I. CATALYTIC ASYMMETRIC BROMO-SPIROLACTONIZATION
II. DESIGN AND DEVELOPMENT OF ORGANIC DYES FOR TRANSPARENT LUMINESCENT SOLAR CONCENTRATOR (TLSC) III. DISCOVERY OF A NOVEL CYANINE DEGRADATION PATHWAY

By

Mehdi Moemeni

A DISSERTATION

Submitted to
Michigan State University in partial fulfillment of the requirements for the degree of Chemistry—Doctor of Philosophy

Abstract

In Chapter I, a novel enantioselective method has been developed that leads to the formation of a variety of substituted spirolactones. This process furnishes the desired spirolactones in excellent yields and high enantioselectivities. Different categories of acidic and basic chiral catalysts were screened and the lead hit for achieving minimal enantioselectivity was obtained with a cinchona alkaloid derivatized at its $\mathrm{C} 9-\mathrm{OH}$ as a carbamate. With these results, we pursued the synthesis of a library of new catalyst families, in particular urea, thio-urea, carbamate and thio-carbamate systems and investigated them as asymmetric catalysts for the bromo spirolactonization reaction of oxo-alkenyl carboxylic acid substrates.

In Chapter II, a variety of near-infrared dyes with high quantum yield and large Stokes shift were synthesized for fabrication of transparent luminescent solar concentrators (TLSC) devices, leading to high power conversion efficiencies. Based on a combined experimental and computational study, a simple strategy for optimizing the Stokes shift in fluorescing cyanines was proposed. As a result, a significant Stokes shift enhancement in cyanine dyes was achieved as a result of C 4 '-substitution with amines.

In Chapter III, we discovered a non-photoactivated, oxygen-free, thermal degradation of cyanine dyes. Reaction optimization led to the developing of a new method for converting cyanines to truncated symmetric and asymmetric derivatives with high efficiency. We later used deuterium label tracing studies and deuterium exchange studies in addition to other supporting experiments to propose a mechanism for these transformations.

Dedicated to my parents, my family and Rahele for their endless love and support

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude and appreciation to my Ph.D. advisor, professor Babak Borhan for his understanding, endless support, motivation and kind guidance. I am really grateful to him for welcoming me to his research group and helping me through my projects while giving me the freedom to come up with new ideas and enjoy my chemistry. He is an amazing friend and accepted his students as his family and invited us for Thanksgiving, Christmas and New Year. We had great times in summer group camping, soccer games, fireworks on the 4th of July, and birthday cakes parties for everyone. Thanks for advising me both in my research and as well as on my career.

I am greatly thankful to my committee member, Professor James Jackson, Professor Xuefei Huang and Professor James Geiger, for their time, patience, support and guidance during my PhD program.

I would like to thank all my lab members, for their amazing friendship, help and support. I especially want to express my appreciation and gratitude to Dr. Chrysoula Vasileiou, for her endless help. The past members of Borhan group, especially Dr. Wei Sheng, Dr. Hadi Gholami, Dr. Bardia Soltanzadeh, Dr. Jun Zhang, Dr. Setare Tahmasebi Nick, Dr. Daniel Steigerwald and Dr. Debarshi Chakraborty for teaching me their skills and sharing their valuable knowledge and experience. I am very grateful to the current and former members of Borhan group that I have had the chance to work with them, especially Aria Vahdani, for working with me and helping me with multiple projects.

I would also like to thank my amazing collaborators: Professor Richard Lunt, Professor Gary Blanchard, Professor James Jackson, Professor Marcos Dantus,

Professor Benjamin Levine, Professor Piotr Piecuch, Dr. Chenchen Yang, Dr. Jurick Lahiri, Dr. Briana Capistran, Dr. Ilias Magoulas, Dr. Stephen Yuwono, Dr. Matthew Bates, Chris Herrera, Fangchun Liang and Andrew Wendel. I would like to extend my sincere gratitude to the MSU facility's leads, Dr. Daniel Holmes (NMR), Dr. Richard Staples (Crystallography) and Dr. Tony Schilmiller (Mass Spectrometry).

I want to deeply thank my family, especially my parents for their endless love, patience, support and encouragement. They spent countless times helping me during my education, and I will be forever grateful.

Finally, I want to thank the most important person in my life, Rahele my beloved wife. It is impossible to use words to describe how thankful I am to her. During these years in graduate school, I had many ups and downs, and she always was there to support me and cheer me up. She has been my driving force to wake up every morning from the first day I met her, and I couldn't want anything more than to work with her in the same lab and share all moments together. I definitely would not be standing here if it was not because of her love and encouragement. I dedicate this milestone to my best friend, Rahele.

TABLE OF CONTENTS

LIST OF TABLES vii
LIST OF FIGURES ix
LIST OF SYMBOLS AND ABBREVIATIONS xiv
Chapter I: Catalytic Asymmetric Bromo-Spirolactonization 1
I-1 Introduction; structural features of the spirolactone moiety 2
I-2 Chemical synthesis of spirolactones (previous approaches) 3
I-3 Development of halenium initiated spirolactonization 5
I-4 Development of asymmetric bromospirolactonization 12
I-5 Future work 34
I-6 Experimental section 39
REFERENCES 95
Chapter II: Design and Development of Organic Dyes for Transparent Luminescent Solar Concentrators (TLSCs) 100
II-1 Introduction of transparent luminescent solar concentrators (TLSCs) 101
II-2 Important parameters for investigating TLSC devices 102
II-3 Development of organic dyes for use with TLSC devices 104
II-4 Future work 137
II-5 Experimental section 140
REFERENCES 194
Chapter III: Discovery of a Novel Cyanine Degradation Pathway 199
III-1 Introduction to cyanine fluorescent dyes 200
III-2 Photo-degradation pathways of cyanine dyes 201
III-3 Discovery and development of a non-photoactivated, oxygen-free degradation of cyanine dyes. 205
III-4 Experimental section 231
REFERENCES 251

LIST OF TABLES

Table l-1. Reaction optimization for improving the diastereoselectivity of
spirolactonization 14
Table l-2. Asymmetric bromospirolatonization with basic catalysts 18
Table I-3. Reaction optimization for cat. I-51; temperature, solvent and Br source were altered 19
Table l-4. Study of the effects of different carbonyl linkers on asymmetricbromospirolatonization22
Table l-5. Reaction optimization for cat. l-54; temperature, solvent and Br source were altered 23
Table I-6. Catalyst optimization; study of electronic effect on the carbamate aryl group 25
Table l-7. Catalyst optimization; electronic and steric effect on aryl carbamate and quinoline 26
Table I-8. Study of thiourea, urea and carbamate catalysts 28
Table I-9. Grubbs cross metathesis results 31
Table I-10. Substrate scope study of uncatalyzed bromospirolactonizations 32
Table l-11. Substrate scope study of catalytic asymmetric bromospirolactonizations 34
Table II-1. Strategy toward large Stokes shift cyanine dyes 107
Table II-2. Spectroscopic data of amine substituted heptamethine cyanines 111
Table II-3. Spectroscopic data of dye II-13 in different solvents 113
Table II-4. Spectroscopic data of amine substituted ICG based cyanine dyes 115
Table II-5. Structure and spectroscopic data of amine substituted benzothiazole based cyanines 116
Table II-6. Important geometric parameters that determine the electronic character (bis- dipolar vs. cyanine-like) of the five structures in the parallel conformation ${ }^{\text {a }}$ 123
Table II-7. Spectroscopic properties and TLSC photovoltaic parameters ofCO8DFIC .. 131

Table II-8. Spectroscopic properties and TLSC photovoltaic parameters of CO;8DFIC .. 136

Table II- 9. Absolute energies of optimized geometries on the DFT level of theory. (CAM-B3LYP/6-31G*)168

Table II-10. Important geometric parameters for CAM-B3LYP/6-31G* structures ${ }^{\text {a..... }} 169$
Table III-1. Reaction optimization with secondary amine 209

Table III-2. Reaction optimization with tertiary amine ... 211

LIST OF FIGURES

Figure $\mathrm{I}-1$. Spirolactone moiety embedded in the structure of natural products. 2
Figure I-2. Spirolactonization via photo-oxidation of hydroxyalkyl furans 3
Figure l-3. Spirolactonization via palladium catalized CO insersion 4
Figure I-4. Rodriguez's approach to access the enantioselective spirolactones 5
Figure I-5. Yeung's approach to access the enantioselective spirolactones 5
Figure I-6. Glossary of our published enantioselective chlorocyclizationmethodologies6
Figure l-7. Two possible TS (classic vs NAAA) for chlorolactonizations 7
Figure I-8. Strategies towards diastereoselective bromospiroketalization. 8
Figure I-9. Bromocyclization of I-38 yields the macrocyclic bromoether as the major product 9
Figure I-10. Substrate I-40-THP furnished the desired bromospiroketal I-37 as a single isomer 10
Figure I-11. Diastereoselective dibromospiroketalization 11
Figure l-12. Enantioselective bromo spiroketalization with vaulted biaryl catalysts 12
Figure I-13. Strategy towards diastereoselective bromospirolactonization 13
Figure $\mathbf{I - 1 4}$. Bromospirolactonization results; X-ray crystal structure of l-46aand l-46b13
Figure l-15. Diastereselectivity study in the presence of acid 15
Figure I-16. Asymmetric bromospirolactonization with acidic catalysts; TS in dashed box 16
Figure l-17. Generalized structures for basic catalysts based on the cinchona alkaloid structure 19
Figure l-18. General synthesis of basic catalysts 21
Figure I-19. Synthetic methods for making substrates 30
Figure I-20. X-ray crystal structure of I-99a 33
Figure I-21. Development of di-bromo and di-halospirolactonization 35
Figure l-22. Proposed total syntheses of obtusallenes VI 37
Figure I-23. X-ray structure of I-46a (different views) 81
Figure I-24. X-ray structure of I-46b (different views) 85
Figure I-25. X-ray structure of I-100 (different views) 89
Figure I-26. X-ray structure of I-99a (different views) 94
Figure II-1. A. TLSC model that both UV and NIR light could absorb while visible lightpassing through. B. Spectra of chromophore; S stand for Stokes shift, W is the width ofemission peak (Permission to reproduce this figure is kindly provided by Prof. Lunt andDr. Yang)101
Figure II-2 A. Examples of $J-V$ curves for two different solar cells. B. External quantumefficiency spectra of a silicon and GaAs PV cells (Permission to reproduce this figure iskindly provided by Prof. Lunt and Dr. Yang)104
Figure II-3. LSC system as a function of calculated Stokes shift (Permission to reproduce this figure is kindly provided by Prof. Lunt and Dr. Yang) 105
Figure II-4. Correlation of Stokes shift and self-quenching 106
Figure II-5. Bis-dipole structure of substituted cyanines 108
Figure II-6. Synthesis of heptamethine cyanine dyes 109
Figure II-7. Synthesis of first series of amine substituted heptamethine cyaninedyes110
Figure II-8. Normalized absorption and fluorescence emission spectra (measured in DCM) for dyes II-10 (top left) and II-12 (top right), and dyes II-14 (bottom left) and II-15 (bottom right).112
Figure II-9. Structure of second series of amine substituted heptamethine cyanine dyes... 114
Figure II-10. Generalized cyanine-like and bis-dipolar structures of cyanine dyes 118
Figure II-11. Scatter plot of the experimental spectral energy maxima as a function of the DFT-computed theoretical excitation energies. Absorption and emission energies are shown by blue and red dots, respectively. The lowest energy conformer is chosen for II9 - II-14 and II-16, while for II-15, both the parallel (II-15\|) and perpendicular (II-15」) conformers are shown.120
Figure II-12. Scatter plot of the experimental spectral energy maxima as a function of the DFT-optimized bond length alternation coordinate (in angstrom). Absorption and emission energies are shown by blue and red dots, respectively. 121
Figure II-13. Broad absorbing spectra leads to harvesting higher photon numbers 125
Figure II-14. Structures of D-A-D dyes; DRCN7T and CO;8DFIC 127
Figure II-15. Synthesis steps of CO;8DFIC 128
Figure II-16. Data for CO8DFIC; a. Normalized absorption and emission spectra of inchlorobenzene solution, b. Normalized absorption and emission spectra of in polymermatrix, c. Current density versus voltage ($-\boldsymbol{-}$) characteristics of TLSCs with differentconcentrations, d. Average EQE Lsc (λ) spectra of TLSCs with different concentrations, e.Photographs of all the TLSC devices. (Permission to utilize the Spartan helmet logo iskindly provided by MSU.)130
Figure II-17. Schematic of the working principle of the dual-band selective harvesting TLSC 133
Figure II-18. Molecular structure, normalized absorption and emission spectra of $\mathrm{Cs}_{2} \mathrm{Mo}_{6} 1_{8}\left(\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{COO}_{6}\right)_{6}$ nanocluster 134
Figure II-19. Molecular structure, normalized absorption and emission spectra of BODIPY 135
Figure II-20. a. $J-V$ characteristics of TLSCs, b. Average EQEısc(λ) spectra of TLSCs. 135
Figure II-21. a. Amine C2-substituted cyanines, b. asymmetric cyclized aminated cyanine 137
Figure II-22. Proposed head groups to redshift the Cy5 core and, proposed new Cy5structures.. 138Figure II-23. General structure of D-A-D NIR I/II fluorophores.139
Figure II-24. Scatter plot of the experimental spectral energy maxima as a function of theDFT-optimized bond length alternation coordinate (in angstrom). Absorption andemission energies are shown by blue and red dots, respectively. 167
Figure III-1. Structure of famous cyanine dyes 200
Figure III-2. Cyanine photolysis products 201
Figure III-3. Mechanism and degradation products of cyanine photooxidation 202
Figure III-4. Photoblueing results from two carbon truncation 203
Figure III-5. Photodegradation mechanism (by Schnermann and co-workers) 204
Figure III-6. Photodegradation mechanism (by Lee and co-workers) 205
Figure III-7. A. Amination at C4' for tuning the Stokes shift, B. Amination at C3' resulted in corresponding Cy5 and As-Cy5 derivatives 206
Figure III-8. General synthesis of heptamethine cyanines 207
Figure III-9. Study the conversions on Cy7 to investigate the generality of this reaction 208
Figure III-10. Identified compounds from cyanine truncation with secondary amine 210
Figure III-11. Conversion of Cy7.5 in the presence of tertiary amine (DIPEA) 213
Figure III-12. Conversion of di-substituted cyanine 213
Figure III-13. Normalized absorption and emission of all cyanine's degradationfragments214
Figure III-14. A. Synthesis of Cy7-D ${ }_{5}$, B. Conversion of deuterated Cy7 with secondary amine 218
Figure III-15. A. Deuterium exchange in $\mathrm{D}_{2} \mathrm{O}$, B. Deuterium exchange in $\mathrm{D}_{2} \mathrm{O}$ and DIPEA. 219
Figure III-16. Proposed mechanism of cyanine conversion with secondary amines 221
Figure III-17. Conversion of deutrated Cy7 with tertiary amine (DIPEA) 221
Figure III-18. Recombinative chain shortening 222
Figure III-19. Proposed mechanism of cyanine conversion with tertiary amines 224
Figure III-20. Proposed mechanism of Cy7 conversion to Cy3 225
Figure III-21. Cy7 reaction with; A. neutralized head group, B. charged head group 225
Figure III-22. Cy5 conversion reactions failed in different conditions 226
Figure III-23. Optimized cyanine conversion reactions 227
Figure III-24. top: Normalized absorptions (in DCM), bottom: Normalized emissions (in DCM) 228

Figure III-25. Cyanine structures for stability study ... 229

LIST OF SYMBOLS AND ABBREVIATIONS

$\lambda e m$	emission wavelength
$\lambda_{\text {max }}$	absorption wavelength
<	less than
>	larger than
Å	angstrom
ACN	acetonitrile
Ar	aryl
As-Cy	asymmetric cyanine
AVT	average visible transmittance
$B n$	benzyl
BODIPY	boron-dipyrromethene
CaH_{2}	calcium hydride
CDCl_{3}	deuterated chloroform
CHCl_{3}	chloroform
cm^{-1}	wavenumber
Cy	cyanine
d	doublet
DBDMH	1,3-dibromo-5,5-dimethylhydantoin
DCDMH	1,3-dichloro-5,5-dimethylhydantoin
DCM	dichloromethane
DFT	density functional theory

DIBAL-H	diisobutylaluminium hydride
DMF	dimethylformamide
DMSO	dimethyl sulfoxide
$e e$	enantiomeric excess
$E Q E(\lambda)$	external quantum efficiency spectrum
equiv.	equivalent
er	diastereomeric ratio
ESI	electrospray Ionization
$\mathrm{Et}_{3} \mathrm{~N}$	triethylamine
EtOH	ethanol
$F F$	fill factor of a solar cell
g	gram
h	hour
Hal A	halenium affinity
HCl	hydrochloric acid
HPLC	high pressure liquid chromatography
HRMS	high resolution mass spectrometry
Hz	hertz
$i-\mathrm{Pr}$	isopropyl
IQE	internal quantum efficiency
IR	infrared
ISC	short-circuit current

J	current density
J	NMR coupling constant
$J-V$	current density-voltage characteristic
KOH	potassium hydroxide
M	molar
m	multiple
MeOH	methanol
mg	milligram
MgSO 4	magnesium sulfate
min	minute
mmol	millimole
N.R.	No Reaction
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	sodium sulfate
NAAA	nucleophile assisted alkene activation
NaH	sodium hydride
NaOH	sodium hydroxide
NBS	N -bromosuccinimide
$n \mathrm{BuLi}$	n-butyllithium
NC	nanocluster
NCS	N -chlorosuccinimide
NIR	near-infrared
nm	nanometer

NMR	nuclear magnetic resonance
PCE	power conversion efficiency
PV	photovoltaic
q	quartet
QY	quantum yield
r.t.	room temperature
SS	Stokes shift
t	triplet
TFA	tetrahydrofuran
THF	thin layer chromatography
TLC	transparent luminescent solar concentrator
TLSC	ultraviolet
UV	ultraviolet-visible
UV-Vis	chemical shift
δ	molar absorption coefficient
ε	

Chapter I: Catalytic Asymmetric Bromo-Spirolactonization

I-1 Introduction; structural features of the spirolactone moiety

The spirolactone moiety is a key skeletal unit of a number of biologically active natural products. Examples vary from the simple Massarinolin A and its analogs ${ }^{1}$ with antibacterial activity against drug-resistant strains to the structurally complex compounds Lancifodilactone G^{2} and Phainanoid F^{3} that show anti-HIV and immunosuppressive activity, respectively. Most spirolactone motifs found in natural products contain [5,5], $[5,6]$, $[6,5]$ and $[6,6]$ rings with different biological properties (Figure $1-1$). The spirolactones considered here are a subset of the spiroketal family with an ester functional group in one of the spiro rings.

Abiespirones a l-2 ROS scavenger [5,5]

Pseudolarolide H I-4 antimicrobial [6,5]

Spirolactones l-1

Terreolide E I-3 mushroom toxin
[6,6]

Soladulcoside A I-5 anti-tumor [5,6]

Figure l-1. Spirolactone moiety embedded in the structure of natural products
Spirolactones' biological applications and structural designs have attracted a large number of synthetic discoveries over the past few decades. In this vein, several approaches for the synthesis of racemic spirolactones have been reported. ${ }^{4-9}$ However,
stereoselective approaches for the synthesis of these motifs is still under development. Inspired by our success in asymmetric halofunctionalization of olefins, we aimed to develop a novel catalytic asymmetric method to furnish enantioselectively halogenated spirolactones.

I-2 Chemical synthesis of spirolactones (previous approaches)

Oxaspirolactones were synthesized for the first time in 1979 by Mitsunobu and coworkers. ${ }^{10}$ The photo-oxidation of hydroxyalkyl furans by Rose Bengal and oxygen, followed by attack with hydroxyl, resulted in the formation of the corresponding spirolactone. (Figure I-2).

Figure I-2. Spirolactonization via photo-oxidation of hydroxyalkyl furans
Since then, different groups have reported the racemic reactions for synthesis of oxaspirolactone through different mechanisms such as retro-aldol rearrangement, Wittig olefination, acid catalyzed spirolactonization, etc.4, 7, 9, 11, 12 One of the most recent approaches to access these motifs is the palladium-catalyzed cascade carbonylative cyclization, which was reported by Dai and co-workers. ${ }^{5}$ The mechanism goes through a
palladium C-C cleavage, followed by ketal formation and CO insertion which finally undergoes the lactonization to form the oxaspirolactone structure (Figure I-3).

Figure l-3. Spirolactonization via palladium catalized CO insersion
In terms of enantioselective approaches, there are only two examples, both of which have significant substrate bias. The first one was reported in 2013 by Rodriguez and co-workers. There an aminated spirolactone was formed by an asymmetric [3+2] reaction in the presence of BINOL-based chiral phosphoric acid and gold catalysts ${ }^{13}$ (Figure l-4). Primary aryl amines are obligatory starting material for this reaction. The second approach, published in 2020 by Yeung and co-workers, synthesized a phenyl substituted spirolactone through an asymmetric domino halocyclization of olefinic ketoacids. An electron-rich amino-thiourea catalyzed this transformation with high enantioselectivity ${ }^{14}$ (Figure I-5). All of the substrates studied in this work have the (vinylbenzoyl)benzoic acid core, which would result only in 5,5- bis-phenyl substituted spirolactones.

Figure l-4. Rodriguez's approach to access the enantioselective spirolactones

Figure l-5. Yeung's approach to access the enantioselective spirolactones

I-3 Development of halenium initiated spirolactonization

Our strategy toward the synthesis of spirolactones originated from our group's efforts towards the halofunctionalization of olefins. A summary of our asymmetric halofunctionalization methods is shown in Figure I-6. In 2010, our group reported the first asymmetric chlorofunctionalization of olefins ${ }^{15}$. The Sharpless ligand (DHQD) ${ }_{2}$ PHAL was discovered to be the preferred catalyst for the enantioselective chlorocyclization of 4-aryl-4-pentenoic acids in the presence of 1,3-dichloro-5,5-diphenylhydantoin (DCDPH) as the terminal chlorenium source. The generality of this condition to promote enantioselective
halocyclization of other substrates was then evaluated. This effort showed that unsaturated amides could be chlorocyclized using similar reaction conditions to give access to chiral halogenated oxazoline products. ${ }^{16}$ Intriguingly, implementation of an unsaturated carbamate led to the development of a solvent-dependent enantiodivergent reaction whereby either enantiomer of the product could be accessed using the same catalyst by simply changing the reaction solvent. ${ }^{17}$

Figure I-6. Glossary of our published enantioselective chlorocyclization methodologies
The study of the mechanism of chlorolactonizations of olefins prompted the development of new concepts to be able define the transition state structures for this chemistry. The halenium affinity scale (HalA) was developed to introduce a thermodynamic measure that quantifies the donor/acceptor interaction with the halenium
that is being transferred. ${ }^{18}$ The HalA values of numerous molecules were reported, and their patterns were experimentally verified through NMR studies, supporting the concept of HalA-guided predictive reactivity. Examination of the HalA of olefins and halogenation species showed that the classical stepwise reaction mechanism of electrophilic addition to alkenes would not lead to formation of the observed products. This resulted in the discovery of the role of nucleophiles in halofunctionalization reactions. We found a direct and strong correlation between the strength of the nucleophile and rate of halofunctionalization, which led to the proposal of the Nucleophile Assisted Alkene Activation (NAAA) concept. ${ }^{19}$

4

HalA(Cl)

TS1-Classic
$\mathrm{HalA}(\mathrm{Cl})$

TS2-NAAA

Figure l-7. Two possible TS (classic vs NAAA) for chlorolactonizations

As shown in Figure I-7, the calculation of the transition state does not lead to a Cl^{+} transfer in the classical transition state picture (TS1) since the HalA of the double bond is $167.4 \mathrm{kcal} / \mathrm{mol}$: around $6 \mathrm{kcal} / \mathrm{mol}$ less that of than our halogen donor DCDMH. The HalA values indicate that the halogen would prefer to remain on DCDMH , rather than to transfer to the nucleophile. However, in the NAAA figure, the carboxylic acid adds in a concerted manner with the halenium to the olefin, leading to an increase of the olefin's HalA, enabling it to compete with the halogen donor (TS2). The interaction of the carboxylic acid group leads to an increase of $\mathrm{HalA}(173.3 \mathrm{kcal} / \mathrm{mol})$, approaching the HalA of DCDMH anion (173.6 kcal/mol).

The NAAA concept has guided us in reaction design and more recently we reported, a diastereoselective halenium initiated bromo- and dibromospiroketalization method ${ }^{20}$. A plethora of structurally diverse bioactive natural products reveals the spiroketal moiety. Not surprisingly, their biochemical properties have attracted a great deal of synthetic exploration over the past few decades. In this vein, several elegant strategies towards stereoselective construction of spiroketal cores have been reported. In contrast to approaches that focus on controlling the stereoselectivity in the ketalization

Figure I-8. Strategies towards diastereoselective bromospiroketalization event ${ }^{21-23}$ our work was based on exploiting the thermodynamics associated with the transition state (TS) in halofunctionalization of olefin l-36 (see TS-1, Figure l-8). Owing to
the weak nucleophilicity of the templated ketone, interception of the halenium atom by the activated olefin in I-36 will transpire putatively via a late transition state. In the proposed asynchronous concerted addition (Ade3), it is anticipated that stereospecificity will be defined by the templating group (-OPG), engaged in enhancing the nucleophilic character of the ketone in the incipient oxocarbenium. Initial $\mathrm{HalA}(\mathrm{Br})$ guided optimizations revealed 3-bromo-1-chloro-5,5-dimethylhydantoin (BCDMH) as an ideal bromenium source generated in situ by combining equimolar amounts of DBDMH and DCDMH.

Figure I-9. Bromocyclization of I-38 yields the macrocyclic bromoether as the major product

Substrate l-38, which exists in equilibrium with the corresponding hemiketals, reveals either an alkene proximal ether moiety in I-38a or the hydroxyl moiety in l-38b, poised for pre-polarization of the alkene (Figure I-9). Surprisingly, bromofunctionalization
of I-38 furnished the macrocyclic bromoether I-39 as a major product (>98:2 dr), indicating a conformational preference of the hemiketal intermediate, kinetically biased towards I38a.

As anticipated from the HalA(Br) values, substrate l-40-THP furnished the desired bromospiroketal I-37 as a single isomer (Figure I-10). The generality of this transformation was evaluated with a variety of substrates, and good to excellent yields and drs were obtained.

Figure l-10. Substrate I-40-THP furnished the desired bromospiroketal I-37 as a single isomer

To access the dibromo- spiroketal scaffold of natural products, we initially exploited the stereoelectronics associated with the six- membered oxocarbenium ion, using a variety of keto- alkenols. As it shown in Figure l-11, when ethanol was omitted from the reaction mixture to avoid the early trans-ketalization of tetrahydropyranyl from intermediate-(I), the templated oxocarbenium underwent rapid conversion to enol ether (II) via deprotonation at the β-carbon (C3). A pseudo- axial capture of another bromenium
ion by the nucleophilic olefin in (II) did eventually yield the dibromo-spiroketal. Unexpectedly, inclusion of water from conc. HCl facilitates the removal of THP group. HCl was necessary to effect the desired transformation. With the oxocarbenium intermediate embedded in a six- membered ring, dibromospiroketals were obtained in good yields and diastereoselectivities.

Figure l-11. Diastereoselective dibromospiroketalization
Our group's attempts to develop an enantioselective version of the bromospiroketalization failed with (DHQD) ${ }_{2}$ PHAL (cinchona alkaloid dimers). This motivated us to evaluate a new Brønsted acid/Lewis base catalytic system. To this aim, we investigated the Vanol- Imidodiphosphoramide type catalysts. The initial data showed the dihedral angle (the angle between the substituents at the 7,7'-positions on each VANOL ligands of the catalyst), plays a critical role in enantioinduction (dashed box in Figure I-12). This angle depends on the nature of the 7,7 '-substituents, and further studies indicated that an adamantyl group at these positions induced the highest enantioselectivity in the asymmetric bromospiroketalization reaction (Figure I-12). In this
recent work, the generality of this enantioselective transformation was evaluated for different substrates, and good to excellent yields and enantiomeric ratios (er) were obtained.

I-42-Cat. $\quad \mathrm{R}=$ adamantyl
Figure l-12. Enantioselective bromo spiroketalization with vaulted biaryl catalysts

I-4 Development of asymmetric bromospirolactonization

We sought to further extend our methodology by replacing THP protected alcohols with carboxylic acids. We planned to take advantage of halofunctionalization of olefins, with the intention of generating the valuable spirolactone moiety which, as previously mentioned, is a key skeletal moiety found in a number of biologically active natural products. Based on our previous studies, we envisioned that unsaturated substrate l-48 would undergo bromofunctionalization followed by nucleophilic attack of the ketone, resulting in the formation of the oxacarbenium. Upon generation of the oxacarbenium, subsequent trapping by the carboxylic acid would furnish the spirolactone (Figure I-13).

Figure l-13. Strategy towards diastereoselective bromospirolactonization

As illustrated in Figure l-14, our initial study for the uncatalyzed reaction exhibited excellent yields (up to 92\%) and moderate diastereoselectivity (2.5:1) for 6,5-bromo spirolactones.

Figure I-14. Bromospirolactonization results; X-ray crystal structure of I-46a and I-46b
The reaction showed similar results with different bromine sources (NBS, DBDMH, DBDPH, and BCDMH). The relative stereochemistry of halogenated spirolactone products was established by X-ray crystal structure. The directed diastereoselectivity stems from the direction of attacking acid relative to the ketone. Attempts toward improving the diastereoselectivity are listed in Table l-1. The effects of temperature, solvent and various halogen sources were examined.

Table l-1. Reaction optimization for improving the diastereoselectivity of spirolactonization

[a] drs were estimated by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis. [b] BCDMH generated in situ by combining 1 equivalent of each DBDMH and DCDMH, [c] reaction did not complete in 1 hour.

The results indicate that the halenium source does not affect the $d r$ ratio, while higher temperatures $\left(50{ }^{\circ} \mathrm{C}\right)$, increase the diastereoselectivity to $4: 1$ (entry 5). We then focused on the reversible ring opening of the oxaspirolactone motif under acidic conditions. As shown in Figure I-15a, running the bromospirolactonization reaction under the same conditions with a catalytic amount of $\mathrm{HCl}(12 \mathrm{~N})$, led to complete
diastereoselective conversion. We envisioned that acid would play a role after the formation of products, and to confirm our hypothesis, a $1: 1$ mixture of the two diastereomers were treated with a catalytic amount of acid in toluene. After one hour, the ${ }^{1} \mathrm{H}$ NMR showed a single diastereomer (a) in the reaction, which reaffirmed the complete conversion of \mathbf{b} to \mathbf{a} under acidic condition (Figure $\mathrm{I}-15$). In the presence of acid, the oxygen atom opens the lactone ring, resulting in the oxacarbonium intermediate. Subsequently, the nucleophilic carboxylic acid could then attack from either axial or equatorial direction, with the axial product favored as anticipated due to the anomeric stabilization. (Figure I-15b).
a. acid mediated bromospirolactonization

b. proposed mechanism

Figure l-15. Diastereselectivity study in the presence of acid
We started our investigation of the stereoselective bromospirolactonization reaction with acidic catalysts, since they were previously shown to induce excellent
enantioselectivity in the case of bromospiroketalization. The reactions carried out with different acid catalysts, are shown in Figure I-16. The reaction with aryl-substituted (S)VANOL phosphoric acid catalyst I-47, showed no enantiomeric excess (50:50\% er) and a 2.5:1 diastereomeric ratio. Studying the reaction with the adamantyl substituted vaulted biaryl catalyst I-42, previously shown to be successful for the enantioselective bromospiroketalization reaction, led to improvement of the diastereoselectivity to $>10: 1$, but no enantiomeric excess was observed in this reaction. Also, the rate of the reaction for phosphoric acid catalysts did not differ compared to the uncatalyzed reaction, while the vaulted biaryl catalyst provided a slight improvement in the reaction rate.

I-46b

I-47

$$
\begin{gathered}
\mathrm{R}_{1}=\text { phenyl } \\
\mathrm{R}_{2}=4-t \mathrm{tBu}-\mathrm{C}_{6} \mathrm{H}_{4} \\
2.5: 1 \mathrm{dr} \\
50: 50 \mathrm{er}
\end{gathered}
$$

I-42
$\mathrm{R}=$ adamantyl $>10: 1 \mathrm{dr}$ 50:50 er

In the presence of basic catalyst, nucleophile-assisted alkene activation (NAAA) is effective

Figure I-16. Asymmetric bromospirolactonization with acidic catalysts; TS in dashed box
Perhaps, the weak nucleophilicity of the carboxylic acid group, especially under acidic conditions, does not promote the formation of the proposed intermediate (see l-48, Figure I-16). NAAA activation of the olefin would seemingly be more effective in the
presence of basic catalyst. Based on these results, we began to investigate a series of basic catalysts. From this investigation we found an interesting result from our previous cinchona alkaloid dimers. As shown in Table I-2, the studies were performed at $-40^{\circ} \mathrm{C}$, since background reactions are effectively suppressed at this temperature. Although $(\mathrm{DHQD})_{2}$ PHAL did not induce chirality in the reaction, it did highly accelerate the rate of the reaction relative to the uncatalyzed version. It led to good yield (82\%) with 2:1 diastereomeric ratio and 55:45 enantiomeric ratio. Optimization of the reaction with (DHQD) ${ }_{2}$ PHAL with different temperatures and a variety of solvents resulted in good yield (73-84\%) and almost analogous $d r$ (2:1), but no significant improvement in er was observed. To narrow down which component of (DHQD) ${ }_{2} \mathrm{PHAL}$ is catalyzing the reaction we truncated the structure it into its constituent components, and ran the reaction with only DHQD as the catalyst. The reaction proceeded with comparable rate and yield. At this point, we realized the need to introduce a handle to our catalyst to induce facial selectivity. Inspired by previous halolactonizations, ${ }^{24}$ we designed and synthesized a thiocarbamate cinchona derivative catalyst I-51. Applying this catalyst in the same conditions led to 69:31 er, providing a promising start for further structural optimizations (see Table I-2, entry 4).

Table I-2. Asymmetric bromospirolatonization with basic catalysts

[a] drs were estimated by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis. [b] ers were almost the same for two diastereomers.

A structural advantage of this catalyst is that there are many potential points of optimization that could lead to an increase in the enantioselectivity of the reaction. The general structure l-52 highlights the domains for further studies. We could investigate steric and electronic perturbations, as well as the nature of the carbonyl linker between the aryl group and the alkaloid (carbamate/thiocarbamate, urea/thiourea). The influence of different substitutions on the quinoline ring could be probed, as well as modulation of the basicity of the quiniclidine nitrogen atom.

Figure I-17. Generalized structures for basic catalysts based on the cinchona alkaloid structure

Before optimizing the catalyst structure, we intended to study different conditions that may affect the enantiomeric ratio. As shown in Table l-3, we altered temperature (Table I-3, entry 2), solvent and bromine source, however, none of them improved the er to more than 69:31\%.

Table I-3. Reaction optimization for cat. I-51; temperature, solvent and Br source were altered

Ph					
Entry	Cat.	Br Source	Solvent	Temp.	$e r^{a}$ (\%)
1	$\mathrm{I}-51$	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$0^{\circ} \mathrm{C}$	66:34
2	$\mathrm{I}-51$	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40{ }^{\circ} \mathrm{C}$	69:31
3	$\mathrm{I}-51$	NBS	PhMe	$-40{ }^{\circ} \mathrm{C}$	52.5:47.5

Table l-3 (cont'd)

4	I-51	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-50{ }^{\circ} \mathrm{C}$	65:35
5	I-51	NBS	CHCl_{3}	$-40{ }^{\circ} \mathrm{C}$	60:40
6	I-51	DBDMH	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40{ }^{\circ} \mathrm{C}$	66.5:33.5
7	I-51	NBP	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40{ }^{\circ} \mathrm{C}$	66.5:33.5

Isolated yields are between 68-93\%; drs were estimated by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis and were between (1.5:1 to 2:1); NBP is N-bromophthalimide. [a] ers were almost the same for two diastereomers.

The data demonstrated that $-40^{\circ} \mathrm{C}$, NBS as bromine source, and a $2: 1$ mixture of PhMe: CHCl_{3} gave the optimal enantiomeric outcome. Based on these initial results, we realized the need to alter the catalyst structure to further increase enantioselectivity. Our general strategy for synthesizing the catalysts are summarized in Figure l-18. Proper cinchona alkaloid derivatives was synthesized and reacted with functionalized isocyanate or isothiocyanate.

Figure I-18. General synthesis of basic catalysts
Our first attempt was focused on the carbonyl linker between the aryl group and the alkaloid. In addition, we synthesized the carbamate, urea, and thiourea version of thiocarbamate catalyst l-51. As illustrated in Table I-4, running the reaction in the presence of urea catalyst I-52 and thiourea catalyst I-53 dropped the enantiomeric ratio to 55:45\% and 50:50\%, respectively while carbamate catalyst l-54 increased it drastically to $85: 15 \%$.

Table l-4. Study of the effects of different carbonyl linkers on asymmetric bromospirolatonization

Entry	Cat.	Br Source	Solvent	Temp.	$d r^{a}(a: b)$	$e r^{\text {b }}$ (\%)
1	I-51	NBS	$\mathrm{PhMe}: \mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	1.5:1	69:31
2	I-52	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	1.1:1	55:45
3	I-53	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	1:1.1	50:50
4	I-54	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	1.7:1	85:15

Isolated yields were between 72-94\%. [a] drs were estimated by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis. [b] ers were almost the same for two diastereomers.

Catalyst I-54 has the potential to be an ideal candidate for asymmetric bromospirolactonization; and as such, we sought to understand the different conditions that may influence the enantiomeric ratio. As shown in Table l-5, we altered temperature, solvent, and bromine source. Also, we studied the effect of different additives such as benzoic acid and 4-nitrobenzenesulfonamide (NsNH_{2}).

Table I-5. Reaction optimization for cat. I-54; temperature, solvent and Br source were altered

Entry	Cat.	Br Source	Solvent	Temp.	Time (h)	$e r^{a}$ (\%)
1	I-54	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$0^{\circ} \mathrm{C}$	12	68:32
2	I-54	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-20^{\circ} \mathrm{C}$	20	74.5:25.5
3	I-54	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-30{ }^{\circ} \mathrm{C}$	20	80:20
4	I-54	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	20	85:15
5	I-54	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-50{ }^{\circ} \mathrm{C}$	24	73:27
$6^{\text {d }}$	I-54	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	20	73:27
7	I-54	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-70^{\circ} \mathrm{C}$	28	61.5:38.5
8	I-54	NBS	PhMe: $\mathrm{CHCl}_{3}(1: 1)$	$-40^{\circ} \mathrm{C}$	20	82:18
9	I-54	NBS	PhCl	$-40^{\circ} \mathrm{C}$	20	73.5:26.5
10	I-54	NBS	ACN	$-40^{\circ} \mathrm{C}$	20	56:44
11	I-54	NBS	Toluene	$-40{ }^{\circ} \mathrm{C}$	20	62.5:37.5
12	I-54	NBS	CHCl_{3}	$-40^{\circ} \mathrm{C}$	16	80:20
13^{e}	I-54	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	20	78:22
14^{f}	I-54	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	20	77:23
15	I-54	DBDMH	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	20	65.5:35.5

Table l-5 (cont'd)

16	I-54	NBA	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40{ }^{\circ} \mathrm{C}$	20	76:24
17	I-54	NBP	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40{ }^{\circ} \mathrm{C}$	20	73:27

[a] ers were almost the same for two diastereomers. [b] drs were estimated by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis and were between 1.1:1 to $2: 1$ [c] Isolated yields were between 66-94\%. [d] Chloroform included 0.75\% EtOH [e] Benzoic acid (1 equiv) was added as an additive. [f$] \mathrm{NsNH}_{2}$ (1 equiv) was added as an additive.[g] NBA is N -bromoacetamide.

Between several evaluated bromine sources, NBS gave the best results, with an optimal temperature of $-40^{\circ} \mathrm{C}$. Higher temperatures reduced the er due to increasing rate of the background reactions. Lower temperature led to a decrease in er as well, which may suggest that the catalyst conformation is altered or catalyst is aggregated. Nonetheless, the 2:1 mixture of solvents ($\mathrm{PhMe}: \mathrm{CHCl}_{3}$) was optimal. At this point, we focused on the electronic and steric effects of the carbamate aryl group. First, we investigated the impact of electron-withdrawing groups (EWG) such as CF_{3} on the phenyl ring (catalysts I-55 and I-56, Table I-6), however these catalysts resulted in significantly lower enantiomeric ratio compared to the electron-rich dimethoxy aryl catalyst I-54. Based on this observation, we kept the methoxy group at the ortho position and introduced a methyl group at the meta position, which based on Hammett values, is slightly electrondonating (catalysts I-57 and I-58, Table I-6). We also varied the meta-methyl group with methoxy, which is a weak EDG at this position (catalyst I-59). The other catalyst was made from 2-methyl-4-methoxy isocyanate: the methoxy and methyl at these positions act as a strong and weak EDG, respectively (catalyst I-60).

Table I-6. Catalyst optimization; study of electronic effect on the carbamate aryl group

Ph	$\xrightarrow[\text { I-4 }]{ }$			$\begin{array}{r} 1-46 a \\ 0 \end{array}$		
Entry	Cat.	Br Source	Solvent	Temp.	$d r^{a}(\mathrm{a}: \mathrm{b})$	$e r^{\text {b }}$ (\%)
1	I-55	NBS	$\mathrm{PhMe}: \mathrm{CHCl}_{3}(2: 1)$	$-40{ }^{\circ} \mathrm{C}$	1.7:1	62.5:37.5
2	I-56	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	1.1:1	58:42
3	I-57	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	1.8:1	64:36
4	I-58	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40{ }^{\circ} \mathrm{C}$	1:1.2	60:40
$5^{\text {c }}$	I-59	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	1.1:1	52.5:47.5
6	1-60	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40{ }^{\circ} \mathrm{C}$	1.5:1	70:30

Isolated yields were between 72-94\%. [a] drs were estimated by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis. [b] ers were almost the same for two diastereomers. [c] yield was less than 30%.

All these changes decreased the enantiomeric ratio compared to the 2,4dimethoxy catalyst I-54. As tabulated in Table I-7, we then investigated trimethoxy-
substituted synthesized ([2,3,4-],[2,4,6-] and [3,4,5-] trimethoxy catalysts) catalyst I-61, I62 and I-63 respectively. The steric effect of functional groups was examined by means of introduction of bulky isopropyl relative to the methyl group, generating the 2,4diisopropyl derivative (catalyst I-64). The influence of substitutions on the quinoline ring was additionally probed. To do this, we envisioned substituting the methoxy group with hydrogen to see if an EDG is obligatory for a functional catalyst (catalyst I-65). Previously, the steric effect of this functional group on the quinoline showed a large impact on the enantiomeric ratio for other reactions. ${ }^{25}$ As such, we switched the methyl group with a bulky isobutyl to test the steric effect.

Table I-7. Catalyst optimization; electronic and steric effect on aryl carbamate and quinoline

					$\mathrm{Ph}_{\mathrm{I}-46 \mathrm{~b}}^{\mathrm{Zr}} \underset{\mathrm{ZO}}{\mathrm{Z}}=0$	
Entry	Cat.	Br Source	Solvent	Temp.	$d r^{a}(\mathrm{a}: \mathrm{b})$	$e r^{\text {b }}$ (\%)
$1^{\text {c }}$	I-61	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	2.2:1	52.5:47.5
$2^{\text {c }}$	I-62	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	1.2:1	62:38
$3^{\text {c }}$	I-63	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	1.6:1	56.5:43.5
4	I-64	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	2:1	80.5:19.5
5	I-65	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	2:1	79:21
6	I-66	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40^{\circ} \mathrm{C}$	1.8:1	77.5:22.5

Isolated yields were between 63-84\%. [a] drs were estimated by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis. [b] ers were almost the same for two diastereomers. [c] yield was less than 30%.

Table l-7 (cont'd)

The trimethoxy substituted catalysts I-61, I-62 and I-63 did not lead to enantiomeric ratios higher than the 2,4-dimethoxy substituted catalyst I-54. The data showed that the sterics of the alkoxy group do not have an effect on enantiomeric excess of the reaction. Studies conducted on the quinoline moiety revealed that the functional group at C6 position does play a critical role in the enantiomeric excess of the reaction. Also, replacing the methoxy with hydrogen decreased the er. However, the sterics of that functional group did not affect the reaction to any appreciable extent.

In the next step, the pseudo-enantiomer of catalyst I-54 was synthesized (catalyst I-67) and was examined in the enantioselective bromospirolactonization reaction, which led to opposite enantioinduction with a slightly lower er (Table I-8). Subsequently, we studied the amide derivative of cinchona alkaloid (catalyst I-68) which was utilized in prior asymmetric halofunctionalizations. Also, we tested catalyst I-67 which was recently reported for the domino halocyclization reaction ${ }^{14}$ (Table I-8, entry 3) The urea and carbamate derivative of this catalyst was also synthesized (I-68 and I-69) and examined
for asymmetric bromospirolactonization. These series of catalysts showed moderate to good yield (58-89\%) and up to $1.5: 1 \mathrm{dr}$ but, none of these catalysts was able to improve the er compared to catalyst l-54.

Table I-8. Study of thiourea, urea and carbamate catalysts

Entry	Cat.	Br Source	Solvent	Temp.	$d r^{\text {a }}$ (a:b)	$e r^{\text {b }}$ (\%)
1	I-67	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40{ }^{\circ} \mathrm{C}$	1.5:1	75:25
2	I-68	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40{ }^{\circ} \mathrm{C}$	1:1	52.5:47.5
3	I-69	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40{ }^{\circ} \mathrm{C}$	1.1:1	57:43
4	1-70	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40{ }^{\circ} \mathrm{C}$	1.1:1	52:48
5	1-71	NBS	PhMe: $\mathrm{CHCl}_{3}(2: 1)$	$-40{ }^{\circ} \mathrm{C}$	1:1	50:50

Isolated yields were between 58-89\%. [a] drs were estimated by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis. [b] ers were almost the same for two diastereomers.

The upshot of these studies is that catalyst I-54 remached the best of the group. While we were actively seeking to optimize this catalyst and other parameters of the reaction condition to improve the enantiomeric ratio, we aimed to examine the generality of this method. In order to do this, we sought to synthesize a library of appropriate substrates. As shown in Figure l-19 (method A), Our first method for generating the phenyl substrate I-45 proceeded by generating the phosphonium ylide I-73 from 3bromopropanol, which underwent a Wittig reaction with benzaldehyde to generate homoallylic alcohol I-74. After bromination of alcohol in the presence of PBr_{3}, we attempted to react with succinic anhydride via its corresponding Grignard. This method has two major drawbacks for making the substrate library; the first being that the final step is low yielding, and the yield tended to fluctuate. Secondly, the overall lack of atom and stepwise economy meant a laborious process to complete all 4 steps for each substrate. To mitigate this issue, we designed and develop a divergent method to make the starting materials. As shown in Figure I-19 (method B), compound I-80 was synthesized following the reported procedure. ${ }^{26}$ The allyl bromide reacted with methyl acetoacetate in a basic condition to generate the keto ester I-77, which was converted to di-ester I-79 in the presence of sodium hydride. Decarboxylation with potassium hydroxide led to the formation of a keto ester substrate with a terminal alkene l-80 (we run large scale reactions for these 3 steps). Lastly, every substrate was stitched together with the terminal olefin, via a Grubbs cross metathesis reaction. The substrates that were successfully synthesized are listed in Table I-9.

Method A:

Method B:

Figure I-19. Synthetic methods for making substrates

Table I-9. Grubbs cross metathesis results

Entry	R	Product	Yield (\%)	Entry	R	Product	Yield (\%)
1	Ph	I-45	71	7	$4-\mathrm{CH}_{3} \mathrm{CO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	I-87	57
2	$4-\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}$	I-82	61	8	β-naphthyl	1-88	61
3	$3-\mathrm{NO}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$	I-83	33	9	4- $\mathrm{CH}_{3} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}$	I-89	49
4	4- $\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$	I-84	42	10	t-Bu	I-90	54
5	$4-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$	I-85	72	11	Cy	I-91	38
6	4-F-C6 H_{4}	I-86	55	12	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}$	I-92	59

As summarized in Table 1-10, the generality of the uncatalyzed bromospirolactonization reaction was investigated. The keto-acids presented in Table I10 were subjected to halenium atom initiated cascade spirolactonization under optimized conditions. The crystal structure of product I-45 was used to establish the relative stereochemistry in the halogenated spirolactone products. The reactions proceeded in moderate to high yield for different functional groups and different ring sizes. The rate was slower for the 4-chloro phenyl substrate and led to lower yield (Table I-10, entry 5) compared to phenyl substrate (Table I-10, entry 1). One hypothesis is that the electron withdrawing effect of chlorine at the para position decreases the nucleophilicity of the double bond toward abstracting the halogen. As shown in Table I-10 (entry 8), the [6,6]-

Table l-10. Substrate scope study of uncatalyzed bromospirolactonizations

	-	NBS $(1.1$ PhM 1 to 24				 product of entry 7	
Entry	R^{1}	R^{2}	R^{3}	n	Product	Yield (\%)	$d r^{a}$
1	Ph	H	H	1	I-45	92	2.5:1
2	4- $\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}$	H	H	1	I-93	89	1:1.2
3	$4-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$	H	H	1	I-94	90	1:1.5
4	4-F-C6 H_{4}	H	H	1	I-95	81	1:1.85
5	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	H	H	1	I-96	40	1:1.1
6	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}$	H	H	1	I-97	58	1:1
7	H	H	Ph	1	I-98	84	1:1
8	Ph	H	H	2	I-99	79	10:1

[a] drs were estimated by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis.
spirolactone core was obtained via diastereoselective bromospirolactonization (10:1 dr). The crystal structure of the major diastereomer of I-99 product was obtained and showed the carboxylic acid reside in the axial position as anticipated due to anomeric stabilization (Figure l-20). The corresponding [5,5]-spirolactone l-98 was formed in good yield by installing the phenyl group at the R_{3} position (Table I-10, entry 7). The transition state of [5,5]-spirolactonization does not enjoy the same level of stability from the anomeric effect, thus leading to reduced $d r$.

I-99a

Figure I-20. X-ray crystal structure of I-99a
The generality of the asymmetric catalytic bromospirolactonization is reported in Table $\mathrm{I}-11$. The enantioselective reaction of the above keto-acid substrates were exploited with catalyst I-54 under optimized condition. The reactions proceeded in moderate to excellent yield for different functional groups and ring sizes. The distereoselectivity ranged from 1:1 to 1.9:1 and did not vary significantly between substrates. Modulating the electronic profile or the size of the substituents, had a significant effect on the enantiomeric ratio of the reactions. In case of electron rich 4methoxy substrate (Table l -11, entry 2), the enantiomeric ratio dropped drastically to 57.5:42.5\% relative to the phenyl substituted $85: 15 \%$ (entry 1). Presumably, strong electron donating group at para position would increase the nucleophilicity of the olefin and not requiring the activation for bromenium capture. In this system, the oxacarbenium template dominated by $N A A A$ would be absent. The enantiomeric ratio of the 4 -fluorophenyl substrate was the same as for phenyl, since fluoro is slightly electron withdrawing at para position (entry 4) and, 4-chloro and 4-methyl reactions resulted in a slightly lower er (entry 3 and 4). This reaction was not compatible with different ring sizes and as shown in Table l-11, the er dropped dramatically for $[5,5]$ and $[6,6]$ substrates (entries 6 and 7).

Table l-11. Substrate scope study of catalytic asymmetric bromospirolactonizations

Entry	R^{1}	R^{2}	R^{3}	n	Product	Yield (\%)	$d r^{a}$	$e e^{\text {b }}$
1	Ph	H	H	1	I-45	94	1.7:1	85:15
2	4- $\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}$	H	H	1	I-93	58	1.5:1	57.5:42.5
3	$4-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$	H	H	1	I-94	89	1.9:1	76:24
4	4-F-C6 H_{4}	H	H	1	I-95	78	1.7:1	84:16
5	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	H	H	1	I-96	69	1.7:1	75:25
6	H	H	Ph	1	I-98	81	1:1	60:40
7	Ph	H	H	2	I-99	83	1.5:1	57.5:42.5

a] drs were estimated by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis. [b] ers were almost the same for two diastereomers.

I-5 Future work

I-5-1 Development of di-bromospirolactonization

During reaction optimization studies on mono-bromospirolactonization, we found that an excess amount of a more reactive bromine source (toward halofunctionalization) led to a second bromination of the oxane ring. As shown in Figure l-21a, excess of 3-bromo-1-chloro-5,5-dimethylhydantoin (BCDMH); generated in situ by combining equimolar amounts of DBDMH and DCDMH was able to furnish the di-bromospirolactonization product. The relative stereochemistry of di-brominated spirolactone product was confirmed by an X-ray crystal structure. This reaction is currently under further
development and optimization. Also, in the case that a second bromine is substituted after generation of the mono-bromospirolactone, there is a great potential to develop dihalogenated spirolactones with different halogens (Figure I-21b). Lastly, we could study the first enantioselective di-bromospirolactone using the carbamate derivatives of cinchona alkaloid catalyst I-54.
a. di-bromospirolactonization result and X-ray crystal structure

b. proposed di-halospirolactonization

Figure I-21. Development of di-bromo and di-halospirolactonization

I-5-2 Toward the total synthesis of Obtusallenes V and VI

After developing the mono and di-bromospirolactonization reaction, we intended to extend our chemistry by applying this method to access Obtusallene VI, a dihalogenated C_{15}-macrocyclic ether. This macrocycle was isolated in 2000 from a red seaweed, Laurencia obtuse. ${ }^{27,28}$ Since its isolation, its synthesis has not been reported and remains an elusive synthetic target. The synthesis of obtusallene VI will be pursued by first making
keto-acid I-80 as described above, which will undergo a cross metathesis ${ }^{29}$ with the known protected alcohol $\mathbf{I - 1 0 2}{ }^{30}$ to afford $\mathbf{I - 1 0 3}$. This intermediate is then set up for the key bromo spirolactonization reaction to generate compound l-104 (Figure I-22). As shown in Table I-11, we demonstrated the synthesis of the 5,5 -spirolactone and the transformation of I-103 to I-104 would be carried out under the same conditions. Currently, this step is under investigative screening with different catalysts. We propose the use of the Comins reagent which was used to make the vinyl triflate of a similar compound previously ${ }^{31}$ followed by a Negishi cross-coupling with the Reformatsky derived zincated ethyl ester should presumably lead to I-105. ${ }^{32-34}$ The conjugated ester I106 would be generated via β-chlorination of the vinyl ether in the presence of a mild chlorenium source and subsequent deprotonation. ${ }^{35-37}$ The olefin l-106 should be reduced by hydrogen atom transfer methods due to the susceptibility of the alkyl bromide and allylic chloride to reduction. ${ }^{38-40}$ Putatively, the reduction will occur syn to the chlorine, since in an energy minimized structure of l-106, the alternate face is sterically hindered. This is presumed to be mediated by interactions with the spiro oxygen atom. Reducing the ethyl ester to the aldehyde and subsequent Julia-Kocienski olefination results in enyne $\mathbf{I}-110,{ }^{41}$ which, after deprotection of the alcohol will undergo an intramolecular bromoetherification, ${ }^{42}$ generating natural product l-111. It should however be noted that although the stereochemistry of the C4 ether bond originates from the olefin faceselectivity (calculation showed $\Delta \mathrm{E}>2.2 \mathrm{kcal} / \mathrm{mol}$ for the $\mathrm{Z}-110$ rotomer that leads to the undesired face selectivity), the stereochemistry for the allenyl bromide is unpredictable.

Alternatively, the E-olefin of l-110 can be synthesized with l-109,41 and tested for the bromoetherification that leads to obtusallene VI.

Figure I-22. Proposed total synthesis of obtusallenes VI

In summary, we have developed a bromospirolactonization method based on the application of halenium affinity (Ha / A) as a guiding tool in conjunction with Nucleophile Assisted Alkene Activation (NAAA). A series of acid/base catalysts were studied to develop a catalytic asymmetric bromospirolactonization reaction, and ultimately led to the conlcusion that carbamate and thiocarbamate derivatives of cinchona alkaloid-based catalysts are able to induce chirality in the reaction. Further optimization revealed that a 2,4-methoxy functionalized carbamate would lead to the highest enantiomeric ratio. While further catalyst optimization is ongoing in our lab, we have tested and demonstrated the generality of the reaction.

I-6 Experimental section

I-6-1 General remarks:

Molecular sieves $\left(4 \AA\right.$) were dried at $160{ }^{\circ} \mathrm{C}$ under 0.25 mtorr vacuum prior to use. Unless otherwise mentioned, solvents were purified as follows. CHCl_{3} (amylene stabilized) was purchased from Sigma Aldrich and incubated over $4 \AA$ MS for 48 h prior to use. Toluene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried over CaH_{2} whereas THF and $\mathrm{Et}_{2} \mathrm{O}$ were dried over sodium (dryness was monitored by colorization of benzophenone ketyl radical); they were freshly distilled prior to use. NMR spectra were obtained using a 500 MHz or 600 MHz Varian NMR spectrometer and referenced using the residual ${ }^{1} \mathrm{H}$ peak from the deuterated solvent. Waters 2795 (Alliance HT) instrument was used for HRMS (ESI) analysis with polyethylene glycol (PEG-400-600) as a reference.

Column chromatography was performed using Silicycle $60 \AA$, 35-75 μ m silica gel. Pre-coated 0.25 mm thick silica gel 60 F254 plates were used for analytical TLC and visualized using UV light, iodine, potassium permanganate stain, p-anisaldehyde stain or phosphomolybdic acid in EtOH stain.

Halofunctionalization reactions were performed in the absence of light. Nbromosuccinimide (NBS), N-chlorosuccinimide (NCS), 1,3-dichloro-5,5dimethylhydantoin (DCDMH), and 1,3-dibromo-5,5-dimethylhydantoin (DBDMH) were recrystallized prior to use. All other commercially available reagents and solvents were used as received unless otherwise mentioned.

1-6-2 General procedure for racemic bromo spirolactonization of keto-acids

The keto-acid substrate (0.1 mmol) and N -bromosuccinimide, NBS (0.11 mmol) were suspended in dry toluene (3 mL) in a 25 mL round bottom with a magnetic stir bar under a nitrogen balloon. The reaction mixture was stirred at room temperature and followed by TLC. Upon completion, the reaction mixture was diluted with hexanes (3 mL) and quenched by addition of sodium thiosulfate (3 ml of a 10% aqueous solution). The organic layer was separated, and the aqueous layer was extracted with hexanes (3×3 $\mathrm{mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure at room temperature to give the crude product. Crude ${ }^{1} \mathrm{H}$ NMR was used to determine the diastereoselectivity of the reaction. The crude product was then purified by column chromatography (silica, ethyl acetate/hexanes =1:10) leading to the pure bromo spirolactone products.

I-6-3 General procedure for catalytic asymmetric bromo spirolactonization of

 keto- acids

The N-bromosuccinimide, NBS (0.12 mmol) and catalyst (15 mol \%) placed in a test tube with a magnetic stir bar and capped with a rubber septum under an argon balloon
in the dark (the reaction covered with aluminum foil). The reaction tube cooled to $-40^{\circ} \mathrm{C}$ and a mixture of dry toluene (2 mL) and dry chloroform (1 mL) was added via syringe. After 20 minutes, the keto-acid substrate (0.1 mmol) was added in one portion. The reaction stirred at this temperature and followed by TLC. Upon completion, the reaction mixture was diluted with hexanes (3 mL) and quenched by addition of sodium thiosulfate (3 ml of a 10% aqueous solution). The organic layer was separated, and the aqueous layer was extracted with hexanes $(3 \times 3 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure at room temperature to give the crude product. Crude ${ }^{1} \mathrm{H}$ NMR was used to determine the diastereoselectivity of the reaction. The crude product was then purified by column chromatography (silica, ethyl acetate/hexanes 10%) leading to the pure bromo spirolactone products.

I-6-3-1 Analytical data

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was formed as a mixture of diastereomers \mathbf{a} and \mathbf{b} (1.7:1) and isolated as a white solid ($29 \mathrm{mg}, 94 \%$ yield, 85:15 er).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.39-7.34(\mathrm{~m}, 5 \mathrm{H}), 4.92(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (ddd, $J=11.9,10.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dt}, J=17.8,10.6, \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.45(\mathrm{~m}, 3 \mathrm{H})$, $2.33-2.27(m, 1 H), 2.16-2.04(m, 3 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 175.96, 138.27, 128.86, 128.28, 127.85, 107.06, $79.25,49.88,41.75,35.68,33.95,31.72,27.93$.

HPLC analysis: Chiralpak IA, 99:1 hexane/i-PrOH, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=215 \mathrm{~nm}$, retention time $=22.3 \mathrm{~min}$ (major), 26.2 min (minor).

HRMS: TOF MS AP ${ }^{+}\left(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrO}_{3}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 311.0285$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 311.0287$.

l-46b
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.47-7.33(\mathrm{~m}, 5 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ $(\mathrm{td}, J=10.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.48(\mathrm{~m}, 4 \mathrm{H}), 2.38-2.07(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 175.09, 138.00, 128.94, 128.37, 127.67, 107.33, 81.68, 49.70, 34.73, 31.49, 29.60, 27.70.

HRMS: TOF MS AP ${ }^{+}\left(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrO}_{3}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 311.0285$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 311.0287$.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was formed as a mixture of diastereomers \mathbf{a} and \mathbf{b} (1.5:1) and isolated as a white solid ($20 \mathrm{mg}, 58 \%$ yield, 57.5:42.5 er).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.91(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{td}, J=10.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.72(\mathrm{~m}, 1 \mathrm{H})$ $2.64-2.46(\mathrm{~m}, 3 \mathrm{H}), 2.31(\mathrm{t}, \mathrm{J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.06(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 175.96,159.88,130.55,129.01,113.68,107.12$, 78.86, 55.27, 50.19, 35.71, 33.96, 31.77, 27.94.

HPLC analysis: Chiralpak IA, 98:2 hexane/i-PrOH, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=215 \mathrm{~nm}$, retention time $=31.5 \mathrm{~min}$ (major), 39.3 min (minor).

HRMS: TOF MS AP ${ }^{+}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrO}_{4}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 341.0390$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 341.0392$.

I-93b
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.35(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.82 \mathrm{~Hz}, 2 \mathrm{H})$, $4.64(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{td}, J=10.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.51(\mathrm{~m}, 4 \mathrm{H})$, $2.34-2.05(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.08,159.95,130.28,128.87,113.75,107.36,81.33$, 55.29, 50.10, 34.82, 31.55, 29.59, 27.72.

HRMS: TOF MS AP ${ }^{+}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrO}_{4}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 341.0390$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 341.0390$.

I-94a

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was formed as a mixture of diastereomers \mathbf{a} and \mathbf{b} (1.9:1) and isolated as a white solid (29 mg, 89\% yield, 76:24 er).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.29$ - 7.26 (m, 2H), 7.19 (d, J=7.9 Hz, 2H), 4.90 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{ddd}, J=12.0,10.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{ddd}, J=17.9,10.7,9.6$ Hz, 1H), $2.62-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{ddd}, \mathrm{J}=13.3,9.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-$ 2.06 ($\mathrm{m}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 176.02, 138.74, 135.36, 129.03, 127.73, 107.10, 79.07, 49.95, 35.68, 33.95, 31.74, 27.93, 21.29.

HPLC analysis: Chiralpak IA, 98:2 hexane/i-PrOH, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=215 \mathrm{~nm}$, retention time $=14.4 \mathrm{~min}$ (major), 18.2 min (minor).

HRMS: TOF MS AP ${ }^{+}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrO}_{3}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 325.0441$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 325.0439$.

I-94b
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform-d) $\delta 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.65(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (ddd, $J=10.7,9.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.65$ $-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.07(\mathrm{~m}$, $2 H)$.
${ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform-d) δ 175.09, 138.82, 135.10, 129.09, 127.56, 107.33, 81.56, 49.83, 34.76, 31.52, 29.62, 27.71, 21.25.

I-95a

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was formed as a mixture of diastereomers \mathbf{a} and \mathbf{b} (1.7:1) and isolated as a white solid ($25 \mathrm{mg}, 78 \%$ yield, 84:16 er).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}$, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{td}, J=10.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.34-2.05(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 175.01,162.89(\mathrm{~d}, J=247.6 \mathrm{~Hz}$), 133.94 ($\mathrm{d}, J=3.5$ $\mathrm{Hz}), 129.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 115.33(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 107.32,81.00,49.83,34.78,31.47$, 29.55, 27.67.
${ }^{19}$ F NMR (470 MHz , Chloroform-d) $\delta-112.82--112.90(\mathrm{~m})$.

HPLC analysis: Chiralpak IA, 98:2 hexane/i-PrOH, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=215 \mathrm{~nm}$, retention time $=21.6 \mathrm{~min}$ (major), 24.0 min (minor).

HRMS: TOF MS AP+ $\left.{ }^{+} \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrFO}_{3}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 329.0190$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 329.0194$.

I-95b
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.40-7.34$ (m, 2H), 7.07 (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.94 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{td}, J=11.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.46(\mathrm{~m}, 4 \mathrm{H}), 2.38-2.02(\mathrm{~m}, 4 \mathrm{H})$, ${ }^{13} \mathrm{C}$ NMR (201 MHz , Chloroform- d) δ 175.89, 162.84 (d, $J=248.08 \mathrm{~Hz}$), 134.21, 129.56 (d, $J=8.3 \mathrm{~Hz}$), $115.24(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 107.03,78.56,50.02,35.64,33.93,31.67,27.90$.
${ }^{19}$ F NMR (470 MHz , Chloroform-d) $\delta-112.68--112.76(\mathrm{~m}, \mathrm{FF})$.

HRMS: TOF MS AP ${ }^{+}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrFO}_{3}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 329.0190$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 329.0191$.

I-96a

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was formed as a mixture of diastereomers \mathbf{a} and \mathbf{b} (1.7:1) and isolated as a white solid ($24 \mathrm{mg}, 69 \%$ yield, 75:25 er).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.30-7.21$ (m, 4H), 4.86-4.80 (d, $J=10.58,1 \mathrm{H}$), 3.89 (td, $J=11.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.22(\mathrm{t}, \mathrm{J}=11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.12-1.97(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 175.77, 136.81, 134.63, 129.21, 128.50, 106.94, 78.59, 49.70, 35.61, 33.92, 31.64, 27.85.

HPLC analysis: Chiralpak IA, 98:2 hexane/i-PrOH, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=215 \mathrm{~nm}$, retention time $=14.3 \mathrm{~min}$ (major), 18.0 min (minor).

HRMS: TOF MS AP ${ }^{+}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrClO}_{3}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 344.9895$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 344.9895$.

I-96b
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.40-7.35$ (m, 4H), $4.67(\mathrm{~d}, J=9.8,1 \mathrm{H}), 4.04$ (td, J $=10.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.52(\mathrm{~m}, 4 \mathrm{H}), 2.36-2.07(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 174.90, 136.56, 134.73, 129.04, 128.57, 107.27, 80.99, 49.50, 34.66, 31.39, 29.64, 27.64.

HRMS: TOF MS AP ${ }^{+}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrClO}_{3}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 344.9895$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 344.9897$.

l-98a\&b

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was formed as a mixture of diastereomers \mathbf{a} and \mathbf{b} (1:1) and isolated as a white solid ($25 \mathrm{mg}, 81 \%$ yield, 60:40 er).

Diastereomer a:

${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.37-7.30$ (m, 4H), $7.29-7.26$ (m, 1H), 3.61 (d, J $=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dt}, J=17.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.28$ ($\mathrm{m}, 7 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) δ 175.69, 143.80, 128.41, 127.77, 125.06, 116.76, 88.58, 42.56, 37.30, 35.32, 31.79, 29.07.

HPLC analysis: Chiralpak IA, 98:2 hexane/i-PrOH, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=215 \mathrm{~nm}$, retention time $=17.7 \mathrm{~min}$ (major), 22.7 min (minor).

HRMS: TOF MS AP ${ }^{+}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrO}_{3}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 311.0285$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 311.0285$.

Diastereomer b:
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.41-7.35$ (m, 4H), $7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~d}, \mathrm{~J}$ $=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dt}, J=17.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.30(\mathrm{~m}$, 6 H), 2.00 (td, $J=12.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CdCl}_{3}$) $\delta 175.47,142.31,128.29,127.80,125.39,115.86,88.68$, 41.68, 36.39, 35.75, 31.71, 28.96.

HRMS: TOF MS AP ${ }^{+}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrO}_{3}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 311.0285$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 311.0288$.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was formed as a mixture of diastereomers \mathbf{a} and \mathbf{b} (1.5:1) and isolated as a white solid ($27 \mathrm{mg}, 83 \%$ yield, 57.5:42.5 er).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.38-7.34$ (m, 5H), 4.97 (d, J = $10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (ddd, $J=12.2,10.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.36$ $(m, 2 H), 2.12-1.91(m, 4 H), 1.84-1.76(m, 1 H), 1.76-1.67(m, 1 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 170.77$, 138.49, 128.68, 128.17, 127.88, 102.61, 78.08, 50.47, 36.78, 32.66, 30.26, 29.33, 15.26.

HPLC analysis: Chiralpak AD-H, 98:2 hexane/i-PrOH, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=215 \mathrm{~nm}$, retention time $=15.2 \mathrm{~min}$ (minor), 17.3 min (major).

HRMS: TOF MS AP+ $\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrO}_{3}\right)$: Calc. $[\mathrm{M}-\mathrm{H}]^{+}$: 323.0281, Found $[\mathrm{M}+\mathrm{H}]^{+}$: 323.0280.

The title compound was prepared according to the general procedure I-6-2 at 0.1 mmol scale. Product was formed as a mixture of diastereomers \mathbf{a} and \mathbf{b} (1:1) and isolated as a white solid ($18 \mathrm{mg}, 58 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.24(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{dd}, J=5.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{td}, J=11.2,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.79-2.64(m, 1 H), 2.53-2.37(m, 3 H), 2.29-2.20(m, 1 H), 2.11-1.91(m, 3 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 175.78$, 141.36, 127.58, 126.41, 125.71, 106.95, 75.06, 50.54, 35.44, 33.85, 31.70, 27.88.

HRMS: TOF MS AP ${ }^{+}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrO}_{3} \mathrm{~S}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 316.9849$, Found $[\mathrm{M}+\mathrm{H}]^{+}$: 316.9847.

${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.32(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02-6.95(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.26(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.70(\mathrm{~m}, 1 \mathrm{H})$, $2.66-2.50(m, 3 H), 2.25-2.10(m, 4 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) δ 175.04, 141.52, 126.40, 126.32, 126.01, 107.11, 49.66, 33.27, 30.90, 29.99, 27.79.

The title compound was prepared according to the general procedure l-6-2 at 0.1 mmol scale, except using DCDMH, DBDMH (1 equiv. each) as bromine source. Product was formed as a single diastereomer and isolated as a white solid ($11 \mathrm{mg}, 28 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.46-7.37$ (m, 5H), 4.97 ($\mathrm{d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.50 (ddd, $J=11.9,10.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, \mathrm{J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.71$ $(m, 2 H), 2.59-2.43(m, 2 H), 2.29-2.19(m, 1 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) δ 175.26, 137.57, 129.13, 128.39, 127.92, 106.29, 79.33, 51.52, 45.77, 39.72, 34.43, 29.71, 28.23.

HRMS: TOF MS AP ${ }^{+}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrO}_{3} \mathrm{~S}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 388.9390$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 388.9391$.

I-6-4 Synthesis of keto-acid substrates I-45, I-82 to I-92

The ketone substrates were synthesized according to the following general scheme:

I-6-4-1 Synthesis of keto-ester I-77

Following the reported procedure ${ }^{26}$, methyl acetoacetate ($4.45 \mathrm{~mL}, 41.3 \mathrm{mmol}$) was added dropwise under nitrogen to a suspension of $\mathrm{NaH}(60 \%$ on mineral oil, 2.48 g , $62 \mathrm{mmol})$ in dry THF (100 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at this temperature and n-BuLi ($18.17 \mathrm{~mL}, 2.50 \mathrm{M}, 45.43 \mathrm{mmol}$) was added dropwise. The
mixture was stirred for another 30 min and allyl bromide ($4.28 \mathrm{~mL}, 49.56 \mathrm{mmol}$) was added. The reaction stirred for 45 minutes before cautiously, quenched by $2 \mathrm{M} \mathrm{HCl}(30$ $\mathrm{mL})$. The reaction was extracted with diethyl ether ($3 \times 75 \mathrm{~mL}$). The combined organic layers were washed with saturated NaHCO_{3} and NaCl . The combined organic extracts dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure at room temperature to give the product I-77 as an orange liquid (6.45 g, 100\%).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 5.79$ (ddt, $J=16.9,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.10-4.95$ (m, 2H), $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.31(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 201.87, 167.57, 136.49, 115.61, 52.37, 49.06, 42.06, 27.38.

I-6-4-2 Synthesis of di-ester I-79

Following the reported procedure ${ }^{26}, \mathrm{NaH}(60 \%$ on mineral oil, $2.48 \mathrm{~g}, 62 \mathrm{mmol}$) was added portionwise to a solution of compound I-77 (6.45 g, 41.3 mmol) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at this temperature and methyl bromoacetate I-78 ($3.94 \mathrm{~mL}, 41.3 \mathrm{mmol}$) was added dropwise. The reaction was warmed up to the room temperature and stirred for 2 hours before cautiously, quenched by $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$. The reaction was extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic layers dried
with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure at room temperature. The crude product was then purified by column chromatography (silica, ethyl acetate/hexanes 10% to 30%) leading to the pure product I-79 as a yellow liquid (6.12 g , 65\%).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 5.69$ (ddt, $J=16.8,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.97-4.84$ (m, 2H), 3.91 (dd, $J=8.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{dd}, J=17.6,8.3$ $H z, 1 H), 2.79-2.69(m, 2 H), 2.68-2.61(m, 1 H), 2.29-2.19(m, 2 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 202.94, 171.64, 168.67, 136.60, 115.22, 53.59, 52.58, 51.87, 41.72, 31.99, 27.22.

I-6-4-3 Synthesis of acid I-80

Following the reported procedure ${ }^{26}$, To a solution of compound I-79 (3.65 g, 16 mmol) in ethanol (75 mL) was added potassium hydroxide ($4.48 \mathrm{~g}, 80 \mathrm{mmol}$) and heated at reflux for 4 hours. The reaction was cooled and concentrated under reduced pressure. Then water (50 mL) was added to the solution and acidified to PH 1 by 2 M HCl . The reaction stirred for 10 minutes and extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic layers dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure at room temperature. The crude product was then purified by column chromatography
(silica, ethyl acetate/hexanes 20% to 40%, acetic acid 0.5% was added to solvent mixture) leading to the pure product l-80 as a yellow solid ($1.52 \mathrm{~g}, 61 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 10.44$ (br s, 1H), 5.80 (ddt, $J=16.8,10.2,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.10-4.89(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.61(\mathrm{~m}, 4 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.32(\mathrm{~m}$, $2 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 208.06, 178.90, 136.87, 115.38, 41.69, 36.83, 27.74, 27.66.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{3}\right)$: Calc. $[\mathrm{M}-\mathrm{H}]^{-}: 155.0708$, Found $[\mathrm{M}-\mathrm{H}]^{-}: 155.0711$.

I-6-4-4 General procedure for Grubbs cross metathesis

Following the reported procedure, ${ }^{43}$ to a solution of keto-acid I-80 (2 mmol) and vinyl derivatives (6 mmol) in DCM (20 mL) was added Grubbs-II ($15 \mathrm{~mol} \%$) and heated at reflux overnight under argon. The completion of the reaction monitored by TLC and then, solvent was evaporated under reduced pressure at room temperature. The crude product was then purified by column chromatography (silica, ethyl acetate/hexanes 20\% to 30%) leading to the pure derivatives of keto-acid products.

I-6-4-5 Analytical data

The title compound was prepared according to the general procedure at 2 mmol scale. Product was isolated as a white solid (329 mg, 71\% yield)
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.36$ - 7.26 (m, 4H), $7.23-7.19$ (m, 1H), 6.42 (dt, J $=15.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dt}, J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.63(\mathrm{~m}$, 4H), $2.54-2.49$ (m, 2H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 207.94, 178.59, 137.36, 130.86, 128.66, 128.52, 127.12, 126.03, 42.18, 36.92, 27.78, 27.06.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3}\right)$: Calc. $[\mathrm{M}-\mathrm{H}]^{-}: 231.1021$, Found $[\mathrm{M}-\mathrm{H}]^{-}: 231.1025$.

The title compound was prepared according to the general procedure at 2 mmol scale. Product was isolated as a white solid ($320 \mathrm{mg}, 61 \%$ yield)
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.34(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dt}, J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.70(\mathrm{~m}, J$, $2 H), 2.66-2.60(m, 4 H), 2.51-2.44(m, 2 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, cdcl3) δ 208.12, 178.70, 158.82, 130.19, 127.13, 126.45, 113.92, 55.28, 42.34, 36.91, 27.76, 27.07.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4}\right)$: Calc. $[\mathrm{M}-\mathrm{H}]^{-}:$261.1127, Found $[\mathrm{M}-\mathrm{H}]^{-}$: 261.1130.

The title compound was prepared according to the general procedure at 2 mmol scale. Product was isolated as a white solid ($252 \mathrm{mg}, 42 \%$ yield)
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform-d) $\delta 10.65(\mathrm{br} s, 1 \mathrm{H}) 7.53(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dt}, J=15.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.70(\mathrm{M}$, $2 H), 2.70-2.62(m, 4 H), 2.57-2.48(m, 2 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 207.75,178.91,140.87,131.55,129.65,128.82$ (q, $J=32.3 \mathrm{~Hz}), 126.17,125.42(\mathrm{q}, J=3.8 \mathrm{~Hz}), 41.76,36.86,27.75,26.96$.
${ }^{19}$ F NMR (470 MHz, Chloroform-d) δ-62.42 (s, 3F).

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{3}\right)$: Calc. $[\mathrm{M}-\mathrm{H}]^{-}:$299.0895, Found $[\mathrm{M}-\mathrm{H}]^{-}$: 299.0899.

I-85

The title compound was prepared according to the general procedure at 2 mmol scale. Product was isolated as a white solid ($354 \mathrm{mg}, 72 \%$ yield)
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 10.90$ (br s, 1 H), 7.24 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.11 (d, J $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dt}, J=15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 208.17, 178.71, 136.84, 134.60, 130.66, 129.22, 127.64, 125.94, 42.24, 36.95, 27.86, 27.09, 21.17.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{3}\right)$: Calc. $[\mathrm{M}-\mathrm{H}]:$: 245.1178, Found $[\mathrm{M}-\mathrm{H}]$: 245.1176.

1-86

The title compound was prepared according to the general procedure at 2 mmol scale. Product was isolated as a white solid ($275 \mathrm{mg}, 55 \%$ yield)
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 10.16$ (br s, 1H), 7.28 (dd, $J=8.5,5.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.97 (t, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{t}, J=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 207.93, 178.79, 162.01 (d, $J=246.0 \mathrm{~Hz}$), 133.52 (d, $J=3.3 \mathrm{~Hz}), 129.68,128.39(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 127.47(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.34(\mathrm{~d}, J=21.5$ Hz), 42.10, 36.89, 27.75, 26.96.
${ }^{19}$ F NMR (470 MHz, Chloroform-d) $\delta-115.35$ (m, 1F).

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{FO}_{3}\right)$: Calc. $[\mathrm{M}-\mathrm{H}]^{-}: 249.0894$, Found $[\mathrm{M}-\mathrm{H}]^{-}: 249.0902$.

1-87

The title compound was prepared according to the general procedure at 2 mmol scale. Product was isolated as a white solid (330 mg, 57\% yield)
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.32(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.39(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dt}, J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.69-$ 2.61 (m, 4H), 2.50 (q, J=7.0 Hz, 2H), 2.29 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 209.46, 175.05, 169.79, 149.78, 135.38, 129.39, 128.99, 126.47, 126.47, 121.32, 41.44, 36.61, 27.26, 26.69, 19.50.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{5}\right)$: Calc. $[\mathrm{M}-\mathrm{H}]^{-}:$289.1076, Found $[\mathrm{M}-\mathrm{H}]^{-}$: 289.1072.

I-88

The title compound was prepared according to the general procedure at 2 mmol scale. Product was isolated as a white solid ($344 \mathrm{mg}, 61 \%$ yield)
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.78(\mathrm{t}, 3 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dt}, J=15.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, cdcl3) $\delta 207.92,178.18,134.82,133.64,132.76,130.98,129.11$, 128.11, 127.89, 127.63, 126.18, 125.66, 125.62, 123.48, 42.19, 36.94, 27.68, 27.16.

1-90

The title compound was prepared according to the general procedure at 2 mmol scale. Product was isolated as a white solid ($229 \mathrm{mg}, 54 \%$ yield)
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform-d) $\delta 5.46(\mathrm{dt}, J=15.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dt}, J=15.5,6.6$ Hz, 1H), $2.73-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.33-2.23$ (m, 3H), $0.96(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 208.50, 176.21, 142.76, 122.59, 42.75, 36.99, 32.80, 29.64, 27.37, 26.89.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3}\right)$: Calc. $[\mathrm{M}-\mathrm{H}]^{-}: 211.1334$, Found $[\mathrm{M}-\mathrm{H}]^{-}: 211.1330$.

1-91

The title compound was prepared according to the general procedure at 2 mmol scale. Product was isolated as a white solid ($180 \mathrm{mg}, 38 \%$ yield)
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 5.44-5.28$ (m, 2H), 2.73 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.7-$ $2.62(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.71-$ $1.63(m, 4 H), 1.29-0.98(m, 6 H)$.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{3}\right)$: Calc. $[\mathrm{M}-\mathrm{H}]^{-}:$237.1490, Found $[\mathrm{M}-\mathrm{H}]^{-}: 237.1491$.

I-92

The title compound was prepared according to the general procedure at 2 mmol scale. Product was isolated as a white solid ($180 \mathrm{mg}, 59 \%$ yield)
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 11.34$ (s, 1H), 7.08 (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.94-6.90$ (m, 1H), $6.87(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05-6.97(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{t}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 4 \mathrm{H}), 2.45(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) δ 207.93, 178.66, 142.51, 128.58, 127.27, 124.73, 124.10, 123.48, 41.97, 36.93, 27.86, 26.81.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~S}\right)$: Calc. $[\mathrm{M}-\mathrm{H}]^{-}: 237.0585$, Found $[\mathrm{M}-\mathrm{H}]^{-}: 237.0591$.

The title compound was prepared according to the procedure l-6-4-3 at 2 mmol scale. Product was isolated as a white solid (261 mg, 53\% yield)
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform-d) $\delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.18(\mathrm{~m}$, $1 \mathrm{H}), 6.41(\mathrm{dt}, J=15.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dt}, J=15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2H), $2.57-2.46(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 209.40, 179.52, 137.36, 130.82, 128.76, 128.53, 127.14, 126.02, 42.29, 41.48, 33.00, 27.10, 18.50.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{3}\right)$: Calc. $[\mathrm{M}-\mathrm{H}]^{-}:$245.1178, Found $[\mathrm{M}-\mathrm{H}]^{-}$: 245.1174.

The title compound was prepared according to the procedure $\mathrm{I}-6-4-3$ at 2 mmol scale. Product was isolated as a white solid (218 mg, 47\% yield)
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 11.12(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.07$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=7.85 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-2.58(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 208.02, 178.73, 146.99, 140.49, 128.44, 127.64, 126.10, 112.92, 41.36, 36.93, 29.18, 27.74.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3}\right)$: Calc. $[\mathrm{M}-\mathrm{H}]^{-}: 231.1021$, Found $[\mathrm{M}-\mathrm{H}]^{-}$: 231.1017.

I-6-5 Synthesis of the amine derivative of dihydroquinidine I-114

Following the reported procedure, ${ }^{44}$ to a solution of dihydroquinidine, DHQD (6g, $18.4 \mathrm{mmol})$ in DCM (36 mL) was added $\mathrm{Ph}_{3} \mathrm{P}(5.79 \mathrm{~g}, 22.05 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 30 minutes under nitrogen balloon. The solution cooled to $0{ }^{\circ} \mathrm{C}$ and the diisopropyl azodicarboxylate, DIAD ($4.33 \mathrm{~mL}, 22.05 \mathrm{mmol}$) was added dropwise and kept the solution temperature below $5^{\circ} \mathrm{C}$. After 5 minutes, a solution of diphenyl phosphoryl azide, DPPA ($4.75 \mathrm{~mL}, 22.05 \mathrm{mmol}$) in DCM (8 mL) was added dropwise while the solution temperature kept around $0^{\circ} \mathrm{C}$. The mixture was warmed up to $20^{\circ} \mathrm{C}$ and stirred for 2 hours to form the azide derivative intermediate. Next, $\mathrm{H}_{2} \mathrm{O}(8.1$ $\mathrm{mL})$ and a solution of $\mathrm{Ph}_{3} \mathrm{P}(8.7 \mathrm{~g}, 33.12 \mathrm{mmol})$ in $\mathrm{DCM}(8 \mathrm{~mL})$ was added and the reaction stirred overnight at room temperature. The reaction quenched by 3 N HCl to pH 2.2 and the product was in upper aqueous layer which washed with DCM. After discarding the organic layer, 28% aqueous ammonia was added to the aqueous layer to adjust pH to above 10. The solution was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers
dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure at room temperature. The crude product was then purified by column chromatography (silica, ethyl acetate/methanol/ammonium hydroxide 50:49.5:0.5\%) leading to the pure product I-114 as a yellow oil ($3.65 \mathrm{~g}, 61 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.69(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ $-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=9.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.78(\mathrm{~d}, 10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H})$, $3.35(\mathrm{~s}, 1 \mathrm{H}), 3.14-2.95(\mathrm{~m}, 4 \mathrm{H}), 2.87-2.78(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.06-0.98$ (m, 1H), $0.90(\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol- d_{4}) δ 158.39, 148.22, 147.00, 143.63, 131.63, 130.11, $128.90,122.23,101.04,62.65,54.77,48.98,48.61,48.45,37.04,26.56,25.80,25.50$, 24.31, 10.77.

I-6-6 General procedure for the synthesis of cinchona alkaloid derivatives

Following the reported procedure, ${ }^{24} \mathrm{NaH}(60 \%$ on mineral oil, $80 \mathrm{mg}, 2 \mathrm{mmol})$ was added to a solution of cinchona derivative (1 mmol) and isocyanate/isothiocyanate derivative (1 mmol) in THF (5 mL). The reaction was stirred at room temperature for overnight and the completion of the reaction monitored by TLC. After quenching the reaction with water (10 mL), the solution was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The
combined organic layers washed with NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure at room temperature. The crude product was then purified by column chromatography (silica, methanol/DCM 10\%) leading to the pure catalyst products as white solids.

The compound existed as a mixture of rotamers. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.56$ $-10.47(\mathrm{~m}, 1 \mathrm{H}), 8.78-8.67(\mathrm{~m}, 1 \mathrm{H}), 7.99-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.06(\mathrm{~m}, 5 \mathrm{H}), 6.63-$ $6.45(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.47(\mathrm{~m}, 9 \mathrm{H}), 3.19-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.43$ $(m, 2 H), 1.70-1.36(m, 5 H), 1.31-1.21(m, 3 H), 0.90-0.79(m, 3 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 190.23, 188.36, 160.00, 159.62, 157.60, 157.41, 155.21, 148.00, 147.87, 144.96, 144.56, 144.51, 131.69, 131.65, 129.38, 128.39, 127.62, 127.27, 121.90, 121.72, 120.46, 120.24, 120.09, 118.99, 104.81, 102.96, 99.51, 99.32, $79.77,79.66,77.77,60.07,59.78,56.08,55.98,55.83,55.78,55.66,55.56,50.65,50.59$, $49.39,49.36,37.47,37.36,27.35,27.10,26.08,25.85,25.54,25.29,23.81,23.66,12.43$, 12.42.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 522.2427$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 522.2421$.

${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol- d_{4}) $\delta 8.61(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=9.3$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.96$ $(\mathrm{s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.91-12.71(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.15$ $(\mathrm{m}, 7 \mathrm{H}), 1.05-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol-d4) $\delta 158.21,156.35,155.67,149.76,147.69,147.00$, $143.71,130.11,128.73,122.35,121.81,120.22,119.28,103.58,101.61,98.14,59.89$, $54.95,54.80,54.54,48.91,48.85,37.04,26.69,25.73,24.88,19.83,11.04$.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{4}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 505.2815$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 505.2812$.

${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.58(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $8.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.45(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H})$,
3.18 (ddd, $J=10.6,9.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.32$ (m, 6H), $1.13(\mathrm{dd}, J=12.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol-d4) $\delta 181.20$, 159.37, 158.01, 154.24, 147.33, 146.83, 143.63, 129.75, 128.81, 127.47, 122.38, 119.80, 119.35, 103.97, 102.60, 98.50, 59.88, $54.98,54.61,54.58,49.27,48.60,37.16,26.68,25.82,24.74,10.93$.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 521.2578$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 521.2586$.

${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.65(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ - $7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{dd}, \mathrm{J}=9.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.27(\mathrm{~m}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}$, $3 H), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.89-2.59(\mathrm{~m}, 4 \mathrm{H}), 2.07-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.24$ $(m, 7 H), 0.93-0.82(m, 3 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol-d4) $\delta 158.41,157.28,153.58,151.33,146.79,145.02$, $143.65,130.20,126.96,122.34,121.91,119.79,118.56,103.72,101.11,98.39,73.17$, $58.78,55.09,54.87,54.55,50.34,49.37,36.87,26.32,25.87,25.03,21.74,11.09$.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{5}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 506.2655$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 506.2652$.

${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.65(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=9.2$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.63(\mathrm{~m}$, $4 \mathrm{H}), 2.06-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.36(\mathrm{~m}, 6 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol- d_{4}) δ 158.53, 152.81, 146.72, 144.38, 143.65, 140.80, $131.86(q, J=33.2 H z), 130.17,126.91,123.14(q, J=272, H z), 122.38,118.50,117.87$, $115.45,101.03,73.57,58.88,55.07,50.33,49.30,36.72,26.05,25.66,24.77,21.79$, 10.87.
${ }^{19} \mathrm{~F}$ NMR (470 MHz, Methanol- d_{4}) $\delta-64.48(\mathrm{~s}, 6 \mathrm{~F})$.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 582.219$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 582.2197$.

${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol- d_{4}) $\delta 8.67(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.09 (br s, 2H), $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{ddd}, J=9.2,8.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.57(\mathrm{~m}, 4 \mathrm{H})$, $2.14-1.94(m, 1 H), 1.72-1.30(m, 7 H), 0.91-0.70(m, 3 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol-d4) $\delta 187.19,158.42,146.73,144.18,143.76,140.51$, 131.68, 130.11, 127.25, 123.15, 122.40, 122.15, 119.10, 117.81, 101.56, 77.18, 59.49, 55.06, 50.45, 49.13, 36.80, 26.17, 25.64, 24.96, 22.50, 10.87.
${ }^{19}$ F NMR (470 MHz, Methanol- d_{4}) $\delta-64.30(s, 6 F)$.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 598.1963$, Found $[\mathrm{M}+\mathrm{H}]^{+}$: 598.1964.

${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.63(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (br s, 1H), $7.54(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=9.2,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.73(\mathrm{~s}, 2 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{td}, J=8.9,5.3 \mathrm{~Hz}$, 1H), $2.84-2.56(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.49-$ $1.24(m, 6 H), 0.89-0.81(m, 3 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol-d4) $\delta 158.43$, 153.01, 147.23, 146.79, 144.96, 143.65, $130.19,129.71,127.00,126.37,124.03,122.33,120.46,118.59,110.17,101.08,73.40$, 58.77, 55.05, 54.92, 50.32, 49.35, 36.87, 26.37, 25.86, 25.02, 21.86, 19.67, 11.03.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 490.2706$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 490.2694$.

The compound existed as a mixture of rotamers. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.74$ $-8.60(\mathrm{~m}, 1 \mathrm{H}), 7.99-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.10-6.73(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.49$ $(\mathrm{m}, 6 \mathrm{H}), 3.36-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.43(\mathrm{~m}, 4 \mathrm{H}), 2.30-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.76(\mathrm{~m}$, $1 H), 1.60-1.19(m, 6 H), 1.09-0.64(m, 4 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol- d_{4}) δ 188.11, 187.34, 158.27, 150.82, 149.88, 146.79, 144.88, 144.49, 143.84, 130.25, 129.71, 129.23, 128.22, 127.21, 127.04, 126.76, 125.38, $122.35,119.62,119.06,111.28,110.82,101.83,80.32,77.31,59.12,55.24,55.08,54.88$, $53.77,53.74,50.46,49.21,36.97,26.41,25.71,25.22,24.58,22.20,19.63,11.35,11.33$.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 506.2477$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 506.2475$.

${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.65$ (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=9.3,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.52(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.79$ (s, 3H), $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{td}, J=9.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.05-1.96(\mathrm{~m}$, $1 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.36(\mathrm{~m}, 6 \mathrm{H}), 0.93-0.84(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz , Methanol- d_{4}) $\delta 158.49,153.73,152.93,146.75,144.85,143.59$, $130.10,127.43,126.94,122.37,118.56,111.05,107.74,100.98,73.54,58.74,55.33$, $55.00,54.58,50.34,49.35,36.88,26.28,25.88,24.98,21.81,10.91$.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{5}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 506.2655$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 506.2651$.

${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.70(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ - $7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.59(\mathrm{~m}$,
$3 H), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$, $1.80-1.25(m, 8 H), 1.01-0.88(m, 3 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol- d_{4}) δ 158.49, 157.96, 154.90, 146.71, 145.23, 143.65, 134.92, 130.09, 128.20, 126.97, 126.91, 122.42, 118.39, 115.30, 111.15, 101.02, 73.51, $58.77,55.01,54.35,50.45,49.34,36.96,26.36,25.91,25.02,21.58,16.91,11.04$.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 490.2706$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 490.2695$.

The compound existed as a mixture of rotamers. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.72$ (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.49-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~m}$, $1 \mathrm{H}), 6.24(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.66(\mathrm{~m}, 12 \mathrm{H}), 3.47-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.09-2.65(\mathrm{~m}, 4 \mathrm{H}), 1.82-$ $1.33(\mathrm{~m}, 7 \mathrm{H}), 0.97-0.64(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, cd $\left.{ }_{3} \mathrm{Od}\right) \delta 160.60,160.36,158.50,157.13,155.43,155.08,146.71$, 146.58, 144.29, 143.61, 130.18, 126.73, 126.28, 122.40, 118.61, 106.82, 100.99, 90.58, $74.29,72.57,58.80,58.15,55.17,55.01,54.61,53.56,50.37,50.19,49.39,48.19,48.02$, $47.85,47.67,47.50,47.33,47.16,36.47,36.21,25.70,25.59,25.17,24.92,24.70,23.84$, 20.83, 19.75, 11.11, 10.97.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{6}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 536.2759$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 536.2761$.

${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.67(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H})$, $6.68(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{td}, J=9.0,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.01-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 5 \mathrm{H})$, $1.29-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol-d4) $\delta 158.55,153.18,152.98,146.75,144.78,143.63$, $134.80,130.14,126.91,122.39,118.48,102.46,101.06,96.16,72.82,59.78,58.94$, 55.07, 55.06, 50.33, 49.29, 36.69, 25.94, 25.70, 24.75, 21.74, 10.89.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{6}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 536.2761$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 536.2769$.

${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- $\left.\mathrm{d}_{4}\right) \delta 8.66(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=4.4$
$\mathrm{Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.40-6.29(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.39(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.28$ $(m, 1 H), 3.05-2.72(m, 4 H), 2.16-2.05(m, 1 H), 1.77-1.15(m, 19 H), 0.90(m, 3 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol-d4) δ 158.58, 155.46, 153.15, 149.56, 146.77, 144.38, 143.66, 130.24, 126.70, 122.47, 122.31, 120.45, 118.47, 106.46, 102.79, 101.02, 72.98, $70.91,69.84,58.55,55.24,50.42,49.42,36.48,26.60,25.73,25.43,24.84,21.11,21.06$, 11.08.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{5}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 562.3281$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 562.3283$.

${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol- $\left.\mathrm{d}_{4}\right) \delta 8.65(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ $-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{dd}, J=9.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.31(\mathrm{~m}, 3 \mathrm{H}), 3.96-3.84(\mathrm{~m}, 2 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.15-1.97(\mathrm{~m}, 2 \mathrm{H})$, $1.71-1.34(\mathrm{~m}, 7 \mathrm{H}), 1.06(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95-0.85(\mathrm{~m}$, $3 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol-d4) δ 158.00, 157.44, 153.63, 151.45, 146.66, 144.75, $143.55,130.12,127.00,122.63,122.18,119.71,118.53,103.72,101.68,98.38,74.60$, $72.77,58.82,54.83,54.52,50.31,49.35,36.70,28.13,26.07,25.83,24.96,21.64,18.31$, 11.00.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{5}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 548.3127$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 548.3124$.

The compound existed as a mixture of rotamers. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.67$ (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.39(\mathrm{~m}, 4 \mathrm{H}), 6.67-6.34(\mathrm{~m}, 3 \mathrm{H})$, $3.97(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.38-3,23(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{t}, \mathrm{J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ $-2.61(m, 1 H), 2.42-2.31(m, 1 H), 1.97-1.45(m, 6 H), 1.31-1.18(m, 2 H), 0.86-0.75$ ($\mathrm{m}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, cd ${ }_{3}$ od) $\delta 158.57,158.53,157.72,153.90,152.02,146.71,144.94$, $143.61,143.59,130.15,130.10,126.75,123.00,122.37,119.57,118.47,118.37,103.72$, 101.02, 98.40, 73.61, 58.70, 57.80, 57.34, 55.12, 55.09, 54.79, 54.52, 48.13, 47.96, $47.79,47.62,47.45,47.28,47.11,43.38,42.63,36.87,27.12,27.00,25.65,25.48,25.12$, 21.62, 10.90, 10.83.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{5}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 506.2655$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 506.2653$.

${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.64(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ $-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=2.3$ Hz, 1H), $6.49(\mathrm{dd}, \mathrm{J}=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.59(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.89(\mathrm{~m}, 3 \mathrm{H}), 2.82-2.75(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.32$ $(m, 6 H), 1.26-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol-d4) $\delta 165.86,164.07,159.54,158.14,146.97,146.79$, 143.73, 132.61, 130.16, 128.44, 122.25, 119.68, 113.43, 105.43, 101.52, 98.09, 59.77, $55.28,54.80,54.68,48.89,37.03,26.64,25.70,25.68,24.80,10.95$.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 490.2706$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 490.2705$.

I-69
${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50$ (dd, $J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}$, $3 H), 2.64-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 1.91-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.07(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, cd $\left.{ }_{3} \mathrm{Od}\right) \delta 180.23,159.31,154.39,127.62,119.33,104.22,98.76$, $66.02,55.41,55.14,54.95,53.90,39.44,32.64,24.82,24.62,22.56$.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 338.1902$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 338.1903$.

I-70
${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol-d4) $\delta 7.76(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.44$ (dd, J = 8.8, 2.7 Hz, 1H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{td}, \mathrm{J}=10.8$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 6 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.72-1.66(m, 1 H), 1.34-1.20(m, 4 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol-d4) $\delta 156.81,156.04,150.39,150.31,121.76,121.70$, $121.09,120.96,103.75,98.24,67.14,54.95,54.65,49.99,49.90,39.25,33.59,24.53$, 24.45, 22.86.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 322.2131$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 322.2125$.

${ }^{1} \mathrm{H}$ NMR (500 MHz , Methylene Chloride- d_{2}) $\delta 7.92$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.53-6.45(\mathrm{~m}$, 2H), 4.73 (td, $J=10.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.57$ (ddd, $J=11.3,10.0$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 2 \mathrm{H})$, $1.43-1.16(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methylene Chloride- d_{2}) δ 155.82, 153.29, 149.31, 121.33, 119.09, $103.73,98.53,73.07,66.05,55.59,55.35,40.25,32.25,24.74,24.27,23.00$.

HRMS: TOF MS ES ${ }^{+}\left(\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$: Calc. $[\mathrm{M}+\mathrm{H}]^{+}: 323.1971$, Found $[\mathrm{M}+\mathrm{H}]^{+}: 323.1961$.

I-6-7 General data

I-6-7-1 Crystal data for I-46a

Experimental. Single colorless needle-shaped crystals of l-46a were used as received. A suitable crystal $0.31 \times 0.06 \times 0.05 \mathrm{~mm}^{3}$ was selected and mounted on a nylon loop with paratone oil on a Bruker APEX-II CCD diffractometer. The crystal was kept at a steady T $=173(2) \mathrm{K}$ during data collection. The structure was solved with the ShelXT (Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, Acta Cryst. A64 2008, 112-122) using Least Squares minimization.

Crystal Data. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{3}, M_{r}=311.17$, monoclinic, $P 2{ }_{1} / c$ (No. 14), $\mathrm{a}=5.6807$ (4) $\AA \mathrm{A}, \mathrm{b}=$ $17.3739(9) \AA, \quad \mathrm{c}=26.0214(15) \AA, \quad \beta=90.501(4)^{\circ}, \quad \alpha=\gamma=90^{\circ}, V=2568.1(3) \AA^{3}, \quad T=$ 173(2) $\mathrm{K}, Z=8, Z^{\prime}=2, \mu\left(\mathrm{CuK}_{\alpha}\right)=4.355,26476$ reflections measured, 5018 unique ($R_{\text {int }}=$ 0.0710) which were used in all calculations. The final $w R_{2}$ was 0.0855 (all data) and R_{1} was $0.0337(I>2(I))$.

Compound

CCDC

Formula
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$
μ / mm^{-1}
Formula Weight
Color
Shape
Size/mm ${ }^{3}$
T/K
Crystal System
Space Group
a / \AA
b/Å
c / \AA
$\alpha /{ }^{\circ}$
$\beta /^{\circ}$
$\gamma /{ }^{\circ}$
V / \AA^{3}
Z
Z^{\prime}
Wavelength/ \AA
Radiation type
$\Theta_{\text {min }} /{ }^{\circ}$
$\Theta_{\max } /{ }^{\circ}$
Measured Refl.
Independent Refl.
Reflections with I > 2(I)
$R_{\text {int }}$
Parameters
Restraints
Largest Peak
Deepest Hole
GooF
$w R_{2}$ (all data)
$w R_{2}$
R_{1} (all data)
R_{1}

I-46a

1939189
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{3}$
1.610
4.355
311.17
colorless
needle
$0.31 \times 0.06 \times 0.05$
173(2)
monoclinic
$P 2_{1} / c$
5.6807(4)
17.3739(9)
26.0214(15)

90
90.501(4)

90
2568.1(3)

8
2
1.541838
CuK_{α}
3.058
72.329

26476
5018
3962
0.0710

325
0
0.460
-0.581
1.049
0.0855
0.0769
0.0502
0.0337

Structure Quality Indicators

Reflections:	d min (Cu) 0.81	//	21.4		7.10\%	complete	100\%
Refinement:	Shift 0.001	Max Peak	0.5	Min Peak	-0.6	Goof	1.049

A colourless needle-shaped crystal with dimensions $0.31 \times 0.06 \times 0.05 \mathrm{~mm}^{3}$ was mounted on a nylon loop with paratone oil. Data were collected using a Bruker APEX-II CCD diffractometer equipped with an Oxford Cryosystems low-temperature device, operating at $T=173(2) \mathrm{K}$.

Data were measured using ω and ϕ of 1.00° per frame for 75.00 s using CuK_{α} radiation (sealed tube, $40 \mathrm{kV}, 30 \mathrm{~mA}$). The total number of runs and images was based on the strategy calculation from the program COSMO (BRUKER, V1.61, 2009). The actually achieved resolution was $\Theta=72.329$.

Cell parameters were retrieved using the SAINT (Bruker, V8.38A, after 2013) software and refined using SAINT (Bruker, V8.38A, after 2013) on 8310 reflections, 31 \% of the observed reflections. Data reduction was performed using the SAINT (Bruker, V8.38A, after 2013) software which corrects for Lorentz polarization. The final completeness is 99.90 out to 72.329 in Θ SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.0930 before and 0.0607 after correction. The Ratio of minimum to maximum transmission is 0.7816 . The $\lambda / 2$ correction factor is Not present. The structure was solved in the space group $P 2_{1} / C$ (\# 14) by Intrinsic Phasing using the SheIXT (Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8) structure solution program. The structure was refined by Least Squares using version 2014/6 of XL (Sheldrick, 2008) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined
anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the hydrogen atom on the non-carbon atom(s) which was found by difference Fourier methods and refined isotropically.

The value of Z^{\prime} is 2 . This means that there are two independent molecules in the asymmetric unit.

Figure I-23. X-ray structure of I-46a (different views)

I-6-7-2 Crystal data for I-46b

Experimental. Single colourless needle-shaped crystals of l-46b were used as received. A suitable crystal $0.31 \times 0.07 \times 0.04 \mathrm{~mm}^{3}$ was selected and mounted on a nylon loop with paratone oil on a Bruker APEX-II CCD diffractometer. The crystal was kept at a steady T $=173(2) \mathrm{K}$ during data collection. The structure was solved with the SheIXT (Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, Acta Cryst. A64 2008, 112-122) using Least Squares minimization.

Crystal Data. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{3}, M_{r}=311.17$, monoclinic, $\mathrm{P} 2_{1} / n$ (No. 14), $\mathrm{a}=21.3782(10) \AA$, $\mathrm{b}=5.8155(3) \AA, \mathrm{c}=21.6027(12) \AA, \beta=102.604(4)^{\circ}, \alpha=\gamma=90^{\circ}, V=2621.0(2) \AA^{3}, T=$ 173(2) $\mathrm{K}, Z=8, Z^{\prime}=2, \mu\left(\mathrm{CuK}_{\alpha}\right)=4.267,19675$ reflections measured, 4921 unique ($R_{\text {int }}=$ 0.1967) which were used in all calculations. The final $w R_{2}$ was 0.1496 (all data) and R_{1} was $0.0614(\mathrm{l}>2(\mathrm{I})$).

Compound

CCDC

Formula
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$
μ / mm^{-1}
Formula Weight
Color
Shape
Size/mm ${ }^{3}$
T/K
Crystal System
Space Group
a/Å
b/Å
c / \AA
$\alpha /{ }^{\circ}$
$\beta /^{\circ}$
$\gamma /^{\circ}$
V / \AA^{3}
Z
Z^{\prime}
Wavelength/ \AA
Radiation type
$\Theta_{\text {min }} /{ }^{\circ}$
$\Theta_{\max } /{ }^{\circ}$
Measured Refl.
Independent Refl.
Reflections with I > 2(I)
$R_{\text {int }}$
Parameters
Restraints
Largest Peak
Deepest Hole
GooF
$w R_{2}$ (all data)
$w R_{2}$
R_{1} (all data)
R_{1}

I-46b

1942944
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{3}$
1.577
4.267
311.17
colourless
needle
$0.31 \times 0.07 \times 0.04$
173(2)
monoclinic
$P 2_{1} / n$
21.3782(10)
5.8155(3)
21.6027(12)

90
102.604(4)

90
2621.0(2)

8
2
1.541838
CuK_{α}
2.634
70.141

19675
4921
2486
0.1967

325
0
0.975
-0.551
0.966
0.1496
0.1189
0.1438
0.0614

Structure Quality Indicators

Reflections:	d min (Cu) 0.82	兂	6.9	Rint	19.67\%	complete	99\%
Refinement:	Shift 0.001	Max Peak	1.0	Min Pe	-0.6	Goof	0.966

A colourless needle-shaped crystal with dimensions $0.31 \times 0.07 \times 0.04 \mathrm{~mm}^{3}$ was mounted on a nylon loop with paratone oil. Data were collected using a Bruker APEX-II CCD diffractometer equipped with an Oxford Cryosystems low-temperature device, operating at $T=173(2) \mathrm{K}$.

Data were measured using ω and ϕ of 1.00° per frame for 225.00 s using CuK_{α} radiation (sealed tube, $40 \mathrm{kV}, 30 \mathrm{~mA}$). The total number of runs and images was based on the strategy calculation from the program COSMO (BRUKER, V1.61, 2009). The actually achieved resolution was $\Theta=70.141$.

Cell parameters were retrieved using the SAINT (Bruker, V8.38A, after 2013) software and refined using SAINT (Bruker, V8.38A, after 2013) on 1667 reflections, 8 \% of the observed reflections. Data reduction was performed using the SAINT (Bruker, V8.38A, after 2013) software which corrects for Lorentz polarization. The final completeness is 99.40 out to 70.141 in Θ SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.0981 before and 0.0754 after correction. The Ratio of minimum to maximum transmission is 0.7378 . The $\lambda / 2$ correction factor is Not present. The structure was solved in the space group $P 2_{1} / n$ (\# 14) by Intrinsic Phasing using the SheIXT (Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8) structure solution program. The structure was refined by Least Squares using version 2014/6 of XL (Sheldrick, 2008) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined
anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the hydrogen atom on the non-carbon atom(s) which was found by difference Fourier methods and refined isotropically.

The value of Z^{\prime} is 2 . This means that there are two independent molecules in the asymmetric unit.

Figure I-24. X-ray structure of I-46b (different views)

I-6-7-3 Crystal data for I-100

Experimental. Single colourless needle-shaped crystals of I-100 were used as received. A suitable crystal $0.40 \times 0.07 \times 0.05 \mathrm{~mm}^{3}$ was selected and mounted on a nylon loop with paratone oil on a Bruker APEX-II CCD diffractometer. The crystal was kept at a steady T = 173(2) K during data collection. The structure was solved with the SheIXT (Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, Acta Cryst. A64 2008, 112-122) using Least Squares minimization.

Crystal Data. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{3}, M_{r}=390.07$, monoclinic, $P 2_{1} / c$ (No. 14), $\mathrm{a}=9.4982$ (2) $\AA, \mathrm{b}=$ $5.70550(10) \AA, \quad \mathrm{c}=26.4310(6) \AA, \beta=100.057(2)^{\circ}, \alpha=\gamma=90^{\circ}, V=1410.34(5) \AA^{3}, T=$ 173(2) $\mathrm{K}, Z=4, Z^{\prime}=1, \mu\left(\mathrm{CuK}_{\alpha}\right)=7.312,7919$ reflections measured, 2553 unique (Rint $=$ 0.0546) which were used in all calculations. The final $w R_{2}$ was 0.1059 (all data) and R_{1} was $0.0418(\mathrm{I}>2(\mathrm{I})$).

Compound	I-100
CCDC	1942945
Formula	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{3}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.837
μ / mm^{-1}	7.312
Formula Weight	390.07
Color	colourless
Shape	needle
Size/mm ${ }^{3}$	$0.40 \times 0.07 \times 0.05$
T/K	173(2)
Crystal System	monoclinic
Space Group	$P 2_{1} / \mathrm{c}$
$a / \AA ̊$	9.4982(2)
b/Å	5.70550(10)
c / \AA	26.4310(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	100.057(2)
$\gamma /{ }^{\circ}$	90
V / \AA^{3}	1410.34(5)
Z	4
Z'	1
Wavelength/Å	1.541838
Radiation type	CuK_{α}
$\Theta_{\text {min }} /{ }^{\circ}$	3.396
$\Theta_{\max } /{ }^{\circ}$	70.108
Measured Refl.	7919
Independent Refl.	2553
Reflections with I > 2(I)	1940
$R_{\text {int }}$	0.0546
Parameters	172
Restraints	0
Largest Peak	0.917
Deepest Hole	-0.634
GooF	1.002
$w R_{2}$ (all data)	0.1059
$w R_{2}$	0.0967
R_{1} (all data)	0.0623
R_{1}	0.0418

Structure Quality Indicators

Reflections:	d min (Cu) 0.82	//\%	18.0		5.46\%	complete	96\%
Refinement:	Shift 0.000	Max Peak	0.9	Min Peak	-0.6	Goof	1.002

A colourless needle-shaped crystal with dimensions $0.40 \times 0.07 \times 0.05 \mathrm{~mm}^{3}$ was mounted on a nylon loop with paratone oil. Data were collected using a Bruker APEX-II CCD diffractometer equipped with an Oxford Cryosystems low-temperature device, operating at $T=173(2) \mathrm{K}$.

Data were measured using ω and ϕ of 1.00° per frame for 100.00 s using CuK_{α} radiation (sealed tube, $40 \mathrm{kV}, 30 \mathrm{~mA}$). The total number of runs and images was based on the strategy calculation from the program COSMO (BRUKER, V1.61, 2009). The actually achieved resolution was $\Theta=70.108$.

Cell parameters were retrieved using the SAINT (Bruker, V8.38A, after 2013) software and refined using SAINT (Bruker, V8.38A, after 2013) on 2647 reflections, 33 \% of the observed reflections. Data reduction was performed using the SAINT (Bruker, V8.38A, after 2013) software which corrects for Lorentz polarization. The final completeness is 96.10 out to 70.108 in Θ SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.0771 before and 0.0537 after correction. The Ratio of minimum to maximum transmission is 0.7349 . The $\lambda / 2$ correction factor is Not present. The structure was solved in the space group $P{ }_{2} / C$ (\# 14) by Intrinsic Phasing using the SheIXT (Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8) structure solution program. The structure was refined by Least Squares using version 2014/6 of XL (Sheldrick, 2008) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined
anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the hydrogen atom on the non-carbon atom(s) which was found by difference Fourier methods and refined isotropically.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z^{\prime} is 1 .

Figure I-25. X-ray structure of I-100 (different views)

I-6-7-4 Crystal data for I-99a

Experimental. Single colourless needle crystals of I-99a used as received. A suitable crystal with dimensions $0.31 \times 0.04 \times 0.02 \mathrm{~mm}^{3}$ was selected and mounted on a nylon loop with paratone oil on a XtaLAB Synergy, Dualflex, HyPix diffractometer. The crystal was kept at a steady $T=100.00(10) \mathrm{K}$ during data collection. The structure was solved with the ShelXS (Sheldrick, 2008) solution program using direct methods and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on \boldsymbol{F}^{2}.

Crystal Data. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrO}_{3}, M_{r}=325.20$, orthorhombic, $P \mathrm{Pca}{ }_{1}$ (No. 29), $\mathrm{a}=12.2672(5) \AA$, $\mathrm{b}=6.3114(3) \AA, \mathrm{c}=35.3845(15) \AA, \alpha=\beta=\gamma=90^{\circ}, V=2739.6(2) \AA^{3}, T=100.00(10) \mathrm{K}$, $Z=8, Z^{\prime}=2, \mu\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)=4.109,13914$ reflections measured, 4587 unique (Rint $=0.0678$) which were used in all calculations. The final $w R_{2}$ was 0.1874 (all data) and R_{1} was 0.0681 $(l \geq 2 \sigma(I))$.

Compound	I-99a
Formula	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrO}_{3}$
CCDC	2036932
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.577
μ / mm^{-1}	4.109
Formula Weight	325.20
Colour	colourless
Shape	needle
Size/mm ${ }^{3}$	$0.31 \times 0.04 \times 0.02$
T/K	100.00 (10)
Crystal System	orthorhombic
Flack Parameter	0.03(5)
Hooft Parameter	0.01(2)
Space Group	Pca2 ${ }_{1}$
$a / \AA{ }^{\text {a }}$	12.2672(5)
b/Å	6.3114(3)
c / \AA	35.3845(15)
$\alpha /{ }^{\circ}$	90
$\beta /^{\circ}$	90
$\gamma /{ }^{\circ}$	90
V / \AA^{3}	2739.6(2)
Z	8
Z^{\prime}	2
Wavelength/Å	1.54184
Radiation type	$\mathrm{Cu} \mathrm{K}_{\alpha}$
$\Theta_{\text {min }} /{ }^{\circ}$	2.497
$\Theta_{\max } /{ }^{\circ}$	77.860
Measured Refl's.	13914
Indep't Refl's	4587
Refl's I $\geq 2 \sigma$ (I)	4177
$R_{\text {int }}$	0.0678
Parameters	343
Restraints	1
Largest Peak	0.824
Deepest Hole	-0.822
GooF	1.077
$w R_{2}$ (all data)	0.1874
$w R_{2}$	0.1832
R_{1} (all data)	0.0723
R_{1}	0.0681

Structure Quality Indicators

A colourless needle-shaped crystal with dimensions $0.31 \times 0.04 \times 0.02 \mathrm{~mm}^{3}$ was mounted on a nylon loop with paratone oil. Data were collected using a XtaLAB Synergy, Dualflex, HyPix diffractometer equipped with an Oxford Cryosystems low-temperature device, operating at $T=100.00(10) \mathrm{K}$.

Data were measured using ω scans of 0.5° per frame for $3.5 / 14.0 \mathrm{~s}$ using $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation (micro-focus sealed X-ray tube, $50 \mathrm{kV}, 1 \mathrm{~mA}$). The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.40.84a, 2020). The actually achieved resolution was $\Theta=77.860$.

Cell parameters were retrieved using the CrysAlisPro (Rigaku, V1.171.40.84a, 2020) software and refined using CrysAlisPro (Rigaku, V1.171.40.84a, 2020) on 5380 reflections, 39 \% of the observed reflections. Data reduction was performed using the CrysAlisPro (Rigaku, V1.171.40.84a, 2020) software which corrects for Lorentz polarization. The final completeness is 99.80 out to 77.860 in Θ CrysAlisPro 1.171.40.84a (Rigaku Oxford Diffraction, 2020) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

The structure was solved in the space group Pca21 (\# 29) by using direct methods using the SheIXS (Sheldrick, 2008) structure solution program. The structure was refined by Least Squares using version 2018/2 of XL (Sheldrick, 2008) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen
atom positions were calculated geometrically and refined using the riding model, except for the hydrogen atom on the non-carbon atom(s) which were found by difference Fourier methods and refined isotropically when data permits.

The value of Z^{\prime} is 2 . This means that there are two independent molecules in the asymmetric unit.

The Flack parameter was refined to $0.03(5)$. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in 0.01 (2). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0 , a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Figure I-26. X-ray structure of I-99a (different views)

REFERENCES

(1) Oh, H.; Gloer, J. B.; Shearer, C. A. Massarinolins A-C: New bioactive sesquiterpenoids from the aquatic fungus Massarina tunicata. J Nat Prod 1999, 62 (3), 497-501. DOI: DOI 10.1021/np980447+.
(2) Xiao, W. L.; Zhu, H. J.; Shen, Y. H.; Li, R. T.; Li, S. H.; Sun, H. D.; Zheng, Y. T.; Wang, R. R.; Lu, Y.; Wang, C.; et al. Lancifodilactone G: A unique nortriterpenoid isolated from Schisandra lancifolia and its anti-HIV activity. Org Lett 2005, 7 (11), 2145-2148. DOI: 10.1021/ol050502n.
(3) Fan, Y. Y.; Zhang, H.; Zhou, Y.; Liu, H. B.; Tang, W.; Zhou, B.; Zuo, J. P.; Yue, J. M. Phainanoids A-F, A New Class of Potent Immunosuppressive Triterpenoids with an Unprecedented Carbon Skeleton from Phyllanthus hainanensis. J Am Chem Soc 2015, 137 (1), 138-141. DOI: 10.1021/ja511813g.
(4) Brimble, M. A.; Robinson, S. G. Synthesis of tricyclic aryl spiroacetals related to the papulacandins. Tetrahedron 1996, 52 (28), 9553-9562. DOI: Doi 10.1016/0040-4020(96)00492-9.
(5) Davis, D. C.; Walker, K. L.; Hu, C. H.; Zare, R. N.; Waymouth, R. M.; Dai, M. J. Catalytic Carbonylative Spirolactonization of Hydroxycyclopropanols. J Am Chem Soc 2016, 138 (33), 10693-10699. DOI: 10.1021/jacs.6b06573.
(6) Fukuda, H.; Takeda, M.; Sato, Y.; Mitsunobu, O. Convenient Method for the Formation of 2-Oxo-1,6-Dioxaspiroalkene Rings. Synthesis-Stuttgart 1979, (5), 368-370.
(7) Kambale, D. A.; Thorat, S. S.; Pratapure, M. S.; Gonnade, R. G.; Kontham, R. Lewis acid catalyzed cascade annulation of alkynols with alpha-ketoesters: a facile access to gamma-spiroketal-gamma-lactones. Chem Commun 2017, 53 (49), 6641-6644. DOI: 10.1039/c7cc03668j.
(8) Yamamoto, M.; Yoshitake, M.; Yamada, K. Cyclization of Alkynecarboxylic Acids a Route to an Oxaspirolactone. J Chem Soc Chem Comm 1983, (18), 991-992. DOI: DOI 10.1039/c39830000991.
(9) Thorat, S. S.; Kontham, R. Recent advances in the synthesis of oxaspirolactones and their application in the total synthesis of related natural products. Org Biomol Chem 2019, 17 (31), 7270-7292. DOI: 10.1039/c9ob01212e.
(10) Haruki, F. M. T. Y. S. O. M. A Convenient Method for the Formation of 2-Oxo-1,6dioxaspiroalkene Rings. Synthesis 1979, 5, 368-370. DOI: 10.1055/s-1979-28684.
(11) Yoshida, J.; Sakaguchi, K.; Isoe, S. Oxidative [3+2] Cycloaddition of 1,3-Diketone and Olefin Using Electroorganic Chemistry. Tetrahedron Lett 1986, 27 (50), 60756078. DOI: Doi 10.1016/S0040-4039(00)85402-7.
(12) Gore, V. G.; Chordia, M. D.; Narasimhan, N. S. Improved Syntheses of Shihunine, the Spiro Phthalide Pyrrolidine Alkaloid. Tetrahedron 1990, 46 (7), 2483-2494.
(13) Cala, L.; Mendoza, A.; Fananas, F. J.; Rodriguez, F. A catalytic multicomponent coupling reaction for the enantioselective synthesis of spiroacetals. Chem Commun 2013, 49 (26), 2715-2717. DOI: 10.1039/c3cc00118k.
(14) heng, T. W., X.; Ng, W.-H.; Tse, Y.-L. S.; Yeung, Y.-Y. . Catalytic enantio- and diastereoselective domino halocyclization and spiroketalization. Nature Catalysis 2020, 3, 993-1001.
(15) Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. An Organocatalytic Asymmetric Chlorolactonization. J Am Chem Soc 2010, 132 (10), 3298-+. DOI: 10.1021/ja100502f.
(16) Jaganathan, A.; Garzan, A.; Whitehead, D. C.; Staples, R. J.; Borhan, B. A Catalytic Asymmetric Chlorocyclization of Unsaturated Amides. Angew Chem Int Edit 2011, 50 (11), 2593-2596. DOI: 10.1002/anie.201006910.
(17) Garzan, A.; Jaganathan, A.; Marzijarani, N. S.; Yousefi, R.; Whitehead, D. C.; Jackson, J. E.; Borhan, B. Solvent-Dependent Enantiodivergence in the Chlorocyclization of Unsaturated Carbamates. Chem-Eur J 2013, 19 (27), 90159021. DOI: 10.1002/chem. 201300189.
(18) Ashtekar, K. D.; Marzijarani, N. S.; Jaganathan, A.; Holmes, D.; Jackson, J. E.; Borhan, B. A New Tool To Guide Halofunctionalization Reactions: The Halenium Affinity (HalA) Scale. J Am Chem Soc 2014, 136 (38), 13355-13362. DOI: 10.1021/ja506889c.
(19) Ashtekar, K. D.; Vetticatt, M.; Yousefi, R.; Jackson, J. E.; Borhan, B. NucleophileAssisted Alkene Activation: Olefins Alone Are Often Incompetent. J Am Chem Soc 2016, 138 (26), 8114-8119. DOI: 10.1021/jacs.6b02877.
(20) Ashtekar, K. D.; Gholami, H.; Moemeni, M.; Chakraborty, A.; Kiiskila, L.; Ding, X. L.; Toma, E.; Rahn, C.; Borhan, B. A Mechanistically Inspired Halenium Ion Initiated Spiroketalization: Entry to Mono- and Dibromospiroketals. Angew Chem Int Edit 2022, 61 (8). DOI: ARTN e20211517310.1002/anie.202115173.
(21) Kitching, W.; Lewis, J. A.; Fletcher, M. T.; Devoss, J. J.; Drew, R. A. I.; Moore, C. J. Spiroacetals from Dienones and Hydroxyenones by Mercury(ii) Cyclization. J Chem Soc Chem Comm 1986, (11), 855-856. DOI: DOI 10.1039/c39860000855.
(22) Holson, E. B.; Roush, W. R. Diastereoselective synthesis of the C(17)-C(28) fragment (The C-D spiroketal unit) of spongistatin 1 (altohyrtin A) via a kinetically controlled iodo-spiroketalization reaction. Org Lett 2002, 4 (21), 3719-3722. DOI: 10.1021/ol0266875.
(23) Commandeur, M.; Commandeur, C.; Cossy, J. Synthesis of a Platform To Access Bistramides and Their Analogues. Org Lett 2011, 13 (22), 6018-6021. DOI: 10.1021/ol202483u.
(24) Zhou, L.; Tan, C. K.; Jiang, X. J.; Chen, F.; Yeung, Y. Y. Asymmetric Bromolactonization Using Amino-thiocarbamate Catalyst. J Am Chem Soc 2010, 132 (44), 15474-15476. DOI: 10.1021/ja1048972.
(25) Zhou, L.; Tay, D. W.; Chen, J.; Leung, G. Y. C.; Yeung, Y. Y. Enantioselective synthesis of 2 -substituted and 3 -substituted piperidines through a bromoaminocyclization process. Chem Commun 2013, 49 (39), 4412-4414. DOI: 10.1039/c2cc36578b.
(26) Resek, J. E. Intramolecular Ene Reaction of a Chiral Bicyclic Lactam. J Org Chem 2008, 73 (24), 9792-9794. DOI: 10.1021/jo801696r.
(27) Braddock, D. C.; Millan, D. S.; Perez-Fuertes, Y.; Pouwer, R. H.; Sheppard, R. N.; Solanki, S.; White, A. J. P. Bromonium Ion Induced Transannular Oxonium Ion Formation-Fragmentation in Model Obtusallene Systems and Structural Reassignment of Obtusallenes V-VII. J Org Chem 2009, 74 (5), 1835-1841. DOI: 10.1021/j08026577.
(28) Guella, G.; Mancinci, I.; Oztunc, A.; Pietra, F. Conformational bias in macrocyclic ethers and observation of high solvolytic reactivity at a masked furfuryl (=2furylmethyl) C-atom. Helv Chim Acta 2000, 83 (2), 336-348. DOI: Doi 10.1002/(Sici)1522-2675(20000216)83:2<336::Aid-HIca336>3.0.Co;2-R.
(29) Uenishi, J.; Fujikura, Y.; Kawai, N. Pd-II-Catalyzed Cascade Reaction with 1,3Chirality Transfer; Stereoselective Synthesis of Chiral Nonracemic 2,2 '-THF-THF Ring Units. Org Lett 2011, 13 (9), 2350-2353. DOI: 10.1021/ol2005984.
(30) Sun, Z. K.; Winschel, G. A.; Borovika, A.; Nagorny, P. Chiral Phosphoric AcidCatalyzed Enantioselective and Diastereoselective Spiroketalizations. J Am Chem Soc 2012, 134 (19), 8074-8077. DOI: 10.1021/ja302704m.
(31) Shimizu, T.; Murakoshi, K.; Yasui, K.; Sodeoka, M. A New Route for the Preparation of Succinates. Synthesis-Stuttgart 2008, (20), 3209-3218. DOI: 10.1055/s-0028-1083140.
(32) Orsini, F.; Pelizzoni, F. Pd(0)-Mediated Cross-Coupling of Reformatsky Reagents with Vinyl Triflates and Aryl Triflates. Synthetic Commun 1987, 17 (12), 1389-1402. DOI: Doi 10.1080/00397918708057763.
(33) Sun, W.; Yuan, Y.; Lee, B.; Jun, H. S.; Shin, D.; Seo, S. Y. Short Synthesis of the Antidiabetic Octaketide Ethyl 2-(2,3,4-Trimethoxy-6-octanoylphenyl) acetate. Synlett 2018, 29 (3), 326-329. DOI: 10.1055/s-0036-1592062.
(34) Wong, B.; Xin, L. H.; Crawford, J. J.; Drobnick, J.; Lee, W.; Zhang, H. M. A chemoselective Reformatsky-Negishi approach to alpha-haloaryl esters. Tetrahedron 2014, 70 (7), 1508-1515. DOI: 10.1016/j.tet.2013.12.053.
(35) Chou, S. S. P.; Yang, K. S.; Chin, T. H. Synthesis of the Precursors of Pumiliotoxin 251d and Awajanomycin and Related Studies. Heterocycles 2014, 89 (3), 679691. DOI: 10.3987/Com-14-12930.
(36) Tunge, J. A.; Mellegaard, S. R. Selective selenocatalytic allylic chlorination. Org Lett 2004, 6 (8), 1205-1207. DOI: 10.1021/ol0365250.
(37) Vilsmaier, E.; Adam, R.; Tetzlaff, C.; Cronauer, R. Functionalized Chloroenamines in Aminocyclopropane Synthesis .3. Synthesis and Assignment of Configuration of 2 Isomeric Morpholinobicyclo[3.1.0]Hexane Derivatives. Tetrahedron 1989, 45 (12), 3683-3694. DOI: Doi 10.1016/S0040-4020(01)89230-9.
(38) Mcdonald, R. N.; Davis, G. E. Strained Ring Systems .8. An Alternate Synthesis of $2-O x y$ Derivatives of Bicyclo[2.2.O]Hexane and Rearrangement of Endo-Bicyclo[2.2.O]Hex-2-YI Acetate. J Org Chem 1969, 34 (6), 1916-\&. DOI: DOI 10.1021/j001258a086.
(39) Mock, W. L. Orbital Symmetry Forbiddenness in a Suprafacial 1,6 Cycloelimination of Sulfur Dioxide. J Am Chem Soc 1970, 92 (12), 3807-\&. DOI: DOI 10.1021/ja00715a055.
(40) Uemura, S.; Onoe, A.; Okazaki, H.; Okano, M.; Ichikawa, K. Chlorination of 1,3Cyclooctadienes and 1,5-Cyclooctadienes with Various Chlorinating Agents. B Chem Soc Jpn 1976, 49 (5), 1437-1438. DOI: DOI 10.1246/bcsj.49.1437.
(41) Zhang, Y. A.; Yaw, N.; Snyder, S. A. General Synthetic Approach for the Laurencia Family of Natural Products Empowered by a Potentially Biomimetic Ring Expansion. J Am Chem Soc 2019, 141 (19), 7776-7788. DOI: 10.1021/jacs.9b01088.
(42) Ishihara, J.; Shimada, Y.; Kanoh, N.; Takasugi, Y.; Fukuzawa, A.; Murai, A. Conversion of prelaureatin into laurallene, a bromo-allene compound, by enzymatic and chemical bromo-etherification reactions. Tetrahedron 1997, 53 (25), 8371-8382. DOI: Doi 10.1016/S0040-4020(97)00542-5.
(43) Chatupheeraphat, A.; Soorukram, D.; Kuhakarn, C.; Tuchinda, P.; Reutrakul, V.; Pakawatchai, C.; Saithong, S.; Pohmakotr, M. Synthesis of gemDifluoromethylenated Spiro-gamma-butyrolactones by Employing PhSCF2Si(CH3)(3) as a gem-Difluoromethylenating Agent. Eur J Org Chem 2013, 2013 (30), 6844-6858. DOI: 10.1002/ejoc.201300998.
(44) Wang, Y.; Milkiewicz, K. L.; Kaufman, M. L.; He, L. L.; Landmesser, N. G.; Levy, D. V.; Allwein, S. P.; Christie, M. A.; Olsen, M. A.; Neville, C. J.; et al. Plant Process for the Preparation of Cinchona Alkaloid-Based Thiourea Catalysts. Org Process Res Dev 2017, 21 (3), 408-413. DOI: 10.1021/acs.oprd.7b00049.

Chapter II: Design and Development of Organic Dyes for Transparent Luminescent Solar Concentrators (TLSCs)

II-1 Introduction of Transparent Luminescent Solar Concentrators (TLSCs)

Mitigating the world's growing global demand for energy remains a challenge, but harvesting solar energy is a key part of the solution to this problem. Many systems have been invented and developed with the aim of harvesting this sustainable energy source by converting the suns solar spectrum into electric power. ${ }^{1}$ In the last decade, solar cells have been installed in mass numbers on rural farmlands or building rooftops. Other potential options to absorb the sun's light, still unutilized, are the vast amounts of building surfaces in urban and dense high-rise areas. ${ }^{2}$ Therefore, fabrication of light harvesting devices on window surfaces remains a highly desired target for solar harvesting. Low cost and flexible Transparent Luminescent Solar Concentrators (LSCs) dispersed within glass in the windows have attracted much attention due to their potential to convert a building into an efficient power generating source via solar to current conversion. ${ }^{3-6}$

Figure II-1. A. TLSC model in which both UV and NIR light is absorbed while visible light passes through. B. Spectra of chromophore; S stand for Stokes shift, W is the width of the emission peak (Permission to reproduce this figure is kindly provided by Prof. Lunt and Dr. Yang) ${ }^{7}$

Transparent luminescent solar concentrators selectively convert non-visible light, such as UV light and Near-infrared (NIR) light, into electricity while the vast majority of visible light would pass through, which translates to a high level of visible transparency. As such, a vital design parameter is to minimize the chromophore's absorption and emission in the range of 400 nm to 700 nm (visible wavelength). Working principle of TLSC is to employ the chromophoric materials within the window to absorb the UV or/and NIR light, and re-emit the light to the edge of the window (by total internal reflection) that is lined with photovoltaics (PV) (Figure II-1).

This project is a collaboration with professor Richard Lunt's group (Chemical Engineering Department, Michigan State University) which pioneered this work. Our group has previously and currently engineered and synthesized light harvesting organic dyes and studied their application in transparent luminescent solar concentrators.

II-2 Important parameters for investigating TLSC devices

The key parameter to compare the performance of various solar cells is the power conversion efficiency ($P C E$), which is the ratio of maximum output energy density ($P_{\text {max.out }}$) to the sun light's energy input density $\left(P_{0}\right)$. In order to quantify the PCE of TLSC devices, we need to address three important parameters, all of which can be extracted through the corresponding current density (\mathcal{J}) - voltage (V) curve. The first is the short-circuit current density $\left(J_{s c}\right)$, which defines the current $\left(I_{s c}\right)$ value at zero voltage bias $(\mathrm{V}=0)$ divided by A, which is the active area of the solar cell $\left(J_{s c}=I_{s c} / A\right)$. The second is $V_{o c}$, which is the voltage at open-circuit condition $(I=0)$. The third parameter we need is the fill factor (FF),
this represents the "squareness" of the J - V curve (see Figure II-2A for an example of a J V curve for two different solar cell).

$$
\begin{equation*}
P C E=\frac{P_{\max , o u t}}{P_{0}}=\frac{V_{O C} \cdot J_{S C} \cdot F F}{P_{0}} \tag{2.1}
\end{equation*}
$$

The other important parameters for the characterization of solar cells are the external quantum efficiency ($E Q E_{P V}$) and the internal quantum efficiency ($I Q E_{P V}$). The $E Q E_{P V}$ is the ratio of the number of photogenerated electrons collected at the solar cell to the number of photons which shine on the device at each wavelength. The IQEPV is the ratio of the number of photogenerated electrons collected at the solar cell to the number of photons which shine on the device and are absorbed at each wavelength.

$$
\begin{gather*}
E Q E_{P V}=\frac{\text { electrons } / \mathrm{sec}}{\text { photons } / \mathrm{sec}} \tag{2.2}\\
I Q E_{P V}=\frac{\text { electrons } / \mathrm{sec}}{\text { absorbed photons } / \mathrm{sec}} \tag{2.3}
\end{gather*}
$$

The $E Q E_{P V}$ is related to $I Q E_{P V}$ according to below equation:

$$
\begin{equation*}
E Q E_{P V}(\lambda)=\eta_{A b s}(\lambda) \cdot I Q E_{P V}(\lambda) \tag{2.4}
\end{equation*}
$$

which $\eta_{A b s}$ is the photovoltaic absorption efficiency at each wavelength. (see Figure II-2B for EQEPV spectra of a silicon and a Gallium Arsenide (GaAs) photovoltaic cells) .

Figure II-2 A. Examples of $J-V$ curves for two different solar cells. B. External quantum efficiency spectra of a silicon and GaAs PV cells (Permission to reproduce this figure is kindly provided by Prof. Lunt and Dr. Yang) ${ }^{7}$

The main parameter utilized to study the transparency performance of a solar cell is coined as the average visible transmission (AVT) which defines the percentage of visible light that passes through the device. The combination of PCE and AVT which together is called Light Utilization Efficiency ($L U E=P C E \times A V T$), defines the last factor for evaluation of transparent photovoltaic devices. ${ }^{7}$

II-3 Development of organic dyes for use with TLSC devices

II-3-1 General strategy for tuning the Stokes shift of cyanine dyes

In a TLSC, the organic chromophores should absorb sun light selectively in UV or NIR region, while maintaining minimal visible transmission, in order to generate a transparent solar concentrator. Lunt's group has successfully studied highly efficient nanoclusters for harvesting light in the UV region. ${ }^{8,9}$ In this chapter we mainly focus on the NIR portion of the spectrum. We explored various NIR fluorophores after which we turned to heptamethine cyanine dyes. These dyes have the potential to be excellent
candidates for harvesting the NIR light, due to their high quantum yield (QY), brightness and their narrow emission profile in a region that is devoid of many spectral interferences. ${ }^{10-12}$ However, most cyanine dyes exhibit a small Stokes shift, which negatively impacts their application in optical imaging due to significant background, light scattering and internal absorbance interferences. We also found that there is a direct relationship between the dye's Stokes shift and the corresponding TLSC device's efficiency. As illustrated in Figure II-3, the calculated optical efficiency as a function of LSC device length has a direct correlation with the Stokes shift of the organic dyes and as such, implementation of materials possessing a small Stokes shift would lead to lower system efficiency. ${ }^{7,13,14}$ This effect of Stokes shift on the optical efficiency is higher with increasing the length of the device (Figure II-3).

Figure II-3. LSC system as a function of calculated Stokes shift (Permission to reproduce this figure is kindly provided by Prof. Lunt and Dr. Yang) ${ }^{7}$

The primary factor in efficiency loss, stems from the self-quenching process of small Stokes shift organic dyes installed on the device. With the maximum absorption and emission overlap (see Figure II-4a), the emission of one dye is reabsorbed by another proximal dye which hinders the photon output to PV material located in the window's edge. Increasing the Stokes shift would decrease this spectral overlap region resulting in diminished self-quenching (Figure II-4b). With this knowledge in hand, we aim to develop a general strategy to tune the Stokes shift of heptamethine cyanine dyes.

Figure II-4. Correlation of Stokes shift and self-quenching
In 2005, the Peng group reported the first large Stokes shift heptamethine cyanines. ${ }^{15}$ Nucleophilic addition/elimination of the meso chloro group at the C 4 position of Cy7 (II-1) by simple primary amines resulted in a massive Stokes shift. As is shown in Table II-1, the cyclohexanemethylamine II-2 and benzyl amine II-3 yield a Stokes shift of 150 nm and 140 nm , respectively. With limited mechanistic understanding for this observation it was suggested that a change of the amine's pyramidal geometry in the excited state leads to the observed increase in Stokes shift.

Table II-1. Strategy to achieve large Stokes shift cyanine dyes

[a] Absorption, emission and absolute quantum yield data were obtained in methanol.
Other seminal work by the Maury group studied the effect of various substitutions at the C4 position of multiple polymethine dyes, leading to the development of a new bisdipole structure for cyanine dyes. ${ }^{16}$ As shown in Figure II-5, the absorption properties of a cyanine would be affected by electronic character of its C 4 -substituent. It was observed that groups such as halogens or thioethers exhibit absorption profiles similar to general cyanines, while strong electron donating groups like ketone (hydroxyl) or imines (amines) could break the cyanine's conjugation with its heterocyclic ends, blue shifting the absorption by generation of a bis-dipole type structure. However, the impact of these substituents on the Stokes shift was not investigated in this work.

$$
\begin{aligned}
\mathrm{Y}= & =\mathrm{C}(\mathrm{CN})_{2} \\
& =\mathrm{O} \\
& =\mathrm{NPh} \\
& =\mathrm{NPr}
\end{aligned}
$$

- NEt_{2} $-\mathrm{NC}_{5} \mathrm{H}_{10}$

Figure II-5. Bis-dipole structure of substituted cyanines
As mentioned above, prior work aimed at increasing the Stokes shifts of cyanine dyes have explored primary amine substitutions, geometrically twisted structures, and novel donor groups. Nonetheless, these methods have not offered a reliable strategy for tuning or rational means of predicting the Stokes shift. A variety of cyclic and acyclic amine substituents were screened in the prior study. In our work, we have expanded the structural variations of the substituents (a variety of cyclic and acyclic amine substituents) as well as the cyanine backbone, in order to comprehend the underlying principles that
affect the spectroscopic characteristics, and in particular, the Stokes shift. In doing so, we have identified a simple strategy to tune the Stokes shift of heptamethine cyanine dyes by tuning the relative energies of conformers of the dye differentiated by rotation about the central amine group.

A conventional heptamethine cyanine dye II-6 was chosen to investigate the effects of different nitrogen substituents on the observed Stokes shift. The general synthesis of different heptamethine cyanine backbones is shown in Figure II-6. ${ }^{17}$

Figure II-6. Synthesis of heptamethine cyanine dyes
Two categories of cyanine dyes (substituted with acyclic and cyclic amines) were synthesized via addition-elimination, promoted by diisopropylethylamine (DIPEA) and excess amine in acetonitrile (Figure II-7). Acyclic amine substituted cyanine dyes include dimethyl amino (II-10), methyl ethyl amino (II-11) and diethyl amino groups (II-12), whereas heterocyclic groups include methyl aziridine (II-13), azetidine (II-14), pyrrolidine (II-15) and piperidine (II-16).

Series A

II-10

II-11

II-12

II-13

II-14

II-15

Figure II-7. Synthesis of first series of amine substituted heptamethine cyanine dyes
Attempts to synthesize the seven membered azepane substituted cyanine were not fruitful, as the product could not be isolated in its pure form. Table II-2 summarizes spectroscopic properties for dyes II-9 to II-16.

Table II-2. Spectroscopic data of amine substituted heptamethine cyanines

Dye	$N R_{2}$	$\lambda_{\text {max }}(\mathrm{nm})^{\mathrm{a}}$	$\lambda_{\text {em }}(\mathrm{nm})^{\mathrm{a}}$	Stokes Shift (nm)	FWHM (nm)	$\Phi(\%)^{\text {b }}$
II-6	-	785	806	21	-	15
II-10	${ }^{\prime}{ }^{\prime}$	664	777	113	117	28
II-11	$N \bigcirc$	684	778	94	110	29
II-12		742	766	24	94	25
II-13	$\left\langle_{N}\right\rangle$	615	704	89	80	26
II-14	\widehat{N}	699	778	79	98	31
II-15		604	784	180	85	33
II-16	$\left[\begin{array}{l} \\ N \end{array}\right]$	668	785	117	133	23

FWHM, full width at half maximum; $\lambda_{\text {max }}$, absorption maximum; λ_{em}, emission maximum; ϕ, quantum yield. [a] Absorptions and emissions were recorded in DCM at rt; [b] Absolute quantum yields were measured by Hamamatsu Quantaurus fluorimeter in DCM at rt.

Cyanine dye II-6 exhibits an absorption maximum in the NIR region ($\lambda_{\max }=785$ nm), emission maximum ($\lambda_{\mathrm{em}}=806 \mathrm{~nm}$), with a small Stokes shift (21 nm) in DCM. To our surprise, while dyes II-10 and II-12 share a similar structure, they are quite different spectroscopically (Figure II-8 top). Dye II-10 absorbs at 664 nm and emits at 777 nm in DCM, leading to a 113 nm Stokes shift. In contrast, aziridinyl substrate dye II-12 shows a 24 nm Stokes shift. Interestingly, the quantum yield is not improved by using aziridinyl or azetidinyl rings (25\% for dye II-12 and 26\% for dye II-3).

$\mathrm{II}-10$

II-14

II-12

II-15

Figure II-8. Normalized absorption and fluorescence emission spectra (measured in DCM) for dyes II-10 (top left) and II-12 (top right), and dyes II-14 (bottom left) and II-15 (bottom right)

In contrast, the opposite trend is observed for dyes II-14 and II-15 (Figure II-8 bottom). Diethylamine substrate II-14 yields a moderate 79 nm Stokes shift (absorption at 699 nm and emission at 778 nm), while the cyclic pyrrolidine substituted cyanine 7
leads to an even larger Stokes shift (180 nm). Notably, the quantum yields are similar (31\% for dye II-14 and 33% for dye II-15). These observations indicate that the Stokes shift of cyanine dyes can be easily tuned by varying the amine substituents ranging from 24 nm up to 180 nm . Based on the collective data obtained, some trends can be observed amongst the series. Cyclic and acyclic amines appear to behave differently; the smaller acyclic amines lead to a larger Stokes shifts, while smaller cyclic amines yield a smaller Stokes shift. Another notable observation is that most of these dyes (except dye II-13) share similar emission profiles (around 770 nm). The change in Stokes shift is dictated mainly by the blueshift of the absorption. Thus, we speculated that these dyes may have different ground state geometries. It is notable that the azetidine substituted dye II-13 possesses strong solvatochromic properties in various solvents. The photophysical properties of dye II-13 in different solvents are reported in Table II-3.

Table II-3. Spectroscopic data of dye II-13 in different solvents

Solvent	$\lambda_{\max }(\mathrm{nm})^{\mathrm{a}}$	$\lambda_{\mathrm{em}}(\mathrm{nm})^{\mathrm{a}}$	Stokes Shift (nm)
DCM	615	704	89
Methanol	589	701	112
Acetone	585	704	119
Toluene	574	679	105

[^0]To examine the generality of the trend described above, similar amine substitutions were made with other series of cyanine dyes. The second series that was synthesized contained indocyanine green (ICG) as the head group (Figure II-9).

Series B

II-18

II-19

II-20

II-22

II-23

Figure II-9. Structure of second series of amine substituted heptamethine cyanine dyes
Photophysical characteristics of these dyes are listed in Table II-4. In comparison to cyanine dyes II-10 - II-16 in Table II-3, ICG type dyes II-17 - II-23 possess a larger
conjugated aryl ring, and are red shifted by around 40 nm , while maintaining the same Stokes shift trend. The largest Stokes shift was seen with dye II-22 containing the pyrrolidine ring substitution (187 nm), while the smallest Stokes shift was the aziridinyl functionalized dye II-19 (56 nm).

Table II-4. Spectroscopic data of amine substituted ICG based cyanine dyes

Dye	NR_{2}	$\lambda_{\text {max }}(\mathrm{nm})^{\text {a }}$	$\lambda_{\text {em }}(\mathrm{nm})^{\text {a }}$	Stokes Shift (nm)	FWHM (nm)	$\Phi(\%)^{\text {b }}$
II-17	${ }^{\prime}{ }^{\prime}$	705	818	113	124	24
II-18	${ }_{N}$	724	816	92	116	26
II-19		746	802	56	128	24
II-20	$\left\langle{ }_{N}\right\rangle$	649	737	88	84	30
II-21	-	739	819	80	107	24
II-22	\square_{N}	636	823	187	85	25
II-23		708	824	116	143	21

FWHM, full width at half maximum; $\lambda_{\text {max }}$, absorption maximum; λ_{em}, emission maximum; ϕ, quantum yield. [a] Absorptions and emissions were recorded in DCM at rt; [b] Absolute quantum yields were measured by Hamamatsu Quantaurus fluorimeter in DCM at rt.

Most of the dyes listed in Table II-4 have a slightly lower quantum yield than their analogs in Table II-3, with the azetidine substituted dye II-20 having a slightly higher quantum yield (30\%). In continuation of this study, we also synthesized benzothiazole based cyanine dyes and chose 3 representative substituents: dimethyl, diethyl, and pyrrolidinyl groups to examine their photophysical properties (Table II-5). Gratifyingly, the
same trend was also observed in these dyes featuring a large Stokes shift with pyrrolidinyl (171 nm for dye II-26) and a moderate Stokes shift with diethyl (69 nm for dye II-25).

Table II-5. Structure and spectroscopic data of amine substituted benzothiazole based cyanines

Dye	NR_{2}	$\lambda_{\max }(\mathrm{nm})^{\mathrm{a}}$	$\lambda_{\mathrm{em}}(\mathrm{nm})^{\mathrm{a}}$	Stokes Shift (nm)	FWHM (nm)	$\Phi(\%)^{\mathrm{b}}$
$\mathrm{II}-\mathbf{2 4}$	N $^{\prime}$	703	801	98	123	26
$\mathrm{II}-25$	733	802	69	129	27	

FWHM, full width at half maximum; $\lambda_{\text {max }}$, absorption maximum; λ_{em}, emission maximum; ϕ, quantum yield. [a] Absorptions and emissions were recorded in DCM at rt; [b] Absolute quantum yields were measured by Hamamatsu Quantaurus fluorimeter in DCM at it.

To investigate the mechanism underlying the observed change in the Stokes shift we carried a computational study of dyes II-10 - II-16. Calculating the spectroscopic properties of cyanine dyes remains challenging. For example, commonly used timedependent density functional theory (TD-DFT) functionals cannot provide accurate transition energies for cyanine dyes, overestimating excitation energies by $0.5-1.0 \mathrm{eV}$.

Nonetheless, TD-DFT is established to provide an accurate description of the shape of the excited potential energy surfaces of these molecules. ${ }^{18,19}$ Thus, one can expect TDDFT to provide an accurate description of the Stokes shift and the associated displacement coordinate, with the caveat that it does not provide quantitative predictions of the excitations energies themselves.

Before turning our attention to the excited state, we examined the ground state conformer. Geometry optimizations at the CAM-B3LYP/6-31G* level ${ }^{20}$ (performed with the TeraChem software package ${ }^{21,22}$ show the s-trans conformer having a lower energy than the s-cis structure (differentiate by flipping of the indolium ring) for all dyes in the series II-9 to II-16. Interestingly, all seven of the amine-substituted dyes II-10 to II-16 have two distinct s-trans ground state minimum structures that differ in the rotation angle of the amine group (Figure II-10). In one minimum, the amine is rotated to be roughly in plane with the heptamethine chain, which we refer to as the parallel conformer. In the other structure, referred to as the perpendicular conformer, the amine is rotated approximately 90° with respect to the heptamethine chain. Structures for all optimized systems can be found in experimental section.

The existence of two conformers is closely related to the concept elaborated upon in an elegant work by Guennic, Andraud, Maury and coworkers. ${ }^{16}$ Their conformational approach was used to determine the spectroscopic properties of substituted cyanine dyes: the distinction between bis-dipolar and cyanine-like electronic structures (Figure II10). A bis-dipolar system is characterized by alternating double and single bond character, which would occur when an amine nitrogen conjugates to the π system of the
chain (Figure II-10, left). In a cyanine-like system, bond orders of all carbon-carbon bonds in the heptamethine chain are roughly 1.5 (Figure II-10, right). The excitation energy, or extent of absorption blue shifting, tends to increase with increasing bis-dipolar character.

Figure II-10. Generalized cyanine-like and bis-dipolar structures of cyanine dyes
It is important to note that all perpendicular structures will exhibit cyanine-like character, because twisting about the amine bond breaks conjugation with the chain. Parallel structures, however, may exhibit a continuum of electronic character, from more bis-dipolar to more cyanine-like character, depending on the degree of π electron donation from the amine to the chain (see dashed box, Figure II-10).

Interestingly, several of the amine-substituted dyes (II-10, II-11, II-14 and II-16) favor a perpendicular conformation, while the minority (II-12 and II-13) favor a parallel
conformation. Only those dyes with relatively narrow amine substituents (II-12 and II-13) favor the parallel conformation. Analysis of the C-C distance between the carbon atoms in the amine substituent and those in the polymethine chain suggests that steric interaction between these groups determines the ground state conformation. The parallel conformers of II-10, II-11, II-14 and II-16 all have C-C contacts between the amine substituent and the polymethine chain in the range $2.91-2.93 \AA$. These close contacts suggest that the parallel conformers of these dyes are sterically destabilized. On the other hand, the parallel conformers of II-12 and II-13 have no contacts shorter than $3.00 \AA$, and therefore are not sterically destabilized. For II-15, the calculations predict the difference in energy to be $<1.5 \mathrm{kcal} / \mathrm{mol}$, which is effectively equal, given the margin of error for this DFT approach. In this case, the closest $\mathrm{C}-\mathrm{C}$ contact between the amine substituent and the polymethine chain is $2.94 \AA$, which is between the two extremes. For molecules with a clear lowest energy conformer (II-10 - II-14 and II-16), computing a Stokes shift is more straightforward. In each of these cases, two excited state minima (parallel and perpendicular) were optimized at the TD-CAM-B3LYP/6-31G* level, and in all cases the energetically favored conformer was the same as in the ground state.

Figure II-11 is a scatter plot with the computed excitation energies on the x-axis and the experimentally measured spectral maxima on the y-axis. Blue marks indicate the experimental absorption maxima as a function of the computed vertical excitation energies from the ground state minimum structure. Red marks indicate the experimental emission maxima as a function of the computed vertical excitation energy at the excited state minimum structure.

Figure Il-11. Scatter plot of the experimental spectral energy maxima as a function of the DFT-computed theoretical excitation energies. Absorption and emission energies are shown by blue and red dots, respectively. The lowest energy conformer is chosen for II9 - II-14 and II-16, while for II-15, both the parallel (II-15II) and perpendicular (II-15」) conformers are shown

Though DFT consistently overestimates the experimental energies by $0.6-0.7$ eV , a compelling pseudo linear relationship between experiment and theory is observed for molecules II-10 - II-12, II-14 and II-16. This suggests that the basic physics underlying the Stokes shift is well described. As will be discussed below, molecules II-13 and II-15 do not follow the trends due to other factors. As shown in Figure II-12, the experimental excitation energies correlate strongly with displacement along a bond length alternation coordinate (BLA) as determined from the calculated structures, supporting the
assignment of variances in the excitation energies to a shift between cyanine-like and bisdipolar electronic character.

Figure II-12. Scatter plot of the experimental spectral energy maxima as a function of the DFT-optimized bond length alternation coordinate (in angstrom). Absorption and emission energies are shown by blue and red dots, respectively

Applying the same analysis to II-15, the molecule with the largest Stokes shift does not result in good agreement with experimental data (see Figure II-8). The fit is poor regardless of whether the perpendicular (II-15 ${ }_{\perp}$) or parallel (II-15 ${ }_{\|}$) conformer is chosen. In the parallel case, the absorption point falls on the line, but the emission point does not. On the other hand, in the perpendicular case, the emission point falls on the line, but the absorption point does not. This suggests the intriguing possibility that the molecule converts from the parallel to the perpendicular conformation upon excitation. A shift from
a strongly bis-dipolar character in the ground state to more cyanine-like character in the excited state is indicated by a reduction in BLA from $0.089 \AA$ (the largest of all dyes studied here) to $0.034 \AA$. Such a reorganization mechanism has previously been recognized, but here we demonstrate the delicate energy balance that determines whether such rotation occurs or not. ${ }^{16,23}$

As noted above, all perpendicular structures exhibit cyanine-like electronic structure. This includes both ground and excited states structures for II-10, II-11, II-14 and II-16 as well as the excited state structure for II-15. To determine the nature of the electronic structure of the parallel structures (both ground and excited states structures of II-12 and II-13, and the ground state structure of II-15), we must consider additional coordinates. Table II-6 presents the computed BLA displacement and pyramidalization angle about the amine nitrogen atom of these five structures (A Table containing these parameters for all structures can be found in the experimental section, along with explicit definitions of the BLA and pyramidalization angle coordinates). The computed ground state pyramidalization angles increase as the amine ring become more constrained, with dyes II-15, II-13, and II-12 having angles of $2.1^{\circ}, 7.2^{\circ}$, and 43.4°, respectively. This change in hybridization from a nearly planar sp^{2} conformation in II-15 to a more sp^{3} conformation in II-12 results in decreased coupling of the amine lone pair to the π system of the heptamethine chain (see dashed box, Figure II-10). The reduction in the bis-dipolar character is evidenced by a decrease in the computed BLA (respectively $0.069,0.057$, and $0.036 \AA$ Å) and increasing experimental $\lambda_{\max }$ (respectively 604, 615, and 742 nm). A similar trend is seen in the excited state structures, with II-13 being the dye with more bis-
dipolar character upon excitation (BLA of $0.044 \AA$ Å) and a correspondingly high emission energy ($\lambda_{\text {em }}=704 \mathrm{~nm}$).

Table II-6. Important geometric parameters that determine the electronic character (bisdipolar vs. cyanine-like) of the five structures in the parallel conformationa

Dye	NR_{2}	State ${ }^{\text {b }}$	BLA (Å)	Pyr. Ang. $\left(^{\circ}\right.$)
II-12		GS	0.036	43.3
		ES	0.023	49.4
II-13	$\left\langle\left\langle_{N}\right.\right.$	GS	0.057	7.2
		ES	0.044	15.9
II-15		GS ${ }^{\text {c }}$	0.069	2.1

BLA, bond length alternation; Pyr. Ang., pyramidalization angle. [a] Geometric parameters are computed at the TD-CAM-B3LYP/6-31G* level. [b] Ground and excited state structures are abbreviated GS and ES, respectively. [c] Only the GS structure is presented for II-15, because the ES minimum energy structure has a perpendicular conformation.

With the latter experimental and computational results, a physical description of the trends observed in Table II-2 can be summarized as follows. Dyes with small amine substitutions orient such that the nitrogen atom lone pair may participate in conjugation (bis-dipolar), thus leading to the observed blue-shift in absorption. To clarify, the meaning of "size" in this context, it is the width of the substituent, not necessarily the smallest overall moiety. Therefore, the width of the pyrrolidine substituent is less than dimethylamine (dye II-15 vs. II-10). As the lateral size of the substituent increases, the degree of blue-shift is reduced as the bis-dipolar orientation is more difficult to achieve. The observed trend in Stokes shift (II-16 > II-10 > II-11 > II-14) follows the size trend with
the anticipated increasing difficulty in adopting the necessary orientation to have the nitrogen atom lone pair in conjugation with the polyene.

Dyes II-12 and II-13 (as well as the analogous II-19 and II-20), however, defy the latter description; though they are both smaller than II-15, they do not have higher-energy absorption. Aziridine nitrogen atom's donating ability to form the bis-dipolar electronic structure would require it to adopt the more strained sp^{2} hybridization, which is energetically disfavored. ${ }^{24}$ Thus, dye II-12 has the lowest Stokes shift as it exists in a more cyanine-like conformation in both the ground and excited state, even though it adopts the 'bis-dipolar' state by rotation about the $\mathrm{C}-\mathrm{N}$ bond. Based on the absorption and emission spectra of dye II-13 (both blue-shifted), the azetidine substituent present a unique case. It is small, and thus can adopt the bis-dipolar conformation, and in contrast to the aziridine, rehybridization of its nitrogen atom is not as energetically costly. In fact, iminium formation of azetidines is well documented. ${ }^{25}$ Yet, it resists conformational change to the structure that favors cyanine-like character in the excited state, presumably because rehybridization is costlier in a small ring, and therefore emits from the bis-dipolar conformation. Dye II-15 finds itself with the correct balance of size, and conformational flexibility to easily traverse from a more bis-dipolar conformer to a more cyanine-like conformations upon excitation, leading to the observed large Stokes shift.

In summary, we demonstrate a simple strategy to selectively engineer Stokes shifts for cyanine dyes, important in biomedical engineering and energy capture. ${ }^{26}$ Stokes shifts of different cyanine dyes can be easily tuned via nitrogen substituents (from 24 nm up to 180 nm). Rotation of the amine substituent upon excitation is responsible for the
largest Stokes shifts, and an enhanced Stokes shift is observed when the dye may convert from the bis-dipolar form to the cyanine-like form upon excitation. Some of these dyes applied on TLSC devices demonstrated good results. The large Stokes shift cyanine candidate showed 0.6% PCE with excellent visible transparency $>80 \% .{ }^{14}$

II-3-2 Broad absorbing NIR fluorophores for TLCS devices

The features of the desired fluorophores for TLCS device are: NIR absorption wavelength, high quantum yield, large Stokes shift and broad absorption profile. In continuation of our efforts to improve the power conversion efficiency of TLSCs, we explored new candidates fitting the criteria of the abovementioned properties. The synthesized cyanine dyes demonstrated good results on the device, since they absorb in NIR with large Stokes shift and high quantum yield. In a new class of dyes, we look for NIR fluorophores that in addition to the high quantum yield and large stokes shift, have a broad absorption band. As shown in Figure II-13, broad absorption would increase the probability of absorbing more photons, which results in higher system efficiency.

Figure II-13. Broad absorbing spectra leads to harvesting higher photon numbers

During our investigation we found that the acceptor-donor-acceptor (A-D-A) small molecules that are used widely in organic photovoltaic solar cells, have broad absorption spectra. The DRCN7T compound shown in Figure II-14, is an ideal example reported by Chen and co-workers. ${ }^{27}$ This small molecule with oligothiophenelike backbone and two terminal acceptors, shows broad absorption spectra in solution and film (fluorescent properties were not reported in this work). These dyes usually absorb in the visible region, which can be simply tuned by putting electron donating groups, such as alkoxy, on the thiophene rings and also replacing the terminal groups with stronger molecular acceptors. More recent example of this A-D-A dyes is CO8DFIC (also referred to as O6T-4F, Figure II-14), which has been developed as a nonfullerene acceptor in organic photovoltaics with unprecedented performance. ${ }^{28,}{ }^{29}$ Alkoxy electron donating groups on the thieno[3,2-b]thiophene rings of CO;8DFIC along with the strong DFIC acceptors led to absorption in the NIR region. There are two important factors in the design of this dye that affect the quantum yield; with the first being the three thieno[3,2-b]thiophene rings in the backbone. These are rigidified via the 6-member rings, which inhibit free rotation, limiting non-radiative pathways in the excited state and resulting in a higher quantum yield, 2. The flat backbone of these dyes could lead to aggregation and lower the quantum yield, but the two geminal di-aryl groups ($p\left(\mathrm{C}_{6} \mathrm{H}_{13}\right.$)-Ph-) on the 6-member rings rotate out of plane and hinder. In this work we planned to introduce nonfullerene acceptor CO8DFIC as the luminescent emitters in NIRselective harvesting TLSCs.

CO,8DFIC

Figure II-14. Structures of D-A-D dyes; DRCN7T and CO8DFIC
The synthesis of CO;8DFIC closely followed the procedure reported previously with small alterations to a few procedures as described in the experimental section ${ }^{30,31}$ (Figure II-15). The synthesis commenced with 3-bromothieno[3,2-b]thiophene II-27, and in two steps, bromo ester II-30 was obtained. Meanwhile, the bis(trimethyltin) compound II-33 was made in two steps from dibromide II-31 and reacted with II-30 to furnish the II34. Later, demethylation and acidification resulted in di-lactone structure II-36, which following ring opening with 127yrrolid and recyclization, generated the fully cyclized backbone II-38. After a formylation reaction, the di-aldehyde II-39 in the of DFIC acceptor (II-40) was converted to the CO;8DFIC as the final product.

Figure II-15. Synthesis of CO8DFIC

Figure II-15 (cont'd)

The normalized absorption and emission spectra of CO;BDFIC dissolved in chlorobenzene solution and embedded in polymer matrix are plotted in Figure II-16a and II-16b. From solution to polymer matrix, there is a hypsochromic shift of both the absorption and emission spectra: the absorption peak shifts from 770 nm to 745 nm and the emission peak shifts from 831 nm to 808 nm , exhibiting Stokes shift of $\sim 60 \mathrm{~nm}$. The measured quantum yield is $23 \pm 1 \%$ in chlorobenzene solution and $25 \pm 3 \%$ in the polymer matrix. The relatively high Stokes shift values as well as high quantum yield demonstrate the potential for these NIR dyes, suggesting that CO;8DFIC may be a proper candidate for fabricating on TLSC.

Figure II-16. Data for Coi8DFIC; a. Normalized absorption and emission spectra in chlorobenzene solution, b. Normalized absorption and emission spectra in polymer matrix, c. Current density versus voltage (J-V) characteristics of TLSCs with different concentrations, d. Average EQELSC (λ) spectra of TLSCs with different concentrations, e. Photographs of all the TLSC devices (Permission to utilize the Spartan helmet logo is kindly provided by MSU)

TLSC devices with five different CO;8DFIC concentrations were made by our collaborator Dr. Chenchen Yang in Prof. Lunt's group and their photovoltaic performance was characterized. For comparison, TLSC with cyanine dye (Cy7-NHS) was added as a reference device. The current density versus voltage $(J-V)$ characteristics of these TLSCs is shown in Figure II-16c along with average position-dependent external quantum efficiency (EQElsc (λ)) spectra in Figure II-16d. Photographs of all the TLSC devices are shown in Figure II-16e (Permission to utilize the Spartan helmet logo is kindly provided by MSU). The TLSC with CO;8DFIC yielded a PCE of 1.24% with an AVT of 74.4%. The spectroscopic properties and extracted photovoltaic parameters are summarized in Table II-7.

Table II-7. Spectroscopic properties and TLSC photovoltaic parameters of CO;8DFIC

| Dye | $\lambda_{\text {max }}(\mathrm{nm})^{\mathrm{a}}$ | $\lambda_{\mathrm{em}}(\mathrm{nm})^{\mathrm{a}}$ | Stokes Shift (nm) | $\Phi(\%)^{\mathrm{b}}$ | PCE (\%) | AVT (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO8DFIC | 770 | 831 | 61 | 25 | 1.24 | 74.4 |

$\lambda_{\text {max }}$, absorption maximum; $\lambda_{\text {em }}$, emission maximum; ϕ, quantum yield; PCE, power conversion efficiency; AVT, average visible transmittance. [a] Absorptions and emissions were recorded in chlorobenzene at it. [b] Absolute quantum yields were measured by Hamamatsu Quantaurus fluorimeter. [c] PCE and AVT reported for $150 \mathrm{mgL}^{-1}$.

In summary, we have synthesized the nonfullerene acceptor CO;8DFIC and utilized it in TLSCs as the luminophore. After device optimization, the TLSCs are shown to achieve a PCE of over 1.2% while the AVT exceeds 74%. This work reports the highest TLSC device efficiency at the highest visible transparency at the time of the report. ${ }^{32}$ Also, we highlight that the photoluminescent properties of these emerging low bandgap organic molecules provide a promising path for to higher TLSC performance.

II-3-3 Ultraviolet and near-infrared dual-band selective-harvesting TLSC

Multiple luminophores with various wavelength-selectivity can be incorporated into the LSC waveguide to maximize the spectral coverage of light harvesting ${ }^{33-35}$, and enhance photovoltaic performance. ${ }^{36,37}$ However, coupling or reabsorption between different luminophores often leads to a reduction in the efficacy of this approach. ${ }^{38}$ In this work, we introduce highly luminescent phosphorescent nanoclusters (NCs) and fluorescent organic molecules into TLSCs as isolated UV and NIR selective-harvesting luminophores, respectively. The NCs selectively harvest UV photons while exhibiting near-unity PL quantum yields (QY) and massive downshift of the luminescence into the NIR, without the use of heavy or toxic elements such as lead. ${ }^{9}$ To effectively pair these emitters and prevent deleterious reabsorption loss of the nanocluster emission in the NIR absorbing organic fluorophore, we demonstrate a strategy to isolate the absorption/emission bands. The dual-band TLSC device is composed of two distinct waveguides as shown in Figure II-17 with the UV component coated in polymer matrix on one waveguide and the NIR component on the other. An air gap is utilized to optically isolate the waveguided luminescence in each panel to prevent reabsorption.

Figure II-17. Schematic of the working principle of the dual-band selective harvesting TLSC

The top UV component is based on phosphorescent hexanuclear NCs, where the chemical structure of $\mathrm{Cs}_{2} \mathrm{Mo}_{6} \mathrm{I}_{8}\left(\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{COO}\right)_{6} \mathrm{NC}$ is shown in Figure II-18 (The NCs were synthesized by our collaborators in chemical engineering). Substitution of the apical halide positions has been shown previously to be an effective approach to increase quantum yields above 50%. ${ }^{9,39}$ Various terminating ligands $\left(\left(\mathrm{CF}_{3}\right)_{n}\right.$ chain length) were synthesized and tested to maximize the QY with the composition above providing the highest value. We note that the chemical composition of the NC does not contain any hazardous heavy metal ions, which makes the deployment more environment friendly. The normalized absorption and emission spectra of the NC in polymer are shown in Figure II-18. The spectra show absorption cut-off at the UV/VIS border and NIR emission onset at the VIS/NIR border with a massive downshift over 300 nm and a corresponding QY of 80 ± 5 in the polymer matrix ($75 \pm 5 \%$ in acetonitrile), which makes these NCs a practical UV selective-harvesting luminophore for TLSC applications.

Figure II-18. Molecular structure, normalized absorption and emission spectra of $\mathrm{Cs}_{2} \mathrm{Mo}_{6} \mathrm{I}_{8}\left(\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{COO}\right)_{6}$ nanocluster

The bottom waveguide is based on NIR fluorescent small molecules. Two different organic luminophores are demonstrated as NIR selective harvesters. The first being CO;8DFIC, as discussed in a previous section (II-3-2). The absorption peak is 745 nm while the emission peak is at 808 nm , resulting in a Stokes shift of $\sim 60 \mathrm{~nm}$ and QY of 25 $\pm 3 \%$ in polymer matrix ($23 \pm 1 \%$ in chlorobenzene). The second dye is a BODIPY derivative with high QY in the NIR. ${ }^{40}$ The molecular structure, normalized absorption, and emission spectra of BODIPY in polymer matrix is shown in Figure II-19. Compared to CO;8DFIC, the absorption and emissions peaks of BODIPY are narrower with a smaller Stokes shift (10 nm), but the significantly higher QY of $40 \pm 3 \%$ in polymer matrix ($41 \pm$ 2% in hexane) is among the highest values for this NIR emission range.

BODIPY

Figure II-19. Molecular structure, normalized absorption and emission spectra of BODIPY

After optimization of concentration, dual-band TLSC devices with two luminophore combinations (NC+CO;8DFIC and NC+BODIPY) were fabricated and their photovoltaic performance was characterized. For comparison, the TLSC with NC-only was added as a reference device. The current density versus voltage $(J-V)$ characteristics of these TLSCs are shown in Figure II-20a along with average position-dependent external quantum efficiency (EQElsc(λ)) spectra in Figure II-20b.

Figure II- 20. A. $J-V$ characteristics of TLSCs, b. Average EQELsc (λ) spectra of TLSCs

The quantum yield and extracted photovoltaic parameters are summarized in Table II-8. PCEs reach $2.9 \pm 0.1 \%$ and $3.01 \pm 0.07 \%$ for NC+CO;8DFIC and NC+BODIPY TLSCs, respectively, with color metrics suitable for the window industry.

Table II-8. Spectroscopic properties and TLSC photovoltaic parameters of CO;8DFIC

TLSCs	Dyes	$\Phi(\%)^{\text {a }}$	PCE (\%)	AVT (\%)
1	NC	80	2.9	65.6
	+			
	CO8DFIC	25		
2	NC	80	3.1	75.8
	+			
	BODIPY	40		

[a] Quantum yields were measured in polymer matrix.
In summary, by combining highly emissive phosphorescent hexanuclear metal halide NCs and organic luminophores as isolated UV and NIR selective-harvesting luminophores, we have designed and demonstrated dual-band selective-harvesting TLSC devices. Harvesting non-visible photons from both UV and NIR portions of solar spectrum leads to PCE $>3 \%$, with good wavelength-selectivity that results in AVT $>75 \%$. This work reports the highest PCE of any transparent photovoltaic (TPV) devices with AVT greater than 70\% at the time of publication. ${ }^{41}$

II-4 Future work

II-4-1 Further investigations on tuning the Stokes shift and QY of cyanines

We previously reported a general strategy to tune the Stokes shift of the cyanine dyes by substitution of different amines at C4 position which would maintain or break conjugation leading to two distinct ground state conformations. As shown in Figure II-21a, the C2 position on cyanine's methine backbone has the potential to affect more than the C-4 (II-41). Amination at this position could also disrupt conjugation, leading to a greater extent of blue shifting, as compared to C-4, because it would shorten the conjugation to a greater extent. The synthesis of C2-halogenated cyanines is under study in our lab. In a parallel study our computational collaborator, Professor Levine hypothesized that, locking the pyrrolidine ring to the methine chain backbone such as that shown in structure (II-42), could lead to a massive Stokes shift (Figure II-21b). The synthetic strategy toward making this molecule is under study.
a.

II-41
b.

II-42

Figure II-21. a. Amine C2-substituted cyanines, b. asymmetric cyclized aminated cyanine
We have previously discussed cyanine's wide utility due to their unique structural characteristics. Although improving the quantum yield of cyanines was evaluated with different approaches, for most cases the efficiency does not rise above 25-35\% beyond 700 nm . Schnermann and coworkers have shown a QY increase of more than 4-fold upon
restricting bond rotations of the Cy5 methine chain, although this approach fails when the methine length increases from five to seven. ${ }^{42,43}$ Since Cy5 absorption is primarily in the visible region, they fall short of what is required for transparent solar concentrators. In addition, red-shifted fluorophores are more suitable for bio imaging as well. Our plan entails modification of the indoline based head groups (with higher donor strength) on Cy5, in order to optimize the absorption in the NIR region. Next, we would restrain the conformation to increase the QY. Five proposed head groups are depicted in Figure II22; two full structures with the head groups are shown as examples. In addition, we would install an amine at the center of the chain to increase the stokes shift and minimize the integral overlap.

Proposed Head Groups

Examples of Proposed Structures

Figure II-22. Proposed head groups to redshift the Cy5 core and, proposed new Cy5 structures

II-4-2 Donor-acceptor-donor dyes as a potential tools in TLSCs and bio imaging

We have shown the application of acceptor-donor-acceptor (A-D-A) fluorophore CO8DFIC as the luminescent emitters in NIR-selective harvesting TLSCs. The other potential candidate could be donor-acceptor-donor(D-A-D) NIR I/II chromophores which have gained considerable attention as a result of their unique structural and photophysical properties. These include high quantum yields, a high stokes shift, high coefficient of absorption, all while absorbing and emitting outside the visible spectrum. ${ }^{44}$ The general structure of D-A-D that are under evaluation in our lab is depicted in Figure II-23. Our goal is to make a library of these dyes by tuning the donating ability of the substituents and perturbing the electronic structure of acceptor by having different atoms at X and Y .

Figure II-23. General structure of D-A-D NIR I/II fluorophores

II-5 Experimental section

II-5-1 General remarks:

Molecular sieves ($4 \AA$) were dried at $160^{\circ} \mathrm{C}$ under 0.25 mtorr vacuum prior to use. Unless otherwise mentioned, solvents were purified as follows. CHCl_{3} (amylene stabilized) was purchased from Sigma Aldrich and incubated over $4 \AA$ MS for 48 h prior to use. Toluene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried over CaH_{2} whereas THF and $\mathrm{Et}_{2} \mathrm{O}$ were dried over sodium (dryness was monitored by colorization of benzophenone ketyl radical); they were freshly distilled prior to use. Acetonitrile and DMF for reactions was HPLC grade from Sigma-Aldrich. NMR spectra were obtained using a 500 MHz Varian NMR spectrometer and referenced using the residual ${ }^{1} \mathrm{H}$ peak from the deuterated solvent. Waters 2795 (Alliance HT) instrument was used for HRMS (ESI) analysis with polyethylene glycol (PEG-400-600) as a reference. UV-Vis was performed on Agilent Cary 100 series machine and PL was recorded on Fluorolog by ISA instrument. Quantum yield measurement was performed on absolute PL quantum yield spectrometer C11347 by Hamamatsu.

Column chromatography was performed using Silicycle $60 \AA$, 35-75 $\mu \mathrm{m}$ silica gel. Pre-coated 0.25 mm thick silica gel 60 F254 plates were used for analytical TLC and visualized using UV light, potassium permanganate stain, p-anisaldehyde stain or phosphomolybdic acid in EtOH stain.

II-5-2 General synthesis of amine substituted cyanines:

Amine substituted cyanines II-9 were synthesized according to the previous reported procedures. ${ }^{17}$ To a solution of II-6 (74 mg, 0.10 mmol), diisopropylethylamine (DIPEA) ($35 \mu \mathrm{~L}$, 2 equiv, 0.20 mmol) in acetonitrile (2 mL) was added amine (20 equiv, 2.0 mmol) under nitrogen in a sealed tube. The mixture was stirred at $70^{\circ} \mathrm{C}$ and the reaction was monitored by LC-MS. Upon completion, typically in 48 h , the mixture was concentrated under reduced pressure and purified by flash column (100\% DCM gradually to $5 \% \mathrm{MeOH} / \mathrm{DCM}$). The products were isolated as a dark solids.

II-5-2-1 Analytical Data

2-(CAN-2-(CAN-2-(dimethylamino)-3-(2-(CAN-1,3,3-trimethylindolin-2-
ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-1,3,3-trimethyl-3H-indol-1-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark green solid ($40 \mathrm{mg}, 0.064 \mathrm{mmol}, 64 \%$).
${ }^{1} \mathrm{H}-$ NMR (500 MHz , Chloroform- d): $\delta 7.40$ (d, $J=13.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (td, $J=8.1,7.4,1.5$ $\mathrm{Hz}, 4 \mathrm{H}), 7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.61$ (s, 6H), 3.39 (s, 6H), 2.46 (t, J=6.6 Hz, 4H), 1.79 (p, J=6.6 Hz, 2H), 1.59 (s, 12H).
${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Chloroform-d): $\delta 175.55,167.84,143.54,140.28,139.84,128.22$, 122.73, 122.08, 121.97, 108.50, 94.06, 53.53, 47.86, 47.60, 29.48, 25.40, 21.56.

HRMS(ESI+): calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]^{+} 492.3379$, found 492.3378 .

2-(CAN-2-(CAN-2-(ethyl(methyl)amino)-3-(2-(CAN-1,3,3-trimethylindolin-2-
ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl()-1,3,3-trimethyl-3H-indol-1-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($39 \mathrm{mg}, 0.062 \mathrm{mmol}, 62 \%$).
${ }^{1} \mathrm{H}-$ NMR (500 MHz , Chloroform- d): $\delta 7.46$ (d, $J=13.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33-7.24$ (m, 4H), 7.08 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{q}, J=7.0 \mathrm{~Hz}$, 2H), 3.48 (s, 6H), 3.41 (s, 3H), 2.47 (t, $J=6.5 \mathrm{~Hz}, 4 \mathrm{H}$), 1.81 (p, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.60 (s, $12 \mathrm{H}), 1.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (126 MHz , Chloroform-d): δ 175.03, 169.15, 143.30, 141.83, 139.94, 128.44, 124.26, 123.41, 121.97, 109.15, 95.86, 53.52, 47.90, 44.73, 31.24, 29.27, 24.94, 21.83, 14.98.

HRMS(ESI+): calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]^{+} 506.3535$, found 506.3525 .

II-12

1,3,3-Trimethyl-2-(CAN-2-(CAN-2-(2-methylaziridin-1-yl)-3-(2-(CAN-1,3,3-trimethylindolin-2-ylidene)ethylidene)cyclohex-1-en-1-yl()vinyl)-3H-indol-1-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($30 \mathrm{mg}, 0.047 \mathrm{mmol}, 47 \%$).
${ }^{1} \mathrm{H}-$ NMR (500 MHz , Chloroform- d): $\delta 8.01$ ($\mathrm{d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.38-7.26$ ($\mathrm{m}, 4 \mathrm{H}$), 7.14 (t, J=7.4 Hz, 2H), $7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 6 \mathrm{H}), 2.57$ (t, $J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 14 \mathrm{H}), 1.46(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Chloroform-d): δ 170.91, 170.12, 143.07, 140.20, 139.76, 128.61, 124.61, 124.14, 121.99, 109.76, 98.11, 48.27, 39.06, 36.94, 31.66, 28.61, 28.47, 25.95, 20.86, 18.09.

HRMS(ESI+): calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]^{+} 504.3379$, found 504.3375 .

II-13

2-(CAN-2-(CAN-2-(144yrrolidi-1-yl)-3-(2-(CAN-1,3,3-trimethylindolin-2-ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-1,3,3-trimethyl-3H-indol-1-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($49 \mathrm{mg}, 0.078 \mathrm{mmol}, 78 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta 7.24-7.16(\mathrm{~m}, 6 \mathrm{H}), 6.96(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.77$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.25(\mathrm{~s}, 6 \mathrm{H}), 2.71$ $(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.49(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Chloroform- d): $\delta 169.77,165.86,143.70,139.75,134.78,127.96$, 121.99, 121.95, 107.61, 92.32, 62.46, 47.02, 29.83, 29.27, 27.22, 20.79, 19.31.

HRMS(ESI+): calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]^{+} 504.3379$, found 504.3382 .

2-(CAN-2-(CAN-2-(diethylamino)-3-(2-(CAN-1,3,3-trimethylindolin-2-
ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-1,3,3-trimethyl-3H-indol-1-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($21 \mathrm{mg}, 0.032 \mathrm{mmol}, 32 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta 7.52$ (d, J = $13.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.11$ (m, 2H), $7.02(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.52$ (s, 6H), $2.49(t, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.82(\mathrm{p}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 12 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=6.9$ $\mathrm{Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Chloroform-d): $\delta 174.15,169.83,143.19,142.52,140.06,128.57$, $125.76,123.76,121.97,109.50,96.95,49.47,48.03,31.36,29.07,24.88,21.98,14.84$.

HRMS(ESI+): calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]^{+} 520.3690$, found 520.3692.

1,3,3-Trimethyl-2-(CAN-2-(CAN-2-(145yrrolidine-1-yl)-3-(2-(CAN-1,3,3-trimethylindolin-2-ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-3H-indol-1-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($15 \mathrm{mg}, 0.023 \mathrm{mmol}, 23 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform- d$): \delta 7.42(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H})$, $3.22(\mathrm{~s}, 6 \mathrm{H}), 2.59(\mathrm{t}, J=6.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.10(\mathrm{~m}, 4 \mathrm{H}), 1.79(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{cdcl}_{3}\right.$): $\delta 173.07,165.22,143.92,140.02,135.14,127.72,122.03$, 121.53, 121.22, 107.08, 91.76, 55.86, 46.98, 29.58, 29.43, 28.77, 24.16, 20.91.

HRMS(ESI+): calcd for $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]^{+} 518.3535$, found 518.3536 .

1,3,3-Trimethyl-2-(CAN-2-(CAN-2-(piperidin-1-yl)-3-(2-(CAN-1,3,3-trimethylindolin-2-ylidene)ethylidene)cyclohex-1-en-1-yl)viny()-3H-indol-1-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($72 \mathrm{mg}, 0.054 \mathrm{mmol}, 54 \%$).
${ }^{1} \mathrm{H}-$ NMR (500 MHz , Chloroform- d): $\delta 7.50$ ($\mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33-7.22$ ($\mathrm{m}, 4 \mathrm{H}$), 7.06 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{t}, J=5.0 \mathrm{~Hz}$, $4 \mathrm{H}), 3.46(\mathrm{~s}, 6 \mathrm{H}), 2.47(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.96-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.82$ (m, 2H), $1.62(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (126 MHz , Chloroform-d): $\delta 175.57,168.39,143.43,140.15,139.75,128.36$, 123.79, 123.06, 121.89, 108.84, 95.03, 56.80, 47.63, 28.96, 28.15, 24.94, 24.28, 21.63, 18.91.

HRMS(ESI+): calcd for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]^{+} 532.3692$, found 532.3690.

2-(CAN-2-(CAN-2-(dimethylamino)-3-(CAN-2-(3-ethyl-1,1-dimethyl-1,3-dihydro-2H-benzo[e]indol-2-ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-3-ethyl-1,1-dimethyl-1H-benzo[e]indol-3-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($41 \mathrm{mg}, 0.055 \mathrm{mmol}, 55 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta 8.07$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.83 (dd, $J=8.5,4.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.57(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{ddd}, J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.65(\mathrm{~s}$, $6 \mathrm{H}), 2.50(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.93(\mathrm{~s}, 12 \mathrm{H}), 1.86-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Chloroform-d): $\delta 174.46,168.95,140.52,139.85,131.82,130.89$, $130.18,129.89,128.49,127.41,123.90,122.00,121.91,109.74,93.65,49.72,47.83$, 38.59, 28.97, 25.34, 21.74, 12.03.

HRMS(ESI+): calcd for $\mathrm{C}_{44} \mathrm{H}_{50} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]+620.4005$, found 620.4008.

3-Ethyl-2-(CAN-2-(CAN-2-(ethyl(methyl)amino)-3-(CAN-2-(3-ethyl-1,1-dimethyl-1,3-dihydro-2H-benzo[e]indol-2-ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-1,1-dimethyl-1H-benzo[e]indol-3-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($57 \mathrm{mg}, 0.075 \mathrm{mmol}, 75 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta 8.06$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}$, 4H), 7.63 (d, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ (ddd, $J=8.4,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (ddd, $J=8.1,6.9$, $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, $3.80(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.92(\mathrm{~s}, 12 \mathrm{H}), 1.85(\mathrm{p}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.40(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Chloroform-d): $\delta 173.76,170.16,141.76,139.68,132.27,131.18$, $130.46,130.02,128.35,127.53,124.33,124.23,121.83,110.09,95.39,53.44,49.99$, 44.59, 39.03, 24.99, 21.96, 15.12, 12.24.

HRMS(ESI+): calcd for $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]+634.4161$, found 634.4171.

3-Ethyl-2-(CAN-2-(CAN-3-(CAN-2-(3-ethyl-1,1-dimethyl-1,3-dihydro-2H-benzo[e]indol-2-ylidene)ethylidene)-2-(2-methylaziridin-1-yl)cyclohex-1-en-1-yl)vinyl)-1,1-dimethyl-1H-benzo[e]indol-3-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($36 \mathrm{mg}, 0.047 \mathrm{mmol}, 47 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform- d$): \delta 8.14(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.10-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.88$ (dd, $J=8.5,4.2 \mathrm{~Hz}, 4 \mathrm{H}$), 7.55 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (ddd, $J=8.0,6.8,1.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.79$ - $2.77(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{t}, J=6.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.43(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 13 \mathrm{H}), 1.86-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{t}, J=7.2$ Hz, 6H).
${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Chloroform- d$): \delta 170.68$, 170.28, 139.50, 139.11, 132.75, 131.45, 130.61, 130.07, 128.30, 127.64, 124.54, 124.01, 121.93, 110.27, 97.17, 50.26, 39.37, 37.12, 28.16, 28.04, 25.94, 20.92, 18.37, 12.33.

HRMS(ESI+): calcd for $\mathrm{C}_{45} \mathrm{H}_{50} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]+632.4005$, found 632.4009.

2-(CAN-2-(CAN-2-(150yrrolidi-1-yl)-3-(CAN-2-(3-ethyl-1,1-dimethyl-1,3-dihydro-2H-benzo[e]indol-2-ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-3-ethyl-1,1-dimethyl-1H-benzo[e]indol-3-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($64 \mathrm{mg}, 0.084 \mathrm{mmol}, 84 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta 8.07$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78$ (dd, $J=13.7,8.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.48(\mathrm{ddd}, J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{ddd}, J=8.0,6.8$, $1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H})$, $3.88(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.75(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=6.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.96(\mathrm{~s}, 12 \mathrm{H})$, $1.90-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Chloroform-d): δ 169.26, 166.64, 140.07, 134.72, 131.06, 130.49, $129.81,129.72,128.65,127.24,123.39,122.06,117.62,109.25,91.46,62.48,49.04$, 37.71, 28.66, 27.22, 20.84, 19.31, 11.59.

HRMS(ESI+): calcd for $\mathrm{C}_{45} \mathrm{H}_{50} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]+632.4005$, found 632.4007.

2-(CAN-2-(CAN-2-(diethylamino)-3-(CAN-2-(3-ethyl-1,1-dimethyl-1,3-dihydro-2H-benzo[e]indol-2-ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-3-ethyl-1,1-dimethyl-1H-benzo[e]indol-3-ium iodide

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($36 \mathrm{mg}, 0.046 \mathrm{mmol}, 46 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta 8.07$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H})$, $7.69(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.89(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.70(\mathrm{q}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.53(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.93(\mathrm{~s}, 12 \mathrm{H}), 1.89-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Chloroform-d): $\delta 173.00,170.56,142.05,139.64,132.46,131.29$, 130.56, 130.10, 128.33, 127.57, 125.62, 124.37, 121.82, 110.20, 96.22, 50.06, 49.39, 39.18, 28.59, 28.44, 25.01, 22.05, 14.96, 12.31.

HRMS (ESI+): calcd for $\mathrm{C}_{46} \mathrm{H}_{54} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]^{+} 648.4319$, found 648.4318 .

3-Ethyl-2-(CAN-2-(CAN-3-(CAN-2-(3-ethyl-1,1-dimethyl-1,3-dihydro-2H-benzo[e]indol-2-ylidene)ethylidene)-2-(152yrrolidine-1-yl)cyclohex-1-en-1-yl)vinyl)-1,1-dimethyl-1H-benzo[e]indol-3-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($56 \mathrm{mg}, 0.072 \mathrm{mmol}, 72 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta 8.08$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.75 (dd, $J=16.0,8.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.53(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.84(\mathrm{q}, J=7.6$, $7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.62(\mathrm{t}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.12(\mathrm{q}, J=4.7,3.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.99(\mathrm{~s}, 12 \mathrm{H}), 1.81(\mathrm{p}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Chloroform-d): $\delta 172.74,165.92,140.25,135.05,130.89,130.28$, 129.65, 129.62, 128.76, 127.03, 123.10, 122.11, 120.64, 109.17, 91.03, 55.93, 48.99, 37.51, 28.81, 28.78, 24.30, 20.89, 11.50.

HRMS (ESI+): calcd for $\mathrm{C}_{46} \mathrm{H}_{52} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]^{+}$646.4161, found 646.4163.

3-Ethyl-2-(CAN-2-(CAN-3-(CAN-2-(3-ethyl-1,1-dimethyl-1,3-dihydro-2H-benzo[e]indol-2-ylidene)ethylidene)-2-(piperidin-1-yl)cyclohex-1-en-1-yl)vinyl)-1,1-dimethyl-1H-benzo[e]indol-3-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($66 \mathrm{mg}, 0.084 \mathrm{mmol}, 84 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta 8.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H})$, $7.68(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{ddd}, J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{ddd}, J=8.0,6.8,1.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.79$ (t, J=4.8 Hz, 4H), $2.48(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 20 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Chloroform-d): $\delta 174.14,169.56,140.35,139.77,131.99,131.07$, 130.38, 129.99, 128.39, 127.46, 124.08, 124.04, 121.86, 110.03, 94.84, 56.78, 49.78, 38.85, 28.48, 28.23, 25.07, 24.57, 21.83, 12.18.

HRMS (ESI+): calcd for $\mathrm{C}_{47} \mathrm{H}_{54} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}]^{+}$660.4318, found 660.4318.

3-Ethyl-2-(CAN-2-(CAN-3-((Z)-2-(3-ethylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-2-(154yrrolidine-1-yl)cyclohex-1-en-1-yl)vinyl)benzo[d]thiazol-3-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($29 \mathrm{mg}, 0.046 \mathrm{mmol}, 46 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.58$ (dd, $J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 (ddd, $J=8.6,7.6$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 4 \mathrm{H}), 5.87(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.46(\mathrm{~s}, 6 \mathrm{H}), 2.45(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.84-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{t}, J=7.2$ Hz, 6H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 141.48, 127.63, 124.71, 124.07, 122.31, 111.13, 92.69, 47.76, 41.33, 29.71, 22.01, 12.31.

2-(CAN-2-(CAN-2-(diethylamino)-3-((Z)-2-(3-ethylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($38 \mathrm{mg}, 0.058 \mathrm{mmol}, 58 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.59(\mathrm{~d}, J=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 4 \mathrm{H})$, $7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 4 \mathrm{H}), 3.59(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.51(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.85(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.48$ (t, $J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 161.30$, 142.65, 141.53, 127.87, 124.93, 124.41, $122.31,122.21,111.69,111.14,94.81,49.60,41.79,29.71,25.77,21.93,14.22$.

3-Ethyl-2-(CAN-2-(CAN-3-((Z)-2-(3-ethylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)-2-(155yrrolidine-1-yl)cyclohex-1-en-1-yl)vinyl)benzo[d]thiazol-3-ium iodide.

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark solid ($54 \mathrm{mg}, 0.082 \mathrm{mmol}, 82 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d): $\delta 7.47(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14-7.05(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 4 \mathrm{H}), 4.04$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.61-2.53(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~s}, 4 \mathrm{H}), 1.86-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.2$ Hz, 6H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d): $\delta 156.88$, 141.65, 137.22, 126.98, 124.54, 122.91, $122.15,119.87,109.86,88.91,55.99,40.37,28.82,24.62,20.94,11.73$.

II-5-3 Synthesis of CO8DFIC

The dye COi8DFIC was synthesized according to the following scheme:

II-5-3 Synthesis of CO;8DFIC (cont'd)

II-5-3-1 Synthesis of compound II-28

Following the reported procedure ${ }^{31} n$-BuLi (2.5 M in hexane, $4 \mathrm{~mL}, 10 \mathrm{mmol}$) was added dropwise to a solution of 3-bromothieno[3,2-b]thiophene II-27 (2.19 g, 10 mmol$)$ in dry diethyl ether $(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture stirred for 1 hour at this temperature and
then CO_{2} gas was bubbled in the reaction for 30 minutes. The reaction warmed up to $0^{\circ} \mathrm{C}$ and $1 \mathrm{M}, \mathrm{NaOH}(100 \mathrm{~mL})$ was added to quench it. The solution was extracted with diethyl ether (2 x 50 mL). The organic layers were discard and $3 \mathrm{M}, \mathrm{HCl}$ was added to aqueous layer to adjust the pH at 3 . The white solid was filtered and dried to give the product (1.43 g, 78\%)
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.35(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=5.3,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 166.88, 139.08, 138.77, 136.79, 129.76, 124.94, 119.11.

II-5-3-2 Synthesis of compound II-30

Following the reported procedure ${ }^{31} n$-BuLi (2.5 M in hexane, $4.96 \mathrm{~mL}, 12.4 \mathrm{mmol}$) was added dropwise to a solution of II-28 (1.14 g, 6.2 mmol$)$ in dry THF (25 mL) at -78 ${ }^{\circ} \mathrm{C}$. After stirring for 30 minutes at this temperature, bromine was added dropwise (333 $\mu \mathrm{L}, 7.5 \mathrm{mmol}$). The solution slowly warmed up to the room temperature and stirred overnight. The reaction was quenched with $3 \mathrm{M}, \mathrm{HCl}(10 \mathrm{~mL})$ and extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$. The combined organic layers washed with NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the acid as a white solid. The
acid crude was dissolved in DMF (10 mL) and, ethyl iodide ($4.85 \mathrm{~g}, 31 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(2.55 \mathrm{~g}, 18.6 \mathrm{mmol})$, were added. The reaction heated at $60^{\circ} \mathrm{C}$ and stirred for 5 hours at this temperature. The solution cooled to room temperature then, the mixture extracted with DCM $(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$. The organic layer dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was then purified by column chromatography (silica, DCM/petroleum ether 30\%) leading to bromo ester II-30 with its regioisomer in a $\sim 2: 1$ ratio. Recrystallization of the mixture was done by dissolving the material in pure DCM at room temperature, followed by slow addition of diethyl ether to a final 3:1 ratio in volume. The crystals formed after overnight standing at room temperature was collected and washed with cold diethyl ether to afford II-30 (938 mg, 52\%).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) : $\delta 7.52(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46(q, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d): $\delta 161.12,138.25,136.43,128.62,124.04,121.43$, 118.57, 61.48, 14.27.

II-5-3-3 Synthesis of compound II-33

Following the reported procedure ${ }^{30}$ compound II-32 (1 g, 5 mmol) was dissolved in dry THF (100 mL) and n-BuLi (2.5 M in hexane, $5 \mathrm{~mL}, 12.5 \mathrm{mmol}$) was added dropwise
at $-78{ }^{\circ} \mathrm{C}$ under argon balloon. The mixture stirred for 1 hour at this temperature and then, warmed up to room temperature and stirred for additional 2 hours. The reaction brought to $-78{ }^{\circ} \mathrm{C}$ before adding trimethyltin chloride (1 M in THF, $15 \mathrm{~mL}, 15 \mathrm{mmol}$). The solution was brought to the room temperature and stirred 16 hours. After completion, the mixture was poured into water (100 mL) and extracted with petroleum ether $(3 \times 100 \mathrm{~mL})$. The combined organic layers dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude washed with cold methanol to give compound II-33 as gray product (1.41 g, 54\%)
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d): $\delta 3.98$ (s, 6H), 0.38 (s, 18H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d): δ 155.25, 136.09, 118.04, 59.58, 8.25.

II-5-3-4 Synthesis of compound II-34

Following the reported procedure ${ }^{30}$ to a solution of II-33 (736 mg, 1.4 mmol) and II-30 (1.01 g, 3.5 mmol$)$ in a mixture solvents of toluene $(50 \mathrm{~mL})$ and DMF (3.8 mL) was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(162 \mathrm{mg}, 0.14 \mathrm{mmol})$ under argon balloon. The reaction stirred at reflux for 48 hours and monitored by TLC. After the completion, the solution concentrated under reduced pressure. The crude product was then purified by column chromatography (silica, chloroform) leading to the pure product II-34 as a yellow solid ($530 \mathrm{mg}, 61 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.50(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H})$, 4.39 (q, $J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.03(\mathrm{~s}, 6 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 161.90$, 148.30, 141.28, 140.09, 137.35, 129.31, 128.28, 123.41, 118.91, 114.77, 61.15, 59.49, 14.23.

II-5-3-5 Synthesis of compound II-35

Following the reported procedure ${ }^{30} \mathrm{In}$ a flame dried flask, compound II-34 (397 mg, $0.64 \mathrm{mmol})$ was dissolved in dry $\mathrm{DCM}(80 \mathrm{~mL})$ and $\mathrm{BBr}_{3}(1.75 \mathrm{M}$ in $\mathrm{DCM}, 2.2 \mathrm{~mL}, 3.84$ mmol) was added dropwise at room temperature under argon balloon. The reaction stirred for 2.5 hours and monitored by TLC. After completion, the solution was poured into methanol. A yellow precipitate was formed, filtered and dried to give compound II-35 as a yellow solid ($380 \mathrm{mg}, 100 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.78(\mathrm{~s}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=5.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 166.78, 151.15, 147.27, 144.55, 141.70, 135.01, 133.02, 127.09, 125.09, 114.64, 65.93, 19.17.

II-5-3-6 Synthesis of compound II-36

Following the reported procedure ${ }^{30} p$-toluenesulfonic acid ($133 \mathrm{mg}, 0.7 \mathrm{mmol}$) was added in one portion to a suspension of di-ester II-35 ($380 \mathrm{mg}, 0.64 \mathrm{mmol}$) in toluene (20 mL) at room temperature. The reaction heated to $110^{\circ} \mathrm{C}$ and stirred for 1 hour. After that, the reaction solution was poured into methanol and the precipitate was filtered and dried to give product II-36 as a dark red solid ($173 \mathrm{mg}, 54 \%$). The analytical date didn't provided because of low solubility in solvents.

II-5-3-7 Synthesis of compound II-38

II-36

II-38

Following the reported procedure ${ }^{30} \mathrm{In}$ a flame dried flask, compound II-36 (173 mg, 0.34 mmol) was suspended in dry THF (8 mL) under argon balloon. Then, 4-($\left.n-\mathrm{C}_{6} \mathrm{H}_{13}\right)$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{MgBr}(3.4 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 3.4 mmol$)$ was added dropwise at room temperature. The reaction heated at $60^{\circ} \mathrm{C}$ and stirred for 12 hours. After completion, the solution cooled to the room temperature and was poured into ice water. The reaction was extracted with

DCM (3 x 15 mL). The combined organic layers dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the tetra-hydroxy compound II-37 which used in the next step without furthered purification. Crude compound II-37 was dissolved in toluene (10 mL) and p-toluenesulfonic acid ($129 \mathrm{mg}, 0.68 \mathrm{mmol}$) was added in one portion. After stirring for 2 hours, the mixture was poured into methanol and formed a precipitate. The crude product was then purified by column chromatography (silica, chloroform) leading to the pure product II-38 as a dark yellow solid ($306 \mathrm{mg}, 81 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 8 \mathrm{H}), 7.18(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.12 (d, $J=8.2 \mathrm{~Hz}, 8 \mathrm{H}), 7.10(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 9 \mathrm{H}), 1.62-1.58(\mathrm{~m}$, $8 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 24 \mathrm{H}), 0.88(\mathrm{t}, J=6.5 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 143.79,143.46,139.76,139.20,135.14,131.92$, 128.27, 128.10, 126.82, 125.51, 124.71, 119.17, 114.45, 88.61, 35.65, 31.70, 31.23, 29.01, 22.61, 14.10.

II-5-3-8 Synthesis of compound II-39

Following the reported procedure ${ }^{30}$ compound II-38 (275 mg, 0.24 mmol) was placed in dry THF $(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon balloon and n-BuLi $(0.3 \mathrm{~mL}, 2.5 \mathrm{M}, 0.72$
mmol) was added dropwise. The reaction warmed up to $-50^{\circ} \mathrm{C}$ and kept for 2 hours at this temperature and then, DMF ($185 \mu \mathrm{~L}, 2.4 \mathrm{mmol}$) was added slowly. After stirring for additional 1 hour, the reaction mixture quenched by addition of water. The reaction was extracted with DCM ($3 \times 70 \mathrm{~mL}$). The combined organic layers dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was then purified by column chromatography (silica, DCM/petroleum ether 30\%) leading to the pure product I-39 as a red solid ($145 \mathrm{mg}, 52 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 9.80(\mathrm{~s}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 8 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 8 \mathrm{H}), 2.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 8 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 8 \mathrm{H}), 1.37-127(\mathrm{~m}, 24 \mathrm{H})$, $0.91-0.86(t, J=6.2 H z, 12 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 182.64, 146.36, 145.37, 144.13, 144.07, 138.21, 138.12, 135.03, 128.76, 128.38, 128.13, 126.96, 124.85, 115.11, 88.91, 35.66, 31.69, 31.15, 29.05, 22.59, 14.11.

II-5-3-9 Synthesis of CO;8DFIC

Following the reported procedure ${ }^{30} \mathrm{In}$ a flame dried flask, compound II-39 (80 mg, $0.068 \mathrm{mmol})$ was dissolved in dry DCM $(20 \mathrm{~mL})$ under argon balloon and compound II$40(78.2 \mathrm{mg}, 0.34 \mathrm{mmol})$ and pyridine (0.5 mL) was added at room temperature and the reaction refluxed for 3 hours. The solvent removed under reduced pressure and the crude product was then purified by column chromatography (silica, chloroform) leading to the pure product CO;8DFIC as a black solid ($98 \mathrm{mg}, 91 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.66(\mathrm{~s}, 2 \mathrm{H}), 8.49(\mathrm{dd}, J=9.9,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~s}$, $2 H), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 8 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 8 \mathrm{H}), 2.64(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 8 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 8 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 24 \mathrm{H}), 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, cdcl3) $\delta 185.17,158.22,155.42,155.30,153.96,153.33,153.21$, $146.76,144.43,141.59,137.87,137.64,137.21,136.52,136.46,135.86,134.40,134.32$,
$128.58,128.22,128.06,125.73,121.48,116.76,114.91,114.74,114.37,114.22,112.50$, 112.36, 89.27, 69.32, 35.73, 31.77, 31.31, 29.10, 22.62, 14.09.

II-5-4 Computational Supplementary

Figure II-24. Scatter plot of the experimental spectral energy maxima as a function of the DFT-optimized bond length alternation coordinate (in angstrom). Absorption and emission energies are shown by blue and red dots, respectively

Table II-9. Absolute energies of optimized geometries on the DFT level of theory (CAM-B3LYP/6-31G*)

Dye	Conformers	Geometries	So Energy / a.u.	S Energy / a u.	$\begin{gathered} \mathrm{S}_{1}-\mathrm{S}_{0} \\ \mathrm{Gap} / \mathrm{a} . \mathrm{u} . \end{gathered}$
1	-	Franck-Condon point	-1809.801264	-1809.710549	0.090715
		S_{1} minimum	-1809.800022	-1809.711759	0.088263
2	Bis-dipole	Franck-Condon point	-1484.092954	-1483.994624	0.098330
		S_{1} minimum	-1484.088437	-1483.998166	0.090271
	Cyanine-like	Franck-Condon point	-1484.098962	-1484.002956	0.096006
		S_{1} minimum	-1484.073807	-1484.010546	0.066895
3	Bis-dipole	Franck-Condon point	-1523.376682	-1523.280279	0.096404
		S_{1} minimum	-1523.355859	-1523.287972	0.067887
	Cyanine-like	Franck-Condon point	-1523.388981	-1523.293277	0.095704
		S_{1} minimum	-1523.386699	-1523.295906	0.090793
4	Bis-dipole	Franck-Condon point	-1522.160161	-1522.066705	0.093456
		S_{1} minimum	-1522.158405	-1522.068372	0.090032
	Cyanine-like	Franck-Condon point	-1522.144393	-1522.053229	0.091164
		S_{1} minimum	-1522.143264	-1522.054359	0.088905
5	Bis-dipole	Franck-Condon point	-1522.167762	-1522.069148	0.098614
		S_{1} minimum	-1522.164092	-1522.072413	0.091678
	Cyanine-like	Franck-Condon point	-1522.15922	-1522.06249	0.096730
		S_{1} minimum	-1522.156756	-1522.065402	0.091353
6	Bis-dipole	Franck-Condon point	-1562.663326	-1562.567549	0.095776
		S_{1} minimum	-1562.638213	-1562.577772	0.060441
	Cyanine-like	Franck-Condon point	-1562.679046	-1562.583593	0.095453
		S_{1} minimum	-1562.676662	-1562.586636	0.090026

Table II-9 (cont'd)

7	Bis-dipole	Franck-Condon point	-1561.475774	-1561.377488	0.098285
		$\mathrm{~S}_{1}$ minimum	-1561.467923	-1561.382244	0.085679
	Cyanine-like	Franck-Condon point	-1561.476323	-1561.383757	0.092565
$8 *$		Bis-dipole	S_{1} minimum	-1561.474749	-1561.385506
			-1600.735358	-1600.666551	0.068807
	Cyanine-like	Franck-Condon point	-1600.764007	-1600.667421	0.096586
		$\mathrm{~S}_{1}$ minimum	-1600.761831	-1600.671054	0.090777

Table II-10. Important geometric parameters for CAM-B3LYP/6-31G* structures ${ }^{\text {a }}$

Dye	State $^{\mathrm{b}}$	${\mathrm{BLA}(\AA \AA)^{\mathrm{c}}}^{\mathrm{c}}$	${\text { Pyr. Ang. }\left({ }^{\circ}\right)^{\mathrm{d}}}^{\text {d }}$
2	GS	0.03912	0.002
	ES	0.03187	0.001
3	GS	0.03910	0.014
	ES	0.03066	0.177
4	GS	0.03622	43.354
	ES	0.02284	49.371
5	GS	0.05677	7.156
	ES	0.04358	15.927
6	GS	0.03948	0.002
	ES	0.03046	0.162
7	GS	0.06949	2.115
	ES	0.02820	0.1421
8	GS	0.04259	0.011
	ES	0.03044	0.002

[a] Geometric parameters are computed at the TD-CAM-B3LYP/6-31G* level.
[b] Ground and excited state structures are abbreviated GS and ES, respectively.
[c] BLA is defined:

BLA $=\left(r_{2-3}+r_{4-5}+r_{5-6}+r_{7-8}\right)-\left(r_{1-2}+r_{3-4}+r_{6-7}+r_{8-9}\right)$
where r_{m-n} is the distance between carbon atoms m and n of the heptamethine chain.

[d] Pyramidalization angle is defined:

Pyr. Ang. $=360-\left(\theta_{C_{a}-N-C_{b}}+\theta_{C_{a}-N-C_{c}}+\theta_{C_{b}-N-C_{c}}\right)$
where $\theta_{C_{m}-N-C_{n}}$ is the angle formed by carbon atom m, the amine nitrogen atom, and
carbon atom n. Carbon atoms a, b, and c are the three atoms bound to the amine
nitrogen.

Optimized Geometries (In Angstrom) (CAM-B3LYP/6-31G*)

Dye Il-6			
Franck-Condon point			
H	-1.8122047363	7.8617759991	-4.0734638064
C	-1.8885658517	7.7571257269	-2.9973907038
C	-2.0977123043	7.5195855010	-0.1943131131
C	-1.5805410273	6.5780285207	-2.3396678174
C	-2.3097886635	8.8313210674	-2.2157363357
C	-2.4145080632	8.7186427030	-0.8326841532
C	-1.6790260316	6.4475976258	-0.9601939778
H	-2.5590540209	9.7698981915	-2.6989994384
H	-2.7445781100	9.5695668987	-0.2469190732
H	-2.1801280010	7.4365187621	0.8852505761
N	-1.1359439550	5.3464790509	-2.8765985895
C	-0.9387562285	4.4246386930	-1.9133545507
C	-1.2744680110	5.0457991120	-0.5529266509
H	-1.1551375073	6.0086721239	-4.8500764667
C	-0.9174701179	5.1068385910	-4.2909018971
H	0.1276003042	4.8444456937	-4.4778789502
H	-1.5610139722	4.2968443002	-4.6450756158
C	-0.5017049820	3.1374727919	-2.2094924200
H	-0.3360393304	2.9025363361	-3.2531726356
C	-0.2798926230	2.1399929468	-1.2605499057
H	-0.4665483542	2.3886580210	-0.2264750225
C	0.1454077917	0.8390089862	-1.5253280819
C	0.2794583552	-0.1178267988	-0.5026038540
C	0.5903489564	-1.4743302652	-0.7115233929
C	0.6536917349	-2.3836175520	0.3427695877
H	0.5043600367	-1.9852434443	1.3352902400
C	0.4363151090	0.4064599149	-2.9482137777
H	0.8922958286	1.2384331164	-3.4929264928

H	-0.5058554220	0.1762746719	-3.4647046816
C	0.8274638321	-1.9281220617	-2.1372975518
H	1.5401348873	-2.7572357300	-2.1432805184
H	-0.1072651408	-2.3153014421	-2.5655569153
C	1.3637691501	-0.7991433504	-3.0070891423
H	2.3592303343	-0.5105714808	-2.6511314735
H	1.4771424668	-1.1375048655	-4.0408753162
H	1.5758340317	-8.7045217548	1.8190082965
C	1.4527127162	-7.9816488751	2.6171381168
C	1.1494634786	-6.1236986440	4.7177388518
C	1.2446640308	-6.6340116734	2.3756319053
C	1.5055398628	-8.3895241746	3.9487167137
C	1.3557432969	-7.4765064793	4.9881711833
C	1.0967381914	-5.7080187554	3.4004053067
H	1.6677492483	-9.4382214228	4.1735790517
H	1.4014334988	-7.8190314629	6.0161303798
H	1.0344842690	-5.4151223072	5.5325471140
C	0.8863612996	-4.3284344901	2.8109007433
C	0.9583644703	-4.6308128373	1.3099608594
C	0.8727221603	-3.7566275751	0.2315561753
H	0.9806089092	-4.1831337698	-0.7575574117
N	1.1449076117	-5.9547676222	1.1385293714
Cl	0.0120114314	0.4141819222	1.1538988063
C	1.2437514955	-6.6043483577	-0.1550247418
H	2.1508599693	-6.2900184855	-0.6798795186
H	0.3713736927	-6.3607615168	-0.7665754440
H	1.2751958137	-7.6824307864	-0.0149812576
C	-2.4578987655	4.3284773985	0.1237101245
H	-2.2025001414	3.3121237346	0.4306222355
H	-3.3221027256	4.2792217449	-0.5437393294

H	-2.7545389226	4.8839698407	1.0176428033
C	-0.0438630977	5.0971373052	0.3724897326
H	0.7984062891	5.5902284603	-0.1195417588
H	0.2760956659	4.1018117033	0.6876470504
H	-0.2910738697	5.6703325922	1.2702073256
C	-0.4987013169	-3.7899176515	3.2194589581
H	-0.5503939565	-3.7226099313	4.3095047813
H	-1.2953986228	-4.4597538971	2.8857935991
H	-0.6926494535	-2.7950278773	2.8128676601
C	2.0130656832	-3.3790876646	3.2597204089
H	2.9911838790	-3.7504596551	2.9433988209
H	2.0155832364	-3.3124722575	4.3510355982
H	1.8832463071	-2.3702311327	2.8623844067
S1 minimum			

H -1.7241524533 7.8930069682 -4.1316849236
C $\quad-1.82608324997 .7949377547-3.0571133251$
C $-2.10299905607 .5739591453-0.2543158667$
C $-1.5445436713 \quad 6.6086944850-2.3861205184$
C $\quad-2.2518489680 \quad 8.8749753254-2.2921565627$
C $\quad-2.3906397709 \quad 8.7726115231-0.9079041561$
C $-1.6792274520 \quad 6.4917050975-1.0008073740$
H $\quad-2.4793540858$ 9.8142764470 -2.7852696682
H $\quad-2.7244412866$ 9.6316545439 -0.3358828787
$\begin{array}{llll}\text { H } & -2.2117474073 & 7.4987183821 & 0.8234939032\end{array}$
N -1.1054072088 5.3843068006 -2.8984719857
C $\quad-0.9413415946 \quad 4.4562093194-1.9140516424$
C $\quad-1.3024613236 \quad 5.0904276637-0.5715751863$
H -1.0517800776 6.0316862379 -4.8765022882
C $\quad-0.8525848635 \quad 5.1297153301-4.3024375016$
$\begin{array}{lllll}\text { H } & 0.1913878298 & 4.8401872717 & -4.4572698724\end{array}$
H $\quad-1.5030233524 \quad 4.3302340316-4.6704664546$
C $\quad-0.5136058327 \quad 3.1624174296-2.1900467168$
H $-0.3288967220 \quad 2.9201599333-3.2298873522$
C $\quad-0.3197106793 \quad 2.1589897674-1.2319493192$
H -0.5196159596 2.4083152150 -0.2007049485
C $0.09668634750 .8482053819-1.4921153764$
C $0.2203687965-0.1151037525-0.4650101192$
C $0.5350985785-1.4791998609-0.6712131395$
C $0.6035534205-2.3927176160 \quad 0.3852771127$
H 0.4503401196 -1.9981098223 1.3786186673
C $0.3973315399 \quad 0.4092694466-2.9081701072$
H $0.8494602025 \quad 1.2382766894$-3.4599477924
H $\quad-0.54458457930 .1702478955-3.4227719088$
C $0.7763829264-1.9256021368-2.0957294985$
H 1.4769579096 -2.7644348934 -2.1066405211
H $\quad-0.1638342362-2.2956809243-2.5291760769$
C $1.3246374855-0.7971955320-2.9593686595$
H $2.3183915629-0.5116069223-2.5966035916$
H 1.4425301115 -1.1358833387 -3.9925776808
H $1.6371710632-8.73794436441 .7713074575$
C $1.5177820321-8.0251180489 \quad 2.5789972098$
C $1.2266384319-6.1898442552 \quad 4.7067251560$
C $1.2832808435-6.6724250524 \quad 2.3507318899$

C $1.6027491931-8.44353865553 .9019884434$
C 1.4594250338 -7.5425672459 4.9573821272
C $1.1406978672-5.7584722433 \quad 3.3973434203$
H 1.7859037933 -9.4917905491 4.1138613671
$\begin{array}{lllll}\text { H } & 1.5315707359 & -7.8964312555 & 5.9801586427\end{array}$
H $\quad 1.1167938018$-5.4920828683 5.5315395721
C $0.8961334508-4.3756805601 \quad 2.8327114093$
C $0.9497463554-4.65500512881 .3313256540$
C 0.8382922812 -3.7697383551 0.2662583029
H $0.9400264854-4.1871259063-0.7284633812$
N $1.1537932546-5.98940191851 .1384975327$
Cl -0.06840441620 .41269705971 .1854427190
C $1.2334987925-6.6182348829-0.1643407009$
H $2.1215136949-6.2787607268$-0.7077420939
H $0.3428397738-6.3811331555-0.7532101028$
H 1.2886490736 -7.6978361355 -0.0433265298
C -2.51049270744 .39279529590 .0873717461
$\begin{array}{lllll}\text { H } & -2.2744222423 & 3.3726702553 & 0.3970955130\end{array}$
H $-3.36376999284 .3561344407-0.5945885533$
H
C $\quad-0.0971289943 \quad 5.1341926226 \quad 0.3905908313$
H $0.7627859309 \quad 5.6192217414$-0.0780556902
H 0.20509816854 .13584139740 .7133761356
$\begin{array}{lllll}\text { H } & -0.3647665304 & 5.7084017766 & 1.2820895302\end{array}$
C $\quad-0.4923947328-3.86606359223 .2744820293$
H $\quad-0.5224269534-3.80114374474 .3657582562$
H $\quad-1.2826200326-4.5501261224 \quad 2.9549363730$
H $\quad-0.7132935131-2.8743323284 \quad 2.8734518010$
$\begin{array}{llll}\text { C } & 2.0076547691 & -3.4067169122 & 3.2847932551\end{array}$
$\begin{array}{lllll}\text { H } & 2.9908702025 & -3.7542081746 & 2.9578437105\end{array}$
$\begin{array}{llll}\text { H } & 2.0154437800 & -3.3479934562 & 4.3767681087\end{array}$
$\begin{array}{lllll}H & 1.8530012353 & -2.3980600949 & 2.8962004464\end{array}$

Dye II-10

Bis-dipole Franck-Condon point
$\begin{array}{llll}\text { H } & 6.3215188475 & 5.2264514052 & 2.1358302896\end{array}$
C $\quad 6.1269240781 \quad 4.3127500461 \quad 2.6858437135$
C 5.64814887931 .94751593304 .1400563841
C $4.9542238981 \quad 3.5916666244 \quad 2.5321672990$
C 7.06864292143 .82318025333 .5901424000
C $\quad 6.8378971539 \quad 2.6568304957 \quad 4.3115582237$
$\begin{array}{lllll}\text { C } & 4.7084307916 & 2.4236246717 & 3.2458439196\end{array}$
$\begin{array}{lllll}H & 7.9958032916 & 4.3683442955 & 3.7323458773\end{array}$
$\begin{array}{lllll}\mathrm{H} & 7.5850434739 & 2.2976902929 & 5.0106645933\end{array}$
$\begin{array}{llll}H & 5.4697101027 & 1.0371917864 & 4.7051846563\end{array}$
$\begin{array}{lllll}\mathrm{N} & 3.8486140666 & 3.8574264656 & 1.7000103461\end{array}$
C $2.8700943747 \quad 2.92113433751 .8484456025$
C $3.35010379351 .8707404110 \quad 2.8596199716$
$\begin{array}{lllll}\mathrm{H} & 4.6868880383 & 5.5382607524 & 0.8066374368\end{array}$
C 3.74897599764 .98676684840 .8024484355
H 3.55334674374 .6461386758 -0.2190520522
H $2.9439288453 \quad 5.66194646841 .1106797833$
C $1.6830060082 \quad 2.99388092611 .1605693252$

H	1.5484799781	3.8397382323	0.4986545677
C	0.6130511729	2.0647857587	1.2445386823
H	0.7545608521	1.2119530056	1.8954050845
C	-0.5394581445	2.1320713466	0.5059629066
C	-1.5224544028	1.0588295908	0.5172710949
C	-2.0283064989	0.6538850000	-0.7858666546
C	-2.1337696566	-0.6661759609	-1.1389490185
H	-1.8958576847	-1.4150077323	-0.3949327601
C	-0.7223370154	3.2292361447	-0.5259077088
H	0.0827933283	3.1810717003	-1.2722333782
H	-0.6240377296	4.2021997322	-0.0302970623
C	-2.2196011665	1.7412271147	-1.8261153981
H	-1.4955150932	1.6137252512	-2.6430152198
H	-3.2127908390	1.6290215187	-2.2765976841
C	-2.0674735268	3.1318115977	-1.2291149152
H	-2.1469717956	3.8937491290	-2.0088085038
H	-2.8775068505	3.3216225170	-0.5139709873
H	-3.3141529468	-4.5092885177	-6.3566313334
C	-3.0610030773	-4.9628087878	-5.4051925557
C	-2.4095736757	-6.1770295345	-2.9475415726
C	-2.7961652364	-4.2107803283	-4.2724655018
C	-2.9937929818	-6.3505866767	-5.2855427082
C	-2.6732464333	-6.9557245063	-4.0752128776
C	-2.4733758141	-4.8008281260	-3.0552623514
H	-3.1993080818	-6.9651415074	-6.1556623327
H	-2.6287691375	-8.0372477398	-4.0074773609
H	-2.1598696571	-6.6517475750	-2.0029487630
C	-2.2370934370	-3.7219056130	-2.0162456894
C	-2.4932474604	-2.4493495848	-2.8352614130
C	-2.4497027580	-1.1339522930	-2.4411741920
H	-2.6740125141	-0.3867533100	-3.1916146488
N	-2.7955859667	-2.8106208773	-4.1136429689
N	-1.9274524637	0.4726691006	1.6558644866
C	-1.4848551160	0.9032436024	2.9822399895
C	-2.9665741377	-0.5561501123	1.7041261233
H	-3.6023906478	-0.4935225088	0.8237057186
H	-2.5373485092	-1.5611841516	1.7686316615
H	--3.2697913759	-3.8234138254	-1.2234872705
C	-1.1425072106	1.9352108877	2.9499542564
H	-3.4395273569	-3.1032088409	-0.0975863704
H	-0.6806665694	0.2674224255	3.3659974103
H	-3.0797554117	-1.8628860803	-5.1683426102
H	-2.2337505338	-1.1830320633	-5.3107272104
H	-3.9714878804	-1.2734453146	-4.9317505492
H	-3.2542690222	-2.3967960613	-6.1000179403
H	-0.078283870788	-3.7898074986	-1.5109326697
	-3.6795224159	-2.3374733078	
H	-0.0968085643		

	-2.1132967775	-6.6825961504	-2.0492823849	C	3.2464804299	0.0600079245	-2.0724514297
C	-2.2064414034	-3.7557824937	-2.0221464206	H	3.0756938026	-0.5655453879	-2.9395131120
C	-2.4805291429	-2.4797493499	-2.8191056731	c	2.2120324196	0.1413881802	-1.1
C	-2.4244964557	-1.1622885345	-2.4149020090	H	2.3960672273	0.7180832264	-0.2241229486
H	-2.6795144812	-0.4164233483	-3.1584308599	c	0.9487403591	-0.4021460087	-1.2672166687
	-2.8107485067	-2.8273393918	-4.1017984256	c	-0.0312733741	-0.1984542065	-0.2
N	-1.9954739498	0.5157664020	1.6787091377	c	-1.4223956996	-0.2281738623	-0.5865117230
c	-1.5754592741	0.9782354697	2.9921946294	c	-2.3835831770	-0.4582513256	0.3776812687
C	-3.0747941454	-0.4593876945	1.7107105916	H	-2.0209857252	-0.6394338082	1.3816151612
H	-3.6406132764	-0.4347191137	0.7815819324	C	0.5682548176	-1.0594573238	-2.5807017850
H	-2.7024400092	-1.4791479973	1.8702698711	H	1.1377399934	-1.9877462045	-2.7165667780
H	-1.1652607425	1.9845923254	2.9312102890	H	0.8821288091	-0.3932059469	-3.3939710765
H	-0.8233624472	0.3166698040	3.4402020808	c	-1.7299241805	-0.2133094288	-2.0642021939
C	-3.1175832437	-1.8705141571	-5.1422817171	H	-2.7949907743	-0.3556624834	-2.2495472765
H	-2.2722789839	-1.1930926949	-5.3004550050	H	-1.4581663504	0.7502157005	-2.5144867196
H	-4.0002057287	-1.2789212332	-4.8776420124	C	-0.9275719338	-1.3362233445	-2.7247905860
H	-3.3182761276	-2.3961625479	-6.0731531417	H	-1.1936609190	-2.2841362891	-2.2447120829
c	-0.7457117444	-3.8271664084	-1.5342246608	H	-1.1836413135	-1.431490062	-3.7842734693
H	-0.0479510872	-3.7100155228	-2.3671922176	H	-8.8601125116	-1.2298646051	1.2478749849
H	-0.5616602168	-4.8023835893	-1.0740223819	C	-8.1874562275	-1.4041660965	2.0798153031
H	-0.5251480280	-3.0569610952	-0.7915062296	C	-6.4689079897	-1.867570056	4.2653949643
C	-3.1885677799	-3.9206828030	-0.8470924270	c	-6.8147712799	-1.2549007594	1.9693684536
H	-3.0267146114	-4.8898034801	-0.3666416814	C	-8.6919375792	-1.7948116864	3.3194661145
	-4.2247234481	-3.8841885227	-1.1928878953	C	-7.8486346722	-2.0250609270	4.4013737003
H	-3.0522257030	-3.1424178121	-0.0923973930	C	-5.958447	-1.481307309	3.0405052059
C	2.4666184450	1.7379409591	4.0965692310	H	-9.7631091190	-1.9204805225	3.4365383872
H	1.4803650673	1.3461463793	3.8379838774	H	-8.2656005876	-2.3285841472	5.3553696145
H	2.3343126284	2.7107832784	4.5767576597	H	-5.8122197509	-2.0482	11
H	2.9177048182	1.0595719194	4.8263981706	C	-4.5283696000	-1.2285535756	2.6072794284
c	3.5619789022	0.4738453358	2.1857634710	C	-4.7194456261	-0.8474745692	1.1335076683
H	4.2183518854	0.5501356938	1.3152690746	C	-3.7783057430	-0.5193966017	0
	2.6095808086	0.0489161538	1.8600947501	H	-4.1516356701	-0.2844805431	-0.8090251908
H	4.0193445677	-0.2230073348	2.8942785740	N	-6.0469018271	-0.8751314570	0.8481113998
H	-2.4424303045	0.9966556558	3.6576259708	N	0.3684279600	0.0530629951	1.0458984945
H	-3.7499567241	-0.2164932098	2.5355081436	c	1.4689163581	-0.6451679652	1.6929493439
	ine-like Franc	Condon point		H	1.1008963868	-1.1106851585	2.6157992688
H	7.8399089996	1.0278848789	-4.4058463663	H	2.2812702991	0.0374820038	1.9703441738
c	7.6869688737	1.5416551392	-3.4637916045	C	-0.2558424258	1.0508357797	1.9008757159
C	7.3239505095	2.8913625955	-1.0157629315	H	-0.7126102020	0.6008008875	7905771657
c	6.5322419732	1.3904069421	-2.7142348293	H	-1.0140682186	1.6034137501	1.3496287685
C	8.6697853026	2.3929924040	-2.9609109413	H	1.8628751851	-1.4217816528	1.0406041243
C	8.4957938634	3.0617104887	-1.7536791329	H	0.5118777826	1.7543017555	2.2473177485
C	6.3423353640	2.0508671574	-1.5061946335	C	-6.6002442164	-0.558526226	-0.4519335895
H	9.5854390807	2.5328272539	-3.5255669212	H	-6.2300143875	-1.2556281632	-1.2100101420
H	9.2754177071	3.7184468904	-1.3836024409	H	-6.3326128217	0.4609916853	-0.7450690605
H	7.1915032763	3.4138980614	-0.0729351548	H	-7.6846346704	-0.6334951240	-0.4120742630
N	5.3902017048	0.6049292118	-2.9847304591	C	4.1082913911	2.9237004799	-0.7744188655
c	4.4574066214	0.7232998580	-2.0087365980	H	3.1219281770	2.6799426858	-0.3738683611
c	4.9919631498	1.6739685957	-0.9306460581	H	3.9721058230	3.4315985504	-1.7325794895
H	6.1069609319	-0.1290505191	-4.7954123024	H	4.5879942388	3.6259038901	-0.0867804061
c	5.2252898101	-0.2185257542	-4.1648692185	C	5.1825520191	0.9482858585	0.4142327046
H	5.0995565331	-1.2691152322	-3.8865708182	H	5.8133578050	0.0635704285	0.2966484756
H	4.3515789202	0.1035736100	-4.7396118049	H	4.2302969227	0.6343664433	0.8474003026

H	5.6725627685	1.6197148063	1.1248150227
C	-3.6870855884	-2.5068438106	2.7681215073
H	-4.1096775468	-3.3301024821	2.1866193555
H	-3.6773889548	-2.8079321353	3.8194772764
H	-2.6521943541	-2.3604224133	2.4500717621
C	-3.9378364474	-0.0616786254	3.4196572667
H	-3.9298940590	-0.3228463586	4.4816267316
H	-4.5378733999	0.8439467139	3.2996203077
H	-2.9127690856	0.1656068243	3.1201827405

Cyanine-like S_{1} minimum

H 7.88674404291 .4306295802 -4.3619226738
C $7.7842137971 \quad 1.6510528981-3.3055001663$
C $7.55961926832 .2375803184-0.5605414500$
C $6.59444443731 .4589443099-2.6205787053$
C 8.87113438742 .1461934408 -2.5854891377
C $8.7678721672 \quad 2.4381738766-1.2301791680$
C $6.47659851691 .7467190080-1.2636220944$
H 9.8137414783 2.3044653832 -3.0989195307
H 9.6275933827 2.8221861985 -0.6920409672
$\begin{array}{lllll}\mathrm{H} & 7.4794835080 & 2.4659385098 & 0.4985762435\end{array}$
$\begin{array}{lllll}\mathrm{N} & 5.3630803106 & 0.9770794774 & -3.0949144042\end{array}$
C 4.42210082530 .9269067718 -2.0970471488
C $5.06604354901 .4367235595-0.8001117400$
H $6.0125542450 \quad 0.6840329215-5.0470177954$
C $5.1079437583 \quad 0.5636403580-4.4544324634$
H $4.8075933892-0.4892091427-4.4904411184$
H $4.31527508931 .1707736943-4.9044416800$
C $3.14559555790 .4829365694-2.3191304838$
H $2.9052867494 \quad 0.1855711575-3.3321829493$
C $2.1041600460 \quad 0.3771441031-1.3536613714$
H $2.3510054259 \quad 0.7111317669-0.3535198458$
C $0.8300158198-0.1028864548-1.5953561684$
C $-0.1772178526-0.1576014883-0.5938955130$
C $-1.5279914485-0.5744540399-0.7452652114$
C $-2.4358757314-0.58031469940 .2969747836$
H $\quad-2.0941144434-0.3033896581 \quad 1.2872325180$
C $0.4203591646-0.5894666796-2.9684977195$
H $1.2750358934-1.0647820672$-3.4563577662
H $0.1454375530 \quad 0.2725676040$-3.5913634236
C $-1.9227925728-1.0100553349-2.1390061918$
H $-2.7077959723-1.7673688187-2.0763475969$
H $-2.3500179821-0.1577354001-2.6846297046$
C $-0.7399918125-1.5775207293-2.9166101532$
H $\quad-0.4065546052-2.5057868023-2.4386666899$
H $-1.0519280112-1.8368337902-3.9321963911$
H $-8.7545223417-2.00274051561 .5591207356$
C $-8.0779696344-1.8071576807 \quad 2.3832391700$
C $-6.3447813468-1.3231742308 \quad 4.5491473570$
C $\quad-6.7470612519-1.4759187507$ 2.1839975395
C $-8.5323145679-1.8911595089 \quad 3.6990893107$
C $-7.6827136585-1.6524081694 \quad 4.7733660876$
C $\quad-5.8834250984-1.2394066828 \quad 3.2499251721$
H $\quad-9.5697369533-2.1511103673 \quad 3.8817974079$

H	-8.0593660417	-1.7247861624	5.7878047181
H	-5.6805711331	-1.1397797525	5.3890611342
C	-4.5014562286	-0.9072264716	2.7187540764
C	-4.7185590496	-1.0318207434	1.2041868658
C	-3.8162610864	-0.9120867718	0.1818907620
H	-4.1929922524	-1.0841855428	-0.8185317785
N	-6.0405121236	-1.3249034219	0.9800107455
N	0.1983686313	0.2978865212	0.7059609227
C	0.7411606824	-0.6439628153	1.6487584498
H	0.0570719091	-1.4946349300	1.7205405601
H	0.9034053898	-0.1846080340	2.6224399401
C	0.0229827944	1.6886651866	1.0328133130
H	-1.0476771458	1.9159132927	0.9736179500
H	0.5216086427	2.2871523450	0.2646712702
H	1.6844404696	-1.0250934801	1.2399413632
H	0.4107292995	1.9180803166	2.0239089023
C	-6.6111796974	-1.4887548666	-0.3358720135
H	-6.2069011103	-2.3759772581	-0.8361693880
H	-6.3996461889	-0.6101866579	-0.9533445765
H	-7.6911221864	-1.5962882804	-0.2539558364
C	4.3856948172	2.7211745336	-0.2948229966
H	3.3543807511	2.5386249750	0.0189538139
H	4.3733663736	3.4880949272	-1.0731465478
H	4.9352874861	3.1198472298	0.5629428366
C	5.0978136466	0.3561204127	0.2936437482
H	5.5694135702	-0.5587954979	-0.0732574396
H	4.0944398313	0.1032561654	0.6462609357
H	5.6754727068	0.7134365736	1.1511432734
C	-3.4724470739	-1.9241271903	3.2393870539
H	-3.7408901335	-2.9406525344	2.9417566364
H	-3.4368705438	-1.8897318278	4.3322434592
H	-2.4678346809	-1.7148448163	2.8623166950
C	-4.1179888931	0.5269627094	3.1253233881
H	-4.0961797237	0.6085481877	4.2159873999
H	-4.8464782049	1.2493838538	2.7487100789
H	-3.1311796901	0.8093883297	2.7474994184

Dye II-11

Bis-dipole Franck-Condon point
H $0.1920462294 \quad 8.4317605281$-1.1078050535
C $0.5720494048 \quad 7.9964559653-0.1905949021$
C $\quad 1.5747010760 \quad 6.8994798327 \quad 2.2014151804$
C $0.3453891486 \quad 6.67252999560 .1493570626$
C $\quad 1.3178745463 \quad 8.77138561120 .6971617382$
C $1.8155104831 \quad 8.23628997041 .8800250590$
C $\quad 0.8377316179 \quad 6.1226363100 \quad 1.3284567389$
$\begin{array}{lllll}H & 1.5100552564 & 9.8114154828 & 0.4549518207\end{array}$
$\begin{array}{llll}\text { H } & 2.3925946572 & 8.8590533091 & 2.5547393279\end{array}$
$\begin{array}{lllll}H & 1.9642897817 & 6.4818034087 & 3.1254881811\end{array}$
N $-0.3638830172 \quad 5.6827977382-0.5548601426$
C $-0.36009990404 .4875580421 \quad 0.1110024596$
C $\quad 0.4298103351 \quad 4.66411754021 .4172001170$
H $\quad-0.8781768090 \quad 6.9179315523-2.1458285163$

C	-1	0	-1.8291055396
H	-0.5838778020	5.2290312277	-2.5931694872
H	-2.0870622010	5.6847455907	-1.7543157255
C	-0.9848247217	3.3774699128	-0.3892271325
H	-1.4877318775	3.4859248069	-1.3416263665
C	-1.0355557380	2.0949263387	0.2352831481
H	-0.5614260943	2.0199253799	1.2079656105
C	-1.5649690546	0.9500565922	-0.2797057048
C	-1.4222861005	-0.3184782174	0.4491315839
C	-0.8032913401	-1.4128052238	-0.2866409200
C	0.1623061583	-2.1898518900	0.3000501190
H	0.4189523059	-1.9596491487	1.3268253035
C	-2.0684565200	0.8153041246	-1.6989021287
H	-2.06	1.7855773368	-2.1962737617
H	-3.1095631009	0.4650383315	-1.7032350485
C	-1.1670746961	-1.5247492977	-1.7564935110
H	-0.4656043595	-2.1861096166	-2.2665109806
H	-2.1554587831	-1.9962220875	-1.8474842580
C	-1.1980219689	-0.1747848298	-2.4707864257
H	-0.1812521655	0.2255960490	-2.5479315155
,	-1.5772833236	-0.3041587699	-3.4894848526
H	4.5248856260	-6.9748976954	-0.9022278732
C	4.5352421802	-6.4741292991	0.0590587290
C	4.5881680010	-5.1982374667	2.5704980977
C	3.6478316715	-5.4586683970	0.3755761381
C	5.4621720384	-6.8442380850	1.0328018063
C	5.4934321507	-6.2181785362	2.2741011044
C	3.6656331114	-4.8234285938	1.6122904688
H	6.1692136251	-7.6370551183	0.8124188778
H	6.2240208206	-6.5238043793	3.0149930411
H	4.6142772466	-4.7109995028	3.5409866031
C	2.5758929042	-3.7697414351	1.6560954686
C	1.9562358109	-3.9132178004	0.2581626089
C	0.9158075403	-3.2240524850	-0.3160183330
H	0.6452324610	-3.5046056936	-1.3251377958
N	2.6229194471	-4.8958697551	-0.4107741150
N	-1.8475648574	-0.4467786493	1.7064891941
C	-2.6416000711	0.5856624595	2.4172196590
H	-2.3111369530	1.5774463984	2.1390802721
C	-1.8373720156	-1.7175076431	2.4359143398
H	-0.9850060261	-1.7732312925	3.1191486000
H	-1.8021102247	-2.5567937248	1.7450348019
H	-2.4304628951	0.4607675122	3.4818457389
C	2.3133402620	-5.2984355792	-1.7649351601
H	2.4135734389	-4.4512496674	-2.4508480279
H	1.2929550383	-5.6894418080	-1.8309333906
H	3.0034335775	-6.0788990452	-2.0781490010
C	-0.4533071459	4.4424489065	2.6579581046
H	-0.7585849409	3.3981579770	2.7643488327
H	-1.3537394252	5.0606262457	2.6150754495
H	0.1021843479	4.7189687059	3.5586334711
C	1.6801458991	3.7675661471	1.4590519373
H	2.3023028173	3.9210655849	0.5736788076

H	1.4227146705	2.7068226130	1.5146061526
H	2.2794909495	4.0163679457	2.3395217453
C	3.1921805171	-2.3761275035	1.8686470760
H	3.9114511771	-2.1418171324	1.0797715912
H	3.7218404486	-2.3505538542	2.8253803278
H	2.4338242322	-1.5894855693	1.8822323760
C	1.5674642229	-4.1126087557	2.7671598565
H	2.0810155845	-4.1406750740	3.7323000551
H	1.1149956442	-5.0931527017	2.5982431113
H	0.7649556790	-3.3742473126	2.8367870417
H	-2.7507044175	-1.7800264964	3.0287246837
C	-4.1307422769	0.4369705616	2.1288401351
H	-4.3361219559	0.6199469743	1.0709200920
H	-4.6913115553	1.1689925384	2.7161723427
H	-4.5065656223	-0.5567573812	2.3873734796
Bis-dipole S_{1} minimum			
H	-0.4532525559	8.5786797297	-1.0704564991
C	0.1180083780	8.1684684061	-0.2463105941
C	1.6424716894	7.1234910824	1.8904819167
C	0.0668152499	6.8272897032	0.1050174762
C	0.9540494412	8.9882635779	0.5050680393
C	1.7059506410	8.4770200108	1.5611087817
C	0.8165667852	6.2983085393	1.1499973505
H	1.0204303587	10.0423342155	0.2593245141
H	2.3485120888	9.1393467373	2.1307498809
H	2.2333970918	6.7335229580	2.7133880049
N	-0.6929361082	5.7885422128	-0.4724475533
C	-0.4527172852	4.6042674828	0.1276482441
C	0.5500170447	4.8133705716	1.2634035274
H	-1.7703470656	7.0511795549	-1.7279398917
C	-1.6116404624	5.9856554875	-1.5809381117
H	-1.2069375659	5.5539547096	-2.5003093511
H	-2.5747185682	5.5248989088	-1.3536450397
C	-1.0635256978	3.4281088617	-0.3019269808
H	-1.7410642502	3.5060109116	-1.1433015491
C	-0.8717340758	2.1529661314	0.2575939215
H	-0.2083210704	2.0576705694	1.1085215263
C	-1.4990762239	0.9939571199	-0.1566213093
C	-1.2210034282	-0.3011688339	0.5095357307
C	-0.3666715342	-1.1664521797	-0.2166985757
C	0.4107270457	-2.1279807851	0.4062686962
H	0.4682457011	-2.0617397140	1.4873770941
C	-2.1753479186	0.8173246897	-1.4721063686
H	-2.5275336826	1.7404204024	-1.9417964615
H	-3.0241955577	0.1327989040	-1.3772334788
C	-0.4612436932	-1.1103422935	-1.7400184374
H	0.5238784542	-1.2728971369	-2.1892936565
H	-1.0775037898	-1.9638107782	-2.0563404667
C	-1.0627163765	0.1695143975	-2.3439881812
H	-0.2745249467	0.9177676140	-2.4799728684
H	-1.4696156421	-0.0463369645	-3.3368654584
H	4.5206067783	-7.1251273994	-0.8832533029
C	4.4879734046	-6.6992332237	0.1132092196

Bis-dipole S_{1} minimum
H -0.45325255598 .5786797297 -1.0704564991
C $0.11800837808 .1684684061-0.2463105941$
C $1.6424716894 \quad 7.12349108241 .8904819167$
C $0.0668152499 \quad 6.8272897032 \quad 0.1050174762$
C $0.9540494412 \quad 8.98826357790 .5050680393$
C 1.70595064108 .47702001081 .5611087817
0.81656678526 .29830853931 .1499973505
$\begin{array}{lllll}\text { H } & 2.3485120888 & 9.1393467373 & 2.1307498809\end{array}$
$\begin{array}{llll}H & 2.2333970918 & 6.7335229580 & 2.7133880049\end{array}$
N -0.6929361082 5.7885422128 -0.4724475533
C $\quad 0.55001704474 .81337057161 .2634035274$
H $-1.7703470656 \quad 7.0511795549-1.7279398917$
C $-1.6116404624 \quad 5.9856554875-1.5809381117$
H -1.20693756595 .5539547096 -2.5003093511
H $-2.5747185682 \quad 5.5248989088$-1.3536450397
C $-1.0635256978 \quad 3.4281088617-0.3019269808$
H $-1.74106425023 .5060109116-1.1433015491$
C $-0.8717340758 \quad 2.1529661314 \quad 0.2575939215$
H $-0.2083210704 \quad 2.05767056941 .1085215263$
C -1.4990762239 $0.9939571199-0.1566213093$
C $-1.2210034282-0.3011688339 \quad 0.5095357307$
C $-0.3666715342-1.1664521797-0.2166985757$
H $\quad 0.4682457011 \quad-2.06173971401 .4873770941$
C $-2.1753479186 \quad 0.8173246897-1.4721063686$
H $-2.52753368261 .7404204024-1.9417964615$
C $-0.4612436932-1.1103422935-1.7400184374$
H 0.5238784542 -1.2728971369 -2.1892936565
H -1.0775037898 -1.9638107782 -2.0563404667
C $-1.06271637650 .1695143975-2.3439881812$
H -0.27452494670 .9177676140 -2.4799728684
H $-1.4696156421-0.0463369645-3.3368654584$
C $4.4879734046-6.69923322370 .1132092196$

C	08219831	74	2.7	H	-2.1512618813	-3.6641150189	
c	3.6158175238	-5.6746018218	0.4503108907	H	-1.6775437117	-1.2528607769	-9.8355983383
C	5.3475780046	-7.1695128177	1.1056059002	H	-1.1415411654	0.1140687677	-7.8365363781
c	5.3355572456	-6.6299029874	2.3867671902	N	-1.4927143871	-3.2864422202	-5.0209809218
c	3.5944403075	-5.1232064061	1.7298439727	C	-1.1663449335	-2.2310423835	-4.2361346069
H	6.0418998756	-7.9683015674	0.8660605529	c	-1.0313359815	-0.9845679304	-5.1196438513
H	6.0177748155	-7.0070074676	3.1407203254	H	-1.9760894589	-5.2837226062	-5.3471667033
H	4.4434862345	-5.1741756045	3.7044999223	c	-1.7015509728	-4.63023989	-4.5222140191
C	2.5503961411	-4.0247643797	1.7909539448	H	-0.7879868553	-5.0162567535	-4.0595579426
c	2.0300683031	-4.0172854837	0.3479986770	H	-2.5079084206	-4.6431797820	-3.7833049730
C	1.1264722528	-3.1713931290	-0.2400618506	C	-0.9885172228	-2.3634980052	-2.8716853373
H	0.9536010289	-3.3030973819	-1.3031846450	H	-1.10874420	-3.355703557	-2.4549430569
N	2.6613052045	-5.0254084999	-0.3442886575	C	-0.6529071314	-1.3278351999	-1.9800078063
N	-1.8489380832	-0.6413597270	1.6975658000	H	-0.598105857	-0.320573453	-2.3724701834
C	-2.4543068791	0.3626628885	2.5598116825	c	-0.3270607356	-1.497495129	-0.6463692796
H	-1.7933054939	1.2324541548	2.6066552567	c	0.0187370023	-0.358783603	0.1474907682
C	-2.3293460069	-1.9963348600	1.9382871043	c	0.8471979016	-0.53	1.3037718195
H	-2.0111943273	-2.3480127021	2.9258606402	C	0.8274151905	0.3875079052	2.3291079663
H	-1.9311411289	-2.6748211506	1.1873285739	H	0.1480349166	1.2217337008	2.2055727973
H	-2.4841645401	-0.0585613726	3.5707978246	C	-0.190354323	-2.9019266367	-0.0877179213
C	2.3968602266	-5.3366039608	-1.7273455211	H	0.4174582235	-3.4858099465	-0.7901701731
H	2.7800269086	-4.5572123249	-2.3971531045	H	-1.1713923640	-3.3935081163	-0.0606714930
H	1.3196949195	-5.4401416258	-1.8909869741	c	1.5315775139	-1.8760658079	1.4167527753
H	2.8725194173	-6.2818530779	-1.9845585781	H	2.2814444865	-2.00363337	0.6255470444
C	-0.0727283832	4.4878544772	2.6355820375	H	2.0570542121	-1.9747032808	2.3670642510
H	-0.2875026236	3.4230716980	2.7439679572	c	0.4619648561	-2.9635415378	1.2936192334
H	-1.0002228132	5.0448476928	2.7906432370	H	0.89357	-3.956	1.4514179590
H	0.6271127262	4.7729807525	3.4253543849	H	-0.2840314147	-2.810153134	2.0808401879
C	1.8530936020	4.0233207546	1.0356750717	H	3.2219132597	1.6027463397	8.3341318739
H	2.2892079335	4.2538306188	0.0604349234	c	2.4337720742	2.2332131627	7.9388140414
H	1.6963818126	2.9447401322	1.0954218061	c	0.3775487044	3.8861507157	6.9467272032
H	2.5805588329	4.3016885068	1.8027959794	C	1.8927896380	2.0430568889	6.6779328395
C	3.2075462256	-2.6871013993	2.1726877206	C	1.9216646577	3.2795832700	8.7046593880
H	4.0167449179	-2.4411113960	1.4802499531	c	0.9073119997	4.0986629843	8.2201144143
H	3.6327205253	-2.7568656156	3.1785767615	c	0.8772408410	2.8509586445	6.1796518474
H	2.4892326358	-1.8646799306	2.1622691737	H	2.3248642773	3.4528156785	9.6968330645
C	. 4469322250	-4.4093089401	2.7940676086	H	0.5252517638	4.9056511779	8.8356787001
H	1.8813543015	-4.5362296972	3.7900350270	H	-0.4158572676	4.5264208367	6.5720674984
H	0.9763851692	-5.3545836482	2.5112563111	c	0.5056946470	2.3932461411	4.7829562335
H	0.6679365984	-3.6458512713	2.8593249000	c	1.4505889743	1.1995672511	4.5934654760
H	-3.4251631690	-2.0376251868	1.9008934514	c	1.5695284827	0.3327845348	3.5270960440
C	-3.8610105062	0.7985463781	2.1515380613	H	2.2980480167	-0.4614916209	3.6260540390
H	-3.8543824717	1.2837245372	1.1708956817	N	2.2200635114	1.0744053940	5.7058401301
H	-4.2665043269	1.5078836608	2.8794107771	N	-0.4357245103	0.8884999883	-0.2107539562
H	-4.5451399896	-0.0528919475	2.1034539423	c	0.3989497102	2.0918338845	-0.1582115458
	ine-like Franck-	-Condon point		H	-0.0551046996	2.8270635131	0.5199076602
H	-2.1005241148	-4.7622497151	-7.3991372083	C	-1.8078395211	1.1170270608	-0.6478456973
C	-1.8907795622	-3.7019818633	-7.4808085848	H	-2.2357284377	1.9317129005	-0.0503550591
C	-1.3488160721	-0.9468748815	-7.7319381318	H	-2.4005859698	0.2177948590	-0.4896161633
C	-1.5880776930	-2.9169382047	-6.3807155187	H	1.3671591172	1.8151492223	0.2560976690
c	-1.9176060082	-3.0757053449	-8.7261106551	H	-1.8850085714	1.4042077206	-1.7006666506
C	-1.6508486131	-1.7167005830	-8.8556635321	C	3.2365967768	0.0576351879	5.8751823804
c	-1.3183978156	-1.5582053445	-6.4926317738	H	3.9670742169	0.1086199845	5.0626365994

176

H	37	-0.9415729631	5.8902115007	H	968	-2.1066173754	
H	3.7573232526	0.2207202211	6.8162004744	H	1.7216487627	-2.1138315440	2.6305504833
C	-2.0859470243	0.0809929000	-4.7692871967	C	0.3113796434	-3.0570290884	1.2945119008
H	-1.9115796245	0.5214155691	-3.7851677950	H	0.7072536526	-4.0564652097	1.4980595685
H	-3.0937187106	-0.3419723010	-4.7824424673	H	-0.5505368086	-2.9115793574	1.9548381476
H	-2.0484857507	0.8858377074	-5.5085644724	H	3.2191652402	1.6463332489	8.3681307749
C	0.3918581898	-0.4022046741	-5.0686434205	c	2.4530719108	2.2960416596	7.9612410777
H	1.1364053041	-1.1597246487	-5.3264488151	c	0.4495655636	4.0011292695	6.9364482210
H	0.6350879035	-0.0073330767	-4.0795379694	c	1.8840835775	2.0827433485	6.7089344646
H	0.4797924548	0.4150587646	-5.7901357418	c	1.9980514273	3.3867322351	8.6934920089
C	0.8007629770	3.5153538382	3.7707151242	c	1.0089007887	4.2333414302	8.1938936532
H	1.8513944759	3.8141360559	3.8106060746	c	0.8915436710	2.9223335748	6.1963365643
H	0.1916321156	4.3919266691	4.0087637388	H	2.4227553339	3.5789992387	9.6731129031
H	0.5701771173	3.2130126951	2.7468030600	H	0.6720687963	5.0766563540	8.7869201306
C	-0.9723039258	1.9688819478	4.7337436276	H	-0.3226201108	4.6614518440	6.5526676619
H	-1.6055997601	2.8182999203	5.0048418029	c	0.4786076907	2.4366175388	4.8226235748
H	-1.1724178117	1.1597880819	5.4407100813	C	1.3693645444	1.2056824785	4.6597798875
H	-1.2686019070	1.6326064673	3.7372698977	C	1.4395991407	0.2965465000	3.6208297427
C	0.5979544677	2.7262383099	-1.5326762986	H	2.1373413430	-0.5226931435	3.7452241340
H	1.2747421460	3.5807697203	-1.4445949285	N	2.1523469083	1.0798884015	5.7771819520
H	-0.3375751835	3.0929698044	-1.9627704872	N	-0.4138307717	0.8451831142	-0.1570546973
H	1.0451576755	2.0110627188	-2.2299502246	C	0.5102319947	1.9736960081	-0.2104355894
	ine-like S_{1} min	mum		H	0.0476477606	2.8362976153	0.2892233062
H	-2.0970446081	-4.6902095948	. 4782609148	C	-1.7733732207	1.1183231943	-0.5881005168
C	-1.9021996453	-3.6260813122	-7.5451102684	H	-2.1918711274	1.9329434053	0.0178917163
C	-1.3854720052	-0.8588300070	-7.7581772764	H	-2.3904697771	0.2312568883	-0.4468425432
C	-1.5956659749	-2.8533611329	-6.4298393378	H	1.4050127869	04	60
c	-1.9468348277	-2.9817905848	-8.7770282746	H	-1.8464600159	1.4225336965	-1.6394494152
C	-1.6932037751	-1.6156647824	-8.8895928124	c	3.1263227587	0.0264250502	5.9656844603
C	-1.3367970025	-1.4848865904	-6.5278708430	H	3.8498110905	0.0253302116	5.1446984555
H	-2.1825661647	-3.5581028278	-9.6654884833	H	2.6364397436	-0.9522878013	6.0082307258
H	-1.7349384697	-1.1382159683	-9.8625478033	H	3.6616911574	0.1897905190	6.8983055673
H	-1.1875515728	0.2048936526	-7.8502189386	C	-2.1045889667	0.1251303952	-4.7736480906
N	-1.4872054978	-3.2373196669	-5.0900133043	H	-1.9363710906	0.5322028158	-3.7742653267
C	-1.1493215210	-2.1834508791	-4.2888999153	H	-3.1101520559	-0.3017076038	-4.8059613981
C	-1.0419746810	-0.9267371683	-5.1516846738	H	-2.0658403312	0.9538259288	-5.4864862180
H	-2.0700901405	-5.2065655661	-5.4212701803	c	0.3733692790	-0.3198049775	-5.1049298558
c	-1.6914873016	-4.5879389045	-4.6104672367	H	1.1279974939	-1.0608875930	-5.3801300437
H	-0.7531453661	-5.0195167960	-4.2458605031	H	0.6152036552	0.0630123933	-4.1111612297
H	-2.4243132813	-4.5939809003	-3.7984661582	H	0.4410341779	0.5110386917	-5.8132312727
,	-0.9311178750	-2.3395435227	-2.9278107831	c	0.7870635377	3.5160863397	3.7651769199
,	-1.0067926177	-3.3484292438	-2.5383924732	H	1.8480259103	3.7783313334	3.7680968181
C	-0.6105318512	-1.3246390990	-2.0097442447	H	0.2142298338	4.4206335000	3.9889261626
H	-0.5847418988	-0.3012846746	-2.3594772977	H	0.5170013384	3.1872723276	2.7591877842
c	-0.2679060446	-1.5383001260	-0.6705250671	c	-1.0175227639	2.0666745421	4.8072486737
c	0.0068957715	-0.4364066360	0.1874452654	H	-1.6163980320	2.9518708180	5.0404420947
c	0.7173421418	-0.6352124580	1.4221007934	,	-1.2404706793	1.3009361502	5.5544094162
C	0.7061610458	0.3368879953	2.4140193668	H	-1.3313507283	1.6935775965	3.8296443867
H	0.0641848206	1.1903600922	2.2341339558	c	0.9113533541	2.3611882493	-1.6331406495
C	-0.1154677799	-2.9585779392	-0.1670631066	H	1.5981337313	3.2128570774	-1.6123407007
H	0.6343178343	-3.4628485860	-0.7918299216	H	0.0470026708	2.6504826645	-2.2379443620
H	-1.0508939863	-3.5115408531	-0.3188751446	H	1.4201589976	1.5296805650	-2.1305704993
C	1.3561731918	-1.9855660070	1.61061458				

Dye II-12
Bis-dipole Franck-Condon point
H $-5.9127742892-5.5544325253-3.7623788414$
C $-5.3216751816-5.8525759240-2.9040518722$
C $-3.7981683100-6.6634609513-0.6749012102$
C $-4.4814805952-4.9749303783-2.2391883162$
C $-5.3877310236-7.1608561557-2.4270548777$
C $-4.6385868000-7.5660617912-1.3272878752$
C $-3.7243998087-5.3641534627-1.1403665206$
H $-6.0374240386-7.8720101129-2.9260896434$
H $-4.7086424163-8.5892724504-0.9748399247$
H $\quad-3.2149063761$-6.9833548169 0.1837474667
N -4.2266031565 -3.6120317634 -2.5043682255
C $-3.3313803084-3.0897192842-1.6298359844$
C $-2.9129466155-4.1852487597-0.6413875253$
H $\quad-5.4144087179-2.0134122955-3.1677006144$
C $-4.8484603839-2.8577819231-3.5729873656$
H -4.0939393900 -2.4798225436 -4.2694395094
H $-5.5327410809-3.5022112725-4.1203484788$
C $-2.9276423416-1.7702968940-1.6998983997$
H -3.3519820658 -1.1712343329 -2.4956820730
C $-2.0087285105-1.1477251054-0.8346736365$
H $-1.5766405365-1.7500997762-0.0466273599$
C $-1.5596276116 \quad 0.1552200347-0.9430649063$
C $-0.55949513950 .6431071972-0.0450186756$
C $0.2089884200 \quad 1.8061173050-0.3622671183$
C $\quad 1.4046895046 \quad 2.0690708025 \quad 0.2826867827$
$\begin{array}{llll}\text { H } & 1.7232529198 & 1.3740629888 & 1.0469957324\end{array}$
C $-2.03129728891 .0400630257-2.0749764256$
H -3.10984130950 .9093309728 -2.2118349865
H $-1.5625887489 \quad 0.7283781504-3.0192488028$
C -0.2500755328 2.6904155159 -1.5023076818
H -0.0624859533 3.7373599268 -1.2438208229
H 0.3447187266 2.4846492828 -2.4036407209
C $-1.7279423490 \quad 2.5076809199-1.8146015366$
H -2.3276447732 2.8615761918 -0.9671143437
H -2.00896467313 .1133735690 -2.6806694405
$\begin{array}{lllll}\text { H } & 6.3713988573 & 6.3771234060 & 0.3446190681\end{array}$
C $6.3837929446 \quad 5.5442554071 \quad 1.0381633456$
C $\quad 6.4442529977 \quad 3.3923458411 \quad 2.8588207985$
C $\quad 5.3825578764 \quad 4.58763424411 .0676521066$
C $7.4297591100 \quad 5.40393176731 .9489762096$
C $\quad 7.4647724522 \quad 4.3438139795 \quad 2.8488316291$
C $\quad 5.4012588499 \quad 3.5229785128 \quad 1.9611417553$
$\begin{array}{llll}\text { H } & 8.2279648390 & 6.1385540190 & 1.9528320318\end{array}$
$\begin{array}{lllll}\text { H } & 8.2894876516 & 4.2574716683 & 3.5476205962\end{array}$
$\begin{array}{llll}\text { H } & 6.4739586183 & 2.5670968492 & 3.5643164838\end{array}$
C $4.1691858826 \quad 2.6659687540 \quad 1.7516934233$
C $\quad 3.46550375643 .41772727570 .6152945292$
C $2.26949483203 .1383184505-0.0182895439$
H 1.97233177303 .8116901087 -0.8115010550
$\begin{array}{lllll}\mathrm{N} & 4.2190418870 & 4.4919270283 & 0.2738966074\end{array}$
N -0.2790543391 -0.09231617061 .0826490789

C	-0.0080782464	0.4022149355	2.4123710734
H	0.8693332215	-0.0086676145	2.9064810809
C	-1.1990167745	-0.4532513386	2.1570410006
H	-1.1275643701	-1.5003291939	2.4479559668
H	-0.1884454670	1.4599785263	2.5969187637
C	-2.5811753943	0.1415805080	2.2317068883
H	-2.5735930547	1.1957074929	1.9414995352
H	-2.9526780599	0.0697127157	3.2580402075
H	-3.2833605386	-0.3828365285	1.5783670803
C	3.8591394802	5.4351881388	-0.7645687959
H	2.9031140405	5.9154762267	-0.5343843414
H	3.7809661378	4.9308393666	-1.7322463090
H	4.6252011481	6.2039033248	-0.8356558788
C	3.3200289952	2.6444575060	3.0352656900
H	3.0233737202	3.6548112985	3.3284690017
H	3.9049060902	2.2144061895	3.8531430596
H	2.4172114376	2.0426988205	2.9147331624
C	4.5723330101	1.2434648750	1.3221826690
H	5.1751423409	0.7811234545	2.1089167541
H	5.1706967606	1.2646731649	0.4077681824
H	3.7017665157	0.6074515520	1.1456069685
C	-3.3270790223	-3.8369596036	0.8000112463
H	-4.3940857593	-3.6062857253	0.8575041455
H	-2.7697064867	-2.9825103890	1.1909731479
H	-3.1321406752	-4.6928739357	1.4520677234
C	-1.4088105469	-4.4996092767	-0.7332864025
H	-0.7912852399	-3.6619177656	-0.4016340132
H	-1.1231591944	-4.7498711442	-1.7581369521
H	-1.1791653124	-5.3608090683	-0.0995829748

Bis-dipole S_{1} minimum

H $\quad-5.9181845748-5.5528385541$-3.7800354623
C $-5.3268808417-5.8591882178-2.9250003642$
C $-3.7987232503-6.6933966382-0.7027083487$
C $-4.4732708841-4.9860690489-2.2578474185$
C $-5.4025259500-7.1653815112-2.4538572374$
C $-4.6512760559-7.5840637253-1.3565509958$
C $-3.7130143517-5.3923742094-1.1587665705$
H $-6.0601329642-7.8690475486-2.9534502172$
H -4.7308173677 -8.6084597164 -1.0092287096
H $-3.2145532199-7.02443659320 .1508899382$
N -4.2121316466 -3.6381132196 -2.5125689198
C $-3.3037459743-3.1234863012-1.6284498516$
C $-2.8888172512-4.2261956574-0.6549628000$
H $-5.3588585413-2.0066176140-3.1618059171$
C $-4.8285312267-2.8710479869-3.5736901258$
H $-4.0742007263-2.5181849601-4.2845154704$
H -5.5443475686 -3.4939148340 -4.1053382042
C $-2.8938001660-1.8031272995-1.6915001610$
H $-3.3260697432-1.1992548407-2.4808362924$
C $-1.9700203685-1.1756477489-0.8309980957$
H $-1.5157509773-1.7694359716-0.0490430468$
C $-1.55329358860 .1482250623-0.9288948664$
C $-0.59460775130 .6700589736-0.0019201607$

C	0.1907818724	1.8186848181	-0	C	-1.3848449884	-4.5508513040	-0.7550858929
C	1.4051921556	2.0653965685	0.3090518068	H	-0.7645625945	-3.7138982882	-0.4272239101
H	1.7310838254	1.3455924262	1.0466754289	H	-1.1059140739	-4.8035000120	-1.7810233968
C	-2.0305113510	1.0356082198	-2.05342357	H	-1.1556645883	-5.4117065341	0
H	-3.1041073377	0.8860056391	-2.		ne-like Franck	Condon Point	
H	-1.5410260565	0.7413240178	-2.9935116699	H	-6.3804304284	-5.3975243414	
C	-0.2798759031	2.7104820454	-1.4551488142	C	-5.8736311388	-5.6590494492	-2.7096826333
H	-0.1063228748	3.7582872409	-1.1888249635	C	-4.5662620208	-6.3755234511	-0.3153489978
H	0.3208539944	2.5204366504	-2.3565936237	C	-4.9330553148	-4.8334362072	-2.1169016052
C	-1.7543444499	2.5061751543	-1.7742092461	C	-6.1535786137	-6.8669714637	-2.0728981621
H	-2.3619651497	2.8381879294	-0.9240788893	C	-5.5104141896	-7.2252474613	-0.8921056245
H	-2.0445163593	3.1177930255	-2.6333034634	C	-4.2819854114	-5.1747526613	-0.9381063878
H	6.3871432187	6.3798043692	0.3056955509	H	-6.8862527472	-7.5365266783	-2.5104512502
C	6.4039967853	5.5493225572	1.0018945988	H	-5.7440510441	-8.1719029775	-0.4174306991
C	6.4746261267	3.4023614711	2.8337090242	H	-4.0665173561	-6.6595523553	0.6060894203
C	5.3924984399	4.5951456940	1.0464888393	N	-4.4632233302	-3.5678295596	-2.
C	7.4573584342	5.4076521221	1.8984916928	C	-3.5317027098	-3.0741891028	-1.6985235327
C	7.4988441763	4.3501024556	2.8060416141	C	-3.3188092241	-4.0707198549	-0
C	5.4203719231	3.5309084962	1.9505489839	H	-5.2886910550	-1.8802115991	-3.4693026427
H	8.2601052948	6.1374852473	1.8884706654	C	-4.9332985601	-2.8810339973	-3.7280090635
H	8.3316405961	4.2648718437	3.4954767937	H	-4.1336635899	-2.7977911376	-4.
H	6.5105087861	2.5796966275	3.5417063647	H	-5.7592375972	-3.4386503155	-4.1637122093
C	4.1885102722	2.6722830460	1.7577795823	C	-2.9057481131	-1.8540203354	-1.9273713703
C	3.4712207976	3.4232821955	0.6364912958	H	-3.1605707168	-1.3349274101	-2.8430687034
C	2.2582763978	3.1514771865	0.0268010660	C	-1.9807154078	-1.2686763113	-1.0626481871
H	1.9385294687	3.8452697779	-0.7413326239	H	-1.7143570081	-1.7910920536	-0.1561076218
N	4.2317298328	4.5010812552	0.2754237320	C	-1.3397004531	-0.0401809545	-1.2413779583
N	-0.310260155	-0.0763480000	1.	C	-0.3673607146	0.3801937469	-0.3015608820
C	-0.1006135875	0.4805847623	2.4558188741	C	0.3322965485	1.6150610405	-0.4736088918
H	0.7566509660	0.0952899834	3.0028326837	C	1.4594182111	1.9679164402	0.2574055694
C	-1.2772283778	-0.3869828782	2.1895732283	H	1.7923483947	1.3214241750	1.0505006144
H	-1.2185666951	-1.4214055822	2.5255412397	C	-1.6724060689	0.8332675294	-2.4264952025
H	-0.2913222806	1.5445661567	2.5866241345	H	-2.6956038149	0.6396409523	-2.7589872094
C	-2.6633905926	0.2040172989	2.1914165125	H	-1.0179475260	0.5924723019	-3.2759900362
H	-2.6520418220	1.2439869300	1.8537813358	C	-0.1150947773	2.5698548042	-1.5671842868
H	-3.0692742369	0.1776721632	3.2070032816	H	-0.0560075071	3.5960820985	-1.1907418280
H	-3.3397552772	-0.3556535567	1.5397468392	H	0.5856153462	2.5125483320	-2.4125883450
C	3.8674500870	5.4336342204	-0.7695224813	C	-1.5248441677	2.3027561407	-2.0662715116
H	2.9436720521	5.9631896677	-0.5134829362	H	-2.2506127133	2.5578307162	-1.2854552216
H	3.7231795843	4.9068127694	-1.7177852135	H	-1.7428720819	2.9385461171	-2.9291960905
H	4.6630513811	6.1640966237	-0.8975252288	H	6.1410100400	6.5763982278	0.5231315403
C	3.3525606008	2.6375582111	3.0518623136	C	6.0978711949	5.8225686212	1.3007471974
H	3.0570947339	3.6448684199	3.3559059381	C	6.0078675542	3.8819987666	3.3435982141
H	3.9449890366	2.1991506259	3.8600663139	C	5.1433928742	4.8189380230	1.3096551997
H	2.4496567149	2.0361212199	2.9301199049	C	7.0200585501	5.8377987626	2.3460337043
C	4.5926696277	1.2478259420	1.3255328646	C	6.9798596463	4.8829533565	3.3568559470
H	5.2026675494	0.7880864812	2.1085560513	C	5.0886868782	3.8576168552	2.3116951310
H	5.1829751509	1.2697342677	0.4060629054	H	7.7798046275	6.6117422123	2.3677564119
H	3.7211464884	0.6109971865	1.1582050601	H	7.7072972973	4.9176188119	4.1604015928
C	-3.2817488233	-3.8864879493	0.7965452957	H	5.9778070562	3.1389778027	4.1350594899
H	-4.3465368331	-3.6511827810	0.8701221357	C	3.9356893930	2.9116583674	2.0425663689
H	-2.7137873668	-3.0361177799	1.1807821190	C	3.3588808584	3.4966390780	0.7470030200
	-3.0792986266	-4.7467771680	1.4409232142	C	2.2565167598	3.1015143197	0.0101177437

H	1.9992858105	3.7202130314	-0.8384917437
N	4.1038005419	4.5705138754	0.3876678385
N	-0.1772398302	-0.5461844318	0.7608273237
C	0.2644739794	-0.2576259934	2.1161842511
H	0.5735533827	0.7472268858	2.3804682178
C	1.1010619457	-1.0925956449	1.2149835311
H	1.9904928688	-0.6239339841	0.7986523582
H	-0.3283007726	-0.7491760144	2.8847592588
C	1.1976006141	-2.5875959400	1.3636488571
H	0.2860061190	-2.9913945037	1.8123158778
H	2.0432807282	-2.8543764677	2.0052664538
H	1.3481264998	-3.0667251716	0.3912088799
C	3.8583571556	5.3673861086	-0.7971393038
H	2.8990772451	5.8892172625	-0.7240741292
H	3.8518806494	4.7315435290	-1.6868077937
H	4.6497685531	6.1054323428	-0.9068524437
C	2.9137716363	2.9815661855	3.1908412760
H	2.5468368783	4.0013918572	3.3302528871
H	3.3867543258	2.6619269952	4.1235545220
H	2.0548666264	2.3320167465	3.0078935457
C	4.4606576641	1.4773004579	1.8509298631
H	5.0015486123	1.1663093419	2.7488724380
H	5.1494731458	1.4173544255	1.0045721070
H	3.6508982968	0.7627353053	1.6892181638
C	-3.7122816064	-3.4772047460	0.8126547148
H	-4.7288759474	-3.0759480021	0.7906135204
H	-3.0346781170	-2.6801814070	1.1244437708
H	-3.6790066281	-4.2649682160	1.5704871219
C	-1.8755549256	-4.6069509645	-0.5389923015
H	-1.1546375649	-3.8269214768	-0.2866175188
H	-1.6023781436	-5.0270068900	-1.5106371301
H	-1.7910455766	-5.4023424142	0.2066640906

Cyanine-like S_{1} minimum

H $-6.3939553743-5.4193757773-3.6474783909$
C $-5.8883785675-5.6764070661-2.7239847187$
C $-4.5796812497-6.3825681182-0.3231329633$
C $-4.9472285384-4.8397116569-2.1318531594$
C $-6.1649072499-6.8798378422-2.0846058552$
C $-5.5227757830-7.2347603468-0.8988660770$
C $-4.2950339781-5.1831706689-0.9459374282$
H $-6.8948490682-7.5535307203-2.5211115146$
H $-5.7574212194-8.1800363442$-0.4217249239
H -4.0807355741 -6.6633216402 0.5997025333
N -4.4875966281 -3.5882758380 -2.5513659558
C $-3.5477860591-3.0849328685-1.6994762720$
C $-3.3328775176-4.0806104105-0.5599214059$
H $\quad-5.3109706822-1.9061185626-3.4930054530$
C $\quad-4.9505489451-2.9080997167-3.7432043287$
H $\quad-4.1449491725-2.8227071146-4.4797149649$
H $-5.7712157410-3.4694177906-4.1846687971$
C -2.9331610668 -1.8586937168 -1.9197876535
H $\quad-3.2121129808$-1.3256793832 -2.8218263912
C $-1.9867710338-1.2761999881-1.0657131272$

H -1.7023971008 -1.8062922989 -0.1694074396 C $-1.3465253596-0.0436771058-1.2442239167$
C $-0.36504073550 .3848742756-0.3017917639$
C $0.34200578831 .6152116013-0.4807767210$
C $\quad 1.4737173601 \quad 1.9744310101 \quad 0.2598168596$
$\begin{array}{lllll}H & 1.8010122581 & 1.3272270660 & 1.0540470146\end{array}$
C $-1.6724560160 \quad 0.8326905554-2.4251389337$
H $-2.68918114650 .6366656034-2.7746600801$
H $-1.00398037870 .5980664844-3.2665306353$
C -0.1131534507 2.5683545433 -1.5696160936
H $-0.0455489381 \quad 3.5964333144-1.2003484901$
H $\quad 0.5804726533$ 2.5016466265 -2.4211273938
C -1.5272408235 2.3016082299 -2.0588705577
H $-2.2473977993 \quad 2.5523943150-1.2717212115$
H -1.75202998532 .9396129066 -2.9185533553
$\begin{array}{lllll}\text { H } & 6.1592293109 & 6.5976031597 & 0.5264136847\end{array}$
C $\quad 6.1156939310 \quad 5.8410936571 \quad 1.3014114477$
C $\quad 6.0216225112 \quad 3.8908391777 \quad 3.3416691838$
C $\quad 5.1535234240 \quad 4.8358646055 \quad 1.3064978413$
C $7.0359324011 \quad 5.8501331655 \quad 2.3436563097$
C $\quad 6.9954529861 \quad 4.8902643104 \quad 3.3544677665$
$\begin{array}{lllll}\text { C } & 5.1003407295 & 3.8691745898 & 2.3127021581\end{array}$
$\begin{array}{lllll}H & 7.7979405237 & 6.6220208556 & 2.3678373918\end{array}$
$\begin{array}{lllll}\text { H } & 7.7249973174 & 4.9220283201 & 4.1563051351\end{array}$
$\begin{array}{lllll}\text { H } & 5.9914349836 & 3.1456540018 & 4.1309830529\end{array}$
C $3.9492663520 \quad 2.9235311158 \quad 2.0452943652$
C $3.37354639923 .5088467128 \quad 0.7551766354$
C $\quad 2.27016268363 .11056585790 .0149912684$
H $2.0157105112 \quad 3.7270763031-0.8378184464$
$\begin{array}{lllll}\mathrm{N} & 4.1233021412 & 4.5932805478 & 0.3953102473\end{array}$
N $-0.1764659344-0.53650475030 .7638555796$
C $0.2530989957-0.2510596302 \quad 2.1215747366$
$\begin{array}{llll}\text { H } & 0.5681664991 & 0.7522812074 & 2.3880035459\end{array}$
C $1.0950566653-1.08762901591 .2234171939$
H $1.9907793623-0.61920392540 .8186079998$
H $-0.3449436949-0.7392321608 \quad 2.8885423685$
C $1.1886431410-2.58388420601 .3649809825$
H 0.2699017514 -2.9887057943 1.7983597503
H 2.0257786238 -2.8579975878 2.0148857760
H $\quad 1.3498451092$-3.0564260272 0.3906832879
C $3.8772495828 \quad 5.3923673265-0.7870897944$
$\begin{array}{lllll}\text { H } & 2.9142141361 & 5.9082613567 & -0.7141726685\end{array}$
H 3.8744040537 4.7592275651 -1.6793265379
H 4.66476996396 .1352221068 -0.8926025893
C $\quad 2.9285034610 \quad 2.9860082071 \quad 3.1990419258$
$\begin{array}{lllll}\text { H } & 2.5636263915 & 4.0054499603 & 3.3471836856\end{array}$
$\begin{array}{llll}\text { H } & 3.4033687850 & 2.6564538734 & 4.1276687659\end{array}$
$\begin{array}{lllll}\text { H } & 2.0687896726 & 2.3390064283 & 3.0111008844\end{array}$
C $4.4782096351 \quad 1.4867720551 \quad 1.8578922349$
$\begin{array}{lllll}\text { H } & 5.0208236256 & 1.1803497755 & 2.7567230403\end{array}$
H $\quad 5.1655924011 \quad 1.42488952551 .0104386863$
H 3.66871158120 .77101516271 .7003803930
C $-3.7218697820-3.48892322940 .8110601509$

H -4.7410016045 -3.0940388760 0.7940849332
H -3.0467907860 -2.6861294444 1.1136304913
H $-3.6766495492-4.27471058581 .5707672344$
C $-1.8881605899-4.6214489146-0.5358672295$
H $-1.1682015834-3.8416971249-0.2794294356$
H $-1.6095005883-5.0428932688$-1.5053427465
H $-1.8100554337-5.4153779402 \quad 0.2126588858$

Dye Il-13			
Bis-dipole Franck-Condon point			
H	6.1765096223	5.6417629972	2.4354406411
C	6.0223527085	4.7077934497	2.9633603422
C	5.6580359158	2.2808998680	4.3473406960
C	4.9054658295	3.9150804237	2.7564344567
C	6.9651979145	4.2603496671	3.8877396320
C	6.7907022399	3.0638012347	4.5746034646
C	4.7175136570	2.7147616238	3.4326326520
H	7.8497715456	4.8612931486	4.0701807773
H	7.5384514712	2.7367016034	5.2885616548
H	5.5246155711	1.3459254103	4.8836596749
N	3.8108442449	4.1271773749	1.8943287667
C	2.9107451659	3.1085086002	1.9634042008
C	3.4129662636	2.0822927763	2.9882982618
H	4.4752629050	5.9741309190	1.2047140530
C	3.6604400525	5.2754862600	1.0277374133
H	3.6796305701	4.9742829249	-0.0247769991
H	2.7157703967	5.7886014159	1.2320510943
C	1.7703269003	3.0933428444	1.1942102165
H	1.6252766252	3.9247953096	0.5164774572
C	0.7827995734	2.0777424265	1.1888858528
H	0.9377403308	1.2385742938	1.8534934149
C	-0.2988557390	2.0374726975	0.3431085840
C	-1.1711108945	0.8854354614	0.3003748476
C	-1.7931371441	0.5264419762	-0.9550047468
C	-2.0288374380	-0.7880114435	-1.2758863388
H	-1.7620252321	-1.5418280269	-0.5470947604
C	-0.5052256403	3.1222707847	-0.6941442645
H	0.2921535199	3.0802045885	-1.4495573826
H	-0.4162762495	4.1008669507	-0.2096835517
C	-2.0196044046	1.6198371402	-1.9787077314
H	-1.3217102200	1.4992100135	-2.8194748003
H	-3.0256450928	1.5115621590	-2.3993036099
C	-1.8591712644	3.0087984384	-1.3788788447
H	-1.9565315989	3.7716986569	-2.1560870317
H	-2.6581649985	3.1915251651	-0.6495906231
H	-3.9426685462	-4.5786549132	-6.3117737457
C	-3.5822534200	-5.0424342804	-5.4008302113
C	-2.6457601567	-6.2847161641	-3.0516324929
C	-3.1679179665	-4.3033494082	-4.3048900381
C	-3.5202020018	-6.4317144099	-5.2993068281
C	-3.0594196635	-7.0506221550	-4.1423555783
C	-2.7025408963	-4.9070742956	-3.1421600582
H	-3.8385304173	-7.0362370930	-6.1421108777

H $-3.0207137899-8.1329361993-4.0874038773$
H -2.2861777181 -6.7698871166 -2.1488162565
C $-2.3314132951-3.8397973901-2.1313251375$
C $-2.6538782953-2.5572751987-2.9100272419$
C $-2.5129347777-1.2435813290-2.5271783021$
H $\quad-2.7828021983-0.4889335033-3.2551142709$
N -3.1302831111 $-2.9041378109-4.1369953372$
N - $1.38570553090 .1494961309 \quad 1.3981180839$
C $-1.18629917860 .4841954189 \quad 2.8213891733$
C $-2.4671659454-0.80765913761 .7024729009$
C $\quad-2.4329654193-0.3504492343-3.1738386649$
H $\quad-2.2839966519-1.138344329313 .9117338504$
H $-3.29280028850 .2568585105 \quad 3.4580391615$
H $-3.3781710233-0.61430391251 .1300916527$
H -2.1667415361 -1.8494392877 1.5585144081
$\begin{array}{llll}\text { H } & -1.2234436522 & 1.5599936857 & 3.0135486626\end{array}$
H $\quad-0.25520924970 .0781808650 \quad 3.2270815301$
C $-3.5428948065-1.9465954704-5.1396283091$
H $\quad-2.7004816071$-1.3193512124 -5.4486639117
H $-4.3393422838-1.3036691517-4.7521504561$
H $-3.9199810810-2.4747587259-6.0128371201$
C $-0.8358327175-3.9337676521-1.7819555448$
H $-0.2172680160-3.8154338786-2.6751990136$
H $\quad-0.6202157743-4.9154008352-1.3506821631$
H $\quad-0.5346647454-3.1731183067-1.0575697403$
C -3.2131930678 -3.9819746731 -0.8780373320
H $-3.0398136732-4.9581747682-0.4164010346$
H $-4.2733774640-3.9141729280-1.1350296187$
H $-2.9938048159-3.2133189831-0.1333928049$
C $\quad 2.4542728507 \quad 1.9587828867 \quad 4.1858137900$
$\begin{array}{lllll}H & 1.4936708217 & 1.5254889901 & 3.8971373160\end{array}$
$\begin{array}{llll}\text { H } & 2.2646446643 & 2.9345675972 & 4.6402991062\end{array}$
H $\quad 2.90026092721 .31355445924 .9479699119$
C $3.6829841680 \quad 0.7119012966 \quad 2.3418837282$
$\begin{array}{llll}\text { H } & 4.3586604454 & 0.8083959862 & 1.4884449750\end{array}$
$\begin{array}{llll}\text { H } & 2.7643976529 & 0.2319194491 & 1.9960149569\end{array}$
H 4.15569414760 .04915732043 .0722220151

Bis-dipole S_{1} minimum

$\begin{array}{llll}\text { H } & 6.1661378899 & 5.6801872758 & 2.4689353625\end{array}$
C $6.0265241248 \quad 4.7375994479 \quad 2.9853103022$
C $5.6953565425 \quad 2.28696925274 .3448295152$
C $4.91705203223 .9276310040 \quad 2.7660526103$
C $\quad 6.9713343844 \quad 4.2955889680 \quad 3.9055661113$
C $\quad 6.8146887421 \quad 3.0864814808 \quad 4.5809632811$
C $4.7480071495 \quad 2.7135954688 \quad 3.4350170590$
$\begin{array}{llll}\text { H } & 7.8457165571 & 4.9080325007 & 4.0992428270\end{array}$
$\begin{array}{lllll}\mathrm{H} & 7.5661355545 & 2.7659623995 & 5.2942629103\end{array}$
$\begin{array}{llll}H & 5.5760526342 & 1.3451688953 & 4.8723879533\end{array}$
N 3.82876931941 .12892843281 .9136885959
C $2.9354659833 \quad 3.0923540491 \quad 1.9811622333$
C $3.4524111338 \quad 2.0677085088 \quad 2.9909282314$
$\begin{array}{llll}\text { H } & 4.4962359337 & 5.9657531653 & 1.1970397146\end{array}$
C $3.6604119082 \quad 5.28352706471 .0585883631$

H	3.6253524052	4.9823206192	0.0063654375
H	2.7348829655	5.8140344215	1.3050666327
C	1.7865232002	3.0687159742	1.2150703815
H	1.6220985340	3.9183236616	0.5627569969
C	0.8197618810	2.0361069019	1.1773101276
H	0.9747897828	1.1744153856	1.8121639420
C	-0.2796581530	2.0149791110	0.3314056833
C	-1.1892094381	0.8995676081	0.3096400692
C	-1.7630127705	0.5166550235	-0.9558489393
C	-1.9744028350	-0.8163129582	-1.2752354379
H	-1.6693106723	-1.5558535713	-0.5467484403
C	-0.4847512644	3.1057642358	-0.6973126018
H	0.3137627022	3.0647770213	-1.4521651721
H	-0.3932584619	4.0836425649	-0.2109114810
C	-2.0050807066	1.6050613179	-1.9782455380
H	-1.3146995530	1.4823395402	-2.8252070682
H	-3.0145493982	1.4951913670	-2.3916437903
C	-1.8398413048	2.9957379665	-1.3818262510
H	-1.9352113939	3.7566713988	-2.1615006112
H	-2.6361778984	3.1808272749	-0.6513205468
H	-3.9743489690	-4.5607247313	-6.3275605270
C	-3.6082432210	-5.0358954412	-5.4248688504
C	-2.6563646594	-6.3058999770	-3.0913048037
C	-3.1792151172	-4.3052614272	-4.3216588481
C	-3.5538754293	-6.4229911451	-5.3357314474
C	-3.0847732681	-7.0572787129	-4.1866314674
C	-2.7067231582	-4.9277137828	-3.1644251555
H	-3.8849883894	-7.0192768397	-6.1795426331
H	-3.0535481621	-8.1405507984	-4.1435363403
H	-2.2912529703	-6.8030334481	-2.1973701151
C	-2.3236517255	-3.8756150018	-2.1449677462
C	-2.6429819269	-2.5885823776	-2.9055909799
C	-2.4949295985	-1.2737475808	-2.5091435028
H	-2.7925769478	-0.5164355484	-3.2251446431
N	-3.1329110271	-2.9207804715	-4.1410061960
N	-1.3770093378	0.1227897525	1.4176353597
C	-1.2761552793	0.5754027474	2.8212682070
C	-2.5731708833	-0.6999952872	1.6987573220
C	-2.4880997688	-0.3031987071	3.1849621711
H	-2.2657769150	-1.1269263412	3.8636872360
H	-3.3521872828	0.2459467225	3.5594736275
H	-3.4610976007	-0.3499902687	1.1628522105
H	-2.4342882304	-1.7651849678	1.4962810495
H	-1.4207953547	1.6551816589	2.9278616688
H	-0.3393139195	0.2930040488	3.3090183792
C	-3.5489054434	-1.9508236513	-5.1303878950
H	-2.7083969754	-1.3129962429	-5.4232867861
H	-4.3514974237	-1.3192752743	-4.7359189722
H	-3.9182766898	-2.4665443793	-6.0140116396
C	-0.8272560498	-3.9882179830	-1.7937160110
H	-0.2043233071	-3.8743144005	-2.6844427395
H	-0.6260652266	-4.9735734483	-1.3634369828
	-0.5223657975	-3.233915770	-1.0651174442

```
    C -3.1983462167 -4.0181808284 -0.8840676007
    H -3.0202188785 -4.9925250489 -0.4200742756
    H -4.2602517096 -3.9507225664 -1.1335174212
    H -2.9706768969 -3.2447734446 -0.1472996110
    C 2.4951629151 1.9216732192 4.1896889241
    H
    H 2.3109107398 2.8884292802 4.6650340980
    H
    C 3.7335760439 0.6994404562 2.3389016856
    H
    H
    H 4.2080981061 0.0378291190 3.0693820416
Cyanine-like Franck-Condon point
    H
    C 4.7274082498 5.8569649855 4.1097249385
    C 5.8885686757 3.3007466074 4.3570307407
    C 4.1416275334 4.7350710410 3.5471646590
    C 5.9199619098 5.6749317492 4.8087478338
    C 6.4968492700 4.4156145784 4.9348226996
    C 4.7066676414 3.4703968331 3.6609017860
    H
    H 7.4246008202 4.2994089105 5.4842196933
    H 6.3418477436 2.3187721962 4.4564733173
    N 2.9496206384 4.6325314995 2.7984212555
    C 2.7107232265 3.3552574853 2.4063396007
    C 3.8366056160 2.4597459995 2.9402756408
    H}\quad2.4766942464 6.6538668667 2.9385793361 
    C 2.0921183690 5.7515068874 2.4684415262
    H
    H
    C 1.6175381353 3.0221743470}1.632931722
    H 0.9631991602 3.8313105196 1.3330617897
    C 1.2788926750 1.7261051563 1.1908552469
    H
    C 0.2915877030}1.4292687669 0.2746943956
    C 0.0492434394 0.0622335386-0.0901029237
    C -0.4395947408 -0.2317277972 -1.4061837453
    C -1.1457152043 -1.3875519173 -1.6593815781
    H -1.3289528157 -2.0324481578 -0.8106598605
    C -0.4088932688 2.5504460116 -0.4710052674
    H
    H
    C -0.3652385430 0.9171118499 -2.3820462920
    H 0.6750005697 1.1990595529 -2.5868525307
    H -0.8155917712 0.6548783396 -3.3399207561
    C -1.1121707335 2.0986048360 -1.7559864683
    H -1.1723885846 2.9391008406 -2.4539727620
    H -2.1395483712 1.7841881428 -1.5444865010
    H -4.5486311052 -4.4909732514 -6.3610992038
    C -4.6256175589 -4.8336030141 -5.3356616805
    C -4.8506501255 -5.7519943521 -2.6805849256
    C -3.9260746107 -4.2378758243 -4.2991067180
    C -5.4519200860 -5.9101294640 -5.0161213904
```

C	-5.5676461965	-6.3670544272	-3.7075472382
C	-4.0294310905	-4.6833672957	-2.9863929060
H	-6.0123889568	-6.3968803213	-5.8072127987
H	-6.2188374531	-7.2049440365	-3.4841415526
H	-4.9427250810	-6.1104478332	-1.6594379158
C	-3.1427572090	-3.8381004875	-2.0937974008
C	-2.5531648340	-2.8443003795	-3.1037199250
C	-1.6994017466	-1.7818075617	-2.8972954166
H	-1.4423131126	-1.1901502979	-3.7663342610
N	-3.0341381390	-3.1459976698	-4.3385454397
N	0.3097371830	-0.9227460345	0.8021386041
C	0.1791893763	-1.0014655507	2.2709121661
C	0.7896849533	-2.3128692354	0.6753698622
C	0.7350703217	-2.4407291696	2.2128284934
H	1.7084904857	-2.5638952497	2.6877601872
H	0.0573830275	-3.2094158073	2.5839515220
H	0.1340965167	-2.9990044194	0.1396544816
H	1.7861737625	-2.3635316101	0.2252087644
H	-0.8665009997	-0.9197755692	2.5855197082
H	0.7700482756	-0.2897886792	2.8462300741
C	-2.6900742759	-2.4138263335	-5.5387804222
H	-1.6111446414	-2.4519108823	-5.7167251479
H	-2.9997444627	-1.3673576048	-5.4557201917
H	-3.1980388584	-2.8573429967	-6.3922520956
C	-2.0513697691	-4.7199894767	-1.4604519603
H	-1.4449535989	-5.2085716265	-2.2272884956
H	-2.5170830483	-5.4991004088	-0.8503104308
H	-1.3867991897	-4.1418933762	-0.8150631179
C	-3.9826243984	-3.1287098855	-1.0178652751
H	-4.4875982634	-3.8736876014	-0.3965042446
H	-4.7482439063	-2.4947143358	-1.4723220931
H	-3.3668200137	-2.5049639984	-0.3656467676
C	3.3183556615	1.4098922926	3.9397984112
H	2.7183435247	0.6393109909	3.4498135586
H	2.7134428284	1.8735468786	4.7232157305
H	4.1667944928	0.9135820095	4.4189048637
C	4.6217910713	1.7965035874	1.7948554972
H	4.9851224093	2.5423276106	1.0835117473
H	4.0097764286	1.0746887499	1.2488569788
H	5.4881610935	1.2683326012	2.2029156808
Cyanine-like S_{1} minimum			
H	4.3429114639	6.8394811607	4.0577100929
C	4.7621348699	5.8449623382	4.1569352952
C	5.8898318570	3.2705183953	4.4207065624
C	4.1739526687	4.7276662303	3.5728768178
C	5.9317580934	5.6465176901	4.8828310935
C	6.4936826824	4.3779169799	5.0180851947
C	4.7274122894	3.4516840583	3.6967249780
H	6.4142299755	6.4989300627	5.3495627647
H	7.4061025723	4.2512840820	5.5906346464
H	6.3329793764	2.2846954056	4.5262706530
N	3.0107632986	4.6413732546	2.8041096743
C	2.7707740383	3.3596750257	2.3926606426

C	40	0	2.9518749103
H	2.5100516580	6.6505206291	3.0092681003
C	2.1709232028	5.7709042087	2.4664367652
H	2.2136533095	5.9816376799	1.3924532475
H	1.1333964862	5.5687056676	2.7475152219
C	1.7010097469	3.0474429809	1.5691352482
H	1.0881874584	3.8775870143	1.2366861787
C	1.3357325654	1.7673657729	1.1119138349
H	1.8799121222	0.9097515777	1.4851607501
C	0.3513929862	1.5164435517	0.1558531272
C	0.0118947858	0.1750296261	-0.1926424590
C	-0.6171584447	-0.1111656686	-1.4515903022
C	-1.2715414786	-1.3165630001	-1.6616270841
H	-1.3607368558	-1.9614768966	-0.7971718911
C	-0.2867840428	2.6755825994	-0.5806873215
H	0.5176611208	3.3018054033	-0.9883139250
H	-0.8340646308	3.3151763306	0.1240154789
C	-0.6460712821	1.0243173667	-2.4402181460
H	0.3617286171	1.2469554006	-2.8152035015
H	-1.2643800680	0.7846451010	-3.3066787258
C	-1.2111666151	2.2532848541	-1.7221023414
H	-1.3363665057	3.0863073201	-2.4203857363
H	-2.2065901884	2.0052802318	-1.3377831765
H	-4.5977281326	-4.6594736653	-6.2721762877
C	-4.6366045746	-4.9928749147	-5.2415781397
C	-4.7746025209	-5.8759994228	-2.5630879763
C	-3.9445114991	-4.3441130080	-4.2230053163
C	-5.4018083046	-6.0996067525	-4.8910143536
C	-5.4743734263	-6.5417401560	-3.5706009573
C	-4.0109257100	-4.7743694414	-2.8952819897
H	-5.9537441358	-6.6252986302	-5.6631305179
H	-6.0800347373	-7.4072838886	-3.3251496894
H	-4.8355595894	-6.2226702750	-1.5357352914
C	-3.1596918747	-3.8714893581	-2.0280974422
C	-2.6371795478	-2.8705230680	-3.0589289240
C	-1.8480828550	-1.7503425817	-2.8772271521
H	-1.6545538126	-1.1480174795	-3.7570126089
N	-3.1130902963	-3.2262916469	-4.2939665955
N	0.3013294619	-0.8532044855	0.6736717343
C	0.1383431060	-1.0073013814	2.1243519975
C	0.9600358436	-2.1532077254	0.4945038295
C	0.7741274966	-2.4122487501	2.0073879997
H	1.7005161278	-2.5476440619	2.5661121116
H	0.0954222684	-3.2322166431	2.2442651977
H	0.4569926735	-2.8564432277	-0.1753398304
H	2.0024631221	-2.0587963593	0.1664156208
H	-0.9118382660	-0.9897546161	2.4383985365
H	0.6904243127	-0.2956364765	2.7450840564
C	-2.8062951756	-2.5154760757	-5.5165671294
H	-1.7242328904	-2.3957456021	-5.6208850150
H	-3.2758644543	-1.5255730009	-5.5257760074
H	-3.1720943152	-3.0852314414	-6.3682707289
C	-2.0201774072	-4.6841493125	-1.3811802105

$\begin{array}{lllll}\text { H } & 2.5100516580 & 6.6505206291 & 3.0092681003\end{array}$
C $\quad 2.1709232028 \quad 5.7709042087 \quad 2.4664367652$
H $\quad 2.2136533095 \quad 5.98163767991 .3924532475$
H $\quad 1.1333964862 \quad 5.5687056676 \quad 2.7475152219$
C $\quad 1.70100974693 .04744298091 .5691352482$
$\begin{array}{llll}\text { H } & 1.0881874584 & 3.8775870143 & 1.2366861787\end{array}$
C $\quad 1.33573256541 .76736577291 .1119138349$
H $1.8799121222 \quad 0.90975157771 .4851607501$
C $0.35139298621 .5164435517 \quad 0.1558531272$
C $0.01189478580 .1750296261-0.1926424590$
C $-0.6171584447-0.1111656686-1.4515903022$
C $-1.2715414786-1.3165630001-1.6616270841$
H $-1.3607368558-1.9614768966-0.7971718911$
C $-0.2867840428 \quad 2.6755825994-0.5806873215$
H $0.5176611208 \quad 3.3018054033-0.9883139250$
$\begin{array}{lllll}\text { H } & -0.8340646308 & 3.3151763306 & 0.1240154789\end{array}$
C $\quad-0.6460712821 \quad 1.0243173667-2.4402181460$
H $\quad 0.3617286171 \quad 1.2469554006-2.8152035015$
H $-1.2643800680 \quad 0.7846451010-3.3066787258$
C -1.2111666151
H $-1.33636650573 .0863073201-2.4203857363$
$\begin{array}{llll}\mathrm{H} & -2.2065901884 & 2.0052802318 & -1.3377831765\end{array}$
C $-4.6366045746-4.9928749147-5.2415781397$
C $-4.7746025209-5.8759994228-2.5630879763$
C $-3.9445114991-4.3441130080-4.2230053163$
C $-5.4018083046-6.0996067525-4.8910143536$
C $-5.4743734263-6.5417401560-3.5706009573$
C $-4.0109257100-4.7743694414-2.8952819897$
H $-5.9537441358-6.6252986302-5.6631305179$
H $-6.0800347373-7.4072838886-3.3251496894$
H $-4.8355595894-6.2226702750-1.5357352914$
C $-3.1596918747-3.8714893581-2.0280974422$
C $-2.6371795478-2.8705230680-3.0589289240$
C $-1.8480828550-1.7503425817-2.8772271521$
H $-1.6545538126-1.1480174795-3.7570126089$
N -3.1130902963 $-3.2262916469-4.2939665955$
N $0.3013294619-0.85320448550 .6736717343$
C $0.1383431060-1.0073013814 \quad 2.1243519975$
C $0.9600358436-2.15320772540 .4945038295$
C $0.7741274966-2.4122487501 \quad 2.0073879997$
H $1.7005161278-2.5476440619 \quad 2.5661121116$
H $0.0954222684-3.2322166431 \quad 2.2442651977$
H $\quad 0.4569926735-2.8564432277-0.1753398304$
H $\quad-0.9118382660-0.9897546161 \quad 2.4383985365$
H $\quad 0.6904243127-0.2956364765 \quad 2.7450840564$
C $-2.8062951756-2.5154760757-5.5165671294$
H $-1.7242328904-2.3957456021-5.6208850150$
$\begin{array}{llll}\mathrm{H} & -3.2758644543 & -1.5255730009 & -5.5257760074 \\ \mathrm{H} & -3.1720943152 & -3.0852314414 & -6.3682707289\end{array}$
$-2.0201774072-4.6841493125-1.3811802105$

H	-1.3909611349	-5.1555401418	-2.1403893598
H	-2.4445510853	-5.4736713098	-0.7541458259
H	-1.3872806177	-4.0591909623	-0.7475515903
C	-4.0213605393	-3.1849911445	-0.9501626177
H	-4.4545494334	-3.9418094481	-0.2897265863
H	-4.8406358956	-2.6208963400	-1.4028725826
H	-3.4292423492	-2.4997145605	-0.3398583418
C	3.3145858844	1.3978524678	3.9317233332
H	2.7086802020	0.6458186079	3.4209138761
H	2.7054210217	1.8617733575	4.7116590017
H	4.1481696146	0.8811861981	4.4160372924
C	4.6740832097	1.7800073308	1.8238572122
H	5.0757165123	2.5241122067	1.1315132825
H	4.0596221077	1.0787583009	1.2548013499
H	5.5146219425	1.2269197538	2.2530259592

Dye II-14

Bis-dipole Franck-Condon point

H 0.63493769158 .2892412142 -1.0881209221
C $0.87895535597 .8614932833-0.1224432698$
C $\quad 1.5287573768 \quad 6.7839474921 \quad 2.3979682200$
C $0.5510003985 \quad 6.55868536490 .2154564513$
C $\quad 1.5465749165 \quad 8.6254137538 \quad 0.8342830234$
C $\quad 1.87045656628 .0993219342 \quad 2.0799823804$
C $\quad 0.8669294961 \quad 6.01815323141 .4572328156$
$\begin{array}{llll}H & 1.8159019870 & 9.6491800057 & 0.5965310134\end{array}$
$\begin{array}{llll}H & 2.3901457468 & 8.7133067675 & 2.8073439819\end{array}$
$\begin{array}{lllll}H & 1.7825135858 & 6.3747950606 & 3.3717179713\end{array}$
N $-0.1134695840 \quad 5.5817836974-0.5510622012$
C $\quad-0.2493271751 \quad 4.40973486410 .1341235636$
C $\quad 0.3758491373 \quad 4.58463086891 .5263748223$
H -0.3589664778 6.7942519011 -2.2213757415
C $\quad-0.5907099929 \quad 5.7807799542-1.9010985550$
H -0.10793299205 .0799359098 -2.5899626290
H $-1.6749017797 \quad 5.6388577967$-1.9531656509
C $-0.85779404483 .3117128975-0.4193658530$
H $-1.2275147063 \quad 3.4137224977-1.4312158533$
C $-1.05249157292 .0590881191 \quad 0.2265268587$
H $\quad-0.72724139691 .99934956651 .2591693647$
C $-1.5524330606 \quad 0.9128520615-0.3286030884$
C $-1.5813106525-0.3218787389 \quad 0.4504898406$
C $-1.0075833460-1.4986310846-0.2256223632$
C $0.0428195271-2.1711159728 \quad 0.3163040976$
H $0.4073976422-1.82652134651 .2773865471$
C $-1.9136045988 \quad 0.7828042446-1.7960302057$
H $-1.63243933931 .6899779819-2.3325559456$
H -3.00473919620 .6949306987 -1.8936432327
C $-1.5047847372-1.6923997234-1.6418172306$
H $-1.0080099747-2.5450278868$-2.1057175498
H $-2.5793872102-1.9217701077-1.6404119448$
C $-1.2576492517-0.4266189370-2.4628908774$
H $\quad-0.1782408261-0.2594780252-2.5457883288$
H $-1.6494567350-0.5469899241-3.4779953228$

H	4.3637997674	-7.0105924973	-0.8615873391
C	4.4813908585	-6.3953269660	0.0231765766
C	4.8176755520	-4.8160890768	2.3302406177
C	3.6096313845	-5.3618799535	0.3261112871
C	5.5368639699	-6.6279369225	0.9044543132
C	5.7089585867	-5.8519609056	2.0451407832
C	3.7682611366	-4.5769091934	1.4638697668
H	6.2338685867	-7.4314827464	0.6904945142
H	6.5376853664	-6.0520919327	2.7154283270
H	4.9530429819	-4.2104719489	3.2219621449
C	2.6623178888	-3.5396674291	1.5226246765
C	1.8721441327	-3.8622718383	0.2443783523
C	0.7566210504	-3.2619515734	-0.2700917476
H	0.3771803165	-3.6554006835	-1.2042869445
N	2.4780475459	-4.9193808694	-0.3811327649
N	-2.0952169848	-0.3982947956	1.6735809294
C	-2.8084900916	0.7196706213	2.3327525195
H	-2.8195494937	1.5623986803	1.6506131097
C	-2.1393344665	-1.6654905315	2.4479377984
H	-2.3772991084	-1.3836711219	3.4741903318
H	-1.1511303669	-2.1121117927	2.4764844009
H	-2.2304577123	1.0111454721	3.2165813052
C	2.0016619642	-5.4959332094	-1.6164207180
H	2.0109557871	-4.7539314971	-2.4219767373
H	0.9814159943	-5.8763329612	-1.4992568773
H	2.6467100991	-6.3238115798	-1.9034381402
C	-0.6708366488	4.4477764220	2.6469811604
H	-1.0486424453	3.4258873166	2.7358920968
H	-1.5201652220	5.1133297511	2.4731994580
H	-0.2194483600	4.7206804032	3.6050147149
C	1.5601774608	3.6277657025	1.7458009362
H	2.2945001886	3.7240077593	0.9421003291
H	1.2407305972	2.5836100529	1.7914934076
H	2.0588278146	3.8696594277	2.6887935419
C	3.2589573346	-2.1224740615	1.4811710971
H	3.8619627343	-1.9786991268	0.5810735332
H	3.9065942175	-1.9692815911	2.3494455307
H	2.4840178965	-1.3517894393	1.4978332879
C	1.8197430354	-3.7515538759	2.7928258045
H	2.4592144324	-3.6652400839	3.6760329226
H	1.3660311510	-4.7458798063	2.8025889318
H	1.0224021191	-3.0095322751	2.8891041333
C	-3.1577234746	-2.6685450197	1.9201573993
C	-4.2458754689	0.3878184301	2.7192365455
H	-3.1551040483	-3.5522008888	2.5644877394
H	-2.9051128571	-2.9900564365	0.9082426044
H	-4.8357703452	0.1128254601	1.8409454159
H	-4.6950115522	1.2838702079	3.1558907584
H	-4.3262756153	-0.4101168853	3.4599670533
H	-4.1680984670	-2.2558836118	1.9146169260
S-			

Bis-dipole S_{1} minimum

$\begin{array}{llll}\text { H } & 0.2860838718 & 8.4573592234 & -1.3483677394\end{array}$
C $\quad 0.3785756838 \quad 8.1904280933-0.3017331995$

C	0.6236791619	7.5335170424	2.4248502099
C	0.2025782892	6.8901608443	0.1469112506
C	0.6821992334	9.1663018634	0.6468943473
C	0.8045424105	8.8497434605	1.9950838515
C	0.3218118203	6.5578742818	1.4947111357
H	0.8263454524	10.1910805163	0.3209411342
H	1.0408143417	9.6264998334	2.7139556758
H	0.7217996318	7.2861742446	3.4780178697
N	-0.1038267286	5.7335369017	-0.5840764312
C	-0.1997610055	4.6308700213	0.2323539366
C	0.0783306803	5.0709913381	1.6747492280
H	-0.1147072094	6.6741347171	-2.4366250402
C	-0.2834728156	5.6855187205	-2.0140004614
H	0.4288197219	4.9890157734	-2.4702985543
H	-1.2992864971	5.3653181776	-2.2715399760
C	-0.4861875731	3.3812438366	-0.2554598732
H	-0.6439480729	3.3040024249	-1.3258409024
C	-0.5851264947	2.1822974927	0.4933801176
H	-0.4817188418	2.2357755348	1.5709452146
C	-0.7832076128	0.9129024200	-0.0320141178
C	-1.0765740890	-0.1949114568	0.7894255738
C	-0.8072800179	-1.5227141501	0.1821379081
C	0.2942489546	-2.2721587570	0.5485682227
H	0.9210006823	-1.8559677336	1.3275372196
C	-0.8600462785	0.7094379199	-1.5445043186
H	-0.0327850502	1.2248185814	-2.0435552959
H	-1.7717730152	1.2177794234	-1.8878320238
C	-1.5903842024	-1.7374456270	-1.0651824660
H	-1.5570492662	-2.7509289779	-1.4746902665
H	-2.6380650131	-1.4597544478	-0.9160923489
C	-0.9033895355	-0.7454841950	-2.0479720826
H	0.1155927349	-1.1084248466	-2.2195743712
H	-1.4171902299	-0.7872758483	-3.0132311173
H	3.4524088129	-7.8244417990	-0.9805234658
C	3.8853060320	-7.1559397293	-0.2455368583
C	5.0533562070	-5.4133635058	1.6471117825
C	3.2597964911	-5.9873591852	0.1625602966
C	5.1234028189	-7.4415142207	0.3212816804
C	5.7016301135	-6.5848362373	1.2563983436
C	3.8243656489	-5.1163119763	1.0879933963
H	5.6457763505	-8.3443353158	0.0249552925
H	6.6684774985	-6.8303287340	1.6812116687
H	5.5143132198	-4.7497358266	2.3716432812
C	2.9079404107	-3.9285653971	1.2902491150
C	1.7684552247	-4.2683607800	0.3292017881
C	0.6341004096	-3.5231506204	0.0097555980
H	-0.0296406869	-3.9390422756	-0.7381678966
N	2.0178766160	-5.4593710558	-0.2502350815
N	-1.8035776423	-0.1096753613	1.9709082746
C	-2.9657702903	0.7813086248	2.0763208708
H	-2.6626826914	1.8195592869	1.9212321622
C	-1.6409441472	-1.0905791028	3.0352995503
	1.7	0.	3.9931751250

H	-0.6149162792	-1.4648278603	
H	-3.3209839846	0.7118080464	3.1077515769
C	1.1400623534	-6.1261535344	-1.1980
H	1.1823324434	-5.6393140316	-2.1764242627
H	0.1136481741	-6.1138667502	-0.8276811826
H	1.4522487860	-7.1627342527	-1.3026095550
C	-1.1334018173	4.8380916828	2.5
H	-1.3373107481	3.7	1
H	-2.0315505769	$5 .$	2
H	-0.9410431221	5.2769902778	3.5
C	1.3378640970	4.3909583631	2.2411517935
H	2.2016430810	4.5705982532	$1.5!$
H	1.2046242082	3.3110762263	2.3382240547
H	1.5662712709	4.7973672042	3.23110025
C	3.6326592910	-2.6263714953	0.895
H	3.9754583378	-2.6614538258	-0.1
H	4.5085548070	-2.4	1.5365064666
H	2.9954539343	-1.74843503	1.0168024821
C	2.4132347255	-3.8719081228	2.7498028862
H	3.2709384332	-3.7518	3.4165888426
H	1.8949449626	-4.7927770119	3.02
H	1.7373446011	-3.0306832	2.9177151749
C	-2.6237230660	-2.259158651	3.0070685887
C	-4.1027745546	0.	1.1140153637
H	-2.4163776007	-2.9520509843	3.8288545088
H	-2.5502922542	-2.8125155791	2.0658574350
H	-3.7817544963	0.5746238869	0.0757171106
H	-4.9449238421	1.1285482814	1.2829836538
H	-4.4600762977	-0.5748984183	1.2452414575
H	-3.6556909293	-1.9140436613	3.11618

Cyanine-like Franck-Condon point
H $-2.3741513178 \quad 7.3412183402$-4.8119609291
C $-2.0416422170 \quad 7.4397967681-3.7850189082$
C $-1.1749442069 \quad 7.7337156438$-1.1195130824
C $-1.6814306125 \quad 6.3473044259-3.0133771531$
C $-1.95962589818 .6988231457-3.1917891425$
C $-1.53206638658 .8499068945-1.8769555090$
C $-1.25197303116 .4810373400-1.6980951713$
H $-2.23401246529 .5736181093-3.7717918512$
H -1.4757008727 9.8401092576 -1.4383036374
H $-0.8414520605 \quad 7.8544445378$-0.0929641817
N -1.6690611268 4.9793715762 -3.3574802034
C $-1.23354457074 .2061530755-2.3287026367$
C $-0.94066635395 .1123214899-1.1255789334$
H $-1.19533162493 .9992034986-5.1565298976$
C $\quad-2.0514758884 \quad 4.4596861901-4.6533843754$
H $\quad-2.8449811725$ 3.7142648795 -4.5471768745
H $\quad-2.4237540414 \quad 5.2723382949-5.2733483898$
C $-1.0938743823 \quad 2.8398682499-2.4529885010$
H $-1.3332456404 \quad 2.4113859622$-3.4178229712
C $-0.66004570631 .9598003393-1.4390921958$
H $-0.50151329232 .3802322423-0.4536506316$
C $\quad-0.37709137990 .6166135509-1.5755576017$

C	0.0753892204	-0.1462578026	-0.4485732035
C	0.8125997341	-1.3516255105	-0.6719051374
C	0.8268844843	-2.3386164366	0.2979845137
H	0.2399148118	-2.1568000239	1.1893707343
C	-0.2902779267	-0.0735097298	-2.9141727975
H	-0.5514716112	0.6030629322	-3.7286262146
H	-0.9879065579	-0.9190821837	-2.9678114487
C	1.4536846660	-1.6285477314	-2.0200581248
H	2.5400062202	-1.7370389245	-1.9064724151
H	1.0898086420	-2.6026344607	-2.3704961828
C	1.1438517411	-0.5782454849	-3.0858181090
H	1.8259907561	0.2741243977	-2.9969733179
H	1.2956638311	-1.0076172985	-4.0806821032
H	3.0845058427	-8.4281320943	1.3319510706
C	2.3990888396	-7.9896803260	2.0480891289
C	0.6204121573	-6.8782889783	3.9318550727
C	1.8844844472	-6.7127415001	1.8977703260
C	2.0021307136	-8.7113355241	3.1727626694
C	1.1240690992	-8.1679700780	4.1049002583
C	1.0073290794	-6.1541445680	2.8199848081
H	2.3878805701	-9.7147312276	3.3184980069
H	0.8299604131	-8.7500898007	4.9713478132
H	-0.0648914831	-6.4572951118	4.6617705237
C	0.6358991343	-4.7524707727	2.3788748982
C	1.4292129195	-4.6249084337	1.0732594884
C	1.4975934691	-3.5699543543	0.1828022024
H	2.1250634774	-3.7090486227	-0.6882119366
N	2.1134268733	-5.7764467592	0.8661335883
N	-0.2113399781	0.2668292723	0.8328254653
C	0.7922926290	0.2317575172	1.9047404390
H	1.7178597836	-0.1484334402	1.4741769918
H	0.4935288408	-0.4677011859	2.6933311880
C	-1.5451908507	0.7562299079	1.2067892088
H	-2.1710105679	0.7128664723	0.3164594336
H	-1.5017004093	1.8059414649	1.5179077940
C	1.0428084997	1.6076682352	2.5156873536
H	1.3285100847	2.3329244994	1.7475662607
H	1.8617511101	1.5403739204	3.2375236241
H	0.1703085085	1.9939743470	3.0494245636
C	-2.1829049817	-0.0738438017	2.3179539513
H	-1.6510962974	0.0197219872	3.2685950591
H	-2.2209954404	-1.1327634611	2.0441206309
H	-3.2082239789	0.2689347590	2.4833265570
C	2.9727943826	-6.0118809786	-0.2761575147
H	3.8018357153	-5.2980687745	-0.2876459092
H	2.4069462126	-5.9160573850	-1.2075484152
H	3.3802667518	-7.0187797127	-0.2209019785
C	-0.8799787884	-4.6497806488	2.1344742848
H	-1.4160568992	-4.8678738836	3.0624935416
H	-1.2065527532	-5.3698443386	1.3798913762
H	-1.1717354387	-3.6506107359	1.8019804868
C	1.1035262085	-3.7299207154	3.4301701312
	2.1825653360	3.	3.5914921148

C $0.8125997341-1.3516255105-0.6719051374$
C $0.8268844843-2.3386164366 \quad 0.2979845137$
H $\quad 0.2399148118$-2.1568000239 1.1893707343
C $-0.2902779267-0.0735097298-2.9141727975$
H $-0.55147161120 .6030629322-3.7286262146$
H $\quad-0.9879065579-0.9190821837-2.9678114487$
$1.4536846660-1.6285477314-2.0200581248$
$2.5400062202-1.7370389245-1.9064724151$
$1.0898086420-2.6026344607-2.3704961828$
$1.1438517411-0.5782454849-3.0858181090$
$1.82599075610 .2741243977-2.9969733179$
$1.2956638311-1.0076172985-4.0806821032$
$3.0845058427-8.42813209431 .3319510706$
2.0480891289
3.9318550727
1.8977703260
3.1727626694
4.1049002583
2.8199848081
3.3184980069
4.9713478132
2.3788748982
1.0732594884

1828022024
0.8661335883
0.8328254653
1.9047404390
1.4741769918
2.6933311880
1.2067892088
0.3164594336
1.5179077940
2.5156873536
1.7475662607
3.2375236241
3.0494245636
2.3179539513
3.2685950591
2.0441206309
2.4833265570
-0.2761575147
-0.2876459092
1.2075484152
0.2209019785
3.0624935416
1.3798913762
1.8019804868
3.4301701312
3.5914921148
$\begin{array}{llll}\text { H } & 0.6071733074 & -3.9337381833 & 4.3830809285\end{array}$
$\begin{array}{lllll}\text { H } & 0.8630507264 & -2.7055361834 & 3.1374183992\end{array}$
C $0.53352806725 .0350683387-0.6932832991$
H $1.2000300784 \quad 5.2451951742-1.5335255780$
$\begin{array}{llll}\text { H } & 0.7903540597 & 4.0514497818 & -0.2929289442\end{array}$
$\begin{array}{lllll}\text { H } & 0.7273667448 & 5.7781207969 & 0.0854527736\end{array}$
C $-1.88819239434 .8159457458 \quad 0.0512003204$
H $-1.70201462423 .8333306910 \quad 0.4907319565$
H $\quad-2.93326634764 .8563012280-0.2664935789$
H $\quad-1.7449526131 \quad 5.5669517510 \quad 0.8331980492$
Cyanine-like S_{1} minimum
H -2.44847526467 .4003298605 -4.7331659734
C -2.12933211897 .4961712208 -3.7018912937
C $-1.2889619137 \quad 7.7796976982-1.0213244276$
C $\begin{array}{lllll} & -1.7365951501 & 6.3995248964 & -2.9406497613\end{array}$
C $\quad-2.0931003598 \quad 8.7447460964-3.0914193347$
C $-1.67885642738 .8924441142-1.7682624496$
C $-1.3176902700 \quad 6.5325973161-1.6143366888$
H $-2.3913689260 \quad 9.6191350056-3.6601248982$
H $\quad-1.6583428622 \quad 9.8789565693-1.3180795934$
$\begin{array}{lllll}\text { H } & -0.9666183841 & 7.8999447906 & 0.0087199016\end{array}$
N $-1.6769962572 \quad 5.0527846975-3.2999487650$
C $-1.21023466724 .2763061515-2.2730033953$
C $-0.9604231850 \quad 5.1700835217-1.0585373223$
H $-1.16179161454 .1647500364-5.1365313202$
C $-2.0421787265 \quad 4.5387237832-4.6025042114$
H $-2.76702227453 .7257802009-4.4996404304$
H $\quad-2.4975058770 \quad 5.3322732324-5.1911827931$
C -1.0072535055 2.9170841909 -2.4224931242
H $\quad-1.2146702351 \quad 2.5026209697$-3.4019451466
C $-0.5608567067 \quad 2.0228464188-1.4243343511$
H $-0.4407918250 \quad 2.4018758845-0.4165256751$
C $-0.2380655341 \quad 0.6849310697-1.6106512190$
C $0.1128071452-0.1479206706-0.4922488272$
C $0.7553686906-1.4009098379-0.7036162291$
C $0.7728384623-2.37047016730 .3051775545$
H $\quad 0.2192902862-2.14359000791 .2074716713$
C $-0.12217927970 .0577318874-2.9744774493$
H $\quad-0.2332120029 \quad 0.8014480177$-3.7652195462
H $\quad-0.9101935693-0.6924126571-3.1268347566$
C $1.3685393215-1.7301035787-2.0487015363$
H $2.4232735757-2.0052867225-1.9220713816$
H $0.8711853677-2.6288581683-2.4381423128$
C $1.2483509656-0.6115978766-3.0795657388$
H $2.02222397760 .1463006173-2.9143688961$
H $1.4066576990-1.0166422025-4.0835206393$
$\begin{array}{lllll}\text { H } & 3.0422589304 & -8.4580622038 & 1.3978786751\end{array}$
C $2.3847971866-8.0006919811 \quad 2.1282345327$
C $0.6663059958-6.841239486410450103576$
$\begin{array}{llll}1.8731554685 & -6.7174043250 & 1.9681379512\end{array}$
$2.0175603427-8.6967136243 \quad 3.2748334657$
$\begin{array}{llll}1.1698473687 & -8.1302931860 & 4.2256014074\end{array}$
C $1.0207763306-6.1376847259 \quad 2.9101664447$

H	2.3997295185	-9.7004593130	3.4278036308
H	0.9004388445	-8.6964532392	5.1106583880
H	0.0054636003	-6.4049596802	4.7882625473
C	0.6389789552	-4.7448187506	2.4546515481
C	1.3878369432	-4.6472829259	1.1274210419
C	1.4174136680	-3.6147161844	0.2017141768
H	1.9977505854	-3.7931504137	-0.6957367416
N	2.0783294885	-5.8085906971	0.9263165300
N	-0.1955658834	0.2791492509	0.7980014734
C	0.8084714758	0.3236229487	1.8587661223
H	1.6597558336	-0.2902798822	1.5604349751
H	0.3995473684	-0.1269679576	2.7722595759
C	-1.5691280815	0.6063890934	1.1767470621
H	-2.1076920855	0.9398696465	0.2876898841
H	-1.5546360587	1.4533805147	1.8727452134
C	1.2885030360	1.7436959042	2.1528290255
H	1.7655385972	2.1769823221	1.2684787681
H	2.0208439361	1.7385667377	2.9662791489
H	0.4646135602	2.3982683032	2.4538663051
C	-2.3119537915	-0.5700126205	1.8072440529
H	-1.8073119895	-0.9308646908	2.7094694601
H	-2.3888712306	-1.4011989086	1.0994991676
H	-3.3261017296	-0.2730235837	2.0923465066
C	2.9166347541	-6.0631966800	-0.2263761090
H	3.6844026197	-5.2890203866	-0.3163043020
H	2.3202913282	-6.0810429472	-1.1444053478
H	3.4084238497	-7.0264626275	-0.1115814835
C	-0.8861176191	-4.6376401720	2.2590998652
H	-1.3920444686	-4.8339230323	3.2089001644
H	-1.2414566471	-5.3692187698	1.5289975457
H	-1.1793133895	-3.6421960035	1.9182207758
C	1.1369138831	-3.6976839414	3.4711022634
H	2.2175111234	-3.7729857680	3.6165959511
H	0.6526324390	-3.8678549595	4.4369966711
H	0.9037894241	-2.6799792343	3.1499670180
C	0.5139475252	5.1372325827	-0.6126105718
H	1.1799928148	5.3923565307	-1.4405808353
H	0.7994330770	4.1532794092	-0.2344249376
H	0.6724896533	5.8664111777	0.1871260485
C	-1.8991515368	4.8194804617	0.1143015804
H	-1.6855533728	3.8302998566	0.5261890056
H	-2.9457034647	4.8422132106	-0.2000229282
H	-1.7715927379	5.5535736252	0.9151483346
		0.0	

Dye II-15

Bis-dipole Franck-Condon point

H -0.0788502215 8.6143485034 -1.0769606899
C $\quad 0.26415876308 .1868941755-0.1417019097$
C $\quad 1.1685372162 \quad 7.1107609009 \quad 2.2991468835$
C $0.1069894603 \quad 6.8438753881 \quad 0.1602564042$
C $\quad 0.8893403968 \quad 8.9920092272 \quad 0.8099558164$
C $\quad 1.3380726772 \quad 8.4671001532 \quad 2.0168638923$
C $\quad 0.5510807867 \quad 6.30401316801 .3626629008$

H 1.025653877110 .04752327580 .5989792850
H $1.8217472689 \quad 9.1135705973 \quad 2.7409036312$
$\begin{array}{lllll}H & 1.5198840178 & 6.7014463230 & 3.2420653256\end{array}$
N $-0.48095630325 .8219020719-0.6085960561$
C -0.43909520784 .61755378130 .0349517111
C $\quad 0.2347372230 \quad 4.82124673791 .4002714828$
H $-0.9766252048 \quad 7.0555999917$-2.2071297147
C $-1.0513425080 \quad 6.0079101161-1.9234548329$
H $-0.5173762765 \quad 5.4075348515-2.6675647527$
H $\quad-2.1079644053 \quad 5.7217327238$-1.9305069806
C $\quad-0.9307764317 \quad 3.4730203131-0.5376141713$
H $-1.3542978980 \quad 3.5687082617$-1.5285252467
C $-0.9382237968 \quad 2.1782516964 \quad 0.0566426106$
H $-0.5826885111 \quad 2.12481778361 .0768748289$
C $-1.28484705561 .0001348440-0.5450775956$
C $-1.1767954100-0.2791695116 \quad 0.1558689888$
C $-0.5752033325-1.3922813490-0.5641059433$
C $0.2781078020-2.24302554990 .0927334597$
H $0.4600725466-2.0375307980 \quad 1.1406440131$
C $-1.6239987459 \quad 0.9007375204-2.0178237262$
H -1.54138980441 .8785842222 -2.4923980300
H $\quad-2.66844550870 .5836719593-2.1424203137$
C $-0.8000040966-1.4634182552-2.0603682554$
H $-0.0706691776-2.1340310946$-2.5168973263
H $-1.7889449691-1.8975328330-2.2633651418$
C $\quad-0.7103314979-0.0940909985-2.7268649122$
H $0.32264883230 .2688879153-2.6845584377$
H $\quad-0.9845642650-0.1744060641-3.7834520382$
H $4.3944203142-7.3039890220-0.8184518946$
C $4.3764661314-6.79801459920 .1400092908$
C $4.3562531388-5.5076892436 \quad 2.6445464235$
$3.5327604301-5.73040996470 .3990643861$
C $5.2214122340-7.21361353091 .1685188392$
C $\begin{array}{llll}5.2161857428 & -6.5807555422 & 2.4067523350\end{array}$
$3.5151019808-5.08745803081 .6318894318$
H 5.8933372678 -8.0472676841 0.9935938065
H $5.8832020683-6.92219589093 .1907352721$
H $4.3538455724-5.0145955742 \quad 3.6124249217$
C 2.4910784698 -3.9695945662 1.6052801717
C $1.9518152369-4.08345938040 .1718733662$
C $0.9982981390-3.3298726023-0.4695217076$
H $0.7760891165-3.5971074081-1.4941609526$
N $2.5920273290-5.1136678781-0.4495969767$
N -1.6269233341 -0.43417804931 .4062545248
C $-2.2937722337 \quad 0.6274899252 \quad 2.1963852653$
H -2.89485795301 .23994721461 .5204223390
C $-1.8879861814-1.7396450634 \quad 2.0507193367$
H -1.1117109271 -1.9548326109 2.7937865041
H -1.8786356045 -2.5299820944 1.3032723670
H -1.55352228491 .276989990712 .6666121771
C 2.3374542048 -5.5095833754 -1.8170481004
H 2.5411533978 -4.6811011251 -2.5029864603
H 1.2970474310 -5.8259977684 -1.9420657712

H	2.9860084737	-6.3424162606	-2.0801424426
C	-0.7282770000	4.5254290430	2.5635101758
H	-0.9856172891	3.4652128528	2.6226965642
H	-1.6546855988	5.0963284804	2.4616661389
H	-0.2595549361	4.8094243883	3.5100360540
C	1.5313927381	4.0031970224	1.5260159605
H	2.2123477456	4.2207153662	0.6993318450
H	1.3388308357	2.9274739899	1.5333420433
H	2.0408062084	4.2614482074	2.4589431917
C	3.1758660773	-2.6145679329	1.8540319320
H	3.9556709316	-2.4277237108	1.1113631399
H	3.6455482111	-2.6161357192	2.8419388042
H	2.4667087180	-1.7839274134	1.8194074118
C	1.3929831319	-4.2415131016	2.6492507171
H	1.8382077645	-4.2901043571	3.6469851339
H	0.8941311116	-5.1946064428	2.4559591379
H	0.6365032288	-3.4538379430	2.6570687723
C	-3.2366787213	-1.5340600593	2.7252180591
C	-3.1299137247	-0.1059334919	3.2543745843
H	-3.4218177379	-2.2712320841	3.5089430979
H	-4.0372237626	-1.6171846242	1.9835435677
H	-4.1002693498	0.3717983362	3.4006447143
H	-2.6105869825	-0.0979207203	4.2171673422

H \quad-0.1939757702 8.6536866392 -1.0157902563
C $0.1956146783 \quad 8.2244210241-0.1000405494$
C $\quad 1.2241767923 \quad 7.1390600281 \quad 2.2938122459$
C $\quad 0.0905421767 \quad 6.8693244724 \quad 0.1906468647$
C $0.8286928206 \quad 9.03278834900 .8389577016$
C $1.3367917276 \quad 8.5034676215 \quad 2.0237745945$
C $\quad 0.5993607007 \quad 6.32456225401 .3694881030$
H $\quad 0.9263736911 \quad 10.09487756140 .6408070219$
$\begin{array}{lllll}H & 1.8233294661 & 9.1566105098 & 2.7399137389\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.6236251210 & 6.7300859781 & 3.2171488560\end{array}$
N $-0.4963077111 \quad 5.8451856252-0.5625224169$
C -0.39690010734 .63549942000 .0655133125
C $\quad 0.3468709294 \quad 4.83156456661 .3882931411$
H -1.06055335467 .0853807001 -2.1357309784
C $\quad-1.1218891407 \quad 6.0367289977-1.8541948962$
H $\quad-0.6134146245 \quad 5.4403375198$-2.6180109768
H $\quad-2.1763525477 \quad 5.7457835341$-1.8185577385
C $\quad-0.89840816443 .4817389761-0.5008756986$
H $-1.3988015985 \quad 3.5884497015-1.4556114125$
C $\quad-0.8206182701 \quad 2.1716675077 \quad 0.0422626149$
H $-0.3545602069 \quad 2.05804961521 .0139343169$
C $-1.30481204791 .0255370580-0.5433766101$
C $-1.2113102803-0.2787364121 \quad 0.1401266357$
C $-0.4448678082-1.2770408709-0.5457182243$
C 0.3811590008 -2.1586286354 0.1370155352
H $\quad 0.5225522541-1.96339331241 .1932596433$
C $-1.7463507156 \quad 0.9252511066-1.9744260769$
H $\quad-1.82108070461 .9015876937-2.4575319817$
H $\quad-2.7348785127 \quad 0.4519057445-2.0326132856$

C -0.5737746348 -1.3223411481 -2.0597610682
H $0.2920812654-1.8259824813-2.4966107806$
H -1.4524283401 -1.9299318766 -2.3200066892
C $\quad-0.7193368013 \quad 0.0529825595-2.7141865130$
$\begin{array}{lllll}\text { H } & 0.2473562604 & 0.5689897485 & -2.7028938534\end{array}$
H -1.0123148848 -0.0624980703 -3.7626103553
H $4.3205625126-7.3647480864-0.8171040539$
C $4.3225506870-6.86362531930 .1441242981$
C $4.3597486959-5.5798421751 \quad 2.6538010942$
C $3.5034721986-5.77503327260 .4148335203$
C $5.1673513855-7.30173743451 .1610260328$
C $5.1914655947-6.6725773326 \quad 2.4026201954$
C $3.5170532342-5.13485609661 .6538525416$
$\begin{array}{lllll}\text { H } & 5.8178430488 & -8.1505177308 & 0.9766740756\end{array}$
$\begin{array}{lllll}\text { H } & 5.8603481818 & -7.0318243862 & 3.1771633161\end{array}$
H 4.3812533442 -5.0899955875 3.6231396916
C $2.5233378649-3.99070694501 .6427668526$
C $1.9718081833-4.0808445312 \quad 0.2172521785$
C $1.0528959757-3.2749389484-0.4192809235$
H 0.8260638391 -3.5207810880 -1.4500208350
N $2.5731369276-5.1377650515-0.4154634841$
N $-1.7281023511-0.44744266141 .3942099958$
C $-2.58025709820 .5712328772 \quad 2.0314409837$
H -3.31903898390 .94223775421 .3106951780
C $-2.0106699461-1.77779597921 .9615718983$
H $-1.2236156929-2.074208856512 .6651562497$
H $-2.0433462330-2.52323755031 .1650672073$
$\begin{array}{lllll}\text { H } & -1.9953043156 & 1.4283633147 & 2.3720322339\end{array}$
C $2.2837054687-5.5299199059-1.7758825852$
H 2.5346630687 -4.7245264589 -2.4745672656
H $1.2226469126-5.7759653584-1.8875938067$
H $2.8721802489-6.4077515790$-2.0343667596
C -0.51396659654 .44929923692 .6059983471
H $\quad-0.7101579731 \quad 3.37552023392 .6433901676$
$\begin{array}{llll}\text { H } & -1.4717629511 & 4.9756439243 & 2.5940337931\end{array}$
$\begin{array}{lllll}\text { H } & 0.0115521813 & 4.7242623203 & 3.5248583439\end{array}$
C $\quad 1.6890094638 \quad 4.07190555631 .3996914549$
$\begin{array}{lllll}\text { H } & 2.3007191035 & 4.3449535800 & 0.5362205514\end{array}$
$\begin{array}{llll}\text { H } & 1.5441189069 & 2.9892846742 & 1.3896040832\end{array}$
$\begin{array}{lllll}\text { H } & 2.2464066004 & 4.3313322086 & 2.3041247117\end{array}$
C $3.2449379965-2.65411756801 .8959460022$
H 4.0283604391 -2.4858776141 1.1525746812
H $3.7147875519-2.6713208671 \quad 2.8838127114$
H $2.5551625758-1.8077133151 \quad 1.8629953933$
C $1.4249659711-4.2321763810 \quad 2.6958696264$
$\begin{array}{lllll}\text { H } & 1.8731291218 & -4.2750963054 & 3.6928397228\end{array}$
$\begin{array}{lllll}\text { H } & 0.9103967882 & -5.1792891517 & 2.5151472360\end{array}$
$\begin{array}{lllll}\text { H } & 0.6825739369 & -3.4311834570 & 2.6931283111\end{array}$
C $-3.3389622378-1.6004239274 \quad 2.6911573500$
C $-3.2534009115-0.1610017896 \quad 3.1919956094$
H $-3.4734756126-2.33105677093 .4918045862$
H $\quad-4.1721381841 \quad-1.71085883801 .9892514547$
$\begin{array}{llll}\text { H } & -4.2240731213 & 0.2737157445 & 3.4392222825\end{array}$

	-2.6	-0.1083348086	4.0
Cyanine-like Franck-Condon point			
H	8.8108258670	-0.5040163616	2.8
C	8.5154400847	-0.2616323177	1.7978357994
C	7.7838552654	0.3709967033	-0.8
c	7.1896795799	-0.1199099218	1.4232201651
C	9.4823782828	-0.0785518090	0.8104247837
C	9.1268062121	0.2337646443	-0.4976134201
C	6.8170221233	0.1925706939	0.1211518169
H	10.5298889565	-0.1825548077	1.0725995495
H	9.8979865086	0.3717614945	-1.2474952914
H	7.5100674908	0.6146971238	-1.8727347522
N	6.0228379914	-0.2477667979	2.2088207806
c	4.9021163174	-0.0270127765	1.4813177913
C	5.3063476698	0.2717613986	0.0325712315
H	5.5683148485	0.2523554090	4.1976722265
C	6.0194916388	-0.5623244830	3.6232682754
H	5.4589511936	-1.4829649252	3.8093345489
H	7.0422978232	-0.7034666513	3.9652014282
C	3.6412771374	-0.0731129033	2.0488206860
H	3.5887148347	-0.2853629416	3.1095693865
C	2.4285596037	0.1487833109	1.3751302798
H	2.4566870345	0.3043735058	0.3035444166
C	1.1846357399	0.2434960376	1.9757198198
c	0.0432642575	0.5096590008	1.1630708804
C	-1.1154297610	1.1108434449	1.7399578716
C	-2.3280501886	1.0301815823	1.0824390679
H	-2.3236265731	0.4530183502	0.1655006409
C	1.0737383681	0.2248477069	3.48
H	1.7868935278	0.9555339140	3.8902269865
H	1.3927957315	-0.7507777514	3.8756079890
C	-0.9653849778	1.6466827759	3.1420191840
H	-0.3353688219	2.5457609077	3.1541923329
H	-1.9313455025	1.9340054168	3.5606381552
C	-0.3244182447	0.5582544411	4.0065667918
H	-0.2623936972	0.8760678802	5.0516933642
H	-0.9646199935	-0.3303448906	3.9804998455
H	-8.6791181929	2.6819038475	1.4860400590
C	-8.3516146477	2.0123563839	0.6990459466
C	-7.5367873295	0.2624108402	-1.3549531629
C	-7.0282668488	1.6311450463	0.5508370833
C	-9.2725745901	1.4965964074	-0.2117319120
C	-8.8759065369	0.6329033716	-1.2273382102
C	-6.6156648301	0.7672852547	-0.4567717608
H	-10.3167860995	1.7764336579	-0.121265376
H	-9.6115597428	0.2446399383	-1.9231746339
H	-7.2303221951	-0.4125583758	-2.1487369243
C	-5.1193350114	0.5481882443	-0.3547361344
C	-4.7707065815	1.4032886879	0.8704091823
C	-3.5519531126	1.5896893321	1.4933416771
H	-3.5432856008	2.2252537711	2.3699528999
N	-5.9036871536	1.9985581255	1.3203807460
	0.0734315032	0.2	-0.1870422720

C -0.1972780781 1.2004597392 -1.2525756911
H $-1.09961541801 .7835980372-1.0689923211$
C $0.4521745979-1.0907467634-0.7500848092$
H $-0.3832855562-1.7942224016-0.6269585790$
H $1.3180713452-1.5278919779-0.2526669309$
H 0.6404869898 1.9098627279 -1.3150958870
C $\begin{array}{llll}-5.9512051919 & 2.8889115178 & 2.4615865944\end{array}$
$\begin{array}{lllll}H & -6.9582978877 & 3.2856876671 & 2.5692147027\end{array}$
$\begin{array}{llll}\text { H } & -5.2625751340 & 3.7268500038 & 2.3207021501\end{array}$
$\begin{array}{llll}\text { H } & -5.6837992298 & 2.3579484089 & 3.3805848413\end{array}$
C $4.7810055134-0.8040611060-0.9356986563$
H $3.6907951226-0.7962851743-1.0023795917$
H $5.0979740747-1.8026857547-0.6243844834$
H 5.1818117597 -0.6204239198 -1.9365759266
C $4.86772489371 .6811374431-0.4022018059$
$\begin{array}{lllll}\text { H } & 5.2336723460 & 2.4392074536 & 0.2949096506\end{array}$
H $3.78070232791 .7694154059-0.4625299011$
H 5.28063676641 .9051292798 -1.3899095767
C $-4.42871219461 .0688555713-1.6289742019$
H $-4.6366138701 \quad 2.1307065257-1.7839553378$
H $-4.8076762158 \quad 0.5225024221$-2.4972939102
H $-3.3455035700 \quad 0.9327235399-1.5932540558$
C $-4.8117929897-0.9408781074-0.1200966765$
H $\quad-5.1861106891-1.5282599535-0.9633461578$
H $-5.3006272287-1.30480822950 .7871694140$
H -3.7392697412 -1.1269491997 -0.0282909936
C $0.6936243091-0.7951891322-2.2286951923$
H $0.5317654669-1.6727183001-2.8581453372$
H $1.7238618800-0.4557936006-2.3852208133$
C $-0.2821575152 \quad 0.3480312765-2.5160712078$
H $-1.2968134314-0.0480342678$-2.6363414637
H $-0.0356028100 \quad 0.9148614133-3.4163173344$
Cyanine-like S_{1} minimum
$\begin{array}{llll}\text { H } & 8.8374019483 & -0.5097944766 & 2.8248571490\end{array}$
C $8.5482131574-0.27023793371 .8080813653$
C $7.82979445750 .3647040051-0.8476738840$
C $7.2182491157-0.12899907601 .4261845268$
C $9.5179620708-0.08631102350 .8280735732$
C $9.17045442430 .2269151713-0.4852725226$
C $\quad 6.8553635169 \quad 0.18681049070 .1150418108$
H $10.5644217741-0.18810566381 .0957779978$
H $9.9472108627 \quad 0.3652763862$-1.2295788674
H 7.56340236230 .6097922272 -1.8716355648
$\begin{array}{lllll}\mathrm{N} & 6.0582602125 & -0.2551308154 & 2.1962240555\end{array}$
C $4.9347825438-0.0204013581 \quad 1.4567377230$
C $\quad 5.34719192440 .27161969380 .0150155688$
$\begin{array}{llll}\text { H } & 5.6360019579 & 0.2535925846 & 4.1916252625\end{array}$
C $6.0424290292-0.5787882323 \quad 3.6075686177$
$\begin{array}{lllll}\text { H } & 5.4316562893 & -1.4689892059 & 3.7862844586\end{array}$
$\begin{array}{llll}\text { H } & 7.0562245789 & -0.7798585412 & 3.9464233217\end{array}$
C $3.6696098614-0.0357648344 \quad 2.0249063777$
$\begin{array}{lllll}\text { H } & 3.6206158832 & -0.2179988699 & 3.0924834124\end{array}$
C $2.4534833850 \quad 0.18311213431 .3571681459$

H	2.4612205258	0.3044896686	0.2812052773
C	1.2105759254	0.3164498837	1.9818278932
C	0.0435786596	0.5130816281	1.1909007601
C	-1.1533933080	1.0431423509	1.7730389931
C	-2.3549498861	0.9783936238	1.0768288975
H	-2.3234877047	0.4273218513	0.1447683821
C	1.1281499319	0.3450841280	3.4919321865
H	1.7612147809	1.1661743458	3.8556915662
H	1.5623254897	-0.5725752687	3.9086903296
C	-1.0470236811	1.5604599091	3.1832970452
H	-0.5111803963	2.5195862696	3.2066226664
H	-2.0338010867	1.7385224179	3.6146136846
C	-0.2898486894	0.5324959304	4.0264382198
H	-0.2519384811	0.8456746127	5.0740561491
H	-0.8341887635	-0.4177809630	3.9949642436
H	-8.7041695105	2.6991461059	1.4960086277
C	-8.3842623861	2.0304327307	0.7053540514
C	-7.5868366643	0.2781268400	-1.3598131847
C	-7.0572392635	1.6397690071	0.5524383681
C	-9.3092352636	1.5239165161	-0.2011603548
C	-8.9228611859	0.6578892811	-1.2234983578
C	-6.6564010810	0.7720767967	-0.4665575222
H	-10.3517326560	1.8089005800	-0.1061959319
H	-9.6654535497	0.2768509535	-1.9161742253
H	-7.2900725121	-0.3973836223	-2.1566993826
C	-5.1631475343	0.5392168753	-0.3743768539
C	-4.8044916086	1.3783616897	0.8515910463
C	-3.5835826948	1.5398522206	1.4821109675
H	-3.5753825198	2.1614519428	2.3698896671
N	-5.9393506077	1.9893199212	1.3118430148
N	0.0705458554	0.2184550706	-0.1688348531
C	-0.1429510372	1.2192912181	-1.2192012987
H	-1.0300342772	1.8296709141	-1.0286614176
C	0.4104048484	-1.0976814845	-0.7221665441
H	-0.4332060784	-1.7919074295	-0.5941658433
H	1.2748314317	-1.5460048861	-0.2248562004
H	0.7151761391	1.9068825917	-1.2761892535
C	-5.9692625794	2.8792151243	2.4529978318
H	-6.9726265988	3.2807204000	2.5759846042
H	-5.2763276178	3.7131970680	2.3040291135
H	-5.6907317908	2.3459390472	3.3680894723
C	4.8201351208	-0.7993295458	-0.9619435559
H	3.7294844595	-0.7918198984	-1.0220587657
H	5.1404325935	-1.7998171572	-0.6602386153
H	5.2153925652	-0.6053496226	-1.9634326200
C	4.9142417602	1.6828822184	-0.4274397897
H	5.2904811120	2.4424976400	0.2623696200
H	3.8272079357	1.7753345758	-0.4779990283
H	5.3195980510	1.8970254952	-1.4205747952
C	-4.4699878952	1.0588778485	-1.6508735956
H	-4.6770660250	2.1206580345	-1.8073871517
H	-4.8463399953	0.5100820634	-2.5191593874
H	-3.3869648693	0.9220905716	-1.6093769370

$$
\begin{array}{lrrr}
\mathrm{C} & -4.8630538763 & -0.9562136006 & -0.1557440287 \\
\mathrm{H} & -5.2307503319 & -1.5321577703 & -1.0098661604 \\
\mathrm{H} & -5.3604740835 & -1.3288742287 & 0.7431842409 \\
\mathrm{H} & -3.7915882944 & -1.1435663178 & -0.0571958939 \\
\mathrm{C} & 0.6611721698 & -0.8112084023 & -2.2026331970 \\
\mathrm{H} & 0.4586425702 & -1.6777532198 & -2.8359816510 \\
\mathrm{H} & 1.7062520351 & -0.5204187263 & -2.3601485257 \\
\mathrm{C} & -0.2576695349 & 0.3802202542 & -2.4901528875 \\
\mathrm{H} & -1.2892038177 & 0.0332947283 & -2.6199059950 \\
\mathrm{H} & 0.0219464418 & 0.9384865266 & -3.3863456529
\end{array}
$$

Dye II-16

Bis-dipole Franck-Condon Point
H $0.31855521818 .4650419556-0.9912417798$
C $0.5761978977 \quad 7.9989264164-0.0470323213$
C $\quad 1.2584657723 \quad 6.8235201963 \quad 2.4195157007$
C $\quad 0.3229424465 \quad 6.6614759404 \quad 0.2120407489$
C $\quad 1.1838491590 \quad 8.7469797336 \quad 0.9610217381$
C $\quad 1.5237640013 \quad 8.1729953935 \quad 2.1808001183$
C $\quad 0.6562801588 \quad 6.0733451311 \quad 1.4279085560$
$\begin{array}{llll}H & 1.3930064399 & 9.7968428829 & 0.7840347778\end{array}$
$\begin{array}{llll}H & 1.9959709358 & 8.7752645584 & 2.9491869960\end{array}$
$\begin{array}{lllll}H & 1.5241330894 & 6.3759703458 & 3.3731054906\end{array}$
N -0.2731750850 $5.6930432600-0.6157600295$
C $\quad-0.3502937656 \quad 4.4760140142 \quad 0.0049358467$
C $\quad 0.2506131303 \quad 4.61163655281 .4128757524$
$\begin{array}{lllll}\text { H } & -0.5752706639 & 6.9785797467 & -2.2206282009\end{array}$
C $\quad-0.74727940825 .9367025456-1.9584294401$
H -0.2160454627 5.3054857848 -2.6786573074
H $-1.82038674695 .7324167423-2.0338776929$
C $\quad-0.89000543503 .3797187666-0.6111031377$
H -1.25726500633 .5138978701 -1.6204673590
C -1.0228081855 2.0816818858 -0.0323387214
H $\quad-0.69278236931 .98231840730 .9965297999$
C $-1.4787150144 \quad 0.9493068105-0.6374573641$
C $-1.4327739432-0.3240170311 \quad 0.0957597865$
C $-0.7457176596-1.4197989274-0.5837200522$
C $0.1708621639-2.20226047250 .0668260349$
H $\quad 0.3530484402-1.98159895591 .1102497657$
C $-1.8119430070 \quad 0.8490107875-2.1075487539$
H $\quad-1.70937478791 .8228263400-2.5876741231$
H $\quad-2.86043292470 .5479709625-2.2371889313$
C $-0.9942761316-1.5213348205-2.0788837867$
H $\quad-0.2816931555-2.2130328461-2.5290228170$
H $-1.9903118174-1.9517508519-2.2525262578$
C $\quad-0.9051866653-0.1726794009-2.7900075649$
$\begin{array}{lllll}\text { H } & 0.1290620616 & 0.1879114866 & -2.7644553464\end{array}$
H $-1.1852463779-0.2883680625-3.8419510443$
H 4.5796307096 -7.0174703704 -0.8212779299
C $4.5166946200-6.5231589781 \quad 0.1413608324$
C $4.3807725544-5.2627156018 \quad 2.6570314899$
C $3.6142745937-5.50262191790 .3928919450$
C $5.3609035727-6.90660105981 .1829409290$

C	05	-6.	2.4269305630
C	3.5397923427	-4.8748378349	1.6315425630
H	6.0776392817	-7.7033156369	1.0137199815
H	5.9661133325	-6.6043979044	3.2212149414
H	4.3336970828	-4.7807210204	3.6294024003
c	2.4620652055	-3.8086800017	1.5950498948
c	1.9515245023	-3.9391216930	0.1520553150
c	0.9671006526	-3.2369851330	-0.4974412711
H	0.7759142944	-3.5086018005	-1.5269904022
N	2.6597340211	-4.9269336906	-0.4680391605
N	-1.9940329615	-0.4496993363	1.2985198744
C	-2.9083473324	0.5658890463	1.8848611378
H	-3.9287159449	0.2726582133	1.6133339659
C	-1.9630300827	-1.7142792297	2.0709126691
H	-1.0449431149	-1.7409227707	2.6680984001
H	-1.9198189651	-2.5424884661	1.3625263522
H	-2.7247675456	1.5315469351	1.4359426541
c	2.4504604853	-5.3215922561	-1.8430772055
H	2.6236109502	-4.4772592977	-2.5181327958
H	1.4298981360	-5.6894252807	-1.9902611166
H	3.1448800521	-6.1180759845	-2.1019000580
C	-0.7959514742	4.3522334423	2.5115520214
H	-1.1030775452	3.3036559595	2.5481071990
H	-1.6865545469	4.9665935389	55
H	-0.3748953428	4.6093425339	3.4877696680
C	1.4867520080	3.7148457895	1.5972842346
H	2.2247263493	3.8998611168	0.8126117281
H	1.2289175926	2.6529817999	1.5773485626
H	1.9581331861	3.9300393527	2.5607423296
C	3.0770221170	-2.4232188873	1.8593952319
H	3.8544446939	-2.1944089247	1.1260900555
H	3.5354360775	-2.4075551248	2.8524786303
H	2.3284764194	-1.6277973618	1.8209853601
C	1.3651192721	-4.1387387950	2.6229164554
H	1.7999694439	-4.1758626912	3.6257867457
H	0.9118261322	-5.1117000786	2.4163354168
H	0.5727279131	-3.3868372952	2.6290415442
C	-3.1575635454	-1.8465548983	3.0074092901
H	-3.0896740673	-2.8227721143	3.4957508703
H	-4.0836567465	-1.8634711040	2.4236874025
C	-2.7631618621	0.6166158125	3.4002888035
H	-3.3714911296	1.4437276017	3.7762602141
H	-1.7234303814	0.8606377438	3.6460548226
C	-3.1823978929	-0.7194021124	4.0463885487
H	-4.1844743212	-0.6418232555	4.4768213969
H	-2.5078936546	-0.9599384283	
Bis-dipole S_{1} minimum			
H	-0.5463447582	8.7038273515	-1.2206936985
C	0.0577703054	8.3167858327	-0.4086459438
C	1.6599761808	7.3339431429	1.7010782268
C	0.0330631774	6.9829753280	-0.0281780977
c	0.9096306849	9.1606198422	0.2970834640
c	1.7015109936	8.6798011645	1.338

C	0.8185171206	6.4853979918	1.0067785182
H	0.9571693255	10.2097939194	0.0271346556
H	2.3587557714	9.3592458871	1.8695896739
H	2.2816237790	6.9654296607	2.5111229201
N	-0.7246685433	5.9214590908	-0.5652963301
C	-0.4511111196	4.7538809418	0.0538679253
C	0.5705767394	5.0015481001	1.1631054155
H	-1.8039212184	7.1299554577	-1.8734137145
C	-1.6602319330	6.0722752491	-1.6668916955
H	-1.2764433308	5.5836216011	-2.5667705038
H	-2.6263965092	5.6380918762	-1.4012044137
C	-1.0352909922	3.5569120599	-0.3511111815
,	-1.7155940913	3.6024713388	-1.1928212444
C	-0.8012048349	2.2943464033	0.2219587245
H	-0.1671419948	2.2311825983	1.0978023806
C	-1.3476893649	1.1079272046	-0.2189010566
C	-1.0317778898	-0.1804774460	0.4468258354
C	-0.1371548067	-1.0139082649	-0.2511210985
C	0.5689207226	-2.0315291156	0.3800806042
H	0.5197950198	-2.0419044224	1.4622480997
C	-1.9665929300	0.9041386466	-1.5574100308
H	-2.3677478368	1.8043705920	-2.0318505323
H	-2.7644708149	0.1571430863	-1.4997177203
C	-0.0836600264	-0.8772173717	-1.7715594921
H	0.9532549413	-0.9039019440	-2.1231623370
H	-0.5554691922	-1.7788682186	-2.1849323642
C	-0.7739755387	0.3537701975	-2.3899328192
H	-0.0511743841	1.1693135212	-2.4975436832
	-1.1256660179	0.1113038804	-3.3974017625
H	109593	-7.0583814975	-0.9039017168
C	4.4404944450	-6.7854177742	0.1245237163
C	3.9199811534	-6.1101067473	2.8075764498
C	3.5839241559	-5.7454103239	0.4543288418
C	5.0384305533	-7.4877812278	1.1702924691
C	4.7860151746	-7.1606875223	2.4978116625
C	3.3226137940	-5.4060377464	1.7806009013
H	5.7128798604	-8.3054138726	0.9373331353
H	5.2617735172	-7.7226795297	3.2941251683
H	3.7222464074	-5.8539466512	3.8447705876
C	2.3548272156	-4.2390216461	1.8249082852
C	2.1216869122	-3.9791521310	0.3328594427
C	1.3439626820	-3.0231302995	-0.2695665365
H	1.3343225146	-3.0186082374	-1.3539875332
N	2.8610456890	-4.8895345220	-0.3877538853
N	-1.7424440935	-0.5682741396	1.5697082281
C	-2.3482657838	0.4300501314	2.4497031151
H	-3.1859068637	0.9482077010	1.9573339992
C	-2.2433091712	-1.9437735716	1.7100822429
H	-1.6706219134	-2.4941311195	2.4684389546
H	-2.0825764754	-2.4563778433	0.7609965198
H	-1.5980954286	1.1913670507	2.6871927576
C	2.8901432982	-4.9302881359	-1.8288059052

$\begin{array}{lllll}\text { H } & 0.9571693255 & 10.2097939194 & 0.0271346556\end{array}$
H $2.3587557714 \quad 9.3592458871 \quad 1.8695896739$
$\begin{array}{llll}H & 2.2816237790 & 6.9654296607 & 2.5111229201\end{array}$
N $-0.7246685433 \quad 5.9214590908$-0.5652963301
C -0.45111111964 .75388094180 .0538679253
C $\quad 0.5705767394 \quad 5.0015481001 \quad 1.1631054155$
H $-1.8039212184 \quad 7.1299554577-1.8734137145$
C $-1.6602319330 \quad 6.0722752491-1.6668916955$
H -1.2764433308 5.5836216011 -2.5667705038
H -2.62639650925 .6380918762 -1.4012044137
C $-1.03529099223 .5569120599-0.3511111815$
H $-1.7155940913 \quad 3.6024713388$-1.1928212444
C $\quad-0.8012048349 \quad 2.29434640330 .2219587245$
H $-0.1671419948 \quad 2.23118259831 .0978023806$
C $-1.34768936491 .1079272046-0.2189010566$
C $-1.0317778898-0.1804774460 \quad 0.4468258354$
C $-0.1371548067-1.0139082649-0.2511210985$
C $0.5689207226-2.03152911560 .3800806042$
H 0.5197950198 -2.0419044224 1.4622480997
C $-1.9665929300 \quad 0.9041386466-1.5574100308$
H -2.3677478368 1.8043705920 -2.0318505323
H $-2.7644708149 \quad 0.1571430863-1.4997177203$
C $-0.0836600264-0.8772173717-1.7715594921$
H $0.9532549413-0.9039019440-2.1231623370$
-0.5554691922 $-1.7788682186-2.1849323642$
H $\quad-0.0511743841$ 1.1693135212 -2.4975436832
H $-1.12566601790 .1113038804-3.3974017625$
H $4.6484109593-7.0583814975-0.9039017168$
C $4.4404944450-6.7854177742 \quad 0.1245237163$
C $3.9199811534-6.1101067473 \quad 2.8075764498$
$3.5839241559-5.74541032390 .4543288418$
$\begin{array}{llll}5.0384305533 & -7.4877812278 & 1.1702924691\end{array}$
$4.7860151746-7.160687522312 .4978116625$
$3.3226137940-5.40603774641 .7806009013$
$5.7128798604-8.30541387260 .9373331353$
$\begin{array}{llll}5.2617735172 & -7.7226795297 & 3.2941251683\end{array}$
H $3.7222464074-5.85394665123 .8447705876$
$2.3548272156-4.23902164611 .8249082852$
C $2.1216869122-3.9791521310 \quad 0.3328594427$
C $1.3439626820-3.0231302995-0.2695665365$
H 1.3343225146 -3.0186082374 -1.3539875332
N $2.8610456890-4.8895345220-0.3877538853$
N -1.7424440935 -0.56827413961 .5697082281
C $-2.3482657838 \quad 0.4300501314 \quad 2.4497031151$
H $\quad-3.18590686370 .9482077010 \quad 1.9573339992$
H $-1.6706219134-2.4941311195 \quad 2.4684389546$
$\begin{array}{lllll}\text { H } & -2.0825764754 & -2.4563778433 & 0.7609965198\end{array}$
H $-1.59809542861 .1913670507 \quad 2.6871927576$
H 3.2473772910 -3.9784320489 -2.2375022134

H	1.8923765822	-5.1312147688	-2.2346698500	C	-1.8561680318	6.3658064970	-1.8200605123
H	3.5624142765	-5.7201062707	-2.1585391420	H	-1.7639456209	9.7216158501	-3.7060834135
C	-0.0228934501	4.7041691663	2.5549229835	H	-3.3515509800	9.3924917726	-1.8444408427
H	-0.2343689558	3.6415883961	2.6895287268	H	-3.4177919338	7.2363760618	-0.6212742150
H	-0.9475275148	5.2638327679	2.7171382285	N	-0.2161222636	5.3866151358	-3.0582006437
H	0.6925646899	5.0052135697	3.3246360599	C	-0.5650515535	4.4221456418	-2.1709074249
C	1.8750036644	4.2161367901	0.9278769231	C	-1.6723043698	4.9688836073	-1.2617047735
H	2.2878782855	4.4228808447	-0.0629166019	H	0.8675723477	6.1241793357	-4.6747482342
H	1.7264454558	3.1389429280	1.0197493593	C	0.7972353410	5.2168007238	-4.0790796111
H	2.6171599084	4.5184558649	1.6712775911	H	1.7730715182	5.0196535897	-3.6252868209
C	3.0066822190	-3.0319062880	2.5220883236	H	0.5373621617	4.3852122241	-4.7407914769
H	3.9258880641	-2.7355175027	2.0100169343	C	0.0367174903	3.1785079557	-2.1770853604
H	3.2632433475	-3.2937754134	3.5529581450	H	0.8003564854	3.0130872745	-2.9262566945
	2.3377818852	-2.1686867874	2.5475593380	C	-0.2434912258	2.1098847285	-1.3040614710
C	1.0580719035	-4.6542314940	2.5433573522	H	-0.9591831552	2.2759027419	-0.5099735809
H	1.2812393432	-4.9368104845	3.5764414243	C	0.2825537390	0.8361190249	-1.4165213533
H	0.5970037945	-5.5131228158	2.0492725950	C	-0.0730668551	-0.1756706385	-0.4677423779
H	0.3304306552	-3.8398436480	2.5640328583	C	0.0078984991	-1.5532589242	-0.8680119966
C	-3.7209912600	-1.9387759346	2.0898100957	C	0.2991850550	-2.5250171018	0.0631569421
H	-4.0970316015	-2.9663963571	2.0998146359	H	0.4329473533	-2.1835901631	1.0809661275
H	-4.2764598054	-1.4109925410	1.3060495119	C	1.1108968536	0.4840920428	-2.6416178959
C	-2.8448933560	-0.2234910057	3.7351036953	H	2.0844744723	0.9891071521	-2.5984172942
H	-3.2071272478	0.5525128540	4.4157530735	H	0.5986456617	0.8984437916	-3.5181954362
H	-1.9915001441	-0.6997479065	4.2298340844	C	0.0915236639	-1.7898992693	4
C	-3.9442231284	-1.2605890689	3.4532768604	H	0.1864265491	-2.8509559423	-2.5873468806
H	-4.9286037564	-0.7824873832	3.4698232136	H	-0.8123524576	-1.4330919123	-2.8635128178
H	-3.9494267672	-2.0065310035	4.2537779902	C	1.3119649366	-1.0181603477	-2.8633834715
Cyan		Condon Point		H	2.1957674703	-1.3761155330	-2.3248834369
H	-0.2234359147	7.9225059394	-4.3912593911	H	1.4866657319	-1.2105391948	-3.9264127561
C	-0.9130857608	7.7603076986	-3.5708820058	H	1.8770626329	-8.8769496660	0.7280175574
C	-2.7185097432	7.3767786772	-1.4402897117	C	2.0124987742	-8.2028988916	1.5661223364
C	-0.9717935218	6.5649240167	-2.8735969833	C	2.3809464988	-6.4796418549	3.7650586885
C	-1.7866237334	8.7736817190	-3.1789375489				
C	-2.6804391639	8.5895560946	-2.1292052161				
C	1.6849643704	-6.8587235007	1.4981662374	C	. 8364786646	-6.6883959355	-0.8774518885
C	2.5353753405	-8.6759510415	2.7688937752	H	1.4644452940	-6.2427764254	-1.6557622246
C	2.7187671963	-7.8303411852	3.8577100832	H	-0.2146141904	-6.5151244223	-1.1263417512
C	1.8639555829	-5.9998914882	2.5765278222	H	1.0143847613	-7.7614528301	-0.8599728305
H	2.8034173066	-9.7240789529	2.8506619657	C	-2.9745323169	4.1611015624	-1.4000255216
H	3.1273910529	-8.2219359676	4.7828027270	H	-2.8647790144	3.1426130502	-1.0199205217
H	2.5271879139	-5.8212873935	4.6164754620	H	-3.2919231101	4.1033870395	-2.4442627885
C	1.4177977867	-4.6030647764	2.1918487470	H	-3.7709309554	4.6505744386	-0.8322892869
C	0.9793278764	-4.8147344361	0.7358601625	C	-1.2171998475	5.0466072202	0.2068327887
C	0.5072585820	-3.9008104142	-0.1807183351	H	-0.2701743149	5.5841588920	0.2999196947
H	0.2954342934	-4.2709067249	-1.1756068079	H	-1.0938939414	4.0543229215	0.6459569514
N	1.1489595689	-6.1262167117	0.4190817497	H	-1.9682615717	5.5822705847	0.7940975242
N	-0.4868052983	0.1546882191	0.7934999943	C	2.5966921021	-3.6198835739	2.2991839855
C	0.1358909131	1.2405255724	1.5748666065	H	3.4305556613	-3.9351661949	1.6666523454
H	-0.3937330207	2.1914709595	1.4557404825	H	2.9520882958	-3.5862436792	3.3331256823
C	-1.5754809092	-0.5753235430	1.4768319573	H	2.3108183296	-2.6066475554	2.0065205315
H	-1.2073039469	-1.4428138992	2.0338911473	C	0.2442408690	-4.1650369903	3.0869098241
H	-2.2592816301	-0.9512712771	0.7132077837	H	0.5578315056	-4.1851078715	4.1343715695
H	1.1499161017	1.3861675771	1.1984854649	H	-0.6089770234	-4.8390949699	2.9764998348

H	-0.0881302441	-3.1496790626	2.8581460458
C	-2.2814011767	0.3555016427	2.4563553902
H	-3.1530226766	-0.1599856352	2.8695975855
H	-2.6657590663	1.2254128376	1.9119105338
C	0.1249296028	0.8723732759	3.0543586456
H	0.7028267743	1.6143864622	3.6126874792
H	0.6384067787	-0.0866070664	3.1874202690
C	-1.3213357743	0.7944828568	3.5766658617
H	-1.6355290388	1.7675211643	3.9662502655
H	-1.3731294378	0.0940934430	4.4158605683
Cyanine-like S_{1} minimum			

H $-0.4568018528 \quad 7.9781395612-4.4031659099$
C $-1.08326058707 .8074433570-3.5351533245$
C $\quad-2.7345797306 \quad 7.3963131153-1.2824803274$
C $\quad-0.0388628104 \quad 3.2077244838-2.2508311870$
H $\quad 0.65753163263 .0543414014$-3.0671871144
C $\quad-0.2485273271 \quad 2.1226078715-1.3848567924$
H $\quad-0.8994768444 \quad 2.2507350979-0.5300735415$
C $0.28181845310 .8409291602-1.5735486265$
C $0.0457508095-0.1811563794-0.6153946646$
C $0.2583233102-1.5618502115-0.9613365791$
C $0.4667892902-2.5068468190 \quad 0.0316394406$
H 0.5186767121 -2.1196920018 1.0413117079
C $1.03475552170 .5349320806-2.8525488401$
H $1.9065305439 \quad 1.1956750929-2.9413356127$
$\begin{array}{llll}\text { H } & 0.3818582285 & 0.7888981830 & -3.6983208576\end{array}$
C $0.4079203615-1.8596903918-2.4289465894$
H 0.6923569342 -2.8983851389 -2.6047289239
H $\quad-0.5403211337-1.6922195492-2.9568895283$
C $1.4790392254-0.9208030280-2.9896901586$
H $2.4118456879-1.0865932641-2.4396616280$
H 1.6816943272 -1.1469498612 -4.0411268287
H 1.8114210408 -8.9023419689 0.8806787081
C $1.9120921823-8.2229357561 \quad 1.7190085293$
C $2.1940790290-6.47638096203 .9191604618$
C $1.6269809658-6.8647475811 \quad 1.6132613318$
C $2.3430012315-8.6924533693 \quad 2.9545440749$
C $2.4842404077-7.83586054954 .0459449308$
C $1.7667257178-5.9941075372 \quad 2.6976003247$
H $2.5732172552-9.7464125356 \quad 3.0679085501$
H 2.8222313371 -8.2295860213 4.9981511177
H $2.3070386564-5.81342080114 .7719106800$
C $1.3834038627-4.5919449638 \quad 2.2722864772$
C $1.0338667077-4.8105156438 \quad 0.7998970300$
C $0.6552718423-3.8940912034-0.1619639464$
H $0.4967265483-4.2791982405-1.1624471658$
N $1.1816195971-6.1411601256 \quad 0.5074561695$
$\begin{array}{lllll}N & -0.3971804501 & 0.1413510146 & 0.6626083539\end{array}$
C $\quad 0.31218897831 .10576399381 .5086524411$
H $\quad-0.0979229783 \quad 2.12259281381 .4315281842$
C $-1.6014573647-0.48585884441 .2250308420$
H $-1.3976368993-1.46795082761 .6736759654$
H $\quad-2.3129881353-0.65440834710 .4116102886$

C $-1.0864761558 \quad 6.6007738491-2.8438983473$
C $-1.9273816778 \quad 8.8117549104-3.0730976159$
C $-2.74568922748 .6156288598-1.9614177099$
C $-1.8996143789 \quad 6.3899590702-1.7282055286$
H -1.9465407007 9.7649049975 -3.5904514812
H -3.3934559127 9.4166429227 -1.6227917231
H $\quad-3.3750282819 \quad 7.2475690893-0.4181769107$
N $-0.3480432475 \quad 5.4392678253-3.0880180775$
C $-0.6366953434 \quad 4.4581751154-2.1829797967$
C $-1.67679362224 .9890492954-1.1983491148$
$\begin{array}{llll}\text { H } & 0.6574346424 & 6.2112052452 & -4.7392176233\end{array}$
C $0.5933543802 \quad 5.2824987539-4.1767803597$
H $1.5880168508 \quad 5.0387386258$-3.7910126013
H $0.2697962090 \quad 4.4845932893-4.8530558689$
H 1.34864318841 .15781715351 .1664018639
C $0.9122773029-6.7158282114-0.7933179012$
H $1.6027778231-6.3199892485-1.5456988581$
H $\quad-0.1136312883-6.4920988164-1.1015440284$
H $1.0315996096-7.7958552702-0.7458839200$
C $-2.98634530364 .1772693873-1.2582639226$
H -2.84238472023 .1531952768 -0.9062473771
H $-3.37795444194 .1379079025-2.2780682600$
H -3.74115012634 .6514213941 -0.6245302348
C $-1.1285317277 \quad 5.0422969668 \quad 0.2416315505$
$\begin{array}{lllll}\mathrm{H} & -0.2019781873 & 5.6203096647 & 0.2903693217\end{array}$
$\begin{array}{llll}\text { H } & -0.9292033318 & 4.0420641102 & 0.6318453619\end{array}$
$\begin{array}{lllll}\text { H } & -1.8625447796 & 5.5209516495 & 0.8962853223\end{array}$
C $2.5751471719-3.6296614341 \quad 2.4467777494$
$\begin{array}{lllll}\text { H } & 3.4434970724 & -3.9696802580 & 1.8769076623\end{array}$
$\begin{array}{lllll}H & 2.8583048813 & -3.5863868099 & 3.5025064004\end{array}$
$\begin{array}{llll}\text { H } & 2.3271751181 & -2.6169839000 & 2.1206638485\end{array}$
C $0.1682126404-4.1040769881 \quad 3.0872125763$
H 0.4237650067 -4.0942057820 4.1507805313
H $\quad-0.6907415533-4.7658681004 \quad 2.9510175136$
$\begin{array}{lllll}\text { H } & -0.1274228645 & -3.0915267636 & 2.8030756437\end{array}$
C $-2.20443689270 .4211513708 \quad 2.2924104470$
H $-3.1414114707-0.0168362055 \quad 2.6493137721$
$\begin{array}{lllll}\text { H } & -2.4653873502 & 1.3826759469 & 1.8346768057\end{array}$
C $\quad 0.23642614970 .6578667946 \quad 2.9653871888$
$\begin{array}{lllll}\mathrm{H} & 0.8452278852 & 1.3234405515 & 3.5845962759\end{array}$
$\begin{array}{lllll}\text { H } & 0.6853025297 & -0.3394726617 & 3.0452678695\end{array}$
C $-1.2243941288 \quad 0.6313611274 \quad 3.4592065158$
$\begin{array}{llll}\text { H } & -1.4679354388 & 1.5655445551 & 3.9744286030\end{array}$
H $-1.3457656076-0.16745454654 .1980670217$

REFERENCES

(1) Rathore, N.; Panwar, N. L.; Yettou, F.; Gama, A. A comprehensive review of different types of solar photovoltaic cells and their applications. International Journal of Ambient Energy 2021, 42 (10), 1200-1217. DOI: 10.1080/01430750.2019.1592774.
(2) Husain, A. A. F.; Hasan, W. Z. W.; Shafie, S.; Hamidon, M. N.; Pandey, S. S. A review of transparent solar photovoltaic technologies. Renew Sust Energ Rev 2018, 94, 779-791. DOI: 10.1016/j.rser.2018.06.031.
(3) Traverse, C. J.; Pandey, R.; Barr, M. C.; Lunt, R. R. Emergence of highly transparent photovoltaics for distributed applications. Nat Energy 2017, 2 (11). DOI: 10.1038/s41560-017-0016-9.
(4) Yang, C. C.; Lunt, R. R. Limits of Visibly Transparent Luminescent Solar Concentrators. Adv Opt Mater 2017, 5 (8). DOI: ARTN 160085110.1002/adom. 201600851.
(5) Sharma, M.; Gungor, K.; Yeltik, A.; Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Erdem, T.; Delikanli, S.; McBride, J. R.; Demir, H. V. Near-Unity Emitting CopperDoped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators. Adv Mater 2017, 29 (30). DOI: ARTN 170082110.1002/adma.201700821.
(6) Ooyama, Y.; Harima, Y. Photophysical and Electrochemical Properties, and Molecular Structures of Organic Dyes for Dye-Sensitized Solar Cells. Chemphyschem 2012, 13 (18), 4032-4080. DOI: 10.1002/cphc. 201200218.
(7) Yang, C. In PhD Thesis "HIGH-PERFORMANCE VISIBLY TRANSPARENT LUMINESCENT SOLAR CONCENTRATORS". Michigan State University 2022.
(8) Zhao, Y.; Lunt, R. R. Transparent Luminescent Solar Concentrators for Large-Area Solar Windows Enabled by Massive Stokes-Shift Nanocluster Phosphors. Adv Energy Mater 2013, 3 (9), 1143-1148. DOI: 10.1002/aenm.201300173.
(9) Kuttipillai, P. S.; Yang, C. C.; Chen, P.; Wang, L. L.; Bates, M.; Lunt, S. Y.; Lunt, R. R. Enhanced Electroluminescence Efficiency in Metal Halide Nanocluster Based Light Emitting Diodes through Apical Halide Exchange. Acs Appl Energ Mater 2018, 1 (8), 3587-3592. DOI: 10.1021/acsaem.8b00837.
(10) Sun, W.; Guo, S. G.; Hu, C.; Fan, J. L.; Peng, X. J. Recent Development of Chemosensors Based on Cyanine Platforms. Chem Rev 2016, 116 (14), 77687817. DOI: 10.1021/acs.chemrev.6b00001.
(11) Samanta, A.; Vendrell, M.; Das, R.; Chang, Y. T. Development of photostable nearinfrared cyanine dyes. Chem Commun 2010, 46 (39), 7406-7408. DOI: 10.1039/c0cc02366c.
(12) Davydenko, I.; Barlow, S.; Sharma, R.; Benis, S.; Simon, J.; Allen, T. G.; Cooper, M. W.; Khrustalev, V.; Jucov, E. V.; Castaneda, R.; et al. Facile Incorporation of $\mathrm{Pd}(\mathrm{PPh} 3)(2) \mathrm{Hal}$ Substituents into Polymethines, Merocyanines, and Perylene Diimides as a Means of Suppressing Intermolecular Interactions. J Am Chem Soc 2016, 138 (32), 10112-10115. DOI: 10.1021/jacs.6b06361.
(13) Zhao, Y. M.; Meek, G. A.; Levine, B. G.; Lunt, R. R. Near-Infrared Harvesting Transparent Luminescent Solar Concentrators. Adv Opt Mater 2014, 2 (7), 606611. DOI: 10.1002/adom. 201400103.
(14) Yang, C. C.; Zhang, J.; Peng, W. T.; Sheng, W.; Liu, D. Y.; Kuttipillai, P. S.; Young, M.; Donahue, M. R.; Levine, B. G.; Borhan, B.; et al. Impact of Stokes Shift on the Performance of Near-Infrared Harvesting Transparent Luminescent Solar Concentrators. Sci Rep-Uk 2018, 8. DOI: ARTN 1635910.1038/s41598-018-34442-3.
(15) Peng, X. J.; Song, F. L.; Lu, E.; Wang, Y. N.; Zhou, W.; Fan, J. L.; Gao, Y. L. Heptamethine cyanine dyes with a large stokes shift and strong fluorescence: A paradigm for excited-state intramolecular charge transfer. J Am Chem Soc 2005, 127 (12), 4170-4171. DOI: 10.1021/ja043413z.
(16) Pascal, S.; Haefele, A.; Monnereau, C.; Charaf-Eddin, A.; Jacquemin, D.; Le Guennic, B.; Andraud, C.; Maury, O. Expanding the Polymethine Paradigm: Evidence for the Contribution of a Bis-Dipolar Electronic Structure. J Phys Chem A 2014, 118 (23), 4038-4047. DOI: 10.1021/jp501358q.
(17) Das, R. K.; Samanta, A.; Ha, H. H.; Chang, Y. T. Solid phase synthesis of ultraphotostable cyanine NIR dye library. Rsc Adv 2011, 1 (4), 573-575. DOI: 10.1039/c1ra00498k.
(18) Le Guennic, B.; Jacquemin, D. Taking Up the Cyanine Challenge with Quantum Tools. Accounts Chem Res 2015, 48 (3), 530-537. DOI: 10.1021/ar500447q.
(19) Bassal, F.; Laurent, A. D.; Le Guennic, B.; Jacquemin, D. Exploring the excitedstates of squaraine dyes with TD-DFT, SOS-CIS(D) and ADC(2). Dyes Pigments 2017, 138, 169-175. DOI: 10.1016/j.dyepig.2016.11.046.
(20) Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 2004, 393 (1-3), 51-57. DOI: 10.1016/j.cplett.2004.06.011.
(21) Ufimtsev, I. S.; Martinez, T. J. Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics. J Chem Theory Comput 2009, 5 (10), 2619-2628. DOI: 10.1021/ct9003004.
(22) Isborn, C. M.; Luehr, N.; Ufimtsev, I. S.; Martinez, T. J. Excited-State Electronic Structure with Configuration Interaction Singles and Tamm-Dancoff TimeDependent Density Functional Theory on Graphical Processing Units. J Chem Theory Comput 2011, 7 (6), 1814-1823. DOI: 10.1021/ct200030k.
(23) Liu, X. G.; Xu, Z. C.; Cole, J. M. Molecular Design of UV-vis Absorption and Emission Properties in Organic Fluorophores: Toward Larger Bathochromic Shifts, Enhanced Molar Extinction Coefficients, and Greater Stokes Shifts. J Phys Chem C 2013, 117 (32), 16584-16595. DOI: 10.1021/jp404170w.
(24) Siebert, M. R.; Tantillo, D. J. Fundamental properties of N-alkenylaziridinesimplications for the design of new reactions and organocatalysts. J Phys Org Chem 2011, 24 (6), 445-449. DOI: 10.1002/poc. 1776.
(25) Dong, V. M.; Fiedler, D.; Carl, B.; Bergman, R. G.; Raymond, K. N. Molecular recognition and stabilization of iminium ions in water. J Am Chem Soc 2006, 128 (45), 14464-14465. DOI: 10.1021/ja0657915.
(26) Zhang, J.; Moemeni, M.; Yang, C. C.; Liang, F. C.; Peng, W. T.; Levine, B. G.; Lunt, R. R.; Borhan, B. General strategy for tuning the Stokes shifts of near infrared cyanine dyes. J Mater Chem C 2020, 8 (47), 16769-16773. DOI: 10.1039/dOtc03615c.
(27) Zhang, Q.; Kan, B.; Liu, F.; Long, G. K.; Wan, X. J.; Chen, X. Q.; Zuo, Y.; Ni, W.; Zhang, H. J.; Li, M. M.; et al. Small-molecule solar cells with efficiency over 9%. Nat Photonics 2015, 9 (1), 35-41. DOI: 10.1038/Nphoton.2014.269.
(28) Xiao, Z.; Jia, X.; Ding, L. M. Ternary organic solar cells offer 14\% power conversion efficiency. Sci Bull 2017, 62 (23), 1562-1564. DOI: 10.1016/j.scib.2017.11.003.
(29) Meng, L. X.; Zhang, Y. M.; Wan, X. J.; Li, C. X.; Zhang, X.; Wang, Y. B.; Ke, X.; Xiao, Z.; Ding, L. M.; Xia, R. X.; et al. Organic and solution-processed tandem solar cells with 17.3\% efficiency. Science 2018, 361 (6407), 1094-+. DOI: 10.1126/science.aat2612.
(30) Xiao, Z.; Jia, X.; Li, D.; Wang, S. Z.; Geng, X. J.; Liu, F.; Chen, J. W.; Yang, S. F.; Russell, T. P.; Ding, L. M. 26 mA cm(-2) J(sc) from organic solar cells with a lowbandgap nonfullerene acceptor. Sci Bull 2017, 62 (22), 1494-1496. DOI: 10.1016/j.scib.2017.10.017.
(31) Wang, J. Y.; Zhang, J. X.; Xiao, Y. Q.; Xiao, T.; Zhu, R. Y.; Yan, C. Q.; Fu, Y. Q.; Lu, G. H.; Lu, X. H.; Marder, S. R.; et al. Effect of Isomerization on HighPerformance Nonfullerene Electron Acceptors. J Am Chem Soc 2018, 140 (29), 9140-9147. DOI: 10.1021/jacs.8b04027.
(32) Yang, C. H.; Moemeni, M.; Bates, M.; Sheng, W.; Borhan, B.; Lunt, R. R. HighPerformance Near-Infrared Harvesting Transparent Luminescent Solar Concentrators. Adv Opt Mater 2020, 8 (8). DOI: ARTN 190153610.1002/adom. 201901536.
(33) Liu, G. J.; Zhao, H. G.; Diao, F. Y.; Ling, Z. B.; Wang, Y. Q. Stable tandem luminescent solar concentrators based on CdSe/CdS quantum dots and carbon dots. J Mater Chem C 2018, 6 (37), 10059-10066. DOI: 10.1039/c8tc02532k.
(34) Mateen, F.; Ali, M.; Lee, S. Y.; Jeong, S. H.; Ko, M. J.; Hong, S. K. Tandem structured luminescent solar concentrator based on inorganic carbon quantum dots and organic dyes. Sol Energy 2019, 190, 488-494. DOI: 10.1016/j.solener.2019.08.045.
(35) Liu, C.; Li, B. Multiple dyes containing luminescent solar concentrators with enhanced absorption and efficiency. J Optics-Uk 2015, 17 (2). DOI: Artn 02590110.1088/2040-8978/17/2/025901.
(36) Banal, J. L.; Zhang, B. L.; Jones, D. J.; Ghiggino, K. P.; Wong, W. W. H. Emissive Molecular Aggregates and Energy Migration in Luminescent Solar Concentrators. Accounts Chem Res 2017, 50 (1), 49-57. DOI: 10.1021/acs.accounts.6b00432.
(37) Zhang, B. L.; Banal, J. L.; Jones, D. J.; Tang, B. Z.; Ghiggino, K. P.; Wong, W. W. H. Aggregation-induced emission-mediated spectral downconversion in luminescent solar concentrators. Mater Chem Front 2018, 2 (3), 615-619. DOI: 10.1039/c7qm00598a.
(38) Goetzberger, A.; Greubel, W. Solar-Energy Conversion with Fluorescent Collectors. Appl Phys 1977, 14 (2), 123-139. DOI: Doi 10.1007/Bf00883080.
(39) Kirakci, K.; Kubat, P.; Dusek, M.; Fejfarova, K.; Sicha, V.; Mosinger, J.; Lang, K. A Highly Luminescent Hexanuclear Molybdenum Cluster - A Promising Candidate toward Photoactive Materials. Eur J Inorg Chem 2012, (19), 3107-3111. DOI: 10.1002/ejic. 201200402.
(40) Sarma, T.; Panda, P. K.; Setsune, J. Bis-naphthobipyrrolylmethene derived BODIPY complex: an intense near-infrared fluorescent dye. Chem Commun 2013, 49 (84), 9806-9808. DOI: 10.1039/c3cc44834g.
(41) Yang, C. C.; Sheng, W.; Moemeni, M.; Bates, M.; Herrera, C. K.; Borhan, B.; Lunt, R. R. Ultraviolet and Near-Infrared Dual-Band Selective-Harvesting Transparent

Luminescent Solar Concentrators. Adv Energy Mater 2021, 11 (12). DOI: ARTN 200358110.1002/aenm. 202003581.
(42) Michie, M. S.; Gotz, R.; Franke, C.; Bowler, M.; Kumari, N.; Magidson, V.; Levitus, M.; Loncarek, J.; Sauer, M.; Schnermann, M. J. Cyanine Conformational Restraint in the Far-Red Range. J Am Chem Soc 2017, 139 (36), 12406-12409. DOI: 10.1021/jacs.7b07272.
(43) Matikonda, S. S.; Hammersley, G.; Kumari, N.; Grabenhorst, L.; Glembockyte, V.; Tinnefeld, P.; Ivanic, J.; Levitus, M.; Schnermann, M. J. Impact of Cyanine Conformational Restraint in the Near-Infrared Range. J Org Chem 2020, 85 (9), 5907-5915. DOI: 10.1021/acs.joc.0c00236.
(44) Yang, Q. L.; Ma, Z. R.; Wang, H. S.; Zhou, B.; Zhu, S. J.; Zhong, Y. T.; Wang, J. Y.; Wan, H.; Antaris, A.; Ma, R.; et al. Rational Design of Molecular Fluorophores for Biological Imaging in the NIR-II Window. Adv Mater 2017, 29 (12). DOI: ARTN 160549710.1002/adma. 201605497.

Chapter III: Discovery of a Novel Cyanine Degradation Pathway

III-1 Introduction to cyanine fluorescent dyes

Organic fluorescent dyes have grown to be instrumental in applications including but not limited to: cellular biology, biomedical drug design, advanced materials engineering, as well as energy capture/conversion. ${ }^{1-8}$ The ability to synthetically tune structure and in turn, photophysical properties of a chromophore to suit a particular application, are crucial to the continuation of the growth of the field. Among one of the most widely utilized chromophores, cyanine dyes, have caught the attention of many different disciplines, due to their unique structural characteristics. ${ }^{9-12}$ Cyanines in particular boast a high relative brightness, and have significant advantages as a result of their ease of synthetic tunability, as well as an electronic push-pull structure that gives them the absorption and emission wavelength ranging from ultraviolet (UV) to deep farred. Cyanine dyes are typically classed based on the number of methine carbons between the two indolinium based heterocyclic units connecting the methine chain (Figure III-1).

Figure III-1. Structure of famous cyanine dyes

In general, the monomethine (Cy1) and trimethine (Су3) cyanines absorb and emit light in the UV to visible range of the spectrum, while pentamethine (Сy5) and heptamethine (Cy7) cyanines absorb and emit in the near infrared region (NIR). More specifically, pentamethine and heptamethine cyanines find a diverse range of applications both for in vivo imaging and photodynamic therapy owing to their NIR spectrum profile displaying deep tissue penetration with minimal autofluorescence. ${ }^{4,13-17}$ Additionally, the NIR cyanines (Cy5 \& Cy7) have become a focus for solar energy harvesting, as a result of a high flux of solar radiation in this region of the spectrum. ${ }^{2,7,18-21}$

III-2 Photo-degradation pathways of cyanine dyes

The stability of the cyanine fluorophores however, tends to suffer as a result of the reactivity of their methine backbone with other reactive species. In particular, the oxidative degradation of cyanines involving singlet oxygen has been of intense interest in the last decades and different studies have reported the oxidative cleavage of the methine chain to yield carbonyl containing fragments (Figure III-2). ${ }^{22-24}$

Figure III-2. Cyanine photolysis products
As shown in Figure III-3, in 2015, Schnermann and co-workers ${ }^{25}$ reported an experimental and theoretical study on the photooxidative cleavage of heptamethine cyanines. The degraded fragments of this reaction were identified via mass spectroscopy,
demonstrating that the photolysis products were obtained only in the presence of a source of singlet oxygen (generated chemically or via photosensitization).

Figure III-3. Mechanism and degradation products of cyanine photooxidation
Understanding the basis of cyanines degradation through photooxidation has opened development of novel methods. Recent literature reports highlight the photooxidative degradation process of heptamethine cyanines as the critical step for a NIR uncaging strategy relevant for biological studies. ${ }^{26}$ Alternatively, the oxidative cleavage of cyanines with respect to a reactive singlet oxygen (RSO) species, has led to the development of NIR fluorescent probes. ${ }^{27,} 28$ In more recent advancements, a phenomenon defined as "photoblueing" takes place through selective photodegradation using various wavelengths of light, cleaving away smaller cyanine fragments, demonstrating potential applications in super-resolution imaging and single-particle
tracking. ${ }^{29-31}$ This blue shifting effect is the result of phototruncation of two methine carbons from the cyanine's unsaturated backbone, initiated by a singlet oxygen species (Figure III-4).

Figure III-4. Photoblueing results from two carbon truncation
In 2021, Schnermann and co-workers proposed a detailed mechanism for this transformation. ${ }^{32}$ As shown in Figure III-5, This mechanism initiates with attack by singlet oxygen to the C 1 position of Cy5 to generate a peroxy intermediate III-10 which as described before, could generate fragments III-4 and III-7 (path A) or carry out a hydration to yield the hydroperoxyethanol III-11 (path B). Attack from the uncharged nitrogen to the iminium side, led to the formation of a four member intermediate in III-12. Elimination of hydroperoxyethenol in the final step resulted in a truncated trimethine cyanine as the final product. Initially, the isolated yield of the photo-truncated cyanine (Cy5) in this reaction was less than 2%, however, in this recently published report, investigators optimized the reaction increasing the pH to 9.5 and improving the yield to 17.2%.

Figure III-5. Photodegradation mechanism (by Schnermann and co-workers)
A separate published work by Lee and co-workers in the same year, applied the cyanine photoconversion for single-particle tracking in a living cell. ${ }^{33}$ In this study, they showed another mechanistic approach to cyanine phototruncation. As shown in Figure III-6, the carbonyl products III-14 and III-15 were formed through the previously described mechanism. The conversion of these aldehydes to their respective Fischer base III-16 is not clear, however they hypothesized a retro-aldol-type carbon-carbon bond cleavage or
a ROS-mediated decarbonylation. The subsequent condensation of the Fisher base III16 with another aldehyde III-15 provides the Cy3 product.

Figure III-6. Photodegradation mechanism (by Lee and co-workers)
III-3 Discovery and development of a non-photoactivated, oxygen-free degradation of cyanine dyes

III-3-1 An observation leads to novel cyanine degradation pathway

As described in Chapter II, we previously reported a general strategy to tune heptamethine cyanine's photophysical properties (Stokes shift) through the C4'substitution of an existing halogen with a variety of structurally diverse amines ${ }^{34}$ (Figure III-7a). In subsequent studies used to supplement the initial findings, we attempted to synthetically access the C3' (asymmetric) position, but to our surprise, instead of the expected aminated cyanine product, we observed truncation of the parent Cy7 heptamethine cyanine, to yield Cy5 and AsCy5 as the primary species (Figure III-7b).

B. Reaction for amination at C3' position

Figure III-7. A. Amination at C4' for tuning the Stokes shift, B. Amination at C3' resulted in corresponding Cy5 and As-Cy5 derivatives

These findings inspired us to investigate the working mechanism of this two-carbon truncation that converts the parent Cy7 to symmetrical Cy5 and smaller products. As outlined below, the heterocyclic indolinium "head groups", can be exchanged between dyes in the truncation process. Via separation and spectroscopic identification of key degradation products as well as synthesis of cyanines labeled with deuterium atoms we developed insight into the nature of the degradation pathways. This work is the first study of non-photoactivated, anaerobic, thermally driven degradation of a commonly utilized class of cyanines. The truncation reaction is also a practical and novel method for the conversion of heptamethine cyanine dyes to their corresponding symmetric and asymmetric pentamethine cyanine derivatives with high efficiency.

III-3-2 Identification and optimization of degradation products

The heptamethine cyanines Cy 7 and $\mathrm{C3}^{\prime}$-bromo substituted Cy 7 (C^{\prime} '-Br- Cy) were synthesized according to the procedure reported by Klan and co-workers ${ }^{35}$ (Figure III-8). The Zincke salts were generated from substituted pyridine and react with heterocycle head groups to make the cyanines.

Figure III-8. General synthesis of heptamethine cyanines
As shown in Figure III-7B, we initially observed this two carbon truncation while attempting the amination of the asymmetrically halogenated heptamethane cyanines (C^{\prime} '-Br-Cy7), by subjecting them to previously employed methods: nucleophilic addition of an amine under basic conditions, (NHEt $2-10$ equiv, DIPEA - 2 equiv, at $70^{\circ} \mathrm{C}$ for 24 h). Upon the reaction of the $\mathrm{C}^{\prime}-\mathrm{Br}-\mathrm{Cy} 7$ under these conditions, we observed two compounds with the mass of $m / z: 461.1590$ and $m / z: 387.1438$ corresponding to $\mathrm{C}^{\prime}-\mathrm{Br}-$ Cy5 and As-Br-Cy5, respectively (Figure III-7B). These fragments were subsequently isolated as the main products and their structures were assigned based on NMR and

Mass spectroscopies. Notably, apparent dehalogenation of C^{\prime} - $\mathrm{Br}-\mathrm{Cy} 7$ to Cy 7 was also observed under these conditions. For further studies, we chose heptamethine (Cy7) in order to establish a generalized approach for our degradation studies. Degradation of Cy7 under the abovementioned conditions led to fragments with observed masses of m / z : 383.2477 for Cy5 and m/z: 309.2327 for AsCy5. These were obtained as primary degradation products (Figure III-9).

Figure III-9. Study the conversions on Cy7 to investigate the generality of this reaction These findings led us to investigate a series of reaction conditions using Cy7 to better comprehend the role of each of the reaction parameters in this unique transformation. All reactions were degassed and run in the dark under. Argon atmosphere. First, we omitted the tertiary amine (DIPEA) and ran the reaction using only 10 equivalents of diethylamine. These results are summarized in Table III-1. Interestingly, not only we saw a change in the ratio of AsCy5/ Cy5 (2.75:1) but also an improvement in the yield of the previously isolated AsCy5 (Table III-1, entry 2). Next, we lowered the temperature from $70^{\circ} \mathrm{C}$ to room temperature. The same products were formed but more
slowly and in a ratio of AsCy5/ Cy5 (3.3:1). Extending the reaction time we were able to achieve a yield of 41% for AsCy5 (Table III-1, entry 3).

Table III-1. Reaction optimization with secondary amine

[a] The reactions was done in sealed tube, under argon, and followed by LC-MS.
Increasing the reaction time also led interestingly to the conversion of AsCy5 to AsCy3 and subsequently to AsCy1 (Figure III-10). The degradation products AsCy5, AsCy3 and AsCy1 were isolated and characterized by NMR and mass spectroscopy. As discussed above, the conversion of Cy7 to AsCy5 is higher yielding at room temperature. At higher temperatures, AsCy5 converts to smaller fragments AsCy3 and AsCy1 faster, reducing the isolated yield of AsCy5. As shown in Figure III-10 (dashed box), there were two hypothesized key fragments III-22 and III-23 that were present in the crude reaction mass, but were not isolable presumably due to their limited formation, and/or instability
during purification. The structures were hypothesized according to the mass of the compounds.

Figure III-10. Identified compounds from cyanine truncation with secondary amine
To extend the generality of our method, we additionally studied a variety of secondary amines. For instance, as listed in Table III-1 (entry 4), when the amine was changed to morpholine we successfully isolated and characterized the corresponding M -As-Cy5 and M-As-Cy3 (Reaction details in the experimental section).

In summary, use of a 2° amine instead of a 3° amine, along with decreasing the temperature to room temperature with longer reaction time, improved the yield of AsCy5. On the other hand, under identical conditions at higher temperature, AsCy5 converts to the smaller fragments AsCy3 and AsCy1 with a higher rate. Optimization studies have enabled us to selectively favor the formation of the asymmetric-aminated hemi-cyanines. We next examined the role of a tertiary amine to optimize conversion to symmetrically
substituted truncated structures. Reacting heptamethine Cy7 with 10 equivalents of DIPEA disabled the formation of $\operatorname{AsCy5,~but~improved~the~yield~of~Cy5.~As~listed~in~Table~}$ III-2, in our initial attempt, after 60 hours, we isolated 18\% of Cy5. This represented a 7\% improvement relative to using the secondary and tertiary amine together (entry 1). There were other compounds in this reaction, including but not limited Cy3 which were isolated and characterized, in addition to masses suggesting III-22 and III-23 species.

Table III-2. Reaction optimization with tertiary amine

	 Cy7		$\frac{\mathrm{R}_{3} \mathrm{~N}}{$ solvent temp., time }	 1	
Entry ${ }^{\text {a }}$	Tertiary Amine	Solvent	Temp.	Time	Product (yield \%)
1	DIPEA	ACN	$70^{\circ} \mathrm{C}$	60 h	Cy5 (18), Су3 ${ }^{\text {b }}$
2	DIPEA	ACN	$100^{\circ} \mathrm{C}$	30 h	Cy5 (44), Cy3 ${ }^{\text {b }}$
3	DIPEA	ACN	$180{ }^{\circ} \mathrm{C}$	1 h	Cy5 (38), Су3 (8)
4	DIPEA	EtOH	$70^{\circ} \mathrm{C}$	60 h	Cy5 ${ }^{\text {b }}$
5	DIPEA	DCM	$70^{\circ} \mathrm{C}$	60 h	Cy5 (26), Су3 ${ }^{\text {b }}$
6	Quinuclidine	ACN	$70^{\circ} \mathrm{C}$	60 h	Cy5 (5), Су3 (15)
7	Quinuclidine	ACN	$100^{\circ} \mathrm{C}$	36 h	Cy5 (10), Су3 (21)

[a] The reaction was done in sealed tube, under argon, and followed by LC-MS. [b] trace amount.

Increasing the temperature to $100^{\circ} \mathrm{C}$, led to the full conversion of Cy7 in 30 hours with substantial improvement in the yield for Cy5 (44\%). Increasing the temperature to $180^{\circ} \mathrm{C}$ led to complete degradation of Cy7 in 1 hour with 38% yield of Cy5. As listed in Table III-2, using 10 equivalents of DIPEA, we observed the partial formation of Cy3 in the reaction (up to 8% at $180^{\circ} \mathrm{C}$). We also screened various solvents to observe any influence on the reaction. Switching acetonitrile to a protic solvent such as ethanol decreased the yield of Cy5 dramatically. For instance, at $70^{\circ} \mathrm{C}$ using 10 equivalents DIPEA in ethanol provided a trace amount of Cy5. While the reaction in dichloromethane had improved the yield of Cy5 to 26% (Table III-2, entry 5). Having changed the solvent and temperature, the next parameter was varying the nature of the tertiary amine. The reaction with quinuclidine finished in 36 hours at $100^{\circ} \mathrm{C}$ and both Cy5 (10\%) and Cy3 (21\%) were observed as the products. Interestingly, the major product was to Cy3, not Cy5. To summarize the effect of tertiary amines, we saw that different tertiary amines could convert Cy7 to Cy5 (DIPEA); similarly, we can also choose to convert Cy7 to Cy3 as the favored product in the presence of quinuclidine. On the other hand, we studied the generality of this conversion by testing cyanines with different backbones (Cy7.5) in the presence of DIPEA and we observed the same pattern of the reaction with Cy5.5 being the major product (Figure III-11).

Figure III-11. Conversion of Cy7.5 in the presence of tertiary amine (DIPEA)
The degradation pattern of di-substituted cyanine III-24 was also studied. As shown in Figure III-12, the mass of the methylated Cy5 III-25 was observed while the bromo substituted Cy5 was not observed. Compound III-25 could not be isolated as it was produced in low amounts, but as shown previously, thde asymmetric brominated Cy7 (C3'-Br-Cy7) converts to the symmetric C3'-Br-Cy5 (Figure III-7B), therefore the methyl substitution would present at C^{\prime} position. In this reaction after 16 hours, Cy3 was the dominant signal in mass analysis. Noteworthy, there were other masses that we could not identify.

Figure III-12. Conversion of di-substituted cyanine

These optimizations take advantage of the unique cyanine degradation pathways, and can easily serve as a synthetic handle to transform traditional heptamethine cyanines into a wide series of cyanines and hemi-cyanines with varying degrees of conjugation, and maximum absorption/emission that can extend the wavelength range from UV to NIR. The absorption/emission of all convertible cyanines from the blue shifted AsCy1 to the red shifted Cy7 is shown in Figure III-13.

Figure III-13. Normalized absorption and emission of all cyanine's degradation fragments

Figure III-13 (cont'd)

Figure III-13 (cont'd)

III-3-3 Investigation into the mechanism of cyanine degradation

The non-oxidative degradation of cyanines has not been reported and thus its mechanism would be of particular interest and significance. Initially we studied the mechanism for the conversion of Cy7 to the series of aminated hemi-cyanines. A series of studies were conducted to deduce whether Cy7 directly converts to AsCy3 and AsCy1, or alternatively, via a domino reaction, it first generates AsCy5 and subsequently AsCy5 converts to AsCy3, and further degradation leads to AsCy1. There are two main pieces of evidence in support of the former mechanistic hypothesis; 1) based on mass spectral data, AsCy5 is first formed from Cy7, and further less conjugated asymmetric Cy derivatives are generated more slowly (Figure III-10). 2) Continuation of the reaction after full conversion of Cy7, results in the yield and ratio between AsCy5, AsCy3 and AsCy1 to swing in favor of the less conjugated derivatives, pointing in the direction that AsCy5 is converting to AsCy3, which would then further convert to AsCy1.

To interrogate the site at which amine reacts and carbons that are lost, we resorted to deuterium labeling studies. For the synthesis of the deuterated heptamethine cyanine, a fully deuterated pyridine III-26 was converted to its Zinke Salt precursor III-27, followed by nucleophilic ring opening to yield $\mathrm{Cy} 7-\mathrm{D}_{5}$ (Figure III-14a). The deuterated cyanine was subsequently heated in the presence of diethylamine in acetonitrile as before. The asymmetric hemi-cyanine (AsCy5-D5) was isolated and identified by mass spectroetry and NMR (Figure III-14b). Retention of all five deuterium atoms is evidence for $\mathrm{C}^{\prime}-\mathrm{C} 2^{\prime}$ methine cleavage, following $\mathrm{C}^{\prime}{ }^{\prime}$ attack by the amine. In isotopic studies, the AsCy3-D3 was isolated and characterized, suggesting that the secondary amine would have attacked the C^{\prime} ' methine position of AsCy5 derivative to neutralize the charge, and later, the amine's nitrogen atom would donate its lone pair of electrons to cleave the C2'- C3' bond. Perhaps the same steps would happen to convert the AsCy3-D D_{3} to AsCy1-D ${ }_{1}$, since we isolated and characterized the AsCy1-D (Figure III-14b).
A. Synthesis of deuterated Cy7

\qquad
B. Deuterium isotopic tracing studies

Figure III-14. A. Synthesis of Cy7-D ${ }_{5}$, B. Conversion of deuterated Cy7 with secondary amine

Deuterium isotopic labeling studies, suggest that the amine attacks the $\mathrm{C} 2^{\prime}$ position, which upon the engagement of the nitrogen atom leads to the cleavage of the C1'- C2'. This cleavage requires a proton exchange to release the Fisher base head group. To discover the most electron dense carbon capable of the required proton exchange, we conducted a deuterium exchange study to identify the most acidic protons. Subsequently, we heated Cy7 in acetonitrile in presence of 20 equivalents of $\mathrm{D}_{2} \mathrm{O}$ and isolated and characterized (NMR and ESI-MS) the C1'-deutrated-Cy7 (III-28) as the proton exchanged cyanine product (Figure III-15A).
A.

Figure III-15. A. Deuterium exchange in $\mathrm{D}_{2} \mathrm{O}, \mathrm{B}$. Deuterium exchange in $\mathrm{D}_{2} \mathrm{O}$ and DIPEA

The same study performed in the presence of the 10 equivalents of DIPEA, showed the mass of the C1'-deutrated-Cy7 (III-28) and C1'-deutrated-Cy5 (III-29) in addition to Cy5 (Figure III-15B). Extended heating shows a small amount of exchange in other sites, but the C1'-exchange occurred at a faster rate.

These experimental results helped us to proposed a mechanism for the conversion of Cy7 to the series of aminated hemi-cyanines (Figure III-16). Based on deuterium isotope labeling and species isolated during purification, it is likely that a secondary amine would attack the C2' position of the methine backbone, and push the pi electrons towards the indolinium end, neutralizing the charged on the nitrogen atom (also, DFT computational modeling (EDF2/6-31G*/SM8 $\mathrm{CH}_{3} \mathrm{CN}$) finds a free energy preference of $5.8 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}^{\prime}{ }^{\prime}$ vs C^{\prime} attack on Cy7) (insert the computational). Following that, the proton transfer likely happens at $\mathrm{C1}^{\prime}$ position, according to our deuterium exchange study, to yield III-31. Subsequently, the lone pair of the amine would regenerate the conjugated cyanine by breaking the $\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}$ bond, yielding AsCy 5 and the Fischer base III-23 (Figure III-16). AsCy5 could convert to the AsCy3 in a similar fashion. The secondary amine would attack the C3' position (shown on the structure) of the methine backbone, and push pi electrons towards the diethyliminum end, neutralizing the charge on the nitrogen atom. Upon proton transfer, the lone pair of the amine would reestablish the conjugated cyanine that leads to formation of AsCy3. The same scenario is possible for truncation of AsCy3 to AsCy1.

Figure III-16. Proposed mechanism of cyanine conversion with secondary amines
Next, we probed the mechanism for the conversion of Cy7 to symmetric Cy5. The net change in this transformation is the loss of ethyne, which from a thermodynamic perspective cannot be supported. We first subjected, a Cy7-D5 with DIPEA under the same conditions as previously employed. We successfully isolated and characterized the centrally deuterated pentamethine $C y 5-D_{3}$ which presumably is derived from the cleavage of the C2' and C3' carbons from the backbone chain (Figure III-17).

Figure III-17. Conversion of deutrated Cy7 with tertiary amine (DIPEA)

In our previous attempts to understand the mechanism of cyanine's degradation in the presence of secondary amines, we observed cleavage at $\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}$ along with the formation of Fisher base III-23. A potential process for the conversion of Cy7 to Cy5 could be the generation of Fisher base III-23 through the aforementioned nucleophilic attack, and subsequent attack of the Fisher base to form the shortened cyanine. To support the idea of the heterocyclic indole (III-23) breaking off from the methine chain and reattacking, we reacted a $1: 1$ mixture of symmetric cyanines; Cy7 and Cy7.5 with DIPEA and we were pleased to observe the mass of the scrambled heptamethine cyanine with mixed head groups, (i.e. mismatched indole cyanines), showing a clear m / z corresponding to Cy7.25 and also, recombination chain shortening which led to formation of Cy 5.25 (Figure III-18). This observation pointed us in the direction of the indole unit playing a role in displacement and re-appendage to the cyanine chain to facilitate formation of scrambled cyanines.

Cy7.5

(Note: Mass signals for Cy5, Cy5.5, Head group and starting materials were observed as wel)
Figure III-18. Recombinative chain shortening

Our initial hypothesis involved attack of the amine to the methine chain of the cyanine, followed by formation of a cyclobutane intermediate which would undergo the elimination of acetylene, leading to the formation of a symmetric Cy5. This proposed mechanism has two primary issues, 1) From an energetic standpoint, thermochemistry (and calculations) predict the actual loss of acetylene gas would be uphill in energy by $30-40 \mathrm{kcal} / \mathrm{mol}$, and 2) detection and conformation of the presence of acetylene via NMR and HRMS was unsuccessful. An alternate hypothesis is supported by two facts: first of which being the observation of the indolinium head group cleavage, originating from the parent heptamethine chain between $\mathrm{C1}^{\prime}-\mathrm{C}^{\prime}$ and, second, the observation of a small amount of acetaldehyde by NMR study, during the course of the reaction. In this instance, a water molecule (water was not intentionally added to the reaction directly, however a trace amount of water could have been introduced via solvent, amine or other reagents) would attack the C^{\prime} ' methine carbon generating the III-34, after a proton transfer (Figure III-19). Subsequently, the lone pair of oxygen would donate its electrons, facilitating the formation of the conjugated cyanine that leads to the cleavage of the $C 1^{\prime}-C 2^{\prime}$ bond. This then generates aldehyde III-35, and Fischer base III-23. At this step, the Fischer base could act as a nucleophile, attacking the B-position of the carbonyl generating Cy5 via elimination of acetaldehyde. Hydration of acetylene could effectively pay for the release of $(\mathrm{CH})_{2}$ as its exothermicity ($33 \mathrm{kcal} / \mathrm{mol}$) compensates for what would be a high energy reaction.

Figure III-19. Proposed mechanism of cyanine conversion with tertiary amines
Lastly, we proposed a mechanism for the truncation of the heptamethine Cy 7 to a symmetric trimethine Cy3. The first part of the mechanism is analogous to that described for the truncation of Cy7 to AsCy5 (Figure III-16) and Cy7 to Cy5 (Figure III-19) in which the nucleophilic attack, (amine or water) would lead to generation of Fischer's base III23. With the exception of generating the free indole unit, (Fisher's base) it could undergo an attack to a different Cy7 backbone to form III-36 (Figure III-20). Presumably of the indole attacking the C^{\prime} ' carbon would generate an intermediate with three indolinium head groups (the relative m / z for this compound was observed in the reaction mass spectroscopy analysis) that upon proton transfer, converts to the observed trimethine Cy3 by donation of the nitrogen atom lone pair from one of the nearby head groups, thereby cleaving the C2'- C3' bond (Figure III-20). Our mechanism is supported by observing the m / z of the Fisher base III-23 and the degraded fragment III-38 in the reaction mixture.

Figure III-20. Proposed mechanism of Cy7 conversion to Су3
In a supplementary experiment conducted to further support our mechanistic proposal, Cy7 was heated with a neutral indole containing an exocyclic methylene group (vs methyl) in acetonitrile in the absence of any amine. Interestingly, the trimethine cyanine Cy3 was observed as the main product (Figure III-21).

Figure III-21. Cy7 reaction with; A. neutralized head group, B. charged head group

In addition, to prove that a pentamethine Cy 5 is not an intermediate structure facilitating conversion of Cy 7 to Cy 3 , we subjected a pentamethine Cy5 cyanine under the same reaction conditions using tertiary amines, and did not observe formation of any trimethine cyanine in the reaction mixture (Figure III-22, Path A). To complement the prior experiment, Cy5 was heated with the neutral indole in acetonitrile in absence of the tertiary amine, and as expected, Cy3 was not observed (Figure III-22, Path B).

Figure III-22. Cy5 conversion reactions failed in different conditions
In summary, we have discovered a non-photoactivated, oxygen-free, degradative pathway for cyanine dyes that could have important ramifications for this family of molecules. During the reaction of heptamethine cyanines (Cy7) with amine, we obtained the two-carbon truncated Cy5 and AsCy5 as major products. We optimized the reaction and were able to develop a practical and novel method for conversion of heptamethine cyanine dyes to corresponding pentamethane and trimethine cyanine derivatives with high efficiency (Figure III-23).

--- $\overline{\text { Di }} \overline{\text { P̄ĒĀ }}$
$\mathrm{CH}_{3} \mathrm{CN}, 100^{\circ} \mathrm{C}$
Quinuclidine,
$\mathrm{CH}_{3} \mathrm{CN}, 100^{\circ} \mathrm{C}$

$\mathrm{Et}_{2} \mathrm{NH}$,
$\mathrm{CH}_{3} \mathrm{CN}, 70^{\circ} \mathrm{C}$

Figure III-23. Optimized cyanine conversion reactions
This is the first known transformation that provides products in good yields and can be tailored to produce a wide novel series of cyanines and hemi-cyanines with varying degrees of conjugation, with maximum absorption/emission that can extend the wavelength range from ultraviolet to near infrared (Figure III-24). We separated and identified all degraded species and have used deuterium label tracing studies and deuterium exchange studies in addition to other supporting experiment reactions to propose a multi-step mechanisms for the degradation to different fragments.

Figure III-24. top: Normalized absorptions (in DCM), bottom: Normalized emissions (in DCM)

III-3-4 Future work

While the factors governing cyanine degradation pathways is critical for further developments within this chromophore family, it is of equal importance to understand the mitigation of these pathways, in an effort to bolster stability when employed in various applications. As such, our group is actively seeking to design and synthesize various substituted cyanines which, based on our understanding, would potentially hinder the previously observed conversion. The basis for appropriate structural modifications, is our prior mechanistic studies where we observed nucleophilic attack at the C^{\prime} ', initiating truncation. Therefore, we aim to synthesize C2'-substituted cyanines to study the stability and propensity to degrade relative to the parent Cy7 (Figure III-25A). We also showed that the exchangeable proton at $\mathrm{C1}^{\prime}$ is essential for expelling Fisher base III-23, from which we hypothesize there may be valuable potential for studying C 1 '-substituted cyanines (Figure III-25B).
A.

B.

Figure III-25. Cyanine structures for stability study
As previously mentioned, NIR cyanines have been applied widely as fluorescent probes in biological cell imaging.4, 16, 17 The discovery of non-photoactivated cyanine degradation has inspired us to further probe this conversion in a cellular environment, in the hopes of developing a novel fluorescent probe with completely distinct fluorescent
emissions upon degradation. To mimic the cellular environment, we are actively studying cyanine truncation in the presence of various amino acids under different conditions.

III-4 Experimental section

III-4-1 General remarks

Molecular sieves ($4 \AA$) were dried at $160^{\circ} \mathrm{C}$ under 0.25 mtorr vacuum prior to use. Unless otherwise mentioned, solvents were purified as follows. CHCl_{3} (amylene stabilized) was purchased from Sigma Aldrich and incubated over 4Å MS for 48 h prior to use. Toluene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried over CaH_{2} whereas and $\mathrm{Et}_{2} \mathrm{O}$ were dried over sodium (dryness was monitored by colorization of benzophenone ketyl radical); they were freshly distilled prior to use. Acetonitrile (ACN) and dimethylformamide (DMF) for reactions was HPLC grade from Sigma-Aldrich.

NMR spectra were obtained using a 500 MHz or 600 MHz Varian NMR spectrometer and referenced using the residual ${ }^{1} \mathrm{H}$ peak from the deuterated solvent. Waters 2795 (Alliance HT) instrument was used for HRMS (ESI) analysis with polyethylene glycol (PEG-400-600) as a reference. UV-Vis was performed on Agilent Cary 100 series machine and PL was recorded on Fluorolog by ISA instrument. Quantum yield measurement was performed on absolute PL quantum yield spectrometer C11347 by Hamamatsu.

Column chromatography was performed using Silicycle $60 \AA$, 35-75 $\mu \mathrm{m}$ silica gel. Pre-coated 0.25 mm thick silica gel 60 F254 plates were used for analytical TLC and visualized using UV light.

III-4-2 General synthesis of substituted cyanines

III-39

$\mathrm{MeOH}, \mathrm{rt}, 16 \mathrm{~h}$

III-41
Substituted cyanines III-40 were synthesized according to the previous reported procedures ${ }^{35}$. To a solution of corresponding Zincke salt (1 equiv.) in methanol (7 $\mathrm{mL} / \mathrm{mmol}$ of Zincke salt), was added the and 4-bromoaniline (1.2 equiv.). The mixture was stirred at room temperature for 30 minutes. Then, 1,2,3,3-tetramethyl-3H-indolium iodide (3 equiv.) and NaOAc (6 equiv.) were added at once, at which point the mixture was stirred at this temperature for 16 hours. Then, diethyl ether ($21 \mathrm{~mL} / \mathrm{mmol}$ Zincke salt) was added, and the mixture was cooled at $-15^{\circ} \mathrm{C}$ for 3 hours. The resulting solid was collected by vacuum filtration, rinsed with water ($2 \times 10 \mathrm{~mL} / \mathrm{mmol}$ Zincke salt) followed by diethyl ether ($10 \mathrm{~mL} / \mathrm{mmol}$ Zincke salt). The crude solid was then purified using column chromatography ($100 \% \mathrm{DCM}$ gradually to $15 \% \mathrm{MeOH} / \mathrm{DCM}$).

III-4-2-1 Analytical Data

1,3,3-trimethyl-2-((1E,3E,5E)-7-((E)-1,3,3-trimethylindolin-2-ylidene)hepta-1,3,5-trien-1-yl)-3H-indol-1-ium iodide

The title compound was prepared according to the general procedure at 1 mmol scale. Product was isolated as a green solid ($455 \mathrm{mg}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol- d_{4}) $\delta 7.65(\mathrm{t}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18 (dd, $J=7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (td, $J=7.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.27(\mathrm{t}$, $J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.98(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 6 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol-d4) $\delta 173.79,157.83,153.00,144.41,142.34,129.72$, 126.94, 125.98, 123.26, 111.61, 104.79, 50.24, 31.45, 27.89.

2-((1E,3Z,5E)-3-bromo-7-((E)-1,3,3-trimethylindolin-2-ylidene)hepta-1,3,5-trien-1-yl)-

1,3,3-trimethyl-3H-indol-1-ium

The title compound was prepared according to the general procedure at 1 mmol scale. Product was isolated as a green solid ($577 \mathrm{mg}, 94 \%$).
${ }^{1} \mathrm{H}-$ NMR (500 MHz , Methanol- d_{4}): $\delta 8.16$ (dd, $J=14.2,12.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.95(\mathrm{~d}, J=13.10$ $\mathrm{Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dt}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.41-$ $7.34(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (d, J=13.0 Hz, 1H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}), 1.72(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right): \delta 177.33,173.28,155.16,153.74,146.93,144.46$, $143.94,143.13,142.03,129.96,129.68,127.59,125.73,123.47,123.26,116.34,112.98$, 111.34, 108.08, 101.56, 51.31, 50.06, 32.30, 31.30, 27.88, 27.54.

2-((1E,3Z,5E)-3-bromo-5-methyl-7-((E)-1,3,3-trimethylindolin-2-ylidene)hepta-1,3,5-trien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium iodide

The title compound was prepared according to the general procedure at 1 mmol scale. Product was isolated as a green solid ($314 \mathrm{mg}, 50 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 8.07(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.46(\mathrm{tm}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.22-$ $7.17(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}$, $3 H), 2.38(s, 3 H), 1.71(s, 6 H), 1.65(s, 6 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): δ 175.54, 172.04, 170.81, 156.09, 152.32, 145.95, 143.03, 142.46, 141.75, 140.45, 128.60, 128.36, 126.24, 124.08, 122.51, 122.29, 112.41, 111.07, 110.47, 103.65, 99.71, 49.79, 48.34, 32.10, 30.82, 27.15, 26.58, 13.65.

1,3,3-trimethyl-2-((1E,3E,5E)-7-((E)-1,3,3-trimethylindolin-2-ylidene)hepta-1,3,5-trien-1-yl-2,3,4,5,6-d d_{5}-3H-indol-1-ium iodide

The title compound was prepared according to the general procedure at 0.1 mmol scale. Product was isolated as a dark green solid ($24 \mathrm{mg}, 60 \%$)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, Methanol- $\left.\mathrm{d}_{4}\right): \delta 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.28-$ $7.22(\mathrm{~m}, 4 \mathrm{H}), 6.26(\mathrm{bs}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 6 \mathrm{H}), 1.69(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, Methanol- d_{4}) $\delta 172.34,155.69,151.11,143.01,140.95,128.31$, $125.15,124.55,121.87,110.23,103.32,48.83,30.25,26.57$.

HRMS (ESI+): calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{D}_{5} \mathrm{~N}_{2}{ }^{+}\left[\mathrm{M}-\mathrm{I}^{-}\right]: 414.2952$; found 414.2950

III-4-3 General Procedure for cyanine degradation

III-4-3-1 General Procedure: Cyanine degradation with amine and base

In a 15 mL sealed tube, was added dry acetonitrile (0.03 mM) and degassed under an atmosphere of argon for a period of 15 minutes. Then, the cyanine derivative (1 equiv.) was added, followed by the secondary amine (10 equiv.), base (2 equiv.) followed placing it in a pre-heated oil bath in the dark. The reaction mixture was stirred at the desired temperature for the designated time and monitored by LC-MS, before cooling to room temperature. The solvent was removed under reduced pressure, and the residue purified via column chromatography (100% DCM gradually to $10 \% \mathrm{MeOH} / \mathrm{DCM}$).

III-4-3-2 General Procedure: Cyanine degradation with amine only

In a 15 mL sealed tube, was added dry acetonitrile (0.03 mM) and degassed under an atmosphere of argon for a period of 15 minutes. Then, the cyanine derivative (1 equiv.) was added, followed by the secondary amine (10 equiv.) followed by capping the mixture prior to placing it in a pre-heated oil bath in the dark. The mixture was stirred at the desired
temperature for the designated time and monitored by LC-MS, before removing and cooling to room temperature. The solvent was removed under reduced pressure, and the residue directly purified via column chromatography (100\% DCM gradually to 10\% MeOH/DCM).

III-4-3-3 General Procedure: Cyanine degradation with base only

In a 15 mL sealed tube, was added dry acetonitrile (0.03 mM) and degassed under an atmosphere of argon for a period of 15 minutes. Then, the cyanine derivative (1 equiv.) was added, followed by the base (10 equiv.) followed by capping the mixture prior to placing it in a pre-heated oil bath in the dark. The mixture was stirred at the desired temperature for the designated time and monitored by LC-MS, before removing and cooling to room temperature. The solvent was removed under reduced pressure, and the residue directly purified via column chromatography (100\% DCM gradually to 10\% $\mathrm{MeOH} / \mathrm{DCM})$.

III-4-3-4 Analytical Data

1,3,3-trimethyl-2-((1E,3E)-5-((E)-1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-yl)$3 H$-indol-1-ium iodide

The title compound was isolated according to the general procedure III-4-3-3 with DIPEA as the base at 0.05 mmol scale, $100^{\circ} \mathrm{C}$ and 30 h . The product was isolated as dark blue solid (11.8 mg, 44\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right): \delta 8.23(\mathrm{t}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=12.4$ Hz, 1H), $6.28(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 6 \mathrm{H}), 1.68(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}\right.$, Methanol- d_{4}): δ 175.19, 155.44, 144.23, 142.52, 129.66, 126.68, 126.15, 123.27, 111.79, 104.41, 50.45, 31.71, 27.86 .

HRMS (ESI+): calcd. for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{2}{ }^{+}$[M-I-]: 383.2482; found 383.2477

1,1,3-trimethyl-2-((1E,3E,5E)-5-(1,1,3-trimethyl-1,3-dihydro-2H-benzo[e]indol-2-ylidene)penta-1,3-dien-1-yl)-1H-benzo[e]indol-3-ium iodide

The title compound was isolated according to the general procedure III-4-3-3 with DIPEA as the base at 0.05 mmol scale, $100^{\circ} \mathrm{C}$ and 40 h . The product was isolated as dark blue solid ($7.3 \mathrm{mg}, 24 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right): \delta 8.37(\mathrm{t}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $8.04-7.98(\mathrm{~m}, 4 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.46(\mathrm{~m} 2 \mathrm{H}), 6.68(\mathrm{t}, \mathrm{J}=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.33(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 2.02(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}\right.$, Methanol- d_{4}): $\delta 176.44,154.42,141.68,134.86,133.40,131.66$, 131.12, 129.42, 128.72, 126.04, 123.34, 111.92, 103.99, 52.35, 31.83, 27.49.

2-((1E,3Z)-3-bromo-5-((E)-1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium iodide

The title compound was isolated according to the general procedure III-4-3-3 with DIPEA as the base at 0.05 mmol scale, $70^{\circ} \mathrm{C}$ and 60 h . The product was isolated as a purple solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, Methanol- d_{4}): $\delta(\mathrm{ppm}) 8.54(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}) 7.31-7.24(\mathrm{~m}, 4 \mathrm{H}), 5.88(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 6 \mathrm{H}), 1.83$ $(s, 12 H)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Methanol-d4): $\delta(\mathrm{ppm}): 174.7,152.3,142.7,141.1,128.4,125.3$, $121.9,110.8,100.8,49.5,30.3,26.2$.

HRMS (ESI+): calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{BrN}_{2}{ }^{+}$[M-I-]: 461.1587; found 461.1590

Cy5-D3

1,3,3-trimethyl-2-((1E,3E)-5-((E)-1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-yl-2,3,4-d3)-3H-indol-1-ium iodide

The title compound was isolated according to the general procedure III-4-3-3 with DIPEA as the base at 0.05 mmol scale $100^{\circ} \mathrm{C}$ and 30 h . The product was isolated as a dark blue solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, Methanol- $\left.\mathrm{d}_{4}\right): \delta 7.49$ (dd, $\left.J=7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.41$ (td, $J=7.7,1.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 4 \mathrm{H}), 6.26(\mathrm{~s}, 2 \mathrm{H}), 3.62,(\mathrm{~s}, 6 \mathrm{H}), 1.73(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (126 MHz, Methanol- d_{4}): 173.95, 144.3, 142.5, 129.7, 126.2, 123.3, 111.8, 104.1, 50.5, 31.5, 27.8.

HRMS (ESI+): calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{D}_{3} \mathrm{~N}_{2}{ }^{+}$[M-I-]: 386.2670; found 386.2679

1,3,3-trimethyl-2-((E)-3-((E)-1,3,3-trimethylindolin-2-ylidene)prop-1-en-1-yl)-3H-indol-1ium iodide

The title compound was isolated according to the general procedure III-4-3-3 with quinuclidine as the base at 0.05 mmol scale, $100^{\circ} \mathrm{C}$ and 36 h . The product was isolated as pink-red solid (5.6 mg, 21\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right): \delta 8.56(\mathrm{t}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dt}, J=7.3,1.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45(\mathrm{td}, J=7.4,1,0 \mathrm{HZ}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}$, $2 H), 6.41(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 1.78(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (126 MHz, Methanol- d_{4}): $\delta 176.66,152.15,144.09,142.06,129.96,126.75$, $123.39,112.24,103.65,49.00,31.70,28.15$.

HRMS (ESI+): calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2}{ }^{+}$[M-I-]: 357.2325; found 357.2326
 iodide

The title compound was isolated according to the general procedure III-4-3-2 with diethylamine at 0.05 mmol scale, r.t. and 160 h . The product was isolated as pink-red solid ($8.9 \mathrm{mg}, 41 \%$).
${ }^{1} \mathrm{H}-$ NMR $\left(500 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right): \delta 7.91(\mathrm{t}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64(\mathrm{t}, \mathrm{J}=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 2 \mathrm{H})$, $6.48(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 6 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol-d4) $\delta 171.23,161.58,161.46,152.54,143.20,140.25$, 131.60, 128.12, 121.97, 121.68, 109.29, 107.98, 99.80, 51.99, 44.20,29.36, 26.77, 13.11, 11.45.

HRMS (ESI+): calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2}{ }^{+}$[M-I-]: 309.2325; found 309.2327

N-ethyl-N-((2E,4E)-6-((E)-1,3,3-trimethylindolin-2-ylidene)hexa-2,4-dien-1-ylidene-1,2,3,4,5- d_{5})ethanaminium iodide

The title compound was isolated according to the general procedure III-4-3-2 with diethylamine at 0.05 mmol scale, $70^{\circ} \mathrm{C}$ and 40 h . The product was isolated as red solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 7.42-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.01$ (s, $1 \mathrm{H}), 3.65(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 6 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 6 \mathrm{H})$.

HRMS (ESI+): calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{D}_{5} \mathrm{~N}_{2}{ }^{+}$[M-I-]: 314.2639; found 314.2638

M-As-Cy5

4-((2E,4E)-6-((E)-1,3,3-trimethylindolin-2-ylidene)hexa-2,4-dien-1-ylidene)morpholin-4ium iodide

The title compound was isolated according to the general procedure III-4-3-2 with morpholine at 0.05 mmol scale, r.t. and 20 h . The product was isolated as purple-red solid ($9 \mathrm{mg}, 40 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}): $\delta 7.96(\mathrm{t}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{t}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}$, $2 \mathrm{H}), 6.48(\mathrm{t}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-$ $3.80(\mathrm{~m}, 4 \mathrm{H}), 3.75-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 6 \mathrm{H})$.

HRMS (ESI+): calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}^{+}$[M-I-]: 323.2118; found 323.2124

As-Br-Cy5
N-((2Z,4E)-3-bromo-6-((E)-1,3,3-trimethylindolin-2-ylidene)hexa-2,4-dien-1-ylidene)-Nethylethanaminium

The title compound was isolated according to the general procedure III-4-3-2 with diethylamine at 0.05 mmol scale $70^{\circ} \mathrm{C}$ and 40 h . The product was isolated as a purple solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}): $\delta(\mathrm{ppm}) 8.04(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.82(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.24$ $(\mathrm{m}, 2 \mathrm{H}), 6.28(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H})$, $1.68(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{~m}, 6 \mathrm{H})$.

HRMS (ESI+): calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{BrN}_{2}{ }^{+}\left[\mathrm{M}^{-1}\right]$: 387.1430 ; found 387.1438

2-((1E,3E)-4-(diethylamino)buta-1,3-dien-1-yl)-1,3,3-trimethyl-3H-indol-1-ium iodide

The title compound was isolated according to the general procedure III-4-3-2 with diethylamine at 0.05 mmol scale, $70^{\circ} \mathrm{C}$ and 40 h . The product was isolated as an orange solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol- d_{4}) $\delta 8.24-8.15(\mathrm{t}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{ddd}, J=8.5,7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.24-$ $6.11(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol-d4) $\delta 175.72$, 162.97, 159.11, 130.87, 129.65, 125.75, 123.19, 117.18, 111.34, 108.26, 100.51, 53.24, 45.43, 30.78, 28.08, 14.55, 12.80.

HRMS (ESI+): calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2}{ }^{+}$[M-I-]: 283.2174; found 283.2179

N-ethyl-N-((E)-4-((E)-1,3,3-trimethylindolin-2-ylidene)but-2-en-1-ylidene-1,2,3d3)ethanaminium iodide

The title compound was isolated according to the general procedure III-4-3-2 with diethylamine at 0.05 mmol scale, $70^{\circ} \mathrm{C}$ and 40 h . The product was isolated as an orange solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- $\left.\mathrm{d}_{4}\right) \delta 7.45(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ $-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}), 1.37(\mathrm{t}, \mathrm{J}$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (201 MHz, Methanol-d4) $\delta 174.24,172.03,161.67(\mathrm{t}, \mathrm{J}=31.4 \mathrm{~Hz}), 161.14(\mathrm{t}, \mathrm{J}$ $=24.9 \mathrm{~Hz}), 157.24(\mathrm{t}, \mathrm{J}=22.8 \mathrm{~Hz}), 129.47,128.24,124.31,121.79,109.92,98.92,51.76$, 43.96, 31.69, 26.67, 13.15, 11.39.

HRMS (ESI+): calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{D}_{3} \mathrm{~N}_{2}{ }^{+}\left[\mathrm{M}-\mathrm{I}^{-}\right]:$286.2357; found 286.2353

(E)-2-(2-(diethylamino)vinyl)-1,3,3-trimethyl-3H-indol-1-ium iodide

The title compound was isolated according to the general procedure III-4-3-2 with diethylamine at 0.05 mmol scale, $110^{\circ} \mathrm{C}$ and 30 h . The product was isolated as a yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right): \delta 8.27(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.4,1 \mathrm{H}), 7.43$ (td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.70(\mathrm{~m}$, $4 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 6 \mathrm{H})$.

HRMS (ESI+): calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2}{ }^{+}$[M-I-]: 257.2018; found 257.2126

M-As-Cy3

4-((E)-4-((E)-1,3,3-trimethylindolin-2-ylidene)but-2-en-1-ylidene)morpholin-4-ium iodide

The title compound was isolated according to the general procedure III-4-3-2 with morpholine at 0.05 mmol scale, $70^{\circ} \mathrm{C}$ and 24 h . The product was isolated as an orange solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right): \delta 8.21(\mathrm{t}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.24(\mathrm{t}, J=12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.18(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.57$, $(\mathrm{s}, 3 \mathrm{H})$, $1.68(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Methanol- d_{4}): δ 176.27, 162.49, 159.48, 144.15, 142.01, 129.69, 126.03, 123.24, 111.61, 107.27, 101.04, 68.08, 67.11, 56.17, 30.77, 28.04.

HRMS (ESI+): calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}$[M-I-]: 297.1961; found 297.1976

III-4-4 General Procedure for synthesis of Zincke salts

Substituted Zincke salts III-39 were synthesized according to the previous reported procedures. ${ }^{35}$ To a mixture 2,4-dinitrophenyl p-toluenesulfonate III-20 (1.1 equiv.) in toluene ($7 \mathrm{~mL} / \mathrm{mmol}$) was added the corresponding pyridine derivative (1 equiv.) The reaction mixture was refluxed for 16 h and then cooled to rt . Vacuum filtration was used to isolate the suspended solids, which were then washed with toluene $(2 \times 5 \mathrm{~mL} / \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL} / \mathrm{mmol})$, and dried under vacuum to give the Zincke salt products.

III-4-4-1 Analytical Data

III-42

1-(2,4-dinitrophenyl)pyridin-1-ium 4-methylbenzenesulfonate

The title compound was isolated according to the general procedure at 3 mmol scale,. The product was isolated as a white solid ($1 \mathrm{~g}, 80 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 9.42-9.35(\mathrm{~m}, 2 \mathrm{H}), 9.12(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $9.00-9.81(\mathrm{~m}, 2 \mathrm{H}), 8.48-8.37(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.28 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta(\mathrm{ppm})$ 149.1, 148.8, 146.1, 145.8, 143.0, 138.7, 137.5, 131.9, 130.2, 128.0, 125.5, 121.4, 20.8.

1-(2,4-dinitrophenyl)pyridin-1-ium-2,3,4,5,6-d 4-methylbenzenesulfonate

The title compound was isolated according to the general procedure at 3 mmol scale,. The product was isolated as a white solid (760 mg, 60\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 9.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{dd}, J=8.7,2.4$
$\mathrm{Hz}, 1 \mathrm{H}) 8.42(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.28$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d $)$: 149.18, 145.84, 144.64, 143.08, 138.68, 137.54, 136.36, $131.88,130.23,128.05,125.50,121.46,20.80$.

HRMS (ESI+): calcd. for $\mathrm{C}_{11} \mathrm{H}_{3} \mathrm{D}_{5} \mathrm{~N}_{3} \mathrm{O}_{4}$ [M-TsO-]: 251.0823; found 251.0850

III-43

3-bromo-1-(2,4-dinitrophenyl)pyridin-1-ium 4-methylbenzenesulfonate

The title compound was isolated according to the general procedure at 3 mmol scale,. The product was isolated as a white solid (1.38 g, 93\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 9.85(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.44(\mathrm{dt}, J=6.1,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 9.30-9.19(\mathrm{~m}, 1 \mathrm{H}), 9.10(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.43-$ $8.37(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): δ 151.10, 149.26, 147.27, 145.71, 145.35, 142.80, $137.98,137.61,132.03,130.24,128.65,128.06,125.47,121.84,121.36,20.80$.

III-44

3-bromo-1-(2,4-dinitrophenyl)-5-methylpyridin-1-ium 4-methylbenzenesulfonate

The title compound was isolated according to the general procedure at 1 mmol scale,. The product was isolated as a white solid ($270 \mathrm{mg}, 53 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 9.70-9.67(\mathrm{~m}, 1 \mathrm{H}), 9.36-9.34(\mathrm{~m}, 1 \mathrm{H}), 9.16-$ $9.13(\mathrm{~m}, 1 \mathrm{H}), 9.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.99(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 151.2,149.3,145.8,144.8,144.3,142.7,139.8$, $137.9,137.6,131.9,130.3,128.0,125.4,121.4,120.9,20.8,17.7$.

REFERENCES

(1) Lou, Z. R.; Li, P.; Song, P.; Han, K. L. Ratiometric fluorescence imaging of cellular hypochlorous acid based on heptamethine cyanine dyes. Analyst 2013, 138 (21), 6291-6295. DOI: 10.1039/c3an00198a.
(2) Geiger, T.; Schoger, I.; Rentsch, D.; Veron, A. C.; Oswald, F.; Meyer, T.; Nuesch, F. Unsymmetrical Heptamethine Dyes for NIR Dye-Sensitized Solar Cells. Int J Photoenergy 2014, 2014. DOI: Artn 25898410.1155/2014/258984.
(3) Ooyama, Y.; Harima, Y. Photophysical and Electrochemical Properties, and Molecular Structures of Organic Dyes for Dye-Sensitized Solar Cells. Chemphyschem 2012, 13 (18), 4032-4080. DOI: 10.1002/cphc. 201200218.
(4) Shi, C. H.; Wu, J. B.; Pan, D. F. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. J Biomed Opt 2016, 21 (5). DOI: Artn 05090110.1117/1.Jbo.21.5.050901.
(5) Sun, W.; Guo, S. G.; Hu, C.; Fan, J. L.; Peng, X. J. Recent Development of Chemosensors Based on Cyanine Platforms. Chem Rev 2016, 116 (14), 77687817. DOI: 10.1021/acs.chemrev.6b00001.
(6) Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 2017, 1 (1). DOI: ARTN 001010.1038/s41551-016-0010.
(7) Traverse, C. J.; Pandey, R.; Barr, M. C.; Lunt, R. R. Emergence of highly transparent photovoltaics for distributed applications. Nat Energy 2017, 2 (11). DOI: 10.1038/s41560-017-0016-9.
(8) Kiyose, K.; Aizawa, S.; Sasaki, E.; Kojima, H.; Hanaoka, K.; Terai, T.; Urano, Y.; Nagano, T. Molecular Design Strategies for Near-Infrared Ratiometric Fluorescent Probes Based on the Unique Spectral Properties of Aminocyanines. Chem-Eur J 2009, 15 (36), 9191-9200. DOI: 10.1002/chem. 200900035.
(9) Samanta, A.; Vendrell, M.; Das, R.; Chang, Y. T. Development of photostable nearinfrared cyanine dyes. Chem Commun 2010, 46 (39), 7406-7408. DOI: 10.1039/c0cc02366c.
(10) Arjona-Esteban, A.; Stolte, M.; Wurthner, F. Conformational Switching of piConjugated Junctions from Merocyanine to Cyanine States by Solvent Polarity. Angew Chem Int Edit 2016, 55 (7), 2470-2473. DOI: 10.1002/anie. 201510620.
(11) Davydenko, I.; Barlow, S.; Sharma, R.; Benis, S.; Simon, J.; Allen, T. G.; Cooper, M. W.; Khrustalev, V.; Jucov, E. V.; Castaneda, R.; et al. Facile Incorporation of $\mathrm{Pd}(\mathrm{PPh} 3)(2) \mathrm{Hal}$ Substituents into Polymethines, Merocyanines, and Perylene

Diimides as a Means of Suppressing Intermolecular Interactions. J Am Chem Soc 2016, 138 (32), 10112-10115. DOI: 10.1021/jacs.6b06361.
(12) Gopika, G. S.; Prasad, P. M. H.; Lekshmi, A. G.; Lekshmypriya, S.; Sreesaila, S.; Arunima, C.; Kumar, M. S.; Anil, A.; Sreekumar, A.; Pillai, Z. S. Chemistry of cyanine dyes-A review. Mater Today-Proc 2021, 46, 3102-3108. DOI: 10.1016/j.matpr.2021.02.622.
(13) Bilici, K.; Cetin, S.; Aydindogan, E.; Acar, H. Y.; Kolemen, S. Recent Advances in Cyanine-Based Phototherapy Agents. Front Chem 2021, 9. DOI: ARTN 70787610.3389/fchem.2021.707876.
(14) Usama, S. M.; Thavornpradit, S.; Burgess, K. Optimized Heptamethine Cyanines for Photodynamic Therapy. Acs Appl Bio Mater 2018, 1 (4), 1195-1205. DOI: 10.1021/acsabm.8b00414.
(15) Lange, N.; Szlasa, W.; Saczko, J.; Chwilkowska, A. Potential of Cyanine Derived Dyes in Photodynamic Therapy. Pharmaceutics 2021, 13 (6). DOI: ARTN 81810.3390/pharmaceutics13060818.
(16) Li, Y.; Zhou, Y. M.; Yue, X. L.; Dai, Z. F. Cyanine Conjugate-Based Biomedical Imaging Probes. Adv Healthc Mater 2020, 9 (22). DOI: ARTN 200132710.1002/adhm. 202001327.
(17) Onoe, S.; Temma, T.; Shimizu, Y.; Ono, M.; Saji, H. Investigation of cyanine dyes for in vivo optical imaging of altered mitochondrial membrane potential in tumors. Cancer Med-Us 2014, 3 (4), 775-786. DOI: 10.1002/cam4.252.
(18) Malinkiewicz, O.; Grancha, T.; Molina-Ontoria, A.; Soriano, A.; Brine, H.; Bolink, H. J. Efficient, Cyanine Dye Based Bilayer Solar Cells. Adv Energy Mater 2013, 3 (4), 472-477. DOI: 10.1002/aenm. 201200764.
(19) Yang, C. C.; Liu, D. Y.; Rennya, A.; Kuttipillai, P. S.; Lunt, R. R. Integration of nearinfrared harvesting transparent luminescent solar concentrators onto arbitrary surfaces. J Lumin 2019, 210, 239-246. DOI: 10.1016/j.jlumin.2019.02.042.
(20) Zhao, Y. M.; Meek, G. A.; Levine, B. G.; Lunt, R. R. Near-Infrared Harvesting Transparent Luminescent Solar Concentrators. Adv Opt Mater 2014, 2 (7), 606611. DOI: 10.1002/adom. 201400103.
(21) Yang, C. C.; Zhang, J.; Peng, W. T.; Sheng, W.; Liu, D. Y.; Kuttipillai, P. S.; Young, M.; Donahue, M. R.; Levine, B. G.; Borhan, B.; et al. Impact of Stokes Shift on the Performance of Near-Infrared Harvesting Transparent Luminescent Solar Concentrators. Sci Rep-Uk 2018, 8. DOI: ARTN 1635910.1038/s41598-018-34442-3.
(22) Byers, G. W.; Gross, S.; Henrichs, P. M. Direct and Sensitized Photooxidation of Cyanine Dyes. Photochem Photobiol 1976, 23 (1), 37-43. DOI: DOI 10.1111/j.1751-1097.1976.tb06768.x.
(23) Patel, N. J.; Manivannan, E.; Joshi, P.; Ohulchanskyy, T. J.; Nani, R. R.; Schnermann, M. J.; Pandey, R. K. Impact of Substituents in Tumor Uptake and Fluorescence Imaging Ability of Near-Infrared Cyanine-like Dyes. Photochem Photobiol 2015, 91 (5), 1219-1230. DOI: 10.1111/php. 12482.
(24) Toutchkine, A.; Nguyen, D. V.; Hahn, K. M. Merocyanine dyes with improved photostability. Org Lett 2007, 9 (15), 2775-2777. DOI: 10.1021/ol070780h.
(25) Nani, R. R.; Kelley, J. A.; Ivanic, J.; Schnermann, M. J. Reactive species involved in the regioselective photooxidation of heptamethine cyanines. Chem Sci 2015, 6 (11), 6556-6563. DOI: 10.1039/c5sc02396c.
(26) Gorka, A. P.; Nani, R. R.; Zhu, J. J.; Mackem, S.; Schnermann, M. J. A Near-IR Uncaging Strategy Based on Cyanine Photochemistry. J Am Chem Soc 2014, 136 (40), 14153-14159. DOI: 10.1021/ja5065203.
(27) Oushiki, D.; Kojima, H.; Terai, T.; Arita, M.; Hanaoka, K.; Urano, Y.; Nagano, T. Development and Application of a Near-Infrared Fluorescence Probe for Oxidative Stress Based on Differential Reactivity of Linked Cyanine Dyes. J Am Chem Soc 2010, 132 (8), 2795-2801. DOI: 10.1021/ja910090v.
(28) Sun, M. T.; Yu, H.; Zhu, H. J.; Ma, F.; Zhang, S.; Huang, D. J.; Wang, S. H. Oxidative Cleavage-Based Near-Infrared Fluorescent Probe for Hypochlorous Acid Detection and Myeloperoxidase Activity Evaluation. Anal Chem 2014, 86 (1), 671-677. DOI: 10.1021/ac403603r.
(29) Dirix, L.; Kennes, K.; Fron, E.; Debyser, Z.; van der Auweraer, M.; Hofkens, J.; Rocha, S. Photoconversion of Far-Red Organic Dyes: Implications for Multicolor Super-Resolution Imaging. Chemphotochem 2018, 2 (5), 433-441. DOI: 10.1002/cptc. 201700216.
(30) Stone, M. B.; Veatch, S. L. Far-Red Organic Fluorophores Contain a Fluorescent Impurity. Chemphyschem 2014, 15 (11), 2240-2246. DOI: 10.1002/cphc. 201402002.
(31) Helmerich, D. A.; Beliu, G.; Matikonda, S. S.; Schnermann, M. J.; Sauer, M. Photoblueing of organic dyes can cause artifacts in super-resolution microscopy. Nat Methods 2021, 18 (3), 253-+. DOI: 10.1038/s41592-021-01061-2.
(32) Matikonda, S. S.; Helmerich, D. A.; Meub, M.; Beliu, G.; Kollmannsberger, P.; Greer, A.; Sauer, M.; Schnermann, M. J. Defining the Basis of Cyanine Phototruncation Enables a New Approach to Single-Molecule Localization

Microscopy. Acs Central Sci 2021, 7 (7), 1144-1155. DOI: 10.1021/acscentsci.1c00483.
(33) Cho, Y.; An, H. J.; Kim, T.; Lee, C.; Lee, N. K. Mechanism of Cyanine5 to Cyanine3 Photoconversion and Its Application for High-Density Single-Particle Tracking in a Living Cell. J Am Chem Soc 2021, 143 (35), 14125-14135. DOI: 10.1021/jacs.1c04178.
(34) Zhang, J.; Moemeni, M.; Yang, C. C.; Liang, F. C.; Peng, W. T.; Levine, B. G.; Lunt, R. R.; Borhan, B. General strategy for tuning the Stokes shifts of near infrared cyanine dyes. J Mater Chem C 2020, 8 (47), 16769-16773. DOI: 10.1039/dOtc03615c.
(35) Stackova, L.; Stacko, P.; Klan, P. Approach to a Substituted Heptamethine Cyanine Chain by the Ring Opening of Zincke Salts. J Am Chem Soc 2019, 141 (17), 7155-7162. DOI: 10.1021/jacs.9b02537.

[^0]: $\lambda_{\text {max }}$, absorption maximum; λ_{em}, emission maximum.

