
NEW PERSPECTIVES IN NEURAL ARCHITECTURE SEARCH: ARCHITECTURE
EMBEDDINGS, EFFICIENT PERFORMANCE ESTIMATIONS, AND THEIR

APPLICATIONS

By

Shen Yan

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science — Doctor of Philosophy

2022

ABSTRACT

Understanding the neural architecture representations and their associated learning

curves through theoretical analysis and empirical evaluations is crucial for achieving sta-

ble and scalable neural architecture search (NAS). Despite recent advances in one-shot NAS,

the stability of search performance remains an issue for users. Sampling-based NAS can

eliminate the weights coupling problem by running multiple search trails separately, but it

requires significant computational resources. In response, researchers have begun studying

architecture representations as a potential solution to the search bias caused by joint opti-

mization of network representations and search methods. These representations are learned

to encourage neural architectures with similar structures or computations to cluster together,

which helps to map architectures with similar performance to the same regions in the latent

space and leads to smoother transitions in the latent space. This benefits downstream search

and can be further accelerated by learning curve extrapolation, where the final validation

accuracy of a neural network is estimated from the learning curve of a partially trained

network.

This dissertation presents our contributions to the field of neural architecture search

(NAS), which push the limits of NAS and achieve state-of-the-art performance. Our

contributions include efficient one-shot NAS via hierarchical masking [1], addressing the

joint optimization problem of architecture representations and search using unsupervised

pre-training [2], improving the generalization ability of architecture representations with

computation-aware embedding [3], developing a method for facilitating multi-fidelity NAS

research and demonstrating the power of using partial learning curve extrapolation [4].

Copyright by
SHEN YAN
2022

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest appreciation to my advisor, Pro-

fessor Mi Zhang. Mi has been an inspiring and encouraging mentor, providing profound

insights and guidance throughout my research. Not only has he taught me how to pursue

top-quality research, but he has also shared invaluable lessons about life with me. I am

incredibly grateful for his support and guidance.

During my PhD studies, I would like to express my deep gratitude to several individuals

and organizations who have provided support and guidance. This includes Dr. Xuehan

Xiong, Dr. Anurag Arnab, Zhichao Lu, Professor Chen Sun, and Professor Cordelia Schmid

at Google Research’s Perception Team, as well as Dr. Jiahui Yu, Dr. Tao Zhu, Dr. Zirui

Wang, Dr. Yuan Cao and Dr. Yonghui Wu at Google Research’s Brain Team. I also want

to thank Dr. Colin White for hosting me at Abacus.AI, Ming Chen and Youlong Cheng

for hosting me at Bytedance AML, Dr. Huan Song, Lincan Zou, and Dr. Liu Ren for

hosting me at Bosch Research. Finally, I want to express my deep appreciation to Dr. David

Ross and Dr. Rahul Sukthankar at Google Research for their support during the job search

process. I am grateful for the valuable experiences and opportunities that these individuals

and organizations have provided.

I am deeply grateful for the guidance and support of my master’s advisor, Professor

Hermann Ney, who introduced me to the world of machine learning and has been a role

model for me ever since. I also want to thank Dr. Evgeny Matusov, Dr. Shahram Khadivi,

Dr. Daniel Bug, Dr. Harald Hanselmann, and Dr. Abin Jose for their advice during my

master’s studies. These individuals have played a crucial role in shaping my education and

career in machine learning.

I would like to express my deep gratitude to my colleagues and collaborators, who have

iv

provided inspiration and support throughout my research. This includes Yu Zheng, Wei Ao,

Dr. Biyi Fang, and Dr. Xiao Zeng. I am also thankful to other supportive individuals,

including Dr. Kaiqiang Song, Dr. Yandong Li, Dr. Ji Hou, Dr. Yang Liu, Taojiannan Yang,

Lemeng Wu, Dr. Li Erran Li, Professor Chen Chen, Professor Fei Liu, and Professor Frank

Hutter. I am grateful for the contributions of these individuals, who have helped make this

thesis possible.

I would like to express my appreciation to my committee and faculty members, including

Professor Xiaoming Liu, Professor Jiliang Tang, Professor Arun Ross, Professor Sandeep

Kulkarni, and Professor Wolfgang Banzhaf. I am grateful for their support and guidance

throughout my academic career. These individuals have played a crucial role in shaping my

education and research interests.

Lastly, I want to thank my parents, grandparents, and fiancé for their unwavering support

and love. Their encouragement has been a constant source of motivation and inspiration

throughout my life.

v

TABLE OF CONTENTS

Chapter1 Introduction . 1

Chapter2 Efficient One-Shot NAS via Hierarchical Masking 10

Chapter3 Arch2Vec . 29

Chapter4 Computation-aware Neural Architecture Encoding 53

Chapter5 NAS-Bench-x11 and the Power of Learning Curve 75

Chapter6 Conclusion . 100

BIBLIOGRAPHY . 104

vi

Chapter 1

Introduction

NAS can be seen as subfield of AutoML, where architecture configuration itself can be viewed

as a hyperparameter, and it can be optimized via meta-learning. In [5], NAS is categorized

into three dimensions: search space, search strategy, and performance estimation strategy.

Figure 1.1 shows an overview the the NAS process, where architecture representations are

continuous encodings of the search space, and learning curve extrapolation can be viewed as

an speedy performance estimation method.

Figure 1.1: A search strategy selects an architecture A from a predefined search space A.
The architecture is passed to a performance estimation strategy, which returns the
estimated performance of A to the search strategy. Source: [5].

Search Space & Architecture Encoding

The search space defines which architectures and how they can be represented. Two most

commonly used search spaces are Inception cell-based [7] and ResNet block-based search

space [8]. The cell-based search space consists of two different kind of cells: a normal cell that

learns the patterns of the input and a reduction cell which reduces the spatial dimension.

The overall architecture is then built by stacking these cells in a repeated manner. The

ResNet block-based search space is inspired by MobileNet [9] which is based on an inverted

residual structure where the shortcut connections are between the bottleneck layers.

When designing a NAS algorithm, the goal is how should we encode the neural archi-

1

Figure 1.2: The one-hot adjacency matrix encoding is created by flattening the
architecture adjacency matrix and concatenating it with a list of node operation labels.
Each position in the operation list is a single integer-valued feature or a one-hot matrix.

tecture to maximize performance. Architectures sampled from the same search space share

similar encoding properties. The representation of the DAG-based architectures may signifi-

cantly change the outcome of NAS subroutines such as perturbing or manipulating architec-

tures. In [10], a cell-based architecture is encoded using adjacency matrix-based encoding,

categorical encoding, and continuous encoding. Figure 1.2 shows an architecture sampled

in NAS-Bench-101 search space [10] and an architecture sampled in NAS-Bench-201 [11]

using adjacency encoding, separately. Figure 1.3 an example of the cell encoding in DARTS

search space. To convert the DARTS search space [12] into one with the same input format

as NAS-Bench-101, we can add a summation node to make nodes represent operations and

edges represent data flow. To this end, a 15 × 15 upper-triangular binary matrix is used

to encode edges and a 15 × 11 one-hot matrix is used to encode operations. Similarly, the

categorical adjacency encoding can be derived by first flattening the adjacency matrix, and

is then defined as a list of the indices each of which specifies one of the possible edges in the

adjacency matrix. Each architecture can be represented by the maximum number of possible

2

Figure 1.3: A 15 × 15 upper-triangular binary matrix is used to encode edges and a 15 ×
11 one-hot matrix is used to encode operations.

edges to ensure a fixed length encoding. The benefit of doing it is that the encoding is not

scaled quadratically with increasing nodes. Similarly, the continuous adjacency encoding can

be created by taking the fixed number of edges with the highest continuous values, which is

similar to encodings used in DARTS [12].

Search Algorithms

The search algorithm describes how to explore and exploit the search space. It is expected

to find well-performing architectures quickly, while on the other hand, local convergence to

a region of sub-optimal architectures should not be encouraged.

NAS using REINFORCE [13] is the first work that systematically investigated large-

scale neural architecture search based on individual sampling process. It encodes neural

networks as macro and micro architectures. The densely connected macro network has

up to N layers, where each of the layer may have different predecessors. In additional to

the direct connection with the previous layers, other connections can also be present or not,

resulting in exponential compleixty of the search space. Within each layer, there are multiple

3

Figure 1.4: The categorical encoding is created to ensure fixed length encodings.
Source: [6].

hyperparameter choices, e.g. strides, filter height/width and the number of filters. The model

is trained using a recurrent neural network (RNN) to sequentially sample a string that in

turn encodes the neural architecture, inspired by the success of neural machine translation.

The network is optimized with REINFORCE [14] algorithm, but later by Proximal Policy

Optimization (PPO) [10].

An alternative to using RL is to use evolutionary algorithms for optimizing the neu-

ral architecture. The first such approach for designing neural networks since 1990 [15–17]

starting with genetic algorithms. Many neuro-evolutionary approaches [18, 19] since then

use genetic algorithms to optimize both the neural architectures. Evolutionary methods

differ in how they sample parents, update populations, and generate next generations. For

example, [18, 20] use tournament selection to sample parents; [19] sample parents from a

multi-objective Pareto front. The worst/oldest individual from a population is removed as

a regularization, to escape from the local minimum.

Bayesian Optimization is also one of the popular methods for hyperparameter optimiza-

4

tion. [21] derive kernel functions for architecture search spaces in order to use classic Gaus-

sian Process (GP) as the surrogate model, but it doesn’t perform well in high dimensional

space. [22] uses MLP as the surrogate model and is able to perform well on the high di-

mensional DARTS search space. Furthermore, [3] uses DNGO as the surrogates and shows

well-performing results on NASBench101 and DARTS search space.

Performance Estimation

The objective of NAS is typically to find architectures that achieve high predictive per-

formance on unseen data. Performance estimation refers to the process of estimating the

performance from either a few training iterations. Techniques include fitting the partial curve

to an ensemble of parametric functions [23], predicting the performance based on the partial

trained neural network configurations [24], summing the training losses [25], using the basis

functions as the output layer of a Bayesian neural network [26], using previous learning curves

as basis function extrapolators [27], using the positive-definite covariance kernel to capture

a variety of training curves [28], or using a Bayesian recurrent neural network [29]. While

in this work we focus on multi-fidelity optimization utilizing learning curve-based extrapola-

tion, another main category of methods lie in bandit-based algorithm selection [30–34], and

the fidelities can be further adjusted according to the previous observations or a learning

rate scheduler [35–37].

One-shot methods can also be viewed as a promising approach for speeding up NAS due

to their computational efficiency [1,12,38–43]. Recent advances in performance prediction [2,

44–50] and other iterative techniques [31,51] have reduced the runtime gap between iterative

and weight sharing techniques. For detailed surveys, it is suggested referring to [5, 52].

5

Thesis Outline

Despite all the aforementioned advantages and potentials, the current NAS methods still have

many drawbacks. In this thesis, I will highlight two problems on architecture encodings

and speedy performance estimation, namely how unsupervised architecture representation

learning helps downstream search methods, and how to efficiently estimate an architecture’s

performance built upon learning curve extrapolation. Each chapter is devoted to solving one

of these problems. In each chapter, I will describe how to make it more effective and efficient.

In brief, this thesis is organized as follows. I start off by providing my first work on one-shot

NAS [1] in Chapter 2. I will analysis the drawbacks of this line of research and detail my

research on studying architecture representations [2,3], learning curve extrapolation and its

applications [4] in Chapters 3, 4 and 5 respectively. Chapter 6 wraps up and discusses

remaining challenges in NAS research.

HM-NAS: Efficient Neural Architecture Search via Hierarchical Masking

The use of automatic methods, often referred to as Neural Architecture Search (NAS), in de-

signing neural network architectures has recently drawn considerable attention. In this work,

we present an efficient NAS approach, named HM-NAS, that generalizes existing weight

sharing based NAS approaches. Existing weight sharing based NAS approaches still adopt

hand designed heuristics to generate architecture candidates. As a consequence, the space

of architecture candidates is constrained in a subset of all possible architectures, making the

architecture search results sub-optimal. HM-NAS addresses this limitation via two innova-

tions. First, it incorporates a multi-level architecture encoding scheme to enable searching

for more flexible network architectures. Second, it discards the hand designed heuristics

and incorporates a hierarchical masking scheme that automatically learns and determines

6

the optimal architecture. Compared to state-of-the-art weight sharing based approaches,

HM-NAS is able to achieve better architecture search performance and competitive model

evaluation accuracy. This chapter is based on the following paper [1].

Does Unsupervised Architecture Representation Learning Help Neural Archi-

tecture Search?

Existing Neural Architecture Search (NAS) methods either encode neural architectures us-

ing discrete encodings that do not scale well, or adopt supervised learning-based methods to

jointly learn architecture representations and optimize architecture search on such represen-

tations which incurs search bias. Despite the widespread use, architecture representations

learned in NAS are still poorly understood. We observe that the structural properties of

neural architectures are hard to preserve in the latent space if architecture representation

learning and search are coupled, resulting in less effective search performance. In this work,

we find empirically that pre-training architecture representations using only neural archi-

tectures without their accuracies as labels improves the downstream architecture search

efficiency. To explain this finding, we visualize how unsupervised architecture representa-

tion learning better encourages neural architectures with similar connections and operators

to cluster together. This helps map neural architectures with similar performance to the

same regions in the latent space and makes the transition of architectures in the latent space

relatively smooth, which considerably benefits diverse downstream search strategies. This

chapter is based on the paper [2], which addresses the drawbacks of joint optimization of

architecture representations and search algorithms such as [1].

Computation-aware Architecture Encodings with Transformers

Recent works [2, 6] demonstrate the importance of architecture encodings in Neural Ar-

chitecture Search (NAS). These encodings encode either structure or computation infor-

7

mation of the neural architectures. Compared to structure-aware encodings, computation-

aware encodings map architectures with similar accuracies to the same region, which im-

proves the downstream architecture search performance [6, 53]. In this work, we introduce

a Computation-Aware Transformer-based Encoding method called CATE. Different from

existing computation-aware encodings based on fixed transformation (e.g. path encoding),

CATE employs a pairwise pre-training scheme to learn computation-aware encodings using

Transformers with cross-attention. Such learned encodings contain dense and contextualized

computation information of neural architectures. We compare CATE with eleven encodings

under three major encoding-dependent NAS subroutines in both small and large search

spaces. Our experiments show that CATE is beneficial to the downstream search, especially

in the large search space. Moreover, the outside search space experiment shows its superior

generalization ability beyond the search space on which it was trained. This chapter is based

on the following paper [3], which takes inspirations from my earlier work [2].

NAS-Bench-x11 and the Power of Learning Curves

While early research in neural architecture search (NAS) required extreme computational

resources, the recent releases of tabular and surrogate benchmarks have greatly increased

the speed and reproducibility of NAS research. However, two of the most popular bench-

marks do not provide the full training information for each architecture. As a result, on

these benchmarks it is not possible to run many types of multi-fidelity techniques, such

as learning curve extrapolation, that require evaluating architectures at arbitrary epochs.

In this work, we present a method using singular value decomposition and noise modeling

to create surrogate benchmarks, NAS-Bench-111, NAS-Bench-311, and NAS-Bench-NLP11,

that output the full training information for each architecture, rather than just the final

validation accuracy. We demonstrate the power of using the full training information by

8

introducing a learning curve extrapolation framework to modify single-fidelity algorithms,

showing that it leads to improvements over popular single-fidelity algorithms which claimed

to be state-of-the-art upon release. This chapter is based on the following paper [4], which

builds the first multi-fidelity NAS surrogate benchmark and provides speedy performance

estimation given different architecture representations such as [2] and [3].

Summary

In summary, this thesis has touched all aspects of NAS pipeline as illustrated in Figure 1.1,

in which NAS can be significantly improved. We hope to convince the reader at the end

of this thesis that neural architecture encoding is an important design decision in NAS and

it is able to significantly improve the efficiency of NAS by leveraging the power of partial

learning curves. Still, there are many challenging and rewarding problems to be explored

which I will summarize in the conclusion chapter 6. The material is based on the AutoML

workshop tutorial at ICML’2021.1

All code, data, and models used in this thesis can be found at https://github.com/MSU-

MLSys-Lab.

1The tutorial website is at https://sites.google.com/corp/view/automl2021.

9

Chapter 2

Efficient One-Shot NAS via Hierarchical Masking

Neural architecture search (NAS) has recently attracted significant interests due to its ca-

pability of automating neural network architecture design and its success in outperforming

hand-crafted architectures in many important tasks such as image classification [54], object

detection [55], and semantic segmentation [56]. In early NAS approaches, architecture can-

didates are first sampled from the search space; the weights of each candidate are learned

independently and are discarded if the performance of the architecture candidate is not

competitive [18, 54, 57, 58]. Despite their remarkable performance, since each architecture

candidate requires a full training, these approaches are computationally expensive, consum-

ing hundreds or even thousands of GPU days in order to find high-quality architectures. To

overcome this bottleneck, a majority of recent efforts focuses on improving the computation

efficiency of NAS using the weight sharing strategy [8,12,57,59,60]. Specifically, rather than

training each architecture candidate independently, the architecture search space is encoded

within a single over-parameterized supernet which includes all the possible connections (i.e.,

wiring patterns) and operations (e.g., convolution, pooling, identity). The supernet is trained

only once. All the architecture candidates inherit their weights directly from the supernet

without training from scratch. By doing this, the computation cost of NAS is significantly

reduced. Unfortunately, although the supernet subsumes all the possible architecture candi-

dates, existing weight sharing based NAS approaches still adopt hand designed heuristics to

extract architecture candidates from the supernet. As an example, in many existing weight

sharing based NAS approaches such as DARTS [12], the supernet is organized as stacked

cells and each cell contains multiple nodes connected with edges. However, when extracting

architecture candidates from the supernet, each candidate is hard coded to have exactly two

10

input edges for each node with equal importance and to associate each edge with exactly

one operation. As such, the space of architecture candidates is constrained in a subset of

all possible architectures, making the architecture search results sub-optimal. Given the

constraint of existing weight sharing approaches, it is natural to ask the question: will we

be able to improve architecture search performance if we loosen this constraint? To this

end, we present HM-NAS, an efficient neural architecture search approach that effectively

addresses such limitation of existing weight sharing based NAS approaches to achieve better

architecture search performance and competitive model evaluation accuracy. As illustrated

in Figure 2.1, to loosen the constraint, HM-NAS incorporates a multi-level architecture en-

coding scheme which enables an architecture candidate extracted from the supernet to have

arbitrary numbers of edges and operations associated with each edge. Moreover, it allows

each operation and edge to have different weights which reflect their relative importance

across the entire network. Based on the multi-level encoded architecture, HM-NAS formu-

lates neural architecture search as a model pruning problem: it discards the hand designed

heuristics and employs a hierarchical masking scheme to automatically learn the optimal

numbers of edges and operations and their corresponding importance as well as mask out

unimportant network weights. Moreover, the addition of these learned hierarchical masks

on top of the supernet also provides a mechanism to help correct the architecture search

bias caused by bilevel optimization of architecture parameters and network weights during

supernet training [38,61,62]. Because of such benefit, HM-NAS is able to use the unmasked

network weights to speed up the training process. We evaluate HM-NAS on both CIFAR-10

and ImageNet and our results are promising: HM-NAS is able to achieve competitive accu-

racy on CIFAR-10 with 1.6× to 1.8× less parameters and 2.7× total training time speed-up

compared with state-of-the-art weight sharing approaches. Similar results are also achieved

11

on ImageNet. Moreover, we have conducted a series of ablation studies that demonstrate

the superiority of our multi-level architecture encoding and hierarchical masking schemes

over randomly searched architectures, as well as single-level architecture encoding and hand

designed heuristics used in existing weight sharing based NAS approaches. Finally, we have

conducted an in-depth analysis on the best-performing network architectures found by HM-

NAS. Our results show that without the constraint imposed by the hand designed heuristics,

our searched networks contain more flexible and meaningful architectures that existing weight

sharing based NAS approaches are not able to discover. In summary, our work makes the

following contributions: 1). We present HM-NAS, an efficient neural architecture search

approach that loosens the constraint of existing weight sharing based NAS approaches. 2).

We introduce a multi-level architecture encoding scheme which enables an architecture can-

didate to have arbitrary numbers of edges and operations with different importance. We also

introduce a hierarchical masking scheme which is able to not only automatically learn the

optimal numbers of edges, operations and important network weights, but also help correct

the architecture search bias caused by bilevel optimization during supernet training. 3).

Extensive experiments show that compared to state-of-the-art weight sharing based NAS

approaches, HM-NAS is able to achieve better architecture search efficiency and competitive

model evaluation accuracy.

Related Work

Designing high-quality neural networks requires domain knowledge and extensive experi-

ences. To cut the labor intensity, there has been a growing interest in developing automated

neural network design approaches through NAS. Pioneer works on NAS employ reinforce-

ment learning (RL) or evolutionary algorithms to find the best architecture based on nested

optimization [18, 54, 57, 58]. However, these approaches are incredibly expensive in terms

12

Architecture Search
via Hand Designed

Heuristics

Train from Scratch

(a)

Train Supernet with
Single-Level

Architecture Encoding

(b)

Train Supernet with
Multi-Level

Architecture Encoding

Fine-tune
Searched Network

Architecture Search
via Learned

Hierarchical Masks

Figure 2.1: The pipelines of (a) existing weight sharing based NAS approaches; and (b)
HM-NAS.

of computation cost. For example, in [54], it takes 450 GPUs for four days to search for

the best network architecture. To reduce computation cost, many works adopt the weight

sharing strategy where the weights of architecture candidates are inherited from a supernet

that subsumes all the possible architecture candidates. To further reduce the computation

cost, recent weight sharing based approaches such as DARTS [12] and SNAS [59] replace the

discrete architecture search space with a continuous one and employ gradient descent to find

the optimal architecture. However, these approaches restrict the continuous search space

with hand designed heuristics, which could jeopardize the architecture search performance.

Moreover, as discussed in [38,61,62], the bilevel optimization of architecture parameters and

network weights used in existing weight sharing based approaches inevitably introduces bias

to the architecture search process, making their architecture search results sub-optimal. Our

approach is related to DARTS and SNAS in the sense that we both build upon the weight

sharing strategy. However, our goal is to address the above limitations of existing approaches

to achieve better architecture search performance.

Our approach is also related to ProxylessNAS [8]. ProxylessNAS formulates NAS as a

model pruning problem. In our approach, the employed hierarchical masking scheme also

prunes the redundant parts of the supernet to generate the optimal network architecture.

13

NAS Approach
Architecture

Encoding

Retrain

from Scratch

Use

Proxy

ENAS [57] Operations Yes Yes

NASNet [54] Operations Yes Yes

AmoebaNet [18] Operations Yes Yes

NAONet [63] Operations Yes Yes

ProxylessNAS [8] Operations Yes No

FBNet [64] Operations Yes No

DARTS [12] Operations Yes Yes

SNAS [59] Operations Yes Yes

HM-NAS Operations & Edges No No

Table 2.1: Comparison between HM-NAS and other NAS approaches.

The distinction is that ProxylessNAS focuses on pruning operations (referred to as path

in [8]) of the supernet, while HM-NAS provides a more generalized model pruning mecha-

nism which prunes the redundant operations, edges, and network weights of the supernet to

derive the optimal architecture. Our approach is also similar to ProxylessNAS as being a

proxyless approach. Rather than adopting a proxy strategy like [12,59], which transfers the

searched architecture to another larger network, both HM-NAS and ProxylessNAS directly

search the architectures on target datasets without architecture transfer. However, unlike

ProxylessNAS which involves retraining as the last step, HM-NAS eliminates the prolonged

retraining process and replaces it with a fine-tuning process with the reuse of the unmasked

pretrained supernet weights. Table 2.1 provides a comparison between HM-NAS and relevant

approaches on a number of important dimensions. The combination of the proposed multi-

level architecture encoding and hierarchical masking techniques makes HM-NAS superior

over many existing approaches.

14

Approach

Supernet Design

Following [12,18,59], we use a cell structure with an ordered sequence of nodes as our search

space. The network is then composed of several identical cells which are stacked on top of

each other. Specifically, a cell is represented using a directed acyclic graph (DAG) where each

node x in the DAG is a latent representation (e.g., a feature map in a convolutional network).

A cell is set to have two input nodes, one or more intermediate nodes, and one output node.

Specifically, the two input nodes are connected to the outputs of cells from two previous

cells; each intermediate node is connected by all its predecessors; and the output node is

the concatenation of all the intermediate nodes within the cell. To build the supernet that

subsumes all the possible architectures in the search space, existing works such as DARTS [12]

and SNAS [59] associate each edge in the DAG with a mixture of candidate operations (e.g.,

convolution, pooling, identity) instead of a definite one. Moreover, each candidate operation

of the mixture is assigned with a learnable variable (i.e., operation mixing weight) which

encodes the importance of this candidate operation. As such, the mixture of candidate

operations associated with a particular edge is represented as the softmax over all candidate

operations:

o(x) =
N∑
i=1

exp(αi)∑
j exp(αj)

oi(x) (2.1)

where {oi} denote the set of N candidate operations, {αi} denote the set of N real-valued

operation mixing weights. Although this supernet encodes the importance of different candi-

date operations within each edge, it does not provide a mechanism to encode the importance

of different edges across the entire DAG. Instead, all the edges across the DAG are con-

strained to have the same importance. However, as we observed in our experiments (Section

15

3

0

2

1

3

0

2

1

Supernet with Multi-level
Architecture Encoding

3

0

2

1

Network
Weights

0.9

0.8

1.1

0.1

1.2

1.0

0.3 0.2 1.8

0.8 0.1 1.5

0.2 0.0 1.1

0.1 0.5 0.9

1.2 0.3 0.4

0.3 0.8 0.8

(0, 1)

(0, 2)

(0, 3)

(1, 2)

(1, 3)

(2, 3)

0.8 0.2 0.9

1.8 1.2 1.1

0.3 1.2 0.2

M𝑤
𝑟

Real-Valued
Hierarchical Mask

1.9

1.8

1.4

1.1

0.2

1.2

0.2 0.1 1.9

1.8 0.1 0.5

0.1 0.2 1.1

0.1 1.5 1.9

0.3 0.5 0.6

0.3 1.2 0.4

(0, 1)

(0, 2)

(0, 3)

(1, 2)

(1, 3)

(2, 3)

0.2 0.2 1.9

1.8 0.2 0.4

0.3 1.4 0.2

𝓜𝑤
𝑟

Masked
Architecture

Masked
Weights

Masked
Weights

Step 1

Real-Valued
Hierarchical Mask

o1 o2 o3

1.9

1.8

1.4

1.1

1.2

1.2

0.2 0.1 1.9

1.8 0.1 0.5

0.1 0.2 1.1

0.1 1.5 1.9

1.3 0.5 0.6

0.3 1.2 0.4

(0, 1)

(0, 2)

(0, 3)

(1, 2)

(1, 3)

(2, 3)

0.2 0.2 1.9

1.8 0.2 0.4

0.3 1.4 0.2

Step k

M𝛽
𝑟 M𝛼

𝑟

M𝑤
𝑟

M𝛽
𝑟 M𝛼

𝑟

Masked
Architecture

Figure 2.2: In this example, each edge has 3 candidate operations marked using red,
yellow, and blue color respectively. In each iteration, the real-valued hierarchical masks
{M r

α,M
r
β ,M

r
w} are passed through a deterministic thresholding function to obtain the

corresponding binary masks (highlighted grids represent ‘1’, the rest represent ‘0’) that
mask out redundant operations, edges, and weights of the supernet.

2.5), loosening this constraint is able to help NAS find better architectures. Motivated by

this observation, in HM-NAS’s supernet, besides encoding the importance of each candidate

operation within an edge, we introduce a separate set of learnable variables (i.e., edge mixing

weights) to independently encode the importance of each edge across the DAG. As such, each

intermediate node x(i) in the DAG is computed based on all of its predecessors as:

x(i) =
∑
j<i

exp(β(i,j))∑
k<i exp(β(i,k))

o(x(j)) (2.2)

where β(i,j) denote the real-valued edge mixing weight for the directed edge (i, j). In sum-

mary, α = {αi} encode the architecture at the operation level while β = {β(i,j)} encode the

architecture at the edge level. Therefore, we have constructed a supernet with multi-level ar-

chitecture encoding where α and β altogether encode the overall architecture of the network,

and we refer to {α,β} as the architecture parameters.

16

Training the Supernet

To train the multi-level encoded supernet, we follow [12] to jointly optimize the architecture

parameters {α,β} and the network weights w in a bilevel way via stochastic gradient descent

with first or second-order approximation. Let Ltrain and Lval denote the training loss and

validation loss respectively. The goal is to find {α∗,β∗} that minimize Lval(α,β,w∗), where

w∗ is obtained by minimizing the training loss w∗ = argminw Ltrain(α
∗,β∗,w). For the

details of this bilevel optimization, please refer to [12] as we do not claim any new contribution

on this part.

Here we want to emphasize two techniques that we find helpful in training our multi-level

encoded supernet. First, due to insufficient training of network weights w at the beginning

of the supernet training, the architecture parameters α and β could be randomly selected.

To avoid this, similar to [64], we adopt a warm start in training of w while freezing the

training of α and β. Second, updating α and β too frequently could lead to underfitting of

w. We solve this by triggering the optimization of α and β stochastically rather than doing

it constantly, with a probability of p = σ(iter), where iter is the number of iterations and

σ(·) is a monotonically non-increasing function that satisfies σ(0) = 1. After a prolonged

decrease, the probability p may even be set to zero, i.e., no bilevel optimization is conducted

any longer and only w is optimized.

Hierarchical Masking

Given the trained supernet, we formulate neural architecture search as a model pruning

problem, and iteratively prune the redundant operations, edges, and network weights of the

supernet in a hierarchical manner to derive the optimal architecture through a scheme which

we refer to as hierarchical masking. Figure 2.2 illustrates the iterative hierarchical mask-

17

ing process on a single cell. Specifically, we begin with the trained supernet as our base

network, and initiate three types of real-valued masks for operations, edges, and network

weights, respectively. These masks are passed through a deterministic thresholding function

to obtain the corresponding binary masks. These generated binary masks are then elemen-

twisely multiplied with the architecture parameters {α∗,β∗} and network weights w∗ of

the supernet to generate a searched network. By iteratively training the real-valued masks

through backpropagation combined with network binarization techniques [65] in an end-to-

end manner, the binary masks learned in the end are able to mask out redundant operations,

edges, and network weights in the supernet to derive the optimal architecture. Formally, let

M r = {M r
α,M

r
β ,M

r
w} denote the real-valued hierarchical masks, where M r

α,M
r
β ,M

r
w is

the real-valued mask for operations, edges, and network weights, respectively. Architecture

search is then reduced to finding M r∗ which minimizes the training loss of the masked

supernet:

M r∗ = argmin
Mr

L(PM (α∗,β∗,w∗)) (2.3)

M = H(M r − τ) (2.4)

where M = {Mα,Mβ,Mw} are the corresponding binary masks, H(·) is the Heaviside step

function as the deterministic thresholding function, τ is the pre-defined threshold, and P(·)

is the elementwise projection function. In this work, we use elementwise multiplication for

P(·).

Even though the Heaviside step function in (2.4) is non-differentiable, we adopt the

approximation strategy used in BinaryConnect [65] to approximate the gradients of real-

valued masks M r using the gradients of the binary masks M , and thus update the real-

18

valued masks M r using the gradients of the binary masks M . As shown in prior works [65–

67], this strategy is effective because the gradients of M actually act as a regularizer or a

noisy estimator of the gradients of M r. By doing this, the binary masks can be trained in

an end-to-end differentiable manner.

Deriving the Final Model

The hierarchical masking process in §2 outputs not only the optimal network architecture

but also a set of optimized network weights. As such, we can derive the final model via

fine-tuning instead of retraining the searched architecture from scratch.

With the optimized network weights, the searched architecture is able to maintain com-

parable accuracy compared to the supernet (e.g., ∼1% loss on CIFAR-10), and thus acts as

a significantly better starting point for fine-tuning. This not only ensures higher accuracy,

but also replaces the prolonged retraining process with a more efficient fine-tuning process.

Experiments

We evaluate the performance of HM-NAS and compare it with state-of-the-arts NAS ap-

proaches on two benchmark datasets: CIFAR-10 (Section 17) and ImageNet (Section 17).

Moreover, we have conducted a series of ablation studies that validate the importance

and effectiveness of the proposed multi-level architecture encoding scheme and hierarchical

masking scheme incorporated in the design of HM-NAS (Section 17).

Experimental Setup

We use 3 cells and 36 initial channels to build the supernet for CIFAR-10, and 5 cells and

24 initial channels for ImageNet. Following DARTS [12], our cell consists of 7 nodes in all

the experiments. The input nodes, i.e., the first and second nodes of cell k is the output

of cell k − 1 and k − 2, respectively. The output node is the depthwise concatenation of

all the intermediate nodes. We include the following operations: 3 × 3 and 5 × 5 separable

19

Algorithm 1: HM-NAS

1 Input: multi-level architecture encoded supernet Θ(α,β,w), real-valued masks M r
α, M r

β ,
M r

w, threshold τ , deterministic thresholding function H(·), elementwise projection
function P(·)

2 Output:
{
Θ̂(α∗,β∗,w∗),M∗

α,M
∗
β ,M

∗
w

}
: the optimized searched model and binary

masks
// supernet training

3 Initialize α← α0, β ← β0, w ← w0, t← 0.
4 while not converge do
5 Update β and α by descending ∇βLval(α∗, β,w∗) and ∇αLval(α,β∗,w∗) with a

probability of σ(t)
6 Update w by descending ∇wLtrain(α∗, β∗,w)
7 t← t+ 1

8 end
// searching via hierarchical masking

9 Initialize M r
α ←M0

α, M r
β ←M0

β , M r
w ←M0

w

10 while not converge do
11 Feed forward and loss calculation with PH(Mr

w−τ)(w
∗), PH(Mr

α−τ)(α
∗), PH(Mr

β−τ)(β
∗)

12 Update M r by descending ∇H(Mr−τ)Ltrain(PM (α∗,β∗,w∗))

13 end
// fine-tuning the searched network

14 Initialize w ← w∗. Construct searched network Θ̂(α∗,β∗,w) masked by M∗
α,M

∗
β ,M

∗
w.

15 while not converge do
16 Update unmasked w by descending ∇wLtrain(PM∗(α∗,β∗,w))
17 end

convolutions, 3× 3 and 5× 5 dilated separable convolutions, 3× 3 max pooling and average

pooling, and identity. ReLU-Conv-BN triplet is adopted for convolutional operations except

the first convolutional layer (Conv-BN), and each separable convolution is applied twice.

The default stride is 1 for all operations unless the output size is changed. The experiments

are conducted using a single NVIDIA Tesla V100 GPU.

Results on CIFAR-10

Training Details. We begin with training the supernet for 100 epochs with batch size

128. In each epoch, we first train weights w on 80% of the training set using SGD with

momentum. The initial learning rate is 0.1 with decay following a cosine decaying schedule.

The momentum is 0.9 and weight decay is 3e-4. Architecture parameters α, β are randomly

20

initialized and scaled by 1e-3. Next, We train α and β on the rest 20% of the training set

with Adam optimizer [68] with the learning rate of 3e-4 and weight decay of 1e-3. We empir-

ically observe more stable training process when using Adam for optimizing the architecture

parameters, which is also used in [12]. Following [64], we postpone the training of α and β

by 10 epochs to warm up w first. The supernet training takes 7.5 hours (or 30 hours for the

second-order approximation). Once the supernet is trained, we perform 20 epochs of neural

architecture search via hierarchical masking using the entire training set. Hierarchical masks

M r
α,M

r
β ,M

r
w are initialized as 1e-2. They are trained using the Adam optimizer with an

initial learning rate of 1e-4 for M r
w and 1e-5 for M r

α and M r
β , which is decayed by a factor

of 10 after 10 epochs. The binarizer threshold τ (Equation 2.4) is 5e-31. The hierarchical

mask training takes 3.5 hours. Lastly, the masked network is fine-tuned for 200 epochs for

9.6 hours with cutout [69].

Architecture Evaluation. Table 2.2 shows our evaluation results on CIFAR-10 where

‘c/o’ denotes cutout adapted from [69]. The test error of HM-NAS is on par with state-

of-the-art NAS methods. Notably, HM-NAS achieves this by using the fewest parameters

among all methods. Specifically, HM-NAS only uses 1.8M parameters, which is 1.4× to 3.2×

fewer compared to others.

Performance at Different Training Stages. Table 2.3 breaks down the complete

architecture search process of HM-NAS and shows the performance of HM-NAS at different

stages. Specifically, compared to the supernet, the searched network (derived after hier-

archical masking) loses only ∼1% accuracy with 40% less parameters. Although directly

using this searched network is not optimal (with test error 5.14%), it does provide a good

initialization for fine-tuning, which leads to lower test error (from 5.14% to 2.41%).

1Our method is robust to thresholds in the range of [0, 1e-2].

21

Architecture
Test Error

(%)

Params

(M)

Search Cost

(GPU days)

Train Cost

(GPU days)

Total Cost

(GPU days)

Search

Method

DenseNet-BC [70] 3.46 25.6 - - - manual

ENAS + c/o [57] 2.89 4.6 0.45 (630 epochs)† - RL

NASNet-A + c/o [54] 2.65 3.3 3150 - - RL

SNAS + c/o [59] 2.85 2.8 1.5 1.5 (600 epochs) 3 gradient-based

ProxyLess-G + c/o 2.08 5.7 4* (600 epochs) - gradient-based

AmoebaNet-A + c/o [18] 3.34 ± 0.06 3.2 3150 - - evolution

AmoebaNet-B + c/o [18] 2.55 ± 0.05 2.8 3150 - - evolution

DARTS (2nd order) + c/o [12] 2.76 ± 0.09 3.3 4* 2† (600 epochs) 6 gradient-based

HM-NAS (1st order) + c/o 2.78 ± 0.07 1.8 0.45 0.4 (200 epochs) 0.85 gradient-based

HM-NAS (2nd order) + c/o 2.41 ± 0.05 1.8 1.4 0.4 (200 epochs) 1.8 gradient-based

* Results obtained from authors’ official response in openreview.
† Results obtained using code publicly released by the authors.

Table 2.2: Comparison with state-of-the-arts on CIFAR-10.

Architecture

Test

Error

(%)

Params

(M)

Params

Reduction

(%)

Supernet 4.2 3 -

Searched Network 5.14 1.8 40

Searched Network + Fine-Tuning 2.41 1.8 40

Table 2.3: Performance of HM-NAS at different architecture search stages.

Architecture Search Cost Analysis. To find the optimal architecture, HM-NAS

only uses 0.85 or 1.8 GPU days, which is significantly faster compared to all other NAS

methods. To understand why HM-NAS is efficient, we compare the complete architecture

search process of HM-NAS to DARTS. Figure 2.3 illustrates the training curve of HM-NAS

(in blue color) and DARTS2 (in red color) during the complete architecture search process

on CIFAR-10. Specifically, both HM-NAS and DARTS use the first 100 epochs to train

the supernet with the same train/validation dataset split. Due to multi-level architecture

encoding, HM-NAS is able to achieve better test results after 100 epochs. Then, DARTS

transfers the learned cell to build a larger network and retrains it from scratch. This process

2Our implementation based on the code released by the authors.

22

takes approximately 600 epochs to converge. In contrast, from 100 epoch to 120 epoch and

onward, HM-NAS performs architecture search via hierarchical masking and fine-tuning,

respectively. This process only takes 220 epochs to converge, which is 2.7× faster compared

to DARTS.

Retrain
from

Scratch

Start
Fine-Tuning

Start
Hierarchical

Masking

Figure 2.3: Training curves of HM-NAS (in blue color) and DARTS (in red color) on
CIFAR-10. Solid lines denote test errors (y-axis on the left); dashed lines denote training
errors (y-axis on the right).

Results on ImageNet

We conduct experiments on ImageNet 1000-class [71] classification task, where input im-

age size is 224 × 224. The dataset has around 1.28M training images and we test on the

50k validation images. Training Details. We adopt the small computation regime (e.g.,

MobileNet-V1 [72]) in the experiments. Following [64], 100 classes from the original 1,000

classes of ImageNet is randomly sampled to train the supernet for 100 epochs with batch

size 128. It takes around one GPU day to finish the supernet training. Once the supernet

is trained, the hierarchical masking is then performed with the same optimization settings

mentioned in §17. The hierarchical masking process takes around one GPU day to finish.

Lastly, the searched network is fine-tuned on the entire ImageNet training dataset (with

1,000 classes) for 60 epochs with initial learning rate 1e-2 then decreased to 1e-3 at the

epoch 30. This phase takes around 3 GPU days to finish.

23

Architecture
Top-1 Acc.

(%)

Params

(M)

FLOPs

(M)

MobileNet-V1 [72] 70.6 4.2 569

MobileNet-V2 [9] 74.7 6.9 585

NASNet-A [54] 74.0 5.3 564

Amoeba-A [18] 74.5 5.1 555

DARTS [12] 73.3 4.7 574

SNAS [59] 72.7 4.3 522

HM-NAS 73.4 3.6 482

Table 2.4: Comparison with state-of-the-arts on ImageNet.

Architecture Evaluation. Table 2.4 shows our evaluation results on ImageNet. The

result is comparable to DARTS, considering that we adopt the exact same search space in

DARTS [12], which uses the operations incorporated in MobileNet-V1 [72]. Notably, we

achieve comparable results to the state-of-the-art gradient-based NAS approaches [12, 59]

with 1.2× to 1.3× less parameters and 1.08× to 1.2× less FLOPs. With a larger supernet

and better candidate operations such as the ones used in MobileNet-V2 [9], We believe that

the results could be further improved.

Analysis

In this section, we conduct a series of ablation studies to demonstrate the superiority of

the design of HM-NAS. The ablation studies are conducted on CIFAR-10 with second-

order derivative introduced in Table 2.2. Comparison to Single-Level Architecture

Encoding. To demonstrate the superiority of the proposed multi-level architecture encoding

scheme over single-level architecture encoding, we compare the single-level encoded network

against the multi-level encoded network, both with hand designed heuristics (by replacing

each mixed operation with the most likely operation and taking the top-2 confident edges

from distinct nodes). As shown in Table 2.5, the multi-level architecture encoding achieves

24

Architecture

Encoding
Derived Rule

Test

Error

(%)

Params

(M)

Single-Level (α) Hand Designed Heuristics 3.1 2.5

Multi-Level (α, β) Hand Designed Heuristics 2.7 2.1

Multi-Level (α, β) Learned Hierarchical Masks 2.41 1.8

Table 2.5: Comparison to hand designed heuristics.

2.7% test error, giving 0.4% accuracy improvement over the single-level one.

Comparison to Hand Designed Heuristics. To demonstrate the superiority of

learned hierarchical masks over hand designed heuristics, we compare the multi-level encoded

network with learned hierarchical masks against the one with hand designed heuristics. As

shown in Table 2.5, the hierarchical masks achieve 2.41% test error, providing about 0.3%

accuracy improvement over hand designed heuristics. Similar findings are also observed

in [61]. In contrast, HM-NAS outperforms the random architecture by 1% in test error with

3× less training epochs. This is because with multi-level architecture encoding and hierar-

chical masking, the search space is significantly enlarged, making it challenging for random

search to find a competitive network.

Comparison to Random Initialization. As our final ablation study, to demonstrate

the superiority of unmasked network weights obtained from hierarchical masking over random

weights, we randomly initialize the weights of the searched network (same architecture as

HM-NAS) and train it for 600 epochs on par with the training setup in DARTS. We run 5

times of random initialization, each running the same number of epochs. As shown in Table

2.6, the average test error of random initialization is 2.95%, which is comparable to DARTS

but considerably higher than HM-NAS.

Searched Architecture Analysis. Finally, we provide an in-depth analysis on the net-

25

Architecture
Test Error

(%)

Params

(M)

Train Cost

(epochs)

Random Architecture 3.41 ± 0.15 2.1 600

Random Initialization ‡ 2.95 ± 0.08 1.8 600

HM-NAS 2.41 ± 0.05 1.8 200
‡ Same architecture as HM-NAS + c/o with random initialized weights.

Table 2.6: Comparison to random architectures and random initialization.

(a)
Intermediate Node

0 1 2 3

Intermediate Node
0 1 2 3

(b) (c)

(a) (b) (c)

Number of Ops Selected

Number of Ops Selected

Figure 2.4: (a) cell structure. (b) number of input edges of four intermediate nodes. (c)
histogram of the number of edges w.r.t the number of operations selected.

work architecture found by HM-NAS. We have the following three important observations.

Different Learned Importance for Different Edges. Figure 2.4(a) and Figure 2.5(a)

illustrate the details of the learned cell for CIFAR-10 and ImageNet respectively, where

the importance of edge, i.e., edge mixing weight β(i,j), is marked above every edge. Un-

like DARTS in which each edge has the same hard-coded importance, due to multi-level

architecture encoding, the best-performing cell found by HM-NAS has different learned im-

portance for different edges across the cell. Moreover, we find that edges connecting to later

intermediate nodes have higher importance than early intermediate nodes. One possible ex-

planation is that during cell construction, each intermediate node is ordered and is derived

from its predecessors by accumulating information passed from its predecessors. Hence, it

has more influence on the output of the cell, which is reflected by the higher importance

learned through our approach. Once the importance of the edge is no longer heuristically

26

(a)
Intermediate Node

0 1 2 3

Intermediate Node
0 1 2 3

(b) (c)

(a) (b) (c)

Number of Ops Selected

Number of Ops Selected

Figure 2.5: (a) cell structure. (b) number of input edges of four intermediate nodes. (c)
histogram of the number of edges w.r.t the number of operations selected.

determined but automatically learned, the multi-level architecture encoding provides a more

flexible way to encode the entire supernet architecture and thus provides us with a better

superset for architecture search.

(a) CIFAR-10 (b) ImageNet

Figure 2.6: Robustness of learned edge importance of (a) CIFAR-10 and (b) ImageNet.
The learned importance of different edges does not strongly depend on initialization.

Robustness of Learned Edge Importance. We repeat the experiments 5 times with

random seeds on both CIFAR-10 and ImageNet datasets, and report the (per run) averaged

incoming edge importance in each immediate node with the best validation performance of

the architecture over epochs (we keep track of the most recent architectures). As shown

in Figure 2.6, we observe that the learned importance of different edges does not strongly

depend on initialization: even if the initial weights are randomly initialized, after the search

process completes, the later intermediate nodes always have higher importance than earlier

27

nodes.

More Flexible Architectures. Figure 2.4(b) and Figure 2.5(b) show the number of

input edges connecting to each intermediate node, while Figure 2.4(c) and Figure 2.5(c) show

the histogram of the number of edges w.r.t the number of operations selected (e.g. the third

bar from the left shows that three edges have two associated operations). Unlike DARTS in

which each intermediate node is hard coded to have exactly two input edges and each edge

is hard coded to have exactly one operation, the best-performing cell found by HM-NAS has

intermediate nodes which have more (≥ 2) incoming edges, and edges are associated with

zero (the edge is removed) or multiple (≥ 1) operations. This observation suggests that

HM-NAS is able to find more flexible architectures that existing weight sharing based NAS

approaches are not able to discover. In principle, other constraints such as the number of

cells, the number of channels, the number of nodes in a cell, and the combination operation

(e.g. sum, concatenation) can all be further relaxed by the proposed multi-level architecture

encoding and hierarchical masking schemes.

Conclusion

In this chapter, We propose an efficient NAS approach named HM-NAS that generalizes

existing weight sharing based NAS approaches. HM-NAS incorporates a multi-level archi-

tecture encoding scheme to enable an architecture candidate to have arbitrary numbers of

edges and operations with different importance. The learned hierarchical masks not only

select the optimal numbers of edges, operations and important network weights, but also

help correct the architecture search bias caused by bilevel optimization in supernet training.

Experiment results show that, compared to state-of-the-arts, HM-NAS is able to achieve

competitive accuracy on CIFAR-10 and ImageNet with improved architecture search effi-

ciency.

28

Chapter 3

Arch2Vec

Unsupervised representation learning has been successfully used in a wide range of do-

mains including natural language processing [73–75], computer vision [76,77], robotic learn-

ing [78, 79], and network analysis [80, 81]. Although differing in specific data type, the root

cause of such success shared across domains is learning good data representations that are

independent of the specific downstream task. In this work, we investigate unsupervised rep-

resentation learning in the domain of neural architecture search (NAS), and demonstrate

how NAS search spaces encoded through unsupervised representation learning could benefit

the downstream search strategies. Standard NAS methods encode the search space with the

adjacency matrix and focus on designing different downstream search strategies based on

reinforcement learning [82], evolutionary algorithm [83], and Bayesian optimization [31] to

perform architecture search in discrete search spaces. Such discrete encoding scheme is a nat-

ural choice since neural architectures are discrete. However, the size of the adjacency matrix

grows quadratically as search space scales up, making downstream architecture search less

efficient in large search spaces [5]. To reduce the search cost, recent NAS methods employ

dedicated networks to learn continuous representations of neural architectures and perform

architecture search in continuous search spaces [12, 59, 63, 84]. In these methods, architec-

ture representations and downstream search strategies are jointly optimized in a supervised

manner, guided by the accuracies of architectures selected by the search strategies. How-

ever, these supervised architecture representation learning-based methods are biased towards

weight-free operations (e.g., skip connections, max-pooling) which are often preferred in the

early stage of the search process, resulting in lower final accuracies [40, 62, 85, 86]. In this

work, we propose arch2vec, a simple yet effective neural architecture search method based

29

on unsupervised architecture representation learning. As illustrated in Figure 3.1, compared

to supervised architecture representation learning-based methods, arch2vec circumvents the

bias caused by joint optimization through decoupling architecture representation learning

and architecture search into two separate processes. To achieve this, arch2vec uses a varia-

tional graph isomorphism autoencoder to learn architecture representations using only neural

architectures without their accuracies. As such, it injectively captures the local structural in-

formation of neural architectures and makes architectures with similar structures (measured

by edit distance) cluster better and distribute more smoothly in the latent space, which

facilitates the downstream architecture search. We visualize the learned architecture repre-

sentations in Section 3. It shows that architecture representations learned by arch2vec can

better preserve structural similarity of local neighborhoods than its supervised architecture

representation learning counterpart. In particular, it is able to capture topology (e.g. skip

connections or straight networks) and operation similarity, which helps cluster architectures

with similar accuracy.

We follow the NAS best practices checklist [87] to conduct our experiments. We validate

the performance of arch2vec on three commonly used NAS search spaces NAS-Bench-101 [10],

NAS-Bench-201 [11] and DARTS [12] and two search strategies based on reinforcement learn-

ing (RL) and Bayesian optimization (BO). Our results show that, with the same downstream

search strategy, arch2vec consistently outperforms its discrete encoding and supervised ar-

chitecture representation learning counterparts across all three search spaces.

Our contributions are summarized as follows: 1). We propose a neural architecture

search method based on unsupervised representation learning that decouples architecture

representation learning and architecture search. 2). We show that compared to supervised

architecture representation learning, pre-training architecture representations without using

30

Figure 3.1: Supervised architecture representation learning (top): the supervision signal
for representation learning comes from the accuracies of architectures selected by the
search strategies. arch2vec (bottom): disentangling architecture representation learning
and architecture search through unsupervised pre-training.

their accuracies is able to better preserve the local structure relationship of neural archi-

tectures and helps construct a smoother latent space. 3). The pre-trained architecture

embeddings considerably benefit the downstream architecture search in terms of efficiency

and robustness. This finding is consistent across three search spaces, two search strategies

and two datasets, demonstrating the importance of unsupervised architecture representation

learning for neural architecture search.

Related Work

Unsupervised Representation Learning of Graphs. Our work is closely related to

unsupervised representation learning of graphs. In this domain, some methods have been

proposed to learn representations using local random walk statistics and matrix factorization-

based learning objectives [80,81,88,89]; some methods either reconstruct a graph’s adjacency

31

matrix by predicting edge existence [90, 91] or maximize the mutual information between

local node representations and a pooled graph representation [92]. The expressiveness of

Graph Neural Networks (GNNs) is studied in [93] in terms of their ability to distinguish

any two graphs. It also introduces Graph Isomorphism Networks (GINs), which is proved

to be as powerful as the Weisfeiler-Lehman test [94] for graph isomorphism. [53] proposes

an asynchronous message passing scheme to encode DAG computations using RNNs. In

contrast, we injectively encode architecture structures using GINs, and we show a strong

pre-training performance based on its highly expressive aggregation scheme. [95] focuses

on network generators that output relational graphs, and the predictive performance highly

depends on the structure measures of the relational graphs. In contrast, we encode structural

information of neural networks into compact continuous embeddings, and the predictive

performance depends on how well the structure is injected into the embeddings.

Regularized Autoencoders. Autoencoders can be seen as energy-based models trained

with reconstruction energy [96]. Our goal is to encode neural architectures with similar per-

formance into the same regions of the latent space, and to make the transition of architectures

in the latent space relatively smooth. To prevent degenerated mapping where latent space

is free of any structure, there is a rich literature on restricting the low-energy area for data

points on the manifold [97–101]. Here we adopt the popular variational autoencoder frame-

work [90,99] to optimize the variational lower bound w.r.t. the variational parameters, which

as we show in our experiments acts as an effective regularization. While [102,103] use graph

VAE for the generative problems, we focus on mapping the finite discrete neural architectures

into the continuous latent space regularized by KL-divergence such that each architecture is

encoded into a unique area in the latent space.

Neural Architecture Search (NAS). As mentioned in §1, early NAS methods are

32

built upon discrete encodings [7, 18, 21, 24, 31], which face the scalability challenge [5, 104]

in large search spaces. To address this challenge, recent NAS methods shift from conduct-

ing architecture search in discrete spaces to continuous spaces using different architecture

encoders such as SRM [24], MLP [50], LSTM [63] or GCN [44, 46]. However, what lies in

common under these methods is that the architecture representation and search direction

are jointly optimized by the supervision signal (e.g., accuracies of the selected architectures),

which could bias the architecture representation learning and search direction. [6] empha-

sizes the importance of studying architecture encodings, and we focus on encoding adjacency

matrix-based architectures into low-dimensional embeddings in the continuous space. [105]

shows that architectures searched without using labels are competitive to their counterparts

searched with labels. Different from their approach which performs pretext tasks using im-

age statistics, we use architecture reconstruction objective to preserve the local structure

relationship in the latent space.

Approach

In this section, we describe the details of arch2vec, followed by two downstream architecture

search strategies we use in this work.

Variational Graph Isomorphism Autoencoder

Preliminaries. We restrict our search space to the cell-based architectures. Following the

configuration in NAS-Bench-101 [10], each cell is a labeled DAG G = (V , E), with V as a set

of N nodes and E as a set of edges. Each node is associated with a label chosen from a set of

K predefined operations. A natural encoding scheme of cell-based neural architectures is an

upper triangular adjacency matrix A ∈ RN×N and an one-hot operation matrix X ∈ RN×K .

This discrete encoding is not unique, as permuting the adjacency matrix A and the operation

matrix X would lead to the same graph, which is known as graph isomorphism [94].

33

Encoder. To learn a continuous representation that is invariant to isomorphic graphs,

we leverage Graph Isomorphism Networks (GINs) [93] to encode the graph-structured archi-

tectures given its better expressiveness. We augment the adjacency matrix as Ã = A+AT to

transfer original directed graphs into undirected graphs, allowing bi-directional information

flow. Similar to [90], the inference model, i.e. the encoding part of the model, is defined as:

q(Z|X, Ã) =
N∏
i=1

q(zi|X, Ã),with q(zi|X, Ã) = N (zi|µi, diag(σ
2
i)). (3.1)

We use the L-layer GIN to get the node embedding matrix H:

H(k) = MLP(k)
((

1 + ϵ(k)
)
·H(k−1) + ÃH(k−1)

)
, k = 1, 2, . . . , L, (3.2)

where H(0) = X, ϵ is a trainable bias, and MLP is a multi-layer perception where each

layer is a linear-batchnorm-ReLU triplet. The node embedding matrix H(L) is then fed

into two fully-connected layers to obtain the mean µ and the variance σ of the posterior

approximation q(Z|X, Ã) in Eq. (3.1). During the inference, the architecture representation

is derived by summing the representation vectors of all the nodes.

Decoder. Our decoder is a generative model aiming at reconstructing Â and X̂ from

the latent variables Z:

p(Â|Z) =
N∏
i=1

N∏
j=1

P (Âij|zi, zj),with p(Âij = 1|zi, zj) = σ(zTi zj), (3.3)

p(X̂ = [k1, ..., kN]
T |Z) =

N∏
i=1

P (X̂i = ki|zi) =
N∏
i=1

softmax(WoZ+ bo)i,ki , (3.4)

34

where σ(·) is the sigmoid activation, softmax(·) is the softmax activation applied row-wise,

and kn ∈ {1, 2, ..., K} indicates the operation selected from the predifined set of K opreations

at the nth node. Wo and bo are learnable weights and biases of the decoder.

Training Objective

In practice, our variational graph isomorphism autoencoder consists of a five-layer GIN and

a one-layer MLP. The details of the model architecture are described in Section 3. The

dimensionality of the embedding is set to 16. During training, model weights are learned by

iteratively maximizing a tractable variational lower bound:

L = Eq(Z|X,Ã)[log p(X̂, Â|Z)]−DKL(q(Z|X, Ã)||p(Z)), (3.5)

where p(X̂, Â|Z) = p(Â|Z)p(X̂|Z) as we assume that the adjacency matrix A and the

operation matrix X are conditionally independent given the latent variable Z. The second

term DKL on the right hand side of Eq. (3.5) denotes the Kullback-Leibler divergence [106]

which is used to measure the difference between the posterior distribution q(·) and the prior

distribution p(·). Here we choose a Gaussian prior p(Z) =
∏

iN (zi|0, I) due to its simplicity.

We use reparameterization trick [99] for training since it can be thought of as injecting noise

to the code layer. The random noise injection mechanism has been proved to be effective on

the regularization of neural networks [99, 107, 108]. The loss is optimized using mini-batch

gradient descent over neural architectures.

Architecture Search Strategies

We use reinforcement learning (RL) and Bayesian optimization (BO) as two representative

search algorithms to evaluate arch2vec on the downstream architecture search.

Reinforcement Learning (RL). We use REINFORCE [82] as our RL-based search

35

strategy as it has been shown to converge better than more advanced RL methods such as

PPO [109] for neural architecture search. For RL, the pre-trained embeddings are passed

to the Policy LSTM to sample the action and obtain the next state (valid architecture

embedding) using nearest-neighborhood retrieval based on L2 distance to maximize accuracy

as reward. We use a single-layer LSTM as the controller and output a 16-dimensional output

as the mean vector to the Gaussian policy with a fixed identity covariance matrix. The

controller is optimized using Adam optimizer [68] with a learning rate of 1 × 10−2. The

number of sampled architectures in each episode is set to 16 and the discount factor is set

to 0.8. The baseline value is set to 0.95. The search is stopped when it reaches the time

budget 1.2×104, 5×105, 1.4×106 seconds for CIFAR-10, CIFAR-100, and ImageNet-16-200,

respectively. For CIFAR-10, we follow the same implementation established in NAS-Bench-

201 by searching based on the validation accuracy obtained after 12 training epochs with

converged learning rate scheduling. The discount factor and the baseline value is set to 0.4.

All the other hyperparameters are the same as described in Section 3.

Bayesian Optimization (BO). We use DNGO [110] as our BO-based search strategy.

We use a one-layer adaptive basis regression network with hidden dimension 128 to model

distributions over functions. It serves as an alternative to Gaussian process in order to avoid

cubic scaling [111]. We use expected improvement (EI) [112] as the acquisition function

which is widely used in NAS [21,46,50]. The best function value of EI is set to 0.95. During

the search process, the pre-trained embeddings are passed to DNGO to select the top-5

architectures in each round of search, which are then added to the pool. The network is

retrained for 100 epochs in the next round using the selected architectures in the updated

pool. This process is iterated until the maximum estimated wall-clock time is reached. We

use the same time budget used in RL-based search. All the other hyperparameters are the

36

same.

Experiments

Encoding of NAS-Bench-101. We validate arch2vec on three commonly used NAS search

spaces. We followed the encoding scheme in NAS-Bench-101 [10]. Specifically, a cell in NAS-

Bench-101 is represented as a directed acyclic graph (DAG) where nodes represent operations

and edges represent data flow. A 7 × 7 upper-triangular binary matrix is used to encode

edges. A 7 × 5 operation matrix is used to encode operations, input, and output, with the

order as {input, 1 × 1 conv, 3 × 3 conv, 3 × 3 max-pool (MP), output}. For cells with

less than 7 nodes, their adjacency and operator matrices are padded with trailing zeros.

Figure 1.2 (left) shows an example of a 7-node cell in NAS-Bench-101 search space and its

corresponding adjacency and operation matrices.

Encoding of NAS-Bench-201. Different from NAS-Bench-101, NAS-Bench-201 [11]

employs a fixed cell-based DAG representation of neural architectures, where nodes represent

the sum of feature maps and edges are associated with operations that transform the feature

maps from the source node to the destination node. To represent the architectures in NAS-

Bench-201 with discrete encoding that is compatible with our neural architecture encoder,

we first transform the original DAG in NAS-Bench-201 into a DAG with nodes representing

operations and edges representing data flow as the ones in NAS-Bench-101. We then use the

same discrete encoding scheme in NAS-Bench-101 to encode each cell into an adjacency ma-

trix and operation matrix. An example is shown in Figure 1.2 (right). The hyperparameters

we used for pre-training on NAS-Bench-201 are the same as NAS-Bench-101.

DARTS search space. The DARTS search space [12] is a popular search space for

large-scale NAS experiments. The search space consists of two cells: a convolutional cell

and a reduction cell, each with six nodes. For each cell, the first two nodes are the outputs

37

from the previous two cells. The next four nodes contain two edges as input, creating a

DAG. The network is then constructed by stacking the cells. Following [113], we use the

same cell for both normal and reduction cell, allowing roughly 109 DAGs without considering

graph isomorphism. We randomly sample 600,000 unique architectures in this search space

following the mobile setting [12]. We use the same data split as used in NAS-Bench-101.

For pre-training, we use a five-layer Graph Isomorphism Network (GIN) with hidden sizes

of {128, 128, 128, 128, 16} as the encoder and a one-layer MLP with a hidden dimension of

16 as the decoder. The adjacency matrix is preprocessed as an undirected graph to allow

bi-directional information flow. After forwarding the inputs to the model, the reconstruction

error is minimized using Adam optimizer [68] with a learning rate of 1 × 10−3. We train

the model with batch size 32 and the training loss is able to converge well after 8 epochs on

NAS-Bench-101, and 10 epochs on NAS-Bench-201 and DARTS. After training, we extract

the architecture embeddings from the encoder for the downstream architecture search.

In the following, we first evaluate the pre-training performance of arch2vec and then the

neural architecture search performance based on its pre-trained representations.

Pre-training Performance

Observation (1): We compare arch2vec with two popular baselines GAE [90] and VGAE

[90] using three metrics suggested by [53]: 1) Reconstruction Accuracy (reconstruction ac-

curacy of the held-out test set), 2) Validity (how often a random sample from the prior

distribution can generate a valid architecture), and 3) Uniqueness (unique architectures out

of valid generations). As shown in Table 3.1, arch2vec outperforms both GAE and VGAE,

and achieves the highest reconstruction accuracy, validity, and uniqueness across all the three

search spaces. This is because encoding with GINs outperforms GCNs in reconstruction ac-

curacy due to its better neighbor aggregation scheme; the KL term effectively regularizes the

38

Figure 3.2: predictive performance comparison between arch2vec (left) and supervised
architecture representation learning (right) on NAS-Bench-101.

mapping from the discrete space to the continuous latent space, leading to better generative

performance measured by validity and uniqueness. Given its superior performance, we stick

to arch2vec for the remainder of our evaluation.

Method
NAS-Bench-101 NAS-Bench-201 DARTS

Accuracy Validity Uniqueness Accuracy Validity Uniqueness Accuracy Validity Uniqueness

GAE [90] 98.75 29.88 99.25 99.52 79.28 78.42 97.80 15.25 99.65

VGAE [90] 97.45 41.18 99.34 98.32 79.30 88.42 96.80 25.25 99.27

arch2vec (w.o. KL) 100 30.31 99.20 100 77.09 96.57 99.46 16.01 99.51

arch2vec 100 44.97 99.69 100 79.41 98.72 99.79 33.36 100

Table 3.1: Reconstruction accuracy, validity, and uniqueness of different GNNs.

We compare arch2vec with its supervised architecture representation learning counterpart

on the predictive performance of the latent representations. This metric measures how well

the latent representations can predict the performance of the corresponding architectures.

Being able to accurately predict the performance of the architectures based on the latent

representations makes it easier to search for the high-performance points in the latent space.

Specifically, we train a Gaussian Process model with 250 sampled architectures to predict the

performance of the other architectures, and report the predictive performance across 10 dif-

ferent seeds. We use RMSE and the Pearson correlation coefficient (Pearson’s r) to evaluate

39

Figure 3.3: Comparing distribution of L2 distance between architecture pairs by edit
distance on NAS-Bench-101, measured by 1,000 architectures sampled in a long random
walk with 1 edit distance apart from consecutive samples. left: arch2vec. right: supervised
architecture representation learning.

Figure 3.4: Latent space 2D visualization [114] comparison between arch2vec (left) and
supervised architecture representation learning (right) on NAS-Bench-101. Color encodes
test accuracy. We randomly sample 10, 000 points and average the accuracy in each small
area.

points with test accuracy higher than 0.8. Figure 3.2 compares the predictive performance

between arch2vec and its supervised counterpart on NAS-Bench-101. As shown, arch2vec

outperforms its supervised counterpart1, indicating arch2vec is able to better capture the

local structure relationship of the input space and hence is more informative on guiding the

downstream search process.

Observation (3): In Figure 3.3, we plot the relationship between the L2 distance in the

latent space and the edit distance of the corresponding DAGs between two architectures. As

1The RMSE and Pearson’s r are: 0.038±0.025 / 0.53±0.09 for the supervised architecture representation
learning, and 0.018±0.001 / 0.67±0.02 for arch2vec. A smaller RMSE and a larger Pearson’s r indicates a
better predictive performance.

40

shown, for arch2vec, the L2 distance grows monotonically with increasing edit distance. This

result indicates that arch2vec is able to preserve the closeness between two architectures mea-

sured by edit distance, which potentially benefits the effectiveness of the downstream search.

In contrast, such closeness is not well captured by supervised architecture representation

learning.

Observation (4): In Figure 3.4, we visualize the latent spaces of NAS-Bench-101 learned

by arch2vec (left) and its supervised counterpart (right) in the 2-dimensional space generated

using t-SNE. We overlaid the original colorscale with red (>92% accuracy) and black (<82%

accuracy) for highlighting purpose. As shown, for arch2vec, the architecture embeddings

span the whole latent space, and architectures with similar accuracies are clustered together.

In particular, the left-lower region has higher accuracy while the right-upper region has lower

accuracy. Conducting architecture search on such smooth performance surface is much easier

and is hence more efficient. In contrast, for the supervised counterpart, the embeddings

are discontinuous in the latent space, and the transition of accuracy is non-smooth. This

indicates that joint optimization guided by accuracy cannot injectively encode architecture

structures. As a result, architecture does not have its unique embedding in the latent space,

which makes the task of architecture search more challenging.

Observation (5): To provide a closer look at the learned latent space, Figure 3.5 visual-

izes the architecture cells decoded from the latent space of arch2vec (upper) and supervised

architecture representation learning (lower). For arch2vec, the adjacent architectures change

smoothly and embrace similar connections and operations. This indicates that unsupervised

architecture representation learning helps model a smoothly-changing structure surface. As

we show in the next section, such smoothness greatly helps the downstream search since

architectures with similar performance tend to locate near each other in the latent space

41

Figure 3.5: Visualization of a sequence of architecture cells decoded from the learned
latent space of arch2vec (upper) and supervised architecture representation learning
(lower) on NAS-Bench-101. The two sequences start from the same architecture. For both
sequences, each architecture is the closest point of the previous one in the latent space
excluding previously visited ones. Edit distances between adjacent architectures of the
upper sequence are 4, 6, 1, 5, 1, 1, 1, 5, 2, 3, 2, 4, 2, 5, 2, and the average is 2.9. Edit
distances between adjacent architectures of the lower sequence are 8, 6, 7, 7, 9, 8, 11, 11, 6,
10, 10, 11, 10, 11, 9, and the average is 8.9.

instead of locating randomly. In contrast, the supervised counterpart does not group similar

connections and operations well and has much higher edit distances between adjacent archi-

tectures. This biases the search direction since dependencies between architecture structures

are not well captured.

NAS Performance

NAS results on NAS-Bench-101. For fair comparison, we reproduced the NAS methods

which use the adjacency matrix-based encoding in [10]2, including Random Search (RS) [115],

Regularized Evolution (RE) [18], REINFORCE [82] and BOHB [31]. For supervised architec-

ture representation learning-based methods, the hyperparameters are the same as arch2vec,

except that the architecture representation learning and search are jointly optimized. Figure

2https://github.com/automl/nas_benchmarks

42

NAS Methods #Queries Test Accuracy (%) Encoding Search Method

Random Search [10] 1000 93.54 Discrete Random

RL [10] 1000 93.58 Discrete REINFORCE

BO [10] 1000 93.72 Discrete Bayesian Optimization

RE [10] 1000 93.72 Discrete Evolution

NAO [63] 1000 93.74 Supervised Gradient Decent

BANANAS [50] 500 94.08 Supervised Bayesian Optimization

RL (ours) 400 93.74 Supervised REINFORCE

BO (ours) 400 93.79 Supervised Bayesian Optimization

arch2vec-RL 400 94.10 Unsupervised REINFORCE

arch2vec-BO 400 94.05 Unsupervised Bayesian Optimization

Table 3.2: Comparison of NAS performance between arch2vec and SOTA methods on
NAS-Bench-101. It reports the mean performance of 500 independent runs given the
number of queried architectures.

3.6 and Table 3.2 summarize our results.

Figure 3.6: Comparison of NAS performance between discrete encoding, supervised
architecture representation learning, and arch2vec on NAS-Bench-101. The plot shows the
mean test regret (left) and the empirical cumulative distribution of the final test regret
(right) of 500 independent runs given a wall-clock time budget of 1× 106 seconds.

As shown in Figure 3.6, BOHB and RE are the two best-performing methods using the

adjacency matrix-based encoding. However, they perform slightly worse than supervised

architecture representation learning because the high-dimensional input may require more

observations for the optimization. In contrast, supervised architecture representation learn-

ing focuses on low-dimensional continuous optimization and thus makes the search more

43

NAS Methods
CIFAR-10 CIFAR-100 ImageNet-16-120

validation test validation test validation test

RE [18] 91.08±0.43 93.84±0.43 73.02±0.46 72.86±0.55 45.78±0.56 45.63±0.64

RS [115] 90.94±0.38 93.75±0.37 72.17±0.64 72.05±0.77 45.47±0.65 45.33±0.79

REINFORCE [82] 91.03±0.33 93.82±0.31 72.35±0.63 72.13±0.79 45.58±0.62 45.30±0.86

BOHB [31] 90.82±0.53 93.61±0.52 72.59±0.82 72.37±0.90 45.44±0.70 45.26±0.83

arch2vec-RL 91.32±0.42 94.12±0.42 73.13±0.72 73.15±0.78 46.22±0.30 46.16±0.38

arch2vec-BO 91.41±0.22 94.18±0.24 73.35±0.32 73.37±0.30 46.34±0.18 46.27±0.37

Table 3.3: The mean and standard deviation of the validation and test accuracy of
different algorithms under three datasets in NAS-Bench-201. The results are calculated
over 500 independent runs.

efficient. As shown in Figure 3.6 (left), arch2vec considerably outperforms its supervised

counterpart and the adjacency matrix-based encoding after 5× 104 wall clock seconds. Fig-

ure 3.6 (right) further shows that arch2vec is able to robustly achieve the lowest final test

regret after 1× 106 seconds across 500 independent runs.

NAS results on NAS-Bench-201. For CIFAR-10, we follow the same implementation

established in NAS-Bench-201 by searching based on the validation accuracy obtained after

12 training epochs with converged learning rate scheduling. The search budget is set to

1.2×104 seconds. The NAS experiments on CIFAR-100 and ImageNet-16-120 are conducted

with a budget that corresponds to the same number of queries used in CIFAR-10. As listed

in Table 3.3, searching with arch2vec leads to better validation and test accuracy as well as

reduced variability among different runs on all datasets.

NAS results on DARTS search space. Similar to [50], we set the budget to 100

queries in this search space. In each query, a sampled architecture is trained for 50 epochs

and the average validation error of the last 5 epochs is computed. To ensure fair comparison

with the same hyparameters setup, we re-trained the architectures from works that exactly3

use DARTS search space and report the final architecture. As shown in Table 3.4, arch2vec

3https://github.com/quark0/darts/blob/master/cnn/train.py

44

Test Error Params (M) Search Cost

NAS Methods Avg Best Stage 1 Stage 2 Total Encoding Search Method

Random Search [12] 3.29±0.15 - 3.2 - - 4 - Random

ENAS [57] - 2.89 4.6 0.5 - - Supervised REINFORCE

ASHA [116] 3.03±0.13 2.85 2.2 - - 9 - Random

RS WS [116] 2.85±0.08 2.71 4.3 2.7 6 8.7 - Random

SNAS [59] 2.85±0.02 - 2.8 1.5 - - Supervised GD

DARTS [12] 2.76±0.09 - 3.3 4 1 5 Supervised GD

BANANAS [50] 2.64 2.57 3.6 100 (queries) - 11.8 Supervised BO

Random Search (ours) 3.1±0.18 2.71 3.2 - - 4 - Random

DARTS (ours) 2.71±0.08 2.63 3.3 4 1.2 5.2 Supervised GD

BANANAS (ours) 2.67±0.07 2.61 3.6 100 (queries) 1.3 11.5 Supervised BO

arch2vec-RL 2.65±0.05 2.60 3.3 100 (queries) 1.2 9.5 Unsupervised REINFORCE

arch2vec-BO 2.56±0.05 2.48 3.6 100 (queries) 1.3 10.5 Unsupervised BO

Table 3.4: Comparison with state-of-the-art cell-based NAS methods on DARTS search
space using CIFAR-10. The test error is averaged over 5 seeds. Stage 1 shows the GPU
days (or number of queries) for model search and Stage 2 shows the GPU days for model
evaluation.

generally leads to competitive search performance among different cell-based NAS methods

with comparable model parameters. The best performed cells and transfer learning results

on ImageNet.

Ablation Study

Pretraining Metrics

We split the the dataset into 90% training and 10% held-out test sets for arch2vec pre-training

on each search space. In Section 3, we evaluate the pre-training performance of arch2vec

using three metrics suggested by [53]: 1) Reconstruction Accuracy (reconstruction accuracy

of the held-out test set) which measures how well the embeddings can errorlessly remap to

the original structures; 2) Validity (how often a random sample from the prior distribution

can generate a valid architecture) which measures the generative ability the model; and 3)

Uniqueness (unique architectures out of valid generations) which measures the smoothness

and diversity of the generated samples. To compute Reconstruction Accuracy, we report

the proportion of the decoded neural architectures of the held-out test set that are identical

45

to the inputs. To compute Validity, we randomly pick 10,000 points z generated by the

Gaussian prior p(Z) =
∏

iN (zi|0, I) and then apply z = z ⊙ std(Ztrain) + mean(Ztrain),

where Ztrain are the encoded means of the training data. It scales the sampled points and

shifts them to the center of the embeddings of the training set. We report the proportion

of the decoded architectures that are valid in the search space. To compute Uniqueness, we

report the proportion of the unique architectures out of valid decoded architectures. The

validity check criteria varies across different search spaces. For NAS-Bench-101 and NAS-

Bench-201, we use the NAS-Bench-1014 and NAS-Bench-2015 official APIs to verify whether

a decoded architecture is valid or not in the search space. For DARTS search space, a

decoded architecture has to pass the following validity checks: 1) the first two nodes must

be the input nodes ck−2 and ck−1; 2) the last node must be the output node ck; 3) except

the two input nodes, there are no nodes which do not have any predecessor; 4) except the

output node, there are no nodes which do not have any successor; 5) each intermediate node

must contain two edges from the previous nodes; and 6) it has to be an upper-triangular

binary matrix (representing a DAG).

Transfer Learning Results

Figure 3.7 shows the best cell found by arch2vec using RL-based and BO-based search

strategy. As observed in [117], the shapes of normalized empirical distribution functions

(EDFs) for NAS design spaces on ImagetNet [71] match their CIFAR-10 counterparts. This

suggests that NAS design spaces developed on CIFAR-10 are transferable to ImageNet [117].

Therefore, we evaluate the performance of the best cell found on CIFAR-10 using arch2vec for

ImageNet. In order to compare in a fair manner, we consider the mobile setting [12, 18, 54]

4https://github.com/google-research/nasbench/blob/master/nasbench/api.py
5https://github.com/D-X-Y/NAS-Bench-201/blob/v1.1/nas_201_api/api.py

46

c_{k-2}

0

sep_conv_3x3

1
max_pool_3x3

2

skip_connect 3

sep_conv_3x3

c_{k-1}

dil_conv_3x3

dil_conv_3x3

sep_conv_3x3

dil_conv_5x5 c_{k}

(a) arch2vec-RL

c_{k-2} 0
max_pool_3x3

1
skip_connect

2sep_conv_3x3

3
sep_conv_3x3

c_{k-1}

sep_conv_5x5

dil_conv_3x3

sep_conv_5x5

dil_conv_5x5

c_{k}

(b) arch2vec-BO

Figure 3.7: Best cell found by arch2vec using (a) RL-based and (b) BO-based search
strategy.

NAS Methods Params (M) Mult-Adds (M) Top-1 Test Error (%) Comparable Search Space

NASNet-A [54] 5.3 564 26.0 Y

AmoebaNet-A [18] 5.1 555 25.5 Y

PNAS [18] 5.1 588 25.8 Y

SNAS [59] 4.3 522 27.3 Y

DARTS [12] 4.7 574 26.7 Y

arch2vec-RL 4.8 533 25.8 Y

arch2vec-BO 5.2 580 25.5 Y

Table 3.5: Transfer learning results on ImageNet.

where the number of multiply-add operations of the model is restricted to be less than

600M. We follow [116] to use the exactly same training hyperparameters used in the DARTS

paper [12]. Table 3.5 shows the transfer learning results on ImageNet. With comparable

computational complexity, arch2vec-RL and arch2vec-BO outperform DARTS [12] and SNAS

[59] methods in the DARTS search space, and is competitive among all cell-based NAS

methods under this setting.

Visualizations

NAS-Bench-101. In Figure 3.8, we visualize three randomly selected pairs of sequences of

architecture cells decoded from the learned latent space of arch2vec (upper) and supervised

47

architecture representation learning (lower) on NAS-Bench-101. Each pair starts from the

same point, and each architecture is the closest point of the previous one in the latent space

excluding previously visited ones. As shown, architecture representations learned by arch2vec

can better capture topology and operation similarity than its supervised architecture repre-

sentation learning counterpart. In particular, Figure 3.8 (a) and (b) show that arch2vec is

able to better cluster straight networks, while supervised learning encodes straight networks

and networks with skip connections together in the latent space.

NAS-Bench-201. Similarly, Figure 3.9 shows the visualization of five randomly se-

lected pairs of sequences of decoded architecture cells using arch2vec (upper) and supervised

architecture representation learning (lower) on NAS-Bench-201. The red mark denotes the

change of operations between consecutive samples. Note that the edge flow in NAS-Bench-

201 is fixed; only the operator associated with each edge can be changed. As shown, arch2vec

leads to a smoother local change of operations than its supervised architecture representation

learning counterpart.

DARTS Search Space. For the DARTS search space, we can only visualize the de-

coded architecture cells using arch2vec since there is no architecture accuracy recorded in

this large-scale search space. Figure 3.10 shows an example of the sequence of decoded

neural architecture cells using arch2vec. As shown, the edge connections of each cell re-

main unchanged in the decoded sequence, and the operation associated with each edge is

gradually changed. This indicates that arch2vec preserves the local structural similarity of

neighborhoods in the latent space.

Conclusion

We have shown that arch2vec is a simple yet effective neural architecture search method based

on unsupervised architecture representation learning. By learning architecture representa-

48

tions without using their accuracies, it constructs a more smoothly-changing architecture

performance surface in the latent space compared to its supervised architecture represen-

tation learning counterpart. We have demonstrated its effectiveness on benefiting different

downstream search strategies in three NAS search spaces. We suggest that it is desirable to

take a closer look at architecture representation learning for neural architecture search. It is

also possible that designing neural architecture search method using arch2vec with a better

search strategy in the continuous space will produce better results.

We will now show a more effective self-supervised method to learn computation-aware

architecture encodings.

49

(a) arch2vec (upper) and supervised architecture representation learning (lower).

(b) arch2vec (upper) and supervised architecture representation learning (lower).

Figure 3.8: Visualization of decoded cells on NAS-Bench-101.

50

(a) arch2vec (upper) and supervised architecture representation learning (lower).

(b) arch2vec (upper) and supervised architecture representation learning (lower).

(c) arch2vec (upper) and supervised architecture representation learning (lower).

(d) arch2vec (upper) and supervised architecture representation learning (lower).

Figure 3.9: Visualization of decoded cells on NAS-Bench-201.

51

Figure 3.10: Visualization of decoded neural architecture cells using arch2vec on DARTS
search space. It starts from a randomly sampled point. Each architecture in the sequence
is the closest point of the previous one in the latent space excluding previously visited ones.

52

Chapter 4

Computation-aware Neural Architecture Encoding

As demonstrated in Chapter 3, while majority of the prior work focuses on either constructing

new search spaces [20, 118, 119] or designing efficient architecture search and evaluation

methods [46, 50, 63], some of the most recent work [2, 6] sheds light on the importance

of architecture encoding on the subroutines in the NAS pipeline as well as on the overall

performance of NAS.

While existing NAS methods use diverse architecture encoders such as LSTM [54, 63],

SRM [24], MLP [113, 120], GNN [2, 44, 46] or adjacency matrix itself [18, 21, 121], these

encoders encode either structures [2, 10, 44, 46, 63, 120] or computations [50, 53, 122] of the

neural architectures. Compared to structure-aware encodings, computation-aware encod-

ings are able to map architectures with different structures but similar accuracies to the

same region. This advantage contributes to a smooth encoding space with respect to the

actual architecture performance instead of structures, which improves the efficiency of the

downstream architecture search [6, 53, 123].

We argue that current architecture encoders limit the power of computation-aware ar-

chitecture encoding for NAS. The major limitations lie in their representation power and

the effectiveness of their pre-training objectives. Specifically, [53] uses shallow GRUs to

encode computation, which is not sufficient to capture deep contextualized computation in-

formation. Moreover, their decoder is trained with the reconstruction loss via asynchronous

message passing. This is very challenging in practice because directly learning the generative

model based on a single architecture is not trivial. As a result, its pre-training is less effective

and the downstream NAS performance is not as competitive as state-of-the-art structure-

aware encoding methods. [6] proposes a computation-aware encoding method based on a

53

Figure 4.1: Overview of CATE. CATE takes computationally similar architecture pairs as
the input. The model is trained to predict masked operators given the pairwise
computational information. Apart from the cross-attention blocks, the pretrained
Transformer encoder is used to extract architecture encodings for the downstream
encoding-dependent NAS subroutines.

fixed transformation called path encoding, which shows outstanding performance under the

predictor-based NAS subroutine. However, path encoding scales exponentially without trun-

cation and it inevitably causes information loss with truncation. Moreover, path encoding

exhibits worse generalization performance in outside search space compared to the adjacency

matrix encoding since it could not generalize to unseen paths that are not included in the

training search space.

In this work, we propose a new computation-aware neural architecture encoding method

named CATE (Computation-Aware Transformer-based Encoding) that alleviates the limita-

54

tions of existing computation-aware encoding methods. As shown in Figure 4.1, CATE takes

paired computationally similar architectures as its input. Similar to BERT, CATE trains the

Transformer-based model [124] using the masked language modeling (MLM) objective [74].

Each input architecture pair is corrupted by replacing a fraction of their operators with

a special mask token. The model is trained to predict those masked operators from the

corrupted architecture pair.

CATE differs from BERT [74] in two aspects. First, each prediction in LMs has its

inductive bias given the contextual information from different positions. This, however,

is not the case in architecture representation learning since the prediction distribution is

uniform for any valid graph, making it difficult to directly learn the generative model from

a single architecture. Therefore, we propose a pairwise pre-training scheme that encodes

computationally similar architecture pairs through two Transformers with shared parameters.

The two individual encodings are then concatenated, and the concatenated encoding is fed

into another Transformer with a cross-attention encoder to encode the joint information of

the architecture pair. Second, the fully-visible attention mask [125] could not be used for

architecture representation learning because it does not reflect the single-directional flow (e.g.

directed, acyclic, single-in-single-out) of neural architectures [95, 126]. Therefore, instead of

using a bidirectional Transformer encoder as in BERT, we directly use the adjacency matrix

to compute the causal mask [125]. The adjacency matrix is further augmented with the

Floyd algorithm [127] to encode the long-range dependency of different operations. Together

with the MLM objective, CATE is able to encode the computation of architectures and

learn dense and deep contextualized architecture representations that contain both local and

global computation information in neural architectures. This is important for architecture

encodings to be generalized to outside search space beyond the training search space.

55

We compare CATE with eleven structure-aware and computation-aware architecture en-

coding methods under three major encoding-dependent subroutines as well as eight NAS

algorithms on NAS-Bench-101 [10] (small), NAS-Bench-301 [128] (large), and an outside

search space [6] to evaluate the effectiveness, scalability, and generalization ability of CATE.

Our results show that CATE is beneficial to the downstream architecture search, es-

pecially in the large search space. Specifically, we found the strongest NAS performance

in all search spaces using CATE with a Bayesian optimization-based predictor subroutine

together with a novel computation-aware search. Moreover, the outside search space ex-

periment shows its superior generalization capability beyond the search space on which it

was trained. Finally, our ablation studies show that the quality of CATE encodings and

downstream NAS performance are non-decreasingly improved with more training architec-

ture pairs, more cross-attention Transformer blocks and larger dimension of the feed-forward

layer.

Related Work

Neural Architecture Search (NAS). NAS has been started with genetic algorithms

[15–17] and recently becomes popular when [7, 24] gain significant attention. Since then,

various NAS methods have been explored including sampling-based and gradient-based meth-

ods. Representative sampling-based methods include random search [116], evolutionary algo-

rithms [18,19], local search [121,129], reinforcement learning [54,130], Bayesian optimization

[21,131], Monte Carlo tree search [120,132] and Neural predictor [2,24,44–47,49,50,113,133].

Weight-sharing methods [38, 57] have become popular due to their computation efficiency.

Based on weight-sharing, gradient-based methods are proposed to optimize the architecture

selection with gradient decent [1,12,39–42,59,63,134]. For comprehensive surveys, we suggest

referring to [5, 52].

56

Neural Architecture Encoding. Majority of existing NAS work use one-hot adjacency

matrix to encode the structures of neural architectures. However, adjacency matrix-based

encoding grows quadratically as the search space scales up. [10] proposes categorical adja-

cency matrix-based encoding to ensure fixed length encodings. They also propose continuous

adjacency matrix-based encoding that is similar to DARTS [12], where the architecture is

created by taking fixed number of edges with the highest continuous values. However, this

approach is not easily applicable to some NAS algorithms such as regularized evolution [83]

without major changes. Tabular encoding in the form of ConfigSpace [135] is often used

for hyperparameter optimization [30, 31] and recently adopted by NAS-Bench-301 [128] to

represent architectures by introducing categorical hyperparameters for each operation along

each potential edge. Recent NAS methods [44, 46, 63, 120] use adjacency matrix as the

input to LSTM/MLP/GNN to encode the structures of neural architectures in the latent

space. [2] validates that pre-training architecture representations without using accuracies

can better preserve the local structural relationship of neural architectures in the latent

space. [136] proposes to learn architecture representations using contrastive learning to find

low-dimensional embeddings. [137] studies various locality-based self-supervised objectives

on the effect of architecture representations. One disadvantage of these methods is that

they rely on a prior where the edit distance closeness between different architectures is a

good indicator of the relative performance; however, structure-aware encodings may not be

computationally unique unless some certain graph hashing is applied [10, 122]. [50, 138] use

path encoding and its categorical and continuous variants, which encode computation of

architectures so that isomorphic cells are mapped to the same encoding. [53] uses GRU-

based asynchronous message passing to encode computation of architectures and the model

is trained with the VAE loss. [139] proposes a two-sided variational encoder-decoder GNN to

57

learn smooth embeddings in various NAS search spaces. CATE is inspired by the advantage

of computation encoding and addresses the drawbacks of [50, 53]. Another line of work is

based on the intrinsic properties of the architectures. [140] generates architecture represen-

tations by using contrastive learning over data Jacobian matrix values computed based on

different initializations, and the generated embeddings are independent of the parameteriza-

tion of the search space.

Context Dependency. Our work is close to self-supervised learning in language models

(LMs) [141]. In particular, ELMo [142] uses two shallow unidirectional LSTMs [143] to en-

code bidirectional text information, which is not sufficient for modeling deep interactions be-

tween the two directions. GPT-2 [144] proposes an autoregressive language modeling method

with Transformer [124] to cover the left-to-right dependency and is further generalized by

XLNet [145] which encodes bidirectional context. (Ro)BERT/BART/T5 [74, 125, 146, 147]

use bidirectional Transformer encoder to encode both left and right context. In architecture

representation learning, however, the attention mask in the encoder cannot be used to attend

to all the operators because it does not reflect the single-directional flow of the computational

graphs [95,126].

Approach

Search Space

We restrict our search space to the cell-based architectures. Following the configuration

in [10], each cell is a labeled directed acyclic graph (DAG) G = (V , E), with V as a set of

N nodes and E as a set of edges that connect the nodes. Each node vi ∈ V , i ∈ [1, N] is

associated with an operation selected from a predefined set of V operations, and the edges

between different nodes are represented as an upper triangular binary adjacency matrix

A ∈ {0, 1}N×N .

58

Computation-aware Neural Architecture Encoder

Our proposed computation-aware neural architecture encoder is built upon the Transformer

encoder architecture which consists of a semantic embedding layer and L Transformer blocks

stacked on top. Given G, each operation vi is first fed into a semantic embedding layer of

size de:

Embi = Embedding(vi) (4.1)

The embedded vectors are then contextualized at different levels of abstract. We denote

the hidden state after l-th layer as Hl = [Hl
1, ...,H

l
N] of size dh, where Hl = T (Hl−1) and T

is a transformer block containing nhead heads. The l-th Transformer block is calculated as:

Qk = Hl−1Wl
qk,Kk = Hl−1Wl

kk,Vk = Hl−1Wl
vk (4.2)

Ĥl
k = softmax(

QkK
T
k√

dh
+M)Vk (4.3)

Ĥl = concatenate(Ĥl
1, Ĥ

l
2, . . . , Ĥ

l
nhead

) (4.4)

Hl = ReLU(ĤlW1 + b1)W2 + b2 (4.5)

where the initial hidden state H0
i is Embi, thus de = dh. Qk, Kk, Vk stand for “Query",

“Key" and “Value" in the attention operation of the k-th head respectively. M is the attention

mask in the Transformer, where Mi,j ∈ {0,−∞} indicates whether operation j is a dependent

operation of operation i. W1 ∈ Rdc×dff and W2 ∈ Rdff×dc denote the weights in the feed-

forward layer.

Direct/Indirect Dependency Mask. A pair of nodes (operations) within an architecture

59

Algorithm 2: Floyd Algorithm
1: Input: the node set V , the adjacent matrix A
2: Ã← A
3: for k ∈ V do
4: for i ∈ V do
5: for j ∈ V do
6: Ãi,j | = Ãi,k & Ãk,j

7: end for
8: end for
9: end for

10: Output: Ã

are dependent if there is either a directed edge that directly connects them (local dependency)

or a path made of a series of such edges that indirectly connects them (long-range depen-

dency). We create dependency masks for such pairs of nodes for both direct and indirect

cases and use these dependency masks as the attention masks in the Transformer. Specifi-

cally, the direct dependency mask MDirect and the indirect dependency mask MIndirect can

be created as follows:

MDirect
i,j =

{ 0, if Ai,j = 1

−∞, if Ai,j = 0

MIndirect
i,j =

{ 0, if Ãi,j = 1

−∞, if Ãi,j = 0

where A is the adjacency matrix and Ã = Floyed(A) is derived using Floyd algorithm in

Algorithm 2.

Uni/Bidirectional Encoding. Finally, the final hidden vector Hl
N is used as the unidi-

60

rectional encoding for the architecture. We also considered encoding the architecture in a

bidirectional manner, where both the output node hidden vector from the original DAG and

the input node hidden vector from the reversed one are extracted and then concatenated

together. However, our experiments show that bidirectional encoding performs worse than

unidirectional encoding.

Pre-training CATE

Architecture Pair Sampling. We split the dataset into 95% training and 5% held-out

test sets for our pairwise pre-training. To ensure that it does not scale with quadratic time

complexity, we first sort the architectures based on their computational attributes P (e.g.

number of parameters, FLOPs). We then employ a sliding window for each architecture xi

and its neighborhood r(xi) = {y : |P(xi) − P(y)| < δ}, where δ is a hyperparameter for

the pairwise computation constraint. Finally, we randomly select K distinct architectures

Y = {y1, . . . , yK}, xi /∈ Y, Y ⊂ r(xi) within the neighborhood to compose K architecture

pairs {(xi, y1), . . . , (xi, yK)} for architecture xi.

Pairwise Pre-training with Cross-Attention. Once the computationally similar

architecture pair is composed, we randomly select 20% operations from each architecture

within the pair for masking, where 80% of them are replaced with a [MASK] token and the

remaining 20% are replaced with a random token chosen from the predefined operation set.

We apply padding to architectures that have nodes less than the maximum number of nodes

N in one batch to handle variable length inputs. The joint representation HL
XY is derived

by concatenating HL
X and HL

Y followed by the summation of the corresponding segment

embedding. Segment embedding acts as an identifier of different architectures during pre-

training. We set it to be trainable and randomly initialized. The joint representation HL
XY

is then contextualized with another Lc-layer Transformer with the cross-attention mask Mc

61

such that segments from the two architectures can attend to each other given the pairwise

information. For example, given two architectures X with three nodes and Y with four

nodes in Figure 4.1, X has access to the non-padded nodes of Y and itself, and same for Y .

The cross-attention dimension of the encoder is denoted as dc. The joint representation of

the last layer is used for prediction. The model is trained by minimizing the cross-entropy

loss computed using the predicted operations and the original operations.

Encoding-dependent NAS Subroutines

[6] identifies three major encoding-dependent subroutines included in existing NAS algo-

rithms: sample random architecture, perturb architecture, and train predictor model. The

sample random architecture subroutine includes random search [116]. The perturb architec-

ture subroutine includes regularized evolution (REA) [18] and local search (LS) [121]. The

train predictor model subroutine includes neural predictor [44, 46, 50], Bayesian optimiza-

tion with Gaussian process (GP) [148], and Bayesian optimization with neural networks

(DNGO) [110] which is much faster to fit compared to GP and scales linearly with large

datasets rather than cubically.

Inspired by [121, 129], we found that LS (perturb architecture) can be combined with

DNGO (train predictor model). We thus propose a DNGO-based computation-aware search

using CATE called CATE-DNGO-LS. Specifically, we maintain a pool of sampled archi-

tectures and take iterations to add new ones. In each iteration, we pass all architecture

encodings to the predictor trained 30 epochs with samples in the current pool. We select

new architectures with top-5 predicted accuracy and add them to the pool. Assume there

are M new architectures which become the new top-5 in the updated pool. We then select

the nearest neighbors of the other (5-M) top-5 architectures in L2 distance in latent space

and add them to the pool. Hence, there will be 5 to 10 new architectures added to the

62

20 40 60 80 100 120 140
number of samples

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.0
te

st
 e

rro
r [

%
]

Sample Random Arch:Random Search
adjacency
path
cont_adj
cont_path
cate

20 40 60 80 100 120 140
number of samples

6.2

6.4

6.6

6.8

7.0

te
st

 e
rro

r [
%

]

Perturb Arch:Regularized Evolution
adjacency
path
trunc_path
cat_path
cate

20 40 60 80 100 120 140
number of samples

6.0

6.1

6.2

6.3

6.4

6.5

6.6

6.7

te
st

 e
rro

r [
%

]

Perturb Arch:Local Search
adjacency
cont_adj
path
trunc_path
cate

20 40 60 80 100 120 140
number of samples

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

te
st

 e
rro

r [
%

]

Train Predictor Model:Neural Predictor
dvae
cat_adj
cont_adj
trunc_path
cate

20 40 60 80 100 120 140
number of samples

6.0

6.2

6.4

6.6

6.8

te
st

 e
rro

r [
%

]

Train Predictor Model:Bayesian Optimization (GP)
adjacency
cont_adj
path
trunc_path
cate

20 40 60 80 100 120 140
number of samples

6.0

6.2

6.4

6.6

6.8

te
st

 e
rro

r [
%

]

Train Predictor Model:Bayesian Optimization (DNGO)
adjacency
path
trunc_path
arch2vec
cate

Figure 4.2: Comparison between CATE and other architecture encoding schemes under
different subroutines on NAS-Bench-101: sample random architecture (top left), perturb
architecture (top middle, top right), and train predictor model (bottom left, bottom
middle, bottom right). It reports the test error of 200 independent runs given 150 queried
architectures.

pool in each iteration. The search stops when the number of samples reaches a pre-defined

budget.

Experiments

We describe two NAS benchmarks used in our experiments.

Pre-training

NAS-Bench-101. The NAS-Bench-101 search space [10] consists of 423, 624 architectures.

Each architecture has its pre-computed validation and test accuracies on CIFAR-10. The

cell includes up to 7 nodes and at most 9 edges with the first node as input and the last node

as output. The intermediate nodes can be either 1×1 convolution, 3×3 convolution, or 3×3

max pooling. We use the number of network parameters as the computational attribute P

for architecture pair sampling. We set δ to 2, 000, 000 and K to 2. The ablation studies on δ

63

20 40 60 80 100 120 140
number of samples

5.9

6.1

6.3

6.5

6.7

te
st

 e
rro

r [
%

]
NAS on NASBench-101 (>=1 subroutines)

RS
REA
LS
DNGO
BOHAMIANN
BOGCN
BANANAS
arch2vec-DNGO
cate-DNGO
cate-DNGO-LS

10 20 30 40 50 60 70 80 90 100
number of samples

5.2

5.4

5.6

5.8

6.0

6.2

6.4

te
st

 e
rro

r [
%

]

NAS on NASBench-301 (>=1 subroutines)
RS
REA
LS
DNGO
BOHAMIANN
BOGCN
BANANAS
cate-LS
cate-DNGO
cate-DNGO-LS

Figure 4.3: Comparison between CATE and SOTA NAS methods on NAS-Bench-101
(left) and NAS-Bench-301 (right). It reports the test error of 200 independent runs. The
error bars denote the variance of the test error. The number of queried architectures is set
to 150 for NAS-Bench-101 and 100 for NAS-Bench-301.

and K are summarized in Section 4. We split the dataset into 95% training and 5% held-out

test sets for pre-training.

NAS-Bench-301 [128] is a new surrogate benchmark on the DARTS [12] search space that

is much larger than NAS-Bench-101. It was created by fully training 60, 000 architectures

that is stratified by the NAS methods1 with a good coverage and then fitting a surrogate

model that can estimate the accuracy (with noise) at epoch 100 and the training time

for any of the remaining 1018 architectures. To convert the DARTS search space into one

with the same input format as NAS-Bench-101, we add a summation node to make nodes

represent operations and edges represent data flow. Following [113], we use the same cell

for both normal and reduction cell, allowing roughly 109 DAGs without considering graph

isomorphism. More details about the DARTS/NAS-Bench-301 and a cell transformation

example are included in Appendix 1.3. We randomly sample 1, 000, 000 architectures in this

search space, and use the same data split used in NAS-Bench-101 for pre-training. We use

network FLOPs as the computational attribute P for architecture pair sampling. We set δ to

1We suggest referring to C.2 in [128] for a detailed description on the data collection.

64

5, 000, 000 and K to 1. Since some NAS methods we compare against use the same GIN [93]

surrogate model used in NAS-Bench-301, to ensure fair comparison, we thus followed [128]

to use XGB-v1.0 and LGB-runtime-v1.0 which utilizes gradient boosted trees [149, 150] as

the regression model.

Model and Training. We use a L = 12 layer Transformer encoder and a Lc = 24

layer cross-attention Transformer encoder, each has 8 attention heads. The hidden state

size is dh = dc = 64 for all the encoders. The hidden dimension is dff = 64 for all the

feed-forward layers. We employ AdamW [151] as our optimizer. The initial learning rate

is 1e-3. The momentum parameters are set to 0.9 and 0.999. The weight decay is 0.01 for

regular layer and 0 for dropout and layer normalization. We trained our model with batch

size of 1024 on NVIDIA Quadro RTX 8000 GPUs. It takes around 4GB GPU memory for

NAS-Bench-101 and 9GB GPU memory for NAS-Bench-301. The validation loss converges

well after 10 epochs of pretraining, which takes 1.2 hours on NAS-Bench-101 and 7.5 hours

on NAS-Bench-301.

Comparison with Different Encoding Schemes

In our first experiment, we compare CATE with eleven architecture encoding schemes un-

der three major encoding-dependent subroutines described in Section 4 on NAS-Bench-101.

These encoding schemes include (1-3) one-hot/categorical/continuous adjacency matrix en-

coding [10], (4-6) one-hot/categorical/continuous path encoding and (7-9) their correspond-

ing truncated counterparts [50], (10) D-VAE [53], and (11) arch2vec [2]. For continuous

encodings, we use L2 distance as the distance metric. To examine the effectiveness of the

encoding schemes themselves, we compare different encoding schemes under the same search

subroutine.

Figure 4.2 illustrates our results. For each subroutine, we show the top-five best-

65

performing encoding schemes. Overall, despite there is no overall best encoding, we found

that CATE is among the top five across all the subroutines.

Specifically, for sample random architecture subroutine, random search using adjacency

matrix encoding performs the best. The random search using continuous encodings performs

slightly worse than the adjacency encodings possibly due to the discretization loss from vector

space into a fixed number of bins of same size before the random sampling.

For perturb architecture subroutine, CATE is on par with or outperforms adjacency

encoding and path encoding because it is pre-trained to preserve strong computation locality

information. This advantage allows the evolution or local search to find architectures with

similar performance in local neighborhood more easily. Interestingly, we observe very small

deviation using local search with CATE. This indicates that it always converges to some

certain local minimums across different initial seeds. Since NAS-Bench-101 already exhibits

locality in edit distance, encoding computation makes architectures even closer in terms of

accuracy and thus benefits the local search.

For train predictor model subroutine, we have four observations: 1) Adjacency matrix

encodings perform less effective with neural predictor and DNGO. It is possibly that edit

distance cannot fully reflect the closeness of architectures w.r.t their actual performance.

2) Path encoding performs well with neural predictor but worse than other encodings with

Bayesian optimization. 3) D-VAE and arch2vec, two encodings learned via variational au-

toencoding, perform well only with some certain NAS methods. It could be attributed to

their challenging training objective which easily leads to overfitting. 4) CATE is competitive

with neural predictor and outperforms all the other encodings with Bayesian optimization.

This is because neighboring computation-aware encodings correspond with similar accura-

cies. Moreover, the training objective in CATE is more efficient compared to the standard

66

NAS methods NAS-Bench-101 NAS-Bench-301

Prev. SOTA [50] 5.92 5.35

CATE-DNGO-LS (ours) 5.88 5.28

Table 4.1: Comparison between CATE and state-of-the-arts. Final test error [%] given
150 queried architectures on NAS-Bench-101 and 100 queried architectures on
NAS-Bench-301. The result is averaged over 200 independent runs.

VAE loss [99] used by D-VAE and arch2vec.

Comparison with Different NAS Methods

In our second experiment, we compare the neural architecture search performance based on

CATE encodings with state-of-the-art NAS algorithms on NAS-Bench-101 and NAS-Bench-

301. Existing NAS algorithms contain one or more encoding-dependent subroutines.

We consider six NAS algorithms that contain one encoding-dependent subroutine: ran-

dom search (RS) [116] (sample random arch.), regularized evolution (REA) [18] (perturb

arch.), local search (LS) [121] (perturb arch.), DNGO [110] (train predictor), BOHAMI-

ANN [152] (train predictor), arch2vec-DNGO [2] (train predictor), and two NAS algorithms

that contain more than one encoding-dependent subroutine: BOGCN [46] (perturb arch.,

train predictor) and BANANAS [50] (sample random arch., perturb arch., train predictor).

We compare these eight existing NAS algorithms with CATE-DNGO: a NAS algorithm

based on CATE encodings with the DNGO subroutine (train predictor), and CATE-DNGO-

LS: a NAS algorithm based on CATE encodings with the combination of DNGO and LS

subroutines (train predictor, perturb arch.) as described in Section 4.

Figure 4.3 and Table 4.1 summarize our results. We have three major findings from

Figure 4.3: 1) Architecture encoding matters especially in the large search space. The

right plot shows that CATE-DNGO and CATE-DNGO-LS in DARTS search space not only

67

converge faster but also lead to better final search performance given the same budgets. 2)

Local search (LS) is a strong baseline in both small and large search spaces. As mentioned in

Section 4, performing LS using CATE leads to better results compared to other encodings. 3)

NAS algorithms that use more than one encoding-dependent subroutine in general perform

better than NAS algorithms with just one subroutine. Specifically, BOGCN and BANANAS

that have multiple subroutines perform better than the single-subroutine NAS algorithms

such as REA, DNGO, and BOHAMIANN. Moreover, CATE-DNGO-LS leads to the best

performing result in both NAS-Bench-101 and NAS-Bench-301 search spaces. Meanwhile,

the improvement of CATE-DNGO-LS versus CATE-DNGO shrinks in larger search space,

indicating that the larger search space is more challenging to encode.

NAS-Bench-301 uses a surrogate model trained on 60k architectures to predict the per-

formance of all the other architectures in the DARTS search space. The performance of

the other architectures, however, can be inaccurate. Given that, we further validate the

effectiveness of CATE-DNGO-LS in the actual DARTS search space by training the queried

architectures from scratch. We set the budget to 100 and 300 queries, separately. Each

queried architecture is trained for 50 epochs with a batch size of 96, using 32 initial channels

and 8 cell layers. The average validation error of the last 5 epochs is computed as the label.

These values are chosen to be close to the proxy model used in DARTS. It takes about 3.3

GPU days to finish the search with 100 quries and 10.3 GPU days with 300 queries. See

Figure 4.4 for the best found cells. To ensure fair comparison, we compare CATE-DNGO-LS

to methods [2, 12, 50, 116] that use the common test evaluation script which is to train for

600 epochs with cutout and auxiliary tower.

Table 4.2 summarizes our results. As shown, CATE-DNGO-LS (small budget) achieves

competitive performance (2.55% avg. test error) with much less search cost and CATE-

68

c_{k-2}

0max_pool_3x3

sep_conv_3x3
2sep_conv_3x3

c_{k-1}
1skip_connect

sep_conv_3x3

sep_conv_3x3 3

dil_conv_3x3

c_{k}
dil_conv_3x3

c_{k-2}

0

skip_connect
1sep_conv_3x3

c_{k-1} sep_conv_3x3

2
sep_conv_3x3

3
sep_conv_3x3

dil_conv_3x3

sep_conv_3x3

c_{k}

sep_conv_3x3

Figure 4.4: Top: Best found cell from CATE-DNGO-LS given the budget of 100 samples.
Bottom: Best found cell from CATE-DNGO-LS given the budget of 300 samples.

DNGO-LS (large budget) achieves superior performance (2.46% avg. test error) with similar

search cost compared to other sampling-based search methods [2, 50] in the actual DARTS

search space. This is consistent with our observation in NAS-Bench-301. We report the

transfer learning results on ImageNet [71] in Table 4.3.

Ablation Study

Finally, we conduct ablation studies on different hyperparameters involved in CATE. We use

CATE-DNGO as the NAS method and report the final NAS test error [%] given 150 queried

architectures on NAS-Bench-101. The result is averaged over 200 independent runs.

Architecture Pair Sampling Hyperparameters

We plot the histogram of model parameters on NAS-Bench-101 in Figure 4.6. As shown, the

architectures are neither normally nor uniformly distributed in this search space in terms

of model parameters. This motivates us to use a sliding window-based architecture pair

selection to avoid the unbalanced sampling as proposed in Section 4. The choice of δ and

69

NAS Methods Avg. Test Error Params Search Cost

(%) (M) (GPU days)

RS [116] 3.29 ± 0.15 3.2 4

DARTS [12] 2.76 ± 0.09 3.3 4

BANANAS [50] 2.67 ± 0.07 3.6 11.8

arch2vec-BO [2] 2.56 ± 0.05 3.6 9.2

CATE-DNGO-LS (small budget) 2.55 ± 0.08 3.5 3.3

CATE-DNGO-LS (large budget) 2.46 ± 0.05 4.1 10.3

Table 4.2: NAS results in DARTS search space using CIFAR-10.

K and their effects on the downstream NAS are summarized in Table 4.4. We found that

strong computation locality (i.e. small δ) usually leads to better results. The choice of

neighborhood size K does not have a significant effect on NAS performance. Therefore,

we choose small K for faster pretraining. For NAS-Bench-301, we use the FLOPs as the

computational attributes P and observe the same trend as in NAS-Bench-101 on the selection

of δ and K.

Transformer Hyperparameters

We studied the effect of the number of cross-attention Transformer blocks Lc and the hid-

den dimension of the feed-forward layer dff on CATE. We fix δ and K for pre-training as

mentioned in Section 4. The downstream NAS result is summarized in Table 4.5. It shows

that larger Lc and dff usually lead to better NAS performance, which indicates that deep

contextualized representations are beneficial to downstream NAS.

Choice of Mask Type

We studied pretraining CATE with direct/indirect dependency mask and summarize its

downstream NAS results in Table 4.6. CATE trained with indirect dependency mask outper-

70

NAS Methods Params Mult-Adds Top-1 Test Error

(M) (M) (%)

SNAS [59] 4.3 522 27.3

DARTS [12] 4.7 574 26.7

BayesNAS [131] 4.0 440 26.5

arch2vec-BO [2] 5.2 580 25.5

BANANAS (ours) 5.1 576 26.3

CATE-DNGO-LS (small budget) 5.0 556 26.1

CATE-DNGO-LS (large budget) 5.8 642 25.0

Table 4.3: Transfer learning results on ImageNet using CATE.

δ

K
1 2 4 8

1× 106 6.02 5.95 5.99 5.95

2× 106 6.02 5.94 6.04 5.96

4× 106 5.94 6.03 6.05 5.99

8× 106 6.05 6.04 6.11 6.04

Table 4.4: Effects of δ and K on architecture pair sampling.

forms the direct one in both benchmarks, indicating that capturing long-range dependency

helps preserve computation information in the encodings.

Uni/Bidirectional Encoding

As mentioned in Section 4, we also considered encoding the architecture in a bidirectional

manner where both the output node hidden vector from the original DAG and the input node

hidden vector from the reversed one are extracted and then concatenated together. Note

that dc in the cross-attention Transformer encoder will be doubled due to the concatena-

tion. We compare the results of unidirectional and bidirectional encodings in Table 4.7. As

71

20 30 40 50 60 70 80 90 100 110 120 130 140 150
number of samples

5.4

5.5

5.6

5.7

5.8

5.9

6.0

6.1

va
lid

at
io

n
er

ro
r [

%
]

A simple 2-layer MLP predictor
cate
adj

Figure 4.5: Performance on the out-of-training search space. It reports the validation
error of 500 independent runs.

dff

Lc
6 12 24

64 6.07 5.99 5.95

128 6.01 5.94 5.95

256 5.97 5.94 5.94

Table 4.5: Effects of Lc and dff on pretraining CATE.

shown, bidirectional encoding does not necessarily improve the results. Therefore, we keep

unidirectional encoding in other experiments due to its simplicity and better performance.

Corruption Rate

By default, we randomly select 20% operations from each architecture within the pair for

masking in the pairwise pre-training. We also experimented corruption rates of 15% and

30%. As shown in Table 4.8, overall, we find that the corruption rate has a limited effect on

the NAS performance. Note that the number of nodes in our search space is much smaller

compared to the number of tokens in the sequence modeling tasks. Given that, using larger

72

0 1 2 3 4 5
number of trainable model parameters 1e7

0

10000

20000

30000

40000

50000

60000

fre
qu

en
cy

Histogram for model parameters on NASBench-101

Figure 4.6: Histogram of model parameters on NAS-Bench-101.

Mask type NAS-Bench-101 NAS-Bench-301

Direct 6.03 5.35

Indirect 5.94 5.30

Table 4.6: Direct/Indirect dependency mask selection.

corruption rate may slow down the training convergence and result in degraded performance.

Based on these results, we use 20% corruption rate for other experiments.

Conclusion

In this chapter, we presented CATE, a new computation-aware architecture encoding method

based on Transformers. Unlike encodings with fixed transformations, we show that the

computation information of neural architectures can be contextualized through a pairwise

learning scheme trained with MLM. Our experimental results show its effectiveness and

scalability along with three major encoding-dependent NAS subroutines in both small and

large search spaces. We also show its superior generalization capability outside the training

search space. We anticipate that the methods presented in this work can be extended to

73

Encoding NAS-Bench-101 NAS-Bench-301

Unidirectional 5.88 5.28

Bidirectional 5.89 5.30

Table 4.7: Unidirectional encoding vs. bidirectional encoding. We report the final NAS
test error [%] given 150 queried architectures on NAS-Bench-101 and 100 queried
architectures on NAS-Bench-301. The result is averaged over 200 independent runs.

Corruption Rate NAS-Bench-101 NAS-Bench-301

15% 5.89 5.28

20% 5.88 5.28

30% 5.93 5.29

Table 4.8: NAS results under different corruption rates.

encode even larger search spaces (e.g. TuNAS [153]) to study the effectiveness of different

downstream NAS algorithms.

74

Chapter 5

NAS-Bench-x11 and the Power of Learning Curve

In the past few years, algorithms for neural architecture search (NAS) have been used

to automatically find architectures that achieve state-of-the-art performance on various

datasets [5, 7, 12, 18]. In 2019, there were calls for reproducible and fair comparisons within

NAS research [61,87,116,154] due to both the lack of a consistent training pipeline between

papers and experiments with not enough trials to reach statistically significant conclusions.

These concerns spurred the release of tabular benchmarks, such as NAS-Bench-101 [10]

and NAS-Bench-201 [11], created by fully training all architectures in search spaces of size

423 624 and 6 466, respectively. These benchmarks allow researchers to easily simulate NAS

experiments, making it possible to run fair NAS comparisons and to run enough trials to

reach statistical significance at very little computational cost or carbon emissions [155]. Re-

cently, to extend the benefits of tabular NAS benchmarks to larger, more realistic NAS

search spaces which cannot be evaluated exhaustively, it was proposed to construct surro-

gate benchmarks [156]. The first such surrogate benchmark is NAS-Bench-301 [156], which

models the DARTS [12] search space of size 1018 architectures. It was created by fully train-

ing 60 000 architectures (both drawn randomly and chosen by top NAS methods) and then

fitting a surrogate model that can estimate the performance of all of the remaining archi-

tectures. Since 2019, dozens of papers have used these NAS benchmarks to develop new

algorithms [3, 46,49,50,138].

An unintended side-effect of the release of these benchmarks is that it became significantly

easier to devise single fidelity NAS algorithms: when the NAS algorithm chooses to evaluate

an architecture, the architecture is fully trained and only the validation accuracy at the

final epoch of training is outputted. This is because NAS-Bench-301 only contains the

75

architectures’ accuracy at epoch 100, and NAS-Bench-101 only contains the accuracies at

epochs 4, 12, 36, and 108 (allowing single fidelity or very limited multi-fidelity approaches).

NAS-Bench-201 does allow queries on the entire learning curve (every epoch), but it is

smaller in size (6 466) than NAS-Bench-101 (423 624) or NAS-Bench-301 (1018). In a real

world experiment, since training architectures to convergence is computationally intensive,

researchers will often run multi-fidelity algorithms: the NAS algorithm can train architectures

to any desired epoch. Here, the algorithm can make use of speedup techniques such as

learning curve extrapolation (LCE) [23, 24, 26, 28]. Although multi-fidelity techniques are

often used in the hyperparameter optimization community [28,30,31,35,36], they have been

under-utilized by the NAS community in the last few years.

In this work, we fill in this gap by releasing NAS-Bench-111, NAS-Bench-311, and NAS-

Bench-NLP11, surrogate benchmarks with full learning curve information for train, valida-

tion, and test loss and accuracy for all architectures, significantly extending NAS-Bench-

101, NAS-Bench-301, and NAS-Bench-NLP [157], respectively. With these benchmarks,

researchers can easily incorporate multi-fidelity techniques, such as early stopping and LCE

into their NAS algorithms. Our technique for creating these benchmarks can be summa-

rized as follows. We use a training dataset of architectures (drawn randomly and chosen

by top NAS methods) with good coverage over the search space, along with full learning

curves, to fit a model that predicts the full learning curves of the remaining architectures.

We employ three techniques to fit the model: (1) dimensionality reduction of the learning

curves, (2) prediction of the top singular value coefficients, and (3) noise modeling. These

techniques can be used in the future to create new NAS benchmarks as well. To ensure

that our surrogate benchmarks are highly accurate, we report statistics such as Kendall Tau

rank correlation and Kullback Leibler divergence between ground truth learning curves and

76

0 25 50 75 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Va

lid
. a

cc
ur

ac
y

NAS-Bench-111 arch 1

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

. a
cc

ur
ac

y

NAS-Bench-111 arch 2

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

. a
cc

ur
ac

y

NAS-Bench-111 arch 3

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

. a
cc

ur
ac

y

NAS-Bench-311 arch 1

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

. a
cc

ur
ac

y

NAS-Bench-311 arch 2

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.4

0.5

0.6

0.7

0.8

0.9
Va

lid
. a

cc
ur

ac
y

NAS-Bench-311 arch 3

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 20 40
Epochs

94.2

94.4

94.6

94.8

95.0

95.2

Va
lid

. a
cc

ur
ac

y

NAS-Bench-NLP11 arch 1

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 20 40
Epochs

94.4

94.6

94.8

95.0

Va
lid

. a
cc

ur
ac

y

NAS-Bench-NLP11 arch 2

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

Figure 5.1: Each image shows a true learning curve vs. a learning curve predicted by one
of our surrogate models, with and without predicted noise modeling. We also plot the 90%
confidence interval of the predicted noise distribution.

predicted learning curves on separate test sets. See Figure 5.1 for examples of predicted

learning curves on the test sets.

To demonstrate the power of using the full learning curve information, we present a

framework for converting single-fidelity NAS algorithms into multi-fidelity algorithms using

LCE. We apply our framework to popular single-fidelity NAS algorithms, such as regularized

evolution [18], local search [121], and BANANAS [50], all of which claimed state-of-the-

art upon release, showing that they can be further improved across four search spaces.

Finally, we also benchmark multi-fidelity algorithms such as Hyperband [30] and BOHB [31]

alongside single-fidelity algorithms. Overall, our work bridges the gap between different

areas of AutoML and will allow researchers to easily develop effective multi-fidelity and LCE

techniques in the future.

Our contributions. We summarize our main contributions below.

• We develop a technique to create surrogate NAS benchmarks that include the full training

77

information for each architecture, including train, validation, and test loss and accuracy

learning curves. This technique can be used to create future NAS benchmarks on any

search space.

• We apply our technique to create NAS-Bench-111, NAS-Bench-311, and NAS-Bench-

NLP11, which allow researchers to easily develop multi-fidelity NAS algorithms that

achieve higher performance than single-fidelity techniques.

• We present a framework for converting single-fidelity NAS algorithms into multi-fidelity

NAS algorithms using learning curve extrapolation, and we show that our framework

allows popular state-of-the-art NAS algorithms to achieve further improvements.

Related Work

NAS has been studied since at least the late 1980s [15, 16, 158] and has recently seen a

resurgence [7,18,21,57,132,159]. Weight sharing algorithms have become popular due to their

computational efficiency [12, 38–43]. Recent advances in performance prediction [2, 44–50]

and other iterative techniques [31, 51] have reduced the runtime gap between iterative and

weight sharing techniques. For detailed surveys on NAS, we suggest referring to [5, 52].

Learning curve extrapolation

Several methods have been proposed to estimate the final validation accuracy of a neural net-

work by extrapolating the learning curve of a partially trained neural network. Techniques

include fitting the partial curve to an ensemble of parametric functions [23], predicting

the performance based on the partial trained neural network configurations [24], summing

the training losses [25], using the basis functions as the output layer of a Bayesian neural

network [26], using previous learning curves as basis function extrapolators [27], using the

positive-definite covariance kernel to capture a variety of training curves [28], or using a

Bayesian recurrent neural network [29]. While in this work we focus on multi-fidelity op-

78

Benchmark Size Queryable Based on Full train info

NAS-Bench-101 423k yes no

NAS-Bench-201 6k yes yes

NAS-Bench-NLP 1053 no no

NAS-Bench-301 1018 yes DARTS no

NAS-Bench-ASR 8k yes yes

NAS-Bench-111 423k yes NAS-Bench-101 yes

NAS-Bench-311 1018 yes DARTS yes

NAS-Bench-NLP11 1022 yes NAS-Bench-NLP yes

Table 5.1: Overview of existing NAS benchmarks. We introduce NAS-Bench-111, -311,
and -NLP11.

timization utilizing learning curve-based extrapolation, another main category of methods

lie in bandit-based algorithm selection [30–34], and the fidelities can be further adjusted

according to the previous observations or a learning rate scheduler [35–37].

NAS benchmarks

NAS-Bench-101 [10], a tabular NAS benchmark, was created by defining a search space of

size 423 624 unique architectures and then training all architectures from the search space

on CIFAR-10 until 108 epochs. However, the train, validation, and test accuracies are only

reported for epochs 4, 12, 36, and 108, and the training, validation, and test losses are not

reported. NAS-Bench-1shot1 [86] defines a subset of the NAS-Bench-101 search space that

allows one-shot algorithms to be run. NAS-Bench-201 [11] contains 15 625 architectures, of

which 6 466 are unique up to isomorphisms. It comes with full learning curve information

on three datasets: CIFAR-10 [160], CIFAR-100 [160], and ImageNet16-120 [161]. Recently,

NAS-Bench-201 was extended to NATS-Bench [162] which searches over architecture size as

well as architecture topology.

79

Virtually every published NAS method for image classification in the last three years

evaluates on the DARTS search space with CIFAR-10 [163]. The DARTS search space

[12] consists of 1018 neural architectures, making it computationally prohibitive to create

a tabular benchmark. To overcome this fundamental limitation and query architectures

in this much larger search space, NAS-Bench-301 [156] evaluates various regression models

trained on a sample of 60 000 architectures that is carefully created to cover the whole search

space. The surrogate models allow users to query the validation accuracy (at epoch 100) and

training time for any of the 1018 architectures in the DARTS search space. However, since

the surrogates do not predict the entire learning curve, it is not possible to run multi-fidelity

algorithms.

NAS-Bench-NLP [157] is a search space for language modeling tasks. The search space

consists of 1053 LSTM-like architectures, of which 14 322 are evaluated on Penn Tree

Bank [164], containing the training, validation, and test losses/accuracies from epochs 1

to 50. Since only 14 322 of 1053 architectures can be queried, this dataset cannot be directly

used for NAS experiments. NAS-Bench-ASR [165] is a recent tabular NAS benchmark for

speech recognition. The search space consists of 8 242 architectures with full learning curve

information. For an overview of NAS benchmarks, see Table 5.1.

Generating Learning Curves

In this section, we describe our techniques to create a surrogate model that outputs realistic

learning curves. We apply these techniques to create NAS-Bench-111, NAS-Bench-311, and

NAS-Bench-NLP11. Our techniques apply to any type of learning curve, including train/test

losses and accuracies. For simplicity, the following presentation assumes validation accuracy

learning curves.

Given a search space D, let (xi,yi) ∼ D denote one datapoint, where xi ∈ Rd is the

80

architecture encoding (e.g., one-hot adjacency matrix [6, 10]), and yi ∈ [0, 1]Emax is a learn-

ing curve of validation accuracies drawn from a distribution Y (xi) based on training the

architecture for Emax epochs on a fixed training pipeline with a random initial seed. Each

learning curve yi can be decomposed into two parts: one part that is deterministic and

depends only on the architecture encoding, and another part that is based on the inherent

noise in the architecture training pipeline.

Formally, yi = E[Y (xi)] + ϵi, where E[Y (xi)] ∈ [0, 1]Emax is fixed and depends only on

xi, and ϵi ∈ [0, 1]Emax comes from a noise distribution Zi with expectation 0 for all epochs.

In practice, E[Y (xi)] can be estimated by averaging a large set of learning curves produced

by training architecture xi with different initial seeds. We represent such an estimate as ȳi.

Our goal is to create a surrogate model that takes as input any architecture encoding

xi and outputs a distribution of learning curves that mimics the ground truth distribution.

We assume that we are given two datasets, Dtrain and Dtest, of architecture and learning

curve pairs. We use Dtrain (often size > 10 000) to train the surrogate, and we use Dtest for

evaluation. We describe the process of creating Dtrain and Dtest for specific search spaces

in the next section. In order to predict a learning curve distribution for each architecture,

we split up our approach into two separate processes: we train a model f : Rd → [0, 1]Emax

to predict the deterministic part of the learning curve, ȳi, and we train a noise model

pϕ(ϵ | ȳ,x), parameterized by ϕ, to simulate the random draws from Zi. See Figure 5.2 for

a summary of our entire surrogate creation method (assuming SVD).

Surrogate Model Training

Training a model f to predict mean learning curves is a challenging task, since the training

datapoints Dtrain consist only of a single (or few) noisy learning curve(s) yi for each xi.

Furthermore, Emax is typically length 100 or larger, meaning that f must predict a high-

81

xᵢxᵢ yᵢyᵢ uᵢuᵢ

ûᵢûᵢ

êê11êê22

NNêê

𝒩(0, Σ)𝒩(0, Σ)𝜎₂𝜎₂ ……v₁v₁
𝜎₁𝜎₁

𝜎ₖ𝜎ₖ
……

……

µ-Modelµ-Model

Σ-ModelΣ-Model

v₂v₂v₂v₂ vₖvₖ

k<Nk<NNN

Figure 5.2: A summary of our approach to create surrogate benchmarks that output
realistic learning curves. Compression and decompression functions are learned using the
training set of learning curves (in the figure, SVD is shown, but a VAE can also be used).
The compression also helps to de-noise the learning curves. A model (µ-model) is trained
to predict the compressed (de-noised) learning curves given the architecture encoding. A
separate model (Σ-model) is trained to predict each learning curve’s noise distribution,
given the architecture encoding and predicted compressed learning curve. A realistic
learning curve can then be outputted by decompressing the predicted learning curve and
sampling noise from the noise distribution.

82

0 10 20 30 40
Num. components k

100

101

102
Va

lu
e

(im
po

rta
nc

e)
Singular values for LCs

Singular values for
training set of LCs

0 10 20 30 40
Num. components k

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

M
SE

Reconstruction error for LCs
Reconstructed LC,
MSE w.r.t. mean yi

Reconstructed LC,
MSE w.r.t. true (noisy) yi

minimum MSE w.r.t. mean

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

Va
lid

. a
cc

ur
ac

y

Reconstructed vs. real LCs

Ground truth LC
Reconstructed LC, k=1
Reconstructed LC, k=4
Reconstructed LC, k=16

Figure 5.3: The singular values from the SVD decomposition of the learning curves (LC)
(left). The MSE of a reconstructed LC, showing that k = 6 is closest to the true mean LC,
while larger values of k overfit to the noise of the LC (middle). An LC reconstructed using
different values of k (right).

dimensional output. We propose a technique to help with both of these challenges: we use

the training data to learn compression and decompression functions ck : [0, 1]Emax → [0, 1]k

and dk : [0, 1]k → [0, 1]Emax , respectively, for k ≪ Emax. The surrogate is trained to predict

compressed learning curves ck (yi) of size k from the corresponding architecture encoding

xi, and then each prediction can be reconstructed to a full learning curve using dk. A good

compression model should not only cause the surrogate prediction to become significantly

faster and simpler, but should also reduce the noise in the learning curves, since it would only

save the most important information in the compressed representations. That is, (dk◦ck) (yi)

should be a less noisy version of yi. Therefore, models trained on ck (yi) tend to have better

generalization ability and do not overfit to the noise in individual learning curves.

We test two compression techniques: singular value decomposition (SVD) [166] and vari-

ational autoencoders (VAEs) [99], and we show later that SVD performs better. We give the

details of SVD here and describe the VAE compression algorithm in Section 5.

Formally, we take the singular value decomposition of a matrix S of dimension

(|Dtrain|, Emax) created by stacking together the learning curves from all architectures in

Dtrain. Performing the truncated SVD on the learning curve matrix S allow us to create

83

functions ck and dk that correspond to the optimal linear compression of S. In Figure 5.3

(left), we see that for architectures in the NAS-Bench-101 search space, there is a steep

dropoff of importance after the first six singular values, which intuitively means that most

of the information for each learning curve is contained in its first six singular values. In Fig-

ure 5.3 (middle), we compute the mean squared error (MSE) of the reconstructed learning

curves (dk ◦ ck) (yi) compared to a test set of ground truth learning curves averaged over

several initial seeds (approximating E[Y (xi)]). The lowest MSE is achieved at k = 6, which

implies that k = 6 is the sweet spot where the compression function minimizes reconstruction

error without overfitting to the noise of individual learning curves. We further validate this

in Figure 5.3 (right) by plotting (dk ◦ ck) (yi) for different values of k. Now that we have

compression and decompression functions, we train a surrogate model with xi as features

and ck (yi) as the label, for architectures in Dtrain. We test LGBoost [150], XGBoost [167],

and MLPs for the surrogate model.

Noise Modeling

The final step for creating a realistic surrogate benchmark is to add a noise model, so that

the outputs are noisy learning curves. We first create a new dataset of predicted ϵi values,

which we call residuals, by subtracting the reconstructed mean learning curves from the real

learning curves in Dtrain. That is, ϵ̂i = yi − (dk ◦ ck) (yi) is the residual for the ith learning

curve. Since the training data only contains one (or few) learning curve(s) per architecture

xi, it is not possible to accurately estimate the distribution Zi for each architecture without

making further assumptions. We assume that the noise comes from an isotropic Gaussian

distribution, and we consider two other noise assumptions: (1) the noise distribution is the

same for all architectures, and (2) for each architecture, the noise in a small window of

epochs are iid. In Section 5, we estimate the extent to which all of these assumptions hold

84

true. Assumption (1) suggests two potential noise models: (i) a simple sample standard

deviation statistic, σ ∈ REmax
+ , where

σj =

√√√√ 1

|Dtrain| − 1

|Dtrain|∑
i=1

ϵ̂2i,j.

To sample the noise using this model, we sample from N (0, diag(σ)). (ii) The second model

is a Gaussian kernel density estimation (GKDE) model [168] trained on the residuals to create

a multivariate Gaussian kernel density estimate for the noise. Assumption (2) suggests one

potential noise model: (iii) a model that is trained to estimate the distribution of the noise

over a window of epochs of a specific architecture. For each architecture and each epoch, the

model is trained to estimate the sample standard deviation of the residuals within a window

centered around that epoch.

Evaluation of the Surrogate Model

Overall, we test two compression methods, three surrogate models, and three noise models.

For each approach, we evaluate both the predicted mean learning curves and the predicted

noisy learning curves using held-out test sets Dtest. To evaluate the mean learning curves,

we measure the coefficient of determination (R2) [169] and Kendall Tau (KT) rank corre-

lation [170], both at the final epoch and averaged over all epochs. To measure KT rank

correlation for a specific epoch n, we find the number of concordant, P , and discordant, Q,

pairs of predicted and true learning curve values for that epoch. The number of concordant

pairs is given by the number of pairs, ((ŷi,n, yi,n), (ŷj,n, yj,n)), where either both ŷi,n > ŷj,n

and yi,n > yj,n, or both ŷi,n < ŷj,n and yj,n < yi,n. We can then calculate KT = P−Q
P+Q

.

While this metric can be used to compare surrogate predictions and has been used in prior

work [156], the KT value is affected by the inherent noise in the learning curves (even an

85

oracle would achieve a KT value smaller than 1.0, because architecture training is noisy).

Finally, we evaluate the Kullback Leibler (KL) divergence between the ground truth distri-

bution of noisy learning curves, and the predicted distribution of noisy learning curves on a

test set. Since we can only estimate the ground truth distribution, we assume the ground

truth is an isotropic Gaussian distribution. Then we measure the KL divergence between

the true and predicted learning curves for architecture i by the following formula:

DKL(yi||ŷi) =
1

2Emax

[
log
|Σŷi
|

|Σyi
|
− Emax + (µyi

− µŷi
)TΣ−1

ŷi
(µyi

− µŷi
) + tr

{
Σ−1

ŷi
Σyi

}]

where Σ{yi,ŷi} is a diagonal matrix with the entries Σ{yi,ŷi}k,k representing the sample

variance of the k-th epoch, and µ{yi,ŷi} is the sample mean for either learning curves {yi, ŷi}.

Surrogate Benchmark Creation

Now we describe the creation of NAS-Bench-111, NAS-Bench-311, and NAS-Bench-NLP11.

As described above, we test two different compression methods (SVD, VAE), three different

surrogate models (LGB, XGB, MLP), and three different noise models (stddev, GKDE,

sliding window) for a total of eighteen distinct approaches. See Section 5 for a full ablation

study, and Table 5.2 for a summary using the best techniques for each search space. See

Figure 5.1 for a visualization of predicted learning curves from the test set of each search

space using these models.

First, we describe the creation of NAS-Bench-111. Since the NAS-Bench-101 tabu-

lar benchmark [10] consists only of accuracies at epochs 4, 12, 36, and 108 (and without

losses), we train a new set of architectures and save the full learning curves. Similar to prior

work [156, 171], we sample a set of architectures with good overall coverage while also fo-

86

cusing on the high-performing regions exploited by NAS algorithms. Specifically, we sample

861 architectures generated uniformly at random, 149 architectures generated by 30 trials

of white2019bananas, local search, and regularized evolution, and all 91 architectures which

contain fewer than five nodes, for a total of 1101 architectures. We kept our training pipeline

as close as possible to the original pipeline. See Section 5 for the full training details. We

find that SVD-LGB-GKDE achieves the best performance. Because the tabular benchmark

already exists, we can substantially improve the accuracy of our surrogate by using the ac-

curacies from the tabular benchmark (at epochs 4, 12, 36, 108) as additional features along

with the architecture encoding. This substantially improves the performance of the surro-

gate, as shown in Table 5.2. Note that the large difference between the average KT and last

epoch KT values show that the learning curves are very noisy (which is also evidenced in

Figure 5.1).

Next, we create NAS-Bench-311 by using the training data from NAS-Bench-301, which

consists of 40 000 random architectures along with 26 000 additional architectures generated

by evolution [18], Bayesian optimization [50, 172, 173], and one-shot [12, 39, 174, 175] tech-

niques in order to achieve good coverage over the search space. Again, SVD-LGB-GKDE

achieves the best performance, which achieves an average and last epoch KT values of 0.728

and 0.788, respectively. This is comparable to the final KT of 0.817 reported by NAS-Bench-

301 [156], despite optimizing for the full learning curve rather than only the final epoch.

Furthermore, our KL divergences in Table 5.2 surpasses the top value of 16.4 reported by

NAS-Bench-301 (for KL divergence, lower is better).

Finally, we create NAS-Bench-NLP11 by using the NAS-Bench-NLP dataset consisting of

14 322 architectures drawn uniformly at random. Due to the extreme size of the search space

(1053), we restrict architectures to a maximum of 12 nodes (reducing the size to 1022), and we

87

Benchmark Avg. R2 Final R2 Avg. KT Final KT Avg. KL

NAS-Bench-111 0.529 0.630 0.531 0.645 2.016

NAS-Bench-111 (w. accs) 0.630 0.853 0.611 0.794 1.710

NAS-Bench-311 0.779 0.800 0.728 0.788 0.905

NAS-Bench-NLP11 0.326 0.314 0.505 0.475 -

NAS-Bench-NLP11 (w. accs) 0.878 0.895 0.878 0.844 -

Table 5.2: Evaluation of the surrogate benchmarks on test sets. For NAS-Bench-111 and
NAS-Bench-NLP11, we use architecture accuracies as additional features to improve
performance.

achieve an average and final epoch KT of 0.505 and 0.475, respectively. To create a stronger

surrogate, we add the first three epochs of the learning curve as features in the surrogate.

This improves the average and final epoch KT values to 0.878 and 0.844, respectively. To

use this surrogate, any architecture to be predicted with the surrogate must be trained for

three epochs. Note that the small difference between the average and last epoch KT values

indicates that the learning curves have very little noise, which can also be seen in Figure 5.1.

Since there are no architectures trained multiple times on the NAS-Bench-NLP dataset [157],

we cannot compute the KL divergence.

The Power of Learning Curve Extrapolation

Now we describe a simple framework for converting single-fidelity NAS algorithms to multi-

fidelity NAS algorithms using learning curve extrapolation techniques. We show that this

framework is able to substantially improve the performance of popular algorithms such as

regularized evolution [18], white2019bananas [50], and local search [121,129].

A single-fidelity algorithm is an algorithm which iteratively chooses an architecture based

on its history, which is then fully trained to Emax epochs. To exploit parallel resources, many

single-fidelity algorithms iteratively output several architectures at a time, instead of just

88

one. Our framework makes use of learning curve extrapolation (LCE) techniques [23, 24]

to predict the final validation accuracies of all architecture choices after only training for a

small number of epochs. After each iteration of getting candidates, only the architectures

predicted by LCE() to begin the top percentage of validation accuracies of history are fully

trained. For example, when the framework is applied to local search, in each iteration, all

neighbors are trained to Efew epochs, and only the most promising architectures are trained

up to Emax epochs. This simple modification can substantially improve the runtime efficiency

of popular NAS algorithms by weeding out unpromising architectures before they are fully

trained.

Any LCE technique can be used, and in our experiments in Section 5, we use weighted

probabilistic modeling (WPM) [23] and learning curve support vector regressor (LcSVR) [24].

The first technique, WPM [23], is a function that takes a partial learning curve as input,

and then extrapolates it by fitting the learning curve to a set of parametric functions, using

MCMC to sample the most promising fit. The second technique, LcSVR [24], is a model-

based learning curve extrapolation technique: after generating an initial set of training

architectures, a support vector regressor is trained to predict the final validation accuracy

from the architecture encoding and partial learning curve.

Experiments

In this section, we benchmark single-fidelity and multi-fidelity NAS algorithms, including

popular existing single-fidelity and multi-fidelity algorithms, as well as algorithms created

using our framework defined in the previous section. In the experiments, we use our three

surrogate benchmarks defined in Section 5, as well as NAS-Bench-201.

89

NAS Algorithms

For single-fidelity algorithms, we implemented random search (RS) [116], local search

(LS) [121, 129], regularized evolution (REA) [18], and white2019bananas [50]. For multi-

fidelity bandit-based algorithms, we implemented Hyperband (HB) [30] and Bayesian op-

timization Hyperband (BOHB) [31]. For all methods, we use the original implementation

whenever possible. See Section 5 for a description, implementation details, and hyperpa-

rameter details for each method. Finally, we use our framework from Section 5 to create six

new multi-fidelity algorithms: white2019bananas, LS, and REA are each augmented using

WPM and LcSVR. This gives us a total of 12 algorithms.

Experimental Setup

For each search space, we run each algorithm for a total wall-clock time that is equivalent

to running 500 iterations of the single-fidelity algorithms for NAS-Bench-111 and NAS-

Bench-311, and 100 iterations for NAS-Bench-201 and NAS-Bench-NLP11. For example, the

average time to train a NAS-Bench-111 architecture to 108 epochs is roughly 103 seconds,

so we set the maximum runtime on NAS-Bench-111 to roughly 5 · 105 seconds. We run 30

trials of each NAS algorithm and compute the mean and standard deviation.

Results

We evaluate BANANAS, LS, and REA compared to their augmented WPM and SVR ver-

sions in Figure 5.4 (NAS-Bench-311) and Section 5 (all other search spaces). Across four

search spaces, we see that WPM and SVR improve all algorithms in almost all settings. The

improvements are particularly strong for the larger NAS-Bench-111 and NAS-Bench-311

search spaces. We also see that for each single-fidelity algorithm, the LcSVR variant often

outperforms the WPM variant. This suggests that model-based techniques for extrapolating

90

105 106

Runtime (seconds)

10−2

Va
lid

. r
eg

re
t

NAS-Bench-311 CIFAR10

BANANAS
BANANAS-WPM
BANANAS-SVR
LS
LS-WPM
LS-SVR
REA
REA-WPM
REA-SVR

Figure 5.4: LCE framework applied to single-fidelity algorithms.

learning curves are more reliable than extrapolating each learning curve individually, which

has also been noted in prior work [48].

In Figure 5.5, we compare single- and multi-fidelity algorithms on four search spaces,

along with the three SVR-based algorithms from Figure 5.4. Across all search spaces, an

SVR-based algorithm is the top-performing algorithm. Specifically, white2019bananas-SVR

performs the best on NAS-Bench-111, NAS-Bench-311, and NAS-Bench-NLP11, and LS-

SVR performs the best on NAS-Bench-201. Note that HB and BOHB may not perform

well on search spaces with low correlation between the relative rankings of architectures

using low fidelities and high fidelities (such as NAS-Bench-201 [11]) since HB-based methods

will predict the final accuracy of partially trained architectures directly from the last trained

accuracy (i.e., extrapolating the learning curve as a constant after the last seen accuracy). On

the other hand, SVR-based approaches use a model that can learn more complex relationships

between accuracy at an early epoch vs. accuarcy at the final epoch, and are therefore more

robust to this type of search space.

In Section 5, we perform an ablation study on the epoch at which the SVR and WPM

91

Figure 5.5: NAS results on six different combinations of search spaces and datasets. For
every setting, an SVR augmented method performs best.

methods start extrapolating in our framework (i.e., we ablate Efew). We find that for most

search spaces, running SVR and WPM based NAS methods by starting the LCE at roughly

20% of the total number of epochs performs the best. Any earlier, and there is not enough

information to accurately extrapolate the learning curve. Any later, and the LCE sees

diminishing returns because less time is saved by early stopping the training.

Ablation Study

Evaluation with All Combinations of Models.

We consider three different noise models as described in Section 5. Recall that we create a

new dataset of predicted ϵi values, which we call residuals, by subtracting the reconstructed

mean learning curves from the real learning curves in Dtrain. That is, ϵ̂i = yi − (dk ◦ ck) (yi)

is the residual for the ith learning curve. Our three noise models are based on two different

assumptions: (1) the noise distribution is the same for all architectures, and (2) for each

92

architecture, the noise in a small window of epochs are iid.

Now we evaluate these assumptions. In Figure 5.6 (left), we plot the residuals from

the NAS-Bench-301 training set at five different epochs, showing that the distributions are

roughly Gaussian, across all architectures. Recall that noise model (i) is a simple stan-

dard deviation statistic computed for each epoch independently, across all architectures. In

Figure 5.6 (middle), we plot the autocorrelation function (ACF) averaged over all train-

ing learning curves on NAS-Bench-301. We see that there is very little autocorrelation in

the learning curves, which justifies the use of the first noise model. Recall that our sec-

ond noise model uses Gaussian kernel density estimation (GKDE) [168] across all learning

curves. This is essentially the same as the first noise model but with the ability to capture

the small amount of autocorrelation present. Finally, recall that our our third noise model

does not assume that the residual distribution is similar across all architectures. Instead,

it estimates the standard deviation for each epoch using a sliding window of size 10 across

the epochs for each architecture. See Figure 5.6 (right) for the 90% confidence intervals of

the residuals at each epoch on NAS-Bench-301. Although the sliding window noise model

has the benefit of capturing different distributions for different architectures, we see that the

standard deviation steadily decreases as the epoch number increases, meaning that the noise

in a small window of epochs are not perfectly iid.

We run a full ablation study by testing all eighteen combinations of {SVD, VAE}, {LGB,

XGB, MLP}, and {GKDE, STD, window} for NAS-Bench-111 and NAS-Bench-311. Recall

that, as explained in Section 5, the first four metrics evaluate only the prediction of the mean

learning curves using a held-out test set, so the noise model has no effect on the first four

metrics (average R2, final R2, average KT, and final KT). For the final two metrics (average

KL and final KL), we use a test set of learning curves consisting of five seeds of architectures,

93

−2 0 2
Residual value

0

100

200

300

400

500

600

700
Co

un
t

Residual histograms
Epoch 0
Epoch 20
Epoch 40
Epoch 60
Epoch 80

0 10 20 30 40
Epochs

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n

co
rre

la
tio

n

Autocorrelation of LCs (ACF)
90% confidence
interval
autocorrelation

0 25 50 75 100
Epochs

−3

−2

−1

0

1

2

St
d.

 d
ev

Std. dev of LCs

arch sample 1
arch sample 2
90% confidence
interval

Figure 5.6: A plot of the residuals across all architectures for five different epochs (left).
We see that the distributions are roughly Gaussian. A plot of the autocorrelation function
(ACF) averaged over all training learning curves (middle). We see that there is only a
small amount of autocorrelation. A plot of the 90% confidence intervals of the residuals at
each epoch (right). All plots use the NAS-Bench-301 learning curve training set.

so that we can estimate the KL divergence between the real learning curve distribution and

the predicted distribution. Note that none of the NAS-Bench-NLP architectures were trained

more than once, so we are unable to test the noise models for NAS-Bench-NLP11. Across

NAS-Bench-111, NAS-Bench-311, and NAS-Bench-NLP11, we see that SVD-LGB performs

substantially better than all of the other options for the model. We also see that GKDE

outperforms all other noise models on NAS-Bench-111 and NAS-Bench-311. Therefore, SVD-

LGB-GKDE is the best overall combination for surrogate benchmark creation for these NAS

search spaces. See Figure 5.7 for additional images of learning curves predicted by NAS-

Bench-111, NAS-Bench-311, and NAS-Bench-NLP11. This is a continuation of Figure 5.1.

Surrogate Training Time

We give more details for the surrogate training. For NAS-Bench-111, as discussed in Sec-

tion 5, we created a new set of trained architectures with the full learning curve information.

We kept the training pipeline nearly the same as in the orginal NAS-Bench-101 repository.

However, instead of the TPU v2 acceleator as in the original work, we used an RTX 3070. We

94

0 25 50 75 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Va

lid
. a

cc
ur

ac
y

NAS-Bench-111 arch 4

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

. a
cc

ur
ac

y

NAS-Bench-111 arch 5

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

. a
cc

ur
ac

y

NAS-Bench-111 arch 6

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

. a
cc

ur
ac

y

NAS-Bench-111 arch 7

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

. a
cc

ur
ac

y

NAS-Bench-311 arch 4

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.5

0.6

0.7

0.8

0.9

Va
lid

. a
cc

ur
ac

y
NAS-Bench-311 arch 5

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

. a
cc

ur
ac

y

NAS-Bench-311 arch 6

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

. a
cc

ur
ac

y

NAS-Bench-311 arch 7

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 20 40
Epochs

94.4

94.6

94.8

95.0

95.2

Va
lid

. a
cc

ur
ac

y

NAS-Bench-NLP11 arch 3

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 20 40
Epochs

94.0

94.2

94.4

94.6

94.8

Va
lid

. a
cc

ur
ac

y

NAS-Bench-NLP11 arch 4

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 20 40
Epochs

94.2

94.4

94.6

94.8

95.0

95.2
Va

lid
. a

cc
ur

ac
y

NAS-Bench-NLP11 arch 5

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 20 40
Epochs

94.4

94.6

94.8

95.0

95.2

Va
lid

. a
cc

ur
ac

y

NAS-Bench-NLP11 arch 6

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

Figure 5.7: Learning curves, continued from Figure 5.1. Each image shows a true learning
curve vs. a learning curve predicted by one of our surrogate models, with and without
predicted noise modeling. We also plot the 90% confidence interval of the predicted noise
distribution.

needed to change the batch size from 256 to 200 to account for this hardware change, which

we found had a negligible affect on the final accuracy. We trained 1101 new architectures and

used this new set as the new “ground-truth” when training and evaluating NAS-Bench-111.

As explained in Section 5, the accuracies from the original NAS-Bench-101 benchmark were

used as features to improve the performance of our surrogate, but not used as ground truth.

For NAS-Bench-311, training was straightforward. We used the original NAS-Bench-

301 dataset, which already achieves good coverage [156], and we did not use any additional

featuers.

95

For NAS-Bench-NLP11, as described earlier, it is challenging to create an accurate sur-

rogate benchmark because there are only 14 322 evaluated architectures for a search space

of total size 1053. Therefore, we used two techniques to improve performance. First, we

used a subset of the search space, restricting the architectures to a maximum of 12 nodes

(reducing the size to 1022), and we added the validation accuracies from the first three epochs

of training each architecture, as features. These two techniques were shown to substantially

improve the performance of NAS-Bench-NLP11. On an RTX 3070, training architectures

from NAS-Bench-NLP takes about 90 seconds per epoch. Although adding in the first three

epochs substantially improves the accuracy of our surrogate benchmark, it comes at the cost

of query time. While NAS-Bench-111 and NAS-Bench-311 take under one second to query,

a query to NAS-Bench-NLP11 now requires training an architecture for three epochs. Note

that this is still a 15× speedup over performing NAS directly without a surrogate benchmark.

The Effect of Different Fidelities

We evaluate the effect of different fidelities on NAS-Bench-311. In Figure 5.8, we plot the

validation regret of the SVR and WPM-based algorithms after 2 × 106 seconds, varying

the initial fidelity (epoch) from which the learning curve is extracted, from 10 to 40. That

is, the leftmost points run LCE by extrapolating from epoch 10 to epoch 100, and the

rightmost points run LCE by extrapolating from epoch 40 to epoch 100. Note that there

is a tradeoff between time saved (from only evaluating to 10 epochs vs 40) and accuracy of

LCE (extrapolating from 10 epochs is more challenging than from 40 epochs). We see that

overall, epoch 20 performs the best. Notably, white2019bananas-SVR and REA-SVR (two

of the best-performing algorithms across all search spaces) achieve top performance at epoch

20.

96

10 15 20 25 30 35 40
Fidelities (epochs)

10−2

4 × 10−3

6 × 10−3

Va
lid

. r
eg

re
t

NAS-Bench-311 CIFAR10

BANANAS-WPM
BANANAS-SVR
LS-WPM

LS-SVR
REA-WPM
REA-SVR

Figure 5.8: Different fidelities and their effect on NAS performance on NAS-Bench-311.
The wall-clock time [s] is set to 2e6. The result are reported across 30 seeds.

Conclusion

In this work, we released three benchmarks for neural architecture search based on three

popular search spaces, which substantially improve the capability of existing benchmarks

due to the availability of the full learning curve for train/validation/test loss and accuracy

for each architecture. Our techniques to generate these benchmarks, which includes singular

value decomposition of the learning curve and noise modeling, can be used to model the full

learning curve for future surrogate NAS benchmarks as well.

Furthermore, we demonstrated the power of the full learning curve information by in-

troducing a framework that converts single-fidelity NAS algorithms into multi-fidelity NAS

algorithms that make use of learning curve extrapolation techniques. This framework im-

proves the performance of recent popular single-fidelity algorithms which claimed to be

state-of-the-art upon release.

While we believe our surrogate benchmarks will help advance scientific research in NAS,

a few guidelines and limitations are important to keep in mind. As with prior surrogate

benchmarks [156], we give the following two caveats. (1) We discourage evaluating NAS

97

methods that use the same internal techniques as those used in the surrogate model. For

example, any NAS method that makes use of variational autoencoders or XGBoost should

not be benchmarked using our VAE-XGB surrogate benchmark. (2) As the surrogate bench-

marks are likely to evolve as new training data is added, or as better techniques for training

a surrogate are devised, we recommend reporting the surrogate benchmark version number

whenever running experiments.

We also note the following strengths and limitations for specific benchmarks. Our NAS-

Bench-111 surrogate benchmark gives strong performance even with just 1 101 architectures

used as training data, due to the existence of the four extra validation accuracies from NAS-

Bench-101 that can be used as additional features. While these features help to achieve high

predictive power over the entire search space, the only limitation is that this technique likely

cannot be used to create future surrogate benchmarks: we hope that all future surrogate

works will save the full learning curve information from the start so that the creation of an

after-the-fact extended benchmark is not necessary.

Since the NAS-Bench-NLP11 surrogate benchmark achieves significantly stronger per-

formance when the accuracy of the first three epochs are added as features, we recommend

using this benchmark by training architectures for three epochs before querying the sur-

rogate. Therefore, benchmarking NAS algorithms are slower than for NAS-Bench-111 and

NAS-Bench-311, but NAS-Bench-NLP11 still offers a 15× speedup compared to a NAS ex-

periment without this benchmark. We still release the version of NAS-Bench-NLP11 that

does not use the first three accuracies as features but with a warning that the observed

NAS trends may differ from the true NAS trends. We expect that the performance of these

benchmarks will improve over time, as data for more trained architectures become available.

98

Benchmark Avg. R2 Final R2 Avg. KT Final KT Avg. KL Final KL

NAS-Bench-111

SVD-LGB-GKDE 0.630 0.853 0.611 0.794 1.641 0.516

SVD-LGB-STD 0.630 0.853 0.611 0.794 2.768 0.383

SVD-LGB-window 0.630 0.853 0.611 0.794 24.402 3.303

SVD-XGB-GKDE 0.329 0.378 0.408 0.429 2.743 0.580

SVD-XGB-STD 0.329 0.378 0.408 0.429 4.867 0.503

SVD-XGB-window 0.329 0.378 0.408 0.429 38.457 16.172

SVD-MLP-GKDE 0.195 0.065 0.330 0.290 4.599 0.762

SVD-MLP-STD 0.195 0.065 0.330 0.290 8.417 0.848

SVD-MLP-window 0.195 0.065 0.330 0.290 82.180 15.711

VAE-LGB-GKDE 0.267 0.218 0.462 0.617 3.788 0.829

VAE-LGB-STD 0.267 0.218 0.462 0.617 6.866 0.972

VAE-LGB-window 0.267 0.218 0.462 0.617 53.866 19.820

VAE-XGB-GKDE 0.311 0.272 0.453 0.559 3.828 0.828

VAE-XGB-STD 0.311 0.272 0.453 0.559 6.940 0.969

VAE-XGB-window 0.311 0.272 0.453 0.559 55.654 19.614

VAE-MLP-GKDE 0.218 0.007 0.386 0.369 4.583 0.844

VAE-MLP-STD 0.218 0.007 0.386 0.369 8.386 1.001

VAE-MLP-window 0.218 0.007 0.386 0.369 83.481 19.091

NAS-Bench-311

SVD-LGB-GKDE 0.779 0.800 0.728 0.788 0.503 0.548

SVD-LGB-STD 0.779 0.800 0.728 0.788 0.919 1.036

SVD-LGB-window 0.779 0.800 0.728 0.788 1.566 4.083

SVD-XGB-GKDE 0.522 0.546 0.607 0.654 1.783 3.272

SVD-XGB-STD 0.522 0.546 0.607 0.654 3.271 5.958

SVD-XGB-window 0.522 0.546 0.607 0.654 5.282 19.432

SVD-MLP-GKDE 0.564 0.549 0.573 0.603 15.727 29.057

SVD-MLP-STD 0.564 0.549 0.573 0.603 28.833 52.515

SVD-MLP-window 0.564 0.549 0.573 0.603 45.071 167.140

VAE-LGB-GKDE 0.431 0.447 0.568 0.616 5.995 13.486

VAE-LGB-STD 0.431 0.447 0.568 0.616 11.015 24.836

VAE-LGB-window 0.431 0.447 0.568 0.616 17.510 79.773

VAE-XGB-GKDE 0.397 0.427 0.577 0.624 6.520 16.739

VAE-XGB-STD 0.397 0.427 0.577 0.624 11.978 30.368

VAE-XGB-window 0.397 0.427 0.577 0.624 18.883 97.485

VAE-MLP-GKDE 0.509 0.520 0.584 0.619 13.545 33.851

VAE-MLP-STD 0.509 0.520 0.584 0.619 24.770 61.455

VAE-MLP-window 0.509 0.520 0.584 0.619 38.593 196.246

NAS-Bench-NLP11

SVD-LGB 0.878 0.895 0.878 0.844 - -

SVD-XGB 0.877 0.806 0.856 0.820 - -

SVD-MLP 0.893 0.856 0.742 0.692 - -

VAE-LGB 0.862 0.847 0.766 0.770 - -

VAE-XGB 0.875 0.860 0.720 0.687 - -

VAE-MLP 0.867 0.871 0.667 0.685 - -

Table 5.3: Evaluation of the surrogate benchmarks on test sets, with all combinations of
models. For NAS-Bench-111 and NAS-Bench-NLP11, we use architecture accuracies as
additional features to improve performance. As explained in Section 5, no architectures in
the NAS-Bench-NLP dataset were trained more than once, so we do not compute KL
divergence for NAS-Bench-NLP11.

99

Chapter 6

Conclusion

In this dissertation, my goal is to present to the readers all of the essence of Neural Archi-

tecture Search (NAS), through which I discuss how I have contributed to the development

of NAS from one-shot approach to sampling-based approach. Chapter 1 – Introduction

provides with the necessary knowledge to understand and build a vanilla NAS system. I

walk through the history and fundamentals of NAS together with drawbacks of existing ap-

proaches, leading to the research on neural architecture representations and learning curve

predictions.

Chapter 2 – EFFICIENT ONE-SHOT NAS VIA HIERARCHICAL MASKING starts

discussing my research on one-shot NAS with based on weight-sharing. When I was devel-

oping the work for this chapter in 2019, one-shot NAS had just started from the seminal

work of [38, 57]. Specifically, differentiable Neural Architecture Search [12] is one of the

most popular Neural Architecture Search (NAS) methods for its search efficiency and sim-

plicity, accomplished by jointly optimizing the model weight and architecture parameters

in a weight-sharing supernet via gradient-based algorithms. Despite its potential, it still

adopt hand-designed heuristics to generate architecture candidates. Specifically, at the end

of the search phase, the operations with the largest architecture parameters will be selected

to form the final architecture, with the implicit assumption that the values of architecture

parameters reflect the operation strength. While much has been discussed about the prox-

yless supernet training [8], the architecture selection process has received little attention. I

formulate NAS as a pruning process and propose a multi-level architecture encoding scheme

to separately encode edges, operations, network parameters of the neural architectures, en-

abling a more flexible network architecture selection. We discard top-2 softmax selection for

100

all edges and opreations as used in DARTS by directly using the binarized mask output to

decide the architecture topology, leading to a significantly improved architecture selection

from the underlying supernets.

Chapter 3 – Arch2Vec includes my deep exploration on what is the key component in

NAS. From my previous work in Chapter 2, I found that one-shot NAS jointly optimizes the

architecture representations (e.g. supernet topology) and the search methods (e.g. gradient

decent). This could easily lead to local minimum because these two components are deeply

coupled with each other: A bad optimization on architecture representations could incur bad

search bias to the search strategy, and vice versa. Despite the widespread use, architecture

representations learned in NAS are still poorly understood. From this perspective, I was

thinking if it is possible to learn architecture representations first and then perform the

downstream search. The intuition behind it is that a good representation should give us

a reasonable performance even it is conducted using local search. Therefore, I propose

to learn the architecture representations using edit distance closeness as its objectiveness,

and the goal is to reconstruct the architecture themselves to preserve such local structure

closeness. I found that compared to supervised joint optimization, unsupervised pretraining

architecture representations followed by supervised fine-tuning is able to better encourage

neural architectures with similar connections and operators to cluster together. This helps

to map neural architectures with similar performance to the same regions in the latent

space and makes the transition of architectures in the latent space relatively smooth, which

significantly benefits diverse downstream search strategies. To this end, I confirm that

architecture representations (encodings) are an important design decision in NAS, and my

follow-up work in Chapter 4 aims to learn a better architecture representations by embracing

more properties of neural architectures.

101

Chapter 4 – Computation-aware neural architecture encoding can be viewed as my con-

tinuing effort to design a better architecture representation in NAS which was introduced

in Chapter 3. While most of the NAS encoders encode neural architectures using structural

similarity, there is only a few work focusing a more discriminative property of neural archi-

tectures, e.g. computations, functions. Sometimes, the same computation can also define

different functions, e.g., two identical neural architectures will represent different functions

given they are trained differently since the weights of their layers will be different. There-

fore, modeling functions is much harder than modeling computations since it additionally

requires knowing the parameters of some operations, which are unknown before training [53].

Compared to structure-aware encodings, computation-aware encodings are able to map archi-

tectures with different structures but similar accuracies to the same region. This advantage

contributes to a smooth encoding space with respect to the actual architecture performance

instead of structures, which improves the efficiency of the downstream architecture search. I

use Transformer as the encoder because it has been widely used as an effective and scalable

generative model on sequence modeling tasks. Architectures can also be viewed as the a

sequence given the specific attention module. I propose to encode the computation informa-

tion of neural architectures through a pairwise learning scheme trained with MLM based on

Transformers. I show its effectiveness and scalability in both small and large search spaces

as well as its superior generalization capability outside the training search space.

Chapter 5 – NAS-Bench-x11 and the Power of Learning Curves Once the good architec-

ture representations are obtained, they are used for the downstream search methods. The

search process is conducted by fully training the sampled architectures from scratch until

convergence just to get a single reward signal. Despite its stability compared to weight-

sharing based methods, the computation budget is still non-negligible. Currently, two of

102

the most popular NAS benchmarks do not provide the full training information for each

architecture. As a result, on these benchmarks it is not possible to run many types of

multi-fidelity techniques, such as learning curve extrapolation,that require evaluating archi-

tectures at arbitrary epochs. This unavoidably slows down the development of multi-fidelity

NAS algorithms. Therefore, we present a method using singular value decomposition and

noise modeling to create surrogate benchmarks, NAS-Bench-111, NAS-Bench-311, and NAS-

Bench-NLP11, that output the full training information for each architecture, rather than

just the final validation accuracy. Based on this benchmark, we also introduce a learning

curve extrapolation framework to modify single-fidelity algorithms, showing that it leads to

improvements over popular single-fidelity algorithms given the same wall-clock budget.

Our hope is that our work will make it quicker and easier for researchers to run fair

experiments and give reproducible conclusions. In particular, the surrogate benchmarks

allow AutoML researchers to develop NAS algorithms directly on a CPU, as opposed to using

a GPU, which may decrease the carbon emissions from GPU-based NAS research [155,176].

In terms of our proposed NAS speedups, these techniques are a level of abstraction away

from real applications, but they can indirectly impact the broader society. For example, this

work may facilitate the creation of new high-performing NAS techniques, which can then be

used to improve various deep learning methods, both beneficial (e.g. algorithms that reduce

CO2 emissions), or harmful (e.g. algorithms that produce deep fakes).

Lastly, I am fortunate to have gone through an exciting journey in developing Neural Ar-

chitecture Search since my early days in PhD. I hope that this dissertation will provide useful

background and inspirations for future research to build much more informative architecture

encodings, powerful learning curve extrapolation algorithms, and their applications.

103

BIBLIOGRAPHY

[1] S. Yan, B. Fang, F. Zhang, Y. Zheng, X. Zeng, M. Zhang, and H. Xu, “Hm-nas: Effi-
cient neural architecture search via hierarchical masking,” in ICCV Neural Architects
Workshop, 2019. ii, 5, 6, 7, 56

[2] S. Yan, Y. Zheng, W. Ao, X. Zeng, and M. Zhang, “Does unsupervised architecture
representation learning help neural architecture search?” in NeurIPS, 2020. ii, 5, 6, 7,
8, 9, 53, 56, 57, 65, 67, 68, 69, 70, 71, 78

[3] S. Yan, K. Song, F. Liu, and M. Zhang, “Cate: Computation-aware neural architecture
encoding with transformers,” in ICML, 2021. ii, 5, 6, 8, 9, 75

[4] S. Yan, C. White, Y. Savani, and F. Hutter, “Nas-bench-x11 and the power of learning
curves,” in NeurIPS, 2021. ii, 6, 9

[5] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey,” in
JMLR, 2019. 1, 5, 29, 33, 56, 75, 78

[6] C. White, W. Neiswanger, S. Nolen, and Y. Savani, “A study on encodings for neural
architecture search,” in NeurIPS, 2020. 4, 7, 8, 33, 53, 56, 62, 81

[7] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” in
ICLR, 2017. 1, 33, 56, 75, 78

[8] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture search on target
task and hardware,” in ICLR, 2019. 1, 10, 13, 14, 100

[9] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: In-
verted residuals and linear bottlenecks,” in CVPR, 2018. 1, 24

[10] C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hutter, “Nas-bench-
101: Towards reproducible neural architecture search,” in ICML, 2019. 2, 4, 30, 33,
37, 42, 43, 53, 56, 57, 58, 63, 65, 75, 79, 81, 86

[11] X. Dong and Y. Yang, “Nas-bench-201: Extending the scope of reproducible neural
architecture search,” in ICLR, 2020. 2, 30, 37, 75, 79, 91

[12] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,” in
ICLR, 2019. 2, 3, 5, 10, 13, 14, 15, 17, 19, 21, 22, 24, 29, 30, 37, 38, 45, 46, 47, 56, 57,
64, 68, 70, 71, 75, 78, 80, 87, 100

[13] B. Zoph and K. Knight, “Multi-source neural translation,” in NAACL, 2016. 3

[14] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist re-
inforcement learning,” Machine learning, pp. 229–256, 1992. 4

104

[15] G. F. Miller, P. M. Todd, and S. U. Hegde, “Designing neural networks using genetic
algorithms.” in ICGA, 1989. 4, 56, 78

[16] H. Kitano, “Designing neural networks using genetic algorithms with graph generation
system,” in Complex systems, 1990. 4, 56, 78

[17] K. O. Stanley and R. A. Miikkulainen, “Evolving neural networks through augmenting
topologies,” in Evolutionary Computation, 2002. 4, 56

[18] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image
classifier architecture search,” in AAAI, 2019. 4, 10, 12, 14, 15, 22, 24, 33, 42, 44, 46,
47, 53, 56, 62, 67, 75, 77, 78, 87, 88, 90

[19] Z. Lu, K. Deb, E. Goodman, W. Banzhaf, and V. N. Boddeti, “Nsganetv2: Evolution-
ary multi-objective surrogate-assisted neural architecture search,” in ECCV, 2020. 4,
56

[20] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu, “Hierarchical rep-
resentations for efficient architecture search,” arXiv preprint arXiv:1711.00436, 2017.
4, 53

[21] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. Xing, “Neural archi-
tecture search with bayesian optimisation and optimal transport,” in NeurIPS, 2018.
5, 33, 36, 53, 56, 78

[22] C. White, W. Neiswanger, and Y. Savani, “Bananas: Bayesian optimization with neural
architectures for neural architecture search,” in AAAI, 2021. 5

[23] T. Domhan, J. T. Springenberg, and F. Hutter, “Speeding up automatic hyperpa-
rameter optimization of deep neural networks by extrapolation of learning curves,” in
IJCAI, 2015. 5, 76, 78, 89

[24] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neural architecture search
using performance prediction,” in ICLR Workshop, 2018. 5, 33, 53, 56, 76, 78, 89

[25] B. Ru, C. Lyle, L. Schut, M. van der Wilk, and Y. Gal, “Revisiting the train loss:
an efficient performance estimator for neural architecture search,” arXiv preprint
arXiv:2006.04492, 2020. 5, 78

[26] A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter, “Learning curve prediction
with bayesian neural networks,” in ICLR, 2017. 5, 76, 78

[27] A. Chandrashekaran and I. R. Lane, “Speeding up hyper-parameter optimization by
extrapolation of learning curves using previous builds,” in ECML-PKDD, 2017. 5, 78

[28] K. Swersky, J. Snoek, and R. P. Adams, “Freeze-thaw bayesian optimization,” arXiv
preprint arXiv:1406.3896, 2014. 5, 76, 78

105

[29] M. Gargiani, A. Klein, S. Falkner, and F. Hutter, “Probabilistic rollouts for learning
curve extrapolation across hyperparameter settings,” arXiv preprint arXiv:1910.04522,
2019. 5, 78

[30] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyperband: A
novel bandit-based approach to hyperparameter optimization,” in JMLR, 2018. 5, 57,
76, 77, 79, 90

[31] S. Falkner, A. Klein, and F. Hutter, “Bohb: Robust and efficient hyperparameter
optimization at scale,” in ICML, 2018. 5, 29, 33, 42, 44, 57, 76, 77, 78, 79, 90

[32] A. Klein, L. Tiao, T. Lienart, C. Archambeau, and M. Seeger, “Model-based
asynchronous hyperparameter and neural architecture search,” arXiv preprint
arXiv:2003.10865, 2020. 5, 79

[33] Y. Huang, Y. Li, H. Ye, Z. Li, and Z. Zhang, “An asymptotically optimal multi-armed
bandit algorithm and hyperparameter optimization,” arXiv preprint arXiv:2007.05670,
2020. 5, 79

[34] N. Mallik and N. Awad, “Dehb: Evolutionary hyperband for scalable, robust and
efficient hyperparameter optimization,” in IJCAI, 2021. 5, 79

[35] K. Kandasamy, G. Dasarathy, J. B. Oliva, J. Schneider, and B. Poczos, “Multi-fidelity
gaussian process bandit optimisation,” in NeurIPS, 2016. 5, 76, 79

[36] K. Kandasamy, G. Dasarathy, J. Schneider, and B. Poczos, “Multi-fidelity bayesian
optimisation with continuous approximations,” in JMLR, 2017. 5, 76, 79

[37] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast Bayesian Optimization
of Machine Learning Hyperparameters on Large Datasets,” in AISTATS, 2017. 5, 79

[38] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Understanding and
simplifying one-shot architecture search,” in ICML, 2018. 5, 11, 13, 56, 78, 100

[39] X. Dong and Y. Yang, “Searching for a robust neural architecture in four gpu hours,”
in CVPR, 2019. 5, 56, 78, 87

[40] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter, “Understanding
and robustifying differentiable architecture search,” in ICLR, 2020. 5, 29, 56, 78

[41] S. You, T. Huang, M. Yang, F. Wang, C. Qian, and C. Zhang, “Greedynas: Towards
fast one-shot nas with greedy supernet,” in CVPR, 2020. 5, 56, 78

[42] H. Peng, H. Du, H. Yu, Q. Li, J. Liao, and J. Fu, “Cream of the crop: Distilling
prioritized paths for one-shot neural architecture search,” in NeurIPS, 2020. 5, 56, 78

[43] K. Yu, R. Ranftl, and M. Salzmann, “Landmark regularization: Ranking guided super-
net training in neural architecture search,” in CVPR, 2021. 5, 78

106

[44] W. Wen, H. Liu, H. Li, Y. Chen, G. Bender, and P.-J. Kindermans, “Neural predictor
for neural architecture search,” in ECCV, 2020. 5, 33, 53, 56, 57, 62, 78

[45] X. Ning, W. Li, Z. Zhou, T. Zhao, Y. Zheng, S. Liang, H. Yang, and Y. Wang, “A
surgery of the neural architecture evaluators,” arXiv preprint arXiv:2008.03064, 2020.
5, 56, 78

[46] H. Shi, R. Pi, H. Xu, Z. Li, J. Kwok, and T. Zhang, “Bridging the gap between sample-
based and one-shot neural architecture search with bonas,” in NeurIPS, 2020. 5, 33,
36, 53, 56, 57, 62, 67, 75, 78

[47] R. Luo, X. Tan, R. Wang, T. Qin, E. Chen, and T.-Y. Liu, “Semi-supervised neural
architecture search,” in NeurIPS, 2020. 5, 56, 78

[48] C. White, A. Zela, B. Ru, Y. Liu, and F. Hutter, “How powerful are performance
predictors in neural architecture search?” arXiv preprint arXiv:2104.01177, 2021. 5,
78, 91

[49] B. Ru, X. Wan, X. Dong, and M. Osborne, “Neural architecture search using bayesian
optimisation with weisfeiler-lehman kernel,” in ICLR, 2021. 5, 56, 75, 78

[50] C. White, W. Neiswanger, and Y. Savani, “Bananas: Bayesian optimization with neural
architectures for neural architecture search,” in AAAI, 2021. 5, 33, 36, 43, 44, 45, 53,
56, 57, 58, 62, 65, 67, 68, 69, 70, 75, 77, 78, 87, 88, 90

[51] V. Nguyen, S. Schulze, and M. Osborne, “Bayesian optimization for iterative learning,”
in NeurIPS, 2020. 5, 78

[52] L. Xie, X. Chen, K. Bi, L. Wei, Y. Xu, Z. Chen, L. Wang, A. Xiao, J. Chang, X. Zhang
et al., “Weight-sharing neural architecture search: A battle to shrink the optimization
gap,” arXiv preprint arXiv:2008.01475, 2020. 5, 56, 78

[53] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen, “D-vae: A variational autoen-
coder for directed acyclic graphs,” in NeurIPS, 2019. 8, 32, 38, 45, 53, 57, 58, 65,
102

[54] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition,” in CVPR, 2018. 10, 12, 13, 14, 22, 24, 46, 47, 53, 56

[55] Y. Chen, T. Yang, X. Zhang, G. Meng, C. Pan, and J. Sun, “Detnas: Neural architec-
ture search on object detection,” arXiv preprint arXiv:1903.10979, 2019. 10

[56] V. Nekrasov, H. Chen, C. Shen, and I. Reid, “Fast neural architecture search of compact
semantic segmentation models via auxiliary cells,” in CVPR, 2019, pp. 9126–9135. 10

[57] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural architecture
search via parameter sharing,” in ICML, 2018. 10, 12, 14, 22, 45, 56, 78, 100

107

[58] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network architectures
using reinforcement learning,” in ICLR, 2017. 10, 12

[59] S. Xie, H. Zheng, C. Liu, and L. Lin, “Snas: Stochastic neural architecture search,” in
ICLR, 2019. 10, 13, 14, 15, 22, 24, 29, 45, 47, 56, 71

[60] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Smash: One-shot model architecture
search through hypernetworks,” ICLR, 2018. 10

[61] C. Sciuto, K. Yu, M. Jaggi, C. Musat, and M. Salzmann, “Evaluating the search phase
of neural architecture search,” in ICLR, 2020. 11, 13, 25, 75

[62] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, “Single path one-shot
neural architecture search with uniform sampling,” in arXiv:1904.00420, 2019. 11, 13,
29

[63] R. Luo, F. Tian, T. Qin, E.-H. Chen, and T.-Y. Liu, “Neural architecture optimization,”
in NeurIPS, 2018. 14, 29, 33, 43, 53, 56, 57

[64] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and
K. Keutzer, “Fbnet: Hardware-aware efficient convnet design via differentiable neural
architecture search,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 10 734–10 742. 14, 17, 21, 23

[65] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural
networks with binary weights during propagations,” in Advances in neural information
processing systems, 2015, pp. 3123–3131. 18, 19

[66] A. Mallya, D. Davis, and S. Lazebnik, “Piggyback: Adapting a single network to
multiple tasks by learning to mask weights,” in ECCV, 2018, pp. 67–82. 19

[67] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural
networks,” in Advances in neural information processing systems, 2016, pp. 4107–4115.
19

[68] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ICLR, 2015.
21, 36, 38

[69] T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural net-
works with cutout,” in arXiv:1708.04552, 2017. 21

[70] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in CVPR, 2017, pp. 4700–4708. 22

[71] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” in CVPR, 2009. 23, 46, 69

108

[72] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile
vision applications,” arXiv preprint arXiv:1704.04861, 2017. 23, 24

[73] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed represen-
tations of words and phrases and their compositionality,” in NeurIPS, 2013. 29

[74] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” in ACL, 2019. 29, 55, 58

[75] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language un-
derstanding by generative pre-training,” in OpenAI Blog, 2018. 29

[76] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and
K. Kavukcuoglu, “Conditional image generation with pixelcnn decoders,” in NeurIPS,
2016. 29

[77] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised
visual representation learning,” in CVPR, 2020. 29

[78] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for physical interaction
through video prediction,” in NeurIPS, 2016. 29

[79] E. Jang, C. Devin, V. Vanhoucke, and S. Levine, “Grasp2vec: Learning object repre-
sentations from self-supervised grasping,” in arXiv:1811.06964, 2018. 29

[80] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social represen-
tations,” in ACM SIGKDD, 2014. 29, 31

[81] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in ACM
SIGKDD, 2016. 29, 31

[82] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist re-
inforcement learning,” in Machine Learning, 1992. 29, 35, 42, 44

[83] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Ku-
rakin, “Large-scale evolution of image classifiers,” in ICML, 2017. 29, 57

[84] C. He, H. Ye, L. Shen, and T. Zhang, “Milenas: Efficient neural architecture search
via mixed-level reformulation,” in CVPR, 2020. 29

[85] Y. Shu, W. Wang, and S. Cai, “Understanding architectures learnt by cell-based neural
architecture search,” in ICLR, 2020. 29

[86] A. Zela, J. Siems, and F. Hutter, “Nas-bench-1shot1: Benchmarking and dissecting
one-shot neural architecture search,” in ICLR, 2020. 29, 79

109

[87] M. Lindauer and F. Hutter, “Best practices for scientific research on neural architecture
search,” in JMLR, 2020. 30, 75

[88] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale informa-
tion network embedding.” in WWW, 2015. 31

[89] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in KDD, 2016.
31

[90] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in NeurIPS Workshop,
2016. 32, 34, 38, 39

[91] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in NeurIPS, 2017. 32

[92] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep
Graph Infomax,” in ICLR, 2019. 32

[93] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?”
in ICLR, 2019. 32, 34, 65

[94] B. Weisfeiler and A. Lehman, “A reduction of a graph to a canonical form and an
algebra arising during this reduction.” in Nauchno-Technicheskaya Informatsia, 1968.
32, 33

[95] J. You, J. Leskovec, K. He, and S. Xie, “Graph structure of neural networks,” in ICML,
2020. 32, 55, 58

[96] Y. LeCun, S. Chopra, R. Hadsell, and F. J. Huang, “A tutorial on energy-based learn-
ing,” in Predicting Structured Data, 2006. 32

[97] K. Kavukcuoglu, P. Sermanet, Y. lan Boureau, K. Gregor, M. Mathieu, and Y. L. Cun,
“Learning convolutional feature hierarchies for visual recognition,” in NeurIPS, 2010.
32

[98] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in ICML, 2008. 32

[99] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in ICLR, 2014. 32,
35, 67, 83

[100] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow, “Adversarial autoencoders,” in
ICLR, 2016. 32

[101] P. Ghosh, M. S. M. Sajjadi, A. Vergari, M. Black, and B. Scholkopf, “From variational
to deterministic autoencoders,” in ICLR, 2020. 32

110

[102] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of small graphs
using variational autoencoders,” in arXiv:1802.03480, 2018. 32

[103] W. Wang, H. Xu, Z. Gan, B. Li, G. Wang, L. Chen, Q. Yang, W. Wang, and L. Carin,
“Graph-driven generative models for heterogeneous multi-task learning,” in AAAI,
2020. 32

[104] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang, “A
comprehensive survey of neural architecture search: Challenges and solutions,” in
arXiv:2006.02903, 2020. 33

[105] C. Liu, P. Dollár, K. He, R. Girshick, A. Yuille, and S. Xie, “Are labels necessary for
neural architecture search?” in arXiv:2003.12056, 2020. 33

[106] S. Kullback and R. A. Leibler, “On information and sufficiency,” in Annals of Mathe-
matical Statistics, 1951. 35

[107] J. Sietsma and R. J. Dow, “Creating artificial neural networks that generalize,” in
Neural Networks, 1991. 35

[108] G. An, “The effects of adding noise during backpropagation training on a generalization
performance,” in Neural Computation, 1996. 35

[109] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” in arXiv:1707.06347, 2017. 36

[110] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary,
M. Prabhat, and R. Adams, “Scalable bayesian optimization using deep neural net-
works,” in ICML, 2015. 36, 62, 67

[111] R. Garnett, M. A. Osborne, and P. Hennig, “Active learning of linear embeddings for
gaussian processes,” in UAI, 2014. 36

[112] J. Mockus, “On bayesian methods for seeking the extremum and their application.” in
IFIP Congress, 1977. 36

[113] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy, “Progressive neural architecture search,” in ECCV, 2018.
38, 53, 56, 64

[114] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” in JMLR, 2008. 40

[115] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” in
JMLR, 2012. 42, 44

[116] L. Li and A. Talwalkar, “Random search and reproducibility for neural architecture
search,” in UAI, 2019. 45, 47, 56, 62, 67, 68, 70, 75, 90

111

[117] I. Radosavovic, J. Johnson, S. Xie, W.-Y. Lo, and P. Dollár, “On network design spaces
for visual recognition,” in ICCV, 2019. 46

[118] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár, “Designing network
design spaces,” in CVPR, 2020. 53

[119] B. Ru, P. Esperanca, and F. Carlucci, “Neural architecture generator optimization,” in
NeurIPS, 2020. 53

[120] L. Wang, Y. Zhao, Y. Jinnai, Y. Tian, and R. Fonseca, “Alphax: exploring neural
architectures with deep neural networks and monte carlo tree search,” in AAAI, 2020.
53, 56, 57

[121] C. White, S. Nolen, and Y. Savani, “Local search is state of the art for nas benchmarks,”
in UAI, 2021. 53, 56, 62, 67, 77, 88, 90

[122] X. Ning, Y. Zheng, T. Zhao, Y. Wang, and H. Yang, “A generic graph-based neural
architecture encoding scheme for predictor-based nas,” in ECCV, 2020. 53, 57

[123] Y. Zhang, J. Zhang, and Z. Zhong, “Autobss: An efficient algorithm for block stacking
style search,” in NeurIPS, 2020. 53

[124] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,
and I. Polosukhin, “Attention is all you need,” in NeurIPS, 2017. 55, 58

[125] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text
transformer,” in JMLR, 2020. 55, 58

[126] S. Xie, A. Kirillov, R. Girshick, and K. He, “Exploring randomly wired neural networks
for image recognition,” in ICCV, 2019. 55, 58

[127] R. W. Floyd, “Algorithm 97: Shortest path,” in Communications of the ACM, 1962.
55

[128] J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter, “Nas-
bench-301 and the case for surrogate benchmarks for neural architecture search,” in
arXiv:2008.09777, 2020. 56, 57, 64, 65

[129] T. D. Ottelander, A. Dushatskiy, M. Virgolin, and P. A. Bosman, “Local search is a
remarkably strong baseline for neural architecture search,” in International Conference
on Evolutionary Multi-Criterion Optimization, 2021. 56, 62, 88, 90

[130] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le,
“Mnasnet: Platform-aware neural architecture search for mobile,” in CVPR, 2019. 56

[131] H. Zhou, M. Yang, J. Wang, and W. Pan, “BayesNAS: A Bayesian approach for neural
architecture search,” in ICML, 2019. 56, 71

112

[132] R. Negrinho and G. Gordon, “Deeparchitect: Automatically designing and training
deep architectures,” arXiv preprint arXiv:1704.08792, 2017. 56, 78

[133] Y. Tang, Y. Wang, Y. Xu, H. Chen, B. Shi, C. Xu, C. Xu, Q. Tian, and C. Xu, “A
semi-supervised assessor of neural architectures,” in CVPR, June 2020. 56

[134] X. Chen and C.-J. Hsieh, “Stabilizing differentiable architecture search via
perturbation-based regularization,” in ICML, 2020. 56

[135] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, J. Marben, P. Müller, and
F. Hutter, “Boah: A tool suite for multi-fidelity bayesian optimization and analysis of
hyperparameters,” in arXiv preprint arXiv: 1908.06756, 2019. 57

[136] C. Wei, Y. Tang, C. Niu, H. Hu, Y. Wang, and J. Liang, “Self-supervised represen-
tation learning for evolutionary neural architecture search,” in arXiv preprint arXiv:
2011.00186, 2020. 57

[137] K. Choi, M. Choe, and H. Lee, “Pretraining neural architecture search controllers with
locality-based self-supervised learning,” in arXiv preprint arXiv: 2103.08157, 2021. 57

[138] C. Wei, C. Niu, Y. Tang, and J. Liang, “Npenas: Neural predictor guided evolution
for neural architecture search,” arXiv preprint arXiv:2003.12857, 2020. 57, 75

[139] J. Lukasik, D. Friede, A. Zela, F. Hutter, and M. Keuper, “Smooth variational graph
embeddings for efficient neural architecture search,” in IJCNN, 2021. 57

[140] D. Hesslow and I. Poli, “Contrastive embeddings for neural architectures,” in arXiv
preprint arXiv: 2102.04208, 2021. 58

[141] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou, and H.-
W. Hon, “Unified language model pre-training for natural language understanding and
generation,” in NeurIPS, 2019. 58

[142] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer, “Deep contextualized word representations,” in NAACL, 2018. 58

[143] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” in Neural computation,
1997. 58

[144] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models
are unsupervised multitask learners,” in OpenAI Blog, 2019. 58

[145] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “Xlnet:
Generalized autoregressive pretraining for language understanding,” in NeurIPS, 2019.
58

113

[146] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,”
in arXiv:1907.11692, 2019. 58

[147] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov,
and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension,” in ACL, 2020. 58

[148] C. E. Rasmussen and C. K. I. Williams, “Gaussian processes for machine learning,” in
The MIT Press, 2006. 62

[149] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in SIGKDD,
2016. 65

[150] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Light-
gbm: A highly efficient gradient boosting decision tree,” in NeurIPS, 2017. 65, 84

[151] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in ICLR, 2019.
65

[152] J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter, “Bayesian optimization with
robust bayesian neural networks,” in NeurIPS, 2016. 67

[153] G. Bender, H. Liu, B. Chen, G. Chu, S. Cheng, P.-J. Kindermans, and Q. Le, “Can
weight sharing outperform random architecture search? an investigation with tunas,”
in CVPR, 2020. 74

[154] A. Yang, P. M. Esperança, and F. M. Carlucci, “Nas evaluation is frustratingly hard,”
in ICLR, 2020. 75

[155] K. Hao, “Training a single ai model can emit as much carbon as five cars in their
lifetimes,” MIT Technology Review, 2019. 75, 103

[156] J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter, “Nas-bench-301
and the case for surrogate benchmarks for neural architecture search,” arXiv preprint
arXiv:2008.09777, 2020. 75, 80, 85, 86, 87, 95, 97

[157] N. Klyuchnikov, I. Trofimov, E. Artemova, M. Salnikov, M. Fedorov, and E. Burnaev,
“Nas-bench-nlp: neural architecture search benchmark for natural language process-
ing,” arXiv preprint arXiv:2006.07116, 2020. 76, 80, 88

[158] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting
topologies,” Evolutionary computation, vol. 10, no. 2, pp. 99–127, 2002. 78

[159] H. Hu, J. Langford, R. Caruana, S. Mukherjee, E. Horvitz, and D. Dey, “Efficient
forward architecture search,” in NeurIPS, 2019. 78

114

[160] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of
Toronto, Tech. Rep., 2009. 79

[161] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A downsampled variant of imagenet as
an alternative to the cifar datasets,” in arXiv:1707.08819, 2017. 79

[162] X. Dong, L. Liu, K. Musial, and B. Gabrys, “Nats-bench: Benchmarking nas algorithms
for architecture topology and size,” in PAMI, 2021. 79

[163] J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter, “Nas-bench-301
and the case for surrogate benchmarks for neural architecture search: Openreview
response,” 2021. [Online]. Available: https://openreview.net/forum?id=1flmvXGGJaa
80

[164] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur, “Recurrent neu-
ral network based language model,” in Annual conference of the international speech
communication association, 2010. 80

[165] A. Mehrotra, A. G. C. P. Ramos, S. Bhattacharya, Ł. Dudziak, R. Vipperla, T. Chau,
M. S. Abdelfattah, S. Ishtiaq, and N. D. Lane, “Nas-bench-asr: Reproducible neural
architecture search for speech recognition,” in ICLR, 2021. 80

[166] G. Golub and W. Kahan, “Calculating the singular values and pseudo-inverse of a
matrix,” Journal of the Society for Industrial and Applied Mathematics, Series B:
Numerical Analysis, vol. 2, no. 2, pp. 205–224, 1965. 83

[167] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining,
2016, pp. 785–794. 84

[168] D. W. Scott, Multivariate density estimation: theory, practice, and visualization. John
Wiley & Sons, 2015. 85, 93

[169] S. Wright, “Correlation and causation,” Journal of Agricultural Research, vol. 20, pp.
557–580, 1921. 85

[170] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30, no. 1/2, pp.
81–93, 1938. 85

[171] K. Eggensperger, F. Hutter, H. Hoos, and K. Leyton-Brown, “Efficient benchmarking
of hyperparameter optimizers via surrogates,” in AAAI, 2015. 86

[172] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter
optimization,” in NeurIPS, 2011. 87

115

[173] C. Oh, J. M. Tomczak, E. Gavves, and M. Welling, “Combinatorial bayesian opti-
mization using the graph cartesian product,” arXiv preprint arXiv:1902.00448, 2019.
87

[174] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong, “Pc-darts: Partial
channel connections for memory-efficient architecture search,” in ICLR, 2019. 87

[175] X. Chen, R. Wang, M. Cheng, X. Tang, and C.-J. Hsieh, “Drnas: Dirichlet neural
architecture search,” in ICLR, 2021. 87

[176] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. So,
M. Texier, and J. Dean, “Carbon emissions and large neural network training,” arXiv
preprint arXiv:2104.10350, 2021. 103

116

