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ABSTRACT

The overreaching goal of this study is utilizing data-driven methods and sophisticated math-

ematical tools for modeling and simulation of turbulent transport of passive scalars. We

focus on embedding the intrinsic nonlocal nature of the turbulence into our models. We

study the nonlocal dynamics in the context of (i) subgrid-scale (SGS) modeling for large-

eddy simulation (LES), and (ii) the turbulent cascade under large-scale anisotropic sources.

Moreover, we implement stochastic modeling methodologies to systematically investigate the

contributing mechanisms leading a high-speed hydrodynamic transport system into insta-

bility and chaos, as well as discovering the anomalies in the featured characteristics of the

transport.

First, we present a computational-statistical framework to obtain high-fidelity data for

homogeneous isotropic turbulent (HIT) flow and passive scalar transport. A parallel im-

plementation of the well-known pseudo-spectral method in addition to the comprehensive

record of the statistical and small-scale quantities of the turbulent transport are offered for

executing on distributed memory CPU-based supercomputers.

Afterwards, we investigate the inherent nonlocal behavior of the SGS passive scalar flux

through studying its two-point statistics obtained from the filtered direct numerical simula-

tion (DNS) data for passive scalar transport in HIT flow. We propose a statistical model for

microscopic SGS motions by considering the filtered Boltzmann transport equation (FBTE)

for passive scalar. In FBTE, we approximate the filtered equilibrium distribution with an

α-stable Lévy distribution that incorporates a power-law behavior to resemble the observed

nonlocal statistics of SGS scalar flux. Through generic ensemble-averaging of FBTE, we

formulate a continuum-level closure model for the SGS scalar flux appearing in terms of a

fractional-order Laplacian that is a nonlocal operator.

Moreover, we revisit the spectral transfer model for the turbulent intensity in the passive

scalar transport (under large-scale anisotropic forcing), and a subsequent modification to

the scaling of scalar variance cascade is presented. Accordingly, we obtain a revised scalar



transport model using fractional-order Laplacian operator that facilitates the robust inclusion

of the nonlocal effects originated from large-scale anisotropy transferred across the multitude

of scales in the turbulent cascade. We provide an a priori estimate for the nonlocal model,

and examine the model through a new DNS. We conduct a detailed analysis on the evolution

of the scalar variance, high-order statistics of scalar gradient, and two-point statistical metrics

of the turbulent transport to compare the developed nonlocal model and its standard version.

In another study, a deep learning surrogate model in the form of fully connected feed-

forward neural networks is developed to predict the SGS scalar flux in the context of large-

eddy simulation of turbulent transport. The deep neural network (DNN) model is trained

and validated using filtered DNS dataset at Peλ = 240, Sc = 1 that includes the filtered

scalar and velocity gradients as input features. Using the transfer learning concept, we

generalize the performance of this trained model to turbulent scalar transport regimes with

higher Peλ and Sc numbers with a relatively low amount of data and computations.

Finally, in stochastic modeling of hydrodynamic transport, we study the flow dynamics

inside a high-speed rotating cylinder after introducing strong symmetry-breaking disturbance

factors at cylinder wall motion. We perform a statistical analysis on the fluctuating fields

characterizing the fingerprints and measures of intense and rapidly evolving non-Gaussian

behavior through space and time. Such non-Gaussian statistics essentially emerge and evolve

due to an intensified presence of coherent vortical motions initially triggered by the flow

instability due to symmetry-breaking rotation of the cylinder. We show that this mechanism

causes significant memory effects in the flow so that noticeable anomaly in the time-scaling

of enstrophy record is observed in the long run apart from the onset of instability.
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CHAPTER 1

INTRODUCTION

1.1 Turbulence and Anomalous Transport

Understanding, quantifying, and exploiting anomalous transport open up a rich field,

which can transform our perspective towards the extraordinary processes in thermo-fluid

problems. This emerging class of physical phenomena refers to fascinating and realistic pro-

cesses that exhibit non-Markovian (long-range memory) effects, non-Fickian (nonlocal) in-

teractions, non-ergodic statistics, and non-equilibrium dynamics [1]. It is observed in a wide

variety of complex, multi-scale, and multi-physics systems such as: sub-/super-diffusion in

brain, kinetic plasma turbulence, aging of polymers, glassy materials, amorphous semicon-

ductors, biological cells, heterogeneous tissues, and disordered media.

Of particular interest, the structure of chaotic and turbulent flows is in a way that

nonlocal and memory effects cannot be ruled out [2, 3]. In fact, anomalous transport can

essentially manifest in heavy-tailed and asymmetric distributions, sharp peaks, jumps, and

self-similarities in the time-series data of fluctuating velocity/vorticity fields.

On the other hand, large-scale natural flows such as atmospheric ones, as well as a

wide variety of engineering applications, are among many systems that are substantially

influenced by turbulence. Nonlinearity and stochastisity are two inherent elements of fluid

dynamics that when significantly triggered lead the flow into turbulence [4, 5]. Turbulence

is characterized by persistent fluctuating field variables that are immensely non-Gaussian

and have a multi-scale and ubiquitous influence on the fluid dynamics with a great impact

on the quality of transport and mixing (see Figure 1.1. Moreover, notable emergence of the

extreme and anomalous events reflected in the statistical measurements of turbulent fields

and quantities intensify the level of complexity in turbulent flows [6, 7]. Therefore, taking

into account the effects of turbulence cannot be compromised in predictions and design

procedure for a fluid system affected by the turbulent regime.

Filtering turbulent fields and reduced-order modeling: Although considerable ad-
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Figure 1.1: Complex nature of gradient of turbulent temperature fluctuations obtained from
high-resolution simulation [8].

vancements in the modern computational architectures and high-performance computing

(HPC) over the past decade have greatly facilitated the high-fidelity predictions of turbulent

transport through direct numerical simulation (DNS), those efforts have mostly remained

in the area of canonical and fundamental turbulent transport. Nevertheless, large-eddy

simulation (LES) of turbulence has shown a promising path towards robust, accurate, and

computationally affordable predictions of the turbulent flow behavior in large-scale and real-

world applications [9]. In fact, LES is considered as a reliable trade-off between the DNS

and the low-fidelity simulations with Reynolds-Averaged Navier-Stokes (RANS) models. The

main idea in the LES is that for sufficiently high-Reynolds flows that the statistics of tur-

bulent fluctuations associated with small-scale motions are isotropic and hence we expect a

universal behavior, one can numerically resolve the large-scale motions while dealing with

the subgrid-scale (SGS) effects through proper closure modeling means that utilize resolved-
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Figure 1.2: Development of turbulent fluctuations under large-scale anisotropy [19].

scale variables. In practice, there is a spatial filtering acting on the conservation equations

of transport that represents the LES equations [10, 11].

A vital point to credibly certify an SGS model for the LES is its capability to accurately

encode the statistics of turbulent transport and SGS dynamics [12, 13]. Therefore, developing

a statistically consistent LES closure model that is structurally capable of capturing the

nonlocal interactions in the turbulent dissipation [14, 15] is a vital, that are intensified in

the SGS effects during LES [16, 17, 18].

Large-scale anisotropy effects in turbulence: Understanding the mechanisms respon-

sible for transport of a passive scalar, e.g. temperature field, in high-speed turbulent flow

medium is of fundamental importance for scientific and engineering applications. For exam-

ple, turbulent regime is known to enhance the mixing in passive scalars by the molecular

diffusion where is a result of growth of small-scale fluctuations, distortion of scalar inter-

faces, and the occurrence of highly intermittent scalar gradients at small scales of transport.
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Advancement in understanding of such phenomena is closely dependent on unraveling the

complexity that is enforced by the strong nonlinear couplings over a vast range of scales

that are also accompanied by the stochastic nature of turbulence. Therefore, considerable

efforts has been devoted to study the structure of turbulent transport in passive scalars

in scale-space description at high Reynolds regime. These efforts were originated from the

Kolmogorov’s scale-space description of turbulence [20, 21] that related the statistics of ve-

locity increments to the average dissipation rate of the turbulent kinetic energy (TKE).

Kolomogorov’s theory was fundamentally constituted based on a local model for turbulent

energy cascade as demonstrated in Onsager’s cascade model for turbulent spectra [22, 23].

This theory was later extended to the turbulent transport of the passive scalars by [24], [25],

and [26]. Afterwards, the analogy for the different regimes of passive scalar transport given

the diffusivity range was developed by [27, 28].

The initial Kolmogorov’s theory developed in 1941 was later refined in order to take into

account the strong intermittency in local energy dissipation rate [29, 30]. Similarly, highly

intermittent fluctuations in the local energy dissipation and also scalar dissipation rates led

to the development of the refined similarity hypotheses for passive scalars as presented in

[31]. One of the main pillars of Kolmogorov’s theory and its extension to the passive scalars

is the local isotropy at small-scales. In the case of passive scalar turbulence with large-scale

anisotropy (e.g. non-zero mean gradients), it has been shown that the statistics of small-scale

scalar fluctuations remain anisotropic [32] as [33] showed that for the case of homogeneous

shear turbulent flows. On the other hand, passive scalars are known to exhibit anomalies

such as the large-scale behavior that cannot be ruled out with the AD equation directly

[34]. Nonlocal modeling of the effects of large-scale anisotropy (such as an imposed mean

gradient, see Figure 1.2) throughout the cascade process would be a promising approach to

construct a predictive computational framework for passive scalars.

Symmetry-breaking effects and modeling stochasticity: Flow within and around

cylinders is a rich physical problem that involves complex geometry and nonlinear flow
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instabilities, with unsolved questions on flow/vortex structures and anomalous turbulent

mixing [35]. Numerous researchers have studied the flow and heat transfer characteristics

when a fluid flow encounters a cylinder. These studies include fixed, cross-flow oscillations,

inline oscillations, and rotation of the cylinder cases. Studies related to the interactions of

the flow and moving bodies were first conducted by Strouhal in 1878. Gerrard [36] proposed

a model for the vortex shedding mechanism and the resulted von Kárámn vortex street.

Effects of cross-flow and inline oscillations of a cylinder on vortex shedding frequency were

first determined by Koopman [37] and Griffin and Ramberg [38], respectively. These studies

are categorized as external flows around cylinders and some significant contributions in this

regard may be found in [39, 40, 41, 42, 43]. However, flow inside systems with fast rotation

including cylinders, squares and annulus geometries are also of great importance. Turbo-

machinery, mixing process, gravity-based separators, geophysical flows, and journal bearing

lubrication are all clear examples for these types of internal flows [44, 45].

Moreover, in rotational cylinder flows, the flow may face a concave wall and centrifugal

instabilities may be developed when the thickness of boundary layer is comparable to the

radius of the curvature. Consequently, centrifugal instabilities lead to formation of stream-

wise oriented vortices that commonly called Taylor-Görtler vortices. These vortices can

change the flow regime through a transition process to turbulence [46, 47, 48]. In particular,

the Taylor problem in Couette flow between two concentric rotating cylinders is another

well-known example of centrifugal instabilities in rotating systems, which have been studied

experimentally [49, 50, 51] and numerically [52, 53, 54, 55]. In such problems, emergence of

the adverse angular momentum is an important mechanisms, which initiates flow instability.

More specifically, Lopez et al. [56] studied flow in a fully-filled rotating cylinder, which

is driven by the counter-rotation of the endwall and found out that in the presence of

considerably large counter-rotation, the separation of the Ekman layer from the endwall

generates an unstable free shear layer that separates flow regions against the azimuth velocity.

In fact, this shear layer is highly sensitive to the sources of disturbance appearing in the
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azimuth velocity, which essentially breaks the symmetry in the flow. Other symmetry-

breaking effects were further investigated when they are originated from other sources such

as inertial waves [57], oscillating sidewalls [58] and, precessional forcing [59].

1.2 Data-driven Modeling

Abundance of data, and public access to modern machine learning (ML) libraries have

shaped a data-driven era virtually for every modeling disciplines such as those in physics-

based and engineering [60]. Over the past decade, the advent of scalable and computation-

ally efficient implementations of deep learning libraries has sparked a growing interest in

developing and using a variety of deep neural network (DNN) architectures that constitute

predictive models from latent features of datasets even with nonlinear complexities. For

instance, learning parametric spaces [61, 62], reduced-order modeling [63], inverse problems

[64, 65, 66, 67], solving forward differential equations [68, 69, 65, 67], discovering governing

equations [70, 71], and data generation [72, 73, 74] are a few examples among important

applications in the physics-based modeling via deep learning.

Deep Learning for Fluid Mechanics and Turbulence Modeling

Fluid mechanics is among the challenging branches of physics-based modeling that has

notably benefited from diverse deep learning architectures, recently [75, 76]. In turbulence

modeling, promising advances has been made mainly due to prevalence of high-fidelity simu-

lations and experimental data [77, 78, 79, 80, 81, 82]. Many of these contributions were made

in the area of Reynolds-Averaged Navier-Stokes (RANS) modeling [see e.g., 83, 84, 85, 86, 87].

Particularly, in the Large-Eddy Simulation of turbulent transport, researchers have tra-

ditionally proposed models for the closure terms that appear in the filtered governing equa-

tions, and tried to model the effects of closure (unresolved) terms using resolved-scale flow

quantities. These modeling strategies are predominantly categorized into “functional” or

“structural” approaches [88]. In a functional model, the closure term takes the form of a

mathematical operator acting on the resolved-scale field. Therefore, functional model are

only reproducing the net transfer of turbulence intensity from the resolved to unresolved
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scales. However, a structural modeling approach would approximate the LES closure in

terms of the resolved-scale field, where the subgrid-scale (SGS) structures and statistical

characteristics are recovered from the resolved scale information. However, novel DNN surro-

gate modeling approaches have recently opened a thriving “data-driven” direction to closure

modeling for LES. The study by Sarghini et al. is among the earliest reported works focus-

ing on utilizing a neural network architecture for SGS modeling of turbulence [89]. More

recently, a study by Beck et al. [90] managed to test the SGS modeling of closure term

appearing in the filtered momentum equation with deep neural networks in the context of

decaying homogeneous isotropic turbulent (HIT) flows. For more recent advancement of the

LES modeling in the context of HIT flows, the reader is referred to [91, 92, 93, 94]. Moreover,

studies such as Gamahara and Hattori’s [95] on modeling SGS stress tensor and LES in tur-

bulent wall flows, have employed more advanced implementations of a deep neural network

[for more recent works see: 96, 97, 98, 99], while Yang et al. [100] presented a physics-based

neural network for wall-modeled LES. Interested readers about constraining and embedding

the physical laws to the deep learning LES models are referred to [101, 102, 103].

1.3 Nonlocal Modeling with Fractional-order Operators

Fractional calculus is a powerful mathematical tool to generalize the integer-order calculus

to its fractional-order counterpart. This essentially results in a broader class of mathemati-

cal models, namely fractional ordinary differential equations (FODEs) and fractional partial

differential equations (FPDEs) [104, 105]. Due to the remarkable and diverse applications of

the FPDEs, development of high-order numerical methods [106, 107, 108, 109, 110, 111, 112]

and data-driven numerical schemes [113], as well as numerical studies on the stochastic

fractional PDEs [114, 115] have been an active area of research. Despite many important

progresses in developing nonlocal mathematical models through the standard methods, frac-

tional calculus appears to elevate the capabilities of standard mathematical tools so that

the model can take in account the nonlocal effects such as power-law or logarithm singular

kernels. Therefore, due to these intrinsic potentials of the fractional calculus in representing
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the nonlocal interactions, sharp peaks, and memory effects, the fractional-order derivatives

seem to be an effective solution to model physical phenomena such as anomalous diffusion

processes and hydrodynamic transport (see e.g., [116]).

Applications in Engineering

In engineering applications, fractional-order differential operators provide a promising

and predictive direction in mathematical modeling of the nonlocal behavior such as me-

chanics of materials [117, 118, 119, 120], nonlinear vibration analysis [121], biomechanics

[122, 123, 124], subgrig-scale modeling for large-eddy simulation of turbulence [16, 125, 126,

17, 127, 128], modeling the near-wall turbulence [129], and Reynolds-averaged Navier-Stokes

modeling for wall-bounded turbulent flows [130, 131].

1.4 Outline of the Study

The overall goal of this research is to address the emergence of nonlocal effects in hydro-

dynamic transport, and propose modeling, computational, and statistical approaches that

are inherently designed to predict nonlocality and its signatures in extreme flow regimes such

as turbulence and chaos. In the following, we briefly introduce these contributions:

Chapter 2: Our goal is to offer an extensible computational framework that carries out the

high-fidelity simulations of homogeneous isotropic turbulence (HIT) for an incompressible

flow and also obtains the transport of a passive scalar (temperature or concentration of

species) in such flow [132, 133] while it keeps track of statistical quantities of turbulent

transport. Here, we numerically solve the incompressible Navier-Stokes (NS) equations in

addition to the advection-diffusion (AD) to sufficiently resolve the fluid velocity and passive

scalar fields, respectively. Spatial homogeneity of fluctuating fields makes this problem well-

suited for pseudo-spectral implementation of the NS and AD equations based on the Fourier

collocation discretization as employed in our work. This computational platform is based

upon programming in PYTHON and leveraging Message Passing Interface (MPI) library for

parallel implementation.

Chapter 3: In the context of LES for turbulent flows, a recent study by Samiee et al.
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[16] introduced a nonlocal model for the divergence of SGS stress tensor in terms of a frac-

tional Laplacian acting on the resolved-scale velocity field. In order to derive such a model,

filtered Boltzmann transport equation was considered, where the filtered equilibrium distri-

bution is approximated with an α-stable Lévy distribution. Moreover, Di Leoni et al. [125]

proposed a nonlocal eddy-viscosity SGS model that employs a fractional gradient operator.

Their modeling strategy is based upon the high-fidelity observations of nonlocal two-point

correlation between the SGS stress and strain-rate tensors (inspired by the derivation of fil-

tered Kárman-Howarth equation), and proposing a proper nonlocal convolution kernel that

yields the fractional gradient operator. They sufficiently captured the nonlocal SGS effects

through proper fractional orders for different turbulent flows including the anisotropy and

inhomogeneity effects. These studies demonstrated that the fractional-order operators are

sophisticated candidates for modeling of the SGS stresses in the LES of turbulent flows.

Of particular interest, we aim to study the nonlocal SGS modeling for the conserved

passive scalars in turbulent flows [132, 133, 34]; thus, we seek to model the SGS scalar flux

arising as the closure term in the filtered scalar transport equation. Due to promising po-

tential of Boltzmann transport framework to investigate the sources of spatial nonlocality

appearing in the SGS dynamics [16], we manage to study the filtered version of the Boltz-

mann transport equation for the passive scalars in turbulent flow. Using proper statistical

assumptions at the kinetic level, we try to derive a continuum level closure model in terms of

fractional-order Laplacian of the resolved scalar concentration. Through a statistical data-

driven procedure our model is being calibrated to its optimal form so that it is capable of

capturing the nonlocal statistics embedded in the ground-truth data.

Chapter 4: We show that using a well-resolved standard DNS data for the transport of

a passive scalar with uniform mean-gradient in a moderately high-Reynolds fully turbulent

flow, the 3-D scalar spectrum does not precisely obey the k−5/3 scaling, and follows a scaling

that is enforced by the large-scale anisotropy. Utilizing the Corrsin’s generalized cascade

model [134], we propose that the modification to the local time-scale associated with the
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eddies of size ℓ in a way to account for the nonlocal interactions. This modification returns

a scaling relation that matches the scalar spectrum after parameterization. Subsequently,

the total scalar dissipation is revised and an additional term in the form of a fractional

Laplacian of the scalar concentration is obtained. The performance of the AD equation that

is equipped with this nonlocal term is assessed in a seamless DNS setting. The resulting

statistical analysis on the fully-developed turbulent scalar field shows that considering the

effects of nonlocal interactions in the mathematical model (AD equation) provides a better a

more pronounced prediction of small-scale scalar intermittecny along the direction of large-

scale anisotropy, and it provides a consistent scaling for the third-order mixed longitudinal

structure function over a wide range of scales.

Chapter 5: We develop a DNN surrogate model for the SGS scalar flux, and utilize the

gradients of the resolved-scale scalar and velocity fields as input features. We propose a

spatio-temporal sampling approach for constructing a diverse training/validation dataset

from filtered DNS (FDNS) results, and seamlessly optimize the DNN model for a specified

turbulent transport regime. Using the transfer learning concept, we generalize our pre-

trained DNN model to accurately predict on different scalar transport regimes with higher

Schmidt and higher Péclet numbers. We demonstrate that compared to the pre-trained

model, the amount of required data and the computational cost of model optimization are

significantly reduced in the re-training steps. We conduct multiple tests to evaluate the

performance of optimized model in the inference mode on full-size 3-D FDNS grids at multiple

time instances. In a priori analysis, we show that the base DNN model decreases the

time-averaged spatial error in the predicted SGS flux and the SGS dissipation of scalar

variance compared to two traditional models. Similar comparisons are presented between

the performance of the pre-trained and transfer learned models for higher Schmidt and higher

Péclet number scalar transport regimes. Finally, we test the performance of our base DNN

model when utilized in LES setting, and we show that unlike two other conventional SGS

models, the DNN is successful in maintaining the accuracy for predicted time-record resolved-
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scale scalar variance, and time-averaged two-point structure functions of LES-resolved scalar

concentration field.

Chapter 6: We seek to fill a gap in the rich literature of investigating flow instabilities in-

side rotating flow systems by emphasizing on the stochastic modeling of the fluid dynamics

and later focusing on the anomalous transport features of such system through statistical

and scaling analysis of the response. This goal is achieved through a comprehensive com-

putational framework that employs high-fidelity flow simulator as “forward solver” in our

stochastic model. As a result, the main contributions of our study are highlighted in the

following items:

• We formulate stochastic Navier-Stokes equations subject to random symmetry-breaking

inputs, affecting the incompressible flow within a high-speed rotating cylinder. We employ

spectral element method (SEM) along with the probabilistic collocation method (PCM) to

formulate a stochastic computational framework.

• We perform a global sensitivity analysis and reduce the dimension of random space to

the dominant stochastic directions. We compute the expected velocity field enabling us

to obtain the fluctuating part of the velocity at the onset of flow instabilities induced by

the modeled symmetry-breaking effects. Computing the velocity fluctuations lets us study

the temporal evolution of their probability distribution function, which sheds light on the

instability dynamics and anomalous transport features.

• Obtaining the fluctuating vorticity field, we identify a well-pronounced and evolving non-

Gaussian statistical behavior at the onset of flow instability essentially implying that the

disturbances (influencing the cylinder rotation) cause generation of “coherent vortical struc-

tures”. These vortices increase the memory effects in the hydrodynamics and we charac-

terize their impact as long-time “anomalous” time-scaling of enstrophy leading to effective

enhancement in the mixing capacity of the system.

Chapter 7: The dissertation is concluded with a discussion over findings and possible future

directions to extend the current investigations.
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CHAPTER 2

A PARALLEL COMPUTATIONAL-STATISTICAL FRAMEWORK FOR

SIMULATION OF TURBULENCE

2.1 Background

Understanding the complex and random nature of turbulent flows, mixing, and trans-

port is a vital step in predictions and the design of systems interacting with such hetero-

geneous medium. Turbulence is inherently consisted of multi-scale processes that requires

high-accurate measurements at the smallest scales of transport [135, 4]. Direct numer-

ical simulation (DNS) of turbulent transport as a rigorous scientific tool is supposed to

fully resolve the smallest scales of the motion resulted from the fluctuating fields in spa-

tial domain while maintaining a high-order temporal accuracy as turbulence evolves in time

[136]. Therefore, developing an open-source, sustainable, portably parallel, and integrated

computational-statistical framework with high-order spatial and temporal accuracy provides

a useful academic ground for better understanding of complex standard to anomalous tur-

bulent transport across a multitude of scales. Moreover, from the educational point of view,

developing such a user-friendly scientific software will essentially fill the existing training gap

in the subjective trinity, i.e., fluid mechanics, computational fluid dynamics, and turbulent

transport; hence, leading to a more cohesive ramp up in training the future generation of

researchers in a variety of academic-to-industrial disciplines.

Among the current open-source computational frameworks, Nektar++ [137, 138] (the

spectral/hp element method flow software), HERCULIS [139] and Xcompact3D [140] (the high-

order finite difference flow solvers), GRINS [141] (the adaptive mesh refinement finite element

method software), spectralDNS [142] (the spectral method computational package for DNS),

and OpenFOAM [143] are the notable contributions to the DNS of turbulent transport. On

the other hand, the random nature of turbulence requires a thorough statistical analysis

on the fluctuating fields and their gradients so that one can identify when the realistic and

fully-developed turbulent state is obtained in DNS during an ongoing simulation. This ne-
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(a) (b)

Figure 2.1: Schematic of the architecture of the software. Fig. (a) Illustrates the pseudo-
spectral NS solver to archive fully-developed turbulent state, statistical records, velocity
output and restarting the simulation from output file. Fig. (b) Shows the pseudo-spectral
NS and AD solvers to reach fully-developed turbulent scalar state.

cessitates development of a comprehensive computational platform that includes computing

and recording of such statistical quantities of turbulent transport as time-series format.

The rest of this chapter is organized as follows: in section 2.2, we describe the details

and capabilities of the developed platform as a scientific software and we point out the

theoretical backgrounds briefly. Furthermore, in section 2.3, we go over a comprehensive

example illustrating the results of a fully-developed turbulent flow and passive scalar field

with proper statistical testing and verification. In section 2.4, we outline broader impacts of

the current work onto the research in turbulent transport.

2.2 Solver Description

Governing Equations

The incompressible HIT considered in the present software is governed by the NS equa-

tions

∂U

∂t
+U ·∇U = −∇p+ ν∆U +AU , (2.1)
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subject to the continuity ∇ ·U = 0. In (6.1), U = (U1, U2, U3) and p are the instantaneous

velocity and modified pressure (pressure divided by the constant density of fluid) fields

in the Cartesian coordinate system x = (x1, x2, x3), respectively. Moreover, ν denotes

the dynamic viscosity of the Newtonian fluid, and A is a dynamically evaluated coefficient

corresponding to the artificial forcing scheme we employ in order to obtain statistically

stationary and fully-turbulent state. From the Reynolds decomposition of instantaneous

velocity field, U(x, t) = ⟨U(x, t)⟩ + u(x, t), where ⟨·⟩ represents the ensemble-averaging

operator, and u(x, t) denotes the fluctuating part of the velocity field. In HIT, ⟨U(x, t)⟩ = 0;

therefore, the instantaneous velocity field equals the fluctuating part that is governed by

(6.1). Introducing a passive scalar Φ(x, t) transported in the considered fully-developed HIT

flow, the AD equation governing the passive scalar concentration may be formulated as

∂Φ

∂t
+ u ·∇Φ = D∆Φ, (2.2)

where D denotes the diffusivity of passive scalar. Applying the Reynolds decomposition on

the total passive scalar, Φ = ⟨Φ⟩+ϕ, and ϕ is the fluctuating part of the scalar concentration.

Considering a uniform mean gradient for the passive scalar as ∇⟨Φ⟩ = (0, β, 0), where β is

a constant, the AD equation in (2.2) is rewritten as

∂ϕ

∂t
+ u ·∇ϕ = −β u2 +D∆ϕ. (2.3)

Fourier Pseudo-Spectral Method

Here, we consider spatial homogeneity for the fluctuating velocity and scalar concentra-

tion, which allows periodic boundary conditions for these fluctuating fields as

u(x+ L ei, t) = u(x, t), ϕ(x+ L ei, t) = ϕ(x, t), (2.4)

where ei, i=1,2,3, is the unit vector for the i-th direction of the Cartesian coordinate, and L is

the periodicity length that defines the spatial domain as Ω = [0,L]3. Discretizing Ω using a

uniform three-dimensional grid returns N3 grid points with grid spacing along each direction

as ∆x = L/N . Transforming this discretization into spectral domain let us have a standard
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pseudo-spectral representation of the governing equations (6.1) and (2.3). Subsequently,

k = (k1, k2, k3) represents the coordinate system in the spectral space and using Fourier

collocation method the discretized representation of k would be ki = (−N/2 + 1, . . . , N/2),

i = 1, 2, 3. Accordingly, the discrete Fourier transform of any field variable such as ϕ(x, t) is

written as

ϕ(x, t) =
1

N3

∑

k

ϕ̂k(t) e
ik·x, (2.5)

where i =
√
−1, and eik·x are the Fourier basis functions. Subsequently, the Fourier coef-

ficients associated with k are represented as ϕ̂k(t) =
∑

x ϕ(x, t) e−ik·x. Standard pseudo-

spectral formulation of the NS equations based upon the Fourier collocation method is ob-

tained after taking the Fourier transform of (6.1),

dûk

dt
+ (u ·∇u)k = −ik p̂k − ν|k|2ûk +Aûk; (2.6)

ik · ûk = 0,

By taking the divergence of momentum equation in (2.6) and applying the continuity,

modified pressure is explicitly represented in terms of the velocity field. Considering that

k · k = |k|2, one can derive p̂k = ik · (u ·∇u)k/|k|2; hence, (2.6) may be reformulated as

dûk

dt
+ (u ·∇u)k = k

k · (u ·∇u)k
|k|2 − ν|k|2ûk +Aûk. (2.7)

Similarly, the pseudo-spectral representation of the AD equation for passive scalar (2.3), is

written as

dϕ̂k
dt

+ (u ·∇ϕ)k = −β ûk2 −D|k|2ϕ̂k. (2.8)

Employing the fourth-order Runge-Kutta (RK4) scheme, the time-stepping for both NS and

AD equations is explicitly done since the nonlinear (advective) terms are evaluated in the

physical space and then transformed into the spectral space.
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Table 2.1: Statistical characteristics of turbulent flow to be recorded from the NS solver as
time-series within user-defied time-intervals.

TKE K = 1
2⟨u · u⟩

Dissipation ε = 2 ν ⟨S : S⟩
Kolmogorov length-scale η =

(
ν3/ε

)1/4
Taylor-scale Reynolds Reλ = λurms/ν
Large-eddy turnover time Te = lo/urms

∗ S = 1
2

(
∇u+∇uT

)
, urms =

√
2K/3, λ = urms

√
15ν/ε, lo = u3rms/ε.
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Figure 2.2: (a) Snapshot of fully-developed turbulent velocity field, u1 component. (b)
Time-averaged TKE spectrum. (c) Time-series of Reλ (red dashed line), and VGT skewness
factors, Su1,1 , Su2,2 , Su3,3 .

Programming Architecture

The structure of the prepared software is schematically illustrated in Figure 2.1. Ac-

cording to Figure 2.1a, a user starts from a pre-processing step, where the isotropic and
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random velocity initial condition (IC) is constructed based on a prescribed spectrum for

turbulent kinetic energy (TKE). The procedure is the straightforward implementation of

the well-known work by Rogallo to generate divergence-free isotropic velocity state [144].

According to Lamorgese et al. [145], the initial TKE spectrum is chosen to be

E(κ, 0) =
u2rms

kF
×





(κ/kF )
2, if κ ≤ kF ,

(κ/kF )
−5/3, if κ > kF .

(2.9)

where κ represents the wavenumber associated with spherical shells, kF denotes the maxi-

mum wavenumber of TKE shell we apply artificial forcing to, and urms specifies the initial

root-mean-square (rms) intensity of velocity fluctuations. In construction of velocity IC,

urms is set to be unity while kF and the number of Fourier collocation points, N are taken

as input parameters. In a UNIX/LINUX environment, these inputs are taken as arguments

in the execution commandline that are imported through sys library in PYTHON. Once the

velocity IC is obtained, it is partitioned into Np slabs according to the slab decomposition

method. We completely adopted the implementation of Mortensen and Langtangen [142]

for domain decomposition in addition to the parallel implementation of forward and inverse

three-dimensional fast Fourier transform (FFT) in PYTHON programming language. Here, the

MPI communications depend on the mpi4py library [146, 147, 148].

Having the partitioned velocity IC prepared in the pre-processing step, it is fed to the

main body of the software where the initial velocity field might be magnified by a user-defined

input argument so that a target TKE is considered for the simulation. The viscosity of fluid,

ν, is also is taken as another user-defined input argument. Next, the magnified velocity field

is passed into the solver where ûk and (∇u)k = ik ûk are separately transformed back into

the physical space so that u · ∇u is simply computed and then transformed into Fourier

space. The aliasing error that appears due to this procedure is removed by phase-shifting

and truncation according to 2
√
2N/3 as the maximum wavenumber [149]. Afterwards, all

of the terms in equation (2.7) are directly evaluated in every stage of RK4 time-integration;

however, the last term in the right-hand side of (2.7) is only evaluated after the last stage
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Figure 2.3: (a) Time-records of production over dissipation of scalar variance (blue dashed
line), and the flatness factor for the scalar gradient vector component along the direction of
mean scalar gradient (green solid line). (b) Snapshot of fully-developed turbulent passive
scalar field.

during the artificial forcing by keeping the energy of the low wavenumbers constant, which

is associated with the sphere of 0 < |k| ≤ kF . In this procedure, A is computed in a

way that the the dissipated energy of turbulent motion is injected to the large-scales. This

scheme prevents the flow to undergo decay process before the realistic and fully-developed

turbulent state is achieved, nevertheless, the artificial forcing scheme could be turned off

through a user-defined input argument if one seek to obtain decaying HIT data. The forcing

coefficient could be determined either deterministically [150] or stochastically [151, 152] and

both of these methods are supported in the software as would be specified as an input option.

Moreover, regarding the stable time-integration, the Courant-Friedrichs-Lewy (CFL) number

is dynamically checked through a user-defined time-frequency. According to Eswaran and

Pope’s work [151], CFL for this problem is demonstrated as

CFL :=
∆t

∆x
max (|u1|+ |u2|+ |u3|) . (2.10)

In (2.10), ∆x is the uniform grid spacing in each direction and ∆t is the user-defined constant

time-interval used in the RK4 time-stepping. In practice, CFL is required to be less than

unity to ensure a stable time-integration.

Since the fully-developed turbulent state is characterized by a meticulous tracking of
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statistical quantities of the flow, the present software provides a comprehensive framework

for computing and recording the statistical quantities of turbulent flow. Given the homo-

geneity of the fluctuating fields, spatial averaging is employed for computing these records

at user-defined time intervals. These statistical quantities are categorized into turbulent

characteristics of small-scale motion reported in Table 2.1, and high-order central moments

of diagonal components of velocity gradient tensor (VGT), ∇u. For instance,

Su1,1 =

〈(∂u1
∂x1

)3〉
/〈(∂u1

∂x1

)2〉3/2

, (2.11)

Ku1,1 =

〈(∂u1
∂x1

)4〉
/〈(∂u1

∂x1

)2〉2

, (2.12)

where Su1,1 andKu1,1 indicate the skewness factor and flatness factor (or kurtosis) associated

with the first diagonal component of VGT, u1,1 = ∂u1/∂x1, respectively. Fully-turbulent

flow state would be identified when the time-series of these records reach to a statistically

stationary state after long enough time-integration, i.e. approximately 10 to 15 large-eddy

turnover times (see Table 2.1). The parallel implementation for computing and collecting

these statistical quantities and later recording them in time as different time series which

were performed by point-to-point and collective MPI directives.

Furthermore, the velocity and pressure fields might be written as output files stored in

directories named Out ∗ based on a user-defined time-interval that might be useful for any

post-processing after the flow reaches to fully-developed turbulent state. A “restart from

file” capability is also designated so that once the statistical record is written out on file,

the latest state of velocity field and its related time-integration information are also output

on files, which are stored in a directory named Restart. Starting a simulation from either a

prescribed IC or restarting it to continue an ongoing simulation that was stopped is specified

by a user-defined input argument. All the parallel I/O to store the velocity and pressure

fields is done by employing scipy.io library and using loadmat() and savemat() routines

for the partition of data that is resolved inside each MPI process in the compressed format

and with the machine precision accuracy. This is a fast and efficient I/O while it maintains
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the simplicity for user for any post-processing step such as time-averaging on the statistically

stationary turbulent data.

According to Figure 2.1b, once the fully-turbulent velocity state is achieved, the user

might be able to use a restart or output instance as the velocity IC to introduce a passive

scalar transport with a directional constant mean-gradient as described in (2.3) while the

fluctuating concentration is assumed to be zero, ϕ0(x) = 0. Here, the goal is to resolve

the fluctuating scalar concentration field, equation (2.8), transported on the fully-turbulent

incompressible flow for long enough time-span so that the fully-developed and realistic tur-

bulent state for the passive scalar is obtained. Subsequently, similar procedure as what de-

scribed based on the schematic Figure 2.1a is followed while the pseudo-spectral AD solver

is fed by the resolved velocity field from the NS solver. The diffusivity of passive scalar, D,

is specified by a user-defined input argument for Schmidt number, Sc = ν/D. Accordingly,

similar to the NS solver, the advective scalar flux, (u ·∇ϕ)k, is computed in the physical

space by the inverse FFT of ûk and (∇ϕ)k and forward FFT computation of u ·∇ϕ. Similar

dealiasing procedure as described for NS solver is employed in pseudo-spectral AD solver and

the RK4 time-integration scheme is utilized to numerically perform explicit time-stepping.

In homogeneous scalar turbulence, time evolution of the scalar variance ⟨ϕ2⟩ is governed

by

d

dt
⟨ϕ2⟩ =− 2 ⟨q⟩ ·∇⟨Φ⟩ − ⟨χ⟩, (2.13)

where q = ϕu denotes the scalar flux vector, and the scalar dissipation is defined as χ =

2D∇ϕ · ∇ϕ [153]. According to (2.3), the first term in the right-hand side of (2.13) is

simplified to −2 β ⟨ϕu2⟩ that denotes the scalar variance production (by uniform mean scalar

gradient, β). The present software is capable of computing and recording of rate of scalar

variance in addition to the production and dissipation terms. This is useful in terms of

the checking if the balance of both sides of equation (2.13) holds throughout a simulation

so that one ensures that the implementation of the solver works seamlessly. On the other

hand, as a measure to evaluate that the statistically stationary state for the passive scalar is
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achieved is to check if −2 β ⟨ϕu2⟩/⟨χ⟩ ∼ 1 throughout the simulation. Moreover, recording

the skewness and flatness factors for the components of fluctuating scalar gradient vector

(e.g., Sϕ,2 and Kϕ,2
for ϕ,2 = ∂ϕ/∂x2 similar to 2.11 and 2.12 for VGT) is another statistical

indicator measure for fully-developed turbulent passive scalar state. Therefore, in the current

computational platform, the user would be able to recognize the statistically stationary state

through monitoring the explained time-series data that is written out according to the user-

defined time-interval as a software input.

The field data output and restart capability for the AD solver is designated similar

to the described strategy for the NS solver so that the user would be able to resume an

interrupted/stopped simulation and use the output field data for desired applications or

post-processing.

In the following section, we present a comprehensive example that step-by-step walks

through using the present software.

2.3 An Illustrative Example

This comprehensive example is mainly consisted of construction of isotropic velocity IC,

obtaining well-resolved fully-turbulent velocity field, and simulating well-resolved passive

scalar turbulence with imposed mean scalar gradient.

IC construction and DNS of the HIT

According to the descriptions in section 2.2, the isotropic and divergence-free velocity

IC is constructed based upon a prescribed energy spectrum given in (2.9). Considering

the periodicity length L = 2π, this pre-processing step is done through serial execution of

Gen IC.py script that takes the following input arguments, respectively: N (spatial resolu-

tion along each direction), kF (forcing wavenumber), and Np (number of slab partitions).

We need to emphasize that Np must be chosen in a way that N be a multiple of Np. The

resulting velocity field is located in a directory named IC, where Np number of .mat velocity

files are stored. In this example, we take N = 520, kF = 2, and Np = 40. All the compo-

nents of velocity IC in addition to the VGT components have Gaussian distribution. This
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Table 2.2: Input arguments for the PScHIT.py and the specified values for the example case.
The order of the arguments in the execution command-line are as listed here.

Input Argument Value

t end 40
Output frequency 1000
Stats frequency 100

TKE magnification 6.0
ν 0.0008
kF 2

forcing type deterministic
N 520
∆t 0.0005

If Restart 0 or 1

velocity IC is being passed into the NS solver written in PScHIT.py script that takes the fol-

lowing input arguments given in Table 2.2. Here, Output frequency and Stats frequency

are multiplied by the specified ∆t. Moreover, If Restart argument could be either 0 or 1,

where 0 indicates it is a simulation starting from the constructed IC while 1 specifies resum-

ing a simulation from restart files. In this example, we perform the simulation for t/Te ∼ 15

to ensure the fully-turbulent flow state is achieved and Figure 2.2a portrays the first com-

ponent of the velocity field. Figure 2.2b shows the radial TKE spectrum averaged over 5

large-eddy turnover times. Moreover, Figure 2.2c includes the time-records of the Taylor-

scale Reynolds number and VGT skewness factor for diagonal components computed and

recorded over 40 large-eddy turnover times. This shows that the statistically stationary state

is achieved through the long-time DNS where Reλ ∼ 240, Su1,1 = Su2,2 = Su3,3 ∼ −0.55,

and Ku1,1 = Ku2,2 = Ku3,3 ∼ 6.8 at fully-turbulent state. The statistical records of VGT

clearly show that the resolved velocity field is isotropic. Finally, kmaxη > 1.45 ensures that

the small scale turbulent motions are well-resolved (kmax =
√
2N/3) [154].

DNS of passive scalar transport

Similar to starting the NS solver from a prescribed velocity IC, we take a fully-turbulent

velocity output (velocity state at t/Te = 15 in section 2.3) and continue the simulation under
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the artificial forcing while we introduce a passive scalar field where its fluctuating part is

initialized at zero. The Schmidt number, Sc, is specified by user through an input argument.

According to the problem setting for the mean scalar gradient, we let β = 1 (mean scalar

gradient along x2 direction). Therefore, for a passive scalar with Sc = 1, we aim to obtain

the fully-turbulent scalar field. We need to note that the spatial resolution required for the

passive scalars with Sc ≥ 1 is defined based on ηB = η Sc−1/2 [155] and in this example

the spatial resolution for the velocity field is sufficient for a well-resolved passive scalar. We

manage to resolve the passive scalar field for 25 large-eddy turnover times and the rest of

the simulation parameters remain the same as values reported in the Table 2.2. Figure 2.3

shows the records of scalar variance production over dissipation rate, −2 ⟨ϕu2⟩/⟨χ⟩, and

the flatness factor for the scalar gradient along the direction of mean scalar gradient, Kϕ,2
.

As it is observed, after resolving the passive scalar field for approximately two large-eddy

turnover times, −2 ⟨ϕu2⟩/⟨χ⟩ ∼ 1.0 that means the equilibrium state for the passive scalar

variance is obtained. Moreover, after approximately three large-eddy turnover times the

high-order statistical moments of the scalar gradient reach to a statically stationary state.

For instance, Sϕ,2 ∼ 1.4, and Kϕ,2
∼ 20.8 throughout the time-averaging of these statistical

moments when t/Te ≥ 5. By resolving the passive scalar field through AD equation and for

long enough time after the equilibrium and stationary state, the fully-turbulent and realistic

scalar field is ensured.

2.4 Impact and Applications

Current work offers a framework to obtain highly accurate spatio-temporal data for ho-

mogeneous turbulent transport with proper statistical testing from the recorded quantities.

In turbulent transport research, this provides a great source of high-fidelity data for a va-

riety of innovative contributions. For instance in large-eddy simulation (LES) of turbulent

transport, novel nonlocal models for the subgrid-scale (SGS) stress and flux terms appearing

in the filtered NS and AD equations heavily depend on the DNS data for such transport

phenomena to compute the exact values of SGS terms to evaluate the model performance
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[126, 17, 127, 128, 16].

On the other hand, in the abundance of data and emergence of the data-driven turbulence

models [78], current computational platform would be a reliable candidate to generate data

for training and testing such models [156, 90, 157, 158, 159, 101].

Moreover, high-Reynolds and well-examined high-fidelity turbulent transport data from

the present DNS framework could be directly employed in studying the role of coherent

turbulent structures and their effects on the turbulence statistics [160, 161], as well as inves-

tigating topological characteristics of turbulent transport [162, 163], and analysis of extreme

events as well as the internal intermittency [7, 164, 6].
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CHAPTER 3

FRACTIONAL-ORDER SUBGRID-SCALE MODELING FOR LES OF

SCALAR TURBULENCE

3.1 Background

Traditionally, SGS modeling is categorized into two main branches: (i) functional model-

ing, and (ii) structural modeling [88]. Functional modeling requires a prior knowledge of the

interactions between resolved-scale and subgrid-scale is required so that one can represent the

LES closure in terms of a mathematical function of resolved transport variables. Functional

models are usually representing the net transfer of turbulent kinetic energy from resolved

scales to the subgrid scales. The Smagorinsky model initially conceptualized in [165], and its

variations are well-known examples of functional SGS modeling. On the other hand, struc-

tural models seek to reconstruct the statics and structure of SGS stresses and fluxes from the

resolved-scale variables. For instance, scale-similarity models initially introduced by Bardina

et al. [166] are among well-known examples of structural models. Functional models usually

are poorly correlated with the true SGS terms a priori and by construction are incapable of

reproducing backward transfer of energy (backscattering); however, in an LES setting they

have shown to be dissipative enough for solver stability. In contrast, structural models such

as scale-similarity type models have been found to be sufficiently correlated with the true

SGS terms and fairly capable of following backscattering phenomenon in an a priori sense.

Nonetheless, their significant drawback is that in LES they are under-dissipative; hence, the

stable time-integration is intractable. As a practical remedy to the mentioned issues, further

efforts have been devoted to formulating a mixed representation of functional and structural

models [167, 168]. Recently, abundance of the high-fidelity data for the SGS closures mainly

available through filtered DNS data, and with the advent of modern machine learning (ML)

techniques and their application to fluid mechanics and in particular, turbulence model-

ing, [75, 78, 76, 169] have resulted in a wide variety of predictive data-driven SGS models.

Among the numerous contributions in ML-based SGS modeling and LES, interested readers
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are referred to the following notable works [90, 170, 157, 171].

The structure of the rest of this work is organized as follows: in section 3.2, we state

the problem and show the governing equations. In section 3.3, we motivate the necessity of

our modeling strategy to address nonlocality using statistical measures obtained from the

filtered DNS data. In section 3.4, the mathematical framework of our SGS modeling that

includes fractional calculus and Boltzmann transport is described and derivation of the SGS

model is presented. Afterwards, in section 3.5, a two-stage data-driven calibration procedure

is introduced to optimize the model performance. Finally, section 3.6 delivers an a priori

testing on the SGS dissipation of the resolved-scale scalar variance.

3.2 Governing Equations

Considering flows governed by incompressible Navier-Stokes (NS) equations

∂ui
∂t

+
∂

∂xj

(
ui uj

)
= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xi∂xj

+Aui, i, j = 1, 2, 3, (3.1)

subject to the continuity, ∇ ·u = 0, where the velocity and the pressure fields are denoted by

u(x, t) = (u1, u2, u3) and p(x, t) for x = xi and i = 1, 2, 3, respectively. ρ specifies the den-

sity and ν represents the kinematic viscosity for a Newtonian fluid. In (3.1), A is a dynamic

coefficient associated with the artificial forcing scheme to enforce statistical stationary state

on the kinetic energy to reach to a realistic and fully turbulent state. It is worth mentioning

that all the values in (3.1) are taken to be zero-mean values, therefore, u(x, t) corresponds

to the turbulent fluctuations. In our study, a passive scalar with an imposed mean gradient

along the x2 direction is considered to be transported with the described turbulent flow.

According to the Reynolds decomposition for the total concentration of the passive scalar,

Φ(x, t), one can write that Φ = ⟨Φ⟩ + ϕ. Here, ⟨·⟩ is the ensemble-averaging operator,

and ϕ denotes the fluctuating part of the passive scalar concentration. More specifically,

the imposed mean scalar gradient is taken to be uniform as ∇⟨Φ⟩ = (0, β, 0), where β is a

constant. Therefore, the turbulent scalar concentration obeys an advection-diffusion (AD)
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equation that is simplified into the following form

∂ϕ

∂t
+

∂

∂xi
(ϕui) = −β u2 +D ∂2ϕ

∂xi∂xi
, i = 1, 2, 3, (3.2)

where D denotes the molecular diffusion coefficient of the passive scalar. Accordingly, the

Schmidt number is defined as Sc = ν/D.

In the LES of turbulent transport, the fluid and passive scalar motions are resolved down

to a prescribed length scale namely as filter width, ∆, which linearly decomposes the veloc-

ity and scalar concentration fields into the filtered (resolved) and the residual (unresolved)

components. For instance, for the scalar concentration, ϕ̃ and ϕR = ϕ − ϕ̃ represent the

filtered and residual fields, respectively. The filtered fields are obtained by a convolution,

ϕ̃ = G ∗ ϕ, where G = G(r) denotes the generic spatial filtering kernel [4]. Applying such

filtering operation on the governing equations returns the subsequent LES equations. For

example, the filtered AD equation is formulated as

∂ϕ̃

∂t
+

∂

∂xi

(
ϕ̃ ũi

)
= −β ũ2 +D ∂2ϕ̃

∂xi∂xi
− ∂qRi

∂xi
, i = 1, 2, 3, (3.3)

where qRi denotes the residual or SGS scalar flux that is defined exactly as qRi = ϕ̃ ui− ϕ̃ ũi.

In the LES sense, the SGS scalar flux needs to be closed (modeled) in terms of the resolved-

scale (filtered) variables through proper and physically consistent SGS modeling.

3.3 Why SGS Dynamics are Statistically Nonlocal?

In an idealistic LES, one of the main elements reflecting the dynamics of turbulent trans-

port is capturing the true filtered (resolved-scale) turbulent intensity through robust SGS

modeling that is physically and mathematically consistent. In fact, such transport equation

includes closure terms that directly link the correct time-evolution of turbulent intensity to

the nature of the SGS closure and its modeling. In the LES of scalar turbulence, multiply-

ing both sides of the filtered AD equation (3.3) by ϕ̃, yields the time evolution of filtered

turbulent intensity as

1

2

∂

∂t
ϕ̃2 + ϕ̃

∂

∂xi

(
ϕ̃ ũi

)
= −β ϕ̃ ũ2 +D ϕ̃

∂2 ϕ̃

∂xi∂xi
− ϕ̃

∂ qRi
∂xi

. (3.4)

27



−0.02 −0.01 0.00 0.01 0.02 0.03 0.04

−qR · G̃/‖qR · G̃‖

10−4

10−3

10−2

10−1

100
P

D
F

∆/η = 8

∆/η = 20

∆/η = 41

∆/η = 53

(a)

0 100 200 300 400 500

r/η

0.0

0.2

0.4

0.6

0.8

1.0

C(
qR ‖
,G̃
‖)

101 102

10−2

10−1

100

(b)

Figure 3.1: Statistics of true subgrid-scale contribution to the filtered scalar variance rate.
(a) PDF of normalized SGS dissipation of filtered scalar variance, −qR · G̃, computed over
a sample space of 10TLE of statically stationary turbulence. (b) Time-averaged two-point

correlation function (3.7) between qR∥ and G̃∥ with r = |r⊥|.

Using the continuity equation and chain rule for differentiation,

1

2

∂

∂t
ϕ̃2 + ϕ̃ ũi

∂ϕ̃

∂xi
= −β ϕ̃ ũ2 +D ∂

∂xi

(
ϕ̃
∂ϕ̃

∂xi

)
−D ∂ ϕ̃

∂xi

∂ ϕ̃

∂xi
− ∂

∂xi

(
ϕ̃ qRi

)
+ qRi

∂ϕ̃

∂xi
. (3.5)

Applying the ensemble-averaging operator, ⟨·⟩, on (3.5), returns the transport equation for

the filtered scalar variance, ⟨ϕ̃2⟩. In this study, we are considering the case of homogeneous

turbulent velocity and scalar fields; therefore,
〈

∂
∂xi

(·)
〉
= ∂

∂xi
⟨(·)⟩ = 0. Defining the filtered

scalar gradient as G̃(x) = ∇ϕ̃(x), time-evolution of the filtered scalar variance takes the

following form

1

2

d

dt
⟨ϕ̃2⟩ = −T̃ + P̃ − χ̃+ ⟨Π⟩, (3.6)

T̃ =
〈
ϕ̃ ũi G̃i

〉
, P̃ = −β

〈
ϕ̃ ũ2

〉
, χ̃ = D

〈
G̃i G̃i

〉
, Π = qRi G̃i.

In (3.6), T̃ denotes the turbulent transport of filtered scalar variance while P̃ represents the

production of resolved scalar variance by the uniform mean scalar gradient, and χ̃ is the

resolved scalar variance dissipation due to the molecular diffusion. Unlike these three terms,

Π (representing the SGS production of resolved scalar variance) is the only contributing term

in (3.6) that contains the effects of the SGS scalar flux. Therefore, as pointed out earlier,

understanding the true statistical nature of qR · G̃ is essential for the SGS modeling and
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precise evaluation of the resolved scalar variance in the LES. This examination of qR · G̃

might be viewed both from single-point and two-point statistics as discussed in [12] in the

context of the LES for homogeneous isotropic turbulent flows. In a recent comprehensive

study by Di Leoni et al., effects of the SGS contribution in the evolution of the two-point

velocity correlation was explored for the incompressible Navier-Stokes equations using filtered

DNS data for HIT and turbulent channel flows at high-Reynolds numbers, and revealed the

importance of nonlocal effects in the SGS dynamics [125]. In the present study, we are

also focused on the two-point statistics of the SGS production of resolved scalar variance.

This quantity is well represented in terms of the following normalized two-point correlation

function

C(qRi , G̃i) =

〈
qRi (x) G̃i(x+ r)

〉

〈
qRi (x) G̃i(x)

〉 , (3.7)

where r = (r1, r2, r3) denotes the spatial shift from the location x. Moreover, probability

distribution function (PDF) of the SGS production of scalar variance normalized by its L2-

norm i.e., qR · G̃/∥qR · G̃∥, is another measure to learn about the statistical behavior of Π

and have a more comprehensive insight into the SGS modeling.

High-Fidelity Database of the SGS Scalar Flux

In order to study the statistics of Π, we compute true values of the SGS scalar flux using

the box filtering kernel with isotropic filter width ∆ as,

G(r) =





1
∆ , r ≤ ∆/2

0, r ≥ ∆/2.

(3.8)

Applying this convolution kernel on a well-resolved DNS database of passive scalar with

imposed mean gradient in synthetic (forced) homogeneous isotropic turbulence. To perform

the simulation, we employ an open-source parallel statistical-computational platform for

turbulent transport equipped with a Fourier pseudo-spectral spatial discretization of the

NS and AD equations, fourth-order Runge-Kutta (RK4) time-integration scheme, and an
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artificial forcing method (to keep the turbulent kinetic energy at low wavenumbers constant)

(see Capter 2). Our computational domain is a triply periodic cube of Ω = [0, 2π]3 that is

discretized on a uniform Cartesian grid with N = 5203 Fourier collocation points while a

constant ∆t = 5 × 10−4 is utilized for the stable time-integration. In construction of this

DNS database, the imposed mean scalar gradient is taken as β = 1, and Sc = 1 according

to the section 3.2. Letting kmax be the maximum resolved wavenumber in our simulation

and η = (ν3/ε)1/4 be the Kolmogorov length scale while ε denotes the turbulent dissipation

rate, we measure kmax η ≈ 1.5; therefore, one can ensure that the small-scales in the velocity

and scalar fields are well-resolved (see Capter 2). Moreover, our records indicate that the

Taylor-scale Reynolds number is Reλ = 240 (averaged over 25 large-eddy turnover times,

TLE , of resolving the passive scalar field).

Statistical Analysis of the SGS Effects in Filtered Scalar Intensity

By taking a large sample space over 10TLE of this stationary process (after resolving

the passive scalar field for 15TLE), we compute the PDF of the normalized SGS production

of filtered scalar variance for four different filter widths, ∆/η = 8, 20, 41, 53. As a result,

we observe that as ∆ becomes larger the PDF exhibits broader tails as shown in Figure

3.1(a). Emergence of these heavy PDF tails implies that as we increase the filter width,

long-range spatial interactions become stronger and more pronounced [161]. Motivated by

this observation, a two-point diagnosis of the SGS scalar production of the filtered variance

as defined in equation (3.7) would be another statistical measure shedding light on the long-

range interactions in addition to the filter width effects. Considering ∥ as the direction

along the imposed mean scalar gradient and ⊥ representing the directions perpendicular

to the imposed mean gradient, we are interested in evaluating C(qR∥ , G̃∥). Here, we take

r = (r1, 0, 0) and r = (0, 0, r3) and take the average of the resulting two-point correlation

functions. Due to the statistically stationary turbulence, we perform such procedure for 20

data snapshots that are uniformly spaced over 10TLE (on the same spatio-temporal data we

used to compute the PDFs); hence, we obtain the time-averaged value of C(qR∥ , G̃∥). Figure
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Figure 3.2: Comparison between the true values of two-point correlation function given in
(3.7) and the ones obtained from the local eddy-diffusivity modeling of the SGS scalar flux
given in (3.9). The evaluations are performed at two filter widths of ∆/η = 8, 53.

3.1(b) illustrates this two-point correlation function extending over a wide range of spatial

shift, r = |r|, and evaluated at four filter widths similar to the ones utilized in Figure 3.1(a).

This plot quantitatively and qualitatively reveals that as we increase ∆, greater correlation

values between the SGS scalar flux qR∥ (x), and filtered scalar gradient G̃∥(x+r) are observed

at a fixed r. These spatial correlations are significant both in the dissipation and also inertial

subranges. This confirms the substantial nonlocal effects in the true SGS dynamics, which

needs to be carefully addressed in the SGS modeling for LES.

A popular and fairly simple approach for modeling the SGS scalar flux is Eddy-Diffusivity

Modeling (EDM). In EDM, the main assumption is that the SGS scalar flux is proportional

to the resolved scale scalar gradient as

qR(x) ≈ −DED G̃(x), (3.9)

and DED is the proportionality coefficient. Obviously, EDM is a local modeling approach by

its construction. Computing C(qR∥ , G̃∥) while qR∥ is approximated with EDM, one can com-

pare it with its true value as shown in Figure 3.1(b). Figure 3.2 illustrates such comparison

for two filter widths, ∆/η = 8, 53, reveals that in both of the cases local EDM substantially
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fails to predict the conspicuous long-range spatial correlations observed in the true two-point

correlation values. This observation is closely similar to the results reported in Di Leoni et

al. [125] that showed local eddy-viscosity model is structurally incapable of reproducing

the two-point SGS dissipation for the HIT and turbulent channel flows. This concrete ev-

idence urges to go beyond the conventional means of SGS modeling for the scalar flux in

order to address the matter of nonlocality with more sophisticated mathematical modeling

tools. Thus, a nonlocal construction for the EDM would be a fairly relevant remedy to this

problem.

3.4 Boltzmann Transport Framework

In studying the turbulent transport and mixing, kinetic Boltzmann theory has shown

a rich and promising ground based upon principles of statistical mechanics, which by con-

struction is well-suited for the stochastic description of turbulence at microscopic level [172].

In the following, the fundamental sources of nonlocal closure and the SGS modeling for the

residual passive scalar flux are studied at the kinetic Boltzmann transport framework. Our

objective is to derive a nonlocal eddy-diffusivity SGS model at the continuum level.

BGK Model and Double Distribution Function

Considering classical kinetic theory of gases, we are concerned with the evolution of

a single particle distribution function, f , that is governed by the Boltzmann Transport

Equation (BTE),

∂f

∂t
+ v ·∇f = C(f). (3.10)

In (3.10), the probability distribution f = f(t,x,v) is defined such that there exists mass

of fluid particles that are located inside the infinitesimal volume element dx centered at x,

velocity element dv centered at v, and at time t. In the phase space of particle, x, v, and t are

considered as independent variables. The left-hand side of (3.10) represents the streaming of

the non-reacting particles that is balanced by the collision operator, C(f), on the right-hand

side. As a widely common model for the collision operator, Bhatnagar–Gross–Krook (BGK)
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approximation considers scattering of the fluid particle due to collision with another particle.

Therefore, the BGK model characterizes C(f) = CBGK(f) with a single parameter, that is

called the relaxation time, τ [173]. Therefore, the collision operator is written as

CBGK(f) = −f − feq

τ
, (3.11)

where the local equilibrium distribution function, feq = feq(t,x,v) is given by the Maxwell

distribution [174], and is parameterized by the locally conserved quantities (density ρ, particle

speed v, and temperature T ) as

feq =
ρ

(2π c2T )
d/2

exp

(
−(v − u)2

2 c2T

)
. (3.12)

In (3.12), cT =
√

kB T/m is the thermal speed at T in which kB is the Boltzmann constant,

and m represents the molecular air weight, while d denotes the spatial dimensions [175].

In order to study the passive scalar transport phenomena in this context, Double Dis-

tribution Function (DDF) method has been a successful approach [176]. In the DDF, we

consider one distribution function to address the conservation of mass and momentum while

another distribution function is taken to represent the conservation of energy. In the case

of passive scalar transport, the compressive work and heat dissipation are considered to be

negligible in the incompressible limit [177, 178, 179]. Therefore, the extra BTE that governs

the energy distribution function, g = g(t,x,v), with the BGK collision model is expressed

as

∂g

∂t
+ v ·∇g = CBGK(g) = −g − geq

τg
. (3.13)

In (3.13), τg represents the relaxation time, which is the time-scale associated with the colli-

sional relaxation to the local energy equilibrium denoted by the Maxwell energy distribution,

geq =
Φ

(2π c2T )
d/2

exp

(
−(v − u)2

2 c2T

)
. (3.14)

Defining L = (v − u)2/c2T and F (L) = exp(−L/2), the Maxwell distribution in (3.14) (for

the most general case where d = 3) is reformulated as geq = Φ

(2π)3/2 c3T

F (L).
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Subsequently, continuum averaging yields the macroscopic flow variables for the incom-

pressible flow, ρ = ρ(t,x), as follows:

ρ =

∫

Rd
f(t,x,v) dv, (3.15)

ρu(t,x) =

∫

Rd
v f(t,x,v) dv, i = 1, 2, 3, (3.16)

Φ(t,x) =

∫

Rd
g(t,x,v) dv, (3.17)

where Φ(t,x) is the total passive scalar concentration field appearing in the AD equation.

Let us define L as the macroscopic characteristic length, ls as the microscopic charac-

teristic length associated with the smallest length-scale of the passive scalar, and lm as the

mean-free path (the average distance traveled by a particle between successive collisions).

Considering x′ to be the location of particles before scattering while we characterize their

current location with x, one can assume that x′ = x − δx, where δx = (t − t′)v. Here we

assume that during the time t − t′, v approximately remains constant [16]. According to

Chen et al. [180, 181], the Boltzmann BGK kinetics with “constant” relaxation time, equa-

tions (3.10) and (3.13), admit analytical solutions for f(t,x,v) and g(t,x,v) based upon

their local equilibrium distribution that is valid in a general flow where the distance from

the wall is large compared to lm. Focusing on equation (3.13) and defining s = (t − t′)/τg,

the exact solution to g(t,x,v) would be

g(t,x,v) =

∫ ∞

0
e−s geq(t− sτg, x− v sτg, v) ds =

∫ ∞

0
e−s g

eq
s,s(L) ds, (3.18)

where g
eq
s,s(L) = geq(t− sτg, x− v sτg, v).

Filtered BTE, Closure Problem, and Kinetic-Boltzmann Modeling

Statistical description of LES is well-represented through incorporating a filtering pro-

cedure into the kinetic Boltzmann transport. For the purpose of passive scalar transport,

applying a spatially and temporally invariant filtering kernel, G = G(r), onto the distribu-

tion function g(t,x,v) linearly decomposes that into the filtered, g̃ = G ∗g, and the residual,

g′ = g − g̃, components. Therefore, filtering the equation (3.13) results in the following
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filtered BTE (FBTE) for the passive scalar:

∂g̃

∂t
+ v ·∇ g̃ = − g̃ − g̃eq(L)

τg
. (3.19)

As it was elaborated by Girimaji [182], the nonlinear nature of the collision operator,

CBGK(g), prohibits the filtering kernel to commute with CBGK(g); thus, it initiates a source

of closure at the kinetic level in FBTE (3.19). Defining L̃ := (v − ũ)2/c2T , this closure

problem is manifested in the following inequality,

g̃eq(L) = Φ exp(−L/2)
(2π)3/2 c3T

̸= Φ̃ exp(−L̃/2)
(2π)3/2 c3T

= geq(L̃). (3.20)

The identified closure requires proper means of modeling so that one can numerically solve the

FBTE (3.19). A common practice is to approximate this closure problem with a modified

relaxation time approach that is described in detail in [183]. Despite the success of this

approach in some applications, it is not physically consistent with the filtered turbulent

transport dynamics [182]. Nevertheless, here we manage to adjust this inconsistency by

looking at the nonlocal effects arising from filtering the Maxwell distribution function, geq(L),

and model them with proper mathematical tools. Considering the spatial filtering kernel

G(r) with the filter-width ∆, and applying it on the Maxwell equilibrium distribution as

g̃eq(L) = G ∗ geq
(
L(t,v,x)

)
=

∫

Rf

G(r) geq
(
L(t,v,x− r)

)
dr, (3.21)

where Rf = [−∆/2 ,∆/2]3.

The integral form of the convolution (3.21) implies that g̃eq(L) consists of a summation

of the exponential functions. Thus, filtering encodes a multi-exponential behavior into the

filtered equilibrium distribution that is gets intensified as the filter-width enlarges. Moreover,

this multi-exponential structure of the filtered Maxwell distribution induces a heavy-tailed

form for the filtered distribution that essentially entails the non-Gaussian behavior and jus-

tifies the spatial nonlocality [16]. This statistical rationale strongly indicates that modeling

this closure problem with a Gaussian-type distribution is fundamentally insufficient. On the
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other hand, it is well-known that the statistical behavior of a multi-exponential distribution

could be sufficiently approximated with a power-law distribution [184, 16].

Subsequently, by rewriting the right-hand side of the passive scalar FBTE (3.19) into the

following form

− 1

τg

(
g̃ − g̃eq(L)

)
= − 1

τg

(
g̃ − geq(L̃)

)

︸ ︷︷ ︸
closed

+
1

τg

(
g̃eq(L)− geq(L̃)

)

︸ ︷︷ ︸
unclosed

, (3.22)

the unclosed part is structurally multi-exponentially distributed and maybe approximated

by a power-law distribution model as we propose

g̃eq(L)− geq(L̃) ≈ gα(L̃) = Φ̃

c3T
Fα(L̃), (3.23)

where Fα(L̃) denotes an α-stable Lévy distribution that is mathematically designed based

on heavy-tailed stochastic processes and replicate the power-law behavior [185, 105].

Regarding the decomposition given in (3.22), and by applying the filtering kernel on the

analytical solution to g(t,x,v) that is given in (3.18), we obtain

g̃(t,x,v) =

∫ ∞

0
e−s g̃

eq
s,s(L) ds =

∫ ∞

0
e−s g

eq
s,s(L̃) ds+

∫ ∞

0
e−s

(
g̃
eq
s,s(L)− g

eq
s,s(L̃)

)
ds,

(3.24)

where g̃
eq
s,s(L) = geq

(
L(t− sτg,x− v sτg,v)

)
, and the second integral represents the closure

source. Therefore, employing the power-law distribution model in (3.23) returns the following

analytic form for g̃(t,x,u)

g̃(t,x,v) =

∫ ∞

0
e−s g

eq
s,s(L̃) ds+

∫ ∞

0
e−s gαs,s(L̃) ds, (3.25)

wherein, gαs,s(L̃) := gα
(
L̃(t− sτg,x− v sτg,v)

)
.

Fractional-Order Model for the SGS Scalar Flux

Similar to the continuum averaging shown in (3.15) to (3.17), the macroscopic continuum

variables associated with (3.3), are obtained in terms of the filtered distribution functions,
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f̃ and g̃, as

Φ̃ =

∫

Rd
g̃(t,x,v) dv, (3.26)

ũi =
1

ρ

∫

Rd
vi f̃(t,x,v) dv, i = 1, 2, 3. (3.27)

Multiplying both sides of the passive scalar FBTE by a collisional invariant X = X (v) and

then integrating over the kinetic momentum would return

∫

Rd
X
(
∂g̃

∂t
+ v ·∇ g̃

)
dv =

∫

Rd
X
(
− g̃ − g̃(L)

τg

)
dv. (3.28)

Here, choosing X = 1 would result in recovering the filtered AD equation (3.3). According

to the microscopic reversibility of the particles that assumes the collisions occur elastically,

the right-hand side of (3.28) equals zero [186]. Therefore, (3.28) reads as

∂Φ̃

∂t
+∇ ·

∫

Rd
v g̃ dv = 0. (3.29)

Since we are working with spatial filtering kernels, G = G(r),
∫

Rd
v g̃ dv =

∫

Rd
(v − ũ) g̃ dv +

∫

Rd
ũ g̃ dv. (3.30)

By plugging (3.30) into (3.29), we obtain that

∂Φ̃

∂t
+∇ ·

(
Φ̃ ũ
)
= −∇ · q, (3.31)

where

qi =

∫

Rd
(vi − ũi) g̃ dv. (3.32)

Using (3.25), we formulate qi as

qi =

∫

Rd

∫ ∞

0
e−s(ui − ũi) g

eq
s,s(L̃) ds dv +

∫

Rd

∫ ∞

0
e−s(vi − ũi) g

α
s,s(L̃) ds dv. (3.33)

It is straightforward to show that the temporal shift can be removed from (3.33). Moreover,

since (vi − ũi) g
eq(L̃) and (vi − ũi) g

eq(L̃) both represent odd functions of vi, thus,

∫

Rd
(vi − ũi) g

eq(L̃) dv =

∫

Rd
(vi − ũi) g

α(L̃) dv = 0. (3.34)
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As a result, qi in (3.33) can be rewritten as

qi =

∫

Rd

∫ ∞

0
e−s(vi − ũi)

(
g
eq
s,s(L̃)− geq(L̃)

)
ds dv+ (3.35)

∫

Rd

∫ ∞

0
e−s(vi − ũi)

(
gαs,s(L̃)− gα(L̃)

)
ds dv.

In an LES setting, the first integral on the right-hand side of (3.35) represents the filtered

scalar flux, q̃, while the second integral aims to model the residual scalar flux, qR, associ-

ated with unresolved small scales of turbulent transport. In other words, by assigning the

Gaussian distribution geq(L̃) to q̃i and the isotropic α-stable Lévy distribution, gα(L̃), to

qRi , the total passive scalar flux, q = q̃ + qR, in (3.35) may be decomposed as

q̃i =

∫ ∞

0

∫

Rd
(vi − ũi)

(
g
eq
s,s(L̃)− geq(L̃)

)
e−sdv ds, (3.36)

qRi =

∫ ∞

0

∫

Rd
(vi − ũi)

(
gαs (L̃)− gα(L̃)

)
e−sdv ds. (3.37)

In B, the details of derivation of q̃ and qR in terms of macroscopic transport variables

including Φ̃ and ũ are presented. As the result, the filtered passive scalar flux is obtained as

q̃ = −D∇Φ̃, (3.38)

and the divergence of residual scalar flux is derived as the fractional Laplacian of the filtered

total scalar concentration,

∇ · qR = −Dα (−∆)α Φ̃, α ∈ (0, 1], (3.39)

where Dα :=
Cα(cT τg)

2α

τg
(2α + 2)Γ(2α) is a model coefficient with the unit [L2α/T ]. The

filtered AD equation for the total passive scalar concentration, developed from the filtered

kinetic BTE with an α-stable Lévy distribution model, yields a fractional-order SGS scalar

flux model at the continuum level. The aforementioned filtered AD equation reads as

∂Φ̃

∂t
+

∂

∂xi

(
Φ̃ ũi

)
= D∆Φ̃ +Dα(−∆)α Φ̃. (3.40)
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Through a proper choice for the fractional Laplacian order α, the developed model optimally

works in an LES setting. Applying the Reynolds decomposition and considering the pas-

sive scalar with imposed uniform mean gradient, equation (3.40) fully recovers the filtered

transport equation (3.3) for the transport of the filtered scalar fluctuations, ϕ̃.

In order to explicitly derive the modeled residual scalar flux in terms of the filtered

transport fields, from the Fourier definition of fractional Laplacian and the Riesz transform

in given in A, one can verify that

F
{
(−∆)α ϕ̃

}
= i ξj

(
− i ξj/|ξ|

)
(|ξ|2)α−1/2F

{
ϕ̃
}
, (3.41)

which leads to

(−∆)αϕ̃ = ∇j

(
Rj(−∆)α−1/2 ϕ̃

)
. (3.42)

Therefore, using (3.39) we may write

∇ · qR = ∇ ·
(
−DαR(−∆)α−1/2 ϕ̃

)
. (3.43)

Finally, from (3.43) one can find the explicit form of the modeled SGS flux as

qRi = −DαRi(−∆)α−1/2 ϕ̃+ c, (3.44)

where c is a real-valued constant.

3.5 Data-driven Nonlocal SGS Modeling

Deriving the structure of the residual scalar flux as a nonlocal SGS model, there are

two levels of model calibration in order to employ this SGS model in an LES. In fact,

this model calibration problem could be viewed as a two-stage procedure where its first

part is dealing with estimation of the fractional order, α, and the other stage infers the

proportionality coefficient of the model, Dα. Subsequently, we propose a two-stage a priori

parameter identification strategy based upon spatio-temporal data for the true qR, obtained

from filtering well-resolved DNS of scalar turbulence as described in section 3.3.
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Capturing Nonlocality with Fractional Modeling of the SGS Scalar Flux

This is the first stage of this data-driven model identification, which targets finding an

optimal fractional order, αopt. Our ground-truth data comes from exact evaluation of the

two-point correlation function, C(qR∥ , G̃∥) as described in section 3.3. In fact, we aim to

capture the spatial nonlocality we showed in the statistics of SGS production of filtered

scalar variance (see Figure 3.1b). Since we employ the fluctuating part of qR∥ in comput-

ing the two-point correlation function, and from the definition C(qR∥ , G̃∥) is normalized by
〈
qR∥ (x) G̃∥(x)

〉
, finding αopt is essentially independent of the other model parameters ap-

peared in (3.44). Using the exact values of qR∥ from filtered DNS, (3.7) returns the ground-

truth two-point correlation function, CTrue Using the database described in section 3.3, while

using the fractional model for SGS scalar return flux CModel as functions of spatial shift, r. In

our study, for a fixed filter width, the fractional order that minimizes the mismatch function

∥CTrue − CModel∥, simply determines αopt capturing the entire range of spatial nonlocality.

By changing 0 < α ≤ 1, we evaluate CModel for four different filter widths, ∆/η =

8, 20, 41, 53. Figure 3.3, shows CTrue in addition to the variations of CModel with r/η as

we change α. We observe that as α decreases, the nonlocal correlations in CTrue are better

approximated over r with the fractional SGS model. According to the minimization of the

mismatch function we introduced, αopt for the four values of filter width is reported in Table

3.1. Moreover, given αopt for each filter width, single-point correlation coefficient between

the true and modeled values of the SGS scalar flux, ϱ
(
qTrue∥ , qModel

∥
)
, is computed and

acceptably good correlation values (in an a priori sense) are reported in Table 3.1. We need

to emphasize that the passive scalar transport occurs in a statistically homogeneous medium

with a direction of large-scale anisotropy. This source of anisotropy significantly impacts the

intensity of nonlocal effects in the SGS dynamics so that the identified fractional-order in

the SGS model is found to be less than 0.5. A similar observation in the study by Di Leoni

et al. showed that presence of anisotropy effects in the turbulent channel flow (due to the

non-zero mean velocity gradient along the stream-wise direction) increases the nonlocality

40



0 100 200 300 400 500

r/¥

0.0

0.2

0.4

0.6

0.8

1.0
C(

qR k
,
e G
k)

(a) ¢/¥ = 8

DNS

Æ = 1.0

Æ = 0.8

Æ = 0.6

Æ = 0.5

Æ = 0.45

Æ = 0.4

Æ = 0.35

Æ = 0.3

Æ = 0.25

0 50 100 150

10°2

10°1

100

0 100 200 300 400 500

r/¥

0.0

0.2

0.4

0.6

0.8

1.0

C(
qR k

,
e G
k)

(b) ¢/¥ = 20

DNS

Æ = 1.0

Æ = 0.8

Æ = 0.6

Æ = 0.5

Æ = 0.45

Æ = 0.4

Æ = 0.35

Æ = 0.3

Æ = 0.25

0 50 100 150

10°1

100

0 100 200 300 400 500

r/¥

0.0

0.2

0.4

0.6

0.8

1.0

C(
qR k

,
e G
k)

(c) ¢/¥ = 41

DNS

Æ = 1.0

Æ = 0.8

Æ = 0.6

Æ = 0.5

Æ = 0.45

Æ = 0.4

Æ = 0.35

Æ = 0.3

Æ = 0.25

0 50 100 150

10°1

100

0 100 200 300 400 500

r/¥

0.0

0.2

0.4

0.6

0.8

1.0

C(
qR k

,
e G
k)

(d) ¢/¥ = 53

DNS

Æ = 1.0

Æ = 0.8

Æ = 0.6

Æ = 0.5

Æ = 0.45

Æ = 0.4

Æ = 0.35

Æ = 0.3

Æ = 0.25

0 50 100 150

100

Figure 3.3: Variations of the the two-point correlation function given in (3.7) obtained for
the modeled SGS flux CModel α is changed from 0 to 1, in addition to the exact evaluation
of C(qR∥ , G̃∥) via exact values of the SGS scalar flux from DNS, illustrated for four filter

widths (a) ∆/η = 8, (b) ∆/η = 20, (c) ∆/η = 41, and (d) ∆/η = 53. The arrows indicate
the increase of α. Insets depict the two-point correlation function values on smaller regions
of the spatial shift, r/η < 150, in logarithmic scale. These plots show that the true values of
the two-point correlation function over the entire range of spatial shift is well-approximated
with finding the αopt in the fractional-order SGS model.

Table 3.1: Optimal fractional orders, and their corresponding single-point correlation coeffi-
cients between true and modeled SGS scalar fluxes.

∆/η αopt ϱ
(
qTrue∥ , qModel

∥
)

8 0.40 0.35
20 0.35 0.40
41 0.36 0.44
53 0.37 0.45

in the SGS dynamics in a way that it requires α < 0.5 to properly capture that with the

fractional gradient SGS model [125].
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Figure 3.4: Regression plots between qTrue∥ and qModel
∥ for the filter widths, (a) ∆/η = 41,

and (b) ∆/η = 53. The corresponding optimal fractional-orders are reported in Table 3.1.

Sparse Regression on the Fractional-Order Model

After obtaining the αopt for a choice of filter width, we can compute the explicit term

X = R(−∆)αopt−1/2 ϕ̃ noting the linear mapping qR = −DαX+c, in (3.44). Having access

to the true values of SGS scalar flux on an extensive spatio-temporal database (described in

section 3.3) turns the second stage of our model calibration into a sparse linear regression

procedure. Therefore, this procedure leads to learning and inferring of Dα that is appeared

in the filtered AD equation (3.40).

Similar to Beetham and Capecelatro’s work for sparse regression [187], we employ a

regularized linear regression method namely as elastic net that combines the L1 and L2

penalties as its regularizer [188]. Using the implementation of the elastic net method in

scikit-learn [189] and assigning equal weights to the L1 and L2 regularizes, we perform

the regression and the its quality is examined through scatter plots. As a common practice,

and in order to choose proper training data size, we perform cross-validation tests over our

spatio-temporal dataset [75]. As a result, Figure 3.4 shows the resulting scatter plots after

the regression for two cases with ∆/η = 41, 53.

Using the described procedure, the proportionality coefficient for each filter width is

achieved. Figure 3.5 illustrates predicted Dα through this regression procedure as a function

of chosen filter width, and it is notable that the predicted Dα decreases to lower values as

we chose smaller filter widths. This numerical observation is consistent with our theoretical

42



0 10 20 30 40 50 60

∆/η

0.02

0.04

0.06

0.08

0.10

D α

Regression

∆2αopt

Figure 3.5: Variation of the proportionality coefficient, Dα, for fractional-order SGS model
with filter width, and the scale invariance study.
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Figure 3.6: Probability distribution functions of the SGS dissipation of scalar variance, for
the exact values from filtered DNS, local eddy-diffusivity model, and fractional-order SGS
model at filter widths ∆/η = 41, 53.

interpretation of Dα as we pointed out in section 3.4. A vital consideration in developing

an SGS model is the concept of scale-invariant closure model, especially within the inertial-

convective subrange [190]. As indicated in section 3.4, Dα takes the unit of [L2α/T ]. There-

fore, to study the scale invariance property, by choosing the filter width as the length-scale,

one can compare the variations of Dα obtained from the sparse regression against ∆2αopt .

Figure 3.5 shows that the developed fractional-order SGS model is scale-invariant.
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3.6 A Priori Testing via SGS Dissipation of the Resolved Scalar

Variance

We subsequently examine the capability of the optimal fractional SGS model in repro-

ducing the PDF of SGS dissipation of scalar variance, qR · G̃. Through addressing:

• The ability of the SGS model to capture heavy tails in the true PDF, and

• If the SGS model is capable of representing the backward scattering of the scalar

variance cascade i.e., reproducing the negative values in the PDF.

Considering two filter widths of ∆/η = 41, 53, Figure 3.6 shows the PDF of normalized SGS

dissipation of filtered scalar variance for the optimal fractional-order model, local EDM, and

the true SGS flux. The sample space to compute the PDFs is identical to the one we utilized

to obtain the PDFs illustrated in Figure 3.1a as fully described in section 3.3. Here, one can

see that for both of the filter widths the fractional-order SGS model successfully captures

the broad tail of the PDF in the positive value region for the SGS dissipation, however,

the local eddy-diffusivity model fails to completely do that. The positive side of the PDF

is associated with the cascade of scalar variance from the resolved scales to the unresolved

ones i.e., forward scattering of the scalar variance. On the other hand, this figure remarkably

demonstrates that unlike the local EDM, fractional-order SGS model is able to predict the

events with the negative SGS dissipation values as observed in the true SGS dissipation

PDFs. In fact, our resulting PDFs display that the nonlocal modeling of the SGS scalar flux

through fractional-order operator makes it possible to include the backward scattering in the

LES of turbulent scalar transport. Similar observation in the context of fractional-order SGS

modeling was reported by Di Leoni et al., where their developed fractional SGS model was

shown to be able to reproduce the back-scattering of the filtered turbulent kinetic energy

[125].
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CHAPTER 4

A NONLOCAL SPECTRAL TRANSFER MODEL AND SCALING LAW

FOR SCALAR TURBULENCE

4.1 Background

According to [132], anomalies due to the effect of large-scale motions in passive scalars

occur as the result of turbulent mixing, and arising from rare events in which a parcel of

fluid moves a distance much greater than the integral length scale without equilibrating. In

the analogy of Lagrangian path integrals, [191] argued that this behavior is identified for a

typical fluid path for which the mixing rate is anomalously long rather than for a typical

mixing rate but with an atypical path [132]. This interpretation is an evidence for nonlocal

interactions at the large scale levels of turbulent motion originating from the presence of

anisotropy. According to [132], this behavior is directly linked to the emergence of heavy

tails (exponential tails) in the PDF of passive scalar and has been experimentally observed in

the turbulent behavior of passive scalars with non-zero mean gradient [192, 193, 194, 195]. A

proper approach to account for a mathematical model representing the accumulative source

of these nonlocal motions is to revisit the spectral transfer model for the cascade of the

passive scalar. In fact, this has been a thriving area of research as reported in different

studies such as [196, 197]. A nonlocal spectral transfer model provides a robust link between

the large-scale anisotropy at the energy containing range and the universal range throughout

the turbulent cascade while accounting for the breakdown of local isotropy at small scales.

The rest of this chapter is organized as follows: in section 4.2, we introduce the math-

ematical model for the transport of turbulent passive scalars, their spectral transfer view,

and the nonlocal modeling for the spectral transfer. In section 4.3, we provide a detailed

statistical analysis for the nonlocal and standard models in a DNS setting by comparing

the single-point, two-point, and high-order small-scale statistical quantities. In section 4.4,

the similarities between the current model and the fractional-order subfilter modeling for

large-eddy simulation are reconciled.

45



4.2 Turbulent transport of passive scalars

The Navier-Stokes (NS) equations that govern incompressible fluid flow dynamics are

given by

∂u

∂t
+ u ·∇u = −1

ρ
∇p+ ν∆u+ F ; ∇ · u = 0, (4.1)

where u is the velocity field, ρ denotes the density of fluid, p is the pressure, and ν indicates

the kinematic viscosity. Moreover, F represents an external forcing mechanism and in this

setting we take it as Au, where A is a linear indicator function in the spectral domain in

order to artificially inject the dissipated TKE into the large scales (low wavenumbers) to

generate a statistically stationary isotropic turbulent velocity field (see chapter 2). In order

to model the transport of a conserved passive scalar with the diffusivityD in this medium, the

advection-diffusion equation is a well-known Fickian mathematical model, which is written

in the following form:

∂Φ

∂t
+ u ·∇Φ = D∆Φ. (4.2)

Reynolds decomposition allows for Φ = ⟨Φ⟩ + ϕ, where ⟨·⟩ denotes the ensemble-averaging

operator, and ϕ is the fluctuating part of the scalar field. In the homogeneous turbulence,

assumption of a uniform imposed mean gradient, ∇⟨Φ⟩ = G, is a common practice in

order to consider a forcing mechanism for the turbulent intensity [154]. As a result, (4.2) is

rewritten as

∂ϕ

∂t
+ u ·∇ϕ = −G · u+D∆ϕ. (4.3)

The governing equations are numerically solved in the pseudo-spectral setting introduced in

chapter 2, and the simulation setup is further explained in section 4.2.

Considering Eϕ(k, t) as the three-dimensional scalar spectrum, spectral budget of the

scalar variance reads as

⟨ϕ2⟩ =
∫ ∞

0
Eϕ(k, t) dk, (4.4)
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where k indicates the wavenumber. Through the assumption of small-scale isotropy, the

spectral budget for the dissipation rate of scalar variance by molecular diffusion, χ, is given

as

χ = 2D
∫ ∞

0
k2Eϕ(k, t) dk. (4.5)

Depending on the ratio of ν/D, and the dissipation rate of TKE (ε), three main wavenumbers

are identified for the scalar spectrum:

kηK ≡
( ε

ν3

)1/4
, kηB ≡

( ε

νD2

)1/4
, kηOC

≡
( ε

D3

)1/4
,

associated with Kolmogorov (ηK), Batchelor (ηB), and Obukhov-Corrsin (ηOC) length-

scales. Unlike the case with Schmidt number Sc := ν/D ≈ 1 where all of these three

wavenumbers are nearly equal, kηB and kηOC
encode the different behavior of the scalar

spectrum in the presence of viscous-convective subrange (Sc ≫ 1), and inertial-diffusive sub-

range (Sc ≪ 1), respectively. It is convenient to differentiate the scales of turbulent cascade

by the wavenumbers kEI , kDI , as the k < kEI represents the energy-containing range, and

kEI < k indicates the universal equilibrium range [4]. Moreover, the universal equilibrium

range is split into inertial-convective (kEI < k < kDI), and dissipation (kDI < k) subranges

for the passive scalars with Sc = 1 [196].

Scalar spectral transfer and modeling

Time-evolution for the spectrum of a conserved scalar is governed by (see e.g., [4, 196])

∂

∂t
Eϕ(k, t)− T (k, t) = P(k, t)− 2D k2Eϕ(k, t), (4.6)

where P(k, t) denotes the spectral content for the large-scale production rate of the scalar

variance, and T (k, t) is the scalar spectral transfer function. The unknown nature of the

T (k, t) causes a closure problem in (4.6); thus, a proper modeling for the spectral transfer

function is required. T (k, t) could be defined as the rate of spectral flux function, F (k, t),

per unit wavenumber as (see e.g., [134, 196])

T (k, t) ≡ −∂F (k, t)

∂k
. (4.7)
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Figure 4.1: Time-averaged 3-D spectra for (a) turbulent kinetic energy (E(k)), and (b)
turbulent scalar intensity (Eϕ(k)), obtained from the DNS results described in section 4.2.

By integrating (4.7) over the 3-D spectral domain, the spectral flux function is obtained.

As a well-known assumption, P(k, t) mainly contributes to the energy-containing scales

directly, while it is obvious that k2Eϕ(k, t) is mainly considerable in the small scales of

the turbulent cascade where diffusion is the dominant transport mechanism [4]. Therefore,

integrating (4.6) over the wavenumber space yields the following:

∂

∂t
⟨ϕ2⟩ =

∫ kEI

0
[P(k, t) + T (k, t)] dk +

∫ kDI

kEI

T (k, t) dk

+

∫ ∞

kDI

[
T (k, t)− 2D k2Eϕ(k, t)

]
dk (4.8)

In the statistically stationary state, the second and third integrals in (4.8) are approximately

zero [4, 196]. In other words, within the inertial-convective subrange ∂F (k)/∂k = 0 by the

constant cascade assumption, and for the diffusive subrange ∂F (k)/∂k = −2D k2Eϕ(k). As

a result, for the wavenumbers in the inertial-convective subrange F (k) = χ, integrating with

respect to k and employing (4.5). Subsequently, (4.8) is rewritten as:

∂

∂t
⟨ϕ2⟩ = P(t)− F (kEI , t)︸ ︷︷ ︸

Energy-containing

+F (kEI , t)− F (kDI , t)︸ ︷︷ ︸
Inertial-Convective

+F (kDI , t)− χ(t)︸ ︷︷ ︸
Dissipation︸ ︷︷ ︸

Universal Equilibruim Range

(4.9)

This picture motivates the concept of modeling for the turbulent cascade process, here

specifically for the case of scalar transport. This approach was initially introduced by On-

sager in [22, 23], and later was generalized by [134] to the cascade mechanism of other systems
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such as passive scalars. In the cascade transfer, assuming the geometric doubling at each

wavenumber step would approximate the step length as ∆k ≈ k. Therefore, the spectral

flux function could be represented in the following form:

F (k) ≈ scalar variance

unit time
=

∆k Eϕ(k)

τ(k)
≈

k Eϕ(k)

τ(k)
, (4.10)

where τ(k) is the time-scale associated with the step at wavenumber k [134]. Within the

inertial-convective subrange, choosing τ(k) to be the local time-scale associated with the

eddies of size ℓ = k−1, reads as

τ(k) =

(
[k E(k)]1/2

1/k

)−1

=
[
k3E(k)

]−1/2
. (4.11)

In (4.11), E(k) is the spectrum of the turbulent kinetic energy (TKE). Thus, according to

the well-known Kolmogorov’s scaling for the inertial subrange, E(k) ∼ ε2/3 k−5/3, where ε

is the dissipation rate of TKE.

Plugging (4.11) into (4.10), F (k) = χ ≈ k5/2E(k)1/2Eϕ(k), and according to the scaling

of TKE spectrum, the scalar spectrum scales as

Eϕ(k) = C χ ε−1/3 k−5/3, (4.12)

where C is the scaling constant. For a comprehensive overview of a variety of the spectral

transfer models as well as the analysis of their dynamics and properties, interested readers

are referred to [135, Sec. 4.7.1].

Direct numerical simulation (DNS) of the scalar turbulence with a uniform imposed mean

gradient, G = (0, 1, 0), advected on statistically stationary homogeneous isotropic turbulent

(HIT) flow, provides a proper database to examine the scaling law in (4.12). In this study, a

well-resolved DNS at the Taylor-scale Reynolds number Reλ = 240 for the case with Sc = 1

is obtained. Resolving over sufficiently large time period in the statistically stationary state

provides a rich sample space to obtain the ensemble-averaged spectra for the TKE and scalar.

Figure 4.1 illustrates these time-averaged spectra over approximately 15 large-eddy turnover

times, τET . Although the well-known Kolmogorov scaling for the TKE is achieved as shown
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Figure 4.2: A priori identification of the fractional order and Cα, for the modified scaling
law introduced in (4.15) based upon the calibration of the scaling law with the large-scale
content of the time-averaged 3-D scalar spectrum (k < 10) that induces the nonlocality. The
data to compute the scalar spectrum comes from the DNS using standard scalar model. The
identified values are α = 0.65, and Cα ≈ 3.9.

in Figure 4.1a, Figure 4.1b reveals that the scalar spectrum does not obey the scaling law

given in (4.12).

Nonlocal modeling of the scalar spectral transfer

In Corrsin’s generalization to the Onsager’s cascade model, ∂F/∂k is considered as the

rate of gain or loss of the spectral content per unit wavenumber [134]. Moreover, this

generalized model could be applied to

• non-conservative systems,

• systems with different characteristic time-scales,

• systems with different cascading mechanisms.

In fact, one can realize that the scaling given in (4.12) was obtained based upon this

generalization. However, in the case of scalar spectrum, a main assumption that might

be questioned is small-scale isotropy. Recently, high-fidelity computational studies showed

that effects of large-scale anisotropic forcing do not vanish at the small-scales of turbulent
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transport of passive scalars [see e.g. 32]. Moreover, these small-scale anisotropic fluctuations

are identified to be highly intermittent due to intensified presence of nonlocal interactions

in passive scalar turbulence. Anomalous scaling of high-order scalar structure functions

is a clear and well-known experimental evidence supporting this significant deviation from

local isotropy at small-scales of transport. In fact these effects are available in the inertial-

convective subrange. Accordingly, we also observed that the scaling law for the scalar spec-

trum has a notable discrepancy with the ensemble-averaged spectrum obtained from DNS.

Based on the Corrsin’s generalization, we propose that the effects of the anisotropy could

be effectively modeled in the spectral transfer function when the effect of spatial nonlocality

in the cascade of scalar variance is properly considered. Inclusion of an added power-law

behavior into the eddies of size ℓ mathematically enables modeling of the long-range inter-

actions in the physical domain (spatial nonlocality), and would return a modification in the

local time-scale given in (4.11). As a result, we propose

ℓ = (k2 + Cαk2α)−1/2, α ∈ (0, 1], (4.13)

where Cα is a non-negative model coefficient, and Cα = 0 yields the limit case ℓ = k−1.

Consequently, the modified time-scale is derived as

τ(k) =
[
(k2 + Cαk2α) k E(k)

]−1/2
. (4.14)

Plugging this nonlocal time-scale into (4.10) yields the following modified scaling law

Eϕ(k) = C χ ε−1/3 k−2/3 (k2 + Cαk2α)−1/2, (4.15)

and C denotes the scaling constant. Testing this modified scaling law on the time-averaged

scalar spectrum shows a promising agreement through proper parameterization of α and

Cα. In order to parameterize these two values, given the time-averaged 3-D scalar spectrum

we obtained from the standard DNS (Figure 4.1b), in the modified scaling law (4.15), we

initially set Cα = 1, then vary α ∈ (0, 1]. We observe that α = 0.65 yields the slope

of the time-averaged scalar spectrum; however, the level of the spectral content (for the
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scalar variance) is achieved when 1 < Cα. Therefore, by fixing the α = 0.65 and trying

incremented realizations of Cα in (4.15), we realize that with Cα ≈ 3.9 we have reached to the

desired parameterization. Accordingly, Figure 4.2 illustrates that with this parameterization

(α = 0.65 and Cα ≈ 3.9) the universal scaling observed in the TKE spectrum is achieved for

the scalar spectrum with respect to (4.15).

The multi-scale nature of the turbulent cascade process implies that the nonlocal trans-

port effects induced by the large-scale anisotropy are fundamentally connected to the small-

scales of motion through inter-scale interactions. Here, the inertial-convective subrange

essentially plays the role of a meso-scale region for the turbulent cascade, where the presence

of these nonlocal inter-scale interactions are highly pronounced. In fact, several fundamental

studies focused on these nonlocal interactions and tried to unravel their nature by triad and

tetrad models in the spectral domain. Therefore, a modification to the dissipation model

(4.5) (initiated from the small-scale isotropy hypothesis) would compliment the nonlocal ef-

fects observed in larger scales of turbulent cascade. Subsequently, the total dissipation (χT )

is revised into

χT = 2D
∫ ∞

0
[k2 + Cα k2α]Eϕ(k, t) dk

= 2D
∫ ∞

0
k2Eϕ(k, t) dk

︸ ︷︷ ︸
χ

+ 2DCα
∫ ∞

0
k2αEϕ(k, t) dk

︸ ︷︷ ︸
χα

. (4.16)

Defining Dα := DCα, χα characterizes the essence of having an underlying nonlocal diffu-

sion operator in the advection-diffusion equation governing the turbulent transport of passive

scalar. From a mathematical point of view, χα directly stems from a fractional-order Lapla-

cian operator, (−∆)α(·), acting on the scalar concentration; thus, the modified transport

model reads as

∂ϕ

∂t
+ u ·∇ϕ = −G · u+D∆ϕ+Dα (−∆)αϕ. (4.17)
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Table 4.1: Time-averaged values of the contributing terms in the time-evolution of scalar
variance over the statistically stationary region.

T P χ χα

Standard -0.00056 1.1146 -1.1077 –
Nonlocal -0.00033 1.1427 -0.9261 -0.2462

Numerical discretization and simulation details

A standard pseudo-spectral scheme based on the Fourier-collocation method is utilized to

discretize and resolve the NS and AD equations. The triply periodic computational domain

Ω = [0, 2π]3 is discretized in space by a uniform grid with 5203 grid points. A fourth-order

Runge-Kutta (RK4) scheme is employed to perform the time-integration with a fixed ∆t =

8× 10−4, while the CFL < 1 condition is always checked; therefore, the numerical stability

is ensured. In this study, we select a fully developed HIT field at Reλ = 240 as the initial

state of our computational experiment, and investigate the development of the passive scalar

concentration under the effect of a large-scale uniform imposed mean-gradient, G = (0, 1, 0).

Concentration field, ϕ(x), is initiated from zero and is resolved for approximately 30 large-

eddy turnover times under the standard model (4.3), and the introduced nonlocal model

(4.17), while Sc = 1. More detailed discussions about the numerical method, computational

approach for the simulations, and the flow characteristics of the utilized HIT data have been

presented in Chapter 2.

4.3 Statistical analysis of the nonlocal scalar turbulence model

Given the fact that turbulent transport is a stochastic process, sophisticated statistical

analysis of the mathematical models for such phenomena has been a center of attention in

turbulence research. In this study, we consider the single- and two-point statistical quantities

of interest in passive scalar transport to examine the performance of our nonlocal modeling

within an equilibrium turbulent state against its conventional counterpart.
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Figure 4.3: Records of the contributing terms in the time-evolution of scalar variance
( ddt⟨ϕϕ⟩) defined in the right-hand side of (4.19), for: (a) standard model, (b) nonlocal
fractional-order model. The time-averaged quantities (over the statistically stationary re-
gion of the time-records) are reported in Table 4.1.

Transport of the scalar variance

Transport of the scalar variance provides an important information about the evolution

of the turbulence intensity. In fact, computational fluid dynamics approach make it possible

to identify and keep track of the records of different influential mechanisms obtained from

the mathematical modeling of the physics. It is well known that the multiplying both sides

of the AD equation would yield the time-evolution equation for the turbulent intensity, ϕ2.

Therefore, applying that to equation (4.17), after using the incompressibility condition and
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Figure 4.4: Tracking the record of the balance in scalar variance equation ensuring the
equilibrium state in simulations of standard and nonlocal models.

chain rule for the spatial derivatives, one can derive that

1

2

∂ϕ2

∂t
=−

[
∇ · (uϕ2)− (uϕ) ·∇ϕ

]
−G · (uϕ)

+D∇ · (ϕ∇ϕ)−D∇ϕ ·∇ϕ (4.18)

+Dα∇ ·
(
ϕR(−∆)α−1/2ϕ

)
−Dα∇ϕ ·R(−∆)α−1/2ϕ,

where R(−∆)α−1/2(·) denotes the fractional-order gradient obtained from the Riesz trans-

form [16, 126]. Due to the homogeneity of the scalar fluctuations, averaging over the spatial

domain is equivalent to the ensemble-averaging operation ⟨ · ⟩ [4]. Thus, applying this aver-

aging operation to (4.18) and considering that homogeneity of the fluctuating fields induces

⟨∇ · (·)⟩ = ∇ · (⟨ · ⟩) = 0, the evolution of scalar variance ⟨ϕ2⟩ is obtained as follows:

1

2

d

dt
⟨ϕ2⟩ = ⟨(uϕ) ·∇ϕ⟩︸ ︷︷ ︸

T

−⟨G · (uϕ)⟩︸ ︷︷ ︸
P

−D ⟨∇ϕ ·∇ϕ⟩︸ ︷︷ ︸
χ

−Dα ⟨∇ϕ ·R(−∆)α−1/2ϕ⟩︸ ︷︷ ︸
χα

. (4.19)

In (4.19), the rate of scalar variance is composed of a balance between the turbulent advection

effects (T ), production by the imposed mean-gradient (P), molecular diffusion (χ), and

the nonlocal diffusion (χα). It is clear that for the standard scalar transport model in

which Dα = 0, the nonlocal diffusion is consequently zero. According to the simulation

considerations described in Section 4.2, we collect the records of the contributing terms in
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the right-hand side of (4.19), and Figure 4.3 illustrates these time records for the standard

(Figure 4.3a) and nonlocal (Figure 4.3b) models. Moreover, during both of the simulations we

compute the rate of the scalar variance, d
dt⟨ϕ2⟩, using a forward-Euler finite difference scheme,

and compare it with the record of the right-hand side of equation (4.19) constructed from the

summation of the collected records. For both of the simulations an excellent match between

these two computed quantities is observed during the entire simulation time as shown in

Figure 4.3. In the current work, we are focused to examine the statistical behavior of the

developed nonlocal model at the “turbulence equilibrium” state. In this context, equilibrium

is interpreted when for the rate of scalar variance the following condition statistically holds:

P + T
χ+ χα

∼ 1. (4.20)

Figure 4.4 shows the displays the record of this quantity for standard and nonlocal models

and we notice that after approximately two large-eddy turnover times from resolving the

scalar concentration, (P + T )/(χ+ χα) starts to fluctuate around 1. In order to make sure

that the transient numerical effects are well past, we continue to simulate up to t/τET = 10,

and consider the rest of simulation statistics in the fully developed turbulent equilibrium

state. Therefore, the time-averaging operations in our study is performed on a sample

space over 10 ≤ t/τET ≤ 30. Accordingly, we can compute the time-averaged values of

the contributing terms in evolution of scalar variance given in (4.19) as they are reported in

Table 4.1. Comparing the time-averaged values of P from both of the models reveals that the

nonlocal model approximately includes 2.5% more production rate of the scalar variance by

the large-scale scalar mean-gradient. A reasonable interpretation for this observation is that

once the nonlocal transfer of the scalar variance transfer in the cascade process is correctly

modeled; therefore, this excessive 2.5% production rate is captured at the equilibrium state

for scalar turbulence. In other words, devising a nonlocal turbulent dissipation model (χα)

in the scalar variance cascade mechanism would enable a balance in the equilibrium state

so that the nonlocal effects in turbulent transport originating from large-scale “anisotropy”

source are better captured throughout the DNS.
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Figure 4.5: Time-averaged scalar spectrum computed from the data simulated with the
nonlocal model, and evaluation of the identified scaling law in (4.15) for the scalar variance
spectrum.

Finally, we compute the time-averaged scalar variance spectrum obtained from the scalar

field resolved by the nonlocal fractional-order model to examine the modified scaling law

(4.15) a posteriori. Figure 4.5 depicts this spectrum and reveals that the scaling (4.15)

seamlessly holds. It is worth emphasizing that the total turbulent dissipation is denoted by

χ+ χα.

High-order small-scale statistics of scalar fluctuations

It is well-understood that statistics of the turbulence at the small-scales of the transport

are represented through the central moments of the gradients of the fluctuating fields. Here,

we are interested in discovering the small-scale statistics when the scalar field is sufficiently

resolved with the proposed nonlocal scalar transport model. In fact, we seek to understand

what would be the prediction of this model for the asymmetric and highly intermittent nature

of passive scalar turbulence at the small scales. Therefore, we compute the skewness and

flatness factors for the fluctuating concentration gradient, and due to the importance of the

statistical behavior along the anisotropy direction ∥, we focus on S∇∥ϕ and K∇∥ϕ. Figure

4.6 illustrates the records of these two statistical quantities throughout the entire simulation

for the standard and nonlocal models. Over the equilibrium state, explained in section 4.3,
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Figure 4.6: Time records of (a) skewness, and (b) flatness of the scalar gradient along the
anisotropy direction labeled by ∥. The time-averaged values are identified with dashed lines
over the statistically stationary state, and their values are reported in Table 4.2.

we obtain the mean values of the of these statistical quantities by time-averaging, and their

values are reported in Table 4.2. These time-averaged values show that the nonlocal model

yields the skewness factor 10% more than the standard model, and the flatness factor is

approximately 7% higher in the nonlocal transport model. On the other hand, in a study by

[198] on the resolution effects and scaling in numerical simulations of passive scalar mixing

in turbulence, for a similar problem setup at Reλ = 240 and Sc = 1, they performed two

sets of standard direct numerical simulations with resolutions (a) N = 5123 (kmax ηB ≈ 1.5)

and (b) N = 20483 (kmaxηB ≈ 5.1). The resulting high-order statistics we obtained and

reported in Table 4.2, are in great agreement with what [198] reported for the same case

in Table 4 of their work (µ3 and µ4). In fact, our study shows that our nonlocal modeling

and the performed DNS based on that, predicts the high-order statistics with about 3%
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Table 4.2: Time-averaged values of S∇∥ϕ, and K∇∥ϕ over the statistically stationary state

as illustrated in Figure 4.6.

S∇∥ϕ K∇∥ϕ

Standard model 1.40 20.8
Nonlocal model 1.54 22.2

error compared to the extra high-resolution simulation (the case with kmax ηB ≈ 5.1) in

Donzis & Yeung’s study reports. This comparison essentially proves the effectiveness of our

modeling while we reduce the computational cost of the simulation about 64 times [compared

to simulation results with N = 20483 spatial resolution in 198]. This evidently implies that

an appropriate modeling of the nonlocal turbulent scalar transfer via the fractional-order

model properly reflects the well-known statistical features of highly non-Gaussian behavior

of the passive scalar turbulence reported in the literature [132, 34].

Two-point statistics and structure functions

Structure functions of order n for a turbulent field such as scalar concentration are defined

as:

⟨(δrϕ)n⟩ = ⟨[ϕ(x+ r)− ϕ(x)]n⟩, n > 1. (4.21)

In (4.21), r = re where r is the increment of spatial shift, and e denotes a unit vector along

a direction of interest. In fact, the structure functions would provide the nth-order statistics

of spatial increments in the fluctuating field, which are interesting metrics in studying the

nonlocality. In this study, we are interested in analyzing the behavior of the second- and third

order structure function of ϕ along the direction of large-scale anisotropy, i.e. e = (0, 1, 0),

and regrading the size of the DNS grid, r = 2 η. Accordingly, Figure 4.7 shows the time-

averaged (over the equilibrium turbulent region) structure functions of order 2 and 3 obtained

from the simulations from standard and nonlocal scalar transport models. In Figure 4.7(a),

one can observe that for r > 40 η the nonlocal second-order structure function starts to

exhibit higher values compared to the one computed from the simulations using standard
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Figure 4.8: Third-order mixed longitudinal structure function, representing the statistics
of advective increments. The nonlocal model shows a consistent and extended scaling over
universal range.

model. For the third-order structure function values, the two models behave similarly up to

r/η = 10; however, after that the nonlocal model shows higher values withing the spatial shift

domain associated with the inertial-convective and integral-scale domain. It is apparent that

the maximum value of the time-averaged ⟨(δrϕ)3⟩ in the nonlocal model is approximately 10

times higher than the standard model both occurring at r/η ≈ 200.

As initially introduced in [25], mixed “velocity-scalar” third-order structure function is
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an importasnt two-point statistical quantity measuring the advective turbulent transport in

passive scalars. In the presence of large-scale anisotropy (imposed mean scalar gradient),

the longitudinal contribution to this mixed structure function plays the dominant role in

the advective transport [199], and its functional form obtained as −⟨δruL(δrϕ)2⟩. Here, the

subscript L indicates the velocity component along the longitudinal direction with respect to

spatial shift direction r, where in our computational setup it would be u2. Similar to the the

second- and third-order scalar structure functions, we compute a time-averaged value for the

−⟨δruL(δrϕ)2⟩ over the stationary time domain. Figure 4.8 shows that for the dissipative

range (r/η < 6) this structure function scales with r3 in both standard and nonlocal models,

while for almost the entire range of 6 < r/η < 200 the mixed structure function obtained

from the DNS with the nonlocal transport model scales with r2. Unlike this universal-range

scaling, one can observe that similar behavior is not necessarily seen in the −⟨δruL(δrϕ)2⟩

when the scalar field is resolved with the standard model. However, in the standard model,

a scaling with r could be identified within 20 < r/η < 60. This comparison suggests that the

considering the nonlocal effects in the turbulent cascade could result in emergence of more

universal behavior in the two-point statistics of the advective transport, which inherently

reveal high-order statistics of the nonlocality.

4.4 Reconciliation with the fractional-order SGS modeling for LES

Large-eddy simulation is known to be an effective technique in computational turbulence

research that reduces the computational cost of the simulations by focusing on resolving the

larger scales of the transport while the unresolved scales are modeled from the resolved-scale

transport quantities [88]. From a theoretical point of view, the turbulence closure appearing

in the LES equations is the result of applying a general filtering operation to the governing

equations. In the convolution kernel G∆(x′ −x) for this filtering operation, ∆ is considered

to be the arbitrary filter size. In LES, the common practice is to take ∆ large enough

towards the intermediate scales of turbulent transport. However, in theory, the filter size

could be considered close to the smaller scales of transport in a way that ∆ → η [190].
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Figure 4.9: Reconciliation of the nonlocal model with the fractional-order SGS model devel-
oped in [126] when the filter size is assumed to be at the dissipation range of ∆ = 2 η. The Dα

is computed from the filtered DNS data for ∆/η = 4, 8, 20, 41, 52 based on the data-driven
methodology introduced in [126] and a Gaussian process regressor (GPR) is trained based
upon these evaluations, and Dα is approximated based on the trained GPR for ∆/η < 4 The
predicted Dα for ∆ = 2 η is found to be in total agreement with the identified one obtained
from the scaling analysis a priori in Figure 4.2.

With this rationale, the simulations we performed in this study might be seen as an LES

when filter size is twice the η. Subsequently, it is interesting and vital to examine if the

developed nonlocal transport model is reconciled with a nonlocal functional SGS model in

terms of a priori model identification. The fractional-order model for the SGS scalar flux

proposed in [126] seems to be the appropriate candidate for this examination. Recalling

from section 4.2, we performed an a priori parameter identification that yielded α = 0.65

and Dα/D ≈ 3.9 (see Figure 4.2). Now, in order to fulfill our goal, we need to show that

given that the optimal fractional order for the SGS model αopt = 0.65, what would be

the value of Dα/D that is obtained from the procedure introduced in [126] that relies on

explicitly filtered data and sparse regression. Taking the filtered data from the simulation

based on the standard scalar transport model (4.3) with the time-averaged scalar spectrum

shown in Figure 4.2, we can obtain the proportionality coefficient for the fractional-order
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SGS model. Here, we choose a top-hat box filtering kernel and obtain the filtered data for

the filter sizes ∆/η = 4, 8, 20, 41, 52. Our goal is to evaluate Dα when ∆/η = 2; however,

it is not computationally possible to obtain the filtered data for infer the Dα at . Instead,

we manage to employ a feasible machine learning algorithm (ML) to predict the desired Dα

while it is trained on the evaluated Dα values from direct filtered data at larger filter sizes.

Gaussian Process Regression (GPR) is a known to be a suitable ML algorithm when one

seeks to predict a quantity of interest from scarce experimental or computationally expensive

high-fidelity data. Using the implementation of GPR in Scikit-Learn package [189], we

obtain the predicted value of Dα/D = 3.87 for ∆ = 2 η as illustrated in Figure 4.9. This

result shows that the a priori estimates for the proportionality coefficient in the nonlocal

scalar transport model is in great agreement with the fractional SGS model when filter size

is selected as ∆ = 2 η; therefore, both models are reconciled.

It is worth mentioning that the uncertainty in the predictions of the trained GPR for

∆/η < 4 is assessed, and it is observed that the uncertainty is very low and practically

negligible (see the 95% confidence interval in Figure 4.9).
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CHAPTER 5

DEEP LEARNING MODELING FOR SGS FLUX IN THE LES OF SCALAR

TURBULENCE AND GENERALIZATION TO OTHER TRANSPORT

REGIMES

5.1 Background

In the SGS modeling for SGS scalar flux, Vollant et al. [200] managed to represent the

closure flux with a deep learning model, and tested their model for homogeneous isotropic

turbulent flows. Later, Portwood et al. [157] proposed a deep neural network model for

the SGS scalar flux and trained their model on an extensive dataset obtained from filtering

the direct numerical simulation of a passive scalar with uniform mean gradient in a HIT

flow. They evaluated their model in a priori (off-line) and a posteriori (on-line) tests and

showed their model significantly outperforms the functional and structural gradient-type

SGS models. In another study, Frezat et al. [103] developed a deep learning SGS scalar flux

model using a convolutional neural network assembly, while they enforced multiple transfor-

mation invariance properties (such as translation, rotation, and Galilean invariance). They

showed that enforcing such physical properties is crucial for improving the performance of

SGS model. Looking back to Vollant et al.’s work, they mentioned that were not success-

ful in testing their trained SGS model on a different scalar transport regime [200]. In 2-D

turbulence settings, Subel et al. [201] and Guan et al. [202] conducted successful generaliza-

tion of pre-trained deep learning SGS models to predict on higher Reynolds number regimes

using transfer learning technique [203]. Inspired by these pioneering studies, here in the

context of 3-D homogeneous turbulence with a uniform scalar gradient, we seek to develop

a deep learning SGS scalar flux model that could feasibly be generalized to other turbulent

transport regimes.

The remaining parts of this chapter is organized as: In section 5.2, we present the method-

ologies for numerical simulations and data-driven modeling for base and transfer learned

DNN models. In section 5.4, we go over a prioi and a posteriori tests of the trained models
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and compare them to the conventional gradient-based SGS models for scalar flux.

5.2 Modeling Paradigm

Governing Equations

Considering the incompressible flow regime and the transport of a conserved passive

scalar in that flow medium, Navier-Stokes (NS) and Advection-Diffusion (AD) equations are

the set of governing equations constituting the system dynamics [4]. In the LES of turbulent

transport, a generic spatial filtering operator, ·̃, is applied to the NS and AD equations

returning the LES governing equations (see e.g., [88]) as

∂ũ

∂t
+ ũ ·∇ũ = −1

ρ
∇p̃+ ν∆ũ−∇ · τR; ∇ · ũ = 0, (5.1)

∂Φ̃

∂t
+ ũ ·∇Φ̃ = D∆Φ̃−∇ · qR. (5.2)

In this set of equations, u = (u1, u2, u3), p, and Φ are the velocity, pressure, and scalar

concentration fields, respectively. In (5.1), ρ denotes the fluid density, while ν represents

the viscosity of fluid, and in (5.2), D is the diffusivity of the passive scalar field. Moreover,

filtering yields sources of closure in the LES governing equations as the divergence of residual

stress, τR = ũ⊗ u−ũ⊗ũ, and residual scalar flux, qR = ũΦ−ũ Φ̃. Modeling these residual

or subgrid terms using the filtered or resolved flow fields is an essential gateway returning a

closed set of equations that are suitable for a predictive and numerically stable LES [190, 88].

The Reynolds decomposition for a general field such as scalar concentration, Φ = ⟨Φ⟩+ϕ,

where ⟨Φ⟩ is the ensemble-averaged part of Φ, and ϕ denotes its fluctuating part [4]. In our

problem setting, we consider a homogeneous isotropic medium for velocity field; therefore,

⟨u⟩ = 0. For the passive scalar field, we assume the fluctuations are statistically homogeneous

while we consider an imposed ensemble-averaged gradient as ∇⟨Φ⟩ = (0, 1, 0) [204, 8]. As a

result, the filtered AD equation (5.2) is rewritten as:

∂ϕ̃

∂t
+ ũ ·∇ϕ̃ = −ũ2 +D∆ϕ̃−∇ · qR. (5.3)

In (5.3), the residual scalar flux may be restated as: qR = ũϕ− ũ ϕ̃. The goal of our study
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Figure 5.1: Schematic of the DNN surrogate model for prediction of SGS scalar flux. σ in
the units (neurons) indicates the activation function.

is to developing a data-driven model for qR using a predictive deep neural network (DNN)

architecture.

Deep Neural Network (DNN) Closure Modeling

Using a deep feed-forward neural network architecture, we model the residual scalar flux.

This model has L fully connected layers each with N l neurons in the l-th layer, a weight

tensor of W l ∈ RNl×Nl−1
, and a bias vector bl ∈ RNl

. For instance, in the l-th layer, yln

formulates the output of the n-th neuron as

yln = σl




Ml−1∑

m

W l
nm yl−1

m + bln


 , (5.4)

where σl indicates the activation function. In this DNN model, y0 represents the input

features’ layer while yL = qDNN is the layer corresponding to prediction of the targets.

Through optimization of the DNN’s parameters (W , b) with FDNS data, qDNN predicts

qR = (qR1 , q
R
2 , q

R
3 ). The input features are selected based on the gradients of the filtered

(resolved) flow fields, i.e. ∇ũ and ∇ϕ̃. Choosing these input features preserves important

properties such as frame invariancy and homogeneity of the SGS flux in predictions of the

DNN model [157].
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5.3 Numerical and Optimization Methods

Simulation setup for training/validation data

Based on the DNS of passive scalar with a uniform mean gradient of ∇⟨Φ⟩ = (0, 1, 0) in a

HIT flow, our required SGS data is constructed. Here, we employ the pseudo-spectral parallel

simulation setup elaborated in Chapter 2. Using the mentioned framework we generate a

stationary HIT flow using a computational domain as Ω = [0, 2π]3, which is discretized on

a uniform spatial grid of N3 resolution with N = 520. Accordingly, the size of spatial grid

is ∆DNS = 2π/N . A fourth-order Runge-Kutta (RK4) scheme is utilized to perform the

time-integration with a fixed ∆t = 8× 10−4, while the CFL < 1 condition is checked during

the simulation; therefore, the numerical stability is always ensured. Aiming for the Taylor-

scale Péclet number (Peλ = ScReλ = 240) with the Schmidt number (Sc = ν/D = 1)

and = Reλ representing the Taylor-scale Reynolds number, at fully turbulent (statistically

stationary) state, we obtain well-resolved velocity and scalar turbulent fields with kmax ηB ≈

1.5; therefore, we ensure that the small-scales in the velocity and scalar fields are well-

resolved (see Chapter 2). In order to reach to this turbulent state, first the NS equations are

resolved from a randomly initialized field for approximately 15 τLE while an artificial forcing

mechanism is enforced to the low wavenumbers (energy containing range) to maintain the

turbulent kinetic energy (see Chapter 2). Afterwards, we start resolving the AD equation

from ϕ0(x) = 0 initial fluctuating concentration while imposing a uniform mean-gradient.

By resolving the NS and AD equations for approximately another 15 large-eddy turnover

times, the skewness and flatness records of the fluctuating passive scalar gradient reach to

a statistically stationary state, specifying the fully-developed turbulent scalar fluctuations.

Over a sampling time span in the fully turbulent region, the true values of the residual scalar

flux are computed using the box filtering kernel with isotropic filter size ∆ as,

G∆(x− x′) =





1/∆, |x− x′| ≤ ∆/2

0, Otherwise.

(5.5)
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(a) Full-size spatial data (input and target features) obtained from FDNS at a sampled time in-
stance. For ∇ũ tensor only the component 2,2, and for ∇ϕ̃ and qR vectors only the second
components are shown on the 3-D spatial domain.

Sampling domain 

(b) Temporal sampling domain, shown on statistical
records of ∇ϕ.
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(c) Spatial index sampling to be applied on
each time-sampled full-size 3-D data.

Figure 5.2: Spatio-temporal sampling framework for construction of training/validation
dataset from FDNS results for scalar transport regime of Peλ = 240, Sc = 1.

Construction of a Spatio-temporal Database

In our study, we examine our model in two filter sizes ∆∗ = ∆/∆DNS = 10, 20, where

the amount of filtered scalar variance for these two filter sizes are 9% and 18%, respectively.

Given the time-stationary statistics of our turbulent flow data set, uniform sampling over

fully turbulent time domain is a fair approach. Therefore, we select a sampling window over

approximately 11 τLE of fully turbulent state, and uniformly sample 64 time instances. To

prepare a randomly generated data set in spatial domain (3-D periodic cube) for each time
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Figure 5.3: Training/validation of the DNN surrogate model. Training MSE value after each
gradient decent iteration for (a) ∆∗ = 10, and (c) ∆∗ = 20. Averaged training MSE over
evaluations in each epoch for (b) ∆∗ = 10, and (d) ∆∗ = 20. All of the depicted validation
MSEs in (a)-(d), shown with dashed red lines, are averaged MSE values over the validation
data batches.

sample, we utilize Latin Hypercube Sampling (LHS) to obtain a randomly drawn index set

based on a uniform distribution. This index set returns the location of the spatially sampled

data points on the original 3-D uniform grid of the filtered DNS solution. For instance, for

the case with ∆∗ = 10, a set of 233 spatially scattered data points is sampled from the in the

full spatial data set of 523 resolution. This reduction of the data at a sampled time frame

helps to construct an unbiased database in space and time (using sampled time snapshots of

FDNS data) for training/validation of the DNN model, thus, we avoid an unnecessary large

size of the entire database. As a result, this spatio-temporal sampling procedure yields a

reference FDNS database of approximately 780,000 samples. We hold 5% of the data out

for out-of-sample validation during the optimization procedure. Figure 5.2 illustrates this

sampling framework.
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DNN Specifications and Optimization

In this study, the DNN model consists of 6 nonlinear hidden layers with rectified linear

unit (ReLU) activation functions as:

σ(y) = max(y, 0), (5.6)

and each hidden layer contains 32 neurons (units). Unlike the nonlinear hidden layers,

the output layer that returns the DNN approximation for qR, is set to be linear. As a

result, this DNN model yields 6,000 trainable parameters and these model parameters are

initialized based on a uniform distribution prior to model optimization. In order to train

the DNN model, the database from spatio-temporal sampling is utilized to minimize the

mean-squared error (MSE) loss function

MSE =
1

N

N∑

i

(q̂i − qi)
2. (5.7)

In (5.7), qi denotes the DNN prediction for each sample and q̂i is the reference labeled data

from FDNS. Using the AdamW optimizer with a learning rate of lr = 10−4, we manage

to minimizing the MSE loss function with respect to the model parameters (weights and

biases) of the DNN as we utilize PyTorch library [205]. Using a batch size of 256 data points

while we shuffle the training data in the data loader, we perform model optimization for

150 epochs (with each epoch consisting of 2800 optimizer iterations). At the end of each

epoch we perform out-of-sample validations with the updated model. The same batch size

is selected for the validation data and the resulting MSE evaluations are averaged over the

validation batches. For the DNN model optimized based on data set of ∆∗ = 10, Figure 5.3a

shows the MSE evaluations of the training iterations, and Figure 5.3b depicts their averaged

value over the iterations in each epoch. In both of these plots, the averaged MSE evaluations

over the validation data batches are shown with dashed line. At the end, the convergence of

the MSE is achieved, and it is shown that the over-fitting is avoided as the averaged MSE

values for training and validation are the same over the entire optimization procedure. We
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Figure 5.4: Schematic of the transfer learning from a DNN model pre-trained on data for
Task A to a DNN model for Task B. In the initial training for Task A (upper model in the
plot), all of the model parameters are optimized; while in the training the pre-trained model
for Task B, the model parameters in the earlier layers are fixed, and the ones in the final
layers are optimized based on the data for Task B (lower model in the plot).

observe the same behavior in model training/validation using ∆∗ = 20 filtered data set as

shown in Figure 5.3c and Figure 5.3d.

Transfer Learning for Generalization to Other Transport Regimes

Due to the increasing computational cost of high-resolution simulations as Peλ number

increases in scalar transport, it is not always feasible to obtain a sufficiently large dataset

to properly train a DNN to reliably model the SGS flux. On the other hand, it is widely

recognized that the data-driven surrogate models for physical systems do not generalize well

to accurately predict in physical regimes outside of their training data. Transfer Learning

(TL) provides a practical approach to this problem, and lets us adjust our pre-trained sur-

rogate model (from a physical regime with abundant training data) to work well on another

physical regime with less available data. Transfer learning aims to re-train the very final
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layers of the pre-trained DNN to adjust the model parameters learning specific features that

belong to the new physical regime utilizing its available data. The rationale behind this

re-training step is that the general features that are common among the initial and new

physical regimes are learned in the earlier hidden layers (in the pre-trained model), while

the specific features are learned in the later hidden layers. Therefore, one can freeze the

model parameters associated with the earlier layers in the re-training procedure (by setting

them as non-trainable parameters in the optimization), and only update those associated

with the later hidden layers using the data for the new physical regime. Figure 5.4 provides

a schematic view of the transfer learning in our DNN modeling for SGS scalar flux.

In the previous section, we presented a trained DNN model using FDNS dataset from

a turbulent scalar transport at regime Peλ = 240 and Sc = 1 (as described in section 5.3.

Taking that pre-trained model, we manage to re-train it for transfer learning to the following

scalar transport regimes for the specified filter sizes:

• Peλ = 240 and Sc = 4 (∆∗ = 10, 20),

• Peλ = 360 and Sc = 1 (∆∗ = 8, 16).

The data for re-training these two transport regimes were obtained from filtering DNS

results where the small scales of passive scalar are sufficiently resolved (kmax ηB ≈ 1.5).

The details of these simulations are similar to the description provided in section 5.3. In

the re-training step for each transport regime, we construct training/validation datasets

that contain approximately 5% of sampled data points we utilized for the pre-trained model

(Peλ = 240 and Sc = 1). The construction of these training/validation datasets are based

on the procedure we explained in section 5.3; however, in these datasets, we only use 4

sampled time instances of full-sized 3-D FDNS data for spatial sampling. The batch size,

and learning rate are chosen similar to optimization of the pre-trained model, yet in the

re-training steps we only aim for 50 epochs. As a result, the number of gradient decent

iterations in the re-training steps are approximately 2.5% of iterations in the pre-training.
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Figure 5.5: Training/validation for the transfer learning from the pre-trained DNN model
DNN using data of Peλ = 240, Sc = 1 regime (see Figure 5.3) to a DNNmodel for Peλ = 360,
Sc = 1 regime. Training MSE value after each gradient decent iteration for (a) ∆∗ = 8, and
(c) ∆∗ = 16. Averaged training MSE over evaluations in each epoch for (b) ∆∗ = 8, and (d)
∆∗ = 16. All of the depicted validation MSEs in (a)-(d), shown with dashed red lines, are
averaged MSE values over the validation data batches.

Moreover, in the re-training steps, we optimize the model parameters in the final two layers

of the pre-trained DNN model, and the rest of the model parameters in other layers remain

fixed. For example, Figure 5.5 shows the records of the loss function for the re-training and

validation for the transfer learning to the SGS model at transport regime Peλ = 360, Sc = 1.

Figures 5.5a-b show the convergence of the MSE for the model re-trained based on data with

∆∗ = 8 (pre-trained model utilized data with ∆∗ = 10), while Figures 5.5c-d illustrate the

converged model when ∆∗ = 16 in the re-training data (pre-trained model utilized data with

∆∗ = 20). Similar to the pre-trained models presented in Figure 5.3, close behavior of the

training and validation MSE records during the re-training steps ensures that the transfer

learned models are not overfitted.
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5.4 Model Assessments in the Inference Mode

In this section, we manage to examine the performance of the trained DNN models

described in the previous section in the inference of the SGS and resolved flow quantities.

Here we employ the full-size 3-D time instances of flow fields (ũ, ϕ̃) coming from either the

FDNS solution (a priori test) or from an LES that utilizes the SGS model (a posteriori

test). In both of these tests, we assess the performance of the DNN model against the two

traditional closure models for the SGS scalar flux:

• Prandtle-Smagorinsky (PSM) model,

• Scalar Asymptotic Gradient (SAG) model.

In PSM model, the SGS scalar flux is determined based on the eddy-diffusivity concept, and

is written as

qPSM = −Dt∇ϕ̃, (5.8)

where Dt = νt/Prt denotes the turbulent diffusivity. The constant turbulent Prandtl num-

ber, Prt, relates Dt to the turbulent viscosity, νt = (Cs∆)2 ∥S̃∥ defined by the Smagorin-

sky model. Here Cs is the Smagorinsky constant and for the filtered strain-rate tensor

S̃ = 1
2

(
∇ũ+∇ũT

)
, ∥S̃∥ =

√
2 S̃ : S̃. For passive scalars in homogeneous turbulence, if

the filter size is selected withing the inertial subrange, Cs ≈ 0.17 and Prt ≈ 0.5 [206, 207].

Therefore, we adopt these values in our study.

In the SAG model, the residual scalar flux is approximated based on a Taylor series

expansion of the filtering operation [208, 209], and is represented as

qSAG =
∆2

12
∇ϕ̃ ·∇ũ. (5.9)

Although this model has shown a good structural performance in reproducing the SGS flux

from FDNS flow fields, it has been identified to be significantly under dissipative especially

when the filter size is sufficiently large compared to the dissipation scales [10]. Therefore,
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conducting a stable LES (in terms of numerical time-integration) using SAG model is known

to require special modifications such as utilizing a “clipping” technique [210, 211] or com-

bining it with an eddy-diffusivity model [208].

A priori Test

In the a priori testing of developed DNN models, we employ full-size 3-D FDNS solutions

for ϕ̃ and ũ. We utilize 10 time instances sampled from approximately 5 τLE away the time

domain we obtained our training/validation datasets. Using these time instances of FDNS

data and the SGS model, we predict the SGS flux on the 3-D filtered domain. Considering the

mean scalar gradient ∇⟨Φ̃⟩ as the anisotropic source of turbulence production for passive

scalar, we categorize the predicted SGS flux terms into perpendicular (q⊥∇⟨Φ̃⟩ = qR1 , q
R
3 )

and parallel (q∥∇⟨Φ̃⟩ = qR2 ) components with respect to the mean scalar gradient direction.

Moreover, we compute the SGS dissipation of filtered scalar variance,

Π = −qR ·∇ϕ̃, (5.10)

as an indicator for capability of the SGS flux model in reproducing the backward scattering of

the scalar variance. Backward scattering phenomenon is the transfer of turbulent intensity

from unresolved (SGS) scales to the resolved (filtered) scale, and it is identified with the

negative values appearing in the true Π (obtained from FDNS).

Once we compute qR and Π for each time instance using the SGS model, we take the

mean squared error of each quantity with respect to its FDNS solution. In order to average

the computed MSEs over the time instances we sampled, each MSE is normalized by the

variance of its FDNS solution. Averaged normalized MSEs for q⊥∇⟨Φ̃⟩, q∥∇⟨Φ̃⟩, and Π are

presented for each model. For q⊥∇⟨Φ̃⟩, the averaged normalized MSE is the mean value

of MSEs for both perpendicular components. Finally, the probability distribution function

(PDF) of reconstructed Π from the SGS model is compared to the true PDF from FDNS.

In the following, we present these metrics for the base SGS model we developed in section

5.3 as well as the two transfer learned models to other transport regimes we presented in

section 5.3.
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Figure 5.6: A priori estimation (base model - Peλ = 240, Sc = 1) of the time-averaged
normalized mean squared error of (a) q⊥∇⟨Φ̃⟩, (b) q∥∇⟨Φ̃⟩, (c) Π for each SGS flux model at

each filter size. The normalization is done by the variance of FDNS solution for each quantity
at its filter size, and the time-averaging is carried out using 10 sampled time instances.

Figure 5.7: A priori assessment of the PDFs of normalized SGS dissipation obtained from
the DNN (base model - Peλ = 240, Sc = 1), SAG, and PSM models compared to the PDF
computed from FDNS for (a) ∆∗ = 10, (b) ∆∗ = 20. Π for all the PDFs is normalized by
the standard deviation of its FDNS solution.

Base model – Peλ = 240, Sc = 1

Here we compare the performance of the developed DNN model in section 5.3 to the

performance of SAG and PSM models. Our comparison is based on the time-averaged

normalized MSE metric for predicted q⊥∇⟨Φ̃⟩, q∥∇⟨Φ̃⟩, and Π at ∆∗ = 10, 20 (see Figure

5.6). Figure 5.6a shows that at ∆∗ = 10, the DNN model prediction of q⊥∇⟨Φ̃⟩ has 5.5%

less error compared to the SAG model and 76.4% less error compared to the PSM model,

while at ∆∗ = 20, its prediction returns 11.6% less error compared to the SAG model and
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54.3% less than the error in the PSM model’s prediction. In Figure 5.6b, we see that at

∆∗ = 10, the DNN model predicts q∥∇⟨Φ̃⟩ with 9.8% less error compared to the SAG model

and with 88.2% less error compared to the PSM model, and when ∆∗ = 20, the DNN model

yields 18.9% less error compared to the SAG model and its error is 81.1% less than what we

observe in the prediction of PSM model. Moreover, from Figure 5.6a,b one can realize that

the error level in prediction of q⊥∇⟨Φ̃⟩, q∥∇⟨Φ̃⟩ components, the DNN model exhibits a fairly

consistent behavior; however, such consistency is not necessarily observed in the error level

of the predicted flux components in other two models, especially at ∆∗ = 20. Finally, for

the predicted Π, Figure 5.6c illustrates that the DNN model has 25.7% less error compared

to the SAG model and it returns 82.9% less error compared to the PSM model. However,

at ∆∗ = 20, the predicted Π by the DNN model returns 60% lower error compared to the

SAG model and 31.4% less than what the PSM model predicts. Here, it is noticeable that

when the filter size increases the error level in predicted Π form SAG model increase while

the PSM model exhibits an opposite behavior. Nevertheless, the DNN model exhibits a

consistent behavior over the filter sizes, while it always maintains error level in the predicted

Π significantly lower than the other two models. Given this observation, Figure 5.7 shows

that for both filter sizes the DNN model provides a fairly good prediction for the PDF of SGS

dissipation of scalar variance compared to the true PDF from FDNS, while the SAG model

under-predicts the events in the right side of the PDF (yielding and under-dissipated SGS

model), and the PSM model provides an over-dissipated model since it cannot model the

negative-valued events associated with the backward scattering of resolved scalar variance.

Transfer learned models

In this section, we make a comparison between the time-averaged normalized MSEs of

q⊥∇⟨Φ̃⟩, q∥∇⟨Φ̃⟩, and Π obtained from a priori testing of the TL models we presented in

section 5.3 with the error metrics when we only employ the base (pre-trained) model for the

predictions in the new scalar transport regime.

Case (I) Peλ = 240, Sc = 4: In Figures 5.8a and 5.8b, we can see that at ∆∗ = 10, the
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Figure 5.8: A priori estimation of transfer learned model (Peλ = 240, Sc = 4) from the base
pre-trained model. The subplots are showing the time-averaged normalized mean squared
error of (a) q⊥∇⟨Φ̃⟩, (b) q∥∇⟨Φ̃⟩, (c) Π for pre-trained and TL SGS flux model at each filter

size. The normalization is done by the variance of FDNS solution for each quantity at its
filter size, and the time-averaging is carried out using 10 sampled time instances.

Figure 5.9: A priori estimation of transfer learned model (Peλ = 360, Sc = 1) from the base
pre-trained model. The subplots are showing the time-averaged normalized mean squared
error of (a) q⊥∇⟨Φ̃⟩, (b) q∥∇⟨Φ̃⟩, (c) Π for pre-traine and TL SGS flux model at each filter

size. The normalization is done by the variance of FDNS solution for each quantity at its
filter size, and the time-averaging is carried out using 10 sampled time instances.

TL model decreases the error in predictions of q⊥∇⟨Φ̃⟩ and q∥∇⟨Φ̃⟩ by 12% and 46.5%,

respectively, compared the predictions of pre-trained model. Similar comparison at ∆∗ = 20

indicates that TL model returns 27.3% less error for predicted q⊥∇⟨Φ̃⟩, and 93.2% less error

for the predicted q∥∇⟨Φ̃⟩ compared to the pre-trained DNN model. Therefore, one can

realize that the re-training procedure plays a significant role in improving the prediction

of parallel component of the SGS flux. Moreover, Figure 5.8c shows that the predicted Π

from pre-trained DNN model has 2.6 times higher error at ∆∗ = 10 and 3.3 times higher

error at ∆∗ = 20 compared to the TL model’s predictions. In fact, Figures 5.10a and 5.10b

illustrate that these improvements in prediction of Π mainly originate from correcting the
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Figure 5.10: A priori assessment of the PDFs of normalized SGS dissipation obtained from
the transfer learned model (for Peλ = 240, Sc = 4), and pre-trained model (using Peλ = 240,
Sc = 1 data) compared to the PDF computed from FDNS for (a) ∆∗ = 10, (b) ∆∗ = 20. Π
for all the PDFs is normalized by the standard deviation of its FDNS solution.

Figure 5.11: A priori assessment of the PDFs of normalized SGS dissipation obtained from
the transfer learned model (for Peλ = 360, Sc = 1), and pre-trained model (using Peλ = 240,
Sc = 1 data) compared to the PDF computed from FDNS for (a) ∆∗ = 8, (b) ∆∗ = 16. Π
for all the PDFs is normalized by the standard deviation of its FDNS solution.
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over-prediction of forward scattering of SGS dissipation after re-training the DNN model for

higher Sc number regime.

Case (II) Peλ = 360, Sc = 1: Considering Figures 5.9a and 5.9b, we observe that at both

∆∗ = 8, 16 the TL model reduces the error level in prediction of q⊥∇⟨Φ̃⟩ by 22 times compared

to the pre-trained model. However, in prediction of q∥∇⟨Φ̃⟩, the error level in pre-trained

model’s performance is reduced by 33 times at ∆∗ = 8, and by 37 times when ∆∗ = 16 after

re-training. Similar to the Case (I), we recognize that TL is playing a more corrective role in

enhancing the performance of the pre-trained DNN model in prediction of q∥∇⟨Φ̃⟩ compared

to q⊥∇⟨Φ̃⟩. Concerning the prediction of Π, Figure 5.9c points out that the pre-trained

DNN model has 49.5 times higher error at ∆∗ = 8 and 60.5 times higher error at ∆∗ = 16

compared to the TL model. Looking at Figures 5.11a and 5.11b, it is discernible that in

the case of TL from Peλ = 240 regime to Peλ = 360, the re-trained DNN model not only

corrects the considerable over-prediction of forward scattering phenomenon appearing in the

pre-trained model (see the positive sides of PDFs), it also improves its over-prediction of

backward scattering of the SGS dissipation (see the negative sides of PDFs).

A Posteriori Test

In this section, our main objective is to examine the performance of the developed DNN

model when it is utilized as the closure model in an LES setting, a.k.a a posteriori testing.

Therefore, we seek to understand if the LES resolved transport fields (in our case ϕ̃) are

temporally and spatially following their expected true solution which comes from explicit

filtering of the DNS outputs.

To fulfill this goal, we focus on testing the base DNN model we developed in section

5.3 on the turbulent regime of Peλ = 240 and Sc = 1. In order to perform the large-eddy

simulations on the problem setting introduced in section 5.2, we employ the pseudo-spectral

solver developed in Chapter 2. We modify this DNS framework to account for utilization

of multiple SGS flux models of interest for qR. In our current study, we utilize the DNN

model as well as the PSM and SAG models. Typically, both SGS stresses and fluxes in
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the filtered NS and AD equations are modeled and utilized in an LES setting. Thus, a

specific choice of SGS model for τR could have substantial effects on the solution resolved

scalar concentration field [157]. Similar to earlier works in literature for pure purpose of

SGS flux model assessment [157, 212], we choose to freeze these potentially dominant effects

originating from using an SGS stress model and instead directly make use of FDNS solution

of velocity field. Therefore, we can only focus on the performance of the utilized SGS flux

model in (5.3). Accordingly, in our numerical setup, we resolve the NS equations based

on the DNS required resolution. By explicit filtering of u after each time-step, we obtain

the velocity field over the desired LES grid, and use it to solve the equation (5.3) in the

time-integrator steps. The initial condition (ϕ̃0 and ũ0) for our LES tests are adopted from

explicit filtering of a well-resolved and fully developed DNS solution, at Peλ = 240, Sc = 1

as described in section 5.3.

As we mentioned earlier, for the SAGmodel we require to employ special treatment for nu-

merical stabilization in LES. Here, we utilize clipping technique during the time integration,

which is based on setting the predicted qSAG = 0 before feeding it to the time-integrator

where ever ΠSAG < 0. This essentially helps to improve the extremely under-dissipated

behavior of the SAG model only for numerical stability [210, 211]. In our tests, the time-

integration of filtered AD equation (5.3) is conducted for 5 τLE . In the following, we look at

two significant indicators in performance of the SGS scalar flux model.

Temporal records of resolved scalar variance

Precise time evolution of the resolved scalar variance, ⟨ϕ̃2⟩, is a principal indicator for

reliable prediction of the turbulent intensity in LES. In our tests, we manage to record this

quantity for the utilized SGS models over the simulation time, while the reference record is

obtained from filtering the DNS solution. Here, we compute the relative error between the

variance record from the LES with an SGS model ⟨ϕ̃2⟩LES and from the FDNS ⟨ϕ̃2⟩FDNS.

Figure 5.12a shows the recorded errors for LES tests at ∆∗ = 10, and 5.12b reports it

for simulations at ∆∗ = 20. At both of the filter sizes, the DNN model has a remarkable
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Figure 5.12: Relative error (with respect to the FDNS) in the records of resolved-scale scalar
variance predicted in the LES tests with the DNN, SAG, and PSM models at (a): ∆∗ = 10,
and (b): ∆∗ = 20. The LES tests are conducted at Peλ = 240 and Sc = 1 regime, and the
utilized DNN model is trained/validated with FDNS dataset obtaned at the same turbulent
regime.

performance over time compared to the SAG and PSM models, however, in ∆∗ = 20, slight

under-prediction of resolved-scale varinace is observed. It is obvious that in both of the

filter sizes, SAG model exhibits quite a poor performance especially as time evolves; and

this behavior is worse as filter size enlarges. On the other hand, the dissipative nature of

the PSM model seems to be helpful in terms of a better performance of the model in LES;

nevertheless, its considerable errors in prediction of Π (as we observed in section 5.4) seems

to penalize its accuracy in the a posteriori tests.

Resolved-scale scalar structure functions (two-point statistics)

Assessment of an SGS model performance in prediction of the nonlocal behavior of tur-

bulent transport regime is one of the ultimate tests in evolution of a turbulent field during

LES [12]. The structure functions of the resolved scalar field are robust two-point statistical

measures that return nth-order statistics of resolved-scale scalar increments at a specific

direction where 2 ≤ n [132]. These structure functions of order n are defined as

⟨δrϕ̃nL⟩ =
〈[

ϕ̃L(x+ reL)− ϕ̃L(x)
]n〉

; n = 2, 3, . . . , (5.11)

where r is the size of spatial increment, L represents the longitudinal direction (the direction

along the imposed uniform mean-gradient) [199, 157, 19], and eL specifies the unit vector
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Figure 5.13: Time-averaged normalized ⟨δrϕ̃nL⟩ from LES with different SGS models with
respect to the FDNS result as reference solution. For ∆∗ = 10, (a) second-order and (b)
third-order illustrate longitudinal structure functions. For ∆∗ = 20, (c) second-order and (d)
third-order show the longitudinal structure functions. The time-averaging of these two-point
structure functions is done over 4 < t/τLE < 5. The spatial shift r equals the filter size of
the LES.

along the longitudinal direction. Normalizing the ⟨δrϕ̃nL⟩ computed from LES (carried out

with an SGS model) with its FDNS measurement would provide an informative metric for

comparing the SGS models. Focusing on the temporal region 4 < t/τLE ≤ 5 that the

LES solution has undergone a fairly long time-integration, we select uniformly distributed

samples of full-size 3-D ϕ̃(x) in time and compute second- and third-order structure func-

tions. Since we are simulating a statistically-stationary problem, we are allowed to take the

temporal average of these normalized structure function obtained from the sampled struc-

ture functions. Therefore, we have a robust indicator measure to examine the performance

of each SGS model in predicting nonlocal and high-order statistics of resolved-scale scalar
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field in a long-time integrated LES. Figure 5.13 shows this time-averaged ⟨δrϕ̃nL⟩ against

the normalized spatial shift, r/ηB , for the DNN, SAG, and the PMS models. Figures 5.13a

and 5.13c are showing the relative errors is the even-order structure functions, where the

DNPS model has a considerably better performance. Figures 5.13a and 5.13c are showing

the normalized second-order structure functions, for ∆∗ = 10 and ∆∗ = 20, respectively.

Remarkably, we observe that for both of the filter sizes predictions of the DNN model closely

follow the temporally-averaged behavior of ⟨δrϕ̃2L⟩FDNS over the entire range of spatial shift.

On the other hand, we realize that the SAG model has a significant over prediction of ⟨δrϕ̃2L⟩

especially for r < 100ηB , which becomes worse for the larger filter size. Even in longer range

spatial shifts that we observe improvement in the its predictions, there is an asymptotic 20%

over prediction at ∆∗ = 10, and approximately 100% over prediction of ⟨δrϕ̃2L⟩ at ∆∗ = 20.

Conversely, the PSM model seems to exhibit a better performance in prediction of ⟨δrϕ̃2L⟩

compared to the SAG model; However, it has an approximate 20% over prediction of the

second-order structure function when ∆∗ = 10, and at ∆∗ = 20, a prolonged 50% over-

prediction of ⟨δrϕ̃nL⟩ is seen (especially for 100 ηB < r). Moreover, it is well understood

that capturing the complex behavior of the third-order scalar structure function is quite a

cumbersome task [132]. However, by looking at Figures 5.13b and 5.13d, we notice that

the DNN model manifests a great performance in prediction of the third-order longitudinal

structure function over almost the entire range of spatial shift at both of the investigated

filter sizes. For example, at ∆∗ = 10, we observe that over the whole range of spatial

shift the DNN model predictions has an approximate ±5% deviation from the FDNS values;

nonetheless, we can observe an over-prediction causing inaccuracies over r in the range of

10% to 40% for the SAG model. Regarding the PSM model, the inaccurate predictions of

⟨δrϕ̃3L⟩ varies from -15% deviations from the true value for r < 100 ηB to approximately 20%

deviation for 100 ηB < r spatial shift region. Therefore, the DNN model plays a notable role

in maintaining the accuracy of the third-order statistics of δrϕ̃L.

This overall comparison demonstrates that a well-trained DNN model such as the one we
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developed could have consequential improvements in the prediction of two-point statistics of

the LES resolved scalar concentration.
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CHAPTER 6

ANOMALOUS TRANSPORT IN INTERNAL CYLINDER FLOW

INSTABILITIES SUBJECT TO UNCERTAINTY

6.1 Background

Inspired by the flow dynamics after the emergence of symmetry-breaking factors, we

are specifically interested in computational study of the onset of flow instabilities and their

long-time effects. To model such symmetry-breaking effects in rotational motion of cylinder,

we introduce some featured sources of disturbance in angular velocity, which may be cou-

pled by eccentricity in rotation of the system. In reality, these sorts of symmetry-breaking

noises could be a direct result of unexpected failure in the electro-mechanical rotational sys-

tem/fixture, which may be accompanied by secondary inertial disturbances that intensify

the instability and transition of the flow regime. From a mathematical modeling and sim-

ulation point of view, a deterministic view would inevitably fail to reflect the true physics

of such highly complex phenomenon, which is involved with numerous sources of stochas-

ticity, (i.e., sources of disturbance). This urges for another level of modeling and investi-

gation, which respects the random nature of the problem and is capable of addressing the

effects of such sources of randomness in the response of system. In general, these sources

of randomness could be categorized into either aleatory or epistemic model uncertainties.

Aleatory uncertainty affects the quantities of interest (QoI) by the natural variations of

the model inputs and usually are hard to be reduced; nevertheless, epistemic uncertainty

mostly comes from our limited knowledge on what we are modeling and could be stochas-

tically modeled once we obtain additional information about the system [213]. Uncertainty

in modeling procedure and also inaccuracy of the measured data are two main factors in

arising epistemic uncertainty. The uncertainty in modeling could be the result of a vari-

ety of possibilities including the effects of geometry [214, 215, 216, 217], constitutive laws

[218, 219, 220, 221, 222, 223, 224, 225, 226, 227], rheological models [228, 229, 230], low-

fidelity and reduced-order modeling [231, 232, 233, 234, 235, 236, 237], and random forcing
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sources in addition to the random field boundary/initial conditions [238, 239, 115].

The structure of the rest of this chapter is outlined as follows: In section 6.3, we formulate

the stochastic version of the Navier-Stokes equations for incompressible flows and develop

our stochastic modeling procedure. In section 6.4, we elaborate on the numerical methods we

employ in our deterministic solver and generation of a proper grid and later on we introduce

the our stochastic discretization approach followed by a discussion on how we study the

significance of each source of stochasticty in a global sense. In section 6.6, we show the

stochastic convergence, quantification of uncertainty in kinetic energy as QoI and we perform

the global sensitivity analysis. Using the expected velocity and vorticity fields we computed

from our stochastic computational framework, we obtain the fluctuating responses for a

deterministic simulation and study their statistics in a qualitative and quantitative sense.

Furthermore, we compute the enstrophy record associated with the fluctuating field and

study its time-scaling that unravels a tied link between the observed highly non-Gaussian

features and memory effects induced by long-lived coherent vortex structures.

6.2 Problem Statement

The present study aims to investigate the fluid dynamics inside a rotating cylinder with

radius R that is assumed to be fully-filled with the Newtonian fluid with the kinematic

viscosity, ν. Here, the fluid is initially considered to be at solid-body rotation state with an

angular velocity of θ̇0 = dθ/dt|t=0 that is enforced by the rotational speed of the cylinder wall.

Considering the configuration of the problem, the rotational Reynolds number is defined as

Re = R2 θ̇0/ν. As a common practice and for the sake of generality in comparisons, we

manage to formulate our problem in a dimensionless format so that R and θ̇0 are taken to be

unity. Consequently, the Reynolds number is simply computed as inverse of the kinematic

viscosity of the fluid, Re = ν−1. The solid-body rotation state represents a laminar flow

regime that we take as the initial stage of the flow where right away it encounters a mixture

of symmetry-breaking disturbances in the rotational motion of the cylinder. These sources of

rotational disturbance include an angular velocity for cylinder with oscillatory and decaying
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amplitude that is assumed to be accompanied by an eccentric rotation of the cylinder (i.e.,

resulting from the rotation of cylinder about an off-centered axis). The combination of these

factors would make a strong symmetry-breaking effect on the flow that we study the dynamics

of the resulting flow instability. In such study, the rotating cylinder is assumed to be long

and we consider a 2-D representation of the flow as an acceptably good approximation. In

the following section, we go through a detailed mathematical model for the described sources

of disturbance considering their randomness that requires a stochastic modeling procedure

for the fluid dynamics study. Therefore, we proceed with presenting the stochastic governing

equations.

6.3 Stochastic Navier-Stokes Equations

Let Ω ⊂ R2 be our bounded convex 2-D spatial domain with boundaries ∂Ω. Moreover,

let (Ωs,F ,P) be a complete probability space, where Ωs is the space of events, F ⊂ 2Ωs

denotes the σ-algebra of sets in Ωs, and P is the probability measure. Then, the govern-

ing stochastic incompressible 2-D Navier-Stokes (NS) equations subject to the continuity

equation, ∇ · V = 0, for Newtonian viscous fluids

∂V

∂t
+ V ·∇V = −∇p+ ν∇2V , ∀(x, t;ω) ∈ Ω× (0, T ]×Ωs, (6.1)

V (x, t;ω) = V ∂Ω, ∀(x, t;ω) ∈ ∂Ω× (0, T ]×Ωs,

V (x, 0;ω) = V 0, ∀(x;ω) ∈ Ω×Ωs,

hold P-almost surely subject to the corresponding proper initial and boundary conditions,

introduced and modeled below. Here, V (x, t;ω) represents vector of the velocity field for

the fluid, p(x, t;ω) denotes the specific pressure (including the density).

Stochastic Modeling

We are interested in learning how the symmetry-breaking factors would affect the onset

of flow instability. In our modeling, these factors are reflected in terms of stochastic initial

and boundary conditions, subsequently, the rest of possible random effects are treated deter-

ministically. Accordingly, these symmetry-breaking effects are modeled through imposing a
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time-dependent wall angular velocity,

θ̇(t;ω) = cos (α(ω)t) e−λ(ω)t, ∀(t;ω) ∈ (0, T ]×Ωs, (6.2)

while we consider an off-centered rotation with a radial eccentricity of ϵ(ω), ∀ω ∈ Ωs, with

respect to the geometric centroid of the cylinder. In our model, α(ω) and λ(ω) denote the

frequency of oscillations and the decay rate appearing in the angular velocity model, respec-

tively. In other words, no-slip boundary condition at the wall is imposed by the proposed

wall velocity for which the initial condition is a solid-body and off-centered rotation. Re-

calling that in our non-dimensional mathematical setup, the initial angular velocity, θ̇(0;ω),

and the radius of the cylinder, R, are both taken to be unity; therefore, the stochastic wall

velocity field is expressed as

V ∂Ω(x, t;ω) =
(
x− rϵ(ω)

)
θ̇(t;ω), ∀(x, t;ω) ∈ ∂Ω× (0, T ]×Ωs, (6.3)

∥x∥2 = 1, ∥rϵ(ω)∥2 = ϵ(ω),

where ∥ · ∥2 denotes the L2 norm. Moreover, according to (6.2) θ̇(t = 0;ω) = 1, so that the

initial condition is denoted as V 0(x;ω) = x−rϵ(ω), ∀(x;ω) ∈ Ω×Ωs where ∥rϵ(ω)∥2 = ϵ(ω).

Parameterization of Random Space

Let Y : Ωs → R3 be the set of independent random parameters, given as

Y (ω) = {Yi}3i=1 = {λ(ω), α(ω), ϵ(ω)}, ∀ω ∈ Ωs, (6.4)

with probability density functions (PDF) of each random parameter being ρi : Ψi → R,

i = 1, 2, 3, where Ψi ≡ Yi(Ωs) represent their images that are bounded intervals in R.

By independence, the joint PDF, ρ(ξ) =
∏3

i=1 ρi(Yi), ∀ξ ∈ Ψ, with the support Ψ =
∏3

i=1Ψi ⊂ R3 form a mapping of the random sample space Ωs onto the target space

Ψ. Thus, an arbitrary point in the parametric space is denoted by ξ = {ξ1, ξ2, ξ3} ∈ Ψ.

According to the Doob-Dynkin lemma [240], we are allowed to represent the velocity field

V (x, t;ω) as V (x, t; ξ), therefore, instead of working with the abstract sample space, we
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rather work in the target space. Finally, the formulation of stochastic governing equations

in (6.1) subject to the boundary/initial conditions in equation (6.3) can be posed as: Find

V (x, t; ξ) : Ω× (0, T ]×Ψ → R such that

∂V

∂t
+ V ·∇V = −∇p+ ν∇2V , (6.5)

V (x, t; ξ) = V ∂Ω, ∀(x, t; ξ) ∈ ∂Ω× (0, T ]×Ψ,

V (x, 0; ξ) = V 0, ∀(x; ξ) ∈ Ω×Ψ,

hold ρ-almost surely for ξ(ω) ∈ Ψ and ∀(x, t) ∈ Ω × (0, T ] subject to the incompressibility

condition, ∇ · V = 0.

6.4 Stochastic Computational Fluid Dynamics Framework

Discretization of Physical Domain and Time-Integration

Spectral/hp element method [241] is a high-order numerical method to discretize the

governing equations (6.1) in the deterministic physical domain Ω. In particular, SEM is a

proper candidate to achieve a high-order accuracy discretization close to the wall boundaries.

In SEM, we partition the spatial domain, Ω, into non-overlapping elements as Ω =
⋃Nel
e=1Ω

e,

where Nel denotes the total number of elements in Ω. In practice, a standard element, Ωst,

is constructed in a way that its local coordinate, ζ ∈ Ωst, is mapped to the global coordinate

for any elemental domain, x ∈ Ωe. This mapping is performed through an iso-parametric

transformation, x = χe(ζ). Within the standard element, a polynomial expansion of order

P is employed to represent the approximate solution, V δ, as

V δ(x) =

Nel∑

e=1

P∑

j=1

V̂ e
j Φ

e
j(ζ) =

Ndof∑

i=1

V̂iΦi(x), (6.6)

where Ndof indicates the total degrees of freedom (DoF) i.e., the modal coefficients in the

solution expansion. Moreover, Φe
j(ζ) are the local expansion modes, while Φi(x) are the

global modes that are obtained from the global assembly procedure of the local modes [241].

NEKTAR++ [242, 243], a parallel open-source numerical framework, provides a seamless

platform offering efficient implementation of multiple SEM-based solvers in addition to the
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Figure 6.1: (a) Constructed structured grid with transitional h-refinement. (b) Grid conver-
gence study based on the error in kinetic energy.

pre-/post-processing tools. In our study, we employ its incompressible Navier-Stokes solver

namely as IncNavierStokesSolver. Here, the velocity correction scheme along with the

C0-continuous Galerkin projection are utilized as splitting/projection method in order to

decouple the velocity and the pressure fields [242]. We use P th-order polynomial expansions

i.e., the modified Legendre basis functions while we vary P for elements at different spatial

regions (see section 6.4). Moreover, a second-order implicit-explicit (IMEX) time-integration

scheme is used while the time-step is fixed during the time-stepping. The spectral vanishing

viscosity (SVV) technique [244, 241] is also used to ensure a stabilized numerical solution

from spectral/hp element method.

Grid Generation

A 2-D structured grid is generated with quadrilateral elements considering h-type refine-

ment technique to attain proper grid resolution near the wall. We utilize the open-source

finite element grid generator, Gmsh [245], to construct the geometry and then the h-refined

grid. The generated grid is illustrated in Figure 6.1a, which shows elemental nodes and

h-refinement near the wall. For this h-refined grid, we employ a spatially-variable polyno-

mial expansion [243] so that we gain high-accuracy close to wall, while avoiding unnecessary

computational cost away from the wall. In order to ensure that our solution is independent

of the grid resolution for the Reynolds number that is fixed at Re = 106, we carry out a grid
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convergence study based on the error we obtain from the difference of the time-integrated

kinetic energy between the solutions after varying the grid resolution and a reference solution

with ∼ 2.1×106 total DoF. As shown in Figure 6.1b, the total DoF of ∼ 7.5×105 gives us a

sufficient grid resolution ensuring that the numerical solution is independent of grid resolu-

tion. In the applied IMEX time-integration scheme, the time-step is fixed at ∆t = 4× 10−5

while the numerical stability is always checked during the simulations by ensuring that CFL

number being less than unity. In particular, our SEM grid is achieved by utilizing 9th-order

polynomial expansions for the elements in the near the wall region and 7th-order polynomial

expansions for the elements in the cylinder’s core region. In other words, due to this spatial

p-refinement procedure, the near-wall elements would consist of 64 rectangular sub-elements

(P = 9) and, the elements in the core region will be finer 36 times (P = 7). For flow

at moderately low Reynolds numbers, we verify the resulting solutions from our numerical

setup through a comparison with analytical solutions (see Appendix C).

Stochastic Discretization

Sampling from the parametric random space introduced in section 6.3 is a non-intrusive

approach for stochastic discretization. Monte Carlo (MC) sampling method is the most

conventional way to perform such task, however, the large number of required realizations of

random space is its bottleneck, which prohibits utilizing MC for computationally demanding

problems. In our study, we employ probabilistic collocation method (PCM) [246, 247, 248],

which is a non-intrusive scheme and has shown affordable efficiency by providing fairly fast

convergence rate for statistical moments. In PCM, a set of collocation points {qj}Jj=1

is prescribed in parametric random space Ψ, where J denotes the number of collocation

points. As a common practice to construct a stable basis, {qj}Jj=1 are taken to be the

points of a suitable cubature rule on Ψ with integration weights, {wj}Jj=1. In this work, we

employ a fast algorithm proposed by Glaser et al. [249] to compute the collocation points

based on Gauss quadrature rule. Therefore, let the solution V in the parametric random

space be collocated on the set of points {qj}Jj=1. In other words, we use the SEM setup
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described in section 6.4 to solve a set of deterministic problems in which the wall velocity field

V ∂Ω(x, t; ξ) in equation (6.5) is replaced with its deterministic realization V ∂Ω(x, t; qj). In

order to construct the approximate stochastic solution V̂ (x, t; ξ) from a set of deterministic

solutions {V (x, t; qj)}Jj=1, we employ Li(ξ), the Lagrange interpolation polynomials of order

i. Let I represent the approximation operator, therefore, the approximate stochastic solution

is written as

V̂ (x, t; ξ) = IV (x, t; ξ) =
J∑

j=1

V (x, t; qj)Lj(ξ). (6.7)

We choose the approximation operator I to be the full tensor product of the Lagrange

interpolants in each dimension of parametric random space. Defining the PDF ρ(ξ) over

the parametric random space and using the approximate solution, the expectation of V is

computed as

E [V (x, t; ξ)] =

∫

Ψ
V̂ (x, t; ξ)ρ(ξ)dξ. (6.8)

This integral would be approximated using a proper quadrature rule. Letting the set of

interpolation/collocation points {qj}Jj=1 obtained from Glaser et al. [249] coincide these

quadrature points with associated integration weights {wj}Jj=1, one can efficiently compute

the approximation to the integral in equation (6.8). Applying the Kronecker delta property

of Lagrange interpolants, this integral is approximated as

E [V (x, t; ξ)] ≈
J∑

j=1

wj ρ(qj) J V (x, t; qj). (6.9)

In equation (6.9), J represents the Jacobian associated with an affine mapping from standard

to the real integration domain regarding the applied quadrature rule. In our study, we

utilize uniformly distributed random variables to represent symmetry-breaking effects, hence,

J ρ(qj) yields a constant. In the case of our problem with three stochastic dimensions,

J ρ(qj) = (12)
3. Consequently, the approximate computation of the expectation integral
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(6.8) is simplified to

E[V (x, t; ξ)] ≈ 1

8

J∑

j=1

wjV (x, t; qj). (6.10)

Similar to the MC approach and using (6.10), the standard deviation in our problem is

approximated as

σ [V (x, t; ξ)] ≈

√√√√√1

8

J∑

j=1

wj

(
V (x, t; qj)− E[V (x, t; ξ)]

)2
. (6.11)

6.5 Variance-Based Sensitivity Analysis

Grasping knowledge on the significance of sources of randomness in a stochastic model-

ing procedure could be very helpful in terms of reducing the computational cost and also

decision making during stochastic modeling. Variance-based sensitivity analysis is a well-

known technique to assess the relative effect of randomness in each stochastic dimension

on the total variance of any QoI, U , as the output of a stochastic model in a global sense

[250, 251]. In practice, sensitivity of the QoI to each stochastic parameter is measured by the

conditional variance in the QoI, which is caused by that specific parameter. In general, for a

k-dimensional stochastic space, ξ, a QoI may be represented as a square-integrable function

of the stochastic parameters U = f (ξ). Using Hoeffding decomposition of f [252], and also

the conditional expectation of the stochastic model, E
[
U |ξi

]
(i=1,...,k), the total variance of

U can be decomposed as

V (U) =
∑

i

Vi +
∑

i

∑

i<j

Vij + · · ·+ V12...k, (6.12)

where Vi and Vij are represented by

Vi =V
ξi

(
E
ξ∼i

[
U |ξi

] )
, (6.13)

Vij =V
ξiξj

(
E
ξ∼ij

[
U |ξi, ξj

] )
− V

ξi

(
E
ξ∼i

[
U |ξi

] )
− V

ξj

(
E
ξ∼j

[
U |ξj

] )
.

Similarly, the higher order terms, Vi1i2...in , n≤k, are defined. In equation (6.13), V
ξi

(
E
ξ∼i

[
U |ξi

] )

is representing the first-order effects of ξi on the total variance of QoI, V (U), and ξ∼i in-

dicates the set of all the stochastic parameters excluding ξi that is assumed to be fixed.
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Moreover, V
ξiξj

(
E
ξ∼ij

[
U |ξi, ξj

] )
denotes the joint effects of stochasticity in ξi and ξj on

the total variance. In general, E
ξ∼ij...

[
U |ξi, ξj , . . .

]
is the expectation of U , which is taken

over all values of ξ∼ij..., while the stochastic parameters (ξi, ξj , . . . ) are fixed at specific

values, hence, V
ξiξj ...

(
E
ξ∼ij...

[
U |ξi, ξj , . . .

] )
gives the reduction in total variance.

According to the law of total variance, one can decompose the total variance of U by

conditioning on one specific stochastic parameter such as ξi as follows

V (U) = V
ξi

(
E
ξ∼i

[
U |ξi

] )
+ E

ξi

(
V
ξ∼i

[
U |ξi

] )
, (6.14)

where E
ξi

(
V
ξ∼i

[
U |ξi

] )
represents the residual of the total variance. By normalizing the

first term in the right-hand side of equation (6.14), we can obtain the global sensitivity

indices, namely, Sobol indices [250]

Si =
V
ξi

(
E
ξ∼i

[
U |ξi

] )

V (U)
, (6.15)

where, Si determines the first-order contribution of ξi in the random parameter space on

the total variance of the QoI is considered, hence, no joint contributions embedded in the

residual term is taken into account.

6.6 Numerical Results

Stochastic Convergence and Uncertainty Quantification

We seek to attain the required number of collocation points (PCM realizations) in order

to have a converged solution for the first-order and second-order moments, i.e., expectation

and variance, respectively. This is a crucial step to ensure that the propagated parametric

uncertainty that is embedded in the stochastic model (described in section 6.3) is properly

captured and quantified regardless of the total number of realizations (forward solutions)

we use in PCM. The aforementioned parametric uncertainty, as defined in section 6.3, ξ =

{ξ1, ξ2, ξ3}, and the distributions associated with each parameter is reported in Table 6.1.

According to Table 6.1, the resulting randomness in the angular velocity is shown in

Figure 6.2. For a three-dimensional random space regarding our stochastic model and con-
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Table 6.1: Stochastic parameters of the wall velocity model and their mean values.

Stochastic parameter Distribution

ξ1 : (decay rate) ∼ U (0.2, 0.4)

ξ2 : (oscillations’ frequency) ∼ U (16, 20)

ξ3 : (eccentricity of rotation) ∼ U (0, 0.05)
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Figure 6.2: Stochastic angular velocity, θ̇(t;ω), including the decay, λ(ω), and oscillatory,
α(ω), effects with respect to Table 6.1. The colored bounds illustrate the variability of
angular velocity for the depicted realizations of α.

sidering a full tensor product PCM we want to evaluate the stochastic behavior and also

uncertainty propagation in the dynamics of flow. By choosing the kinetic energy, E(t), as

QoI, we perform the stochastic convergence study while we keep increasing the number of

collocation points in all stochastic directions. It is worth mentioning that kinetic energy is

a fair candidate as QoI since it represents the dynamics of the entire system without being

biased towards a specific spatial direction or location. The kinetic energy is defined as:

E(t) =
1

2µ(Ω)

∫

Ω
∥V ∥2dΩ, (6.16)

where µ(Ω) denotes the area of the spatial domain, Ω, and ∥V ∥ represents the L2 norm of

velocity field.

After post-processing the outputs of each realization, we have an array of kinetic energy,

which is computed for the entire simulation time. The reference solution for the stochastic
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Figure 6.3: Stochastic convergence study for PCM considering expectation and standard
deviation of the kinetic energy. The reference solution to compute the errors comes from a
expectation and standard deviation of kinetic energy computed from a 2500 MC samples of
random space.

convergence study is the expectation and variance of kinetic energy obtained from a Monte

Carlo approach with 2500 realizations that are initially generated from Latin Hypercube

Sampling (LHS) of random space reported in Table 6.1. Thus, one can compute the error for

expectation and standard deviation of kinetic energy while changing the number of PCM re-

alizations by increasing the number of collocation points. As shown in Figure 6.3, by taking

five collocation points (125 PCM realizations) the expectation and standard deviation be-

come independent of the number of collocation points, hence, as a valid and computationally

feasible approximation, one can assume that the stochastic convergence trend is observed.

Since the geometry of this flow is well-represented in the polar coordinate system (r− θ),

we manage to transform the velocity field for the converged PCM case as V = (ur, uθ),

which are derived as

ur =
xux + yuy

r
, uθ =

xuy − yux
r

. (6.17)

where ux and uy represent velocity components along x and y directions in the Cartesian

coordinate system, r =
√

x2 + y2 is the radial location from cylinder center and θ denotes the

azimuth angle. Having the velocity components transformed as equation (6.17), Figure 6.4
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Figure 6.4: Snapshots of expected velocity components and vorticity obtained from PCM
with 125 realizations. At t = 2.5: (a) E [ur(x; ξ)], (b) E [uθ(x; ξ)], (c) E [ωz(x; ξ)]. At t = 5:
(d) E [ur(x; ξ)], (e) E [uθ(x; ξ)], (f) E [ωz(x; ξ)].

portrays the snapshots of expected velocity components and also vorticity, ωz = ∂uy/∂x −

∂ux/∂y, fields at t = 2.5 and 5.

The regularity of the solution to the stochastic Navier-Stokes equations in the parametric

space is a crucial point in the effective use of PCM [253]. Here, we assume that the solution

is smooth enough of finite variance. Therefore, using the sufficiently converged PCM, which

properly incorporates the effects of parametric uncertainty in our model, ξ, we can compute

the time evolution of the expected value of kinetic energy, E [E(t; ξ)]. Moreover, it enables

us to quantify the uncertainty, which is propagated with time through the kinetic energy

as our dynamics-representative QoI [215, 233, 229, 115, 224, 254]. Subsequently, Figure 6.5

shows the time evolution of expected kinetic energy and the uncertainty bounds computed

from E [E(t; ξ)]±σ [E(t; ξ)]. Clearly, the propagation of uncertainty grows with time as we

compare the uncertainty bounds at the onset of the instability with the later times, which is
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Figure 6.5: (a) Time evolution of expected kinetic energy and its uncertainty propagation
where green colored area identifies the E [E(t; ξ)] ± σ [E(t; ξ)] and, (b) time evolution of
variance of kinetic energy, σ2 [E(t; ξ)], both for the PCM with 125 realizations.

shown in Figure 6.5a. Additionally, the rate of the uncertainty propagation might be learned

by looking at the time evolution of kinetic energy variance σ2 [E(t; ξ)]. Accordingly, Figure

6.5b illustrates that the variance grows almost exponentially when t < 0.75 and after a short

transition time it grows linearly, therefore, the rate of the uncertainty propagation is much

faster and more influential close to the onset of the instability.

Sensitivity Analysis on Kinetic Energy

The focus of this section is to evaluate the effects of each stochastic parameter on the

underlying variations of kinetic energy as the quantity of interest. The global sensitiv-

ity indices introduced in section 6.5 are proper measures to study the importance of each

source of randomness on the dynamics of the symmetry-breaking flow instability, which was

stochastically computed using PCM in previous section. Variance-based sensitivity analysis

is usually performed by employing realizations of random space through Monte Carlo ap-

proach [255, 218, 220, 256, 224]. However, here we are interested in using the solution of our

stochastic convergence study (125 PCM realizations cases) to compute the expected variance

reductions conditioned on ξi according to equation (6.15) and, hence, the sensitivity indices,

Si.

Figure 6.6 shows the time evolution of computed Si for the stochastic parameters of

the model as introduced in Table 6.1. It shows that the dominant stochastic parameter
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Figure 6.6: Time evolution of global sensitivity indices, Si, for the stochastic parameters, ξ,
considering kinetic energy, E(t; ξ), as the QoI.

that affects the uncertainty in the kinetic energy is ξ3, which represents the off-centered

rotation, ϵ, as we observe that S3 > 0.8 at all recorded times, while the effects of the other

parameters are always less than 0.2. In particular, by focusing on t < 0.75, we realize

that oscillatory effect of the angular velocity model embodied in ξ2, is the second dominant

source of randomness propagated in the kinetic energy of the entire system, nevertheless,

after t = 0.75 as the dynamics of instability evolves with time, the effect of oscillations in the

angular velocity decreases. In fact, when 0.75 < t the eccentric rotation is the only effective

mechanism appearing in the uncertainty of kinetic energy.

On the other hand, by following the summation of the first-order sensitivity indices

depicted in Figure 6.6, we observe that
∑

i S
i > 0.95, which reveals that the joint interactions

of the stochastic parameters on the total variance of kinetic energy are negligible. However,

presence of these joint interactions is slightly realized close to the onset of the instability

when t < 0.75.

Statistical Analysis of Fluctuating Flow Fields

Emergence of fluctuating flow velocity field plays a key role in the dynamics of flow

instabilities. For instance, Ostilla et al. [257] studied the behavior time-averaged root-
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(a) (b)

Figure 6.7: Snapshots of velocity fluctuations at ti = 0.025, 0.2, 0.375, 0.75 for i = 1, . . . , 4.
(a) Radial velocity fluctuations, u′r(x, t), (b) azimuth velocity fluctuations, u′θ(x, t).

mean-square (r.m.s.) of the velocity fluctuations to study the dynamics of boundary layer in

different regimes of Taylor-Couette flow. In another study, Grossmann et al. [258] examined

the behavior of velocity fluctuations profile in a strong turbulent regime of Taylor-Couette

problem. In this regard, here we seek to shed light on the mechanism of initiating the flow

instability from a statistical perspective through studying the behavior of the fluctuations.

In principle, any instantaneous field variable such as velocity, V , which contains a fluctuating

part could be decomposed into

V =
〈
V
〉
+ V ′, (6.18)

where V ′ represents the fluctuations of V and
〈
V
〉
denotes its ensemble average. Unlike the

applied approach in [257, 258] that approximates the ensemble average by time-averaging

over a time period on developed flow, here we are not allowed to exploit time-averaging

close to the onset of the instability, which essentially takes place in a short period of time.

However, our stochastic modeling and CFD platform enables us to properly approximate

the ensemble-averaged velocity field with reasonable computational cost. Hence, having

the knowledge of ensemble mean velocity field gives us the fluctuating response of the flow

field variables. The fluctuations are appeared in the flow at the existence of stochasticity

and disturbance in the system. In fact, the ensemble mean is nothing but finding the

mathematical expectation of the field variable over the entire sample space that contains
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large enough number of realizations. Thus, what we obtain as the result of equation (6.10)

is the representation of ensemble mean in a PCM setting [259]. The stochastic convergence

analysis we performed in section 6.6 ensures that the expectation we compute from PCM

is independent of the stochastic discretization, therefore, we are allowed to claim that the

expected velocity field on the sufficiently converged PCM is a robust approximation of its

ensemble average with large enough number of independent samples. As a result, we can

write

〈
V
〉
= E [V (x, t; ξ)] . (6.19)

According to the sensitivity analysis we performed in section 6.6, we are allowed to obtain the

ensemble-averaged field by performing a uni-variate PCM on the most sensitive stochastic

parameter, ξ3 = ϵ, while we fix the other two random parameters of the wall velocity model

to their mean values as reported in the Table 6.1. Since the uni-variate PCM requires much

less realizations evaluated at collocation points, it is computationally feasible to discretize

the dominant random direction even beyond the stochastic convergence resolution. Here we

proceed with taking 30 collocation/integration points providing a high-resolution expected

solution in the stochastic space essentially returning a seamless evaluation of
〈
V
〉
. According

to Table 6.1 and as a physically reasonable assumption, the rotational eccentricity is initially

taken to be varying up to 5% of the cylinder radius as ϵ ∼ U (0.0, 0.05). For a randomly

drawn realization of the sample space that fixes eccentricity value at ϵ = 0.0263, we evaluate

the fluctuating velocity field according to equation (6.18). The procedure of computing

the fluctuations from SEM-based realizations is briefly explained in Appendix D. Figure 6.7

shows the resulting velocity fluctuations in polar coordinate system at four snapshots of time

illustrating the onset of flow instability.

Emergence of Non-Gaussian Statistics in Velocity Fluctuations

Tracking the probability density function (PDF) of velocity fluctuations with time ren-

ders qualitative statistical information, which characterizes the impacts of the evolution of

fluctuations on the dynamics. PDF of fluctuating fields can simply show us the departure
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Figure 6.8: Time evolution of PDFs of components of the velocity fluctuations at eight
instances of time close to the flow instability onset. Here the PDFs are obtained on the
entire computational domain while the fluctuations are normalized by their own standard
deviations, σ, and they are all compared with the standard Gaussian PDF, N (0, 1). Radial
velocity fluctuations: (a) 0 < t ≤ 0.1, (b) 0.1 < t ≤ 0.2. Azimuth velocity fluctuations: (c)
0 < t ≤ 0.1, (d) 0.1 < t ≤ 0.2.

from Gaussian statistical behavior that essentially plays an important role in leading to a

chaotic flow dynamic state. Here, we compute the velocity fluctuations’ PDFs over the com-

putational domain for the radial and azimuth components, and plot them at eight different

time states close to the initiation of the flow instability (see Figure 6.8). All of these PDFs

are computed for the velocity fluctuations that are normalized by their standard deviation so

that the comparison with the standard Gaussian PDF, drawn fromN (0, 1), is readily possible

through eyeball measure. Here, Figures 6.8a and 6.8c are depicting the PDFs of normalized

radial and azimuth components of velocity fluctuations for 0 < t ≤ 0.1, respectively. For

both of the radial and azimuth velocity components the PDFs are showing sub-Gaussian
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Figure 6.9: High-order moments of velocity fluctuations, V ′ = (u′r, u′θ), as a function of
radial distance from the wall, r, where r = 0 indicates the wall. (a) Skewness factor for u′r,
(b) Flatness factor for u′r, (c) Skewness factor for u′θ, (d) Flatness factor for u

′
θ. In (b) and

(d), the black-colored dashed lines indicate the flatness factor associated with the standard
Gaussian distribution.
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Figure 6.10: Comparison between the standard Gaussian PDF and PDFs of the velocity
fluctuations at t = 0.25, 0.5, 0.75. (a) Radial velocity fluctuations, (b) azimuth velocity
fluctuations.
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behavior that is commonly expected given the laminar initial state of the flow, however, the

former rapidly tends to show broader tails compared to the latter with time. Moreover, we

can observe that the onset of the flow instability causes noticeable deviations from symmetry

in the PDF of radial velocity fluctuations. By tracking the PDFs of velocity fluctuations at

further times, i.e. 0.1 < t ≤ 0.2, one can clearly observe that emergence of broad PDF tails

and asymmetries quickly leads to a highly non-Gaussian statistical behavior (see Figures

6.8b and 6.8d and compare with the standard Gaussian PDF). More specifically, Figure 6.8b

shows that the velocity fluctuations in the radial direction are essentially the main source

of this non-Gaussianity as the heavy-tailed PDF accompanied with intermittent events dis-

tributed at the PDF tails are arising (see 0.15 ≤ t ≤ 0.2). On the other hand, a noticeable

skewness towards the negative-valued fluctuations of the radial velocity component tends to

grow with time as shown in Figure 6.8b. Comparing the radial and azimuth components of

velocity fluctuations qualitatively show that emerging the aforementioned features that are

essentially the fingerprints of non-Gaussian statistics is much milder and at slower rates for

the azimuth component, u′θ.

In order to obtain a quantitative measure on the non-Gaussian statistics of the velocity

fluctuations, we manage to compute their skewness and flatness factors as a function of radial

distance from the wall, r. This effectively helps to understand how the non-Gaussian behavior

evolves through time as we move away from the wall towards the center. Our approach

involves uniformly sampling the velocity values on the circular stripes with a thickness of

δr where their radial distance from the wall is r. Once we performed such sampling, we

can simply attain the skewness and flatness factors as ⟨V ′3⟩/⟨V ′2⟩3/2 and ⟨V ′4⟩/⟨V ′2⟩2,

respectively. In our measurements, we took δr = 2× 10−4 and ⟨·⟩ denotes spatial averaging

over the uniformly sampled velocity space on each circular stripe with radial distance r

from wall. As a result, Figure 6.9 illustrates such radial skewness and flatness factors for

both components of velocity fluctuations at five instances of time for 0.1 ≤ t ≤ 0.2. The

resulting measures for u′r depicted in Figures 6.9a and 6.9b show that the non-zero skewness
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factor and flatness factor greater than 3 (measures associated with standard Gaussian) are

appearing for 0.15 ≤ t. This record is in total agreement with what we observe in their

non-Gaussian PDFs in Figure 6.8b. For u′θ, Figure 6.9a illustrates non-zero skewness factor

values close to the wall at all the recorded times and Figure 6.9b shows that for a narrow

region close to the wall the flatness factor exceeds 3 for 0.15 < t. Again, these observations

are in complete agreement with the behavior we observe in PDFs of u′θ shown in Figure

6.8d. More specifically on the heavy-tailed velocity fluctuations PDFs, one can link the

radial records of flatness factor in both components u′r and u′θ as shown in Figures 6.9b

and 6.9d, respectively. In radial velocity fluctuations, it is clearly seen that as time passes

the flatness factor increases for the closest radial distances to wall, i.e. r < 10−3, and in

farther distances from the wall, a span of radial region of high flatness factor that essentially

contributes to the rare events occurring at the PDF tails (for 0.15 ≤ t) is observed. As we

pointed out, this high flatness factor span is expanding towards the center of the cylinder

as flow instability evolves in time. Although such behavior is also seen for the azimuth

component of velocity fluctuations, its intensity is much milder compared to u′r. In fact, our

records show that for u′θ the flatness factor rarely exceeds 3 (see Figure 6.9d).

Finally, by comparing the PDFs of velocity fluctuations for 0.2 < t with the one associated

with standard Gaussian (see Figure 6.10), we recognize that the statistical features such as

non-symmetric distributions and heavy PDF tails with high intermittency are remarkably

discernible. However, as illustrated for the prior times closer to the flow instability initiation,

these features seem to be manifested more prominently in the radial component of velocity

fluctuations.

Memory Effects in Vorticity Dynamics and Anomalous Time-Scaling of Enstro-

phy

Although early theories of Batchelor [260] assumed that for decaying two-dimensional

turbulence it is only kinetic energy that is mainly remembered for a long time, later it has

been shown that vorticity field plays a key role in the flow dynamics, which was initially
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Figure 6.11: (a) Comparison between the standard Gaussian PDF and normalized vorticity
fluctuations’ PDFs at t = 0.25, 0.5, 0.75, (b) skewness factor for ω′z and, (c) flatness factor
for ω′z. The dashed lines indicate the measures associated with Gaussian behavior.

failed to be addressed by Batchelor [261]. Here, while the filamentation of the vorticity

field is occurring, there exist small yet sufficiently strong patches of vorticity surviving the

filamentation process and comprise coherent vortices that somehow live even longer than

many large-eddy turnover times [2]. These coherent vortices are interacting with each other

quite similar to a collection of point vortices. On some occasions, these coherent vortices

could approach each other and merge into larger ones. Therefore, the number of coherent

vortices decreases while their average size increases as flow evolves. On the other hand,

given the discussion on non-Gaussian behavior velocity fluctuations, one can make a con-
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nection between the statistical behavior of the vorticity field and generation and intensity

of coherent vortices resulting from the flow instability. Thus, similar to the procedure in

the previous section, we compute the vorticity PDFs in addition to the radial skewness and

flatness factors for the same realization of the fluctuating flow field we considered. Figure

6.11 provides this statistical information at t = 0.25, 0.5, and 0.75. Comparing the vorticity

PDFs shown in Figure 6.11a to the standard Gaussian PDF makes it evident that finger-

prints of non-Gaussian statistics, i.e. non-symmetric probability distributions in addition to

broad and intermittent PDF tails, are immensely evolving in vorticity field. Moreover, the

radial skewness and flatness factors obtained for these three time instances quantitatively

demonstrate that such intense non-Gaussian statistical behavior is swiftly extending towards

the center of cylinder (see the radial region of 0.01 < r < 0.2 at Figures 6.11b and 6.11c).

Given the discussion on the generation and evolution of the coherent vortices, and our

quantitative/qualitative study on the emergence of strong non-Gaussian statistical behavior

for velocity and vorticity fluctuations, one can argue that such statistics are closely tied to and

in other words, the direct result of generation and growth of coherent vortical structures due

to the effect of the rotational symmetry-breaking factors. In prior studies, such connection

was investigated and partially addressed in the contexts of planar mixing and free shear

layers [160, 262, 263], subgrid-scale (SGS) motions and their nonlocal modeling for wall-

bounded turbulent flows, boundary layer flows [264, 265], and turbulent flows interacting

with wavy-like moving/actuated surfaces (with application to reduction and control of flow

separation) [266, 267].

Here, an interesting yet, practical question that could be raised is that if such “intensified”

coherent vortical structures induced by the symmetry-breaking parameters in the rotational

motion are capable of incorporating more memory effects into the dynamics of vorticity field.

This potentially could lead to the engineering means to increase effective chaotic mixing in

rotating systems by introducing factors that initiate deviation from symmetry in rotation. In

a two-dimensional turbulent/chaotic flow, the very presence of “long-lived” coherent vortices
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Figure 6.12: Time-scaling of enstrophy record and its link to evolution of coherent vortical
structures. (a) Enstrophy record, E(t), and its early-time (I), transient-time (II), and long-
time (III) scaling affected by the imposed symmetry-breaking disturbances on the rotational
motion of cylinder, (b) snapshots of instantaneous vorticity field, ωz(x, t), (left) t = 7 and
(right) t = 24 showing the structure and growth of coherent vortical regions attached to the
cylinder wall.

normally cause the time-scaling of enstrophy record at long-time to be close to t−1, however,

it initially is scaled with t−2 at the early stages of flow which is also what Batchelor’s theory

envisions [2]. Therefore, a relevant approach to seek an answer to this question is to study

the long-time behavior of enstrophy record that contains the spatially integrated information

in the vortical motions over the entire domain and also is a representative for the dissipation

dynamics. Similar to the kinetic energy (6.16), we define the enstrophy, E(t), in our problem

setting as

E(t) = 1

µ(Ω)

∫

Ω

∣∣ω′z(x, t)
∣∣2dΩ. (6.20)

By computing the record of enstrophy for relatively long times (obtained from the same flow
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realization we studied its fluctuating velocity and vorticity behavior), studying the early-

/long-time scaling trend of enstrophy would be possible. To perform this very study, the

validity and stability of long-time evaluation of QoIs for stochastic mathematical models is of

crucial importance to be considered and it has been addressed in multiple prior studies. For

instance, Xiu and Karniadakis [238] used generalized polynomial chaos (gPC) with relatively

high resolutions in order to study the long-time behavior of vorticity field for the flow past

a cylinder under the uncertain inflow boundary conditions. In another study, Xiu and

Hesthaven [246] employed high-order stochastic collocation methods to achieve stable second-

order moment response to the stochastic differential equations at the long times. Moreover,

Foo et al. [248] utilized multi-element probabilistic collocation method (ME-PCM) with high

resolution in random space to compute stable long-time flow records. Therefore, maintaining

sufficiently high resolutions in discretization of random space is a key point. In our study,

the high-resolution uni-variate PCM we employed to obtain the fluctuating flow fields (as

described in section 6.6) essentially guarantees the validity and statistical stability of our

evaluations for the long-time fluctuating vortictiy field and computing the enstrophy record

as illustrated in Figure 6.12a. This plot shows that in terms of enstrophy time-scaling, we

observe three stages of time. Here at stage (I), enstrophy behaves as E ∼ t−2 (for t < 2.5),

however, after a transition period, stage (II), it persistently follows E ∼ t−1/2 time-scaling

in stage (III). At the third stage, this “anomalous” long-time scaling with t−1/2 rather than

the expected t−1 scaling could essentially be interpreted as the result of an “intensified”

mechanism for birth and growth of coherent vortices that live for effectively long periods

of time during the evolution of this internal flow right after the occurrence of the flow

instability. Figure 6.12b portrays two snapshots of instantaneous vorticity field, ωz, on a

segment of cylinder close to the wall to show the evolution and form of these coherent vortex

structures survived the vortex filamentation process. We emphasize that the long life of

the mature and relatively large coherent vortical zones (clearly visible and attached to the

cylinder’s wall) is the main reason of the anomalous enstrophy time-scaling we observe at
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stage (III) in Figure 6.12a. As we mentioned earlier, this phenomenon could potentially be

a practical engineering candidate to enhance and reinforce the effective chaotic/turbulent

mixing qualities by inducing more memory effects resulted from a symmetry-breaking flow

instability.
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CHAPTER 7

SUMMARY AND FUTURE WORKS

The objective of this dissertation was to develop robust modeling strategies utilizing data-

driven methods, nonlocal mathematical operators, and high-performance computing for sim-

ulations and analysis of turbulent mixing phenomena. In the following sections, we point

out the concluding remarks for each chapter of this study, and later we provide some outlook

to the future directions.

7.1 Concluding Remarks

• In chapter 2, we presented a computational platform for DNS of homogeneous turbulent

flow and passive scalar transport. This open-source software works based upon a pseudo-

spectral representation of the NS and AD equations on a triply cubic computational domain

with periodic boundary conditions for fluctuating fields. Using Fourier collocation method,

the governing equations are discretized in space and by employing RK4 scheme the time-

stepping is performed. The software provides a pre-processing step to construct homogeneous

and isotropic divergence-free velocity IC based on prescribed energy spectrum and decom-

pose it into user-defined partitions. Using artificial forcing scheme, the dissipated energy is

injected to the low wavenumbers so that after long-time integration, the statistically station-

ary state is achieved. In order to examine and identify if the fully-developed turbulent flow is

obtained, small-scale statistical quantities of turbulence in addition to the central moments

of VGT components are computed and recorded. Once the realistic turbulent velocity field

is obtained, the user is able to start resolving a passive scalar that is transported on the HIT

flow while a uniform mean scalar gradient is imposed. Resolving the scalar fluctuations for

long enough time after reaching to the equilibrium and stationary state provides the fully-

developed turbulent scalar field. Statistical records of scalar gradients in addition to the

records of production and dissipation of scalar variance helps the user to properly identify

when the fully-developed scalar turbulence is achieved.

• In chapter 3, we developed a new data-driven nonlocal/fractional SGS model for the
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LES of passive scalars transported in the homogeneous isotropic turbulent flow. The main

focus of our work was on obtaining an SGS model that is structurally designed based on the

nonlocal nature of the SGS scalar flux. Therefore, we first managed to present a through

statistical interpretation of nonlocality in the SGS dynamics using the single- and two-

point statistics of the SGS scalar dissipation. Using a rich dataset of high-fidelity data for

the SGS flux obtained from direct filtering of DNS results, we illustrated the statistical

nonlocality embedded in the SGS dynamics and showed that it amplifies as the filter-width

increases. Moreover, we showed that the conventional means of SGS modeling originate

from a local statistical representation for the SGS dynamics and are intrinsically incapable

of predicting the statistical nonlocality. As a robust starting point for our mathematical

modeling, we started from Boltzmann-BGK kinetics as the microscopic transport framework

for passive scalars in homogeneous turbulence and considered the closure problem manifested

in filtering the transport equations. By revisiting the kinetic-level strategy for the LES

modeling taking into account the consistency of the the model for the filtered equilibrium

distribution with its macroscopic representation at the continuum level, we proposed to

proceed with closure modeling using α-stable Lévy distribution to address the nonlocal and

non-Gaussian behavior of the closure at the kinetic level. In order to derive a macroscopic

representation of such model to employ in the filtered AD equation, we used continuum

averaging and obtained the filtered and residual (modeled) passive scalar flux components

that essentially return the filtered AD equation. Throughout this procedure, the up-scaled

model for the divergence of the residual flux takes the form of a fractional Laplacian acting

on the filtered scalar concentration with a model-specific proportionality coefficient. Next,

we managed to calibrate the fractional-order model in two separate data-driven stages. First

we targeted identification of the optimal fractional order using two-point statistics data

for the normalized SGS dissipation function obtained from the DNS and minimizing the

mismatch function with its counterpart in the fractional-order SGS model. This procedure

returned the optimal fractional order that minimizes the single-point correlation between

113



the modeled and true SGS scalar flux. Afterwards, following an sparse regression strategy

over the spatio-temporal data for the SGS scalar flux in a statistically-stationary turbulent

scalar field, we obtained the proportionality coefficient of the model. Moreover, we showed

the consistency of the derived model in terms of the relationship between the obtained

proportionality coefficient and decreasing the filter-width. Finally, in an a priori test, we

showed that the identified model is capable of capturing the PDF tail associated with the

forward scattering of the filtered scalar variance and illustrated that our model has the

capability to partially reproduce the backward scattering phenomenon.

• In chapter 4, we proposed a modification to the spectral transfer model for the turbulent

cascade of passive scalars under the effect of large-scale anisotropy. Employing the Corrsin’s

generalization to Onsager’s turbulent cascade model, our modified model introduced an ad-

ditional power-law term in the definition of local time-scale, τ(k), in order to account for the

induced nonlocal contributions originated from the anisotropy sources in the energy contain-

ing range. Subsequently, our approach yielded a modified scaling law for the passive scalar

spectrum, Eϕ(k). This modified scaling showed a great match with the time-averaged 3-D

scalar spectrum obtained from a well-resolved standard DNS after the parameter identifi-

cation procedure. Using the integrated equation for the evolution of scalar spectrum, we

revised the total scalar dissipation definition, which introduced an additional term into the

total scalar dissipation representing the integrated effects of nonlocal turbulent dissipation

cascade. This modification to the scalar dissipation returned that a fractional-order Lapla-

cian acting on the scalar concentration is required in the AD equation. Using this revised AD

equation, we performed a DNS study to analyze different quantities of turbulent transport

compared to the DNS results obtained from convectional model at the statistical equilibrium

state. Our analysis on the rate of the scalar variance showed that considering the effects

of nonlocality in the scalar dissipation results in pronounced prediction of the production

rate of scalar variance by the imposed mean-gradient (large-scale anisotropy), which could

be interpreted in consistency with the breakdown of local isotropy in small scales of passive
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scalars. On the other hand, we showed that incorporation of the nonlocality effects in the

scalar dissipation improves the accuracy of predicted time-averaged records of the skewness

and flatness factors for the ∇∥ϕ, confirming the essence of devising a proper modeling mech-

anism for cascade of the anisotropy effects from large to small scales. Moreover, a two-point

statistical analysis for the advective scalar increments (the third-order mixed longitudinal

structure function) revealed that the DNS results obtained from nonlocal model provides a

long-range scaling with r2. This observation on long-range scaling suggested that the inclu-

sion of nonlocal cascading mechanism in the presence of large-scale anisotropy could result

in prediction of more universal behavior over a wide span of scales in turbulent scalar trans-

port. Finally, we showed an accurate consistency between the developed spectral transfer

model and the fractional-order SGS modeling with ∆ ≈ 2 η, after employing a well-trained

GPR model.

• In chapter 5, we developed a data-driven surrogate model for prediction of the closure

flux term appearing in the LES equations of a passive scalar. The developed model was a

fully connected deep neural network architecture that takes gradient of the filtered/resolved

scale transport fields as input features. In order to provide a rich set of training/validation

data from FDNS, we introduced a spatio-temporal procedure to sufficiently sample from

a in fully-turbulent time domain and also the homogeneous spatial turbulent domain at

each sampled time frame. Using dataset, we managed to optimize the model parameters of

our specified DNN model with respect to the MSE loss function. Eventually, we presented a

proper optimized DNN model where training and validation loss records have shown perfectly

matching behavior, therefore, the any over-fitting was avoided. Using the notion of transfer

learning, we efficiently (in terms of data requirement and Computational cost) generalized

our initially trained model into a case for a higher Schmidt number, and another case for a

higher Péclet number. In training the TL models, we ensured that we are avoiding an over-

fitting after the re-training procedure. Afterwards, we managed to test the performance of

the developed DNN models in the inference mode. Therefore, in an a prori assessment,
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we compared the performance of the base DNN model with the PSM and SAG models at

two filter scales, and realized that the DNN model not only reduces the level of error in

predictions of SGS flux and dissipation, but also improves the consistency in prediction

of SGS flux with respect to the direction of large-scale anisotropy, ∇⟨Φ̃⟩ compared to the

traditional SGS models. For the TL models, we tested the pre-trained model’s performance in

prediction of a new scalar transport regime against the re-trained models and found out that

re-training significantly enhances the over-prediction of the forward scattering phenomenon

(and even the backward scattering of filtered variance at higher Péclet number regime).

Finally, along the SAG and PSM model, we tested our base DNN model in an LES setting.

We compared the records of resolved-scale scalar variance from the employed SGS model as

well as the second-order and third-order structure functions of the resolved scalar. Compared

to the traditional models we tested, we realized that a well-trained DNN model can result

in striking error reduction in the recorded scalar variance as well as significant improvement

in prediction of the two-point structure functions.

• Finally, in chapter 6, our study leverages the outcome of stochastic modeling and simula-

tions to carry out a thorough analysis on the initiation of flow instabilities within high-speed

rotating cylinders. Considering the random nature of the problem, a detailed mathematical

representation of the stochastic incompressible Navier-Stokes equations was presented. Fur-

ther, a high-fidelity stochastic CFD framework was introduced, which employs spectral/hp

element method in the forward solver and later on the stochastic space was numerically

handled by probabilistic collocation method. Detailed grid generation steps and required

convergence studies for the deterministic solver were obtained and stochastic discretization

convergence were studied for the solutions of first and second moments. The time-evolution

of expected kinetic energy of the flow in addition to its variance were computed and the

uncertainty bounds propagated in the solution were identified with time. A variance-based

sensitivity analysis of the random parameters of the model were conducted to globally char-

acterize the most effective stochastic factor on the total variance of kinetic energy, conse-
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quently, the “eccentric rotation” was learned to be the dominant source of stochasticity.

Later on, the expected solution from a very fine uni-variate PCM discretization on the dom-

inant random parameter was utilized to compute the fluctuating velocity and vorticity fields

for a randomly drawn realization of the sample space. These fluctuations were statistically

analyzed through the time-evolution of their PDFs for radial and azimuth components in

a qualitative manner while comparing to the standard Gaussian PDF. Statistical features

such as appearance of intermittent and rare events in terms of heavy-tailed PDFs in addition

to observing asymmetries in velocity and vorticity PDFs were spotted out. In particular,

very close to the flow instability onset, these non-Gaussian statistical features were found to

quickly get intensified especially for the radial velocity fluctuations and therefore fluctuating

vorticity field as the flow evolves in time. Moreover, the statistics of flow fields were quan-

titatively measured through computing the skewness and flatness factors on narrow radial

stripes extending from the wall to the cylinder’s center. These records closely supported our

qualitative findings from studying the PDFs of fluctuations and identified that in velocity

field we quickly face regions with skewness factor of O(1) and flatness factor of O(10) while

for the vorticity field these factors were recorded with about one order of magnitude higher

than their velocity counterparts emphasizing on significantly high non-Gaussian vorticity

induced by cylinder rotation affected by symmetry-breaking factors. Here, we need to em-

phasize that the modeling strategy in this work was conducted based upon an approximate

2-D representation of the NS equations for long rotating cylinders fully-filled with fluid. It

properly provided a valuable insight into the dominant effect that breaks the flow symmetry

and the dynamics of the further fluctuations in the flow variables. Certainly, a similar study

focusing on the short-height rotating flow systems requires three-dimensional modeling and

simulations. In fact, since the top roof and bottom base surfaces of the cylinder additionally

have major contributions to the symmetry-breaking instabilities, the axial propagation of

uncertainty in the flow would be inevitable and must be taken into consideration. Motivated

by the observed strong non-Gaussianity in flow fluctuations, we sought to study the effects of
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coherent vortical structures essentially inducing memory effects into the vorticity dynamics.

Thus, we managed to compute the time-scaling of the enstrophy record. Interestingly, we

learned that unlike the early stages of flow after introduction symmetry-breaking rotational

effects, enstrophy is scaled as t−1/2 at long-time. This anomalous time-scaling essentially

reveals the very existence of long-lasting and growing coherent vortical regions initially gen-

erated due to the non-symmetric rotation of the cylinder wall. This mechanism seems to be

a promising engineering strategy to increase the chaotic/turbulent mixing time and quality

for the rotating hydrodynamic systems.

7.2 Future Directions and Outlook

Some open topics remain in this study to be addressed in the future works. Here, we list

some of them as follows:

• Testing the SGS model on other types of turbulent flow: investigating the charac-

teristics of the fractional SGS model in different types of turbulent flows such as shear flows

and wall-bounded ones to uncover the trend in the parameter estimation required to capture

the nonlocality in each regime, followed by a comprehensive statistical comparison between

model performance at each regime.

• Other deep learning modeling strategies: developing other deep learning SGS models

for the turbulent transport by embedding the relevant features in the surrogate model, and

different model architectures such as convolutional neural networks, transformer networks

with attention mechanisms, and reinforcement learning approaches.

• Learning the SGS dynamics from a Lagrangian point of view: employing a parti-

cle tracking approach over the fully-developed turbulent fields, the nonlocal behavior of the

subgrid-scale fluctuations is aimed to be learned from analysis of time-series through sophis-

ticated deep learning algorithms. After integration of the learned statistical information,

discovery of the proper differential operators to govern the evolution of the SGS dynamics

is pursued.
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APPENDIX A

FRACTIONAL-ORDER DIFFERENTIAL OPERATORS

According to Lischke et al. [268], the fractional Laplacian operator, denoted by (−∆)α with

0 < α ≤ 1, is defined as

(−∆)αu(x) =
1

(2π)d

∫

Rd
|ξ|2α

(
u, e−iξ·x) eiξ·x dξ

= F−1
{
|ξ|2αF

{
u
}
(ξ)
}
, (A.1)

where F and F−1 represent the Fourier and inverse Fourier transforms for a real-valued

vector ξ = ξj , j = 1, 2, 3, respectively, and i =
√
−1. Moreover, (· , ·) specifies the L2-inner

product on Rd, d = 1, 2, 3. Therefore, the Fourier transform of the fractional Laplacian is

then obtained as

F
{
(−∆)αu(x)

}
= |ξ|2αF

{
u
}
(ξ), (A.2)

where α = 1 recovers the integer-order Laplacian. Considering the definition of α-Riesz

potential as

Iαu(x) = Cd,−α

∫

Rd
u(x)− u(s)

|x− s|d−2α
ds, (A.3)

the fractional Laplacian can also be expressed in the integral form as

(−∆)αu(x) = Cd,α

∫

Rd
u(x)− u(s)

|x− s|2α+d
ds, (A.4)

where Cd,α =
22αΓ(α+d/2)

πd/2Γ(−α)
for α ∈ (0, 1] and Γ(·) represents Gamma function [268]. The

α-Riesz potential is also formulated [269] as

Iαu(x) = (−∆)−αu(x) = F−1
{
|ξ|−2αF

{
u
}
(ξ)
}
. (A.5)

Considering (A.5), the Riesz transform is then given by

Rju(x) = ∇j I1u(x) = F−1
{
− i ξj

|ξ| F
{
u
}
(ξ)
}
, (A.6)

which is utilized in formulating the SGS scalar flux.
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APPENDIX B

DERIVATION OF PASSIVE SCALAR FLUX

Regarding the filtered passive scalar flux given in (3.36), one can write that

q̃i =

∫ ∞

0

∫

Rd
(vi − ũi)

(
Φ̃s,s F (L̃s,s)− Φ̃F (L̃)

)
e−sdv ds, (B.1)

where using the Taylor expansions of Φ̃s,s and F (L̃s,s) about their not shifted values and

later on by utilizing the incompressibility constraint, one arrives at the following

q̃i =

∫ ∞

0

∫

Rd
(vi − ũi)

(
−vj sτg

) ∂Φ̃

∂xj
F (L̃) e−s dv ds (B.2)

≃ − τg

c3T

∂Φ̃

∂xi

(∫ ∞

0
s e−s ds

)∫

Rd
(vj − ũj)(vj − ũj)F (L̃) dv.

Knowing that
∫∞
0 s e−s ds = 1, the diffusivity coefficient of the passive scalar, D, would be

expressed as

D :=
τg

c3T

∫

Rd
(vj − ũj)(vj − ũj)F (L̃) dv. (B.3)

As a result, the filtered (resolved) passive scalar flux, q̃, and its divergence appearing in the

right-hand side of (3.31) could be written as

q̃i = −D ∂Φ̃

∂xi
=⇒ ∇ · q̃ = −D∆Φ̃. (B.4)

On the other hand, the integral form of the modeled SGS flux in (3.37) can be written in

the following form

qRi =

∫ ∞

0

∫

Rd
(vi − ũi)

(
Φ̃s,s F

α(L̃s,s)− Φ̃Fα(L̃)
)
e−sdv ds, (B.5)

By adding and subtracting Φ̃s,s F
α(L̃) to

(
Φ̃s,s F

α(L̃s,s)− Φ̃Fα(L̃)
)
, one can rewrite (B.5)

as

qRi =

∫ ∞

0

∫

Rd
(vi − ũi)

(
Φ̃s,s − Φ̃

)
Fα(L̃) e−sdv ds (B.6)

+

∫ ∞

0

∫

Rd
(vi − ũi) Φ̃s,s

(
Fα(L̃s,s)− Fα(L̃)

)
e−sdv ds,
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where the second integral is approximated as zero. Therefore, the modeled subgrid-scale

scalar flux is simplified into

qRi =

∫ ∞

0

∫

Rd
(vi − ũi)

(
Φ̃s,s − Φ̃

)
Fα(L̃) e−sdv ds. (B.7)

Considering vi = (x′i − xi)/sτ and approximating vi − ũi ≃ vi, one can obtain that dv =

dx′/(sτg)3 [16]. As a result, L̃ = (v − ũ)2/c2T ≈ v2/c2T = (x′ − x)2/(s τg cT )
2. According

to the definition of isotropic α-stable Lévy distribution, Fα(L̃) = Cα/L̃(2α+3)/2, where Cα

is a real-valued constant. Consequently, (B.7) may be reformulated as

qRi =

∫ ∞

0

∫

Rd
1

c3T s3 τ3g

(
x′i − xi
s τg

)(
Φ̃s,s − Φ̃

)( Cα

L̃(2α+3)/2

)
e−sdx′ ds (B.8)

= −Cα(cT τg)
2α

τg

(∫ ∞

0
e−ss2α−1ds

)∫

Rd

(x′i − xi)
(
Φ̃(x′)− Φ̃(x)

)

|x′ − x|2α+3
dx′

= −Cα(cT τg)
2α

τg
Γ(2α)

∫

Rd

(x′i − xi)
(
Φ̃(x′)− Φ̃(x)

)

|x′ − x|2α+3
dx′,

By taking the divergence of the modeled SGS scalar flux in (B.8), we obtain

(∇ · qR)i = −Cα(cT τg)
2α

τg
Γ(2α)∇ ·

∫

Rd

(x′i − xi)
(
Φ̃(x′)− Φ̃(x)

)

|x′ − x|2α+3
dx′ (B.9)

= −Cα(cT τg)
2α

τg
Γ(2α)

[
(2α + 2)

∫

Rd
Φ̃(x′)− Φ̃(x)

|x′ − x|2α+3
dx′ −

∫

Rd
∂Φ̃/∂xi

|x′ − x|2α+2
dx′
]
.

Due to symmetry, the second integral inside the large brace is zero and the other integral is

nothing but the definition of fractional Laplacian of the filtered passive scalar concentration,

Φ̃. Thus, (B.9) takes the following compact form

∇ · qR = −Cα(cT τg)
2α

2τg
(2α + 2)Γ(2α) (−∆)αΦ̃, α ∈ (0, 1]. (B.10)
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APPENDIX C

VALIDATION OF NUMERICAL SETUP

This appendix provides a comparison study between the analytic and numerical solutions

for specific cases of impulsive and exponential spin-decay at low-Reynolds numbers in order

to validate our CFD results. Simplifying the governing equations in cylindrical coordinate

system, (r, θ, z), for a non-stationary 2-D viscous incompressible flow, gives

ρ

(
−u2θ

r

)
= −∂p

∂r
, (C.1)

ρ

(
∂uθ
∂t

)
= µ

(
∂2uθ
∂r2

− 1

r2
uθ +

1

r

∂uθ
∂r

)
.

Here, the first and second equations represent the momentum equation in r and θ directions,

respectively. By considering no-slip boundary conditions on the wall and taking the initial

condition as V (r, 0) = rθ̇ (rigid-body rotation), equation (C.1) can be solved through the

Laplace transform on the variable t [270, 46]. If the length is scaled by the radius of cylinder,

r, time is scaled by r2/ν, velocity in the sudden stop case is scaled by rθ̇, and velocity in the

exponential decay case by λr3θ̇/ν, the resulting solution would be dimensionless. Therefore,

the exact solutions for the complete sudden stop and exponential decay cases at low-Reynolds

numbers are obtained as

Vs(r, t) = −2
∞∑

n=1

J1(βnr)

βnJ0(βn)
exp(−β2nt), (C.2)

Ve(r, t) =
R−
Re

J1(r
√
B) exp(−Bt)

J1(
√
B)

+ 2
∞∑

n=1

J1(βnr) exp(−β2nt)

βn(β2 − β)J0(βn)
,

where Vs(r, t) indicates the azimuth velocity for sudden stop case, Ve(r, t) is the azimuth

velocity for the exponential decay case, J is the Bessel function of the first kind, and βn

denotes the positive roots of J1(βn) = 0. Also R− = r2θ̇/ν shows the Reynolds number

corresponding to the initial state and Re = r4θ̇λ/ν2 denotes the Reynolds number for the

spin-decay period (see [270] and [46] for derivations). Using equation (C.2) and implementing

the same initial and boundary conditions in the numerical setup for a low Re number, a
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comparison in different times was made (see Figure C.1). These comparisons are obtained

for Re = 1/ν = 100 and Re/R− = 20, while we consider the mentioned dimensionless

solution and the physical parameters. Comparing the analytic and the CFD results clearly

validates our numerical implementation and procedure. It should be mentioned that the

analytic solutions are only valid at the low-Re number regime where no flow instability is

created during these processes.
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Figure C.1: Comparison between the velocity, V (r, t), obtained from CFD and analytical
solution for flow at Re = 100. (a) Complete sudden stop, (b) exponential decay with
Re/R− = 20.
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APPENDIX D

COMPUTATIONAL WORKFLOW

Performing numerous amount of forward simulations for discretization of random space

urges the design of a proper workflow in high-performance computing (HPC) environment

[271, 272]. In this work, we are dealing with a forward solver with requires input session files

in the xml format, which contain information about the grid and each forward simulation’s

conditions. Using parallel computing on O(100) processes is inevitably demanded for each

one of these forward simulations. Indeed, the number of simulations addressed in this work,

could not be achieved by manually generation of input session files that are fed by realiza-

tions of stochastic parameter space. Hence, a Python program is prepared to construct the

parameter space realizations (either from MC approach or PCM) and assign them to separate

xml scripts that are placed in a directory associated with each forward simulation. Moreover,

it enables automation of job submission step in the HPC environment. The statistical so-

lutions (i.e., expected fields and their standard deviation) are computed by post-processing

through Paraview toolkit. In particular, we exploit Paraview’s Python scripting (executed

by pvpython) to extract the flow field variables from xml field files at the SEM integration

points and perform required computations on them to obtain the expectation and standard

deviation of field variables. Similar procedure is carried out to compute the velocity and

vorticity fluctuation fields.
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