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ABSTRACT 

A person’s social intelligence impacts their physical and mental health, and the productivity 

levels of the individuals involved, for example, in workplace interactions. To promote successful 

social interactions, this dissertation explores the use of sensor technology and machine learning 

algorithms to monitor and quantify nonverbal behavior indicators in real time. This dissertation 

conducts extensive convergence research between psychology, communication science, and 

engineering and establishes a new real-time human/group interaction monitoring platform. From 

sensor selection to data collection and algorithm design, existing human behavior monitoring 

systems vary widely in the type of methods employed for their design. Many of these systems were 

trained with data collected in controlled environments, making them not practical for real-life 

scenarios. Moreover, existing systems lack the capabilities needed to recognize behaviors in a 

manner that could support machine-augmented social intelligence. To address these issues, the 

developed human/group interaction monitoring platform combines a real-time enabled multi-

sensor system with a machine learning framework that establishes training and algorithm design 

methods for behavior recognition. Methods for the execution of human studies, collection of 

natural human behavior data, and data annotation procedures were also established to train 

machines to recognize human behaviors impacting the quality of social interactions. The 

contributions of this dissertation, which can be universally applied to other behavior studies, will 

advance the design of human behavior monitoring systems for group interactions and facilitate 

future real-time feedback to increase self-awareness and promote successful social interactions.
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1. INTRODUCTION 

1.1.Social Awareness: Challenges and Opportunities 

Teamwork and social interactions are at the core of new discoveries, product developments, 

and general successful organizational outcomes. In the U.S. alone, 55M team meetings are 

estimated to be carried out per day, costing organizations ~$1.4T/year [1]. However, of those, 

~$250B/year is wasted on team meetings that have poor outcomes [1]. Research has shown that 

the quality of social interactions within a group can either foster team effectiveness where 

individuals work well together or can encourage teams to fall apart [2]. Therefore, ineffective 

social interactions are one of the principal causes of poor team productivity.  

Social interactions are constructed and influenced by the human behaviors of two or more 

individuals. An aspect of human behaviors that can degrade the quality of social interactions is 

unconscious biases. Throughout a team meeting, unconscious biases can cause behavioral events 

such as interruptions or ostracization (exclusion or the act of ignoring) towards another team 

member. To a certain extent, we have grown accustomed to these types of social behaviors and the 

biases that cause them. However, they can have a negative impact on the individuals experiencing 

these behavioral events eventually affecting, not just the outcomes of an organization but also, the 

individuals’ health. In fact, the quantity and quality of social interactions influence a range of 

health conditions including cardiovascular diseases, compromised immunity, and depression [3]–

[5]. 

Unconscious biases, also known as implicit biases, are defined as social stereotypes or 

attitudes held subconsciously about certain groups of people that affect the way individuals behave 

around them. Unconscious biases are more prevalent than conscious prejudice, which is bias 

people know they have and intentionally act upon. The actions resulting from unconscious biases 
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can lead to microinequity or microaggressions [6]. Microinequity refers to demeaning or 

marginalizing someone, whereas microaggression is the act of expressing prejudice against a 

marginalized group or person. Many of our behaviors, including unconscious bias behaviors, are 

motivated by unconscious triggers and emotions [7]. Hence, research has suggested that 

unconscious biases can be prevented by increasing our social awareness, which includes being 

self-aware of our emotions, intentions, and ways in which we communicate with each other. 

The simplest way of assuring effective social interactions is by individuals becoming more 

self-aware of their behaviors and environmental stimuli, i.e., by improving their situational 

awareness. Our perception and awareness of our behaviors and the behaviors of others play an 

important role in our daily lives and the quality of social interactions [7], [8]. However, it is known 

that as humans, our awareness and perception of our environment and the behaviors of others and 

ourselves can be limited by a variety of factors. For instance, various studies have shown that even 

when we are able to perceive intentions or environmental stimuli, we may not always be processing 

them in our conscious mind, making us unaware of the event [9]. In fact, psychologists and social 

and behavioral scientists agree in that much of what we do on a daily basis is unconscious [10], 

[11]. Thus, a step toward improving an individual’s social awareness is to apply technology to 

study and monitor in real time their human behaviors and the behaviors of those around them. 

1.2.Social Behavior Monitoring Technologies: Challenges and Opportunities 

Modern sensor technologies have permitted the objective assessment of behaviors that 

influence the well-being of humans, such as physical activity [12], sleep patterns [13], stress levels 

[14], food intake patterns [15], and social interactions [16]–[20]. As the understanding increases 

of how social interactions influence human well-being and productivity, a variety of sensor 

technologies and computational methods have been applied for the study and recognition of human 
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behaviors that influence the quality of group interactions, both for in-person and virtual interaction 

environments. 

In general, rudimentary technologies exist for the monitoring of individual-level behaviors 

and aspects of group-level behaviors [21]. Individual-level monitoring technologies focus on the 

recognition of emotions; their purpose is to increase emotional awareness to enhance aspects of 

inter-personal attraction, physical presence, and social presence [22]–[24]. On the other hand, 

group-level monitoring technologies focus on the recognition of conversation dynamics and 

attention with the end-goal of increasing balance participation and improving collaboration and 

group performance [25], [26]. Still, the real-time monitoring of complex social interaction 

dynamics, such as unconscious biases, that have a major impact on the well-being of humans, 

requires the integration of both individual-level and group-level behaviors. In addition, most of 

the existing technologies lack real-time capabilities and system features, such as a feedback 

framework or mechanism, that will permit the enhancement of social interactions in real time. 

Furthermore, many such systems are not configurable for the monitoring of complex human 

behaviors that could lead to identifying complex group dynamics and lack of awareness. In order 

to achieve a combination of individual-level and group-level behavior recognition, and create a 

system that will allow real-time feedback, a platform capable of collecting data from natural human 

interactions and processing in real time behavioral cues from multiple individuals is necessary. 

Figure 1 illustrates the concept of real-time group behavior monitoring technologies 

improving awareness during social interactions. Here, the technology captures human behavior 

data during interactions and provides informative real-time feedback to everyone regarding the 

social ecosystem to improve each user’s awareness of individual, dyadic, and group behaviors. 

Feedback messages could relate to conversation dynamics (e.g., who is dominating the 
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conversation and number of interruptions), levels of attention, or even the levels of emotional 

arousal affecting group dynamics or that can be related to implicit bias behaviors. Still, the 

information that could be fed back to the individuals involved in the interaction greatly depends 

on the capabilities of the social behavior monitoring technologies. 

1.3.Requirements and Challenges in the Design of Real-time Monitoring Technologies 

The design and implementation of a group behavior monitoring system to improve social 

interactions face theoretical and technical challenges. Humans communicate consciously and 

unconsciously using multiple channels, i.e., gestures, movements, tone of voice, etc. Therefore, 

the effective monitoring of complex group interaction dynamics requires the recognition of human 

behaviors through various sensing modalities that allow the integration of communication patterns’ 

information and emotional states. Furthermore, data from natural human interactions should be 

utilized to design computational models embedded in behavior monitoring systems. However, 

existing behavior monitoring systems lack sensing modalities, frameworks for data collection, or 

 
Figure 1. Technology to monitor individual and group behaviors during a social interaction can 

measure aspects of conversation dynamics, levels of attention, and levels of emotional arousal. 

Being aware of our behaviors and the behaviors of others has been shown to help improve social 

interactions, positively impacting individuals’ wellbeing, organizational outcomes, etc. © 2021, 

IEEE. 



 

 5 

computational capabilities needed to recognize in real time complex social dynamics, potentially 

because the design of these systems presents numerous challenges. 

The challenges that need to be overcome to achieve a functional group behavior monitoring 

system to increase self-awareness and enhance social interactions can be defined as follows: 

• Group interactions are complex and include a combination of individual behaviors and 

dyadic behaviors. Thus, monitoring group interactions using sensor technology 

requires the understanding of psychological and communication theories at the 

individual, dyadic, and group levels and their application to the engineering design of 

a system. Methods that could quantify the quality of a group interaction using 

technology are still an area to investigate and no well-established methods exist. 

• Real-time monitoring of individual behaviors and group interactions requires 

coordination of hardware and software components to perform automatic 

synchronization and processing of data collected across individuals in the interaction. 

Challenges in this area include the combination of sensing modalities, data 

synchronization across modalities and sensor nodes, and the selection of optimal signal 

processing parameters and computational models for the recognition of individual 

human behaviors and group interactions. 

• Effective recognition of behaviors requires computational models trained with data 

from natural human behavior interactions. Challenges in this area include the design 

of data processing modules with variations in data sources, lack of guidelines and/or 

infrastructure for data collection that informs methods for performing human studies, 

and management of data preparation/annotation.  
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1.4.Goals 

The goal of this project is to establish a platform through which the challenges described in 

Section 1.3 can be solved to bridge the gap between psychology, communication science, and 

engineering. Such a platform will be bringing individual, dyadic, and group-level information to 

the design of group behavior monitoring systems. The achievement of this goal will allow the 

implementation of a multimodal system to monitor, in real time, non-verbal and physiological 

behavior indicators; it will also facilitate real-time feedback to promote successful social 

interactions by bringing awareness to our unconscious behaviors. 

1.5.Outline 

This thesis is organized as follows: Chapter 2 presents the psychological theories and concepts 

that underpin the analysis of social interactions and methods to monitor them; Chapter 3 presents 

the design of a framework for the data collection of nonverbal indicators of individual behavior 

and group interaction using sensor technology and a framework for the processing of collected 

data; Chapter 4 presents initial data collection studies, processes to prepare the collected data for 

future processing, and base signal characteristics and algorithms for the recognition of nonverbal 

indicators of human behavior found in speech and body motion signals; Chapter 5 presents the 

design and execution of a social interaction study and relationship of base nonverbal behaviors 

with reported rapport experienced, and Chapter 6 presents contributions of this dissertation and 

future work. 
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2. BACKGROUND 

The multidisciplinary nature of the goals of this dissertation work spans from social sciences 

to engineering technology. Therefore, this chapter is designed to give a sense of the social science 

theories and concepts that have guided the psychological study of human behavior and social 

interactions. In addition, this chapter also describes the methods that have been employed to 

monitor human behaviors and the elements involved in using technology for such end. 

2.1.Human Behavior and its Effectors 

Humans are a highly social species expressing individual behaviors that, when accumulated, 

create the social environment in which society operates. In general, human behavior is driven by 

personal factors such as thoughts and emotions that are influenced by our environment and social 

interactions. Social interactions, constructed by the behaviors of two or more individuals, are 

highly complex and play an important role in our health and survival [3]. Behavior is generally 

defined as the “observable consequences of the choices a living entity makes in response to 

external or internal stimuli” [27]. Internal stimuli could be a person’s thoughts, memories, 

perceptions, or attitudes, while external stimuli come from the environment the person interacts 

with, including social interactions. In humans, depending on the level of situational and personal 

awareness that they possess, responses to external and internal stimuli (effectors of human 

behaviors) can be voluntary or involuntary. Figure 2 shows the dynamics of the effectors of human 

behavior, which can include personal factors and components of social interactions. 

As illustrated in Figure 2, personal factors are inside the person. They can come from a 

person’s biology or psychology. Personal factors that come from a person’s psychology are in the 

mind and are not externally observable; however, the behaviors a person expresses because of the 

influences of their psychological personal factors are directly observable. Social behaviors, a 
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subset of human behaviors that are specifically directed at other people or that involve social 

action, are directly observable. Communication, both verbal and nonverbal, is a vital aspect of 

social interactions and is directly observable. As illustrated in Figure 2, social behaviors strongly 

influence communication dynamics during a social interaction while, in a reciprocal loop, our 

social behaviors get influenced by our social interactions. Part of this idea is captured by the well-

established Social Cognitive Theory (SCT), which contends that individuals’ perceptions of their 

environment can influence their emotional, physiological, and behavioral reactions [28], [29], 

subsequently influencing future behaviors in a reciprocal loop. 

To properly understand the technology developed to monitor human behavior, one must first 

understand the personal factors that underpin human behaviors and the theories and concepts that 

have guided the psychological study of social interactions. These two topics are briefly 

summarized below to provide a scholarly foundation for the research described in this work. 

 
Figure 2. Diagram describing the effectors of human behavior and their dynamics. In short, 

given an environment, personal factors influence human behaviors, which influence our social 

behaviors affecting how we communicate during social interactions. In a reciprocal loop, the 

elements involved in social interactions influence back our personal factors, which influence our 

human behaviors and so on. © 2021, IEEE. 
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2.2.Theories and Concepts of Human Behavior 

2.2.1. Personal Factors 

The psychological factors that have been commonly studied that contribute to human behavior 

are affect and dispositions. Affect generally means anything related to a person’s emotions or 

moods, and it can be divided into two categories: states and traits. State affect is an emotion or 

mood that is experienced in a certain moment, whereas trait affect is a more enduring part of one’s 

personality. Emotions are mental and physiological experiences of feeling that are acutely 

experienced (intense) and discrete in that they have a beginning and an end point, while moods 

refer to the positive or negative feelings that are in the background of our everyday experiences; 

these are diffuse (not acutely experienced) and longer-lasting states than emotions; however, they 

are not as enduring as trait affect. Trait affect is part of one’s personality – it is a tendency to 

experience certain emotions and moods in general. For example, someone might have a negative 

affectivity trait, which is the tendency to experience negative moods and emotions more often than 

others. Together, these states of emotional experiences and traits constitute affect. 

A disposition in the social sciences is thought of as a natural proclivity (biological or 

psychological) to respond to situations in a particular way. Because dispositions are “natural” and 

inherent in the person, they are thought to be the most stable and enduring phenomenon studied in 

the psychological sciences that are discussed in this chapter (i.e., more enduring across time than 

state affect, attitudes, and behaviors). However, despite their stability across time, dispositions do 

not relate to behavior with perfect consistency because there are environmental factors that also 

influence behavior. For example, a person might have a biological disposition to develop a 

psychological disorder, but through certain training environments like therapy, they are able to 

override their disposition to develop the disorder. For another example, someone may be 
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genetically predisposed to have a reserved personality, but they are put in social environments that 

constantly require them to talk to others, so they override their genetic predisposition. Dispositions 

influence human behavior more when the situation is weak, like when a person is in a casual social 

interaction. On the other hand, dispositions influence human behavior less when the social 

situation is strong and enforces certain norms, such as a professional environment in which all 

individuals are expected to behave in a certain way regardless of their personalities [30]. This 

Section will focus on personality traits, which are influenced by dispositions as well as by the 

environment [31]. 

Lastly, another important personal factor that impacts behavior is attitudes. An attitude is a 

psychological tendency to evaluate a particular target with some degree of favor or disfavor [32]. 

The “target” could be another person or a non-living thing such as a food, brand, or idea. An 

attitude, at its core, is an evaluation. Thus, it differs from affect and dispositions. Whereas affect 

could include an emotion that arises in response to a target, an attitude is a feeling towards the 

target and a set of judgments about the target. Attitudes are more enduring than a state but less 

enduring than a trait or disposition. Figure 3 shows the relationship between these personal factors 

and time. The duration of these factors and the interactions between them play an important role 

in understanding how technology can be used to understand human behaviors. 

It was contended that there is a lack of research using behavior monitoring technologies to 

study the role of attitudes in human behavior during social interactions. Thus, next, a review of 

psychological theories that delve specifically into the explanation of state affect and personality 

traits is presented. 
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2.2.1.1.State-Affect Related Theories 

Discrete, acute emotions often provoke a person to mentally narrow in on a specific action or 

set of actions. For example, the experience of fear leads to the activation of thoughts in the mind 

about defending oneself or running away (also known as “fight-or-flight” response), and the 

experience of interest can activate a person’s thoughts aimed at exploring and taking in new 

information [33]. “Activations of thought” driven by emotions can occur subconsciously. Indeed, 

the body mobilizes physiological resources to complete these actions without the person’s 

conscious awareness. 

Based on the explored idea that emotions reflect responses of the sympathetic nervous system 

[34], the Polyvagal Theory explains how state affect alters brain processes and biological processes 

that occur in the rest of the body [35], [36]. In addition, this theory provides insights into the 

relationship between measurable physiological states, linked to the autonomic and central nervous 

systems, and the resulting human behavior, suggesting a bidirectional relationship between the 

brain and the body. It also suggests that the environment affects behaviors that consequently alter 

physiological states. Thus, monitoring changes in the physiological states of the human body, such 

 
Figure 3. Diagram describing the personal factors that influence human behavior and how they 

manifest through time. Personal factors include affect, attitudes, and dispositions, of which, 

affect and dispositions are the most studied. Affect is divided into states and traits. State affect is 

related to acute emotions and mood, in contrast to trait affect which is related to a human’s 

disposition to experience positive or negative emotions and is a more enduring part of human 

personality. © 2021, IEEE. 
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as respiration rate, heart rate, and perspiration rate, among others, can provide insights into the 

affective state of an individual [37]. Likewise, monitoring environmental conditions can provide 

information on how the environment influences emotional states and other factors. 

Emotions can be-understood to fall somewhere along two orthogonal dimensions: (1) of how 

pleasurable the emotion is, (2) and of how much arousal or activation the emotion involves. As 

shown in Figure 4, emotions are commonly arranged in a circumplex model of affect [38], 

according to where they fall on both dimensions. For example, excitement is an emotion that is 

pleasurable and high on arousal, whereas calmness is an emotion that is pleasurable and low on 

arousal. Anger and fear are unpleasant, high on arousal emotions close together on the circumplex, 

whereas boredom is a low-arousal unpleasant emotion. The circumplex model of affect is a 

mainstream and well-established theory. However, other dimensional models of emotions have 

also been used to study emotional states, such as the Pleasant, Arousal, and Dominance (PAD) 

emotional state model [39] that, in addition to modeling emotions in a valence-arousal scale, 

 
Figure 4. A typical circumplex model of affect that describes affective states using two 

fundamental neurophysiological systems: valence and arousal. Valence describes the level of 

pleasure or displeasure of an emotion, while arousal describes its level of activation. Emotions 

in blue color represent the four most commonly studied emotions in affective computing. © 2021, 

IEEE. 
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contains a dominance dimension representing the controlling nature of an emotion. The Plutchik’s 

model [40] is another dimensional model of emotions that organizes discrete emotions from the 

most basic to the most complex ones. In the field of affective computing, happiness, sadness, anger, 

and fear are the four most studied emotions. 

A discrete emotion can affect someone’s response to a social interaction whether the emotion 

was caused by that interaction or not. The well-established framework of Emotions As Social 

Information (EASI) model [41], [42] asserts that emotions serve a social function by relaying 

information when they are expressed. For example, if a person is late to a meeting with a coworker 

and the coworker appears to be angry, this provides information that leads to certain inferences, 

such as the inference that the person was late, the inference that the behavior of being tardy was 

inappropriate, and the inference that the person should strive to arrive earlier in the future [41]. 

The information that emotions relay to others in social interactions is valuable for adjusting future 

behavior. 

2.2.1.2.Personality Traits Related Theories 

The dominant theory in the organizational sciences used to taxonomize personality is the Five-

Factor Model (FFM) of personality, also known as the “Big Five.” The “Big Five” factors of 

personality can be abbreviated with the acronym “OCEAN”: Openness, Conscientiousness, 

Extraversion, Agreeableness, and Neuroticism. Openness involves being open to new experiences, 

unconventional, nonconforming, creative, and imaginative, while conscientiousness is the 

“tendency toward being dependable, disciplined, purposeful, organized, and achievement-

oriented” [43]. Extraversion, in the sense of the FFM, is the “tendency to be social, talkative, 

energetic, and active” [43]. It was found that among the personality factors, extraversion has the 

strongest relationship with leadership (both being recognized as a leader by others and being 
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effective as a leader) [44]. On the other hand, agreeableness tends to be a catchall factor related to 

aspects of personality that are likable and harmonious with others, such as being trusting of others, 

polite, empathetic, and compliant [45]. The last one of the Big Five is Neuroticism, which is often 

labeled as its opposite instead, emotional stability. Those who are high on neuroticism are more 

likely to experience negative emotions like anxiety, anger, irritation, frustration, and jealousy. On 

the other hand, having low neuroticism or high emotional stability means that a person tends to be 

more even-keeled, calm, and unwavering (not necessarily positive or enthusiastic). 

There are many other taxonomies of personality, such as the HEXACO model [45] which 

breaks the agreeableness factor of the FFM into agreeableness and humility. The Dark Triad is 

another taxonomy that has only three undesirable personality traits: narcissism, Machiavellianism, 

and psychopathy [46]. Another trait is locus of control, which describes the extent to which 

individuals believe that they control their own outcomes as opposed to having their successes and 

failures determined by external forces [47]. So far, the traits covered by the FFM and the locus of 

control have been studied using human behavior monitoring technologies. In general, the 

activation of these traits during social interactions contributes to observable social behaviors that 

make up the social environment that people operate in. 

2.2.2. Communication 

One of the most important factors influencing our human behavior is the social behavior of 

our interaction partners. We might think of it as a situational factor, but this would ignore the 

dynamic nature of mutual adaption within the communication process. By definition, 

“communication is a transactional process in which people generate meaning through the exchange 

of verbal and nonverbal messages in specific contexts, influences by individual and societal forces 

and embedded in culture” [48]. Verbal communication refers to the use of spoken and written 
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language (words). It is usually organized in distinct on-off patterns of messages or utterances with 

iterating sender and receiver (speaker, listener) roles. The use of words requires a shared explicit 

code usually to be found in a dictionary. Spoken language, however, can also carry implicit, so-

called paraverbal, information, for instance, encoded in the floor possession and pausing or in 

prosodic features such as pitch, speed, and volume of the vocal output. 

Nonverbal communication comprises all aspects of communication that are not encoded into 

words. In stark contrast to verbal communication, nonverbal communication is continuous, i.e., 

always on, and largely implicit, i.e., it lacks a dictionary and is produced and processed widely 

automatically and unconsciously. Therefore, it is hard to control, and its effects impose on the 

observer with an irrefutable force. Even a lack of nonverbal expressions is interpreted by the 

observer, for instance as disinterest. In this sense, it has been said that “we cannot not 

communicate” [49]. It has been argued that our social perception and impression formation is much 

more dependent on nonverbal cues than on verbal behavior and that nonverbal communication can 

be conceived as meta-communicative [49], in the sense that it even largely defines how we 

understand and interpret the spoken words. Thus, even in the presence of verbal communication, 

successful communication largely depends on the efficient use of nonverbal communication 

channels [50]. 

As nonverbal communication largely withdraws deliberate manipulation, it is supposed to 

provide information about unobservable processes such as the individual’s emotional state, 

intentions, personality traits, etc. [51]. The view that nonverbal communication is a reliable source 

of true information, although still under debate [52], has made it the focus of study of many areas 

dedicated to understanding social behavior and the human mind. For example, the social signal 

processing [53], [54] and affective computing [55] literature, areas of engineering and computer 
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science that study social interactions and human emotions, respectively, focus on the messages 

produced by nonverbal communication channels. They are better known in those areas as “social 

signals”; a notion that was first introduced in the field of computational social science and 

organization engineering [56]. Thus, here the focus is on reviewing the most used nonverbal 

communication channels. 

Due to its unique level of complexity, the analysis of nonverbal communication poses 

considerable methodological challenges [57]. Nonverbal communication implies multiple 

channels and serves various functions. As illustrated in Figure 5, nonverbal communication 

includes gestures, body movements, and postures [58]–[61], facial expressions [62], [63], and eye 

gaze [60], among others. This work treats paraverbal communication, such as prosody, pitch, 

volume, and intonation [64], [65], under the broader construct of nonverbal communication. 

Nonverbal communication comprises attentional functions, interpretations, and most 

importantly the regulation of interpersonal relations. We distinguish three, distinct, yet 

interdependent functions of nonverbal communication [66]: (1) discourse functions, (2) dialog 

functions, and (3) socio-emotional functions that influence our social behaviors. 

Discourse functions are closely related to speech production and understanding. Emblems, 

pointing gestures, illustrative gestures, and beat gestures belong to this functional category [67]. 

But also, prosodic aspects, such as pausing and variations in voice pitch and volume. In general, 

they influence aspects of interpersonal communication and engagement that includes listener 

attention, interest, understanding, and interpretation. 

Dialogue functions include turn-taking signals (e.g., eye contact, raise of voice, pausing) and 

back-channel signals (e.g., head nods, ‘uh-huh’, etc.), which serve to smooth the flow of interaction 

when exchanging speaker and listener roles [68]. In addition, dialogue functions influence aspects 
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of social interactions that include communication patterns, conversation dynamics, and the level 

of interaction between individuals. Dialogue functions also influence aspects of collaboration such 

as cooperation, in addition to aspects of dominance, and leadership roles. 

Socio-emotional functions of nonverbal behavior include the communication of emotions and 

interpersonal attitudes and their regulation, which are crucial for establishing rapport. Whether we 

harmonize in an interaction, take others’ perspectives or are capable of establishing a smooth flow 

of interaction very much depends on the exchange of those socio-emotional cues. Socioemotional 

functions are not independent from dialogue and discourse functions of nonverbal behavior. A 

smooth flow of the conversation will most likely influence positively the interaction climate. 

Power relations are evident in body postures, eye contact, voice amplitudes and more [69]. 

Harmony or interpersonal rapport shows in expressiveness or responsiveness [70] as well as in 

 
Figure 5. Elements of communication relevant to social behaviors during interactions modeled 

by an exchange of verbal and nonverbal messages. Verbal communication involves the use of 

words through written or spoken language. Nonverbal communication involves the use of 

gestures, facial expressions, paraverbal communication, eye movements, visual contact, body 

movements, posture, and interpersonal distance. © 2021, IEEE. 
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mutual attentiveness (body orientation, eye contact), reciprocal positivity (smiles, interpersonal 

distance, body lean, and orientation), and behavioral coordination (motor mimicry, posture sharing 

and synchrony, and activity entrainment). Thus, monitoring nonverbal messages provides insights 

into the human and social behaviors being displayed given an environment [16], [71]. 

2.2.2.1.In-Person and Virtual Communication 

Verbal and nonverbal communication are essential in both in-person and virtual interactions. 

By definition, in-person interactions are synchronistic, in that it occurs when two individuals are 

in the same place at the same time. This is the traditional and the richest media of all 

communication forms because it allows the individuals involved in the interaction to observe 

nonverbal cues such as facial expressions and body language [72]. On the other hand, virtual 

interactions come in various forms including email, telephone, instant messaging, and video calls, 

among others. This form of communication can be found to be asynchronous or synchronous. Of 

interest are video calls that, similar to in-person interactions, allow for real-time (synchronistic) 

communication, feedback, and transmission of important nonverbal cues [73]. Virtual interactions 

in the form of video calls can achieve the sense of “same space” inherent in in-person interactions. 

Virtual interactions are comprised of multiple nonverbal communication cues (embedded in 

audio, video, and text forms) that happen simultaneously and differently than they do when in-

person [74]. Research has found that voice, including paraverbal, is the most important 

communicative cue of meetings [74]–[76]. Nevertheless, video is essential in terms of “social 

presence,” defined as the sense of intimacy and immediacy with others [74]. During the COVID-

19 pandemic, Microsoft surveyed its employees to collect their experiences in virtual meetings, 

finding that participants reported that small group meetings with video turned on can be engaging 

and interactive [74]. Additionally, it was also found that to maintain a similar experience to in-
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person interactions, nonverbal cues (derived, for example, from facial expressions and body 

movements) are essential to provide information about engagement, attention, and focus [77]. 

2.3.Methods for Monitoring Human Behaviors 

2.3.1. Ethnographic Methods 

Traditionally, scientists interested in studying social interactions have made use of 

ethnographic research methods, such as observations (including experiments) and surveys. Expert 

observation is probably the most common method for studying social interactions. Data collected 

through expert observation is a method used in all sciences and is independent of people’s 

willingness to provide verbal information about their behaviors and feelings. One of the greatest 

advantages of employing expert observation is the depth of the collected data, which can be very 

detailed to “explain behavior and communication patterns in ways that a survey, interview, or 

experimental design cannot” [78]. On the other hand, self-reported data through methods such as 

surveys present the advantage that a wide range of information can be collected. Methods such as 

surveys make it possible to study very large populations, their attitudes, values, beliefs, and past 

behaviors [79]. However, even when human behaviors have been studied using expert 

observations and/or through surveys, these methods are not suitable for the interpretation of human 

and social behaviors in settings that would benefit from real-time feedback to improve on the 

observed behaviors. 

2.3.2. Biometric Technology 

In addition to expert observations and surveys to monitor human behaviors, biometric 

methods have been employed to measure psychophysiological processes related to human 

behavior. Biometric methods for studying human behavior include the use of different 

technologies, including sensors and algorithms, to monitor the activation of personal factors 
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(emotions and personality traits) and aspects of social behaviors during social interactions that 

manifest in the form of physiological processes and nonverbal messages. Some of the advantages 

of using biometric methods include the potential for unbiased and consistent measurements. 

Moreover, using the right experimental setup and biometric technologies, such as wearable sensor 

platforms, real-time data collection and analysis of human behavior can be achieved. Once “in-

the-wild” human behavior analysis is achieved, real-time feedback can be provided to create 

behavioral awareness in the individuals from which the behavior was detected. To this end, a wide 

range of biometric technologies have been developed, and a variety of sensor modalities and 

algorithms employed to facilitate the realization of studies in real-life scenarios. 

2.4.Biometric Technologies and its Components 

Technologies for real-time monitoring of human behavior require the employment of a variety 

of components. The three main components of these types of technologies are sensors, signal 

features, and computational models. This section provides a glance at the literature available in 

this area, which is thoroughly revised and analyzed in Chapter 3. Note that this section, and this 

work in general, omits the review of works that employ cameras for the monitoring of human 

behaviors. The primary reasons to exclude cameras from this work are because most of the reported 

use of video cameras for the monitoring of human behavior has been for offline applications and 

because its use increases the computational load and power consumption of the system [80]. In 

addition, it has been a topic of debate that the use of cameras to monitor human behavior presents 

a concern for user privacy. Thus, as video and image modalities present limitations for real-time 

and wearable applications, we consider them out of scope. 
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2.4.1. Wearable Sensors for Collecting Physiological Signals and Nonverbal Messages 

In the 1990s, the early development of wearables to study human behaviors was focused on 

identifying aspects of social interactions. These initial systems, still used nowadays, employed 

InfraRed (IR) and/or quasipassive radio frequency (RF) sensor modules to track position and 

proximity among individuals wearing these devices [81]–[83]. In an effort to create wearable 

systems with the ability to capture more informative data about human behaviors, research groups 

started working on the integration of multiple sensing modalities. One of the earliest initiatives 

was the MIThril project pioneered by A. Pentland [84]. The MIThril project focused on developing 

a “practical, modular system of hardware and software for research in wearable sensing and 

context-aware interaction” [84]. With the introduction in the early 2000s of the personal digital 

assistant (PDA) devices, the MIThril project first developed a modular wearable system comprised 

of a variety of sensors such as accelerometers, InfraRed (IR) active tag readers, GPS units, analog 

microphones, 2-channel electromyography (EMG) sensors, 2-channel electrodermal activity 

(EDA) sensors, and skin temperature monitors [85]. The sensors were wired to a PDA intended to 

perform real-time processing and communicate with other units of the same kind through Wi-Fi. 

However, there seem to be no reports of data collected using this system. In an effort to study 

communication patterns of groups of people during meetings in real time, Eagle and Pentland [86], 

designed a wearable system employing a headset microphone connected to individuals’ PDAs to 

allow streaming of high-quality audio signals over a network, also with the choice of storing the 

audio locally on the device for post-processing. Conversations were detected in all streamed audio 

signals and conversation features extracted, including inferring the proximity among participants. 

Later, the same research group made use of the UbER-Badge [87], a device with a microphone, a 

two-axis accelerometer, and a forward-oriented IR transceiver, to measure human interest levels 
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during interactions in a conference meeting, all among dyads [88], [89]. With a similar system 

called the Sociometer, people involved in an interaction were identified, and through audio signals, 

conversation dynamics studied [90]. This version of the Sociometer was later optimized. Modified 

versions of the Sociometer have been known as the Sociometric badge [91]–[93], Open badge 

[94], and Rhythm badge [95]; all these sensor platforms have been used in the study of social 

interactions. 

Mobile phones have also been used as a platform for monitoring social interactions. In [96], 

the Bluetooth and microphone units from a mobile phone were used to detect proximity and 

conversation dynamics in real time to infer levels of interest in a social interaction. Moreover, they 

have also been used to connect with badges to display feedback information useful to improve 

social interactions[93], [95]. A review of additional wearable sensors used for social interaction 

recognition can be found in [97]. 

Besides social interactions, wearables have also been used for real-time emotion recognition. 

In [98] and [99], accelerometer, gyroscope, ambient light, temperature, and humidity sensors were 

integrated into a watch-like device to monitor levels of anxiety in human subjects. In an improved 

version that includes a MEMS microphone and a skin temperature sensor, Jiang et al. [100] used 

this wearable system for health monitoring to study the relationship between mental health and 

physical health. In [22], Breeze, a wearable pendant placed around the neck, with an inertial 

measurement unit (IMU), was employed to measure breathing patterns as these are closely linked 

to emotions. The goal of the researchers was to improve the emotional states of the Breeze users 

by providing real-time feedback on the user’s breathing patterns. Also related to the regulation of 

emotional states, in [101], a wearable system in the form of a glove containing an EDA, a blood 

volume pulse (BVP), and a skin temperature sensor was designed to continuously monitor changes 



 

 23 

in the physiological signals that could relate to emotional mental states. On the other hand, Girardi 

et al. [102] used commercially available wearable sensors to capture electroencephalography 

(EEG), EDA, and EMG signals to detect emotions in the arousal-valence dimensions. Also using 

commercially available sensors, McGinnis et al. [103] employed accelerometers and gyroscopes 

to diagnose anxiety and depression in young children. A comprehensive list of commercially 

available wearable physiological sensors, used especially for the monitoring of emotions, can be 

found in [104]. 

2.4.2. Signal Features 

The processing of sensor signals plays a critical role in the design of accurate real-time human 

behavior monitoring systems. Methods applied for the treatment of sensor signals include digital 

signal processing and machine learning techniques. The goal of digital signal processing is to apply 

pre-processing techniques to enhance signal quality and to compute statistically identifiable signal 

characteristics or measurable signal properties, typically referred to as signal “features”, that are 

informative of human behaviors. Pre-processing techniques include signal filtering, normalization, 

and standardization which help eliminate signal artifacts and any other unwanted information from 

the collected signals [105]. On the other hand, extracting features from signals involves finding a 

variety of mathematical methods that could help identify patterns in the data [106]. Features are 

extracted/calculated using time-domain feature extraction techniques, frequency-domain feature 

extraction techniques, and time-frequency-domain feature extraction techniques. Time-domain 

features include zero crossing rate, slope sign changes, waveform length, statistical values, and 

Shannon entropy, among others; frequency-domain features include measurements derived from 

a Discrete Fourier transform and power spectral density analysis, among others; and time-

frequency-domain features include short-time Fourier transform, Hilbert transform, Morlet 
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wavelet, and wavelet transform, among others [105]. After features are extracted, machine learning 

methods such as feature selection can be used to reduce redundancy in extracted signal 

characteristics and/or reduce the dimensionality of a given dataset. Selecting a final set of signal 

features has an important influence on the size of examples needed to create models capable of 

recognizing human behaviors, on the cost of computation, and on the time needed for recognizing 

such behaviors [105]. 

2.4.3. Computational Models 

Based on the features extracted from sensor signals, computational models are trained and 

used to predict or classify human behavior. Therefore, the performance of computational models, 

also referred to in this work as machine learning models, can depend on the provided set of 

features. Likewise, the effectiveness of signal features can also depend, in part, on the type of 

computational method used to evaluate the feature's contribution. 

The two principal types of machine learning models employed in the human behavior 

recognition literature are classification and regression models. Classification models focus on 

recognizing discrete or categorical classes, while regression models focus on predicting continuous 

numerical values. The use of a machine learning model is application specific. For example, the 

problem of emotion recognition can be treated as one with categorical values (e.g., happy, sad, 

neutral) or as one with continues numerical values (i.e., reflecting levels of arousal and valence 

based on a numerical scale). More details and analysis of signal features related to human behavior 

and computational models will be given throughout Chapter 3. 

2.4.4. Training Frameworks 

The design of technologies for real-time monitoring of human behavior is not complete 

without the collection of datasets to support the evaluation of signal features and the training of 
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machine learning models. Datasets to train machine learning models for human behavior 

recognition are application specific and can be classified as acted/evoked datasets and natural 

datasets. Acted/evoke datasets refer to data collected by requesting a subject to behave in a certain 

way (e.g., actors) or by controlling the environment to elicit the behavior of interest (e.g., watching 

images or movies to elicit specific emotions). On the other hand, natural datasets refer to data 

collected during spontaneous/natural interactions where behaviors cannot be controlled. Natural 

datasets are the hardest to construct as it involves designing the scenario to encourage spontaneous 

interactions and preparing annotation schemes. According to Cognilytica, an analyst firm, 80% of 

the time spent in machine learning and artificial intelligence projects goes into data collection, 

organization, and annotation [107], [108]. 

The scientific community has worked collaboratively to create publicly available datasets to 

advance the design of algorithms. For the design of human behavior monitoring, a variety of 

datasets have been created [109]–[117]. The creation of datasets has been mostly performed for 

applications in the area of emotion recognition, however, in the last 10 years, more databases have 

surged reflecting aspects of social interactions. 

For emotion recognition applications, a combination of acted/evoke and natural datasets exist, 

in addition to datasets containing multimodal data. The HUMAINE database contains a collection 

of 48 audiovisual acted/evoked and naturalistic clips, some of them also containing physiological 

data, with labels describing affective responses. Clips were obtained mainly from TV 

shows/interviews and human-computer conversations, but clips from other sources were also 

obtained. This has been one of the most comprehensive databases, also providing a labeling 

scheme to identify emotional responses in audiovisual data [117]. DEAP is an evoked multimodal 

database containing frontal face video and physiological signals obtained while participants were 
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watching music videos. Collected data was labeled using self-reported ratings for arousal, valence, 

and like/dislike [112]. The MAHNOB-HCI is also an evoked multimodal database containing 

audio, visual, eye gaze, and physiological data. Videos and images were used to evoke emotions 

in 27 participants [113]. Other databases, such as BioVid Emo DB [109], also contain multimodal 

data collected while individuals were matching videos. Most of the data in these databases was 

collected with sensors that restricted the natural movement of participants. In addition, because 

their focus was on emotion recognition, their experimental design and collected data do not reflect 

the reactions of natural social/group interactions. 

To provide more naturalistic data on person-to-person interaction environments, other 

databases have been made available. For example, the RECOLA database contains data from 

natural remote collaborative environments [110], [111]. Multimodal data, including audio, video, 

and physiological signals were collected from interactions between dyads (two individuals). This 

dataset was labeled by external annotators using a continuous arousal and valence scale and social 

behavior dimensions. External annotators looked at the following social behaviors: agreement, 

dominance, engagement, performance, and rapport. A more recent database, SEWA DB, contains 

audiovisual data from individuals watching adverts and then dyads having a conversation about 

such adverts [115]. This dataset includes facial landmarks, facial action units, vocalizations, 

mirroring, affective state (valence, arousal), and social behavior (liking, agreement) annotations. 

However, none of these databases capture the dynamics of groups. 

There still exists a need for databases containing data from group interaction environments 

with their respective annotation schemes. For the design of human and group behavior monitoring 

systems, data capturing a combination of emotional reactions with social behaviors at the 

individual, dyadic, and group level are needed. 
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2.5.Summary 

Reviewing the personal factors that underpin human behavior and the theories and concepts 

that have guided the psychological study of social interactions provides a scholarly foundation for 

understanding the methods that have been employed for monitoring human behavior. Methods 

employing wearable sensors for the monitoring of human behaviors have been focused on 

recognizing emotions or aspects of group behaviors, separately. However, for those works that 

have focused on group behaviors, only specific aspects of communication have been implemented 

in those systems, which do not capture the entirety of the social interaction complexity to identify 

disruptive behaviors and bring awareness. Even when many efforts have been done to study and 

design technologies to monitor individual emotions and aspects of group behaviors, very little has 

been done in designing robust systems that could measure a higher number of elements influencing 

social interactions within groups of people. In addition, none of those works have been focused on 

identifying aspects of the interaction that could be potentially useful to bring awareness to 

members of a group. It is also important to note that, currently there are no standard technologies, 

methods, and/or processes to study and design group behavior monitoring systems.  

Disclaimer: A substantial portion of this chapter was published in [118] © 2021, IEEE.  
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3. DESIGN OF A MULTI-SENSOR SYSTEM WITH A MACHINE LEARNING 

FRAMEWORK TO MONITOR GROUP INTERACTIONS IN REAL TIME 

The reviewed literature provided a unique social science perspective with a focus on 

identifying critical elements to consider for the design of social behavior monitoring systems. The 

literature surrounding technology for human behavior monitoring is vast and varied. Focusing only 

on technologies with the potential to advance automatic and/or real-time monitoring of human 

behaviors, as was chosen for this work, motivated the creation of a classification system that could 

synthesized reported technologies to enable an analytical perspective. This classification system 

or taxonomy would relate to behavioral elements that helped define the individual, dyadic, and 

group metrics involved in group interactions. Of particular interest was a behavioral element of 

group interactions called rapport, which helps define the quality of social interaction between 

dyads. We hypothesized that by improving real-time self-awareness, rapport levels between 

individuals (dyads) could be increased, possibly affecting the overall group interaction. Here, 

technologies used for the monitoring of human behavior and rapport are presented. With the goal 

of establishing a framework for the design of group interaction monitoring systems with the 

capability of providing feedback that can improve the quality of social interactions, this work 

leverages on existing theories to monitor dyadic interactions and presents efforts in the design of 

a multi-sensor monitoring system for the real-time detection of group consonance. The term group 

consonance is introduced in this work to define the subset of rapport composed of monitorable 

behavioral components that contribute to establishing good rapport between dyads and its effect 

on the overall group interaction. As part of the design efforts, a comprehensive review and analysis 

of sensor technologies used for the study of human behaviors are presented and discussed. 
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3.1.Measuring the Quality of Group Interactions 

3.1.1. Taxonomy for Monitoring Elements of Human Behavior 

An underlying goal of this work, and indeed of most of the previous efforts in the literature, 

is to enhance the potential for technologies that augment human capability, toward a future of 

increasingly effective human-machine interactions. To further promote this human-centered 

approach, this work established a taxonomy for behavior-sensing technology that is based on the 

relevant psychological theory summarized in Chapter 2. Specifically, this taxonomy assigns 

technologies to the human behavior effectors that they target, and it defines three effector classes 

that encompass the reviewed literature, as shown in Table 1. The defined effector classes cover 

personal factors (i.e., emotions and personality traits) as well as social interaction factors observed 

through nonverbal communication channels, all of which influence human behavior. 

In brief, Table 1 assigns the emotions effector class to works that concentrated on recognizing 

categorical and dimensional emotional structures, most of which focus on understanding an 

Table 1. Taxonomy summarizing human behavior elements monitored using sensor technologies. 

© 2021, IEEE. 

Effector 
classes 

(complexes) 

Elements 
(aspects/components/dimensions) 

References 

Emotions 

Dimensional: valence, arousal, potency 
Categorical (basic emotions): 

happy, angry, sad, quiet, disgust, anxiety, surprise 
Others: curiosity, boredom, uncertainty, puzzlement 

[22], [24], [98]–[103], 
[109]–[113], [132], 
[141]–[146], [182], 
[184]–[190], [193], 
[194], [237]–[257] 

Personality 
factors 

Personality traits: leadership emergence, openness, 
conscientiousness, extraversion, agreeableness, and 
neuroticism 

Person Perception Dimensions: valence, dominance, 
activity  

Others: empathy, honesty 

[53], [86], [93], [111], 
[147], [150]–[154], 
[258]–[266] 

Social 
Interactions 

Cooperation or collaboration, agreement and 
disagreements, attraction, interest, attention, 
emphasis, vigilance, group performance, cohesion, 
communication patterns and dynamics, level of 
interaction, rapport  

[17], [24]–[26], [83], 
[86], [88]–[96], [111], 
[123]–[126], [155]–
[158], [162]–[165], 
[183], [191], [267]–[278] 
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individual’s emotional state, rather than the dynamics of emotional expression and exchange 

during a social interaction. The personality factors class was allocated to works related to 

personality traits and person perception dimensions as well as to works centered on the detection 

of empathy and honesty. Finally, the social interactions class was assigned to works covering 

aspects of interpersonal communication and engagement such as levels of interest, level of 

cohesion, communication dynamics, and rapport. 

This taxonomy will be maintained throughout this chapter. The taxonomy will be used to 

discern similarities and differences in the various sensors, signal features, and computational 

models employed for monitoring within these prescribed human behavior effector classes. 

3.1.2. Individual, Dyadic, and Group Nonverbal Behaviors 

As described in Chapter 2, our social environments are created by the sum of individual 

behaviors interacting with each other. This work defines individual elements of behavior as the 

basic unit of all interactions, especially, dyadic interactions. A dyadic interaction describes the 

interaction between two people, which represents the smallest possible social group. Dyads 

represent the basic social interaction unit of groups of three or more people. Here, individual, 

dyadic, and group metrics of nonverbal behavior are explained to guide the design of our group 

interaction monitoring system. As highlighted in Chapter 2, the focus of this work is on the use of 

nonverbal behavior indicators because of their influence and importance on social interaction 

perception and the advantages of keeping privacy risks at their lowest, as will be further explained 

in Section 3.2. 

3.1.2.1.Individual nonverbal metrics 

As displayed in Table 1, emotions and personality factors have been studied and monitored 

using technology. Those two effector classes group literature that present technological 
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advancements with a focus on understanding behavioral elements that reside in a single individual, 

rather than the interaction between two or more individuals. Even when emotions and certain 

personality factors are influenced by the social environment, these ones have generally been 

monitored at the individual level. Generally, emotions and personality factors, such as personality 

traits and person perception dimensions, can be studied and monitored through physiological and 

paraverbal communication changes in an individual. Emotions and personality factors can also be 

studied through facial expressions, gestures, and posture. As discussed in Chapter 2, changes in 

physiological reactions can be driven by changes in emotional states. Likewise, paraverbal 

communication, which includes intonation, tempo, voice quality, volume, speaking time, turns, 

and interruptions, can be used to determine levels of individual activity and dominance, in addition 

to emotional states. However, the works that focus on determining individual nonverbal metrics 

of behavior differ widely in the approach that they take and the technology they employ, in terms 

of sensors, features, and computational models. 

3.1.2.2.Dyadic nonverbal metrics 

This work will consider a dyad to be the simplest form of a group and the smallest unit of 

analysis of an interaction within three or more individuals. Most of the reviewed literature targets 

dyads to study the elements of social interaction listed in Table 1. Generally, aspects of nonverbal 

communication such as body movements, postures, eye movement, visual contact, facial 

expressions, gestures, and paraverbal are more widely used to determine dyadic metrics of 

interaction. However, a small number of works have used synchrony analysis between 

physiological signals collected from dyads to determine levels of collaboration, synchronicity, and 

coordination. This demonstrates how individual nonverbal metrics of behavior from different 

individuals can be combined to monitor social dynamics. Likewise, other individual nonverbal 



 

 32 

metrics, such as speaking time, turns, and interruptions can be compared across participants of an 

interaction to determine levels of overall interaction, cooperation, and cohesion. Also, gestures 

and postures help determine levels of mimicry or coordination, which is essential to establish 

rapport. 

At the core, rapport has been the primary aspect of social interactions attributed to dyads. 

Rapport is a complex social behavior mostly correlated with nonverbal communication channels. 

In fact, research has demonstrated that nonverbal behavioral cues are more indicative of rapport 

than verbal communication channels [119]. Rapport is a harmonious relationship and connection 

with someone, where the feelings or ideas of others and ourselves are understood, and 

communication runs smoothly. People that experience/develop high levels of rapport have a higher 

quality of social interactions, better team dynamics, and, consequently, are more productive in the 

workplace. 

In 1990, Tickle-Degnan and Rosenthal [120] proposed a theoretical model for rapport that 

describes three essential components of this complex social behavior: mutual attention, shared 

positive feeling, and synchrony or coordination. Tickle-Degnan and Rosenthal made various 

observations about how rapport manifests through time and how it varies depending on the context. 

Tickle-Degnan and Rosenthal suggested that at the beginning of an interaction, strong feelings of 

rapport are dominated more by emotional positivity and attentiveness than by coordination. 

However, in more developed interactions, attentiveness and synchrony or coordination are more 

dominant. Figure 6 illustrates the idea of the relative importance of the three essential ingredients 

for rapport and their relationship through time, presented in [120]. 

One of the most important observations of Tickle-Degnen and Rosenthal included that the 

three components defining rapport (i.e., coordination, mutual attentiveness, and positivity) were 
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encoded in expressed behaviors [121]. The study of rapport and how it might be perceived by 

others differ from the study of personality perception because the former does not reside on a 

single individual, instead, it is constructed based on the relationship between two individuals [121]. 

3.1.2.3.Group nonverbal metrics 

Similar to the case of dyadic nonverbal metrics, although at a smaller scale, the elements of 

social interaction listed in Table 1 have been studied in groups. Similarly, many of the nonverbal 

metrics used in the study of dyadic interactions have been applied to group interactions. In most 

works, individual nonverbal metrics combined with dyadic nonverbal metrics have been used to 

determine low and high levels of rapport [122] and cohesion [123] in meetings. Other metrics such 

as overall group speaking length, speaking turns, and speaking interruptions throughout a meeting 

have been used to characterize groups as cooperative or competitive [124]. Although high rapport 

is considered an essential factor in the establishment of quality interactions, none of the works that 

focus on monitoring this phenomenon provide a framework suitable for behavioral feedback that 

could resolve complex dynamics. Thus, this lack of information motivated the work in this 

 

Figure 6. Relative importance of the three essential ingredients for rapport and their 

relationship through time. Figure adapted from Tickle-Degnen and Rosenthal [120]. 
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dissertation to provide new means of assessing human behaviors, which is further explored in the 

next Section. 

3.1.3. Technologies that Measure Rapport in Group Interactions: Challenges and 

Opportunities 

Because rapport is considered essential to effective dyadic and group interactions and 

encompasses multiple components of human behavior, in this work, it is considered a guiding 

factor in the design of the group interaction monitoring system. Many works in the literature have 

used the Tickle-Degnan and Rosenthal model, directly or indirectly, to guide their studies, 

observations, and automatic analysis of rapport using technology. For example, Hagad et al. [125] 

pointed out that posture mirroring behavior, which is related to coordination, has been linked to 

rapport. Thus, using a video camera, the authors extracted signal features describing the 

individuals’ posture during a dyadic interaction, trained posture classification models for each 

individual in the interaction, and then used the results of these models to determine posture 

congruence in dyads, achieving a ~71% average classification accuracy when recognizing between 

low, neutral, and high rapport.  In another work by Cerekovic et al. [126], rapport was predicted 

using 1-minute segments of audio-visual data collected from an individual interacting with a 

virtual agent. The authors trained binary regression and classification models to predict/recognize 

between positive and negative rapport, achieving an 87% average accuracy. However, features 

employed in the prediction/recognition task included verbal audio features, not just nonverbal 

ones. In general, virtual agents have been commonly employed in the recognition of rapport or its 

components [127]–[129], however, that has limited the automatic recognition of rapport to just 

dyads. In an effort to recognize rapport in groups, Muller et al. [122] investigated the automatic 

prediction of low rapport during natural interactions within small groups. The authors were 
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particularly interested in recognizing the overall degree to which an individual in an interaction is 

able to build rapport with others. To do this, they analyzed audio-visual data and extracted features 

describing nonverbal messages such as facial expressions, hand motion, gaze, speaker turns, and 

speech. The data labels were obtained by averaging the rapport scores given to an individual by 

the other members of the group. The authors trained a classification model to recognize low versus 

medium/high overall group rapport and studied the correlation of the features with the overall level 

of rapport, achieving up to a 70% average classification precision. 

So far, the automatic recognition of rapport in dyads and groups, as defined by Muller et al., 

has been performed by measuring just a single component of rapport or by training a model that 

identifies between low and high rapport by taking all extracted features at once. Even when this 

has contributed to the monitoring of the quality of social interactions, current methods of 

monitoring group interactions may not provide the necessary information to deliver a feedback 

message in real time to help individuals improve their quality of interactions. Real-time or near 

real-time processing is required in group interaction monitoring systems to provide information 

that can impact human behaviors as they happen. From the works that focus on providing real-

time feedback, efforts have been concentrated on improving paraverbal communication patterns 

or providing individual awareness of emotions, both important aspects of social interaction. Still, 

the real-time monitoring of complex behavioral dynamics, such as rapport, that have a major 

impact on the well-being of humans, requires the integration of multiple nonverbal metrics of 

behavior and respective recognition capabilities. To the best of our knowledge, no work has been 

focused on establishing a framework to monitor rapport at the level of its components to facilitate 

feedback in human-to-human interaction to contribute to the improvement of the quality of the 

interaction. 



 

 36 

Monitoring the quality of social interactions by calculating an overall rapport score may not 

provide enough information to deliver effective user feedback that can enhance the quality of the 

interaction. This work hypothesizes that monitoring individual components of rapport, i.e., 

attentiveness, positivity, and coordination, will allow us to extract an overall measure of rapport 

and identify which component of rapport needs attention when low rapport is detected. This can 

also be combined with other general group nonverbal metrics. However, the use of rapport as a 

measure of group interaction quality requires a deep understanding of human behavior dynamics, 

nonverbal metrics that contribute to each of the rapport components and their interactions over 

time, the dyadic attributes, and the effective employment of sensors and computational models. A 

system framework based on the rapport model needs to take into consideration the smallest unit of 

interaction, individuals, and the basic unit of group interaction, dyads, and build upon that a group 

model. Because the use of technology could limit the aspects of rapport that can be monitored, this 

work will refer to the monitoring of rapport using technology as monitoring group consonance. 

3.2.Deep Analysis of Technology for Behavior Monitoring 

To better understand the design space for group interaction monitoring systems and establish 

a framework that monitors group consonance based on rapport components, a deep analysis of 

available technologies was performed. Here, the categorization and details of sensors, signal 

features, and computational models employed in the monitoring of human behaviors are presented. 

3.2.1. Categorizing Behavior Monitoring Sensors 

In general, machine monitoring of human behavior starts with the appropriate selection of 

sensors. Commonly used sensors in monitoring human behavior can be grouped as sensors that 

capture video and images, audio, physiological, movement, orientation, proximity, and 

environmental signals. The selection of a sensor or multiple sensors is driven by the type of 
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behavior that intends to be monitored and its associated nonverbal messages and physiological 

reactions. Based on the analysis of reviewed literature, 21 different sensors were found to have 

been used to monitor human behaviors. Table 2 lists the sensors used in the reviewed literature 

and the nonverbal messages, physiological reactions, and/or environmental conditions that can be 

captured by them. In addition, Table 2 summarizes information related to sensor placement and 

the level of superficial invasiveness to the user. Here, the definition of superficial invasiveness 

centers on the degree to which the sensor requires to enter into contact with the body and not 

whether the sensor needs to be implantable in the body. Thus, this work classifies the level of 

superficial invasiveness to the user in three categories: skin contact (sensor requires direct contact 

with the skin), body contact (sensor has to be placed on the body but does not require direct contact 

with the skin), and no contact, with skin contact being the most invasive and no contact completely 

non-invasive. For sensors that require skin contact, it is indicated if they require a single point of 

contact or multiple points of contact. This information is useful when assessing the level of 

obtrusiveness of a given system or evaluating sensors for the design of wearable systems. 

From the sensors listed in Table 2, the top 11 most frequently used sensors in the literature 

were studied and their frequency of use was plotted with respect to the effector classes presented 

in Table 1. The relationship between the top 11 most frequently used sensors and the effector 

classes are summarized in Figure 7. In the mentioned figure, it can be observed that the monitoring 

of emotions has been one of the areas of most interest followed by the monitoring of social 

interactions, with microphones as one of the most common sensor modalities used for their study. 

It can be noticed that microphones, cameras, and EDA sensors are the only sensing modalities 

used in the monitoring of all three effector classes. In the cases of microphones and cameras, it is 

presumably because of the quality and quantity of the information that they provide, the numerous 
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advances in the areas of speech and image processing, and advantages in terms of superficial 

invasiveness and placement. However, the use of cameras (to capture image and/or video) requires 

Table 2. Categorization of sensor technologies used in the literature* to monitor human 

behavior, together with its informants, associated effector classes and sensor modality, and the 

level of invasiveness of the sensors relative to their placement. Abbreviations: Emotions (E), 

Personality Factors (PF), Social Interactions (SI), Unimodal (Uni), Multimodal (Multi). © 2021, 

IEEE. 

Type Sensor 

Nonverbal, 
physiological, 

& other 
informants 

Effector 
classes 

Sensor 
modality 

Level of 
superficial 

invasiveness 
Placement 

E PF SI Uni Multi 

A
u
d
io

 

Microphone 

Prosody, pitch, 
speech 
volume, 
intonation, 
turn-taking, 
pauses, speech 
duration 

✓ ✓ ✓ ✓ ✓ 
Body 
contact or 
no contact 

Chest or in 
front of an 
individual 
(on a table) 

V
id

eo
 a

n
d
 

Im
a
g
e 

Camera 

Gestures, body 
movements, 
body lean and 
orientation, 
postures, 
facial 
expressions, 
eye gaze 

✓ ✓ ✓ ✓ ✓ No contact 

In front of 
the 
individual 
or room 
view 

M
o
ve

m
en

t,
 o

ri
en

ta
ti

o
n
, 
a
n

d
 p

ro
xi

m
it

y 

Accelerometer 
Body 
movements, 
body lean and 
orientation, 
postures, 
gestures, 
breathing 
patterns 

✓  ✓  ✓ 

Body 
contact 

Chest, left 
wrist, belt, 
necklace, 
in the right 
trouser 
pocket, 
shirt 
pocket, or 
bag 

Gyroscope ✓    ✓ 

Magnetometer ✓    ✓ 

InfraRed (IR) 
sensor 

Orientation 
(face-to-face 
time), 
proximity 

  ✓  ✓ Chest, 
head 

Ultrasonic 
sensor 

  ✓  ✓ Chest 

GPS Proximity   ✓  ✓ 
Chest, belt, 
pocket, or 
bag 

Radio 
Frequency 
(RF) – 
Bluetooth 
included 

Proximity, 
gestures, body 
movements 

✓  ✓ ✓ ✓ 

Body 
contact or 
no contact 

Chest, belt, 
pocket, 
bag, or 
room 

Eye tracker 
(optical) Eye gaze ✓  ✓  ✓ 

Face or in 
front of an 
individual 
(on a 
monitor) 
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a large data bandwidth of communication compared to microphone data. In fact, most of the 

literature reporting the use of video cameras for the monitoring of human behavior has been for 

offline applications. It is important to mention that when video and image data are included to 

analyze human behavior, the computational load and power consumption of the system increase 

[80]. In addition, it has been a topic of debate that the use of cameras to monitor human behavior 

Table 2. (cont’d). 
P

h
ys

io
lo

g
ic

a
l 

Blood volume pulse 
(BVP) 
/Photoplethysmography 
(PPG) sensor 

Blood volume 
in arteries and 
capillaries, 
heart rate 

✓  ✓  ✓ 

Skin 
contact 
– single 
point of 
contact 

Wherever 
there is an 
easy access 
to a pulse. 
Fingers or 
earlobes are 
commonly 
used 

Respiration (RSP) 
sensor 

Respiration 
rate 

✓  ✓  ✓ Chest 

Skin temperature 
monitor 

Skin 
temperature  

✓  ✓  ✓ 

Any site on 
the body 
with 
preference in 
the axilla 
and forehead 

Electrodermal activity 
(EDA) /Galvanic Skin 
Response (GSR) sensor 

Skin 
conductivity 

✓ ✓ ✓ ✓ ✓ 

Skin 
contact 
– two 
points 
of 
contact 

Fingers, 
palm of the 
hands, soles 
of the feet, 
or wrist 

Electrocardiogram 
(ECG) 

Heart rate ✓  ✓ ✓ ✓ 

Skin 
contact 
– 
multiple 
points 
of 
contact 

Chest or 
limbs 

Electroencephalography 
(EEG) 

Brain activity ✓  ✓ ✓ ✓ 
Along the 
scalp 

Electroglottography 
(EGG) 

Pitch, turn-
taking, pauses, 
speech 
duration, 
utterances 

✓    ✓ 
Surface of 
the neck 

Electromyography 
(EMG) 

Facial 
expressions 

✓    ✓ 
Facial 
muscles 

Electrooculography 
(EOG) 

Eye gaze ✓  ✓  ✓ 
Face, around 
the eyes 

E
n
vi

ro
n

-m
en

t 

Ambient temperature 
sensor Environmental 

factors 

✓    ✓ Body 
contact 
or no 
contact 

Wrist or in a 
room Humidity sensor ✓    ✓ 

Ambient light sensor ✓    ✓ 

* Information presented in this table was obtained by analyzing collected information from the 

articles referenced in Table 1. 
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presents a concern for user privacy. Thus, as video and image modalities present limitations for 

real-time and wearable applications, we exclude them from further analysis in this work. However, 

information on the use of video and image sensor modalities for the monitoring of human 

behaviors, including the use of facial expressions for the recognition of the emotion effector, can 

be found in [130], [131]. On the other hand, although the privacy issue could be argued to also 

apply to microphone data, in the case of monitoring human behavior as presented in this work, 

speech recognition is not the goal. In this area, microphones are used mostly to perform speech 

detection to extract acoustic features in speech (e.g., volume, signal energy, pitch), which can be 

performed in a local device before any data transmission and at reasonable computational and 

power consumption rates [100], [132]. 

Besides cameras and microphones, and in addition to EDA sensors, four physiological sensors 

that have been commonly used are ECG, EEG, skin temperature, and BVP sensors. The 

wearability of physiological sensors, which has been possible due to advancements in CMOS and 

circuits technologies [12], [133], has allowed the study of human behavior effectors in different 

 
Figure 7. Graphic representation of where the work related to human behaviors has been 

concentrated relative to the 11 most used sensor modalities. The monitoring of emotions has 

been one of the areas of most interest followed by the monitoring of social interactions, with 

microphone as one of the most common sensor modalities used for their study. Microphones, 

cameras, and EDA sensors are the only sensing modalities used in the monitoring of all of the 

three effector classes. © 2021, IEEE. 
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scenarios. ECG, EEG, skin temperature, and BVP sensors have helped understand acute and long-

term changes in the physiology of the human body that are often altered by internal and external 

stimuli, but that our conscious mind cannot control. All of those four physiological sensors have 

been used to monitor emotions and aspects of social interactions, as noted in Figure 7. On the 

other hand, accelerometers, gyroscopes, IR sensors, and RF sensors are among the most frequently 

used sensors from the movement, orientation, and proximity sensor types. While accelerometers, 

gyroscopes, and RF sensors have been used in the recognition of emotions, IR sensors have just 

been used in the monitoring of social interactions to measure the proximity between individuals. 

In addition to sensor modalities that are directly related to measurements of an individual, the 

contextual or environmental information in which signals of an individual are collected could help 

improve machine understanding of behavior. Although the use of environmental sensors in the 

human behavior monitoring literature is scarce, it is starting to be used to add to the contextual 

understanding of behavior. For example, in [98] and [100], environmental sensors such as 

temperature, humidity, and ambient light were used in a wearable sensing device to help determine 

moments of personal anxiety. 

3.2.1.1.Analyzing unimodal versus multimodal sensor systems 

While Table 2 and Figure 7 illuminate the breadth of sensors employed for behavior 

monitoring and their relative popularity in the literature, it is also important to consider the number 

of different sensor modes employed among these studies. To provide some insight into this, Figure 

8 plots the distribution of sensor modalities concerning the identified effector classes across the 

articles that were analyzed. This plot shows that, of the ~72 reviewed works, around 59% of them 

rely on unimodal sensing, including all works targeting personality factors. Moreover, these 

unimodal efforts utilize only five of the sensor types defined in Table 2, namely microphones, 



 

 42 

EDA, EEG, ECG, and RF sensors. In contrast, roughly 40% of works that were found to use two 

or more sensor modes, defined as multimodal in Figure 8, utilize all sensor types listed in Table 

2 (except for cameras, excluded from this analysis). One might expect that, as sensor technologies 

advance, a trend toward multimodal sensing would be evident, and the performed analysis supports 

this, showing that 66% of the multimodal works have been published since 2017, compared to 

only 14% of unimodal works. Multimodal sensing also makes practical sense considering that, as 

social individuals, humans often communicate using multimodal signals in a complementary and 

redundant manner. Thus, our own actions would suggest that multimodal sensor systems would be 

ideal for the recognition of human behaviors. 

In the area of human-computer interaction, specifically in the detection of emotions, it has 

been recognized that multimodal systems improve the recognition rate of human behaviors when 

compared to unimodal approaches [55], [134], [135]. Figure 9 presents the range, where the 

central red mark indicates the median accuracy, of the reported computational classification 

performance accuracies for both unimodal and multimodal sensor systems in the reviewed 

literature. Note that Figure 9 collects information only from works that performed a classification 

task and reported their results using a percentage of performance accuracy. 

 
Figure 8. Distribution of the use of unimodal and multimodal (excluding video and images) 

sensor modalities to monitor human behaviors. Of ~74 reviewed works, around 59% of them rely 

on unimodal sensing, including all works targeting personality factors, and roughly 40% use two 

or more sensor modes. © 2021, IEEE. 
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From Figure 8 and Figure 9, it can be observed that the effector classes that most utilize 

multimodal sensing are emotions and social interactions, a fact also noted in behavior monitoring 

review papers [16], [136]–[138]. On the other hand, the works reviewed in this chapter show a 

lack of multi-sensor modalities for monitoring personality factors. Although unimodal approaches 

have helped the scientific community in evaluating how information from a specific sensor 

contributes to understanding a certain behavior, studying the integration of multi-sensor modalities 

advances the development of more accurate and robust social sensing systems. Compared to 

unimodal sensing, multimodal sensing is still in its infancy and encounters new layers of 

complexity in defining and assessing accuracy. This may explain the lack of multimodal accuracy 
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Figure 9.  Summary of reported performance accuracies of unimodal and multimodal (excluding 

video and images) sensor systems of reviewed literature. The central mark indicates the median 

accuracy, and the left and right edges of the box indicate the 25th and 75th percentiles, 

respectively. The whiskers extend to the most extreme accuracy values not considered outliers, 

while accuracy values considered outliers are plotted individually using the '+' symbol. © 2021, 

IEEE. 
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improvements observed in Figure 9. However, multimodal systems do demonstrate less variability 

in accuracy, which could indicate advantages in precision and system robustness. 

3.2.2. Signal Features Informative of Human Behaviors 

The sensor modalities discussed in the previous section are just one of the components 

necessary to capture the physiological processes and nonverbal messages associated with human 

behaviors. The processing of sensor signals also plays a critical role in the design of accurate real-

time human behavior monitoring systems. The goal of sensor signal processing is to compute 

statistically identifiable signal characteristics or measurable signal properties, typically referred to 

as signal “features”, that are informative of human behaviors. 

To analyze the sensor signal processing reported in the reviewed behavior monitoring 

literature, works were first grouped based on their use of unimodal sensor signals and multimodal 

sensor signals. Then, the unimodal works were organized by their sensor modalities and the four 

most used modes (excluding cameras, for reasons stated earlier), based on data in Figure 7, were 

selected for further analysis. Within each modality, sensor signal processing elements such as 

signal characteristics, pre-processing approaches, and features were studied and summarized to 

illuminate the design space employed in the literature. For the analysis of signal features, reported 

works were grouped by their behavior effector class defined by the taxonomy established in Table 

1. Then, works, where the contribution of features to the recognition of a particular behavior was 

reported using correlation analysis or feature selection algorithms, were summarized below. 

Feature selection has two advantages: it reduces computational costs, and it removes noisy data 

that otherwise could degrade system performance. 

The understanding gained from the analysis of unimodal sensor signal processing elements 

was then applied to make a qualitative assessment of their utility and design considerations in 
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multimodal systems. Finally, we attempted to integrate this information with an analysis of the 

limited works presenting signal processing for multimodal systems. This effort allowed us to make 

the summary observations presented at the end of this section that may be helpful for the design 

of real-time human behavior monitoring systems. 

3.2.2.1.Audio signals 

Audio signals collected from microphones are sound waves converted into electrical energy 

that, when employed in human behavior recognition systems, are typically used to monitor 

paraverbal communication. Audio signals used to monitor paraverbal communication are usually 

collected using a minimum sampling rate of 8 kHz, but rates up to 44.1 kHz have also been 

reported. The use of higher sampling frequencies provides better signal resolution, but it is not 

necessary for the extraction of the acoustic features of interest. The processing of audio signals is 

mainly composed of four parts: speech detection, speech segmentation, signal pre-processing, and 

feature extraction. Thus, identifying levels of noise, periods of silence, and periods of speech 

becomes a key task to ultimately extract accurate features and associate them with behaviors of 

interest. In real-time processing, audio signals are processed in frames of ~30ms to ~80ms, often 

with overlaps between each consecutive frame. These frames of data are used to detect speech. In 

general, after detecting speech in the audio signal, audio segmentation is performed. Audio 

segmentation refers to the task of dividing the audio signal into acoustic segments from which 

acoustic features will be extracted [139]. 

Typically, in the area of human behavior monitoring, audio segmentation has been done in 

two ways, through an utterance-based approach or a windowing-based approach. The utterance-

based approach includes segments taken based on linguistic units such as vowels, phonemes, 

words, and phrases. However, when dealing with automatic and real-time processing, an automatic 
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speech recognizer (ASR) is needed to make use of an utterance-based approach. Although the use 

of ASR typically does not degrade the performance of a system [140], [141], it does increase the 

computational complexity of the system and could represent a threat to users’ privacy. On the other 

hand, a windowing-based approach makes use of a window of time (in milliseconds or seconds), 

windows of speech activity (defined by pauses or silence), and/or windows of voiced or unvoiced 

signals. Windowing-based approaches are preferred in real-time systems because they are very 

fast and computationally efficient. However, this efficiency could be compromised when high 

amounts of memory space are needed to extract features of interest. While very small windows of 

time may not provide enough information to determine a change in a behavioral state, longer 

windows of time provide information similar to the one obtained from utterance-based approaches. 

This is because, in general, an utterance is comprised of pauses or breath segments and voiced-

unvoiced speech segments [142]. Thus, accumulating data from audio frames creates a larger 

window of speech activity with speech and salient segments, similar to the information of 

utterance-based approaches. A good balance between performance and computational complexity 

can be found by evaluating different time window sizes as done in [143]. Here, we discuss works 

that make use of both approaches with the goal of extracting general information about relevant 

features. 

Before extracting acoustic features, it is good practice to pre-process the audio signal using a 

pre-emphasis filter and a window function (i.e., Hamming window) applied to each frame to 

reduce signal discontinuity in order to avoid spectral leakage. Table 3 describes all the identified 

acoustic features used in the reviewed literature. Acoustic features were grouped by several feature 

categories: prosodic in speech, conversational characteristics, voice quality characteristics, 

cepstral coefficients, formant characteristics, frequency spectrum coefficients, and others. The 
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definition of some of the features vary depending on the applied segmentation approach, therefore, 

we do not define them here, but information can be found in the references listed in Table 3. 

Table 3. Audio features found in the reviewed literature associated with human behavior effector 

classes. © 2021, IEEE. 

Feature categories E PF SI 

Prosodic features: 

Volume amplitude (statistics*), intensity 

(statistics*), energy (entropy, RMS, linear 

regression, statistics*), voice pitch (linear 

regression, statistics*), autocorrelation 

(maximum peaks, # of peaks), voiced time 

[99], [100], [110], 

[132], [141]–

[145], [182], 

[184]–[186], 

[189], [190], 

[193], [194], 

[237], [251] 

[53], [86], 

[148], 

[150], 

[151], 

[153], 

[154] 

[86], [88], 

[89], [92], 

[123], [124], 

[126], [155]–

[157], [191], 

[270] 

Conversational features: 

Turn duration, # of turns, speaking 

duration (statistics*), speaking rate, 

overlapping speech duration, interruptions, 

pause duration (statistics*), # of pauses 

[141], [145], 

[185] 

[86], 

[147], 

[148], 

[150]–

[154] 

[86], [90], 

[123], [124], 

[126], [155], 

[156], [191], 

[270], [279] 

Voice quality features: 

Zero-crossing rate, harmonics-to-noise 

ratio (HNR), jitter, shimmer, glottal 

features (# of glottal pulses, relaxation 

coefficient (Rd), functions of phase-

distortion (FPD)) 

[99], [110], 

[142]–[144], 

[184]–[186], 

[190], [193], 

[237] 

[150] - 

Cepstral features: 

Shifted delta cepstrum (SDC), mel-

frequency cepstral coefficients (MFCC), 

perceptual linear prediction (PLP) cepstral 

coefficients, linear prediction-based 

cepstral coefficients (LPCC), plus their 

delta and acceleration values 

[99], [110], 

[142]–[144], 

[182], [184]–

[190], [193], 

[194], [237], 

[251] 

- - 

Formant features: 

Formant frequencies (first and second), 

bandwidths (first and second), statistics* 

[100], [110], 

[132], [141], 

[142], [190], 

[193], [251] 

[53], [150] [270] 

Frequency spectrum coefficients: 

Brightness, center of gravity, distance 

between the 10 and 90 % frequency 

quantile, slope between the strongest and 

the weakest frequency, linear regression, 

spectral energy (statistics*) 

[99], [100], [132], 

[143], [182], 

[185], [186], 

[193], [194], 

[237], [251] 

[150] 

 
[270] 

Others: Wavelet coefficients, air pressure 

distribution in the vocal tract 
[146], [189] - - 

Note. * Statistics include mean, std, variance, skewness, kurtosis, slope, median, maximum, 

minimum, range.  
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Because different audio features have been reported to contribute in different ways to the 

recognition of human behaviors, it is valuable to look more deeply into the level of contribution 

that various audio features provide toward behavior recognition. 

Emotions - Lee and Narayanan [141] evaluated, using a feature selection method, a set of 

prosodic (voice pitch, energy, speech duration, and their statistics) and formant features extracted 

at an utterance level to improve the recognition of two emotion classes: negative and non-negative 

emotions (valence dimension). The feature selection method consisted of evaluating classification 

accuracies using the k-nearest neighborhood classifier with a leave-one-out cross-validation 

method. While the authors separated speech data by gender (female, male), the ratio of the duration 

of the voiced and unvoiced region, energy median, and F0 (voice pitch) regression coefficient were 

included in the five-best features for both genders. In this same line, Tahon et al. [144] employed 

an ANOVA test and a classifier to study the contribution of prosodic, cepstral, and voice quality 

features in the detection of positive and negative emotions (valence dimension). They concluded 

that the mean and std of the relaxation coefficient (a parameter associated with how relaxed is the 

human voice), the harmonics-to-noise ratio (HNR), and the unvoiced ratio are of interest for 

valence detection. Also, of interest resulted a combination of features consisting of the functions 

of phase-distortion (FPD) (a distortion of the phase spectrum around its linear phase component), 

voice pitch, energy, and shimmer features. 

In the recognition of discrete emotions, the recognition of frustration and calmness can be 

found. Ang et al. [145] showed, through the use of “a brute-force iterative feature selection 

algorithm”, how prosodic features extracted at the utterance level contributed to the recognition of 

frustration. They concluded that longer durations of vowels or phonemes in an utterance (a word 

in their case) and slower speaking rates (the number of vowels divided by the duration of the 
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utterance) were associated with frustration. In addition, high values in voice pitch features such as 

maximum pitch in the longest vowel, the maximum overall pitch, the times that the maximum and 

minimum pitch occurred, the maximum speaker-normalized pitch rise, and the distance of various 

pitch statistics from the speaker baseline were all associated with frustration, representing the 

highest percentage of the total information used by the classifier. Other features that were 

associated with frustration were speaker-normalized RMS energy features, the number of dialog 

exchanges between the user and the system, and raised voice. 

In addition to the direct use of extracted features, some works have applied principal 

component analysis (PCA) to reduce the dimensionality of the feature vector used to perform 

classification. Sahoo and Routray [146] estimated the pressure distribution in the vocal tract, which 

often results in a minimum of 40 feature values that increase depending on the number of vowels 

present in a given utterance or window of time. Thus, the authors applied PCA and made use of 

the first 6 principal components to classify calm and aggressive speech segments. 

Personality factors – When monitoring elements of personality factors, and also social 

interactions, two types of features can be extracted: individual-level features and group-level 

features. Individual-level features are extracted based on the audio signals of a single individual 

and could include any of the acoustic features listed in Table 3. Group-level features are extracted 

from individual-level features; they describe the dynamics of a group of people. Thus, they are 

typically extracted using a window of time with a size in the order of minutes [147]. 

Related to personality traits, prosodic features have been found to be important for modeling 

observed extraversion, emotional stability, and openness to experience. Mairesse et al. [148] 

analyzed how those three aspects of personality were correlated to prosodic features. It was found 

that the maximum voice pitch, and the mean, std, and maximum values of intensity in dB were 
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highly correlated with extraversion. Emotional instability was highly correlated with the voiced 

time and the minimum and mean values of voice pitch, while openness was correlated to the 

maximum voice pitch values and voiced time. The authors also showed that prosodic features are 

very good predictors of extraversion in comparison to other types of non-acoustic features. In this 

sense, analytical studies have shown that extroverts speak more rapidly, with fewer pauses and 

hesitations than introverts [149]. Extraversion has also been associated with high values of voice 

pitch and higher variations in fundamental frequency, shorter periods of silence, and higher voice 

quality and intensity. This was confirmed by Vinciarelli et al. [150] when studying how acoustic 

features correlated to personality traits. The higher the voice pitch and speaking rate, the higher 

the perceived extraversion. A higher center of mass in the power spectrum and higher spectral tilt 

were correlated with perceptions of less agreeableness. Voices for which the power spectrum is 

peakier and tends to be skewed towards higher frequencies are perceived as more agreeable. These 

latter cues affect the perception of conscientiousness in the same way, together with the speaking 

rate (people that talk faster are perceived as more competent). In the case of neuroticism, the higher 

the voice pitch and first formant mean, the higher the perceived neuroticism. However, no evidence 

of correlation was found for openness. 

Related to the person perception dimensions, Tusing [151] studied how much the amplitude 

of the speech signals in decibels (dB), the voice pitch, and the speech rate in words per minute 

(wpm) contribute to the perception of dominance. Through regression models, it was concluded 

that the mean amplitude, the amplitude standard deviation, the average voice pitch, and speech 

rate were correlated with aspects of dominance. This is particularly interesting because it has been 

noted that dominant people tend to be verbally active while non-dominant individuals are less so. 

One of the greatest advantages of using speaking rate and features like speaking length [152], [153] 
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to infer dominance revolves around its fast computation and easy use in real-time human behavior 

monitoring systems. This was employed by Eagle and Pentland [86], who made use of 

conversation features such as speaking rate, energy, duration of time holding the floor, 

interruptions, and turn-tacking transition probabilities to build over time profiles of participants’ 

typical social behavior. This allows us to recognize relationships and dominant behaviors. In a 

work by Jayagopi et al. [153], features such as speaking turn duration histogram, total successful 

interruptions, total speaking turns, and total speaking energy also proved to be a good combination 

of features to identify the most and the least dominant individuals in an interaction. Similar features 

were shown in [154] to help identify emergent leaders. 

Social interactions – Using individual-level features, Hillard et al. [155] studied the automatic 

detection of agreements and disagreements using prosodic and linguistic features. There it was 

found that prosodic features such as the average, maximum, and initial pause duration, the 

maximum and average voice pitch values, and the average and maximum duration of an utterance 

are almost as good as linguistic features in identifying segments of agreements. Investigating the 

automatic detection of the level of interest and involvement of individuals in an interaction, Gatica-

Perez et al. [156] found through a feature selection method that speech energy, speaking rate, and 

voice pitch were the best audio features for the task. Moreover, voice pitch values have also been 

associated with the detection of emphasis during meetings [157]. On the other hand, Cerekovic et 

al. [126] studied the correlation of acoustic features with self-reported and judged evaluations of 

rapport between a subject and a virtual agent. It was found that interactions with fewer and shorter 

pauses, long speech segments, and louder speech were correlated with high rapport. Turn-taking 

patterns were also correlated with rapport. 
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Using group-level features, conversation dynamics have been very well explored. It has been 

studied that global features, such as group speaking interruption-to-turns ratio and group speaking 

turns egalitarian measure, have been found to discriminate with high accuracy between a 

competitive meeting and a cooperative meeting [124]. Features such as turn-taking have also been 

used to identify conversations between two individuals by calculating the mutual information 

between the turn-taking features of the individual’s audio streams [90] and to detect conflicts 

[158]. Other features such as the sum of all the individual’s pause duration, the maximum speaking 

rate during overlapping speech among individuals, the minimum average turn length among 

individuals, the total time that at least two people are speaking at the same time (total overlap 

time), the average energy that is observed for any participant when they are speaking at the same 

time as at least one other person, and the speaking rate during overlapping speech were reported 

to have high values in high-cohesion meetings [123]. 

3.2.2.2.Electrodermal activity (EDA) signals 

Electrodermal activity (EDA), also known as galvanic skin response, are signals that represent 

the flow of current between two points of skin contact at which an electrical potential is applied. 

EDA signals represent properties of the skin that are regulated by changes in sweat glands’ 

secretion, which are controlled by the sympathetic nervous system; sweat secretion increases with 

increments in emotional arousal. As a result, EDA is considered a good indicator of emotional 

arousal [159]. EDA signals can be sampled at a rate as low as 4 Hz. 

The EDA signal is a time series signal with two activity components, called phasic and tonic, 

with frequency components of interest between 0.05 and 3 Hz. The tonic component is a slow-

changing signal, on the scale of tens of seconds to minutes, which is also known as the skin 

conductance level (SCL). On the other hand, the phasic component, also known as the skin 
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conductance response (SCR), is typically the component considered in human behavior 

recognition tasks. EDA signals are usually pre-processed to identify and remove movement and 

respiratory artifacts [160], [161]. 

Similar to audio signals, in the automatic processing of EDA signals, windows of time are 

used to extract features of interest. Because EDA signals are slower changing signals than audio 

signals, the window size used to extract EDA features can vary from 5 seconds to 1 minute. Table 

4 describes all the identified EDA features used in the reviewed literature. We grouped the EDA 

features per category: raw EDA features, SCR features, SCL features, frequency features, and 

coupling indexes. General information on their definitions can be found in the references listed in 

Table 4. In unimodal systems specifically, EDA signals have been used in the recognition of 

personality factors and aspects of social interactions; and have been consistently processed using 

coupling indexes. 

Table 4. EDA features found in the reviewed literature associated with human behavior effector 

classes. © 2021, IEEE. 

Feature categories E PF SI 

Raw EDA features: 

# of local minima, # of local maxima, derivatives, 

non-stationary index & statistics* 

[110], [113], 

[237] 
- [163] 

SCR features:  

# of peaks, peak amplitude, rise time, recovery time, 

peak duration, zero-crossing rate of slow response 

(0-2.4Hz), & statistics* 

[102], [110], 

[113], [182], 

[184], [194], 

[237], [254] 

- [165] 

SCL features: 

Zero-crossing of very slow response (0-0.2Hz) & 

statistics* 

[110], [181], 

[194], [237], 

[254] 

- - 

Frequency features: 

Spectral power coefficients & statistics* 

[110], [113], 

[237] 
- - 

Coupling indexes: 

Pearson’s correlation coefficient (PCC), signal 

matching, instantaneous derivative matching (IDM), 

directional agreement (DA), Fisher’s z-transform of 

the PCC, single session index (SSI) 

- [162] 

[163]–

[165], 

[183], 

[267] 

     Note. * Statistics include mean, std, variance, skewness, kurtosis, slope, median, maximum, 

minimum, range. 
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Personality factors – Empathy has been one of the personality factors monitored using EDA 

signals. Slovák et al. [162] studied the monitoring of empathy in dyads. Raw EDA signals were 

first smoothed using a rectangular smoothing algorithm and then uniformly scaled based on a 

running minimum and maximum value taken from each participant from which data was collected. 

Using a 15-second window with a moving rate of 1 second, signals from pairs of individuals were 

combined using a Pearson correlation algorithm. In addition, the single session index (SSI), which 

“represents an index of synchrony over a longer period of time and is calculated as the natural 

logarithm of the ratio of the sum of positive synchrony divided by the sum of negative synchrony 

over the specified time,” [162] was then computed for the entire recording section (4 minutes). It 

was concluded that high emotional engagement of individuals in the conversation was consistently 

associated with high EDA synchrony. On the other hand, low emotional engagement was 

associated with moments of inconsistency or fluctuating EDA synchrony. 

Social interactions – In addition to Pearson’s correlation coefficient (PCC), other 

physiological coupling indices that have been found in the literature are signal matching, 

instantaneous derivative matching (IDM), directional agreement (DA), and Fisher’s z-transform 

of the PCC. In the area of collaboration, a regression analysis showed that out of the five coupling 

indices, IDM and DA were good predictors of collaborative behavior [163]. Haataja et al. [164] 

presented an analysis of synchronicity that, first, calculates the average slope of an EDA signal in 

a 5-second window and then calculates the PCC between EDA signals of two individuals using a 

moving 15-second window. Similar to the case of empathy, the SSI was calculated but using a 

window of 2 minutes. Results indicated that physiological synchrony does occur during 

collaborative learning at a statistically significant level. Because the analysis was performed 

offline, resulting moments of synchrony could not be correlated to specific monitoring instances. 
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However, results do suggest that physiological synchrony might be a relevant condition when joint 

understanding is better built within groups.  In an effort for studying the dynamics of collaboration 

related to the degree of physiological activation of triads, Pijeira-Díaz et al. [165] calculated the 

number of peaks per minute in SCR signals using a moving window with a window width of 1 

minute and a moving step of 250ms, and then calculated the arousal DA as a measure of the 

synchrony degree. Results showed that most of the time participants were at different arousal 

levels, but when they were in synchrony it was mostly in the low arousal level. Although results 

were not correlated with specific instances, the authors showed the potential of using arousal DA 

to characterize collaborative behaviors. 

3.2.2.3.Electroencephalography (EEG) signals 

Electroencephalography (EEG) signals represent the electrical activity of the brain. Systems 

that record EEG signals can have as few as one electrode channel to as many as 256 channels. The 

placement of EEG electrodes along the scalp is of great importance. Thus, their placement adheres 

to international standards such as the 10/20 system (also known as International 10/20 system) 

[166], 10/10, or 10/5 systems [167], the last two also known as the Modified Combinatorial 

Nomenclature (MCN). These standards aim to standardize the exact position of each electrode and 

assign names to each of them to facilitate the identification of the brainwave location that may 

serve a specific brain function. For example, in the area of emotion recognition, specific electrode 

positions are of interest. T3 and T4, electrodes placed in the temporal lobe regions, are found to 

be near emotional processors. P3, P4, and Pz, electrodes placed in the parietal brain region, are 

located near sources that reflect activities of perception and differentiation. While frontal lobe 

electrodes (i.e., F3, F4, F7, F8) have proximity to sources of emotional impulses and have been 
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used for emotion recognition [168], [169]. EEG signals are typically sampled at a rate of ~256Hz 

but can be sampled at a lower rate depending on the signal components of interest. 

As EEG signals have a low signal-to-noise ratio and are prone to muscle movement artifacts 

[170], pre-processing of these signals includes filtering and signal inspection for artifact removal. 

Before extracting features, typically a window function (i.e., Hamming window, etc.) is applied to 

each window of time or frame of data to reduce signal discontinuity in order to avoid spectral 

leakage. Windows of time are of at least 1 second in size. Table 5 describes all the identified EEG 

features used in the monitoring of human behavior. We grouped the EEG features per category: 

time-domain features, frequency-domain features, and time-frequency domain features. General 

information on their definitions can be found in the references listed in Table 5. Traditionally, 

EEG signals have been analyzed using event-related potential (ERP) features. However, when 

EEG signals are analyzed based on identified ERPs, an event (or trigger) needs to be identified 

and then features describing the response to that event are extracted [171]. This approach is not 

suitable for real-time implementation since it is unknown when an “event” will happen. On the 

Table 5. EEG features found in the reviewed literature associated with human behavior effector 

classes. © 2021, IEEE. 

Feature categories E SI 

Time domain features: 

Power, derivatives, Hjorth features (activity, mobility, complexity), non-

stationary index, fractal dimension, higher order crossings (HOC), & 

statistics* 

[102], 

[173], 

[280] 

- 

Frequency domain features (per band): 

Energy spectrum (ES), power spectrum, power spectral density (PSD), 

differential entropy (DE), rational asymmetry (RASM) of DE features in a 

channel pair, differential asymmetry (DASM) of DE features in a channel 

pair, differential caudality (DCAU) between DE features, higher order 

spectra (HOS), & statistics* 

[113], 

[172]–

[174] 

[195] 

Time-frequency domain features: 

Hilbert-Huang spectrum (HHS), discrete wavelet coefficients (DWC) 
[173] - 

    Note. * Statistics include mean, std, variance, skewness, kurtosis, slope, median, maximum, 

minimum, range. 
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other hand, when EEG signals are analyzed using either time, frequency, or time-frequency 

domain features, EEG signals are first divided into frequency bands containing slow, moderate, 

and fast brainwaves that are associated with specific brain states (i.e., sleep, relaxed, and alert, 

among many others). These frequency bands are delta band (1-4Hz), theta band (5-8Hz), alpha 

band (9-12Hz), beta band (13-25Hz), and gamma band (>25Hz). However, the exact frequency 

values used to extract the frequency band can vary across researchers by 1 or 2 units of Hz per 

band. Typically, features are extracted specifically per frequency band. In unimodal systems, EEG 

signals have been used mostly for the recognition of individual emotions. 

Duan et al. [172] extracted frequency domain features in five frequency bands from signals 

recorded from a 62-channel electrode cap to classify positive or negative emotional states of the 

individuals participating in their study. All features used were smoothed using a linear dynamic 

system (LDS) approach. They found that emotional states relate to EEG signals in the gamma band 

more closely than other frequency bands and that using differential entropy (DE) as a feature 

provides better results than using more traditional features such as energy spectrum (ES). 

Likewise, Jenke et al. [173] evaluated different time, frequency, and time-frequency feature sets 

from signals recorded from a 64-channel electrode cap. Using feature selection methods, it was 

concluded that features such as power spectrum, higher order spectra (HOS), Hilbert-Huang 

spectrum (HHS), and discrete wavelet coefficients (DWC) computed from beta and gamma bands 

were better at classifying emotions. Zheng et al. [174] investigated, not just the frequency domain 

features and critical frequency bands for the recognition of three emotions (positive, neutral, and 

negative), but also the performance of a combination of four, six, nine, and 12 channels in the 

recognition of the three emotions. They concluded that DE performed better as a feature when 

compared to power spectral density (PSD), differential asymmetry (DASM), rational asymmetry 
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(RASM), and differential caudality (DCAU). In addition, as noted in previously discussed works, 

they also confirmed that beta and gamma oscillation of brain activity are more related to emotion 

processing than other frequency bands. Using a weight distribution of a trained deep belief network 

(DBN), the 12 channels that collect the most emotional information are FT7, FT8, T7, T8, C5, C6, 

TP7, TP8, CP5, CP6, P7, and P8 (named based on the MCN system). If reduced to four channels, 

they found them to be FT7, FT8, T7, T8, wherein the 10/20 system, T7, and T8 are T3 and T4, 

respectively. 

3.2.2.4.Electrocardiogram (ECG) signals 

Electrocardiogram (ECG) signals represent the electrical activity of the heart. Frequency 

components of interest in ECG signals are below 20Hz, although a commonly used sampling 

frequency is of 1kHz. A heartbeat (or cardiac cycle) is associated with ECG signal phases and 

specific signal characteristics. A complete cardiac cycle is made up of five waves that construct 

an ECG signal, namely P wave, Q wave, R wave, S wave, and T wave.  From those five waves, 

five signal phases are identified: PR interval, PR segment, QRS complex, ST segment, and QT 

interval. Each of them is associated with how the electrical signal travels through the heart. For 

Table 6. ECG features found in the reviewed literature associated with human behavior effector 

classes. © 2021, IEEE. 

Feature categories E SI 

Time domain features: 

Heart rate (HR) (expressed in beats per minute (bpm)), inter-beat 

interval (IBI) (measured in ms), zero-crossing rate, non-

stationary index, heart rate variability (HRV), & statistics* 

[110], [113], 

[180], [184], 

[194], [237] 

- 

Frequency domain features: 

Spectral power, power spectral density, spectral entropy, 

derivatives & statistics* 

[110], [113], 

[237] 
- 

Coupling indexes: 

Pearson’s correlation coefficient (PCC), Fisher’s z-transform of 

the PCC, weighted coherence 

- 
[183], 

[267] 

Note. * Statistics include mean, std, variance, skewness, kurtosis, slope, median, maximum, 

minimum, range. 
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the heart rate measurement (or frequency of the cardiac cycle), the QRS complex is the most 

important signal phase because the instantaneous heart rate is calculated from the time between 

any two consecutive QRS complexes (R-R interval). 

Similar to other physiological signals, ECG signals are prone to noise and artifacts, which are 

typically tackled at the input of the signal acquisition system [175] or the pre-processing stage. A 

review of this topic can be found in [176]. Noise and artifact removal of ECG signals is important 

before feature extraction. Table 6 describes all the identified ECG features used in the monitoring 

of human behavior. We grouped the ECG features per category: time-domain features, frequency-

domain features, and coupling indexes. General information on their definitions can be found in 

the references listed in Table 6. In unimodal systems, ECG signals are used to monitor an 

individual’s emotional arousal states through parameters such as heart rate (HR) (expressed in 

beats per minute (bpm)), inter-beat interval (IBI) (measured in ms), and heart rate variability 

(HRV) [177]–[179]. For example, Quintana et al. [180] used correlation analysis to study how 

different social conditions affect HRV and its relation to emotional states. They concluded that 

high levels of HRV during resting state are associated with improved emotion perception, while 

reduced HRV is associated with impairments in social cognition. 

3.2.2.5.Multi-signal modalities 

Signals from multi-sensor modalities have been used to increase the robustness of human 

behavior monitoring systems. However, the integration of multiple sensors involves managing 

inconsistencies in the collected data before feature extraction. Different sensor signals are typically 

collected using different sampling frequencies, they use different pre-processing methods, and they 

require different windows of time to extract features. All of these contribute to inconsistencies in 

the data collected across sensor modalities and present a great challenge for data synchronization, 
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which is important to achieve robustness in human behavior monitoring systems. Nonetheless, 

when signal features from two or more sensing modalities are used, the reviewed literature 

identifies two common methods to combine information: feature-level fusion and decision-level 

fusion. In feature-level fusion, the features extracted from individual sensors are consolidated into 

a single feature set. A simple solution to synchronize extracted features at the feature-level fusion 

is to extract them using the largest window size among the selected sensor modalities and then 

build a single feature vector. Thus, statistics are commonly employed in the feature extraction 

process. In decision-level fusion, also called model-level, the decisions from multiple classifiers 

(usually one classifier per sensor modality) are combined into a common decision. More on the 

theory of fusion mechanisms can be found in [181]. As performed in the discussion of features 

from audio, EDA, EEG, and ECG signals, we focus on discussing works performing feature-level 

fusion and the correlated or best-performing set of features from combined sensor modalities. 

Table 7 lists additional sensing modalities used in the reviewed literature together with the type 

of features that are typically extracted from each of them. 

Emotions – In [182], a total of five sensors were used for the recognition of four emotions. 

Features from audio, EDA, EMG, PPG, skin temperature, and RSP signals were extracted. 

Through a sequential backward selection algorithm, features such as the sub-band spectral entropy 

from PPG, the number of peaks within 4 seconds in EDA and EMG, and the mean values of the 

MFCCs in the speech features stood out in the recognition of the four emotions. On the other hand, 

[99] and [100] made use of audio and movement (from accelerometers and gyroscopes) signals to 

recognize anxiety levels and other individuals’ well-being characteristics, respectively. Both made 

use of a Pearson product-moment correlation coefficient (PPMCC) analysis to investigate the most 

relevant features associated with anxiety and well-being. In [99], it was found that at least 
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brightness and MFCC5 from speech, and std of the axis of gyroscopes and their peak value in the 

frequency domain were highly correlated with the degree of anxiety of the individuals in the study. 

Likewise, [100] found that the formants, energy, entropy, and brightness features from audio 

signals and both time and frequency domain features from accelerometers and gyroscopes were 

strongly correlated with aspects of mental health. 

Table 7. Sensor signal features used in multimodal systems. © 2021, IEEE. 

Features per sensor modality E SI 

RF sensor: 

Raw received signal strength indicator (RSSI) values, duration in 

time of a RSSI value, mean of measurements from two RSSI RF 

signals, difference between two RSSI RF signals 

[256], [257] 
[83], 

[192] 

IR sensor: 

Number of detected encounters with another IR sensor, sum of 

lengths of all encounters, and length of an encounter 

- 
[88], [89], 

[92] 

Accelerometer, gyroscope, and magnetometer: 

Signal energy, energy-entropy, correlation coefficient between axis, 

pitch, roll, peak value in frequency domain, statistics* 

[22], [98]–

[100], [103], 

[132] 

[88], [89], 

[92], 

[192] 

Skin temperature: 

Derivatives, spectral power in low frequency bands, PCC, weighted 

coherence, statistics* 

[113], [182], 

[184], [254]  
[183] 

Respiration: 

Signal energy, derivatives, breathing rhythm, breathing rate, sub-

band power spectral, PCC, weighted coherence, statistics* 

[113], [182], 

[184] 
[183] 

Blood volume pulse: 

Mean signal, variance, sub-band power spectral, power spectral 

density, heart rate, heart rate variability, blood flow, pulse, 

statistics* 

[182], [184], 

[254] 
- 

Electromyogram: 

Statistics* 
[102], [182] - 

Eye-tracker: 

Pupil diameter, gaze distance, eye blinking, gaze coordinates, 

statistics, coupling indexes  

 [113] [183] 

EOG: 

Blink rate, blink amplitude, power of blink amplitude, statistics* 
- [195] 

Note. * Statistics include mean, std, variance, skewness, kurtosis, slope, median, maximum, 

minimum, range. 
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Social interactions – Gips and Pentland [88] and Laibowitz et al. [89] used three sensors for 

the recognition of interest during a social encounter. Initially, a 15-dimensional feature vector was 

constructed per dyad encounter with features from accelerometers, microphones, and IR sensors. 

Based on a correlation analysis, the six highest ranked encounter features for the recognition of 

interest were: std of accelerometer measurements in the x-axis and y-axis, mean and std of average 

audio signal amplitude, mean average audio difference between averaged readings, and std of the 

difference between the average amplitude and the average difference. In the use of a combination 

of physiological signals, Pun et al. [183] used a total of five sensors for the recognition of 

collaborative behaviors. Coupling features from EDA, ECG, eye-tracker, skin temperature, and 

RSP signals were extracted. Through a fast-correlation-based filter with mean squared linear 

regression, the correlation between the extracted features and the degree of perceived collaboration 

was determined. Coupling features were calculated using the signals from dyads in an interaction. 

From the physiological signals, the coherence of the IBI in the very low frequencies (0.003Hz-

0.05Hz) and the low frequencies (0.05Hz-0.15Hz) were correlated with aspects of collaboration. 

While from eye-movement signals, the number of times participants looked at the same place at 

the same time and the number of times participants looked at the same place within a ±6 second 

window were correlated with collaborative behaviors. Related to group cohesion, Zhang et al. [92] 

made use of a wearable sociometer badge with accelerometer, microphone, and an IR sensor to 

measure cohesion at an individual level and a group level. Using Pearson correlation coefficients, 

it was found that at the individual level, the mean movement energy was positively correlated with 

cohesion task. At a dyadic level, the correlation of vocal activities was also positively correlated 

with cohesion task. 
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3.2.2.6.Analysis and Discussion 

To eliminate redundant information and optimize algorithms for real-time implementation, it 

is important to perform correlation analysis or feature selection to analyze the contribution of 

signal features in the recognition of a human behavior effector. As noted in Table 3- Table 7, a 

wide range of features from different sensor modalities have been employed for the recognition of 

human behavior effectors. Although not all works referenced in the tables performed correlation 

analysis or feature selection on extracted signal features, significant consistency exists among the 

best-found features to be used in recognizing emotions and those to be used in recognizing 

personality factors and social interactions. 

From the agglomeration of references in Table 3 - Table 7, one can observe that the most 

common features for recognizing emotions are: prosodic, cepstral, voice quality, and frequency 

spectrum coefficients from audio signals; SRC features from EDA signals; frequency domain 

features per frequency band from EEG signals; and time domain features from ECG. More 

specifically, from prosodic features of audio signals, features related to voice pitch appear to 

greatly contribute to the recognition of positive and negative emotions (i.e., emotional valence 

levels). From EEG signals, the DE feature extracted from the gamma frequency band has also 

proven to be effective in the recognition of positive and negative emotions. Moreover, from ECG 

signals, the HRV, which can also be determined from PPG signals, has been found to be a good 

indicator of emotional valence, emotional arousal, and emotion perception. On the other hand, 

features from sensor signals used in multi-signal modalities such as Std Dev of gyroscope’s axis 

values and their peak value in the frequency domain have been found to be correlated with anxiety 

levels. 
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In the case of personality factors and social interactions, from audio signals, prosodic and 

conversational features are the most commonly used. More specifically, from prosodic features, 

voice pitch has proven to greatly contribute to the recognition of extraversion, dominance, and 

emphasis during meetings. On the other hand, conversational features such as speaking rate and 

speaking length have proven to contribute to recognizing cooperative meetings, in addition to 

extraversion and dominance. In general, speaking length and speaking rate are also attractive for 

real-time use because of their low computational complexity and fast computation. For social 

interactions alone, other commonly used features found to be relevant in the recognition of social 

interaction elements, such as collaboration and cohesion, are coupling indexes from EDA signals; 

distance between individuals and duration of the encounter obtained from IR sensor signals; eye-

movement related features from eye-tracker sensor signal; and Std Dev features of accelerometer 

measurements in the x-axis and y-axis. 

To date, analyses of features’ contribution to the recognition of human behavior effectors 

come from works on unimodal systems and less so from works in multimodal sensor systems. This 

could, arguably, be due to the large number of works in unimodal sensor systems. Still, from 

observation, the most common sensor signals’ combinations used in multi-sensor modalities 

include microphones with physiological sensors and/or movement and proximity sensors, and 

combinations of physiological sensors. However, further research is encouraged in the evaluation 

of the best feature or features to be used in multi-sensor modalities for the recognition of human 

behavior effectors. As sensor features are identified as contributing to the recognition of more than 

one human behavior effector, more optimized and robust systems could be designed. For example, 

voice pitch, from audio signals, has been observed to be a good contributor to the recognition of 
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all human behavior effectors. Thus, using voice pitch when designing a system to recognize 

multiple human behavior effectors could help increase system efficiency. 

3.2.3. Computational Models for Human Behavior Recognition 

Based on the features extracted from sensor signals, computational models are trained and 

used to predict or classify human behavior. Therefore, the performance of computational models 

can depend on the set of features provided. Likewise, the effectiveness of signal features can also 

depend, in part, on the type of computational method used to evaluate the features’ contribution. 

The two principal types of computational models employed in the human behavior recognition 

literature are classification and regression models. Classification models focus on recognizing 

discrete or categorical classes, while regression models focus on predicting continuous numerical 

values. The use of a computational model is application dependable. For example, the problem of 

emotion recognition can be treated as one with categorical values (e.g., happy, sad, neutral) or as 

one with continuous numerical values (i.e., reflecting levels of arousal and valence based on a 

numerical scale). 

An analysis of reported computational methods used in the monitoring of human behaviors 

was performed as follows. First, reviewed literature was grouped based on their use of 

classification and regression models. Then, within each of the two model groups, different types 

of models and the number of predicted or classified classes were summarized to illustrate the 

design space employed in the literature. This summary analysis allowed us to make observations 

regarding the most commonly used computational models, which are presented at the end of the 

section. Specifically related to classification models, we analyzed and compared their accuracy 

values to define the state-of-the-art system performances that may help drive the future design of 

real-time human behavior monitoring systems. 
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3.2.3.1.Classification models 

In general, based on the reviewed literature, classification models have been widely used in 

emotion, personality factors, and social interaction recognition tasks. The reviewed literature 

presents variations in the number and type of classes that classification models are trained to 

recognize and variations in the classification models being employed. A summary of the 

classification models employed in the reviewed literature associated with human behavior effector 

classes can be found in Table 8. 

Table 8. List of classification models used in the reviewed literature. © 2021, IEEE. 

Models E PF SI 

Support Vector Machine (SVM): 

Classic SVM, adaptive SVM, and incremental 

SVM 

[102], [113], [142], 

[172], [174], [184], 

[186], [187], [190]  

[53], 

[153

] 

[123], 

[124] 

k-Nearest Neighbor (k-NN) [141], [172], [174], 

[189], [190] 

- - 

Naïve Bayes (NB) [102], [173], [185], 

[190] 

- [123] 

Log-likelihood ratio - - [124] 

Logistic regression  [174] [53] [92] 

Linear regression  - - [89] 

Linear Discriminant Analysis (LDA) [141], [182] - - 

Decision and Regression Tree [102] - [155], 

[192] 

Random Forest (RF) [182] - - 

Hidden Markov Models (HMMs) [146] - [156], 

[191] 

Gaussian Mixture Model (GMM) [142], [189] - - 

Neural networks: 

Convolutional NN, Multilayer perceptron 

(MLP), self-organizing map, deep belief 

networks (DBNs) 

[142], [143], [174], 

[188] 

- - 

Partial Least Squares-Discriminatory 

Analysis (PLS-DA) 

[190] - - 

Latent Dirichlet Allocation model -  - 

Sets of rules: 

Rule-based, rank-level fusion, collective 

classification approach 

-  - 

Clustering models: k-means [99] - - 
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Emotions – Lee et al. [141] investigated the performance of a k-Nearest Neighbor (k-NN) and 

a Linear Discriminant Analysis (LDA) classifier to predict two emotion classes (negative and non-

negative) when using audio data from males and females separately. While for female data, LDA 

consistently performed better than k-NN, for male data there were cases in which k-NN performed 

better than LDA. Gu et al. [99] made use of a K-means classifier to recognize high anxiety and 

low anxiety using features from audio signals. The authors obtained 72.73% of performance 

accuracy by using just two features: brightness and MFCC. In this line, Sahoo and Routray [146] 

trained Hidden Markov Models (HMMs) to detect aggression and calmness also using audio 

signals. By using pressure distribution features a performance accuracy of 93.5% was achieved. 

Later, by using the same features, the authors trained an HMM to recognize four emotion classes 

(anger, boredom, happy, and neutral) achieving an 80% overall recognition accuracy. On the other 

hand, using EEG signals, Duan et al. [172] evaluated two classifiers, a Support Vector Machine 

(SVM) and a k-NN to predict two emotion classes (positive and negative emotion). In general, 

SVM outperformed k-NN achieving a performance accuracy of up to 86.69%. Using a multimodal 

sensor system, Chanel et al. [184] investigated the performance of Random Forest (RF) and SVM 

classifiers in predicting emotional and non-emotional moments using audio and physiological 

(EDA, ECG, BVP, skin temperature, and respiration) signals during social interaction. The authors 

investigated the performance of decision-level fusion by combining the output scores of classifiers 

trained on signal features from each individual in the interaction. Regardless of the classifier type 

(RF or SVM), it was found that by adding emotional information from all individuals in the 

interaction, the emotional response of one individual can be predicted with higher accuracy than 

just using the classification model from the individual of interest. 
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Related to the recognition of three emotion classes, Zheng and Lu [174] investigated the 

performance of four classifiers in predicting positive, neutral, and negative emotion classes using 

EEG signals. The four classifiers were deep belief networks (DBNs), SVM, logistic regression, 

and k-NN with resulting average classification accuracies of 86.08%, 83.99%, 82.70%, and 

72.60%. However, the highest reported accuracy of DBNs was by taking EEG features from 62 

channels, whereas the highest reported accuracy of SVM was 86.65% when taking EEG features 

from 12 channels. 

Related to the recognition of four emotion classes, Kim [182] trained a LDA classifier in 

combination with a sequential backward selection to predict low and high arousal and high and 

low valence using audio and physiological (EDA, ECG, BVP, EMG, skin temperature, and 

respiration) signals. The author trained a model for each subject (three in total) and a subject-

independent model achieving an average accuracy of 78.67% and 55%, respectively. Similarly, 

Vogt et al. [185] trained a Naïve Bayes (NB) classifier to predict four emotion classes (joy, 

satisfaction, anger, and frustration) but just using audio signals. The authors trained subject-

dependent models for 29 subjects, achieving accuracy values that ranged from 24% to 74%, with 

an average of 55%. They also trained a subject-independent model using data from 10 subjects 

achieving a 41% recognition accuracy. Their use of NB was motivated by its fast computation and 

ability to take high-dimensional feature vectors. However, Vogt et al. suggested that a more 

accurate classifier would be an SVM and that with a vector size under 100 features, it could be 

suitable for real-time implementation. In this line, using EEG and eye gaze signals, Soleymani et 

al. [113] trained SVM subject-dependent models to predict four emotion classes (high and low 

arousal and high and low valence). Classification accuracies for arousal and valence were 67.7% 

and 76.1%, respectively. Using audio signals, Abdelwahab and Buso [186] investigated the use of 
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two modified versions of SVM to classify the same four emotion classes (high and low arousal 

and high and low valence). They trained an adaptive SVM model and an incremental SVM model, 

which aims at maintaining or improving their classification performance even under mismatched 

training and testing conditions. The authors concluded that both methods provide similar 

performance, but a precise accuracy value was not reported. On the other hand, Wu and Liang 

[142], also using audio signals, trained three types of models, Gaussian Mixture Model (GMM), 

SVM, and a multilayer perceptron (MLP) to predict four emotion classes (neutral, happy, angry, 

and sad). A Meta Decision Tree (MDT) was then used for classifier fusion, achieving an overall 

performance accuracy of 80%. However, the results from SVM alone were close to the results of 

MDT fusion classifier because the MDT is a classifier selection approach instead of a combination 

of all classifiers. Moreover, Cen et al. [187] trained a SVM model for offline and real-time 

recognition of the same four emotional states (neutral, happy, angry, and sad) also using just audio 

signals. Their results showed a 90% and 78.78% classification accuracy for automatic offline and 

real-time emotion recognition, respectively. In addition, Girardi et al. [102] investigated the 

performance of SVM, J48 (algorithm based on decision trees), and Naïve Bayes (NB) on 

predicting low and high arousal and high and low valence by using physiological signals such as 

EDA, EEG, and EMG. Results showed that SVM outperforms the other classifiers and that EEG 

signal features alone provided the best performance accuracy for valence classification, while 

EEG+EDA performed the best for arousal classification. On the other hand, using a Convolutional 

Neural Network (CNN) to predict the same four previously mentioned emotion classes, Rajak and 

Mall [188] using audio signals, specifically, MFCC features achieved a classification accuracy of 

76.2%. 
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In the recognition of more than four emotion classes, Jenke at al. [173] trained NB subject-

dependent models using EEG signals to predict five emotion classes (happy, curious, angry, sad, 

and quiet) achieving a performance accuracy of 36.80%. Later, Lanjewar et al. [189] made a 

comparison between the performance of a GMM and a k-NN to predict six emotion categories 

using audio signals. In general, their results showed that the GMM performed better than the k-

NN model with 66% and 52% of classification accuracy, respectively. However, the speed of 

computation is faster for the k-NN classifier than for GMM, which makes it attractive when time 

constraints are critical to consider, like for real-time applications. The computational time of GMM 

increased when the number of features increased in the training phase. However, it was noted that 

GMM was better at predicting angry and sad emotion classes, while k-NN performed better at 

predicting happy as well as angry emotion classes. Also using audio signals, Balti and Elmaghraby 

[143] implemented a self-organizing map with a response integration approach to predict seven 

emotion classes (anger, boredom, disgust, anxiety/fear, happiness, sadness, and neutral), achieving 

a 70.86% performance accuracy. Likewise, Jing et al. [190] investigated the performance of SVM, 

k-NN, NB, and Partial Least Squares-Discriminatory Analysis (PLS-DA) in also predicting seven 

emotion classes (sad, joy, fear, surprise, neutral, anger, and disgust) by using audio and EGG 

signals. The authors evaluated the models using acoustic features only and combined feature sets 

independently for males and females. However, the results consistently showed that SVM got a 

higher average emotional recognition accuracy for both genders when compared to the other 

classification models, with a classification accuracy of ~72%. 

Personality factors – Using audio signals, Jayagopi et al. [153] trained an unsupervised 

classification model and an SVM model to predict the most-dominant person and the least-

dominant person in a group conversation. The unsupervised model computed either the largest or 
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smallest accumulated value of each extracted feature, depending on whether the goal was to predict 

the most dominant or the least dominant person. In addition, two SVM models were trained. One 

to predict the most and the non-most dominant person in the group conversation, and another one 

to predict the least and the non-least dominant person in the same group conversation. Their results 

showed that SVM performed better than the unsupervised model in predicting the most-dominant 

person, being their best performance accuracies of 91.2% and 85.3%, respectively. On the other 

hand, both models performed the same when predicting the least-dominant person with an 83.9% 

accuracy. The same author, in [147], also using audio signals, trained a Latent Dirichlet Allocation 

model to predict three classic leadership styles: autocratic, participative, and free-rein, achieving 

a 79.20% classification accuracy. Likewise, Sanchez-Cortes et al. [154] evaluated four approaches 

using audio signals to infer an emergent leader in a group. The four approaches were a rule-based 

approach (search for the person with the highest feature value in a group and select that as the 

leader), a rank-level fusion (extension of rule-based that handles fusion of multiple features), 

SVM, and a collective classification approach. Results showed that the rank-level fusion provided 

the best performance with 72.5% of accuracy. It also performed the best in identifying perceived 

dominance with 65% of accuracy. Related to personality traits, Mohammadi and Vinciarelli [53], 

also using audio signals, evaluated the performance of a logistic regression and an SVM in 

predicting high and low extraversion, agreeableness, conscientiousness, neuroticism, and 

openness. Results suggest that logistic regression performs better than SVM in predicting 

conscientiousness and neuroticism with a 72.55% and 66.10% classification accuracy, 

respectively. On the other hand, SVM performed better than logistic regression in predicting 

extraversion, agreeableness, and openness with 73.45%, 63.10%, and 52.75% classification 

accuracy, respectively. 
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Social behaviors – Similar to the previous sub-sections, most of the literature reported here 

has trained their models with features from audio signals. Using prosodic and conversational 

features, Hillard et al. [155] trained a Decision tree (DT) classifier to predict moments of 

agreement and disagreement during meetings. They achieved an overall performance accuracy of 

64%. Similarly, Jayagopi et al. [124] evaluated a log-likelihood ratio model and an SVM model in 

classifying conversational group dynamics into cooperative-type or competitive-type. Using an 

SVM with a quadratic kernel, 100% classification accuracy was obtained. 

In line with meetings, McCowan et al. [191] trained an HMM to predict eight meeting actions 

(monologues from individuals (total of 4), note-taking, presentation, discussion, and white-board 

talk) achieving an 83.9% classification accuracy. Also using HMM, Gatica-Perez et al. [156] 

predicted two levels of interest, high and low, during a meeting. By training an HMM with a feature 

vector constructed from calculating the mean of the features from all the subjects in the interaction, 

84% recall and 63% precision performance measures were achieved, while by just concatenating 

the features from all the subjects an 80% recall and 58% precision performances were achieved. 

Also investigating levels of interest, but during social encounters, Laibowitz et al. [89] trained a 

Linear Regression model using accelerometer signals, in addition to audio signals. Their model 

achieved an 86.2% classification accuracy. 

Related to cohesion, Hung and Gatica-Perez [123], evaluated the classification performance 

of an NB model and an SVM model when predicting high and low cohesion using audio signals. 

However, both classifiers showed similar classification performances, achieving up to 90% 

accuracy. Moreover, Zhang et al. [92] employed a logistic regression classifier to recognize 

between task cohesion and social cohesion among dyads by using audio, accelerometer, and IR 

signals. Their approach achieves 80.30% and 64.62% classification accuracy when predicting task 
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cohesion and social cohesion, respectively. On the other hand, Katevas et al. [192] used a XGBoost 

regression tree classifier to detect interactive groups of various sizes (node and group level) by 

using an accelerometer, gyroscope, and RF signals, achieving a 94% performance accuracy. 

3.2.3.2.Regression models 

In general, works that have made use of regression models are focused on the prediction of 

emotions and social interactions. Regression models have been found to be particularly attractive 

when it is of interest to predict or recognize levels of emotional arousal, emotional valence, 

collaboration, and vigilance on a continuous numerical scale. A summary of the regression models 

employed in the reviewed literature associated with human behavior effector classes can be found 

in Table 9. 

Emotions – Wöllmer et al. [193] introduced a framework for continuous monitoring of arousal 

and valence levels using audio signals. The authors evaluated two regression models: Support 

Vector Regression (SVR) and a long short-term memory recurrent neural network (LSTM-RNN). 

Their results showed that LSTM-RNN performed better than SVR at predicting arousal levels with 

a Mean Squared Error (MSE) performance measurement of 0.08 and 0.10, respectively. On the 

other hand, both regression models performed the same at predicting valence levels with an MSE 

Table 9. Regression models found in the reviewed literature associated with human behavior 

effector classes. © 2021, IEEE. 

Models E SI 

Support Vector Regression (SVR) [110], [193], [194] - 

Regression Trees - [183] 

Least Squared regression  - [183] 

Neural networks: 

Long short-term memory recurrent neural network 

(LSTM-RNN), Feed-forward (FF), Bilateral long 

short-term memory (BLSTM)  

[110], [193], [194] 

- 

Structured regression model: 

Continuous conditional neural field (CCNF), 

continuous conditional random field (CCRF) 

- 

[195] 
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of 0.18. Ringeval et al. [110] used a hybrid decision fusion based on SVR with a lineal kernel and 

Neural Networks (NN) to recognize arousal and valence emotional levels based on data from 

audio, EDA, and ECG sensors obtained from the AV+EC 2015 database [110]. For NN, they 

explored three types of architectures: feed-forward (FF), LSTM, and bilateral long short-term 

memory (BLSTM). The authors found that SVR performs best on the audio features for valence 

prediction with a 0.069 Concordance Correlation Coefficient (CCC) and NN performs best on 

EDA features for arousal with a 0.79 CCC. Moreover, FF provided the best performance for EDA 

features. Their hybrid decision-fusion method achieved the best arousal prediction with a 0.228 

CCC and 0.173 RMSE performance metric using audio features while achieving their second-best 

valence prediction performance with a 0.195 CCC and 0.119 RMSE using EDA features. 

However, when the authors employed decision-fusion on their multi-modal data, their results 

improved achieving 0.444 CCC and 0.164 RMSE for arousal prediction, and 0. 382 CCC and 

0.113 RMSE on valence prediction, demonstrating the value of a multi-modal approach. Also 

using SVM and LSTM models, Brady et al. [194] used a decision-level approach to predict these 

arousal and valence levels. The authors trained an SVR model for audio signals and an LSTM for 

physiological signals (EDA and ECG) and combined their decisions using a Kalman filter 

framework. They found that models for ECG and EDA provided significant performance 

improvements for valence prediction, obtaining 0.364 CCC and 0.117 RMSE for models trained 

with HR and HRV data and 0.177 CCC and 0.124 RMSE for EDA data. 

Social interactions – Contrary to emotion recognition, which mainly focuses on predicting 

arousal and valence levels, in the area of social interactions, the target classes vary greatly from 

one work to another. Chanel et al. [183] used Bag of Regression Trees (BRT) and Least Squared 

regression with a fast-correlation-based filter (FCBF LS) to predict collaborative behaviors (i.e., 
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degree of conflict, confrontation, emotional management, etc.) based on data from EDA, ECG, 

skin temperature, respiration, and eye-tracker. Physiological and eye-tracker data were treated 

separately, and different regression models performed differently based on the sensor data 

modality and the targeted collaborative behavior. For example, the FCBF LS model provided the 

lowest RMSE value, with a 0.44 RMSE performance value, when using eye-tracker data to predict 

the degree of convergence in a group of people. However, the BRT model performed better at 

predicting confrontation using physiological signals when compared to the FCBF LS model. On 

the other hand, Zheng and Lu [195] employed an SVR with a radial basis function to estimate the 

level of vigilance based on data from EEG and EOG. The authors introduced a continuous 

conditional neural field (CCNF) and a continuous conditional random field (CCRF) to the design 

of their vigilance estimation model with the goal of incorporating the temporal dependency present 

in vigilance. It was demonstrated that the fusion of multimodal sensor features improves model 

performance, achieving 0.09 RMSE performance value, compared to features from a single 

modality that achieved 0.12 and 0.13 RMSE performance values for EOG-based and EEG-based 

methods, respectively. In addition, the temporal dependency-based models demonstrated to also 

enhance vigilance estimation. 

3.2.3.3.Analysis and Discussion 

A wide range of computational models, as noted in Table 8 and Table 9, have been employed 

for the recognition of human behavior effectors. To deeply analyze the use of classification models, 

performance metrics related to the accuracy values reported per classification model are organized 

by effector class and presented in Figure 10. From the agglomeration of references in Table 8, it 

can be observed that SVM has been the most popular classification model used for the recognition 

of human behavior effectors followed by k-NN and NB. In addition, from Figure 10, it can be 
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observed that SVM provides one of the highest levels of accuracy across all effector classes. On 

the other hand, k-NN and NB have been specifically used in emotion recognition, and although 

they follow SVM in popularity, their levels of accuracy are among the lowest across all other 

employed classification models. An important factor to consider when evaluating the performance 

of classification models is the number of classes that they are trained to predict. For example, in 

Figure 10 under emotions, HMM reports the highest accuracy but classifies just two classes, 

whereas the accuracies reported for SVM are for models trained to recognize from two to four 

classes. Moreover, the accuracy and complexity of these computational models vary depending on 

1) the number of classes that they are trained to predict and 2) the quantity of information (number 

of features) that they take to accurately predict a class. Both of these factors are also critically 

important when considering real-time implementations. The four classification models that have 

 
Figure 10. Summary analysis of reported performance accuracies of classification models per 

human behavior effector groups. The central mark indicates the median accuracy, and the top 

and bottom edges of the box indicate the 75th and 25th percentiles, respective. The whiskers 

extend to the most extreme accuracy values not considered outliers These results were obtained 

by analyzing data from the references in Table 8. © 2021, IEEE. 



 

 77 

been trained to recognize human behaviors in real time are k-means [99], HMM [146], NB [185], 

and SVM [123], [187]. 

Our review has identified that classification models have been more widely employed than 

regression models. This indicates that the problem of identifying human behaviors using sensor 

technologies has generally been treated as a “discrete problem” rather than a continuous one. 

However, it has been argued that human behaviors change gradually, on a continuous scale rather 

than in discrete states [196]. Thus, the use of continuous numerical values for the recognition of 

such behaviors may be preferred. To date, the use of regression models to treat behavior 

recognition as a continuous case (i.e., using continuous numerical values to recognize or predict a 

behavior) has varied with the behavior effector class being monitored; SVR and NN regression 

models have been common for emotion recognition, while regression trees, least-squared 

regression, and structured regression models have been used in the prediction of aspects of social 

interactions. A general observation related to regression models is that, although these models have 

been employed in the automatic recognition of human behaviors, so far, they do not appear to have 

been used in real time. However, as regression models are attractive for the prediction of 

continuous classes, further study of these models for the real-time prediction of human behavior 

effector classes is highly encouraged. In addition, although there are a limited number of works 

employing regression models to predict a behavior effector class and different performance metrics 

(MSE, RMSE, CCC) have been used, hybrid decision-fusion appears to achieve the best prediction 

performances.  

In general, different computational models tend to fit feature sets from different sources in 

unique ways. Decision-level fusion methods, as described in Section 3.2.2.5, combine decisions 

from multiple computational models into a common decision, and their use should become more 
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popular as the number of sensor modalities within systems increases. Decision-level methods such 

as a set of rules and hybrid decision fusion have started to gain traction in conjunction with 

classification and regression models, respectively. 

Although the number of features is a highly important factor in the training of computational 

models, nearly half of the reviewed works did not report this value. However, from those works 

that did report it, the number of features ranges from 1 to ∼1000. On average, emotion recognition 

models tend to be trained with a higher number of features than models for the recognition of 

personality factors and social interactions, suggesting that emotion recognition systems are more 

computationally complex. Based on current studies, it is unclear if this computational complexity 

is linked to the complexity inherent to the personalization of human emotion. Emotion recognition 

models have also been more widely explored, and their complexity may be an artifact of the 

relative maturity of those models. 

3.3.Design of a Multi-Sensor System with a Machine Learning Framework to Monitor 

Group Consonance using the Rapport Theoretical Model 

As mentioned in the introduction of this chapter and Section 3.1.3, this work hypothesizes that 

(1) in the absence of self-awareness, rapport levels among dyads may decrease, possibly affecting 

the overall group interaction, and (2) by establishing a framework to monitor components of 

rapport (i.e., attentiveness, positivity, and coordination), the system could determine both an 

overall value of group consonance and the component(s) affecting rapport needing attention.  

As rapport is established through multiple channels of communication, especially nonverbal, 

a multi-sensor system with a machine learning framework is needed. Existing social interaction 

monitoring systems lack accessibility, sensing modalities, or computational capabilities needed to 

recognize complex social dynamics in real time. Nevertheless, the design of these systems presents 
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numerous challenges that include sensors’ position and wearability, sensors’ networking, the 

integration of information from different sensor modalities, management of different sampling 

rates and pre-processing methods, use of optimal window length for real-time processing, time-

alignment of the collected multimodal sensor signals, and variations in feature formats and 

extraction, effective feature selection, and computationally efficient but accurate human behavior 

and social interaction classification models. 

3.3.1. System Requirements 

To design a system that can be used for the study and real-time monitoring of group 

interactions, in both in-person and virtual environments, the fact that in virtual environments the 

head area conveys many of the nonverbal messages was considered. This limitation led to 

evaluating sensor modalities that can be worn on the head while providing human behavior and 

social interaction insights. In addition, to avoid inducing mobility constraints, the search was 

limited to wearable and non-invasive sensors.  

Because a group is composed of three or more individuals and behavioral information is 

communicated through various channels, the ability of this system to manage multi-sensor 

connectivity, data processing, and communication of at least three sensor nodes is required. Each 

sensor node will be dedicated to collecting behavioral information from a single individual in the 

interaction. Further, a framework to manage data synchronization and communication across 

sensor nodes is needed to be able to identify complex social behavior. The multi-sensor system 

architecture should allow for data recording to permit the design of real-time signal processing and 

machine learning algorithms. Furthermore, the framework needs to allow the implementation and 

execution of real-time signal processing and machine learning methods to accomplish (near) real-

time monitoring of group interactions.  
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3.3.2. Sensor Selection 

To select sensors with the capability of collecting signals reflecting nonverbal messages of 

interest (including physiological reactions), information from reviewed literature was extracted 

from Table 2 and a mapping of nonverbal messages of interest with sensors that can contribute to 

their detection (as shown in Table 10) was created. Cameras were excluded from the mapping 

because of our interest in designing a real-time human behavior monitoring system that minimizes 

privacy issues and computational complexity. Based on the potential for wearability on the head 

and contributions to the detection of most nonverbal messages of interest, the sensors listed in 

Table 10 were further analyzed; and a smaller group of sensors were selected as part of the multi-

Table 10. Mapping of nonverbal messages of interest with sensors that can contribute to their 

detection. Highlighted in gray are selected sensor modalities for the multi-sensor system of this 

dissertation project. © 2022, IEEE. 
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sensor framework. Per the previous review, nonverbal information of interest includes pitch and 

other prosodic features in speech signals, physiological reactions, and head/body activity. 

Accelerometer, gyroscope, and magnetometer were selected for the detection of body 

movements, orientation, posture, gestures, and back-channel signals (e.g., head nods and 

headshakes). Accelerometers measure the magnitude and direction of acceleration, gyroscopes 

measure the angular velocity of rotation, and magnetometers measure the direction and strength of 

the magnetic field in the local vicinity. Although infrared (IR) and radio frequency (RF) sensors 

can gather interpersonal distance information, in addition to body orientation, these would not be 

practical for virtual social environments and thus dropped from further consideration. For the 

collection of paraverbal communication messages, microphones were selected over 

electroglottography (EGG) because of their advantages in terms of placement and wearability.  

For the detection of physiological responses, photoplethysmography (PPG) and 

electroencephalography (EEG) were selected because of their information-rich signal content, 

especially for the recognition of changes in emotional states. EEG-sensor electrodes measure the 

electrical activity of the brain. The analysis presented in Section 3.2 revealed that electrodes placed 

in the temporal lobe and the frontal lobe regions of the brain have proximity to sources of 

emotional impulses. PPG sensors measure the volumetric variations of blood circulation at specific 

body locations such as the finger, wrist/forearm, forehead, and earlobe [197]. These variations 

reflect physiological parameters that are linked to the cardiovascular and respiratory systems 

affected by changes in emotional states. From all those locations, of particular interest are the 

forehead and the earlobe since a head-mounted sensor system is the aim of this work. Compared 

to the forehead position, the earlobe is the most frequently used measurement site because this 

location is not comprised of cartilage, thus they contain large blood supplies [197]. Similar to 
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ECG, PPG waves can be used to identify regular or irregular heart rate (HR). Using PPG sensors 

to monitor HR has several advantages when compared to traditional ECG-based systems. PPG 

sensor systems make use of a simpler hardware architecture, are cost-effective, and only require a 

single sensor to be in contact with the human body, which simplifies wearability [197]. A typical 

PPG sensor contains a light source (infrared light emitting diode (LED) or green LED) and a 

photodetector. PPG uses the photodetector to measure the intensity of reflected light from the 

tissue, which is then used to calculate blood volume changes. Other sensors listed in Table 10 with 

the capability to gather facial expression information and eye gaze were dropped from further 

consideration as they are mostly used for emotion recognition and attention monitoring, 

respectively; both human behavior factors could be captured by the six sensor modalities selected. 

Commercially available wearable sensor devices containing the selected sensor modalities 

were researched to be integrated into sensor nodes for the designed multi-sensor system. Wearable 

sensors needed to contain a long-lasting battery of at least two hours and provide access to an 

application programming interface (API) to manage sensors’ data as needed without proprietary 

permission from sensor manufacturers. From a variety of available sensor systems (a 

comprehensive list can be found in [104]), the Shimmer GSR+Unit was selected because of its 

ability to collect data from an accelerometer, gyroscope, magnetometer, and PPG sensors using an 

earlobe clip. The Shimmer GSR+Unit also has the capability to collect electrodermal activity 

(EDA) signals; however, because there was not an optimal way to place the EDA electrodes in the 

forehead (which is the recommended placement area of the head) [198], this sensor modality was 

not included in the system design. For EEG, a BrainBit EEG headband was chosen. BrainBit has 

four EEG dry electrodes, two in the occipital lobe region (O1 and O2) and two in the temporal 

lobe region (T3 and T4). Compared to other alternatives such as Emotiv [199] and Neuroelectrics 



 

 83 

Enobio [200] for recording EEG, BrainBit offered electrode positions of interest (Temporal lobe 

for emotion detection and Occipital lobe for visual attention recognition) and a less obtrusive 

design. Although Emotiv offers electrodes positioned in the Frontal lobe and integrates inertial 

movement sensors, combining BrainBit and Shimmer offered a more flexible design in terms of 

placement. On the other hand, comparing Shimmer with other systems such as Empatica E4 [201] 

for heart rate, Shimmer offers a higher integration of sensing modalities and flexibility for 

placement since it can collect PPG signals from the earlobe or the fingers if placed as a wristband. 

In addition, the Shimmer and BrainBit devices offer a compact design and API support for 

independent applications. They also use Bluetooth communication which allows the users to move 

their heads freely. Figure 11 shows the Shimmer mounted on the BrainBit headband. The multi-

sensor framework involves the use of personal computers, which act as system nodes; therefore, it 

also makes use of the integrated computer microphones for the collection of audio signals. 

 
Figure 11. Head-mounted wearable sensors selected as part of the multi-sensor framework for 

the monitoring of social interactions. All selected sensors are shown except for microphone, 

which taken from the PC used for virtual meetings. © 2022, IEEE. 
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3.3.3. Data Collection Interface and Sensor Data Synchronicity 

Data from multiple sensor modalities need to be collected simultaneously and synchronized 

before further processing. To help with networking and sensor data synchronization, the designed 

framework makes use of the Lab Streaming Layer (LSL). In addition to handling both the network 

and the time-synchronization of sensor signals, LSL also allows (near) real-time access to the 

measured time series as well as optional centralized collection and disk recording of the data. LSL 

also provides core libraries in various language interfaces and a suite of tools built on top of the 

libraries [202]. From the already available tools, a recording program and an audio acquisition 

application were integrated into the system architecture. To allow the collection of data from 

BrainBit and Shimmer, their respective API tools were combined with the LSL core libraries to 

build customized data collection applications. 

The BrainBit and Shimmer application interfaces were developed using MATLAB 2019b. 

BrainBit integration into our platform was facilitated by the BrainFlow libraries, designed to 

obtain, parse, and analyze physiological signals from biosensors such as EEG. The application 

obtains EEG data from BrainBit at a sampling rate of 250 Hz and a voltage range of ±0.4µV. On 

the other hand, Shimmer integration was facilitated by the MATLAB API provided by the 

Shimmer GSR+Unit manufacturer [203]. This custom application obtains Shimmer data at a 

sampling rate of 128 Hz, pre-filters IMU and PPG sensor data before transmission to the LSL 

managed network and estimates heart rate based on PPG sensor data. The functionality of the 

application requires the installation of Realterm Serial Terminal to access the computer terminal 

to which Shimmer connects. Figure 12 shows the user interfaces for the custom-built applications. 

All the resources and MATLAB code needed to establish sensor connection as described in this 

section are available at https://gitlab.msu.edu/davilasy/sensor-connection-atlas. 
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The overall architecture of the multi-sensor system is shown in Figure 13. The overall multi-

sensor system consists of three sensor nodes, each using the LSL tools and the custom application 

to collect and synchronize data from all sensing modalities. Sensors are connected to their 

respective nodes using Bluetooth 5.0. A separate computer acts as a central unit that, when all 

nodes are connected to the same WIFI network, allows the synchronized collection of data from 

all nodes. The multi-sensor architecture allows for data storage and the implementation of a 

machine learning framework, including the extraction of local signal features (related to individual 

human behaviors) and global signal feature extraction (related to social behaviors) for the 

classification of group interactions. 

3.3.4. Proposed Real-time Machine Learning Framework for Sensor Data Processing 

An essential part of group interaction monitoring systems is the processing of sensor data to 

recognize behavior indicators of interest. In this work, a machine learning framework motivated 

by the goal of monitoring group interactions and informed by the analysis of signal features and 

computational models presented in Section 3.2 was established. As rapport is considered essential 

 
Figure 12. Graphical user interfaces (GUIs) of the custom-built applications. (a) The BrainBit 

application takes the serial number of the device to be connected to the corresponding sensor 

node, use it to establish connection, and assigns collected data to a sensor ID. (b) The Shimmer 

application takes the Shimmer serial number or ID and the COM port to which it is connected 

via Bluetooth to the node computer to establish connection and assign ID to the collected data. 

Both GUIs contain a status window to show connectivity problems or confirm data is being 

streamed.  

 



 

 86 

for the quality of group interactions, a machine learning framework was designed considering 

rapport is modeled as a 3-component paradigm based on the Tickle-Degnan & Rosenthal 

Theoretical Model [120]. The machine learning framework is primarily composed of three 

components: (1) signal pre-processing, (2) feature extraction, and (3) training of computational 

models or, more specifically, classification models.  

3.3.4.1.Signal pre-processing 

Signal pre-processing techniques involve the establishment of adequate data buffer sizes, data 

window sizes, and filter types for the treatment of signals before and after feature extraction. In 

this work, data buffers and data windows differ from each other in that data buffers are the chunks 

of raw sensor data that are taken for extraction of low-level features, wherein data windows are 

 
Figure 13. Overall architecture of the multi-sensor framework for the real-time monitoring of 

social interactions. The framework consists of three sensor nodes and a central unit. Each 

sensor node is composed of six sensor modalities. Synchronization, networking, and storage of 

sensor signals are managed with LSL (https://github.com/sccn/labstreaminglayer). © 2022, 

IEEE. 
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typically bigger in size than data buffers containing low-level features that will be used to extract 

higher-level features either at the sensor nodes or the central unit. Sizes of data buffers and data 

windows vary per sensor modality and require analyzing different sizes for optimal recognition of 

behavioral cues and real-time processing.  

3.3.4.2.Feature extraction 

As shown in Figure 13, the feature extraction process is divided into two layers involving 

local and global feature extraction. Local feature extraction involves the extraction of features that 

describe the activity of a single individual and are calculated at the sensor node, whereas global 

feature extraction involves the extraction of features that describe dyadic or group dynamics and, 

therefore, requires data from more than one individual. Global features include all features 

calculated at the central unit.  

Local feature extraction is composed of two types of features: (1) low-level features or Type 

A features and (2) transformed features or Type B features. Type A features are extracted from the 

data buffers using statistical or signal processing methods. Type B features are extracted from a 

collection of Type A features being held by a window of data or are higher-level behavior features 

obtained from a classification model. Figure 14 illustrates the idea behind the extraction of Type 

A and B features. Note that global features mainly contain Type B features, which are derived 

from Type A features calculated from multiple individuals. 

At a local level, features will be extracted from all sensor signals using their respective data 

buffer sizes. Global features will be extracted at a slower rate than local features. The exact time 

windows to be used for the extraction of features will be determined during the analysis of the 

collected data. However, due to characteristic frequency components present in each of the sensor 

signals of interest, it is expected that local features from audio signals will be extracted more 
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rapidly than features from IMU, EEG, or PPG signals. At the global level, because we are 

interested in identifying coordinated behaviors, the extraction of features may be driven by the rate 

of change of the accelerometer data because audio is a faster-changing signal. 

In microphones, features describing back-channel signals, prosodic, and conversation 

dynamics, among others, that can provide insights into levels of synchrony between individuals 

could be extracted to help recognize attentiveness, positivity, and coordination levels. Audio 

features such as power energy and pitch will be extracted locally to determine intonations, while 

detected frames of speech signal will be used to extract global features such as talk-time, turn-

taking, overlapping talk, and back-channel signals like “uh-huh”. The extraction of global features 

requires interaction with data from all subjects in the interaction. For IMU data, features describing 

 

Figure 14. Proposed feature extraction process for the selected sensor modalities, which 

includes extracting local low-level features or features Type A and transformed features or 

features Type B.  
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back-channel signals such as head nodding and movement signals that can provide insights into 

levels of attention, positivity, and coordination will be extracted. The proposed machine learning 

framework considers that the recognition of intonations from speech signals and head motion from 

IMU signals require the transformation of low-level signals using classification models. The 

calculation of these type B features requires extensive study and experimentation, which is 

presented in Chapter 4. 

In PPG, features describing the heart rate (HR) and heart rate variability (HRV) will be 

extracted locally to help identify levels of positivity. Finally, in EEG, features describing the signal 

power in different frequency bands, especially in the alpha frequency band (~8-12 Hz), in the 

occipital lobe positioned electrodes will be explored for attention measurement, and in the occipital 

and temporal lobe for emotional state. A list of features of interest is also presented in Figure 14.  

3.3.4.3.Training of computational models to determine group consonance 

This proposed machine learning framework suggests the use of a model fusion approach. 

Figure 15 illustrates a 2-Layer recognition framework that combines features and model fusion 

 

Figure 15. Model fusion approach to recognize/characterize components related to rapport that 

are affecting the overall interaction and consequently the overall calculated level of group 

consonance. In the first layer, three models are suggested to be trained to predict/recognize the 

different behavioral components of rapport. In the second layer, a model will combine the output 

of the models in Layer 1 and provide an overall measurement of dyadic consonance. 
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approaches. In the first layer involving computational models, three models are suggested to be 

trained to predict/recognize the different behavioral components of rapport. Figure 16 shows a list 

of behavioral indicators associated with components of rapport that will guide the fusion of 

extracted features and training of Layer 1 computational models. Then, in a second layer, a model 

will combine the output of the models using weighting factors and provide an overall measurement 

of dyadic consonance. These dyadic consonance values determined by a machine can then be 

combined to determine the level of group consonance. Before starting the implementation of a 

machine learning framework, sensor connection and synchronization are validated. 

3.3.5. Results and Discussion 

To test the collection of data and LSL network connection of the implemented multi-sensor 

framework for the monitoring of social interactions, a short data collection study during a staged 

meeting was performed. The data collection was approved by the Michigan State University 

Institutional Review Board (IRB) and conducted under strict physical distance and protection of 

privacy protocol guidelines. A total of 3 subjects were recruited voluntarily. Subjects were in 

separate rooms on the same building floor. The wearable sensors (Shimmer and BrainBit) were 

 

Figure 16. Nonverbal behavioral indicators associated with components of rapport that will be 

used to determine group consonance. 
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attached as shown in Figure 11. The meeting of participants was conducted through the Zoom 

video conferencing program and consisted of a series of questions that the participants answered. 

For each question and response, sensor data were collected simultaneously for all three individuals, 

 
Figure 17. Synchronized signals from a single subject collected using the presented multi-sensor 

framework during a portion of a team meeting. © 2022, IEEE. 
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representing a total of 3*16 synchronized data streams (16 data streams per sensor node). The 

meeting was recorded for data annotation purposes. 

Figure 17 shows all sensor signals collected and synchronized during a period of 25s from a 

single individual (sensor node). The EEG signals were post-processed using a 3rd-order bandpass 

IIR filter with cut-off frequencies of 1Hz and 50Hz for better visualization. A section of Figure 

17 was highlighted to indicate that during that period the subject was talking and head nodding. 

Head motion is reflected on the accelerometer and gyroscope signals. Signal synchronization 

allows observing how PPG signals appear to be degraded with head nodding, which consequently 

appears to cause discontinuities in the heart rate estimation signal. Therefore, the framework 

allows studying causes of signal degradation that will permit the design and implementation of 

real-time pre-processing methods to be implemented per sensor node. On the other hand, Figure 

18 shows one set of sensor signals for each subject and identified nonverbal messages. 

Synchronization of these signals was performed by the central unit of the multi-sensor framework. 

 
Figure 18. Synchronized signals from three subjects collected using the presented multi-sensor 

framework during a portion of a team meeting. © 2022, IEEE. 
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Once again, signal synchronization, as shown in Figure 18, permits the identification of nonverbal 

messages’ dynamics. In this case, speech from Subject X is followed by head nods and head shakes 

of Subject Y and Subject Z. Therefore, showing validation of the multi-sensor framework data 

collection and network connectivity. 

3.4.Summary 

Reviewing the personal factors that underpin human behavior and the theories and concepts 

that have guided the psychological study of social interactions provided a scholarly foundation for 

understanding the methods that have been employed for monitoring human behavior. Methods 

employing wearable sensors for the monitoring of human behaviors have been focused on 

recognizing emotions and social behaviors separately. To better understand the landscape of 

human behaviors that have been monitored using sensor technologies, the collected body of 

literature allowed this work to establish a taxonomy of human behavior monitoring technologies 

based on the reviewed psychological theories with the purpose of grouping existing human 

behavior monitoring literature. This helped us see that even when many efforts have been done to 

study and design technologies to monitor the defined human behavior effectors, very little has been 

done in designing robust systems that could measure complex social interactions. 

Towards the goal of overcoming existing design challenges for the real-time monitoring of 

complex social interactions, this chapter presented an analysis of theoretical and technical aspects 

of human behavior monitoring technologies, established rapport as a measure of the quality of 

dyadic interactions and group consonance, and introduces a new and accessible multi-sensor 

system that allows the study and real-time analysis of both in-person and virtual interactive 

environments. The system integrates six sensing modalities, selected based on a deep analysis of 

technologies for behavior monitoring, and leverages the use of existing commercially available 
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wearable sensors. The system allows the synchronized collection of sensor data from at least three 

sensor nodes. Details of sensor integration and networking protocols to manage sensor data 

synchronicity were presented and a real-time machine learning framework was introduced. Results 

validate sensor data collection by our system and nonverbal messages that could be identified due 

to data synchronization. By this means, the physical infrastructure for monitoring individual, 

dyadic, and group-level behaviors is introduced. The next chapters show insights into the 

implementation of aspects of the machine learning framework. 

Disclaimer: A substantial portion of this chapter was published in [118] (© 2021, IEEE) and 

[204] (© 2022, IEEE). 
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4. SIGNAL PROCESSING FOR THE RECOGNITION OF LOCAL TRANSFORMED 

FEATURES: FROM DATA COLLECTION TO ALGORITHM DESIGN 

The machine learning framework presented in Chapter 3 proposes the use of local low-level 

features (Type A features) to extract local transformed features (Type B features). This chapter 

presents the first efforts in designing and implementing data processing blocks to recognize head 

activity and intonations using IMUs and audio signals, respectively. The design of these data 

processing blocks requires the collection of data that contain behavioral targets of interest and 

approximate real-life scenarios. Currently, no publicly available datasets or processes exist for the 

collection and preparation of data as is needed for the goals of this work. Therefore, this chapter 

also presents the study procedures employed for the collection and design of the datasets used for 

the training of computational models. Evaluations of signal features and training of computational 

models to identify head actions from IMU data and speech intonation from microphone data are 

also presented. 

4.1.Real-Time Detection of Head Actions using IMUs 

IMUs have been widely used for the identification of human activity, primarily focusing on 

physical activity detection, such as the ones seen integrated into smartwatches. IMUs have also 

been used in wearable devices placed in the head area. Head motion and position reveal a vast 

amount of information about the quality of social interaction. In general, IMUs placed in the head 

have been employed to assist individuals with disabilities. For example, the recognition of head 

gestures has been used as commands to control video players [205], computer cursors [206], 

wheelchairs, and robot hands [207]. More recently, IMUs have been used for the recognition of 

head motions associated with human behaviors and social interactions [208]. In [209], a 6-axis 

IMU was placed on the forehead and used to recognize four movements: pitch, roll, yaw, and 
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immobility. Classification models were trained with statistical signal features and raw signal data, 

achieving a 92% and 95% of recognition accuracy, respectively. In [210], a 9-axis IMU was 

mounted on the front side of a cap and considered the recognition of six types of head gestures 

(nod, shake, and facing up, down, left, and right), achieving an average classification accuracy of 

95%. Generally, head motion recognition systems using IMUs have achieved classification 

accuracies that range from 72% to 99% [211]. However, the classification performance of these 

systems is highly dependent on the position of the sensors, the head motions of interest, and the 

set of signal features used for classification. Currently, no gold standard exists to automatically 

detect head activity from IMUs [211]. Therefore, this work represents the first effort in establishing 

methods for the design of head activity models using the sensors selected in Chapter 3 as part of 

the human behavior monitoring system. Data was collected from people wearing the sensor 

headset presented in Figure 11 and performing specific head activities of interest, which included 

positioning the head at given angles and nodding, shaking, and rolling their head in response to 

specific questions. 

4.1.1. Designing a Real-time Head Position and Motion Detection Algorithm 

4.1.1.1.Real-time model fusion architecture 

To study the best signal feature sets, reduce the computational complexity of data processing, 

and reduce data transmission rates for the multi-sensor system presented in Chapter 3 [204], a 

model fusion architecture was proposed as shown in Figure 19. The model fusion architecture is 

composed of two classification blocks: one for the detection of head position (static stage) and 

another for head motion (dynamic stage). The static stage allows studying the signal feature set 

that will best contribute to the classification of basic head positions (center, tilted to the right, tilted 
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to the left) versus general head motion. Likewise, the dynamic stage allows the study of an optimal 

set of features to classify Δ-pitch, Δ-yaw, and Δ-roll head motions. The combination of the two 

stages with their respective parameters creates the head action detection (HAD) processing unit 

Moreover, the overall model fusion architecture is designed to, after feature extraction, 

perform a first classification where it is detected if the head is at one of the three steady positions 

(neutral, right, left) or if it is in motion. If the classifier detects motion, then a second classification 

is performed where Δ-yaw, Δ-roll, or Δ-pitch are identified. Because the classification models are 

recognizing two types of activity, static and dynamic, this model fusion approach provides the 

opportunity to retrain models separately, accelerating and reducing future re-training time for these 

classifiers.  

4.1.1.2.Signal segmentation 

The implementation of the fusion model architecture requires the study of optimal model 

parameters, including data buffer sizes for real-time signal segmentation and processing. Research 

has demonstrated that evaluating different buffer/window sizes contributes to finding a good 

balance between system performance and computational complexity [143]. To study the 

contribution that a buffer size can have in the extraction and processing of signal features, buffer 

sizes ranging from 1 to 4.5 seconds with 50% overlaps were evaluated. A buffer size of 1 second 

 
Figure 19. Two-stage model fusion architecture for the design and optimization of a head action 

detection (HAD) processing unit. 



 

 98 

was selected as the smallest buffer size because of interest in head motions that could be carrying 

frequency components around 1 Hz.  

To perform this evaluation, pre-recorded signals are first buffered to simulate the real-time 

acquisition of the collected sensors’ data. The buffer is applied per sensor signal type and axis. 

Resulting in 

 𝐼𝑀𝑈𝐸 =  {

[𝑥1, 𝑥2, … , 𝑥𝐿]
[𝑦1, 𝑦2, … , 𝑦𝐿]

[𝑧1, 𝑧2, … , 𝑧𝐿]
 (1)  

where E represents the sensor type (accelerometer, gyroscope, or magnetometer), x the data in 

the x-axis, y the data in the y-axis, z the data in the z-axis, and L the buffer size.  

4.1.1.3.Pre-processing and feature extraction 

For each IMUE  data buffer, as presented in (1), 70 features including time-domain, frequency-

domain, and synchronization features were extracted. A list of features is shown in Table 11. 

Signal features were divided into two groups: extracted before band-pass filtering and extracted 

after filtering. Features extracted before filtering include signal energy for all three axis 

components, the average value in a signal buffer for all three axis components, the mean magnitude 

of the three-dimensional vector, and the zero-crossing rate for all three axis components. 

Signal features extracted after filtering include: the root mean square (RMS) value for all three 

axis components, three autocorrelation features for all three axis components (height of main peak 

and height and position of the second peak), correlation coefficients across axis components, cross-

correlation features across all three axis components (height of main peak and height and position 

of the second peak), dynamic time wrapping coefficients across axis components, three spectral 

power features per axis component (in 3 adjacent pre-defined frequency bands ranging from 0.2 
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Hz to 10 Hz), and 8 spectral peak features per axis components (height and position of first 4 

peaks).  

The band-pass filter was applied to remove gravitational contributions and unwanted fast 

movements. The filter was a digital infinite impulse response (IIR) Butterworth with a first 

stopband frequency of 0.05 Hz, a first passband frequency of 0.1 Hz, a second passband frequency 

of 14 Hz, and a second stopband frequency of 16 Hz. We made use of an IIR filter because of their 

speed on high throughput applications, filter resolution, and consideration of memory 

consumption. 

4.1.1.4.Feature selection 

A feature selection method was applied to reduce the dimensionality of the extracted feature 

vector by studying feature contribution, removing redundant or noisy data that could degrade the 

Table 11. List of features extracted from IMU signals and evaluated to measure their 

contribution to the recognition of head motion. 70 features were extracted in total per sensor 

signal modality. 

Feature type Feature name 
Abbreviation with axis subscript 

(𝑖 → 𝑥, 𝑦, 𝑧) 

Time-domain 

Signal energy SEi 

Average value  Avi 

Mean magnitude of the three-

dimensional vector 
Mnormxyz 

Zero-crossing rate ZCi 

Root mean square value RMSi 

Synchronicity 

Autocorrelation (height of 

main peak; height and 

position of second peak) 

AC_1hi, AC_2hi, AC_2pi 

 

Correlation coefficient Corr_coefxy, Corr_coefyz, Corr_coefxz 

Cross-correlation coefficients 
CCorr_coef_1hi, CCorr_coef_2hi, 

CCorr_coef_2pi 

Dynamic time warping DTWxy, DTWxz, DTWyz 

Frequency-

domain 

Spectral power coefficients SpecP_1bi, SpecP_2bi, SpecP_3bi 

Spectral peak coefficients 

(height and position of first 4 

peaks) 

Speak_1pi, Speak_2pi, Speak_3pi, Speak_4pi, 

Speak_1hi, Speak_2hi, Speak_3hi, Speak_4hi 
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classification performance of head motions, and decreasing computational costs involved in the 

real-time feature extraction process to be ultimately implemented. A decision tree (DT) classifier 

and a function that computes estimates of predictor importance for the classification tree were used 

for this evaluation. The function that computes estimates of feature importance adds changes in 

the risk due to splits on every feature and divides the sum by the number of branch nodes. Because 

the two blocks of the fusion model architecture are classifying different types of events, feature 

selection was applied individually to both blocks. 

4.1.1.5.Classification model 

Subject-independent binary DT classifiers were trained for each stage in the fusion model 

architecture. For stage 1, based on the results of the predictor importance function, feature sets 

were further reduced and used to train classifiers for final evaluation and implementation. For stage 

2, four types of feature sets derived from the feature importance analysis were used for the same 

end. Feature sets for stage 2 included the use of all extracted features, the use of the most important 

features based on the predictor importance function, and two sets of features engineered based on 

results from previously trained classifiers. 

DT classifiers were selected because of their computational efficiency when paired with 

optimized feature sets. The Gini’s diversity index was used as the split criterion with 20 as the 

maximum number of splits. Of the total dataset, 70% was used for training and 30% for testing. 

K-fold cross-validation of 10 was used to estimate the performance of the classifier on unseen 

data. Classification performance was measured using accuracy, defined as 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 −
𝐶𝑒

𝑁𝑏
) × 100 (2) 
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where Ce is the number of signal buffers misclassified and Nb is the total number of buffers in the 

training/testing set. The complexity of the model was evaluated based on the number of features 

used by the model, the depth of the model, and the number of nodes in the tree. 

4.1.2. Study and Data Collection Procedure 

To design and optimize the HAD unit based on the described fusion model architecture, a 

validation study was performed and approved by the Michigan State University Institutional 

Review Board. A total of 3 subjects were recruited voluntarily. Subjects were located in separate 

rooms and the wearable sensor headset, as shown in Figure 11, was attached to their heads. Sensor 

data was collected at a rate of 128 Hz. The participants were then given access to a computer and 

connected to the Zoom video conferencing program to virtually interact with a study administrator. 

Sensor data from all participants were collected simultaneously using the system infrastructure 

introduced in Chapter 3. In addition, the Zoom interaction was recorded for data annotation 

purposes.  

The study consisted of instructing participants to perform specific head movements at 

different motion rates and/or inclinations for 30 seconds. Head actions, inclinations, and motion 

rates are described in Table 12. Immobility refers to the absence of motion; Δ-pitch to a downward 

and upward head motion; Δ-yaw to a head rotation to the left and right; and Δ-roll to a head tilt 

motion from one shoulder to another. Participants were instructed to adopt the degree of head 

inclination that felt more natural to them when inclining their heads to the right or the left. When 

participants moved their heads at different motion rates, they were asked to do it as naturally as 

possible. Therefore, each subject had their own pace for slow, medium, and fast head motion. Two 

Table 12.  Summary of head actions performed during the validation study. 

Head actions Head inclinations Head motion rates 

Immobility Center, tilted to the right, tilted to the left - 

Δ-Pitch, Δ-Yaw, Δ-Roll - Slow, medium, fast 
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trials of each head action type with its corresponding head inclination or motion rate were 

performed. These resulted in a total of 24 head motion recordings, each with a duration of 30 

seconds captured per participant. A total of six labels, corresponding to the three head motions and 

three head positions of interest, were assigned to the collected data.  

4.1.3. Results and Discussion 

The analysis, model design, and fusion model were coded in MATLAB. The DT classifiers 

were trained and validated with the collected dataset consisting of IMU signal segments lasting 30 

seconds, which were further segmented according to the buffer size to be analyzed. 

4.1.3.1. Best feature sets and classification results per model stage 

Static Stage - To evaluate the best set of features for the detection of head position and to train 

a classification model for the task, the collected IMU signal segments containing data of motions 

were labeled as “other”. Therefore, stage 1 classifies data segments using 4 data labels (left, right, 

center, and other). 

The feature importance analysis consistently revealed across different data buffer sizes that, 

to recognize head positions versus general motion, gyroscope’s features tend to be the most 

important signal features, followed by accelerometer features, and lastly magnetometer features. 

Based on the results of the feature importance analysis, ten different feature subsets containing 

from 3 to 12 features were selected and used to train DT classifiers. Results using training data at 

different buffer sizes and feature sets varied from 60.50% to 99.56% classification accuracy. 

Across all trained classifiers using different buffer sizes, results consistently show that the most 

important features across all buffer sizes are accelerometer SEi and Avi in the x-axis and y-axis, 

accelerometer RMS in the y-axis, gyroscope SEi in all axes, and gyroscope Mnormxyz.   
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Dynamic stage – Classification was performed using 3 data labels (Δ-pitch, Δ-yaw, Δ-roll). 

The feature importance analysis revealed that as the data buffer increases in size, frequency 

features become more important whereas in short window sizes time-domain and synchronicity 

features may be more important. Likewise, for the detection of head motion it was noted that as 

the buffer size increases, signal features from the magnetometer sensor become less relevant. 

Classification results using training data at different buffer sizes and feature sets varied from 

91.35% to 98.22%. 

Figure 20 shows the classification accuracy results and the number of features, number of 

nodes, and depth of the best-performing classifier for a given buffer size, expressed in seconds. To 

 
Figure 20.  Results of classification accuracy, number of features used for by the DT model, 

number of nodes, and depth of the best performing models across data buffer sizes. 
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determine an optimal buffer size based on DT classifier accuracy and complexity, a Figure of Merit 

(FoM) was established and defined as 

 𝐹𝑜𝑀 = ∑
𝑇𝑒𝐴𝑖

𝑇𝑟𝐴𝑖∗𝑁𝑓𝑖
∗𝑁𝑛𝑖∗𝑁𝑑𝑖

2
𝑖=1  (3) 

where i=1 is referring to the results of stage 1 and i=2 to the results of stage 2, TeA is testing 

accuracy, TrA is training accuracy, Nf is the number of features used for classification, Nn is the 

number of nodes of the DT, and Nd is the depth of the DT. Training and testing accuracy were 

included in the FoM to account for cases where the best performing classifier was an overfitted 

one, as is the case for stage 1 and buffer size of 3.5s and stage 2 for buffer sizes of 2s and 4s. 

Figure 21 shows the results for the FoM, where the higher the value, the more optimal is the 

classifier. However, because latency is an important factor in the real-time detection of head 

actions, a buffer size of 3s provides the best tradeoff between DT model performance and 

 
Figure 21. Results of FoM, which contributed to evaluate classifier performance versus 

complexity. The higher the FoM value, the optimal the classifier. 

 

Table 13. Summary model parameters for the HAD unit using a buffer size of 3 seconds. 

Stage 

Testing 

accuracy Training time Features # Nodes Depth 

1 100% 0.57488s 3 9 4 

2 97.86% 0.61673s 4 15 4 

Overall 97.91% 

Macro F1-

score 

Macro 

Recall 

Macro 

Precision 

Classification 

time 

  98.5% 98.67% 98.67% 0.0034s 
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complexity for both stages of the fusion model. Because the buffer has a 50% overlap with 

previous data, the HAD unit updates at a rate of 1.5s. 

4.1.3.2.Head action detection processing unit 

Table 13 shows a summary of parameters for the final implemented DT classifiers at each of 

the stages in the fusion model architecture. Based on the results of the FoM, a buffer size of 3s 

was selected for the final implementation. The three features used for the classification of head 

position (stage 1) were Avx and Avy from the accelerometer and Mnormxyz from the gyroscope. On 

the other hand, RMSz from the accelerometer and SEx, Corr_coefxz, and Speak_2hx from the 

gyroscope were used for the classification of head motion (stage 2). Therefore, magnetometer data 

were excluded from the final design. The HAD unit, using a fusion model architecture, has an 

overall testing accuracy of 97.91% and an F1-score of 98.5%.  

The performance of the design HAD unit is on par with previous works. However, the 

architecture of the HAD unit allows for easy re-training to add recognition of additional head 

actions by having specialized head action classification models. 

This represents the first effort in establishing methods for the design of head activity detection 

in real time using the sensor setup established for our behavior monitoring system. Because the 

data collected for the design of the HAD unit was in a controlled environment, no extensive data 

annotation procedure was required, accelerating the design procedure. As the accuracy of the 

trained model is high, it is important to highlight that this performance could decrease when 

employed using data from the wild, as other factors not accounted for in the lab will influence the 

results. However, by employing a fusion model approach, one of the stages or both could be easily 

retrained with data from the wild. 
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4.2.Real-Time User-Independent Speech Intonation Recognizer 

Speech signals carry important social information that is expressed through verbal and 

nonverbal communication. Verbal communication includes the use and understanding of words, 

whereas nonverbal communication in speech refers to the way words are said, e.g., the tempo and 

the intonation used while communicating verbally. In many areas of research, such as natural 

speech processing and affective computing, the automatic identification of speech intonations has 

played an important role in creating effective human-machine interactions and in recognizing 

emotional states from the speakers. Other areas of research, such as those that focus on 

understanding and monitoring social interactions, have started to incorporate information related 

to voice tonality in the analysis of human behaviors. Speech intonation carries information about 

our social intentions and feelings. Moreover, the way people talk contributes to building rapport 

and establishing social likeability. Still, the automatic and real-time recognition of speech 

intonations and their emotional content is an active and challenging area of research, especially 

for natural environments [212].  

Intonation, in general, refers to the rise and fall in voice inflection, which happens consistently 

throughout speech. However, experts in the area have not agreed on a universal definition for 

intonation. From reviewed literature, two types of intonation classes are studied and for which 

automatic recognition systems have been designed: (1) intonations described by pitch contour and 

(2) intonations described by perceived affective state or intention. 

In general, works that focus on the study and recognition of pitch contour are intended for 

speech synthesizer systems. In the English language, there are four basic intonation classes that 

describe pitch contour: Glide-up, Glide-down, Dive, and Take-off. Glide-up refers to the rise of 

pitch values, which is associated with the production of question and encouragement statements. 
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Glide-down refers to the fall of the pitch contour values and is attributed to the production of a 

general statement. Dive refers to a combination of fall and rise pitch contour and is associated with 

warning and commanding statements. Lastly, Take-off refers to having a sustained pitch level and 

gradually increasing it, which is generally associated with negative affective states. While a variety 

of works have a focus on designing pitch contour recognition systems [213]–[215], the mapping 

between paralinguistic functions and pitch contours varies within a language and differs cross-

linguistically [216]. 

On the other hand, works that focus on studying and recognizing intonations as an affective 

function tend to use categorical intonation classes. A variety of works have focused on studying 

positive and negative intonations [141], [144], [145], but a wide range of other affective states 

have been explored [140], [142], [189], [217]. For example, Wu and Liang [142] utilized speech-

derived information for the recognition of four emotional states: neutral, happy, angry, and sad. 

The dataset was collected from 8 Chinese-speaker volunteers in a laboratory environment. The 

authors made use of acoustic-prosodic information and semantic labels as features of the utterances 

(sentences) that formed part of their dataset. Acoustic-prosodic features were extracted offline and 

classifiers such as GMM, SVM, and MLP were trained to recognize the four classes, achieving a 

range of accuracies going from 68.73% to 78.16%. SVM was the classifier with the highest 

accuracy. Because none of the classifiers were optimal for recognizing all emotional states [218], 

[219], a Meta Decision Tree (MDT) was used for classifier fusion, achieving a recognition 

accuracy of 80%. However, the designed algorithm is not suitable for real-time processing based 

on the use of semantic labels and the lack of real-time methods to automatically identify utterances. 

Lanjewar et al. [189] used the Berlin Emotion Speech Database (BES), which is an acted 

emotional content database with around 500 utterances in German portraying emotions of 
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happiness, anger, disgust, fear, sadness, surprise, and neutral. The authors focused on all but 

disgust and used spectral features such as MFCC, pitch, and Wavelet coefficients to train a GMM 

and a K-NN classifier.  Recognition accuracies were 66% and 52% for GMM and K-NN, 

respectively. Here, the authors showed how GMM dominates the recognition of angry and sad 

emotions, whereas K-NN dominates the recognition of happy and angry emotions. However, these 

models were not designed for real-time operation and do not account for natural expressions of 

emotion during social interactions. 

A common approach in designing speech intonation recognizers is the use of supervised 

machine learning methods. When supervised methods are employed, two principal areas require 

attention: (1) data collection and annotation and (2) machine learning model design.  

Traditionally, speech intonation recognizers (including speech emotion recognizers) have 

made use of acted datasets to train their recognition models. However, systems trained on acted 

data do not translate well to real-life situations [220], since “full-blown” emotions rarely appear in 

everyday interactions [221]. Only in the last 10 years, the speech emotion recognition research 

area has started to see a shift towards the use of natural datasets [212]. Even though naturally 

collected datasets exist, they tend to be from call centers, TV shows [217], or interactions with 

virtual agents, which do not capture the nature of group interaction environments.  

In general, data collection and annotation are key to supervised machine learning design 

pipelines and well-developed annotation guidelines are critical for its success. However, there are 

no standard annotation guidelines for the design of speech intonation recognition models. In 

addition, there are a variety of factors that impact the results of a data annotation project, which 

include, for example, the annotation tools employed, the human annotators, and the specific 

application [116], [222]. 
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Here, the collection of a natural dataset and the development of an annotation pipeline are 

presented. A natural dataset is collected from research group meetings, where ideas were being 

exchanged providing an opportunity to capture reactions to disagreements in a workplace 

environment. Because of the lack of annotation guidelines to identify speech intonation, two types 

of annotation modes were analyzed: annotation of audio in the order it occurred and in a 

randomized order. We hypothesized that as annotators get used to people’s way of talking, the 

likeability will increase. This could affect how datasets are labeled and the overall results of an 

analysis of dyadic and group social interactions. For instance, annotating in sequential order may 

help annotators gain a sense of familiarization with the person or persons involved in the 

interaction, whereas annotating in random order could maintain a sense of distance from the 

individuals involved in the interaction since the context of the meeting is lost. Intonations of 

interest include a combination of affective states with interrogative expressions. Based on 

annotation analysis, a dataset was constructed to train a model for the real-time recognition of 

intonations. Because of the goal of implementing real-time algorithms for the real-time monitoring 

of human behaviors, the design of the model was performed using a resource-aware approach 

where the effect of different sampling rates and the reduction of feature dimensionality was 

evaluated using the resulting classification accuracy of the trained models.  

4.2.1. Designing a Real-time Speech Intonation Recognition Algorithm  

4.2.1.1.Pre-processing 

To study the effect that different sampling rates have over the recognition of intonations 

carrying affective state information, collected signals were low-pass filtered and downsampled to 

8 kHz, 4 kHz, 3.2 kHz, and 2 kHz. Real-time audio signal processing requires the data to be 

processed using small data frames. Typically, audio signals are processed in frames of ~30ms to 
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~80ms with overlaps between each consecutive frame. Here, we make use of a 40ms frame with 

50% overlap. These frames are used to detect speech in the audio signal to later perform speech 

segmentation. 

4.2.1.2. Speech detection and segmentation 

Speech segmentation, also known as audio segmentation, refers to the task of dividing the 

audio signal into segments that will be used for feature extraction and classification. Speech 

segmentation can be performed in two ways, using an utterance-based approach or a windowing-

based approach. Utterance-based approaches require the implementation of an automatic speech 

recognizer (ASR), which increases system complexity and may represent a threat to privacy to 

users because the goal is to recognize linguistic units such as vowels, phonemes, words, and 

phrases [140], [141]. On the other hand, windowing-based approaches make use of windows of 

data defined by time (milliseconds to seconds), windows of speech activity (defined by thresholds 

in pauses or silence periods), or windows of voiced/unvoiced signals. Windowing-based 

approaches tend to be fast and computationally efficient, however, efficiency is compromised 

when high amounts of memory are needed to extract features of interest effectively. To have results 

that compare to speech segmentation performed by ASR, windows of speech need to be long 

enough to contain voiced-unvoiced segments and breath periods, which are elements that comprise 

an utterance. To implement a speech segmentation method that can operate in real-time, first, an 

energy-based voice activity detector (VAD) method is designed. The design of an energy-based 

VAD involved the evaluation of an energy threshold. A pre-set threshold based on noise statistic 

studies [223] and a threshold calculated using histogram and maxima estimation were evaluated. 

Then, silence periods were measured, and their distribution was studied to determine a threshold 

that will be used for the speech segmentation. Lastly, to complete the segmentation process, a 
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distribution of the duration of identified speech periods was studied to determine the minimum 

length of a speech period to be considered an utterance of interest.   

4.2.1.3.Feature extraction and selection 

Inspired by previous research and the review of signal features for audio data presented in 

Section 3.2.2.1, a set of features that have proven to contribute the most to identifying changes in 

speech affective states were used in this work. This set of features includes a combination of 

prosodic features (e.g., energy and pitch), voice quality features (e.g., zero-crossing rate), 

frequency spectrum coefficients, and cepstral features.  

For each data frame, the energy was calculated and used to identify voice activity as described 

in the previous section. If voice activity was detected, then zero-crossing (ZC) was calculated and 

if the value laid below a pre-defined threshold of 35, obtained from [223], then the data frame was 

classified as a voiced speech segment. Voiced segments are periods of speech generated using the 

vibration of vocal cords. If the ZC value was over the threshold, then the data frame was classified 

as an unvoiced speech segment, which are periods of speech generated using air passed through 

the vocal cords. For all identified voiced segments, the pitch was determined using autocorrelation. 

Before the calculation of pitch, the data frame was filtered using a band-pass filter with cutoff 

frequencies of 50 and 900Hz. Note that a wide range of pitch detection algorithms have been 

studied and that no available pitch detection scheme can be expected to give perfect pitch period 

estimates. To approximate the calculated pitch value to what is perceived by human hearing, the 

pitch value obtained through autocorrelation was transformed using the following Mel-scale [224]: 

 𝑀𝑒𝑙 𝑝𝑖𝑡𝑐ℎ = 2595 ∗ log10(1 + 0.0014 ∗ 𝑝𝑖𝑡𝑐ℎ𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) (4) 

and the Δ-Mel pitch values and ΔΔ-Mel pitch values were also calculated. The Δ-Mel pitch value 

represents the difference between two consecutive Mel pitch values (from two consecutive data 
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frames) and the ΔΔ-Mel pitch value represents the difference between two consecutive Δ-Mel 

pitch values. For all data frames, the average amplitude of the speech signal is also calculated.  

To calculate features in the frequency domain, a pre-emphasis filter and a hamming window 

were applied to emphasize high-frequency components in the speech signal that otherwise would 

be dominated by low-frequency ones and to reduce spectral leakage when calculating features in 

the frequency domain, respectively. Then, the magnitude of the Fourier transform of the signal in 

the data frame was calculated and used to determine the mean of the power spectral density. Lastly, 

for each data frame, 13 Mel-frequency cepstral coefficients (MFCC) were calculated. Table 14 

shows the list of features extracted per data frame. 

As the previous set of features is calculated per data frame, each estimated utterance is 

represented by time series of the aforementioned features. To prepare this extracted data for 

classification, once an utterance is determined, statistics of its corresponding feature series are 

calculated. Conversation features such as speaking rate and pausing rate are also calculated for 

each utterance. The speaking rate is calculated by dividing the number of voiced frames by the 

number of unvoiced frames. On the other hand, the pausing rate is calculated by dividing the 

number of silence frames by the total number of frames in the estimated utterance. Table 15 shows 

Table 14. List of features extracted per data frame where speech was detected. 

Feature type Feature name 

Prosodic 

Signal energy 

Average value  

Mel pitch (pitch value on Mel scale) 

Δ-Mel pitch 

ΔΔ-Mel pitch 

Voiced 

Unvoiced 

Voice quality Zero-crossing rate 

Frequency spectrum coefficients Mean of power spectral density 

Cepstral coefficients Mel-frequency cepstral coefficients (MFCC) 
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the list of features extracted for each utterance based on the time series constructed from features 

presented in Table 14. 

To eliminate redundancy in extracted features and reduce feature dimensionality to minimize 

computational complexity, a correlation analysis across features presented in Table 15 was 

performed to eliminate highly correlated features. A high correlation was considered to be any 

value over 0.8 or under -0.8.  

4.2.1.4.Classification of intonations 

For comparison, classification models were trained using the complete set of extracted 

features presented in Table 15 and the reduced one obtained through correlation analysis. To 

evaluate how well different models fit different classes, a variety of models were trained to classify 

4 intonation classes, 3 intonation classes, and a combination of 2 classes. In addition, models were 

Table 15. List of features extracted for each utterance based on the feature time series.  

Feature type 
Feature name – 

time series 
Final set of features Qty 

Prosodic 

Signal energy Mean, std, max, min, median, range 6 

Mel pitch (pitch 

value on Mel scale) 

Min, max, range, mean, median, std, number of 

peaks, mean peak value, std of peak values, 

median of peak values, mode of peak values 

11 

Δ-Mel pitch 

Number of peaks of the absolute value, mean 

peak value, std of peak values, and mean, std, 

max, min, median, range of last 5 non-zero 

value 

9 

ΔΔ-Mel pitch 

Number of peaks of the absolute value, mean 

peak value, std of peak values 

3 

Conversation Speaking rate Voiced/Unvoiced 1 

 Pausing rate Silence frames/total frames 1 

Voice quality Zero-crossing rate Mean, std, max, min, median, range 6 

Frequency 

spectrum 

coefficients 

Mean of power 

spectral density 

Mean, std, max, min, median, range 6 

Cepstral 

coefficients 

Mel-frequency 

cepstral 

coefficients 

(MFCC) 

Mean, std, max, min, median, range of first 4 

MFCC coefficients 

24 
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also trained with data at different sampling rates to evaluate how reduced data rates may influence 

the classification performance of speech intonation.  

 Models that were used for evaluation included Support Vector Machine (SVM), K-Nearest 

Neighbor (KNN), linear discriminant, Naïve Bayes, Random Forest, and Gaussian Mixture Models 

(GMMs). For classifiers such as SVM, KNN, and Naïve Bayes different kernels were also 

evaluated. 

4.2.2. Study Procedure for Audio Collection 

Given the lack of datasets with conversations in natural environments and with multiple 

individuals, we recorded audio and video data from virtual research group meetings at Michigan 

State University (MSU). The study procedure was approved by the MSU Institutional Review 

Board. Individuals participating in the virtual meetings were instructed to carry on their normal 

conversations. Research group meetings were of interest because of the number of ideas being 

exchanged, providing an opportunity to capture subtle reactions of agreement and disagreements 

in a workplace environment. The recordings were performed through the Zoom video conferencing 

program, which also allowed the recording of a separate audio file for each participant in the 

meeting.  

A total of five meetings were recorded, over one month, with an average duration of 57 

minutes and with 4 to 5 individuals per meeting, as shown in Table 16. Subjects used their audio 

recording equipment and participated in the meeting from a variety of locations. This provides a 

dataset that contains a variety of background acoustics and microphones, among others, which 

results in a representation of the technologies in the wild. All the audio meeting recordings were 

obtained at a sampling frequency of 32 kHz. 
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4.2.3. Procedure for Annotating Speech Intonations 

The annotation procedure was divided into (1) partitioning the audio recordings into small 

speech segments and (2) human labeling of the intonation of those speech segments. A total of six 

annotators were used during the annotation procedure, two for the partitioning of the audio 

recordings and four for the labeling of intonations. The annotation scheme covers four general and 

10 specific intonations.  

4.2.3.1.Selection of labels for intonation 

An audio dataset with labeled intonations is important for the development of algorithms 

capable of inferring, for example, emotional state-related information from audio signals. Inferring 

speech intonations forms part of the identification of nonverbal communication and the design of 

human-machine interfaces. Because the interest of this work is in designing an intonation 

recognition model that can contribute to the understanding of human behaviors and the 

establishment of rapport during social interactions, we created an initial list of specific intonations 

that could impact the establishment and perceptions of rapport. The list consisted of the following 

intonations: neutral, surprise, excitement, disappointment, affirmative, laugh, commanding, 

encouraging, doubtful, mad, and question. This initial list was utilized as a guide to performing 

manual audio segmentation. The initial list of intonations inspired the creation of a second specific 

Table 16.  Summary of recorded meetings’ information. Identification of speech segments/audio 

clips was performed by two annotators, A and B. 

Meeting Duration # of participants Annotator # of audio clips 

1 00:39:33 5 A 377 

2 01:00:14 5 A 508 

3 01:14:18 4 A 566 

4 00:58:56 4 B 395 

5 00:51:46 4 B 676 
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list of intonations that substituted question and neutral for frustration and none. This also inspired 

the creation of a general list of intonations that included: neutral, positive, negative, and question.  

4.2.3.2.Manual audio segmentation 

Audacity, an open-source digital audio editor, was used to perform manual audio 

segmentation. Annotators were instructed to identify speech segments, using the “Add Label at 

Selection” feature from Audacity, based on perceived intonations based on the initial list of 

specific ones: neutral, surprise, excitement, disappointment, affirmative, laugh, commanding, 

encouraging, doubtful, mad, and question. Speech segments were identified for each of the 

separate audio files recorded by each participant during each of the meetings. The identified speech 

segments were then saved in a text file containing the initial time, the end time, and the perceived 

intonation of the segment. The annotation of the meetings was divided into two groups, wherein 

Annotator A identified speech segments in the first three meetings and Annotator B in the last two 

meetings. Table 16 shows the total number of identified speech segments per meeting. A 

MATLAB script and the generated text file containing the times of the identified speech segments 

were used to generate corresponding individual audio clips. Figure 22 shows a summary of this 

first part of the annotation procedure. 

 
Figure 22. Diagram summarizing the first part of the annotation procedure, which constitutes 

partitioning the audio recordings from the virtual meetings into audio clips containing specific 

speech intonations.  
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4.2.3.3.Labeling of intonations 

The App Designer tool of MATLAB 2019b was used to develop a graphical user interface to 

facilitate the labeling process and ensure a consistent level of annotation. Figure 23 shows the 

designed interface for the labeling of intonation in the audio clips. This data labeling program is a 

customized interface that takes the path to the folder containing the audio clips that will be labeled 

and display them. The labeling program also takes the name of the annotation text file created 

beforehand, which will be used to record the perceived intonation for each audio clip. Overall 

information about the audio clips in the folder path and information about the specific audio clip 

 

Figure 23. Designed interface for the labeling of intonation in audio clips. (a) The path to the 

folder containing the audio clips is given to the labeling program together with the name of the 

data annotation text file. The folder path is used to locate the audio clips that will be labeled by 

the annotator; (b) general information about the files contained in the given folder paths; (c) 

general information about the audio clip that is displayed; (d) plot of the audio clip and the 

buttons to play or stop the audio; and (e) labeling of general and specific perceived intonation. 

Disappointment

Data Labeling Platform

D:\PathToSpeechSegmentsData

(a)

(b)

(c)

(d)

(e)
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being displayed is also displayed. The annotator can play or stop the audio clip/segment that will 

be labeled at any given moment. The labeling program supports two levels of annotation: a general 

intonation label and a specific intonation label. General intonations include neutral, positive, 

negative, and question. Specific intonations include surprise, excitement, disappointment, 

affirmative, laugh, commanding, encouraging, doubtful, mad, frustration, and none. Because this 

work was interested in understanding the impact of intonation perception when labeling data, two 

identical interfaces were designed, one with the ability to display the audio clips in their order of 

occurrence in the recorded meetings and another one with the ability to randomize the order in 

which the audio clips are presented.  

All audio clips were labeled using both interfaces (i.e., the interface presenting the audio in 

sequential order and the other interface presenting the audio in random order). A total of four 

annotators (C, D, E, and F) participated in the labeling of intonations, wherein two of them labeled 

the audio segments in both sequential and random order, another one only labeled segments 

presented sequentially, and the last one only labeled segments presented randomly. This resulted 

in each audio clip being labeled three times, both when presented sequentially and randomly. The 

interface outputs the text file containing the assigned labels for general and specific intonations. 

These files were then used to perform an analysis of inter-annotator agreement (IAA) and label 

assignment based on the majority of the annotators. Because of human and labeling interface 

errors, not all audio clips were labeled by three annotators. Therefore, those audio clips lacking a 

third annotator were dropped from further analysis. Figure 24 shows a summary of this second 

part of the annotation procedure. The code and executable files to run the data labeling program 

can be found at https://gitlab.msu.edu/davilasy/audio-data-labeling-tool. 
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4.2.4. Analysis of Annotations 

4.2.4.1.Inter-annotator agreement (IAA) 

To determine if there is a significant effect when labeling audio clips presented in sequential 

and random order, two measurements of IAA were applied: pair-wise Cohen’s kappa and Fleiss’ 

kappa coefficients. IAA measures how well two or more annotators make the same annotation for 

a certain category. In this work, categories constitute four general intonations and 11 specific 

intonations. 

Pair-wise Cohen’s kappa coefficient (𝑘𝐶) is a statistical measure of reliability between two 

annotators for categorical items [225]. The definition of 𝑘𝐶 is:  

 𝑘𝐶 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
 (4) 

 

Figure 24. Diagram summarizing the second part of the annotation procedure, which involves 

labeling audio clips in the order in which they were produced in the meeting and in a random 

order. Files with label information from all annotators were combined for analysis. 
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where 𝑝𝑜 is the observed proportionate agreement between raters and 𝑝𝑒 is the probability of 

random agreement. Cohen’s kappa coefficient was calculated per pairs of annotators, meetings, 

annotation order (random and sequential), and annotation mode (general and specific).  

On the other hand, Fleiss’ kappa (𝑘𝐹) is calculated over a group of multiple annotators 

assigning categorical ratings to a fixed number of items. The definition of 𝑘𝐹 is:  

 𝑘𝐹 =
�̅�−�̅�𝐸

1−�̅�𝐸
 (5) 

where �̅� is the overall observed agreement chances per category divided by the number of 

categories and �̅�𝐸 is the average chance agreement over all categories. Fleiss’ kappa was calculated 

per meeting, annotation order, and annotation mode. 

A paired two-sample t-test was utilized to determine if the mean of the annotator agreement 

across all meetings for the different annotation orders and annotation modes were statistically 

significant. The difference between the means was determined to be statistically significant if the 

t-test resulted in a p-value of less than 0.05. 

4.2.4.2.Selection of labels for speech segments  

Three types of datasets were constructed, for both sequential and random annotation orders, 

based on the labels provided by the annotators and the IAA analysis. For simplicity, we enumerated 

the datasets using 1, 1.1, and 2. Dataset 1 contains all the audio segments labeled using general 

intonation and Dataset 1.1 contains all the audio segments where two or more annotators agreed 

on a general intonation label, meaning that all audio segments where annotators did not agree at 

all on an intonation were eliminated from this dataset. Audio segments where two annotators 

agreed on an intonation were then given the respective label and the third annotator was ignored. 

Dataset 2 contains all the audio segments labeled using a specific intonation. Datasets 1.1 of both 



 

 121 

the order and random annotation order sets were used to construct the final dataset used to train 

the intonation recognition model. 

4.2.4.3.Rate of change in perceived general intonations 

To study if there is an increase or decrease in how positive, negative, and question intonations 

are perceived when labeling audio segments presented in a sequential order versus a random order, 

the rate of change in labeled general intonations was evaluated. This was studied using the 

constructed Datasets 1.1, where at least two annotators agreed on a label. This analysis was 

performed by counting the number of neutral, positive, negative, and question intonation labels 

that were assigned per meeting for both datasets. Then, to determine if the difference between the 

mean of these quantities was statistically significant, a t-test was performed. 

4.2.5. Results and Discussion 

4.2.5.1. Audio data annotation 

A central question of this study was whether there is a significant effect on perception when 

labeling audio clips in the order they were generated versus labeling the audio clips in a 

 

Figure 25. (a) Cohen kappa IAA results. Each box in the plot is summarizing the agreement 

between pair of annotators obtained across specific sets of labeled audio clips for different 

meetings. P-values are shown per pair of annotation mode. (b) Fleiss kappa IAA results. Each 

box in the plot summarizes the overall agreement of annotators per meeting and for the specific 

sets of labeled audio clips. P-values are shown per pair of annotation mode. 
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randomized order. Figure 25 shows the results of the IAA analysis. For both, the Cohen kappa 

and the Fleiss kappa, it can be observed that for all cases of datasets the IAA is slightly greater 

among audio segments labeled in a sequential order than in random order. A t-test demonstrated 

that the degree of agreement calculated by Cohen kappa and Fleiss kappa, across all cases of 

datasets, is not statistically significant. Therefore, our data suggests that annotators’ agreement 

level does not change significantly by labeling audio in sequential or random order.  

On the other hand, dropping audio segments from the initial dataset where none of the 

annotators agreed on a general intonation to create Dataset 1.1, resulted in a noticeable increase in 

IAA for the randomly labeled set. Table 17 shows the number of audio clips that were dropped 

from both the sequential and random order labeled sets in Dataset 1 to create Dataset 1.1 because 

none of the annotators agreed on a label. In total, 42 in the sequential-order labeled set and 149 

annotated items in the random-order labeled set were dropped. This constitutes a drop of 1.68% 

and 6.44% of the total number of audio segments in the sequential-order and random-order labeled 

sets, respectively. Although the difference in IAA between the two groups in Dataset 1.1 is not 

statistically significant (as shown in Figure 25), the difference in the number of audio segments 

that were dropped out resulted to be statistically significant. This shows that a higher level of IAA 

is achieved when speech intonation is labeled in sequential order.  

Table 17. Summary of the total number of audio segments dropped from the final datasets 

because none of the annotators agreed on a label. 

 # of audio segments dropped 

Meeting Sequential Random 

1 10 36 

2 13 30 

3 10 33 

4 8 21 

5 1 29 

Mean 8.4 29.8 

p-value 0.001582 
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Note that, when looking across Dataset 1, Dataset 1.1, and Dataset 2, the Cohen kappa values 

fluctuate between -0.023 and 0.8338. Although a perfect agreement is not possible, typically, IAA 

is expected to be between 60% and 80% for the usefulness of the dataset in machine learning [222]. 

However, Uebersax [226] suggested that kappa values may be low even though there are high 

levels of agreement between annotators. In addition, most interpretations are performed 

considering 2-annotators and 2-categories were used to calculate kappa [227]. It was also noted in 

[228] that the number of categories and subjects will affect the magnitude of the kappa value. For 

example, the kappa is higher when there are fewer categories. However, as this is one of the best 

measurements of annotator agreement in the literature, it was employed in this study. 

Although the level of agreement was higher for the datasets labeled in sequential order, the 

number of positive and negative general intonations was higher when audio clips were labeled in 

random order. This is illustrated using Dataset 1.1 in Figure 26, which shows the number of 

identified neutral, positive, negative, and question intonations for both sequential and random 

annotation order. A t-test revealed that the decrease in neutral-labeled audio clips and the increase 

in the number of positive, negative, and question-labeled audio clips are statistically significant. 

To gain a more accurate assessment of the increase in positive and negative intonations as a 

function of labeling in a sequential or random order, Table 18 shows the percentage of positive, 

negative, and question assigned intonations within the non-neutral total number of labeled audio 

segments. Overall, 21.29% of the sequentially labeled set was assigned a non-neutral label. In 

contrast, 37.14% of the randomly labeled set was assigned a non-neutral label. As shown in Table 

18, the random order labeled set contains 3% more positive labeled intonations and 8% more 

negative labeled intonations than the sequential order labeled set. These results suggest that an 

annotators’ perception of speech intonation varies depending on the presence of the conversation’s 
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context, whereas in the absence of it, annotators may be more receptive to the nonverbal cues of 

the speech than to the meaning of the words. Consequently, annotators may identify more non-

neutral speech intonations when audio segments are presented in random order. 

Dataset 2 was used to study how identifying and assigning specific intonations is affected by 

annotating sequentially or randomly. In general, 75.42% of the sequential-order labeled set and 

77.95% of the random-order labeled set were assigned a specific intonation by at least one 

annotator. Figure 27 shows a summary of the percentage of specific intonations assigned by one, 

two, and three annotators. The plot shows how single annotators dominate the assignment of 

specific intonations. A comparison between annotations performed sequentially and randomly 

 

Figure 26. Number of identified neutral, positive, negative, and question intonations across 

annotators from Dataset 1.1 for both sequential and random order of annotation. P-values are 

shown per pair of labeled datasets for each of the different types of general intonations. 

 

Table 18. Percentage of positive, negative, and question labeled audio segments present in the 

non-neutral labeled portion of Dataset 1.1. 

Order of 

annotation 

Total # of non-neutral labeled 

audio segments 
Positive Negative Question 

Sequential 519 44.86% 9.44% 45.66% 

Random 794 47.61% 17.38% 35.01% 
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shows how intonations such as doubtful, commanding, and disappointment were more frequently 

identified when labeling in random order; affirmative, encouraging, excitement, and frustration 

were more frequently identified when labeling in sequential order. On the other hand, intonations 

of surprise, laugh, or madness seems to have been identified at a similar rate by both orders of 

annotation. However, only 31.96% and 27.06% of the total number of audio segments were 

assigned a specific intonation by two or more annotators for sequential and random labeling, 

respectively. When compared to the percentage of non-neutral general intonations assigned, the 

total percentage of labeled specific intonations is greater for sequential order of annotation. In 

 

Figure 27. Summary of the percentage of specific intonations assigned by one, two, and three 

annotators. The plot shows how single annotators dominate the assignment of specific 

intonations, which may explain the low levels of IAA in Dataset 2. 
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contrast, the random order of annotation increases the assignment of non-neutral general 

intonations but decrease the assignment of specific intonation. 

Dataset 1.1 was selected, over Datasets 1 and 2, to construct the final dataset to train the 

intonation recognition model because it contains the highest levels of IAA. To gain an 

understanding of how much overlap exists between the sequentially and randomly labeled sets in 

Dataset 1.1, Table 19 shows the intersection and the union of both sets for each of the labels across 

all meetings. It can be noted that 92% of the randomly labeled set overlaps with the sequentially 

labeled set for neutral intonation, whereas for positive, negative, and question intonation the 

overlap is 38%, 22%, and 65%, respectively. To increase the number of positive, negative, and 

question-labeled items in the final dataset, the union of both sets was then taken as the final dataset 

for the intonation recognition model design. To assign labels to those audio segments outside of 

the interception set, we looked at the group-level agreement calculated using Fleiss kappa. For 

Dataset 1.1, the average Fleiss kappa across the five meetings for the sequentially labeled set is 

0.403, whereas for the randomly labeled is 0.35. Therefore, for the audio segments outside the 

interception, the labels in the sequential-order set were given priority. However, if the label of an 

audio segment outside of the interception was neutral in the sequential-order set and the random-

order set was non-neutral, the non-neutral label was assigned to that particular audio segment. This 

Table 19. Summary of the total number of audio clips that in both sequential and random order 

of annotation were assigned the same labeled (intersection) and the total size of the dataset if 

annotations from both sets were combined. 

General intonation 

Order of annotation Intersection & Union  

Sequential Random ∩ ∪ 

Neutral 1919 1344 1233 1538 

Positive 233 378 143 463 

Negative 49 138 30 152 

Question 237 278 185 325 

Total 2438 2138 1591 2478 
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resulted in a total of 1538 neutral, 463 positive, 152 negative, and 325 question-identified audio 

segments. 

4.2.5.2.Real-time intonation recognizer framework 

4.2.5.2.1. Speech segmentation 

To identify speech segments in an automated and real-time fashion, a VAD was implemented 

with thresholding rules to determine what to consider speech and what to consider an estimated 

utterance. First, the recorded signals corresponding to the prepared dataset were downsampled 

from 32 kHz to 8 kHz. Because the audio obtained from Zoom has a high signal-to-noise ratio, a 

manual threshold of 0.01 was selected for the VAD.  Then, thresholds for minimum speech time 

and maximum silence time to estimate utterances were determined by evaluating the distribution 

of the minimum speech periods and maximum silence periods present in the manually identified 

audio segments. Figure 28 shows the distribution of the identified silent periods in the manually 

segmented audio. To determine a threshold of maximum silent duration before considering a new 

estimated utterance, the 90-percentile of the distribution was calculated, setting up the threshold 

to be 0.58s. Therefore, if a silent period passes the threshold of 0.58s, the next detected speech 

 

Figure 28. Distribution of the identified silent periods in the manually segmented audios and 

display of the 90-percentile of the distribution, which was set as the threshold for maximum 

silence duration before considering a new utterance.  
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period is considered a new utterance. Because there may have been buffers of data that are detected 

as speech but that are accurate noises, a minimum length of time with detected speech was 

determined. The dataset contains back-channel signals (i.e., laughs, “yes”, “no”, etc.), therefore 

the length of such back-channels was considered to set up the minimum speech threshold, which 

was set to be 4 windows of data or 0.12s. Figure 29 shows the distribution of the audio segment 

lengths when the maximum silence duration and the minimum speech thresholds were applied to 

the dataset. 

4.2.5.2.2. Sampling rate, signal feature, and classification models evaluation 

Using the 8kHz signals, a total of 67 features calculated from time series features were 

extracted and evaluated using correlation analysis. The correlation analysis revealed that 25 out of 

the 67 evaluated features were highly correlated.  To evaluate the effect that eliminating those 25 

features may have on the classification performance, a variety of classifiers were trained to 

recognize 4 classes (negative, positive, question, neutral), 3 classes (negative, positive, question), 

and 2 classes (combinations of pairs of negative, positive, question, and neutral classes) using both 

sets of features (complete and reduced). Figure 30 shows the results of classification accuracy for 

 

Figure 29. Distribution of audio segment lengths obtained by the speech segmentation block. 
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models trained using a different number of classes and trained using the initial 67 features and the 

reduced set of 42 features (shown in Table 20). It can be observed that for all cases of trained 

classifiers, the reduced set performs comparable to or better than the original set. Therefore, no 

loss in classification accuracy is obtained when reducing the feature set using correlation analysis. 

The type of classification model from which the displayed accuracies in Figure 30 were obtained 

varies across all classifiers per class. However, the predominant model was SVM with a Gaussian 

kernel. All models were trained using 70% of the data with a 10-fold cross-validation approach to 

minimize overfitting results. 

To evaluate the effect that reducing the sampling rate may have on classification accuracy, an 

SVM with a Gaussian kernel was selected based on the results from the correlation analysis. 

Furthermore, features that did not present a Gaussian distribution from the 42 features listed in 

Table 20 were eliminated from this part of the evaluation. Features that did not follow a Gaussian 

 

Figure 30. Evaluation of different classification model accuracies using two sets of features: (1) 

all features extracted and (2) a reduced feature set obtained by eliminating highly correlated 

features. Abbreviations: Call – classifier for four classes, CPNQ – classifier for positive, negative, 

and question classes, CNO – classifier for negative and all other classes combined, CPN – 

classifier for positive and negative, CNeN - classifier for neutral and negative, CNQ - classifier for 

negative and question, CPQ - classifier for positive and question, CPNe - classifier for positive and 

neutral, CNeQ - classifier for neutral and question. 



 

 130 

distribution included the number of peaks in Mel pitch, frequency spectrum coefficients, signal 

energy, speaking rate, pausing rate, and std of the last 5 non-zero values of Δ-Mel pitch. In total, 

the models were trained with 33 features. The interest in exploring the effect of sampling rate over 

classification accuracy comes from the goal of designing a computationally and real-time resource-

aware intonation recognition unit.  

Table 21 shows the results of the sampling rate analysis. Note that even when the overall 

classification accuracy of the models across the evaluated sampling rate does not change 

significantly, the precision accuracies do change for positive and negative intonations. The 

precision accuracy to recognize positive intonations decreases, although not consistently, as the 

sampling rate is decreased. On the other hand, the models seem to become more sensitive to 

negative intonations as the sampling rate is reduced. Because the accurate recognition of positive 

Table 20. Final list of features used for classification of intonations. This final list was obtained 

after eliminating 25 highly correlated feature sets out of 67. 

Feature type 
Feature name – time 

series 
Final set of features Qty 

Prosodic 

Signal energy Mean, min 2 

Mel pitch (pitch value 

on Mel scale) 

Min, max, mean, std, number of peaks, 

mean peak value, std of peak values, mode 

of peak values 

8 

Δ-Mel pitch 

Mean peak value, std of peak values, and 

mean, std, and median of last 5 non-zero 

value 

5 

ΔΔ-Mel pitch 
std of peak values 1 

Conversation Speaking rate Voiced/Unvoiced 1 

 Pausing rate Silence frames/total frames 1 

Voice quality Zero-crossing rate Mean, std, min, median 4 

Frequency 

spectrum 

coefficients 

Mean of power 

spectral density 

Mean, min, median 3 

Cepstral 

coefficients 

Mel-frequency 

cepstral coefficients 

(MFCC) 

Mean, std, max, min of first 4 MFCC 

coefficients and range of the 4th MFCC 

coefficients 

17 

 



 

 131 

and negative intonations is important for evaluating the level of positivity contributing to the 

rapport between dyads and groups, 8 kHz was used in further analysis. 

To investigate how well specific models adapt to the recognition of specific intonations, 

classification models were trained for the recognition of four, three, and two classes. Table 22 

presents a summary of the results. The displayed summary suggest that models trained to classify 

two classes achieve a more balance precision accuracy. In addition, models that focus on positive, 

negative, and question intonations also achieve a higher level of balance accuracies across its 

classes. A possible reason for the low classification accuracies of the neutral class is that based on 

Table 21. Comparison of the results of classification accuracy when sampling rate of the input 

signal is varied. The overall accuracy of the classification model does not seem to suffer a 

significant reduction; however, the precision accuracy of positive audio segments/estimated 

utterances do decrease by at least 1/3. 

Sampling 

rate 

Model accuracy (validation 

training/testing) 

Precision accuracy 

Question Positive Negative Neutral 

8kHz 40.53%/41.76% 46.81% 45.74% 51.06% 23.40% 

4kHz 40.18%/42.45% 54.26% 21.28% 63.70% 21.28% 

3.2kHz 39.04%/39.23% 46.81% 24.47% 54.41% 24.47% 

2kHz 38.13%/41.09% 42.55% 31.91% 57.55% 24.47% 
 

Table 22. Summary of best performing classification model with their respective model and 

precision accuracy. 

Model type 
Model 

accuracy 
Precision accuracy 

Negative Positive Question Neutral 

Medium Gaussian SVM 41.76% 47% 46% 51% 23% 

Medium Gaussian SVM 57.40% 60% 50% 62%  

Medium Gaussian SVM 65.10%   64% 66% 

Medium Gaussian SVM 69.60% 71% 68%   

Linear SVM 66.70% 78%   55% 

Coarse Gaussian SVM 63.50%  65%  62% 

Medium Gaussian SVM  73.50% 71%  76%  

Medium Gaussian SVM 69.20%  68% 70%  

Linear SVM 67.50% 86% 40% 
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analysis of annotations, audio segments that were mark as neutral often carried a specific 

intonation that could be grouped with negative or positive types of intonation.  

To better understand the advantages and disadvantages of this work, Table 23 compares this 

approach with others in the literature. Works are compared based on the type of data used for 

training, the real-time capability, the sampling rate, the linguistic unit used for feature extraction, 

the number and type of extracted features, the type of classifier, the type of classes, and the 

percentage of accuracy. The works in [142], [144], [189], [229] do not perform real-time 

processing and most of those works made use of acted databases, not accounting for speakers with 

different cultural backgrounds, variations in the recording environment, and variation in 

microphone-distance. On the other hand, the works that perform real-time processing [230], [231] 

have focused on the recognition of affective state classes, instead of combination with other types 

of intonations. For example, the work by Alonso et al. [230] demonstrated the use of just 6 features 

for the classification of 5 affective classes, achieving from 41.06% to 52.43% classification 

accuracy when processing natural speech datasets. However, the used sampling rate and type of 

linguistic unit for feature extraction suggest that the classification of affective states is performed 

at a high rate compared to the other works presented in Table 23. The application of human/group 

behavior monitoring does not require such a high recognition rate for the quantification of 

positivity levels contributing to the rapport between people in an interaction. The work presented 

in this chapter work uniquely focuses on combining affective classes with question intonation. The 

interest in recognizing question intonations was to better understand the dynamics of a 

conversation and patterns of answering positively or negatively. In addition, the processing of a 

natural dataset at the low sampling frequency of 8kHz and estimation of a sentence-level utterance, 

whereas other works used voiced frames for classification or the acted speech segment from their 
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respective datasets, represent an advantage for real-time processing. In terms of classification 

performance, although difficult to compare because of the nature of the constructed dataset and 

Table 23. Comparison of selected works in the research area of speech emotion recognition. 

Abbreviation for classifiers: Support Vector Machine (SVM), Meta Decision Tree (MDT), 

Gaussian Mixture Models (GMM), Auto-Associative Neural Networks (AANN), Sequential 

Minimal Optimization (SMO). 
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[142] No Natural 16kHz - 22 
Prosodic, 

voice 
quality 

SVM 
Positive 
negative 

52% 

[144] No Acted 16kHz Sentence 
level 

253 Prosodic, 
semantic 

SVT+
MDT 

Neutral, 
happy, 

angry, sad 

80% 

[189] No Acted - Sentence 
level 

- Prosodic, 
cepstral, 
wavelet 

GMM Happiness
, anger, 

fear, 
sadness, 
surprise, 
neutral 

66% 

[229] No Acted 8kHz 
Sentence 

level 
400 

Voice 
quality, 
spectral 

SVM
+AA
NN 

Anger, 
disgust, 

fear, 
happy, 
neutral, 
sadness 

84% 

[230] Yes Natural 16kHz 
Voiced 
frame 

6 
Prosodic, 
spectral 

SVM 

Anger, 
boredom, 

happy, 
neutral, 
sadness 

41.06
% - 

52.43
% 

[231] Yes Acted - 
Sentence 

level 
- Prosodic SMO 

Happy, 
sad, 

surprise, 
fear, 

disgust, 
anger, 
neutral 

67% 

This 
work 

 
Yes Natural 8kHz 

Estimation 
of 

sentence 
42 

Prosodic, 
voice 

quality, 
cepstral 

SVM 

Positive, 
negative 

70% 

Negative, 
question 

74% 

Positive, 
negative, 
question 

57% 

Positive, 
negative, 
question, 
neutral 

42% 
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the types of classes being classified, the results of this work are better or comparable to those 

previously in the literature.  However, improvements should be made in the number of features 

and type of classifier used to improve computational efficiency. 

4.3.Overall Discussion 

In general, this work focused on two main technical points when designing sensor signal 

processing algorithms for the recognition of local transformed features. The first technical point 

relates to the collection of data to train models to recognize behavioral cues of interest and the 

second to the evaluation of signal processing and machine learning model parameters to increase 

computational efficiency.  

In this chapter, the collection of data to train machine learning models can be classified/divided 

into two ways: acted/evoke data collection and natural data collection. Acted/evoke data was 

collected for the training of the head action detection model, while natural data was collected for 

the training of the speech intonation detection model. Acted/evoke datasets are good for fast 

prototyping because the onset of events of interest or “classes of interest” is known from the data 

collection processes. For example, the dataset collected to train the HAD unit was performed in a 

manner that evoked the actions of nodding (Δ-pitch), shaking (Δ-yaw), and rolling (Δ-roll) the 

head. Therefore, the onset of the action of interest was known and no data annotation process was 

needed to prepare the dataset for processing. However, training models with acted/evoke data may 

not perform as expected when running/implementing these models in the wild because it does not 

carry the level of noise or variation in events that may be encountered in a natural environment. 

On the other hand, natural datasets are better at representing the reality of day-to-day 

interaction. However, the preparation of natural datasets is subjective to annotators, creating a high 

level of variability in assigned labels among annotators, and is time-consuming. For example, the 
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preparation of the dataset collected to train the speech intonation recognition model required the 

participation of a total of at least six annotators: two to perform manual segmentation and four to 

perform annotation of speech intonations. Therefore, well-established data annotation procedures 

can help decrease variability in assigned data labels and help establish a minimum number of 

required annotators to obtain an optimal dataset. This chapter shows how the level of inter-

annotator agreement varies depending on the protocol used for data annotation. In the case 

presented here, segments of speech were labeled in the order in which they occurred, as well as in 

random order. This revealed that when speech segments are labeled in random order there are more 

non-neutral intonations identified than when the segments are labeled in order, possibly confirming 

that the lack of context in the speech segments influences the perception of intonations. Labeling 

intonations of speech segments presented in random order may be preferable when designing 

human behavior monitoring systems that are free of speech recognition units or any other 

methodology that provides information about the context of a conversation. 

When evaluating different signal processing and machine learning parameters to decrease 

computational complexity while maintaining good accuracy, this work looked at data buffer sizes 

for real-time processing, the number of signal features used for classification, the type of features, 

and the complexity of selected models. Optimal machine learning models make use of a 

combination of the optimal aforementioned parameters. However, on occasions, optimized 

parameters can reduce the ability to generalize the classification models depending on the dataset 

used for training. For example, feature reduction techniques used to reduce the computational 

complexity of an overall machine learning pipeline can increase the classification accuracy of the 

training dataset, but they can also decrease the ability of the model to be transferable to cases 

outside the ones in which the model was trained. This can be particularly true when using 
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acted/evoked datasets. Therefore, it is recommended to use natural data to confirm the performance 

of optimized models designed with acted/evoked datasets. On the other hand, a combination or 

fusion of optimized classification models provides the opportunity to simplify re-training 

processes, if necessary or desired, and reduce computational time and power consumption. This 

work implemented this methodology in the design of the real-time HAD unit.  

4.4.Summary 

This chapter presents the design and implementation of real-time data processing blocks to 

recognize head activity and intonations using IMUs and audio signals, respectively. The HAD unit 

was trained with collected data from a laboratory environment. The HAD unit recognizes three 

static positions and three dynamic motions (i.e., Δ-pitch, Δ-yaw, Δ-roll) with an accuracy of 

97.91%. On the other hand, a real-time speech intonation recognizer was trained using natural data 

collected during research team meetings and labeled using affective states and an interrogative 

expression. The natural dataset was constructed by analyzing two methods of labeling intonations: 

in sequential order or random order of occurrence. To the best of our knowledge, this is the first 

reported effort that studies the effects of labeling speech intonations using different orders of 

presentation, i.e., preserving the context of the interaction when labeling in sequential order or 

eliminating context when labeling in random order. Results revealed that labeling in sequential 

order leads to a higher level of inter-annotator agreement, wherein labeling in random order leads 

to a higher level of non-neutral intonations being recognized by two or more annotators. As the 

use of nonverbal behaviors to train machines for the recognition of human behaviors excludes 

contextual information, this may suggest that, in preparing natural datasets for training such 

systems, labeling in random order may be preferred. Furthermore, the trained speech intonation 

recognizer achieved a 70% classification accuracy when classifying positive and negative classes 
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and 57% when classifying between positive, negative, and question intonations. This also 

represents the first effort in combining affective classes with an interrogative intonation. The next 

chapter shows insights into the design and execution of a social interaction study to expand the 

available datasets for the complete design and implementation of the real-time machine learning 

framework.  
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5. SOCIAL INTERACTION STUDY: METHODS, DESCRIPTION OF DATA 

COLLECTION, AND ANALYSIS 

The human studies and collected datasets presented in Chapter 4 served as the basis to start 

the design of models, able to identify individual and nonverbal behavioral cues of interest, that 

form part of the machine learning framework presented in Chapter 3. However, to explore and 

draw relationships between nonverbal cues from multiple individuals involved in an interaction 

and multiple channels of communication, a more comprehensive dataset needs to be utilized. 

Currently, no publicly available dataset exists that meets the needs of this work, that is, a dataset 

composed of audio, IMU, and physiological data from a head-mounted device, emotional state 

labels, and rapport labels. Therefore, in this chapter, the design and execution of a social interaction 

study are presented, together with the description of sensor data and survey data collected. 

5.1. Study Methods 

The goals of this human study were (1) to collect audio, visual, and physiological sensor data 

while a group of individuals was interacting for a given period of time, (2) to provide an 

environment where low and high levels of rapport could be evoked, and (3) collect self-reported 

data about the liking between dyads in a group and their perceived dyadic and group rapport level.   

5.1.1. The Basis for Recruitment of Participants 

For this study, dyads were considered the basic unit of interest to understand group 

consonance. Because our interest is in group interactions, groups were required to be composed of 

a minimum of 3 individuals, which contains 3 dyadic interactions. This work aimed at collecting 

data from at least 60 dyadic interactions which led to the aim of forming groups of 4 individuals, 

which each contains 6 dyadic interactions. However, due to human factors such as participants' 

availability or not being able to complete the study, some groups were composed of 3 individuals. 
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This resulted in the study collecting data from a total of 10 groups formed with 3 to 4 individuals, 

which required a sample size of ~40 individuals. 

5.1.2. Study Overview  

The study procedure was approved by the Michigan State University (MSU) Institutional 

Review Board (IRB) and conducted under strict physical distance and following privacy protocol 

guidelines. To form the 10 groups of 3 to 4 individuals, the study was divided into two parts: (1) 

consent to participate in the study and the administration of two questionnaires and (2) the 

interaction between participants, where multi-sensor data was collected, and additional 

administration of questionnaires. Participants’ interaction consisted of two periods of 20 minutes, 

where in each period participants were discussing a topic statement given to them. Figure 31 

describes the parts involved in the study and their respective approximate duration. 

The study was advertised through email around various departments across MSU and in flyers 

posted around university buildings. Therefore, participants were recruited from the MSU campus, 

however, there were no requirements for subjects to be students or MSU affiliated in any way. 

Interested participants were first asked to fill out a contact release form that briefly defined the 

goals of the study and participant criteria. The contact release form also allowed potential 

participants to submit their contact information and confirm that they met eligibility criteria. 

Individuals were eligible to participate in the study if they were 18 years of age or older and could 

be physically present on the MSU campus at the time of the second part of the study. Participants 

 

Figure 31. General description of the social interaction study timeline.  
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were individually contacted to schedule a 30-minute Zoom meeting to perform the first part of the 

study. 

5.1.3. First Part of the Study 

During the first part of the study, the consent form was discussed and signed by the participant. 

Then, the participant was provided with two questionnaires. The first one was a Demographic 

questionnaire that collected information about their gender, age, ethnicity, educational 

background, and current employment status. The second one was a Topic questionnaire that asked 

participants to provide their opinion (how much they agree or disagree) using an 11-point Likert 

scale on a series of topic statements that included gun control, vegetarianism, animal testing, 

universal healthcare, death penalty, religious freedom, professional sports, vaccines, college 

athletes, environment, animal hunting, exercise, TV shows, travel, video games, food, outdoor 

activities, and social interactions (see APPENDIX A). After the questionnaires were completed, 

the participant was asked for their availability to perform the second part of the study. The 

responses to the Topic questionnaire together with the availability of the participants were used to 

form the 10 groups of 3 to 4 participants.  

5.1.4. Topic Statement Selection and Group Formation 

During the second part of the study, each group participated in two interactions, wherein two 

different topics were discussed. The first topic was intended to be one that not all individuals in 

the group agreed on and the second one was intended to be one where all participants had a similar 

opinion. Therefore, groups were formed by matching individuals’ responses from the Topic 

questionnaire to invoke the desired level of interaction at each discussion section. The goal was to 

invoke conflict during the first discussion section that could affect the establishment of rapport but 

invoke an increase in rapport during the second interaction. Table 24 shows a summary of the 
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topics selected for discussion for each group and their level of agreement in opinion. In general, 

the first topic was selected by looking at an average level of agreement of 5 (neutral opinion), but 

with a range value in opinions of 5 or more, which indicates the presence of diverse opinions. The 

second topic was selected by looking at an average level of agreement close to 1 or 10 with a range 

value of less than 5, or an average level of agreement of 5 with a range value of less than 1. 

However, there were cases where the availability of the participants limited the groups that could 

be formed and the variety of opinions available, which was the case of Group 6 and Group 7 for 

the second and first topics of discussion, respectively.  

Table 24. Summary of topics selected for discussion and the average level of group agreement. 

Group 

Num of 

individual

s 

Topic #1 

Disagreement 

Topic #2 

Agreement 

Average Range Average Range 

1 4 
Death 

penalty 
4.25 8 Environment 1 2 

2 4 
Death 

penalty 
3.5 7 Vaccines 1 2 

3 4 
Animal 

hunting 
4.5 9 Environment 1 2 

4 3 Gun control 6 7 
College 

athletes 
5 0 

5 4 
Animal 

hunting 
3.75 10 

Universal 

healthcare 
8.5 5 

6 3 
Death 

penalty 
4 7 Vaccines 8 6 

7 3 
Animal 

testing 
3 3 Environment 2 5 

8 4 Vaccines 5.25 6 Death penalty 7.25 4 

9 3 
Death 

penalty 
5.7 10 Gun control 1 2 

10 4 
Animal 

testing 
5 5 Environment 1.75 5 

 Average 7.2 Average 3.3 
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5.1.5. Second Part of the Study and Main Procedure 

The second part of the study, which constituted the main part of the study, took place in a 

large laboratory space with four separate rooms. Each participant was assigned to a room that was 

equipped with a computer, the Zoom meeting software, a microphone, a webcam, a BrainBit 

headband, a Shimmer device, and the infrastructure to collect data through LSL. A study team 

member helped the participants to put on the wearable sensors (the BrainBit and Shimmer), as 

shown in Figure 11. Participants were then instructed to fill out an emotional state questionnaire 

(see APPENDIX B) containing a 9-point self-assessment manikin arousal, valence, and dominance 

(AVD) scale [232] and an 11-point rating tool based on the circumplex model of emotion [39], 

[233]. In the 9-point Likert arousal, valence, and dominance scale, participants were instructed to 

use arousal to describe how intense is their current emotion, using 1 as low and 9 as high, valence 

to describe how negative or positive is their current emotion, using 1 as negative and 9 as positive, 

and dominance to describe the degree to which their current emotion controls their thoughts and 

actions, using 1 as low and 9 as high. In the 11-point rating tool based on the circumplex model of 

emotion, participants were instructed to “rate how are you feeling at this moment using the 

following scale.” Eight 11-point Likert scales were presented evaluating the following items: 

tense-calm, nervous-relaxed, stressed-serene, upset-contented, sad-happy, depressed-elated, 

lethargic-excited, and bored-alert, where the far left of the scale (score of 1) belong to the negative 

feeling and the far right (score of 11) to the positive one. 

Participants were given the first topic statement for discussion and instructed to write at least 

three reasons to back up their opinion of the issue. Participants were also instructed to discuss the 

topic statement among themselves, to share their opinion during the interaction, and to persuade 
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those with a difference in opinion that their personal view was more reasonable. The instructions 

were given as follows, where the topic statement for “death penalty” is used as an example:  

“Consider the following statement: “The death penalty should be used to deter heinous 

crimes.” for which you expressed on a scale from 0 (very strongly disagree) – 10 (very strongly 

agree) that your opinion is better described by a _X_ (inkling to agree/disagree/neutral).  

Your first task is to make a note (below) of at least three reasons why you have this opinion. 

Then, during the virtual meeting, your task is to discuss these reasons and sway other attendees 

towards your point of view if differences in opinion are found. During the virtual meeting 

discussion, you should also try to learn the specific reasons other attendees express their 

opinions.” 

where X represents the score given on how much they agree or disagree. The group was then 

left to discuss the topic statement for ~20 minutes. At the end of the discussion, participants were 

asked to fill out the emotional state questionnaire and a rapport questionnaire.  

The criterion to measure rapport was performed using items derived from [120] as described 

in [121]. Some items were prefaced with the instruction to “rate yourself in the interaction on the 

following characteristics.” The items were smooth, bored, cooperative, satisfied, comfortable, 

awkward, engrossed, involved, friendly, active, and positive. The remaining items were prefaced 

with the instruction to “rate the interaction between you and X on the following characteristics,” 

where X represented one of the other two (for groups of 3) or three (for groups of 4) individuals 

in the interaction. The items included well-coordinated, boring, cooperative, harmonious, 

unsatisfying, uncomfortably paced, cold, awkward, engrossing, unfocused, involving, intense, 

unfriendly, active, positive, dull, worthwhile, and slow. Responses were recorded on five-point 

Likert scales. 
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The rapport questionnaire included the question “How much are you enjoying the 

discussion?,” which answer was recorded on an 11-point  Likert scale. Also, a liking score was 

obtained from each individual in the interaction in relation to everybody else. This score was 

obtained by a five-point Likert scale when asked “Do you like your interaction with subject X?,” 

where X represented one of the other two (for groups of 3) or three (for groups of 4) individuals 

in the interaction (see APPENDIX C).  

After the questionnaires were filled out, a second topic statement for discussion was given 

and participants were asked to follow previous discussion instructions. In the end, participants 

filled out the emotional state and rapport questionnaires.  

5.2.Data Collection and Description 

All collected data were managed by the study coordinator from a central computer and saved 

using an XDF data format [234]. The multi-sensor hardware and software infrastructure presented 

in Chapter 3 was the one used for the collection and management of sensor data. This process was 

transparent to the participants. Data collection through LSL was primarily performed during the 

two interaction periods, however, data was also collected after each interaction, while participants 

were filling out the questionnaires, for data quality assurance purposes. For each group, a total of 

four XDF files were generated: two corresponding to the interaction periods and two 

corresponding to the administration of the questionnaires. In addition, the entire study was 

recorded through Zoom, where the video of the meeting was obtained for annotation purposes, in 

addition to audio for each participant. However, because the Zoom meeting and the four periods 

of sensor data were recorded separately, the video from Zoom needed to be synchronized with the 

periods of sensor data. This synchronization was manually performed using the audio recorded 

from LSL and aligning them with the audio obtained from the Zoom recording. The 
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synchronization was performed for the periods of data recorded during the interactions. Therefore, 

for each group, two videos were produced after synchronization, each corresponding to the two 

interactions that they carried on.  

The overall dataset consists of 20 group discussions in English, 2 per group, each lasting on 

average 21 minutes. This results in an average total of 420 minutes of audio, visual, and 

physiological data. However, due to technical problems, part of the data from groups one to three 

(summarized in Table 25) was corrupted. Data corruption and, on occasions, loss of data problems 

seemed to be related to the order in which the sensors, especially the shimmer was prepared for 

connection to the multi-sensor system. It was determined that the PPG connector from the 

Shimmer device needed to be connected before turning it on and connecting it to its respective 

computer.  

5.3.Summary and Analysis of Questionnaires’ Data 

5.3.1. Demographics 

The second part of the study had a total participation of 35 individuals (21 males, 12 females, 

and 2 that identified as other). One of the female participants formed part of two groups. 

Table 25. Summary of corrupted data and lost data from the first three groups due to a technical 

issue. “-“ indicates no loss and “x” indicates corrupted data or lost data. 

Group Participant Interaction Audio PPG Acc Gyr Mag EEG 

1 

1 
1st  - x x x x - 

2nd  - x x x x - 

2 
1st  - x - - - x 

2nd  - x - - - x 

4 
1st  - - x - - - 

2nd  - - x - - - 

2 2 
1st  - - - x x - 

2nd  - - - x x - 

3 

1 2nd  - x x x x - 

4 
1st  - - - x x - 

2nd  - - - x x - 
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Participants’ age ranged from 18 to 44 years, where 15 individuals were in the range of 18-24 

years old, 17 were in the range of 25-34 years old, and 3 were in the range of 35-44 years old. 

Participants’ ethnicities were predominantly White and Asian with 15 and 10 participants, 

respectively. Other represented ethnicities included Black or African American, Native Hawaiian 

or Pacific Islander, American Indian or Alaska Native, and combinations of all of them. 

Participants’ highest level of education ranged from having a high school diploma to have a 

doctorate or professional degree, where 10 participants indicated that they have some college 

credits, 10 had bachelor’s degrees, and 10 had master’s degrees. In terms of employment, 29 of 

the participants identified as students, 3 as having a part-time job, and 3 as having a full-time job. 

5.3.2. Emotional State 

The emotional state questionnaire employed two scales a 9-point Likert AVD scale and an 

11-point rating tool based on the circumplex model of emotion. To better display whether a 

participant was feeling more of a negative or positive feeling, the responses to the 9-point Likert 

AVD scale were transformed and centralized to 0, meaning that the scale was modified to go from 

-4 to 4, instead of 1 to 9. Likewise, the 11-point rating tool scale was modified to go from -5 to 5, 

instead of 1 to 11. Table 26 and Table 27 show a summary (average and standard deviation) of 

the responses provided by the participants, for each instance in which the emotional questionnaire 

was filled out. Table 26 and Table 27 also show the results of a two-sample t-Test for equal means 

that was applied to two sets of data to find which emotional states were significantly affected 

throughout the interactions. The two sets of data were (1) the responses to the emotional state 

questionnaire before and after the first interaction and (2) the responses obtained after the first 

interaction and after the second interaction. Results show that based on the responses to the arousal, 

valence, and dominance scale, there was a statistically significant change in arousal and valence 
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levels from before to after the first interaction. Related to the rating tool based on the circumplex 

model of emotion, results show a statistically significant change in the lethargic-excited and bored-

Table 26. Summary of the responses provided by the participants for the 9-point Likert AVD 

scale. This table shows the average and standard deviation of the provided responses to the items 

in the scale for each instance in which the emotional state questionnaire was filled out. Also, the 

P-values resulted from the t-Test applied between each of the instances in which the 

questionnaire was filled out are shown. These results demonstrate that there is a significant 

change in arousal and valence before and after the 1st interaction. 

Scale Items 
Before 1st 

interaction 
After 1st 

interaction 
After 2nd 

interaction 

P-value between 
before and after 
1st interaction 

P-value 
between 1st and 
2nd interaction 

Arousal -1.94±1.56 -0.28±1.92 -0.23±2.04 0.00013 0.8999 

Valence 0.53±1.42 1.06±1.47 1.63±1.55 0.0463 0.4170 

Dominance -0.79±1.86 0.17±1.54 -0.22±1.76 0.2622 0.0874 

Table 27. Summary of the responses provided by the participants for the 11-point rating tool 

based on circumplex model of emotion. This table shows the average and standard deviation of 

the provided responses to the items in the scale for each instance in which the emotional state 

questionnaire was filled out. Also, the P-values resulted from the t-Test applied between each of 

the instances in which the questionnaire was filled out are shown. These results demonstrate that 

there is a significant change in two of the items before and after the 1st interaction and three of 

the items before and after the 2nd interaction. 

Scale Items 

Before 1st 

interaction 

After 1st 

interaction 

After 2nd 

interaction 

P-value 

between 

before and 

after 1st 

interaction 

P-value 

between 1st 

and 2nd 

interaction 

Tense-Calm 0.33±2.1 -0.75±1.92 0.47±2.37 0.3821 0.0189 

Nervous-

Relaxed 
-0.64±2.22 -0.33±1.82 0.92±1.99 0.5251 0.0070 

Stressed-

Serene 
-0.61±2.03 -0.5±1.7 0.54±1.96 0.5623 0.0289 

Upset-

Contented 
0.14±2.09 0.19±1.51 0.92±2.01 0.8973 0.0886 

Sad-Happy -0.39±1.52 0.14±1.68 0.53±1.95 0.1657 0.3671 

Depressed-

Elated 
-0.53±1.67 -0.17±1.92 0.2±1.95 0.4239 0.5720 

Lethargic-

Excited 
-1.06±1.87 -0.19±1.41 -0.03±1.68 0.0305 0.6501 

Bored-Alert -0.36±1.64 0.97±1.99 0.81±2.14 0.0028 0.7331 
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alert levels from before to after the first interaction and in the tense-calm, nervous-relaxed, and 

 
Figure 32. Summary of responses to the Emotional state questionnaire. The bars represent the 

average score given by all the participants of the group and the error bars represent the stand 

deviation of those responses. 
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stressed-serene levels from after the first interaction to after the second one. 

 

Figure 33. Overall scores with standard deviation bars for the AVD and circumplex model of 

emotion scales per individual per group for before and after the interaction sections. The overall 

scores were determined by calculating the average of the responses given by the participants for 

the items on each of the two scales. 
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Because this work is interested in looking at the group-level behavioral factors that influence 

rapport, the averages of individuals’ responses to the emotional state questionnaire are presented 

per group in Figure 32. The information presented in Figure 32 provides insight into the level of 

positivity within the group. Generally, it can be observed that before and after the 1st interaction 

there is a variation of low and high affective states across individuals of a group and groups, while 

after the 2nd interaction there was a tendency to be at a high emotional state except for Groups 7 

and 10. 

To gain insight into the individual-level changes in emotional state across the study, Figure 

33 shows overall scores with standard deviation bars for the AVD and circumplex model of 

emotion scales per individual per group before and after the interaction sections. The overall scores 

were determined by calculating the average of the responses given by the participants for the items 

on each of the two scales. 

5.3.3. Rapport  

The responses to negative adjectives of the rapport questionnaire (i.e., boring, unsatisfying, 

uncomfortably paced, cold, awkward, unfocused, intense, unfriendly, dull, and slow) were, first, 

reverse scored. Then, the average of the responses to the items in the questionnaire was taken as 

the perceived score of rapport for the dyads under consideration. This yielded two rapport scores 

for each dyad inside a group. 

Because of the existence of the social-desirability bias [235], which is the tendency of 

survey/questionnaire participants to answer questions in a way that will be favorably viewed by 

others, the distribution of the dyadic reported rapport values was studied, and the lower 25-

percentile taken as the threshold to determine low rapport values. Social-desirability bias can be 

expressed by over-reporting a “good” behavior or under-reporting a “bad” behavior. In this case, 
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the overall average value reported for dyadic rapport in the study was 3.97±0.62 and a median 

value of 4.03 on a 5-point Likert scale. Therefore, most of the reported values were on the higher 

side of the scale and the reason to consider the lower 25-percentile as low rapport values. Figure 

34 shows the distribution of rapport scores for each of the interaction periods and all together as a 

whole, which was used to calculate the 25-percentile. The 25-percentile threshold value was 

determined to be 3.61. Based on this threshold, it was determined that low reported rapport scores 

amount to 32 in the first interaction period and 19 in the second interaction period from a total of 

192 reported scores of dyadic interactions across the study, which includes two rapport values for 

each dyad in a group.  

To characterize the level of rapport experienced by the groups, this work determined 

individual-experienced and dyadic-experienced rapport levels. The individual-experienced rapport 

levels were calculated per participant using the reported dyadic rapport values and were divided 

into active rapport values and passive rapport values. Active rapport values refer to the average 

reported experienced rapport by an individual towards the other people in the group, whereas 

passive rapport values refer to the average reported experienced rapport value from the people in 

 

Figure 34. Distribution of calculated dyadic rapport scores. (a) Shows the distribution of the 

rapport scores corresponding to each of the two interaction periods; (b) shows the overall 

distribution of calculated dyadic rapport scores across the study (first and second interaction’s 

rapport scores) and the value for the 25-percentile, which is used as a threshold to group rapport 

scores into low and high values. 
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the group towards the individual. Similarly, liking per individual was calculated as passive and 

active values. This yielded four values per individual per interaction section, two describing 

rapport levels and two describing liking values. Figure 35 and Figure 36 show the active and 

 

Figure 35. Summary of active and passive rapport scores corresponding to each individual in a 

group and for both of their interaction sections. Data used to construct these plots can be found 

in https://gitlab.msu.edu/davilasy/human-study-de-identified-data. 
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passive rapport and liking scores corresponding to each individual, per group and interaction 

section, respectively. These active and passive values are used to compare how the rapport and 

liking connections felt by one person compared to what others felt towards that one person.  

On the other hand, the dyadic-experienced rapport levels refer to the dyadic values directly 

obtained from the rapport questionnaire. These values help determine how close dyads felt the 

 

Figure 36. Summary of active and passive liking scores corresponding to each individual in a 

group and for both of their interaction sections. Data used to construct these plots can be found 

in https://gitlab.msu.edu/davilasy/human-study-de-identified-data. 



 

 154 

strength of rapport and help classify the dyadic interactions into positive dyads (both rated the 

interaction high), negative dyads (both dyads rated the interaction low), and variant dyads (one 

Table 28. Dyadic strength of rapport based on reported self-assessments during the first 

interaction, which was intended to be one where there was disagreement among members of a 

group.  

Group Interaction Positive dyads Negative dyads Variant dyads 

1 1 B1C1 A1C1, A1D1 A1B1, B1D1, C1D1 

2 1 A2C2, A2D2, B2C2, C2D2 A2B2 B2D2 

3 1 A3B3, A3C3 A3D3, A3C3, C3D3 B3C3 

4 1 A4B4, A4C4 - B4C4 

5 1 B5D5 A5B5, A5C5, A5D5 B5C5, C5D5 

6 1 A6B6, B6C6 - A6C6 

7 1 A7B7, B7C7 - A7C7 

8 1 A8C8, A8D8, B8C8, C8D8 A8B8, B8D8 - 

9 1 A9B9, A9C9, B9C9 - - 

10 1 A10B10, A10D10, C10D10 B10C10, B10D10 A10C10  
Total 24 13 11 

 

Table 29. Dyadic strength of rapport based on reported self-assessments during the second 

interaction, which was intended to be one where there was a high level of agreement among 

members of a group. 

Group Interaction Positive dyads 
Negative 

dyads 
Variant dyads 

1 2 A1D1, B1C1, B1D1, C1D1 - A1B1, A1C1 

2 
2 A2B2, A2C2, A2D2, B2C2, B2D2, 

C2D2 
- - 

3 

2 

- A3B3 

A3C3, A3D3, 

B3C3, B3D3, 

C3D3 

4 2 A4B4, A4C4, B4C4 - - 

5 
2 

B5D5 
A5B5, A5D5, 

B5C5 
A5C5, C5D5 

6 2 A6B6, B6C6 - A6C6 

7 2 A7B7 - A7C7, B7C7 

8 
2 A8B8, A8C8, A8D8, B8C8, B8D8, 

C8D8 
- - 

9 2 A9B9, A9C9, B9C9 - - 

10 
2 A10B10, A10C10, A10D10, B10C10, 

B10D10, C10D10 
- - 

 
Total 32 4 12 
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dyad rated the interaction as high, another rated the interaction as low). To identify the 

aforementioned group of dyads, the average of the rapport values obtained from dyads (each 

participant rated their interaction with the other members of the group) was calculated. Likewise, 

the difference between the rapport values from dyads was also calculated. Then, the 25-percentile 

of the calculated average values was used as a threshold to identify positive and negative dyads 

and the 75-percentile of the calculated difference of rapport values was used to identify variant 

dyads. The 25-percentile of the dyadic average rapport values was 3.72 and the 75-percentile of 

the difference in rapport values was 0.833. Table 28 and Table 29 show a summary of the dyads 

that are classified as positive, negative, or variant dyads during the first and second group 

interaction, respectively. In total, 56 dyadic interactions were classified as positive dyads, 17 as 

negative dyads, and 23 as variant dyads. From the identified negative dyads, 13 manifested during 

the first group interaction and 4 during the second interaction. In general, it can be observed how 

the number of negative dyads is dominated by the first interaction, which proves that the second 

interaction was designed to increase rapport levels. From this analysis, it can also be observed that 

negative dyadic interactions were not developed in Group 4, Group 6, Group 7, and Group 9, 

although in three of those groups there is at least one variant dyadic interaction. The following 

repository contains raw data of individual dyadic scores, active and passive rapport scores, and the 

calculated dyadic strength: https://gitlab.msu.edu/davilasy/human-study-de-identified-data.  

5.4.Data Labeling 

Two major efforts were performed to annotate data of interest. The first annotation effort 

consisted of using external observers to annotate the perceived rapport level between dyads and 

the overall group interaction. The second annotation effort focused on annotating the head actions 

of individuals involved in the interactions by using the collected videos. 
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5.4.1. Labeling of Rapport Values using External Observers 

Two external observers (one female and one male) were recruited for this task. External 

observers were instructed to watch the videos of the group interactions collected during the study 

and, using a similar version of the rapport questionnaire given to the study participants, score 

perceived rapport levels of the overall group interaction and between dyads. Therefore, each 

external observer watched a total of 20 videos, each lasting 21 minutes on average. 

In the rapport questionnaire used by the external observers, the item intending to capture the 

overall group rapport level was prefaced with the instruction to “rate the overall interaction on the 

following characteristics.” The items were smooth, bored, cooperative, satisfied, comfortable, 

awkward, engrossed, involved, friendly, active, and positive. The remaining items intending to 

capture perceived dyadic rapport level were prefaced with the instruction to “rate the interaction 

between subject X and subject Y on the following characteristics,” where X and Y represented two 

of the individuals in the interaction. The items included well-coordinated, boring, cooperative, 

harmonious, unsatisfying, uncomfortably paced, cold, awkward, engrossing, unfocused, involving, 

intense, unfriendly, active, positive, dull, worthwhile, and slow. Responses were recorded on five-

point Likert scales. Therefore, each external observer provided a total of one perceived overall 

value of rapport and three (for groups of 3) or six (for groups of 4) perceived dyadic rapport levels 

per video of the interaction section. 

The scores from the two annotators were combined by calculating the mean between the rated 

items for each group and observed dyadic interaction. Then, similar to the method employed in 

Section 5.3.3, the overall value of rapport and perceived dyadic rapport levels were calculated by 

obtaining the mean of the values assigned to the items in the questionnaire. To find a threshold to 

group overall rapport values and perceived dyadic rapport levels into high and low, the 25-
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percentile of each set was found. The 25-percentile of the overall rapport values was found to be 

3.52, whereas the perceived dyadic rapport level was 3.36. Table 30 and Error! Reference source n

ot found. show a summary of the dyads that are classified as positive or negative dyads during the 

first and second interactions, respectively. In total, 72 dyadic interactions were classified as 

positive and 24 as negative based on the perceived rapport scores. In addition, 5 of the 20 group 

interactions were grouped as having low overall group rapport. These values are intended to serve 

as objective scores of rapport within the groups. When results from external annotators are 

compared to the self-reported rapport values (shown in Table 28 and Table 29), both agree that 

during the first interaction 20 of the dyads are positive ones and 7 are negative ones, whereas 

during the second interaction both agree in that 28 of the dyads are positive ones and 4 are negative 

ones. 

5.4.2. Labeling of Head Actions 

As shown in Chapter 4, because head actions contribute to rapport establishment, the head 

actions of a subset of groups were labeled. Two annotators were employed for this task, and each 

was assigned a different set of groups for labeling. Annotators were instructed to watch the 

recorded videos of the interactions and use an annotation template made in an excel file to annotate 

the beginning and final time of a recognized movement or position. A recognized movement or 

position was annotated using a general label, a detailed label, and a direction label. Therefore, each 

identified head action was assigned three labels. Head actions were labeled for all the individuals 

involved in the video interactions. 

General labels included no movement, one-time movement, repeating the motion, and other 

motions. Annotators were instructed to use no movement when the participant was in a steady 

position. The one-time movement was used when the participant went from left to right, up to 
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down, or vice versa, on a single movement. The repeating motion was assigned when a subject 

was head nodding, head shaking, or performing a cyclical motion. Finally, other motion was used 

for observed body position adjustments, chair motions, or any other inconsistent motion that could 

affect the position or motion of the head.  

Detailed labels include steady, tilt shoulder, tilt yaw, bow, nod, shake, roll, body adjustment, 

inconsistent motion, and chair motion. Annotators were instructed to use steady when the 

participants were not showing movement. Tilt shoulder was used when the head was inclined to 

one of the shoulders (ear close to shoulder) and tilt yaw when there was a one-time head movement 

to the left or the right. The bow was used when there was a one-time head movement up or down. 

Nod was used for repeating movements in the pitch axis, shake for repeating movements in the 

Table 30. Perceived rapport scores of the 1st interaction of each group obtained from two 

external annotators. 

Group Interaction Positive dyads Negative dyads 
Overall perceived 

group rapport-level 

1 1 A1C1, A1D1, B1C1, B1D1, 

C1D1 
A1B1 3.41 

2 1 A2C2, A2D2, B2C2, B2D2, 

C2D2 
A2B2 4 

3 1 

C3D3 

A3B3, A3C3, 

A3D3, B3C3, 

B3D3 

2.91 

4 1 A4B4, A4C4, B4C4 - 3.91 

5 1 

C5D5 

A5B5, A5C5, 

A5D5, B5C5, 

B5D5 

2.55 

6 1 A6B6, A6C6, B6C6 - 3.68 

7 1 A7B7, A7C7, B7C7 - 3.86 

8 1 A8C8, A8D8, B8C8, B8D8, 

C8D8 
A8B8 4.36 

9 1 A9B9, A9C9, B9C9 - 3.77 

10 1 A10C10, A10D10, B10C10, 

B10D10, C10D10 
A10B10 4.05 

 

Total 34 dyadic interactions 

14 dyadic 

interactions 

3 group interactions 

with perceived low 

rapport levels 
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yaw axis, and roll for repeating movements in the roll axis. On the other hand, body adjustment 

was assigned to any movement originating from an individual adjusting their body position, chair 

motion was assigned to any head/body movement originating from moving or rotating the chair in 

which the participants were sited, and the inconsistent motion was assigned to any set of motions 

that could not be clearly separated into a nod, shake, roll, etc. Figure 37 shows an example of 

detailed labels aligned with raw sensor data from the second interaction of Group 5. 

Direction labels include left, right, up, down, front, back, and changing. These were assigned 

in combination with the general and detailed labels to identify the direction of the motion, 

especially for the one-time movements. From the seven videos that were watched, there exist over 

8700 identified head actions with respective labels. 

Table 31. Perceived rapport scores of the 2nd interaction of each group obtained from two 

external annotators. 

Group Interaction Positive dyads Negative dyads 
Overall perceived 

group rapport-level 

1 2 A1C1, A1D1, B1C1, B1D1, 

C1D1 
A1B1 4 

2 2 A2C2, A2D2, B2C2, B2D2, 

C2D2 
A2B2 4.36 

3 2 A3C3, A3D3, B3C3, B3D3, 

C3D3 
A3B3 3.68 

4 2 A4B4, A4C4, B4C4 - 4.05 

5 2 

C5D5 

A5B5, A5C5, 

A5D5, B5C5, 

B5D5 

2.32 

6 2 A6B6, A6C6, B6C6 - 3.64 

7 2 A7B7, A7C7, B7C7 - 2.82 

8 2 A8C8, A8D8, B8C8, B8D8, 

C8D8 
A8B8 4.41 

9 2 A9B9, A9C9, B9C9 - 4.09 

10 2 A10C10, A10D10, B10C10, 

B10D10, C10D10 
A10B10 4.68 

 

Total 38 dyadic interactions 

10 dyadic 

interactions 

2 group interactions 

with perceived low 

rapport levels 
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Note that assigned labels were not cross-validated due to a lack of human resources to 

contribute to this task. However, in the future, the cross-validation scheme presented in Chapter 4 

for audio data can also be applied to this case.  

 

Figure 37. Example of raw IMU signals from the second interaction of participants in Group 5 

and assigned ‘detailed’ labels. 
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5.5.Processing IMU Data using the Designed HAD Unit and Preliminary Establishment 

of Rapport Relationship  

To advance the design of the machine learning framework for the group interaction 

monitoring system, the head-action detection (HAD) unit developed in Chapter 4 was evaluated 

using the natural data presented in this chapter. This model evaluation constitutes initial efforts in 

employing the collected dataset for the recognition of local transformed features. Data collected 

from Group 4 and Group 5 were selected for this analysis because they represent two different 

types of groups. While Group 4 appears to be a passive/collaborative group with high levels of 

shared rapport, Group 5 appears to be a confrontational one with variations in reported rapport 

levels. 

5.5.1. Evaluation of HAD Unit  

The HAD unit was evaluated using data from each individual in the selected groups; this 

includes data from 7 individuals interacting for ~20 minutes. The output of the HAD unit was 

compared to the labels assigned by an annotator, as explained in Section 5.4.2. The HAD unit was 

evaluated by its accuracy in recognizing (1) static or dynamic movement, (2) static with position 

versus motion, (3) static versus three motions, and (4) all six classes for which it was trained. 

Therefore, the performance of the HAD unit using this natural dataset was evaluated for the 

recognition of 2 classes, 4 classes, and 6 classes, for which it was ultimately trained. 

Per design, data from the groups were processed in a real-time fashion using a data processing 

frame of 3 seconds with a 50% overlap. Only data from the accelerometer and gyroscope sensors 

were processed and only 7 features were extracted, in total, from each data frame. 
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5.5.2. Synchronicity of Dyadic Head Activity and Relationship to Rapport 

Results from the best set of classes (2, 4, or 6 classes, as described in the previous section) 

were used to determine if there exists a mathematical relationship between the synchronicity of 

head activity of the dyads and the reported rapport values. The synchronicity of head activity 

between dyads is calculated by (1) measuring the dynamic time warping (DTW) between the 

signals, (2) using the obtained DTW results to correct for phase-shifts and signal length on each 

of the head activity time series, and (3) calculating the correlation coefficient between the phase-

shifted signals. The DTW is an algorithm that measures the similarity between two time series and 

provides information about which data points from time series A match more closely with data 

points from time series B. The use of DTW has been employed in research related to the 

recognition of human activity [236].  

The final correlation coefficient values are considered to represent a degree of coordination 

between dyads. These values are then matched with the dyadic rapport strength values obtained 

from self-reported data, as explained in Section 5.3.3. 

5.5.3. Results and Discussion 

5.5.3.1.Validation of HAD unit 

Results of the validation of the HAD unit, in terms of classification model accuracy, precision 

accuracy, and recall accuracy, for each of the different classes are presented for both interactions 

of Group 4 (in Table 32 and Table 33) and the second interaction of Group 5 (in Table 34). The 

first interaction of Group 5 was not evaluated because labels of head activity were incomplete.  

In order to evaluate the accuracy of the HAD unit results, the time stamp of the annotations 

of head activity for Groups 4 and 5 needed to be aligned to the output of the HAD unit. The real-

time classification of head activity provides an output every 1.5 seconds after the first 3 seconds 
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of processing. On average, the duration of a labeled action was of 4.1330 seconds. Therefore, the 

time stamp of the HAD unit was used to create a transformed set of annotations that aligns with 

the HAD unit output. In addition, because the labels assigned for head activity include other 

activities in addition to nod, shake, and roll motions, anything that was labeled otherwise was 

converted to a general motion label. The general motion labels were included in the assessment of 

the HAD unit’s performance when evaluating the set of classes that also included a general motion 

Table 32. Accuracy, precision, and recall values obtained from evaluating the data from 

participants in Group 4, first interaction. 

Number of 

classes 
 Host 1 Host 2 Host 3 Average 

2 

Accuracy 61.88% 79.94% 73.57% 71.80% 

Precision Steady: 37.7% 

Motion: 71.9% 

Steady: 23.8% 

Motion: 90.8% 

Steady: 19.1% 

Motion: 78.7% 

 

Recall Steady: 35.6% 

Motion: 73.7% 

Steady: 33.3% 

Motion: 86.0% 

Steady: 8.2% 

Motion: 91.1% 

 

4 

Accuracy 60.82% 79.42% 72.38% 70.87% 

Precision Tilt shoulder left: 

- 

Steady neutral: 

39.1% 

Tilt shoulder 

right: - 

Motion: 71.9% 

Tilt shoulder left: 

12.5% 

Steady neutral: 

22.9% 

Tilt shoulder right: - 

Motion: 90.8% 

Tilt shoulder left: 

- 

Steady neutral: 

7.8% 

Tilt shoulder 

right: - 

Motion: 78.7% 

 

Recall Tilt shoulder left: 

- 

Steady neutral: 

33.3% 

Tilt shoulder 

right: - 

Motion: 73.7% 

Tilt shoulder left: 

33.3% 

Steady 

neutral:28.6% 

Tilt shoulder right: - 

Motion: 86% 

Tilt shoulder left: 

- 

Steady neutral: 

11.1% 

Tilt shoulder 

right: - 

Motion: 91.1% 

 

4 

Accuracy 37.34% 43.15% 46.57% 42.35% 

Precision Steady: 37.7% 

nod: 43.3% 

shake: 5.2% 

roll: 52.2% 

Steady: 23.8% 

nod: 62.4% 

shake: 24.4% 

roll: 52.9% 

Steady: 19.7% 

nod: 56.2% 

shake: 9.6% 

roll: 20% 

 

Recall Steady: 44.6% 

nod: 43.7% 

shake: 30% 

roll: 11.2% 

Steady: 48.3% 

nod: 60.9% 

shake: 52.4% 

roll: 7.4% 

Steady: 11.1% 

nod: 80.8% 

shake: 12.8% 

roll: 2.1% 

 

 

 



 

 164 

class, as was the case of the first two sets of classes evaluated: (1) static or dynamic movement, 

(2) static with position versus motion. Otherwise, for the other two sets of classes evaluated (i.e., 

(3) static versus three motions and (4) all six classes) that contained specific motion types, any 

instance with other motions outside of nod, shake, and roll was not used for model evaluation.  

Results as shown in Table 32 - Table 34 revealed that, on average for, the detection of steady 

versus motion the HAD unit achieves a validation accuracy of 71.80%, 70.83%, and 56.64% for 

Group 4-1st interaction, Group 4-2nd interaction, and Group 5-2nd interaction, respectively. Group 

5-2nd interaction average accuracy falls to 56.64% because the model appears to not be able to 

recognize head motions from one of the participants’ data. For the static with position versus 

motion classes, the average accuracy for Group 4-1st interaction, Group 4-2nd interaction, and 

Group 5-2nd interaction was 70.87%, 68.28%, and 48.71%, respectively. The last set of 4 classes 

tested obtained average classification accuracies of 42.35%, 41.72%, and 54.45% for Group 4-1st 

Table 32. (cont’d). 

6 

Accuracy 35.86% 42.22% 44.9% 40.99% 

Precision Tilt shoulder left: 

- 

Steady neutral: 

39.1% 

Tilt shoulder 

right: - 

nod: 43.3% 

shake: 5.2% 

roll: 52.2% 

Tilt shoulder left: 

12.5% 

Steady neutral: 

22.9% 

Tilt shoulder right: - 

nod: 62.4% 

shake: 24.4% 

roll: 52.9% 

Tilt shoulder left: 

- 

Steady neutral: 

7.8% 

Tilt shoulder 

right: - 

nod: 56.2% 

shake: 9.6% 

roll: 20% 

 

Recall Tilt shoulder left: 

- 

Steady neutral: 

41.4% 

Tilt shoulder 

right: - 

nod: 43.7% 

shake: 30% 

roll: 11.2% 

Tilt shoulder left: 

50% 

Steady neutral: 

41.4% 

Tilt shoulder right: - 

nod: 60.9% 

shake: 52.4% 

roll: 7.4% 

Tilt shoulder left: 

- 

Steady neutral: 

12.9% 

Tilt shoulder 

right: - 

nod: 80.8% 

shake: 12.8% 

roll: 2.1% 
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interaction, Group 4-2nd interaction, and Group 5-2nd interaction, respectively. Lastly, the set of 6 

classes obtained an average accuracy of 40.99%, 37.57%, and 38.35% for Group 4-1st interaction, 

Group 4-2nd interaction, and Group 5-2nd interaction, respectively. 

It is expected that as more classes are added to the evaluation, the validation accuracy will 

drop, especially since the HAD unit was trained with data with clearly identifiable motions and 

the data used in this case is a naturally collected one. If recalled, the testing accuracy of the HAD 

Table 33. Accuracy, precision, and recall values obtained from evaluating the data from 

participants in Group 4, second interaction. 

Number of 

classes 
 Host 1 Host 2 Host 3 Average 

2 

Accuracy 65.39% 78.93% 68.17% 70.83% 

Precision Steady: 62.3% 

Motion: 67% 

Steady: 19.1% 

Motion: 90.1% 

Steady: 12.5% 

Motion: 70.7% 

 

Recall Steady: 49.8% 

Motion: 77.2% 

Steady: 26.5% 

Motion: 85.6% 

Steady: 1.9% 

Motion: 94.6% 

 

4 

Accuracy 59.1% 77.84% 67.90% 68.28% 

Precision Tilt shoulder left: - 

Steady neutral: 

48.5% 

Tilt shoulder right: 

- 

Motion: 67% 

Tilt shoulder left:  

Steady neutral: 

14.7% 

Tilt shoulder right: 

- 

Motion:90.1% 

Tilt shoulder left: - 

Steady neutral: 4.5% 

Tilt shoulder right: 

33.3% 

Motion: 70.7% 

 

Recall Tilt shoulder left: - 

Steady neutral: 

43% 

Tilt shoulder right: 

- 

Motion: 77.2% 

Tilt shoulder left: - 

Steady 

neutral:23.3% 

Tilt shoulder right: 

- 

Motion: 85.6% 

Tilt shoulder left: - 

Steady neutral: 7.7% 

Tilt shoulder right: 

0.5% 

Motion: 94.6% 

 

4 

Accuracy 47.54% 47.36% 30.25% 41.72% 

Precision Steady: 62.3% 

nod: 31.2% 

shake: - 

roll: 46.7% 

Steady: 19.1% 

nod: 67.6% 

shake: 19.7% 

roll: 47.8% 

Steady: 12.5% 

nod: 35.8% 

shake: 1.8% 

roll: 33.3% 

 

Recall Steady: 66.2% 

nod: 40.8% 

shake: - 

roll:8.2% 

Steady:37.3% 

nod: 67.6% 

shake: 35.1% 

roll: 10.2% 

Steady: 2.9% 

nod: 79.8% 

shake: 10% 

roll: 3.2% 
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unit during the design process was 97.91%. Natural collected head activity data may contain 

micro-motions embedded in specific motions of interest that will act as artifacts or noise in the 

signals. The designed HAD unit does not account for such artifacts, thus, the dropped in accuracy 

results when compared to the testing accuracies during the design process. Another possible 

explanation for the drops in accuracies is related to the feature set used for classification. During 

the design process, the model was optimized to decrease computational complexity. Thus, it is 

possible that the selected feature set cannot generalize enough to accommodate the characteristics 

of this natural dataset. Nevertheless, the results of the classification of 2 classes (steady versus 

motion) were used to investigate a preliminary relationship between head activity coordination 

and rapport strength between dyads.  

 

 

Table 33. (cont’d). 

6 

Accuracy 37.28% 45.59% 29.83% 37.57% 

Precision Tilt shoulder left: - 

Steady neutral: 

48.5%% 

Tilt shoulder right: 

- 

nod: 31.2% 

shake: - 

roll: 46.7% 

Tilt shoulder left: - 

Steady neutral: 

14.7% 

Tilt shoulder right: 

- 

nod: 67.6% 

shake: 19.7% 

roll: 47.8% 

Tilt shoulder left: - 

Steady neutral: 4.5% 

Tilt shoulder right: 

33.3% 

nod: 35.8% 

shake: 1.8% 

roll: 33.3% 

 

Recall Tilt shoulder left: - 

Steady neutral: 

59.4% 

Tilt shoulder right: 

- 

nod: 31.2% 

shake: - 

roll: 46.7% 

Tilt shoulder left: - 

Steady neutral: 

30.4% 

Tilt shoulder right: 

- 

nod: 67.6% 

shake: 35.1% 

roll: 10.2% 

Tilt shoulder left: - 

Steady neutral: 10% 

Tilt shoulder right: 

0.8% 

nod: 79.8% 

shake: 10% 

roll: 3.2% 
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5.5.3.2.Synchronicity of motion and rapport 

Table 35 presents the results of the synchronization measurement (explained in Section 5.5.2) 

between dyadic head activity as detected by the HAD unit for just two classes (steady versus 

motion). For the values presented in Table 35, a correlation analysis was applied between the 

reported synchronicity values and the corresponding rapport scores, resulting in a correlation 

coefficient of -0.2629. This provides an inconclusive relationship between synchronicity of 

Table 34. Accuracy, precision, and recall values obtained from evaluating the data from 

participants in Group 5, second interaction. 

Number 

of 

classes 

 

Host 1 Host 2 Host 3 Host 4 Average 

2 

Accuracy 63% 70.88% 30.44% 62.26% 56.64% 

Precision Steady: 

76.4% 

Motion: 

56.1% 

Steady: 55.7% 

Motion: 80.3% 

Steady: 81.9% 

Motion: 26.2% 

Steady: 87.2% 

Motion: 37.2% 

 

Recall Steady: 

47.3% 

Motion: 

82.2% 

Steady: 63.8% 

Motion: 74.4% 

Steady: 8.4% 

Motion: 94.6% 

Steady: 58.3% 

Motion: 74.2% 

 

4 

Accuracy 62.16% 65.78% 25.90% 41.01% 48.71% 

Precision Tilt shoulder 

left: - 

Steady 

neutral: 76% 

Tilt shoulder 

right: - 

Motion: 

56.1% 

Tilt shoulder 

left:18.2% 

Steady neutral: 

49.5% 

Tilt shoulder 

right: - 

Motion: 80.3% 

Tilt shoulder 

left: 16.7% 

Steady neutral: 

17.0% 

Tilt shoulder 

right: 46.2% 

Motion: 26.2% 

Tilt shoulder 

left: 40% 

Steady neutral: 

47.5% 

Tilt shoulder 

right: 9.7% 

Motion: 37.2% 

 

Recall Tilt shoulder 

left: - 

Steady 

neutral: 

45.9% 

Tilt shoulder 

right: - 

Motion: 

82.2% 

Tilt shoulder 

left: 19% 

Steady neutral: 

53.7% 

Tilt shoulder 

right: - 

Motion: 74.4% 

Tilt shoulder 

left: 8.3% 

Steady neutral: 

12% 

Tilt shoulder 

right: 1% 

Motion: 94.6% 

Tilt shoulder 

left: 3.3% 

Steady neutral: 

53.6%% 

Tilt shoulder 

right: 1.5% 

Motion: 74.2% 
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motions and reported rapport strength. Further analysis into the synchronicity of specific types of 

motion, such as head nodding, and its relationship to speech activity is recommended. Establishing 

a mathematical relationship between the measurable behavioral cues and the reported rapport 

values will allow for future real-time estimation of rapport values. 

 

Table 34. (cont’d). 

4 

Accuracy 62.63% 50.55% 29.55% 75.09% 54.45% 

Precision Steady: 

76.4% 

nod: 52% 

shake: - 

roll: - 

Steady: 55.7% 

nod: 29.6% 

shake: 34.8% 

roll: - 

Steady: 81.9% 

nod: 5.7% 

shake: 9.4% 

roll: 50% 

Steady: 87.2% 

nod: 19.7% 

shake: - 

roll: - 

 

Recall Steady: 

62.6% 

nod: 68.7% 

shake: - 

roll: - 

Steady: 92.6% 

nod: 25.6% 

shake: 24.2% 

roll: - 

Steady: 31.7% 

nod: 26.3% 

shake: 44.4% 

roll: 4.2% 

Steady: 87.5% 

nod: 21.2% 

shake: - 

roll: - 

 

6 

Accuracy 61.43% 40% 12.15% 39.82% 38.35% 

Precision Tilt shoulder 

left: - 

Steady 

neutral: 

76.0% 

Tilt shoulder 

right: - 

nod: 52% 

shake: - 

roll: - 

Tilt shoulder 

left: 18.2% 

Steady neutral: 

49.5% 

Tilt shoulder 

right: - 

nod: 29.6%% 

shake: 34.8% 

roll: - 

Tilt shoulder 

left: 16.7% 

Steady neutral: 

17.0% 

Tilt shoulder 

right: 46.2% 

nod: 5.7% 

shake: 9.4% 

roll: 50% 

Tilt shoulder 

left: 4% 

Steady neutral: 

47.5% 

Tilt shoulder 

right: 9.7% 

nod: 19.7% 

shake: - 

roll: - 

 

Recall Tilt shoulder 

left: - 

Steady 

neutral: 

60.6% 

Tilt shoulder 

right: - 

nod: 68.7% 

shake: - 

roll: - 

Tilt shoulder 

left: 25% 

Steady neutral: 

79.2% 

Tilt shoulder 

right: - 

nod: 25.6% 

shake: 24.2% 

roll: - 

Tilt shoulder 

left: 25% 

Steady neutral: 

40.9% 

Tilt shoulder 

right: 3.8% 

nod: 26.3% 

shake: 44.4% 

roll: 4.2% 

Tilt shoulder 

left: 3.9% 

Steady neutral: 

81.4% 

Tilt shoulder 

right: 2.5% 

nod: 21.2% 

shake: - 

roll: - 
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5.6.Overall Discussion 

The design of the social interaction study protocol for the collection of natural data was guided 

by two factors: (1) the need to evoke changes in rapport levels among members of a group and (2) 

the need to collect self-reported data that could be used to validate changes in rapport levels among 

members of a group and/or be used as data labels for machine learning algorithms. The analysis 

of self-reported data reflects changes in rapport levels among individuals of a group between the 

first and the second interaction periods, as well as changes in individuals’ emotional states. This 

serves as evidence of the effectiveness of the protocol to evoke changes in rapport levels and, more 

specifically, in demonstrating a trend where the first interaction carries lower rapport levels when 

compared to those reported during the second interaction. However, replicating this study with a 

higher number of groups is highly recommended to ensure the significance of the statistical 

analysis results. In addition, the design of a group interaction monitoring system will be benefited 

from adding data from a higher number of groups to increase the existing number of sensor data 

streams usable for the training of machine learning models. Increasing the number of groups 

Table 35. Summary of obtained correlation coefficient of head activity (steady versus motion) 

detected from dyads and the corresponding dyadic strength of rapport based on reported self-

assessment.  

Group/Interaction Dyads Synchronicity Rapport 

4/1st BC 0.7592 3.5833 

 AC 0.9141 4.2222 

 AB 0.8958 4.3055 

4/2nd BC 0.8407 4.25 

 AC 0.9537 4.0065 

 AB 0.8865 4.1666 

5/2nd AC 0.9743 3.7075 

 CD 0.9828 3.8333 

 CB 0.9768 3.3888 

 AD 0.9799 3.6111 

 AB 0.9802 2.8055 

 BD 0.9921 4.2042 
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studied using this protocol could open the opportunity to study how demographics influence the 

established levels of rapport and the overall likeness of the group interaction. 

On the other hand, increasing the number of groups used in this study will also increase the 

time needed to prepare the collected data for processing. As this work uses a traditional supervised 

machine learning pipeline, data labeling becomes an essential task. This chapter established data 

labeling protocols to accompany the design of algorithms for group behavior monitoring systems. 

Labeling was focused on obtaining rapport values from external observers and labels of head 

actions. Nevertheless, the data annotation protocol developed in Chapter 4 for the labeling of 

speech intonation can be applied to the dataset collected during the study. In addition, the increase 

in collected data opens opportunities to employ unsupervised machine learning methods such as 

neural networks and reduce the time that is required for annotating datasets.  

Chapter 4 presented the design of the HAD unit, trained using acted/evoke data. In this 

chapter, the trained HAD unit was evaluated using the collected natural data from the social 

interaction study and employed to study the correlation between head activity and rapport scores. 

It was noted that (1) the performance of the HAD unit is lower than the one obtained during training 

and testing using the acted/evoked dataset and (2) the performance of the HAD unit varies across 

individuals in the interactions. It is recommended to employ a data normalization method across 

the collected dataset and re-train the HAD unit to increase the level of generality of such a model. 

In addition, as mentioned in Chapter 4, the level of computational optimization of the HAD unit 

could also limit its ability to generalize when presented with unseen and noisy data. Furthermore, 

the HAD unit was trained with a limited number of acted/evoked head actions. Therefore, this may 

serve as supportive evidence for the recommendation of using natural data to train classification 

models.  
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5.7.Summary 

This chapter presents the design and execution of a social interaction study where sensor data 

was collected using the sensor framework presented in Chapter 3. Video, audio, movement, and 

physiological data were collected, together with self-reported scores of emotional states and 

rapport strength between dyads. A general analysis of changes in emotional states revealed that 

participants experienced significant changes in five emotions evaluated using the Circumplex 

emotional state scale. Self-reported rapport scores were analyzed, and it was found that five out of 

the ten groups contain low and variant dyadic interactions. Overall, out of the 96 dyadic 

interactions captured by this study, 56 were positive, 17 were negative, and 23 were variant. 

Moreover, most of the reported negative dyadic interactions happened during the first interaction, 

which was intended to evoke low rapport value. In addition, labels for perceived rapport values 

were assigned by external individuals, as well as labels for head actions. The trained HAD unit 

was evaluated with this natural dataset and detected patterns of motion were used to calculate 

synchronicity between dyads. Calculated synchronicity values were correlated with reported 

rapport scores between dyads; however, the results were inconclusive. This dataset serves to 

continue the design of a machine learning framework for the recognition of behavioral cues and to 

investigate relationships between recognized behavioral cues and components of rapport. 
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6. SUMMARY AND FUTURE WORK 

6.1.Summary 

This dissertation presents the design of a new human/group behavior monitoring platform to 

address existing challenges in the monitoring of group interactions for the improvement of social 

awareness and human health. The presented human/group behavior monitoring platform combines 

a multi-sensor system with a machine learning framework, covering all from sensor selection to 

algorithm design. First, rapport is established as a social construct of interest to understand the 

quality of social interactions. Fundamentals of human behavior and initial efforts on designing 

wearable real-time social monitoring systems are introduced. A comprehensive literature study 

was later conducted to define the state-of-the-art in sensors and algorithms and find existing design 

challenges. The transdisciplinary approach taken to study the social science theory behind group 

behaviors and the technology to monitor nonverbal behaviors informed the design of a multi-

sensor system. 

A new multi-sensor system for the study of group interactions was designed and implemented. 

The multi-sensor system combines six sensor modalities: microphone, accelerometer, gyroscope, 

magnetometer, photoplethysmography (PPG), and electroencephalography (EEG); it also 

synchronizes the sensor data through the use of Lab Streaming Layer (LSL) and allows for 

recording from multiple sensor nodes. Each sensor node receives 16 data streams: one from audio, 

four from EEG, nine in total from accelerometer, gyroscope, and magnetometer, and two 

corresponding to PPG (one filtered data stream and one pre-processed signal estimating heart rate). 

In addition, a machine learning framework for the training and design of real-time recognition of 

human and group behavior was also described. Of particular interest was the design of data 
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processing units to determine Type B features, which are high-level transformed features 

determined from features extracted from raw sensor data (Type A features).  

Using the developed multi-sensor behavior monitoring system and support components, two 

human studies were conducted to establish the processes for which machines can be trained to 

recognize nonverbal behavior indicators and support the development of data processing units for 

the extraction of Type B features. The first set of human studies was conducted with 8 participants 

and consisted of recording (1) audio from virtual group meetings and (2) pre-defined head actions 

using inertial movement units (IMUs). A process to annotate speech intonations was established 

through the evaluation of labels assigned to the data collected from virtual group meetings. Using 

an inter-agreement annotator analysis, for the first time in the literature, two different modes of 

speech intonation annotation were evaluated. This analysis led to the construction of a dataset 

containing neutral, positive, negative, and question-labeled audio segments, which was used for 

the design of a real-time user-independent speech intonation recognizer unit. To the best of our 

knowledge, the designed speech intonation recognizer represents the first real-time model trained 

using just nonverbal information, an English-speaker dataset collected from group meeting 

interactions, not acted, containing speech from culturally diverse individuals, a combination of 

phrases with back-channel signals, and a combination of affective classes with an interrogative 

intonation. On the other hand, IMU data collected from pre-defined head actions were used to 

design a user-independent real-time head-action detection (HAD) unit based on a new fusion 

model architecture approach. Both units were designed taking a resource-aware approach for real-

time processing where window sizes for data processing, types and number of features, and 

complexity of the classification models were taken into consideration.  



 

 174 

The second human study consisted of collecting audio, visual, movement, and physiological 

sensor data while groups of individuals were interacting with each other in environments where 

low and high levels of rapport could be evoked. A total of 10 groups composed of 3 to 4 individuals 

participated in this study. This is the first study that collects data from IMU and physiological data 

from a head-mounted device in combination with audio from a personal computer and establishes 

the processes for which self-reported emotional state labels, self-report and externally assigned 

rapport labels, and head action labels are obtained. The HAD unit was used to explore the 

relationships between head actions and perceived rapport levels between dyads of a group. The 

contributions of this dissertation will advance the design of human behavior monitoring systems 

for group interactions and facilitate real-time feedback to increase self-awareness and promote 

successful social interactions. This work provides an infrastructure for the design of group 

behavior monitoring systems through which in-person and virtual group interactions could be 

studied and monitored.  

6.2.Contributions 

This dissertation bridges the gap between social science, communication science, and the 

engineering field by establishing a novel sensing and data collection platform for real-time 

monitoring of group interactions. Figure 38 presents a summary of the areas in which this 

dissertation has made contributions to advance the design of human/group behavior monitoring 

systems. Innovations of this work include contributions in:  

• Analyzed the complete body of literature in the field of human behavior wearable 

monitoring technologies, which provided new visions and insights to converge 

research in the disciplines of social psychology, communication, and engineering 
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To provide a clear understanding of state-of-the-art technologies for human behavior 

monitoring and promote convergence research into new technologies that can overcome current 

challenges, this dissertation provides an extensive review of the literature associated with 

monitoring human behavior. This dissertation uniquely presents a new comprehensive, 

transdisciplinary, perspective with a focus on identifying critical design considerations in real-time 

human behavior monitoring systems. Starting with an overview of social psychology theories that 

have established the framework to study human behaviors and their manifestations during social 

interactions, this dissertation then establishes a taxonomy of human behavior monitoring 

technologies based on these psychological theories. It also provides an insightful categorization of 

sensors and an informative analysis of signal characteristics, features, and computational models 

that have been reported in the field of human behavior monitoring. Analysis of recognition 

accuracies for existing computational models in the area of human behavior monitoring is also 

presented. Moreover, this dissertation focused on sensor hardware and real-time signal processing 

technologies that have proven most effective for embedded monitoring of human behaviors while 

 

Figure 38. Diagram summarizing the elements involved in the real-time human/group 

interaction monitoring platform developed in this work. Highlighted in bold are the four areas 

where this work made its research contributions. 
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highlighting challenges and opportunities in near-future wearable applications. The performed 

analysis inspired the design of the real-time human/group interaction monitoring platform. This 

extensive review resulted in a publication with the citation: S. Dávila-Montero, J. A. Dana-Lê, G. 

Bente, A. T. Hall, and A. J. Mason, "Review and Challenges of Technologies for Real-Time 

Human Behavior Monitoring," IEEE Transactions on Biomedical Circuits and Systems, vol. 15, 

no. 1, pp. 2-28, Feb. 2021. 

• Developed the first real-time enabled and accessible multi-sensor system for group 

behavior analysis and designed new real-time algorithms to recognize behavioral 

cues associated with group consonance using sensor data 

Existing human behavior monitoring systems lack real-time capabilities and configurations to 

monitor complex human behaviors that could lead to identifying complex group dynamics. In 

addition, no existing systems are accessible for other researchers to reproduce with easy. Towards 

the goal of overcoming existing challenges for the real-time monitoring of complex social 

interactions, this dissertation introduces the first real-time enabled and accessible multi-sensor 

framework that allows the study and real-time analysis of both in-person and virtual interactive 

environments. The framework leverages the use of existing open-source commercially available 

wearable sensors, which were selected based on an analysis of the relation of sensing modalities 

to behavioral information and evaluation of commercially available wearable sensors. Sensing 

modalities include a microphone, accelerometer, gyroscope, magnetometer, PPG, and EEG. 

Moreover, this dissertation presents design details on the implementation of sensor integration and 

the use of networking protocols to manage 16 sensor data streams collected from each sensor node 

of this framework. The framework can manage at least 4 sensor nodes allowing the study of group 

interactions of 3 and 4 individuals. This multi-sensor framework system allows for easy 
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reproducibility because of the benefits of off-the-shelf sensors and networking resources. This 

resulted in a publication with the citation: S. Dávila-Montero, S.  Parsnejad, E. Ashoori, D. 

Goderis, and A. J. Mason, "Design of a Multi-Sensor Framework for the Real-time Monitoring of 

Social Interactions," IEEE International Symposium in Circuits and Systems (ISCAS), 2022. 

Furthermore, this work introduces the first machine learning framework to monitor individual 

components of rapport and developed real-time computational blocks to identify two types of 

behavioral cues: head nods and speech intonations. Both achieve detection and recognition results 

that are comparable to existing ones in the literature. However, this work presents an analysis of 

variations in sampling rates, optimal window length for real-time processing, feature selection, 

and classification models to reduce computational complexity during real-time processing. 

Therefore, the design of the aforementioned algorithms was performed using a resource-aware 

approach considering the constraints of designing a human behavior monitoring system. 

• Established and, for the first time, evaluated data labeling methods for the 

establishment of a machine learning training framework for behavior monitoring, 

which included the development of a new human study protocol for the collection of 

group behavioral information of interest that evoke variations in experienced rapport 

levels 

Existing recognition systems of behavioral cues present limitations in real-time processing 

and use of natural data or data from the wild. Moreover, well-established protocols and machine 

learning training frameworks for the collection and preparation of natural data for the design of 

human behavior monitoring systems do not exist. This work developed the first machine learning 

training framework for the collection and labeling of natural human behavior data. This framework 
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was used for the collection of audio data and training of a speech intonation recognizer, where 

methods for effective labeling of speech intonations were evaluated.  

In addition, well-described data protocols did not exist for the design of human studies focused 

on evoking low rapport during group naturalistic interactions. This work shows the methods for 

participant recruitment and study execution using the developed multi-sensor framework. This 

work established a new dataset containing audio, video, movement, and physiological data, self-

reported emotional states and rapport scores, and externally assigned rapport scores and head 

action labels. Analysis of self-reported rapport scores was developed and showed that five out of 

10 groups developed a negative and variant dyadic rapport.  

6.3.Other Achievements 

6.3.1. Engineering and data science 

• Developed and implemented a new user-friendly labeling framework and applied it 

to label speech intonation in audio data 

To facilitate the annotator’s access to data to be labeled and to maintain consistency in the 

way data was presented to the annotators, a graphical user interface (GUI) was developed. This 

GUI was utilized to label intonations in pre-identified audio segments. However, the GUI 

framework could be modified to label other types of 1-D signals, images, and video segments.  

• Developed and implemented stand-alone applications for the connection and 

management of sensor signal collection and processing 

The commercially available wearable sensors provided Application Programming Interfaces 

(APIs) that were used to establish sensor connections with MATLAB and LSL through designed 

stand-alone applications. The implemented stand-alone applications allow the real-time 

monitoring of collected and processed sensor signals. 
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6.3.2. Mentoring 

This dissertation opened opportunities for undergraduate students interested in gaining 

experience in the areas of sensor integration, machine learning, and programming. 10 

undergraduate students were mentored and assisted to work on the following topics: 

• Social interaction monitoring using audio signals 

• Processing of EEG signals 

• Wearable interpersonal monitor for enhanced teamwork 

• Design of a multi-sensor head-mounted wearable device for the monitoring of 

human behaviors 

• Design of a visual feedback interface to increase social behavior awareness 

• Data labeling  

• Cross-check and annotation agreement analysis 

6.4.Applications and Social Implications 

The contributions and the platform established in this dissertation could impact a variety of 

research areas and applications at the interception of the social sciences, communication, and 

engineering. The creation of the accessible multi-sensor platform allows for an increase in research 

collaboration, research reproducibility, and advancement in the areas of human-computer 

interaction, affective computing, and social signal processing. Such a platform, validated and 

combined with ethnographic methods, has the potential to serve as a tool for the study of group 

interactions in diverse scenarios. By extracting a myriad of informative individual, dyadic, and 

group behavioral cues, new methodological standards for psychology and communication research 

could be established. For example, the factors influencing team performance and subtle negative 

behaviors affecting social interactions could be further studied with the platform introduced in this 
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dissertation and results used to better understand how technology could help individuals increase 

their situational awareness. In addition, this platform could facilitate research into the 

establishment of a feedback mechanism for sharing information with individuals of a group about 

factors influencing their interaction. This will promote wellness and economic growth in the future 

work frontier where collaboration effectiveness of diverse knowledge-based teams will be critical 

to continued innovation and national financial security. Other areas of applications include training 

employees and other individuals to increase social skills, identify disruptive behaviors, and 

techniques to deal with conscious and unconscious biased behaviors. Furthermore, areas in the 

healthcare industry could also be benefited from technologies for the monitoring of human and 

group behaviors since a variety of health conditions influence the way individuals behave. 

Therefore, recognizing extreme changes in behaviors could help in the diagnosis of health 

conditions and identification of neurological and developmental disabilities or disorders (e.g., 

depression and autism, respectively).  

In the case of monitoring behaviors to increase situational awareness, it is worthwhile to 

mention that the goal of this technology is not to control individuals’ behaviors, but rather to 

inform/provide information about behavioral cues that without technology would be otherwise 

lost. Because the technology is designed to provide information about behavioral cues, individuals 

will be given the opportunity to change their behavior as they find it appropriate. In addition, 

during the design of the human/group interaction monitoring platform, individuals’ privacy was 

considered essential. Because of that, just nonverbal messages were considered for the monitoring 

of human behaviors, and the use of speech recognition systems was avoided when designing the 

real-time speech intonation recognizer. 
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6.5.Future Work 

This research has established the foundations for wearable real-time group behavior 

monitoring. However, a variety of labeling tasks, labeling analysis, algorithms development, and 

system testing have been left for future work and the start of new research projects. 

To achieve the goal of deploying a human behavior monitoring system, the following 

suggestions are to continue this work: 

• Preparation of sensor data from the social interaction study 

Related to the sensor data collected from the study described in Chapter 5, labels related to 

head activity need to be assigned for all groups. In addition, labels related to perceived positivity 

and rapport levels in periods of 2 to 5 minutes should be assigned to study how the evolution of 

perceived behaviors influences final rapport levels. 

Furthermore, the expansion of the performed human study is recommended by collecting data 

from at least 10 more groups. It is also recommended to modify the study protocol to include a 

confederate in each group interaction so a higher amount of low rapport instances can be obtained. 

• Standards for data labeling and its analysis  

This work will be benefited from the creation of more standards for data labeling using 

people’s perception of the quality of social interactions and identification of informative nonverbal 

behaviors. For example, an analysis to determine how much variation in perceived rapport values 

exists when labeling using just audio versus audio plus video.  

the following question could be asked for the labeling of perceived rapport levels:  

• Social interaction recognition: algorithms and model implementation 

Related to the pre-processing of sensor data, methods to extract attention levels and changes 

in emotional reactions from EEG should be implemented. In addition, for the processing of audio 
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signals, noise removal filters and other advanced algorithms should be implemented. On the other 

hand, mathematical relationships between Type A features and Type B features to aspects of 

rapport such as positivity and coordination should be investigated. A mathematical relationship 

between sensor data to specific aspects of rapport will allow the creation of a rapport equation that 

could be used in the future to provide feedback on how to improve rapport in dyadic and group 

interactions.  

To expand on this work, the following suggestions are given: 

• Hardware and software optimization  

It is recommended to design a single wearable device that integrates the sensing modalities 

selected in this work. In addition, it is recommended the design databases that will store sensor 

information from the customized wearable device. 

• Complete close loop of the monitoring system 

To achieve the goal of bringing awareness to individuals during group interactions, a feedback 

mechanism should be put into place. Experiments to determine effective feedback modalities and 

information that could improve social and self-awareness should be investigated. In addition, 

experiments testing the designed feedback mechanism should be performed.  
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APPENDIX A: TOPIC QUESTIONNAIRE 

This appendix section contains the instructions and the list of statements used in the Topic 

questionnaire: 

Instructions:  

You are given a series of topic statements, using the provided scale, indicate how much you 

agree or disagree with the statement. If you find that a topic statement might be uncomfortable or 

offensive to discuss with someone having a different opinion, you have the opportunity to not 

respond to how much you agree or disagree with the statement. If you do not respond, you are 

opting out of discussing that topic statement. 

Please note that all personal information will be kept completely confidential and none of the 

responses you provide will be connected to your name or email address.   

Disclaimer: These topic statements do not represent the official policy or position of Michigan 

State University, the College of Engineering, the Electrical and Computer Engineering 

department, or the Study Team members. 

(Topic) Statements: 

• (Gun control) The government should regulate firearms through stricter gun 

control laws, including more extensive background checks and regulations on assault 

weapons. 

• (Gun control) The "right of the people to keep and bear arms" means that the 

government cannot regulate firearms in any way. 

• (Vegetarianism) Meet is a normal part of my diet and important for a healthy life. 

• (Vegetarianism)Vegetarianism is more sustainable for food production and 

reduces cruelty to animals. 
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• (Animal testing) Animal testing is unethical. 

• (Animal testing) Although animals may feel pain or die as a result of it, animal 

testing is necessary in order to save human lives. 

• (Universal healthcare) Access to affordable, quality healthcare should be a 

fundamental service provided by the government. 

• (Universal healthcare) Tax money should not be used to provide healthcare for 

everyone; people should be responsible for themselves. 

• (Death penalty) No matter the crime, the death penalty should never be applied 

because killing is wrong. 

• (Death penalty) The death penalty should be used to deter heinous crimes. 

• (Religious freedom) My personal religion is the one true religion. 

• (Religious freedom) All people should feel free to practice any faith or to have no 

faith without fear of peer or government coercion. 

• (Vaccines) Some vaccines save lives and should be mandatory to protect the 

population. 

• (Vaccines) Individuals should have the right to choose whether or not to be 

vaccinated. 

• (Animal hunting) Animal hunting is a fun sport and part of the American culture. 

• (Animal hunting) Animal hunting constitutes animal abuse and should be 

prohibited. 

• (Professional sports) Professional sports are a great source of entertainment. 

• (Professional sports) People should not be paid to play sports. 
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• (College athletes) College athletes should not be allowed to receive payment from 

sponsors because it ruins the purity of the game. 

• (College athletes) College athletes work hard and generate income for the 

university and should be compensated for their efforts. 

• (Exercise) I consider exercising part of my daily routine. 

• (Exercise) I rarely even think about exercising. 

• (TV shows) I love a good TV show or movie when I have time. 

• (TV shows) I consider watching fictional/reality TV a waste of time. 

• (Travel) I love to travel, experience new cultures, and meet new people. 

• (Travel) Traveling is overrated. I prefer to stay near home. 

• (Video games) I enjoy playing video games. 

• (Video games) I consider video games a waste of time. 

• (Food) I like trying new foods and going to different restaurants. 

• (Food) I prefer to eat food that I know I like. 

• (Outdoor activities) I enjoy outdoor adventurers and activities. 

• (Outdoor activities) Outdoor adventures and activities are not worth the effort; 

my house is all the nature I need. 

• (Social interactions) Virtual interactions are enough for me to fulfill my social 

needs. 

• (Social interactions) I need in-person interactions to fulfill my social needs. 

• (Environment) It is the duty of all humans to protect the environment and 

minimize our carbon footprint. 

• (Environment) Human consumption does not affect the environment negatively. 
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Participants provided their opinion using an 11-point Likert scale, shown in Figure 39.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. 11-point Likert scale used to collect the opinions of the participants about the given 

topics. 
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APPENDIX B: EMOTIONAL STATE QUESTIONNAIRE 

This appendix section contains the instructions and the items used in the Emotional State 

questionnaire: 

Instructions:  

Rate how are you feeling at this moment using the following scales. Please note that all 

personal information will be kept completely confidential and none of the responses you provide 

will be connected to your name or email address. 

Items: 

Rate how are you feeling in terms of arousal, valence, and dominance: 

Participants provided their responses using the scales in Figure 40. 
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Figure 40. 9-point Self-Assessment Manikin scale for arousal, valence, and dominance. 

 

Now, please rate how are you feeling at this moment using the following scale: 

Scale is shown in Figure 41. 

 



 

 211 

 
Figure 41. 11-point rating tool based on the circumplex model of emotion. 
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APPENDIX C: RAPPORT QUESTIONNAIRE 

This appendix section contains the instructions and the items used in the rapport questionnaire: 

Instructions: 

Please note that all personal information will be kept completely confidential and none of the 

responses you provide will be connected to your name or email address. 

Items: 

First, participants selected a reference letter that identified them, as shown in Figure 42. 

 
Figure 42. Selection of reference letter by the participant. 

 

Then, participants rated their own perceived level of engagement during the interaction using 

the items and scale shown in Figure 43, rated how much they enjoyed the interaction using the 

scale in Figure 44, and the level of linking of other people using the scale in Figure 45. 
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Figure 43. Items and scale used to rate oneself interaction performance during the discussion 

section. 

 

 
Figure 44. Scale to measure the overall feeling of enjoyment during the interaction. 

 

 
Figure 45. Liking scale. 
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Lastly, participants rated their interaction with the other members of the group using the scale 

in Figure 46, where X represents the reference letter of one of the other two (for a group of 3) or 

three (for groups of 4) participants of the interaction. For example, if a participant’s reference letter 

was A, then the X in the scale in Figure 46 was a B, C, or D. The same scale appeared three times 

for groups of four and two times for groups of three.  

 

 
Figure 46. Items and scale used to determine a value of rapport between dyads. 

 

 

X

: 
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APPENDIX D: AVAILABLE RESOURCES GENERATED BY THIS WORK 

Repository #1: 

URL: https://gitlab.msu.edu/davilasy/sensor-connection-atlas 

Description: Repository #1 contains code to connect sensors (Shimmer and BrainBit) to computers 

and synchronize their signals using LSL. 

Repository #2: 

URL: https://gitlab.msu.edu/davilasy/audio-data-labeling-tool 

Description: Repository #2 contains the code used to create the audio data annotation tool to label 

speech intonations. Here, you will also find the executables to run the tool as a stand-alone 

application. The code and executable were developed in MATLAB 2019b using their Design 

application. 

Repository #3: 

URL: https://gitlab.msu.edu/davilasy/human-study-de-identified-data 

Description: Repository #3 contains de-identified questionnaire data used to generate Figure 35 

and Figure 36. 


