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ABSTRACT

Thermodynamic properties such as enthalpies of formation, dissociation energies, and transition
energies can be a challenge to determine for both experimental and theoretical chemistry. For main
group elements, experimental thermodynamic data are widely available with low uncertainty with
reproducibility with different experiments. However, the availability of such data is limited for
the lower part of the periodic table. For heavy transition metals, lanthanide and actinide, it can be
challenging to determine experimentally thermodynamic data due to the many low-lying states close
to the ground state, relativistic effects, and stability of the elements. In many cases, the experimental
properties are often extrapolated from other compounds and direct measurement does not exist or
may lead to very large experimental uncertainties and/or inconsistencies. To aid in the investigation
of such complex systems, computational chemistry can be utilized. Many ab initio and density
functional theory methods among others, have been utilized to investigate heavy element complexes.

In this thesis, ab initio based methods called composite approaches are introduced and employed
to investigate the enthalpy of formation of 5d elements as well as the dissociation energies of lan-
thanide sulfide, selenide and halide species. Moreover, different density functional methods, the most
widely used computational chemistry approach, were applied to investigate the 5d thermodynamic
data. However, as mentioned earlier, some of the heavy elements can show low-lying excited states
and as such, single-reference wavefunction methods can struggle to accurately describe the correct
behavior of the molecule. In these cases, multireference methods such as complete active space
self-consistent field or multireference configuration interaction were utilized. Such methods have
been applied to investigate the ground and excited state of the LuF molecule and used to calculate
the spin-orbit coupling and determine the multireference character of a set of lanthanide diatomics.

Ab initio composite approaches, as well as density functional theory have also been utilized to
study the enthalpy of formation of per- and polyfluoroalkyl substances (PFAS). These substances are
often called "zombie chemicals" since they do not degrade in the environment due to their strong C-F
bonds. They have been found in many different environments from soil samples, water, Antarctic ice
and many other places around the globe. In this thesis, the PFAS gas phase enthalpies of formation



are investigated using the correlation consistent Composite Approach ccCA approach as well as
density functional theory and coupled-cluster methods.

Finally, the interaction between light and matter can also be investigated using theoretical
methods. In this case, the time-dependent Schrödinger equation needs to be solved. While many
different methods exist, in this thesis, the time-dependent configuration interaction method is used
to study the effect of a photon to the electron dynamics of small molecules, in particular for the
ionization effects.
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CHAPTER 1

OVERVIEW OF RESEARCH

In the 1920s Schrödinger, Heisenberg and Heitler and London, respectively, published papers
that became the foundation of quantum chemistry.1–3 Schrödinger developed his famous equation,
Heisenberg is uncertainty principle and Heitler and London, the first paper on quantum chemistry.
These theories and those developed later (based on them) were initially applied to small systems
(and often by hand) as the computational power was not sufficient.

Since the first computer, advances in electronic and computer engineering allowed more and more
powerful computers to be built and be accessible to a growing scientific community. Computational
chemistry has since then been used to understand and comprehend the world around us. While the
computational hardware improved, many computational chemistry methods such as Hartree-Fock
(HF), many body perturbation theory, coupled-cluster methods,4 configuration interaction methods,5

density functional theory,6,7 and many others, have been developed to take advantage of the available
computational power. These methods are used to calculate many properties from thermochemical to
spectroscopic properties.

In theory, experimental thermochemical data will always be used as a gauge of computational
methods. For the early part of the periodic table, this is mostly true, and available experimental
data have, for a large part, small uncertainties within different sources. However for the heavy
elements, it becomes increasingly complicated to obtain reliable experimental data. Available data
can have a high degree of uncertainty and/or be inconsistent between databases. The possible high
uncertainty or inconsistency can often be attributed to the fact that the properties were not direct
measurement but instead, extrapolated from other similar compounds. Thus, in some cases, it can
become complicated to obtain reliable data and so computational chemistry can help in determining
thermochemical properties.

This thesis focuses on the investigation of thermochemical properties for the 5d and lanthanides
complexes. Moreover, a part of the work has been done on understanding the stability of a particular
class of organic molecules called per- and polyfluoroalkyl substances (PFAS). Finally, the ionization
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properties of small organic diatomics has been investigated. Overall, the different studies presented
in this thesis were motivated by the lack of experimental gas phase thermochemical properties for
both the heavy elements and highly fluorinated compounds.

In Chapter 3, the relativistic pseudopotential correlation consistent composite approach (rp-
ccCA) was used and the enthalpies of formation of seventeen 5d compounds were determined.
Moreover, density functional theory (DFT), one of the most used computational chemistry methods,
was utilized to understand its reliability for the 5d compounds. The enthalpy of formation was
calculated using both the total atomization energy (TAE) approach and the isogyric type of approach.
This study shows the importance of using the correct gauge for theoretical method and that some
experimental enthalpies of formation might need to be revisited.

In Chapter 4, the spectroscopic constants of the ground and excited states of the LuF molecule
were investigated employing the complete active space self-consistent field (CASSCF) and multiref-
erence configuration interaction (MRCI) methods. This part of the project was motivated by the fact
that both experimental and previous theoretical studies disagree in the state ordering for the first few
excited states. In the second part of this project, the dissociation energy (D0) of the ground state was
investigated since there is discrepancies between the experimental data available and theory. D0 was
calculated using ab initio methods as well as DFT. In both studies, the effect of different types of
relativistic effects and electron correlation spaces were examined.

In Chapter 5, lanthanide sulfide (LnS) and lanthanide selenide (LnSe) were studied. The new
experimental dissociation energies form Morse’s group motivated this study, as they provided very
accurate energies with uncertainties error of ∼ 0.004 eV. Here, the f -ccCA approach is used where a
new methodology is defined to correct for the molecular spin-orbit coupling as the initial f -ccCA
method used only HF to correlate the electron for the spin-orbit correction. Moreover, two methods
were employed to probe the multireference character of the molecules.

In Chapter 6, the enthalpy of formation of linear PFAS, alkanoic acids and perfluoroalkanes
are calculated using DFT, the domain local pair natural orbital coupled-cluster single double and
perturbative triple (DLPNO-CCSD(T)) and ccCA methods. The lack of experimental enthalpies
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of formation in gas phase for the PFAS compounds leads to first, applied the methods on the
alkanoic acids which have well defined experimental data. Then, the methods were used on the
perfluoroalkanes which have some experimental data. Finally, the methods were employed to
determine for the first time the enthalpies of formation of the PFAS molecules as no experimental
data are available.

In Chapter 7, the time-dependent configuration interaction (TDCI) method is employed to explore
the electron dynamics of small diatomics when interacting with a laser pulse. The main goal of this
project was to test the heuristic model, which is used to simulate ionization process. To this end, the
ionization rate of H2+ and N2 were investigated with the heuristic model.
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CHAPTER 2

QUANTUM MECHANICS FOR COMPUTATIONAL CHEMISTRY

2.1 Introduction
The energy of an atom or a molecule is calculated by solving the time independent Schrödinger

equation �̂R = �R , where �̂ is the Hamiltonian,R is the wavefunction and � is the energy obtained.
This equation can only be solved analytically for one-electron systems. However, for most chemical
problems, more than one electron is present and no analytic solution exists. The Schrödinger equation
can be solved numerically for a small number of electrons. Thus for larger systems, a number of
approximations need to be made.

The first approximation often made is the Born-Oppenheimer approximation (BOA), which
essentially treats the nuclei as static. This can be done because the electron is ∼2000 lighter than the
nuclei, and thus, the nuclei move on longer time scales than the electrons (in most cases), enabling
the nuclei to be treated as static. The Schrödinger equation can then be expressed as:

�̂4; (®A, ®')R 4; (®A; ®') = �4; ( ®')R 4; (®A; ®') (2.1)

where, ®A represents the electronic coordinates, ®' is the set of coordinates for the nuclear as a parameter
and �̂4; , �4; andR 4; are the electronic Hamiltonian, energy and wavefunction, respectively.

The bottleneck in this equation arises from the electron-electron repulsion term (two-electron
integrals) which requires a four index transformation over all basis functions used in a basis set (see
section 2.7). One way to simplify the two-electron term is to consider that each electron exists in
the mean-field of the other electrons. In other words, instead of having to solve a many-electron
problem, the equation becomes a one-electron problem where the electron-electron repulsion is
treated in an average way. This approximation is called the Hartree-Fock (HF) approximation. In this
method, the wavefunction is written as a Slater determinant which is a linear combination of Hartree
product. A Hartree product corresponds to a wavefunction in which the electrons do no interact
with each other and where each electron is described by a spin-orbital. A spin orbital depends on
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the spatial and spin coordinates of the electron. The HF equation to solve is then:

�̂ (8)j(8) = n (8)j(8) (2.2)

where �̂ (8) is the Fock operator, j(8) is the spin-orbital for the electron 8 and n is the corresponding
energy. The Fock operator of electron 8 is given by:

�̂ (8) = −1
2∇

2
8 −

#∑
�=1

/�

A8�
+ E�� (8) (2.3)

where /� is the atomic number of atom � and E�� (8) corresponds to the electron-electron repulsion
replaced by the mean-field potential of the electron 8. Equation 2.2 is solved iteratively until the
energy n no longer changes, this iterative method is called the self-consistent field (SCF) method.
Finally, all of the spin-orbitals optimized by the SCF procedure are combined to give a Slater
determinantR0, from which the energy �0 of the full system can be calculated. This method is
frequently the starting point for any other wavefunction method since it often provides a good guess
for the ground state wavefunction.

While the Hartree-Fock method accounts for some electron correlation (interaction between
electrons), it is often not enough and thus two types of methods that include electron correlation
beyond HF have been developed: those that use the wavefunction (i.e. many body perturbation theory,
Møller-Plesset perturbation theory, coupled-cluster, configuration interaction, etc.) and others that
do not (i.e. Kohn-Sham density functional theory (KS-DFT)).

2.2 Wavefunction-based methods
Different types of wavefunction based theory exists, among the most popular are many body

perturbation theory (for example, Møller Plesset perturbation theory), coupled-cluster (CC) methods,
and configuration interaction (CI) methods. These methods presents different advantages and disad-
vantages and will be discussed in the following sections. Among the key features of any method are:
the computational cost, size-extensivity and size-consistency. The computational cost corresponds
to the CPU time needed to complete a calculation, the disk space used to store the information or
the required memory. The computational cost can also be represented by the scaling of the method
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in terms of system size and is given as =G (where = represents the system size and G an integer).
Size-extensivity represents the scaling (linear) of a method as the number of electron increases.
Finally, a method is size-consistent if the energy of two infinitely separated systems corresponds to
two times the energy of one system. All these features are important when selecting a method to
investigate a particular application.
Many body perturbation theory

In many body perturbation theory, the missing electron correlation (electrons interaction) energy
from Hartree-Fock is obtained by using perturbation theory. To do so, the Rayleigh-Schrödinger
theory starts from an unperturbed Hamiltonian �̂0 and adds a perturbation such that:(

�̂0 + _+̂
)
R0 = �0R0 (2.4)

R0 is the wavefunction of the ground state, �0 is the corresponding energy, �̂0 is the unperturbed
Hamiltonian, and _ is a constant. This equation is then expanded in a Taylor serie to give:

R0 =R 0
0 + _R 10 + _2R 20 + · · · (2.5)

�0 = �0
0 + _�10 + _2�20 + · · · (2.6)

with

R :
0 =

1
:!
m:R0
m_:

����
_=0

(2.7)

� :0 =
1
:!
m:�0
m_:

����
_=0

(2.8)

where : represents the order of the expansion. At order 1 (when : = 1), equation 2.4 becomes:

�̂0R 10 + +̂R 0
0 = �0

0R
10 + �10R 0

0 (2.9)

By solving this equation, the energy at order 1 is obtained such as:

�10 =
〈
R 0

0
��+̂ ��R 0

0
〉 (2.10)

which corresponds to the perturbation energy over the unperturbed wavefunction. In the Rayleigh-
Schrödinger perturbation theory, no assumption are made on the form of the unperturbed Hamiltonian
�̂0.
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Møller-Plesset perturbation theory

In 1934, Christian Møller and Milton S. Plesset published their paper on second order perturbation
theory.8 The goal of this work was to add dynamic electron correlation (electrons interaction) to the
Hartree-Fock method. To do so, they started from the Rayleigh-Schrödinger perturbation theory
using equation 2.4 and defined the unperturbed Hamitlonian as a sum of Fock operator such as:

�̂0 =
∑
8

�̂ (8) (2.11)

where �̂ (8) is given by equation 2.3. The energy shift: the expectation value of the perturbed
Hamiltonian versus the non-perturbed state, for a given order can be determined. For the first order,
the energy shift is:

�10 =
〈
R 0

0
��+ ��R 0

0
〉 (2.12)

For the second order:

�20 =
∑
<≠==0

〈
R=

��+ ��R 0
<

〉 〈
R 0
<

��+ ��R 0
=

〉
�0
= − �0

<

(2.13)

To determine the total electronic energy, the energy shifted for a given order is added to the Hartree-
Fock energy. However, it is important to note that this energy is not variational, meaning that it is
possible to obtain an energy lower than the real ground state energy.

Technically, it is possible to go to any order in the perturbation. However, higher orders of
perturbation theory become computationally costly, typically with limited possible improvement
in energy;9 better improvements can be achieved by other methods for similar, or less cost. For
example, MPPT(2) corresponds to the truncation of the energy expansion at the second order.
Coupled-cluster methods

Coupled-cluster (CC) theory was spread to chemistry because of the work done by Čížek in
1966.4 In the CC formalism, the wavefunction is written as an exponential ansatz constructed from
a reference wavefunction (typically a HF determinants):

|RCC〉 = 4)̂ |R0〉 (2.14)
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where |RCC〉 is the coupled-cluster wavefunction, |R0〉 is the reference wavefunction and )̂ is the
cluster operator. )̂ is written as the sum of excitation operator such as:

)̂ = )̂1 + )̂2 + · · · + )̂# (2.15)

where )̂1 represents the single excitation operator, )̂2 the double excitation operator and )̂# the
N-tuple excitation operator. Including only single and double excitations in the coupled-cluster
theory gives the CCSD method and lead the following for for )̂ :

)̂ = )̂1 + )̂2 −→ CCSD (2.16)

CCSD theory leads to qualitative results and thus, for direct comparison with experiment, higher
excitation is usually needed (triples, quadruples, etc.). However, by including these excitations, the
computational cost (in terms of CPU time, disk space) increases drastically, making computation
less feasible. To improve the CCSD result without going to full triple excitations as in CCSDT:

)̂ = )̂1 + )̂2 + )̂3 −→ CCSDT (2.17)

the triple excitations can be included perturbatively at a reduced cost, leading to the CCSD(T)
method. This method is one of the most popular single-reference method used in computational
chemistry and is often called the "gold-standard". This popularity is due to the fact that CCSD(T)
was able to achieve low error compared to experiment (∼ 1kcal·mol−1) for large sets of organic
molecules.

However, CCSD(T) scales as =7 (where = represents the system size) and thus, can become
very expensive as the number of correlated electrons and basis function increases. Moreover, while
CCSD(T) is very robust for typical single-reference systems (systems for which only one Slater
determinant is needed to describe the wavefunction), it has been shown that this method can
underperform or even fail for bond breaking, radical and high multireference character system.10

Thus, there have been development to improve both the computational time of CCSD(T) and its
reliability for multireference systems.
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Configuration interaction methods

Configuration interaction (CI) as all correlated methods correspond to theories in which the
electrons from a reference wavefunction are excited.5 If all possible electrons excitation in all orbitals
of a given basis set are included in CI, one obtains the so-called Full-CI. Full-CI is considered exact
within a given basis set. While it is possible to use such methods, as the number of electrons to
be excited and the number of unoccupied orbitals increases, the computational cost (CPU time,
allocated memory, etc.) of Full-CI increases. Thus, to reduce the computational cost, the number of
electron excitations can be reduced. The CI wavefunction can be represented as:

|RCI〉 = 20 |Q0〉 +
∑
8,0

208

��Q0
8

〉
+

∑
8< 9 ,0<1

2018 9

���Q01
8 9

〉
+ · · · (2.18)

where |Q〉 represents a single Slater determinant composed of spin-orbitals often taken from a
Hartree-Fock calculation. In eq 2.18, 20 and |Q0〉 are the CI coefficient and Slater determinant
for which no electrons are excited, respectively. The remaining terms correspond to the electron
from spin-orbitals i, j, etc, being excited into the virtual spin-orbitals a, b, etc. The Full-CI method
corresponds to a CI wavefunction where higher excitation rank corresponds to the total number of
electrons. For example, for lithium, the Full-CI wavefunction will take the form:

|RCI〉 = 20 |Q0〉 +
∑

8=1,2,3,0
208

��Q0
8

〉
+

∑
1≤8< 9≤3,0<1

2018 9

���Q01
8 9

〉
+

∑
8=1, 9=2,:=3,0<1<2

20128 9 :

���Q012
8 9 :

〉
(2.19)

If only the single and double excitations are of interest, the CI expansion is truncated at the second
order to give CISD. However, the truncated CI suffers from being not size-consistent, which means
that the energy of two infinitely separated systems does not correspond to two times the energy
of one system. This leads to truncated-CI over/under-estimating dissociation energies and having
issues representing potential energy curves. Any truncated CI methods is almost size-extensive,
which means that one loses accuracy as the system size is made larger.

2.3 Density functional theory (DFT)
For ab initio methods like CCSD(T), the computing cost (CPU time, disk space) increases

greatly with the system size. Thus, alternative methods with reduced cost are of interest.
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In 1927, the first non wavefunction approach to solve the Schrödinger equation was introduced
in the Thomas-Fermi model.11,12 Here the ground state energy of a homogeneous electron gas can
be calculated as a function of the electron density (d). The energy is separated into kinetic and
potential parts: � = ) ++44 ++4# , where +44 and +4# are the electron-electron repulsion potential
and nuclei-electron potential, respectively. Moreover, by writing the energy as a function of the
electron density (d) instead of the wavefunction, it simplifies the calculations. This is due to the
fact that the electron density only depends on three coordinates instead of the 3# dimension in the
wavefunction (where # is the number of electrons).
The energy can be written as:

�TF [d] = 3
10 (3c

2)2/3
∫

d5/3(®A)3®A − /
∫

d(®A)
A
3®A + 1

2
∬

d(®A1)d(®A2)
A12

3®A13®A2 (2.20)

where the first term is the kinetic term associated with a system of non-interacting electrons in
a homogeneous electron gas and the second and third terms are +4# and +44, respectively. The
last term is approximated by the classical Coulomb repulsion. The density used is obtained by the
variational principle under the constraint: ∫ d(®A)3®A = # , which means that the number of electrons
is given by the integral of the density. However, this model was problematic because of the very
inaccurate expression of the kinetic energy (non-interacting electron approximation) and the lack of
an exchange interaction term since the electron-electron interaction is treated classically.

The first steps to improvement were introduced in 1964 by Hohenberg and Kohn.6 Hohenberg
and Kohn theory is based on two theorems:

• A given electron density maps to a unique Hamiltonian

• If the density corresponds to the ground state density, then that density will give the lowest
energy.

The functional for the energy can be written as:

� [d] = )4 [d] +
∫
+4# (A) · d(A)3A + � [d] + �G2 [d] (2.21)
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where, � [d] is the energy from the density functional, )4 [d] is the kinetic energy functional,+4# (A)
is the potential energy between the electron and the nuclei, d(A) is the N-electron density, � [d] is
the classical Coulomb functional, and �G2 [d] is the exchange-correlation energy. The last term is
included to compensate for the fact that in the classic electron-electron interaction, all of the electron
pairs are treated whereas in quantum mechanics, the electrons are indistinguishable and, thus, the
classic interaction overestimates the energy. This theory is called Hohenberg-Kohn-DFT (HK-DFT)
and is exact because no approximations are made. However, it is impracticable since it does not give
the expression of the kinetic energy and exchange-correlation terms. Thus, approximations of )4 [d]
and �G2 [d] need to be made.

In 1965, Kohn and Sham7 provided an expression for both terms. As in the Thomas-Fermi
model, the kinetic term is approximated from a non-interacting system of electrons. Thus, )4 [d]
takes the form of:

)4 [d] =
#∑
8=1

〈
Q8

����−1
2∇

2
8

����Q8〉 (2.22)

where Q8 is the 8th spin-orbital of a non-interacting system and ∇2
8

is the Laplacien operator for
electron 8. However, by introducing the orbital in this scheme, the method no longer depends on
the three variables (x,y,z) of the density but now on 3# variables which increases the cost, but
it is still faster than correlated methods. This formulation is called Kohn-Sham DFT (KS-DFT)
and is typically used for DFT based approaches. By giving this expression for )4 [d], only the
approximation of �G2 [d] needs to be determined.

2.4 Approximation of the exchange-correlation term
There are many different approximations used for the exchange term and the most common

different categories are given in Figure 2.1.
The simplest is the local density approximation (LDA) and assumes that the density can be

approximated as a homogeneous electron gas. In LDA, the electrons do not interact, therefore,
the exchange functional only depends on the density at each point. This approximation results in
errors of ∼ 10–20% for ionization energies of atoms and dissociation energies of molecules.13
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Figure 2.1: Toward the approximation of the exchange-correlation in DFT.
The next approximation is called the generalized gradient approximation (GGA). The GGA is
built from the LDA and includes the gradient of the density (∇d). This approximation reduces
the same error of LDA by a factor of 2–5, but because in atoms and molecules the density decays
exponentially with respect to the nuclei-electron distances, the GGA functionals were constructed
by calculating the gradient close to the nuclei. While the GGA uses the first derivative of the density,
the next approximation, the meta-GGA (M-GGA), includes the second derivative of the density. This
second derivative comes from the fact that the kinetic energy density is included in the functional.
This approximation allows a better description of properties such as the atomization energy and
dissociation energy.14 The next exchange-correlation approximation is called hybrid-GGA (H-GGA),
where the exchange-correlation functional is approximated by GGA and a certain percentage of exact
exchange, analogous to the Hartree-Fock exchange correction, is included. Since the results (bond
dissociation, bond length or atomization energy) obtained with H-GGAs have shown very good
accuracy in comparison with experimental data for dissociation and ionization energies for small
organic molecules, the H-GGA functional became the most spread out in computational chemistry
with B3LYP15,16 as the most known and used functional (see Figure 1 in Sousa17). The two last types
of functionals (M-GGA and H-GGA) which are improvements upon GGA and LDA, are combined
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into a new type of functional including both meta and hybrid components called meta-hybrig-GGA
(MH-GGA). However, it is important to note that functionals are fit with parameters from theory
and/or experimental data, thus some functionals might be more appropriate for certain applications.
Moreover, due to the fitting, DFT is not systematically improvable and so different functionals may
be better for different molecular systems.

2.5 Multireference methods
Until this point, all the methods described were based on a single Slater determinant to describe

the wavefunction. However, while these single-reference methods can properly describe the ground
state of most compounds, they can struggle to accurately describe potential energy curves and
molecules that have a strong multireference character. Here, a molecule with multireference character
refers to a system for which more than one Slater determinant is needed to provide a good zeroth-
order approximation for the wavefunction. To study bond-breaking reactions or even molecules
with nearly degenerate ground states, methods that can handle multireference system need to be
used. Some solutions to this problem have been given in Kowalski and Piecuch paper18 under the
form of CR-CCSD(T), however, while it improves CCSD(T) results for multireference systems, it is
sometimes not enough. Instead, multireference methods can be used.

Many types of multireference methods are available, such as multiconfigurational self-consistent
field,19 complete active space self-consistent field, multireference coupled-cluster or multireference
configuration interaction.
Multiconfigurational Self-Consistent Field (MCSCF)

The multiconfigurational self-consistent field or MCSCF is a method in which the wavefunction
(RMCSCF) is described by more than one Slater determinant and which corresponds to a linear
combination of multiple configuration (determinants). MCSCF corresponds to a multireference
Hartree-Fock.RMCSCF is defined as:

RMCSCF =

BC0C4B∑
8

�8Q8 (2.23)

13



whereQ8 is a Slater determinant and �8 its corresponding coefficient which are both optimized. In
this method, each determinants or configuration state functions (CSF) are chosen individually based
on chemical intuition. A CSF corresponds to a linear combination of Slater determinants. Moreover,
from MCSCF, a set of optimized orbital are obtained that can then be used for further calculations.
Complete Active Space Self-Consistent Field (CASSCF)

The complete active space self-consistent field or CASSCF method is based on MCSCF, however
instead of manually choosing determinants, they are generated from a partitioning of the molecular
orbitals into an "active space". The selection of these orbitals is made as Figure 2.2 shows:

Figure 2.2: The molecular orbitals are divided in three spaces: the core space, the active space and
the virtual space.

The core space corresponds to doubly occupied orbitals in which electrons cannot be excited to
unoccupied orbitals. The active space represents orbitals that can be doubly, singly or unoccupied.
In this space, the electrons from the occupied orbitals can be excited to the unoccupied one. Gen-
erally, the sub-valence (n-1) and/or valence (n) orbitals with the first virtual orbital (n+1) (with n
representing the principal quantum number) are included in the active space.

However, it is important to note that the manual selection of the active space can become very
difficult requiring chemical intuition (and at times, serendipity). Active space methods are often
referred to as an "art" and less as an "exact science". Finally, the virtual space is only composed of
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unoccupied orbitals and do not participate in the calculation. In the CASSCF method, all possible
electron excitations are included in the active space which correspond to a Full-CI representation
in that space. However, the computational cost increases steeply with the number of orbitals and
electrons present in the active space. A common limitation for the CASSCF method is 20 electrons
into 20 orbitals in the active space, referred to as CASSCF(20,20). One way to reduce the cost is to
restrict the active space, which lead to the restrictive active space self-consistent field (RASSCF).20

Moreover, both MCSCF and CASSCF lack a good description of dynamic correlation effect which
can be very important for energetic and spectroscopic properties. Often a more rigorous inclusion of
the dynamic correlation is done by doing multireference configuration interaction (MRCI) calcu-
lations, multireference coupled-cluster (MRCC) or multireference many body perturbation theory
(MRMBPT) on top of the configuration obtained at a CASSCF or MCSCF level.
Restrictive Active Space self-consistent Field

The restrictive active space self-consistent field (RASSCF) method consists of limiting the
number of possible excitations and thus reducing the number of determinants needed. In order to
achieve this cost reduction, the active space from CASSCF is divided into 3 spaces: RAS1, RAS2
and RAS3.

Figure 2.3: Restrictive active space.
RAS1 and RAS3 are the restricted spaces where a maximum of holes in RAS1 and a maximum

of electrons in RAS3 are given. On the other hand, no restrictions are imposed on RAS2 and thus,
this space can have no electrons/holes or have any number of holes and electrons (with a maximum
corresponding to the number of orbitals in RAS2). The main advantage of the RASSCF method
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compared to CASSCF is its flexibility and ability to include more configurations at a lower cost. In
general, RASSCF methods can use a larger active space than the corresponding CASSCF. Moreover
with RASSCF, it is possible to obtain a single reference method if no electrons and holes are given
in RAS2. If any electrons or holes are added in RAS2, then the method becomes multireference. As
for the CASSCF and MCSCF methods, a MRCI calculation is run using the reference configuration
obtained from RASSCF to recover most of the dynamic correlation.

2.6 Time-dependent quantum mechanics
In the standard form of the Schrödinger equation the system is studied in a vacuum and at 0K,

which is the standard condition in molecular electronic structure theory. However, to investigate
properties such as ionization process, UV-visible, IR and X-ray absorption or fluorescence process,
it is possible to introduce an electromagnetic field (often a laser pulse) to interact with the system.
To simulate such interaction, electron dynamic methods can be employed and in particular the
time-dependent electronic Schrödinger equation:

8ℏ
mR4 (C)
mC

= �̂4 (C)R4 (C) (2.24)

where 8 is the complex number, ℏ the Planck constant andR4 (C) the electronic wavefunction. �̂4 is the
electronic Hamiltonian and can be taken from different theory such as HF, MCSCF, CASSCF, CC or
CI to give the corresponding time-dependent (TD) methods: TDHF,21 MCTDHF,22 TD-CASSCF,23

TDCC,24 TDCI25 and many others. In those methods, the interaction with the light is included by
modifying the time independent Hamiltonian Ĥ4 such as:

�̂4 (C) = Ĥe + &̂(C) (2.25)

where &̂(C) represents the interaction between the system and the external electric field. Technically,
the full multipole (dipole electric, quadrupole electric, dipole magnetic, etc) must be introduced
in &̂(C).26 However, for most application the multipole expansion can be truncated, in particular
when the wavelength of the light is larger than the size of the molecule. In these cases, the dipole
approximation is used, which means that only the dipole operator ˆ̀ is used in the &̂(C). This
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approximation is only valid when the wavelength of the light interacting with the system is longer
than the size of the system. In the dipole approximation, the most common gauges that can describe
the interaction between the field and the system, are: the length and velocity gauge. In the length (or
electric field) gauge, &̂(C) take the form:

&̂(C) = − ˆ̀� (C) (2.26)

When using the length gauge, equation 2.25 becomes:

�̂4 (C) = Ĥe − ˆ̀�? (C) (2.27)

where the electric field is often described as a pulse and is polarized along the x, y and z axis. The
field is often treated classically and the envelope is described by a cos2, cos sin or sin2 function. For
example, Ulusoy and co-workers used an electric pulse described as:25

�? (C) = �?,0 cos2 ( c
2f (C − C0)

)
cosl(C − C0) (2.28)

where �?,0 is the maximum field strength, l is the carrier frequency, C0 is the time at which the
pulse is maximal and f the the pulse width.
Time-dependent configuration interaction (TDCI)

In TDCI,25,27 the wavefunctionRCI(C) is described as the linear combination of each CI state
such as:

RTDCI(C) =
∑
8

�8 (C)R8 (2.29)

where only the coefficients�8 (C) are time-dependent andR8 is given by equation 2.18. The coefficients
�8 (C) are written as:

�8 (C) = 4−8�̂ (C) · �8 (0) (2.30)

where �8 (0) are the CI coefficients at C = 0 and �̂ is the CI Hamiltonian taken from eq. 2.25
with &̂(C) being either the length or the velocity gauge. To solve this equation in a presence of an
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electric field, there exist different propagator such as: split-operator,28,29 Adams,30 or Runge-Kutta
methods.31 If no external field are present, only equation 2.30 is needed.

Here the split-operator approximation method is used which lead to the following expression:

4−8�̂ (C+JC)�8 (C) ≈
(
4−8�̂0 (C+JC/2)U †4−8�̂ (C) (C+JC)U4−8�̂ (C+JC/2)) �8 (C) (2.31)

where U is a unitary matrix that transform the eigenfunction of �̂0 (field-free system) into the
eigenfunction of �̂ (C) which is the system-field interaction and vice versa. Here, both �̂0 and �̂ (C)

are diagonal matrices. This approximation is correct as long as the time step (JC), which is dependent
on the field strength, is small. It is important to note that TDCI is gauge variant and thus depending on
how the interaction system-field is represented (length or velocity) different results can be obtained
for transition dipoles.25

Ionization process within TDCI

There exists two types of ionization processes, below and above ionization threshold. In the
former, the ionization happens through the tunneling effect and is observed when the laser pulse
energy is lower than the ionization potential (IP). Above threshold ionization processes are present
when the laser pulse energy is greater than the IP. In a typical TDCI calculation, Gaussian type
orbitals (GTO) are used to model the space in which an electron moves (see section 2.7). However,
the use of this finite basis set leads to the wrong description of the continuum states (states higher
in energy than IP) due to the fact that GTO decay exponentially as the distance nuclei-electron
increases. This fast decay allows the description of above ionization process. To solve this issue,
an approximation called a heuristic model has been proposed in the literature, which consist of
introducing a decay-time to the C8 states with energies above the IP.29,32 In this model, the energy
of a CI state 9 (� 9 ) is replaced by a complex energy written as:

� 9 → � 9 −
8

2�9 (2.32)

where 8 is the complex number and �9 is the ionization rate of the CI state 9 . In this model, the
ionization potential is defined as the absolute value of the Hatree-Fock HOMO energy (Koopman’s
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theorem). The ionization rate for the CIS method is then defined as:

�CIS
9 =


0 if � 9 < IP∑
0

∑
A

����A0, 9 ���2 1
3

√
nA if � 9 ≥ IP and nA > 0

(2.33)

where 0 and A are molecular orbitals (MO) indices, �A
0, 9

is the probability of the electron being
excited from MO 0 to MO A in the CI state 9 and nA is the energy of the corresponding MO A . In eq.
2.33, 3 is an empirical parameter that represents the electron escape length. It is important to note
that the heuristic model is only valid when above ionization threshold processes are investigated.
Moreover, as shown by Klinkusch et. al., this model does not include a lifetime for states below
IP which can lead to some errors, especially when the states below IP interact greatly with the one
above the IP.32

2.7 Basis sets
For quantum calculations, the space mapped by the electrons must have a mathematical rep-

resentation represented as a probability distribution. This comes in the form of a basis set and is
used to solve the basic HF, KS-DFT or MCSCF equations. A linear combination of the basis set
functions q8 times a coefficient can be used to represent the wavefunctionR , in the following way,

R =

#∑
8=1

28q8 (2.34)

where 28 are the expansion coefficients and # the number of basis functions.
Each basis function needs to properly represent the real behavior of an electron in order to reduce

the number of basis functions used to build the molecular orbital. Moreover, a basis set is defined
complete when all basis functions completely span the space. Thus, a basis is complete if adding a
basis function no longer changes the electronic energy, this process (reaching the completeness)
is called the complete basis set limit. Finally, the basis set should provide a good balance between
desired accuracy and the computational cost.

For a hydrogen-like (one-electron) system, the exact solution of the Schrödinger equation is
known and thus its orbitals. Therefore, a good choice for a basis set would be one composed of
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atomic hydrogen-like orbitals. For these orbitals, the radial wavefunction has a form as shown in
Figure 2.4:
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Figure 2.4: Representation of the radial distribution of the hydrogen 1B orbital.
Two main types of basis functions have been developed: Slater type orbitals (STO)33 and

Gaussian type orbitals (GTO).34 When a molecule is studied, the molecular orbitals are obtained
by linear combination of atomic orbital (LCAO). However, linear combinations of STOs are very
difficult to compute, the two-electron integrals have to be solved numerically and are costly in terms
of CPU time and memory allocated. Because of that, most quantum software uses GTOs. Many
Gaussian functions can be combined to describe the hydrogen-like orbitals to give a STO. However,
GTOs do not represent the behavior of the electron very well in the region close to the nucleus and
they fall too slowly compared to the STOs. Moreover, the linear combination of GTOs gives a GTO
and thus makes the GTOs suitable for numerical calculations of the two-electron integrals. When
multiple Gaussian functions are combined, the function obtained is called contracted GTO.

There are two different schemes of contraction: the segmented35 and the general36 contraction.
Many types of segmented basis sets were developed such as the STO-=G from Pople group37 where
= Gaussians are contracted in a Slater type orbital or the split-valence basis set such as 6-31G,
6-31G*.38 In terms of general contracted basis sets, Dunning introduced the correlation consistent
(cc) basis sets39 for electron correlation calculations, Roos and co-workers developed the atomic
natural orbital (ANO)40 which were obtained by using the coefficient from a natural orbital Complete
Active Space Perturbation Theory (CASPT2) calculation.
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2.8 Relativity in chemistry
When describing molecules relativity needs to be treated, and as the atomic number increases, the

effect of relativity on the properties increases. There are two main effects in relativity: the spin-orbit
coupling (SO) and the scalar relativistic (SR) effects. SO coupling is a result of the magnetic field
created by an electron’s ability to interact with the magnetic field created by the same or another
electron moving around the nucleus. In other words, the spin of an electron interacts with its own
angular momentum. SO causes splitting of orbitals with the same angular momentum. For example,
in the non-relativistic case, there are three degenerate ? orbitals (?G , ?H and ?I) whereas employing
relativistic theory, the ?’s are split energetically into two non-degenerate levels, the ? 12

and ? 32

(Figure 2.5).

�

?G ?H ?I ? 12
? 32

? 32

NR R
Figure 2.5: Spin-orbit splitting of the ? orbitals in relativistic theory.

The SO coupling mainly affects properties such as the dissociation and ionization energies. The
second main effect, the scalar relativistic (SR) effect, consists of a direct and an indirect part. The
direct effect corresponds to a contraction and stabilization of all of the B and most of the ? 12

orbitals.
In the innermost shell, the speed of the electron reaches a fraction of the speed of light (>0.1c).
From the theory of relativity, the law of physics must be the same in all inertial reference frames,
which implies that the speed of light must be a constant. This leads to the length contraction. When
the speed of an object increases, its mass increases too. The radius of an electron depends on its
mass thus, when the mass increases, the radius decreases. This implies the contraction of the B and
? 12

orbitals. While these two types of orbitals stabilize, the 3 and 5 destabilize. This indirect effect
is due to a screening of the nucleus charge by the B and ? 12

electrons. Because the distance between
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those electrons and the nucleus changes, the charge experienced by the 3 and 5 change as well.
Thus, shielding some of the nuclear charge, allows the electron density to expand.

There are many ways to include the relativistic effects, but two will be considered herein. The
first is by using a pseudopotential to represent the core electrons and the appropriate basis set, and
the second is by using an all-electron basis set and a relativistic Hamiltonian. The advantage of using
a relativistic Hamiltonian is that it reaches a higher accuracy as compared to experimental data but
at a high computational cost. On the other hand, the pseudopotential method is much cheaper but
does not provide the same level of accuracy.
Relativistic Hamiltonian

In 1928, Paul Dirac41 introduced a one-electron relativistic Hamiltonian:

�̂' = V<22 + 2(α · p) (2.35)

This Hamiltonian depends on the rest mass (<), the speed of light 2, the momentum p and two 4 ×

4 matrices V and α, with α being build upon the Pauli’s spin matrices. This Hamiltonian implies
a four-component (4c) wavefunction. The wavefunction has large and small components (R ! and
R () each having a different spin variable. When the free-particle Dirac equation is solved, it leads
to four solutions (one for each component). In this case, the solution of the upper two components
(energies) are much larger than the two lower ones. Moreover, the energy obtained from the large
component (upper) is positive whereas the small component leads to a negative energy. However,
this Hamiltonian cannot be used directly for many-electron systems as it was developed for a one
electron system.

The Dirac Hamiltonian leads to the electronic (positive) and positronic (negative) energy, but
only the electronic energy is needed to solve chemical problems. Thus the Hamiltonian can be
reduced to show only the electronic spectrum, giving a two-component (2c) Hamiltonian. One
way to do that is to treat perturbatively the Dirac Hamiltonian. This leads to the well-known Pauli
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Hamiltonian:42

�̂% = �̂#' − p2+
8<222︸ ︷︷ ︸
Darwin

− p4
8<322︸ ︷︷ ︸

Mass−velocity

+ 8σ · (p+) × p
4<222︸           ︷︷           ︸

Spin−Orbit

(2.36)

where �̂#' corresponds to the non-relativistic Hamiltonian. The mass-velocity term comes from the
expansion of the classical relativistic Hamiltonian and corresponds to the change of mass with the
velocity. The Darwin term corresponds to a perturbation in the trajectory of the electron. However,
this Hamiltonian was developed from perturbation theory and thus has to be used only in this
theory. Moreover, it was developed for the one-electron system only and thus can not be used for a
many-electron system.

Other two-component (2c) Hamiltonians exist such as: the zero order regular approximation
(ZORA),43 the exact two component one electron (X2C)44 and the Douglas-Kroll-Hess (DKH)
Hamiltonians45 as well as many others. Among these methods, DKH is the most widely used among
the computational chemistry community. The idea behind the DKH method is to reduce the Dirac
Hamiltonian to two components by repeating several unitary transformations and thus eliminate the
positronic energy solutions. The advantage of this technique is that it allows variational stability.
However, the operators obtained are complicated and the matrix elements can only be calculated by
numerical methods.
Non-relativistic Hamiltonian and pseudopotentials

Another means to include relativity in a less expensive way is to use a pseudopotential. Because
the core electrons do not play a large role in most bonding interactions, they can essentially be
replaced by a parameterized one-electron operator. This means that the core and valence electrons are
treated separately and thus the core-valence correlation is not accounted for. In relativistic chemistry,
the effective core pseudopotentials (ECP) are used since they are parameterized to include relativistic
effects and are cheaper compared to 4c and 2c Hamiltonian while maintaining accuracy compared to
the experimental data and the results obtained from 4c and 2c methods. The ECP needs to have two
characteristics: to represent the core electrons with a nodeless pseudo-orbital and at the same time
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to accurately describe the valence wavefunction. Thus, the pseudopotential is often represented as:

R (r) → R̃ (r) =


R (r) A ≥ A� (original valence orbital)
5 (r) A < A� (pseudo-orbital)

(2.37)

where A� represents the distance between the nucleus and the farther core electron.
Using a pseudopotential has many advantages in terms of computation. It allows a smaller

basis set than an all electron (AE) basis set to be used. Moreover, there are many types of ECPs
characterized by the number of core electrons. For example, for the 5 -elements, there are small and
large core pseudopotentials. However, the choice of the ECP needs to be carefully made; in general
the number of core electrons will play a key role in the description of the molecule properties.46

Finally, each ECPs is provided with a corresponding basis set which means that not all basis sets will
work for a given pseudopotential. For example, for the 53, the ECP and the basis set were published
in the same paper.47

2.9 Calculation of thermodynamic properties
Thermodynamic properties are critical to chemistry. They help to understand the behavior of the

compound at different conditions (temperature, pressure, etc.). In calculations, many effects may
need to be addressed (electron correlation, relativistic effects for heavy elements, etc.) to correctly
predict thermodynamic properties. An ideal approach would be to do a Full-CI calculation including
all electrons with a 4c Hamiltonian and using a large basis set near completeness, however this is
not computationally feasible for most systems due to the high costs of configuration interaction
calculation and calculation using 4c Hamiltonian. Thus, many methodologies have been developed
to reduce the cost with minimal losses of accuracy, and among the most widely used approaches are
composite approaches.
Composite approaches

The goal of a composite approach is to approximate the results of high-level, computationally
expensive, though reliable methods with a series of less expensive and less accurate methods. To do
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so, these distinct calculations are done at different levels of theories and basis sets. By combining
all of the pieces, the targeted accuracy is approached.

Many composite approaches have been developed such as the Gaussian-n method,48,49 the
Peterson style CBS model,50 the Weizman-n,51,52 (W-n) the High-accuracy extrapolated ab ini-

tio thermochemistry53 (HEAT), the Feller-Peterson-Dixon procedure54(FPD) and the correlation
consistent composite approach55–57 (ccCA).
Correlation consistent composite approach (ccCA)

The correlation consistent composite approach or ccCA was initially developed in 2006 by De
Yonker et. al.55 The main goal was to propose an alternative to the Gaussian-2 method developed
by Pople and co-workers in 1989 which include empirical parameters.48 The fact that no empirical
parameters are present in the ccCA methodology, allow the method to be extended for any element
in the periodic table. Although the name is the same, the current version of ccCA differs from the
original ccCA methodology. Nowadays, the ccCA energy �ccCA is expressed as:

�ccCA = �ref + J�CV + J�CC + J�SR + J�SO (2.38)

where �ref is the reference energy, J�CV is the electron correlation between the valence and the
sub-valence electrons, J�CC is the correlation energy beyond MP2, J�SR is the scalar relativistic
contribution to the energy and J�SO is the relativistic spin-orbit coupling correction energy. In
this equation, J represents the energy difference between different basis set or methods as show
in the following equations. The reference energy is composed of two terms: a Hartree-Fock and a
MP2 correlation energy term. The Hartree-Fock term is obtained with a two points extrapolation
scheme:58,59

� (=) = �CBS + �4−1.63= (2.39)

where n = T,Q represent the basis set level at the aug-cc-pVnZ level and � is a constant. The constant
1.63 was found to be optimal for the extrapolation of HF energy. The MP2 correlation energy is
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calculated using a three-point extrapolation scheme by Peterson et. al.:60

�n = �CBS + �4−(=−1) + �4−(=−1)2 (2.40)

where � and � are two constants and n=D,T,Q is the basis set level at the aug-cc-pVnZ level. The
CBS terms are here to compensate for the fact that it is impossible to use an infinite basis set.
The core-valence correction J�CV is calculated such as:

J�CV = �"%2(��1)/aug−cc−pCVTZ − �"%2/aug−cc−pVTZ (2.41)

where "%2(��1) is a MP2 calculation where the subvalence electrons are added in the correlation
space. In order to account for more electron correlation, the J�CC term is added to the reference
energy. It is computed using CCSD(T) and MP2 such as:

J�CC = ���(� ())/cc−pVTZ − �"%2/cc−pVTZ (2.42)

Finally, two terms are added to account for relativistic effects. The first term, J�SR is computed
using the Douglas-Kroll-Hess Hamiltonian:

J�SR = �"%2/cc−pVTZ−DK − �"%2/cc−pVTZ (2.43)

and the second, J�SO, is calculated by taking an average over the available spin multiplet atomic
energies for the lowest multiplets using the expressions:

J�SO =

∑
� (2� + 1)J��∑
� (2� + 1) (2.44)

where, � is the total angular momentum (� = ! + () and J�� is the corresponding energy level. The
energy levels are taken from the experimental data.

This formulation of ccCA can be used for main group molecules as well as the 2p and 3p blocks
and is the starting point for all other types of ccCA method.
Relativistic pseudopotential correlation consistent composite approach (rp-ccCA)

The rp-ccCA method is the ccCA method adapted for transition metal complexes. It was de-
veloped for 43 transition metal complexes in 2011 by Laury and coworkers.61 This approach is
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mainly based on MP2 and CCSD(T) calculations and includes a relativistic effect through the use of
a pseudopotential. The rp-ccCA energy is computed through the following expression:

�rp−ccCA = �ref + J�CC + J�CV + J�SO (2.45)

where �ref is the reference energy and calculated at the complete basis set limit, J�CC corresponds
to the correlation effect, J�CV is the core valence correlation and J�SO is the spin-orbit term.

This �ref term corresponds to a MP2 and Hartree-Fock complete basis set limit calculations The
former uses a three point extrapolation scheme:60

�n = �CBS + �4−(=−1) + �4−(=−1)2 (2.46)

where � and � are two constants, = is the basis set level (double-, triple- and quadruple-Z). The
Hartree-Fock energy is obtained with a two points extrapolation scheme:58,59

� (=) = �CBS + �4−1.63= (2.47)

where n = T,Q represent the basis set level at the aug-cc-pVnZ level and � is a constant and the
1.63 being optimal for the HF energy extrapolation.

However, even if MP2 does include some correlation, other methods such as coupled-cluster
can recover more correlation. Thus, correlation beyond the MP2 level is computed through J�CC

by the following equation:

J�CC = �CCSD(T)/cc−pVTZ−PP − �MP2/cc−pVTZ−PP (2.48)

where �CCSD(T) and �MP2 are energies calculated at the CCSD(T) and MP2 levels respectively, with
the cc-pVTZ-PP basis set.

Since the valence electrons are at the same time responsible for the bonding but also are dependent
on the core electrons, it is necessary to include the correlation between the core and valence electrons.
This is done in the J�CV correction term through the following calculation:

J�CV = �CCSD(T,FC1)/aug−cc−pCVTZ−PP − �CCSD(T)/aug−cc−pVTZ−PP (2.49)
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where, FC1 corresponds to a correlation space where the sub-valence electrons are included. For
example, the 1B, 2B and 2? electrons of chlorine are frozen in each step, but for the CV term, these
electrons are included in the calculations.

Finally, the J�SO term corresponds to the correction to the atomic spin-orbit. It is calculated
by taking an average over the available spin multiplet energies for the lowest multiplets using the
expressions:

J�SO =

∑
� (2� + 1)J��∑
� (2� + 1) (2.50)

where, � is the total angular momentum (� = ! + () and J�� is the corresponding energy level. The
energy levels are taken from the experimental data.
f element correlation consistent composite approach (f -ccCA)

The f -ccCA methodology is based on the standard ccCA and was developed for the f ele-
ments.62,63 While ccCA only needed a correction to the scalar relativistic and spin-orbit coupling
effects, the f -ccCA methods includes the scalar relativistic effect at each step through the use of the
Douglas-Kroll-Hess Hamitlonian at the 3rd order. The f -ccCA energy is defined as:

�f−ccCA = �ref + J�CC + J�CV + J�SO (2.51)

where J�ref is the reference energy, J�CV is the electron correlation between the valence and the
sub-valence electrons, J�CC is the correlation energy beyond the second order perturbation and
J�SO is the relativistic spin-orbit coupling correction energy.

As for ccCA, the reference energy is composed of two terms: a Hartree-Fock and a MP2
correlation energy term, both obtained with an extrapolation scheme. The Hartree-Fock term is
calculated at the complete basis set limit with a two-points extrapolation scheme:58,59

� (=) = �CBS + �4−1.63= (2.52)

where n = T,Q represent the basis set level at the aug-cc-pVnZ-DK level and � is a constant. The
MP2 correlation energy is calculated using a three-point extrapolation scheme by Peterson et. al.:60

�n = �CBS + �4−(=−1) + �4−(=−1)2 (2.53)
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where � and � are two constants and n=D,T,Q is the basis set level at the aug-cc-pVnZ-DK level.
The core-valence correction J�CV is calculated such as:

J�CV = ���(� (),��1)/aug−cc−pCVTZ−DK − ���(� ())/aug−cc−pCVTZ−DK (2.54)

where ��(� (), ��1) is a CCSD(T) calculation where the sub-valence electrons are added in the
correlation space. In order to account for more electron correlation, the J�CC term is added to the
reference energy. It is computed using CCSD(T) and MP2 such as:

J�CC = ���(� ())/cc−pVTZ−DK − �"%2/cc−pVTZ−DK (2.55)

To include the spin-orbit coupling, the J�SO term is calculated using the following equation:

J�SO = SO(") −
∑
8

SO(-8) (2.56)

where SO(") is the spin-orbit coupling obtained at the multireference configuration interaction or
at the Hartree-Fock average of configuration and SO(-8) is the atomic spin-orbit coupling obtained
from experiment. The atomic spin-orbit is calculated using the same J average equation as described
for ccCA and rp-ccCA.
Thermodynamic properties

The thermodynamic properties can be determined by two main routes: those that calculate the
total atomization energy (TAE) and the others called isogyric approach based on an actual chemical
equation.

The general scheme of the TAE approach is the following:

J�298 K
f (") =

0C><B∑
8

a8J�
0K
f (-8) −

0C><B∑
8

a8 [�298(-8) − �0(-8)])

−
∑

�0 K
0 + [�298(") − �0(")] (2.57)

where J�298 K
5

(M) is the enthalpy of formation at room temperature and gas state of the molecule,
a8 is the stoichiometric coefficient, �0 K

0 is the atomization energy, [�298(") − �0(")] is the
enthalpy correction of the molecule (zero-point vibrational energy (ZPVE)), J�0 K

5
is the enthalpy
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of formation at 0 Kelvin of the atoms and [�298(-8) − �0(-8)] is the enthalpy corrections for
the atoms. The two last terms are taken from experiment while the others are computed. �0 K

0 is
calculated through the composite method or with other methods, while the ZPVE term is obtained
using the harmonic oscillator approximation.

The isogyric approach was developed by Pople64,65 in the 70’s and can be applied directly to
any molecule. It was originally applied to hydrocarbon compounds but can be generalized for any
type of compounds. Many types of isogyric approaches exist but they all rely on the same principle,
that the number of electron pairs or bond types is the same on both sides of the chemical equation.
The enthalpy of formation is calculated by using the following equation:

J�298 K
A =

products∑
8

J�298 K
5

(8) −
reactants∑

9

J�298 K
5

( 9) (2.58)

where J�298 K
A is the enthalpy of reaction and is calculated with a composite approach or with other

methods and J�298 K
5

is the experimental enthalpy of formation of each molecules involved in the
reaction.
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CHAPTER 3

RELATIVISTIC PSEUDOPOTENTIAL CORRELATION CONSISTENT COMPOSITE
APPROACH (rp-ccCA) FOR THE 5d COMPOUNDS

This chapter will be submitted as a paper in the journal Chemical Physics Letters. All the
geometries were optimized by Dr. Lucas Aebersold. The enthalpy of formation with the atomization
and isogyric approaches with rp-ccCA and DFT were calculated by Timothé Melin. The original
draft was written by Timothé Melin. The finalized paper was developed by Timothé Melin and Dr.
Angela K. Wilson.

3.1 Introduction
Since the beginning of the twentieth century, 5d heavy elements have been used in many different

industries due to their unique properties. The large resistance of 5d transition metals to extreme
conditions, for example, have made them vital in aerospace engineering. The addition of HfB2 to
a SiC/C ceramic, for example, is used to coat rocket engines to avoid high temperature oxidation,
increasing the durability of the rocket.66 Another broad use of 5d compounds is as catalysts, as the
large range of oxidation states (from I to VI) that they exhibit make them particularly useful in roles
such as for the production of H2.67

Thermodynamic properties are key to understanding potential reactivity and interactions of
5d species, and capitalizing upon their current and potential uses. A number of compilations of
thermodynamic data which date back to the 1950s have been reported for 5d species, including the
NIST-JANAF,68 Yungman,69 Krasnov,70 and Gurvich handbooks.71 However, there are significant
limitations to this. For early main group species, a well-established body of experimental energetic
data (i.e., enthalpies of formation, ionization potentials, electron affinities) with small uncertainties
(< 1 kcal·mol−1) is available, but for transition metal species, this is not the case. Of the data that
is available for transition metal species, very little of it has such small uncertainties. For example,
the gas phase enthalpies of formation at room temperature, J�298 K

5
, for WOF4 and WCl2 have

experimental uncertainties of 22 and 25 kcal·mol−1, respectively.68 Moreover, the reported enthalpies
of formation of 5d species can differ substantially. For example, from Krasnov,70 the enthalpy of
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formation of HfI4 is -86.3 ± 1.8 kcal·mol−1 whereas from Filippenko,72 it is -113 kcal·mol−1. For
some molecules, the rationale for the differences is clear, with new, improved experiments over time,
but, unfortunately, this is not easily resolved for all species.

The most common experimental method used to determine the enthalpy of formation is via a
calorimetry, where J�298 K

5
is obtained by measuring the heat of combustion. This route has been

widely used for small organic molecules where the composition of combustion products is easier
to analyze than for inorganic compounds. Moreover, for such small organic molecules, the results
tend to have very low uncertainties (± 1 kcal·mol−1) for the experimental properties. However, for
inorganic molecules, the calorimetric measurement can be difficult since the reaction products are
often more complex than for small organic molecules. Furthermore, because the analysis of the
product is more complicated, this can lead to high inaccuracies and low reproducibility for the
enthalpy of formation. Other experimental routes have been utilized such as via vapor pressure
at one or more temperatures. (Further details about the routes are provided in the appendix (see
appendix A).) These vapor pressure-related approaches are reported in some of the best known
compilations of thermodynamics data including the Gurvich71 and Yungman69 handbooks and the
NIST-JANAF tables.68 For some of the species listed in these resources, the experimental enthalpies
of formation were not obtained through experiment, per se, but instead, were extrapolated using
experimental data available for other species.68,69,72 To illustrate, the NIST-JANAF tables indicate
that the WCl2 gas phase J�298 K

5
was computed by using the enthalpy of formation of the WCl2

crystal and the enthalpy of sublimation obtained via an extrapolation based upon data for a number
of other 3d and 4d dichloride compounds.68

To aid in gauging the utility of methodologies for 5d species, new experimental methods are
emerging such as the resonant two-photon ionization process from the Morse group, resulting in
dissociation energies with unprecedented accuracies, for transition metal and heavy element species
(∼30 cm−1 experimental uncertainties were obtained).73,74 This approach provides an important
new gauge for theoretical methods. The focus of these experiments has been on diatomic molecules,
which provides theoretically accessible targets for quantitative assessment.
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To determine J�298 K
5

, a number of pathways can be considered. A widely used route is based
upon the total atomization energy (TAE),75 requiring theoretical methods that can describe both
atomic and molecular energies well, typically requiring high level ab initio methods in combination
with large basis sets, towards complete basis set (CBS) limit energy predictions. A second route is
via the isodesmic family of approaches (i.e., isogyric, homodesmotic, hypohomodesmotic).64

Isodesmic approaches are based on reactions in which the compounds involved in a reaction
have similar structure. Wheeler describes many types of these reactions, including (1) the number
of electrons paired is the same for the product and reactant (isogyric), (2) the number of similar
bond types (C – C, C –– C and C ––– C) are the same on both sides of the reaction (isodesmic).76Such
isodesmic approaches are useful as the predicted energies are less dependent on the method chosen
than occurs for the TAE approach. Having similar structures on both sides of the reaction enables a
greater cancellation of error arising from the chosen computational methodologies. An important key
for isodesmic approaches to be useful is having sufficient high-quality enthalpies from experiment
with small uncertainties. For heavier elements, unfortunately, as noted, there is limited experimental
data that would enable the utilization of an isodesmic approach, and, thus, an atomization approach
is typically necessary.

Transition metal and heavy element species are some of the most challenging complexes to study,
with increasingly complex electronic manifolds, often requiring methodology such as CCSD(T)
and a large basis set for thermochemical prediction, becoming computationally expensive, and,
easily, prohibitively so. Moreover, due to the high atomic numbers for these species, relativistic
effects such as scalar effects and spin-orbit coupling effects should also be addressed. With these
challenges, theoretical strategies to enable reliable predictions, but at reduced computational cost,
are of interest. While there are many approaches that can be considered, here the focus is upon
ab initio composite approaches. In composite approaches, the goal is to achieve the accuracy in
energetic predictions that can be achieved with a high-level ab initio method in combination with
a large basis set, but with a combination of less costly, though less accurate calculations. Many
different composite approaches have been developed including the Gaussian-n method,48,77 the
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Peterson style CBS model,50 the Weizman-n (W-n),51,78–80 the High-accuracy extrapolated ab initio

thermochemistry (HEAT),53,81,82 the Feller-Peterson-Dixon procedure54(FPD) and the correlation
consistent composite approach (ccCA) which was developed in our group.55,57,61,83

In prior work the 5d transition metal complexes have been studied theoretically.84–90 Minenkov
and co-workers predicted the enthalpy of formation of a number of 5d and other transition metal
complexes using an approach based on the FDP composite approach and DLPNO-CCSD(T) and
an isogyric scheme.85 For some of the hafnium and tungsten compounds, very large differences
(up to ±50 kcal·mol−1 for HfCl2) were obtained between the calculated enthalpies of formation
and the experimental enthalpy. Schimmelpfennig et. al. investigated the gas phase structure and
properties of different tungsten chloride compounds by employing the B3LYP functional with a
14-electron quasi relativistic effective core potential (ECP) for W and a seven-electron ECP for
Cl.87 The enthalpies of formation of WCl4 and WCl3 were determined using an isogyric reaction
and the experimental data of WCl5 and WCl6 obtained from NIST-JANAF.68 Finally, Fang and
co-workers employed a composite scheme based on the FPD procedure to determine the enthalpies
of formation of hafnium and tungsten complexes.90 They predicted the enthalpies of formation
using several different density functionals (B3LYP, M06, BP86, PW91, PBE and SVWN5) as well,
considering both the Hartree-Fock and Brueckner orbitals. In these prior studies, only the hafnium
and tungsten metals were investigated. Large errors (∼9, ∼10, ∼50 and ∼50 kcal·mol−1 with respect
to the experimental enthalpies of formation) were found for a number of the compounds (WO3,
HfF4, HfCl2 and HfI2, respectively). The choice of Hartree-Fock or Bruckner orbitals made only a
small variation (∼1 kcal·mol−1) in the enthalpies of formation.

Previously, the ccCA method has been successfully applied to 3d and 4d transition metal species
to calculate their enthalpies of formation.55,56,61,83,91,92 Moreover, Jiang et. al. showed that for a
set of ∼200 3d transition metal species – a set of 3d species with the gas-phase enthalpies from
experiment – ccCA-TM, the transition metal version of ccCA, led to an overall mean absolute
deviation (MAD) of 4.34 kcal·mol−1 as compared with experiment.91 While this error is on par with
the average experimental uncertainity for these species of 3 kcal·mol−1, referred to as "transition
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metal chemical accuracy".56 For a subset (∼70) of the ∼200 species, ccCA-TM achieved transition
metal chemical accuracy of 3 kcal·mol−1 relative to experiment. The overall performance of ccCA for
these species is far better than that of density functional approaches, which are typically broadly used
as a first choice of method, even for transition metal species, due to their much lower computational
cost, relative to ab initio methods.61,83

These prior efforts utilized an atomization approach. As noted, isodesmic approaches can
reduce deviations from experiment, particularly for methods that are less reliable via atomization
approaches. To illustrate, for B3LYP, Jorgensen et. al. demonstrated that the isogyric approach
reduced the MAD by 15 kcal·mol−1 when compared to the atomization MAD showing much
better overall results when an isodesmic approach is selected.93 However, in contrast, ccCA is not
dependent upon thermochemical pathway. Both atomization and isodemic approaches result in
similar energies. ccCA has been used by Wilson et. al.94 and Jorgensen et. al.93 to study the enthalpy
of formation of hydrocarbons and organosulfur compounds, respectively. In both studies, using an
isodesmic approach reduced the MAD of ccCA by only ∼0.5 to ∼1 kcal·mol−1 when compared to
the atomization MAD, demonstrating the strength, reliability, consistency, and robustness of the
method, regardless of thermochemical route. It is this stability that is capitalized upon in the present
study.

With the successes of ccCA for earlier transition metal species, in the current study, the enthalpies
of formation of 5d metal complexes are examined. As the thermochemical data available from
experiment is limited, and, of this limited data, a number of species have very large experimental
uncertainties, here, the ccCA strategies are first utilized for comparison with experiment, but, then
are utilized to examine the prior experimental data, using theoretical data and thermochemical
pathways. DFT methods are also considered in this study to gain insight about their utility for 5d

species.

3.2 Methodology
In this study, several DFT and rp-ccCA61 approaches are used to determine the J�298 K

5
for a

set of 5d transition metal species including HfF4, HfCl, HfCl2, HfCl4, HfBr2, HfI2, TaCl5, WCl,
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WCl2, WCl4, WCl5, HgCl, HgCl2, HgBr, HgBr2, HgI and HgI2. The molecules include species with
a span of experimental uncertainties and several species with experimental enthalpies that were
extrapolated using enthalpies of other transition metal species. The mercury compounds (except
HgBr) were selected for their well-established experimental data; WCl, WCl2, WCl4, WCl5 and
HgBr were selected for their large experimental uncertainties (from ∼7 to ∼25 kcal·mol−1); HfCl,
HfCl2, HfBr2 and HfI2 were selected as they have experimental J�298 K

5
s that have been extrapolated

from other transition metal enthalpies of formation.
The geometries of the 5d species were optimized with the meta-generalized gradient approx-

imation (meta-GGA) density functional TPSS.95 In prior work, Aebersold et. al.96 showed that
both TPSS and PBE097 provided geometries in good agreement with experiment for 54 lanthanide
compounds. Moreover, a smaller mean signed deviation (MSD) and mean absolute deviation (MAD)
were obtained with TPSS than with PBE0 for the enthalpies of formation, thus, TPSS was used
in the present study for the geometry optimization. To determine the best ground state for each
molecule, possible multiplicities were investigated and the one that resulted in the lowest energy and
the smallest percentage spin contamination was used for the subsequent single point calculations.

The aug-cc-pVTZ and aug-cc-pV(T+d)Z39 basis sets were used for F and Cl, respectively,
incorporating the revised (and recommended) correlation consistent basis set for chlorine. For the
Br, I, and all metals, small-core ECP10MDF,98 ECP28MDF98 and ECP60MDF47 pseudopotentials
were used with their respective pseudopotential (PP), aug-cc-pVTZ-PP, basis sets.

A number of density functionals were used for single point energy calculations on the optimized
structures, spanning the multiple tiers (functional classes) of Jacobs ladder of complexity,99 including
(a) the local density approximation (LDA): SVWN;100 (b) generalized gradient approximation
(GGA): BP86,15 BLYP,101 PW91102 and PBE;103 (c) meta-GGA (m-GGA): TPSS95 and M06-
L;104 (d) hybrid-GGA (h-GGA): X3LYP,105 B3P86,15 B97-1,106 B3LYP,15 PBE097 and BHLYP;15

and (e) mh-GGA: TPSSH.107 These functionals were selected due to their performance in prior
studies of transition metal species, as well as to sample representation from different functional class
characteristics.
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The ccCA methodology used in this study is based on the rp-ccCA formulation by Laury and
co-workers used for 4d species,61 but with a modification of the calculation for the reference energy.
Instead of using both Hartree-Fock and second order Møller Plesset (MP2) theory to calculate the
reference energy, only the MP2 energy is extrapolated to the complete basis set limit. This is because
the extrapolation of the Hartree-Fock (HF) energy did not bring any benefit for these 5d species,
with changes of less than 1 kcal·mol−1 with the extrapolation. (It is noted that this could become
important for larger species, and, in those cases, the HF extrapolation should be included). Thus, the
rp-ccCA energy becomes:

�rp−ccCA = J�ref + J�CC + J�CV + J�SO (3.1)

where the only difference with the method presented in section 2.9, is that J�ref correspond to a
three point extrapolation scheme of the MP2 energy.60

To calculate the enthalpy of formation, two approaches were used: the atomization energy
approach and the isogyric reaction approach, which is one of the isodesmic schemes. The isogyric
reaction corresponds to a reaction in which the number of paired electrons is the same on both
sides of the reaction. If the enthalpy of formation of a molecule A is calculated using the following
reaction,

A + B C + D

the enthalpies of formation of B, C and D need to be known a priori (from experiment). In this
study, the experimental data needed for this scheme were taken from either NIST-JANAF or from a
study by Krasnov et. al.68,72 Furthermore, to consider the reliability of the experimental data used
for the 5d compounds in this scheme, theoretical data obtained from literature were also used.

The DFT calculations were done with NWChem6.8108 and the rp-ccCA calculations were done
using both NWChem6.8 and Molpro2015.109

3.3 Results
The optimized geometry obtained with TPSS is compared to structures from prior experiment

and calculations. As shown in Table 3.1, the bond length of HfCl4 obtained with TPSS is close

37



(0.004 Å) to the experimental result and slightly better than the optimized bond distance obtained
by Fang and Dixon using CCSD(T)/aug-cc-pVTZ (0.017 Å).89 The same observation is made for
HfF4, where the bond distance is closer (0.02 Å) to the experimental result than the results obtained
by Thanthiriwatte at the CCSD(T)/aug-cc-pVTZ level, differing by 0.03 Å.88

Table 3.1: Computed and experimental bond
lengths (M-X) in Åbetween the metal (M) and the
ligand (X).

Molecule CCSD(T) TPSS Exp.
HfCl4 2.33389 2.320 2.316(5)110

HfF4 1.93588 1.897 1.8970

HgCl2 2.261111 2.276 2.29 ± 0.0270

Overall, the DFT (TPSS) bond-distances are in agreement with both experimental and other
theoretical results, and due to the low computational cost of TPSS, the TPSS structure were used for
the geometry optimization of the 5d compounds.
Enthalpies of formation using rp-ccCA

The enthalpies of formation calculated with rp-ccCA as well as the experimental enthalpies of
formation are given in Table 3.2. Other theoretical enthalpies are also provided, where available.
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Table 3.2: Experimental and theoretical J�298 K
5

in kcal·mol−1 computed with rp-ccCA
using a total atomization energy (TAE) approach.

Classd Molecule Multiplicity J�298 K
5

Lit. rp-ccCA Exp. Exp. Ref.
I HgCl 2 22.21 18.75 ± 2.30 Ref68

HgCl2 1 -34.35 -34.96 ± 1.50 Ref68

HgBr2 1 -20.36 -20.50 ± 3.00 Ref68

HgI 2 33.34 31.90 ± 1.00 Ref68

HgI2 1 -0.82 -3.86 ± 0.5 Ref68

HfCl4 1 -217.088,a -210.18 -212.90 ± 0.30 Ref112

TaCl5 1 -172.57 -182.90 ± 2.00 Ref68

II HfF4 1 -407.888,a -451.88 -399.10 Ref113

III WCl 6 144.63 132.30 ± 10.00 Ref68

WCl4 3 -70.26887,c -67.53 -80.3 ± 7.9 Ref68

WCl5 2 -104.12 -98.60 ± 7.88 Ref68

HgBr 2 27.33 24.49 ± 9 Ref68

IV HfCl 2 73.48 7.00 Ref69

HfCl2 1 -27.1 ± 3.385,b -27.00 -76.00 Ref72

HfBr2 1 4.2 ± 5.885,b -0.98 -6.90 Ref72

HfI2 1 40.5 ± 4.985,b 38.22 -8.90 Ref72

WCl2 5 67.72 -3.00 ± 25 Ref68

a CCSD(T) calculation following the FPD composite approach.
b Homodesmotic approach and DLPNO-CCSD(T).
c B3LYP/DZ+P.
d Class I represents molecules with experimental uncertainties of < 3 kcal·mol−1. Class II, no

uncertainties are given. Class III, experimental uncertainties of > 3 kcal·mol−1. Class IV,
experimental data were determined via extrapolation.

Table 3.2 shows that the errors between the experimental and theoretical J�298 K
5

for the mercury
compounds (Class I) are relatively small, with HgCl having the largest error (3.46 kcal·mol−1). As
the experimental uncertainties for the Hg compounds are small (with the exception of HgBr), these
compounds provide a useful gauge for rp-ccCA. The mean unsigned error for the mercury species
is 1.95 kcal·mol−1, which is lower than the average experimental uncertainty of 2.71 kcal·mol−1

showing that the rp-ccCA methodology is capable of describing mercury compounds. It is worth
noting that the calculated (J�298 K

5
) are all higher than their respective enthalpies of formation.

However, no atomic spin-orbit term contribution was included at the molecular level beyond the
spin-orbit contribution defined within the ECP.
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For the tungsten compounds, the calculated enthalpies of formation are higher than the ex-
perimental values, with the exception for WCl5. The errors between experiment and theory vary
substantially, ranging from ∼70 kcal·mol−1 for WCl2 to only -5.40 kcal·mol−1 for WCl5. For WCl2,
the extrapolated experimental enthalpy of formation reported by NIST-JANAF68 has an error of
25 kcal·mol−1 and was obtained from the enthalpy of formation of the crystal and the heat of
sublimation, the later which was obtained by an extrapolation of the heats of sublimation for a series
of 3d and 4d dichloride compounds. To the best of our knowledge, no direct experimental J�298 K

5

for WCl2 has been reported in the literature. The enthalpy of formation for WCl4 (-67.41 kcal·mol−1)
using ccCA was found to be relatively close to the enthalpy proposed by Schimmelpfenning of
-70.268 kcal·mol−1,87 using B3LYP/DZ+P, which differs substantially from experiment.
For HfCl4, the enthalpy of formation obtained with rp-ccCA is -210.18 kcal·mol−1 which is near the
experimental value of -212.90 kcal·mol−1; but further from -217.0 kcal·mol−1 obtained by Dixon
and co-workers using a method based on the FPD scheme.88 For HfCl2, the difference between
the rp-ccCA enthalpy and the experimental data is quite large (49 kcal·mol−1). However, the rp-
ccCA J�298 K

5
is in better agreement with prior theoretical studies. The result from Minenkov and

co-workers85 obtained using a homodesmotic scheme and a DLPNO-CCSD(T) approach is very
close to the result obtained in this study, with a difference of only 0.1 kcal·mol−1, while the result
from Dixon obtained with a TAE approach and the FPD composite scheme has a difference of 7
kcal·mol−1 from experiment.88 It should be noted that the reported experimental data is an estimate
and is not taken directly from experiment.

For the enthalpy of formation of HfI2, The enthalpy reported by Minenkov85 is 40.5 kcal·mol−1

and the result obtained from rp-ccCA is 38.22 kcal·mol−1, whereas the experimental enthalpy from
Filippenko is -8.90 kcal·mol−1.72 Just as for HfCl2, the experimental data for HfI2 is an estimate.
Finally, for HfBr2, the enthalpy obtained with rp-ccCA (-0.98 kcal·mol−1) is slightly closer to the
estimated experimental result (-6.90 kcal·mol−1) than the enthalpy (4.20 kcal·mol−1) from Minenkov
et. al.

Overall, a very low error is obtained for the mercury compounds and HfCl4, while much larger
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discrepancies occur for the other metals.
DFT enthalpies of formation

While clearly, there are substantial differences between theory and experiment for a number of
the 5d species, there are also some – particularly those with smaller experimental error bars – for
which much better agreement between theory (ccCA) and experiment is achieved. However, DFT is
often a first choice due to efficiency for the transition metals and beyond, here, some insight about the
utility of density functional approaches is also useful. As a total atomization energy thermochemical
approach is often necessary for transition metal species, that is the approach utilized here. The
impact of spin-orbit DFT calculations is also considered.

In Figure 3.1, a comparison between the mean unsigned error of the DFT and the SO-DFT
enthalpies is presented, relative to experiment.

Figure 3.1: Comparison between the mean unsigned error (MUE) in kcal·mol−1 for each density
with and without spin-orbit correction.

The overall difference in the mean unsigned error (MUE) in the enthalpy between DFT and
SO-DFT is very small, with the largest error being 3 kcal·mol−1 for the M06-L functional. The
MUE obtained with SVWN for both DFT and SO-DFT were over 40 kcal·mol−1, at least 10
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kcal·mol−1 larger than the MUE of the other functionals. Overall, the errors obtained with the
hybrid-GGA functionals (B3P86 to PBE0) are lower than the errors obtained with the GGA and
m-GGA functionals. For all of the hybrid-GGA functionals, the percentage of exact exchange from
Hartree-Fock is between 20 to 25 and for the hybrid-GGA; for BHLYP, the percentage is 50. When
higher percentages of exact exchange are used, the enthalpies calculated have the largest errors.

For the 5d species, the interaction between the sub-valence (5B2 and 5?6 ) electrons and the
valence electrons (6B2 53=) play an important role in the energy description. Consequently, using a
functional that includes a high percentage of exchange such as BHLYP will not lead to improved
enthalpies of formation as compared with hybrid-GGA functionals.

In Figure 3.2.b for rp-ccCA and in Figure 3.2.a for each density functional, the MUE in the
energies for each metal type are provided. The errors in the energies as compared to experiment
vary significantly, depending upon on the metal.

Figure 3.2: a) DFT MUE in kcal·mol−1 for each functional and metal center. b) rp-ccCA MUE and
average experimental uncertainty in kcal·mol−1 for each metallic center.

The DFT comparison is provided per metal type for simplicity. (Note, there is just one Ta
compound. Also, a table of results (Table A.1 and Table A.2) for each molecule and functional is
provided in the appendix A.)

For the mercury complexes, the MUE ranges from 2 to 5 kcal·mol−1 for most functionals,
whereas for hafnium, their MUE varies from 37 to 50 kcal·mol−1 for all functionals. The large MUEs
from DFT for the hafnium compounds also occurred for rp-ccCA. As well, large errors were obtained
for HfBr2, HfCl2 and HfI2 (up to ∼ 36, ∼ 60 and ∼ 40 kcal·mol−1, respectively) – all are compounds
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for which the experimental J�298 K
5

was extrapolated. For HfCl4, however, the DFT MUE is smaller
(∼ 12 kcal·mol−1). The rp-ccCA MUE for the hafnium complexes is 31.13 kcal·mol−1 which is
better by ∼10 kcal·mol−1 as compared to DFT MUE. For the tungsten compounds, their MUEs
range between 20 kcal·mol−1 with BLYP and PBE0 to 50 kcal·mol−1 with SVWN while the rp-ccCA
MUE is ∼23 kcal·mol−1. Overall, the h-GGA functionals with ∼20% exact exchange and BLYP
result in the smallest error for the tungsten compounds, the mercury compounds, and for TaCl5 (∼
20, ∼ 4 and ∼ 10 kcal·mol−1, respectively). Furthermore, as shown in Figure 3.2.a, BHLYP results
in the largest error for TaCl5, the tungsten compounds, and hafnium compounds (∼ 35, ∼ 38 and ∼

50 kcal·mol−1, respectively).
Isogyric reaction

As shown for rp-ccCA and DFT, a total atomization approach can lead to large errors in the
enthalpies, relative to reported experimental data. In fact, only for the mercury compounds did both
DFT and rp-ccCA result in J�298 K

5
within reasonable agreement (error of ∼2 to ∼4 kcal·mol−1) of

experiment. For the other metals, there was significant variance in the predictions, from agreement
to significant disagreement between theory and experiment. As ccCA has been demonstrated to
be robust, regardless of thermochemical pathway and a number of the experiments resulted from
extrapolation, rather than direct measurement, here, isogyric reactions are examined to gain greater
insight about the theoretical predictions and experimental extrapolations.

Both hafnium and mercury complexes were studied using the isogyric approach, mercury, as
a well-behaved system, and hafnium, due to the significant differences between calculation and
experiment for some of the hafnium species. The reactions involving hafnium were based on HfCl4
since many prior theoretical studies are in agreement with the experimental enthalpy of formation of
-212.9 ± 0.3 kcal·mol−1. For mercury, HgI will be central to the thermochemical pathway, as it has
the lowest experimental uncertainty among the mercury compounds studied. Moreover, the energy
for each molecule involved in the reaction was calculated with rp-ccCA. In Table 3.2, a summary of
the enthalpy obtained with rp-ccCA as well as the experimental and prior theoretical data for each
compound is given. For the complexes based on hafnium, three chemical reactions were considered

43



in this study:

HfCl4 HfCl2 + Cl2 (3.2)

HfCl4 + Br2 HfBr2 + 2 Cl2 (3.3)

HfCL4 + I2 HfI2 + 2 Cl2 (3.4)

For each of the reactions, the number of paired electrons is the same on both sides of the
equation. For example, in reaction 3.2, to determine the enthalpy of formation of HfCl2, the following
expression is used:

J�298 K
5

(HfCl2) = J�298 K
5

(HfCl4) − � (HfCl4) + � (HfCl2) − J�298 K
5

(Cl2) + � (Cl2) (3.5)

where E represents the energy calculated for each molecule using rp-ccCA and J�298 K
5

represents
the enthalpies of formation of HfCl4 and Cl2 taken from experiment.

In Figure 3.3, first, the error in the enthalpy of formation is shown for the total atomization
energy approach for each of the hafnium species. Each of the isogyric reactions (Equations 3.2, 3.3,
and 3.4) was utilized to predict the enthalpy of formation for HfCl4. As well, an isogyric approach
was used, employing the respective equations (Equation 3.2 for HfCl2, Equation 3.3 for HfBr2,
and Equation 3.4 for HfI2) for the remaining enthalpies shown in the figure. For the enthalpies
determined for Figure 3.3, the isogyric approaches only utilized enthalpies from experiment
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Figure 3.3: Comparison between enthalpies of formation in kcal·mol−1 obtained with the atomization
approach (blue) and the isogyric reaction (3.2–3.4) using experimental data and rp-ccCA to calculate
the individual energies.

For HfCl4, there are significant differences in the predictions made via the atomization energy
approach and the Equation 3.2 and 3.4 isogyric approaches, whereas Equation 3.3 results in somewhat
similar enthalpies as for the atomization energy approach. The J�298 K

5
of HfCl4 obtained with

reaction 3.2 and 3.4 lead to errors that are ∼47 and ∼ 42 kcal·mol−1, respectively, from experiment,
while for HfBr2 (reaction 3.3), the enthalpy of formation obtained for HfCl4 is only ∼5 kcal·mol−1

from experiment. As noted earlier, rp-ccCA typically results in similar energies, regardless of
thermochemical pathway, so these significant differences suggest a possible issue with the reported
experimental data (which were estimates) for some of the molecules. In considering the isogyric and
atomization energy approaches for each of the other three molecules, the isogyric and atomization
energies are similar. However, the errors from experiment are very large for HfCl2 and HfI2.
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Figure 3.4: Comparison between enthalpies of formation in kcal·mol−1 obtained with the atomization
approach (blue) and the isogyric reaction (3.2 and 3.4) using theoretical data and rp-ccCA to calculate
the individual energies.

To gain additional perspective and further consider the validity of the experimental enthalpies
of formation of HfCl2 and HfI2, the isogyric reactions now utilize theoretical data (while utilizing
the same total atomization energy approach as described for Figure 3.3, and included in the figure to
provide comparison.) More specifically, for Figure 3.4, the isogyric enthalpies for HfCl4 were based
on theoretical enthalpies for HfCl2 (Equation 3.2) and HfI2 (Equation 3.4), from Minenkov and
co-worker (results noted "a)" in the Table A.3 in the appendix A). And, for the other two molecules,
the experimental value is utilized for HfCl4, and the isogyric enthalpies of HfCl2 and HfI2 are
determined, and compared to results from theory. HfBr2 has not been reevaluated, as the enthalpies
are similar from the isogyric and atomization approaches. (Note that the atomization energy-based
enthalpies are compared with experiment.) The error has been driven down substantially, as shown
for HfCl4, HfCl2, and HfI2 using the isogyric Equations 3.2 and 3.4. These results emphasize that
in order to obtain the correct enthalpy of formation for HfCl4 with Reactions 3.2 and 3.4, the
available experimental data for HfCl2 and HfI2 cannot be used in the isogyric approach, and that the
experiments should be revisited to provide measurements, rather than extrapolations. A table (Table
A.3) describing the detailed analysis is provided in the appendix A.
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For the mercury compounds, two reactions were studied:

2 HgI + Br2 2 HgBr + I2 (3.6)

2 HgI + Cl2 2 HgCl + I2 (3.7)

As theoretical enthalpies of formation for HgCl, HgBr and HgI were not readily available in the
literature, only the experimental enthalpies of formation was used to determine the enthalpies of
formation.

HgI HgBr HgCl
2

1

0

1

2

3

Er
ro

r (
kc

al
 m

ol
1 )
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Figure 3.5: Comparison between enthalpies of formation in kcal·mol−1 with the atomization approach
(blue) and the isogyric approach using experimental data and rp-ccCA to calculate the individual
energies.

As depicted in Figure 3.5, the errors in the enthalpies for the mercury compounds are much
smaller than for the hafnium compounds. When the isogyric reaction is used, the errors obtained
are slightly lower than those with the TAE approach. Indeed, the enthalpy obtained for HgBr with
the experimental enthalpy of HgI gives a smaller error than the rp-ccCA/TAE results. This smaller
error from the isogyric approach also occurs for HgCl. These results demonstrate the viability of an
isogyric approach with well-established experimental data. Moreover, it also further shows the utility
of the rp-ccCA method in the determination of the enthalpy of formation for these compounds.
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3.4 Conclusion
In this study, rp-ccCA was utilized to calculate enthalpies of formation for a set of 17 5d

complexes. Density functional theory was also used in order to further gain a greater understanding
about its performance for 5d compounds. Thermochemical pathways can be useful in gauging
the viability of both theoretical and experimental methods. Here, the viability of rp-ccCA for 5d

compounds was demonstrated. An analysis of rp-ccCA, previous theoretical data, and experiment,
suggests the need to revisit a number of 5d species with new experimental measurements.
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CHAPTER 4

MULTIREFERENCE CALCULATIONS ON THE GROUND AND EXCITED STATES
AND DISSOCIATION ENERGY OF LuF

Reproduced from N. M. S. Almeida, T. R. L. Melin and A. K. Wilson, J. Chem. Phys. 154,
244304 (2021),114 with the permission of AIP publishing. The dissociation energy calculations and
most of the data analysis for multireference calculations were done by Timothé Melin. Dr. Nuno
Almeida did most of the multireference calculations and plotted the potential energy curves. Timothé
Melin and Dr.Nuno Almeida contributed equally to the writing of the paper.

4.1 Introduction
The accurate description of ground and excited state properties of lanthanides provides a route

towards understanding their fundamental chemical reactivity. The high density of states and partially
filled 4f and 5d orbitals are hurdles that need to be properly addressed in order to achieve such
predictions. The use of multireference methods in lanthanide electronic structure calculations is of
paramount importance and allows for an accurate description of static and dynamic correlation. As
well, an appropriate choice of methods to account for correlation and spin-orbit effects is necessary
for both the ground and excited states.

Lutetium, the last element in the lanthanide series is also generally regarded as the first element
of the sixth period transition metals, due to its full 4f and partially filled 5d orbitals. Recently,
interest in lutetium has grown, with one of its main applications in the radiopharmaceutical industry,
more specifically with the use of 177Lu as a radionuclide.115 Small molecules such as peptides and
steroids have been radiolabeled with 177Lu in the treatment of a number of diseases. For example,
177Lu-labeled DOTA-Tyr3-octreotate, which is a somatostatin analogue peptide is currently being
used to treat neuroendocrine tumors.115 Lutetium also has been linked to astrophysics. It has been
discovered in the composition of the metal-poor stars CS 31062-050 and CS 22892-052, and in the
enriched star BD +17 3248.116–119 The Lu+ spectra has been investigated by Hartog and co-workers
revealing the presence of an excited state at 28503.16 cm−1, which corresponds to a 6s 6p, 3P1

configuration.120 Lanthanide species, in general, are also being used and considered in a broad range
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of applications such as in electrodes and optical telecommunications (i.e., NaLuF4). With such a
wide range of applications, it is important to better understand lutetium at a fundamental level, and
the methodologies needed to describe its complex electron manifold.

In considering the ground and excited state properties of LuF, the available experimental data
are from the 1960s, 1970s and 1980s. In 1968, Zmbov extrapolated the dissociation energy of
LuF from other lanthanide monofluorides by means of mass spectroscopy, and obtained 136 ± 12
kcal·mol−1.121 The authors estimated the dissociation energy of lutetium fluoride using both the
heats of sublimation and the enthalpies of other lanthanide fluorides. Their estimation came from
fluorine-exchange reactions of Sm, Eu, Gd, Dy and Er. Kaledin and et al. predicted the dissociation
energy of LuF to be 124 kcal·mol−1. The authors used ligand field theory and extrapolated the
dissociation energy, utilizing a fitting model and experimentally determined ionization potentials
for other lanthanide fluorides.122 Since the 1970s, several experimental studies have targeted the
vibrational and rotational spectrum of lutetium fluoride.123–126 DIncan et al. and Effantin et al.

reported dissociation energies for LuF (105 kcal·mol−1) and assigned the lowest lying electronic
excited states for LuF. The symmetry and spin were labelled either 1O or 1N for all the excited
states.123,124,126 These results were later compiled by Huber and Herberg in an extensive review of
molecular sprectra.125 In the 1980s Rajamanickam and Narasimhamurthy and Reddy et al. obtained
experimental dissociation energies of 96.0 ± 2.4 and 79 kcal·mol−1, respectively.127,128 These
authors used the experimental spectroscopic constants of the ground state (l4, l4j4, etc, obtained
from the work of Effantin et al.124), calculated the vibrational potential energy curve (PEC), fitted it
with different empirical formulas, and calculated the dissociation energy.

Theoretical studies are useful in describing the spectroscopic properties of lanthanides. There are
a number of recent studies on lanthanide monohalides (LnX, X= F, Cl, Br, I).129–136 In the 1990s, a
number of theoretical studies focused on the spectroscopic properties of lanthanides and actinides.
Wang et al. and Küchle et al. studied diatomics, lanthanide, and lanthanide and actinide contractions
and were the first to use density functional theory (DFT) along with coupled cluster (CC) methods
to calculate ground state properties and bond lengths for some of these molecules.137,138 Cooke
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et al. investigated the rotation spectra of LuF and used DFT to compare with their ground state
experimental values. Their theoretical prediction of the dissociation energy of 96.6 kcal·mol−1

was based upon a statistical average of orbital potentials.139 Density functional theory with scalar-
relativistic ZORA and Douglas-Kroll-Hess approaches have been used by Hong et al. to calculate
the dissociation energy of LuF. The authors obtained values in the range of 167-176 kcal·mol−1.140

In more recent work (2016), Grimmel et al. determined for the Ln54 set, a set of 54 enthalpies of
formation and bond dissociation energies of small lanthanides, using 22 different DFT functionals
and employing the Douglas-Kroll-Hess Hamiltonian in combination with a triple-Z level basis set
[Sapporo-DouglasKrollHess third order Hamiltonian (DKH3)-TZP-2012 for Ln and cc-pVTZ-DK or
cc-pV(T+d)Z-DK for the ligands], resulting in average overall energy errors for the set on the order
of 1 eV, even with the most popular and well-utilized functionals for the lanthanides.141 Aebersold
et al. reexamined the energies of the Ln54 set using the same functionals employed by Grimmel and
co-workers, considering the several impacts including the introduction of effective core potential
(ECP) and DKH3 approaches.96,141 In terms of ab initio studies, the equation of motion completely
renormalized coupled-cluster single, double, and perturbative triple excitations [CCSD(T)] [EOM-
CR-CCSD(T)] was used in a study of NdF and LuF.142 The authors reported that the use of a
full valence shell rather than the traditional frozen core approximation can result in a dramatic
change in the dissociation energy of LuF (a change of ∼35 kcal·mol−1). Ab initio composite methods
have also been employed in the prediction of ground state properties of lanthanides. Solomonik
and Smirnov calculated the bond dissociation of LuF as 169.7 kcal·mol−1and Qing computed the
same as 172.4 kcal·mol−1,143,144 which are near to our recent prediction of 170.2 kcal·mol−1in a
large scale study of lanthanides.62 In considering the prior experimental and theoretical studies,
as overviewed, there are substantial differences in the predictions. It is important to note that the
dissociation energies reported from experiments are not direct measurements, but are instead, based
on empirical models.121–125

In terms of excited states, a complete understanding of the potential energy surface of LuF and
its bonding patterns, allows for the probing of possible chemical reactivity routes using excited
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state dissociation channels. Towards this goal, in 2009, Hamed et al.145 used CASSCF (complete
active space self-consistent field) and MRCI (multireference configuration interaction), for the first
low-lying excited states of LuF, using a pseudopotential for lutetium of 60 electrons. The authors
determined 26 electronic states including the spectroscopic constants and bond lengths for each
state; however, these calculations did not account for spin-orbit effects. The authors assigned the first
and second excited states as 3N and 3J, instead of the 1O and 1N states, respectively, previously
assigned in the literature.123–125 In 2019, Assaf et al. used multireference methods (CASSCF and
MRCI+Q) to calculate spectroscopic constants and bond lengths for ground and excited states.146

The authors considered a 28 electron pseudopotential (ECP28MWB), which allowed for a more
accurate treatment of electron correlation. In addition, sub-valence electrons (4f ) were also correlated,
though not included in the active space. The latter step enables the prediction of bond lengths within
0.1 Å of experiment. The active space utilized in this study did not include the bonding orbitals
of fluorine, which are important in the construction of the full potential energy curves. However,
spin-orbit effects were considered, and spectroscopic constants were calculated for the low-lying
excited states using the Breit-Pauli Hamiltonian.

Although there have been a number of studies on lutetium fluoride, detailed insight about its
dissociation channels and binding patterns have not yet been provided. For this work, 132 states
were investigated using multireference methods and double-, triple-, and quadruple-Z level basis
sets. The results herein provide important insight about the higher energy channels that play a
role on the excited state surface of LuF. MRCI calculations were performed to recover dynamic
correlation of the system beyond what CASSCF can obtain. Valence, sub-valence and inner core
levels of correlation were probed, detailing their effects on the energetics of the ground and excited
states. The second part of this work focuses on the dissociation energy (D0) using a range of DFT
functionals, and also ab initio methods, including coupled-cluster and CASSCF. Complete basis set
(CBS) extrapolation was also considered for the ab initio methods.
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4.2 Computational details
Multireference calculations were performed using MOLPRO 2018.147 As MOLPRO does not

use full linear molecule symmetries, the C2E point group symmetry was utilized and the molecular
orbitals were optimized using CASSCF. For this step, the active space used was composed of eight
electrons and fifteen orbitals (8,15). The 15 orbitals correspond to 6 a1 [53I2 , 53G2−H2 , 6B, 6?I (Lu),
2?I, 3?I (F)], 4 b1 [53GI, 6?G (Lu), 2?G , 3?G (F)], 4 b2 [53HI, 6?G (Lu), 2?G , 3?G (F)], and 1 a2 [53GH
(Lu)], which correspond to the 6B and 53 of lutetium, and to 2?, and 3? of fluorine. The inclusion
of the additional 3? orbitals of fluorine was deemed necessary to obtain smooth potential energy
curves (PECs).

MRCI and MRCI+Q were employed to calculate spectroscopic constants.148–151 Harmonic
vibrational frequencies, anharmonicities, and JG1/2 values were calculated solving the rovibrational
Schrödinger equation numerically using the Dunham approach.152 Due to the computational cost,
the 2? and 3? orbitals of fluorine were not included in the active space, and, thus were not optimized
at the CASSCF level, within the MRCI calculations. The active space for MRCI consists of the
following orbitals: 4 a1 [53I2 , 53G2−H2 , 6B, 6?I (Lu)], 2 b1 [53GI, 6?G (Lu)], 2 b2 [53HI, 6?G (Lu)],
and 1 a2 [53GH (Lu)]. However, the 2? orbitals of fluorine were included in the MRCI calculations
as core (per MOLPRO 2018), by allowing the electrons to be promoted to the active and virtual
spaces, through single and double excitations. Considering the CI vectors, for the equilibrium bond
region there are not significant contributions that correspond to the promotion of electrons from the
2? orbitals of fluorine. In addition, for the MRCI calculations, sub-valence correlation effects were
also described by including the 4 5 14 orbitals of Lu by also allowing single and double excitations
to the active and virtual spaces. Since a pseudopotential was considered for the metal (see next
paragraph), the remaining 52 electrons (9 from the fluorine and 43 of lutetium) were also correlated
for MRCI calculations. The Davidson correction, or MRCI+Q as implemented within MOLPRO was
used to account for size extensivity issues.148–151 To account for spinorbit coupling, the Breit-Pauli
Hamiltonian was diagonalized in the basis of the MRCI wavefunction. For this step, two levels of
correlation were considered for inclusion in the core: 4 5 14 (Lu) and 2?5(F) orbitals, and 4310 5B2
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5?6 4 5 14 (Lu) and 2B2 2?5 of (F) orbitals. The latter describe the effects of inner-shell correlation.
For CASSCF calculations, a segmented contracted basis set along with a pseudopotential

(ECP28MWB) developed by Cao and Dolg were employed (triple-Z level).153,154 For fluorine, the
aug-cc-pVTZ basis set was utilized.155 For MRCI and spin-orbit calculations, the def2-QZVPP basis
set was employed for lutetium with a pseudopotential (ECP28MWB), while fluorine was described
with aug-cc-pVQZ.154–157

For the second part of this work, the geometry optimization step was carried out with CCSD(T)
in combination with a contracted basis set by Cao and Dolg, which was used for lutetium, and
the aug-cc-pVTZ basis set for fluorine.153–155 The frequency was also obtained at the same level
to ensure a minimum at the potential energy surface. The geometry was then used to evaluate
dissociation energies at different levels of theory and the energy was corrected for the zero-point
vibrational energy (ZPE). CCSD(T) and the completely renormalized (CR-CCSD(T)) approach
with DKH3 in combination with Sapporo double-, triple- and quadruple-Z basis set for lutetium
and fluorine have been utilized.158 The effect of a four-component Hamiltonian on the dissociation
energy was also probed with CCSD(T), using a Dirac-Coulomb Hamiltonian. In addition, the
Perdew-Burke-Ernzerhof (PBE),103 the Becke, 3-parameter, Lee -Yang -Parr (B3LYP),15,16 the
Minnesota 2006 local functional (M06-L)104 and the Tao, Perdew, Staroverov, Scuseria (TPSS)95

functionals were utilized to predict dissociation energies, employing a DKH3 Hamiltonian. These
functionals were chosen as they are either widely utilized or were among the better functionals for
the prediction of enthalpy of formation and dissociation energies for lanthanide complexes.96,141

Moreover, these functionals will provide some level of comparison between the generalized
gradient approximation (GGA): PBE; meta-GGA: TPSS, M06-L; and hybrid-GGA: B3LYP on the
prediction of the dissociation energy. The double-, triple-, and quadruple-Z level Sapporo basis sets
for lutetium and fluorine were used (noted Sap-=z) and the Dyall augmented double-, triple- and
quadruple-Z (noted Dyall-=z) for the Dirac-Coulomb Hamiltonian where = = D, T, Q.159

The dissociation energy was calculated using the methods described above and at each level of
basis set as well. Extrapolations of the total energies to the complete basis set limit, using a mixed
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exponential/gaussian three points scheme developed by Peterson,60

�= = ���( + �4−(=−1) + �4−(=−1)2 (4.1)

where B and C are constants determined in the scheme, and = is the basis set level (= = D, T, Q),
E= represents the energy for each basis set level, and E��( represents the energy at the CBS limit.
Unfortunately, it was not possible to obtain values at a quadruple-Z basis set for CCSD(T) and
MP2 with the Dirac Coulomb Hamiltonian due to the very high computational cost. Thus, the
complete basis set limit using the following two-point extrapolation (Dyall.dz and Dyall.tz) scheme
by Martin160 was used:

� = ���( +
�

(= + 0.5)4 (4.2)

This scheme has been shown to provide reliable extrapolated energies for molecules containing
lighter elements when compared to experiment.92,161 The final dissociation energy is calculated
by adding the zero-point vibrational energy to the final energy. The 95% confidence limit has been
investigated and results (Table B.1) are given in the appendix B. In addition to evaluating the 95%
confidence intervals, the error from basis set superposition (BSSE) was calculated utilizing Boys
and Bernardis counterpoise correction approach (section 4.3).162

Due to the large number of electrons, it is important to consider different frozen-core spaces, i.e,
the number of electrons explicitly correlated. Thus, two frozen-core spaces have been considered:
FC-val and FC-subval. FC-val corresponds to a space where only the valence electrons (6B and 53
of Lu and 2B and 2? of F) are treated and the rest is frozen. The FC-subval describes the space where
the valence and sub-valence electrons are explicitly treated (5B, 5? of Lu). All calculations using the
DKH3 Hamiltonian were performed with NwChem 6.1,108 while the Dirac-Coulomb calculation
were done using DIRAC18.163
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4.3 Results and discussion

Electronic structure calculations (CASSCF, MRCI, MRCI+Q)

The PECs calculated at the CASSCF level are displayed in Figure 4.1 and 4.2 The former
portrays the Lu (2D; 531 6B2) + F(2P) and Lu (2P; 6B2 5?1) + F(2P) channels, and the latter shows
the two upper binding Lu (4F; 531 6B2 5?1) + F(2P) channels. In Fig. 4.3, MRCI+Q curves are
provided with selected states spanning the equilibrium bond region. The zero of the energy scale in
Figure 4.1-4.3 is taken as the energy of the lowest energy asymptote Lu (2D) + F(2P). In Table 4.1,
detailed spectroscopic information of the ground and 22 excited states is shown, which includes,
spectroscopic constants, harmonic vibrational frequencies, l4j4, JG1/2 and T4 (excitation energies).
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Table 4.1: Computational method, bond length R4@ (Å), harmonic vibrational
frequencies l4 (cm−1), anharmonicity l4 j4 (cm−1), JG1/2 (cm−1) values, and
excitation energy T4 (cm−1) for the lowest electronic excited states of 175Lu
19F. MRCI, MRCI+Q and CCSD(T) calculations were performed using an
ECP28MWB/Def2-QZPP for Lu and aug-cc-pVQZ for F and CASSCF with
ECP28MWB/ANO-TZ for Lu and aug-cc-pVTZ for F.

States Methodology R4@ l4 l4 j4 JG1/2 T4

X1O+ Exp.125 1.9171 611.79 2.54 - 0
Exp.126 1.9165 611.79 2.54 0
CASSCF - - - - 0
MRCI 1.916 613.9 2.67 608.6 0
MRCI+Q 1.914 611.7 2.82 606.1 0
CCSD(T) 1.917 610.4 2.51 605.4 0
CCSD(T) 1.917 610.8 - - 0
MRCI+Q146 1.913 618.9 2.5 - 0
MRCI+Q145 1.922 606.6 3.3 - 0

1 3J Exp.125 1.9319 587.95 2.58 - 16165
Exp.126 1.9313 587.95 2.58 16153
CASSCF - - - - 18000
MRCI 1.947 573.4 2.54 568.3 14917
MRCI+Q 1.945 570.5 2.45 565.6 14676
MRCI+Q146 1.947 576 2.7 - 14927
MRCI+Q145 1.952 596.2 3 - 17904

1 3N Exp.125 1.9361 576.08 2.5 - 16800
Exp.126 1.933 581.3 2.6 16785
CASSCF - - - - 17155
MRCI 1.928 570.8 3.88 563 15630
MRCI+Q 1.93 570 3.75 562.5 15805
CCSD(T) def2 1.943 574.8 2.5 569.6 18528
MRCI+Q146 1.933 579.2 2.7 - 15959
MRCI+Q145 1.923 567.1 2.6 - 16165

1 3O+ Exp.125,126 605.5 2.5 - 18894
CASSCF - - - - 19900
MRCI 1.957 600.4 2.47 595.4 17947
MRCI+Q 1.958 590.5 2.53 585.4 18181
MRCI+Q146 1.961 559.6 2.5 - 18856
MRCI+Q145 1.953 567.1 2.6 - 19131
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Table 4.1: Table (continued)

States Methodology R4@ l4 l4 j4 JG1/2 T4

1 1J Exp.125 1.948 569.7 2.5 20048
Exp.126 - - 2.6 20027
CASSCF - - - - 21612
MRCI 1.954 567 2.14 562.7 19392
MRCI+Q 1.953 564.4 2.11 560.2 19060
MRCI+Q146 1.955 567.7 2.8 - 19471
MRCI+Q145 1.956 555 2.5 - 21634

1 1N Exp.125 1.9584 543.42 2.28 24474
Exp.126 1.9584 543.42 2.28 24440
CASSCF - - - - 27049
MRCI 1.966 554 2.42 549.1 23371
MRCI+Q 1.969 546.7 2.53 541.7 23065
MRCI+Q146 1.972 525.3 2.2 - 23708
MRCI+Q145 1.945 544.7 2.6 - 25538

2 1O+ Exp.125 1.952 555.59 2.6 25832
Exp.126 1.9514 560.8 2.6 25806
CASSCF - - - - 29240
MRCI 1.959 548.5 4.41 539.7 25628
MRCI+Q 1.957 543.2 3.82 535.5 25292
MRCI+Q146 1.959 553 2.5 25932
MRCI+Q145 1.947 563.8 2.8 26524

2 3N CASSCF - - - - 34583
MRCI 1.983 570.9 2.9 565.1 29091
MRCI+Q 1.978 559.9 1.67 556.5 28870
MRCI+Q146 1.981 577.7 2.3 29354
MRCI+Q145 1.995 525.7 3.4 30681

2 1N Exp.125 1.951 599.1 2.6 - 33226
CASSCF - - - - 38511
MRCI 1.948 593.9 3.09 587.7 32809
MRCI+Q 1.944 606.4 3.12 600.1 32517
MRCI+Q146 1.951 614.7 2.9 32968
MRCI+Q145 1.961 579.3 2.5 33378
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Table 4.1: Table (continued)

States Methodology R4@ l4 l4 j4 JG1/2 T4

1 3Q CASSCF - - - - 38846
MRCI 1.944 565.2 -0.33 565.9 33566
MRCI+Q 1.944 571.2 0.28 570.7 33499
MRCI+Q146 1.944 570.5 2.7 34248
MRCI+Q145 1.942 570.8 3.2 36401

3 3N CASSCF - - - - 42188
MRCI 1.96 554.9 2.54 549.8 36422
MRCI+Q 1.959 543.7 2.63 538.4 36123
MRCI+Q146 1.956 545 2.8 - 36896
MRCI+Q145 1.957 552.4 3.2 - 39048

2 3J CASSCF - - - - 42211
MRCI 1.974 573.3 5.5 562.3 36674
MRCI+Q 1.974 592.2 7.18 577.8 36323
MRCI+Q146 1.976 540.8 3 - 37162
MRCI+Q145 1.969 541.8 2.3 - 39569

1 3O CASSCF - - - - 41126
MRCI 1.974 534.3 0.34 533.6 36683
MRCI+Q 1.974 522.2 0.24 521.8 36338
MRCI+Q146 1.973 544 2.6 - 37338
MRCI+Q145 1.949 551.3 3.6 - 39216

2 1J CASSCF - - - - 46419
MRCI 1.955 567 1.85 563.3 40151
MRCI+Q 1.956 557.6 1.47 554.6 39524
MRCI+Q146 1.956 558.5 2.6 40954
MRCI+Q145 1.946 566.6 3.3 45661

3 1O+ CASSCF - - - - -
MRCI - - - - -
MRCI+Q - - - - -
MRCI +Q146 1.942 550.1 3 - 42847
MRCI+Q145 1.917 588.9 2.8 - 42763

1 1O− CASSCF - - - - 46100
MRCI 1.953 565.3 2.4 560.5 43049
MRCI+Q 1.959 557.9 2.33 553.2 41310
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Table 4.1: Table (continued)

States Methodology R4@ l4 l4 j4 JG1/2 T4

1 1Q CASSCF - - - - 51158
MRCI 1.952 566.9 2.41 562.1 43048
MRCI+Q 1.951 562.5 2.41 557.7 41767
MRCI+Q146 1.942 564.2 2.7 - 43231
MRCI+Q145 1.95 567.7 2.4 - 45152

2 3O− CASSCF - - - - -
MRCI 1.983 522.9 2.12 518.6 42275
MRCI+Q 1.983 510.5 2.16 506.2 41714
MRCI+Q146 - - - - -
MRCI+Q145 - - - - -

3 1N CASSCF - - - - 52481
MRCI 1.963 600.1 2.79 594.5 44083
MRCI+Q 1.955 555.6 2.04 551.5 42790
MRCI+Q146 1.941 550.4 2.9 - 44678
MRCI+Q145 1.944 574.2 2.8 - 45319

4 3N CASSCF - - - - 49935
MRCI 1.968 553.4 4.25 544.9 44648
MRCI+Q 1.972 545.9 4.06 537.8 44453
MRCI +Q146 1.972 553.5 3 - 44849
MRCI+Q145 1.957 553.4 3.2 - 45454

3 1J CASSCF - - - - 53789
MRCI 1.996 517.3 -3.92 525.1 45578
MRCI+Q 1.982 525.5 2.79 519.9 44774
MRCI +Q146 1.975 546.6 3.3 - 43806
MRCI+Q145 1.965 540.3 2.1 - 47006

2 1O− CASSCF - - - - -
MRCI 1.98 529.5 2.38 524.6 45660
MRCI+Q 1995 500.6 -6.47 513.59 45461

2 3O+ CASSCF - - - - -
MRCI - - - - -
MRCI+Q - - - - -
MRCI+Q146 1.9 556.4 2.7 - 47316
MRCI+Q145 1.871 664.6 2.1 - 43031
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Figure 4.1: CASSCF PECs of LuF with respect to the Lu-F distance.

Figure 4.2: Example of intersystem crossing from upper dissociation channels of LuF at the CASSCF
level.
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Figure 4.3: MRCI+Q PECs of LuF with respect to the Lu-F distance.
In Table 4.2, the CI vectors of the studied ground and excited states are shown. For the calcu-

lations, CASSCF, MRCI and MRCI+Q were used, and for states that were deemed to be single
reference in nature, CCSD(T) was employed. For the first part of this work, state averaged CASSCF
was used for the 132 states, which aids in describing intersystem crossings that come from upper
channels and merge with the Lu (2D) + F(2P) channel. This is the first time such level of detail is
considered for LuF, providing insight on how the dissociation channels are formed, and describing
some of the higher energy, upper channel intersystem crossings. In addition, no evidence of the
presence of the ionic channel (Lu+ + F−) was found in the MCSCF calculations. Also, from the
132 states studied none of them converged to Lu+ + F− at infinity, demonstrated by its CI vectors.
The orbital pictures included in the active space at equilibrium bond length (1.92 Å) and at 6 Å are
shown in Figures 4.4 and 4.5 respectively.
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Table 4.2: CI vectors at equilibrium bond length for LuF were obtained through CASSCF using
ECP28MWB/ANO-TZ for Lu and aug-cc-pVTZ for F.

States Coeff 1cI 1f 1XG2−H2 1XI2 2cI 3cI 1cG 1XGI 2cG 3cG 1cH 1XHI 2cH 3cH 1XGH
X 1O+ 0.91 2 2 0 0 0 0 2 0 0 0 2 0 0 0 0
1 3J 0.94 2 U U 0 0 0 2 0 0 0 2 0 0 0 0
1 3N 0.91 2 U 0 0 0 0 2 U 0 0 2 0 0 0 0
1 3O+ 0.96 2 U 0 U 0 0 2 0 0 0 2 0 0 0 0
1 1J 0.59 2 V U 0 0 0 2 0 0 0 2 0 0 0 0

-0.59 2 U V 0 0 0 2 0 0 0 2 0 0 0 0
1 1N -0.35 2 V 0 0 0 0 2 U 0 0 2 0 0 0 0

0.35 2 U 0 0 0 0 2 V 0 0 2 0 0 0 0
-0.50 2 V 0 0 0 0 2 0 U 0 2 0 0 0 0
0.50 2 U 0 0 0 0 2 0 V 0 2 0 0 0 0

2 1O+ -0.65 2 V 0 U 0 0 2 0 0 0 2 0 0 0 0
0.65 2 U 0 V 0 0 2 0 0 0 2 0 0 0 0

2 3N 0.86 2 U 0 0 0 0 2 0 U 0 2 0 0 0 0
2 1N -0.50 2 U 0 V 0 0 2 0 0 0 2 0 0 0 0

0.50 2 V 0 U 0 0 2 0 0 0 2 0 0 0 0
1 3Q 0.66 2 0 U 0 0 0 2 U 0 0 2 0 0 0 0

0.66 2 0 0 0 0 0 2 0 0 0 2 U 0 0 U

33N -0.54 2 0 0 0 0 0 2 0 0 0 2 a 0 0 U

0.54 2 0 U 0 0 0 2 U 0 0 2 0 0 0 0
23J 0.94 2 0 U U 0 0 2 0 0 0 2 0 0 0 0
13O− 0.64 2 0 U 0 0 0 2 0 0 0 2 0 0 0 U

-0.65 2 0 0 0 0 0 2 U 0 0 2 U 0 0 0
21J 0.59 2 0 V U 0 0 2 0 0 0 2 0 0 0 0

-0.59 2 0 U V 0 0 2 0 0 0 2 0 0 0 0
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Table 4.2: Table (continued)
States Coeff 1cI 1f 1XG2−H2 1XI2 2cI 3cI 1cG 1XGI 2cG 3cG 1cH 1XHI 2cH 3cH 1XGH
31O+ 0.56 2 0 2 0 0 0 2 0 0 0 2 0 0 0 0

0.57 2 0 0 0 0 0 2 0 0 0 2 0 0 0 2
-0.30 2 0 0 0 0 0 2 0 0 0 2 2 0 0 0
-0.30 2 0 0 0 0 0 2 2 0 0 2 0 0 0 0

1 1Q 0.43 2 0 U 0 0 0 2 V 0 0 2 0 0 0 0
-0.43 2 0 V 0 0 0 2 U 0 0 2 0 0 0 0
0.43 2 0 0 0 0 0 2 0 0 0 2 U 0 0 V

-0.43 2 0 0 0 0 0 2 0 0 0 2 V 0 0 U

23O− 0.71 2 0 U 0 0 0 2 0 0 0 2 0 0 0 U

-0.34 2 0 0 0 0 0 2 0 U 0 2 U 0 0 0
-0.34 2 0 0 0 0 0 2 U 0 0 2 0 U 0 0
0.45 2 0 0 0 0 0 2 U 0 0 2 U 0 0 0

31N -0.30 2 0 0 V 0 0 2 U 0 0 2 0 0 0 0
0.30 2 0 0 U 0 0 2 V 0 0 2 0 0 0 0

43N 0.80 2 0 0 U 0 0 2 U 0 0 2 0 0 0 0
0.30 2 0 U 0 0 0 2 U 0 0 2 0 0 0 0
-0.30 2 0 0 0 0 0 2 0 0 0 2 U 0 0 U

31J 0.49 2 0 0 0 0 0 2 U 0 0 2 V 0 0 0
-0.49 2 0 0 0 0 0 2 V 0 0 2 U 0 0 0

21O− 0.48 2 0 0 0 0 0 2 U 0 0 2 0 V 0 0
-0.48 2 0 0 0 0 0 2 V 0 0 2 0 U 0 0
-0.48 2 0 0 0 0 0 2 0 U 0 2 V 0 0 0
0.48 2 0 0 0 0 0 2 0 V 0 2 U 0 0 0

23O+ 0.94 2 U 0 0 U 0 2 0 0 0 2 0 0 0 0
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Figure 4.4: Molecular orbitals for LuF at 1.92 Å.
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Figure 4.5: Molecular orbitals for LuF at 6.0 Å.
At 6 Å, the orbitals resemble atomic ones, with no mixing between fluorine and lutetium, pro-

viding insight about dissociation. The radial distribution using CR-CCSD(T) is plotted in Figure 4.6
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Figure 4.6: Radial distribution functions at the CR-CCSD(T) level.
The large orbital overlap near the equilibrium bond length (1.92 Å) shows that the 3? orbitals

need to be included at the CASSCF level to describe the full dissociation channels from infinity to
equilibrium smoothly. An active space with 15 orbitals in the calculation of full potential energy
curves for LuF was deemed necessary to obtain smooth curves. Accounting for the irreducible
representation for each spin generates hundreds of thousands of configuration state functions (CSFs),
increasing both the complexity of the calculations, as well as the computational time.

According to the Witmer-Wigner angular momentum coupling rules, the four channels generate
the following manifolds of states:

first — Lu (2D) + F(2P): 1,3[O+(2), N (3), J (2),Q, O−];

second — Lu (2P) + F(2P): 1,3[O+(2), N (2), J, O−];

third and fourth — Lu (4F) + F(2P): 3,5[O+(2), N (3), J (3),Q (2), �, O−];

The calculations show that the ground state is a well separated 1O+, a closed shell singlet, which
is in agreement with experiment.123–125 In the ground state, the unpaired 531 (Lu, at infinity) electron
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couples with the unpaired electron on the 2?I orbital of fluorine (see Table 4.2). The spectroscopic
constants calculated with CCSD(T) and MRCI/MRCI+Q are all within 1 cm−1 of experiment. The
next two states were assigned as either 3N or 3J in previous literature. Hamade et al. predicted
the 3N to be the first excited state and Assaf et al. predicted the 3J as the first excited state.145,146

According to our calculations, for CASSCF, 13N is followed by 1 3J and their separation is 845
cm−1. However, for MRCI and MRCI+Q, the 3J is the first excited state followed by the 3N . The
separation of states for MRCI is 713 cm−1 and MRCI+Q, 1129 cm−1 (see Table 4.2). Both states
are a product of electron promotion from the lutetium 6B (at infinite separation) to its 53 orbitals
(see Figures 4.4 and 4.5). In order to generate the 1 3J state, an electron populates the 53G2−H2 (Lu),
while for 3N , it occupies the 53GI (Lu). These two states are very close in energy and both were
assigned a different spin and symmetry in previous experimental data. In the present work, the two
experimental values from the literature were assigned to 1 3J and 1 3N .123–126 Previous theoretical
data, from Hamade et al. and Assaf et al. does not compare the first experimental excited state energy
with their first calculated excited state.125,126,145,146 Assaf et al. assigns their second excited state
to A and B from the literature, 1O+ and 1N respectively.125,126,146 The 1 3N is in good agreement
with experiment for bond lengths and spectroscopic constants, but the 3J is ∼ 1000 cm−1 below
the experimental value. However, when both 1 3J and 1 3N are corrected for spin-orbit effects (see
Section III.B.), the range of S-state energies spans over 3000 cm−1 (Table 4.3). The next excited
state is 1 3O+, which corresponds to a promotion of an electron from the 6B of lutetium to the 53I2 .
In fact, electronic excitations from 6B → 53 orbitals occur until ∼ 33000 cm−1, as per Table 4.2.
States, 1 1J and 1 1N are the corresponding open-shell singlets of 1 3J and 1 3N , respectively, and
are 4384 and 7260 cm−1 above the aforementioned, according to MRCI+Q.

1 1J and 1 1N are also 1000 cm−1 below their assigned experimental states, but their bond length
is within 0.01 Å from experiment. The next three states, 2 1O+, 2 3N and 2 1N , also correspond to
the promotion of an electron from the 6B (Lu) into the 53 orbitals (Lu). 1 3Q is 33566 and 33499
cm−1 above the ground state according to MRCI and MRCI+Q, respectively, and it is the first excited
state that has two electrons promoted from the 6B (Lu) into 53 and 6? (Lu) orbitals. There is a ∼
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3000 cm−1 gap in which there are no populated states, but in the 36000 cm−1 region, there are three
excited states within 200 cm−1 of one another according to MRCI+Q (3 3N , 2 3J, and 1 3O−). From
36000 to 50000 cm−1 there is a large agglomeration of states, which show mixing from the first
two dissociation channels. In this 14000 cm−1 or 30 kcal·mol−1 region, nine states overlap each
other. The first state in this region is 2 1J, followed by 3 1O+. The latter belongs to the next binding
channel, Lu (2P; 6B2 5?1) + F(2P) (see Figure 4.2). This channel is not displayed in Figure 4.1, due
to the very large mix of states from upper channels, so only the binding region (2.7Å 1.4Å) is plotted.
The other states displayed in Figure 4.1, which belong to the Lu (2P; 6B2 5?1) + F(2%) channel are:
2 3O−, 4 3N , 3 1J and 2 1O−. The last states that belong to the first binding channel are: 1 1O−, 1
1Q and 2 3O+. The first 11O− state undergoes intersystem crossings as shown in Figure 4.2 There is
a range of singlet and triplet states that couple together after 45000 cm−1 (∼ 175 kcal·mol−1) from
three different dissociation channels, which originate multiple avoided and intersystem crossings.
Spin-orbit calculations

Spin-orbit calculations were performed on the ground state and the first eight excited states
of LuF, which covers a region of ∼ 100 kcal·mol−1 or ∼ 36,000 cm−1. The first nine 2(+1L states
split into the S-states as follows: X 1O+ → X 1O+0+; 1 3J→ 3J1,3J2,3J3; 13N → 3N0−, 3N0+, 3N1,
3N2; 13O+ → 3O+0+, 3O+1 ; 1 1J→ 1J2; 11N → 1N1; 21O+ → 2 1O+0+, 23N → 3N0−, 3N0+,3N1,3N2,
21N → 1N1, and 13Q→ 3Q2, 3Q3, 3Q4. For singlet states the L=0 is expected to be minimal. The
C-MRCI spin-orbit PECs are depicted in Figure 4.7 (spin-orbit states with the same S value have
the same color) and MRCI spin-orbit are depicted in the appendix (Figure B.1 and Table B.2). The
bond lengths and spectroscopy constants are included in Table 4.3, and the decomposition of the
spin-orbit states is included in Table 4.4.
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Figure 4.7: Core-spin-orbit MRCI (C-MRCI) PECs of LuF with respect to the Lu-F distance.
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Table 4.3: Computational method, bond length R4@ (Å), har-
monic vibrational frequencies l4 (cm−1), anharmonicity l4 j4
(cm−1), JG1/2 (cm−1) values, and excitation energy T4 (cm−1)
for the lowest electronic excited states of 175Lu 19F at the spin-
orbit level. The state are ordered according to C-MRCI energet-
ics. MRCI and C-MRCI calculations were performed using an
ECP28MWB/Def2-QZPP for Lu and aug-cc-pVQZ for F.

States Methodology R4@ l4 l4 j4 JG1/2 T4

X1O+0+ MRCI 1.917 614.90 2.24 610.4 0
C-MRCI 1.913 618.20 2.52 613.2 0
MRCI146 1.914 619.40 2.53 - 0

13N0− MRCI 1.933 584.70 2.72 579.3 13831
C-MRCI 1.924 595.60 2.59 590.4 14377
MRCI146 1.938 573.30 2.58 - 14629

13N0+ MRCI 1.928 590.00 2.62 584.9 14270
C-MRCI 1.919 601.30 2.57 596.2 14788
MRCI146 1.935 577.30 2.69 - 15003

13J1 MRCI 1.952 567.20 2.81 561.6 13866
C-MRCI 1.939 565.00 1.62 561.8 14943
MRCI146 1.949 572.40 2.57 - 13513

13N1 MRCI 1.935 585.90 1.76 582.4 15142
C-MRCI 1.932 601.30 3.29 594.7 15844
MRCI146 1.938 571.30 2.59 - 15600

13J2 MRCI 1.953 569.30 2.3 564.7 14781
C-MRCI 1.943 571.30 2.88 565.6 15890
MRCI146 1.949 572.70 2.82 - 14435

13N2 MRCI 1.929 589.80 2.48 584.8 16774
C-MRCI 1.922 601.00 2.62 595.7 17313
MRCI146 1.931 580.50 2.66 - 16884

13J3 MRCI 1.947 576.40 2.43 571.5 16748
C-MRCI 1.941 579.70 2.2 575.2 17641
MRCI146 1.946 576.40 2.53 - 16170

1+O+1 MRCI 1.952 574.60 2.51 569.5 18955
C-MRCI 1.945 581.60 2.52 576.5 19520
MRCI146 1.956 567.70 2.8 - 19101
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Table 4.3: Table (continued)
States Methodology R4@ l4 l4 j4 JG1/2 T4

13O+0− MRCI 1.952 575.90 2.74 570.4 19238
C-MRCI 1.945 581.60 2.48 576.7 19782
MRCI146 1.955 567.90 2.77 - 19352

11J2 MRCI 1.953 570.60 2.07 566.5 19902
C-MRCI 1.946 576.80 2.38 572 21180
MRCI146 1.954 570.20 2.54 - 19702

11N1 MRCI 1.967 534.10 2 530.1 24403
C-MRCI 1.954 544.10 2.03 540.1 25493
MRCI146 1.969 528.65 2.31 - 23839

21O+0− MRCI 1.955 562.70 2.71 557.3 26211
C-MRCI 1.946 572.50 2.82 566.9 27042
MRCI146 1.959 553.10 2.6 - 26037

23N0− MRCI 1.993 532.10 - 556.6 28782
C-MRCI 1.991 523.80 - 566.08 29920
MRCI146 1.984 573.60 2.61 - 28744

23N0+ MRCI 1.991 536.80 - 557.5 28818
C-MRCI 1.989 523.40 - 568.3 29959
MRCI146 1.984 574.50 2.58 - 28730

23N1 MRCI 1.988 570.20 - 556.8 29369
MRCI 1.986 567.80 - 556 30461
C-MRCI146 1.982 577.50 2.64 - 29291

23N2 MRCI 1.981 656.30 - 586.9 30345
C-MRCI 1.979 611.70 - 564.2 31373
MRCI146 1.978 583.20 2.66 - 30095

13Q2 MRCI 1.948 512.80 - 536.9 31774
C-MRCI 1.939 531.60 - 553.4 33444
MRCI146 1.951 560.60 2.41 - 31877

21N1 MRCI 1.949 577.15 - 579.3 32891
C-MRCI 1.946 584.10 - 590.5 33812
MRCI146 1.957 594.72 2.35 - 32921

13Q3 MRCI 1.946 597.70 - 586.9 34013
C-MRCI 1.937 608.90 - 595.5 35587
MRCI146 1.946 565.90 2.41 - 33965

13Q4 MRCI 1.942 571.80 - 568.7 36287
C-MRCI 1.934 583.00 - 578.7 37762
MRCI146 1.949 494.93 2.53 - 36218
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Table 4.4: Spin-orbit composition at the C-MRCI level (1.92 Å) for the lowest
excited state of 175Lu19F.

State Composition
X1O+0+ 99.87% X11O+, 0.06% 13N , 0.08% 23N
13N0− 89.24%13N , 10.76%13O+

13N0+ 98.44% 13N , 1.49% 21O+, 0.06% X1O+

13J1 42.49% 13J, 53.19% 13N , 3.81% 13O+, 0.26% 11N , 0.16% 21N , 0.08%23N
13N1 45.12% 13N , 46.13% 13J, 7.32% 13O+, 1.34% 11N , 0.07%23N , 0.02% 21N
13J2 69.16% 13J, 25.20% 13N , 5.30% 11J, 0.24% 13Q, 0.08% 23N
13N2 74.0% 13N , 25.83% 13J, 0.12% 11J, 0.02% 23N , 0.02% 13Q
13J3 99.95% 13J, 0.05% 13Q
13O+1 86.83% 13O+, 11.78% 13N , 1.14% 11N , 0.24% 13J, 0.01%23J
11O+0− 89.22% 13O+, 10.76% 13N , 0.02% 23N
11J2 93.78% 11J, 4.84% 13J, 0.78% 13N , 0.36% 23N , 0.24% 13Q
11N1 97.21% 11N , 2.03% 13O+, 0.57% 13N , 0.14% 13J, 0.06%23N
21O+0+ 98.32% 21O+, 1.50% 13N , 0.18% 23N
23N0− 99.98% 23N , 0.02% 13N , 0.01% 13O+

23N0+ 99.74% 23N , 0.19% 21O+, 0.07% X1O+

23N1 94.6%, 5.26% 11N , 0.08%, 0.01%
23N2 99.28% 23N , 0.46% 11J, 0.14% 13Q, 0.13% 13J
13Q2 99.52% 13Q, 0.34% 11J, 0.10% 13N , 0.05% 13J
21N1 94.56% 21N , 5.19% 23N , 0.22% 13J, 0.03% 13N
13Q3 99.95% 13Q, 0.06% 13J
13Q4 100% 13Q

The ground state of LuF (X 1O+), 11J, 11N and 21O+ remain almost unaffected due to zero first
order spin-orbit effects. Without spin-orbit effects, the 13J is the first excited state followed by 13N ,
which is ∼ 1200 cm−1 higher in energy according to MRCI+Q. However, with spin-orbit correction,
the ordering of S-states is more complex to assess due to the closeness of the energetics gaps. The
3J and 3N states, spin-orbit corrected at MRCI and C-MRCI level follow the same ascending order:
3N0−, 3N0+, 3N1, 3N2 and 3J1, 3J2, 3J3. According to C-MRCI, the 13N0− is the first excited state
followed by 13N0+, which is ∼400 cm−1 above in energy. However, for MRCI, the 13J1, is the
second excited followed by 13N0+. The effect of the core orbitals is also felt on the bond lengths
of 13N0− , 13N0+, and 13J1 which drop by ∼ 0.01 Å when using C-MRCI. For C-MRCI, the third
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excited state is 3J1, followed by 3N1, 3J2, 3N2, and 3J3. The S-states of 13J and 13N span over a
range of more than 3000 cm−1, which shows a large spin-orbit contribution and the importance of
including inner core correlation.

When comparing this work with Assaf et al., their state ordering is different, and the 13J1 is
their first excited state followed by 1 3J2 and then 13N0−. These differences can be attributed to
the use of a more state specific approach in the CASSCF and MRCI calculations, a higher level
basis set in the present study. The inner orbitals of lutetium and fluorine were not considered in their
calculations, but only the lutetium sub-valence 4 5 14 was included along with the 2?5 of fluorine.
The use of inner core orbitals results in significant differences in bond lengths and spectroscopic
constants.

In terms of composition (Table 4.4), S-states=1, 2 for 13J and 13N are heavily mixed, but
13J3 can only mix with 13Q3. The next excited is 3O+, which splits into 3O+0+ and 3O+1 . The bond
length dropped ∼ 0.07 Å when using C-MRCI, and the T4 is ∼ 500 cm−1 for both S states above
MRCI. The next three states have minimal spin-orbit effects, but the inclusion of the core orbitals
for C-MRCI changed their bond lengths by almost 0.1 Å, and the T4 is ∼ 1000 cm−1 above MRCI.
The last three states considered in Figure 4.3 are 23N , 21N and 13Q. The 23N follows the same
ordering for its S states as the 13N . When comparing MRCI and C-MRCI, the bond length for this
state only varies 0.02 Å on average. C-MRCI still sits ∼ 1000 cm−1 above MRCI. 21N1 is in between
the 13Q S states. 13Q2 is a heavily mixed state as reported in Table 4.4. 13Q3 can only mix with
13J3, but 13Q4 is a pure state. For the 13Q splitting, C-MRCI also drops the bond length by almost
∼ 0.1 Å, for the three S states. The T4 for C-MRCI is also on average 1000 cm−1 above MRCI.
Dissociation energy

Dissociation energies calculated in this work as well as those reported previously from both
theoretical and experimental studies are included in Table 4.5.
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Table 4.5: Dissociation energy of LuF in kcal·mol−1 with different levels of theory and a range of
basis sets.

Method Frozen-core Relativistic treatment D0 (dz) D0 (tz) D0 (qz) D0 CBS
CR-CCSD(T) FC-val DKH3 177.93 180.35 180.38 180.3
CR-CCSD(T) FC-subval DKH3 163.01 167.20 167.66 167.9
CCSD(T) FC-val DKH3 178.99 182.16 182.4 182.3
CCSD(T) FC-subval DKH3 164.16 169.25 169.96 170.4
CCSD(T) FC-val ECP28-Def2 - 172.35 169.47 167.9
CCSD(T) FC-subval DC 158.33 165.63 -
MP2 DC 158.78 167.19 -
HF DC 134.15 137.49 137.74 137.8
CASSCF(8,15) ECP28-ANO - 159.74 - -
PBE DKH3 174.4 172.29 176.04 -
TPSS DKH3 170.64 167.87 171.73 -
M06-L DKH3 169.02 169.77 171.93 -
B3LYP DKH3 167.72 166.09 169.97 -
Other theoretical values
Composite143 169.7
Composite144 173.32
PP-CCSD(T)138 Valence ECP60 173
PP-MRACPF138 Valence ECP60 175
DFT: SOAP139 96.6 -
PBE140 ZORA 174
DFT141,a DKH3 195.3-161.6
EOM-CR-CCSD(T)142 Valence DKH3 171.3
EOM-CR-CCSD(T)142 Full DKH3 139.6
Experimental value
Mass Spectroscopy121 136 ± 12
Ligand Field theory122 124
Fitting PES128 79
Fitting PES123 105
Fitting PES127 96.0 ± 2.4
a DFT functionals used are SVWN, BP86, BLYP, PW91, PBE, B97-D, SSB-D, M06-L, TPSS, PBE0, B3LYP,

BHLYP, B3P86,MPW1K, B97-1, X3LYP, M06, M06-2X, TPSSh, M11, CAM-B3LYP, and B2PLYP.

For the correlation, two approaches to the valence space were considered: FC-val, which in-
cludes only valence electrons (6B2, 531 of Lu and 2B2, 2?5 of F) and FC-subval includes sub-valence
orbitals (5B2, 5?6 of Lu). In addition, the effects of using a full relativistic Hamiltonian, and ECPs
(28 electrons) were probed. For ab initio calculations, CCSD(T), CR-CCSD(T), and MP2 were
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utilized. For DFT, a variety of functionals were considered: PBE, TPSS, M06-L and B3LYP.
The dissociation energy difference between the Sapporo-DZ and Sapporo-TZ for CR-CCSD(T)

is 2 kcal·mol−1 with FC-val, while between Sapporo-TZ and Sapporo-QZ basis sets, the energy
difference drops to 0.03 kcal·mol−1 which implies that the energy is almost converged at the triple-Z
level. The same trend is observed for CCSD(T), where the energy at the triple-Z level is almost
converged. When the sub-valence electrons from Lu are added (FC-subval results), the dissociation
energy with CR-CCSD(T)/Sapporo-DZ dropped by 14 kcal·mol−1 and by ∼13 kcal·mol−1 at the CBS
limit. At the CCSD(T) level of theory, the difference between FC-val and FC-subval dissociation
energies are ∼14 and ∼12 kcal·mol−1 with the Sapporo-DZ and at the CBS limit, respectively. Such
a large difference arising from the choice of valence indicates that the electron correlation arising
from the sub-valence electrons is important in the overall energy.

The basis set superposition error has been investigated by using the counterpoise method sug-
gested by Boys and Bernardi for CCSD(T) and CR-CCSD(T) at the CBS limit for FC-val and
FC-subval.162 For both FC-val calculations, considering CCSD(T) and CR-CCSD(T), the BSSEs ex-
trapolated to the CBS limit using a mixed exponential/gaussian by Peterson is 0.87 kcal·mol−1.60 For
CCSD(T) and CR-CCSD(T) using sub-valence electrons, 0.81 and 0.59 kcal·mol−1 were obtained,
respectively for BSSE corrections at CBS. As an example, for CCSD(T)/FC-subval at a double-,
triple- and quadruple-Z basis set levels, the BSSE is 6.82, 3.52 and 1.21 kcal·mol−1 respectively,
which at CBS yields 0.81 kcal·mol−1.

In addition, the dissociation energy of LuF was evaluated using the ECP28MWB pseudopotential
and Def2-TZVPP, Def2-QZVPP (Lu) and aug-cc-pVTZ, aug-cc-PVQZ (F) basis sets. The value
obtained at the quadruple-Z level is very close to DKH3 predictions mentioned earlier, while the
triple-Z result is slightly higher than the DKH3 dissociation reported. The pseudopotential used
for lutetium accounts for relativistic effects arising from the inner-core electrons. To evaluate the
spin-orbit contribution to the ground state, the Dirac-Coulomb (DC) four component Hamiltonian
was utilized. CCSD(T), MP2 and HF were probed for this step. The utility of the double- and
triple-Z CBS extrapolation by Martin160 has been considered for CCSD(T)/FC-subval/DKH3. This
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double-, triple-Z CBS extrapolation scheme results in a dissociation energy of 171.1 kcal·mol−1,
while considering a two-point scheme extrapolation with triple-Z and quadruple-Z basis sets, 170.4
kcal·mol−1 is obtained. Considering the unextrapolated triple-Z basis set, the value obtained is 169.3
kcal·mol−1. For CCSD(T)/FC-subval/DKH3, the double-, triple-Z CBS extrapolated energy is closer
to the triple-,quadruple-Z extrapolated energy than the unextrapolated triple-Z energy.

This shows that the spin-orbit contribution is small to the ground state, which is expected for
a 1O+. In terms of calculations at the Hartee-Fock level, the necessary electron correlation is not
present, so its dissociation energy prediction is very far from the best estimate. Finally, CASSCF was
also used to calculate the dissociation energy by using the state-averaged wavefunction utilized to
construct Figure 4.1 The prediction is 159.74 kcal·mol−1 at a triple-Z level, which is ∼9 kcal·mol−1

from the CCSD(T)/DKH3/FC-subval dissociation energy.
CR-CCSD(T) and CCSD(T) results obtained in this study are in good agreement with other

theoretical dissociation energies from literature. When comparing the current results with Solomonik
and Smirnov, a difference of 2 kcal·mol−1 is obtained when using a sub-valence space correlation.143

Solomoniks dissociation energy was obtained with a composite scheme based on CCSD(T)/CBS with
core-valence correlation energy, spin-orbit and scalar relativistic effects. The CCSD(T)/CBS results
herein, are in very good agreement with previous work from Lu.144 A composite scheme utilizing the
Feller-Peterson-Dixon scheme, renders a value of 173.32 kcal·mol−1, which is only ∼3 kcal·mol−1

from our best CCSD(T)/CBS results and 5 kcal·mol−1 from CR-CCSD(T). Küchle et al.,138 used
the multireference averaged coupled-pair functional (MRACPF), and their dissociation energy is
4 and 7 kcal·mol−1 higher than the results obtained in the CCSD(T)/CBS and CR-CCSD(T)/CBS
predictions herein, respectively. However, both CCSD(T)/CBS and CR-CCSD(T)/CBS dissociation
energies, are quite distant from reported experimental values. In Table 4.4, the smallest difference
in dissociation energy between experiment and our predictions was obtained by mass-spectroscopy
(Zmbov and Margrave,121 136 kcal·mol−1). The other experimental values presented in Table 4.4
have large energetic differences from our calculated values, with a maximum JE of ∼90 kcal·mol−1.
This shows the large discrepancy between experiment and theory.
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Additionally, the potential utility of several DFT functionals in the determination of the dissoci-
ation energy of LuF has been considered. The PBE, TPSS, M06-L and B3LYP functionals have
been used, along with a DKH3 Hamiltonian, and the Sap-=z basis set. The PBE dissociation energy
obtained in this study is in agreement with the one predicted by Hong et al.140 using PBE and the
ZORA Hamiltonian. The dissociation energies obtained with the functionals are in a range between
166 and 176 kcal·mol−1. B3LYP at the triple-Z level results in the lowest dissociation energy (166.09
kcal·mol−1), while PBE with the quadruple-Z basis set leads to the largest dissociation (176.04
kcal·mol−1). These results largely compare with the DFT dissociation energies reported by Grimmel
and co-workers.141 However, in their study, a larger range of functionals were used, with SVWN
leading to the largest dissociation energy at 195.3 kcal·mol−1, and BHLYP resulting in the lowest
energy at 161.6 kcal·mol−1. Moreover, from the prior effort, B97-1 predicted a dissociation energy
that is the closest to our CCSD(T)/CBS with DKH3/FC-subval dissociation energy. Finally, when
comparing PBE, TPSS, M06-L and B3LYP dissociation energies from our work and Grimmel et

al., PBE has the largest dissociation energy among the four functionals and B3LYP the lowest. (To
note, the differences between the Grimmel study and the present one are the use of a larger basis set
(quadruple-Z) in this study as well as a different type of basis set for the ligand.)

4.4 Conclusion
The bond lengths, spectroscopic constants, energetics, and potential energy curves are reported,

which include four dissociation channels, and detailed information concerning intersystem and
avoided crossings. In addition, spin-orbit effects are calculated at a level of correlation that, can
aid experimentalists in further pursuits of the description of the ground and excited states and
their spectroscopic data. The use of sub-valence orbitals at spin-orbit demonstrated that they are
necessary to recover the necessary correlation to obtain results that are in agreement with experiment,
especially for the low-lying excited states. The first excited state of LuF at spin-orbit C-MRCI is
13N0−, followed by 13N0+ and 13N1, which shows the importance of considering sub-valence and
inner core orbitals to calculate spectroscopic constants and bond lengths.

In the second part of this work, the sub-valence orbitals are of paramount importance for
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predicting dissociation energies and can shift the dissociation energy by up to ∼13 kcal·mol−1.
CR-CCSD(T) and CCSD(T) at the CBS limit estimate the dissociation energy as 167.9 and 170.4
kcal·mol−1, respectively. Utilizing a four-component Hamiltonian (Dirac-Coulomb) resulted in a
dissociation energy ∼2 kcal·mol−1 lower than the DKH3 calculations. The DFT calculations are
overall in good agreement with our best estimate (from ∼ 1 to ∼ 6 kcal·mol−1 to 170.40 kcal·mol−1).
Due to the large discrepancies between the results in this study as well as other theoretical data and
the experiment, the experimental dissociation energy might need to be revisited. Finally, while in
this case DFT gave similar dissociation than ab initio methods, a study of an open-shell molecule
with a multireference character at the ground state might need more robust methods such as ab initio

method.
Overall, lanthanide species are difficult to investigate from both theoretical and experimental

perspectives. The high density of states, which can be very close in energy (herein, 132 states, most
of which are bound and in a ∼ 55000 cm−1 range, just below the dissociation energy), the effect of
spin-orbit on the ground and excited states, as well as the influence of the sub-valence electrons
are effects that should be included in a detailed analysis. Ab initio methods, as utilized herein, are
vital to the description of the complex electronic manifold. Already for diatomics, such analysis is
significantly demanding, and requires judicious selection of the active space, the electron correlation
space and the method.
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CHAPTER 5

AB INITIO COMPOSITE STRATEGIES AND MULTIREFERENCE APPROACHES FOR
LANTHANIDE SULFIDES AND SELENIDES

Reproduced from N. M. S. Almeida, T. R. L. Melin, S. C. North, B. K. Welch and A. K. Wilson,
J. Chem. Phys. 157, 024105 (2022),63 with the permission of AIP publishing. Timothé Melin, Dr.
Nuno Almeida, Dr. Sasha North and Dr. Bradley Welch each focused on four molecules. The DFT
calculations on ErSe and the CCSD(T)/CBS calculation were done by Timothé Melin. The data
presentation in the interest of reporting the entire scientific study was done by Timothé Melin, and
he came up with the categorization scheme. The initial draft was written by Dr. Nuno Almeida and
each author contributed equally to develop and finalize the paper.

5.1 Introduction
Lanthanide compounds have a number of important uses, such as in catalysis, phosphors, and

magnets, with applications in superconductors, hybrid cars, display devices, stealth technology, and
potential anti-cancer agents.164 Lanthanide chalcogenide (selenium and sulfur) clusters have been
synthesized165–167 for use in optical fibers,168–172 and lanthanide sulfides have applications in ther-
moelectric materials,173 infrared window materials,174 and photovoltaic energy materials.175 In all
of these applications, thermodynamic properties, such as enthalpies of formation, bond dissociation
energies, and reaction enthalpies, are of paramount importance in understanding reactivity. However,
fundamental properties such as bond dissociation energies (BDEs) can be difficult to describe for
heavy element species.

Gaining structural and energetic insight into lanthanides requires both experiment and theory.
Experimentally, there is a severe lack of small molecule experimental data. One of the reasons for
the lack of experimental studies for some heavy element species is attributed to their radioactivity
(for example, promethium in the lanthanide series, and all the actinide series), limiting studies due to
special facilities, and/or requirements in their handling. Some elements are not naturally occurring,
at least in appreciable amounts (promethium in the lanthanide series and all but uranium and thorium
in the actinide series) and, therefore, must be synthesized, which can be a slow (sometimes an
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atom-at-a-time!) and costly process.
For lanthanide species, historically, the Knusden cell massspectrometry has been used to study

equilibrium vapor properties at high temperatures. Prior work, largely done from the late 1960s
to the 1980s, has provided rare-earth gas phase thermodynamic data, including bond dissociation
energies.176–178 However, the bond dissociation energies determined from such experiments were
obtained through the use of the second and third laws of thermodynamics, requiring high precision
measurements, which were often not achieved with the Knusden cell approach. As well, the use
of these laws required statistical thermodynamic assumptions, which led to significant errors for a
number of species.179

Theory provides another route to address lanthanide species. However, due to the energetic
complexity of lanthanide-containing molecules, ab initio calculations on these species can be com-
putationally prohibitive [in terms of central processing unit (CPU) times to obtain results, required
memory, and disk space], so predictions for these species have traditionally been dominated by
density functional theory (DFT). For example, Dolg et. al. performed DFT calculations using the
B88 and P86 functionals combined with small core pseudopotentials (ECP) on lanthanide high spin
complexes, specifically on GdX diatomics (X = H, N, O, F, P, S, Cl, and Gd), to predict chemical
binding.180 Luo and co-workers used DFT approaches to predict the first ionization potentials
for lanthanide monosulfides (LnS where Ln = La, Ce, Eu, Gd, Yb, and Lu).170 Three density
functionals were used: the Becke functional for exchange-correlation paired with Perdew (BP),15

Perdew and Wang (BPW),181,182 and Lee-Yang-Par (BLYP).183 The Perdew functional yielded the
smallest mean absolute deviations from the experimental first ionization potentials and, thus, was
employed to calculate bond lengths, vibrational frequencies, populations, and dissociation energies
for the diatomic lanthanide sulfides. Xu et. al.184 examined the electronic configurations of LnX
with Ln = La-Eu and X = O, S, Se, and Te using relativistic DFT [Vosko-Wilk-Nusair (VWN),
Perdew-Burke-Ernzerhof (PBE), BP, PW91, and BLYP functionals]. The authors used the fractional
occupation number approach to determine the ground state electronic configurations for the diatomic,
concluding that a f molecular orbital is involved in the bonding when the lanthanide atom has less
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than three electrons in its 4f orbital shell. The most intensive single reference-based computations
to date were carried out on a set of lanthanum oxide and halides by Solomonik and Smirnov.143

The authors utilized a coupled cluster based scheme that includes core-valence contributions and
contributions from full triples, and perturbative quadruples, obtaining a mean absolute deviation
(MAD) of 1.8 kcal·mol−1, showing the utility of the higher order coupled cluster contributions for a
subset of the molecules (EuO, YbF, and LuO).143

Recent calculations utilizing the Ln5496,141 and An66 sets,185 sets of 54 lanthanides and 66
actinide enthalpies of formation and dissociation energies, with experimental uncertainties of 5
kcal·mol−1 or less, have assessed the utility of a number of density functionals for heavy element
species. For lanthanide molecules, the typical errors for these thermodynamic properties are on the
order of 23 kcal·mol−1; the errors for the actinide molecules are on the order of 10 kcal·mol−1. The
smaller errors for actinides are attributed to the more covalent bonding nature of actinide species, as
compared to lanthanides. However, the errors in either case are not ideal. A leading reason for large
errors in lanthanide and actinide chemistry pertains to the fact that available functionals have not
been parameterized for use with heavy elements. An additional drawback to the use of DFT is its dif-
ficulties in describing systems with degeneracies or near-degeneracies (multireference systems).186

Even though approaches to multireference DFT have been developed, such as multiconfiguration
pair-density functional theory (MC-PDFT), only recently have they begun to be considered for
actinide complexes.187 Most forms of DFT are less than ideal for the f -elements, as their partially
filled valence shells often lead to multireference character. As well, as demonstrated in the Ln54 and
An66 studies, the utility of the functionals deviates very substantially from molecule to molecule,
depending upon lanthanide or actinide, ligand, and property, with differences that can be as large
as 100 kcal·mol−1 or more for the dissociation energy or enthalpy of formation, complicating the
choice of functional. For example, the enthalpy of formation obtained for the UO3 molecule in the
An66 set is 243.8 kcal·mol−1 when using the Vosko-Wilk-Nusair with Slater exchange (SVWN)
functional and 141.3 kcal·mol−1 when using the Becke-Half-and-Half Lee-Yang-Parr (BHLYP)
functional.185
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High quality experimental data with small experimental error bars have been vital to gauging the
utility of theoretical methods in earlier parts of the periodic table. For the heavy elements, not only
are the numbers of studies limited but also some of the very best results have had large experimental
uncertainties. For example, for diatomic lanthanide sulfides and selenides in particular, there are few
experimental studies188–191 where the bond dissociation energies have been determined. The studies,
which occurred in the 1960s and 1970s, resulted in errors of ∼15 kJ·mol−1 or 0.2 eV, which is near
the value selected for lanthanide chemical accuracy (5 kcal·mol−1).141 This term was proposed more
recently, based upon the average experimental uncertainties in the determination of enthalpies of
formation and bond energies for a set of 54 lanthanide energies, which were then utilized to gauge
predictions by a number of density functional approaches.141 Such large experimental uncertainties,
though somewhat useful (as some data are better than none), make it more difficult to assess compu-
tational methodologies.

Recently, new experiments have enabled unprecedented accuracy in the prediction of dissociation,
with an estimated accuracy of ∼0.004 eV.192 The Morse group has utilized a predissociation-based
two-photon ionization (R2PI) method74 to obtain bond dissociation energies for these species for
transition metal and inner transition metal (f -element) containing silicides,86,193,194 selenides,195

and sulfides.195 The R2PI method makes use of the spin-orbit and nonadiabatic couplings of the
large density of electronic states near the ground separated atom limit that allow the molecules to
predissociate rapidly when the bond dissociation energy is reached or exceeded. Predissociation in
this case is molecular dissociation that occurs long before the separated atom limit is reached. It is
the key phenomenon that allows bond dissociation energies of transition metal and inner-transition
metal molecules to be measured with high precision. When a predissociation threshold is observed
by a sharp drop in signal in the absorption spectrum of the molecule of interest, its value directly
provides the BDE of the system. The predissociation technique is a significant breakthrough in the
determination of accurate thermodynamic data.

When considering the often-prohibitive computational cost of ab initio electron correlation
calculations on heavy element containing species, composite methods are uniquely suited to pro-
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vide accurate results with respect to experimental energies and thermodynamic properties while
lowering the computational cost compared to traditional ab initio methods. Among the most used
composite methods are the Gaussian-n (Gn),48,49,77,196–198 Weizmann-n (Wn),51,52,78,199 Complete
Basis Set (CBS-n),200–204 High accuracy extrapolated ab initio thermochemistry (HEAT),53,81,82,205

Feller-Peterson-Dixon (FPD),54,206,207 and our own correlation consistent Composite Approach
(ccCA).55,208 ccCA was first constructed for use on main group species; for the main group and s-
block metals, ccCA was shown to achieve chemical accuracy (±1 kcal·mol−1 ), on average.55,56,208,209

Later, the method was developed for use with 3d transition metals (ccCA-TM)91,210 achieving transi-
tion metal chemical accuracy (±3 kcal·mol−1 ), on average, for the prediction of over 200 transition
metal enthalpies of formation. Recently, Welch et. al. introduced Super-ccCA (s-ccCA), a compos-
ite method capable of achieving transition metal dissociation energies of <1-2 kcal·mol−1 within
those from R2PI experiments. s-ccCA utilizes contributions to the composite including higher level
coupled cluster corrections (triple and quadruple excitations) and spin-orbit contribution/correction
from a Breit-Pauli Hamiltonian.211 The theoretical predictions were compared to experimental R2PI
results.86,193,194,212,213 Recently, the f -block ab initio correlation consistent composite approach
(f -ccCA) has been applied to lanthanide complexes, namely, oxides and halides, which were also
compared to experimental R2PI predissociation energy results.213,214

A challenge, however, for single reference methodologies, is that they can fail for lanthanide
chemistry, as a single reference determinant may not be able to describe low-lying excited states
or may converge to the wrong ground state. As well, Hartree-Fock orbitals used as initial guess
orbitals may not be able to properly describe the ground state and lead to erroneous convergence
issues215,216 Paired with composite methods, multiconfigurational approaches are typically neces-
sary for lanthanide complexes, to obtain accurate thermochemical and spectroscopic properties. The
detailed work of Ruedenberg et. al. on the nature of the chemical bond, localized orbitals, and on Full
Optimized Reaction Spaces (FORS), led to the widely used complete active space self-consistent
field (CASSCF) approach and demonstrated the importance of multireference approaches.]217–220

By using multireference approaches, correct energetic assessment of ground states and spin-orbit
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contributions can be performed confidently and will be considered in this effort.
Herein, f -ccCA has been used for the determination of bond dissociation energies of lanthanide

sulfides and selenides. The highly accurate bond dissociation energies from Morse provide an
excellent gauge of the ability of ccCA to model this molecular property for these lanthanide species.

5.2 Computational details
Geometry optimizations were performed for each of the molecules Ln – S and Ln – Se (Ln = Pr,

Nd, Sm, Eu, Gd, Tb, Er, and Lu) using two different methods: the nonlocal exchange-correlation
Perdew and Wang (PW91) functional102 and coupled cluster with single, double, and perturbative
triple excitations [CCSD(T)]. PW91 was selected for its demonstrated efficacy for transition metals
in bond dissociation predictions and as guess orbitals, which are important to describe the ground
state correctly and for obtaining accurate thermodynamic properties.221 However, Hartree-Fock
orbitals are used throughout f -ccCA; if there are significant differences between these orbitals and
natural orbitals, the calculation of accurate thermodynamic properties can be difficult.215,216 For
example, for the NdS complex studied herein, the ground state is composed of a linear combination
of four determinants. CCSD(T) was utilized due to its overall utility in predicting bond dissociation.
Two routes were utilized to incorporate relativistic effects. The first was the use of a third-order
Douglas-Kroll-Hess Hamiltonian (DKH3) that was considered for PW91 and CCSD(T) and will
be referred to PW91-DKH3 and CCSD(T)-DKH3, respectively, throughout the discussion.222 For
these calculations, the cc-pVTZ-DK3223 basis set for lanthanides, aug-cc-pV(T+d)Z-DK224,225 for
sulfur, and aug-cc-pVTZ-DK226 for selenium were utilized. The other route was to use effective
core potentials (ECP) that will be referred to CCSD(T)/ECP. For each lanthanide, an atomic natural
orbital (ANO) basis set was used with the corresponding ECP28MWB154,227,228 pseudopotential,
accounting for scalar relativistic effects. For sulfur and selenium, aug-cc-PV(T+d)Z and aug-cc-
pVTZ-PP with a ten-electron ECP (ECP10MDF) were employed, respectively.229

A triple-Z level basis set was utilized for the geometry optimization steps due to its utility with
respect to experiment and computational cost.114 In prior work on LuF, for example, despite the
significant gain in computational cost incurred by the use of a quadruple-Z level basis set, the bond
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length did not improve, and even the triple-Z level basis set led to a CCSD(T) optimized structure
that was within 0.002 Å of experiment.114 In this work, frequencies were calculated to correct for
zero-point energies (ZPEs), which were also determined at the triple-Z level. For the CCSD(T)
geometry optimizations, restricted Hartree-Fock (RHF) orbitals were generated and then used as
guess orbitals for unrestricted CCSD(T) calculation (for the open-shell systems) and restricted
CCSD(T) (closed-shell systems). The calculations were performed with MOLPRO 2020.147 In
MOLPRO 2020, the abelian point group, C2E was utilized, as the full point group symmetry (C∞)
is not available for diatomics.

In the second part of this work, the f -ccCA ab initio composite scheme, recently introduced
by Welch et. al., was used to obtain the dissociation energy (D0) for each of the lanthanide com-
pounds.62 The methodology has been introduced in section 2.9. For the multireference wavefunction
calculations, the 4f ( 5HI2 , 5GHI, 5H(3G2H2) , 5GI2 , 5I(GH2) , 5G(G23H2) and 5I3) and 6s hybrid orbitals of the
metal were included in the CASSCF active space, except for gadolinium and lutetium. For the
former, the 5d (3G2H2 ,3I2 , 3GH, 3GI, 3HI) hybrid orbitals were included in conjunction with the 4f

and 6s orbitals. For lutetium, only the 5d and 6s hybrid orbitals were included in the active space
because the 4f set of hybrid orbitals are occupied by 14 electrons and, thus, do not have a large
contribution toward spin-orbit coupling. The 3?G,H,I and 4?G,H,I sets of orbitals from sulfur and
selenium are doubly occupied at the equilibrium bond length and were not included in the CASSCF
active space. For Multireference Configuration Interaction (MRCI), the same active space that was
utilized for the CASSCF calculations was chosen. In addition, the 3p and 4p orbitals for sulfur and
selenium, respectively, were also considered. The inclusion of these p orbitals allows for single and
double excitations from these orbitals to the active space in the MRCI calculations (orbitals were
included at the core level in the MOLPRO implementation).147 The spin-orbit coupling energies
were calculated using the Breit-Pauli Hamiltonian and the MRCI wavefunction. The ground and
first excited states were included in the state-averaged CASSCF calculations. Then, the CI vectors
and energetics for MRCI were utilized to gauge potential multireference character in the diatomic
by comparing the weight of configurations. As well, for all of the molecules, the multireference
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character was assessed by determining the T1 and D1 diagnostics,230,231 coupled cluster singles and
doubles amplitudes (|T1max | and |T2max |, respectively),232 and spin contamination at the triple-Z
level.

For several species (TbS, TbSe, ErS, and ErSe), CCSD(T)- DKH3 energies were determined at
the double-, triple-, and quadruple-Z basis set levels and were extrapolated to the CBS limit using
eq. 2.40. Two different guess orbitals (RHF and RPW91) were utilized for CCSD(T).

For ErSe, a functional from each of four density functional families – local-density approximation
(LDA), generalized gradient approximation (GGA), meta-GGA (M-GGA), and hybrid M-GGA –
was employed for bond dissociation energy predictions. The corresponding functionals were PW91
(LDA), Tao, Perdew, Staroverov, Scuseria (TPSS, GGA),95 Minnesota 2006 local functional (M06-L,
M-GGA),104 and the Becke, 3-parameter, Lee-Yang-Parr (B3LYP, hybrid M-GGA)15,16 that were
utilized at a restricted level (RKS). These DFT calculations were performed at a double-,triple- and
quadruple-Z level.

5.3 Results and discussion of results

Geometry optimization of sulfides and selenides

In Table 5.1, the optimized bond lengths and vibrational frequencies determined for the PW91
and CCSD(T) calculations for the sulfide complexes (Pr, Nd, Sm, Eu, Gd, Tb, Er, and Lu) are
provided. In terms of bond lengths, though a contraction in bond length is expected while the f shell
is being filled, due to the complexity of the electronic structure of lanthanide chemistry, this was
not observed for the sulfide diatomics.184 In Table 5.1, CCSD(T) bond lengths for both one- and
two-component Hamiltonians are longer for PrS to GdS, and LuS than for the corresponding PW91
optimized structures. The difference in the bond length for lanthanide sulfides comparing PW91 and
CCSD(T) ranges from ∼0.01 Å (GdS and LuS) to ∼0.05 Å for EuS. NdS has a 0.02-0.03 Å shorter
bond length than the DFT using the zeroth-order regular approximation (ZORA) at triple-Z bond
length given by Xu et. al.184 This difference is not surprising, as NdS has a significant multireference
character, requiring four CI vectors to describe the ground state Table 5.7). For RHF and CCSD(T),
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the lowest electronic configuration corresponds to having unpaired electrons in the 4 5I3 , 4 5I(G2H2) ,
and 6B orbitals and another unpaired electron in the 4 5G(G23H2) or 4 5H(3G2H2) orbital (Table 5.7). Even
though this configuration is an excited state at the CAS/MRCI level, it is the ground state electronic
structure for RHF and UCCSD(T).

For ErS and TbS complexes, their bond lengths are larger with PW91 than with CCSD(T).
The vibrational frequencies for CCSD(T) with a two-component Hamiltonian are 60.44 and 83.31
cm1 larger than the PW91-DKH3 frequencies for TbS and ErS, respectively. For the CCSD(T)
calculations with a one-component Hamiltonian and an ECP basis set, there was no convergence for
the SCF procedure for TbS and ErS (which is discussed in Sec. 5.3.

Overall, the difference in the bond length from one- and two-component Hamiltonian predictions
was not very significant; on average, CCSD(T)-DKH3 bond lengths are ∼0.01 Å longer than for
CCSD(T)/ECP for all complexes. The results herein are on par with DFT, SCF, and configuration in-
teraction with singles and doubles (CISD) bond lengths predicted in prior studies and given in Table
5.1. However, in comparing theoretical and experimental bond lengths, there are some substantial
differences. For example, for EuS and GdS, the bond length variance between CCSD(T)-DKH3 and
experiment is large, ∼0.08 Å for EuS and ∼0.16 or 0.08 Å for GdS, depending upon experiment
used for comparison. The substantial difference in the bond length can be attributed to the estimated
experimental bond lengths, rather than having direct measurements. For lanthanide sulfides, a one
component Hamiltonian CCSD(T) with a robust ECP basis set can recover most of the electron
correlation needed.
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Table 5.1: DFT (PW91-DKH3), CCSD(T)/ECP, and CCSD(T)-DKH3 optimized bond lengths
(Å) and harmonic vibrational frequencies (cm−1) (in parentheses) of sulfide complexes using a
triple-Z level basis set.

Molecules PW91-DKH3 CCSD(T)/ECP CCSD(T)-DKH3 Previous theoretical Expt.
results

2.347184,a

PrS 2.3154 2.3291 2.3310 (432.7)184,a —
(450.81) (459.21) (455.43) 2.338184,b

2.345184,a

NdS 2.3258 2.3251 2.3289 (447.5) —
(428.93) (459.44) (-56.73) 2.340184,b

2.414184,a

SmS 2.4186 2.4388 2.4378 -390.6 —
(393.14) (375.16) (380.34) 2.334184,b

2.41170,c 2.51233,d

(362170,c )
EuS 2.3879 2.4315 2.4373 2.396184,a

(384.25) (376.5) (374.56) (383.5)184,a (400)233,e

2.343184,b

2.31, 2.29170,c 2.15233,d

GdS 2.2945 2.3019 2.3119 (431170,c)
(436.62) (457.65) (453.89) 2.272-2.342180,f 2.23233,d

(412-493)180,f (479)233,d

TbS 2.3309 2.3033
(398.22) (458.66)

ErS 2.3329 2.2834
(372.70) (456.01)

2.27170,c 2.17233,d

LuS 2.2572 2.2611 2.2762 2.10233,d

( 448.17) (452.87) (447.03) (456170,c) (500)233,d

a FON-DFT calculation using ZORA Hamiltonian at a triple-Z level.
b FON-DFT calculation using spin-orbit coupled calculations.
c DFT calculations using the BP, BPW and BLYP functional at the triple-Z level.
d Estimated from empirical relations.
e Estimated based on experiments.
f All electron DFT (LDASIC, B88, and B88P86) calculations and ECP calculation with SCF, CISD, and ACPF

at the ANO triple-Z level.
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In Table 5.2, the optimized geometry for the selenide complexes (Pr, Nd, Sm, Eu, Gd, Tb, Er,
and Lu) are provided. For the one-component Hamiltonian predictions, selenide complexes have
ten more electrons than the sulfides, which were treated with an ECP. The shorter bond distances
obtained in the calculations relative to experiment for sulfide complexes also occur for selenides,
but it is not as pronounced. The difference in bond lengths between PW91 and CCSD(T) is quite
large for SmSe, the difference is ∼0.14 and ∼0.15 Å, for one- and two-component Hamiltonian
predictions, respectively. For the other seven selenium complexes, the bond lengths differ on average
by ∼0.01 Å between PW91 to CCSD(T), except for EuSe, which is 0.04 Å. NdSe has a shorter
bond length than the fractional occupation number DFT (FON-DFT) results using the ZORA
Hamiltonian (0.04-0.05 Å). The four different CI vectors needed to describe the ground state
determinant make NdSe a multireference system (see Table 5.7), akin to NdS. For TbSe and ErSe,
as for TbS and ErS, the bond length is larger for PW91 than for CCSD(T), and also, the ground state
vibrational frequencies are smaller for PW91. In addition, the CCSD(T)/ECP optimization was also
not possible due to the non-convergence of the SCF procedures. Overall, the equilibrium geometries
are quite similar when comparing DFT (PW91) to CCSD(T). Comparing the CCSD(T) one- and
two-component Hamiltonian bond length predictions, the difference is quite small, less than 0.01 Å
for most complexes, and their vibrational frequencies differ by a maximum of ∼5 cm1. The impact
on the BDE predictions among the different geometries for all complexes is always less than 0.8
kcal·mol−1.
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Table 5.2: DFT (PW91-DKH3), CCSD(T)/ECP, and CCSD(T)-DKH3 optimized bond
lengths (Å) and harmonic vibrational frequencies (cm1) (in parentheses) of selenide com-
plexes using a triple-Z level basis set.

Molecules PW91-DKH3 CCSD(T)/ECP CCSD(T)-DKH3 Previous theoretical
predictions184,a

PrSe 2.4610 (-300.15) 2.473 (-308.4) 2.4781 (-305.67) 2.504 ( -284.8) 2.497
NdSe 2.4745 (-282.50) 2.4669 (-307.38 ) 2.4738 (-306.60) 2.519 (-255.6) 2.523
SmSe 2.4347 (-259.35) 2.5761 ( -252.27) 2.5831 (-253.10) 2.508
EuSe 2.5325 (-252.01) 2.5457 (-248.01) 2.5804 (-248.27) 2.552 (-250.9) 2.502
GdSe 2.4236 (-287.53) 2.439 (-302.68) 2.4514 (-300.44) —
TbSe 2.4526 (-263.78) — 2.4426 (-301.41) —
ErSe 2.4852 (-238.22) — 2.4182 (-295.43) —
LuSe 2.3913 (-288.66) 2.3901 (-292.76) 2.4059 (-290.31) —
a FON-DFT calculation using ZORA Hamiltonian at a triple-Z level.

Bond dissociation energies for lanthanide sulfides and selenides

In this section, using the three different geometries described above, f -ccCA is employed to
calculate BDEs for eight sulfide and selenide complexes, and the BDEs are compared to experiment.
The molecules are separated into three categories, depending upon the error in the f -ccCA dissocia-
tion energy predictions relative to Morses experimental data (see Ref.195): Cat I (±2 kcal·mol−1),
Cat II (±6 kcal·mol−1), and Cat III (>6 kcal·mol−1). These differences are presented in Figure 5.1.
In Table 5.3, a summary of the f -ccCA dissociation energies determined at each different optimized
geometry is provided and compared with experiment. Moreover, in Tables 5.4, C.1, and C.2, the
total atomization terms and dissociation energy predictions for CCSD(T)-DKH3, PW91-DKH3,
and CCSD(T)/ECP geometries are shown.

The calculated dissociation energies (D0) for sulfide and selenide complexes are decomposed
into different contributions that comprise the f -ccCA composite, as described in Sec. 2.9, such
as the reference energy (JMP2CBS and JHFCBS), core-valence (JCV), correlation contribution
(JCC), and spin-orbit (JSO) contributions. Table 5.5 provides TbS, ErS, TbSe, and ErSe bond
dissociation energies calculated with two different approaches: RHF and DFT (PW91) orbitals. In
Table 5.6, dissociation energies considering different families of DFT are used to predict the most
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problematic lanthanide complex: ErSe. Table 5.7 contains the corresponding CI vectors for the
spin-orbit correction for each of the sulfide and selenide complexes. In Table C.4, multireference
diagnostics are given for all sulfide and selenide complexes at CCSD(T)-DKH3 geometries. For
PW91-DKH3 and CCSD(T)/ECP geometries, see Tables C.3 and 5.4 in the appendix C.

For the sulfide complexes, f -ccCA was quite successful for PrS, SmS, GdS, and LuS, resulting
in differences of 1-2 kcal·mol−1 from experiment for each of the three investigated geometries
[PW91-DKH3, CCSD(T)/ECP, and CCSD(T)-DKH3]. These four complexes are part of Cat I. The
ground state of these four complexes has been identified as PrS (4H), SmS (7J), GdS (9O ), and
LuS(2O+). The JMP2CBS term for these four complexes ranges between 37 and 51 kcal·mol−1 and
the core-valence (CV) term contributes 1-2 kcal·mol−1 to the total energy. The correlation term
(CC) ranges from -4.75 (SmS) to 6.48 kcal·mol−1 (PrS) considering CCSD(T)-DKH3 geometries
(Table 5.4). The spin-orbit correction obtained with the Breit-Pauli Hamiltonian can render a large
difference in the final BDEs, with contributions that can be as large as -3.91 kcal·mol−1, as for LuS.
Even though the molecule has small spin-orbit coupling, the individual atoms account for this large
contribution The choice of the method for geometry optimization [PW91-DKH3, CCSD(T)-DKH3,
and CCSD(T)/ECP] has very little impact on the energy, each resulting in a BDE for LuS within
∼0.01 kcal·mol−1 from experiment (Table 5.3).
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Table 5.3: f -ccCA dissociation energy for each geometry optimization method and
corresponding experimental data in kcal·mol−1.

Molecules PW91-DKH3 CCSD(T)/ECP CCSD(T)-DKH3 Exp. D0 195 Exp. D0

Category I
PrS 118.69 118.59 118.57 120.61 112 ± 6a

PrSe 102.35 102.29 102.24 103.68 —
SmS 92.70 92.63 92.65 92.52 —
SmSe 78.66 81.41 81.38 80.62 —
GdS 121.06 121.04 120.95 121.80 124 ± 6a

125 ± 4b

GdSe 105.77 105.74 105.63 106.20 102 ± 5a

103 ± 4c

LuS 119.69 119.62 119.62 119.70 120 ± 6a

120 ± 4b

LuSe 106.51 106.51 106.39 106.10 99 ± 6a

100 ± 4c

Category II
NdS 116.73 116.53 116.50 111.15 120 ± 6a

112 ± 4b

NdSe 99.21 99.28 99.35 94.53 91 ± 6a

91 ± 4c

EuS 92.35 92.43 92.42 87.90 86 ± 6a

86 ± 4b

EuSe 82.34 82.4 82.32 76.50 66 ± 6a

72 ± 4c

Category III
TbS 132.13 — 132.87 122.00 —
TbSe 92.02 — 92.47 106.10 —
ErS 89.01 — 89.94 98.20 99 ± 4b

ErSe -100.29 — -100.92 82.70 —
a Reference.176
b Reference.189
c Reference.190
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Figure 5.1: f -ccCA BDE divided in three categories based on their difference from experimenta, 195:
Cat I (±2 kcal·mol−1), Cat II (±6 kcal·mol−1), and Cat III (more than 6 kcal·mol−1).
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Table 5.4: Total atomization terms and dissociation energy obtained with f -ccCA using CCSD(T)-
DKH3 geometries, along with all electron basis sets. Theoretical and experimental dissociation
energies are in kcal·mol−1.

JMP2CBS JHFCBS JCV JCC JSO f -ccCA D0 Exp. D0 195 Exp. D0

Category I
PrS 44.69 69.70 1.65 6.48 -2.66 118.57 120.61 112 ± 6a

PrSe 39.44 56.99 2.66 8.83 -4.82 102.24 103.68 -
SmS 50.36 47.06 -0.64 -4.75 1.17 92.65 92.52 -
SmSe 43.52 41.31 0.62 -2.39 -1.32 81.38 80.62 -
GdS 48.71 79.69 0.61 -4.33 -3.08 120.95 121.80 124 ± 6a

125 ± 4b

GdSe 43.53 68.33 1.49 -2.06 -5.22 105.63 106.20 102 ± 5a

103 ± 4c

LuS 37.74 88.45 1.22 -3.22 -3.91 119.62 119.70 120 ± 6a

120 ± 4b

LuSe 36.45 77.54 0.63 -1.69 -6.12 106.39 106.10 99 ± 6a

100 ± 4c

Category II
NdS 29.26 88.39 1.77 -1.47 -0.22 116.50 111.15 120 ± 6a

112 ± 4b

NdSe 24.10 76.28 2.83 0.72 -3.84 99.35 94.53 91 ± 6a

91 ± 4c

EuS 49.58 43.52 0.36 -4.95 4.44 92.42 87.90 86 ± 6a

86 ± 4b

EuSe 42.89 38.19 1.38 -2.54 2.77 82.32 76.50 66 ± 6a

72 ± 4c

Category III
TbS -29.85 155.87 -0.63 8.78 -0.71 132.87 122.00 -
TbSe -35.14 144.32 -24.54 11.07 -2.86 92.47 106.10 -
ErS -67.29 130.88 -0.92 27.66 0.17 89.94 98.20 99 ± 4b

ErSe -183.70 9.72 32.65 41.80 -1.06 -100.92 82.70 -
a Reference.176
b Reference.189
c Reference.190

For NdS (5I) (Cat II), the BDE is ∼5 kcal·mol−1 from experiment when different optimized
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geometries are considered (shown in Tables 5.4, C.1, and C.2). When investigating the ground
state of the neodymium atom (Nd), the electronic structure is more complex, which is a hurdle
while treating these molecules with single reference methods. The neodymium ground state is a
5I, resulting in 13 ways of constructing the ground state.234 However, at the Hartree-Fock level,
all electronic configurations are not all balanced in the same way; they are not all degenerate. For
neodymium, the lowest energy at Hartree-Fock was obtained by placing two unpaired electrons in
the same symmetry, and the other two in two different symmetries. In addition, in Table 5.7, for
NdS, there are four equally important CI coefficients (0.50), resulting in a complex ground state. In
Table C.4, the D1 value is 0.10 and the |T1max | for this complex is 0.13, which is one of the highest
among the studied complexes. The reference value for D1 and |T1max | for transition metals is 0.15
and 0.05, respectively.235 The multireference ground state of NdS, i.e., for large CI contributions
(see Table 5.7), along with a bad set of guess orbitals for the complex led to predictions that are ∼5
kcal·mol−1 from experiment.

For EuS (8O ) (Cat II), the spin-orbit contribution from the ground state of the complex is large
[4.44 kcal·mol−1 at the CCSD(T)-DKH3 geometry], although, for europium and sulfur atoms, the
spin-orbit splitting is zero and close to zero, respectively. The largest CI coefficient for EuS is 0.99
(Table 5.7), and its ground state is a 8O ; here, a difference of 5 kcal·mol−1 from experiment in the
BDE was obtained. At the CAS/MRCI level, a 4 5 6 6B1 electronic configuration is predicted (see
Table 5.7); while at RHF/UCCSD(T), a 4 5 7 6B0 configuration is obtained. Single reference methods
cannot predict the correct configuration for the ground state, which leads to a larger difference
when compared to experiment. Similarly, for SmS, CASSCF predicts a ground state that has one
electron in the 6s orbital (4 5 5 6B1), rather than in a 4 5 6 configuration. In addition, at HF/CCSD(T),
the ground state converges to a 4 5 6 electronic configuration. However, for SmS, the impact of the
electron configuration in the final predicted BDE was small when compared to experiment.

The last two molecules TbS (8Q) and ErS (5J), which are part of Cat III, are the most problematic
complexes to treat with single reference methodologies. TbS primarily has one large contribution
to the ground state, but the Tb (6H) atom is quite multireference in nature. ErS has five main CI
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contributions to the ground state (see Table 5.7), which make it quite complex to address using
single reference methods. In addition, in Table C.4, these two complexes have two of the largest
|T1max | amplitudes, which can generate issues for Hartree-Fock initial orbital guesses resulting
from multireference character. For TbS and ErS, the JMP2CBS term is negative [30.65 and 68.77
kcal·mol−1 for PW91-DKH3 and 29.85 and 67.29 kcal·mol−1 for CCSD(T)-DKH3, respectively],
which means that according to MP2, the molecular complexes do not form, i.e., the atoms are
more stable than the complexes. The coupled cluster correction, along with HF/CBS extrapolation
make up for the negative MP2 energetics, and the final f -ccCA values are ∼10 and 9 kcal·mol−1

from experimental energies for TbS and ErS, respectively. Since the f -ccCA procedure is not very
accurate for these complexes likely due to their multireference nature, other approaches to predict
bond dissociation energies were taken.

In Table 5.5, the CCSD(T)/CBS energies obtained at the CCSD(T)-DKH3 and PW91-DKH3 ge-
ometries are provided. For TbS, UCCSD(T)/CBS resulted in BDEs that are further from experiment
than the f -ccCA BDEs. For example, UCCSD(T)/CBS using CCSD(T)-DK3 geometry renders a
BDE of 137.0 kcal·mol−1, f -ccCA with the same geometry renders a BDE of 132.87 kcal·mol−1,
and the experimental BDE is 122.0 kcal·mol−1. However, for ErS, the BDE was ∼6 kcal·mol−1 from
experiment. Since Hartree-Fock provides a poor initial guess for these complexes, DFT orbitals
were considered for CCSD(T), probing their effect on dissociation energy predictions. For TbS,
DFT orbitals are a better guess for the complex; however, they are not for ErS. Our best estimate
for TbS is 4 kcal·mol−1 from experiment using PW91 orbitals, but for ErS, CCSD(T) using RHF
orbitals provides the most accurate result [92.5 kcal·mol−1 obtained using UCCSD(T)/CBS vs 98.2
kcal·mol−1 from experiment].
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Table 5.5: Dissociation energies at CBS in kcal·mol−1, with CCSD(T),
paired with double-, triple-, and quadruple-Z basis sets and two different
geometries.

Geometry CBSa CBSa Exp.195 Exp.193

TbS CCSD(T)-DKH3 137.0 126.8 122.0 —
PW91-DKH3 136.6 126.4

TbSe CCSD(T)-DKH3 124.7 110.7 106.1 —
PW91-DKH3 124.6 110.6

ErS CCSD(T)-DKH3 92.5 81.7 98.2 99 ± 4
PW91-DKH3 91.5 80.7

ErSe CCSD(T)-DKH3 -125.8 -2.2 82.7 —
PW91-DKH3 -129.8 no convergence

a Using restricted Hartree-Fock as an initial guess for the orbitals.
b Using restricted PW91 as an initial guess for the orbitals.

The lanthanide selenides also proved to be challenging for single reference wavefunction-based
methodologies. As seen for the sulfide complexes, the Cat I molecules PrSe (4H), SmSe (7J),
GdSe (9O+), and LuSe (2O+) resulted in bond dissociation energies within 1-2 kcal·mol−1 when
compared to the experimental values determined by Sorensen et. al.195 Furthermore, PrSe has the
largest |T2max | in Table C.4, which is within the threshold of multireference complexes (|T2max | >

0.15).235 However, the predicted dissociation energies are still accurate compared to experiment
when calculated using single reference methodologies. In Tables 5.4 and C.1, the BDEs for PrSe
obtained using the PW91-DKH3 and CCSD(T)/DKH3 geometries and the f -ccCA composite method
are 102.35 and 102.24 kcal·mol−1 , respectively, compared to the experimentally determined BDE
of 103.68 kcal·mol−1. Regarding the other complexes of Cat I, GdSe and LuSe are indicated to be
of a single reference character based upon the diagnostics in Table C.4. In addition, they only have
one main CI coefficient (see Table 5.7), so are expected to perform better with single reference
methodologies.

NdSe (Cat II), which has a 5I ground state and has the same four CI coefficients as NdS, has
a ground state with significant multireference character. It also has a large |T1max | value of 0.13
and D1 of 0.10 (Table C.4). Due to the complexity of the electronic structure of this complex and
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the mixing of states, the spin-orbit contribution of this complex is quite large [3.84 kcal·mol−1 at
the CCSD(T)-DKH3 geometry]. The dissociation energies determined at each of the optimized
geometries, are ∼5 kcal·mol−1 from experiment.195 For EuSe (8O ) (Cat II), similar observations to
those made for EuS are made for the BDE and spin-orbit contribution: the BDE is ∼6 kcal·mol−1

from experiment, with a large spin-orbit contribution of 2.77 kcal·mol−1. Its ground state also
converges to a 4 5 7 configuration as was seen for EuS, while at the CAS/MRCI level, a 4 5 6 6B1

electronic configuration is observed. For SmSe, the 4 5 5 6B1 configuration is also more stable with a
multireference wavefunction (CASSCF) than a 4 5 6 configuration.

Table 5.6: Erbium selenide dissociation energies (kcal·mol−1)
using CCSD(T)-DKH3 geometries, paired with double-, triple-,
and quadruple-Z basis sets, considering four families of DFT
functionals, ZPVE (CCSD(T)-DKH3 geometry), and spin-orbit
corrected.

DFT functional Double-Z Triple-Z Quadruple-Z Exp.195

TPSS 245.3 252.5 193.3 82.7
B3LYP 86.3 92.0 70.8
M06-L 134.5 126.4 81.0
PW91 234.0 217.2 209.2

Focusing on the Cat III compounds, TbSe and ErSe, the same observations made for TbS and ErS
are again seen here. The JMP2CBS term is negative for both complexes. For ErSe, values of 181.13
and 183.70 kcal·mol−1 are obtained for the PW91-DKH3 and CCSD(T)-DKH3 optimized structures,
respectively. For TbSe, a less negative term is observed [∼35 kcal·mol−1 for both PW91-DKH3 and
CCSD(T)-DKH3], but according to MP2, the atoms are more stable than the complex. For ErSe,
not only does MP2 fail for this complex, but in contrast to what happens for the sulfides, this large
difference is not corrected by the CCSD(T) calculation (correlation term) with the composite, so
large negative values for the dissociation energy are obtained at f -ccCA level. For TbSe, JHFCBS

and JCC terms show that the complex forms, but it is due to error cancellations. On the contrary to
their sulfide counterpart, for ErSe, the JHFCBS and JCC terms are not enough to compensate for
the huge negative JMP2CBS term, leading to the negative dissociation energies, which means at
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f -ccCA level, ErSe does not form. The largest |T1max | and D1 for this complex are 0.25 and 0.18,
which correspond to the largest values for these diagnostics found in the appendix (Table C.4). In
Table 5.5, CCSD(T)/CBS energies are given. The dissociation energy predictions [obtained using
the PW91-DKH3 and CCSD(T)-DHK3 geometries] for TbSe and ErSe are quite far away from
experiment and, for ErSe, the complex does not form according to CCSD(T)/CBS. It is clear from
this Table how poor the restricted Hartree-Fock guess orbitals are for these complexes. In Table
5.5, for TbSe and ErSe, DFT orbitals are also used as guesses for CCSD(T). For TbSe, these sets of
orbitals prove to be of value and are better guesses for CCSD(T), which put the dissociation energy
extrapolated at CCSD(T)/CBS at 4 kcal·mol−1 from experiment. However, for ErSe, even with DFT
orbitals, the dissociation energy is still negative. The use of a multireference wavefunction could
help in determining the bond dissociation energy. The ground state of Er is a 3H, which leads to a
large number of states generated and can complicate the determination of the complete dissociation
channel [Er(3H) + S(3P)]. In addition, even MRCI+Q is not a size extensive method, which carries
an additional layer of complexity to these calculations. Since ErSe is such a difficult complex from
an electronic structure perspective, DFT was probed and different functionals were considered for
calculating dissociation energies for ErSe. DFT offers a computationally less costly theoretical
approach than ab initio correlated methods that can lead to an easy comparison to experimental
values. In Table 5.6, four families of DFT were considered using one representing functional from
each family and three different levels of basis sets. The meta-GGA functional, M06-L, obtained
the closest results to experiment at a quadruple-Z level. However, fortuitous error cancellation is
the most likely cause for these predictions because, when comparing double- and triple-Z results, a
consistent trend is not present. TPSS and PW91 completely fail predicting the dissociation energies.
Finally, for the hybrid functional, B3LYP, there is a sudden drop in dissociation energy from the
triple-Z to quadruple-Z levels. As demonstrated in Ref.96, the performance of different density
functionals for lanthanide containing species can be erratic at best, and this can be magnified with
increasing or decreasing basis set size.189
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Table 5.7: CI vectors from CASSCF calculations for the equilibrium bond lengths of sulfide and selenide complexes. 0, U, 2, and
"—" correspond to orbital occupations: zero, one (U-spin), two (doubly occupied), and not included in the active space electrons,
respectively.

Molecules Coeff. 4 5HI2 4 5GHI 4 5H (3G2−H2 ) 4 5GI2 4 5I (G2−H2 ) 4 5G (G2−3H2 ) 4 5I3 6B na ?G na ?H na ?I 53IH 53GH 53HG 53G2−H2 532
I

PrS (4H) 0.71 0 0 0 0 U U 0 U 2 2 2 — — — — —
-0.71 0 U U 0 0 0 0 U 2 2 2 — — — — —

NdS (5I) 0.50 U U U 0 0 0 0 U 2 2 2 — — — — —
-0.50 0 U 0 U 0 U 0 U 2 2 2 — — — — —
0.50 0 0 0 U U U 0 U 2 2 2 — — — — —
-0.50 0 0 U U U 0 0 U 2 2 2 — — — — —

SmS (7J) 0.87 0 U U 0 U U U U 2 2 2 — — — — —
0.49 U 0 U U 0 U U U 2 2 2 — — — — —

GdS (9O −) 0.99 U U U U U U U U 2 2 2 0 0 0 0 0
EuS (8O −) 0.99 U U U U U U 0 U 2 2 2 — — — —
TbS (8Q) 1.00 U U U U 2 U U U 2 2 2 — — — — —
ErS (5J) 0.55 2 2 2 U 2 U U U 2 2 2 — — — — —

-0.34 U 2 2 2 U U 2 U 2 2 2 — — — — —
-0.34 U 2 U U 2 2 2 U 2 2 2 — — — — —
-0.32 2 U 2 2 U U 2 U 2 2 2 — — — — —
0.32 2 U U U 2 2 2 U 2 2 2 — — — — —
-0.32 2 2 2 U U 2 U U 2 2 2 — — — — —
0.32 2 2 U 2 2 U U U 2 2 2 — — — — —

LuS (2O +) -0.96 2 2 2 2 2 2 2 U 2 2 2 0 0 0 0 0
a Correspond to 3? for sulfur and 4? for selenium.
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Table 5.7: Table (continued)
Molecules Coeff. 4 5HI2 4 5GHI 4 5H (3G2−H2 ) 4 5GI2 4 5I (G2−H2 ) 4 5G (G2−3H2 ) 4 5I3 6B na ?G na ?H na ?I 53IH 53GH 53HG 53G2−H2 532

I

PrSe (4H) 0.71 0 0 U 0 U 0 0 U 2 2 2 — — — — —
0.71 0 0 0 0 U U 0 U 2 2 2 — — — — —

NdSe (5I) 0.50 U U U 0 0 0 0 U 2 2 2 — — — — —
-0.50 0 U 0 U 0 U 0 U 2 2 2 — — — — —
0.50 0 0 U U U 0 0 U 2 2 2 — — — — —
-0.50 U 0 0 0 U U 0 U 2 2 2 — — — — —

SmSe (7J) 0.86 0 U U 0 U U U U 2 2 2 — — — — —
0.50 U 0 U U 0 U U U 2 2 2 — — — — —

EuSe (8O −) 0.99 U U U U U U 0 U 2 2 2 — — — — —
GdSe (9O −) 1.00 U U U U U U U U 2 2 2 0 0 0 0 0
TbSe (8Q) 1.00 U U U U 2 U U U 2 2 2 — — — — —
ErSe (5J) 0.55 2 2 2 U 2 U U U 2 2 2 — — — — —

-0.34 U 2 2 2 U U 2 U 2 2 2 — — — — —
-0.34 U 2 U U 2 2 2 U 2 2 2 — — — — —
-0.32 2 U 2 2 U U 2 U 2 2 2 — — — — —
0.32 2 U U U 2 2 2 U 2 2 2 — — — — —
-0.32 2 2 2 U U 2 U U 2 2 2 — — — — —
0.32 2 2 U 2 2 U U U 2 2 2 — — — — —

LuSe (2O +) 0.94 2 2 2 2 2 2 2 U 2 2 2 0 0 0 0 0
a Correspond to 3? for sulfur and 4? for selenium.
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Table 5.8: Multireference considerations for lanthanide sulfides
and selenides using CCSD(T)-DKH3 geometries. T1 and D1 are
common diagnostics, |T1max | and |T2max | are the absolute values
of the largest amplitudes, and S2 is the spin contamination.

T1 D1 |T1max | |T2max | Spin contamination (S2)
PrS 0.03 0.11 0.12 0.2 0.004
NdS 0.03 0.10 0.13 0.11 0.003
SmS 0.03 0.09 0.07 — 0.010
EuS 0.03 0.03 0.08 — 0.003
GdS 0.03 0.10 0.12 — 0.030
TbS 0.03 0.10 0.13 — 0.007
ErS 0.03 0.10 0.13 0.06 0.002
LuS 0.03 0.10 0.13 — 0.001
PrSe 0.04 0.11 0.13 0.2 0.005
NdSe 0.04 0.11 0.13 0.11 0.004
SmSe 0.03 0.10 0.08 — 0.010
EuSe 0.03 0.11 0.09 — 0.003
GdSe 0.03 0.10 0.13 — 0.050
TbSe 0.03 0.10 0.13 — 0.009
ErSe 0.05 0.18 0.25 0.1 0.009
LuSe 0.03 0.11 0.15 — 0.001

5.4 Conclusion
In this work, bond dissociation energy predictions of lanthanide sulfides and selenides were

investigated. Three different methods were considered for geometry optimizations. While DFT
offers a fast solution for geometry optimizations, CCSD(T) is a more reliable methodology for
lanthanide sulfide and selenide diatomics. Between one- and two-component Hamiltonian CCSD(T)
calculations, the difference in the optimized geometry was small. A one component Hamiltonian
with the ECP basis set offers a balance between speed and reliability that can be used in the future.

f -ccCA is shown here to be a reliable composite scheme. For bond dissociation energy predic-
tions, eight (Pr, Sm, Gd, and Lu complexed with S and Se) of the complexes had energies within
2 kcal·mol−1 from the experimental BDEs. It does have some limitations for molecules with a
significant multireference character. However, herein some different routes are offered, which can
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be helpful in addressing these limitations. A Breit-Pauli Hamiltonian for spin-orbit calculations
proved to be paramount to analyze ground state contributions, orbital occupations, identify state
symmetries, and predict accurate spin-orbit contributions while having a mixture of ground and
several excited states. Multireference diagnostics aid in identifying problematic molecules and help
explain differences from experimental values. Four complexes (EuS, NdS, EuSe, and NdSe) had
BDEs within 6 kcal·mol−1 from experiment. Some of these complexes have a large multireference
character or different RHF/CCSD(T) electronic configurations for the ground state when compared
to those arising from CAS/MRCI, which led to deviations from experiment. For TbS and TbSe,
DFT (PW91) provided better quality orbitals than CCSD(T) for the description of their ground
state. The degree of multireference character observed for ErS and ErSe was not easily overcome
with single reference methods. The use of DFT orbitals in CCSD(T) was not a suitable route for
these complexes and even considering different functionals for energy dissociation predictions led to
fortuitous results. However, M06-L at a quadruple-Z level is only 1.7 kcal·mol−1 from experiment;
for ErSe, this result should be treated with caution based on the inconsistent behavior of DFT for
the dissociation energies of transition metal and lanthanide containing molecules,96 as well as the
significant and inconsistent shifts in energy with respect to increasing basis set level.

The complexity of these calculations is tremendous, and the aim of this project was to address
gaps in the literature in terms of the lanthanide chemistry of sulfides and selenides. For EuS, SmS,
EuSe, and SmSe at CAS/MRCI, a new 4 5 G 6B1 (x = number of electrons) electronic configuration
of the lanthanide was postulated for the ground state of these complexes. Overall, this study offers
routes that are important in calculating accurate bond dissociation energies for small lanthanide
species without significant multireference wavefunction character, though great care is needed to
properly describe the correct ground states.
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CHAPTER 6

THERMOCHEMISTRY OF PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Timothé Melin lead the project with Betoul Ali and Preston Harell (two undergraduates) running
part of the calculations. The article was written by Timothé Melin and Narasimhan Loganathan
aided with discussions and revisions.

6.1 Introduction
Per- and polyfluoroalkyl substances (PFAS) represent a diverse family of >5,000 anthropogenic

organic molecules which are now widely distributed in various natural settings. The unique hydropho-
bic and lipophobic properties of PFAS have resulted in their use in many industrial, commercial,
and domestic products for more than five decades. Consequently, PFAS are broadly used in common
applications including fire-fighting foams, non-stick cookware, paints, cosmetics, carpeting, food
wrappers, and attire (leather boots and rain repellent jackets). The extreme persistence of PFAS to
degradation (thermal, biological and chemical) originates from the strong carbon-fluorine (C – F)
bonds. This persistence can lead to PFAS bioaccumulation, and has been linked to a broad range
of detrimental effects on humans, animals, and environmental health.236–239 The adverse effects
include but are not limited to carcinogenesis, developmental and reproductive disorders, and im-
munotoxicity.237,240 In 2020, the U.S. Environmental Protection Agency (EPA) placed limitations
on manufacturing, processing, or importing products containing a number of long-chain PFAS due
to the persistence of PFAS in the environment and health effects.

There are numerous ongoing studies across the globe to better understand the linkages and extent
of toxicity of PFAS compounds on humans, animals, and the environment.241 For example, in recent
work, we have illustrated the binding characteristics of a series of prevalent short- and long-chain
PFAS with the human pregnane X receptor (hPXR) and with the peroxisome proliferator receptor
gamma (PPARW) receptor using molecular dynamics simulations.237,242

In considering PFAS in the environment, the majority of studies have been focused upon PFAS
in the aqueous/condensed phase. However, in 2011, Ahrens et. al.243 indicated that the atmosphere
can play a critical role in the long-range transport of PFAS molecules. In 2012, air sampling and
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chemical analysis studies by Del Vento et. al.244 identified the presence of PFAS molecules in the
atmosphere of the western Antarctic. Such volatile PFAS could explain their presence in remote
locations such as the Antarctic ice or lakes in remote parts of Canada. Importantly, recent studies
have shown that the inhalation of volatile PFAS from indoor environments amounts to substantial
intake of PFAS in humans.240 Furthermore, there is a high risk of direct exposure to volatile PFAS
at high concentrations in places where aqueous film-forming foams (AFFF) are utilized.245 Thus, it
is vital to have a comprehensive understanding of the stability of PFAS in the atmosphere.

The stability of PFAS and their precursor molecules strongly depends on their gas phase thermo-
chemical properties such as dissociation energies or enthalpies of formation. However, to the best of
our knowledge, only a small number of experimental and theoretical studies have examined the gas
phase properties of PFAS molecules.245–250 Furthermore, the experimental gas phase measurements
of PFAS are mostly limited to the identification of different PFAS molecules and their concentrations
in the atmosphere.245,246 They do not provide quantitative energetic information nor insight about
their stability in the gas phase. Similarly, most theoretical investigations on the gas phase properties
of PFAS focus on reporting the relative Gibbs free energy of formation for PFOA, PFOS, and
their isomers,247–249,251 or the enthalpy, entropy, and Gibbs free energies of perfluorinated sulfonic
acid.250 Importantly, there are very little, if any, experimental and theoretical gas-phase enthalpies
of formation for the list of PFAS molecules investigated in this study. Gaining such thermodynamic
insight for a broader range of short and long-chain PFAS and their precursor molecules is important
to understand the transport and stability of PFAS in the atmosphere.

In the current work, gas-phase enthalpies of formation for short- and long-chain PFAS molecules
are reported. While the goal of this effort is to predict the thermochemistry of PFAS species, as a
first step to this, determining which theoretical approaches are useful for PFAS is important. Here,
in the absence of experimental gas phase enthalpies of formation for PFAS, selected methodologies
will first be gauged for a series of linear alkanoic acids and linear perfluoroalkanes, with detailed
analysis. The experimental enthalpies of formation for alkanoic acids are well described, while for
perfluoroalkanes, experimental enthalpies are available for several species.68,252 Three different
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types of linear PFAS will then be considered – perfluorocarboxylic acids, perfluoroalkyl methanol,
and fluorotelomer carboxylic acids.

6.2 Methodology
To provide well-gauged predictions and an approach that will be viable for a broader range

of PFAS species, the predictions have been made using a number of computational chemistry
approaches. While there are multiple routes that can be utilized to predict thermochemical properties
(i.e., enthalpy of formation), the two most widely used routes are the total atomization energy75 (TAE)
and the isogyric family of reactions (isogyric, homodesmotic, hyperhomodesmotic,) approaches.76

Importantly, the TAE approach provides a way to obtain enthalpies void of experiment, aside from
high precision atomic energies.64 Consequently, this approach is highly sensitive to computational
method, and requires an accurate description of the energies of both independent atoms and molecules,
which is typically disadvantageous to methods such as density functional theory (DFT) and lower-
level ab initio methods. In contrast, the isogyric reaction approaches are highly dependent on the
availability and quality of experimental enthalpies and are relatively less influenced by computational
method choice. A comparison of these thermochemical TAE and isogyric approaches has been
demonstrated in prior studies for organic molecules.55,76,93,253 Importantly, due to the lack of
experimental thermodynamic data for PFAS and their precursor molecules needed for an isogyric
approach, there will be a significant reliance upon a TAE, where the quality of the methodology
utilized is critical.

The computational methodologies considered in this effort include two density functionals, M06-
2X104 and B3LYP,15,16 and two ab initio methods, the domain-based local pair natural orbital coupled
cluster single, double and perturbative triple (DLPNO-CCSD(T)),254 and the correlation consistent
Composite Approach (ccCA).55 The DFT approaches are selected due to their computational
efficiency, which will be important in expanded studies of PFAS. B3LYP has been chosen because
it is the most widely used functional for the calculation of thermochemical properties of organic
molecule.17 The M06-2X functional developed with an empirical fitting is useful in the calculation
of the atomization properties of organic molecules and has been effective in predicting the pKas for
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PFAS.255,256

In terms of ab initio methods, DLPNO-CCSD(T) provides a more computationally cost-efficient
form of CCSD(T) which is important as CCSD(T), when paired with a large, well-chosen basis set,
can provide high-quality energetic data.254,257 The cost efficiency of DLPNO-CCSD(T) results from
factors including localization schemes, cutoffs for the two electron integrals, and the reduction of
the matrix element stored. The total energy and the computational cost of the molecules strongly
depends on the selected cutoffs. Another alternative is ccCA, a well-demonstrated ab initio composite
scheme which provides a route towards high-quality energetic data, akin to CCSD(T) results at or
near the complete basis set (CBS) limit – the limit at which no further improvement to the basis
set quality will improve the energetic predictions.258,259 The ccCA method is described in section
2.9. The enthalpy at 298K is calculated using a pressure of 1 bar and the ideal-gas, rigid-rotor and
harmonic oscillator approximation.
Methodological details

The gas phase enthalpy of formation of alkanoic acids, perfluoroalkanes, and a series of PFAS
molecules have been predicted at 298 K using the TAE and several isogyric reaction approaches.
The isogyric reaction is defined as a reaction in which the same number of paired electrons are
present on both sides of the equation. Moreover, the term homodesmotic refers to a reaction in which
there are an equal number of carbon-carbon bond types and an equal number of B?, B?2 and B?3

carbons bonded to zero, one, two or three hydrogens on both sides of the reaction. For the alkanoic
acid, the homodesmotic scheme of the isogyric family of reaction has been used,64

C=H2=O2 + (n-2) CH3OH CH3COOH + (n-2) CH3CH2OH

Concomitantly, two different isogyric reactions have been selected for use in this study where the
number of unpaired electrons is equal on both sides and are as follows:

C=F2=−1HO2 + (n-1) F2 (n-1) CF4 + CO2 + HF (ISO1)

C=F2=−1HO2 + (n-2) F2 (n-2) CF4 + CO2 + CF3H (ISO2)
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where n represents the number of carbons. While only one of the isogyric reactions is needed, CO2,
HF/CF3H and F2 are known byproducts in PFAS degradation. Thus, the two reactions are used
to provide insight about the reliability of DFT, ccCA and DLPNO-CCSD(T) for the study of the
thermochemical properties of PFAS and PFAS byproducts.260,261 These two reactions have been
chosen for the isogyric approach as the experimental enthalpies of formation for F2, CF4, CO2, HF
and CF3H molecules are accurately known and are given in the appendix (see Table D.2).262 To
calculate the energy of the molecules and atoms, the B3LYP and M06-2X density functionals, ccCA
and the DLPNO-CCSD(T) have been used. For the DLPNO-CCSD(T) calculations, the aug-cc-pVnZ
(n = D, T, Q) basis set were used for each of the atoms, while for DFT only the aug-cc-pVTZ basis
set were used, as convergence of structural and energetic properties of main group species is typically
reached at the triple-zeta level in DFT calculations.

The TightPNO settings in ORCA were used for DLPNO-CCSD(T), with the following threshold:
TCutPairs = 10−5 Hartree, TCutPNO = 10−7 and TCutMKN = 10−4, corresponding to the cutoffs of
the occupation number (TCutPNO) , the orbital Mulliken populations (TCutMKN) and to the differen-
tial overlap (TCutPairs), respectively. The TightPNO settings were chosen based on a study done
by Patel et. al.263 where DLPNO was used to calculate the enthalpy of formation of alkane. For
DLPNO-CCSD(T), energies were extrapolated to the CBS limit using a three-point mixed gaus-
sian/exponential scheme.60 (Further details about DLPNO methods can be found in Minenkov et

al. and Patel et al.).253,263 Finally, for the ccCA and DLPNO-CBS determinations for the largest
molecules, the enthalpies of formation were extrapolated based on the trends observed for each
method. (An example of the procedure used is provided in the appendix D for alkanoic acids).

The optimized geometry for each molecule was determined using the B3LYP functional in
combination with the 6-31G basis set to provide quick structure determination, followed by a
frequency calculation using the same method and basis set to ensure that the geometry represents
the minima on the potential energy curve. The optimized ground state geometries of all molecules
examined correspond to a helical structure. The ground state structure of PFOA was consistent
with earlier studies of PFOA by Liu et. al.264 The 6-31G basis set has been used in numerous
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studies to obtain structures for small organic molecules49,55,265 and larger molecules.266 Moreover,
because of the low computational cost, B3LYP/6-31G provides a useful choice for large alkanoic,
perfluoroalkanes and PFAS molecules.

The DFT and ccCA calculations were performed using NWChem 6.1,267 and MOLPRO 2020,147

respectively, and the DLPNO-CCSD(T) were carried out using ORCA 4.2.1.268

Importantly, three groups of molecules were considered in this study as shown in Table 6.1: (1)
alkanoic acids, (2) perfluoroalkanes, and (3) three varieties of linear PFAS, which are referred to
herein as PFAS, PFAS-ol, and FTCA.

Table 6.1: List of molecules used in this study.

Name Chemical formula Carbon chain length
Alkanoic acid H3C – (H2C)n – COOH n = 0 - 6

Perfluoroalkanes C2F2n+2 n = 2 - 8
Perfluoroalkanoic acid (PFAS) F3C – (F2C)n – COOH n = 0 - 6

Perfluoroalkyl methanol (PFAS-ol) F3C – (F2C)n – 1 – CH2 – OH n = 1 - 7
Fluorotelomer carboxylic acid (FTCA) F3C – (F2C)n – 1 – CH2 – COOH n = 1 - 7

While quality experiments are the ideal gauge for theoretical predictions, in the absence of these,
an alternative approach is needed. Though more sophisticated theoretical approaches are preferred
and are being examined here, an estimate – the empirical Joback approach,269 is considered here
simply to provide a very quick qualitative comparison for other methods. The Joback method is based
on a group contribution scheme – a scheme that presumes that the thermodynamic contributions
from a specific structural component (i.e., –– CH2, – CO2H, – F, – N –– ) of a molecule is the same
from molecule to molecule. In the Joback approach, the contributions to thermodynamic property
(in this case, enthalpy of formation) from each structural component, are combined additively and
are empirically parameterized to predict an overall enthalpy for formation for a molecule. (The
parameters for each chemical entity are reported in Joback and Reid). Consequently, this method
provides a quick very approximate estimate for the enthalpies of formation for PFAS as experimental
data is limited. To demonstrate its possible utility for comparable qualitative information, the Joback
method is utilized on the alkanoic acids first, and subsequently applied to perfluoroalkanes. Finally,
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in the appendix (see Table D.3), the relative timings of the B3LYP, M06-2X, ccCA and DLPNO-
CCSD(T) calculations are given for C3H6O2, C3F8, and C3F5HO2, providing a representative,
molecule of similar size from each class of compounds for comparison.

6.3 Results and discussion

Alkanoic acids

The J�298 K
5

s of the alkanoic acids calculated using the total atomization approach are presented
along with their corresponding experimental values in Table 6.2 and Figure D.1. The computed
ccCA enthalpies for the acids are in excellent agreement with experimental values from NIST
database.68 The differences between experimental and computed J�298 K

5
are less than 1 kcal·mol−1

until pentanoic acids, and ∼3 kcal·mol−1 for the hexanoic acid. For the heptanoic and octanoic acid,
the estimation is also in good agreement with experiment with a difference error of ∼3 kcal·mol−1.
Overall, this level of agreement (within 1 kcal·mol−1 from those of experiment, on average) between
ccCA and experiment for the prediction of enthalpies of formation has been previously demonstrated
for organic molecules (from diatomics to n-octane).55,57

111



Table 6.2: Enthalpies of formation (kcal·mol−1) for alkanoic acids determined with an atomization
approach.

B3LYP M06-2X ccCA DLPNO-CCSD(T) Joback Expb
adza atz a aqza CBSa

C2H4O2 -92.49 -97.13 -102.04 -43.19 -78.68 -89.92 -98.9 -103.94 -103.49
± 0.72

C3H6O2 -95.13 -103.16 -108.17 -31.9 -79.33 -93.19 -104 -108.87 -108.58
± 0.47

C4H8O2 -98.00 -106.73 -113.98 -22.52 -80.38 -96.5 -109.2 -113.89 -112.80
± 0.96

C5H10O2 -98.47 -110.92 -118.40 -7.21 -78.55 -97.69 -112.4 -118.74 -117.20
± 4.78

C6H12O2 -101.94 -117.28 -125.40 3.32 -79.96 -101.75 -118.4 -123.67 -122.70
± 0.96

C7H14O2 -103.00 -120.02 -131.24 16.17 -79.03 -103.45 -122.1 -128.60 -127.70
± 0.92 c ± 0.41

C8H16O2 -110.11 -130.36 -137.08 23.17 -83.96 -111.1 -131.7 -133.38 -132.70
± 0.92 c ± 0.31

a DLPNO-CCSD(T).anz represent a DLPNO-CCSD(T) calculation with the corresponding aug-cc-pVnZ basis
set, while DLPNO-CBS is the enthalpy obtained at the complete basis set limit.

b All experimental values are taken from the NIST database.68
c Extrapolated. The uncertainties were based on the root mean square deviation of the extrapolated enthalpies of

formation. The methodology used for extrapolation and uncertainties are provided in appendix D.

The DLPNO-CCSD(T).anz enthalpies for all of the molecules are far from experiment (Table 6.2)
and exhibit very slow convergence toward the complete basis set limit. At the CBS limit, the J�298 K

5
s

are overestimated (less negative) by ∼2 to ∼5 kcal·mol−1 as compared to experiment for all of the
carboxylic acids with the exception of octanoic acid. Similarly, both DFT functionals overestimate
J�298 K

5
, with B3LYP resulting in larger errors (∼11-22 kcal·mol−1) relative to experiment and

M06-2X being closer to experiment with an error of ∼2 -7 kcal·mol−1. The large differences
in the enthalpies for B3LYP and M06-2X were also observed in earlier DFT studies where the
thermochemical properties of hydrocarbons are better predicted with M06-2X than B3LYP due to
its higher exact exchange energy (54% for M06-2X and 20% for B3LYP).255,270

Interestingly, the J�298 K
5

s calculated with the empirical Joback method are in very good agree-
ment with the experimental data obtained from the NIST database68 with an error of less than 1
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kcal·mol−1 for all alkanoic molecules. Such low errors could be attributed to the very low interactions
between different – CH2 – groups (the electron of hydrogen is mostly involved in the bonding) for
the alkanoic molecules.

Importantly, the consistency in the prediction of J�298 K
5

of a method is determined by comparing
the variation in the enthalpies as the alkanoic molecules are increased in size (number of CH2). It
should be noted that the difference in experimental J�298 K

5
values between any two consecutive

alkanoic molecules (number of CH2 increasing by one) (Table 6.2), is on average ∼4-5 kcal·mol−1.
Thus, if a method is capable of predicting similar enthalpy variation, then the results are likely to be
consistent over the molecule set. For example, the ccCA enthalpy variation between ethanoic and
propanoic acid is -6.1 kcal·mol−1 which is 1 kcal·mol−1 lower than the experimental variation (-5.1
kcal·mol−1). Therefore, the ccCA method is consistent in predicting J�298 K

5
when the reported

variation in enthalpies is similar between any two consecutive molecules.
Table 6.2 clearly shows that the enthalpy variation between any two consecutive alkanoic

molecules determined with ccCA is ∼4.5-6 kcal·mol−1 until pentanoic acid, which increases by
another ∼2 kcal·mol−1 between the pentanoic and hexanoic acid which could be attributed to the
underestimation of the enthalpy of formation for hexanoic acid by ∼3 kcal·mol−1 in comparison to
experiment. Nevertheless, this enthalpy variation between pentanoic and hexanoic acid with ccCA
is ∼1.5 kcal·mol−1 when compared to their corresponding experimental enthalpy variation. For
DLPNO-CBS, the enthalpy variation is in agreement with experiment for each molecule (difference
of less than 1 kcal·mol−1) with the exception of butanoic and octanoic acid for which the J�298 K

5

values are closer to experiment than for the other acids.
The J�298 K

5
values for alkanoic acid using a homodesmotic scheme are depicted in Table 6.3

and Figure D.2. It is evident that J�298 K
5

s computed using B3LYP and ccCA have the lowest error
compared to experiment, with an error in the range of 0.1-3.6 kcal·mol−1 and 0.6-2.4 kcal·mol−1,
respectively. Table 6.3 clearly illustrates that the computed J�298 K

5
values converge toward the

experimental enthalpies of formation. Both ccCA and DLPNO-CBS have similar errors as compared
to experiment: less than ∼3 kcal·mol−1 for every compound. In contrast to the TAE approach, the
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J�298 K
5

values from B3LYP are better correlated with experiments than M06-2X.
For instance, the J�298 K

5
for propanoic acid using B3LYP with TAE is 13 kcal·mol−1 larger

than experiment, whereas with the homodesmotic approach, this difference is substantially reduced
to less than 1 kcal·mol−1 from experiment. This shows the impact of the method error-cancellation
possible from the isogyric family of approaches, provided sufficient experimental data is available.

Finally, the enthalpy variation between any two consecutive molecules (the number of CH2
increased by one) for ccCA is ∼4-6 kcal·mol−1 until propanoic acid and is consistent with the
experimental range of∼5 kcal·mol−1. Similarly, the DLPNO-CBS variation is also in good agreement
with experiment (∼5 kcal·mol−1) except for C8H16O2 for which the error in J�298 K

5
with experiment

was much larger (∼9 kcal·mol−1) than for the smaller alkanoic acids. Overall, ccCA gave the best
results compared to all methods with a mean unsigned error of 1.33 and 0.94 kcal·mol−1 for the
TAE and homodesmotic approach, respectively. Note that the J�298 K

5
values reported in Tables

6.2 and 6.3 are the same for the Joback method, as the method is not impacted by thermochemical
reaction scheme.
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Table 6.3: Enthalpies of formation (kcal·mol−1) for alkanoic acids determined with a homodesmotic
approach.

B3LYP M06-2X ccCA DLPNO-CCSD(T) Joback Expb
adza atz a aqza CBSa

C2H4O2 -103.49 -103.49 -103.49 -103.49 -103.49 -103.49 -103.5 -103.94 -103.49
± 0.72

C3H6O2 -108.64 -110.24 -109.24 -109.59 -109.33 -109.23 -109.1 -108.87 -108.58
± 0.47

C4H8O2 -114.31 -114.71 -114.86 -117.8 -115.77 -115.21 -114.8 -113.89 -112.80
± 0.96

C5H10O2 -117.03 -119.45 -118.72 -119.71 -118.96 -118.68 -118.5 -118.74 -117.20
± 4.78

C6H12O2 -122.80 -126.30 -125.12 -126.35 -125.35 -125 -124.7 -123.67 -122.70
± 0.96

C7H14O2 -126.47 -129.86 -130.19 -131.00 -129.72 -129.27 -128.9 -128.60 -127.70
± 2.42c ± 0.41

C8H16O2 -136.31 -141.11 -135.26 -141.59 -140.05 -139.59 -139.2 -133.38 -132.70
± 2.42c ± 0.31

a DLPNO-CCSD(T).anz represent a DLPNO-CCSD(T) calculation with the corresponding aug-cc-pVnZ basis set,
while DLPNO-CBS is the enthalpy obtained at the complete basis set limit.

b All experimental values are taken from the NIST database.68
c Extrapolated. The uncertainties were based on the root mean square deviation of the extrapolated enthalpies of

formation. The methodology used for extrapolation and uncertainties are provided in appendix D.

Perfluoroalkanes

The performance of the considered methods in computing the J�298 K
5

of perfluoroalkanes using
TAE approach with respect to experimental values is reported in Table 6.4 and Figure D.3.

As shown in Table 6.4 and Figure D.3, the enthalpies computed with ccCA, M06-2X and
DLPNO-CBS methods are closer to experiment than those determined with the other methods.
Notably, the difference between experimental and computed J�298 K

5
values increase as the length

of the molecule increases for all methods. For instance, the J�298 K
5

values for C2F6 have an error
of 1 kcal·mol−1 with M06-2X and ccCA while for C4F10 the errors are ∼14 and ∼16 kcal·mol−1,
respectively. In addition, the J�298 K

5
values from M06-2X and ccCA methods are very close to one

another with a maximum difference of 4 kcal·mol−1 for C5F12, while the DLPNO-CBS enthalpies
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are slightly higher by an additional 2 to 3 kcal·mol−1.
The ccCA results for C2F6 are within 1 kcal·mol−1 of the experimental values reported by

Kolesov et. al.271 and the computational enthalpies of formation by Paulechka et. al.272 Similarly,
DLPNO-CBS result in an error of ∼0.5 kcal·mol−1 with experiment for C2F6.

For C3F8, the ccCA and M06-2X errors compared to experiment are ∼7 and ∼6 kcal·mol−1,
respectively.252 The J�298 K

5
values from these methods are in good agreement with those of

Burcat et. al.273 (calculated using experimental data and an empirical equation) with an error of
1 kcal·mol−1. In addition, the J�298 K

5
values reported using ccCA are closer to ones reported by

Ventura et. al. (isogyric approach) using B3PW91 and CBS-Q with an error of ∼5 and ∼2 kcal·mol−1,
respectively.274

Table 6.4: Enthalpies of formation (kcal·mol−1) for perfluoroalkanes determined with an atomiza-
tion approach.

B3LYP M06-2X ccCA DLPNO-CCSD(T) Joback Expb
adza atz a aqza CBSa

C2F6 -302.53 -321.57 -321.1 -255.03 -292.82 -308.1 -320.7 -305.63 -321.22
± 0.96b

C3F8 -392.15 -420.79 -419.35 -329.73 -380.84 -401.36 -418.3 -406.40 -426.55
± 1.40c

C4F10 -481.33 -519.94 -517.35 -404.68 -468.78 -494.4 -515.6 -507.17 -533.90d

C5F12 -570.58 -619.22 -615.6 -479.81 -557.08 -587.61 -612.8 -607.93 —

C6F14 -659.83 -718.49 -713.77 -555.28 -645.33 -680.92 -710.3 -708.70 —
± 0.11 e

C7F16 -749.12 -817.78 -811.93 -630.56 -733.53 — -807.7 -809.47 -809.13
± 0.11 e ± 0.1 e ± 0.86b

C8F18 -838.30 -917.02 -910.10 -706.00 -821.76 — -905.0 -910.24 —
± 0.11 e ± 0.1 e

a DLPNO-CCSD(T).anz represent a DLPNO-CCSD(T) calculation with the corresponding aug-cc-pVnZ basis
set, while DLPNO-CBS is the enthalpy obtained at the complete basis set limit.

b Ref.271
c Ref.252
d Ref.275
e Extrapolated. The uncertainties were based on the root mean square deviation of the extrapolated enthalpies of

formation. The methodology used for extrapolation and uncertainties are provided in appendix D.
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The J�298 K
5

values for C4F10 using ccCA and DLPNO-CBS are in reasonable agreement (error
of ∼2 kcal·mol−1) with the NIST recommended enthalpy of -515.2 kcal·mol−1 computed with
B88LYP methods as reported by Stewart et. al.275 In addition, the values of C4F10 with ccCA and
DLPNO-CBS are closer to the energy from Burcat et. al.273 (-510.85 kcal·mol−1) which is calculated
using experimental data and an empirical equation, with a difference of 6 kcal·mol−1. It is important
to note that although all predicted enthalpies of formation tend toward -515 ± 5 kcal·mol−1, the
J�298 K

5
values do not agree with the experimental value of ∼-533 kcal·mol−1. Based upon the

theoretical studies and NIST database utilizing the semiempirical computational data rather than
reporting the existing experimental values, it is important to reevaluate the experiment.

For C7F16, the extrapolated ccCA and DLPNO-CBS enthalpy of formation are in better agreement
with the experimental J�298 K

5
values with an error of ∼2 kcal·mol−1. On the other hand, the J�298 K

5

errors of M06-2X compared to experiment is ∼8 kcal·mol−1.
The empirical Joback approach results in large differences in J�298 K

5
values compared to

experiment (i.e., ∼13 kcal·mol−1 for C2F6, ∼20 kcal·mol−1 for C3F8, and ∼26 kcal·mol−1 for C4F10)
with the exception of C7F16 (∼1 kcal·mol−1). Such large errors from experiment demonstrate the
limitations of the Joback approach, likely attributed, in part, to the lack of interactions incorporated
in the model.

Importantly, the variation in J�298 K
5

values between any two consecutive molecules (with
each addition of CF2) using ccCA, M06-2X, DLPNO-CBS and Joback is ∼100 kcal·mol−1 with a
difference of 7 kcal·mol−1 with respect to experiments (see Table 6.3).

Based on the performance of ccCA, M06-2X and DLPNO-CBS methods in reproducing the
experimental enthalpies of formation for perfluoroalkanes and showing similar J�298 K

5
variation,

these methods will be used as the routes to predict enthalpies of formation in the following sections
on PFAS as there are no known experimental data for the PFAS molecules studied here. Furthermore,
the good agreement between experimental and computed J�298 K

5
of alkanoic acids using ccCA

(both TAE and isogyric approaches) clearly advocates the use of ccCA to gauge the accuracy of other
methods for PFAS in the following sections. Finally, although the B3LYP results for the alkanoic
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acids using the atomization approach are the furthest from experiment, B3LYP is in much better
agreement with experiment when an isogyric approach is used. Thus, the performance of B3LYP
will also be evaluated for PFAS molecules in order to assess its usefulness.
PFAS

The J�298 K
5

values for both short and long chain PFAS molecules using TAE are represented
in Table 6.5 and Figure D.4.

Table 6.5: Enthalpies of formation (kcal·mol−1) for PFAS determined with an atomization
approach.

B3LYP M06-2X ccCA DLPNO-CCSD(T) Jobackadza atz a aqza CBSa

C2F3HO2 -230.59 -244.80 -247.51 -177.01 -216.58 -232.49 -245.6 -246.64
C3F5HO2 -322.30 -345.69 -347.84 -253.68 -306.68 -327.79 -345.2 -347.41
C4F7HO2 -410.63 -443.33 -444.94 -327.52 -393.62 -419.81 -441.4 -448.18
C5F9HO2 -500.44 -544.97 -543.78 -403.25 -482.51 -513.82 -539.6 -548.94
C6F11HO2 -589.71 -642.99 -642.54 -478.66 -570.82 -607.11 -637 -649.71

± 1.32b

C7F13HO2 -679.39 -743.27 -741.29 -554.34 -659.44 -700.64 -734.6 -750.48
± 1.32b

C8F15HO2 -768.40 -837.77 -840.05 -629.43 -747.25 — -832.4 -851.25
± 1.32b ± 1.11b

a DLPNO-CCSD(T).anz represent a DLPNO-CCSD(T) calculation with the corresponding aug-cc-pVnZ
basis set, while DLPNO-CBS is the enthalpy obtained at the complete basis set limit.

b Extrapolated. The uncertainties were based on the root mean square deviation of the extrapolated
enthalpies of formation. The methodology used for extrapolation and uncertainties are provided in
appendix D.

For short chain PFAS molecules with C<6, the J�298 K
5

values of M06-2X and DLPNO-CBS
methods computed are very similar to those of ccCA, with a maximum difference of ∼4 kcal·mol−1.
In contrast, the J�298 K

5
values computed from DLPNO-CCSD(T) for all PFAS molecules varies

substantially with their corresponding ccCA values and this difference increases as the length of the
PFAS molecule increases. However, it is evident from Table 6.5 that the difference in J�298 K

5
values

with ccCA decreases significantly with increase in the size of the basis set for DLPNO-CCSD(T).
Nevertheless, despite the improvement in computing the J�298 K

5
values, there is a ∼15 kcal·mol−1
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difference in enthalpy even for the shortest molecule (C2F3HO2) with the quadruple-Z basis set in
comparison to ccCA. It is only at the CBS limit that the enthalpy differences with ccCA are only a
few kcal·mol−1 for each molecule.

For PFAS with C>6, the difference in J�298 K
5

values between M06-2X and DLPNO-CBS
increases with a difference of up to ∼9 kcal·mol−1 for PFHpA (C7F13HO2). When comparing
DFT methods, the J�298 K

5
s using B3LYP are significantly higher than M06-2X with a minimum

difference of ∼15 kcal·mol−1 and that increases with increase in the length of the PFAS molecules.
Surprisingly, the J�298 K

5
values of PFAS using Joback method are closer to ccCA, M06-2X and

DLPNO-CBS than for perfluoroalkanes despite the lack of interactions in the model. Importantly,
the enthalpy variation between any two consecutive short chain PFAS molecules is in the range of
∼98 to 101 kcal·mol−1 for ccCA.

Therefore, based on the good correlation between experimental and ccCA enthalpies for perfluo-
roalkanes, the ccCA energies for PFAS are recommended. The J�298 K

5
values of PFAS with two

isogyric reactions namely ISO1 (Table 6.6) and ISO2 (Table 6.7) are given in Figure D.5. Note, the
enthalpies reported in this section for Joback method are similar to Table 6.4 for the same reason
described earlier.
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Table 6.6: Enthalpies of formation (kcal·mol−1) for PFAS determined with an isogyric
approach (ISO1).

B3LYP M06-2X ccCA DLPNO-CCSD(T) Jobackadza atz a aqza CBSa

C2F3HO2 -247.87 -241.92 -246.6 -250.63 -248.42 -246.73 -245.2 -246.64
C3F5HO2 -348.51 -333.32 -347.64 -357.62 -350.94 -347.1 -343.8 -347.41
C4F7HO2 -447.04 -422.74 -446.73 -463.05 -451.57 -445.47 -440.3 -448.18
C5F9HO2 -546.41 -515.51 -546.92 -569.73 -553.52 -545.19 -538 -548.94
C6F11HO2 -645.18 -604.61 -647.03 -676.03 -654.81 -644.12 -635 -649.71

± 0.80 b

C7F13HO2 -744.39 -696.01 -747.14 -782.63 -756.46 -743.33 -732.2 -750.48
± 0.80 b

C8F15HO2 -842.91 -781.59 -847.25 -888.62 -857.27 — -829.6 -851.25
± 0.80 b ± 0.73 b

a DLPNO-CCSD(T).anz represent a DLPNO-CCSD(T) calculation with the corresponding aug-cc-pVnZ
basis set, while DLPNO-CBS is the enthalpy obtained at the complete basis set limit.

b Extrapolated. The uncertainties were based on the root mean square deviation of the extrapolated
enthalpies of formation. The methodology used for extrapolation and uncertainties are provided in
appendix D.
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Table 6.7: Enthalpies of formation (kcal·mol−1) for PFAS determined with an isogyric
approach (ISO2).

B3LYP M06-2X ccCA DLPNO-CCSD(T) Jobackadza atz a aqza CBSa

C2F3HO2 -241.45 -247.82 -244.75 -246.18 -245.14 -244.96 -244.8 -246.64
C3F5HO2 -342.08 -339.22 -345.79 -353.17 -347.66 -345.33 -343.4 -347.41
C4F7HO2 -440.61 -428.64 -444.89 -458.6 -448.29 -443.7 -439.9 -448.18
C5F9HO2 -539.99 -521.41 -545.08 -565.28 -550.24 -543.41 -537.7 -548.94
C6F11HO2 -638.75 -610.51 -643.83 -671.58 -651.53 -642.34 -634.6 -649.71

± 1.32 b

C7F13HO2 -737.96 -701.90 -742.59 -778.18 -753.18 -741.56 -731.8 -750.48
± 1.32 b

C8F15HO2 -836.48 -787.49 -841.35 -884.17 -853.99 — -829.6 -851.25
± 1.32 b ± 1.11 b

a DLPNO-CCSD(T).anz represent a DLPNO-CCSD(T) calculation with the corresponding aug-cc-pVnZ
basis set, while DLPNO-CBS is the enthalpy obtained at the complete basis set limit.

b Extrapolated. The uncertainties were based on the root mean square deviation of the extrapolated
enthalpies of formation. The methodology used for extrapolation and uncertainties are provided in
appendix D.

Table 6.6 and 6.7 clearly show that, the computed enthalpies are similar for both isogyric
reactions for all methods used in this study. However, it is important to highlight that the J�298 K

5
s

computed with these reactions are substantially different than their corresponding enthalpic values
using TAE. For instance, it is evident from Table 6.6 and 6.7 that all DLPNO-CCSD(T) methods
show a huge improvement in predicting enthalpies closer to ccCA with isogyric reactions than TAE
which could be attributed to the efficiency of the isogyric type of approach with any methods to
compute thermochemistry properties. It is clearly demonstrated by the J�298 K

5
difference between

DLPNO-CCSD(T)/aug-cc-pVDZ and DLPNO-CCSD(T)/aug-cc-pVQZ for C2F3HO2 amounts to
∼2 kcal·mol−1 in the isogyric reactions in contrast to ∼55 kcal·mol−1 with TAE.

For the small-chain PFAS (<6 carbons), DLPNO-CCSD(T)/aug-cc-pVQZ leads to the best
results compared to ccCA for both isogyric schemes with an error varying between ∼0.2 to ∼2
kcal·mol−1. In contrast, at the CBS limit, the J�298 K

5
s obtained are slightly further from the ccCA

reference. As observed for the alkanoic acids, J�298 K
5

determined with B3LYP are much closer to
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ccCA, while the J�298 K
5

s of M06-2X is significantly different from ccCA in both isogyric reaction
approaches. For instance, in the case ISO1, the B3LYP J�298 K

5
errors compared to the ccCA

J�298 K
5

range between ∼0.8 -2 kcal·mol−1 in contrast to ∼5-32 kcal·mol−1 between the M06-2X
and ccCA J�298 K

5
. Similarly, with ISO2, the error between the B3LYP and ccCA J�298 K

5
are in

the range of ∼3-4 kcal·mol−1, while the errors between the M06-2X and ccCA J�298 K
5

are 3-24
kcal·mol−1.

For the longest PFAS (C>6), DLPNO-CCSD(T) is used for comparison due to increasing
system size. (There is a version of ccCA that incorporates DLPNO-CCSD(T) to enable application
to larger systems,60 however, it was not used here, as it is first important to gauge the utility of
DLPNO-CCSD(T).) For these molecules, the B3LYP J�298 K

5
differs by ∼3.5 kcal·mol−1 from the

DLPNO-CCSD(T)/aug-cc-pVQZ J�298 K
5

, while the M06-2X J�298 K
5

differs from the DLPNO-
CCSD(T) /aug-cc-pVQZ J�298 K

5
by ∼32 kcal·mol−1. Finally, the extrapolated values of ccCA are

∼10 kcal·mol−1 away from DLPNO-CCSD(T)/aug-cc-pVQZ.
The influence of different terminal functional groups on formation enthalpies were evaluated

using the atomization approach with PFAS-ol (Table 6.8) and FTCA (Table 6.9) are illustrated in
Figure D.6.
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Table 6.8: Enthalpies of formation (kcal·mol−1) for PFAS-ol determined with the atomiza-
tion approach.

B3LYP M06-2X ccCA DLPNO-CCSD(T) Jobackadza atz a aqza CBSa

C2F3H3O -198.38 -211.53 -214.11 -148.5 -188.54 -202.42 -213.6 -199.31
C3F5H3O -289.04 -311.58 -313.44 -223.39 -277.78 -297.19 -312.9 -300.08
C4F7H3O -378.57 -411.79 -411.78 -296.15 -365.12 -389.89 -410 -400.85
C5F9H3O -468.57 -510.47 -510.73 -375.75 -453.57 -482.49 -506.1 -501.61
C6F11H3O -557.02 -609.69 -609.64 -450.18 -540.85 -574.88 -602.7 -602.38

± 0.41 b

C7F13H3O -646.34 -709.62 -708.47 -525.50 -629.11 -668.04 -699.9 -703.15
± 0.41 b

C8F15H3O -736.40 -807.56 -807.34 -601.75 -718.3 — -797.2 -803.91
± 0.41 b ± 1.1 b

a DLPNO-CCSD(T).anz represent a DLPNO-CCSD(T) calculation with the corresponding aug-cc-pVnZ
basis set, while DLPNO-CBS is the enthalpy obtained at the complete basis set limit.

b Extrapolated. The uncertainties were based on the root mean square deviation of the extrapolated
enthalpies of formation. The methodology used for extrapolation and uncertainties are provided in
appendix D.

As shown in Table 6.8, the enthalpies of formation of PFAS-ol determined using M06-2X and
DLPNO-CBS are very close to the values obtained with ccCA methods. The maximum difference
in J�298 K

5
values between M06-2X and ccCA is ∼2.5 kcal·mol−1 for C2F3H3O that decreases

with increase in the length of the hydrocarbon and reaches ∼0.02 kcal·mol−1 for C4F7H3O. The
J�298 K

5
using DLPNO-CBS are in good agreement with ccCA values with a largest difference of

∼1.8 kcal·mol−1 for C4F7H3O. For PFAS-ol molecules with C>4, the difference in J�298 K
5

values
between M06-2X and DLPNO-CBS varies substantially with increasing length of molecules, with a
difference of ∼4 kcal·mol−1 for C5F9H3O and ∼10 kcal·mol−1 for C7F13H3O. However, the M06-2X
J�298 K

5
are in very good agreement with the extrapolated ccCA J�298 K

5
. Similar to the DLPNO-

CCSD(T) values of PFAS molecules with TAE approach, the J�298 K
5

s varies significantly from one
basis set to another using DLPNO-CCSD(T) but still are further from ccCA values. Among DFT
methods, the difference in J�298 K

5
values computed with B3LYP and M06-2X are ∼13 kcal·mol−1

for C2F3H3O that increases to ∼71 kcal·mol−1 higher for C8F15H3O using TAE. On the other hand,
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Joback gave enthalpies of formation that are consistently at least 10 kcal·mol−1 higher than ccCA
J�298 K

5
s even for molecules with C<5. Finally, the variation in enthalpy between two consecutive

PFAS-ol is ∼99 kcal·mol−1 for ccCA which is ∼1 kcal·mol−1 lower than the values obtained for the
perfluoroalkanes and also agrees well with the one observed in PFAS molecules.

For the FTCA (Table 6.9), the J�298 K
5

values computed with M06-2X and DLPNO-CBS are
slightly higher than the ccCA values using the atomization approach with a maximum difference
of ∼3 and ∼5 kcal·mol−1, respectively. For C3F3H3O2, ccCA gives an enthalpy of formation of
-261.01 kcal·mol−1 while DLPNO-CBS and M06-2X enthalpies are ∼4 kcal·mol−1 higher than
ccCA. On the other hand, for C5F7H3O2, the error between ccCA and M06-2X, and, ccCA and
DLPNO-CBS are ∼1 and ∼5 kcal·mol−1 respectively. For the longest FTCA (C>6) the M06-2X
enthalpies are taken as references in the absence of ccCA results and are within ∼2 kcal·mol−1 with
the extrapolated value using ccCA. Finally, the enthalpy variation between any two consecutive
molecules for ccCA and DLPNO-CBS is ∼98.5 and ∼97 kcal·mol−1, respectively. While for M06-2X
this variation corresponds to ∼99 kcal·mol−1 which is consistent with those obtained for PFAS and
perfluoroalkanes.
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Table 6.9: Enthalpies of formation (kcal·mol−1) for FTCA determined with the atomization
approach.

B3LYP M06-2X ccCA DLPNO-CCSD(T) Jobackadza atz a aqza CBSa

C3F3H3O2 -240.48 -257.69 -261.01 -173.17 -224.53 -242.93 -257.9 -251.58
C4F5H3O2 -328.76 -354.95 -358.06 -246.56 -311.28 -334.9 -354.1 -352.34
C5F7H3O2 -420.27 -457.60 -458.62 -323.88 -401.8 -430.41 -453.7 -453.11
C6F9H3O2 -509.27 -554.82 -557.47 -399.01 -489.87 -523.52 -551.0 -553.88

± 1.75 b

C7F11H3O2 -598.52 -656.12 -656.22 -474.37 -578.06 — -648.7 -654.65
± 1.75 b ± 1.4 b

C8F13H3O2 -687.80 -754.14 -755.027 -549.80 -666.35 — -746.4 -755.41
± 1.75 b ± 1.4 b

C9F15H3O2 -777.05 -852.47 -853.82 -625.13 -754.52 — -844.1 -856.18
± 1.75 b ± 1.4 b

a DLPNO-CCSD(T).anz represent a DLPNO-CCSD(T) calculation with the corresponding aug-cc-pVnZ
basis set, while DLPNO-CBS is the enthalpy obtained at the complete basis set limit.

b Extrapolated. The uncertainties were based on the root mean square deviation of the extrapolated
enthalpies of formation. The methodology used for extrapolation and uncertainties are provided in
appendix D.

Importantly, the reported enthalpies of formation of polyfluoroalkyl acids (FTCA), perfluoroalkyl
methanol (PFAS-ol) and perfluorinated acids (PFAS) could be used as reference values for future
studies focused on reaction energy and pathways, as both FTCA and PFAS-ol act as precursor
molecules for the formation of PFAS at atmospheric conditions as illustrated by Ellis et. al.276

6.4 Conclusions
In this study, gas phase enthalpies of formation have been predicted for the first time for three

classes of linear PFAS molecules, namely PFAS, PFAS-ol and FTCA. These enthalpies of formation
are important to understand the thermochemistry of PFAS and their potential precursor molecules.
The ccCA method gives the best results overall for the different classes of PFAS molecules with both
the atomization and isogyric approaches and is the recommended method to compute enthalpies of
formation. The DLPNO-CBS and M06-2X J�298 K

5
s were significantly dependent on the choice

of thermochemical (TAE or isogyric) approach employed. The DLPNO-CCSD(T) and M06-2X
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J�298 K
5

s determined with a TAE approach were always within a few kcal·mol−1 of the J�298 K
5

from ccCA and experiments. However, in the case of isogyric reactions, a substantial difference
in the J�298 K

5
values are observed for both DLPNO-CBS and M06-2X methods when compared

to experimental or ccCA enthalpies. Importantly, the methods selected were validated on linear
alkanoic acid and perfluoroalkanes in reporting enthalpies of formation comparable to experiment,
showing ccCA being the most credible method. Although, the Joback method gave very good results
for the alkanoic acid, Joback predictions for the fluorinated molecules were significantly far from
either experiment and/or the ccCA predictions.Based on this study, the ccCA enthalpies of formation
obtained can be directly used in other studies focused on the thermochemical properties of PFAS
molecules (Gibbs free energies, enthalpies of reaction). Furthermore, the relative energies for PFAS,
FTCA and alkanoic acids using ccCA will be useful for future studies on reaction mechanisms, gas
phase transportation of PFAS in the atmosphere, PFAS removal and mitigation.

126



CHAPTER 7

IONIZATION PROPERTIES OF DIATOMIC MOLECULE WITH TIME-DEPENDENT
CONFIGURATION INTERACTION

7.1 Introduction
To investigate electron dynamic properties such as light absorption or emission, metal-ligand

charge transfer, fluorescence, ionization processes and many others, computational chemistry meth-
ods can be instrumental. An ideal approach would be to utilize quantum electrodyanamics (QED)
theory,277,278 which treats both the electromagnetic field and molecular system at a quantum me-
chanical level, and also include an explicit treatment of time and a fully relativistic Hamiltonian.
However, such a method becomes computationally expensive (in terms of CPU time, disk space).
Furthermore, in the applications described above, nuclear motion can play an important role, and
thus, approaches have been developed that do not make use of the Born-Oppenheimer approximation
(BOA), which treats nuclei as static particles.279 As with QED, methods that do not include BOA
become very computationally expensive as the system size increases. Thus, other methods need to
be employed to investigate light matter interactions.

One of the most popular methods to study electron dynamic properties is time-dependent DFT
(TDDFT).280 TDDFT was introduced in 1984 by Runge and Gross and since then has been used
in many applications from small organic molecules281,282 to transition metal complexes.283–285

However, while TDDFT is very cost efficient, it is based on DFT, which means that the choice
of exchange-correlation functional is very important. For example, there exist inconsistencies
between functionals when comparing properties to experiment, some functionals are based on
experimental parameters and thus can be only be applied to specific systems, and the DFT results
can not be systematically improved by increasing the basis set size.286,287 Moreover, TDDFT is
not a method with which electron dynamic properties are calculated. However, there is a form
of DFT, real-time TDDFT (RT-TDDFT) that does enable the computation of electron dynamic
properties, however, as with TDDFT, the choice of functional is fundamental. On the other hand,
wavefunction-based methods have been developed such as time-dependent coupled-cluster (TD-CC)
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methods, time-dependent equation of motion coupled-cluster (TD-EOMCC) methods and time-
dependent configuration interaction (TDCI) methods, to study molecular systems in the presence
of a strong laser pulse.25,288–291 However, these methods are more computationally demanding
than TDDFT and smaller system are often prioritized. Kristiansen et. al. used TD-CC with single
and double excitations to investigate the stability of TD-CC for He and Be atoms and the LiH
molecule using aug-cc-pVDZ and cc-pVDZ basis sets.289 In 2019, Nascimento and De Prince used
the time-dependent version of EOMCC at the second order (TD-EOM-CC2) to investigate the linear
absorption of small organic molecules.290 Finally, Ulusoy and co-workers used the time-dependent
configuration interaction method (TDCI) to study small molecules: H2, LiH, CH4, CH2O, CH3CN,
and CH3F in the presence of a laser pulse, determining their transition energies and dipole moments
using different basis sets, gauges (as defined in section 2.6) and CI truncations.25

In all of these studies, ionization processes such as those that are above and below the ionization
threshold can not be described directly due to the atom-centered basis set. These basis sets can
not describe the continuum of states above the ionization energy. However, approximations of
the ionization treatment have been made, in particular using a heuristic model or an absorbing
potential.29,32,292

In this project, the time-dependent configuration interaction (TDCI) method is used to calculate
the ionization rate (�) of H2+ and N2 using a heuristic model (see section 2.6) to simulate the above
ionization potential ionization processes. This model has been implemented in the group’s TDCI
code..

7.2 Ionization rate of H2
+

The ionization rate (�) of H2+ has been studied previously using TDCIS with a complex absorb-
ing potential292 and a three-dimensional grid based TD-Schrödinger equation method.293 In this
study, the TDCIS method is used with a heuristic model. A CIS calculation using a modified version
of GAMESS US 2018294 is initially done in order to obtain the electronic structure information
necessary for the time-propagation. In the TDCIS step, a linearly polarized laser pulse was used with
a carrier frequency of 0.043 Eℎ/ℏ (1064 cm−1). The frequency corresponds to what was previously
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done in other theoretical studies. The maximum field strength was set to 0.0534 Eℎ/(400), which
corresponds to an intensity of 1 × 1014 W/cm2. The cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis
sets were used to examine the effect of larger basis set on the ionization properties. The ionization
rate was calculated for internuclear distances between 2 and 9 Å (or ∼3.8 and ∼17.0 a.u.) with
an equilibrium bond distance of 2 a.u. The molecule was aligned along the z-axis while the laser
pulse was polarized along the z-axis. The results obtained were compared with those from the study
of Zuo et. al.,293 which was based on solving the three-dimensional time-dependent Schrödinger
equation (3D-TDSE) and from a study by Krause et. al.292 In Krause’s study, a complex absorption
potential (CAP) was used with TDCI (TDCI-CAP) to simulate the ionization of H2+. Moreover,
they added some diffuse functions to an aug-cc-pVTZ basis set to make sure that there was a better
overlap between the CAP and the basis set.

First, the ionization rate calculated in this study using TDCIS with the aug-cc-pVTZ basis set
are compared with previous theoretical work in Figure 7.1.
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Figure 7.1: Ionization rate of H2+ in s−1, where the laser pulse was aligned along the z axis and the
carrier frequency is 0.043 Eℎ/ℏ. The black line correspond to this study, the orange line was taken
from Krause et. al.292 and the red line from Zuo et. al.293

For the shortest H2+ bond distances (2 to 9 a.u.), the TDCIS results obtained in this study are
in qualitative agreement (same overall increases in � with the bond distance increasing) with the
results obtained by TDCIS-CAP. However, while the results by Krause et. al. show a fluctuation
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of the ionization rate at RH2+ ∼7.8 a.u., the results from this TDCIS study show a decrease at ∼5.8
a.u. and a slight one at RH2+ ∼7.8 a.u. On the other hand, the � obtained by the 3D-TDSE study for
bond distances lower than 9 a.u. are higher than the one obtained in the TDCIS and TDCIS-CAP
study. Furthermore, as for the TDCIS results obtained here, the Figure 7.1 shows two decreases in
the ionization rate for the 3D-TDSE study: a small one at RH2+ ∼6.5 a.u. and a larger one between
the bond distances ∼7 and ∼8.5 a.u.

At RH2+ = 9 a.u., the ionization rate using TDCI-CAP starts to decrease until 16 a.u., however,
in both the 3D-TDSE and TDCIS studies, the ionization rates start to decrease only at RH2+ ∼11 a.u.
and RH2+ ∼10.5 a.u., respectively. While for bond distances less than 9 a.u., there was qualitative
agreement (same overall change of ionization rate as the distance increases) between the previous
theoretical methods and TDCIS. At bond distances greater than ∼10.5 a.u., this is not the case.
Indeed, the ionization rate, when TDCIS is used, increases between the bond distance of ∼10.8
a.u. and 17 a.u. while for both TDCI-CAP and the 3D-TDSE methods, � decreases. The different
behavior at larger distances can be explained by the fact that in TDCI-CAP, a medium absorbing
basis was placed on a ghost atom between the hydrogen, which helps to recover the missing basis set
overlap. The medium absorbing basis corresponds to a standard basis set (aug-cc-pVTZ, in Krause
et. al. study) to which a number of diffuse functions were added. In this study, at larger distances, the
basis set overlap between the two hydrogens is missing which could lead to the incorrect behavior of
the heuristic model. Indeed, as the distance between the hydrogen increases, more and more states
exist below the ionization threshold which lead to a smaller number of states for possible ionization.
However, at shorter distances between the two atoms, the basis set overlap is present and that could
explain why there is a qualitative agreement between the TDCIS results in this study and the one
obtained with TDCI-CAP.

To see the effect of the basis set, the ionization rate for different internuclear distances were
calculated with a cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis set. The results are shown in Figure
7.2.
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Figure 7.2: Ionization rate of H2+ in s−1 as a function of the basis set used. The laser pulse was
aligned along the z axis and the carrier frequency is 0.043 Eℎ/ℏ.

At very short bond distances (3.8 to 5.2 a.u), the basis sets result in the same ionization rate
showing that at these distances, the overlap between the basis function of each hydrogen is enough
to correctly describe the ionization process. After 5.2 a.u., the different basis sets show very different
behavior. When the cc-pVTZ basis set is used, the maximum ionization rate is 1.45 × 1013 s−1 for a
bond distance of ∼7.9 a.u., while the maximum with the cc-pVDZ basis set is ∼ 0.6 × 1013 s−1 at
RH2+ ∼8.2 a.u. Once the ionization rate maximum has been reached, the results from the cc-pVDZ
basis set slowly decreases as the TDCI-CAP results by Krause and co-workers showed.292 On the
other hand, the ionization rate with the cc-pVTZ as well as the aug-cc-pVTZ basis set increases until
the longest distances. The improvement between cc-pVTZ and aug-cc-pVTZ is quite significant and
shows the importance of diffuse functions.

The results obtained for H2+ in this study do not perfectly reproduce previous theoretical results.
However, it is important to note that the heuristic model is a quick but qualitative method to include
ionization effects. In order to obtain more insight about the method, the ionization rate of the N2

molecule was studied.
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7.3 Ionization rate of N2

In 2007, the ionization rate of N2 was studied experimentally by Pavic̆ić et. al. using a Ti:sapphire
laser system.295 The effect of the angle between the incident pulse and the molecule on the ionization
rate was investigated. Theoretically, there have been different studies using TD-CIS-CAP, TD-DFT
or the molecular strong-field ionization.296–298 Sissay and co-workers used real time TD-DFT with
the long range corrected PBE functional (LC-PBE) with an aug-cc-pVTZ basis set and added a
complex absorption potential (CAP) to capture ionization.297 On the other hand, TDCI was also
employed by Hoerner and co-workers where they used a CAP to model the ionization. In their
study, different field strengths and their effects on the ionization rate were examined.296 Finally,
an earlier study by Kjeldsen et. al., utilized molecular strong-field ionization methods, molecular
Ammosov-Delone-Krainov (MO-ADK) model and molecular strong-field approximation (MO-SFA)
which are based on tunneling theory.298

To determine the ionization properties of N2, it is important to obtain the correct set of orbitals
and the correct energy order. Since ionization will mostly occur from the Highest Occupied Molecular
Orbital (HOMO), it is important for the theory to capture the correct HOMO. For N2 the valence
orbital should have the following order Ec = Ec < Ef, where f corresponds to the HOMO.

In this project, the change of ionization rate for N2 is investigated when the angle between the
molecular axis and the laser pulse changes. The external field intensity was set to 0.053 a.u. or 1014

W/cm−1 and the frequency to 0.057 a.u. or 800 nm which corresponds to the frequency in work by
Sissay et. al.297 Here, the equilibrium geometry (1.10 Å) was obtained with RCCSD(T) and the
aug-cc-pVQZ basis set using Molpro 2020.147 The molecule was aligned along the z-axis and the
ionization rate was calculated as the ratio between the ionization rate when the pulse is not aligned
along the z-axis and when it is. All of the single point (MCSCF and CISD) calculations were done
using the aug-cc-pVTZ basis set. An active space composed of ten electrons in twelve orbitals was
used, which correspond to: two 2B2, and the 2?2

G , 2?2
H and 2?2

I for the occupied orbitals and the other
2?0

G , 2?0
H and 2?0

I , one 3B0 and one set of 3?G,H,I for the virtual orbitals. An initial complete active
space self-consistent field (CASSCF) was run to obtain optimized orbitals for a subsequent CISD
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calculation. This CISD calculation was carried out to produce the initial CI states coefficients for
the TDCI propagation. Finally, a RASSCF calculation was tested using a two holes/two electrons
RAS1/RAS3 space and four orbitals in the RAS2 active space (see section 2.5). This calculation
corresponds to six electrons in six orbitals.

First, the ionization rate ratio obtained with the standard TDCI steps is compared to experiment
and previous theoretical results (TD-CIS-CAP, TD-DFT and MO methods).
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Figure 7.3: Ionization rate of N2 at different angles between the laser pulse and the molecule axis.
The ionization is calculated as a ratio between � (\)/� (0◦) and compared with theoretical (LC-PBE
results from Sissay297, MO-SFA and MO-ADK results from Kjeldsen298 and TD-CIS-CAP results
from Hoerner296) and experimental data from Pavic̆ić et. al.295

Figure 7.3 depicted the ionization rate ratio obtained in this study compared to experiment
and prior theoretical results. As shown, the result obtained with TDCISD is not in agreement with
experiment. For the smaller angles, (between the laser pulse polarization and the molecule axis)
from 0◦ to 40◦, both the experimental and TDCISD ionization rate ratio decreases. However, while
the experimental ionization rate still decreases after 40◦, the TDCISD ionization starts to decrease
much more slowly and at 60◦ the ionization rate ratio increases. The incorrect behavior at a larger
angle can be attributed to an unreasonable set of orbitals. Indeed, in this calculation, the MCSCF
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orbitals used for the CISD calculation, showed that the two non-degenerate occupied c orbitals are
the HOMO while the fI orbital is lower in energy. Since the heuristic model depends on the HOMO
energy to define the ionization potential, the fact that the orbital ordering is wrong is likely to lead
to incorrect results. The MCSCF orbitals leads to an ionization potential (IP) of ∼ 16.12 eV while
the experimental value reported by NIST is ∼ 15.6 eV.234 This difference between the calculated
and the experimental IP’s means that more states are ionized in the calculation than necessary.

The TD-CIS-CAP results by Hoerner et. al. show an abrupt increase in the ionization rate at 40◦
and is overall in poorer agreement with experiment than the results obtained in this study. On the
other hand, both molecular strong-field ionization results by Kjeldsen et. al. show an overall decrease
of the ionization rate ratio which is consistent with experiment. The initial wavefunction in MO-SFA
and MO-ADK were taken as an effective one-electron wavefunction taken from a Hartree-Fock
approximation. Finally, the real time TD-DFT result by Sissay and co-workers showed the best
agreement with experiment. Overall the same shape as the experimental results was obtained with a
slightly higher rate ratio.

Since the standard TDCI procedure using GAMESS US was not able to produce the correct
ionization rate ratio for larger angles, other procedures have been considered. First, the LC-WB97
functional was used to generate initial guess orbitals for a subsequent MCSCF calculation using
GAMESS.299 For the second approach, Molpro 2020 was used to generate the MCSCF orbitals
which were then used in GAMESS to run the CISD calculation.147 Finally, the RASSCF, restrictive
active space state interaction (RASSI) and SO-RASSI methods from the OpenMolcas software
(v. 21.06) were utilized to generate the CI states coefficient to run the TDCISD simulation.300

The SO coupling in SO-RASSI is included a posteriori with the spin-orbit part of the Douglas-
Kroll Hamiltonian. The results arising from these different methods are presented in Figure 7.4.
Furthermore, Table 7.1 gives the ionization potential and corresponding HOMO for each methods
described above.
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Figure 7.4: Ionization rate of N2 at different angles between the laser pulse and the molecule axis.
The ionization is calculated as a ratio between the ionization when the laser is not aligned with the
molecule and when it is (� (\)/� (0◦)). Several procedures are reported, each based upon different
orbital selections and MCSCF approaches. The experimental data were taken from Pavic̆ić et. al.295

Table 7.1: Ionization potential (IP) of N2 depending on the method
used to generate the orbitals. All calculations were done using the
aug-cc-pVTZ basis set. The experimental data is taken from the
NIST database.234

Method Ionization Potential (eV) HOMO
MCSCF (HF orbitals) 16.12 c

MCSCF (LC-WB97 orbitals ) 15.12 c

MCSCF (Molpro) 14.11 fI

RASSCF 15.98 c

Exp.234 ∼ 15.5 to ∼ 15.7 —

As Table 7.1 shows, the RASSCF method results in the best IP compared to experiment with an
error of less than 0.3 eV while the MCSCF orbitals from Molpro lead to the largest error (∼1.4 eV).
However, so far, only Molpro leads to the correct orbital for the HOMO. Moreover, while the use of

135



DFT orbitals as guess orbitals for MCSCF reduced the IP from 16.12 eV to 15.12 eV, the HOMOs
are still the c orbitals.

The ionization rate resulting from these different simulations are presented in Figure 7.4. The
use of DFT orbitals as an initial guess did not improve the ionization rate as compared to the HF
orbital initial guess. In fact, the overall shape with the DFT orbitals is worse than that of the HF
orbitals as compared to experiment. The ionization rate ratio decreases and increases much faster
when the LC-WB97 orbitals are used. On the other hand, when Molpro is used to generate the
MCSCF orbitals to use in the CISD calculation, the ionization rate is in much better agreement with
experiment with overall decreases of the ratio. Even though the ratio is smaller when Molpro is used
as compared to the ratio from experiment, the difference between theory and experiment is roughly
the same for each angle. The same behavior was observed when the RASSCF and RASSI modules
from OpenMolcas were used. When the RASSI states coefficients were propagated, the ionization
rates obtained were very similar to the ones obtained with Molpro. In addition, the inclusion of
spin-orbit coupling in RASSSI (TD-SORASSI) leads to the same results as the calculations that
have not included SO coupling. Interestingly, the Molpro MCSCF and both RASSI results are very
close to the MO-ADK and MO-SFA results presented in Figure 7.3. They show the same trends and
values for the ionization ratio as the angle increases.

7.4 Conclusion
Overall, the heuristic model shows good qualitative results as compared to other theoretical or

experimental results. For the N2 molecule, the ionization rate ratio obtained at the TDCISD depends
heavily on the orbital used at the MCSCF level. Indeed, the HF and LC-WB87 orbitals both lead to
the incorrect behavior of the ionization rate ratio compared to experiment. On the other hand, when
the MCSCF orbitals from Molpro or the RASSCF method are used, the results are in much better
agreement with experiment. Overall, the heuristic model provides an efficient way to describe the
ionization process in TDCI theory. It is important to note that the heuristic model used in this work
was developed for TDCIS and not for TDCISD. A development for TDCISD was given by Coccia
et. al. and will need to be implemented in the group TDCI code.301
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For smaller intramolecular distances between the two hydrogens, the TDCIS ionizations rate
are in agreement with previous theoretical results. However, for longer distances this is not the
case, and with the aug-cc-pVTZ basis set, incorrect behavior for the ionization rate is obtained.
Moreover, the importance of the diffuse functions in the basis set was demonstrated for the cc-pVTZ
and aug-cc-pVTZ basis set.
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CHAPTER 8

FUTURE DIRECTIONS

In this thesis, a number of computational strategies have been employed to investigate the gas
phase thermodynamic and spectroscopic properties of PFAS and heavy element complexes. The
rp-ccCA approach has been successfully applied to the 5d transition metal, while f -ccCA has been
gauged against the latest experimental bond dissociation energy by Micheal Morse group. Moreover,
ground and excited states potential energy curves of LuF have been characterized by MRCI methods
and compared to experiment. Finally, the linear PFAS gas phase enthalpies of formation have been
investigated for the first time with both ab initio and DFT methods.

In looking forward for the 5d projects, improvement can be made in the rp-ccCA procedure.
First, a better inclusion of spin-orbit coupling would be required to obtain more consistent results
among different metals. There are many ways to introduce a better SO for the molecule, but among
existing methods, an MRCI calculation with the Breit-Pauli Hamiltonian should be considered.
This calculation will give insight into the multireference character of the compound and will
give a molecular SO coupling energy. Another option is to use the Dirac Hartree-Fock (DHF)
Hamiltonian available via the DIRAC software which corresponds to a four-component Hamiltonian.
This Hamiltonian allows a full description of both the scalar and spin-orbit relativistic effects
which is needed for heavy elements. However, including dynamic correlation through the use of
coupled-cluster or MP2 methods will become very expensive for larger molecules as DHF is already
expensive as compared to its two-component and pseudopotential counterparts (see Chapter 4).
Since 53 transition metal complexes have the potential to be highly multireference in nature, a more
rigorous investigation of the multireference character (more than one Slater determinant to build the
wavefunction) might be needed, especially for smaller systems as the number of unpaired electron
increases and thus the potential number of possible Slater determinant, also increases.

Finally, DFT shows inconsistent results depending on the functional and the molecule studied.
Thus, a more in depth investigation of the effect of functional choice on thermochemical properties
may be important. The double-hybrid functional which includes a MP2 correlation energy component
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could help when the exact exchange from the H-GGA functional is not enough. As well, the recently
developed multiconfiguration paired-DFT (MC-PDFT) theory by Gagliardi group may be useful
for some molecules.302 This somewhat recent DFT approach is based on an initial CASSCF or
RASSCF calculation to obtain a multireference wavefunction that is used in a DFT calculation.

In the lanthanide study describe herein, lanthanide diatomics have been investigated using
wavefunction based methods. As the project on the LnS and LnSe molecules showed, single-
reference methods can fail to accurately predict the dissociation energies of some diatomics. Thus,
multireference composite schemes will be needed, in particular using a CASSCF or MRCI initial
wavefunction. While the multireference path has already been included at the DFT level, almost no
work has been done with a wavefunction-based composite approach for heavier elements. However,
as with any active space type of methods, the selection of a proper active space will be the bottleneck
of the method as explained in Chapter 2.
However, most applications for the lanthanides involve much larger ligands. While it is important to
understand the fundamental properties of lanthanides, wavefunction methods that can accurately
describe larger lanthanide complex properties are needed. Previously, a more cost-efficient composite
approach as compared to ccCA was developed called DLPNO-ccCA.263 This method was developed
for organic molecules but could be modified to study heavier elements. DLPNO-ccCA becomes
more and more cost advantageous as compared with ccCA as the size of the molecule increases.
However, approximations are made in the DLPNO method and their effects on the thermochemical
properties need to be tested.

For the PFAS project, the gas phase enthalpies of formation have been calculated for a set of
small to medium linear alkanoic acids, fluoroalkanes and three types of PFAS. Since not much is
known in terms of the thermochemical properties of PFAS, more studies are needed. For example, a
limited number of experimental papers have been published on possible PFAS degradation pathways
involving the molecules from Chapter 6. Further studies should be done to determine if the methods
used in Chapter 6 can properly describe the degradation mechanism of these PFAS. Second, as
the size of the molecule increases, it will become increasingly difficult to use the standard ccCA
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method and thus a more cost efficient method like DLPNO-ccCA needs to be considered. Initial
calculations of gas phase J�298 K

5
with DLPNO-ccCA have been conducted for the same set of

molecules presented in Chapter 6. Finally, while gas phase properties are important, most PFAS
study are conducted in solvent. Among the aqueous properties, pKa is of paramount importance as
it provides insight about the PFAS acidity in water or other solvent. Such a project was begun for
PFAS molecule but initial results were not consistent considering different methods, basis sets and
implicit solvents. With the knowledge gained about PFAS properties during the study included in
this dissertation, it will be easier to pursue properties in aqueous solutions.

Finally, for the TDCI project, more work needs to be done, in particular for transition metal
and heavier elements. So far, GAMESS US has been used to generate the CI coefficients and states
energies for the TDCI propagation. However, there are constraints from this software especially
for lanthanides. First of all, when a Douglas-Kroll-Hess Hamiltonian is used, the basis set size can
not exceed a cc-pVTZ with the utilized software package. Secondly, if a pseudopotential (ECP) is
used, the highest angular moment component allowed is "g". It means that if a pseudopotential is
build using "h" or higher angular momentum, the ECP can not be used directly. However, diffuse
functions play an important role in the description of light absorption properties and the lanthanide
pseudopotentials include the "h" angular momentum. While in theory, it would be possible to modify
the GAMESS US source code so that it could use larger basis sets, other software options have
been investigated, in particular, the RASSCF and RASSI module of the OpenMolcas software.
So far, both modules have been tested for N2 and RASSCF and RASSI are being tested for LuF.
Since LuF has been extensively studied by Wilson’s group, data are available for the ground and
different excited state, which can be compared to the results from RASSCF and RASSI. Furthermore,
one advantage of the OpenMolcas software is that it handles symmetry such that each symmetries
can be investigated separately. Thus, larger systems can be studied, in particular, for metal-ligand
charge transfer complexes. Finally, for the ionization rate, the CISD heuristic model by Coccia et. al.

needs to be implemented in the developed code.301 This model should allow a better description of
ionization rates with TDCISD.
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APPENDIX A

5d DFT ENTHALPIES OF FORMATION

Experimental determination of equilibrium constants
As an alternative to calorimetric measurement, equilibrium constants can be used to extract the

enthalpy of formation via vapor pressure measurements. One of the methods that relates the change
in enthalpy to the vapor pressure is the second law method which is based on the vant Hoff equation:

J�◦ = ')2 3;=( ?)
3)

(A.1)

for which the vapor pressure at different temperatures is needed. The enthalpy is obtained by
calculating the slope of ;=( ?) vs 1/) . This method requires a large number of vapor pressure
measurements over a large temperature range.

Another approach is the third law method which is based on the Gibbs energy function

Q◦
) =

(
�◦
) − �◦

)

)
/) (A.2)

where the standard state Gibbs energy (�◦
)

) and enthalpy (�◦
)

) are determined for one temperature.
The enthalpy of reaction is then obtained by calculating J�◦

A /) .
J�◦

A

)
= −';=( ?) − JQ◦

) (A.3)

The main advantage of the third law approach over the second law approach is that the vapor pressure
is needed for only one temperature which reduces the final error due to experimental measurement.
Moreover, if the vapor pressure data does not lead to a straight line with the second law method,
a large error bar can result. In Gurvichs handbook,71 the J�298 K

5
reported were calculated using

experimental vapor pressure and the use of the third law method while NIST-JANAF68 reported
data calculated using both the second law and third law methods.
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DFT enthalpies of formation

Table A.1: Enthalpies of formation in kcal·mol−1 for 5d compounds with DFT.
Molecules SVWN BP86 BLYP PW91 PBE TPSS M06-L B3P86 X3LYP B97-1 B3LYP PBE0 BHLYP TPSSH Exp
HfF4 -514.35 -433.79 -426.14 -442.37 -438.74 -427.85 -417.98 -422.65 -412.47 -416.34 -411.94 -407.87 -375.36 -417.12 -399.1
HfCl 41.87 57.97 62.00 56.25 56.69 56.96 56.40 58.11 61.58 57.93 62.04 60.86 67.86 57.79 7
HfCl2 -67.80 -34.89 -26.71 -38.19 -37.13 -34.58 -39.34 -35.14 -28.25 -34.91 -27.31 -31.04 -19.01 -33.15 -76
HfCl4 -282.75 -222.64 -203.34 -230.58 -228.66 -226.72 -239.64 -224.69 -207.22 -222.57 -205.62 -219.92 -193.39 -224.00 -212.90

± 0.3
HfBr2 -42.35 -10.77 -2.02 -13.96 -12.64 -12.22 -3.64 -11.18 13.67 9.31 14.55 9.00 4.33 -16.50 -6.9
HfI2 — 19.89 — 16.45 17.70 18.51 23.42 19.40 27.57 20.92 28.52 22.47 35.36 19.49 -8.9
TaCl5 -287.65 -203.91 -175.62 -214.01 -211.61 -205.92 -219.43 -197.63 -172.74 -192.42 -170.92 -192.81 -148.37 -198.50 -182.80

± 2
WCl 109.22 124.34 134.72 120.96 121.23 122.92 133.54 123.28 133.95 135.72 133.79 122.16 137.00 123.37 132.30

± 10
WCl2 — 49.61 62.81 45.89 46.66 48.88 50.93 49.75 62.25 59.83 62.69 50.83 68.51 50.57 -3.00

± 25
WCl4 -155.76 -89.02 -69.17 -95.84 -94.58 -89.19 -94.21 -83.97 -66.14 -83.13 -64.74 -79.53 -47.26 -83.58 -80.3

± 7.9
WCl5 -216.16 -128.07 -101.85 -137.14 -135.19 -127.24 -133.54 -117.58 -94.37 -115.34 -92.68 -111.21 -64.25 -118.13 -98.60

± 7.88
HgBr 10.46 20.97 25.24 19.37 19.79 19.55 22.98 20.46 24.01 22.56 24.53 20.14 24.74 19.79 24.49

± 9
HgBr2 -51.93 -24.19 -13.32 -27.53 -26.69 -26.94 -19.32 -26.18 -17.29 -22.97 -16.10 -26.49 -15.81 -26.70 -20.50

± 3
HgCl 6.52 17.79 22.27 16.13 16.39 16.71 15.99 17.42 21.25 19.07 21.73 17.10 22.31 17.07 18.75

± 2.3
HgCl2 -63.95 -34.47 -23.21 -37.85 -37.42 -36.11 -40.34 -36.16 -26.75 -34.28 -25.65 -36.33 -24.32 -35.63 -34.96

± 1.5
HgI — 25.29 — 23.69 24.12 23.90 25.49 24.72 28.08 26.49 28.62 24.26 28.64 24.03 31.90

± 1
HgI2 — -11.61 — -15.06 -14.15 -14.61 -11.52 -13.82 -5.20 -10.68 -3.97 -14.53 -4.34 -14.63 -3.86

± 0.5
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Table A.2: Enthalpies of formation in kcal·mol−1 for 5d compounds with SO-DFT.
Molecules SVWN BP86 BLYP PW91 PBE TPSS M06-L B3P86 X3LYP B97-1 B3LYP PBE0 BHLYP TPSSH Exp
HfF4 -514.35 -433.79 -426.14 -442.37 -438.74 -427.85 -417.98 -422.65 -412.47 -416.34 -411.94 -407.87 -375.36 -417.12 -399.1
HfCl 41.87 57.97 62.00 56.25 56.69 56.96 56.40 58.11 61.58 57.93 62.04 60.86 67.86 57.79 7
HfCl2 -67.80 -34.89 -26.71 -38.19 -37.13 -34.58 -39.34 -35.14 -28.25 -34.91 -27.31 -31.04 -19.01 -33.15 -76
HfCl4 -282.75 -222.64 -203.34 -230.58 -228.66 -226.72 -239.64 -224.69 -207.22 -222.57 -205.62 -219.92 -193.39 -224.00 -212.90

± 0.3
HfBr2 -42.35 -10.77 -2.02 -13.96 -12.64 -12.22 -3.64 -11.18 13.67 9.31 14.55 9.00 4.33 -16.50 -6.9
HfI2 — 19.89 — 16.45 17.70 18.51 23.42 19.40 27.57 20.92 28.52 22.47 35.36 19.49 -8.9
TaCl5 -287.65 -203.91 -175.62 -214.01 -211.61 -205.92 -219.43 -197.63 -172.74 -192.42 -170.92 -192.81 -148.37 -198.50 -182.80

± 2
WCl 109.22 124.34 134.72 120.96 121.23 122.92 133.54 123.28 133.95 135.72 133.79 122.16 137.00 123.37 132.30

± 10
WCl2 — 49.61 62.81 45.89 46.66 48.88 50.93 49.75 62.25 59.83 62.69 50.83 68.51 50.57 -3.00

± 25
WCl4 -155.76 -89.02 -69.17 -95.84 -94.58 -89.19 -94.21 -83.97 -66.14 -83.13 -64.74 -79.53 -47.26 -83.58 -80.3

± 7.9
WCl5 -216.16 -128.07 -101.85 -137.14 -135.19 -127.24 -133.54 -117.58 -94.37 -115.34 -92.68 -111.21 -64.25 -118.13 -98.60

± 7.88
HgBr 10.46 20.97 25.24 19.37 19.79 19.55 22.98 20.46 24.01 22.56 24.53 20.14 24.74 19.79 24.49

± 9
HgBr2 -51.93 -24.19 -13.32 -27.53 -26.69 -26.94 -19.32 -26.18 -17.29 -22.97 -16.10 -26.49 -15.81 -26.70 -20.50

± 3
HgCl 6.52 17.79 22.27 16.13 16.39 16.71 15.99 17.42 21.25 19.07 21.73 17.10 22.31 17.07 18.75

± 2.3
HgCl2 -63.95 -34.47 -23.21 -37.85 -37.42 -36.11 -40.34 -36.16 -26.75 -34.28 -25.65 -36.33 -24.32 -35.63 -34.96

± 1.5
HgI — 25.29 — 23.69 24.12 23.90 25.49 24.72 28.08 26.49 28.62 24.26 28.64 24.03 31.90

± 1
HgI2 — -11.61 — -15.06 -14.15 -14.61 -11.52 -13.82 -5.20 -10.68 -3.97 -14.53 -4.34 -14.63 -3.86

± 0.5
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Isogyric and atomization approaches for the hafnium complexes

Table A.3: Enthalpies of formation in kcal·mol−1 of the molecule involved in reaction
3.2 to 3.4. The enthalpies calculated with the reactions are using only experimental
J�298 K

5
unless noted and all energies were calculated using rp-ccCA.

Molecules J�298 K
5

J�298 K
5

J�298 K
5

J�298 K
5

Exp. Theory85

(TAE) (Reac. 3.2) (Reac. 3.3) (Reac. 3.4)
HfCl4 -210.18 -260.14 -217.33 -255.00 -212.90

-211.14a -206.00a

HfCl2 -27.00 -28.75 — — -76.00 -27.1 ± 3.3
HfBr2 -0.98 — -2.46 — -6.90 4.2 ± 5.8
HfI2 38.22 — — 33.60 -8.90 40.5 ± 4.9

a Results obtained using theoretical enthalpies of formation for the known complex.
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APPENDIX B

LuF MRCI CURVES AND 95% CONFIDENCE LIMIT

Figure B.1: Spin-orbit MRCI PECs of LuF with respect to the Lu-F distance.
Analysis of the 95% confidence limit using different extrapolation schemes

A type B evaluation can be used to assess the uncertainty of thermochemical properties and was
described for composite schemes in the work by Ruscic.303 The type B evaluation allows for a rational
assessment of errors for each contribution (of a composite approach) to an overall energy prediction.
The errors are added together as uncertainties in order to obtain a cumulative overall absolute error
of the final computational estimate. For example, in prior work, the errors have been determined for
the terms including spin-orbit corrections, scalar relativistic effects, core-valence and zero-point
energy (ZPE) corrections, allowing for an informed assessment of the propagation of errors in
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computations. Since the dissociation energy calculations from section 4.3 were not performed with
composite methods, 95% confidence intervals have been calculated using different extrapolation
schemes (see Table B.1). The 95% confidence limit has been determined for the CCSD(T) and
CR-CCSD(T) predictions (Table B.1) as suggested by Ruscic.303 Confidence intervals estimate the
propagation of errors that arise from different estimations of the dissociation energy at CBS, i.e,
there is a 95% probability that the values predicted contain a true estimate of the dissociation energy.
For this purpose, four extrapolation schemes were considered as presented by Feller et. al. in his
type B evaluation of oxalic acid.304 Following Fellers example, four widely used CBS extrapolation
schemes were selected and analyzed concerning the overall errors.
The scheme selected are the following: a mixed exponential/gaussian by Peterson,60

�= = ���( + �4−(=−1) + �4−(=−1)2 (B.1)

a two-point extrapolation by Martin160

�= = ���( +
�

(= + 0.5)4 (B.2)

a three-point extrapolation by Martin160

�= = ���( +
�

(= + 0.5)4 + �

(= + 0.5)6 (B.3)

and a two-point extrapolation by Halkier et. al.59:

�= = ���( + �4−1.63= (B.4)

where B and C are constants determined in the scheme and n is the basis set level (n = D, T, Q), E=
represent the energy for each basis set level, and E��( represents the energy at the CBS limit.
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Table B.1: Calculation of the 95 % confidence limit of LuF
dissociation energy (kcal·mol−1) using four different extrap-
olation schmes at CCSD(T)/FC-subval/ DKH3 level.

Scheme D0 (dz) D0 (tz) D0 (qz) D0 CBS
B.1 164.16 169.25 169.96 170.4
B.2 164.16 169.25 169.96 170.4
B.3 164.16 169.25 169.96 170.2
B.4 164.16 169.25 169.96 170.1

95% confidence limit 0.1

Table B.2: Spin-orbit MRCI potential energy curves data (kcal·mol−1): distances, relative ener-
gies and states.

Distances X1O0+ 13N0− 13J1 13N0+ 13J2 13N1 13N2 1 3J3 13O1 11O0− 11J2
(Å)
2.20 14.19 51.15 49.48 52.95 52.06 54.67 60.00 58.26 64.17 64.98 66.76
2.10 6.88 44.83 43.71 46.44 46.30 48.43 53.54 52.27 58.32 59.14 60.96
2.00 1.65 40.54 40.14 41.95 42.75 44.22 49.09 48.49 54.70 55.51 57.38
1.98 0.98 40.05 39.82 41.41 42.43 43.75 48.56 48.12 54.37 55.18 57.06
1.96 0.47 39.72 39.66 41.04 42.27 43.44 48.19 47.92 54.21 55.02 56.91
1.94 0.14 39.56 39.67 40.83 42.29 43.30 47.99 47.89 54.23 55.04 56.94
1.92 0.00 39.59 39.89 40.82 42.52 43.35 47.98 48.07 54.46 55.26 57.18
1.90 0.08 39.83 40.32 41.02 42.96 43.61 48.18 48.47 54.92 55.71 57.63
1.85 1.39 41.51 42.49 42.59 45.16 45.37 49.76 50.57 57.19 57.98 59.89
1.80 4.61 45.07 46.53 46.03 49.27 49.05 53.21 54.58 61.44 62.21 64.08
1.75 10.23 50.98 52.89 51.84 55.73 55.16 59.06 61.01 68.16 68.91 70.69
1.70 18.88 59.85 62.11 60.61 65.12 64.37 67.93 70.43 77.97 78.70 80.31
1.65 31.28 72.41 74.89 73.07 78.08 77.43 80.61 83.57 91.61 92.32 93.64
1.60 48.33 89.55 92.13 90.11 95.43 95.17 98.06 101.31 109.97 110.67 111.55
1.50 100.82 141.94 144.53 142.32 147.77 148.94 151.49 154.88 165.28 165.39 165.97
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Table B.2: Table (continued)
Distances 21O0+ 13N0− 13N0+ 13N1 13N2 13Q2 11N1 13Q3 13Q4

(Å)
2.20 84.32 89.43 89.66 91.54 94.98 100.97 105.54 107.64 114.42
2.10 78.78 84.49 84.65 86.40 89.55 95.11 98.87 101.69 108.38
2.00 75.38 82.30 82.41 84.00 86.84 91.41 94.68 97.89 104.47
1.98 75.08 82.33 82.43 83.98 86.76 91.06 94.28 97.51 104.06
1.96 74.95 82.56 82.64 84.16 86.87 90.87 94.07 97.29 103.82
1.94 74.99 82.99 83.07 84.55 87.19 90.86 94.06 97.25 103.75
1.92 75.23 83.65 83.72 85.17 87.74 91.05 94.27 97.41 103.88
1.90 75.69 84.57 84.63 86.04 88.54 91.45 94.73 97.79 104.22
1.85 77.96 88.11 88.15 89.47 91.79 93.57 97.13 99.82 106.17
1.80 82.15 93.78 93.81 95.03 97.12 97.63 101.65 103.75 110.00
1.75 88.77 102.07 102.10 103.21 103.94 105.21 108.81 110.05 116.21
1.70 98.43 113.33 113.33 114.62 113.59 116.43 119.21 119.32 125.37
1.65 111.87 126.40 126.40 129.95 129.02 131.59 132.27 133.58 138.20
1.60 129.98 144.01 144.01 149.76 149.22 151.53 150.05 152.77 155.56
1.50 184.59 197.12 197.12 202.61 208.08 208.13 208.66 209.85 209.98
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APPENDIX C

LnS AND LnSe f -ccCA ENERGIES AND MULTIREFERENCE DIAGNOSTICS

Table C.1: Total atomization terms and dissociation energy obtained with f -ccCA using PW91-
DKH3 geometries, along with all-electron basis sets. Theoretical and experimental dissociation
energies are in kcal·mol−1.

JMP2CBS JHFCBS JCV JCC JSO f -ccCA D0 Exp. D0 195 Exp. D0

Category I
PrS 45.10 69.48 1.74 6.32 -2.66 118.69 120.61 112 ± 6a

PrSe 39.84 56.79 2.76 8.64 -4.82 102.35 103.68 -
SmS 50.88 46.75 -0.62 -4.92 1.17 92.70 92.52 -
SmSe 47.49 35.60 0.86 -3.60 -1.32 78.66 80.62 -
GdS 49.22 79.46 0.63 -4.55 -3.08 121.06 121.80 124 ± 6a

125 ± 4b

GdSe 44.24 67.96 1.59 -2.40 -5.22 105.77 106.20 102 ± 5a

103 ± 4c

LuS 38.34 88.25 1.22 -3.57 -3.91 119.69 119.70 120 ± 6a

120 ± 4b

LuSe 36.95 77.39 0.63 -1.94 -6.12 106.51 106.10 99 ± 6a

100 ± 4c

Category II
NdS 29.34 88.35 1.77 -1.50 -0.22 116.73 111.15 120 ± 6a

112 ± 4b

NdSe 24.08 76.29 2.83 0.73 -3.84 99.21 94.53 91 ± 6a

91 ± 4c

EuS 50.93 42.54 0.41 -5.43 4.44 92.35 87.90 86 ± 6a

86 ± 4b

EuSe 43.97 37.39 1.51 -2.95 2.77 82.34 76.50 66 ± 6a

72 ± 4c

Category III
TbS -30.65 155.93 -0.66 9.14 -1.05 132.13 122.00 —
TbSe -35.40 144.38 -24.57 11.17 -3.19 92.02 106.10 —
ErS -68.77 130.69 -0.96 28.42 0.18 89.01 98.20 99 ± 4b

ErSe -181.13 5.43 32.59 44.24 -1.06 -100.29 82.70 —
a Reference176
b Reference189
c Reference190
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Table C.2: Total atomization terms and dissociation energy obtained with f -ccCA using
CCSD(T)/DKH3 geometries, along with all-electron basis sets. Theoretical and experimental disso-
ciation energies are in kcal·mol−1.

JMP2CBS JHFCBS JCV JCC JSO f -ccCA D0 Exp. D0 195 Exp. D0

Category I
PrS 44.75 69.67 1.66 6.46 -2.66 118.59 120.61 112 ± 6a

PrSe 39.57 56.94 2.69 8.77 -4.82 102.29 103.68 -
SmS 50.33 47.08 -0.64 -4.75 1.17 92.63 92.52 -
SmSe 43.68 41.24 0.64 -2.44 -1.32 81.41 80.62 -
GdS 49 79.58 0.62 -4.46 -3.08 121.04 121.80 124 ± 6a

124.5 ± 3.5b

GdSe 43.84 68.21 1.54 -2.21 -5.21 105.74 106.20 102 ± 5a

103 ± 4c

LuS 38.14 88.31 1.23 -3.51 -3.91 119.62 119.70 120 ± 6a

120.2 ± 3.5b

LuSe 37 77.38 0.63 -1.95 -1.24 106.51 106.10 99 ± 6a

100 ± 4c

Category II
NdS 29.36 88.34 1.78 -1.51 -0.22 116.53 111.15 120 ± 6a

112.2 ± 3.5b

NdSe 24.25 76.22 2.87 0.65 -3.84 99.28 94.53 91 ± 6a

91 ± 4c

EuS 49.64 43.5 0.36 -4.98 4.44 92.43 87.90 86 ± 6a

85.9 ± 3.5b

EuSe 43.65 37.69 1.47 -2.84 2.77 82.4 76.50 66 ± 6a

72 ± 4c

Category III
TbS — — — — -1.05 — 122.00 —
TbSe — — — — -3.19 — 106.10 —
ErS — — — — 1.08 — 98.20 99.2 ± 3.5b

ErSe — — — — -1.06 — 82.70 —
a Reference176
b Reference189
c Reference190
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Table C.3: Multireference considerations for lanthanide sulfides
and selenides using PW91-DKH3 geometries. T1 and D1 are
common diagnostics, |T1max | and |T2max | are the absolute values
of the largest amplitudes, and S2 is the spin contamination.

T1 D1 |T1max | |T2max | Spin contamination (S2)
PrS 0.03 0.10 0.12 — 0.030
NdS 0.03 0.08 0.07 — 0.010
SmS 0.04 0.11 0.13 0.11 0.010
EuS 0.03 0.10 0.13 — 0.001
GdS 0.04 0.11 0.13 0.2 0.030
TbS 0.03 0.10 0.13 — 0.007
ErS 0.03 0.10 0.13 0.06 0.002
LuS 0.03 0.09 0.08 — 0.003
PrSe 0.03 0.10 0. 13 — 0.040
NdSe 0.03 0.09 0.07 — 0.010
SmSe 0.03 0.10 0.13 0.11 0.010
EuSe 0.03 0.12 0.15 — 0.001
GdSe 0.03 0.10 0.12 0.19 0.040
TbSe 0.03 0.10 0.13 — 0.009
ErSe 0.05 0.15 0.21 0.1 0.010
LuSe 0.03 0.10 0.09 — 0.003
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Table C.4: Multireference considerations for lanthanide sulfides
and selenides using CCSD(T)/ECP geometries. T1 and D1 are
common diagnostics, |T1max | and |T2max | are the absolute values
of the largest amplitudes, and S2 is the spin contamination.

T1 D1 |T1max | |T2max | Spin contamination (S2)
PrS 0.03 0.1 0.12 — 0.03
NdS 0.03 0. 10 0.08 — 0.01
SmS 0.04 0.11 0.13 0.11 0.004
EuS 0.03 0.11 0.13 — 0.001
GdS 0.04 0.11 0.13 0.2 0.005
TbS — — — — —
ErS — — — — —
LuS 0.03 0.1 0.08 — 0.003
PrSe 0.03 0.1 0.13 — 0.04
NdSe 0.03 0.09 0.07 — 0.01
SmSe 0.03 0.1 0.13 0.1 0.003
EuSe 0.03 0.11 0.15 — 0.001
GdSe 0.04 0.11 0.12 0.2 0.004
TbSe — — — — —
ErSe — — — — —
LuSe 0.03 0.1 0.09 — 0.003
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APPENDIX D

PFAS ENTHALPIES OF FORMATION, EXTRAPOLATED ENTHALPIES AND
OPTIMIZED GEOMETRIES

Methodology used to determine the estimated enthalpies
As the computational costs rise substantially with the increase in molecule size, the enthalpies

were estimated for larger molecules simply to provide qualitative energy estimates. This was possible
due to the observed (somewhat) systematic change in energy with respect to increasing molecule
size. The process used is as follows for each (DLPNO and ccCA) method:

• The enthalpy differences between consecutive molecules of increasing size are calculated.

• The enthalpy difference is calculated as follows:

J(J�◦f ) = J�◦f (CF3−(CF2)=+1−COOH) − J�◦f (��3 − (��2)= − �$$�)

where n is the number of carbon atoms in the smaller of the two molecules in comparison.

• The average enthalpy difference is determined.

• This difference is added to the last DLPNO or ccCA calculated or estimated enthalpy.

The uncertainty is determined using the root mean square deviation of the enthalpy difference
J(J�◦f ) as compared to the computed enthalpic difference.

Table D.1: ccCA energy differences calculated between
subsequent PFAS molecules.

ccCA (kcal·mol−1) J(J�◦f ) (kcal·mol−1)
C2F3HO2 -247.51 —
C3F5HO2 -347.84 -100.33
C4F7HO2 -444.94 -97.1
C5F9HO2 -543.78 -98.84

As an example, for the PFAS with ccCA, the average enthalpic difference J(J�◦f ) for PFEtA to
PFPeA molecule is -98.76 kcal·mol−1, resulting from (-100.33 + (-97.10) + (-98.84))/3. Then the
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PFHxA enthalpy of formation is estimated as:

J�ccCA
f (C6F11HO2) = J�ccCA

f (C5F9HO2) + (−98.76)

which here gives:

J�ccCA
f (C6F11HO2) = −543.78 + (−98.76) = −642.54 kcal · mol−1

For PFHpA and PFOA, the same formula is used with the average difference in enthalpy values
building upon PFHxA enthalpy and gives -741.29 and -840.05 kcal·mol−1, respectively.
The uncertainty is calculated using the root mean square deviation formula:

'"(� =

√∑(G4 − G0)2
=

where G4 is the average enthalpic difference (in this example, G4 = -98.76 kcal·mol−1), G0 represents
the actual enthalpy difference (J(J�◦f ))) of a given molecule and = is the number of known values
(in this example, ==3). Using the three calculated enthalpy variation, the uncertainty obtained is
1.32 kcal·mol−1.

Enthalpies of formation from experiment

Table D.2: Experimental enthalpies of formation
(kcal·mol−1) for the molecules involved in the
different isogyric reactions. All the data were
taken from the ATcT database.262

Molecules J�◦f
CH4 -17.81 ± 0.01
CF4 -223.09 ± 0.06
HF -65.18 ± 0.01
CF3H -166.32 ± 0.10
F2 0.0
CO2 -94.04 ± 0.01
CH3OH -47.97 ± 0.04
CH3CH2OH -56.07 ± 0.05
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Relative computational time used per method
The following calculation were run on an Intel® Xeon® Gold 6148 CPU @ 2.40 GHz nodes

using 10 processor and 10 Gb of global memory at the Institute for Cyber-Enabled Research (iCER)
at Michigan State University.

Table D.3: Total CPU time in second for different calculations.

Molecules B3LYPa M06-2Xa MP2/aug-cc-pVQZb DLPNO-CCSD(T)/aug-cc-pVQZc

C3H6O2 150.1 131.8 4519 16695
C3F8 141.1 157.8 14673 67107
C3F5HO2 203.2 196.3 17141 56432
a Calculation with NWChem 6.1.
b The MP2 calculation (using Molpro 2020) with the aug-cc-pVQZ basis set corresponds to the most

expensive step of the ccCA methodology.
c The DLPNO-CCSD(T) calculation (using ORCA 4.2.1) with the aug-cc-pVQZ basis set corresponds to

the most expensive step of the DLPNO-CBS method.
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Figures showing comparisons of enthalpies of formation using a number of
different methods

Figure D.1: J�◦f (in kcal·mol−1) for alkanoic acid determined using the total atomization approach.
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Figure D.2: J�◦f (in kcal·mol−1) for alkanoic acid determined using the homodesmotic approach.
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Figure D.3: J�◦f (in kcal·mol−1) of the perfluoroalkanes determined using the total atomization
approach.
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Figure D.4: J�◦f (in kcal·mol−1) of PFAS determined using the total atomization approach.
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Figure D.5: Comparison between J�◦f (in kcal·mol−1) of PFAS using a) ISO1 and b) ISO2.
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FTCA

Figure D.6: J�◦f (in kcal·mol−1) of PFAS using a) PFAS-ol and b) FTCA using the total atomization
approach.

Optimized Geometries for all molecules used in this study
For all molecules examined in this study (see chapter 6), the geometries were optimized at the

B3LYP/6-31G level of theory using NWChem 6.1. All geometries are given in angstrom.
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Perfluoroalkanes

Table D.4: Optimized geometry of C2F6 in
Å.

Energy (a.u) C2F6: -675.0870054
C -0.00000000 0.00000000 0.76576260
C 0.00000000 -0.00000000 -0.76576260
F -1.24922451 -0.33472870 1.23724806
F 0.33472870 1.24922451 1.23724806
F 0.91449581 -0.91449581 1.23724806
F -0.91449581 0.91449581 -1.23724806
F -0.33472870 -1.24922451 -1.23724806
F 1.24922451 0.33472870 -1.23724806
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Table D.5: Optimized geometry of C3F8
in Å.

Energy (a.u) C3F8: -912.796896
C 1.30638971 0.00000000 -0.226443
C 0.00000000 0.00000000 0.583208
F 1.37649802 -1.11993526 -1.026296
F 2.38134446 0.00000000 0.630762
F 1.37649802 1.11993526 -1.026296
C -1.30638971 0.00000000 -0.226443
F 0.00000000 1.13296665 1.391197
F 0.00000000 -1.13296665 1.391197
F -1.37649802 1.11993526 -1.026296
F -2.38134446 0.00000000 0.630762
F -1.37649802 -1.11993526 -1.026296
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Table D.6: Optimized geometry of C4F10
in Å.

Energy (a.u) C4F10: -1150.531818
C -0.38885413 1.96353729 0.118689
C 0.43455372 0.65984611 0.081888
F -1.14375914 2.08298267 -1.029202
F 0.46201798 3.04112295 0.202805
F -1.22647822 1.98016924 1.209434
C -0.35510884 -0.61609574 -0.276545
F 1.01108155 0.49107963 1.340543
F 1.44889688 0.82221960 -0.855142
C 0.34874992 -1.94869439 0.051246
F -0.61768497 -0.59713154 -1.641759
F -1.56748635 -0.60017771 0.412643
F 1.63558784 -1.94209673 -0.444402
F -0.34306535 -2.98712152 -0.527882
F 0.39303344 -2.15564171 1.410260
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Table D.7: Optimized geometry of C5F12
in Å.

Energy (a.u) C5F12: -1388.253608
C 0.13730111 -2.61575727 -0.133275
C -0.59055179 -1.26443920 0.031563
F 0.63499045 -2.75098152 -1.408072
F -0.74706740 -3.64285089 0.102456
F 1.17668844 -2.70979824 0.768258
C 0.32740337 -0.01970537 0.057558
F -1.30286801 -1.30990607 1.223786
F -1.48738692 -1.13958635 -1.028021
C -0.38808834 1.32640050 -0.204662
F 1.31722315 -0.17805847 -0.910969
F 0.93894816 0.03928237 1.308756
F -0.64007996 1.43177627 -1.567116
C 0.39631023 2.58385520 0.227204
F -1.60065997 1.33241569 0.482542
F 1.68423783 2.53345750 -0.263327
F 0.44155255 2.68531322 1.597903
F -0.22455654 3.70439504 -0.274242
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Table D.8: Optimized geometry of C6F14
in Å.

Energy (a.u) C6F14: -1625.975301
C -3.25238023 -0.35429955 0.044396
C -1.92292632 0.33947282 0.411798
F -3.46104087 -0.32395166 -1.314505
F -4.29405459 0.29879940 0.661620
F -3.23794159 -1.66638191 0.468748
C -0.64297001 -0.43386905 0.011361
F -1.91063221 0.52773110 1.788359
F -1.91236147 1.58346058 -0.216759
C 0.65074175 0.42119819 -0.013189
F -0.83303525 -0.97092457 -1.259998
F -0.46990348 -1.47770363 0.917274
F 0.64741563 1.18074045 -1.181083
C 1.96640928 -0.39311617 0.036679
F 0.63617364 1.28249650 1.081443
F 1.84056161 -1.50303088 -0.796967
F 2.16602766 -0.82710836 1.341405
C 3.23208345 0.37483392 -0.401734
F 3.22598809 0.59361386 -1.759383
F 4.34784408 -0.36397163 -0.082655
F 3.30249417 1.58828652 0.249749
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Table D.9: Optimized geometry of C7F16
in Å.

Energy (a.u) C7F16: -1863.696959
C -0.20658419 3.90961435 -0.210473
C 0.42941863 2.59169121 0.282103
F -0.07647680 4.03633894 -1.573577
F 0.42526500 4.97384645 0.390133
F -1.54515250 3.94485439 0.119550
C -0.34383182 1.30476744 -0.096786
F 0.52104622 2.65841497 1.666910
F 1.71348917 2.52023052 -0.255151
C 0.48250620 -0.00470631 0.013293
F -0.78779819 1.42999450 -1.411235
F -1.45063339 1.20553745 0.743101
F 1.32067789 -0.08257775 -1.095625
C -0.37109252 -1.29964883 0.077185
F 1.25972338 0.05922426 1.166608
F -1.42821293 -1.18168576 -0.822199
F -0.88873503 -1.41653753 1.365186
C 0.39937714 -2.59991998 -0.259275
F 0.56618198 -2.66869492 -1.636943
C -0.28554970 -3.90650097 0.196538
F 1.65290585 -2.55058965 0.348086
F -1.60393227 -3.91911933 -0.207920
F -0.23413581 -4.03465887 1.564747
F 0.36071983 -4.98166328 -0.368163

188



Table D.10: Optimized geometry of C8F18
in Å.

Energy (a.u) C8F18: -2101.418614
C -0.09319889 4.56133266 0.286812
C 0.39818412 3.24375672 -0.351103
F -1.46973298 4.62982497 0.238529
F 0.42737440 5.62754255 -0.409396
F 0.31535464 4.65280380 1.596673
C -0.31382544 1.96344991 0.150037
F 1.76195588 3.13328007 -0.085204
F 0.21102035 3.34320215 -1.724202
C 0.43869841 0.64028653 -0.155852
F -1.57135527 1.90958073 -0.446658
F -0.47560174 2.06310729 1.530063
F 0.96659267 0.72012245 -1.441496
C -0.44513763 -0.63497305 -0.073643
F 1.48217390 0.51485311 0.757229
F -1.21540824 -0.70430784 -1.231166
F -1.28858909 -0.51817889 1.027842
C 0.35142122 -1.96013387 0.066830
F 1.46609354 -1.90098871 -0.766378
C -0.44743647 -3.23658880 -0.294067
F 0.78310891 -2.07072846 1.386702
F -0.53000271 -3.32757420 -1.678045
F -1.73361721 -3.12672555 0.231490
C 0.15532895 -4.55858919 0.228538
F 1.49552782 -4.62924906 -0.088830
F -0.49457329 -5.61978957 -0.357632
F 0.01082251 -4.65660336 1.592534
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PFAS

Table D.11: Optimized geometry of
C2F3O2H in Å.

Energy (a.u) C2F3O2H: -526.630195
C -0.53529140 -0.24437170 -0.030642
C 0.83201048 0.43509830 0.003914
F -1.51266726 0.66661670 -0.352853
F -0.83578942 -0.78934420 1.206833
F -0.56085533 -1.26334498 -0.965459
O 1.79893341 -0.49422979 0.225600
O 1.00880665 1.63781145 -0.136133
H 2.69224573 -0.08842291 0.266355
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Table D.12: Optimized geometry of
C3FF5O2H in Å.

Energy (a.u) C3F5O2H: -764.354871
C 0.28831345 -1.04321695 0.217696
C -0.58287330 0.14848741 -0.213594
C 0.14205667 1.49884927 -0.229122
O 0.56233219 1.80831321 1.027048
H 1.02531714 2.67387645 1.057332
O 0.30055780 2.18476341 -1.228330
F 0.54416523 -1.01209194 1.568245
F -0.32892170 -2.23583625 -0.082275
F 1.49499267 -0.98621770 -0.461122
F -1.67953887 0.21867080 0.651293
F -1.04639461 -0.11080789 -1.496686
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Table D.13: Optimized geometry of
42 F7O2H in Å.

Energy (a.u) C4F7O2H: -1002.074868
C -0.12319170 1.79135874 -0.005065
C 0.52297118 0.39132879 0.002471
C -0.43889071 -0.80934370 0.007300
C 0.25489725 -2.17672206 -0.004335
F 0.86643583 2.74901757 0.011643
F -0.88773222 1.97311220 -1.136451
F -0.92243585 1.96910686 1.102969
F 1.32285351 0.31455017 1.140391
F 1.32389430 0.30474124 -1.134449
F -1.26802516 -0.70959974 -1.115035
F -1.24345064 -0.72166556 1.148740
O 1.46780836 -2.34941199 0.004135
O -0.68538434 -3.15598151 -0.021163
H -0.27874006 -4.05009963 -0.025806
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Table D.14: Optimized geometry of
C5F9O2H in Å.

Energy (a.u) C5F9O2H: -1239.798277
C -2.36930776 -0.29505450 -0.016240
C -1.05618149 0.51443306 0.036420
F -2.54138860 -0.87239311 -1.252510
F -3.43493848 0.54162255 0.226544
F -2.35833130 -1.28539809 0.944322
C 0.23912900 -0.32682021 0.049835
F -1.08903435 1.29485466 1.186231
F -1.03747890 1.35062426 -1.078565
C 1.54184004 0.42903685 -0.309918
F 0.09478553 -1.38550006 -0.845811
F 0.39872862 -0.86184155 1.330769
C 2.79797660 -0.35292838 0.105987
F 1.50908821 1.68080769 0.303124
F 1.58083284 0.61014459 -1.689265
O 3.26549730 0.07326262 1.305931
H 4.05872226 -0.43474132 1.585294
O 3.27500440 -1.24952192 -0.577863
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Table D.15: Optimized geometry of
C6F11O2H in Å.

Energy (a.u) C6F11O2H: -1477.519992
C -2.99065966 -0.14340199 0.361136
C -1.67404883 0.54461105 -0.058984
F -4.04710036 0.70502611 0.119503
F -2.97742510 -0.45153690 1.701580
F -3.17833574 -1.30087302 -0.364572
C -0.42943594 -0.37544365 -0.095275
F -1.44136307 1.58285166 0.842193
F -1.86484481 1.08069955 -1.326610
C 0.92979547 0.36654914 -0.098871
F -0.51206286 -1.16068622 -1.242813
F -0.47013542 -1.20872589 1.021200
C 2.14846045 -0.46712659 -0.569508
F 1.19381729 0.80511602 1.200313
F 0.83078489 1.48360787 -0.926155
C 3.48424617 0.18987666 -0.185666
F 2.10151675 -0.57403320 -1.955970
F 2.04822255 -1.74469072 -0.019648
O 3.95993743 -0.31599025 0.979767
H 4.80454462 0.11220271 1.241589
O 4.01066617 1.06401213 -0.862092
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Table D.16: Optimized geometry of
C7F13O2H in Å.

Energy (a.u) C7F13O2H: -1715.242896
C -3.63189312 -0.65274505 -0.076633
C -2.38830729 0.16569608 0.333077
F -3.49497135 -1.96436697 0.327342
F -3.81383423 -0.61972941 -1.439359
F -4.74844321 -0.11991885 0.525812
C -1.02754294 -0.46943957 -0.044785
F -2.43011749 0.33273625 1.712009
F -2.49065673 1.41378085 -0.278635
C 0.17598539 0.51053821 -0.027085
F -1.13707909 -1.00728667 -1.325363
F -0.77453335 -1.50297885 0.855165
C 1.56625683 -0.17398980 0.031830
F 0.04692534 1.34045057 1.083571
F 0.11739232 1.28462751 -1.183466
C 2.76566318 0.71954285 -0.370452
F 1.54418566 -1.29033017 -0.798601
F 1.79145667 -0.59759099 1.345188
F 2.55625903 1.99421341 0.147033
F 2.81854005 0.80437670 -1.762029
C 4.11379884 0.20651092 0.161788
O 4.40790771 -0.98877366 -0.414428
H 5.26674364 -1.34781427 -0.101333
O 4.80491527 0.80683601 0.971056
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Table D.17: Optimized geometry of
C8F15O2H in Å

Energy (a.u) C8F15O2H: -1952.963328
C -1.30819935 -0.91880901 -0.672732
C -0.55826923 0.10340399 0.223537
C 0.98804703 -0.04625292 0.217964
F -1.00673047 -0.04873080 1.532744
F -0.88110424 1.38306242 -0.221288
C 1.75838305 1.19529698 0.735815
F 1.39872523 -0.30000160 -1.088644
F 1.31824161 -1.13677298 1.017696
C 3.22957515 0.94429190 1.155131
F 1.08429439 1.71660850 1.838836
F 1.76343063 2.16140216 -0.271851
C 4.02989887 2.25062747 1.283615
F 3.81745226 0.09497147 0.218123
F 3.23295671 0.31164273 2.394109
O 4.68657350 2.53437985 0.131026
O 4.03630305 2.92674524 2.304219
C -2.81371952 -1.08158866 -0.349941
F -0.70323025 -2.16560190 -0.534677
F -1.18875978 -0.50655175 -1.998560
C -3.65434337 -1.75271606 -1.457966
F -3.36335619 0.17740947 -0.114137
F -2.93826217 -1.85249164 0.799314
F -4.89698351 -2.07001557 -0.959471
F -3.04138177 -2.91059904 -1.888467
F -3.81705656 -0.90618776 -2.529598
H 5.18619343 3.37770778 0.197495

196



PFAS-ol

Table D.18: Optimized geometry of
C2F3H3O in Å.

Energy (a.u) C2F3H3O: -452.636565
C -0.00315507 -0.39077246 -0.000274
C 0.78074644 0.89697556 0.003417
F 0.89388047 -1.46075774 0.015533
F -0.79336453 -0.53031316 -1.127246
F -0.82038764 -0.52002108 1.108618
O -0.16755908 1.97822270 -0.015365
H 1.43125786 0.88965363 -0.879277
H 1.40720260 0.89867991 0.903346
H 0.29069736 2.83995793 0.002983
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Table D.19: Optimized geometry of
C3F5H3O in Å.

Energy (a.u) C3F5H3O: -690.361195
C -0.58099113 -0.38560486 -0.021367
C 0.00897042 -1.63159231 0.602301
F -1.73492008 -0.06630623 0.722065
F -0.98024519 -0.62398016 -1.339931
C 0.30469937 0.86793118 -0.028080
O 1.22849192 -1.93570932 -0.098157
H -0.74578364 -2.42140467 0.501619
H 0.17257582 -1.42819393 1.666328
H 1.68273799 -2.69927359 0.305861
F 0.85813512 1.04580143 1.233030
F -0.44029271 1.99112524 -0.328264
F 1.32448499 0.77531037 -0.943318
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Table D.20: Optimized geometry of
C4F7H3O in Å.

Energy (a.u) C4F7H3O: -928.083437
C -0.61225897 -0.96886330 -0.096218
C -0.27725431 -2.35183665 0.424669
F -1.73220841 -0.51770629 0.638630
F -0.98888448 -1.01948637 -1.440409
C 0.49204072 0.09902870 0.043087
O 0.88483253 -2.81748157 -0.284665
H -1.15819096 -2.97877056 0.238460
H -0.11561906 -2.27421221 1.504425
H 1.30482217 -3.56504868 0.181245
F 1.12177075 -0.08684868 1.283111
C 0.02860450 1.56911680 -0.002462
F 1.43365261 -0.06838838 -0.962741
F -0.66668690 1.90755241 1.137334
F -0.77944871 1.78749273 -1.098750
F 1.12527425 2.39991620 -0.096944
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Table D.21: Optimized geometry of
C5F9H3O in Å.

Energy (a.u) C5F9H3O: -1165.807779
C -0.48840389 -1.78359531 -0.165904
C 0.15430647 -3.05037513 0.390942
F -1.75388328 -1.64728250 0.444234
F -0.69118385 -1.88830458 -1.543750
C 0.30229962 -0.48178166 0.093929
O 1.50215003 -3.23936730 -0.067487
H -0.42746311 -3.89076557 0.008772
H 0.06854941 -3.02478560 1.481370
H 2.13168244 -2.70585503 0.458361
F 0.88792910 -0.59006822 1.369031
C -0.50043622 0.83611147 0.057824
F 1.34237453 -0.39141979 -0.832627
F -1.23853059 0.93836956 1.232689
F -1.37449422 0.80101903 -1.026488
C 0.34056742 2.12357600 -0.072550
F 1.35749447 2.12687186 0.861086
F -0.46025185 3.22135745 0.147738
F 0.88862842 2.23022774 -1.329385
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Table D.22: Optimized geometry of
C6F11H3O in Å.

Energy (a.u) C6F11H3O: -1403.526963
C -0.43656497 -2.35359356 -0.214025
C 0.05997694 -3.64663951 0.403230
F -1.75302054 -2.15963853 0.259540
F -0.49758405 -2.46132606 -1.604563
C 0.37145901 -1.08002392 0.131342
O 1.41731904 -3.83992058 -0.030496
H -0.61736050 -4.43535227 0.052239
H -0.02640511 -3.55915500 1.491364
H 1.75881938 -4.70692510 0.259738
F 0.74280535 -1.16087349 1.478863
C -0.38316900 0.26240890 -0.059502
F 1.52228218 -1.03991509 -0.649136
F -1.26688690 0.43189106 1.007177
F -1.11832121 0.20655150 -1.241674
C 0.52267878 1.51615890 -0.130396
F 1.52166029 1.41322988 0.836880
C -0.19672874 2.86269753 0.099674
F 1.11409764 1.56901662 -1.387124
F -0.56526691 3.00640026 1.417463
F -1.32213749 2.94940242 -0.692680
F 0.65167093 3.89687765 -0.228015
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Table D.23: Optimized geometry of
C7F13H3O in Å.

Energy (a.u) C7F13H3O: -1641.248795
C -0.33387637 -3.01566777 -0.302795
C 0.16013568 -4.29095841 0.352489
F -1.70900959 -2.90912612 0.002166
F -0.21262409 -3.09269195 -1.691219
C 0.34874258 -1.70686794 0.163357
O 1.57014965 -4.40058391 0.087989
H -0.41282495 -5.11326948 -0.093928
H -0.07128380 -4.23246798 1.420525
H 1.99422581 -5.03472417 0.696537
F 0.57206189 -1.80957963 1.542689
C -0.46515436 -0.40656737 -0.077473
F 1.57493066 -1.57082503 -0.478805
F -1.47082552 -0.32721190 0.885393
F -1.05102320 -0.47002030 -1.339078
C 0.36763522 0.90162883 -0.007918
F 1.26830325 0.80840237 1.051476
C -0.46477115 2.19155573 0.196788
F 1.08515309 1.03324362 -1.195215
F -0.84852228 2.26481993 1.530973
F -1.60657783 2.12930434 -0.600063
C 0.26532315 3.50710705 -0.149451
F 1.50308178 3.54286410 0.458049
F -0.47746934 4.57462677 0.302704
F 0.42911455 3.63647233 -1.508827
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Table D.24: Optimized geometry of
C8F15H3O in Å.

Energy (a.u) C8F15H3O: -1878.972851
C -0.42610450 -3.71424454 -0.381060
C 0.00617135 -4.99434989 0.328177
F -1.81041769 -3.55362906 -0.156906
F -0.22686145 -3.81491168 -1.759413
C 0.28012007 -2.42718277 0.104092
O 1.42148116 -5.22453278 0.252419
H -0.47344440 -5.82006302 -0.200168
H -0.37274615 -4.96137128 1.354065
H 1.90254750 -4.69965026 0.923644
F 0.44619881 -2.53885283 1.495333
C -0.44938990 -1.09084062 -0.182390
F 1.55222908 -2.37075776 -0.467804
F -1.49554235 -0.95960697 0.729623
F -0.97191960 -1.13914134 -1.470924
C 0.44601023 0.17440097 -0.076218
F 1.27824952 0.03840160 1.032883
C -0.33570853 1.50750326 0.074242
F 1.22979037 0.25409227 -1.224255
F -0.77617219 1.60951746 1.392600
F -1.44462139 1.47631520 -0.767502
C 0.48151155 2.77889103 -0.263099
F 1.76222614 2.64800098 0.271988
C -0.10867579 4.10132265 0.272700
F 0.57747287 2.88923786 -1.644644
F 0.02421137 4.17984138 1.639259
F -1.44476880 4.19581800 -0.055833
F 0.56106028 5.16232905 -0.292528
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FTCA

Table D.25: Optimized geometry of
C3F3H3O2 in Å.

Energy (a.u) C3F3H3O2: -565.950117
C 0.13161792 -1.03758235 -0.139207
C 0.89056693 0.23180937 0.131176
F 0.90114204 -2.15813696 0.109414
F -0.33205401 -1.11520001 -1.440286
F -1.00537329 -1.13753731 0.697079
C 0.12267266 1.53487966 -0.116946
H 1.77943709 0.25055740 -0.500550
H 1.22150351 0.20787566 1.175847
O 0.65828128 2.51006545 -0.625646
O -1.17539930 1.59318015 0.322564
H -1.51597836 0.75117855 0.692885
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Table D.26: Optimized geometry of
C4F5H3O2 in Å.

Energy (a.u) C4F5H3O2: -803.668961
C -0.72874996 0.32773422 -0.075512
C -0.60029676 -0.94095734 0.752863
F -1.91975143 0.98711300 0.274008
F -0.79424813 0.02987934 -1.447400
C 0.37990563 1.37564566 0.098118
C 0.08373242 -2.15083910 0.099111
H -1.61603271 -1.26681598 0.984614
H -0.10666918 -0.70757072 1.703719
F 0.48092182 1.75069707 1.421546
F 0.17734377 2.48728550 -0.670324
F 1.61673551 0.82124319 -0.268494
O -0.42786288 -3.26190016 0.147510
O 1.31544684 -1.97855591 -0.472285
H 1.64176098 -1.05610270 -0.504369
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Table D.27: Optimized geometry of
C5F7H3O2 in Å.

Energy (a.u) C5F7H3O2: -1041.395285
C -0.84860910 -0.34419311 0.293154
C -0.64099103 -1.74929211 0.817225
F -1.80223790 0.30947526 1.084167
F -1.38807409 -0.39345468 -1.025950
C 0.40684427 0.54307329 0.239363
C 0.21634482 -2.70240208 -0.027178
H -1.64262798 -2.18450282 0.926717
H -0.18931067 -1.69427543 1.808230
F 0.96919475 0.55077286 1.517724
C 0.23783076 2.00797402 -0.199827
F 1.31048388 -0.06295635 -0.638330
F -0.55146519 2.69510078 0.694693
F -0.34221287 2.07498432 -1.448306
F 1.47137414 2.61646468 -0.254752
O 1.04794355 -3.43938898 0.484382
O -0.05740496 -2.77140838 -1.368461
H -0.68703453 -2.08976978 -1.684468
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Table D.28: Optimized geometry of
C6F9H3O2 in Å.

Energy (a.u) C6F9H3O2: -1279.116693
C -0.84889070 -1.15990300 -0.117282
C -0.55127420 -2.49034160 0.542836
F -2.19956574 -0.83883037 0.072012
F -0.64908818 -1.26946284 -1.523024
C -0.00754371 0.03520938 0.377826
C 0.83580945 -3.10234497 0.299971
H -1.31201174 -3.18978322 0.173034
H -0.68057172 -2.39103986 1.620484
F -0.01839932 0.00732125 1.773833
C -0.45653595 1.44458526 -0.069151
F 1.30793437 -0.17804477 -0.051966
F -1.57406889 1.80228911 0.677315
F -0.80996189 1.40642062 -1.416578
C 0.59684144 2.56029212 0.099307
F 1.12412865 2.53143381 1.372952
F 0.00417367 3.78483008 -0.106393
F 1.61631499 2.40905270 -0.811973
O 1.48279994 -3.60602623 1.207848
O 1.28102368 -3.15198024 -0.995489
H 0.72318785 -2.65445830 -1.629725
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Table D.29: Optimized geometry of
C7F11H3O in Å.

Energy (a.u) C7F11H3O2: -1516.838354
C -0.85028538 -1.82999908 -0.197482
C -0.59960122 -3.17177207 0.459722
F -2.20633986 -1.49888676 -0.075388
F -0.57662776 -1.92414709 -1.591633
C -0.02547929 -0.64862937 0.358870
C 0.79333967 -3.79329120 0.283480
H -1.34531624 -3.85905298 0.039899
H -0.78592729 -3.08544950 1.530086
F -0.11319466 -0.69709659 1.750798
C -0.44667788 0.77140103 -0.096002
F 1.30728619 -0.86649462 -0.007679
F -1.58806076 1.13170097 0.618970
F -0.76487587 0.73796672 -1.451414
C 0.62674365 1.86754300 0.112881
F 1.23102325 1.67690230 1.354044
C 0.10333620 3.31927491 0.070905
F 1.58721958 1.73508291 -0.883073
F -0.64155655 3.60338246 1.191552
F -0.67759155 3.51280565 -1.049337
F 1.16888133 4.18816674 0.022164
O 1.38525060 -4.31617202 1.217711
O 1.30806556 -3.82889802 -0.986379
H 0.78984515 -3.31760910 -1.642834
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Table D.30: Optimized geometry of
C8F13H3O2 in Å.

Energy (a.u) C8F13H3O2: -1754.560016
C -0.85047557 -2.58828266 -0.125185
C -0.40864247 -3.89652338 0.498077
F -2.21426372 -2.39019019 0.128511
F -0.70443209 -2.66117333 -1.539602
C -0.09445961 -1.32980337 0.355586
C 1.01440396 -4.38125821 0.185548
H -1.12113266 -4.65474591 0.148463
H -0.49893244 -3.82436798 1.581796
F -0.03821321 -1.38386427 1.748817
C -0.69771729 0.04137353 -0.045414
F 1.21004394 -1.41632380 -0.143397
F -1.79297732 0.28664076 0.780015
F -1.13560620 -0.02863183 -1.364848
C 0.28376347 1.23856778 0.071614
F 1.03334120 1.09010010 1.235979
C -0.39303524 2.63065677 0.114572
F 1.14476998 1.20138559 -1.023477
F -0.91951118 2.82467078 1.385783
F -1.43121699 2.65702741 -0.815173
C 0.53661065 3.82360884 -0.195777
F 1.68659192 3.74109627 0.560516
F -0.11085674 4.99843321 0.110240
F 0.87566212 3.84592280 -1.528415
O 1.73962345 -4.84397412 1.055320
O 1.40750962 -4.36834987 -1.127476
H 0.78198093 -3.91141246 -1.728173
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Table D.31: Optimized geometry of
C9F15H3O2 in Å.

Energy (a.u) C9F15H3O2: -1992.281669
C -0.73436135 -3.21299826 -0.308445
C -0.45435667 -4.51733995 0.409544
F -2.11930614 -3.01703835 -0.392501
F -0.25080030 -3.29213122 -1.645239
C -0.11859255 -1.95048144 0.334648
C 1.00305754 -4.99872386 0.452863
H -1.05970454 -5.27899638 -0.098535
H -0.80403776 -4.44065544 1.438941
F -0.40261279 -1.99732262 1.700015
C -0.60747086 -0.58239894 -0.208736
F 1.26807055 -2.03716352 0.167882
F -1.86900102 -0.33381964 0.327900
F -0.71524785 -0.66180484 -1.594089
C 0.31877191 0.61730980 0.133880
F 0.76075331 0.47572383 1.446222
C -0.35472648 2.00960488 -0.000271
F 1.41617376 0.57371401 -0.722473
F -1.16596834 2.20995839 1.114466
F -1.15316289 2.01191687 -1.141797
C 0.63173573 3.19850019 -0.106003
F 1.67250782 3.00267137 0.799924
C 0.02093584 4.58686568 0.182982
F 1.15173349 3.22564757 -1.394273
F -0.26198362 4.72835404 1.521238
F -1.13925480 4.75733533 -0.543057
F 0.91761583 5.56485844 -0.180400
O 1.49900292 -5.45119632 1.475518
O 1.70013454 -4.99479523 -0.727333
H 1.23689615 -4.54408733 -1.464353
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Alkanoic acids

Table D.32: Optimized geometry of
C2H4O2 in Å

Energy (a.u) C2H4O2: -228.994383
C -1.20514248 -0.74159178 -0.052916
C -0.04243103 0.22511560 0.002617
H -2.06302767 -0.24441591 -0.504836
H -1.47995174 -1.07697372 0.954553
H -0.95211894 -1.62682680 -0.648580
O 1.14179268 -0.28998979 0.518491
H 1.07231902 -1.23009643 0.780969
O -0.07874733 1.39342884 -0.361237

211



Table D.33: Optimized geometry of
C3H6O2 in Å

Energy (a.u) C3H6O2: -268.300026
C -1.92454839 -0.02660567 -0.406620
C -0.53153137 0.57871072 -0.603189
H -1.96324501 -1.04803807 -0.796177
H -2.68003926 0.57307385 -0.923789
H -2.18035513 -0.07170193 0.655754
C 0.55027624 -0.17565094 0.152660
H -0.51577193 1.62798031 -0.271751
H -0.26271072 0.59034153 -1.670246
O 0.36494156 -1.15606458 0.863232
O 1.84073605 0.31878791 0.001762
H 1.88568872 1.10382912 -0.581618
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Table D.34: Optimized geometry of
C4H8O2 in Å

Energy (a.u) C4H8O2: -307.615109
C -2.66800919 -0.65731751 0.110805
C -1.41454835 0.23025285 0.123773
H -2.63993055 -1.39907206 0.919006
H -2.76125385 -1.20200609 -0.837255
H -3.57502509 -0.05698477 0.240757
C -0.12657691 -0.58432021 -0.056735
H -1.35763889 0.78976154 1.065615
H -1.47766535 0.98466594 -0.670084
C 1.11862971 0.26147275 -0.048152
H -0.14490903 -1.14685799 -1.000731
H -0.02484715 -1.34142866 0.733405
O 2.25471698 -0.51036186 -0.212046
O 1.17906989 1.48677302 0.083970
H 3.05369634 0.06079351 -0.203567
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Table D.35: Optimized geometry of
C5H10O2 in Å.

Energy (a.u) C5H10O2: -346.906738
C -3.33648383 -0.32266396 -0.155345
C -2.09592057 0.53697296 0.132826
H -3.36802932 -0.63020275 -1.207728
H -4.25838427 0.22885264 0.059536
H -3.34029299 -1.23200354 0.458623
C -0.77689368 -0.20026266 -0.162603
H -2.10419298 0.85793908 1.184828
H -2.13473226 1.45511211 -0.470219
C 0.46438427 0.67296619 0.134925
H -0.75808371 -0.51160100 -1.215755
H -0.74906020 -1.12592199 0.433812
C 1.78584276 0.01984154 -0.227790
H 0.48059456 0.93698737 1.203139
H 0.41077323 1.60784057 -0.428872
O 2.62568482 0.50402633 -0.977606
O 2.03398911 -1.21823310 0.354760
H 1.30818076 -1.52275047 0.935888
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Table D.36: Optimized geometry of
C6H12O2 in Å.

Energy (a.u) C6H12O2: -386.212432
C -4.00303909 -0.79269640 -0.010894
C -2.77904811 0.13652041 -0.019101
H -4.01265446 -1.42539881 0.885614
H -4.00176233 -1.45527425 -0.885611
H -4.93781883 -0.22092580 -0.026331
C -1.44237249 -0.62771272 0.002878
H -2.82247830 0.81086831 0.848414
H -2.81107268 0.78011719 -0.910164
C -0.21852557 0.30409488 -0.006057
H -1.39881281 -1.30315209 -0.865832
H -1.40986412 -1.27185351 0.895507
C 1.11037716 -0.46358864 0.014399
H -0.25394220 0.97892084 0.858553
H -0.24435329 0.94927363 -0.893367
C 2.32692510 0.44601211 0.005107
H 1.17344533 -1.13803661 -0.853792
H 1.16415647 -1.10674383 0.906661
O 2.29771957 1.67081073 -0.010666
O 3.55757877 -0.20153518 0.016432
H 3.47709126 -1.17721152 0.027882
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Table D.37: Optimized geometry of
C7H14O2 in Å.

Energy (a.u) C7H14O2: -425.514935
C -4.69063917 -0.43740267 -0.035839
C -3.44429918 0.44818562 0.120216
H -4.69167330 -1.25096879 0.700409
H -4.72929301 -0.89170136 -1.033789
H -5.61096004 0.14093169 0.103923
C -2.12745429 -0.32600104 -0.074047
H -3.44612646 0.91331336 1.117043
H -3.48723381 1.27440660 -0.604470
C -0.87538909 0.55449077 0.087540
H -2.12217575 -0.78690523 -1.073464
H -2.08610893 -1.15602346 0.648172
C 0.43937765 -0.21902401 -0.117621
H -0.87735464 1.01177960 1.088808
H -0.91889220 1.38574164 -0.631582
C 1.68473444 0.67931925 0.065501
H 0.45408015 -0.65905779 -1.123788
H 0.46622148 -1.06314017 0.589514
C 3.00309211 -0.01493815 -0.225585
H 1.70931228 1.06834636 1.094575
H 1.62964415 1.54098441 -0.604725
O 3.84624818 0.38498665 -1.020074
O 3.24521386 -1.18642177 0.483326
H 2.51686892 -1.42639165 1.090899

216



Table D.38: Optimized geometry of
C8H16O2 in Å.

Energy (a.u) C8H16O2: -464.830081
C -5.34311333 -0.77028532 0.011380
C -4.09541294 0.11551284 0.156500
H -5.34830154 -1.57017617 0.762556
H -5.37763662 -1.24357243 -0.978035
H -6.26372082 -0.18855394 0.136080
C -2.77849433 -0.66403757 -0.013517
H -4.10239798 0.60131032 1.143433
H -4.13262124 0.92706298 -0.585176
C -1.52386078 0.21603864 0.131268
H -2.77047388 -1.14952623 -1.001654
H -2.74074778 -1.47665318 0.728338
C -0.20841073 -0.56440900 -0.042951
H -1.53122469 0.69866032 1.120526
H -1.56345347 1.02988487 -0.608732
C 1.04092435 0.32276395 0.096187
H -0.20152006 -1.04909813 -1.031299
H -0.16626961 -1.37576792 0.699470
C 2.35065837 -0.48239588 -0.077353
H 1.03996752 0.80459279 1.083966
H 1.01497495 1.12633604 -0.649626
C 3.58715593 0.36105807 0.064851
H 2.35898933 -0.94124867 -1.074854
H 2.41461924 -1.28175020 0.666176
O 3.63679207 1.36293319 -0.890303
H 4.44835328 1.90260515 -0.768822
O 4.47685230 0.22845799 0.909292
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