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ABSTRACT

This study aims to propose novel solutions to the complex problem of turbulent flows

using data-driven statistical and mathematical models. The proposed models reduce the

huge computational cost of the direct numerical simulations and make them tractable while

maintaining the important statistical features of the chaotic flows. Unlike the conventional

models in the literature, the new proposed dynamic models take into account the inherent

nonlocality of turbulence and predict the final statistical quantities with higher accuracy and

correlations. First, we developed a novel autonomously dynamic nonlocal turbulence model

for the large and very large eddy simulation (LES, VLES) of the homogeneous isotropic

turbulent flows (HIT). The model is based on a generalized (integer-to-noninteger) order

Laplacian of the filtered velocity field, and a novel dynamic model has been formulated to

avoid the need for tuning the model constant. Three data-driven approaches were introduced

for the determination of the fractional-order to have a model which is totally free of any

tuning parameter. Our analysis includes both the a priori and the a posteriori tests. In the

former test, using a high-fidelity and well-resolved dataset from direct numerical simulations

(DNS), we computed the correlation coefficients for the stress components of the subgrid-

scale (SGS) stress tensor and the one we get directly from the DNS results. Moreover, we

compared the probability density function of the ensemble-averaged SGS forces for different

filter sizes. In the latter, we employed our new model along with other conventional models

including static and dynamic Smagorinsky into our pseudo-spectral solver and tested the

final predicted quantities. The results of the newly developed model exhibit an expressive

agreement with the ground-truth DNS results in all components of the SGS stress and forces.

Also, the model exhibits promising results in the VLES region as well as the LES region,

which could be remarkably important for the cost-efficient nonlocal turbulence modeling e.g.,

in meteorological and environmental applications.

Afterwards, we extend the same dynamic nonlocal idea to the scalar turbulence. To

this end, we formulate the underlying nonlocal model starting from the filtered Boltzmann



kinetic transport equation, where the divergence of subgrid-scale scalar fluxes emerges as a

fractional-order Laplacian term in the filtered advection-diffusion model, coding the corre-

sponding super-diffusive nature of scalar turbulence. Subsequently, we develop a robust data-

driven algorithm for estimation of the fractional (non-integer) Laplacian exponent, where we

on-the-fly calculate the corresponding model coefficient employing a new dynamic procedure.

Our a priori tests show that our new dynamically nonlocal LES paradigm provides better

agreements with the ground-truth filtered DNS data in comparison to the conventional static

and dynamic Prandtl-Smagorisnky models. Moreover, in order to analyze the numerical sta-

bility and assessing the model’s performance, we carry out a comprehensive a posteriori

tests. They unanimously illustrate that our new model considerably outperforms other ex-

isting functional models, correctly predicting the backscattering phenomena at the same

time and providing higher correlations at small-to-large filter sizes. We conclude that our

proposed nonlocal subgrid-scale model for scalar turbulence is amenable for coarse LES and

VLES frameworks even with strong anisotropies, applicable to environmental applications.

Finally, we developed a new dynamic tempered fractional subgrid-scale model, DTF, for

the large and very large eddy simulation of turbulent flows. The nonlocality of the turbulent

flows is the innate feature that can be seen in the non-Gaussian statistics of the velocity

increments and can be addressed properly by the nonlocal models in terms of the fractional

operators. Using kinetic transport, we developed a dynamic tempered fractional model that

encompasses the three main characteristics of an ideal turbulence model: (i) nonlocal nature,

(ii) dynamic model constant computations, and (iii) tempered and finite variance property.

Several simulations of forced homogeneous isotropic and multi-layer temporal shear layer

turbulent flows have been done in the a priori and a posteriori analyses. The results show

that the new model is not only numerically stable and can maintain low- and high-order

structures in long-range simulations, but it also provides better predictions than local models

and nontempered models.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The excessively high computational cost of direct numerical simulations (DNS) of realis-

tic turbulent flows has inspired many researchers to use coarse-grained techniques including

Reynolds-averaged Navier–Stokes (RANS) and large-eddy simulation (LES) methods. Us-

ing Reynolds averaging approach in the Navier–Stokes (N-S) equations provide temporally

averaged quantities, however, in LES approaches we are specifying a model, which accounts

for the effects of the finer scales. In other words, we only solve the N-S equations for the

large-scales and model the effects of the smallest scales on the larger scales.

Turbulence experimental and DNS features have confirmed that the turbulence is intrin-

sically nonlocal and its statistics are non-Gaussian, which means velocity increments have

sharp peaks, heavy-skirts and also skewed[1, 2], however, the most of the turbulence models

have been built based on the Boussinesq’s turbulent viscosity concept, in which one assumes

turbulent stress tensor is proportional to the local mean velocity gradient at any point, and

the proportionality coefficient is set to the turbulent viscosity. Prandtl in 1942 aimed to

disregard this local constraint by introducing the extended mixing length concept for the

first time. The new model was a migration from locality to nonlocality, however, the model

and its implementation were not remarkably successful. Afterward, Prandtl parametrized

the model in a way that the mixing length was taken to be bigger than the differential

length. This strategy was the same as adding a weak nonlocal concept to the model,hence

called weak nonlocal in the sense that the stress term is still in the form of Boussinesq and a

collinear relation exists with the strain rate tensor at the same point. Bradshaw [3] in 1973

showed that Boussinesq’s hypothesis fails over curved surfaces and noted that form of the

stress-strain relations is responsible for this failure. It should be mentioned that there were

some important developments mostly based on polynomial series compared to the Boussi-

nesq type modeling including the works done by Spencer and Rivlin [4, 5], Lumley [6] and
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Pope[7]; however, they all lack the accuracy that a “true” physical modeling should provide

especially for the second-order and higher tensor series development.

Using fractional derivatives is a relatively convenient approach to bring in nonlocal-

ity concept from mathematical point of view. Fractional operators represent the heavy-

tailed stochastic processes, which can be properly utilized in incorporating the long-range

interactions in various mathematical models including but are not limited to beam vibra-

tion analysis and damage modeling considering memory effects [8] and visco-elasto-plastic

models [9]. Moreover, Harnessing the fractional models capabilities can be obtained prop-

erly using the highly accurate numerical schemes for integer and fractional order PDEs

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20],which is also an active research topic.

In a pioneer work by Hinze et al. [21] in 1974, the authors described the memory effect

in a turbulent boundary layer flow. They used the experimental data, produced downstream

of a hemispherical cap attached to the lower wall of channel geometry and illustrated that

when one computes eddy-viscosity using Boussinesq’s theory in the lateral gradient of the

mean flow and turbulence shear-stresses, there is a significant non-uniform distribution that

also exists in the outer region of the boundary layer. Interestingly, a nonlocal expression

for the gradient of the transported field was proposed in a novel approach by Kraichnan

in the same year [22] for the scalar quantity transport. Afterward, fractional-order models

based on the RANS approach were offered in [23, 24, 25, 26, 27]. One of the main con-

tributions in the development of nonlocal RANS models is by Egolf and Hutter [25, 28].

They started from Lévy flight statistics and generalized the zero-equation local Reynolds

shear stress expression to a nonlocal and fractional type. The method is based on Kraich-

nanian convolution-integral approach and utilizing different weighting functions. Using the

mentioned weighting functions, one can make a bridge between the first-order gradient of

the common eddy diffusivity models and the mean velocity difference term. Their proposed

model is based on the four distinct steps that can be followed to change a local operator to

a nonlocal one. In reality, the final proposed model is a more general and extended version
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of Prandtl’s zero-equation mixing length and shear-layer turbulence models. The proposed

model is called the Difference-Quotient Turbulence Model (DQTM).

There is also emerging attention for the nonlocal LES-based models. Samiee et al. pro-

posed a new model for homogeneous isotropic turbulent (HIT) flows based on the fractional

Laplacian by employing Lévy stable distribution and tempered Lévy stable distribution in

kinetic level [29, 30]. They showed that the new nonlocal proposed models potentially re-

cover the non-Gaussian statistics of subgrid-scale stress motions. Laval et al. [31] analyzed

the effects of the local and nonlocal interactions on the intermittency corrections in the scal-

ing properties. They observed that nonlocal interactions are responsible for the creation of

the intense vortices and on the other hand, local interactions are trying to dissipate them.

Inspired by the mentioned observations, they came up with a new turbulence model that

accounts for both the local and nonlocal interactions for the study of intermittency. In their

proposed model, the large and small scales are being coupled by nonlocal interactions using

a multiplicative process and additive noise along with a turbulent viscosity model for the

local interactions. The results of the new model qualitatively cover the previously observed

anomaly and intermittency aspects. Akhavan-Safaei et al. [32] proposed a fractional LES

approach for the subgrid-scale modelings of the scalar turbulence. They utilized the two-

point statistics for defining the optimal fractional order of the new nonlocal model and by

using a priori assessment they showed that there is better agreement between the probability

distribution function (PDF) of the SGS dissipation and the one that comes from the filtered

DNS data.

Turbulence fractional modeling in wall-bounded turbulent flows has been done by Keith

et al. [33]. They started with consideration of the spectral velocity tensor based on ex-

perimental data sets. Considering different scenarios, different shapes for different types

of boundary conditions and energy spectra including the energy-containing and dissipative

ranges can be imagined. They tuned their model parameters for the shear-free boundary

layer and then the calibrated model was utilized to rendering the velocity field for a uniform
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shear boundary layer. Leoni et al. [34] proposed a new nonlocal eddy viscosity-based model

that can be applied in both the isotropic and anisotropic turbulent flows. They assessed

model performance using two-point statistics of the filtered quantities for the homogeneous

isotropic turbulence and channel flow canonical test cases. There are also some other re-

lated studies that one can consult with, including hybrid nonlocal model in the case of

magnetically confined plasma [35], generalization of a deconvolution model with fractional

regularization for the rotational Navier-Stokes equations [36], fractional-Laplacian closure

and its connection to Richardson pair dispersion [37].

Considering the nonlocal models in the literature, there are some important imperfec-

tions including high sensitivity to the model constants, relatively low correlation coefficients

between the stresses or fluxes of the model and the ground-truth ones, and no back-scatter

prediction of kinetic energy from small scales to large scales. However, the conventional and

mainly utilized local LES turbulent models are being improved over time to be free from

mentioned deficits. One of the methods in the improvement process is using the dynamic

procedure for the determination of the model constant [38]. To fill the gap in the litera-

ture and provide an applicable and relatively easy to implement nonlocal LES model, we

have designed a new dynamic nonlocal model that accounts for the all mentioned downsides.

In the new dynamic fractional subgrid-scale models (D-FSGS, DNPS), two nonlocality and

dynamic features have been leveraged together for the first time. This coupling between

two important features provides a unique and higher performance than the local dynamic or

static nonlocal models. Interestingly, the analysis showed that in the new models we have

remarkably less sensitivity to the fractional-order, which is needed to be specified in nonlocal

models. This relative freedom is obtained thanks to the novel coupling between the dynamic

procedure and the nonlocal nature of the base model. We derived and implemented the

D-FSGS model in both a priori and a posteriori stringent tests and compared the results

with the conventional local models including Smagorisnky (SMG) and dynamic Smagorinsky

(D-SMG) models.
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1.2 Outline of the Study

As the overall objective of this research, first, we are showing the emergence of nonlocal

features in the transport phenomena especially in the turbulent flows. Second, we are devel-

oping new generations of models that incorporate these inherent features. In the following,

we concisely introduce these contributions:

Chapter 2:

We study the stochastic modeling of a rotating internal cylinder flow subject to uncer-

tain rotational effects. In this part, we used high-fidelity simulation techniques to precisely

address the anomalous transport features in such a system through statistical analysis of the

expected field variables. The main sections of this study can be classified as follows:

• Starting by formalization of the stochastic Navier-Stokes equations with the random

symmetry-breaking inputs and boundary conditions, we leveraged the spectral element

method (SEM) as our solver along with the probabilistic collocation method (PCM)

to construct a stochastic computational framework.

• A global sensitivity analysis was performed in order to reducing the random space

dimension. Therefore, the only dominant stochastic directions were kept. Using the

selected stochastic directions, we computed the expected velocity fields. Temporal

study of the velocity fluctuations revealed the volution of their probability distribution

function (PDFs) and these statistical quantities reflect the instability dynamics and

anomalous transport features.

• Expected vorticity fields were computed in the next step to have a picture of the

non-Gaussian statistical behavior at the onset of flow instability. These instabilities

and vortices are showing a high potential to increase the memory effects in the hy-

drodynamics which can be utilized as a mixing amplification factor in the engineering

systems design.
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Chapter 3: A novel dynamic nonlocal turbulence model was developed for the large and

very large eddy simulations. Starting from the filtered Boltzmann equation, we could build

a Germano identity in the divergence form of fractional Laplacian and propose a first of

its kind dynamic nonlocal turbulence model. The model was tested in both a priori and a

posteriori tests.

• We developed three different data-driven approached for the determination of the frac-

tional component. Therefore, the final dynamic model was totally automatic and free

of need to the preknowledge for the tinning parameters.

• The a priori results show that the dynamic model adds some important features to the

base static model. These advantages are higher performance in the sense of correlations

between the all stress components, forces and dissipation predictions. Moreover, it adds

the back-scatter prediction to the base static model which is a intrinsic property of the

turbulent flows.

• The new dynamic model is capable to maintain the high-order structures in both the

LES and VLES regions. This is very important achievement, since in the environmental

applications of turbulence modeling, one can use significantly bigger filter sizes and

reduce the total computational costs remarkably.

Chapter 4: Observations of scalar turbulence on small scales have been found to exhibit

anomalous diffusion characteristics and higher levels of intermittency than that of fluid turbu-

lence. Consequently, scalar turbulence dynamics modeling at a subgrid level is a challenging

problem. In this chapter we are introducing a new dynamic nonlocal model for the passive

scalar turbulence. This model has been developed based on the Germano’s identity idea on

the scalar flux in the Laplacian form. We tested the newly developed model in both a priori

and a posteriori fashions and compared the obtained results versus the conventional static

Prandtl-Smagorinsky and dynamic Prandtl-Smagorinsky and static nonlocal model. This
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model is totally different from the one that we developed in the previous chapter, since it

is based on the fluxes rather than the divergence of the fluxes. Also, in the physics of this

problem we have a mean gradient in the second direction which challenges any model remark-

ably. Despite strong anisotropies, our proposed subgrid-scale nonlocal turbulence model can

be fit into coarse LES and VLES frameworks, and hence can be applied to environmental

problems.

• With our high-fidelity datasets pertaining to forced homogeneous isotropic turbulence,

we examined the effect of fractional order and characteristic filter sizes in LES and

VLES cases.

• During enough large-eddy turnover times, we utilized ensemble-averaged quantities

from ten separate three-dimensional snapshots to make final decisions. When the

groundtruth force and the predicted SGS force were most correlated, the optimal frac-

tional order was selected for each scenario.

• we observed that the time-averaged LES solution obtained from utilizing the DNPS

model is performing remarkably successful in maintaining a low-level error over the

multitude of scales for spatial shift. Therefore, we realized that unlike the PSM and

DPSM model, the DNPS model does a great job in prediction of the high-order and

two-point (nonlocal) statistics of filtered scalar field especially in over the inertial-

convective subrange.

Chapter 5: A conclusion to the dissertation proposal describes the findings and possible

future works. Moreover, we present the preliminary results of our newly developed model,

dynamic tempered model.
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CHAPTER 2

ANOMALOUS FEATURES IN INTERNAL CYLINDER FLOW

2.1 Background

Understanding, quantifying, and exploiting anomalous transport open up a rich field,

which can transform our perspective towards the extraordinary processes in thermo-fluid

problems. This emerging class of physical phenomena refers to fascinating and realistic

processes that exhibit non-Markovian (long-range memory) effects, non-Fickian (nonlocal)

interactions, non-ergodic statistics, and non-equilibrium dynamics [39]. It is observed in a

wide variety of complex, multi-scale, and multi-physics systems such as: sub-/super-diffusion

in brain, kinetic plasma turbulence, aging of polymers, glassy materials, amorphous semi-

conductors, biological cells, heterogeneous tissues, and disordered media.

Of particular interest, the structure of chaotic and turbulent flows is in a way that

nonlocal and memory effects cannot be ruled out [40, 41]. In fact, anomalous transport can

essentially manifest in heavy-tailed and asymmetric distributions, sharp peaks, jumps, and

self-similarities in the time-series data of fluctuating velocity/vorticity fields. Flow within

and around cylinders is a rich physical problem that involves complex geometry and nonlinear

flow instabilities, with unsolved questions on flow/vortex structures and anomalous turbulent

mixing [42]. Numerous researchers have studied the flow and heat transfer characteristics

when a fluid flow encounters a cylinder. These studies include fixed, cross-flow oscillations,

inline oscillations, and rotation of the cylinder cases. Studies related to the interactions of

the flow and moving bodies were first conducted by Strouhal in 1878. Gerrard [43] proposed

a model for the vortex shedding mechanism and the resulted von Kárámn vortex street.

Effects of cross-flow and inline oscillations of a cylinder on vortex shedding frequency were

first determined by Koopman [44] and Griffin and Ramberg [45], respectively. These studies

are categorized as external flows around cylinders and some significant contributions in this

regard may be found in [46, 47, 48, 49, 50]. However, flow inside systems with fast rotation

including cylinders, squares and annulus geometries are also of great importance. Turbo-
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machinery, mixing process, gravity-based separators, geophysical flows, and journal bearing

lubrication are all clear examples for these types of internal flows [51, 52].

Moreover, in rotational cylinder flows, the flow may face a concave wall and centrifugal

instabilities may be developed when the thickness of boundary layer is comparable to the

radius of the curvature. Consequently, centrifugal instabilities lead to formation of stream-

wise oriented vortices that commonly called Taylor-Görtler vortices. These vortices can

change the flow regime through a transition process to turbulence [53, 54, 55]. In particular,

the Taylor problem in Couette flow between two concentric rotating cylinders is another

well-known example of centrifugal instabilities in rotating systems, which have been studied

experimentally [56, 57, 58] and numerically [59, 60, 61, 62]. In such problems, emergence of

the adverse angular momentum is an important mechanisms, which initiates flow instability.

More specifically, Lopez et al. [63] studied flow in a fully-filled rotating cylinder, which

is driven by the counter-rotation of the endwall and found out that in the presence of

considerably large counter-rotation, the separation of the Ekman layer from the endwall

generates an unstable free shear layer that separates flow regions against the azimuth velocity.

In fact, this shear layer is highly sensitive to the sources of disturbance appearing in the

azimuth velocity, which essentially breaks the symmetry in the flow. Other symmetry-

breaking effects were further investigated when they are originated from other sources such

as inertial waves [64], oscillating sidewalls [65] and, precessional forcing [66].

Inspired by the flow dynamics after the emergence of symmetry-breaking factors, we

are specifically interested in computational study of the onset of flow instabilities and their

long-time effects. To model such symmetry-breaking effects in rotational motion of cylinder,

we introduce some featured sources of disturbance in angular velocity, which may be cou-

pled by eccentricity in rotation of the system. In reality, these sorts of symmetry-breaking

noises could be a direct result of unexpected failure in the electro-mechanical rotational sys-

tem/fixture, which may be accompanied by secondary inertial disturbances that intensify the

instability and transition of the flow regime. From a mathematical modeling and simulation
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point of view, a deterministic view would inevitably fail to reflect the true physics of such

highly complex phenomenon, which is involved with numerous sources of stochasticity, (i.e.,

sources of disturbance). This urges for another level of modeling and investigation, which

respects the random nature of the problem and is capable of addressing the effects of such

sources of randomness in the response of system. In general, these sources of randomness

could be categorized into either aleatory or epistemic model uncertainties. Aleatory uncer-

tainty affects the quantities of interest (QoI) by the natural variations of the model inputs

and usually are hard to be reduced; nevertheless, epistemic uncertainty mostly comes from

our limited knowledge on what we are modeling and could be stochastically modeled once

we obtain additional information about the system [67]. Uncertainty in modeling procedure

and also inaccuracy of the measured data are two main factors in arising epistemic uncer-

tainty. The uncertainty in modeling could be the result of a variety of possibilities including

the effects of geometry [68, 69, 70, 71], constitutive laws [72, 73, 74, 75, 76], rheological

models [77, 78, 79], low-fidelity and reduced-order modeling [80, 81, 82, 83, 84, 85, 86, 87],

and random forcing sources in addition to the random field boundary/initial conditions

[88, 89, 90, 91, 92, 93].

In the current work, we seek to fill a gap in the rich literature of investigating flow

instabilities inside rotating flow systems by emphasizing on the stochastic modeling of the

fluid dynamics and later focusing on the anomalous transport features of such system through

statistical and scaling analysis of the response. This goal is achieved through a comprehensive

computational framework that employs high-fidelity flow simulator as “forward solver” in

our stochastic model. As a result, the main contributions of our study are highlighted in the

following items:

• We formulate stochastic Navier-Stokes equations subject to random symmetry-breaking

inputs, affecting the incompressible flow within a high-speed rotating cylinder. We em-

ploy spectral element method (SEM) along with the probabilistic collocation method

(PCM) to formulate a stochastic computational framework.
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• We perform a global sensitivity analysis and reduce the dimension of random space to

the dominant stochastic directions. We compute the expected velocity field enabling us

to obtain the fluctuating part of the velocity at the onset of flow instabilities induced

by the modeled symmetry-breaking effects. Computing the velocity fluctuations lets

us study the temporal evolution of their probability distribution function, which sheds

light on the instability dynamics and anomalous transport features.

• Obtaining the fluctuating vorticity field, we identify a well-pronounced and evolving

non-Gaussian statistical behavior at the onset of flow instability essentially implying

that the disturbances (influencing the cylinder rotation) cause generation of “coherent

vortical structures”. These vortices increase the memory effects in the hydrodynamics

and we characterize their impact as long-time “anomalous” time-scaling of enstrophy

leading to effective enhancement in the mixing capacity of the system.

The structure of the rest of this chapter is outlined as follows: In section 2.3, we formulate

the stochastic version of the Navier-Stokes equations for incompressible flows and develop

our stochastic modeling procedure. In section 2.4, we elaborate on the numerical methods we

employ in our deterministic solver and generation of a proper grid and later on we introduce

the our stochastic discretization approach followed by a discussion on how we study the

significance of each source of stochasticty in a global sense. In section 2.6, we show the

stochastic convergence, quantification of uncertainty in kinetic energy as QoI and we perform

the global sensitivity analysis. Using the expected velocity and vorticity fields we computed

from our stochastic computational framework, we obtain the fluctuating responses for a

deterministic simulation and study their statistics in a qualitative and quantitative sense.

Furthermore, we compute the enstrophy record associated with the fluctuating field and

study its time-scaling that unravels a tied link between the observed highly non-Gaussian

features and memory effects induced by long-lived coherent vortex structures.
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2.2 Problem Statement

The present study aims to investigate the fluid dynamics inside a rotating cylinder with

radius R that is assumed to be fully-filled with the Newtonian fluid with the kinematic

viscosity, ν. Here, the fluid is initially considered to be at solid-body rotation state with an

angular velocity of θ̇0 = dθ/dt|t=0 that is enforced by the rotational speed of the cylinder wall.

Considering the configuration of the problem, the rotational Reynolds number is defined as

Re = R2 θ̇0/ν. As a common practice and for the sake of generality in comparisons, we

manage to formulate our problem in a dimensionless format so that R and θ̇0 are taken to be

unity. Consequently, the Reynolds number is simply computed as inverse of the kinematic

viscosity of the fluid, Re = ν−1. The solid-body rotation state represents a laminar flow

regime that we take as the initial stage of the flow where right away it encounters a mixture

of symmetry-breaking disturbances in the rotational motion of the cylinder. These sources of

rotational disturbance include an angular velocity for cylinder with oscillatory and decaying

amplitude that is assumed to be accompanied by an eccentric rotation of the cylinder (i.e.,

resulting from the rotation of cylinder about an off-centered axis). The combination of these

factors would make a strong symmetry-breaking effect on the flow that we study the dynamics

of the resulting flow instability. In such study, the rotating cylinder is assumed to be long

and we consider a 2-D representation of the flow as an acceptably good approximation. In

the following section, we go through a detailed mathematical model for the described sources

of disturbance considering their randomness that requires a stochastic modeling procedure

for the fluid dynamics study. Therefore, we proceed with presenting the stochastic governing

equations.

2.3 Stochastic Navier-Stokes Equations

Let Ω ⊂ R2 be our bounded convex 2-D spatial domain with boundaries ∂Ω. Moreover,

let (Ωs,F ,P) be a complete probability space, where Ωs is the space of events, F ⊂ 2Ωs

denotes the σ-algebra of sets in Ωs, and P is the probability measure. Then, the govern-

ing stochastic incompressible 2-D Navier-Stokes (NS) equations subject to the continuity

12



equation, ∇ · V = 0, for Newtonian viscous fluids

∂V

∂t
+ V · ∇V = −∇p+ ν∇2V , ∀(x, t;ω) ∈ Ω× (0, T ]×Ωs, (2.1)

V (x, t;ω) = V ∂Ω, ∀(x, t;ω) ∈ ∂Ω× (0, T ]×Ωs,

V (x, 0;ω) = V 0, ∀(x;ω) ∈ Ω×Ωs,

hold P-almost surely subject to the corresponding proper initial and boundary conditions,

introduced and modeled below. Here, V (x, t;ω) represents vector of the velocity field for

the fluid, p(x, t;ω) denotes the specific pressure (including the density).

Stochastic Modeling

We are interested in learning how the symmetry-breaking factors would affect the onset

of flow instability. In our modeling, these factors are reflected in terms of stochastic initial

and boundary conditions, subsequently, the rest of possible random effects are treated deter-

ministically. Accordingly, these symmetry-breaking effects are modeled through imposing a

time-dependent wall angular velocity,

θ̇(t;ω) = cos (α(ω)t) e−λ(ω)t, ∀(t;ω) ∈ (0, T ]×Ωs, (2.2)

while we consider an off-centered rotation with a radial eccentricity of ϵ(ω), ∀ω ∈ Ωs, with

respect to the geometric centroid of the cylinder. In our model, α(ω) and λ(ω) denote the

frequency of oscillations and the decay rate appearing in the angular velocity model, respec-

tively. In other words, no-slip boundary condition at the wall is imposed by the proposed

wall velocity for which the initial condition is a solid-body and off-centered rotation. Re-

calling that in our non-dimensional mathematical setup, the initial angular velocity, θ̇(0;ω),

and the radius of the cylinder, R, are both taken to be unity; therefore, the stochastic wall

velocity field is expressed as

V ∂Ω(x, t;ω) =
(
x− rϵ(ω)

)
θ̇(t;ω), ∀(x, t;ω) ∈ ∂Ω× (0, T ]×Ωs, (2.3)

∥x∥2 = 1, ∥rϵ(ω)∥2 = ϵ(ω),
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where ∥ · ∥2 denotes the L2 norm. Moreover, according to (2.2) θ̇(t = 0;ω) = 1, so that the

initial condition is denoted as V 0(x;ω) = x−rϵ(ω), ∀(x;ω) ∈ Ω×Ωs where ∥rϵ(ω)∥2 = ϵ(ω).

Parameterization of Random Space

Let Y : Ωs → R3 be the set of independent random parameters, given as

Y (ω) = {Yi}3i=1 = {λ(ω), α(ω), ϵ(ω)}, ∀ω ∈ Ωs, (2.4)

with probability density functions (PDF) of each random parameter being ρi : Ψi → R,

i = 1, 2, 3, where Ψi ≡ Yi(Ωs) represent their images that are bounded intervals in R.

By independence, the joint PDF, ρ(ξ) =
∏3

i=1 ρi(Yi), ∀ξ ∈ Ψ, with the support Ψ =
∏3

i=1Ψi ⊂ R3 form a mapping of the random sample space Ωs onto the target space

Ψ. Thus, an arbitrary point in the parametric space is denoted by ξ = {ξ1, ξ2, ξ3} ∈ Ψ.

According to the Doob-Dynkin lemma [94], we are allowed to represent the velocity field

V (x, t;ω) as V (x, t; ξ), therefore, instead of working with the abstract sample space, we

rather work in the target space. Finally, the formulation of stochastic governing equations

in (5.1) subject to the boundary/initial conditions in equation (2.3) can be posed as: Find

V (x, t; ξ) : Ω× (0, T ]×Ψ → R such that

∂V

∂t
+ V · ∇V = −∇p+ ν∇2V , (2.5)

V (x, t; ξ) = V ∂Ω, ∀(x, t; ξ) ∈ ∂Ω× (0, T ]×Ψ,

V (x, 0; ξ) = V 0, ∀(x; ξ) ∈ Ω×Ψ,

hold ρ-almost surely for ξ(ω) ∈ Ψ and ∀(x, t) ∈ Ω × (0, T ] subject to the incompressibility

condition, ∇ · V = 0.

2.4 Stochastic Computational Fluid Dynamics Framework

Discretization of Physical Domain and Time-Integration

Spectral/hp element method [95] is a high-order numerical method to discretize the gov-

erning equations (5.1) in the deterministic physical domainΩ. In particular, SEM is a proper

candidate to achieve a high-order accuracy discretization close to the wall boundaries. In

14



SEM, we partition the spatial domain, Ω, into non-overlapping elements as Ω =
⋃Nel
e=1Ω

e,

where Nel denotes the total number of elements in Ω. In practice, a standard element, Ωst,

is constructed in a way that its local coordinate, ζ ∈ Ωst, is mapped to the global coordinate

for any elemental domain, x ∈ Ωe. This mapping is performed through an iso-parametric

transformation, x = χe(ζ). Within the standard element, a polynomial expansion of order

P is employed to represent the approximate solution, V δ, as

V δ(x) =

Nel∑

e=1

P∑

j=1

V̂ e
j Φ

e
j(ζ) =

Ndof∑

i=1

V̂iΦi(x), (2.6)

where Ndof indicates the total degrees of freedom (DoF) i.e., the modal coefficients in the

solution expansion. Moreover, Φe
j(ζ) are the local expansion modes, while Φi(x) are the

global modes that are obtained from the global assembly procedure of the local modes [95].

NEKTAR++ [96, 97], a parallel open-source numerical framework, provides a seamless plat-

form offering efficient implementation of multiple SEM-based solvers in addition to the pre-

/post-processing tools. In our study, we employ its incompressible Navier-Stokes solver

namely as IncNavierStokesSolver. Here, the velocity correction scheme along with the

C0-continuous Galerkin projection are utilized as splitting/projection method in order to

decouple the velocity and the pressure fields [96]. We use P th-order polynomial expansions

i.e., the modified Legendre basis functions while we vary P for elements at different spatial

regions (see section 2.4). Moreover, a second-order implicit-explicit (IMEX) time-integration

scheme is used while the time-step is fixed during the time-stepping. The spectral vanishing

viscosity (SVV) technique [98, 95] is also used to ensure a stabilized numerical solution from

spectral/hp element method.

Grid Generation

A 2-D structured grid is generated with quadrilateral elements considering h-type refine-

ment technique to attain proper grid resolution near the wall. We utilize the open-source

finite element grid generator, Gmsh [99], to construct the geometry and then the h-refined

grid. The generated grid is illustrated in Figure 2.1a, which shows elemental nodes and
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Figure 2.1: (a) Constructed structured grid with transitional h-refinement. (b) Grid conver-
gence study based on the error in kinetic energy.

h-refinement near the wall. For this h-refined grid, we employ a spatially-variable polyno-

mial expansion [97] so that we gain high-accuracy close to wall, while avoiding unnecessary

computational cost away from the wall. In order to ensure that our solution is independent

of the grid resolution for the Reynolds number that is fixed at Re = 106, we carry out a grid

convergence study based on the error we obtain from the difference of the time-integrated

kinetic energy between the solutions after varying the grid resolution and a reference solution

with ∼ 2.1×106 total DoF. As shown in Figure 2.1b, the total DoF of ∼ 7.5×105 gives us a

sufficient grid resolution ensuring that the numerical solution is independent of grid resolu-

tion. In the applied IMEX time-integration scheme, the time-step is fixed at ∆t = 4× 10−5

while the numerical stability is always checked during the simulations by ensuring that CFL

number being less than unity. In particular, our SEM grid is achieved by utilizing 9th-order

polynomial expansions for the elements in the near the wall region and 7th-order polynomial

expansions for the elements in the cylinder’s core region. In other words, due to this spatial

p-refinement procedure, the near-wall elements would consist of 64 rectangular sub-elements

(P = 9) and, the elements in the core region will be finer 36 times (P = 7). For flow

at moderately low Reynolds numbers, we verify the resulting solutions from our numerical

setup through a comparison with analytical solutions (see Appendix A).
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Stochastic Discretization

Sampling from the parametric random space introduced in section 2.3 is a non-intrusive

approach for stochastic discretization. Monte Carlo (MC) sampling method is the most

conventional way to perform such task, however, the large number of required realizations of

random space is its bottleneck, which prohibits utilizing MC for computationally demanding

problems. In our study, we employ probabilistic collocation method (PCM) [100, 101, 102],

which is a non-intrusive scheme and has shown affordable efficiency by providing fairly fast

convergence rate for statistical moments. In PCM, a set of collocation points {qj}Jj=1

is prescribed in parametric random space Ψ, where J denotes the number of collocation

points. As a common practice to construct a stable basis, {qj}Jj=1 are taken to be the

points of a suitable cubature rule on Ψ with integration weights, {wj}Jj=1. In this work, we

employ a fast algorithm proposed by Glaser et al. [103] to compute the collocation points

based on Gauss quadrature rule. Therefore, let the solution V in the parametric random

space be collocated on the set of points {qj}Jj=1. In other words, we use the SEM setup

described in section 2.4 to solve a set of deterministic problems in which the wall velocity field

V ∂Ω(x, t; ξ) in equation (2.5) is replaced with its deterministic realization V ∂Ω(x, t; qj). In

order to construct the approximate stochastic solution V̂ (x, t; ξ) from a set of deterministic

solutions {V (x, t; qj)}Jj=1, we employ Li(ξ), the Lagrange interpolation polynomials of order

i. Let I represent the approximation operator, therefore, the approximate stochastic solution

is written as

V̂ (x, t; ξ) = IV (x, t; ξ) =
J∑

j=1

V (x, t; qj)Lj(ξ). (2.7)

We choose the approximation operator I to be the full tensor product of the Lagrange

interpolants in each dimension of parametric random space. Defining the PDF ρ(ξ) over

the parametric random space and using the approximate solution, the expectation of V is

computed as

E [V (x, t; ξ)] =

∫

Ψ
V̂ (x, t; ξ)ρ(ξ)dξ. (2.8)
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This integral would be approximated using a proper quadrature rule. Letting the set of

interpolation/collocation points {qj}Jj=1 obtained from Glaser et al. [103] coincide these

quadrature points with associated integration weights {wj}Jj=1, one can efficiently compute

the approximation to the integral in equation (2.8). Applying the Kronecker delta property

of Lagrange interpolants, this integral is approximated as

E [V (x, t; ξ)] ≈
J∑

j=1

wj ρ(qj) J V (x, t; qj). (2.9)

In equation (2.9), J represents the Jacobian associated with an affine mapping from standard

to the real integration domain regarding the applied quadrature rule. In our study, we

utilize uniformly distributed random variables to represent symmetry-breaking effects, hence,

J ρ(qj) yields a constant. In the case of our problem with three stochastic dimensions,

J ρ(qj) = (12)
3. Consequently, the approximate computation of the expectation integral

(2.8) is simplified to

E[V (x, t; ξ)] ≈ 1

8

J∑

j=1

wjV (x, t; qj). (2.10)

Similar to the MC approach and using (2.10), the standard deviation in our problem is

approximated as

σ [V (x, t; ξ)] ≈

√√√√√1

8

J∑

j=1

wj

(
V (x, t; qj)− E[V (x, t; ξ)]

)2
. (2.11)

2.5 Variance-Based Sensitivity Analysis

Grasping knowledge on the significance of sources of randomness in a stochastic modeling

procedure could be very helpful in terms of reducing the computational cost and also deci-

sion making during stochastic modeling.Variance-based sensitivity analysis is a well-known

technique to assess the relative effect of randomness in each stochastic dimension on the

total variance of any QoI, U , as the output of a stochastic model in a global sense [104, 105].

In practice, sensitivity of the QoI to each stochastic parameter is measured by the condi-

tional variance in the QoI, which is caused by that specific parameter. In general, for a
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k-dimensional stochastic space, ξ, a QoI may be represented as a square-integrable function

of the stochastic parameters U = f (ξ). Using Hoeffding decomposition of f [106], and also

the conditional expectation of the stochastic model, E
[
U |ξi

]
(i=1,...,k), the total variance of

U can be decomposed as

V (U) =
∑

i

Vi +
∑

i

∑

i<j

Vij + · · ·+ V12...k, (2.12)

where Vi and Vij are represented by

Vi =Vξi

(
E
ξ∼i

[
U |ξi

] )
, (2.13)

Vij =Vξiξj

(
E
ξ∼ij

[
U |ξi, ξj

] )
− V

ξi

(
E
ξ∼i

[
U |ξi

] )
− V

ξj

(
E
ξ∼j

[
U |ξj

] )
.

Similarly, the higher order terms, Vi1i2...in , n≤k, are defined. In equation (2.13), V
ξi

(
E
ξ∼i

[
U |ξi

] )

is representing the first-order effects of ξi on the total variance of QoI, V (U), and ξ∼i in-

dicates the set of all the stochastic parameters excluding ξi that is assumed to be fixed.

Moreover, V
ξiξj

(
E
ξ∼ij

[
U |ξi, ξj

] )
denotes the joint effects of stochasticity in ξi and ξj on

the total variance. In general, E
ξ∼ij...

[
U |ξi, ξj , . . .

]
is the expectation of U , which is taken

over all values of ξ∼ij..., while the stochastic parameters (ξi, ξj , . . . ) are fixed at specific

values, hence, V
ξiξj ...

(
E
ξ∼ij...

[
U |ξi, ξj , . . .

] )
gives the reduction in total variance.

According to the law of total variance, one can decompose the total variance of U by

conditioning on one specific stochastic parameter such as ξi as follows

V (U) = V
ξi

(
E
ξ∼i

[
U |ξi

] )
+ E

ξi

(
V
ξ∼i

[
U |ξi

] )
, (2.14)

where E
ξi

(
V
ξ∼i

[
U |ξi

] )
represents the residual of the total variance. By normalizing the

first term in the right-hand side of equation (2.14), we can obtain the global sensitivity

indices, namely, Sobol indices [104]

Si =
V
ξi

(
E
ξ∼i

[
U |ξi

] )

V (U)
, (2.15)

where, Si determines the first-order contribution of ξi in the random parameter space on

the total variance of the QoI is considered, hence, no joint contributions embedded in the

residual term is taken into account.

19



Table 2.1: Stochastic parameters of the wall velocity model and their mean values.

Stochastic parameter Distribution

ξ1 : (decay rate) ∼ U (0.2, 0.4)

ξ2 : (oscillations’ frequency) ∼ U (16, 20)

ξ3 : (eccentricity of rotation) ∼ U (0, 0.05)
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Figure 2.2: Stochastic angular velocity, θ̇(t;ω), including the decay, λ(ω), and oscillatory,
α(ω), effects with respect to Table 2.1. The colored bounds illustrate the variability of
angular velocity for the depicted realizations of α.

2.6 Numerical Results

Stochastic Convergence and Uncertainty Quantification

We seek to attain the required number of collocation points (PCM realizations) in order

to have a converged solution for the first-order and second-order moments, i.e., expectation

and variance, respectively. This is a crucial step to ensure that the propagated parametric

uncertainty that is embedded in the stochastic model (described in section 2.3) is properly

captured and quantified regardless of the total number of realizations (forward solutions)

we use in PCM. The aforementioned parametric uncertainty, as defined in section 2.3, ξ =

{ξ1, ξ2, ξ3}, and the distributions associated with each parameter is reported in Table 2.1.

According to Table 2.1, the resulting randomness in the angular velocity is shown in

Figure 2.2. For a three-dimensional random space regarding our stochastic model and con-
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Figure 2.3: Stochastic convergence study for PCM considering expectation and standard
deviation of the kinetic energy. The reference solution to compute the errors comes from a
expectation and standard deviation of kinetic energy computed from a 2500 MC samples of
random space.

sidering a full tensor product PCM we want to evaluate the stochastic behavior and also

uncertainty propagation in the dynamics of flow. By choosing the kinetic energy, E(t), as

QoI, we perform the stochastic convergence study while we keep increasing the number of

collocation points in all stochastic directions. It is worth mentioning that kinetic energy is

a fair candidate as QoI since it represents the dynamics of the entire system without being

biased towards a specific spatial direction or location. The kinetic energy is defined as:

E(t) =
1

2µ(Ω)

∫

Ω
∥V ∥2dΩ, (2.16)

where µ(Ω) denotes the area of the spatial domain, Ω, and ∥V ∥ represents the L2 norm of

velocity field.

After post-processing the outputs of each realization, we have an array of kinetic energy,

which is computed for the entire simulation time. The reference solution for the stochastic

convergence study is the expectation and variance of kinetic energy obtained from a Monte

Carlo approach with 2500 realizations that are initially generated from Latin Hypercube

Sampling (LHS) of random space reported in Table 2.1. Thus, one can compute the error for

expectation and standard deviation of kinetic energy while changing the number of PCM re-
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alizations by increasing the number of collocation points. As shown in Figure 2.3, by taking

five collocation points (125 PCM realizations) the expectation and standard deviation be-

come independent of the number of collocation points, hence, as a valid and computationally

feasible approximation, one can assume that the stochastic convergence trend is observed.

Since the geometry of this flow is well-represented in the polar coordinate system (r− θ),

we manage to transform the velocity field for the converged PCM case as V = (ur, uθ),

which are derived as

ur =
xux + yuy

r
, uθ =

xuy − yux
r

. (2.17)

where ux and uy represent velocity components along x and y directions in the Cartesian

coordinate system, r =
√
x2 + y2 is the radial location from cylinder center and θ denotes the

azimuth angle. Having the velocity components transformed as equation (2.17), Figure 2.4

portrays the snapshots of expected velocity components and also vorticity, ωz = ∂uy/∂x −

∂ux/∂y, fields at t = 2.5 and 5.

The regularity of the solution to the stochastic Navier-Stokes equations in the parametric

space is a crucial point in the effective use of PCM [107]. Here, we assume that the solution

is smooth enough of finite variance. Therefore, using the sufficiently converged PCM, which

properly incorporates the effects of parametric uncertainty in our model, ξ, we can compute

the time evolution of the expected value of kinetic energy, E [E(t; ξ)]. Moreover, it enables

us to quantify the uncertainty, which is propagated with time through the kinetic energy

as our dynamics-representative QoI [69, 82, 78, 92, 108, 109]. Subsequently, Figure 2.5

shows the time evolution of expected kinetic energy and the uncertainty bounds computed

from E [E(t; ξ)]±σ [E(t; ξ)]. Clearly, the propagation of uncertainty grows with time as we

compare the uncertainty bounds at the onset of the instability with the later times, which is

shown in Figure 2.5a. Additionally, the rate of the uncertainty propagation might be learned

by looking at the time evolution of kinetic energy variance σ2 [E(t; ξ)]. Accordingly, Figure

2.5b illustrates that the variance grows almost exponentially when t < 0.75 and after a short
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Figure 2.4: Snapshots of expected velocity components and vorticity obtained from PCM
with 125 realizations. At t = 2.5: (a) E [ur(x; ξ)], (b) E [uθ(x; ξ)], (c) E [ωz(x; ξ)]. At t = 5:
(d) E [ur(x; ξ)], (e) E [uθ(x; ξ)], (f) E [ωz(x; ξ)].
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Figure 2.5: (a) Time evolution of expected kinetic energy and its uncertainty propagation
where green colored area identifies the E [E(t; ξ)] ± σ [E(t; ξ)] and, (b) time evolution of
variance of kinetic energy, σ2 [E(t; ξ)], both for the PCM with 125 realizations.

transition time it grows linearly, therefore, the rate of the uncertainty propagation is much

faster and more influential close to the onset of the instability.
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Figure 2.6: Time evolution of global sensitivity indices, Si, for the stochastic parameters, ξ,
considering kinetic energy, E(t; ξ), as the QoI.

Sensitivity Analysis on Kinetic Energy

The focus of this section is to evaluate the effects of each stochastic parameter on the

underlying variations of kinetic energy as the quantity of interest. The global sensitiv-

ity indices introduced in section 2.5 are proper measures to study the importance of each

source of randomness on the dynamics of the symmetry-breaking flow instability, which was

stochastically computed using PCM in previous section. Variance-based sensitivity analysis

is usually performed by employing realizations of random space through Monte Carlo ap-

proach [110, 72, 74, 76, 108]. However, here we are interested in using the solution of our

stochastic convergence study (125 PCM realizations cases) to compute the expected variance

reductions conditioned on ξi according to equation (2.15) and, hence, the sensitivity indices,

Si.

Figure 2.6 shows the time evolution of computed Si for the stochastic parameters of

the model as introduced in Table 2.1. It shows that the dominant stochastic parameter

that affects the uncertainty in the kinetic energy is ξ3, which represents the off-centered

rotation, ϵ, as we observe that S3 > 0.8 at all recorded times, while the effects of the other

parameters are always less than 0.2. In particular, by focusing on t < 0.75, we realize
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(a) (b)

Figure 2.7: Snapshots of velocity fluctuations at ti = 0.025, 0.2, 0.375, 0.75 for i = 1, . . . , 4.
(a) Radial velocity fluctuations, u′r(x, t), (b) azimuth velocity fluctuations, u′θ(x, t).

that oscillatory effect of the angular velocity model embodied in ξ2, is the second dominant

source of randomness propagated in the kinetic energy of the entire system, nevertheless,

after t = 0.75 as the dynamics of instability evolves with time, the effect of oscillations in the

angular velocity decreases. In fact, when 0.75 < t the eccentric rotation is the only effective

mechanism appearing in the uncertainty of kinetic energy.

On the other hand, by following the summation of the first-order sensitivity indices

depicted in Figure 2.6, we observe that
∑

i S
i > 0.95, which reveals that the joint interactions

of the stochastic parameters on the total variance of kinetic energy are negligible. However,

presence of these joint interactions is slightly realized close to the onset of the instability

when t < 0.75.

Statistical Analysis of Fluctuating Flow Fields

Emergence of fluctuating flow velocity field plays a key role in the dynamics of flow

instabilities. For instance, Ostilla et al. [111] studied the behavior time-averaged root-

mean-square (r.m.s.) of the velocity fluctuations to study the dynamics of boundary layer in

different regimes of Taylor-Couette flow. In another study, Grossmann et al. [112] examined

the behavior of velocity fluctuations profile in a strong turbulent regime of Taylor-Couette

problem. In this regard, here we seek to shed light on the mechanism of initiating the flow

instability from a statistical perspective through studying the behavior of the fluctuations.

In principle, any instantaneous field variable such as velocity, V , which contains a fluctuating
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part could be decomposed into

V =
〈
V
〉
+ V ′, (2.18)

where V ′ represents the fluctuations of V and
〈
V
〉
denotes its ensemble average. Unlike the

applied approach in [111, 112] that approximates the ensemble average by time-averaging

over a time period on developed flow, here we are not allowed to exploit time-averaging

close to the onset of the instability, which essentially takes place in a short period of time.

However, our stochastic modeling and CFD platform enables us to properly approximate

the ensemble-averaged velocity field with reasonable computational cost. Hence, having

the knowledge of ensemble mean velocity field gives us the fluctuating response of the flow

field variables. The fluctuations are appeared in the flow at the existence of stochasticity

and disturbance in the system. In fact, the ensemble mean is nothing but finding the

mathematical expectation of the field variable over the entire sample space that contains

large enough number of realizations. Thus, what we obtain as the result of equation (2.10)

is the representation of ensemble mean in a PCM setting [113]. The stochastic convergence

analysis we performed in section 2.6 ensures that the expectation we compute from PCM

is independent of the stochastic discretization, therefore, we are allowed to claim that the

expected velocity field on the sufficiently converged PCM is a robust approximation of its

ensemble average with large enough number of independent samples. As a result, we can

write

〈
V
〉
= E [V (x, t; ξ)] . (2.19)

According to the sensitivity analysis we performed in section 2.6, we are allowed to obtain the

ensemble-averaged field by performing a uni-variate PCM on the most sensitive stochastic

parameter, ξ3 = ϵ, while we fix the other two random parameters of the wall velocity model

to their mean values as reported in the Table 2.1. Since the uni-variate PCM requires much

less realizations evaluated at collocation points, it is computationally feasible to discretize

the dominant random direction even beyond the stochastic convergence resolution. Here we
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proceed with taking 30 collocation/integration points providing a high-resolution expected

solution in the stochastic space essentially returning a seamless evaluation of
〈
V
〉
. According

to Table 2.1 and as a physically reasonable assumption, the rotational eccentricity is initially

taken to be varying up to 5% of the cylinder radius as ϵ ∼ U (0.0, 0.05). For a randomly

drawn realization of the sample space that fixes eccentricity value at ϵ = 0.0263, we evaluate

the fluctuating velocity field according to equation (2.18). The procedure of computing

the fluctuations from SEM-based realizations is briefly explained in Appendix B. Figure 2.7

shows the resulting velocity fluctuations in polar coordinate system at four snapshots of time

illustrating the onset of flow instability.

Emergence of Non-Gaussian Statistics in Velocity Fluctuations

Tracking the probability density function (PDF) of velocity fluctuations with time ren-

ders qualitative statistical information, which characterizes the impacts of the evolution of

fluctuations on the dynamics. PDF of fluctuating fields can simply show us the departure

from Gaussian statistical behavior that essentially plays an important role in leading to a

chaotic flow dynamic state. Here, we compute the velocity fluctuations’ PDFs over the com-

putational domain for the radial and azimuth components, and plot them at eight different

time states close to the initiation of the flow instability (see Figure 2.8). All of these PDFs

are computed for the velocity fluctuations that are normalized by their standard deviation so

that the comparison with the standard Gaussian PDF, drawn fromN (0, 1), is readily possible

through eyeball measure. Here, Figures 2.8a and 2.8c are depicting the PDFs of normalized

radial and azimuth components of velocity fluctuations for 0 < t ≤ 0.1, respectively. For

both of the radial and azimuth velocity components the PDFs are showing sub-Gaussian

behavior that is commonly expected given the laminar initial state of the flow, however, the

former rapidly tends to show broader tails compared to the latter with time. Moreover, we

can observe that the onset of the flow instability causes noticeable deviations from symmetry

in the PDF of radial velocity fluctuations. By tracking the PDFs of velocity fluctuations at

further times, i.e. 0.1 < t ≤ 0.2, one can clearly observe that emergence of broad PDF tails

27



−3 −2 −1 0 1 2 3 4

u′r/σ

10−5

10−4

10−3

10−2

10−1

P
D

F

t = 0.025

t = 0.05

t = 0.075

t = 0.1

Gaussian

(a)

−30 −20 −10 0 10

u′r/σ

10−6

10−5

10−4

10−3

10−2

10−1

P
D

F

t = 0.125

t = 0.15

t = 0.175

t = 0.2

Gaussian

(b)

−3 −2 −1 0 1 2 3

u′θ/σ

10−5

10−4

10−3

10−2

10−1

P
D

F

t = 0.025

t = 0.05

t = 0.075

t = 0.1

Gaussian

(c)

−4 −2 0 2 4 6

u′θ/σ

10−6

10−5

10−4

10−3

10−2

10−1

P
D

F

t = 0.125

t = 0.15

t = 0.175

t = 0.2

Gaussian

(d)

Figure 2.8: Time evolution of PDFs of components of the velocity fluctuations at eight
instances of time close to the flow instability onset. Here the PDFs are obtained on the
entire computational domain while the fluctuations are normalized by their own standard
deviations, σ, and they are all compared with the standard Gaussian PDF, N (0, 1). Radial
velocity fluctuations: (a) 0 < t ≤ 0.1, (b) 0.1 < t ≤ 0.2. Azimuth velocity fluctuations: (c)
0 < t ≤ 0.1, (d) 0.1 < t ≤ 0.2.

and asymmetries quickly leads to a highly non-Gaussian statistical behavior (see Figures

2.8b and 2.8d and compare with the standard Gaussian PDF). More specifically, Figure 2.8b

shows that the velocity fluctuations in the radial direction are essentially the main source

of this non-Gaussianity as the heavy-tailed PDF accompanied with intermittent events dis-

tributed at the PDF tails are arising (see 0.15 ≤ t ≤ 0.2). On the other hand, a noticeable

skewness towards the negative-valued fluctuations of the radial velocity component tends to

grow with time as shown in Figure 2.8b. Comparing the radial and azimuth components of

velocity fluctuations qualitatively show that emerging the aforementioned features that are

essentially the fingerprints of non-Gaussian statistics is much milder and at slower rates for
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Figure 2.9: High-order moments of velocity fluctuations, V ′ = (u′r, u′θ), as a function of
radial distance from the wall, r, where r = 0 indicates the wall. (a) Skewness factor for u′r,
(b) Flatness factor for u′r, (c) Skewness factor for u′θ, (d) Flatness factor for u

′
θ. In (b) and

(d), the black-colored dashed lines indicate the flatness factor associated with the standard
Gaussian distribution.
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Figure 2.10: Comparison between the standard Gaussian PDF and PDFs of the velocity
fluctuations at t = 0.25, 0.5, 0.75. (a) Radial velocity fluctuations, (b) azimuth velocity
fluctuations.
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the azimuth component, u′θ.

In order to obtain a quantitative measure on the non-Gaussian statistics of the velocity

fluctuations, we manage to compute their skewness and flatness factors as a function of radial

distance from the wall, r. This effectively helps to understand how the non-Gaussian behavior

evolves through time as we move away from the wall towards the center. Our approach

involves uniformly sampling the velocity values on the circular stripes with a thickness of

δr where their radial distance from the wall is r. Once we performed such sampling, we

can simply attain the skewness and flatness factors as ⟨V ′3⟩/⟨V ′2⟩3/2 and ⟨V ′4⟩/⟨V ′2⟩2,

respectively. In our measurements, we took δr = 2× 10−4 and ⟨·⟩ denotes spatial averaging

over the uniformly sampled velocity space on each circular stripe with radial distance r

from wall. As a result, Figure 2.9 illustrates such radial skewness and flatness factors for

both components of velocity fluctuations at five instances of time for 0.1 ≤ t ≤ 0.2. The

resulting measures for u′r depicted in Figures 2.9a and 2.9b show that the non-zero skewness

factor and flatness factor greater than 3 (measures associated with standard Gaussian) are

appearing for 0.15 ≤ t. This record is in total agreement with what we observe in their

non-Gaussian PDFs in Figure 2.8b. For u′θ, Figure 2.9a illustrates non-zero skewness factor

values close to the wall at all the recorded times and Figure 2.9b shows that for a narrow

region close to the wall the flatness factor exceeds 3 for 0.15 < t. Again, these observations

are in complete agreement with the behavior we observe in PDFs of u′θ shown in Figure

2.8d. More specifically on the heavy-tailed velocity fluctuations PDFs, one can link the

radial records of flatness factor in both components u′r and u′θ as shown in Figures 2.9b

and 2.9d, respectively. In radial velocity fluctuations, it is clearly seen that as time passes

the flatness factor increases for the closest radial distances to wall, i.e. r < 10−3, and in

farther distances from the wall, a span of radial region of high flatness factor that essentially

contributes to the rare events occurring at the PDF tails (for 0.15 ≤ t) is observed. As we

pointed out, this high flatness factor span is expanding towards the center of the cylinder

as flow instability evolves in time. Although such behavior is also seen for the azimuth
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component of velocity fluctuations, its intensity is much milder compared to u′r. In fact, our

records show that for u′θ the flatness factor rarely exceeds 3 (see Figure 2.9d).

Finally, by comparing the PDFs of velocity fluctuations for 0.2 < t with the one associated

with standard Gaussian (see Figure 2.10), we recognize that the statistical features such as

non-symmetric distributions and heavy PDF tails with high intermittency are remarkably

discernible. However, as illustrated for the prior times closer to the flow instability initiation,

these features seem to be manifested more prominently in the radial component of velocity

fluctuations.

Memory Effects in Vorticity Dynamics and Anomalous Time-Scaling of Enstro-

phy

Although early theories of Batchelor [114] assumed that for decaying two-dimensional

turbulence it is only kinetic energy that is mainly remembered for a long time, later it has

been shown that vorticity field plays a key role in the flow dynamics, which was initially

failed to be addressed by Batchelor [115]. Here, while the filamentation of the vorticity

field is occurring, there exist small yet sufficiently strong patches of vorticity surviving the

filamentation process and comprise coherent vortices that somehow live even longer than

many large-eddy turnover times [40]. These coherent vortices are interacting with each

other quite similar to a collection of point vortices. On some occasions, these coherent

vortices could approach each other and merge into larger ones. Therefore, the number of

coherent vortices decreases while their average size increases as flow evolves. On the other

hand, given the discussion on non-Gaussian behavior velocity fluctuations, one can make a

connection between the statistical behavior of the vorticity field and generation and intensity

of coherent vortices resulting from the flow instability. Thus, similar to the procedure in

the previous section, we compute the vorticity PDFs in addition to the radial skewness

and flatness factors for the same realization of the fluctuating flow field we considered.

Figure 2.11 provides this statistical information at t = 0.25, 0.5, and 0.75. Comparing

the vorticity PDFs shown in Figure 2.11a to the standard Gaussian PDF makes it evident
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Figure 2.11: (a) Comparison between the standard Gaussian PDF and normalized vorticity
fluctuations’ PDFs at t = 0.25, 0.5, 0.75, (b) skewness factor for ω′z and, (c) flatness factor
for ω′z. The dashed lines indicate the measures associated with Gaussian behavior.

that fingerprints of non-Gaussian statistics, i.e. non-symmetric probability distributions

in addition to broad and intermittent PDF tails, are immensely evolving in vorticity field.

Moreover, the radial skewness and flatness factors obtained for these three time instances

quantitatively demonstrate that such intense non-Gaussian statistical behavior is swiftly

extending towards the center of cylinder (see the radial region of 0.01 < r < 0.2 at Figures

2.11b and 2.11c).

Given the discussion on the generation and evolution of the coherent vortices, and our

quantitative/qualitative study on the emergence of strong non-Gaussian statistical behavior
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Figure 2.12: Time-scaling of enstrophy record and its link to evolution of coherent vortical
structures. (a) Enstrophy record, E(t), and its early-time (I), transient-time (II), and long-
time (III) scaling affected by the imposed symmetry-breaking disturbances on the rotational
motion of cylinder, (b) snapshots of instantaneous vorticity field, ωz(x, t), (left) t = 7 and
(right) t = 24 showing the structure and growth of coherent vortical regions attached to the
cylinder wall.

for velocity and vorticity fluctuations, one can argue that such statistics are closely tied to and

in other words, the direct result of generation and growth of coherent vortical structures due

to the effect of the rotational symmetry-breaking factors. In prior studies, such connection

was investigated and partially addressed in the contexts of planar mixing and free shear layers

[116, 117, 118], subgrid-scale (SGS) motions and their nonlocal modeling for homogeneous

and wall-bounded turbulent flows [119, 120], boundary layer flows [121, 122], and turbulent

flows interacting with wavy-like moving/actuated surfaces (with application to reduction

and control of flow separation) [123, 124].

Here, an interesting yet, practical question that could be raised is that if such “intensified”
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coherent vortical structures induced by the symmetry-breaking parameters in the rotational

motion are capable of incorporating more memory effects into the dynamics of vorticity field.

This potentially could lead to the engineering means to increase effective chaotic mixing in

rotating systems by introducing factors that initiate deviation from symmetry in rotation. In

a two-dimensional turbulent/chaotic flow, the very presence of “long-lived” coherent vortices

normally cause the time-scaling of enstrophy record at long-time to be close to t−1, however,

it initially is scaled with t−2 at the early stages of flow which is also what Batchelor’s theory

envisions [40]. Therefore, a relevant approach to seek an answer to this question is to study

the long-time behavior of enstrophy record that contains the spatially integrated information

in the vortical motions over the entire domain and also is a representative for the dissipation

dynamics. Similar to the kinetic energy (2.16), we define the enstrophy, E(t), in our problem

setting as

E(t) = 1

µ(Ω)

∫

Ω

∣∣ω′z(x, t)
∣∣2dΩ. (2.20)

By computing the record of enstrophy for relatively long times (obtained from the same flow

realization we studied its fluctuating velocity and vorticity behavior), studying the early-

/long-time scaling trend of enstrophy would be possible. To perform this very study, the

validity and stability of long-time evaluation of QoIs for stochastic mathematical models is of

crucial importance to be considered and it has been addressed in multiple prior studies. For

instance, Xiu and Karniadakis [88] used generalized polynomial chaos (gPC) with relatively

high resolutions in order to study the long-time behavior of vorticity field for the flow past

a cylinder under the uncertain inflow boundary conditions. In another study, Xiu and

Hesthaven [100] employed high-order stochastic collocation methods to achieve stable second-

order moment response to the stochastic differential equations at the long times. Moreover,

Foo et al. [102] utilized multi-element probabilistic collocation method (ME-PCM) with high

resolution in random space to compute stable long-time flow records. Therefore, maintaining

sufficiently high resolutions in discretization of random space is a key point. In our study,

the high-resolution uni-variate PCM we employed to obtain the fluctuating flow fields (as

34



described in section 2.6) essentially guarantees the validity and statistical stability of our

evaluations for the long-time fluctuating vortictiy field and computing the enstrophy record

as illustrated in Figure 2.12a. This plot shows that in terms of enstrophy time-scaling, we

observe three stages of time. Here at stage (I), enstrophy behaves as E ∼ t−2 (for t < 2.5),

however, after a transition period, stage (II), it persistently follows E ∼ t−1/2 time-scaling

in stage (III). At the third stage, this “anomalous” long-time scaling with t−1/2 rather than

the expected t−1 scaling could essentially be interpreted as the result of an “intensified”

mechanism for birth and growth of coherent vortices that live for effectively long periods

of time during the evolution of this internal flow right after the occurrence of the flow

instability. Figure 2.12b portrays two snapshots of instantaneous vorticity field, ωz, on a

segment of cylinder close to the wall to show the evolution and form of these coherent vortex

structures survived the vortex filamentation process. We emphasize that the long life of

the mature and relatively large coherent vortical zones (clearly visible and attached to the

cylinder’s wall) is the main reason of the anomalous enstrophy time-scaling we observe at

stage (III) in Figure 2.12a. As we mentioned earlier, this phenomenon could potentially be

a practical engineering candidate to enhance and reinforce the effective chaotic/turbulent

mixing qualities by inducing more memory effects resulted from a symmetry-breaking flow

instability.
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CHAPTER 3

A DATA-DRIVEN DYNAMIC NONLOCAL SUBGRID-SCALE MODEL

FOR TURBULENT FLOWS

3.1 Introduction

The prohibitively high computational cost of direct numerical simulations (DNS) of re-

alistic turbulent flows has motivated the community of research in turbulence to develop

coarse-grained techniques including Reynolds-averaged Navier–Stokes (RANS) and large-

eddy simulation (LES) methods to reduce the intractably large degrees of freedom in DNS

studies[125, 126, 127, 38, 128, 129]. Using Reynolds averaging approach in the Navier–Stokes

(N-S) equations provide temporally averaged quantities, however, in LES approaches one em-

ploys a subgrid-scale (SGS) model, which represents the effects of the finer scales[130, 125].

Turbulence experimental and DNS features have confirmed that the turbulence is intrin-

sically nonlocal, and its statistics are non-Gaussian, which means velocity increments have

sharp peaks, heavy-skirts and also skewed[1, 2]. However, most of the turbulence models

have been built based on the Boussinesq’s turbulent viscosity concept, in which one assumes

turbulent stress tensor is proportional to the local mean velocity gradient at any point, and

the proportionality coefficient is set to the turbulent viscosity. Prandtl in 1942 aimed to

disregard this local constraint by introducing the extended mixing length concept for the

first time. The new model was a migration from locality to nonlocality, however, the model

and its implementation were not remarkably successful since the scale of nonlocality was

comparable with the differential length scale. Afterward, Prandtl parametrized the model

in a way that the mixing length was taken to be bigger than the differential length. This

strategy was the same as adding a weak nonlocal concept to the model, hence called weak

nonlocal. Bradshaw [3] in 1973 showed that Boussinesq’s hypothesis fails over curved surfaces

and noted that form of the stress-strain relations is responsible for this failure. It should

be mentioned that there were some important developments mostly based on polynomial

series compared to the Boussinesq type modeling including the works done by Spencer and
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Rivlin [4, 5], Lumley [6] and Pope[7]; however, they all lacked the accuracy that a “true”

physical modeling should provide especially for the second-order and higher tensor series

development.

Using generalized-order derivatives is a relatively convenient approach to bring in nonlo-

cality concept from mathematical point of view. The generalized-order operators represent

the underlying heavy-tailed stochastic processes at the continuum level, which can be prop-

erly utilized in incorporating the long-range interactions in various mathematical models

including but are not limited to beam vibration analysis [131], anomalous rheology model-

ing [132, 133, 134], damage modeling considering memory effects [8] and visco-elasto-plastic

models [9]. Moreover, harnessing the generalized-order models capabilities can be obtained

properly using the highly accurate numerical schemes for integer and fractional-order PDEs

[10, 11, 12, 13, 14, 15, 16, 17, 135, 18, 19, 20], which is also an active research topic.

In a pioneer work by Hinze et al. [21] in 1974, the authors described the memory effect

in a turbulent boundary layer flow. They used the experimental data, produced downstream

of a hemispherical cap attached to the lower wall of channel geometry and illustrated that,

when one computes eddy-viscosity using Boussinesq’s theory in the lateral gradient of the

mean flow, there is a significant non-uniform distribution that also exists in the outer region

of the boundary layer. Interestingly, a nonlocal expression for the gradient of the trans-

ported field was proposed in a novel approach by Kraichnan in the same year for the scalar

quantity transport [22]. Afterward, fractional-order models based on the RANS approach

were offered in [23, 24, 25, 26, 27]. One of the main contributions in the development of non-

local RANS models is by Egolf and Hutter [25, 28]. They started from Lévy flight statistics

and generalized the zero-equation local Reynolds shear stress expression to a nonlocal and

fractional type. The method is based on Kraichnanian convolution-integral approach and

utilizing different weighting functions. Using the mentioned weighting functions, one can

make a bridge between the first-order gradient of the common eddy diffusivity models and

the mean velocity difference term. Their proposed model is called the Difference-Quotient
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Turbulence Model (DQTM) and is based on the four distinct steps that can be followed to

change a local operator to a nonlocal one. In reality, the proposed model is a more general

version of Prandtl’s zero-equation mixing length and shear-layer turbulence models.

There is also emerging attention for the nonlocal LES models. Samiee et al. proposed a

new model for the HIT flows based on the fractional Laplacian by employing Lévy stable and

tempered Lévy stable distributions in kinetic level [29, 30]. They showed that the new non-

local models can recover the non-Gaussian statistics of subgrid-scale stress motions. Laval

et al. [31] analyzed the effects of the local and nonlocal interactions on the intermittency

corrections in the scaling properties. They observed that nonlocal interactions are respon-

sible for the creation of the intense vortices and on the other hand, local interactions are

trying to dissipate them. Akhavan-Safaei et al. [32] proposed a fractional LES approach for

the subgrid-scale modelings of the scalar turbulence. They utilized the two-point statistics

for defining the optimal fractional-order of the new nonlocal model, and by using a priori

assessment they showed that there is proper agreement between the probability distribution

function (PDF) of the SGS dissipation and the one that comes from the filtered DNS data.

Harmonious with this study, Akhavan-Safaei and Zayernouri developed a corresponding non-

local spectral transfer model and a new scaling law for scalar turbulence in [136]. Their new

analysis additionally reconciled the close similarities between this work and their earlier

development in [32] when the filter scale approaches the dissipative scales of turbulent trans-

port. There are also other related studies that one can consult with, including preliminary

fractional modeling in wall-bounded turbulent flows [33], a priori survey of nonlocal eddy

viscosity-based model for the isotropic and anisotropic (channel flow canonical test cases)

turbulent flows [34], hybrid nonlocal model in the case of magnetically confined plasma [35],

generalization of a deconvolution model with fractional regularization for the rotational N-S

equations [36], and fractional Laplacian closure and its connection to Richardson pair dis-

persion [37]. Going even beyond the scope of research in turbulence, a new comprehensive

survey on the nonlocal models for several crucial applications, including anomalous subsur-
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face dynamics, turbulence modeling, and extraordinary materials, was recently performed

by Suzuki et al. [137].

Considering the nonlocal models in the literature, there are some important imperfections

including the sensitivity to the model constant and fractional-order parameter, relatively

low correlation coefficients ρ(τ∆, τ∆,Model), and no back-scatter prediction of kinetic energy

from small scales to large scales. However, the conventional and frequently utilized local LES

turbulent models are being improved over time to be free from mentioned deficits. One of the

methods in the improvement process is using the dynamic procedure for the determination

of the model constant [38].

To fill the gap in the literature and provide an applicable and relatively easy to implement

nonlocal LES model, we have developed a new dynamic nonlocal model that accounts for all

the aforementioned downsides. In the new dynamic fractional subgrid-scale model (D-FSGS),

both nonlocality and dynamic features have been leveraged together for the first time. This

match between two important features provides a unique and higher performance than the

dynamic local or static nonlocal models. Interestingly, the analysis showed that in the new

model, we have remarkably less sensitivity to the fractional-order, which is needed to be

specified in nonlocal models. This relative freedom is obtained thanks to the novel coupling

between the dynamic procedure and the nonlocal nature of the base model. In the following,

we derived and implemented the D-FSGS model in both a priori and a posteriori stringent

tests and compared the results with the conventional local models including Smagorisnky

(SMG) and dynamic Smagorinsky (D-SMG) models.

This study is organized as follows: in section 5.2 we talk about the governing equations

and development of the new model. Section 3.3 starts with introducing three main distinct

approaches for the determination of the fractional-order, and then we do a comprehensive a

priori assessment along with a comparative study with conventional models. In section 3.4,

we study the numerical stability of the proposed model and do different tests including two-

point diagnostics to have a complete overview of the model performances in a a posteriori
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sense.

3.2 Model Development

Implementation of a low-pass filter on the N-S equation forms a closure term on the

right-hand side of the momentum equation, which needs to be modeled, representing the

(unknown) SGS dynamics. The filtered incompressible N-S equations can be written as

∂ū

∂t
+ ū · ∇ū = −1

ρ
∇p̄+ ν ∇2ū−∇ · τ, (3.1)

∇ · ū = 0.

In this equation, ū is the filtered velocity vector, ρ denotes the constant density, p̄ represents

the filtered pressure, and ν shows the kinematic viscosity. The effects of the small scales

arise in the so-called SGS stress tensor

τij = uiuj − ūiūj , (3.2)

forming the closure term to be modeled. Several models have been proposed during the

last decades to close the filtered N-S equation in both functional and structural LES models

[125, 127, 126]. In the classical Smagorinsky model (SMG)[138], the deviatoric part of the

stress tensor is written as

τSMG
ij = −2 νt S̄ij , (3.3)

where νt denotes the eddy viscosity, and S̄ij =
1
2(

∂ūi
∂xj

+
∂ūj
∂xi

) represents the filtered (resolved)

strain rate tensor. In this model, νt is constructed based on the Prandtl’s Mixing Length

hypothesis,

νt = Cs L2
δ |S̄|, (3.4)

where Lδ shows the effective grid scale, and |S̄| =
√

2S̄ijS̄ij exhibits the magnitude of the

resolved scale strain rate tensor [127]. One of the main drawback of this model is its flow-

dependent feature, which means that the model can not correctly predict final quantities with
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a single universal constant in different scenarios such as shear flows, wall-bounded flows, or

transitional flows. To overcome this challenge in the Smagorisnky model, Germano et al. [38]

proposed a novel procedure for evaluation of the model coefficient, which is called the dynamic

Smagorinsky model (D-SMG). The suggested procedure was a breakthrough in turbulence

modeling, and several researchers utilized the same concept afterward [139, 140, 141, 142].

The dynamic procedure was designed based on the classic idea that one can extract useful

information from the smallest resolved scales for modeling the subgird-scales; however, the

way it was applied was indeed novel. It calculates the eddy-viscosity coefficient locally for

each LES grid point as the calculation progresses, and there is no need for any predefined

inputs in the model. This model was constructed based on the scale-invariance hypothesis

and calculates the model constant using the information from the resolved section.

Fractional SGS Model [29]:

We have recently developed a nonlocal SGS model that we present here briefly for making

this work self-contained. Starting from the Boltzmann kinetic level description of the flow,

we employ the BGK model for the collision of the particles and have

∂f

∂t
+ u · ∇f = −f − feq

T , (3.5)

where f = f(x, u, t) is called the single-particle probability distribution function and shows

the particles density in the phase space (x, u) at time t. Moreover, feq represents the local

equilibrium distribution function and is defined based on the Maxwell distribution.

feq(K) =
ρ

U3
F (K), (3.6)

where F (K) = e−K/2, K =
|u−V |2
U2 and U corresponds for the thermal agitation speed.

The left-hand side of Eq. 5.5 correspond to the streaming of the non-reacting particles and

right-hand side shows the collision operator with a relaxation time T . One can solve Eq.

5.5 analytically by method of characteristic to find distribution in terms of equilibrium state
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[143]

f(t, x, u) =

∫ ∞

0
e−s feq(x− uτs, u, t− τs) ds. (3.7)

Moments of the f would provide the macroscopic flow variables. Therefore, one can write

ρ =
∫
f(t, x, u)du, and ρV (t, x) =

∫
uf(t, x, u)du to compute density and fluid velocity.

Incorporating filtering procedure into the Eq. 5.5 would provide filtered Boltzmann equation

as

∂f̄

∂t
+ u · ∇f̄ = − f̄ − feq(∆)

T . (3.8)

However, the collision term is highly-nonlinear and filtering kernel cannot commute [144].

Hence, a closure problem would be built by defining K =
|u−V |2
U2 since

feq(K) ̸= feq(K). (3.9)

One of the approaches for handling this problem is using a power-law distribution for model-

ing feq(K)−feq(K). In this method, for closing the filtered collision operator, a heavy-tailed

distribution function is used to account for the nonlinear effect of turbulence, i.e.,

feq(K)− feq(K) ≃ fModel(K̄) = Dβ f
β(K̄), (3.10)

in which fβ(K̄) = ρ

U3F
β(K), where Fβ(K) represents an isotropic Lévy β-stable distribution.

More details and discussion can be found in [29, 30]. Also, Dβ is a real-valued constant which

is going to be addressed in the present dynamic model. In the fractional Laplacian model,

the SGS forces are defined as

(∇.τ)i = να(−∆)αūi, α ∈ (0, 1], (3.11)

where the filtered velocity ūi : Rd × (0, T ] → R, where d = 3 is the dimension of physical

domain and T represents the simulation time, in addition, (−∆)α(·) denotes the space-

fractional Laplacian of order 2α ∈ (1, 2], which can be defined as a singular integral operator
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given by

(−∆)αūi = cd,α

∫

Rd

ūi(x)− ūi(y)

|x− y|d+2α
dy, (3.12)

where cd,α =
4αΓ(d/2+α)

πd/2|Γ(−α)|
. It should be mentioned that under some regularity assumption

for the velocity field (which all make sense in our problem), one can readily show that the

fractional Laplacian can be written in divergence form via the Riesz transform. That can

be employed in the Gauss’s divergence theorem to render the volume integral of this new

representation as a surface integral, ensuring the conservation of momentum. Moreover

employing the periodic boundary conditions, the corresponding Fourier transform of the

fractional Laplacian in (5.12) is given by (see e.g., [145])

F
[
(−∆)αūi(x)

]
= |k|2αF [ūi](k), (3.13)

in which F and k are the Fourier transform and Fourier numbers, respectively. Evidently,

the integer-order Laplacian operator is recovered simply by putting α = 1. The Fourier

transform 3.13 provides a rather convenient way of handling the fractional operators Fourier

space and in our Fourier spectral method for simulating the problem. The corresponding

“eddy-viscosity”-like model coefficient in (5.11) is then obtained as

να = C F (α), (3.14)

where C represents an up-scaling model input being proportional to U
2αT 2α−1 from the

kinetics theory’s perspective, yet to be dynamically computed in the subsequent (continuum-

level) simulations, moreover, F denotes a deterministic univariate function of the fractional-

order α, explicitly given by

F (α) =
22α Γ(2α+3

2 ) Γ(2α + 1)

π
3
2 |Γ(−α)|

, (3.15)

rendering (5.11) as (∇.τ)i = C F (α) (−∆)αūi, α ∈ (0, 1]. The term F (α) is introduced just

for the sake of the convenience and the reader is referred to [29] for more details. In Appendix
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A, we have provided the preliminary mathematical concepts and definitions. In what follows

and in this generalized order context, we develop a new dynamic procedure to automatically

compute C from data on-the-fly.

Derivation of the Nonlocal Dynamic Model Procedure:

We write (∇.τ)i = C1F (α)(−∆)αūi for the sake of simplicity. Implementing the second

filtering process (test-level filter), gives the divergence of the SGS stresses at the test-level

filter (subtest-scale stress) as

(∇.T )i = C2F (α)(−∆)α ̂̄ui. (3.16)

In the above equation, (̂·) indicates the test-level filtering, which is commonly chosen as

twice the grid-level filtering. Now, the Germano identity [38], which relates the stresses at

grid-level (τij) and test-level (Tij), is employed to make a bridge between the resolved scales

and the subgrid-scales,

Gij = ̂̄uiūj − ̂̄ui ̂̄uj = Tij − τ̂ij , (3.17)

which is a known quantity, and represents the resolved turbulent stress. In the divergence

form, we have

∇.
( ̂̄uiūj − ̂̄ui ̂̄uj

)
= (∇.G)i. (3.18)

Therefore, we construct the Germano identity in the divergence form based on the previously

introduced fractional Laplacian model. The Germano identity extrapolates and parametrize

the model constant for the subgrid-scale part using the information in the smallest resolved

scales,

(∇.T )i − (∇.τ̂)i = C

(
F (α)(−∆)α ̂̄Vi − F (α)(−∆)αV̄i

∧
)
. (3.19)

Here, we assume the model constant C being scale invariant around the grid and test filter

size, (C = C1 = C2), and C is in general a space-time dependent tensor, yet, it has been

assumed to be spatially uniform. One needs to solve Eq. 5.18 for C, which forms a tensorial
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Figure 3.1: Difference between commuting of the low pass filter on the (a) integer order
derivatives, and (b) fractional-order derivative (α = 0.6).

equation. There are two common methodologies to get a scalar model constant. First, one

may contract with S̄ij as mentioned originally in [38]. Second approach is proposed by Lilly

[146], which is more preferable and commonly used. This approach is based on contracting

with the tensor, which has been multiplied to the unknown coefficient in the right hand side

of Eq. 5.18. One important point that should be mentioned in this section is that in the

conventional local LES modeling, the main assumption is that the operation of filtering and

integer-order differentiation commutes, then we get a set of filtered equations. Commuting

means commutation between the filtered quantity and the spacial derivatives. However,

the filtering procedure does not commute with the fractional-order operators in general.

One simple example regarding this important matter is depicted in Figure 3.1 for α = 0.6,

comparing the derivatives of the filtered velocity at test-level and filtered derivative for the

integer and fractional-order cases.

We have used Lilly’s approach for contracting purposes based on the Least Square Method

that was described by Lilly in 1992 [146]. Therefore, one can write Eq. 5.18 as

(
(∇.G)i − CNi)

2 = e, (3.20)

in which e is the squared error and the nonlocal term Ni is defined as

Ni =
(
F (α)(−∆)α ̂̄Vi − F (α)(−∆)αV̄i

∧)
. (3.21)
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Finding the unknown in minimized form is conveniently possible by putting the derivative

equals to zero, considering and testing ∂2e
∂C2 > 0 for the error minimization scope. Finally,

the scalar model coefficient C can be computed dynamically as

C =
⟨(∇.G)iNi⟩
⟨NiNi⟩

. (3.22)

Numerical instability may be occurred due to the negative eddy-viscosity in prolonged pe-

riods of time. As a remedy, one can perform an averaging over the directions of statistical

homogeneity as suggested by Germano et al. [38] in the a posteriori assessments. Figure

3.2 illustrates the variations of model constants in D-SMG and D-FSGS models in the imag-

inary center-line of a periodic domain in the first direction to have a comparison between

the model constant variations in the context of an example. It is worth mentioning that

in inhomogeneous flows we can not use the Eq. 3.13 since it is only correct for problems

with periodic boundary conditions. However, there are other definitions of fractional Lapla-

cian operator without this restrictions [145]. Moreover, the derivation of the nonlocal model

from the Boltzmann-BGK model would be different and more complicated. For instance,

in the boundary layer case, the analytical solution for the Boltzmann-BGK model would be

different than the one that has been used in the derivation of the base model, FSGS.

3.3 A Priori Analysis

We assess the performance of the D-FSGS and compare the results with the results of

conventional LES models including SMG and D-SMG. Also, we discuss about the perfor-

mance of the D-FSGS model using different filter sizes (covering both the LES and VLES

regions). Before starting the a priori tests, we need to study the effects of the fractional-order

parameter (α) and its proper selection for different scenarios.

We utilize ten independent snapshots of forced HIT data distributed over enough eddy

turnover times on a triply periodic domain, Ω = [0, 2π]3, for each targeted Taylor Reynolds

number. The covered Taylor Reynolds numbers are 170, 240, and 355, and the corresponding

grid resolution for each case is 3203, 5203, 10243 , respectively. The turbulence dataset comes

46



0 20 40 60 80 100 120
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

C s
,C

D-SMG
D-FSGS

Figure 3.2: Comparing the model coefficients in dynamic Smagorinsky model (D-SMG) and
dynamic FSGS model (D-FSGS) in the middle imaginary line in a periodic domain using
Lδ = 4.

from our open-access pseudo-spectral parallel code, which has been elaborated in [147].

The Inference of Optimum Laplacian-Order (αopt)

The D-FSGS model depends on the fractional-order, α. We provide three different data-

driven approaches for the calculation of this parameter.

First Approach: we perform a precise comparison between the obtained correlation coeffi-

cients, considering the effects of all stress components in the SGS tensor and the ground-truth

stresses that come from the DNS results. Subsequently, we find the αopt, where the maximum

of ρij = ⟨Avg(ρ[τDNS
ij , τModel

ij ])⟩ is achieved, in which, ⟨·⟩ denotes the ensemble-averaged

on different snapshots of data, and for each snapshot of data, we consider the average of all

corresponding tensor components.

By sweeping the fractional-order values from zero to one and step size equals to 0.01,

we determined the αopt for different characteristic filter sizes in three different Reynolds

numbers. In Figure 3.3, we have shown the αopt values for different filter sizes for three

different Taylor Reynolds numbers. Also, Lδ = ∆∗∆DNS , where ∆∗ is the ratio between

the LES and DNS grids, and the DNS grid size is defined as ∆DNS = 2π
N associated with

N = 320, 520, 1024 for three different Reynolds numbers. These results are obtained based
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on the ensemble-averaged quantities of ten snapshots of data for each Reynolds number

to ensure meeting the necessary conditions regarding performing LES studies [148]. There

is an interestingly noticeable trend between the filter size and the obtained αopt from the

ensemble-averaged relation for each Reynolds number (see Figure 3.3a).

Second Approach: we employ a logarithmic regression to come up with a correlation

between the αopt and Lδ for each Reynolds number. The results are showing that αopt

values obey a power-law form, which reads

αopt = a Lδ
b. (3.23)

Increasing the filter size would incorporate more nonlocality, and that is the reason for the

Table 3.1: Proper parameters for being used in second approach (Eq. 3.23) for determination
of optimum Laplacian-order.

Reλ a b

170 1.53 -0.62
240 1.39 -0.49
355 1.08 -0.30

increase in the error bars in the VLES section (see Figures 3.3b, 3.3c, and 3.3d ); however,

all cases converge statistically to the realized power-law relations. Moreover, there is a direct

relationship between the Taylor Reynolds number and the optimum fractional-order in each

filter size. Using the above relation for finding the αopt would be the second method that

can be applied conveniently and confidently since the coefficient of determination, R2, for

these equations are above 0.98, and indicates that the relation correlates very well with

the measured data. The a, b values in Eq. 3.23 are being determined for different Taylor

Reynolds numbers. Table 3.1 shows the proper parameters for being used in second approach

of optimum Laplacian-order determination. The values in this table obtained based on

the ensemble-averaged results of ten data snapshots for each Reλ. Moreover, interpolation

methods can be conveniently utilized using this table to find the proper value of αopt for

other Reynolds numbers.
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Figure 3.3: Effects of the filter size (Lδ) and Taylor Reynolds number (Reλ) on the optimum
fractional-orders obtained by the first approach, (a) the big picture of ensemble-averaged
results based on three datasets, (second row) amount of modeled turbulent kinetic energy
corresponds to each filter size when (b) Reλ = 170, (c) Reλ = 240, and (d) Reλ = 355.

Third Approach: we propose a third approach for obtaining the proper fractional-order

for a quite wide range of (fine-to-coarse) LES region yet still in the a priori sense, shown

in Figure 3.3. The right vertical axes (secondary axis) in Figures 3.3b, 3.3c, 3.3d show the

volumetric averaged values of the modeled kinetic energy in percent (ϕ) at that specific filter

size. To calculate this value, ϕ, we find the ratio between the resolved (Er) and filtered (Ef )

kinetic energy as

Ef =
1

2
ui ui, (3.24)

Er =
1

2
(uiui − ui ui).

Noting that almost all of the LES studies are designed to model about less than ten percent

of the total kinetic energy, one can conclude based on the obtained plots for all Reλ numbers,
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Figure 3.4: A priori assessment in the context of the ensemble-averaged correlation coefficient
comparisons in different models for (a) Lδ = 4, and (b) Lδ = 8 .

taking α = 0.5 could be a representative corresponding factor for the LES region. We will

show that even with this rough estimation, the proposed model provides better correlations

in all of the stress components than the other conventional models. Therefore, using the

second or third approach, we will have a dynamic nonlocal model, which is totally free of

any tuning parameter including fractional-order.

Statistical Performance Assessment

We use ten three-dimensional snapshots of velocity fields, ui(x), i = 1, 2, 3, corresponding

to Reλ = 240 and perform a priori testing to show the model performance. The DNS

datasets with Reλ = 240 and N = 520 will be utilized for the rest of the paper. We have

depicted the ensemble-averaged correlation coefficients for all of the stress components in

Figure 3.4 for the filter size equals to 4 and 8. We see a remarkable better performance

in both filter sizes and all directions for the new proposed model, D-FSGS. Interestingly,

the coupling between the new dynamic procedure and the nonlocal nature of the model

helps significantly to compensate for the directions in which we have low correlations. We

see that D-FSGS outperforms static nonlocal (FSGS) and dynamic local (D-SMG) models

in both filter sizes and all directions. Its well-known that, dynamic local models do not

necessarily increase the correlation coefficient remarkably. In contrast to the D-SMG model,
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we see a significant raise in the correlation coefficient of the D-FSGS versus FSGS. Therefore,

the new dynamic procedure not only adds the back-scatter prediction and being free from

tuning constant capabilities, it also improve the performance as well. In another word, the

dynamic procedure in the context of the nonlocal modeling seems to be more advantageous

and fruitful than the local modeling.

In Figure 3.5 we have plotted the
∏

= −⟨τijS̄ij⟩, the SGS dissipation of kinetic energy

for the same filter sizes mentioned previously. The negative values of
∏

mean we have

back-scatter, where the kinetic energy is transferred from subgrid to resolved scales. As the

SGS dissipation of the filtered DNS results (ground-truth) show, a significant amount of flow

shows back-scatter phenomena. We see the new model, D-FSGS, and D-SMG models are

the only ones that truly predict the back-scattering in energy flow. Moreover, comparing the

PDFs of dissipation show that the D-SMG model over-predicts the values for the tails of the

distributions, which can be a potential factor in facing unstable conditions in simulations

with this model necessitating the averaging operation in a posteriori tests[127]. However,

the new model provides closer results to the DNS ones. It should also be mentioned that a

comparison of the percentage of grid points with back-scatter in filtered-DNS, D-SMG, and

D-FSGS revealed that there is a better agreement for the D-FSGS model in the prediction

of this quantity. As has been reported by Piomelli et al [149], this percentage is a function

of the filter type that one is using. In this study, three-dimensional box filtering for both

the grid-level and test-level was utilized. The percentage of grid points with back-scattering

in DNS was 26%, in D-SMG was 20% and in D-FSGS was 24% for Lδ = 4. For bigger

filter size, Lδ = 8, these numbers were 30%, 18% and 25% for DNS, D-SMG and D-FSGS,

respectively, which quantitatively indicates the better prediction of back-scatter for the D-

FSGS model. Figure 3.6 shows the PDF of the ensemble-averaged SGS forces in three

directions using Lδ = 4 and Lδ = 8. As it is clear in all three directions, there is superior

match between the results of the D-FSGS model and DNS ones in comparison to the results

of the Smagorinsky-based, and FSGS model considering tail and peaks of the SGS forces.
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Figure 3.5: PDF of ensemble-averaged SGS dissipation of kinetic energy using different
models for (a) Lδ = 4, and (b) Lδ = 8.
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Figure 3.6: PDF of ensemble-averaged SGS forces in three directions using different models
at Lδ =4 ((a), (b), (c)), and Lδ=8 ((d), (e), (f)).

To employ the second and third approaches in the determination of the fractional-order,

we do a test using α = αopt based on the precise determination method (first approach),

then we apply the obtained power-law relations (second approach) to get αopt and finally

α = 0.5 (third approach) to show its effect on the performance of the D-FSGS model. As

has been depicted in Figure 3.7, even using the rough-estimation approaches for α, the D-
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Figure 3.7: Model performance comparison using ensemble-averaged correlation at different
filter sizes using three proposed approaches for the determination of the fractional-order.

FSGS model provides a higher correlation for all the filter sizes. Moreover, this plot again

verifies the existence of power-law relation between the αopt and filter size. One of the main

disadvantages of nonlocal models in general and nonlocal turbulence models, in particular,

is their sensitivity to the fractional-order. Surprisingly, the dynamic nonlocal model exhibits

a less sensitivity to this parameter around the value 0.5, since its effect is compensated by

the automatic tuning parameter, thanks to the designed dynamic procedure. Moreover, the

whole closure term in the LES framework indeed originates from filtering the first-order

nonlinear convective term in the N-S equations. Here, the corresponding αopt = 0.5 in fact

validates that the overall scaled up and nonlocal behavior of the closure term in our dynamic

model emerges of total 2αopt = 1st order.

3.4 A Posteriori Analysis

To assess the practical ability of the proposed dynamic nonlocal model to capture un-

steady large-scale coherent structures and verify numerical stability, we carry out the cor-

responding a posteriori study here. In this section, we test the performance of the new

proposed model (D-FSGS) against the static and dynamic Smagorinsky models (SMG, D-

SMG) as well as the ground-truth filtered DNS results. For this purpose, pseudo-spectral

N-S solver, which has been discussed in [147], was utilized for a triply periodic domain
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Figure 3.8: Prediction of the kinetic energy spectra in different turbulence models at (a)
t
τL ≃ 2, and (b) t

τL ≃ 4 .

as Ω = [0, 2π]3. The resolution for this dataset is 5203 and large-eddy turnover times is

τL ≃ 2.7. First, we set up a decaying HIT case in which the initial condition is based on the

statistically stationary data sets. Thereafter, DNS and filtered-DNS results were gathered

for the sake of comparisons. Second, each LES model including D-FSGS, SMG, D-SMG, and

also unresolved numerical simulation (UNS), which is basically a DNS solver using the LES

grid, implemented using the same pseudo-spectral solver, initiated with the filtered DNS

initial condition for that specific filter size. In the mean time, the time step of the problems

is chosen to have the CFL less than unity to ensure a stable time-integration.

We compared the kinetic energy spectrum obtained from each model with the ground-

truth ones. In this section we are just showing the results of using Lδ = 4 since in bigger

filter widths, there is not enough resolution especially in the small scale sections. Figure 3.8

illustrates energy spectrum in two relatively high integration times t
τL ≃ 2, 4 after initiation

of decay. Higher integration times were chosen to address the numerical stability of models,

which can be a concern especially in the dynamic models. It is well noted that Smagorinsky

model is one of the most dissipative models and this matter is evident in both plots. We

see that the D-FSGS model predicts similar dissipative levels of D-SMG for the majority

of wavenumbers; however, we see a good correction in the small scale section thanks to the

54



0.0 0.5 1.0 1.5 2.0 2.5
t/

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
1 2

u i
u i

Filtered  DNS
D-SMG
D-FSGS

(a)

0.0 0.5 1.0 1.5 2.0 2.5
t/

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Filtered  DNS
D-SMG
D-FSGS

(b)

Figure 3.9: Decay of the resolved turbulent kinetic energy in different turbulence models
using (a) Lδ = 4 as an LES case, and (b) Lδ = 20 as a VLES case.

dynamic and nonlocal nature of the model. Moreover, the UNS case as one may expect

should have an accumulation of noise due to the zero turbulent viscosity. Therefore, we can

expect that the D-FSGS model should be ideally placed between highly dissipative SMG

and UNS energy curves, which act as lower and higher bounds, respectively.

We continued the implementation of the a posteriori analysis by comparing the perfor-

mance of the models in decaying homogeneous isotropic turbulence with Reλ = 240 using

LES filter width Lδ = 4, 20 as representative of LES and VLES regions, respectively. Since

the DNS and LES solvers have not been initiated with the same initial conditions, we are

comparing the results of filtered-DNS and LES models. Figure 3.9 shows the decay of re-

solved kinetic energy with time. As the plots show, the D-FSGS model provides better

agreement with the filtered-DNS results in both LES and VLES cases. Interestingly, this

difference is more remarkable in using bigger filter sizes and can be due to the fact that

enlargement of the filter size incorporates more details to the solver and local models are not

successful enough to correctly handling them due to the nature of the model. On the other

hand, the D-FSGS model shows better performance by taking into account the nonlocal

features and fractional derivations. As the last and most stringent test in the context of

the two-point diagnostics, higher-order structure functions for the velocity increments are
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Figure 3.10: Two-point diagnostics, velocity structure functions in different models and
comparison to the filtered-DNS using Lδ = 4 at t

τL ≃ 2 for (a) n=2, and (b) n=3 in Eq.

5.25.

compared with the ground-truth filtered-DNS results. The second and third order structures

functions are computed based on the following relation

⟨(δrūL)n⟩ = ⟨
[
ūL(x+ reL)− ūL(x)

]n⟩, n = 2, 3. (3.25)

To get the structure functions, first, we compute the velocity fields at a certain time for each

model then we shift them based on uL(x+ reL), and finally, we do the filtering operation on

each obtained field. The spatial shift is related to the filter size as r = Lδ. Comparing the

results for the second and third-order structure functions in Figure 3.10 for t
τL ≃ 2, reveals

that all models are almost preserving the second-order structures, however, in the third-order

structures we have more deviation for the Smagorinsky-based models. The new proposed

model is more successful in the prediction of the third-order structures and its trend in the

LES region.
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CHAPTER 4

DYNAMIC NONLOCAL CLOSURE MODELING FOR SCALAR

TURBULENCE

4.1 Introduction

Turbulence remembers and is fundamentally nonlocal. Such a longing portrait of turbu-

lence originates from the delineation of coherent structures/motions, being spatially spotty,

giving rise to interestingly anomalous spatio-temporal fluctuating signals [40].The statisti-

cal anomalies in such stochastic fields emerge as: sharp peaks, heavy-skirts of power-law

form, long-range correlations, and skewed distributions, which scientifically manifest the

non-Markovian/non-Fickian nature of turbulence at small scales. Such physical-statistical

evidence highlights that ‘nonlocal features’ and ‘global inertial interactions’ cannot be ruled

out in turbulence physics. On a whole different (computational) level and in addition to

the aforementioned picture, the very act of filtering the Navier-Stokes and the energy/scalar

equations in the large eddy simulations (LES) would make the existing hidden nonlocality

in the subgrid dynamics even more pronounced, to which it induces an immiscibly mixed

physical-computational nonlocal character. This urges the development of new LES modeling

paradigms in addition to novel statistical measures that can meticulously extract, pin-down,

and highlight the nonlocal character of turbulence (even in the most canonical flows) and

their absence in the common/classic turbulence modeling practice.

One of the oldest and most conventional local SGS modeling is known as the Prandtl-

Smagorinsky model model (PSM) and was initially conceptualized in [138]. Despite being a

significant step forward in LES studies, this eddy viscosity-based model suffers from a low

correlation ratio, lack of back-scatter prediction, and flow-dependent features. Backward

transfer of kinetic energy (back-scattering) from small scales to large scales is an innate

feature of the turbulent flows that does reflect in the DNS and experimental studies. Nev-

ertheless, most of the proposed turbulence models only predict the cascade of the energy

from large to small scales. Another import weakness for the static PSM model is that there
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is not a single universal constant for the representation of different turbulent fields such as

shear flows, rotating flows, or wall-bounded flows. As a remedy for the last two drawbacks,

Germano et al. [38] proposed a new model, which is called the dynamic Prandtl-Smagorinsky

model (DPSM). They designed a dynamic procedure for the computation of the model con-

stants as the calculation progresses. This procedure is based on the local calculation of the

eddy viscosity coefficient by sampling the smallest resolved scales and using the obtained in-

formation in modeling the subgrid scales. Afterward, different dynamic models were designed

and proposed based on the same concept [141, 140, 142].

Simulations of turbulent flows using DNS and experimental studies demonstrate that

turbulence is intrinsically nonlocal [1, 2]. Nonlocality of turbulence emerges as the sharp

peaks, heavy-skirts, and skewed probability density function (PDF) in statistics of the veloc-

ity/scalar increments. Nevertheless, most of the turbulence models are based on Boussinesq’s

turbulent viscosity concept, which assumes the turbulent stress tensor to be proportional to

the local mean velocity gradient. Bradshaw [3] discussed that this assumption is not neces-

sarily true everywhere and it does fail in some scenarios like curved surfaces. However, local

models dominantly were utilized due to their easier implementations and absence of handy

and feasible nonlocal models.

Introducing the nonlocality concept to the mathematical models can be done in different

ways for a variety of applications. The most applicable and convenient one is based on using

generalized-order derivatives. In the recent years, there have been remarkable studies in

utilizing generalized-order derivatives including anomalous rheology [132], damage modeling

[8] and many more that can be found in [134, 137, 11, 13]. In turbulence modeling, there is

also an emerging interest in recent years in the developments of nonlocal models. Egolf and

Hutter [25, 28] introduced nonlocal models based on the Reynolds-averaged Navier–Stokes

(RANS) coarse-grained technique. Some additional works in this area can be found in [27,

23, 24]. In the LES turbulence modeling, a fractional Laplacian-based model was developed

for the homogeneous isotropic turbulent (HIT) flows in [29]. They utilized Lévy stable
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distributions in kinetic level and finally derived a nonlocal model that addresses the non-

Gaussian statistics of the turbulent flows. Later they extended their modeling approach

through developing a tempered fractional model using a tempered Lévy stable distribution,

which resulted in a promising performance in a priori and a posteriori tests [30]. A fractional

eddy-viscosity-based model proposed in [34] and a priori tests were performed for the HIT

and turbulent channel flow as canonical test cases. On the nonlocal turbulence modeling

for the wall-bounded turbulent flows [33] proposed a class of turbulence model based on the

fractional partial differential equations with stochastic loads. Additionally, one can consult

with some preliminary related studies in [35, 36, 37].

Modeling of the residual flux for the LES of conserved passive scalars (such as temper-

ature) transported in turbulent flow medium has also been an important direction in the

computational turbulence research, natural, and engineering applications. Due to the advec-

tive coupling with the turbulent velocity field, the fluctuations in passive scalar concentration

field are known to be more intermittent and non-Gaussian compared to the velocity field

[150, 151, 152]. This behavior results in considerably stronger deviations of passive scalar

statistical temporal records (turbulent intensity and dissipation) from their mean values (in

a stationary turbulent regime) when we compare them to their counterparts in the turbulent

velocity fields [see e.g., 153, 154, 155, 156]. As a result, the residual scalar flux emerging in

the governing equation for the LES of a turbulent passive scalar is naturally carrying a com-

plex dynamics. Using a well-resolved filtered DNS dataset for the residual scalar flux, it has

been shown that the subgird-scale dynamics has a “statistically nonlocal” nature that cannot

be ruled out through conventional functional means of modeling such as those relying on the

local eddy-diffusivity assumption [see 32, Sec. 3]. Therefore, using a detailed mathematical

derivation starting Kinetic theory, [32] obtained a fractional-order SGS model for scalar flux

that successfully reproduced the nonlocal and non-Gaussian behavior of the residual scalar

flux. Similar to Smagorisky model for passive scalars, the nature of their model is static in

terms of the model coefficient and for its identification they relied on an a priori regression
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approach with respect to the FDNS data. In practice, this a priori regression step maybe

found cumbersome and a dynamic procedure seems to be a proper modification to improve

the generality of this model.

In this work, we develop a new dynamic nonlocal passive scalar (DNPS) subgrid scale

closure model. Both a priori and a posteriori assessments were performed on the model in

order to test its performance. The results were compared with the conventional static and

dynamic Prandtl-Smagorinsky models. As well as improving the performance of the static

nonlocal passive scalar model (NPS) [32], the new model incorporates back-scatter prediction

and does not require prior knowledge for the determination of the model constant.

The remaining portions of this research are arranged as follows: in section 4.2, we provide

the governing equations and derivation of the proposed model. In section 4.3 we elaborate on

the importance of the fractional order and its identification method. Section 4.4 is dedicated

to the a priori assessments and comparing the performance of the new model with the

conventional PSM-based ones. Continuing the model performance tests, in section 4.5, we

analyze the model performance and its numerical stability inside a solver.

4.2 Development of the new model (DNPS)

Focusing on the incompressible flow regime and the transport of a conserved passive

scalar (such as temperature field) in that flow medium, Navier-Stokes (NS) and Advection-

Diffusion (AD) equations are the set of governing equations that constitute the dynamics

[125]. In the Large-Eddy Simulation (LES) of turbulent transport a generic spatial filtering

operator, ·̄, is applied to the NS and AD equations returning the LES governing equations

[see e.g., 126] as

∂ū

∂t
+ ū · ∇ū = −1

ρ
∇p̄+ ν∆ū−∇ · τR; ∇ · ū = 0, (4.1)

∂Φ̄

∂t
+ ū · ∇Φ̄ = D∆Φ̄−∇ · qR. (4.2)

In these equations, u = (u1, u2, u3), p, and Φ are the velocity, pressure, and scalar con-

centration fields, respectively. In (4.1), ρ denotes the fluid density, while ν represents the
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viscosity of fluid, and in (4.2), D is the diffusivity of the passive scalar field. Moreover, fil-

tering yields sources of closure in the LES governing equations as the divergence of residual

stress, τR = uu− ūū, and residual flux, qR = uΦ− ūΦ̄. Modeling these residual or subgrid

terms using the filtered or resolved flow fields is an essential gateway returning a closed set

of equations that are suitable for a predictive and numerically stable LES [127, 126].

The Reynolds decomposition for a general field such as scalar concentration, Φ = ⟨Φ⟩+ϕ,

where ⟨Φ⟩ is the ensemble-averaged part of Φ, and ϕ denotes its fluctuating part [125]. In our

problem setting, we consider a homogeneous isotropic medium for velocity field; therefore,

⟨u⟩ = 0. For the passive scalar field, we assume the fluctuations are statistically homogeneous

while we consider an imposed ensemble-averaged gradient as ∇⟨Φ⟩ = (0, 1, 0) [157, 147]. As

a result, the filtered AD equation (4.2) is rewritten as:

∂ϕ̄

∂t
+ ū · ∇ϕ̄ = −ū2 +D∆ϕ̄−∇ · qR. (4.3)

In (4.3), the residual scalar flux may be restated as: qR = uϕ− ūϕ̄. The goal of our study

is to focus on developing “predictive” and “automated” approaches for modeling qR in a

dynamic setting.

Nonlocal modeling for the residual scalar flux

An important element of a predictive modeling is the capability of the model to reproduce

the main characteristics of the quantity that aimed to be predicted. In the LES of turbulent

transport, nonlocality of the SGS dynamics requires a careful attention so that the prediction

of the important statistical quantities such as resolved scalar variance, ⟨ϕ̄2⟩, would be realistic

over the course of a long-term simulation. In a comprehensive study by [32], using a rich

filtered DNS (FDNS) data set, it has been illustrated that Π = −⟨qR · ∇ϕ̄⟩, (which is

the SGS contribution to the time evolution of resolved-scale scalar variance) has a strong

nonlocal behavior towards the larger filter sizes in way that: (i) the normalized probability

distribution function of Π exhibits heavier tails, (ii) the normalized two-point correlation

function, −⟨qR(x) · ∇ϕ̄(x + r)⟩/Π, yields higher values at a fixed shift value, r, especially

within the inertial-convective subrange. Moreover, they showed that classical eddy-diffusivity
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modeling (EDM) for the SGS scalar flux fails to address this nonlocal behaviour regardless

of the filter size.

As a result, [32] developed a fractional order SGS model for the residual scalar flux that

successfully reproduced the nonlocal behavior they observed in the filtered DNS data set.

Their mathematical modeling was originated from investigating the source of LES closure

at the kinetic level from the filtered Boltzmann transport equation (FBTE),

∂ḡ

∂t
+ v · ∇ ḡ = − ḡ − geq(L)

τg
. (4.4)

FBTE (4.4) governs the time-evolution of distribution function for a single passive scalar

particle , g = g(t,x,v) at time t with particle’s spatial location x and velocity v. In

(4.4), the well-know Bhatnagar–Gross–Krook (BGK) kinetic model for the collision of two

particles is utilized and it is characterized with a single parameter called relaxation time (τg).

Moreover the BGK model assumes a local equilibrium distribution function geq(L) (known

as the Maxwell distribution) for the two-particle collision, which is a normally distributed

function of L that is parameterized by the locally conserved quantities. In the FBTE, the

source of closure stems from the fact that the filtering operator does not commute with the

collision operator, which results in geq(L) ̸= geq ¯(L). Given the fact the geq(L) is a filtered

normal distribution and has a multi-exponential nature, [32] modeled its behavior with an

α-stable Lévy distribution as a function of L̄, which closes the FBTE. Using the ensemble-

averaging over the 3-D space, they derived the continuum-level filtered AD equation with

the modeled residual scalar flux as:

qR = −DαR(−∆)α−1/2 ϕ̄, α ∈ (0, 1]. (4.5)

In (4.5), R(−∆)α−1/2(·) represents the fractional order gradient operator through the Riesz

transform (see the Appendix A), and Dα is a positive real-valued model coefficient. For more

details on the derivation, the interested readers are referred to [32, Sec. 4 and Appendix B].

In particular, obtaining Dα requires a priori model identifications such as regression

utilizing the true values of qR from filtered DNS data. This procedure, is inherently making
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the modeling procedure impractical and more complicated. In order to address this issue

and elevate the modeling framework to an automated level, we develop a dynamic procedure

based on the fractional order SGS scalar flux given in (4.5).

Dynamic nonlocal modeling for the residual scalar flux

Following the concept introduced by [38], the fluxes at test-level filter (subtest-scale

fluxes) can be written as

QR
i = −DαRi(−∆)α−1/2 ̂̄ϕ. (4.6)

where, (̂·) assigned for showing filtering at the test-level. The ratio between the test-level

and grid-level filter sizes are usually chosen equals to two. Resolved scales and subgrid-scales

are being related through the Germano identity.

Gi = QR
i − q̂Ri , (4.7)

replacing the previously achieved relation in (4.7) gives

Gi = −DαRi(−∆)α−1/2 ̂̄ϕ+DαRi(−∆)α−1/2 ϕ̄

∧

. (4.8)

By assuming scale-invariance condition for the model constant and considering the known

quantities for the definition of this identity, we can simplify the Germano identity as

ϕ̄ ūi

∧

− ̂̄ϕ ̂̄ui = −Dα

(
Ri(−∆)α−1/2 ̂̄ϕ− Ri(−∆)α−1/2 ϕ̄

∧)
. (4.9)

It is a common assumption that the filtering procedure commutes with the integer-order

derivatives and this assumption is basically one of the main steps of deriving the filtered

equations in LES methods. However, we show that this is not a valid premise when one

deals with the fractional operators. It can be seen in (4.9) that the filtering process does

not commute with the fractional operators. The difference between the fractional derivative

of filtered scalar field and the filtered fractional derivative at the test-level filter is not a

negligible amount. Actually, we are using this difference to estimate the behavior in the

modeled section. Several methods have been suggested in this section for the calculation
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of the model constants. Since the scope is having a scalar model constant at the end, we

need to first contract the tensorial quantities. One approach that was utilized originally by

Germano et al. [38] for the dynamic Smagorisnky method is based on contracting using

the filtered strain rate tensor. The other usual method which is more robust and fruitful is

suggested by [146]. The second approach is based on the least square method (LSM) and

assumes a squared error as

(
ϕ̄ ūi

∧

− ̂̄ϕ ̂̄ui +DαMi

)2

= e. (4.10)

in which Mi is defined as

Mi = Ri(−∆)α−1/2 ̂̄ϕ− Ri(−∆)α−1/2 ϕ̄

∧

. (4.11)

Now, we can put the derivative of squared error equals zero to find the model constant. Also,

we double-check for the correctness of ∂2e
∂C2 > 0 in order to get the minimized values for the

error. Therefore, the scalar model constant would be calculated as

Dα = −⟨(ϕ̄ ūi
∧

− ̂̄ϕ ̂̄ui) Mi⟩
⟨Mi Mi⟩

. (4.12)

We also added averaging operators to avoid numerical instability due to the negative eddy

diffusivity. This approach of averaging over the directions of statistical homogeneity is pro-

posed by [38]. This paper focuses on the development of a dynamic, functional nonlocal

model. The same concept can also be applied to build a hybrid model (functional + struc-

tural), but that is not the focus of this paper. In Appendix A, we have provided the necessary

mathematical concepts and definitions that being used in the model development procedure.

4.3 Data-driven Identification of Optimum Fractional Order, αopt

We introduce a data-driven approach to determine the optimum fractional order in the

derived DNPS closure model. The new nonlocal proposed model, like every other nonlocal

one, has a tuning knob which is called fractional order (α). According to (4.5), this value

can take values between zero and one, and setting different fractional orders would result in
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different fractional derivatives. Therefore, an optimization algorithm is needed to determine

this value before deployment of the model in a priori and the a posteriori tests. Several

approaches and criteria could be imagined for this optimization procedure such as (1) se-

lection of α when gaining maximum correlations for the average of the scalar fluxes and

ground-truth DNS results in three directions or (2) when there is a maximum correlation

for the divergence of fluxes from the model with the ground-truth results, and (3) when we

have a minimum mean squared error comparing the divergence of the fluxes (closure terms).

Preliminary analysis showed that the second and third approaches are providing very close

results and also we have a better prediction of back-scatter phenomenon in case we use the

second (or third) approach rather than the first one. Therefore, the second approach is

selected and utilized in this research.

We construct our database based on 10 sample snapshots of DNS simulations using

the pseudo-spectral parallel code elaborated in [147]. Using the mentioned framework we

generate a stationary HIT flow with 5203 resolution. The computational domain is a cube

as Ω = [0, 2π]3, and the Taylor-scale Reynolds (Reλ) and Schmidt (Sc = ν/D) numbers are

240 and 1, respectively. The 10 snapshots are sampled out from the DNS simulation after

being sure of reaching statistically stationary condition over 10 large-eddy turnover times

[147, 32]. Thereafter, the discussed optimization procedure is implemented on each snapshot

and finally, the ensemble-averaged quantities are reported and utilized for the discussions

and analysis. As it has been reported in [158, 30, 29, 32], changing the LES filter size would

change the optimum fractional order. Moreover, Lδ = ∆∗∆DNS , where ∆∗ is the ratio

between the LES and DNS grids, and the DNS grid size is defined as ∆DNS = 2π
N , N = 520

is the DNS resolution. In this study, we utilize three different filter sizes of Lδ = 4, 10, 20.

The first filter size (Lδ = 4) would represents a conventional LES filter size, the second filter

size (Lδ = 10) is called the coarse LES, and finally the third filter size (Lδ = 20) is trying to

test the model performance in the very large-eddy simulation (VLES) studies. Our criteria

for this classification are based on the amount of filtered scalar variance that is being modeled
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Figure 4.1: Obtaining αopt at different filter sizes in one of the snapshots of data and (b)
Power-law relation between the αopt and Lδ based on the ensemble-averaged results.

in the turbulence modeling procedure. The amount of the modeled filtered scalar variance

for these three filter sizes are 4%, 9% and 18%, respectively. Figure 4.1(a) shows the process

of finding optimum fractional order based on the highest correlation for the forces in different

filter sizes in one of the sample snapshots of data. As it is clearly seen, the maximum values

of the plots are moving toward zero by increasing the filter size. This reverse relation has

also been reported in [158, 29] and is due to the fact that by increasing the filter size, more

nonlocality is incorporated (see section 4.2). Increasing the filter size, usually results in lower

correlation coefficients (ρ); however, one can see that by going from Lδ = 10 to Lδ = 20 there

is not a significant reduction in the performance. This interesting feature will be elaborated

more in the upcoming sections. Finding the exact values of the optimum fractional orders

based on the ensemble averaging over the 10 snapshots of filtered DNS data, demonstrates

that there is a power-law relation between the filter size Lδ and αopt. As it has depicted in

Figure 4.1(b), the trend-line is clearly showing a power-law behavior in which the R2 values,

the coefficient of determination, for these regression procedures are above 0.996.

4.4 A Priori Tests

We perform a comprehensive a priori test on the newly developed DNPS model and

compare the results with the results of the conventional eddy-diffusivity-based model includ-
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Figure 4.2: Normalized PDF of ensemble-averaged SGS forces using different models and
different filter sizes, (a) Lδ = 4 for LES, (b) Lδ = 10 for coarse LES, and (c) Lδ = 20 for
VLES.

ing static Prandtl-Smagorinsky (PSM) and dynamic Prandtl-Smagorinsky (DPSM) models.

The ground-truth results are achieved using the filtered DNS data (FDNS).

We have depicted the ensemble-averaged forces related to the closure term in Figure 4.2

using previously mentioned filter sizes to cover all scenarios regarding the characteristic LES

filter size. The first graph (a) which belongs to the conventional LES scenario, Lδ = 4, shows

that the new DNPS model provides better prediction in capturing the peak and both right

and left wings of the PDF. Also, the one-point correlation coefficient between the DNPS and

FDNS results is 0.48 which is remarkably higher than PSM and DPSM models with 0.19,

0.40 correlation coefficient, respectively. Increasing the filter size to Lδ = 10 in second plot
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Figure 4.3: Normalized PDF of ensemble-averaged SGS dissipation using different models
and different filter sizes, (a) Lδ = 4 for LES, (b) Lδ = 10 for coarse LES, and (c) Lδ = 20
for VLES.

(b) clearly shows that conventional PSM-based models are deviating from the ground-truth

values. In the third plot (c), we have the results for the Lδ = 20 which is categorized as a

VLES case. In this level and previous filter size, the DPSM and PSM models perform closely.

Therefore, using dynamic model does not necessarily increase the performance. However,

we observe the DNPS model still maintains the performance fairly high, according to the

predictions of the peaks and tails of the distributions and correlation coefficients.

During the next test of the a priori section, we assess the models’ ability to predict the

back-scattering phenomenon. Computing the SGS dissipation of the scalar variance provides

a clear insight into the capability of the SGS models in reproducing the backward scattering
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in the turbulent cascade. This quantity is defined as

Π = −⟨qR · Ḡ⟩, (4.13)

in which, Ḡ represents the gradient of the filtered scalar field. Static models fail to capture

the negative values for dissipation. However, the left wings do exist in the PDF of the

ground-truth filtered DNS data, so it is part of the true physics. Furthermore, one of the

major purposes of dynamic procedures is adding this important feature to the static models.

Results in Figure 4.3 illustrate the predicted dissipation using different models and filter sizes

according to the above definition. As the three plots are showing, the PSM model fails to

predict the left wings, back-scatter phenomena. DPSM model does predict the flow of scalar

intensity from small scales to large scales, but the DNPS model has better agreement with

the FDNS results. Moreover, in large filter sizes (Lδ = 10, 20) we see that the DPSM model

fails in predicting the peak of the PDF. Obtained results illustrate that dynamic nonlocal

modeling not only adds the capability of back-scatter prediction to the static model, but

also significantly increases its performance.

4.5 A Posteriori Tests

Evaluating the performance of any SGS model is ultimately targeted in an LES setting,

where instead of utilizing the filtered DNS variables to construct the modeled closure terms,

one can use the LES-resolved flow variables, and apply the modeled closure for solving the

LES equations through time. This method of assessment is called a posteriori analysis which

is coined by [159] highlighting that the turbulence model is examined after being implemented

in a numerical solver. Similar to the a priori testing the reference values for comparisons are

obtained from filtering the DNS-resolved flow variables. As a common practice in a posteriori

analysis of LES models, the time records of turbulent intensities are compared with their

counterparts obtained from filtering the DNS results. For instance, in assessment of a model

for the SGS scalar flux, resolved-scale scalar variance, 12⟨ϕ̄2⟩, is the target turbulent intensity.

Moreover, in more robust assessments, complex statistical quantities such as high-order
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structure functions of resolved-scale turbulent fields are compared with the ones obtained

from filtered DNS [see e.g., 155, 30, 158]. This type of examination, provides a sophisticated

information on the two-point (indicating nonlocal correlations) and high-order statistical

performance of the SGS model in an LES.

In order to perform the large-eddy simulations on the problem setting introduced in

section 4.2, we employ the open-source pseudo-spectral solver developed in [147]. We slightly

modify this DNS framework to account for multiple SGS models of interest for qR, including

the DNPS model we developed. This DNS framework has already been successfully utilized

for the LES of decaying HIT flows with a variety of implemented models for the SGS stress

tensor [30, 158]. In an LES setting, both SGS stresses and fluxes in the filtered NS and AD

equations are modeled, and a specific choice of SGS model for τR could have a dominant

or mixed effects on the resolved scalar concentration field [155]. In our study, we choose to

freeze these potential effects; therefore, we would be able to fully concentrate on the modeling

aspects and performance for qR in (4.3). As a result, in our numerical setup, we resolve the

NS equations on DNS resolution, and throughout explicit filtering after each time-step we

provide the velocity field on the LES resolution which is fed to the equation (4.3). This

procedure has been employed in earlier studies such as [155, 160].

According to the turbulent regime with Reλ = 240 and Sc = 1 (as utilized in the

calibration of αopt), we choose a fully-developed turbulent state for the velocity and scalar

concentration from a well-resolved DNS. In order to reach to this turbulent state, the NS

equations are resolved for approximately 15 τLE while an artificial forcing mechanism is

enforced to the low wavenumbers (energy containing range) to maintain the turbulent kinetic

energy [147]. Afterwards, a we start resolving the AD equation from an initial fluctuating

concentration of ϕ0(x) = 0 while imposing a uniform mean-gradient as described in section

4.2. By resolving the NS and AD equations for approximately 15 large-eddy turnover times,

the skewness and flatness records of the fluctuating passive scalar gradient reaches to a

statistically stationary state, ensuring the fully-developed turbulent scalar fluctuations are
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Figure 4.4: Relative error (with respect to the FDNS) in the records of scalar variance
predicted in the LES for (a): Lδ = 10 and (b): Lδ = 20.

achieved. This procedure was successfully exercised in [147, 32, 156]. By the explicit filtering

of the velocity and scalar concentration fields, we take the initial condition for our LES

tests. In our tests, we implement two static SGS models (PSM and NPS) in addition to

two dynamic ones (DPSM and DNPS), and employ them in time-integration of filtered AD

equation (4.3) for 5 large-eddy turnover times. As mentioned in section 4.2, we utilized a

stabilization process to avoid numerical instability. In this process, an averaging operator

over the directions of statistical homogeneity is performed [38]. Since our solver provides

spectral accuracy in space and is not dissipative enough to handle the negative eddy-viscosity

in long-time integration, we need to have this step in the implementation of the dynamic

models in the a posteriori assessments.

Records of scalar variance

Evolution of the scalar variance is an important indicator in reliable prediction of the

turbulent intensity. Figure 4.4, shows the temporal records of relative error in the resolved-

scale scalar variance using different SGS scalar flux models with respect to the obtained time

record from filtering the DNS solution as the reference temporal record. The scalar variance

errors are reported for the cases of coarse LES (Lδ = 10) and VLES (Lδ = 20) filter scale

resolutions. The LES test cases as well as the reference DNS are conducted for 5 large-eddy

turnover times.
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For the large-eddy simulations on Lδ = 10 resolution (Figure 4.4a), we observe that at

initial stage of the simulation t/τLE < 2, the DPSM model exhibits the lowest error com-

pared to the other models in a way that on average over this time-span, the absolute value

of the errors in the NPS, PSM, and DNPS models are 2.9, 2.5, and 1.4 times higher than

the DPSM, respectively. However, for 2 < t/τLE , the records of relative error indicate that

nonlocal models (NPS and DNPS) start to perform better compared to the PSM and DPSM

models. For instance, for the time-interval of 2.5 < t/τLE < 5, a comparison between the

time-averaged errors from each model shows that the absolute value of error in the PSM,

DPSM, and NPS models are 25, 18, and 7 times higher than what the DNPS model yields,

respectively. In the LES tests with Lδ = 20 (Figure 4.4b), we observe approximately 9-10

times larger errors for the PSM and DPSM models compared to the DNPS model, when

the records of error are averaged over the first 2 large-eddy turnover times of LES. This

clearly shows that unlike the PSM and DPSM models, the DNPS model is reliably capa-

ble of keeping the modeling error at an acceptably low level while the LES is adjusting

to the initial condition. For 2 < t/τLE < 5, the DPSM model exhibits lower errors com-

pared to its non-dynamic version (approximately 25% less error); however, DPSM model’s

error is approximately 3 times larger than the error recorded in the DNPS model. These

numerical/statistical observations indicate that the dynamic procedure effectively improves

the prediction of turbulent intensity in the LES at the long-time integration region. More-

over, they prove that the nonlocal models exhibit a remarkably better performance in the

long-term prediction of resolved-scale scalar variance for different filter-scale resolutions.

Scalar structure functions and statistical nonlocality

Investigating the nonlocal behavior of turbulent regime is a vital and ultimate task in

testing testing the performance of an SGS model in evolution of the turbulent field in LES

[148]. The structure functions of the resolved scalar field are robust two-point statistical

measures that return nth-order statistics of resolved-scale scalar increments at a specific
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Figure 4.5: Time-averaged relative errors in the computed ⟨δrϕ̄nL⟩ from LES with different
SGS models with respect to the FDNS as reference solution using Lδ = 20. The time-
averaging is done over 4 < t/τLE < 5 for (a): n = 2, (b): n = 3, (c): n = 4, and (d): n = 5.

direction where 2 ≤ n [151]. These structure functions of order n are defined as

⟨δrϕ̄nL⟩ =
〈[
ϕ̄L(x+ reL)− ϕ̄L(x)

]n〉
; n = 2, 3, . . . , (4.14)

where r is the size of spatial increment, L represents the longitudinal direction (the direction

along the imposed uniform mean-gradient) [161, 155, 156], and eL specifies the unit vector

along the longitudinal direction.

Considering the relative error between the ⟨δrϕ̄nL⟩ obtained from the LES solutions using

an SGS model and the ground-truth FDNS solution for ϕ̄(x) at a specific time, this error

function is defined as:

Enr =

∣∣∣∣∣
⟨δrϕ̄nL⟩FDNS − ⟨δrϕ̄nL⟩LES

⟨δrϕ̄nL⟩FDNS

∣∣∣∣∣ . (4.15)
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Focusing on the temporal region 4 < t/τLE ≤ 5 that the LES solution has undergone long

time-integration, we select uniformly distributed samples of full-domain ϕ̄(x) in time to

compute Enr up to n = 5. Since we are dealing with a statistically-stationary problem, we

are allowed to take the temporal-average of these error function obtained from the sampled

nth-order structure functions. Therefore, we have a robust indicator measure to examine the

performance of each SGS model in predicting nonlocal and high-order statistics of resolved-

scale scalar field in a long-time integrated LES. Figure 4.5 illustrates this time-averaged Enr
against the normalized spatial shift, r/η, for the PSM, DPSM, and the DNPS models. Fig-

ures 4.5a and 4.5c are showing the relative errors is the even-order structure functions, where

the DNPS model has a considerably better performance. In particular, for the second-order

structure functions (Figure 4.5a) the error for the DPSM model within r/η < 200 region

is considerably higher than what is observed for the DNPS model. In fact, for r/η < 100

DPSM yields errors above 10 times greater than the reasonably small and steady errors we

compute for the DNPS model, and for 100 < r/η < 200 the DPSM errors are approximately

5 times larger. This important observation indicates significance of the dynamic nonlocal

model in successful prediction of nonlocal statistics of ϕ̄ (within the inertial-convective sub-

range) compared to its conventional counterpart (DPSM). Moreover, for 200 < r/η we can

still observe that the DNPS model’s predictions for the time-averaged ⟨δrϕ̄2L⟩ is still 2-3

time more accurate compared to the DPSM model. Interestingly, for the time-averaged E4r
(Figure 4.15c) the similar behavior as described for the second-order structure function is

observed supporting our argument on the effectiveness of the dynamic nonlocal model in pre-

diction of high-order statistical nonlocality. On the other hand, the DNPS model exhibits

better performance in predicting the odd-order ⟨δrϕ̄2L⟩ compared to the DPSM model (see

Figures 4.15b and 4.15d). In Figure 4.15b, it is observed that E3r<200η for the DNPS model

is maintained at a reasonably low and steady level; however, the DPSM model returns up

to 4 times larger errors. This remarkable performance of the DNPS model is even more

highlighted when we look at the E5r<200η in Figure 4.15d, the DPSM model returns up to
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9 times larger errors compared to its nonlocal counterpart. For E3r>200η (Figure 4.15b), the

performance of both models are the same; however, by looking at E5r>200η (Figure 4.15d) the

DNPS model always return lower errors. This comparison indicates that in prediction of the

odd-order ⟨δrϕ̄nL⟩, employing the DNPS model effectively improves the accuracy especially

for the high-order (3 < n) structure functions.
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CHAPTER 5

A DYNAMIC TEMPERED NONLOCAL TURBULENCE MODEL FOR

LARGE EDDY SIMULATION OF CHAOTIC FLOWS

5.1 Introduction

For centuries, scientists have studied the phenomenon of turbulence, which occurs fre-

quently in nature. In spite of developments in the statistical theory of turbulence, there

are no useful analytical solutions to turbulent flows in geometries of engineering interest.

The most straightforward approach to solving turbulent flows is a direct numerical simu-

lation (DNS). Numerical solutions are used in DNS to solve discretized equations. Using

a fine mesh that can resolve even the smallest motion scale, and implementing a scheme

that minimizes numerical dispersion and dissipation errors, it is possible to obtain an ac-

curate three-dimensional, time-dependent solution of the equations without any modeling

assumptions. In this case, the only error which remains is the numerical approximation

errors[125, 126, 127]. There are some important limitations to perform the DNS simula-

tions. Resolving all the motion scales is possible when we have enough grid points which

is proportional to the 9/4 power of the Reynolds number (Re
9
4 ) and costs of the compu-

tations scales with Re3. More details in this regard can be found in [162]. In order to

decrease the computational costs and make the simulations tractable, one approach is to

use Reynolds-averaged Navier–Stokes (RANS). In this approach, we solve the equations for

only the averaged quantities and all the effects of the instantaneous scales are modeled by

a turbulence model. Due to the low computational costs, the RANS approach has been the

backbone of industrial CFD applications in the previous decades. It is however necessary

in many practical cases to understand the transient behavior of the flow and therefore the

RANS approach will not be sufficient. The Large Eddy Simulation (LES) approach does

not adopt the time or ensemble-averaging techniques of the RANS and instead tries to com-

pute the large-scale motions directly. In the LES approach, only the small-scale motions

(subgrid-scales(SGS)) are being modeled and this modeling decreases the costs associated
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with computation significantly. Between the DNS and RANS, the LES sits somewhere in

the middle in terms of computational cost and provides a higher degree of accuracy than the

RANS-based approaches. Another important benefit of LES approaches over RANS is the

fewer needed adjustments. The reason for this issue relies on the fact that the small scales

tend to be more homogeneous and universal and hence they would be less affected by the

boundary conditions than the large scales.

Most of the developed LES models are based on the local closure modeling point of

view and they differ in the determination of the eddy viscosity or proportionality factor[138,

38, 163, 164]. From a local point of view, the turbulent stress tensor at any point is pro-

portional to the local mean velocity gradient. However, experimental and DNS studies

have shown that turbulence has intrinsically nonlocal properties, as well as non-Gaussian

statistics, meaning velocity increments have sharp peaks, heavy skirts, and are also skewed

[34, 165, 158, 2, 136, 166, 29]. From a mathematical perspective, generalized-order derivatives

are an easy way to introduce nonlocality. At the continuum level, generalized-order opera-

tors lay out the fundamental heavy-tailed stochastic processes that can be properly applied

to incorporating long-range interactions in a variety of contexts like damage and rheology

modeling [132, 133, 134, 167], visco-elasto-plastic [9] and beam vibration analysis [131]. Fur-

thermore, numerical schemes for fractional-order PDEs and integer-order PDEs can be used

to harness the capabilities of generalized-order models[10, 11, 13, 168, 15, 17, 18, 19]. One of

the first RANS-based nonlocal turbulence models was proposed by Egolf and Hutter [25, 28].

Their fractional model is based on the Lévy flight statistics and a generalized form of the

zero-equation local Reynolds shear stress. On the nonlocal LES models, a new model is

proposed based on the fractional Laplacian for the homogeneous isotropic turbulence (HIT)

flow by applying the Lévy stable distributions at the kinetic level [29]. The obtained results

in this research showed the potential of the fractional LES model in preserving the non-

Gaussian statistics of the subgrid-scale stress motions. Akhavan-Safaei et al. [32] utilized

the same concept to build a nonlocal LES model for scalar turbulence. Two-point statistics
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were utilized in the determination of the optimum fractional parameter and comparing the

probability distribution functions (PDF) of the different quantities showed the proper agree-

ment for the new model’s result with the filtered DNS ones. In accordance with this study,

a new nonlocal spectral transfer model, as well as a new scaling law for scalar turbulence

were developed [136]. Inspired by the cascade of energy in turbulent flows and its exponen-

tial decay in the dissipation rage, Samiee et al. [166] developed a tempered nonlocal model

by applying tempered heavy-tailed distribution within the previously developed fractional

framework. By using fractional and tempering parameters, one can characterize nonlocal

structures in the turbulent inertial and dissipation ranges. An eddy viscosity model is pro-

posed by Clark Di Leoni et al. [34] and tested for both the HIT and channel flow turbulent

test cases using the a priory analysis. In addition to the mentioned studies, there are also

other related researches including [31, 33, 36, 37].

The first dynamic fractional subgrid-scale model (DFSGS) model was developed by Seyedi

and Zayernuri [158]. The new model is based on the fractional Laplacian operator, however,

the model constant is computed autonomously by a novel dynamic procedure. Moreover,

three data-driven approaches were proposed for the optimal determination of the fractional

parameters at different filter sizes and Reynolds numbers for both the large and very large

eddy simulation (VLES) of the HIT test cases. By coupling the nonlocal modeling and

dynamic procedure, it is shown that the performance is increased, the model coefficient

is computed automatically, and the kinetic energy backscatter is predicted correctly. The

development of the dynamic nonlocal model, DFSGS, was a big step forward and highlighted

the great potential of these kinds of models. In this paper, we develop a dynamic tempered

nonlocal LES model in order to mimic the finite variance feature of the common patterns

in nature and also the exponential decay of the kinetic energy spectra in the dissipation

range. Moreover, we test the performance of the newly developed model versus the dynamic

Smagorinsky (DSMG) and the DFSGS models in different test cases including HIT and

multi-layer temporal shear layer in the context of the a priori and a posteriori analysis.
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In section 5.2 we talk about the governing equations and the steps we took to develop the

DTF model. In section 5.3 various a priori tests applied for both the HIT as the isotropic

turbulence test case and multi-layer temporal shear layer case as the anisotropic test case.

Also, the optimization algorithms and results for the determination of the fractional and

temporal components are provided. Testing the real performance of the models including

the numerical stability and preserving the true statistics in long integration times within a

spectral numerical solver is accomplished in section 5.4.

5.2 Model Development

In large eddy simulations of turbulent flows, large-scale quantities are obtained by filtering

the velocity and pressure fields. The filtered governing equations for these large scales in

incompressible conditions are formulated as

∂ū

∂t
+ ū · ∇ū = −1

ρ
∇p̄+ ν ∇2ū−∇ · τ, (5.1)

∇ · ū = 0.

In which, ū is the vector of the filtered velocity , ρ denotes the constant density, p̄ represents

the filtered pressure, and ν shows the kinematic viscosity. The so-called SGS stress tensor

reflects the effects of small scales and shown by

τij = uiuj − ūiūj . (5.2)

This unknown term requires closure modeling. Over the last decades, several functional and

structural LES models have been proposed [125, 127, 126, 169]. One of the most famous and

well-accepted LES models among the community are the static and dynamic Smagorinsky

models[138, 38]. The classical static Smagorinsky model (SMG) is based on an eddy viscosity-

based approach and follows the Boussinesq hypothesis.

τSMG
ij = −2 νt S̄ij , (5.3)

79



in which νt shows the eddy viscosity, and S̄ij =
1
2(

∂ūi
∂xj

+
∂ūj
∂xi

) denotes the resolved (filtered)

strain rate tensor. Prandtl’s Mixing Length Hypothesis is used here to construct νt.

νt = Cs L2 |S̄|. (5.4)

In the above relation L reflects the effective grid scale, and |S̄| =
√

2S̄ijS̄ij shows the

magnitude of the resolved scale strain rate tensor [127]. In different scenario, such as shear

flows, wall-bounded flows, or transitional flows, this model cannot correctly predict final

quantities with a single universal constant because it is flow-dependent. As a solution to

this challenge, Germano et al. [38] proposed a novel procedure for estimating the model

coefficient, known as the dynamic Smagorinsky model (DSMG). Researchers have utilized the

same concept since the proposed procedure became a breakthrough in turbulence modeling

[139, 140, 141, 142]. The model calculates the eddy-viscosity coefficient for each LES grid

point locally as the calculation progresses, so no predefined inputs are needed. The scale-

invariance hypothesis was used to construct this model, and the model constant was derived

from the resolved section to determine the constant.

Tempered Fractional Subgrid-Scale Model

Our recent work included the development of a non-local tempered SGS model and we

present it here briefly in order to make this work self-contained [166]. To describe the collision

of particles, we use the Boltzmann kinetic model based on Boltzmann’s kinetic description

of the flow.

∂f

∂t
+ u · ∇f = −f − feq

T , (5.5)

here f = f(x, u, t) indicates the single-particle probability distribution function and shows

the particles density in the phase space (x, u) at time t. Moreover, feq represents the local

equilibrium distribution function and can be defined based on the Maxwell distribution as

follows

feq(K) =
ρ

U3
F (K), (5.6)
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in which F (K) = e−K/2, K =
|u−V |2
U2 and U represents the speed of thermal agitation. On

the left-hand side of Eq. 5.5, one can see the non-reacting particle streaming, while on the

right-hand side, one can see the collision operator with a relaxation time T when it comes to

the non-reacting particles. Eq. 5.5 can be solved analytically using a characteristic method

and the distribution can be computed based on the equilibrium state [143]

f(t, x, u) =

∫ ∞

0
e−s feq(x− uτs, u, t− τs) ds. (5.7)

Macroscopic flow variables like density and fluid velocity can be obtained using moments of

the f . Then, one can write ρ =
∫
f(t, x, u)du, and ρV (t, x) =

∫
uf(t, x, u)du and get the

required fields.

The filtered Boltzmann equation would be obtained by incorporating the filtering proce-

dure into Eq. 5.5.

∂f̄

∂t
+ u · ∇f̄ = − f̄ − feq(∆)

T . (5.8)

Due to the highly nonlinear nature of the collision term, the filtering kernel is not able to

commute with it[144]. Therefore, there is a closure problem and it can be addressed as

K =
|u−V |2
U2 since

feq(K) ̸= feq(K). (5.9)

Recently, a new approach based on the tempered Lévy stable distributions is suggested in

[166] to model the feq(K)− feq(K), i.e.,

feq(K)− feq(K) ≃ fModel(K̄) = Dβ,λ f
β,λ(K̄), (5.10)

where fβλ(K̄) = ρ

U3F
βλ(K), where Fβλ(K) represents a tempered Lévy β-stable distribu-

tion. Moreover, Dβ is called the model constant and will be calculated automatically in the

new dynamic tempered fractional model (DTF).

The subgrid-scale forces in this new model are obtained as [166]:

(∇.τ)i = να,λ(−∆α, λ)ūi, , α ∈ (0, 1/2) ∪ (1/2, 1), λ ≥ 0. (5.11)
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In Eq. 5.11 the resolved velocity ūi : Rd × (0, T ] → R, where d = 3 is the dimension of

physical domain and T represents the simulation time, in addition, (−∆)α,λ(·) shows the

tempered fractional Laplacian which can be defined as a singular integral operator given by

(∆ + λ)αūi = cd P.V.

∫

Rd

ūi(x)− ūi(y)

|x− y|d+2α exp(λ|x− y|) dy, (5.12)

in which cd =
−Γ(1/2)

2πd/2Γ(−2α)

1
cos(πα)

. In Appendix C, we have provided the preliminary mathe-

matical concepts and definitions in this regard. It should be mentioned that λ = 0 is the case

that we don’t have a tempering term and would result in the same model that we developed

recently [158]. As the detailed derivations in [166] demonstrates, the SGS force term in this

model is achieved using the summation of a fractional Laplacian and another term which

includes the tempering parameter, λ, implemented on the filtered velocity and multiplied to

a model constant.

(−∆α, λ) = ϕ10(α)(−(−∆)α) + ϕ11(α, λ)(∆ + λ)α, α ∈ (0, 1/2) ∪ (1/2, 1), λ ≥ 0. (5.13)

In the above relation ϕ10(α) and the ϕ11(α, λ) are defined based on the fractional and tem-

pering coefficients and Gamma function as follows

ϕ10(α) =
1

2α + 3
(Γ(2α + 1)− Γ(2α)) (5.14)

ϕ11(α, λ) =
2α + λ

2α + 3
(Γ(2α− 1)).

Calculation of the SGS stress components is easily possible using the α−Riesz potential as

described in [158, 29, 166, 32, 165].

Dynamic Tempered Fractional Model (DTF)

As we saw in the previous section, the final SGS force term in the new model can be simply

written as (∇.τ)i = να,λ(−∆α, λ)ūi. Now, we are developing a unique dynamic procedure

to automatically calculate the model coefficient. To this end, we apply the second filtering

procedure which is also called test-level filter and we show it by (̂·). Doing so provides the
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divergence of the stresses in the test-level (subtest-scale) as

(∇.T )i = να,λ(−∆α, λ) ̂̄ui. (5.15)

This paper uses a common ratio and doubles the size of the test-level filter compared to the

grid-level filter. Inspired by the identity introduced by Germano et al. [38] which connects

the scales of the grid-level to the test-level, we show that

Gij = ̂̄uiūj − ̂̄ui ̂̄uj = Tij − τ̂ij , (5.16)

in the divergence form the above relation can be formulated as

∇.
( ̂̄uiūj − ̂̄ui ̂̄uj

)
= (∇.G)i. (5.17)

By extrapolating and parametrizing the model constant at the smallest resolved scales, the

Germano identity determines the model constant for the subgrid-scale part. To construct the

Germano identity in the divergence form using the introduced tempered fractional Laplacian

relations in the previous section, we obtain

(∇.T )i − (∇.τ̂)i = να,λ

(
(−∆)α,λ ̂̄Vi − (−∆)α,λV̄i

∧
)
. (5.18)

In the derivation of the above relation, we used the same assumption that has been used

in several dynamic-based LES approaches[38, 158, 165] which is the invariant of the model

constant. Therefore the filtering procedures would commute and we can simplify the relation.

The next step is finding the να,λ value in Eq. 5.18. However, the mentioned equation is a

tensorial relation and the model constant is not a scalar. To reach a constant scalar value,

one common approach in this section is Lilly’s method [146] which contracts the equation

by the right-hand side itself. We use this approach in this project based on the least-squares

method (LSM) and using the previous relation for the Germano identity in divergence form,

we attain

(
(∇.G)i − να,λMi)

2 = e. (5.19)
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In Eq. 5.19 the e indicates the squared error and Mi shows the nonlocal term which reads

Mi =

(
(−∆)α,λ ̂̄Vi − (−∆)α,λV̄i

∧
)
. (5.20)

One important point worth mentioning is that in integer-order and common dynamic models,

we assume that the filtering procedures are commutable with the integer-order derivatives.

However, as we illustrated previously [158] (see Fig 1) the filtering operators are not com-

muting with the fractional(general) order derivatives. This is the reason that the right-hand

side of the Eq. 5.20 is not zero. In the dynamic Smagorinsky (DSMG) model which is based

on the integer-order derivatives, the right-hand side of the corresponding equation would be

zero if there was no strain rate tensor multiplied by the first-order derivative term. In the

tempered fractional Model (DTF) we don’t have the strain rate tensor but the right-hand side

is still holding due to the mentioned important difference in the integer and fractional-order

derivatives. Now one can calculate the unknown model constant by putting the derivative of

the error equal to zero in Eq. 5.19. Also, the scope of error minimization can be determined

by considering and testing ∂2e
∂να,λ

2 > 0 for the mentioned relation. Lastly, one can define the

scalar model constant as follows

να,λ =
⟨(∇.G)iMi⟩
⟨MiMi⟩

. (5.21)

In the above relation, we also added the averaging operator over the directions of statistical

homogeneity as suggested by Germano et al [38] to prevent the numerical stability which

may be cased in long time interactions due to the negative eddy viscosity values.

5.3 A Priori Tests

In this section, we compare a priori performance of the DTM, DFSGS, and DSMG with

respect to the filtered DNS data as the ground-truth results. To this end, first, we need to

gather a high-resolution and reliable DNS dataset and then do the statistical analysis. We

used our in-house pseudo-spectral parallel code elaborated in [147] to generate a stationary

forced homogeneous isotropic turbulence (HIT) flow in a cube with 5203 resolution for a
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periodic computation domain as Ω = [0, 2π]3. The time integration is performed using a

fourth-order Runge-Kutta (RK4) scheme while the CFL < 1. The targeted Taylor Reynolds

number was 240 ( Reλ = 240). We stored 10 snapshots of the DNS data at a fully turbulent

and statistically stationary state in which kmax η ≈ 1.5 over the span of 10 large-eddy

turnover times. Additionally, Lδ = ∆∗/∆DNS , where ∆
∗ is the LES grid size, and the DNS

grid size is defined as ∆DNS = 2π
N , N = 520 is the DNS resolution. In this paper, we have

tried to target the larger filter sizes and do the analysis in the coarse LES and very large

eddy simulation (VLES) rather than the conventional large eddy simulation LES grid sizes.

Therefore both filter sizes of Lδ = 10, 20 are tested which represents the coarse and very

large eddy simulation cases based on the amount of the modeled turbulent kinetic energy

corresponds to each filter size which has reported in [158].

In this section, we test the performance of the new model and compare it with different

LES models in terms of the prediction of the probability density function (PDF) of the SGS

forces and the dissipation of turbulent kinetic energy in two separate scenarios. The first test

case is the HIT and the second one is the multi-layer temporal shear layer case. In the former

test which is based on a canonical flow condition, we test the performance of the models for

the fully isotropic turbulent flow situation using the ensemble-averaged quantities. In the

latter, we analyze the performance of the model when we have significant anisotropy in the

turbulent flow.

Homogeneous Isotropic Turbulence (HIT) Flow

As the first test case, we use the gathered 3D high-resolution DNS datasets to do the

a priori analysis. However, first, we need to define the optimum values and sensitivity

analysis for the fractional and tempered input parameters for the new model. Since we have

two input parameters, we use a grid search approach for the α, λ and find the best pairs of

values for the model inputs when the average correlations for the three SGS forces have the

highest value with the corresponding ground-truth ones. In another word, we select our two

input fractional and tempering parameters when we have the highest correlation coefficients
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Figure 5.1: Optimization process for the α, λ in the HIT test case based on the grid search
approach for Lδ =10 (a) , and Lδ =20 (b).

for the average of the SGS forces and the ground-truth ones. The reason for choosing this

optimization process lies in the fact that we want to cover all three directions of the SGS

forces in the grid search process and not to be biased to a certain direction. Moreover,

the initial results showed better performance using this approach rather than the processes

introduced in [158, 165]. Samiee et al. [166] used high-order structure functions in one of

their optimization processes, however, in the new model, the model constant is calculated

dynamically and there is no need to implement another level of optimization.

In Fig. 5.1 we see the results of the grid search based on the average of the three SGS

force correlations for the filter size of 10 and 20 as the coarse LES and VLES cases. As

can be seen, there is not necessarily a single pair of optimum results for this process. The

optimum results can be gained using different values for the α and λ. In fact, the effect of

each parameter can be compensated by the other one and an imaginary line (or surface) in

the 3D results would provide the best correlations.

The optimization process provides a proper intuition regarding the selection of the frac-

tional and temporal values. Now we use the obtained values in the previous section and do
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Figure 5.2: PDF of ensemble-averaged SGS forces for the HIT test case in three directions
using different models at Lδ =10 ((a), (b), (c)), and Lδ=20 ((d), (e), (f)).

the a priori tests. In Fig 5.2 we see the PDF prediction of ensemble-averaged SGS forces

in three directions for different models and their comparisons with the ground-truth filtered

DNS (FDNS) ones. The first row illustrates the PDFs using Lδ =10 which is a coarse LES

grid size and the second row shows the VLES predictions using Lδ =20. As can be seen,

the new model has improved the performance of the previous non-tempered predictions in

almost all directions and filter sizes. This improvement is more noticeable in capturing the

long tails distributions. In a comparison of the local models and the nonlocal ones, we see

that the DSMG model as the representative of the local LES models, doesn’t capture the

heavy tails distributions which are initiated from the nonlocal nature of the turbulence.

Fig. 5.3 depicts the prediction of the ensemble-averaged SGS dissipation of kinetic energy

in different models at two filter sizes of Lδ = 10, 20. Since all three compared models are

dynamic, we have the prediction of the back-scattering phenomena by producing a negative

dissipation. As discussed previously in the optimization process for the determination of the

fractional and tempered parameters, we optimized the values based on achieving the highest

SGS forces. However, we see a relatively proper prediction for the dissipation distributions
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Figure 5.3: PDF of ensemble-averaged SGS dissipation of kinetic energy using different
models for (a) Lδ = 10, and (b) Lδ = 20.

and a slightly higher improvement than the non-tempered DFSGS model for the new model.

Multi-layer Temporal Shear Layer

As the next test case in the context of the a priori tests, we want to test the performance

of the developed model along with the other dynamic models when we have significant

anisotropy in the flow. To this end, we create a multi-layer temporal shear layer (or temporal

mixing layer) case based on the setup discussed in detail in [170]. We initiate a turbulence

flow from the linear stability theory [171]. Therefore, we introduce the nondimensional initial

streamwise velocity profile u0 as

u0(x, y) =
¯u0(y) + cnoise

∂ψ

∂y
, (5.22)

in which

ψ(x, y) = e

−y2L2

δ20
[
cos(8πx) + cos(20πx)

]
. (5.23)

In the above relation, δ0 shows the initial vortex thickness and L is the size of the domain

which is 2π. We used the hyperbolic tangent velocity profile definition that is suggested in

[172] for the mean initial profile which reads

¯u0(y) = tanh
(2yL
δ0

)
. (5.24)
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By choosing the noise factor c0 = 0.001, we make sure to maintain a small percentage of

mean velocity perturbations and not to dissatisfy the Taylor hypothesis.

In order to have periodicity in the normal direction as well as the other directions, an even

number of shear layers was applied in this project, namely 10. Having 10 temporal shear

layer accelerates the mixing and decrease the needed computational time to reach chaotic

turbulent flow condition significantly. The framework here makes use of periodic boundary

conditions in all three directions: streamwise, spanwise, and normal. Thus, direct numerical

simulations become more feasible due to the smaller computational domain. In the next step,

we add the ensemble-averaged snapshots of the HIT case over the span of 10 eddy turnover

times in order to add the randomness along the dominant shear layers. This average 3D field

is added by a 1 percent ratio and after multiplying an exponentially decaying function that

almost kills the magnitude everywhere but in the vicinity of the temporal layers. Therefore,

we see the growth of the Kelvin–Helmholtz eddies in different magnitudes and sizes along the

shear layers (See Fig. 5.4). The same in-house DNS solver which is elaborated previously

initialized with the prepared initial condition in the decaying fashion using a fixed time step

size of dt = 0.001 and checking the CFL number to be under 1 for the numerical stability

purposes. The same procedure of sampling out the DNS dataset at different time steps was

carried out, and we gathered the DSN snapshots of the temporal shear layer case. Thereafter,

we implemented the previously discussed optimization and grid search algorithm to find the

optimum values of the fractional and tempering parameters in this anisotropy test case.

Fig. 5.5 represents the sensitivity analysis graphs for the decaying temporal shear layer case

using characteristic filter size of Lδ =20 initiated with the mentioned initial condition at

different time steps. The procedure depicted in Fig. 5.5 provides a proper notion of the

input parameters of the model. Using the information provided, we compared the PDF

predictions of the SGS forces at a different phase of the mixing in different LES models. To

this end we utilized the largest filter size, Lδ =20, to show the new model’s capability in the

VLES cases. It should be mentioned that using the smaller filter size for this case,Lδ =10,
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(c) (d)

Figure 5.4: Slice of the vorticity fields of the DNS temporal shear layer case at t=0.01 (a),
t=0.02 (b), t=0.05 (c) and t=0.1 (d).

we obtained almost the same performance for the new model and the DSMG one. However,

using the bigger filter size, we basically incorporate more nonlocal interaction information
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Figure 5.5: Optimization process for the α, λ in the temporal shear layer test case based on
the grid search approach for Lδ =20 at t=0.125 (a), t=0.15 (b), t=0.175 (c) and t=0.2 (d).

into the models and the nonlocal models can provide better agreement in comparison to the

local ones. Comparing the new tempered and the previous non-tempered model, DFSGS,

indicates that tempering is helping the model to be improved in capturing the peak and tails

of the distribution. In the next a priori analysis for the temporal shear layer test case, we

examine the model performance in predicting the dissipation distribution and backscattering

phenomena. The DFSGS and DSMG models do predict the flow of energy from small scales
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Figure 5.6: PDF of SGS forces for the temporal shear layer test case in three directions using
different models at Lδ =20, snapshot=100 ((a), (b), (c)), snapshot=150 ((d), (e), (f)).
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Figure 5.7: PDF of SGS dissipation of kinetic energy using different models for Lδ = 20 (a)
snapshot=100, and (b) snapshot=150.

to large scales thanks to their dynamic natures, but the DTF model has slightly better

agreement with the FDNS results. It should be mentioned that if the optimization process

has been defined based on the dissipation capturing criteria, we would have had better results

in this section. However, the SGS forces are the ones that we targeted and still, we have

acceptable dissipation predictions at both two shown time steps.
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5.4 A Posteriori Tests

In this section, we do the ultimate test for the newly developed model and test its

performance and numerical stability in solving the LES equations through time. Piomelli

et al. [159] introduced a posteriori term for implementing the model within the numerical

solver, and the use of numerical solvers for implementing the model became a common

practice afterward. In order to have the reference and ground-truth results for the sake of

comparison, we carried out a DNS case with high resolution and the same conditions. The

filtered DNS results (FDNS) are obtained each time that is targeted for the LES model

comparisons. The parallel spectral solver that discussed in previous sections is utilized for

the LES and DNS simulations for a triply periodic domain Ω = [0, 2π]3. For the new model,

DTF, we can claim that the model is numerically stable since the utilized solver is spectral-

based and is not dissipative like the finite difference of finite volume approaches. Therefore,

if any model works within this solver and tolerates the large integration times, its stability

is guaranteed within the other common solvers. In this set of experiments, as a common

practice, we first test the performance and numerical stability of the models in decaying

homogeneous isotropic turbulence with Reλ = 240 using the LES (VLES) filter width Lδ

= 20. Fig 5.8 shows the time records of the turbulent intensities in terms of the decay of

the resolved kinetic energy for different models and compares them with their counterparts

obtained from filtering the DNS results. The graph shows that using this large filter size

which corresponds to the VLES region, the new model provides a better agreement than the

non-tempered DFSGS model and the DSMG models in short and long integration times.

The unresolved numerical simulation (UNS) results belong to the case in which we run a

DNS solver using an LES grid. Therefore the turbulent viscosity would be equal to zero

in this case and one can expect a high-level prediction of the kinetic energy. It should be

mentioned that using Lδ = 10 there was not a significant improvement over the other LES

models and in this test all the models could capture the true first-order statistics.

In the next a posteriori test, we analyze the prediction of the kinetic energy spectrum
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Figure 5.8: Decay of the resolved turbulent kinetic energy in different turbulence models
using Lδ = 20.

at two different times. To this end, a comparison was made between the kinetic energy

spectrum of each LES model with the ground-truth filtered DNS ones as shown in Fig.

5.9. We compared the results after one and three eddy turn-over times, which is almost

2.7 for this case. It is important to choose large integration times to address the numerical

stability of models, which is an issue especially when a model is dynamic. Our plot in this

section only shows the results of using Lδ = 4, since bigger filter widths do not provide

enough resolution, especially at small scales. As it can be noticed from the graph, all LES

models are obeying the −5
3 law in the inertial subrange section and the new model provides

slightly higher dissipative levels in this filter size than the other models. However, the

prediction of the small-scale sections in the new model is more accurate than the other ones

thanks to the tempering nature of the model and its exponential decaying rates. Testing

the performance of an SGS model in evolutionary simulations of the turbulent field in LES

requires investigating the nonlocal behavior of turbulent regime [148]. As the last test for

the model in the context of the two-point diagnostics, we compare the higher-order structure
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Figure 5.9: Prediction of the kinetic energy spectra after one (a) and three (b) eddy turn-over
times.

functions with their counterpart filtered DNS ones. This is a relatively stringent test and

most of the models usually fail to preserve the true statistics in a large filter size and after

a long time of integration. The equation below shows the mathematical relation to obtain

this quantity based on the filtered fields and their shifted values in space.
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Figure 5.10: Velocity structure functions using different models and comparison to the
ground-truth results using Lδ = 20 for n=2 (a), and n=3 (b).

⟨(δrūL)n⟩ = ⟨
[
ūL(x+ reL)− ūL(x)

]n⟩, n = 2, 3, (5.25)

where r is the size of spatial increment, L represents the direction, and eL specifies the unit

vector along that direction. The Fig 5.10 shows that all LES models are performing almost
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the same in the prediction of the second-order structure functions. Third-order structure

functions are being better captured by the new model, DTF. One can see that the DFSGS

model results are slightly better than the DSMG model and the new tempered model adds

another level of improvement in the prediction of the correct third-order structure functions.
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CHAPTER 6

SUMMARY AND FUTURE WORKS

In this study, our main goal was to devise a framework that provides a data-driven

approach for nonlocal modeling of anomalous transport phenomena. We started with the

stochastic study of the turbulent flows in the context of the internal cylinder flows to see

the anomalous and non-Gaussian behaviour of the flow. Thereafter, we developed a novel

dynamic nonlocal turbulence model that accounts for the non-Gaussian statistics. In the

next chapter, we construct a new dynamic model for the scalar turbulence which has the

capacity to works with very large LES filter sizes. Finally, we proposed the dynamic tempered

fractional model for the large and very large eddy simulation of turbulent flows and we tested

them for the HIT and temporal shear layer test cases.

6.1 Concluding Remarks

• In chapter 2, our study leverages the outcome of stochastic modeling and simulations

to carry out a thorough analysis on the initiation of flow instabilities within high-speed

rotating cylinders. Considering the random nature of the problem, a detailed math-

ematical representation of the stochastic incompressible Navier-Stokes equations was

presented. Further, a high-fidelity stochastic CFD framework was introduced, which

employs spectral/hp element method in the forward solver and later on the stochas-

tic space was numerically handled by probabilistic collocation method. Detailed grid

generation steps and required convergence studies for the deterministic solver were

obtained and stochastic discretization convergence were studied for the solutions of

first and second moments. The time-evolution of expected kinetic energy of the flow

in addition to its variance were computed and the uncertainty bounds propagated in

the solution were identified with time. A variance-based sensitivity analysis of the

random parameters of the model were conducted to globally characterize the most

effective stochastic factor on the total variance of kinetic energy, consequently, the “ec-

centric rotation” was learned to be the dominant source of stochasticity. Later on, the
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expected solution from a very fine uni-variate PCM discretization on the dominant ran-

dom parameter was utilized to compute the fluctuating velocity and vorticity fields for

a randomly drawn realization of the sample space. These fluctuations were statistically

analyzed through the time-evolution of their PDFs for radial and azimuth components

in a qualitative manner while comparing to the standard Gaussian PDF. Statistical

features such as appearance of intermittent and rare events in terms of heavy-tailed

PDFs in addition to observing asymmetries in velocity and vorticity PDFs were spot-

ted out. In particular, very close to the flow instability onset, these non-Gaussian

statistical features were found to quickly get intensified especially for the radial ve-

locity fluctuations and therefore fluctuating vorticity field as the flow evolves in time.

Moreover, the statistics of flow fields were quantitatively measured through computing

the skewness and flatness factors on narrow radial stripes extending from the wall to

the cylinder’s center. These records closely supported our qualitative findings from

studying the PDFs of fluctuations and identified that in velocity field we quickly face

regions with skewness factor of O(1) and flatness factor of O(10) while for the vortic-

ity field these factors were recorded with about one order of magnitude higher than

their velocity counterparts emphasizing on significantly high non-Gaussian vorticity

induced by cylinder rotation affected by symmetry-breaking factors. Here, we need

to emphasize that the modeling strategy in this work was conducted based upon an

approximate 2-D representation of the NS equations for long rotating cylinders fully-

filled with fluid. It properly provided a valuable insight into the dominant effect that

breaks the flow symmetry and the dynamics of the further fluctuations in the flow

variables. Certainly, a similar study focusing on the short-height rotating flow sys-

tems requires three-dimensional modeling and simulations. In fact, since the top roof

and bottom base surfaces of the cylinder additionally have major contributions to the

symmetry-breaking instabilities, the axial propagation of uncertainty in the flow would

be inevitable and must be taken into consideration. Motivated by the observed strong
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non-Gaussianity in flow fluctuations, we sought to study the effects of coherent vortical

structures essentially inducing memory effects into the vorticity dynamics. Thus, we

managed to compute the time-scaling of the enstrophy record. Interestingly, we learned

that unlike the early stages of flow after introduction symmetry-breaking rotational ef-

fects, enstrophy is scaled as t−1/2 at long-time. This anomalous time-scaling essentially

reveals the very existence of long-lasting and growing coherent vortical regions initially

generated due to the non-symmetric rotation of the cylinder wall. This mechanism

seems to be a promising engineering strategy to increase the chaotic/turbulent mixing

time and quality for the rotating hydrodynamic systems.

• In chapter 3, We introduced a novel dynamic nonlocal turbulence model for the

isotropic turbulent flows, which can be applied for both LES and VLES purposes.

The model has been developed based on the fractional Laplacian derivative of re-

solved velocity field, and a unique dynamic procedure defines the model constant in

the divergence form. The effect of the fractional-order, Re number, and characteris-

tic filter size in LES and VLES cases are scrutinized using multiple high-fidelity and

well-resolved DNS datasets belongs to forced homogeneous isotropic turbulence. Fi-

nal decisions were made based on the ensemble-averaged quantities gathered from ten

separate three-dimensional snapshots distributed over enough turnover times. The

optimum fractional-order for each scenario is chosen when the maximum correlation

is obtained for the ground-truth and predicted stresses of the model. The obtained

results indicate that the relation between the filter size and fractional-order is closely

obeying a power-law form for all the assessed Re numbers. Also, there is a direct rela-

tionship between the Re number and the fractional-order. Considering all the attained

statistical results, two other data-driven straightforward methods for the determina-

tion of the fractional-order suggested and tested successfully. Our analysis included

both a priori and a posteriori assessments. In the first one, we showed that there is

a higher correlation between the results of the proposed method and the ground-truth
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DNS results in comparison to other conventional LES models. Also, the capability of

the model in the prediction of the back-scatter is discussed in different filter sizes. In

the a posteriori assessments we tested the model performance in long-time integration

in the context of a real N-S solvers, and its ability in capturing the large-scale coher-

ent structures examined. Analysis were performed in a decaying isotropic turbulence

scenario, and the new D-FSGS, static Smagorinsky and dynamic Smagorinsky models

implemented separately. The results show that the new model is more successful in

the prediction of the resolved turbulent kinetic energy in both LES and VLES stud-

ies. To test the models’ performance in the long-time integration and its numerical

stability, kinetic energy spectra are compared with the filtered-DNS results. Finally,

two-point diagnostics were accomplished to compare different models’ performance in

the context of preserving second and third-order structures. The results demonstrate

that the new model behaves better in preserving the high-order structures than the

conventional ones. This study shows the promising potential of using bigger filter sizes

rather than the conventional LES filter sizes. This important characteristic can be uti-

lized to compensate the fractional model’s high-cost demand. Moreover, accelerated

evaluation methods for the fractional operators including learning-based approaches

and fast solvers can be leveraged to pave the road for the real and more practical

applications of nonlocal models.

• In chapter 4, we developed a novel dynamic nonlocal closure model for the subgrid-

scale scalar field in the context of the large and very large eddy simulation (LES,

VLES). With our high-fidelity datasets pertaining to forced homogeneous isotropic

turbulence, we examined the effect of fractional order and characteristic filter sizes in

LES and VLES cases. During enough large-eddy turnover times, we utilized ensemble-

averaged quantities from ten separate three-dimensional snapshots to make final deci-

sions. When the ground-truth force and the predicted SGS force were most correlated,

the optimal fractional order was selected for each scenario. We initially tested the
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proposed model in the context of a priori assessment. Based on the results, we showed

that the new DNPS model is more accurate in predicting SGS dissipation and force

terms. Furthermore, the DNPS model retained a fair performance in the VLES cases,

unlike other conventional models that did not return accurate prediction of LES closure

at very large filter sizes. In an LES setting, we managed to examine the performance

of SGS models in an a posteriori sense. We resolved the filtered AD equation for

5 large-eddy turnover times while ū contribution in the advective coupling obtained

from the explicit filtering of the DNS solution. We looked at the relative error (with

respect to the FDNS) in the records of the ⟨ϕ̄2⟩ from the LES solution using differ-

ent SGS models. Tracking these records showed that the combination of nonlocal

modeling and dynamic procedure (DNPS modeling) is an effective way for accurate

prediction of the resolved-scale turbulent intensity (scalar variance) especially when

the goal is to study the long-term behavior. Moreover, we examined the prediction of

the longitudinal resolved-scale scalar structure functions, ⟨δrϕ̄nL⟩, for 2 ≤ n ≤ 5. Com-

pared to their time-averaged FDNS solution over 4 ≤ t/τLE ≤ 5, we observed that

the time-averaged LES solution obtained from utilizing the DNPS model is perform-

ing remarkably successful in maintaining a low-level error over the multitude of scales

for spatial shift. Therefore, we realized that unlike the PSM and DPSM model, the

DNPS model does a great job in prediction of the high-order and two-point (nonlocal)

statistics of ϕ̄ especially in over the inertial-convective subrange. In conclusion, we

showed that employing larger filter sizes instead of conventional LES filter sizes in the

proposed model is a promising direction. In this way, the high computational costs

associated with fractional modeling can be compensated, and one can achieve stable,

reasonably accurate, and fast simulations using the new closure model.

• In chapter 5, an improved version of the dynamic fractional and tempered fractional

SGS modeling [158, 166] is derived based on the following steps: (i) applying tempered

Lévy stable distributions at the kinetic level (ii) obtaining the SGS forces based on the

101



tempered fractional Laplacian operator (iii) implementation of the new dynamic proce-

dure for the computation of the model constant. Each scenario’s optimum parameters

are determined when the predicted and ground truth SGS forces are correlated the

most. The newly developed model is tested based on both a priori and a posteriori

analysis for the LES and VLES cases. In the a priori tests, we analyzed the perfor-

mance of the models in the prediction of the SGS forces and the SGS dissipation for

the isotropic and anisotropic test cases. The non-isotropic test case is set up based

on a multi-layer temporal shear layer turbulence case in which there are dominant

anisotropic directions. The results of this section indicate that the new model does

have some improvement in the prediction of the different force quantities for the HIT

test case in comparison to the dynamic non-tempered and dynamic Smagorinsky mod-

els for both the LES and VLES cases. The results of the multi-layer temporal shear

layer test case indicate that the new model has almost the same performance as the

non-tempered model using Lδ = 10 for the LES region. However, by enlarging the

characteristic filter size to Lδ = 20, the new model performs better in the prediction of

the statistics, especially the SGS forces. In the a posteriori analysis of the new model,

we utilized a highly accurate spectral-based solver to test the numerical stability and

performance of the model in preserving the correct statistics after long integration

times. The results of this section indicate that the new dynamic tempered model has

better performance in the prediction of the resolved turbulent kinetic energy for a de-

caying HIT test case. Thanks to the tempered nature of the model, there is also good

agreement for the prediction of the energy spectrum for the new model, especially in

the dissipation range. The last test represents the capability of the models in pre-

serving the high-order structure functions. Based on the results of this test, the new

model shows significant potential, particularly when larger filters are used. It appears

that the next generation of turbulence models might be based on combining AI-based

models with nonlocal models that provide higher correlations. It is also suggested to
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use the learning-based approaches for the determination of the fractional and temporal

parameters in different modeling scenarios.

6.2 Future Works

In the future, there will be some open topics to address in this field. The following are

some of them:

•Constructing a nonlocal turbulence model for temporal mixing layer and bound-

ary layer problems: One can generalize and expand the current derivation process of ho-

mogeneous isotropic flows to the turbulent flows near a solid walls. This section will allow to

test the performance of the nonlocal models near the solid walls and cases with significant

anisotropy.

• Nonlocal Deep Neural Network (NDNN) surrogate modeling: We will train a

deep neural network model based on the dense and convolution architectures to account for

the nonlocal effects of the turbulent transport. Almost all the deep learning based turbulence

models are being trained using the local approaches and they don’t address the true nonlocal

physics especially in the bigger filter sizes.
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APPENDIX A

VALIDATION OF NUMERICAL SETUP

This appendix provides a comparison study between the analytic and numerical solutions

for specific cases of impulsive and exponential spin-decay at low-Reynolds numbers in order

to validate our CFD results. Simplifying the governing equations in cylindrical coordinate

system, (r, θ, z), for a non-stationary 2-D viscous incompressible flow, gives

ρ

(
−u

2
θ

r

)
= −∂p

∂r
, (A.1)

ρ

(
∂uθ
∂t

)
= µ

(
∂2uθ
∂r2

− 1

r2
uθ +

1

r

∂uθ
∂r

)
.

Here, the first and second equations represent the momentum equation in r and θ directions,

respectively. By considering no-slip boundary conditions on the wall and taking the initial

condition as V (r, 0) = rθ̇ (rigid-body rotation), equation (A.1) can be solved through the

Laplace transform on the variable t [173, 53]. If the length is scaled by the radius of cylinder,

r, time is scaled by r2/ν, velocity in the sudden stop case is scaled by rθ̇, and velocity in the

exponential decay case by λr3θ̇/ν, the resulting solution would be dimensionless. Therefore,

the exact solutions for the complete sudden stop and exponential decay cases at low-Reynolds

numbers are obtained as

Vs(r, t) = −2
∞∑

n=1

J1(βnr)

βnJ0(βn)
exp(−β2nt), (A.2)

Ve(r, t) =
R−
Re

J1(r
√
B) exp(−Bt)
J1(

√
B)

+ 2
∞∑

n=1

J1(βnr) exp(−β2nt)
βn(β2 − β)J0(βn)

,

where Vs(r, t) indicates the azimuth velocity for sudden stop case, Ve(r, t) is the azimuth

velocity for the exponential decay case, J is the Bessel function of the first kind, and βn

denotes the positive roots of J1(βn) = 0. Also R− = r2θ̇/ν shows the Reynolds number

corresponding to the initial state and Re = r4θ̇λ/ν2 denotes the Reynolds number for the

spin-decay period (see [173] and [53] for derivations). Using equation (A.2) and implementing

the same initial and boundary conditions in the numerical setup for a low Re number, a
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Figure A.1: Comparison between the velocity, V (r, t), obtained from CFD and analytical
solution for flow at Re = 100. (a) Complete sudden stop, (b) exponential decay with
Re/R− = 20.

comparison in different times was made (see Figure A.1). These comparisons are obtained

for Re = 1/ν = 100 and Re/R− = 20, while we consider the mentioned dimensionless

solution and the physical parameters. Comparing the analytic and the CFD results clearly

validates our numerical implementation and procedure. It should be mentioned that the

analytic solutions are only valid at the low-Re number regime where no flow instability is

created during these processes.
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APPENDIX B

COMPUTATIONAL WORKFLOW

Performing numerous amount of forward simulations for discretization of random space

urges the design of a proper workflow in high-performance computing (HPC) environment

[174, 175]. In this work, we are dealing with a forward solver with requires input session files

in the xml format, which contain information about the grid and each forward simulation’s

conditions. Using parallel computing on O(100) processes is inevitably demanded for each

one of these forward simulations. Indeed, the number of simulations addressed in this work,

could not be achieved by manually generation of input session files that are fed by realiza-

tions of stochastic parameter space. Hence, a Python program is prepared to construct the

parameter space realizations (either from MC approach or PCM) and assign them to separate

xml scripts that are placed in a directory associated with each forward simulation. Moreover,

it enables automation of job submission step in the HPC environment. The statistical so-

lutions (i.e., expected fields and their standard deviation) are computed by post-processing

through Paraview toolkit. In particular, we exploit Paraview’s Python scripting (executed

by pvpython) to extract the flow field variables from xml field files at the SEM integration

points and perform required computations on them to obtain the expectation and standard

deviation of field variables. Similar procedure is carried out to compute the velocity and

vorticity fluctuation fields.
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APPENDIX C

FRACTIONAL-ORDER DIFFERENTIAL OPERATORS

According to Lischke et al. [176], the fractional Laplacian operator, denoted by (−∆)α

with 0 < α ≤ 1, is defined as

(−∆)αu(x) =
1

(2π)d

∫

Rd
|ξ|2α

(
u, e−iξ·x) eiξ·x dξ

= F−1
{
|ξ|2αF

{
u
}
(ξ)
}
, (C.1)

where F and F−1 represent the Fourier and inverse Fourier transforms for a real-valued

vector ξ = ξj , j = 1, 2, 3, respectively, and i =
√
−1. Moreover, (· , ·) specifies the L2-inner

product on Rd, d = 1, 2, 3. Therefore, the Fourier transform of the fractional Laplacian is

then obtained as

F
{
(−∆)αu(x)

}
= |ξ|2αF

{
u
}
(ξ), (C.2)

where α = 1 recovers the integer-order Laplacian. Considering the definition of α-Riesz

potential as

Iαu(x) = Cd,−α

∫

Rd
u(x)− u(s)

|x− s|d−2α
ds, (C.3)

the fractional Laplacian can also be expressed in the integral form as

(−∆)αu(x) = Cd,α

∫

Rd
u(x)− u(s)

|x− s|2α+d
ds, (C.4)

where Cd,α =
22αΓ(α+d/2)

πd/2Γ(−α)
for α ∈ (0, 1] and Γ(·) represents Gamma function [176]. The

α-Riesz potential is also formulated [177] as

Iαu(x) = (−∆)−αu(x) = F−1
{
|ξ|−2αF

{
u
}
(ξ)
}
. (C.5)

Considering (C.5), the Riesz transform is then given by

Rju(x) = ∇j I1u(x) = F−1
{
− iξj

|ξ|F
{
u
}
(ξ)
}
, (C.6)

which is utilized in formulating the SGS scalar flux and D-FSGS models.
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