources and those 

from nearby 2nd-or-higher order streams. We further expand upon the work of Mazur et al. 

(2014) by incorporating high-resolution, spatially-explicit maps of N and P inputs to the 

landscape (SENSEmap, Hamlin et al. 2020), and incorporating several different landscape 

characteristics, including imperviousness, land use, and land cover. Additionally, our invasion 

variable is treated as a percent, rather than just presence/absence and includes Typha, rather than 

just Phragmites. Finally, we utilize an additional statistical analysis, CART, in our study. These 

differences propagate new and interesting results. 

This study links landscape variables over multiple spatial scales to coastal wetland 

invasion for the 7807 km length of the United States Great Lakes Basin shoreline. For this 
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analysis, we define a framework of coastline segments built around the mouths of 2nd-or-higher 

order streams, and quantify wetland invasion within those coastline segments detailed at 12.5 m 

resolution via remote sensing (Bourgeau-Chavez et al. 2015). We then link coastline invasion to 

landscape characteristics using two tree-based machine learning algorithms: classification and 

regression trees (CART) and boosted regression trees (BRT). This analysis reveals the landscape 

conditions that promote invasion, including most prominently, nutrient loads from a new, 30 m 

resolution source- and spatially-explicit map of landscape nutrient inputs (SENSEmap, Hamlin et 

al. 2020). 

1.3. Methods 

1.3.1 Study Area 

This study focuses on the coastal wetlands of The North American Laurentian Great 

Lakes Basin (hereafter GLB) (Figure 1.1). It consists of five lake sub-basins covering over 

580,000 square kilometers throughout Canada and the United States draining to Lakes Superior, 

Michigan, Huron, Erie, and Ontario. Due to data availability, this study focuses on the United 

States portion of the basin, primarily between the 40th and 48th parallels and the 75th and 93rd 

meridians. It encompasses portions of Illinois, Indiana, Michigan, Minnesota, New York, 

Pennsylvania, Ohio, and Wisconsin. Climate within the basin is primarily humid (Koeppen-

Geiger classes Dfa and Dfb, hot- and warm-summer humid continental climates, respectively), 

with four distinct seasons. While the findings of this study are applicable to other freshwater 

coastal wetlands, this region was selected based on the ecological significance of the Great 

Lakes. The GLB is one of the most heavily invaded regions in the world (Ricciardi & MacIsaac 

2000). Additionally, the Great Lakes are one of the world's largest freshwater resources and 

possess the longest freshwater coastline. The lakes provide habitat for organisms, recreational 
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opportunities, hydrologic retention, shoreline protection, sediment trapping, and nutrient cycling 

(US EPA 2019). 

 

Figure 1.1. USGLB Site Map. This map shows the United States Great Lakes Basin (USGLB), 

with each of the five Great Lakes labeled. The inset map in the lower right shows the continental 

United States, with the USGLB colored for reference. Additionally, the primary map shows the 

simplified 10 km shoreline land use data highlighting invasion classes, adapted from (Bourgeau-

Chavez et al. 2015), and the outline of the USGLB as a black line. The simplification of classes 

groups all agricultural sub-groups together, as well as grouping forest sub-groups and wetland 

sub-groups (see Table A.1.1). The inset maps highlight, clockwise from left, a) a remote area 

along Lake Superior in the western portion of Michigan’s Upper Peninsula, b) an agriculturally 

dominated area in Michigan’s Lower Peninsula along Lake Huron, and c) a mainly urban region 

north of the city of Detroit.  

1.3.2 Data Sources 

This study synthesizes information from two large-scale, high-resolution spatial datasets. 

First, Bourgeau-Chavez et al. (2015) created a land cover product that identifies specific invasive 

species along with other wetland land cover classes at a fine 12.5 m resolution. Second, Hamlin 
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et al. (2020), created SENSEmap, which estimates nitrogen and phosphorus inputs to the 

landscape at 30 m resolution. These datasets have not yet been utilized in combination, and 

doing so creates a novel opportunity to link landscape characteristics to coastal wetland invasion. 

 The Bourgeau-Chavez et al. (2015) wetland land cover map was created from Landsat 

and PALSAR data, and represents ca. 2010 conditions along the entire GLB coastline (2015). 

The 12.5-m resolution data classifies the land cover into several specific categories, consolidated 

into Anderson level 1 classes (Anderson et al. 1976) (see Table A.1.1), and breaks wetlands into 

specific invasive species classifications, including Typha and Phragmites. The mapped area 

stretches inland 10 km from the coastline, and towards the lake, to capture potential nearshore 

LULC trends. The overall accuracy of the data is 94%, while each lake individually ranges from 

86 – 96% accuracy (Bourgeau-Chavez et al. 2015). From this data, invasion patterns can be 

mapped (Figure 1.1). Visually, land cover and invasion appear to be correlated, with agricultural 

(Figure 1.1.B) or urban (Figure 1.1.C) dominated landscapes more commonly associated with 

invasion than forested and wetland classes (Figure 1.1.A). 

 Previous studies have shown that higher nutrient concentrations may enhance the success 

of plant invasions (Knops et al. 1999; Lougheed et al. 2001; Elgersma et al. 2017; Goldberg et al. 

2017; Uddin et al. 2018). To assess the relationship between nutrients and invasion within the 

Great Lakes, we use recent work that estimates the input of nutrients across the landscape: 

Spatially Explicit Nutrient Source Estimate Map (SENSEmap, Hamlin et al. 2020). SENSEmap 

uses GIS, remote sensing, and county-level datasets to describe the distribution of seven nitrogen 

sources and six phosphorus sources across the USGLB landscape at 30 m resolution. The sources 

include atmospheric deposition, septic systems, chemical non-agricultural fertilizer, chemical 

agricultural fertilizer, manure, nitrogen fixation from legumes, and point sources (Figure 1.2). 
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Figure 1.2. SENSEMap nutrient non-point sources. SENSEmap total non-point source maps 

for a) nitrogen, and b) phosphorus (modified from Hamlin et al. 2020). The color scale is divided 

into quantiles of input rates. Note, these maps exclude point sources, which are applied as a 

separate mass flux to streams rather than to the landscape. 

In addition to these key datasets, we used LULC, slope, imperviousness, and hydraulic 

conductivity data. The regional LULC data comes from the National Landcover Database 

(NLCD 2011), a 30 meter resolution dataset, and was utilized with simplified Anderson Level 1 

classes: forest, agriculture, urban, range, water, wetland, barren, and unclassified (Anderson et al. 

1976). The imperviousness dataset is also an NLCD product, with percent impervious values for 

each cell. We calculated percent slope from the 1 arc-second National Elevation Database (NED 

2012), roughly a 10 m resolution product.  



10 

 

Finally, we calculated vertical hydraulic conductivity for the first 25 centimeters of the 

soil profile at a 30 m resolution in a three step process. First, we computed %sand and %clay 

textures from the Gridded Soil Survey Geographic Database (gSSURGO 2016), along with 

tabular data from the SSURGO database (SSURGO 2016). To estimate textural values for those 

horizons missing data, we then classified all text descriptors into one of the 13 USDA soil 

textural classes, and used the midpoints %sand, %clay values of each used these classes. Second, 

we used these %sand and %clay values to lookup hydraulic properties for all horizons from the 

ROSETTA database (Rosetta Lite version 1.1; Schaap et al. 2001). Third, we combined horizons 

for each component of soil mapping units into four standard horizons with bottoms at 25, 50, 

100, and 200 cm. For vertical saturated conductivity, we computed the harmonic average of all 

original horizons within the standard horizons. These standard horizons for each component 

were then averaged across each mapping unit, weighting by the individual component fractions. 

1.3.3 Spatial Methods 

 Our spatial methodology consisted of quantifying the invaded proportion of coastal 

wetlands within distinct shoreline segments, and computing landscape characteristics within 

watersheds that relate to those segments. To understand the connections between the landscape 

and coastal wetlands, we applied three spatial analyses: 1) we divided the US GLB coastline into 

distinct, continuous segments, 2) we assessed several buffer widths to best quantify coastal 

wetlands for this study, and 3) we computed four zones of influence to better understand the 

origin of the source waters and the scale of landscape characteristics that best relate to coastal 

wetland invasion. 

 First, we divided the 7807 km coastline into 737 segments based on a modified method 

from Danz et al. (2007). This approach develops unique coastline segments along the USGLB 
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via a two step process: 1) identify the mouth of each 2nd-or-higher order stream (NHDPlusV2 

2012) along the coastline of interest, and 2) create segments inclusive of each stream outlet 

point, separated at the midpoint between adjacent outlets. Hollenhorst et al. (2007) used a similar 

technique to delineate watersheds. Here, we apply this method, but modify the technique used to 

separate adjacent segments. After identifying all outlet locations, we compute watersheds for 

each outlet, using the fill-flow direction-flow accumulation-snap points-watershed workflow in 

ArcGIS. We then calculated Voronoi polygons from the watersheds (using the nibble function in 

Arc 10.4.1), and intersected them with the coastline. Voronoi polygons are created by 

partitioning an area into convex hull parcels, based on proximity to a given point. In this case, we 

partitioned the land not currently included in a watershed via this method. This associates each 

coastline section with the nearest watershed drainage basin, rather than the nearest outlet point as 

in Danz et al. (2007).  

Following segmentation of the coastline, the next steps were to determine which wetlands 

would be considered coastal and to quantify invasion within those wetlands. While there are a 

variety of different classifications for coastal wetlands (USDA 2018), we opted for the 

straightforward approach of including all wetlands within a buffer distance from the coastline. 

Ecological arguments could be cast for a variety of different buffer widths, so we opted not to 

select a single width a priori and generated a series of buffer widths to quantify coastline 

invasion. We selected a sequence of successively larger multiples of our native LULC data 

resolution to serve as buffered coastline widths: two-way buffers of 60, 120, 240, and 480 m. 

Within each coastline segment, and for each buffer width, we then computed the invaded 

proportion of coastal wetlands using the Bourgeau-Chavez et al. (2015) data:  

  𝐼𝑛𝑣𝑎𝑑𝑒𝑑 𝑃𝑜𝑟𝑡𝑖𝑜𝑛 =
(𝐴𝑟𝑒𝑎 𝑜𝑓 𝑃ℎ𝑟𝑎𝑔𝑚𝑖𝑡𝑒𝑠)+(𝐴𝑟𝑒𝑎 𝑜𝑓 𝑇𝑦𝑝ℎ𝑎)

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑡𝑙𝑎𝑛𝑑 𝐴𝑟𝑒𝑎
   (Eq. 1.1) 
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When calculating the invaded wetland proportion, it is important to note that the native species 

of Typha and Phragmites are not distinguished from the much more prevalent invasive forms. In 

this study, we feel confident that this has a negligible effect on our results, given that the natives 

are much less common in this region and they do not form the dense monocultures measured 

through the imagery analyzed in this study. This is supported by data collected from 1751 field 

sites by Bourgeau-Chavez et al. (2013), which used multi-level ground truthing to ensure 

accurate characterization of wetland plants. A final best-fit coastal buffer width was then selected 

based on the CART analysis results, as described below. 

Based on the aforementioned coastal wetland water sources, we identified three distinct 

zones of influence that may be linked to coastal wetland invasion: 1) the land draining directly 

via groundwater, overland flow, or first order streams to the coastline (hereafter “direct zone”), 

2) the riparian lands lining the stream network of the 2nd-or-higher order stream associated with 

each coastline segment (hereafter “riparian zone”), and 3) the complete watershed draining to the 

outlet point of each 2nd-or-higher order stream network (hereafter “stream watershed”). Also, a 

fourth zone incorporating all three areas was computed, effectively as a union of the direct zone 

and stream watershed (hereafter “full watershed”). Watersheds for the full and stream scales had 

been generated previously as part of the coastline segmentation process: the stream watershed 

being the land area draining to each stream mouth, and the full watershed being the land area 

nearest to each stream watershed. We then computed the direct zone as the exclusive union of 

the full and stream watersheds. Finally, we created a 60 m two-sided buffer (i.e. 120 meters total 

width) of the stream network and intersected that with the stream watersheds to create our 

riparian zones. Figure 1.3 shows how these four zones of influence might appear on an idealized 

landscape. 
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Figure 1.3. Coastal wetland zones of influence. This diagram shows a generic coastline 

segment and its associated zones of influence. The yellow band represents the wetland segment 

of interest. The entirety of the dark green shading is the associated full watershed, while the cross 

hatching represents the stream watershed, and the dots the direct zone. The riparian zone is 

shown as the blue buffer surrounding the corresponding stream. 
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From these zones, we extracted landscape characteristic variables to serve as the driver 

variables in our statistical analyses. The driver variables for this study include: nitrogen and 

phosphorus landscape inputs, proportion of LULC types, soil hydraulic conductivity, slope, and 

imperviousness. Each of these variables was summarized for all four zones of influence (full, 

stream, direct, and riparian). We considered different summary statistics depending on the data 

type. Numerical data were summarized by the mean value within each watershed (Table 1). 

Categorical data, such as LULC, were summarized by the percent of total area within each zone. 

Additional variables, such as nitrogen and phosphorus ratios and total wetland area within a 

segment, were also included. Through this process, 65 driver variables were input into the 

statistical analysis (summarized in Table A.1.2). 

Table 1.1. Summary of driver variables.  The main driver variables, how they are summarized, 

and the data source are displayed. For more detail and summary statistics, see Table A.1.2. 
 

Variable Spatial Analysis Source 

N and P Inputs Means, Ratios SENSEmap1 

LULC % Total Area NLCD2 

Hydraulic Conductivity Mean SSURGO3 

Slope Mean NED4 

Imperviousness Mean NLCD2 

           1 (Hamlin et al. 2020); 2 (NLCD 2011); 3 (SSURGO, USDA); 4 (NED 2014) 

1.3.4 Statistical Methods  

We used two tree-based classification and regression methods to statistically link 

landscape scale variables to invasion percentages within the coastline segments: Classification 

and Regression Trees (CART), and Boosted Regression Trees (BRT). These methods are 

particularly well suited to analyze complex ecological data because they are robust to many 

predictor types, and are able to consider hundreds of driver variables in relation to a single 
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dependent variable (Breiman et al. 1984). In addition, they have low susceptibility to overfitting, 

and where there is the potential for such statistical error, the methods have corrections, such as 

pruning or stopping criterion (De’ath & Fabricius 2000). Additionally, the methods are non-

linear and can consider the variables in relation to each other as well as to the dependent variable 

(Breiman et al. 1984). Finally, they do not assume normality of predictor variables, nor are they 

susceptible to outliers, allowing data to be used without the need to transform the values (Sutton 

2005). Using the two methods in conjunction can improve predictive power and understanding 

(Erdal & Karakurt 2013). 

CART explains variations within a response variable based on recursive binary splits in 

multiple drivers (De’ath & Fabricius 2000). The response variable in this case is invasion 

proportion, defined in Equation 1. CART operates by splitting data into two mutually exclusive 

groups, based on a driver variable value that accounts for the most variation within each group 

(King et al. 2007). The method seeks to account for the most variance within the response 

variables, without creating too large of a tree. In this study, CART was used to compare each 

segment’s invaded proportion with associated driver variables, and identified those with the 

highest explanatory power. These relationships act as splits that create subgroups of segments 

and form a decision tree.  

CART assumes that the response variable is normally distributed. Here, our response 

variable is invasion proportion, and is highly skewed to the left, as most segments have a 

relatively low invasion proportion. We thus applied a logit transformation to the invasion 

proportion values of the form  

𝑥′ =  𝑙𝑜𝑔((𝑥 + 𝜖)/(1 − 𝑥 + 𝜖))   (Eq. 1.2) 

where x is invasion proportion in each segment, and ϵ is a small value used to assure that 
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transformed values would remain non-infinite. To select ϵ, we used the smallest non-zero value 

of invasion proportion (0.001). The logit transformation was selected because it supersedes the 

outdated arcsine method that was commonly used in ecological studies (Douglas & Matthews 

1992; Passy 2007). Specifically, logit accounts for additional unexplained variation that a typical 

logistic method may miss (Warton & Hui 2011). As CART does not assume independent 

variable normality, these variables were left untransformed. 

A regression tree was created for each of the four buffered segment widths. Each tree was 

created with 10-fold cross validation, allowing the data to be used for both training and 

validation to create a thorough and consistent tree. Each tree grew until the nodes explained less 

than 1% of the variation. We then selected the buffer scale with the highest overall CART model 

performance, as an indicator of the extent of coastal wetlands most linked to landscape inputs 

from the adjacent watersheds. 

To reduce the tendency of CART to overfit the data, we pruned the original tree by 

removing insignificant portions that provide little explanatory power (De’ath 2002; 

Verhougstraete et al. 2015). We utilized a pruning step based on subsequent variation explained. 

All splits that did not account for at least 3% of the variation were pruned, resulting in a smaller, 

more parsimonious tree. Our pruned tree still accounted for the majority of the variation 

(hereafter, “variation explained”; VE). VE quantifies the amount of variance within the 

relationships that the tree explains, similar to a traditional coefficient of determination (R2) for a 

linear model. CART computes a split-specific VE, which are then summed down the tree to 

compute the overall VE. This VE metric was then used to select our best-fit coastline segment 

buffer width i.e. that most correlated to our landscape drivers. 

While CART selects only a single driver variable at each node of the tree, it computes 
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splits for all driver variables, some of which may have VE values nearly as high as the best 

variable. These alternate splits can be grouped into two categories: surrogates or competitors. A 

surrogate is a variable that splits the response variable into two very similar groups to that of the 

primary splitter (Martin et al. 2011). Thus a surrogate would split the group in a very similar 

way, but account for slightly less variation. On the other hand, a competitor variable accounts for 

nearly the same amount of variation as the primary splitter, but splits the response variable group 

in an entirely different manner. Both alternatives can be used to examine what the underlying 

processes of a system may be. 

Boosted regression trees (BRT) were also used to further verify the findings of CART. 

BRT combines regression trees and a boosting algorithm that incorporates several models to 

improve the predictive power of the analysis (Quinlan 1996; Friedman et al. 2000). The final 

non-parametric model involves a cumulative regression that is created as the analysis recursively 

generates trees and calculates residuals (Elith et al. 2008). The major benefits of this method are 

that they can represent complicated nonlinear relationships, and can help interpret interactions 

between driver variables (Elith et al. 2008). Driver variables are ranked based on their relative 

influence rating (RIR), which describes how strongly they affect the invasion percent. The RIR 

values assigned add up to 100%, so they provide a proportional measure of driver variable 

importance. For this study, we iterated the regression over 1000 trees and required a minimum of 

fifteen observations per node.  

We use partial dependence plots (PDP) to analyze relationships that BRT identified. The 

plots show the marginal effect that a variable has on the output of a machine learning model 

(Friedman 2000). The dependent variable is plotted against various driver variables to assess a 

relationship. If the PDP line increases abruptly, it indicates a strong relationship between the two 
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variables. The point at which it increases considerably can be identified as an important 

threshold within the system. If the PDP line has many steps and plateaus, there is likely a more 

complex relationship between the two variables. This could indicate that other variables have 

stronger relationships, or that there are multiple thresholds within that pairing. 

1.4. Results 

1.4.1 Coastline Segmentation, Invasion, and Zones of Influence 

The USGLB coastline was divided into 737 distinct coastline segments using the methods 

described above. The segments themselves varied in length, but had a median value of 5166 

meters (Figure A.1.1). If segments were greater than this median length, it was due to a lack of 

other stream outlets in the area.  

After calculating invasion percentage within each segment for our four potential buffer 

widths (60, 120, 240, and 480 meters, two-sided), we selected the 240 m buffer width for the 

remaining analyses. The CART model using the 240 m buffer width invasion percentages had 

the greatest explanatory power before pruning, with 76.6% VE, while the other widths, 60, 120, 

and 480 meters had 68.0%, 71.8%, and 70.8% VE respectively. Overall, each buffer width 

produced relatively similar trees, however we determined that the 240 m width (one-sided, for a 

total two-sided width of 480 m) was the most appropriate, given that it accounted for 4.8% more 

of the variability than the model with the next best VE, and 8.6% more variation than the lowest 

performing buffer model. 

The amount of invasion along the shore varies across the basin, as shown in a map of 

invasion percentage within coastline segments (Figure 1.4.A). There are a considerable number 

of low invasion segments, approximately 330 have less than 10% invasion (Figure 1.4.B). In 

contrast, there are only 75 segments with > 50% invasion. While positive ecologically, this 
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significantly skewed dataset required transformation for further analysis. We implemented the 

logit transform, which created a much more normal distribution (Figure 1.4.B&C). Note that 0% 

invasion values (represented in the logit transform by the addition of the least significant non-

zero value) fall well outside a normal distribution, but following the logit transformation, are 

significantly separated from other non-zero data values.  

 

Figure 1.4. Coastal wetland invasion distribution. a. Map of the non-transformed invasion 

percentages within buffer segments. Warmer colors indicate higher invasion, cooler colors 

indicate lesser invasion. Typically, invasion is significantly higher in the southern portion of the 

basin. Panel b shows the original invasion distribution, while panel c shows the logit transformed 

invasion distribution. Note that while the distribution in panel b is shown in percentages, the 

logit transformation was conducted on proportion values. 

Spatially, low invasion percentages are congregated primarily in the northern portion of 

the basin, whereas high invasion percentages are concentrated near agricultural or urban centers. 

This emulates what we observed in the coastal LULC map. Coastal land cover across the 
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northern low-invasion portion of the basin is forested (Figure 1.1A). In the agricultural inset 

(Figure 1.1B), there is a thick monoculture of Phragmites along the shoreline. In the urban inset 

(Figure 1.1C), there are monocultures of both Phragmites and Typha. Though invasion seems to 

correspond well with land use, a linear correlation does not indicate a strong relationship. The 

highest R2 between land cover and invasion within the buffered segments was 0.36 and occurred 

between percent forest and percent invasion. This indicates that a purely linear model cannot 

capture the relationship that is evident visually.  

Watersheds corresponding to each segment varied in scale and area. As shown in Figure 

1.3, for each segment, four zones were created: full, stream, direct, and riparian. Based on the 

method of derivation, the riparian zones were the smallest, 1,210 ha on average, while the full 

watersheds were the largest, 39,000 ha on average (Table A.1.2). The stream watersheds are 

usually more similar in size to the full watershed, while the direct zones tend to be smaller. Area 

histograms of the four zones are shown in Figure A.1.1. 

For each zone of influence, we extracted spatial summaries of each landscape driver 

variable. The maximum hydraulic conductivity was 0.0001 m/s, found within a direct zone. 

Some watersheds were entirely encompassed by one land cover. Typically, this occurred with 

either forest or urban cover. Within the four zones of influence, the average nitrogen input 

ranged from 262.3 (riparian) to 423.3 kg/ha/yr (stream). The average phosphorus input ranged 

from 30.1 (riparian) to 50.5 kg/ha/yr (stream). The slope of the watersheds was rather flat, with 

only 3.65% average slope. These summary statistics and more are further described in Table 

A.1.2. 

1.4.2 Model Results 

The fully-grown CART tree (Figure A.1.2) explained 76.6% of the variation of coastal 
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wetland invasion within the 240 m buffer; after pruning, the final tree had 67.2% VE (Figure 

1.5). While the full tree had 11 splits, following pruning, just four splits remained (those with 

individual VE > 3%): mean nitrogen input in the full watershed (55% VE), mean slope in the 

direct zone (4.4% VE), forest portion within the full watershed (4.3% VE), and mean phosphorus 

input in the stream watershed (3.5% VE). While CART was ran with logit-transformed invasion 

proportions, for clarity, we present the values as non-transformed invasion proportions.  

 

Figure 1.5. Pruned CART tree. CART showing the primary explanatory variables that are 

linked to invasion. The least invasion is on the left (blue group), while most invasion is on the 

right (red group). Five invasion groups were identified: 1) red - high invasion, 2) orange - mid-

high invasion, 3) yellow - mid invasion, 4) green - mid-low invasion, and 5) blue - low invasion. 

The abbreviation “inv.” of invasion is used due to space constraints. µ indicates average 

invasion. 

The pruned tree contained five terminal nodes of segment groups with similar invasion 

properties: (group 1) high invasion, (group 2) mid-high invasion, (group 3) mid invasion, (group 

4) mid-low invasion, and (group 5) low invasion (Figure 1.5). The high invasion group (shown in 
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red, 35.4% invasion in 292 segments) has high nitrogen inputs and low forest area in the full 

watershed. The mid-high invasion group (shown in orange, 16.3% invasion in 212 segments) has 

high nitrogen inputs, but high forest area in the full watershed. The mid invasion node (shown in 

yellow, 5.1% invasion in 80 segments) has low nitrogen inputs and low slope in the full 

watershed and direct zone, respectively. The mid-low invasion group (shown in green, 3.7% 

invasion in 38 segments) has low nitrogen in the full watershed, high slope in the direct zone, 

and high phosphorus in the stream watershed. Finally, the low invasion group (shown in blue, 

0.42% invasion in 115 segments) has low nitrogen inputs in the full watershed, high slope in the 

direct zone, and low phosphorus in the stream watershed. The invasion groups are shown 

spatially in Figure 1.6. 

Boosted Regression Trees (BRT) were also used to assess relationships between invasion 

and the driver variables. The results from this analysis reinforced those from the CART analysis. 

We found that the mean nitrogen input in the full watershed had the highest relative influence 

rating (RIR) (21.2), followed by nitrogen inputs within the direct zone (RIR 12.7) (see Table 

A.1.4 for all RIRs). The relationship between phosphorus and invasion identified in the CART 

analysis was also noted by BRT. Based on a partial dependence plot (Figure 1.7.B, shown in log 

scale) of phosphorus inputs in the direct zone (RIR 11.7), even very small phosphorus inputs 

correlated to a considerable amount of invasion. Other characteristics were also verified through 

BRT. When the forested area falls below 25%, invasion was significantly higher (Figure 1.7.C). 

The portion of forested area within the full watershed was relevant in CART and was also 

considered influential (RIR 2.3) by BRT. Similarly, steeper slopes in the direct zone (RIR 3.76) 

typically results in lower levels of invasion (Figure 1.7.D), which was also true per CART. 
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1.5. Discussion 

1.5.1 CART Analysis 

Landscape factors were able to describe more than two-thirds of the variation in coastline 

wetland invasion (67.2% for the pruned tree, and 76.6% for the full-grown tree). The pruned 

classification and regression tree (CART) identified five groups: group 1 – high invasion, group 

2 – mid-high invasion, group 3 – mid invasion, group 4 – mid-low invasion, and group 5 – low 

invasion (Figure 1.5). The composition of these groups reveals four primary findings: 1) nitrogen 

inputs greater than 117.8 kg/ha/yr within the full watershed are strongly correlated with higher 

wetland invasion; 2) low forest cover within the full watershed is linked with higher invasion; 3) 

high slopes within the direct zone (the contributing area closest to the coast) is related to lower 

invasion, and; 4) phosphorus inputs greater than 2.8 kg/ha/yr within the stream watershed (the 

watershed of the river mouth of each coastal segment) are also correlated with higher wetland 

invasion.  

First, wetland segments with greater than 117.8 kg/ha/yr of nitrogen inputs to the 

landscape had higher wetland invasion by Typha and Phragmites. This split alone explained 

more than half of the variation in coastal wetland invasion, with 55% VE. This positive 

correlation between nitrogen inputs and invasion is supported by observational studies (Tuchman 

et al. 2009), experimental studies (Woo & Zedler 2002) and ecosystem modeling work in the 

Great Lakes (Goldberg et al. 2017; Martina et al. 2016), further supporting a linkage between 

nitrogen and invasion. These authors showed that greater nitrogen influxes to wetlands correlated 

with both higher net primary productivity and more complete invasion of non-native Typha and 

Phragmites. They identified a tipping point at ~10 mg-N/m2/yr of nitrogen influxes, above 

which Typha and Phragmites were able to completely invade established native ecosystems. 
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While not directly comparable to our value here (they were simulating nitrogen inflows to 

wetlands vs. our nitrogen inputs to the landscape), it is worth noting that this value is similar to 

the threshold we identified here (10 mg-N/m2/yr = 100 kg/ha/yr). Identifying thresholds of key 

nutrients provides a novel predictor for land management; establishing what fluxes of nutrients 

allow for invasion most commonly can assist in preventing future invasion, and establishing a 

potential cause of current invasion. Further work will be required to better understand how 

landscape inputs eventually translate to wetland influxes. 

Analysis of the competitor splits for this first node revealed that nitrogen inputs within 

the direct zone and stream watershed have nearly as high of VE, 52.8% and 52.1% respectively, 

and split on similar thresholds of nitrogen inputs. This agreement between competitors supports 

that nitrogen inputs are the key variable affecting percent invasion; had other variables appeared 

as similar-strength competitors, confidence in the primary variable would fall. Furthermore, the 

similar VE across the three zones of influence reinforces that nitrogen is important no matter 

where it is being applied. Interestingly, phosphorus input (at 7.5 kg/ha/yr) within the full 

watershed was a surrogate driver at the first node, and the resultant groups from this surrogate 

splitter are in 98% agreement with those produced by the primary split. The surrogate 

relationship indicates that both nitrogen and phosphorus may play an important role in 

identifying where coastal wetlands are at higher risk of invasion, a novel finding in that 

phosphorus has not historically been considered as important to plant invasion. 

Second, lower forest cover (<26.6%) within the full watershed is linked to higher 

invasion within coastal wetlands. This may be due to several factors, such as: forested areas are 

typically less anthropogenically influenced, and thus less disturbed; forested areas have lower 

nutrient inputs, and; forested areas may serve as a nutrient uptake buffer for wetlands. Invasive 
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plants have been found to thrive in disturbed ecosystems, per Rapport and Whitford’s 1999 study 

of Lakes Erie and Ontario, whereas higher percentages of forest cover throughout the entire GLB 

is more commonly associated with lower coastal invasion (Danz et al. 2007). This finding 

supports the idea that watersheds that are less anthropogenically influenced may create less 

optimal environments for invasion. The surrogate splits also support the linkage between 

disturbed landscapes and invasion. One of the most similar surrogate splits (81% agreement) was 

the percent of agricultural cover within the full watershed, which is expected as agriculture and 

forest are the two most common land covers in this region, thus an increase in one is largely 

offset by a decrease in the other. Using the surrogate split causes the factors to behave 

oppositely; rather than being defined by low forest, the highest invasion group (shown in red, 

Figure 1.4) would have been defined by high (greater than 44.4%) agricultural land. This further 

supports that land cover is important to invasion, in that low forest cover, or high agriculture 

cover, is associated with higher invasion within associated coastal wetlands.  

Third, we found that high slope (>2.6%) within the direct zone, the area nearest the coast, 

was related to lower invaded wetland proportion. A steeper shoreline may act to reduce the 

amount of habitat available for invasion when lake levels rise or fall, thus reducing the 

disturbance of coastal wetlands due to lake level variability. Lake level fluctuations have been 

shown to be an important factor affecting when and how invasive plants are able to grow and 

push out native species (Tulbure et al. 2010; Wilcox 2012). While we did not include 

fluctuations in water levels as a variable in this study, considering the fluctuations’ temporal 

nature and our study’s spatial emphasis, our variable of slope is indirectly related to water level 

changes. Steep slopes along the shoreline would expose less invadable lake bed as water levels 

fell, but gently sloping lake beds would become exposed to a greater degree when water levels 



26 

 

fell by the same amount, providing considerable invadable area. It is also possible that slope is 

acting as a proxy for an underlying variable. The percentage of wetland and the percentage of 

forest within the direct zone were surrogate splits, each resulting in approximately 80% 

agreement. Higher forest cover is correlated with lower invasion, while higher wetland cover is 

linked to greater invasion. This analysis cannot distinguish whether slope is a causal factor (i.e. 

reducing disturbance) or merely sharing a spatial pattern with wetland and forest cover--or 

whether both causation and correlation are at work here (likely the case).  

Finally, our CART analysis showed that phosphorus inputs above 2.8 kg/ha/yr within the 

stream watershed also appear to be related to higher levels of plant invasions. Others have found 

that phosphorus is associated with invasion (Hester & Hobbs 1992; Uddin et al. 2018), and is 

often considered a limiting nutrient in freshwaters, especially when paired with nitrogen 

(Schindler 1977; Correll 1999; Elser et al. 2007). Our findings reinforce this principle of co-

limitation of phosphorus and nitrogen; only at low nitrogen levels did phosphorus appear to limit 

wetland invasion. The driver variable selected for this split was defined at the stream scale, 

perhaps implying that phosphorus in wetlands is primarily sourced from surface water, while the 

first node split of nitrogen at the full watershed may indicate a more diffuse contribution via 

groundwater. This replicates the expected transport mechanisms of phosphorus and nitrogen, via 

surface water and groundwater, respectively. Additionally, the nutrients are being sourced from 

the two largest spatial scales, and the fact that these broader spatial scales are impacting the 

coastal wetlands, indicates considerable landscape connectivity. The primary surrogate for this 

node is N:P ratios within the stream watershed, which has over 97% agreement - a result that 

also supports nutrient co-limitation as playing a role here. This final split shows that segments 

associated with low nitrogen and low phosphorus incur lower average invasion (0.42%, shown in 



27 

 

blue, Figure 1.5). While low nitrogen, but high phosphorus inputs (shown in green, Figure 1.5), 

result in higher average invasion (3.7%). Both the surrogate split and the N:P proxy we observed 

in the tree support the expected relationship that lower ratios (higher phosphorus) will likely 

result in more invasion within the Great Lakes Basin (Lougheed et al. 2001). Additional 

surrogate and competitor information is summarized in Table A.1.3. 

While we did identify four primary variables that relate to wetland invasion, there is 

some level of overlap between them. For example, more forested land contributes fewer nutrients 

to the landscape, which would then encompass three of our four primary splitting variables. 

There is some lack of independence between the variables, but CART mitigates the impact of 

this interdependence with its tree structure. For example, high forest cover relating to lower 

wetland invasion was only considered important within the group of segments that already had a 

lower amount of nitrogen within their full watersheds. Thus, rather than interdependence 

weakening our findings, the fact that these variables build upon each other creates a stronger case 

to identify nutrients and intensively managed land covers as driving forces behind coastal 

wetland invasion. 
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Figure 1.6. Spatial distribution of invasion groups. The USGLB with each full watershed 

colored based on the invasion group of its corresponding segment. Inset in the top right: stacked 

bar chart showing the percent of each Great Lake’s shoreline that is characterized by each 

invasion group. Percentages were calculated from Erie’s 119 segments, Huron’s 149 segments, 

Michigan’s 156 segments, Ontario’s 86 segments, and Superior’s 227 segments. Below, 

histograms that show the (non logit-transformed) distribution of invasion percentage amongst the 

segments that fall into each group. The titles of each subplot indicate the mean invasion percent 

of that group. Note the vertical axes scales differ. 

Each invasion group has a different statistical distribution of invasion amongst its 

segments (Figure 1.6). CART is designed to minimize the variance within the response variable 

(invasion proportion), thus the higher the total VE of the model, the less variation we would 

expect to see within each group. Invasion group 1 has a nearly normal distribution across the 

entire range of invasion percentages, indicating that while as a group these segments have a high 
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average invasion, individually they may be relatively uninvaded. Even the unpruned tree (Figure 

A.1.2) does not split this group further. Thus, the variance within this group may be explained by 

driver variables not included in the analysis. Invasion groups 2-5 have increasingly left skewed 

distributions, showing that a higher proportion of low invasion segments are included in each 

progressive group. Down the invasion group gradient, the range becomes more condensed, 

concluding with a range of only 0% to 15% invasion within group 5. As is expected, the mid-low 

and low invasion groups have more low and zero percent invasion segments than the other 

groups. In most cases, the segments with invasion proportions that do not entirely align with the 

distribution were very close to being selected into a higher group, but fell slightly below or 

above the CART-selected splitting value. Analyzing the statistical distribution of each CART 

node reveals that each group represents a specific category of invasion, but includes individual 

segments that may vary from the group average.  

Spatially, the invasion groups mapped onto the corresponding full watershed for each 

segment provide insight about regions where invasive species are a pressing issue (Figure 1.6). 

Within the Great Lakes Basin, the wetlands south of the 45th parallel are predominantly 

classified as high and mid-high invasion. In the northern portion of the basin, heavy invasion is 

much less common. Not only are there differences across latitudes, but the shoreline of each lake 

is composed of different invasion groups. The entire US shoreline of Lakes Erie and Ontario 

have very similar compositions with all areas in the high and mid-high invasion groups, but vary 

slightly on the frequency of each group. Lakes Huron and Michigan also have a similar 

distribution, but include a small percentage of mid to mid-low invasion. The shorelines of all 

four of these lakes are dominated by invasion. Lake Superior is unlike the other four Great 

Lakes. Its shoreline has much less invaded area, with 50.7% low invasion, 15.9% mid-low 
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invasion, 21.1% mid invasion, and only 12.3% mid-high to high invasion area. Considering that 

Superior’s segments were defined so differently, we ran an iteration of CART with only Lakes 

Michigan, Huron, Erie and Ontario. The tree resulted in very similar findings, but identified 

phosphorus in the full watershed as the first split, which was the primary surrogate for nitrogen 

in the full watershed in the CART from the entire basin. This may indicate that phosphorus plays 

a different role in different regions. 

1.5.2 BRT Analysis 

Boosted Regression Trees (BRT) reinforced the findings from the CART analysis. We 

found that the mean nitrogen input in the full watershed had the highest relative influence rating 

(RIR), followed by nitrogen inputs within the direct zone. The fact that both nitrogen input 

metrics were considered most influential shows how strongly correlated nitrogen landscape 

inputs are to wetland invasion. Additionally, the sources from full watershed and direct zone are 

also significant. The full watershed is intended to capture groundwater influences from a large 

spatial area, while the direct zone represents the near shore drivers. The fact that both zones of 

influence are considered significant indicates that nitrogen is likely contributed by both the larger 

region and local groundwater. Furthermore, the full watershed encompasses the direct zone, 

perhaps further indicating the importance of near shore inputs in addition to those sourced from 

adjacent streams. When shown in a partial dependence plot (hereafter PDP, Figure 1.7.A, shown 

in log scale), it is evident that as nitrogen inputs increase there is a concomitant increase in 

percent invasion. There is a noticeable threshold near 100 kg/ha/yr nitrogen input, which 

supports the threshold of 118 kg/ha/yr defined by CART, and agrees with Martina et al. (2016). 

The sharp rise in the PDP indicates the strong relationship between nitrogen and invasion. This 

strong break is indicative of a tipping point for invasion within wetland ecosystems. A more 
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smoothly increasing line would instead support a more linear relationship, or the presence of 

other complex relationships in determining wetland invasion proportion. 

 

Figure 1.7. Partial dependence plots. Partial dependence plots for a. log10 of the mean 

nitrogen inputs within the full watershed, b. log10 of the mean phosphorus inputs within the 

direct zone, c. forest proportion within the full watershed, and d. mean slope within the direct 

zone. Note that the x-axis of plots A and B are in log scale. 

Both CART and BRT identified phosphorus as a substantial driver of Typha and 

Phragmites invasion, though at different scales: stream watershed and direct zone, respectively. 

The stream watershed indicates surface water and the direct zone likely captures direct runoff. 

The fact that phosphorus applications were specifically found to be important at the stream and 

direct scales, indicates that this nutrient is likely sourced primarily from the surface. 
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Through both analyses, nitrogen in the full watershed, phosphorus in surface water 

scales, forest cover in the full watershed, and slope in the direct zone were identified as key 

variables related to invasion. This consistency, and the fact that the values that were identified 

were very similar in both analyses, we feel confident that the analyses are identifying the 

important factors that affect invasion within coastal wetlands. 

1.6. Conclusions 

We identified linkages between landscape scale variables and coastal wetland invasion in 

the Laurentian Great Lakes, one of the most important freshwater systems in the world. Through 

this study, we found that high nitrogen inputs within a segment’s watershed had the most 

significant relationship to percent invasion in the coastal wetlands. Wetlands along coastline 

segments with landscape nitrogen input levels above 118 kg/ha/yr were an average of 25% more 

invaded by Phragmites australis and Typha x glauca. We also found that low forest cover, low 

slope in coastal areas, and phosphorus inputs greater than 2.8 kg/ha/yr tended to be related to 

wetlands with higher invasion. Insights were also gained about N:P ratios in these ecosystems, 

and the potential linkage of nutrient co-limitation. Within the decision tree, phosphorus inputs 

were only considered a significant influence on segments that already had low nitrogen inputs 

associated with them, but phosphorus inputs could also act as a surrogate for nitrogen in the 

initial model tree split. This shows that phosphorus may promote invasion when nitrogen levels 

are either high or low, and should be considered important in managing for invasion. Invasion 

was lowest within the northern part of the US Great Lakes Basin, specifically along the Lake 

Superior shoreline. This is likely due to much less anthropogenically disturbed area in this basin, 

and therefore lower nutrient inputs, relative to the other Great Lakes. Importantly, we identify a 

threshold of nitrogen and phosphorus inputs where wetland invasion by Phragmites and Typha is 



33 

 

more prevalent. Establishing that both of these invaders are more likely to dominate where inputs 

of nitrogen are greater than 117.8 kg/ha/yr and inputs of phosphorus are greater than 2.8 kg/ha/yr 

provides important insight for wetland management.  

 Both CART and BRT were used to quantify how landscape drivers relate to coastal 

wetland invasion. CART was used as the primary analysis, which helped develop a preliminary 

understanding of relationships between variables. The decision tree clearly identifies nitrogen 

inputs as being strongly related to invasion, alone explaining over half of the variation in the 

dataset. BRT offered a more detailed, conformational analysis with continuous outputs closer to 

that of a predictive model, and provided specific insights into each driver variable through 

variable relative influence scores. The results of both methods were consistent, reinforcing our 

findings. 

Uncertainties in our driver variables may affect some of the finer details of the model 

outcomes. However, we assert that the findings are robust due to the large spatial extent of this 

study. The region includes many different watersheds corresponding to segments with similar 

ranges of invasion across the study domain (Figure 1.5). This provides the statistical power to 

average out random sources of error in the landscape variables. Given the nature of the 

SENSEmap dataset, we posit that random errors likely dominate the SENSEmap product, as the 

quantities of each nutrient source are in general well constrained at the county-level (Hamlin et 

al., 2020). The NLCD LULC and imperviousness datasets are well validated, with reported 

accuracies typically exceeding 85%, which is particularly true for the Great Lakes region (Homer 

et al., 2020; Wickham et al., 2017; Wickham et al., 2013). While it is difficult to assess 

accuracies of slope calculated from a DEM, accuracies of the NED elevations themselves are 

high, and in particularly are greater than for other comparable elevation products (Gesch et al., 
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2014). The availability of higher resolution data products will further improve analyses such as 

these in the future. The approach taken in this study can be readily applied to analyses of other 

wetland invaders or to invasion of other ecosystem types (i.e. forests).  

This work provides a basis for improved basin management to reduce the risk of 

shoreline invasion. By identifying areas that might be approaching the tipping point of nitrogen 

inputs, targeted mitigation practices could cause an important shift in invasion trajectory 

(Elgersma et al. 2017). Additionally, our methods could be applied to other landscapes, such as 

forests. Potential future work using this framework could focus on early or late leafing shrubs 

that would be able to be identified via remote sensing, or invasive plants that would be more 

shielded by trees could be assessed in the field and evaluated in a similar statistical manner. 

Being more aware of how the landscape affects the coastal wetlands should allow policy makers 

and managers to better regulate what occurs on a local basis. These findings can also form the 

foundation for future research that examines causal linkages between landscape factors and 

coastal invasion through process-based modeling. 
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APPENDIX A: CHAPTER 1 DATA 

Table A.1.1. Consolidated land cover classes.  Classes (Borgeau-Chavez et al. (2015)) were 

consolidated to be able to more readily visualize landscape trends throughout the Great Lakes 

Basin. Identifying spatial trends was more succinct with the consolidated classes. 

Original Classes Consolidated Classes 

Agriculture 

Agriculture Fallow 

Orchard 

Forest 

Forest Pine Plantation 

Shrub 

Wetland 

Wetland 

Schoenoplectus 

Open Peatland 

Shrub Peatland 

Treed Peatland 

Forested Wetland 

Wetland Shrub 

Water 
Water 

Aquatic Bed 

Suburban Suburban 

Urban 

Urban Urban Grass 

Urban Road 

Barren Light 
Barren 

Barren Dark 

Typha 
Invasive 

Phragmites 
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Table A.1.2. Summary statistics for each driver variable at each watershed scale.  All 

variables considered within this study are displayed. It is important to note that in many cases the 

average of the watersheds’ means is reported. 
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Table A.1.3. Each split’s competitors and surrogates.  Two of the top competitors and 

surrogates for each splitter. For competitors, a comparable variation explained (VE) is presented, 

while surrogates are compared using a percent similar metric. 

Dependent Variable 

Used as a Splitter 

(VE) 

Competitor Splits Surrogate Splits 

Variable VE  Variable 
% 

Similar 

Mean N of Full 

Watershed (55%) 

Mean N in Direct WS 52.7% Mean P in Full WS 97.7% 

Mean N in Stream WS 52.1% Mean P in Stream WS 97.0% 

Forest Portion of 

Full Watershed 

(4.3%) 

Forest Portion in Direct WS 3.4% Agricultural Portion in Full WS 81.2% 

Mean Slope in Stream WS 3.4% Agricultural Portion in Stream WS 81.0% 

Mean Slope of 

Direct Watershed 

(4.4%) 

Mean Slope in Full WS 4.1% Wetland Portion in Direct WS 80.7% 

Mean P in Direct WS 3.6% Forest Portion in Direct WS 79.4% 

Mean P of Stream 

Watershed (3.5%) 

Mean Slope in Full WS 1.5% N:P in Stream WS 97.4% 

Mean Slope in Stream WS 1.4% Mean P in Full WS 94.8% 

 

Table A.1.4. Relative influence ratings for each driver variable.  The relative influence rating 

for each of the driver variables. This ranking was created through our BRT analysis and indicates 

how closely related each independent variable is to the dependent variable.  

Dependent Variable Watershed Scale Relative Influence Rating (RIR) 

Nitrogen Inputs Full  21.1607178 

Nitrogen Inputs Direct  12.7030435 

Phosphorus Inputs Direct  11.7333573 

Slope Full  5.8083681 

Nitrogen Inputs Riparian  4.1995425 

Slope Direct  3.7640044 

Forest Area Full  2.2916149 

N:P Direct  2.2246772 

N:P Stream  2.0803444 

Forest Area Direct  1.771554 

Wetland Area Stream  1.5298538 

N:P Riparian  1.4755821 

Barren Area Full  1.3270046 

Hydraulic Conductivity Stream  1.3051357 

Total Area of  Riparian  1.2934993 

Hydraulic Conductivity Direct  1.2190856 

Wetland Area Direct  1.2039463 

Wetland Area Full  1.1475149 

Water Area Full  1.1393761 

Wetland Area Riparian  1.1382061 

Water Area Direct  0.981873 

Phosphorus Inputs Riparian  0.9757155 

Slope Riparian  0.9509606 

Hydraulic Conductivity Riparian  0.9300827 
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Table A.1.4. (cont’d) 

Barren Area Stream  0.9051524 

Nitrogen Inputs Stream  0.8962766 

Barren Area Direct  0.851227 

Imperviousness Stream  0.7833915 

Range Area Stream  0.7477695 

Urban Area Direct  0.7274759 

Urban Area Full  0.6932277 

Hydraulic Conductivity Full  0.6688577 

Forest Area Riparian  0.6324516 

Urban Area Stream  0.6161445 

Phosphorus Inputs Full  0.6161392 

Total Area of  Full  0.5294296 

Range Area Full  0.4973456 

Slope Stream  0.4777047 

Range Area Direct  0.4729667 

Water Area Riparian  0.4680059 

Imperviousness Full  0.4557592 

Forest Area Stream  0.4212617 

Range Area Riparian  0.3995427 

Total Area of  Direct  0.398036 

Water Area Stream  0.3662787 

Imperviousness Direct  0.3656044 

Agricultural Area Stream  0.3631216 

Urban Area Riparian  0.3432146 

Imperviousness Riparian  0.3168373 

Barren Area Riparian  0.2875277 

Agricultural Area Riparian  0.2458242 

Agricultural Area Full  0.2417069 

Total Area of  Stream  0.2324283 

Agricultural Area Direct  0.2121613 

Imperviousness Direct  0.1737893 

N:P Full  0.1221614 

Phosphorus Inputs Stream  0.1161182 
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Figure A.1.1. Zones of influence histograms. Histograms with outliers removed of A) segment 

length, B) stream watershed area, C) direct watershed area, D) full watershed area, and E) 

riparian watershed area. As shown in Figure S1, the distributions of segment length and 

watershed area are all skewed to the left. The majority of the values are relatively low compared 

to the maximum value, creating this distribution. The majority of the segments along the 

coastline are less than 10 km long (Figure S1A). The stream and full watersheds have similar 

distributions. 
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Figure A.1.2. Complete CART tree. Initial 240 meter buffer width CART, before it was 

pruned. The initial tree for the 240 meter buffer width (Figure S2) from CART had 12 nodes and 

explained 76.7% of the variation. The tree identified 11 driver variables that accounted for some 

of the variation in this data set. The tree included 11 splits based on the relationships between the 

driver variables and invasion, which resulted in 12 unique groups of segments. Several of these 

groups, included less than 15 segments and had low VE. This implied that the relationships were 

likely less significant and therefore could have been the result of over-explaining the trends.  
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CHAPTER 2:  
EVALUATING SEPTIC SYSTEM INFLUENCE ON NUTRIENTS WITHIN THE MANISTEE 

AND AU SABLE RIVER WATERSHEDS  

2.1. Abstract 

Septic systems are a ubiquitous means of household wastewater treatment across 

extensive areas of the United States - areas that also support prime habitat, water resources, and 

valuable recreation opportunities. To protect the ecosystem services that the riparian systems 

provide, it is important to understand the source of the water, along with factors that can threaten 

its quality. The Manistee and Au Sable Rivers, adjacent stream systems in the Lower Peninsula 

of Michigan, have significantly different human population densities along their banks, and thus 

varying septic system densities, with higher human density in the Au Sable watershed. In this 

study, we explicitly simulated groundwater flow transport of nutrients to surface waters, using 

both septic-specific and general non-point source nutrient input estimates to groundwater. We 

then used data from water samples that we collected from the two rivers for reference, to 

evaluate the nutrient inputs that could be attributed to septic systems relative to other sources 

across the region. On average, we found septic systems appear to degrade ~12% of the nitrogen 

introduced, allowing 88% to enter the groundwater. Additionally, septic systems were found to 

capture ~51% of the introduced phosphorus. 
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2.2. Introduction 

In less developed areas, nutrient inputs to groundwater and streams are different from the 

typical sources associated with nutrient loading. In areas with little agriculture or residential 

fertilizer use, atmospheric deposition and septic systems tend to be greater contributors (Hamlin 

et al. 2020). In regions dominated by forests, the nitrogen from atmospheric deposition is usually 

utilized by plants. This leaves septic systems as a major contributor of nutrients in forested, 

remote areas. Regions such as these, not only provide a relatively objective backdrop for the 

study of septic contributions, they also create an opportunity to evaluate the effects that this 

source has on river systems.  

Septic systems are domestic wastewater treatment and dispersal systems used in regions 

not connected to municipal wastewater treatment plants. Approximately 20% of households 

across the United States use a septic system (U.S. EPA, 2018). These systems are composed of 

two parts: the septic tank, which captures and settles waste, and the drainage field that allows the 

wastewater to slowly percolate through the surrounding soil. The system is intended to attenuate 

organic content, pathogens, and nutrients (Whelan et al. 1982; Beal et al. 2005). They rely solely 

on the natural biogeochemical processes that occur in soil to assimilate effluent pollutants, 

therefore making such systems challenging to control and manage, and heavily reliant on 

knowledge of the install site conditions (Beal et al. 2005). Most of the nutrient attenuation occurs 

via formation of a biomat below the drainage field that adsorbs and treats the solutes (Beal et al. 

2005). Approximately 10 to 20% of United States’ septic systems are estimated to be in a failing 

or poorly operating state (James et al. 2016). This could be higher, as failure is usually only 

reported if there is an acute water quality issue, and homeowners would rarely be cognizant of 

subsurface conditions that lead to a poorly operating system (Withers et al. 2013). 
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Though intended to attenuate nutrients, septic systems commonly only remove 21-25% of 

nitrogen; the tank itself only attenuates 1-3% (Costa et al. 2002). If a septic system is installed in 

a coarse-grained soil, total nitrogen attenuation rates can fall between 10-30% (Withers et al. 

2013). Ideally, the ammonium that enters the septic tank nitrifies into nitrate with the presence of 

oxygen, which then denitrifies into harmless atmospheric nitrogen (N2) if enough carbon or 

denitrifying bacteria are present. However, nitrogen removal is challenging due to the lack of 

consistent carbon beneath a drainage field, which is necessary for denitrification of nitrate, 

leading to high groundwater nitrate concentrations (Wilhelm et al. 1994). Even when septic 

systems do reduce nitrogen species concentrations, it is commonly due to dilution rather than 

transformation or attenuation (Walker et al. 1973; Postma et al. 1992). As a result, septic systems 

usually enrich nitrate levels in groundwater (Gill et al. 2009; Katz et al. 2011).  

In contrast, phosphorus is more effectively captured by septic systems; the drainage field 

is able to fix the majority of phosphates, based on the subsoil and its mineralogy (Jones & Lee, 

1979; Robertson & Harman, 1999; Gill et al. 2009). The range can vary widely though, between 

23-99% phosphorous attenuation depending on soil conditions (Robertson et al. 1998). Other 

studies have found that soluble reactive phosphorus (SRP) is the dominant form of phosphorus 

that travels to the subsurface via septic effluent. SRP is a bioavailable species of phosphorus, so 

it can lead to eutrophication and excessive plant growth. However, SRP can be sorbed to soils, 

which can limit its ability to be transported to surface waters (Oldfield et al. 2020).  

Several studies have been conducted on the watershed scale to evaluate the effects of 

septic systems on nutrient loads in streams. Oldfield et al. (2020) found that in stream nitrogen 

and phosphorus loads increased considerably in high flow conditions, such as spring months like 

April and May. They also found that septic systems contribute less than 2% of the instream 
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nitrogen load, and between <1-36% of the instream SRP load. Robertson et al. (2019) found that 

depending on calcareous soil content, SRP removal was between 66 and 90%. As expected, 

watersheds with greater septic system density result in higher instream nitrogen and phosphorus 

concentrations (Iverson et al., 2018). Sowah et al. (2017) found that indicators of septic impact 

on streams was more pronounced in the spring - likely tying into the greater fluxes of recharge 

and melt events within this season. The age of septic systems and their associated households can 

also affect the amount of septic inputs that make it to nearby streams. Tamang et al. 2021 found 

that aging households were associated with increased septic contributions to instream 

concentrations.  

Excessive nutrient levels within a stream can reduce the ecosystem services the stream 

can perform. Nutrients enhance the growth of invasive species, such as Phragmites and Typha 

(Goldberg et al. 2017; Hannah et al. 2020). These plants form dense monocultures that alter more 

heterogeneous habitats that local animals rely on, and out-compete native plant species (Tilman, 

1990; Angeloni et al. 2006; Geddes et al. 2014). Additionally, high nutrient concentrations can 

result in algal blooms that can be harmful to plants and animals, and limit recreation in the area. 

This poses an issue for both rivers in this study; it is especially a concern for the Au Sable River, 

which is renowned for its fly fishing. Algal blooms could make the river unpleasant to wade into 

and harm trout populations. It is thus important to ensure that these fairly pristine rivers stay that 

way, and are not irreparably damaged by nutrient loads from local septic systems. 

This study integrates fieldwork and modeling to better understand how septic tanks are 

contributing to nutrient loads within streams and groundwater. We collected samples from 32 

locations, primarily within the headwaters of the Manistee and Au Sable Rivers. The two 

systems are similar in area and land cover, but differ in density of residential properties. The Au 
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Sable watershed contains more residential properties, many of which are only seasonally 

inhabited. We developed a fully spatially explicit model for this region to simulate groundwater 

flow and evaluate how septic systems within this region are operating and sourcing nutrients. 

Our study includes watersheds with varied septic density, and accounts for seasonal differences 

as well. We separated recharge and septic nutrient inputs to better understand contributions to 

this region. By comparing two stream systems with differing levels of residency, over two 

seasons, we can better evaluate the effect that septic systems can have on nutrient levels during 

both baseflow and seasonal high flows.  

2.3. Methods 

2.3.1. Site Description 

This study examines the Au Sable and Manistee watersheds (Figure 1). The 5,400 km2 

Au Sable watershed stretches from North-Central Michigan, towards the East Coast of 

Michigan’s Lower Peninsula. The river’s headwaters are north of the City of Grayling, and it 

drains east into Lake Huron, near Oscoda. With adjoining headwaters, the 5,150 km2 Manistee 

watershed drains west into Lake Michigan. Climate within both watersheds is primarily humid 

(Koeppen-Geiger classes Dfa and Dfb, hot- and warm-summer humid continental climates, 

respectively), with four distinct seasons. The watersheds primarily consist of forested land (73% 

in the Au Sable watershed, and 71% in the Manistee), with only small areas of urban land. 

These watersheds were selected for this study for several reasons. They are of similar 

size, location, climate, and land cover, but differ in extent of anthropogenic influence. This 

provides a relatively consistent backdrop to study the effects of differing human influence. The 

Au Sable watershed has more year-round and seasonal properties (Table 2.1) along its banks, 

compared to the Manistee; this results in a denser system of septic tanks and drainage fields. 
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Given the similar non-developed land cover and use (Figure 2.1) of these two watersheds, the 

nutrient inputs to the streams will likely be differentiated primarily from septic tanks near the 

banks. These watersheds are especially valued as renowned trout streams. It is important to 

preserve the integrity of these waterways, not only for the trout’s benefit, but also for the 

recreational draw that trout fishing creates for the region. Many of the small towns in these 

watersheds rely on the influx of fishers to subsist economically. The rivers also provide other 

recreational activities, such as kayaking, canoeing, or swimming. 

 

Figure 2.1. Site map. This map shows the Manistee and Au Sable watersheds, overlain on a 

background depicting land use, with the city of Grayling noted with an A. The inset map shows 

the United States with the Lower Peninsula of Michigan, with the two watersheds colored red for 

reference. 
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2.3.2. In-Stream Nutrient Concentrations and Septic Systems 

2.3.2.1. In Stream Nutrient Concentration Measurements 

Water samples were collected from 18 sites along the Manistee River and 14 sites along 

the Au Sable River. Discharge rates for each sampling location are available in Appendix 1. 

Most sampling locations were along the headwaters of these river systems (Figure 2). Grab 

samples of water were collected from the center of the stream, standing downstream of the 

collection bottle. The sample was then split into three aliquots: a non-filtered sample to measure 

total N and P, a filtered sample for dissolved N and P, and a filtered sample to analyze ions. 

Samples were filtered using 0.45-micron filter paper. The total N and P samples were kept frozen 

over dry ice, while the ion samples were kept chilled over regular ice. We used either an ADCP 

(acoustic doppler current profiler) or an OTT flow meter to measure streamflow at each sampling 

location. The ADCP was used for wide streams, while the OTT was used in narrower streams. 

Basic water quality data, such as water temperature, conductivity, and pH were also collected at 

each location using an In Situ probe. Two sampling campaigns were conducted: early May and 

late August of 2018.  

The nitrogen and the phosphorus analyses were conducted in labs at Michigan State 

University, while ion analyses were done at the Kellogg Biological Station. The samples were 

analyzed on a mass spectrometer for four variants of phosphorus: total phosphorus (unfiltered 

samples, digested in the autoclave), soluble reactive phosphorus (SRP) (filtered samples, not 

digested), SRP and dissolved organic phosphorus (DOP) (filtered samples, digested), and SRP 

adjacent, a constituent measured by analyzing unfiltered, undigested samples, that produces 

results similar to that of SRP. Proper laboratory protocols were followed to reduce error and 

cross-contamination.  
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2.3.2.2. Septic System Input Maps 

To estimate septic tank inputs, we used a spatially-explicit septic product from 

SENSEmap (Hamlin et al., 2020). The product includes methodically estimated septic tank 

locations for the United States portion of the Great Lakes Basin. Each estimated septic tank 

location from this model includes other pertinent attributes, such as estimated household size, 

occupancy status, and sewage treatment plant boundary maps. We used this dataset of septic 

locations and associated attributes for two purposes: to correlate watershed septic tank density to 

field-sampled parameters, and to estimate loads of N and P for each septic system location as 

inputs to the solute transport model developed in MT3D (modular transport, 3-dimensional 

model) (Bedekar et al.). Concentrations are based on household size and occupancy. Each septic 

point is designated as either fully occupied, seasonally occupied, or vacant. This allows for the 

analysis of septics as a whole, and from each of these categories. Nitrogen and phosphorus inputs 

from septic systems are illustrated in Figures 2.4A and 2.4B respectively. 

2.3.2.3. Correlating In-Stream Concentrations to Watershed Septic Systems 

Watersheds were generated for each river sample location. These watersheds provide a 

metric to assess septic field nutrient inputs from the upstream watershed that would directly 

affect the concentrations at each sample point (Figure 2.2, Table 2.1). A buffered area within 200 

m of the stream segment within each watershed was also generated for similar assessments as the 

septic tanks set within this riparian buffer area nearest the river likely contribute more nutrients 

to the streams with less retardation, degradation, or loss than those in the watershed that are 

farther from the streams. These riparian buffer and full watershed scales allowed us to quantify 

and compare the influence of septic tanks within these relevant areas on the concentrations 

measured in our stream water samples. 



 

 

56 

 

Figure 2.2. Sampling points and associated watersheds. The 32 sample points of interest and 

their associated watersheds are shown. The color of the watershed indicates the density of septic 

tanks that fall within it. Several watersheds encompass other watersheds; M2 includes M1; M6 

includes M2, M3, M4, and M5B; M9B includes M9A; M9C includes M9B; M9D includes M9C; 

M9E includes M9D; M10 includes M6, M7, and M8. A3 includes A1 and A2; A4 includes A3; 

A6 includes A9; A11 includes A3, A4, and A6; A13 includes A23; A14 includes All and A13; 

and A21 includes A18. The inset map indicates the subset of the study area displayed in this 

map. 

As an initial assessment of trends between the field sample data and the septic tank 

density, the two spatial categories were paired with a simple statistical analysis. The density of 

septic tanks was calculated by comparing the total number of septic tanks in the given watershed 

or riparian buffer, and normalizing the value by dividing by total area. We conducted linear 

regressions comparing a variety of constituents. Each nutrient or ion from sample analyses was 

compared to the density of septic tanks within the watershed for that sample point (Figure 2.2), 

and the number of septic tanks within the riparian buffer of the upstream segment. Three 
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different types of residences were also utilized. The density of septic tanks within each of these 

spatial scales were considered as three categories: seasonal properties, year-round properties, and 

all of the septic systems within the given area, regardless of occupation (this category includes 

both year-round and seasonal, as well as potentially vacant residencies). We used linear 

regression to compare each sample constituent to six spatial and residency combinations, for 

three sample categories: the May 2018 and August 2018 samples, or all of the samples grouped 

together.  

Table 2.1. Septic system counts. The total number of septic tanks within the area of interest. 

Each sample location has a watershed and riparian buffer generated for it, and the number of 

septic tanks are summed within each. Additionally, the tanks are subset into full occupation and 

seasonal occupation, and the proportions of the total counts were calculated.  
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2.3.3. Modeling In-Stream Nutrient Concentrations 

To further investigate the connection between septic systems and in-stream nutrients, we 

utilized a groundwater flow model. The model required a litany of inputs, ranging from spatial 

represented datasets such as recharge, groundwater levels, stream flow, etc., as well as both 

subsurface and in-stream nutrient concentrations. With those datasets, a MODFLOW (modular 

finite-difference flow) model was generated, and sensitive variables were optimized. The MT3D 

package was also utilized, which allowed for the modeling of constituent transport. Through the 

modeling process, groundwater heads and stream discharge datasets were generated, which 

ultimately allowed for the simulation of in-stream nutrient concentrations. This allowed for 

better comparison to the presence of septic systems in the vicinity, and provided insights as to 

nutrient sources. This process is further explained in the following subsections, and is illustrated 

in Figure 2.3. 
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Figure 2.3. Modeling process. This flowchart represents the modeling approach utilized in this 

study. 

2.3.3.1. Subsurface Nutrient Inputs 

Non-septic sources of nutrients in the model, such as runoff from tile-drained agricultural 

fields, overland runoff, and groundwater flow were provided by SENSEflux (Wan et al., 

submitted). SENSEflux is a 120m gridded product that built upon SENSEMAP, which 

incorporates both point and nonpoint sources applied to the surface from (Hamlin et al., 2020), 

and estimates how they will be calibrated as appropriate sources move into the groundwater. 

SENSEflux provides the background concentrations for this study. These values will be further 

modified in this study and evaluated to estimate their impact to the nutrient levels in streams. 

Nitrogen and phosphorus inputs from recharge are illustrated in Figures 2.4.C and 2.4.D 

respectively. 
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Concentrations for the nutrients of interest, nitrogen and phosphorus, were calculated per 

septic tank, using the following equation: 

𝐶𝑜𝑛𝑐. 𝑎𝑛𝑑 𝑆𝑒𝑝𝑡𝑖𝑐 𝑇𝑎𝑛𝑘 =  

𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝑝𝑒𝑟 𝑃𝑒𝑟𝑠𝑜𝑛 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑅𝑎𝑡𝑒

𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ×𝑝𝑒𝑟 𝑃𝑒𝑟𝑠𝑜𝑛 𝑊𝑎𝑡𝑒𝑟 𝑉𝑜𝑙𝑢𝑚𝑒
 ×𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟

𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒
        (Eq. 2.1) 

The nutrient rate for nitrogen inputs (N) was set as 0.0112 kg/capita/day and the nutrient rate for 

phosphorus (P) was set to 0.0027 kg/capita/day (U.S. EPA 2002). 

 

Figure 2.4. Nitrogen and phosphorus input maps. The modeled boundary region is shown 

with colored features, while the smaller black polygons represent the Manistee and Au Sable 

surface watersheds. A) Input nitrogen concentrations from septic systems in kg/m3. B) Input 

phosphorus concentrations from septic systems in kg/m3. C) Input nitrogen concentrations 

simulated from recharge in kg/m3 (Wan et al.). D) Input phosphorus concentrations from 

recharge in kg/m3 (Wan et al.). 
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2.3.3.2. Streamflow and Groundwater Head Data 

A robust water level dataset was acquired from the Michigan Department of 

Environment, Great Lakes, and Energy. It included static water levels at the time of installation 

of wells throughout the region. The data spanned over a decade and included several different 

types of wells, including residential, Type I, and Type II. The dataset contained tens of thousands 

of wells that varied in age, depth, and other characteristics. A dataset with this level of diversity 

introduces a certain amount of uncertainty. The varied ages of the wells resulted in static water 

level measurements occurring over a range of ten years, which likely captures variability within 

seasons and overall water level trends. Varied depths of wells could have captured data from 

other aquifers, such as the bedrock aquifer that is deeper than our study area. Overall, the volume 

of data dampens out these sources of variability, though they are still present. 

 All inland streams within the model boundary were included in the model via the drain 

package within the model. They are input as features with an upper and bottom elevation, and a 

conductance, which vary depending on the stream. After running the model, the drains have 

associated flows. 

2.3.3.3. Groundwater Flow and Nutrient Transport Modeling 

To understand how the water flows within these systems and to form a basis for the 

solute transport model, we constructed a modular finite-difference flow (MODFLOW) model. 

This was constructed using FloPy, a python based method of creating, running, and post-

processing MODFLOW models, using MODFLOW-2005 (Harbaugh et al. 2017). The model 

consists of three unconfined aquifer layers, bounded by a bedrock layer below. This is 

representative of the geology in our region of interest. Many iterations of this code were run, 

until we felt confident that we had created a model that accurately represented our study area. 
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To account for groundwater flow extending past the surficial watershed boundaries, we 

buffered the area, creating a model boundary that was defined by major river systems outside of 

the area of interest along the north and south, and Lakes Michigan and Huron along the west and 

east respectively. The Great Lakes were treated as specified head boundaries, and major inland 

lakes were represented as rivers within MODFLOW. 

The Landscape Hydrology Model (LHM) (Hyndman et al., 2007, Kendall, 2009) was 

used to generate groundwater recharge inputs for MODFLOW. Using available data in the study 

area, rasters were generated for the following inputs, all of which are required to generate the 

MODFLOW model: elevations of the top and bottom of the simulated surficial aquifer, specific 

yield and specific storage, hydraulic conductivity, vertical anisotropy, along with layers 

characterizing drains and rivers. The input layers for recharge were provided from Wan et al. 

(submitted) as derived from LHM simulations. We then generated the model packages for 

recharge, drains, and rivers using these input rasters and FloPy code (Figure 2.5).  
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Figure 2.5. MODFLOW input maps. Some of the input layers used in the groundwater flow 

model, displayed within the model boundary: A) hydraulic conductivity in m/day, B) surface 

water features (e.g., drains - streams, wetlands), C) groundwater elevation in meters, and D) 

recharge in mm/yr. 

To optimize our initial hydraulic conductivity (HK) input inputs, we created a scaling 

factor for HK, and ran the MODFLOW model with 15 different scaling values. Using this 

dataset, paired with a simple root mean square error (RMSE) analysis, we identified a HK 

multiplier (0.37) that best simulated the region’s water table. To further improve our model, we 

repeated the process with the vertical anisotropy (VANI) dataset, establishing a VANI multiplier 

of 1.4 which indicates that horizontal K is ~ 1.4 times higher than vertical K. The same process 

was repeated for recharge, but it was ultimately concluded that a recharge scaling factor of one 

(no change from input values) best represented the regions recharge. These were the parameters 

for our groundwater flow model that provided input flows and velocities for the solute transport 

simulations; the plots used in the parameter sensitivity process are illustrated in Figure 2.6. 
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Figure 2.6. Hydraulic conductivity sensitivity analysis. Hydraulic conductivity scaling value 

assessment. The value associated with the lowest RMSE was 0.37, so it was selected as the 

scaling factor in the model. 

To understand how nutrients are transported from sources to streams within our model 

area, we used MT3D (Modular Transport, 3 Dimensional). This solute transport code simulated 

solute transport through the saturated groundwater system, using flow estimates from 

MODFLOW. For this study, we used MT3D solely to transport nutrients, not to simulate 

reactions or uptake along the transport pathways. Because we hypothesize that nutrients from 

general groundwater recharge react differently than those in septic system effluent, we conducted 

two separate transport simulations for each nutrient, each with recharge or septic nutrients only. 

This is an appropriate method if we assume that loss mechanisms within the subsurface are not 

concentration dependent.  

An MT3D simulation was conducted for each nutrient, and included specific porosity, 

advection, dispersion, and time components. Each simulation was run for 10,000 days 

(approximately 27 years) to approximate steady-state conditions. Two model simulations were 

conducted for each nutrient. The MODFLOW portion of the model remained constant for both 
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runs, but the nutrient sources changed. One simulation only included the septic inputs generated 

from Hamlin et al. (2020). The second iteration included only the nutrient concentrations in 

recharge based on the simulations by Wan et al. (submitted). The sum of these two simulations 

resulted in a raster showing the subsurface nutrient concentrations and discharge to streams 

within the region. These model outputs were combined with drain flow estimates from 

MODFLOW to calculate the estimated nutrient loads at each point along the stream. The loads 

were then summed within each watershed of interest to show the total stream load in each 

watershed of our study. Separately, flows in the streams were also summed within each 

watershed, and a simulated concentration for each watershed was calculated by dividing the 

summed loads by the summed fluxes. We then compared these concentrations and fluxes with 

our field data. 

2.3.3.4. Estimating Retention and Loss of Nutrients from Septic Systems and Groundwater 

Recharge 

We estimated losses of nutrients along transport pathways using a linear scaling factor for 

each of the recharge and septic nutrient components, applied to the simulated watershed 

concentrations. These source factors sought to identify what percent of each model input made it 

through to the streams at the sites of the field sample. We can interpret these scaling factors as 

the average efficiency of the septic tanks for retaining nutrients, and the average loss of nutrients 

from recharge along groundwater pathways. We fit unique scaling factors to each of the N and P 

constituents by minimizing residuals between simulated and observed in-stream concentrations. 

The model initially assumed that all the nutrient inputs contributed to the nutrient concentrations 

within the streams, and thus there was no degradation. If all of the nutrients produced by a 

household (the concentration calculated in Eq. 2.1) were able to enter the groundwater, this 
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means that the septic tanks and drainage field were failing to capture or degrade any nutrients, 

thus the septic system was in failure. We estimated the extent of degradation or attachment of the 

nutrients by septic tanks and leach fields using scaling factors and a solver to maximize 

correlation between simulated and observed values. We thus generated scaled values that best 

explain the composition of septic and recharge nutrients that represent the data from the field 

sample.  

The nitrogen and phosphorus concentration estimates from the model for each 

subwatershed, with one run accounting for septic inputs alone, and the other accounting for all 

other input sources, were imported into a database. Nitrogen and Phosphorus results were 

processed independently, and each step described below took place within both simulation 

outputs. In each watershed, there is some combination of septic loads and recharge loads 

contributing to the concentration measured in the field. To begin to assess this, we summed the 

modeled septic concentrations with the modeled recharge concentration and multiplied by source 

factors for each of these inputs. Concentrations measured in the field would include inputs from 

all sources, broken down here into recharge and septic loads, which then undergo 

immobilization, uptake, or loss along transport pathways. Thus the modeled concentrations from 

the septic and recharge model runs were summed with scaling factors in a linear superposition 

for each nutrient. To account for the varying sizes of the subwatersheds (from 18 to 1,873 km2) 

and the varying amounts of septic systems within them, we created area normalized results by 

dividing by the area of each subwatershed. Larger watersheds provide more time for stream 

processing, which allows for additional variation in the measured in stream concentration, area 

normalization limits this. Eq. 2.2 illustrates this method, solving for M: area normalized scaled 

modeled concentration. 
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𝑀 =  
(𝑀𝑜𝑑𝑒𝑙𝑒𝑑 𝑆𝑒𝑝𝑡𝑖𝑐 𝐶𝑜𝑛𝑐×𝑆𝑒𝑝𝑡𝑖𝑐 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟)+(𝑀𝑜𝑑𝑒𝑙𝑒𝑑 𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒 𝐶𝑜𝑛𝑐× 𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟)

𝐴𝑟𝑒𝑎
   (Eq. 2.2) 

The field data was also area normalized for proper comparison, by dividing by each 

subwatershed’s area. 

To estimate scaling factors for septic and recharge inputs to best match the observed 

concentration data, we maximized correlation across all of the subwatersheds. We compared our 

scaled modeled concentrations relative to the measured concentrations for each point. 

Specifically, we utilized total dissolved nitrogen (TDN) as our nitrogen constituent and 

investigated both total phosphorus (TP) and soluble reactive phosphorus (SRP) measurements 

for comparison. Our calculations consisted of an R2 analysis that allowed us to quantify the 

amount of variability explained by the model. The analysis was a parameter estimation used to 

maximize the R2 between the simulated and observed concentrations. The analysis was 

conducted with the data for May and August independently, illustrated by the following 

equations: 

𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = (𝑀 − 𝐴𝑟𝑒𝑎 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑖𝑒𝑙𝑑 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛)2       (Eq. 2.3) 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 = (𝐴𝑟𝑒𝑎 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑖𝑒𝑙𝑑 𝐶𝑜𝑛𝑐 − 𝐴𝑟𝑒𝑎 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑖𝑒𝑙𝑑 𝐶𝑜𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2     (Eq. 2.4) 

𝑅2 = 1 − 
Σ 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

Σ 𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠
                  (Eq. 2.5) 

The R2 calculated for May was added to that of August to generate a total R2 for the nitrogen data 

and the phosphorus data. 

To maximize the correlation between simulated and observed concentrations, septic and 

recharge scaling factors needed to systematically be selected. We utilized an evolutionary solver 

designed to maximize correlation by changing the septic and recharge scaling factors. This 

process was implemented in both the nitrogen and the phosphorus data. The scaling factors 
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generated by the solver represent the average ratio of nutrients from each source that made it into 

the streams. 

2.4. Results and Discussion 

2.4.1. Nutrient Concentrations and Septic System Correlations 

The samples were analyzed per the methods described above. Each sample was analyzed 

for 14 analytes (nitrogen and phosphorus compounds, as well as ions), for May and August 

samples. The analytes were measured as concentrations, but could be converted to loads using 

flow measurements that were recorded during fieldwork. The results of the laboratory work are 

shown in Figure 2.7 and Table A.2.1. 

We first calculated simple statistics (Table 2.2) for each analyte using concentrations 

with units of mass per liter. Minimum, maximum, and mean values were calculated for each 

constituent, for both seasons and the combined seasonal data. Average concentrations increased 

slightly on average between May and August. The August event also had considerably lower 

recorded flows, as late summer is the baseflow period in this region when most flow is derived 

from groundwater. Full sample results are available in Table A.2.1. 

Table 2.2. Summary of in-situ data. The minimum, maximum, and mean load are shown for 

each analyte that was sampled for. The analytes are shown in concentrations (mass/liter). Note 

that the four P compounds are in a different unit than the other analytes.    
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Sites from the Manistee River tended to have lower loads (across both months, 9 of the 

14 analytes’ minimum concentration was measured at a Manistee sample location) (Table 2.2). 

Location M11 produced several of the lowest loads for the various analytes, across both months 

(Na: 0.88 mg/sec, Mg: 4.22 mg/sec, Ca: 21.23 mg/sec, and SO4: 1.85 mg/sec). M11 is in the 

headwaters of the Manistee River, along Maple Creek in the northwestern Lower Peninsula. Site 

A23, which tended to have the highest loads (NPOC: 18.34 mg/sec, Na 10.41 mg/sec, and Cl: 

20.13 mg/sec), is located along a relatively narrow and shallow stretch of the Au Sable River. 

Several residences are near the shore at this location. 

To begin to assess where certain constituents may be sourced from, we compared analyte 

concentrations in our samples to several spatial and temporal variable combinations. Each 

analyte shown in Table 2 was compared to the density of septic tanks within the specified spatial 

scale through linear regressions. The six spatial/residency categories were constructed by pairing 

both a sample point’s watershed and upstream buffer, with fully occupied septic tank density, 

seasonally occupied septic tank density, and all septic tank density. A regression was performed 

comparing each of these variables to each constituent of interest (Table 2.3). Each regression was 

performed for the field data collected in May, August, and the combined data of both months. 

The constituents of highest concern for aquatic system eutrophication, nitrogen and 

phosphorus compounds, had very poor relationships with any of the septic tank categories. The 

strongest relationship existed between SRP adjacent and the density of fully occupied septic 

tanks within watersheds, with an R2 of 0.22. The other variable combinations for N and P 

variables did not score above a 0.14. These regressions indicate weak linear relationships 

between septic density and N and P concentrations, though these results do not rule out the 

possibility that septic systems are impacting the rivers. 
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Figure 2.7. In-situ TDN and TP concentrations. A) TDN distribution within the Au Sable. B) 

TP distribution within the Au Sable. C) TDN distribution within the Manistee. D) TP distribution 

within the Manistee. 

Products of salt dissolution, including chloride, sodium, and potassium, had more linear 

correlations with septic tanks. Both the May sodium and chloride concentrations had R2 values 

near 0.40 when compared to all or fully occupied septic tanks in the riparian buffer. Potassium 

concentrations from August produced similar values when compared to fully occupied septic 

tanks in both the sample points associated with the watersheds as well as riparian buffers. Salt 
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compounds can be related to septic tanks as salt is used in water softeners, which impact the 

water that travels through the septic systems. Additionally, potassium is a micronutrient that is 

often found in food; similar to the presence of salt in much of our sustenance. Beyond these 

direct relationships, septic system presence may correlate with other factors that lead to increased 

loading of salt compounds, such as road salt. 

Another interesting relationship that came out of this analysis was the presence of several 

inverse relationships (indicated by light red in Table 2.3). The strongest and most consistent of 

these downward trending correlations involved sulfate. For the May, August, and combined 

samples, across all six septic density categories, sulfate had an inverse relationship, with the 

largest R2 of 0.24 with May data compared to seasonally occupied septic density in the 

watersheds. This could be an indicator of sulfate reduction, which occurs in anaerobic and 

carbon-rich environments consistent with septic fields. However, reduction of sulfate in septic 

fields should only occur after nitrate is depleted, since nitrate is a more favorable alternative 

electron acceptor than sulfate, yet we did not see negative relationships with nitrate. 

Though some interesting correlations appeared in our analysis, there is little evidence to link 

septic tanks to the constituent concentrations found in these streams. The simple linear regression 

could not capture the nuanced relationship between nutrient inputs and the loads that are 

measured in the related streams. To further investigate this complex relationship, a groundwater 

model was implemented. 
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Table 2.3. Summary of linear regressions.  Analytes for each sampling event were compared 

to the number of septic tanks (both fully used and seasonally used) (Table 1) within the sampling 

locations’ watersheds and riparian buffers using linear regression. The R2 value for each 

combination of variables is indicated within the table. Some cells are shaded, based on the key, 

to indicate higher R2 values. 
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2.4.2. Modeling Results without Estimated Losses 

Using MODFLOW, we created a three-dimensional groundwater flow model that 

accurately represents our study area. We performed a parameter sensitivity analysis to identify 

scaling factors for both HK and VANI to calibrate the model to the measured water levels in the 

area. Ultimately, a scaling factor of 0.37 and 1.4 were selected for HK and VANI respectively. 

This indicates that the original HK value was too high, allowing for excessive drainage not 

representative of actual conditions.  

Specifically in the area of interest surrounding the headwaters of the Manistee and Au 

Sable Rivers, the modeled water levels were deemed sufficiently accurate to properly model 

these watersheds. Figure 2.8 shows the comparison of observed vs. simulated water levels for the 

entire model area. The RMSE is 10.5. 

 

Figure 2.8. Observed vs. simulated heads.  Plot of observed vs. simulated water levels across 

the entire modeled area. 

Modeled flow was also determined to be a sufficient representation of in-situ stream flow 

conditions. In Figure 2.9, observed flow is compared to simulated stream flow. The RMSE is 

1.00. 



 

 

74 

 

Figure 2.9. Observed vs. simulated flow.  Plot of observed vs. simulated flow at each stream 

location that in-situ flow data was collected. 

 

The steady state MODFLOW model provided the water flows as inputs to the MT3D 

solute transport model. Four MT3D models were run using these MODFLOW inputs: septic 

nitrogen, recharge nitrogen, septic phosphorus, and recharge phosphorus.  

Initially, before any scaling was applied to the simulated concentrations, the nitrogen 

results had reasonable correlation to the field data, while there was little correlation with 

phosphorus observations. The field TDN concentrations from May, compared to the modeled 

nitrogen concentrations, had an R2 value of 0.16. Despite this not being an excellent correlation, 

the paired data is similar in each watersheds, with the maximum modeled concentration being 

1.44 mg/L and the maximum field concentration being 0.81 mg/L. August’s TDN load vs. the 

modeled loads has an R2 of 0.41, but the model tends to over predict slightly. The data in both 

May and August could be scaled to better match the field data (Figures 2.10.A and 2.10.B). 

The comparison of the raw model concentrations to the total phosphorus field data did 

not have a distinct trend. The May TP data had a 0.04 R2 when compared to the modeled 
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concentrations, and the maximum values were similar, 93.7 µg/L in the modeled data and 122.3 

µg/L in the field data, but occurred in different watersheds. The August TP concentrations 

showed a poor correlation to the modeled data as well, with an R2 of 0.06. Again, the modeled 

and field maximum values were similar (93.7 and 84.8 µg/L respectively), but they occurred in 

different watersheds. Considering that soluble reactive phosphorus (SRP) is often the most 

dominant species in septic effluent, we also compared the field SRP data to our modeled 

concentrations. May SRP data had an R2 of 0.02 and the August SRP data had an R2 of 0.15. 

While these R2 values are still low, the data follows the expected trend better than the TP data. 

The SRP data in both months trended in a positive linear correlation, rather than the negative 

trend shown in the TP graphs. These distributions can be examined in Figure 2.10.C-F. 
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Figure 2.10. Modeled and observed concentrations.  Modeled and observed concentrations, 

without estimated losses. A) May 2018 in situ total dissolved nitrogen (TDN) (mg/L) compared 

to modeled nitrogen (mg/L). B) August 2018 in situ TDN (mg/L) compared to modeled nitrogen 

(mg/L). C) May 2018 in situ total phosphorus (TP) (µg/L) compared to modeled phosphorus 

(µg/L). D) August 2018 in situ TP (µg/L) compared to modeled phosphorus (µg/L). E) May 

2018 in situ soluble reactive phosphorus (SRP) (µg/L) compared to modeled phosphorus (µg/L). 

F) August 2018 in situ SRP (µg/L) compared to modeled phosphorus (µg/L). In all plots, the 

dashed line represents the trend within the data being compared, and the solid line shows a 1:1 

correlation. 
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2.4.3. Estimated Losses of N and P during Transport 

As discussed in the methods, there are two scaling factors that we used to estimate losses 

of N and P during transport. Concentrations generated by the septic and the recharge model runs 

were likely not correctly representing the percent of each input that made it to the stream. To 

account for this, we utilized a septic scaling factor and a recharge scaling factor. Scaling values 

were calculated for each nutrient using a solver that maximized correlation between the model 

results and observations. Within the nitrogen analysis, the septic scaling factor was estimated to 

be 0.88 and the recharge scaling factor was estimated to be 0.63. Within the total phosphorus 

analysis, the septic scaling factor was determined to be 0.49 and the recharge factor was 

calculated to be 1.12. Within the SRP analysis, the values were 0.22 for septic and 0.23 for 

recharge. 

Utilizing these scaling factors resulted in a similar match between the modeled data and 

the field data in all four comparisons. The scaled nitrogen comparison in May resulted in an R2 

value of 0.15, and a tendency to under predict (Figure 2.11.A- scaled linear plots). The scaled 

nitrogen comparison in August had an R2 of 0.37, and a slight tendency to under predict (Figure 

2.11.B). The scaled phosphorus comparison for May resulted in an R2 of 0.03, still lacking a 

distinct trend (Figure 2.11.C). The scaled phosphorus comparison in August resulted in an R2 of 

0.09, also lacking a distinct trend (Figure 2.11.D). The May scaled SRP comparison resulted in 

an R2 of 0.03, with a slight tendency to under predict larger field concentrations. The scaled SRP 

comparison in August resulted in an R2 of 0.23, with an accurate trend of prediction. 
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Figure 2.11. Scaled modeled and observed concentrations.  In all plots, the dashed line 

represents the trend within the data being compared, and the solid line shows a 1:1 correlation. 

A) May 2018 in situ total dissolved nitrogen (TDN) (mg/L) compared to scaled modeled 

nitrogen (mg/L). B) August 2018 in situ TDN (mg/L) compared to scaled modeled nitrogen 

(mg/L). C) May 2018 in situ total phosphorus (TP) (µg/L) compared to scaled modeled 

phosphorus (µg/L). D) August 2018 in situ TP (µg/L) compared to scaled modeled phosphorus 

(µg/L). E) May 2018 in situ soluble reactive phosphorus (SRP) (µg/L) compared to scaled 

modeled phosphorus (µg/L). F) August 2018 in situ SRP (µg/L) compared to scaled modeled 

phosphorus (µg/L). 
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The final step of these analyses involved area normalizing the data for each watershed. 

The area of the watersheds varied widely – from 18 to 1,873 km2 – so there is an inherent bias 

based on size, the quantity of septic systems within each watershed, and the amount of stream 

processing that is able to occur. To reduce this bias, we divided each concentration, both 

modeled and in situ, by the watershed’s area. This resulted in considerably different relationships 

between the field and modeled loads. The May nitrogen comparison now has a R2 of 0.87 and 

the model tends to reasonably predict concentrations in all watersheds. The August nitrogen 

comparison resulted in an R2 of 0.86 and also tends to predict very reasonably in all watersheds. 

The trends in the nitrogen data are very similar between May and August. In the May 

phosphorus comparison, the R2 was 0.12 and the model consistently under predicted the 

concentrations. In August, the phosphorus R2 was 0.04, and the model considerably under 

predicted concentrations in most watersheds. The SRP comparisons resulted in an R2 of 0.34 in 

May and an R2 of 0.43 in August, both tending to only slightly under predict. 

R2 from the area normalized data was used as the metric to maximize correlation within 

the model results. An average of the R2 among the May data and the R2 from the August data 

was maximized to determine the final septic and recharge scaling factors.  

In initial investigations of the model, we evaluated how septics contributed to the total 

modeled load. Looking at the nitrogen data, the septic model concentrations accounted for an 

average of only 12% of the total modeled concentration. When compared to the field data, the 

modeled septic concentration was representative of an average of 18% of the field concentration 

from May, and 22% of the August concentration. On the other hand, septic concentrations 

accounted for 60% of the total modeled concentration of phosphorus. When compared to the 

field data, the modeled septic phosphorus concentration was considerably higher on average than 
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the field concentrations, representing an average of 145% of the field concentration in May, and 

99% in August. When compared to field SRP data, the modeled results were even more likely to 

over predict. Box plots showing how much of the modeled nutrients are related to septic systems 

are shown in Figure 2.12. 

 

Figure 2.12. Modeled nutrients attributed to septic systems. The distribution of the 

percentage of the total modeled concentrations accounted for by the modeled septic 

concentrations within each watershed of interest. 

To further investigate the data and evaluate if the trends observed in our analysis could be 

linked to other attributes of the watersheds, a residual analysis was performed. The residuals 

(modeled – observed concentrations) for each of the four datasets were calculated and compared 

to total area of the watershed, the associated stream system, the total number of septic systems 

within the watershed, the average nutrient input within the watershed, and three percentages of 

land cover: urban, forested, and agricultural. 

In the four TDN and TP comparisons, there was not a clear trend in relation to watershed 

size. Both small and large watersheds had residuals near zero, and larger residuals tended to be 
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from random watersheds with an area near the middle of the distribution (Figures 2.13A-D). 

When comparing the results to the stream system they were derived from, there tended to be 

slightly more variation in residuals in the Au Sable than the Manistee. Though the Au Sable 

presented a more normal distribution of the residuals, the Manistee tended to have under 

predicted watersheds. In comparison with the total count of septic systems with a watershed, the 

model tended to slightly over predict concentrations in watersheds with higher amounts of septic 

systems in all comparisons. Specifically, watershed A2, which has the second highest quantity of 

septic systems within its bounds, was consistently over predicted in all four comparisons. When 

compared to input nutrient concentrations, there was not a distinct trend; both large and small 

concentrations were both over and under predicted by the model in all four comparisons (Figures 

2.13E-H). In comparisons to percentages of different land covers, there were not any distinct 

trends. The likelihood of under or over predicting was not dependent on land cover. In analyzing 

these same variables with regard to the SRP data, it revealed similar trends as described above, 

but highlighted the fact that the model tends to either accurately predict or over predict when 

only compared to SRP – there are no major under predictions in this data. 

After identifying the need to adjust some of our inputs, the final MODFLOW results are 

accurate and representative of the study area, specifically the subwatershed area identified in 

Figure 2.2. Utilizing the input layers from LHM and other sources, via MODFLOW, we were 

able to replicate water levels within our model area with a high level of accuracy (RMSE of 

10.488). Establishing an accurate flow model provides a starting point for our nutrient transport 

model. 
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Figure 2.13. Residual analysis results. A) May nitrogen residuals compared to watershed area. 

B) August nitrogen residuals compared to watershed area. C) May phosphorus residuals 

compared to watershed area. D) August phosphorus residuals compared to watershed area. E) 

May nitrogen residuals compared to average initial septic input within the watershed. F) August 

nitrogen residuals compared to average initial septic input within the watershed. G) May 

phosphorus residuals compared to average initial septic input within the watershed. H) August 

phosphorus residuals compared to average initial septic input within the watershed. 
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2.4.3. Model Discussion 

By comparing modeled nutrient data to the nutrients sampled in the field, we were able to 

discern a variety of findings related to nutrient loading in the Manistee and Au Sable watersheds. 

We initially compared the raw modeled data, and from there used scaling factors and solvers to 

draw conclusions on septic systems’ ability to capture both nitrogen and phosphorus. 

From an initial analysis of the raw modeled data, a few telling trends were discovered. 

The nitrogen comparison in both May and August, illustrated that many of the watersheds had a 

similar modeled value in relation to the in situ measurement, but the trend was not particularly 

strong across all watersheds. The model was not consistently predicting concentrations to be high 

or low, it varied between each watershed. This pattern of low correlation with a typically low 

error between modeled and field values is indicative that the modeled loads are not properly 

accounting for a specific scaling variable. Considering that this relationship is consistent between 

both months, this issue of low correlation is likely derived from septic and recharge inputs not 

being properly accounted for in the model. This gap was remedied via source scaling. 

Both the May and August phosphorus comparisons showed a non-distinct trend. 

Specifically, the relationship in both months lacked a true pattern, with the model both vastly 

over predicting and under predicting concentrations. This lack of a pattern is more indicative of 

the model not properly predicting how much of the septic and recharge inputs are making it to 

the stream. Specifically, phosphorus is a very limiting nutrient – especially in drier months, such 

as August. Typically, phosphorus is strongly limiting to plants and also tends to sorb to soils, and 

therefore will not make it to the surface water via recharge. Instead, it primarily travels via 

overland flow paths. Overland runoff is less common in drier months, such as August. To 

attempt to remedy this, we used the solver previously described to not only create a more 
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accurate correlation between the modeled and in situ data, but to also ultimately answer our 

question of determining average ratios of septic and recharge inputs reaching the surface water.  

To provide additional perspective, we repeated the phosphorus analysis using the field 

SRP data. This resulted in a generally better match, but a tendency to over predict. Although 

SRP is considered the dominant phosphorus species in septic effluent (Oldfield et al. 2020), it is 

just a portion of total phosphorus, so the typical over prediction of the model is logical. 

Once the source scaling factors were applied, the modeled results were better calibrated 

to the field data. In the nitrogen analyses, the scaled model loads were still slightly under 

predicting (Figures 11A and 11C), with the August data being slightly closer to the 1:1 line. In 

investigating which watersheds were accountable for the trend of under predicting, it was 

identified that the watersheds most under predicted in both May and August were typically 

smaller in area. This indicates that while our scaling values mitigated calibration issues for the 

most part, they struggled to fully represent concentrations in smaller watersheds. This is likely 

related to the fact that larger watersheds process nutrients differently than smaller watersheds. 

This could explain why some smaller watersheds had high field nitrogen, but comparably low 

modeled nitrogen. To account for this, we area normalized the data in order to properly assess 

source scaling factors. 

The phosphorus data on the other hand, still lacks a trend despite the application of 

source scaling factors. Small watersheds were both over and under predicted. Using the SRP 

comparison, the results are more meaningful – showing a fairly strong correlation to SRP in the 

field and modeled phosphorus. Though more accurate than the unscaled results, there is still a 

fair amount of watersheds of all areas that are not well represented in the model. This likely 

indicates that the model is not properly modeling phosphorus transport. 
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The final load scaling factors provide the main take away from this study. Within the 

nitrogen investigation, we found that septic systems only captured 12% of the nitrogen 

introduced, allowing 88% to enter the groundwater. Conversely, septic systems were found on 

average to capture 51% of phosphorus, specifically capturing 78% of SRP. This indicates that 

septic systems are better at capturing phosphorus. As for recharge concentrations, it was 

determined that 63% of the nitrogen and 112% of the total phosphorus made it to the surface 

water. The nitrogen recharge value indicates that some of the recharge input concentration is lost 

or otherwise retained while it travels to the surface waters of interest. The phosphorus recharge 

value indicates that it is likely that our recharge input data source is under predicting total 

phosphorus. 

We were also able to determine from our initial evaluation of the modeled data, that 

septic sources contributed more to the total phosphorus modeled load, and contributed less to the 

total nitrogen modeled load. When paired with the septic attenuation values, this provides insight 

into the makeup of the nutrient landscape in this region. Despite the fact that septic systems are 

better at attenuating phosphorus, the phosphorus that septic systems do contribute is more 

significant than the load contributed by other sources. Conversely, although septic systems only 

capture 12% of nitrogen loads, septic loads do not account for a large portion of the total 

nitrogen load in our model. Other sources of nitrogen contribute an average of 88% of the 

modeled loads.  

The ability of septic systems to capture both nitrogen and phosphorus determined by this 

study, confirmed previous literature. Costa et al. (2002) established that septic systems can 

attenuate 21-25% of nitrogen. Our study attributed septic systems with capturing 12% of input 

nitrogen. Though lower, our results are similar to Costa’s study. This similarity not only provides 



 

 

86 

credence to our groundwater model, but also shows that similar results can be established 

through vastly different studies. Robertson et al. (1998) posited that septic systems can capture 

anywhere from 23-99% of input phosphorus, but their success varies widely on the mineralogy 

of the soil surrounding the drainage field, specifically regarding the grain size and calcareous 

sediment content (Robertson et al. 2019). Several other studies (Jones & Lee, 1979; Robertson & 

Harman, 1999; Gill et al. 2009) supported this notion and verified that phosphorus is more 

effectively captured than nitrogen. Our findings also correspond with these points. Our analysis 

predicted that septic systems in this region were able to attenuate 51% of input phosphorus on 

average. This falls within the range identified by Robertson (1998), and is greater than our 

calculated nitrogen attenuation rate. Our SRP findings also correspond to the literature.  

Robertson et al. (2019) found that 66-99% of SRP was attenuated, and Oldsfield et al. (2020) 

echoed this sentiment by finding that septic systems only contributed <1-36% of the instream 

SRP loads. We found that septic systems attenuate 78% of SRP, allowing 22% of it to reach the 

stream; these values fall within both Robertson’s and Oldfield’s expected ranges.  

Our findings correlate well with that of the literature and indicate that septic systems are 

more capable of capturing phosphorus, compared to nitrogen, attenuating 49 and 88%, 

respectively. The fact that our nitrogen values are on the lower end of previously established 

values, could relate to soil type. The literature indicates that installing a septic system in coarse-

grained soil can reduce attenuation immensely. Much of our region of interest includes sand as 

its dominant surficial soil. This could explain why our septic nitrogen attenuation rates are on the 

lower end of what the literature predicts. 

Per our findings, septic systems are typically not attenuating a large portion of the 

nutrients input into them. This supports our hypothesis that septic systems are considerable 
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contributors of nutrients into the waterways in remote areas such as the region of the Manistee 

and Au Sable headwaters in Northern Michigan. Nutrients within waterways can contribute to 

eutrophication, algal blooms, and increased presence of invasive species (Hannah et al. 2020) 

within streams, which can negatively impact wildlife and humans alike. Considering that 

phosphorus is often a limiting nutrient in many ecosystem processes, septic systems’ greater 

ability to capture it may limit some of the negative effects associated with nutrient loads within 

streams. Per Hannah et al. (2020), phosphorus was identified as a key factor contributing to the 

presence of invasive species whether nitrogen was present in large quantities or not. With that, if 

phosphorus loads via septic systems can be limited, invasive species should pose less of a threat 

in these natural regions. Additionally, a greater focus should be placed on installing drainage 

fields in appropriate, fine-grained soil. Withers et al. (2013) found that septic systems installed in 

coarse-grained soil only had a phosphorus attenuation rate of 10-30%. Fine materials, such as 

clay, are also capable of retarding some nitrogen species (Wilhelm 1994). Finally, while not 

explicitly addressed in this model, installing septic systems farther from streams and waterways, 

will further limit the nutrient loads that make it to the streams. 

Beyond determining the likely average contributions of septic and recharge in these 

regions, our residual analysis elucidated underlying trends within the models ability to accurately 

predict loads. Comparing the residuals to the area of each subwatershed indicated that area was 

not highly correlated to the model’s accuracy. In all comparisons, the model predicted the 

concentrations in the largest watersheds fairly accurately. Mid-sized and small watershed 

concentrations followed a less distinct trend, when depending on the month and the nutrient, the 

model over predicted, under predicted, and correctly predicted the concentrations within them. 



 

 

88 

This indicates that despite the model frequently doing a good job of predicting concentrations 

within large watersheds, there is not a distinct trend of model ability in relation to area.  

We also investigated trends within each stream system. The Au Sable tended to have 

more variability, but had a more even distribution, centered on a residual of zero. The Manistee 

tended to have less variation, but tended to under predict. The Au Sable’s increased range of 

residuals is primarily attributed to watershed A2, which was consistently over predicted in all 

four comparisons. A2 falls in the middle of the distribution of area, but has the highest 

percentage of urban land cover, and the second highest amount of septic systems amongst all 32 

watersheds. Additionally, the City of Gaylord’s Waste Water Treatment Plant falls within the 

watershed. Perhaps this elevated level of human impact, and the elevated level of septic systems 

associated with it, caused the model to consistently over predict the concentrations within this 

watershed. 

There was not much of a trend when the residuals were compared to the average septic 

input concentrations. The fact that the model under predicted, over predicted, and accurately 

predicted the loads in watersheds with both high and low nutrient inputs helps to rule out an 

inherent bias related to input concentrations. 

Considering that this region is primarily dominated by forested land cover, the resulting 

lack of trends related to land cover is not surprising. Most of the watersheds had very similar 

land cover compositions, mostly dominated by forest, with a small amount of urban and 

agricultural. Directly relating variability within the model, to a dataset with very little variation 

resulted in a lack of a distinct trend.  

When conducting the same residual analyses for SRP, there was one main trend. No 

matter the variable, the model was either near an accurate prediction, or over predicting the 
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concentration. The tendency to over predict is likely due to the fact that SRP is only a portion of 

total phosphorus, and there are likely other contributing species that make up the whole of what 

the model is simulating. 

Through our analyses, septic systems were determined to lack the ability to fully capture 

nitrogen and phosphorus. On average, only 12% of nitrogen and 51% of phosphorus were 

attenuated, with the remaining portions of the nutrients making it to the surface water. The model 

effectively predicted nitrogen concentrations in the remote regions that it was intended for and 

generated attenuation values very similar to that of the literature. We are less confident in the 

model’s ability to properly model phosphorus. With that said, we do feel confident that the 

analyses are properly modeling septic systems within the remote region of the northern Lower 

Peninsula of Michigan, with more accuracy when modeling nitrogen. 

2.5. Conclusions 

We evaluated the relationship between septic systems and stream concentrations of two 

common nutrients: nitrogen and phosphorus. This study was conducted in a remote region of the 

northern Lower Peninsula of Michigan along the Au Sable and Manistee Rivers, two important 

waterways both naturally and recreationally. We found that septic systems were capable of 

capturing approximately 12% of the input nitrogen, and 51% of input phosphorus. When 

studying SRP, the septic retention rate increases considerably to 78%.  The remaining portion of 

each of these nutrients were identified as having reached surface water within the local 

subwatershed. This shows that septic systems are not particularly efficient in capturing the 

nutrients that are allocated to them, specifically in regards to nitrogen. These values were similar 

to those identified in previous studies, such as the findings of Robertson et al. (2019), which 
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indicated that SRP removal by septic systems was between 66 and 90%. This indicates that we 

have created a functional model to predict attenuation abilities of the septic system of a region.  

Uncertainties in this study could arise from a variety of places, though we did our best to 

mitigate their impacts. Initially, there is the possibility of sample errors either in the field or in 

the laboratory. The utmost care was taken in both settings, but human error does run the risk of 

confounding data. Secondly, the model is lacking in robustness. There were additional 

capabilities within MT3D and MODPATH that were not utilized in this analysis. The model was 

deemed accurate enough as it is, and therefore we decided not to incorporate these additional 

parameters at this time. In the future, we plan to build upon this model and implement additional 

functionalities in order to study new hypotheses. With that said, we do feel confident in our 

current model and scaling procedure. In investigating the residuals, we found no indication of an 

inherent input concentration bias. Additionally, we confirmed our final scaling values via 

sensitivity analysis and returned the same result as our initial solver analysis. Finally, the results 

of the model indicated that phosphorus is not being modeled as well as nitrogen is. In both the 

raw comparisons and the scaled comparisons, the modeled phosphorus concentrations did not 

compare well to the field data. Some watersheds had modeled values that compared accurately to 

our in situ values, but there are too many instances in which the concentrations were vastly under 

and over predicted to have full confidence in the phosphorus model. Given that the recharge 

scaling factor for phosphorus was determined to be greater than 100%, this indicates that our 

recharge product may be systematically underrepresenting phosphorus concentrations. There is 

an updated data product from Wan et al. that could resolve this issue in the future.  

This work provides a basis for improved septic system understanding. By identifying 

attenuation abilities of septic systems for both nitrogen and phosphorus, this work can inform 
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future improvements to septic systems. To evaluate certain landscape factors such as soil type 

and its impacts on attenuation rates, septic systems within watersheds with high stream loads 

could be compared to those in watersheds with low loads and assessed for a trend relative to the 

landscape factor of interest. By better understanding the nutrients loaded to the landscape via 

septic systems, action can be taken to prevent harmful impacts on the environment. Additionally, 

by also evaluating the recharge concentration product created by Wan et al. (2020), we can 

provide useful data that could be used to improve that dataset. Additionally, this model was 

designed for a remote region with few nutrient inputs outside of septic systems and recharge; in 

the future, it could be expanded to include other nutrient sources and applied to more 

anthropogenically influenced regions. Finally, other sources of interest could be evaluated for 

their contributions to surface water loads.  

 

 

 

 

 

 

 

 

 

 



 

 

92 

2.6. Acknowledgments 

This chapter was coauthored by David Hyndman, Anthony Kendall, and Stephen 

Hamilton. This research was funded by National Aeronautics and Space Administration grants 

80NSSC17K0262 and NNX11AC72G, and National Oceanic and Atmospheric Administration 

grant NA12OAR4320071. Any opinions, findings, and conclusions or recommendations 

expressed in this publication are those of the authors and do not necessarily reflect the views of 

NASA or NOAA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

93 

BIBLIOGRAPHY 

Angeloni, N., Jankowski, K., Tuchman, N., Kelly, J. (2006, 8 5). Effects of an invasive cattail  

 species (Typha x glauca) on sediment nitrogen and microbial community composition in  

 a freshwater wetland. FEMS Microbiology Letters, 263(1), 86-92. 

Beal, C., Gardner, E., & Menzies, N. (2005, 11). Process, performance, and pollution potential:  

 A review of septic tank - soil absorption systems. Soil Research, 43(7), 781. Retrieved  

 from http://www.publish.csiro.au/?paper=SR05018 

Bedekar, Vivek, Morway, E.D., Langevin, C.D., and Tonkin, Matt, 2016, MT3D-USGS version  

           1: A U.S. Geological Survey release of MT3DMS updated with new and expanded   

           transport capabilities for use with MODFLOW: U.S. Geological Survey Techniques and  

           Methods 6-A53, 69 p., http://dx.doi.org/10.3133/tm6A53.  

Costa, J., Heufelder, G., Foss, S., Milham, N., & Howes, B. (2002). Nitrogen Removal  

 Efficiencies of Three Alternative Septic System Technolo-gies and a Conventional Septic  

 System a. Retrieved from http://m.buzzardsbay.org/etistuff/results/costaenvccarticle2.pdf 

Domagalski, J., & Johnson, H. (2011, 10). Subsurface transport of orthophosphate in five  

 agricultural watersheds, USA. Journal of Hydrology, 409(1-2), 157-171. 

Geddes, P., Grancharova, T., Kelly, J., Treering, D., & Tuchman, N. (2014, 9 22). Effects of  

 invasive Typha × glauca on wetland nutrient pools, denitrification, and bacterial  

 communities are influenced by time since invasion. Aquatic Ecology, 48(3), 247-258 

Gill, L., O'Luanaigh, N., Johnston, P., Misstear, B., & O'Suilleabhain, C. (2009, 6). Nutrient  

 loading on subsoils from on-site wastewater effluent, comparing septic tank and  

 secondary treatment systems. Water Research, 43(10), 2739-2749. Retrieved from  

 https://www.sciencedirect.com/science/article/pii/S0043135409001833 

Goldberg, D., Martina, J., Elgersma, K., & Currie, W. (2017, 8 2). Plant Size and Competitive  

 Dynamics along Nutrient Gradients. The American Naturalist, 190(2), 229-243. 

Hamlin, Q. F., A. D. Kendall, S. Martin, H. Whitenack, J. Roush, B. Hannah, D. W. Hyndman  

 (2020). SENSEmap-USGLB: Nitrogen and Phosphorus Inputs, HydroShare,   

 https://doi.org/10.4211/hs.1a116e5460e24177999c7bd6f8292421 

Hannah, B., Kendall, A., Martin, S., & Hyndman, D. (2020). Quantifying linkages between  

 watershed factors and coastal wetland plant invasion in the US Great Lakes. Landscape  

 Ecology, 35, 2843-2861. 

Harbaugh, A.W., Langevin, C.D., Hughes, J.D., Niswonger, R.N., and Konikow, L. F., 2017,  

            MODFLOW-2005 version 1.12.00, the U.S. Geological Survey modular groundwater  

            model: U.S. Geological Survey Software Release, 03 February 2017,  

            http://dx.doi.org/10.5066/F7RF5S7G 



 

 

94 

Holman, I., Whelan, M., Howden, N., Bellamy, P., Willby, N., Rivas-Casado, M., & McConvey,  

            P. (2008, 12). Phosphorus in groundwater - An overlooked contributor to eutrophication?  

 Hydrological Processes, 22(26), 5121-5127. 

Hyndman, D.W., A. D. Kendall, and N. R.H. Welty, 2007, Evaluating Temporal and Spatial  

            Variations in Recharge and Streamflow Using the Integrated Landscape Hydrology  

            Model (ILHM), AGU Monograph, Subsurface Hydrology: Data Integration for Properties  

            and Processes, p. 121-142, DOI:10.1029/171gm11. 

Iverson, G., Humphrey, C., O'Driscoll, M., Sanderford, C., Jernigan, J., & Serozi, B. (2018, 4).  

 Nutrient exports from watersheds with varying septic system densities in the North  

 Carolina Piedmont. Journal of Environmental Management, 211, 206-217. 

James, C., Miller-Schulze, J., Ultican, S., Gipe, A., & Baker, J. (2016, 9). Evaluating  

 Contaminants of Emerging Concern as tracers of wastewater from septic systems.  

 Water Research, 101, 241-251. Retrieved from  

 https://www.sciencedirect.com/science/article/pii/S0043135416303724#bib21 

Jones, R., & Lee, G. (1979). Septic Tank Wastewater Disposal Systems as Phosphorus  

 Sources for Surface. Retrieved from  

 https://www.jstor.org/stable/pdf/25040491.pdf?refreqid=excelsior%3A6fffbcf6f1283 

 51f21d4c24bdf126da5 

Katz, B., Eberts, S., & Kauffman, L. (2011, 2). Using Cl/Br ratios and other indicators to assess  

 potential impacts on groundwater quality from septic systems: A review and examples  

 from principal aquifers in the United States. Journal of Hydrology, 397(3-4), 151-166.  

 Retrieved from https://www.sciencedirect.com/science/article/pii/S0022169410007134#! 

Oldfield, L., Roy, J., & Robinson, C. (2020, 8). Investigating the use of the artificial sweetener  

 acesulfame to evaluate septic system inputs and their nutrient loads to streams at the  

 watershed scale. Journal of Hydrology, 587, 124918. 

Postma, F. B., Gold, A. J., & Loomis, G. W. (1992). Nutrient and Microbial Movement from  

 Seasonally-Used Septic Systems. Journal of Environmental Health, 55(2), 5–10.  

 http://www.jstor.org/stable/44534507 

Robertson, W., & Harman, J. (1999, 3). Phosphate Plume Persistence at Two Decommissioned  

 Septic System Sites. Ground Water, 37(2), 228-236. Retrieved from  

 http://doi.wiley.com/10.1111/j.1745-6584.1999.tb00978.x 

Robertson, W., Schiff, S., & Ptacek, C. (1998, 11). Review of Phosphate Mobility and  

 Persistence in 10 Septic System Plumes. Ground Water, 36(6), 1000-1010. Retrieved  

 from http://doi.wiley.com/10.1111/j.1745-6584.1998.tb02107.x 

Robertson, W., Van Stempvoort, D., & Schiff, S. (2019, 11). Review of phosphorus attenuation  

            in groundwater plumes from 24 septic systems. Science of The Total Environment, 692,  

 640-652. 



 

 

95 

Sowah, R., Habteselassie, M., Radcliffe, D., Bauske, E., & Risse, M. (2017, 1). Isolating the  

 impact of septic systems on fecal pollution in streams of suburban watersheds in  

 Georgia, United States. Water Research, 108, 330-338. 

Tamang, A., Roy, J., Boreux, M., & Robinson, C. (2021, 10). Variation in septic system effluent  

 inputs to tributaries in multiple subwatersheds and approaches to distinguish contributing  

 pathways and areas. Science of The Total Environment, 151054. Retrieved from  

 https://linkinghub.elsevier.com/retrieve/pii/S0048969721061325 

Tilman, D. (1990, 5). Constraints and Tradeoffs: Toward a Predictive Theory of Competition and  

 Succession. Oikos, 58(1), 3-15. 

US Environmental Protection Agency (2002). Onsite Wastewater Treatment Systems Manual. 

U.S. EPA Septic systems overview. Available at: https://www.epa.gov/septic/septic-systems- 

            overview (2018) Washington D.C 

Walker, W., Bouma, J., Keeney, D., & Olcott, P. (1973). Nitrogen Transformations During  

 Subsurface Disposal of Septic Tank Effluent in Sands: II. Ground Water Quality1.  

            Journal of Environment Quality, 2(4), 521. Retrieved from  

 https://www.agronomy.org/publications/jeq/abstracts/2/4/JEQ0020040521 

Wan, L., Kendall, A., Martin, S., Hamlin, Q., & Hyndman, D. (2022 submitted). Groundwater  

            and septic plumes are important nutrient transport pathways to the Great Lakes.  

            Environmental Research Letters. 

Whelan, B., & Titamnis, Z. (1982, 2). Daily chemical variability of domestic septic tank effluent.  

 Water, Air, and Soil Pollution, 17(2), 131-139. Retrieved from  

 http://link.springer.com/10.1007/BF00283296 

Wilhelm, S., Schiff, S., & Cherry, J. (1994, 11). Biogeochemical Evolution of Domestic Waste  

 Water in Septic Systems: 1. Conceptual Model. Ground Water, 32(6), 905-916.  

 Retrieved from http://doi.wiley.com/10.1111/j.1745-6584.1994.tb00930.x 

Wilhelm, S., Schiff, S., & Robertson, W. (1994, 2). Chemical fate and transport in a domestic  

 septic system: Unsaturated and saturated zone geochemistry. Environmental Toxicology  

 and Chemistry, 13(2), 193-203. Retrieved from  

 http://doi.wiley.com/10.1002/etc.5620130203 

Withers, P., Jarvie, H., & Stoate, C. (2011, 4). Quantifying the impact of septic tank systems on  

 eutrophication risk in rural headwaters. Environment International, 37(3), 644-653.  

 Retrieved from https://www.sciencedirect.com/science/article/pii/S0160412011000043 

Withers, P., May, L., Jarvie, H., Jordan, P., Doody, D., Foy, R., . . . Deal, N. (2012, 12). Nutrient  

 emissions to water from septic tank systems in rural catchments: Uncertainties and  

 implications for policy. Environmental Science & Policy, 24, 71-82. Retrieved from  

 https://www.sciencedirect.com/science/article/pii/S1462901112001293#! 



 

 

96 

APPENDIX B: CHAPTER 2 DATA 

Table A.2.1. Complete in-situ data. Concentrations measured for each analyte for each sample 

location. Shown in mass/L, note the change in mass unit for the phosphorus compounds. 

 

 

 

 

Total 

Systems

Seasonal 

Systems

Full Occupation 

Systems

Full Occupation 

Proportion

NPOC 

(mg/L)

TDN 

(mg/L)

Na 

(mg/L)

K 

(mg/L)

Mg 

(mg/L)

Ca 

(mg/L)

Cl 

(mg/L)

NO as N 

(mg/L) 

SO4 

(mg/L)

NH4 as N 

(mg/L)

SRP 

(ug/L)

~SRP  

(ug/L)

TP 

(ug/L)

DOP & SRP 

(ug/L)

A1 55 17 35 0.636 6.82 0.29 2.27 0.66 8.19 42.15 4.46 0.04 4.82 0.023 0.86 7.98 4.78 4.29

A2 4019 900 2886 0.718 4.03 0.3 5.48 0.89 8.93 41.31 10.14 0.01 4.01 0.034 0.47 10.42 5.62 4.68

A3 418 126 261 0.624 4.29 0.38 4.31 0.71 9.65 49.61 7.32 0.09 5.49 0.036 1.63 6.94 6.88 4.29

A4 433 106 307 0.709 4.82 0.39 5.03 0.74 8.95 47.04 8.37 0.09 5.41 0.029 1.24 11.11 27.09 5.46

A6 184 65 107 0.582 9.77 0.42 2.86 0.75 8.46 43.78 4.55 0.11 5.24 0 3.94 11.46 10.25 5.07

A9 173 51 118 0.682 5.02 0.3 1.13 0.55 8.71 43.11 0.73 0.01 6.1 0.06 2.40 5.20 10.25 4.29

A11 2853 937 1797 0.630 5.93 0.51 6.12 0.73 8.11 41.86 9.7 0.11 5.81 0.013 3.17 12.50 41.83 6.63

A13 6460 2754 3292 0.510 13.25 0.61 5.52 0.9 5.72 26.18 8.14 0.07 3.31 0 11.66 11.46 24.57 13.63

A14 1161 572 563 0.485 12.6 0.5 5.3 0.77 6.9 33.33 8.12 0.06 4.71 0.011 4.72 9.72 20.36 8.57

A16 2866 939 1805 0.630 6.78 0.41 2.88 0.77 8.74 44.83 4.5 0.11 4.69 0 5.49 11.11 24.57 7.02

A18 427 247 166 0.389 4.98 0.37 1.52 0.43 8.12 35.87 1.1 0.05 10 0.029 2.40 5.54 122.26 8.18

A19 3843 2021 1611 0.419 8.27 0.41 2.41 0.64 6.14 32.93 3.51 0.01 3.3 0 2.79 6.24 21.62 7.02

A21 1417 821 548 0.387 5.85 0.31 3.06 0.52 10.42 44.42 3.15 0.12 12.97 0 3.56 6.94 16.15 7.41

A23 1199 354 790 0.659 18.34 0.75 8.92 0.75 6.1 29.81 16.16 0.1 4.02 0.026 8.96 9.72 16.15 12.08

M1 563 174 372 0.661 4.15 0.24 1.36 0.63 8.16 45.22 2.76 0.05 6.06 0.011 1.63 8.33 15.73 3.51

M2 329 137 176 0.535 3.57 0.32 3.17 0.62 9.81 50.64 4.66 0.12 5.99 0.033 3.56 4.85 12.36 4.29

M3 393 237 143 0.364 8.23 0.42 1.99 0.59 8.26 43.7 3.66 0.12 4.93 0.076 1.24 5.89 12.36 3.90

M4 638 331 291 0.456 5.66 0.47 3.17 0.53 8.65 39.02 4.57 0.1 6.74 0.074 2.79 4.50 11.94 3.90

M5B 43 13 30 0.698 8.58 0.3 2.01 0.64 8.31 41.83 5.17 0.03 4.2 0.005 3.17 5.89 8.57 10.52

M6 615 287 310 0.504 4.58 0.19 3.55 0.58 9.04 45.3 5.02 0 6.22 0 1.63 9.37 21.62 3.51

M7 9 2 7 0.778 5.06 0.36 1.46 0.53 9.45 42.35 0.91 0.19 9.75 0.016 3.17 3.80 16.15 4.29

M8 143 68 69 0.483 3.96 0.23 2.14 0.55 8.31 39.96 1.55 0.04 11.8 0 3.17 4.85 14.88 6.63

M9A 626 329 269 0.430 2.76 0.9 6.95 38.39 3.86 0.02 5.11 0.094 3.56 6.24 12.36 5.85

M9B 904 414 443 0.490 9.7 0.38 1.89 0.63 6.53 36.08 3.14 0.02 3.25 0.004 3.17 7.98 15.73 5.07

M9C 158 29 115 0.728 7.3 0.41 2.96 0.77 6.93 38.66 4.97 0.1 3.51 0.008 3.94 7.28 22.88 6.24

M9D 7 4 3 0.429 8.91 0.54 2.89 0.85 6.44 36.6 4.74 0.11 3.01 0.012 6.26 8.33 23.73 8.18

M9E 154 61 84 0.545 9.71 0.54 2.77 0.95 6.24 35.76 4.39 0.05 3.41 0.012 3.17 8.33 19.51 8.96

M10 104 62 40 0.385 8.28 0.3 3.63 0.61 8.94 44.25 5.09 0.06 7.66 0.017 0.86 6.94 21.20 7.80

M11 7 2 5 0.714 14.89 0.7 0.88 0.8 4.22 21.23 0.8 0.13 1.85 0.025 7.03 12.50 27.94 12.85

M13 200 98 89 0.445 6.62 0.26 2.08 0.57 9.26 42.79 2 0.03 13.93 0.005 4.72 7.28 35.94 8.18

M15 317 71 214 0.675 4.83 0.42 3.34 0.62 10.57 42.41 4.99 0.21 5.5 0.019 4.33 7.98 26.25 8.18

M16 197 12 166 0.843 9.65 0.81 2.79 0.7 13.29 53.47 6.55 0.75 8.34 0 3.17 5.54 11.51 3.90

Site

Septic Data May Data

NPOC 

(mg/L)

TDN 

(mg/L)

Na 

(mg/L)

K 

(mg/L)

Mg 

(mg/L)

Ca 

(mg/L)

Cl 

(mg/L)

NO as N 

(mg/L) 

SO4 

(mg/L)

NH4 as N 

(mg/L)

SRP 

(ug/L)

~SRP  

(ug/L)

TP 

(ug/L)

DOP & SRP 

(ug/L)

Discharge 

(m3/sec)

Discharge 

(L/sec)

Discharge 

(m3/sec)

Discharge 

(L/sec)

A1 9.53 0.28 2.72 0.56 9.26 38.42 5.14 0.01 4.51 0.005 2.40 3.43 28.08 5.09 0.2514 251.4 ? 200

A2 5.35 0.35 6.74 0.98 9.96 37.54 12.43 0.02 4.12 0 4.45 5.48 11.60 7.00 0.261 261 0.124 124

A3 7.69 0.31 4.65 0.65 10.97 53.46 7.85 0.08 5.52 0.017 3.77 5.48 17.73 5.85 1.751 1751 1.23 1230

A4 4.49 0.3 5.54 0.72 10.28 50.95 9.21 0.09 5.77 0.009 4.79 8.21 19.65 5.47 2.948 2948 1.838 1838

A6 3.68 0.37 2.82 0.59 11.38 52.86 4.48 0.14 7.03 0.004 4.79 10.60 12.37 5.47 1.651 1651 0.673 673

A9 7.46 0.23 1.31 0.47 10.34 45.32 0.75 0.01 6.4 0.016 3.77 8.89 11.98 4.32 0.699 699 0.48 480

A11 2.99 0.31 6.69 0.56 9.64 45.53 10.58 0.1 6.88 0.002 8.21 9.57 10.45 7.77 11.563 11563 7.042 7042

A13 3.62 0.3 8.15 0.55 10.92 46.73 13.05 0.12 11.35 0.003 12.31 11.96 9.68 7.00 14.188 14188 2.037 2037

A14 5.87 0.25 6.29 0.52 10.05 44.8 9.55 0.07 8.22 0.005 6.16 6.50 11.60 2.79 28.233 28233 10.722 10722

A16 3.64 0.19 3.62 0.49 11.19 49.15 5.34 0.01 5.94 0 6.50 9.92 11.60 8.15 6.022 6022 2.53 2530

A18 4.21 0.27 1.9 0.41 10.51 44.9 1.21 0.04 10.17 0.002 4.45 6.16 8.53 5.85 1.099 1099 0.672 672

A19 11.17 0.42 3.13 0.38 10.35 46.72 3.43 0.05 5.42 0.013 7.53 12.65 18.50 11.60 2.327 2327 0.752 752

A21 2.68 0.23 3.05 0.44 11.31 47.14 3.04 0.06 12.76 0.007 5.13 12.65 40.34 19.27 2.688 2688 2.373 2373

A23 3.88 0.27 10.41 0.65 10.21 47.25 20.16 0.06 8 0 8.21 9.92 31.15 27.70 1.021 1021 2.81 2810

M1 8.23 0.25 1.58 0.67 9.2 50.5 3.46 0.01 5.64 0.015 4.45 6.16 84.80 84.03 0.685 685 0.142 142

M2 3.28 0.26 3.22 0.67 10.21 52.13 5.04 0.1 5.91 0.003 4.11 5.13 37.66 26.55 4.198 4198 2.853 2853

M3 3.4 0.35 2.08 0.55 9.43 49.33 4.1 0.18 5.75 0.001 4.11 5.82 38.04 84.42 0.4916 491.6 0.251 251

M4 3.9 0.35 3.65 0.57 9.03 38.54 5.46 0.13 7.17 0 2.40 4.45 45.71 38.04 0.938 938 0.538 538

M5B 3.96 0.3 1.98 0.49 10.02 43.75 5.18 0.05 4.95 0.01 4.11 6.16 48.01 38.04 0.121 121 0.091 91

M6 6 0.21 3.77 0.57 9.6 47.37 5.28 0.07 6.38 0 2.40 2.74 40.73 38.81 9.527 9527 7.326 7326

M7 2.46 0.35 1.54 0.47 10.64 47.52 0.9 0.24 10.12 0.004 2.74 5.82 38.43 43.79 0.309 309 0.288 288

M8 3.57 0.25 2.25 0.59 9.75 46.34 1.39 0.03 14.3 0.019 4.79 6.84 43.03 39.58 0.809 809 0.538 538

M9A 11.2 0.31 1.85 0.65 10.17 53.12 3.02 0.01 5.88 0.013 5.48 6.84 43.41 42.26 0.1659 165.9 0.039 39

M9B 8.69 0.23 1.82 0.57 9.82 49.99 2.64 0.05 5.58 0.015 3.43 6.84 48.39 40.34 1.051 1051 0.314 314

M9C 4.55 0.31 3.97 0.7 9.6 51.48 6.95 0.12 5.22 0.01 4.79 26.08 58.36 46.86 1.803 1803 0.728 728

M9D 9.41 0.35 4.26 0.66 9.48 48.53 7.15 0.12 4.84 0.013 5.48 5.54 66.40 48.39 2.243 2243 0.755 755

M9E 9.57 0.34 4.19 0.75 9.6 48.48 6.69 0.1 7.05 0.018 3.09 6.84 50.69 51.46 2.826 2826 1.208 1208

M10 3.36 0.19 3.57 0.54 9.64 47.24 5.01 0.09 8.19 0.023 3.77 3.77 72.92 83.65 12.657 12657 10.778 10778

M11 3.37 0.74 1.51 0.6 10.13 42.1 1.21 0.66 6.07 0.003 3.43 6.50 18.88 3.17 0.213 213 0.044 44

M13 7.36 0.15 2.46 0.55 11.28 48.94 2.33 0.01 19.35 0 4.11 8.21 10.45 7.00 1.51 1510 0.497 497

M15 7.41 0.34 3.38 0.59 11.24 44.64 4.99 0.22 5.78 0 4.11 8.21 13.13 6.62 0.448 448 0.826 826

M16 2.81 0.81 2.8 0.71 13.26 53.24 6.07 0.73 8.64 0 3.09 6.16 7.00 3.17 0.125 125 0.094 94

May Discharge Data August Discharge Data

Site

August Data


