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ABSTRACT

Plasmas are many-body systems of interacting charged particles that exist naturally and can be

created experimentally. For example, plasmas are found in many astrophysical systems like the

corona of the sun, the Earth’s ionosphere, and in the interior of white-dwarf stars. In engineering

and medicine, plasmas are used during the design process of semi-conductors or for inactivating

viruses like COVID-19. Plasmas also occur in nuclear fusion experiments which promise a nearly

infinite supply of clean, renewable energy.

Quantifying the behaviors of plasmas experimentally can be challenging due to the short time-

scales and small length-scales that interactions between the plasma particles occur. In many cases,

computational approaches are used to simulate the dynamics of plasmas to supplement the dearth

of experimental data. The accuracy of these computational methods is largely unknown across the

entire parameter regimes plasmas occupy limiting their predictive capabilities. This dissertation is

composed of four distinct projects all with the common goal of developing numerical methods for

rapidly and accurately computing properties of non-ideal plasmas.

First, we focus on the data-driven discovery of pair interaction potentials formolecular dynamics

simulations of dense plasmas across a wide range of temperatures and elements. We find that our

pair interaction potentials simulate the ionic interactions in a plasma with accuracy comparable

to Kohn-Sham molecular dynamics but with orders of magnitude less computation cost. Second,

we develop theoretical models that avoid the need for numerical simulations of plasma mixtures

altogether. Our theoreticalmodels show reasonable agreementwithmolecular dynamics data across

the both the weak and strong coupling regimes. Third, we use techniques in machine learning to

interpolate plasma properties data with multiple sources of data. We find that our machine learning

method accurately predicts trends in data even in the absence of high-fidelity calculations. Lastly, we

implement a numerical scheme for solving kinetic equations with applications to ultracold neutral

plasma mixtures and high-energy-density plasmas. With our simulation results, we suggest plasma

conditions for future experiments and we discuss natural extensions of our numerical method that

will be the basis of future work.
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CHAPTER 1

INTRODUCTION

1.1 Background

Plasmas are charged particle systems that can be commonly found in nature. Plasmas respond

strongly to electric and magnetic fields – requiring free electrons much like a metal. Free electrons

in a system are created by a process called ionization. When an element is ionized, bound electrons

are removed from an atom by sources of extreme pressure, temperature, and/or radiation. For

metals, the free electrons result from pressure ionization due to the density of the metal. In

ultracold neutral plasmas (UNPs), ionization occurs due to radiation. In other states of matter, like

hot dense matter, ionization can result from combinations of pressure, temperature, and radiation

sources.

As shown in Fig. 1.1, plasmas occupy a wide temperature and density range and can be

classified as hot, magnetized, non-ideal, ultracold, dusty, non-neutral, etc. Many astrophysical

systems like the Sun’s corona, the interiors of gas giants, and Earth’s ionosphere are considered

plasmas. Plasmas have many applications in medicine, technology, and energy production. For

example, plasmas can be used for inactivating viruses like COVID-19 [1], during the manufacturing

process of semiconductors [2], or in nuclear fusion experiments for generating large amounts of

clean, renewable energy.

Nuclear fusion experiments typically require intense lasers or high-energy x-rays that can only

be produced at a select number of facilities in the world. Examples of these facilities include the

Z Machine at Sandia National Laboratories, The National Ignition Facility at Lawrence Livermore

National Laboratory, and the OMEGA laser facility at The Laboratory for Laser Energetics at The

University of Rochester. While nuclear fusion is currently not feasible for energy production, data

collected during these experiments are used to optimize their set-up to maximize the likelihood of

sustained thermonuclear burn. Such data include equations of state, plasma transport coefficients,

neutron yield, plasma temperature, and data on collective effects like plasmawaves or hydrodynamic
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Figure 1.1: Common plasmas at different temperatures and densities. This figure was originally
presented in Ref. [3]. The red curve corresponds to Γ = 1 [see Eq. (1.1)], for mean-ionization state
〈Z〉 = 1. Below the curve, Γ > 1 and above the curve Γ < 1.

instabilities. The cost associated with carrying out these experiments prohibits the availability of

wide-ranging experimental data which is further limited by the accessible parameter regime of the

experiments.

Computational approaches are used to generate large amounts of plasma properties data to

support the few high-fidelity experimental calculations. Often, these computational approaches are

used in physical regimes absent of experimental data for “extrapolation." By coupling data from

experimental platforms to results from numerical simulations, burning plasmas have recently been

created in inertial confinement fusion (ICF) experiments at The National Ignition Facility [4–6]

resulting in the largest amount of fusion energy output to date. This progress has highlighted the

importance of accurate and rapid calculations of plasma properties using computational methods.

A major challenge in computational plasma physics is quantifying the accuracy of the numerical

methods used for simulating plasmas. The aim of this dissertation is focused on the development

of numerical methods for rapidly computing accurate plasma properties of non-ideal plasmas.
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1.2 Plasma Preliminaries

Fundamentally, plasmas are many-body systems of interacting charged particles. To estimate

the nature of these interactions, dimensionless parameters such as the Coulomb coupling parameter,

degeneracy parameter, and Knudsen number are used. These dimensionless parameters estimate

the significance of correlations between particles, if quantum statistics are necessary, and if the

plasma behaves as a fluid. The Coulomb coupling parameter is often described as the ratio of

the average potential energy of particles in a plasma to their average kinetic energy and is defined

as [7–11]

Γ =
〈Z〉2e2

aiT
, (1.1)

where 〈Z〉 is the effective charge (or mean-ionization state) of an ion [12], e is the elementary

charge, ai = (4πni/3)−1/3 is the Wigner-Seitz radius for the ion number density ni, and T is the

temperature of the plasma in energy units. Equation (1.1) quantifies the importance of many-body

interactions to the plasma’s properties. A plasma is said to be “weakly coupled" when Γ < 1 and

“strongly coupled" when Γ > 1. For Γ � 1, the average kinetic energy of the particles in the

plasma is far greater than their average potential energy. In this limit, the plasma particles behave

like an ideal gas and the plasma is referred to as an “ideal plasma." In the opposite limit, when the

Γ � 1, the average potential energy of the particles dominates the average kinetic energy and the

particles in the plasma are strongly correlated; a plasma in this state is referred to as a “non-ideal"

plasma. Note that there are a variety of plasma conditions that correspond to a Γ > 1. For example,

when a plasma is dense (e.g., white dwarf stars), cold (e.g., ultracold neutral plasmas), or if the

mean-ionization state is large which is true for dusty plasmas where the plasma macroparticles

(referred to as “dust grains") can have 〈Z〉 ∼ 1000 [13,14]. We stress that multiple types of plasma

may share the same value of Γ; this fact allows for connections between disparate plasmas such as

high-energy-density (HED) plasmas and UNPs [15]. Note that Eq. (1.1) is for a single, unscreened1

species. If electron screening is significant which is often the case in strongly coupled plasmas [11],
1“Screening" or “shielding" refers the reduction of a plasma particle’s force range due to the accumulation of

oppositely charged particles.
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we can modify Eq. (1.1) to include electron screening with a screening function. The resulting

coupling parameter is referred to as an “effective coupling parameter" as shown in Refs. [16–18].

Moreover, if we wish to extend Eq. (1.1) to binary plasma mixtures of ion species i and j, (see

Chapter 3) we have

Γi j =
〈Zi〉〈Z j〉e2

atotTi j
, (1.2)

where atot = (4πntot/3)−1/3 with ntot = ni + n j , and Ti j = (miTj + m jTi)/(mi + m j) [19].

In addition to the coupling of the ions, we must also consider the nature of the electrons. That

is, if we can treat the electrons as classical point particles or if we need to include quantum statistics

to describe their interactions. If quantum statistics are needed to describe the electrons, the plasma

is said to be "degenerate" or "partially degenerate." If we can treat the electrons as classical point

particles, the plasma is said to be "non-degenerate." The magnitude of the degeneracy of a plasma

is given by the degeneracy parameter which we define as [20]

θ =
Te

EF
, (1.3)

where EF = ~
2(3π2ne)

2/3/2me is the Fermi energy for the electron number density ne, electron

mass me, and the electron temperature Te is in energy units. A system is non-degenerate when

θ > 1, and degenerate or partially degenerate when θ < 1. For dense or cold plasmas we have that

θ < 1 and the wave packet describing the electrons begin to overlap. In this case, it is no longer

appropriate to approximate the electrons by classical statistical mechanics and quantum statistics

are needed. However, for high temperatures and/or low densities, the overlap of wave packets does

not occur and the electrons may be treated as classical point particles.

The final dimensionless quantity we introduce is the Knudsen number which helps determine

if a system is in a hydrodynamic state i.e., if the plasma may be treated with continuum mechanics

instead of statistical mechanics. The Knudsen number is defined as [21]

Kn =
λ

L
, (1.4)

where λ is the mean-free-path, the average distance that a particle travels before collision, and L is

some reference length scale. As highlighted by Fig. 1.2, the magnitude of Kn suggests appropriate
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Figure 1.2: Different theoretical regimes for different Knusden numbers. This figure was originally
presented in Ref. [21]. As Kn becomes small hydrodynamic approximations such as the Euler or
Navier-Stokes-Fourier (NSF) equations are valid. For larger Kn, kinetic theory becomes an accurate
description of the system.

plasma
type element ni (cm−3) Ti (eV) Te (eV) 〈Z〉 Γ θ Kn

UNP Ca 1×109 8.6×10−5 8.6×10−3 1 2.3 2.4×106 1.1 × 10−3

CDM H 2×1022 0.01 0.01 0.34 71 3.7×10−3 6.1×10−8

WDM H 6×1024 10 10 0.84 3 0.083 5×10−6

HDM H 6×1025 1000 1000 0.97 0.086 1.8 8.4×10−4

Table 1.1: Comparison of non-dimensional parameters for different plasmas. Here we abbreviate
cold-, warm-, and hot-dense matter as CDM, WDM, and HDM, respectively. We have chosen
experimentally relevant conditions for each plasma type with a focus on fusion fuel in ICF ex-
periments for the CDM, WDM, and HDM cases. To compute the Knudsen numbers, a reference
length-scale of LUNP = 1 mm and LICF = 1 µm, were used for the UNP and ICF plasmas. A
Thomas-Fermi model was used to compute the mean-ionization state 〈Z〉 for the ICF plasmas; for
UNPs, 〈Z〉 is known exactly and is often unity.

models for the plasma. For example, in the highly collisional limit (Kn � 1), the plasma is close to

equilibrium and Euler hydrodynamics is an applicable model. In contrast, in the transition/kinetic

regimes, particles collide and interact but are out of equilibrium so non-equilibrium statistical

mechanics (i.e., kinetic theory) must be employed.

In each chapter of this dissertation, we reference each of these three dimensionless parameters

to 1) support the choice of models/numerical approaches we implement, and 2) make connections

to relevant experimental platforms that benefit from this work. As an example, Table 1.1 displays

all three dimensionless parameters for different plasma types at various number densities and

temperatures. Note that warm dense matter (WDM) and UNPs share a similar Coulomb coupling

parameters suggesting that UNPs can be used as a proxy for WDM.
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1.3 Computational Modeling of Plasmas

The numerical techniques used to simulate plasmas are just as diverse as the parameter space

they span. These techniques range from various forms of molecular dynamics (MD) [22–38], where

explicit interactions between particles are calculated, to coarse-grainedmethods such as the particle-

in-cell technique [39–43], models based on kinetic theory [44–60], and hydrodynamics [61–78].

Usually, the choice of which numerical is appropriate for a given plasma depends on certain limiting

physical regimes e.g., high density and low temperatures or low density and high temperatures.

At low densities and temperatures, Γ > 1 and θ < 1 resulting in a strongly coupled, degenerate

plasma. To numerically treat strong coupling and quantum statistics, computational methods

such as Kohn-Sham MD [79–87], and orbital-free MD [32, 83, 88–92] are employed. In Kohn-

Sham MD [93], the quantum statistics are treated by solving Schrödinger’s equation for the one-

particle wave function referred to as “Kohn-Sham orbitals" or simply “orbitals." Once the orbitals

are obtained, the electron density is constructed and the force acting on the ions due to the

electronic structure (i.e., the placement of the electrons) is computed at every simulation time

step. Determining the electronic structure in the Kohn-Sham MD formalism is a computationally

expensive procedure that scales numerically asO(N3
e )where Ne is the number of free electrons in the

system. To mitigate the computational cost associated with Ne, pseudopotentials are implemented

to represent the non-interacting core of an atom which reduces the number of orbitals that need

to be numerically obtained reducing computation cost. At higher temperatures (T ∼ 15 eV),

pseudopotentials must be used with caution because an ion may become fully ionized and an

“all-electron" calculation may be needed.

Orbital-free MD [94] is the generalized, original formalism of which Kohn-ShamMD is based.

In orbital-free MD, the orbitals are not calculated and algorithms such as the fast Fourier transform

can be implemented which results in a numerical scaling of O(Ne log Ne) [94–96]. Orbital-free

MD methods allow for simulations with orders of magnitude more particles and are especially

effective at high system temperature. As shown in Ref. [97], orbital-free MD numerically scales

as ∼ O(1) with system temperature T in contrast to Kohn-Sham MD which numerically scales as
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Figure 1.3: Time to update one particle in Kohn-Sham MD and orbital-free MD versus system
temperature (see Ref. [97]). The orbital-free MD data does not fit a power-law form unlike the
Kohn-Sham MD data which scales with temperature as ∼ O(T2.6).

∼ O(T2.6). Figure 1.3 shows data of simulation time versus temperature using both Kohn-Sham

MD and orbital-free MD obtained from Ref. [97]. The points correspond to the time to update one

particle using both methods for a given system temperature. A fit has been obtained from the data

showing the aforementioned temperature scaling. The best-fit parameters to the orbital-free MD

data indicate that a power-law does not describe its numerical scaling in contrast to Kohn-Sham

MD. The approximations of orbital-free MD (and thus Kohn-Sham MD) lie in the determination

of various functionals that account for the kinetic energy and the exchange and correlation of the

system. Figure 1.4 displays data obtained from the literature that showcases simulations carried out

using Kohn-Sham MD and orbital-free MD for different systems in a space-time diagram. We see

that Kohn-ShamMD is sequestered to physical systems on the length- and time-scales of angstroms

(Å) and pico-seconds (ps); this clustering is a direct consequence of the computational complexity

associated with Kohn-ShamMD. In contrast, orbital-free MD can access much larger spatial scales,

even on the order of micrometers (µm). Importantly, there is a third axis of temperature that is

not displayed here. We emphasize that orbital-free MD is able to simulate plasmas at temperatures

of hundreds of eV making orbital-free MD an ideal method for simulating high-energy-density
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plasmas. In contrast, Kohn-ShamMD is more accurate than orbital-free MD at lower temperatures

(e.g., on the order of fractions of an eV) making Kohn-Sham MD an ideal candidate for simulating

warm-dense-matter, when Γ ≈ θ ≈ 1.

In addition to Kohn-Sham and orbital-free MD, Figure 1.4 also displays data from MD sim-

ulations which span a much larger time and space scales. The difference in viable simulation

scales is due to the fact that MD makes use of pre-computed potentials that can be derived from

Kohn-Sham/orbital-free methods or obtained empirically. Some examples of pre-computed poten-

tials include the Coulomb potential, the Yukawa potential, or the Lennard-Jones potential. These

potentials eliminate the need for an electronic structure calculation as it is accounted for in the

potentials functional form. Molecular dynamics typically scales as O(N log N) where N is the

number of particles in the MD simulation by utilizing fast-neighbor-list algorithms to compute

particle interactions. In Chapter 2 we make comparisons of Kohn-Sham MD, orbital-free MD,

and MD by carrying out simulations of dense plasmas ranging in temperature, density, and nuclear

charge.

The last remaining methods in Figure 1.4 are kinetics and hydrodynamics. Instead of simulating

explicit particle interactions, these methods simulate statistical distributions of particles, greatly

reducing computation cost and allows these methods to access even larger space and time scales

than MD. The computational complexity associated with kinetics and hydrodynamics varies based

on the numerical methods implemented, but the key distinction between these methods and MD is

that they are often grid-based methods, instead of particle-based methods. Chapter 5 is dedicated to

the development of a grid-based numerical method for solving kinetic equations with applications

to UNPs.

In recent years, machine learning has become a widely used tool for both obtaining plasma prop-

erties data as well as utilizing and analyzing existing datasets. Commonly used machine learning

methods for plasma properties data range from deep neural networks, which are favored as they can

learn non-linear relationships between features in a dataset, to dimensionality reduction techniques

like principal component analysis. In reference to Fig. 1.4, the influence of machine learning

8



Figure 1.4: Computational methods employed at various time- and length-scales for physical
systems. Each data point represents published data from a variety of disciplines starting in the
year 2012; ellipses computed based on the principal components of the data are also plotted. Note
that Kohn-Sham molecular dynamics [79–87] and orbital-free molecular dynamics [32,83,88–92]
simulations are typically done at the scale of angstroms and picoseconds; this is a direct result of
their computational complexity which limits these methods to small system sizes. Coarse-grained
methods such as kinetics [44–60] and hydrodynamics [61–78] are able to access larger spatio-
temporal scales because instead of computing interactions between explicit particles as is done in
MD [23–38], a statistical average of particles is computed which greatly reduces computation cost.

would be seen across the entire spatio-temporal domain making machine learning the most widely

applicable method for determining plasma properties. Some concrete examples of machine learn-

ing include its use in Kohn-Sham MD to determine the necessary exchange correlation functional

or in hydrodynamics for obtaining the necessary constituent data (i.e., transport coefficients and

equations of state). In Chapter 4 we present a machine learning method for regressing multi-modal

datasets to rapidly generate accurate predictions of plasma transport data.
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1.4 Dissertation Overview

This dissertation consists of multiple objectives which are directed toward the common goal of

creating more accurate, computationally efficient, methods for simulating plasmas across disparate

temperature and density regimes. The computational methods focused on herein are those of MD,

machine learning, and kinetic theory. Each chapter is dedicated to one of these methods which are

applied to numerical calculations of non-ideal plasmas.

The focus of Chapter 2 is to elucidate the efficacy of force laws used for MD simulations

of dense plasmas. A review of commonly used force laws is presented along with a discussion

of the current state-of-the-art models that stem from data-driven machine learning approaches.

We present a non-parametric, data-driven approach for obtaining force laws for a wide range of

elements at various temperatures and densities allowing for an increase in simulation time by orders

of magnitude while also reducing statistical errors.

The scope of the work presented in Chapter 2 was limited to plasmas comprised of a single

ionic species. However, in many scenarios (e.g., ICF experiments or UNP mixtures), an under-

standing of the interactions between particles in plasma mixtures is vital. Chapter 3 addresses the

theoretical challenges associated with dense plasma mixtures where we derive analytic models for

the thermodynamic factor and interdiffusion transport coefficient. Our analytical formulae agree

with molecular dynamics data in certain limiting regimes. Thus, we are able to avoid the need for

molecular dynamics simulation, and as a result, eliminates the associated computation cost and

reduces statistical error.

While Chapters 2 and 3 focused on generating accurate plasma properties data, Chapter 4

focuses on interpolating multi-modal datasets to improve predictions in regions were high-fidelity

measurements do not exist. We compare our multi-fidelity machine learning approach to its single-

fidelity counterpart and show that by using data from multi-modal datasets, the predictions across

regions absent of high-fidelity data are more accurate with reduced uncertainty.

In Chapter 5 we model the interactions of UNPmixtures using kinetic theory to investigate their

expansion into a vacuum as well as their entropy production. We begin by providing an overview
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of kinetic theory, as well as a derivation of the Vlasov equation in spherical coordinates which is

scarce in the literature and appears seemingly nowhere. Using a multi-species kinetic equation in

Cartesian coordinates, we simulate UNP mixtures and find that the initial plasma conditions can be

chosen such that the dynamics are time-reversible. Additionally we apply our kinetic simulations

to HED plasmas where we analyze the dominant drivers of diffusive mixing.

The findings of this dissertation are summarized in Chapter 6 along with a discussion on how

the methods presented herein can be improved.
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CHAPTER 2

DATA-DRIVEN FORCE LAWS FOR MOLECULAR DYNAMICS SIMULATIONS OF
DENSE PLASMAS

2.1 Introduction

ln strongly coupled plasmas, N-body simulations are required to correctly account for collective

effects (e.g., plasma waves) or instabilities (e.g., the two-stream or bump-on-tail instability [98]).

As discussed in Sec. 1.3, MD1 is a simulation method that encodes N-body effects by integrating

Newton’s second law for a system of interacting particles. The critical input of MD is the force-law

or interaction potential that quantifies the particle interactions. For example, the Lennard-Jones

interaction potential is used forMD simulation of noble gasses, and theYukawa interaction potential

is used to simulate a system of charged particles (i.e., plasmas). As most plasmas are made up of

ions and electrons where electron screening is present, the Yukawa potential, which approximates

electron screening, is commonly used for MD simulations of plasmas and is favored for its short-

range interactions and pre-computed form. However, the range of validity of the Yukawa potential

is unknown for different plasma conditions.

While MD “stands alone" as its own simulation method, it may be unable to simulate large

time and length scales that may be required for some applications (see Fig. 1.4). In these situations

coarse-grained methods based on hydrodynamics or kinetic theory are employed. However, coarse-

grained methods still require detailed microscopic information, often from MD simulations, as

“closures." The quality of the microscopic information directly influences the results of the coarse-

grained methods and therefore quantifying the sensitivity of the choice of interaction potential

for MD simulations is crucial for obtaining high-fidelity macroscopic simulations of plasmas.

This chapter2 focuses on the delineation of the accuracy boundary between microscale simulation

methods by comparing a variety of force laws for plasma simulation across awide range of elements,
1See Ref. [23] for an overview of MD.
2The content described in this chapter has been reproduced from Lucas J. Stanek, Raymond C. Clay III, M. W.

C. Dharma-wardana, Mitchell A. Wood, Kristian R. C. Beckwith, and Michael S. Murillo , "Efficacy of the radial
pair potential approximation for molecular dynamics simulations of dense plasmas", Physics of Plasmas 28, 032706
(2021) https://doi.org/10.1063/5.0040062," with the permission of AIP Publishing and has been modified to address
the requirements of this dissertation; see Ref. [87] for the full published article.
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Figure 2.1: Different plasma conditions studied in this chapter; each color corresponds to a different
element. The cases studied here are strongly coupled and span the non-degenerate and degenerate
regimes. For all cases, the Knudsen number 10−6 < Kn < 10−2 where we have chosen a reference
length scale of L = 5 Å which is approximately the size of the simulation cell for all cases. The
diamonds (�) denote the MD simulations for which we have both RPP-MD and KS-MD data. The
circles (•) denote MD simulations for which we only have RPP-MD data.

temperature, and density; these conditions are are shown in Fig. 2.1. As a baseline, we employ

Kohn-Sham density functional theory molecular dynamics (KS-MD) and compare results obtained

from radial pair potential molecular dynamics (RPP-MD). By extracting the optimal RPP from KS-

MD data using force matching, we constrain its functional form and dismiss classes of potentials

that assume a constant power law for small interparticle distances. Our results show excellent

agreement between RPP-MD and KS-MD for multiple metrics of accuracy at temperatures of only

a few electron volts. The use of RPPs offers orders of magnitude decrease in computational cost

and indicates that three-body potentials are not required beyond temperatures of a few eV. Due to its

efficiency, the validated RPP-MD provides an avenue for reducing errors due to finite-size effects

that can be on the order of ∼ 20%.

A wide variety of RPPs have been developed for modeling dense plasmas. In some cases the
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accuracy of themodel can be inferred from its theoretical underpinnings; in other cases, comparison

to higher-fidelity approaches or experiments is needed. Limitations of the RPP approximation are

generally unknown unless compared to an N-body potential simulation result such as KS-MD.

Both KS-MD simulations and this comparison are time-consuming processes that are limited

to the temperature regime in which the pseudopotentials necessary for KS-MD are valid [99,

100]. Moreover, comparisons between RPP-MD and KS-MD are limited in the literature, have

not been carried out for a range of elements and temperatures, and are often validated with

integrated quantities where individual particle dynamics have been averaged and results are subject

to cancellation of errors.

We carry out KS-MD simulations for a range of elements, temperatures, and densities, allowing

for a systematic comparison of three RPP models. While multiple RPP models can be selected

[101–105], we choose to compare the widely used Yukawa potential, which accounts for screening

by linearly perturbing around a uniform density in the long-wavelength (Thomas-Fermi) limit,

a potential constructed from a neutral pseudo-atom (NPA) approach [106–109], and the optimal

force-matched RPP that is constructed directly from KS-MD simulation data.

Each of the models we chose impacts our physics understanding and has clear computational

consequences. For example, success of the Yukawa model reveals the insensitivity to choices in

the pseudopotential and screening function and allows for the largest-scale simulations. Large

improvements are expected from the NPA model, which makes many fewer assumptions with a

modest cost of pre-computing and tabulating forces. The force-matched RPP requires KS-MD data,

and is therefore the most expensive to produce, but it reveals the limitations of RPPs themselves,

since they are by definition the optimal RPP.

Usingmultiplemetrics of comparison betweenRPP-MDandKS-MD including the relative force

error, ion-ion equilibrium radial distribution function g(r), Einstein frequency, power spectrum, and

the self-diffusion transport coefficient, the accuracy of each RPP model is analyzed. By simulating

disparate elements, namely an alkali metal, multiple transition metals, a halogen, a non-metal, and

a noble gas, we see that force-matched RPPs are valid for simulating dense plasmas at temperatures
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above fractions of an eV and beyond. We find that for all cases except for low temperature carbon,

force-matched RPPs accurately describe the results obtained from KS-MD to within a few percent.

By contrast, the Yukawa model appears to systematically fail at describing results from KS-MD at

low temperatures for the conditions studied here validating the need for alternate models such as

force-matching and NPA approaches at these conditions.

In Sec. 2.2 we discuss how RPPs arise from second order perturbation theory and how their

representation influences the shape of g(r) due to particle crowding and/or attraction. Comparisons

between RPPs and KS-MD are done in Sec. 2.3, where we begin by comparing interparticle forces

illustrating how an increase in temperature indicates an increase in accuracy. In addition, the

microfield distribution of forces, Einstein frequency, power spectrum, self-diffusion coefficient,

and g(r) are compared, highlighting how an approximately accurate g(r) does not ensure similar

accuracy in time correlation functions and transport coefficients. A description of howwe accurately

compute the self-diffusion coefficient and its uncertainty when finite-size errors are non-negligible

is given in Sec. 2.3.3. This further emphasizes the need for RPPs, as we minimize finite-size errors

in KS-MD simulations by making the necessary corrections as shown in Sec. 2.3.5. We conclude

by comparing fully converged (in particle number and simulation time) self-diffusion coefficients

to an analytic transport theory; benchmarking its accuracy and providing an effective interaction

correction to extend the range of applicability.

2.2 Models for the Interaction Potential

The theoretical foundations of the models we will compare are described in this section; their

connections are shown in Fig. 2.2. We compare three classes of interactions that are based on

the ionic N-body energy, shown in the top box, pair interactions that are pre-computed and are

analytic or tabulated, shown in the lower-left box, and optimal pair interactions extracted from the

N-body results, shown in the lower-right box. By comparing these three approaches we aim to

answer several specific questions. First, given the nuclear charge Z , ionic number density ni, and

temperature T , what ranges in {Z, ni,T} space are the fast, pre-computed interactions valid and

therefore allow for large-scale heterogeneous simulations? Second, how accurate is the “optimal"
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Figure 2.2: Connections between different portions of this work. N-body potentials, shown in
the top box, are used to validate pair potential models (lower left) and produce optimal tabulated
potentials (lower right). Both pre-computed RPPs and tabulated force-matched RPPs provide finite-
size corrections to KS-MD data; assuming they accurately reproduce the Kohn-Sham potential
energy surface. The tabulated force-matched RPPs highlight the appropriate RRP representation
(e.g., oscillations). The pre-computed RPPs give physical intuition to the representation determined
by the KS-MD data.

pair interaction, and what do its limitations reveal about the need for three-body interactions (and

perhaps beyond)? Can these interactions be used to test and correct for finite-size errors? Third,

can the optimal interactions guide the development of pre-computed interactions? To simplify the

discussion we will consider single species matter with a range of Z , each species at its normal

solid ionic mass density ρi, or in some cases half of that, and in thermodynamic equilibrium at

temperature T . While we do not consider mixtures in here, the framework is general and can be

straightforwardly applied to them.

Assuming the Born-Oppenheimer approximation holds, we define a potential energy surface

for the ions as

Utot = UN (r1, r2, . . . , rN ). (2.1)

Physically, the ionic potential energy surface is determined by the electronic charge distribution

arising from ions at a particular set of coordinates; in general, Eq. (2.1) does not simplify into

sums over pairwise terms. There are two major approaches to obtaining Eq. (2.1) in practice. The
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approach represented by the top box in Fig. 2.2 computes the electronic charge distribution for

each ionic distribution. This is achieved computationally in Kohn-Sham approaches by reducing

the electron many-body problem to a single-electron problem in which the Kohn-Sham electron

moves in the external field of N-ionic centers. The dominant computational cost comes from

solving an No × No set of eigenvalue equations, where No is the number of single-particle orbitals.

Even though the electron many-body problem has been simplified to a one-body problem, matrix

diagonalization incurs a cost of O(N3
o ), and at high temperatures the smearing of the Fermi-

Dirac distribution requires an increasing number of orbitals leading to significant increases in

computational cost. The complexity of the electron charge distribution also demands the use of

an advanced “Jacob’s ladder" of exchange-correlation functions to address the electron many body

problem.

This approach yields an intrinsically ionic N-body potential energy surface; the electronic

density is computed using a description appropriate to the choice of {Z, ni,T}. The second

approach to calculating the potential energy surface is to use a cluster-type expansion, which takes

the form

Utot =

N∑
i

U1(ri) +

N∑
i, j

U2(ri, r j) +

N∑
i, j,k

U3(ri, r j, rk) + · · · . (2.2)

When this expansion can be truncated with only a few terms, interactions can be pre-computed,

and fast neighbor algorithms allow for a very rapid evaluation of forces, typically many orders

of magnitude faster than through use of Eq. (2.1). This allows, for example, for simulations

with trillions of particles [110–112]. However, the disadvantages are that the computational cost

increases rapidly as more terms are included, and the accuracy of a specific truncation and choice

of functional forms with that truncation are not usually known; part of our goal is to assess how

accurate the potential energy surface in Eq. (2.1) can be represented by the first two terms of

Eq. (2.2).
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2.2.1 N-body Interaction Potentials

The most accurate forces are obtained from the gradient of the total energy in Eq. (2.1), which

requires the entire ionic configuration. Although machine learning approaches are enabling the

ability to pre-learn that relationship [113–115], it remains more common to compute the forces

for each ionic configuration during the simulation (“on-the-fly"). We obtain the electronic number

density for each ionic configuration in the Kohn-Sham-Mermin formulation of the density

ne(r) =
∑

i

fi(T)|φi(r)|2, (2.3)

where T is the temperature of the system in energy units, the Fermi occupations are given by

fi(T) =
[
1 + eβ(Ei−µ)

]−1, and the Kohn-Sham-Mermin orbitals φi(r) satisfy[
−

1
2
∇2 + ve f f (r)

]
φi(r) = εiφi(r), (2.4)

where

ve f f (r) = Vext(r) +
∫

dr′
[

ne(r′)
|r − r′|

+
δExc[ne]

δne(r)

]
, (2.5)

is a sum of the external (N ion-electron), Hartree, and exchange-correlation energies. Our KS-MD

simulations were done using the Vienna Ab-initio Simulation Package (VASP) [116–119]. The

finite temperature electronic structure was treated with the Mermin free-energy functional, and

we used the Perdew–Burke-Ernzerhof functional for the exchange correlation energy [120]. To

improve computational efficiency, we eliminated the chemically inactive core electrons with the

projector augmented-wave [121] pseudopotential. Due to the anticipated high temperatures and

small interionic separations, we used the smallest core “GW" pseudopotentials available in VASP.

Here, “GW" denotes that the “GW approximation" has been made; the details of the approximation

can be found in Ref. [122]. Sixty-four atoms (N = 64) were used in these simulations, with

an energy cutoff of 800 eV and at the Baldereschi mean-value k-point [123] for all temperatures

ranging from T = 0.5 to 15 eV. A simulation time step of 0.1 fs was used, and the total simulation

lengths for each case vary and are on the order of a few picoseconds. All KS-MD simulations were

first equilibrated in the NVT ensemble and then carried out in the NVE ensemble where data was

collected.
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2.2.2 Force Matching

After the Kohn-Sham potential energy surface has been computed, we aim to construct a

compact representation of Eq. (2.1) with Eq. (2.2). By assuming a parameterized functional form

for Eq. (2.2), the force-matching procedure [124–129] was used to generate the optimal RPP model

based on the KS-MD force data. From each KS-MD simulation, a dataset of K ≡ 3N M forces (3

force components, N atoms, and M atomic configurations) is obtained. Atomic simulation data at

nearby time points is highly correlated; thus, a stride between atomic configurations was used to

generate 100-200 independent configurations.

With each KS-MD dataset, we determine the optimal RPP for that system by minimizing the

loss function

L(ζ) =
K∑

k=1
wk[Fk(ζ) − F0

k ]
2. (2.6)

Here, ζ is a set of optimizable parameters, Fk(ζ) is the k-th force for the parameterized model

with parameters ζ , F0
k is the k-th force from KS-MD reference dataset, and wk is a weight factor.

The weight factor wk = 1/(F0
k + ε)

2 ensures that both large, and small forces contribute equally to

Eq. (2.6). The parameter ε should be varied for each temperature and element but in most cases

here, ε ≈ 1.

The choice of parameterization can either have a pre-computed functional form, such as

Eq. (2.8), or be determined completely from the data as is the case for a tabulated potential [130]

with spline interpolation – the choice here. For each system, we begin by sampling a Thomas-Fermi

Yukawa (see Sec. 2.2.3) RPP at 15 locations in r and use that as the initial condition for the force-

matching procedure. The Thomas-Fermi Yukawa RPP is sampled such that rmin < r < 8 Å where

rmin is the minimum ionic separation in the KS-MD dataset. To ensure that the core repulsion

and/or attractive oscillation regions are sampled sufficiently, 10 points are placed in the region

where rmin < r < 4 Å, leaving the 5 remaining points to be placed where r > 4 Å. To test for

convergence of the optimal force-matched RPP, two optimization methods were used (specifically

simulated annealing, and differential evolution.) By choosing a tabulated potential form for the

RPP, the explicit form of the model is entirely determined from the KS-MD force data and not
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limited to a fixed functional form.

While the force-matched RPP yields the best RPP to reproduce the KS-MD force data, it could

be the case 3-body and higher interactions are non-negligible. To check this, we selectively employ

the Spectral Neighborhood Analysis Potential (SNAP) which constructs a potential energy surface

from a set of 4-body descriptors (bispectrum components),where each descriptor is independently

weighted, and these weights are determined by regressing against KS-MD data of energies and

forces. A descriptor captures the strength of density correlations between neighboring atoms and

the central atom within a given cutoff distance, details can be found in Refs. [131, 132]. The

parameterization of the SNAP uses descriptors of the local atomic environment capturing up to

4-body interactions when represented in the form of Eq. (2.2), so lower errors associated with

SNAP compared to an optimal RPP are entirely due to 3- and 4-body interactions. While higher

bodied inter-atomic potentials exist in the literature [133], it can be expected there are diminishing

accuracy returns with higher interaction moments, thus SNAP offers a leading order check on the

RPP compared here.

SNAP potentials utilizing 56 bispectrum component descriptors were trained on 10% of the

KS-MD dataset, and additionally tested against an additional 10% to ensure regression errors were

properly minimized and avoided over-fitting of the KS-MD data.

2.2.3 Radial Pair Potentials

As the computational cost of using on-the-fly N-body interactions is often prohibitive, the least

expensive approach utilizes pre-computed RPPs ignoring most of the terms in Eq. (2.2). Many

functional forms for the RPP have been proposed for application to warm dense matter often using

the second-order perturbation-theory interaction energy

u(k) = 〈Z〉2uC(k) + |uei(k)|2 χ(k), (2.7)

which is the standard Fourier-space result [134] written in terms of the mean ionization state 〈Z〉,

the bare Coulomb potential uC(k) = 4πe2/k2, the electron-ion pseudopotential uei(k) and the

susceptibility χ(k).
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In practice, pair interactions are constructed using nearly the same steps as for the N-body

interactions, with the primary difference being that each ion is replacedwith a single “average atom"

(AA), which is an all-electron, non-linear, finite-temperature density functional theory calculation

[12]; such calculations can also be relativistic [135,136]. From theAA, a pseudopotential uei(k) and

an accurate free/valence electron response function χ(k) are constructed and Eq. (2.7) is formed.

This approach has three strengths: (1) typical AA models are not limited to low temperatures, (2)

the interaction Eq. (2.7) can be pre-computed for use in MD, and (3) pair interactions with a fast

nearest neighbor algorithm are very computationally efficient. As we alluded to above, the accuracy

loss attendant to these strengths is what we wish to determine. The AA itself is aware of the ionic

number density ni, which sets the ion-sphere radius ai = (3/4πni)
1/3, and includes the fact that

there is only one ion in the ion sphere, which implies a g(r); this indirect inclusion of higher-order

terms in Eq. (2.2) is true for all AA-based interactions.

Among the simplest variants of Eq. (2.7), one approximates the pseudopotential as uei(k) ≈

−4π〈Z〉e2/k2, where the mean ionization state 〈Z〉 results from a AA calculation [12], and χ(k)

in its long-wavelength (Thomas-Fermi) limit χTF(k); this is known as the “Yukawa" interaction

[104, 137]. Here, we employ a Yukawa interaction with inputs from a Thomas-Fermi AA [88],

which we will refer to as “TFY." This procedure yields an analytic potential in real space of the

form

uTFY (r) =
〈Z〉2e2

r
exp (−r/λTF) , (2.8)

where the electron screening is approximated by the Thomas-Fermi screening length

λ−2
TF =

√
8T
π
F−1/2(βµe), (2.9)

where F−1/2 is the Fermi-Dirac integral of order −1/2, β = 1/T , and µe is the electron chemical

potential. Padé fits of Fermi-Dirac integrals and their inverses are carried out in [138, 139]. An

approximation to these fits [140] yields

λ−2
TF ≈

4πnee2√
T2 + (23 EF)

2
, (2.10)
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where the Fermi energy EF = ~
2(3π2ne)

2/3/2me. Note that the TFY interaction is monotonically

decreasing (purely repulsive). Computationally, the TFY model is highly desirable because of

its radial, pair, analytic form with an exponentially-damped short range. Its weaknesses are

the relatively approximate treatments of uei(k) and χ(k). The TFY model can be extended by

including the gradient corrections to χTF(k), but otherwise retaining the other approximations.

This improvement yields the Stanton-Murillo potential [104]; the gradient correction to χTF(k)

introduces oscillations in the potential in some plasma regimes that are absent in the monotonic

TFY model. Moreover, gradient corrections add improvements to the cusp at the origin and the

large-r asymptotic behavior. Here, however, we will only employ the simpler TFY model.

A great deal of accuracy can be gained by abandoning analytic inputs to Eq. (2.7). In this

case, self-consistent numerical calculations of each of the terms can be carried out, still allow-

ing for pre-computed interactions; there is essentially no computational overhead for tabulated

interactions [130]. Here, we employ a NPA model that yields both the mean ionization state

and its pseudopotential using a Kohn-Sham-Mermin approach, as described above, but with a

finite-temperature exchange-correlation potential; the susceptibility is determined by the Lind-

hard function with local field corrections [107]. Note that the electron-ion pseudopotential uei(k)

introduces additional oscillations on length scales different from χ(k), although the Friedel os-

cillations in χ(k) contribute much more to the pair interaction. Note that the name “NPA" has

been used by many authors to several different average-atom models, and many of them involve

approximations that limit those models to higher temperatures, e.g., T > EF ; however, here we

use the one-center density functional theory model developed by Dharma-wardana and Perrot as

this model has been tested at high temperatures as well as at very low temperatures, and found to

agree closely with more detailed N-center density functional theory simulations and path-integral

quantum calculations where available.

It is worth comparing predictions based on Eq. (2.7) with other forms suggested previously. A

popular RPP for warm dense matter studies is the short-range repulsion interaction, which adds a

long-range, power-law correction to the TFYmodel of the form A/r4 [32,103,141–145]; for A > 0,
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Figure 2.3: NPA RPP for Al at 2.7 g/cm3 and T = 1 eV. Various power laws are valid at different
values of r . The appropriate power law for a given range of r is shaded and denoted with a “2,"
“4," or “6."

this is also a monotonic interaction, with the goal of increasing the strength of the TFY model,

which underestimates the peak height of g(r). In Fig. 2.3, we examine this ansatz by computing

a NPA interaction for Al at solid density and T = 1 eV. To find the “best" power law, we multiply

the NPA interaction by various powers ra to find regions where the interaction is flat; a flat region

with a = 4 would recover the short-range repulsion interaction. It is clear that the A/r4 is only

valid over a very small range of r values; importantly, the NPA interaction shows that the exponent

a increases as r becomes large, which is a true short-ranged interaction - the empirical correction

the short-range repulsion model adds greatly overestimates the strength of the interaction at large

interparticle separations [106]. Worse, the short-range repulsion model potentially gets an accurate

answer for the wrong reason, as we explore in Fig. 2.4.

Because the form of Eq. (2.7) generally has oscillations, the enhanced peak height of g(r) from

the NPA model over the TFY model occurs for two, independent reasons. Attractive regions of the

interaction, as shown in the top panel of Fig. 2.4, can produce very strong peaks in g(r). Conversely,

stronger overall repulsion at intermediate r can lead to a similar g(r) behavior, as shown in the

bottom panel of Fig. 2.4, but with rapid decay of the interaction at larger r . The functional form of

Eq. (2.7) naturally contains both the “crowding" and “attraction" behaviors as special cases. Fig. 2.5
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Figure 2.4: Comparison of TFY and NPA RPPs for C and Al with corresponding g(r) computed
from MD simulation: (a) C at 2.267 g/cm3 and T = 0.5 eV. The increase in magnitude of the first
g(r) peak results, in this case, from particle attraction. (b) Al at 2.7 g/cm3 and T = 1 eV. In this
case, it is particle crowding increases the magnitude of the first g(r) peak.

shows a comparison of the RPPs for C, Al, V, and Au at T = 0.5 and 5 eV. The TFYmodel is purely

monotonic whereas the force-matched and NPA RPPs have attractive and repulsive regions in their

oscillations. Below, we will explore the consequences of these features of the interaction on ionic

transport.

Once the RPPs have been constructed, MD simulations were carried out using in the Large-

scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [146]. For the tabulated RPPs

(force-matched and NPA) a linear interpolation was needed to determine the force value between

tabulation points. To make a direct comparison between the RPP-MD and KS-MD results, all

simulations were carried out in a 3 dimensional periodic box with 64 atoms and a time step of

0.1 fs. The length of each simulation is identical to the corresponding simulation performed with

KS-MD. Keeping these conditions identical avoids the unintentional reduction in statistical errors
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Figure 2.5: The RPP models normalized by temperature versus distance for C, Al, V, and Au. Top
row, T = 0.5 eV: the representation of the RPP is element dependent with strong agreement for
aluminum. Bottom row, T = 5 eV: The agreement between models improves significantly. The
differences in the representation can be connected back to Eq. (2.7) where the treatment of the
mean ionization, electron-ion pseudopotential, and susceptibility define the RPP.

between KS-MD and RPP-MD. All simulations were first equilibrated in the NVT ensemble so that

the average temperature for each simulation during the data collection phase is within 1% of the

reported temperature in Table 2.1. The data collection phase was carried out in the NVE ensemble.

In Sec. 2.3.5, a finite-size effect study was done for the cases of C at 2.267 g/cm3 and V at 6.11

g/cm3 where the total simulation length was increased by 10 times and the number of atoms N

increases from 64 to 256, 3375, and 8000.

2.3 Numerical Results

2.3.1 Force Error Analysis

One metric for establishing the accuracy of approximations to the Kohn-Sham potential energy

surface is to compute relative force errors betweenKohn-Sham force data and a parameterizedmodel

(RPP or many-body potential) for M particle coordinate configurations. For this, we compute the

mean-absolute force error

M AE =
1

3MN

∑
α,i,m

|F(PAR)
α,i,m − F(KS−MD)

α,i,m |, (2.11)
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Figure 2.6: Microfield distributions for C, Al, V, and Au. The observed trends of the microfields
agree with the trends of the self-diffusion coefficients in Table 2.1. In general, when the microfields
are similar to that of KS-MD, the agreement between the self-diffusion coefficient increases. To
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where F(PAR)
α,i,m and F(KS−MD)

α,i,m are the α-th force components (x, y, or z) on the i-th atom in

particle coordinate configuration number m for the parameterized model and the KS-MD force data

respectively.

Note that a direct comparison of the mean absolute error between different elements, tempera-

tures, and densities cannot be done as the distributions of forces associated with systems of different

elements at different thermodynamic conditions are in general quite different. This can be observed

in Fig. 2.6 where a microfield distribution of the force magnitudes is shown. In all cases but C at

2.267 g/cm3 and T = 5 eV, the TFY model peaks at a smaller field value than KS-MD. In contrast,

for C, V, and Au at T = 0.5 eV the NPA RPP peaks at a higher field value than KS-MD. These

trends can be connected back to Eq. (2.7) where the choice of 〈Z〉, uei(k), and χ(k) all contribute

to the construction of a RPP model and hence the force magnitudes. More work needs to be done

to determine how each term influences the RPP model, the predicted forces, and observables.

As the microfield force distributions vary for different elements and temperatures, the mean

absolute error will also vary. To this end, we seek a scale factor for Eq. (2.11) to normalize the

results across the different elements, temperatures, and densities studied here. Such a scale factor

is the “mean absolute force" defined as

M AF =
1

3MN

∑
α,i,m

|F(KS−MD)
α,i,m |. (2.12)

Using Eq. (2.11) and Eq. (2.12), we define the relative force error as

RFE =

∑
i,α,m |F

(PAR)
α,i,m − F(KS−MD)

α,i,m |∑
α,i,m |F

(KS−MD)
α,i,m |

. (2.13)

The metric, Eq. (2.13), has the following desirable property: if the mean absolute error changes

with density or temperature in the same way as the underlying force distribution, the relative force

error will maintain roughly the same value. Therefore, as we change the thermodynamic conditions

for a given element, Eq. (2.13) provides a temperature independent metric as measured with respect

to a KS-MD force data “baseline." Intuitively, when Eq. (2.13) evaluates to 1, the mean absolute
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error is the same order of magnitude as the mean absolute force and when Eq. (2.13) is zero, the

parameterized model is exactly reproducing the per-component KS-MD force data.

Fig. 2.7 displays Eq. (2.13) as a function of temperature for C, Al, V, and Au where general

trends can be observed. One trend is that for most RPPs, the relative force error decrease towards

higher temperatures, which confirms an intuition long held for the validity of the NPA and TFY

models. However, for all systems pictured except C, force matching drastically reduces the relative

force error compared to the NPA and TFY results. Specifically, the force-matched RPPs routinely

achieve a relative force error of roughly 0.05 above T = 5 eV. Except for the case of the NPA RPP

for Al, the NPA and TFY RPPs maintain an error of around 0.2 across the entire the temperature

range.

The second major observation from Fig. 2.7 is that while force-matched RPPs drastically lower

the observed relative force errors across temperatures compared against other RPPs, we immediately

see where a RPP approximation is likely invalid. For example, the relative force error for C using

the force-matched RPP is uncharacteristically high (roughly 0.6) until T = 5 eV. A similar situation

appears for the case of V at T = 0.5 eV where the relative force error for the force-matched RPP

is roughly 0.25. We can demonstrate explicitly that these discrepancies come from the neglect of

3-body and higher interactions by showing relative force errors using a SNAP model. For C, the

relative force error drops from roughly 0.6 using a force-matched RPP to 0.2 using a SNAPmodel at

T = 0.5 eV. Likewise for V, the relative force error drops from roughly 0.25 using a force-matched

RPP to 0.07 using a SNAP model at the same temperature.

Ultimately, it is not the component-wise force or the interaction potential we care about gen-

erating, but rather observables such as g(r) and the self-diffusion coefficient. To address this

connection, we examine correlations between the force error and the self-diffusion coefficient error,

as shown in Fig. 2.8. While there is a general trend with increasing errors in both quantities (shown

with a linear fit), there are also some clear outliers. For the case of C at 2.267 g/cm3 and T = 0.5

eV, we find that the NPA and TFY RPPs produce a self-diffusion coefficient that differs from the

KS-MD result by many factors. However, C under these conditions exists in several charge states
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Figure 2.8: Relative (to KS-MD) self-diffusion error versus the relative force error for C, Al, V,
and Au. The size of each point corresponds to the atomic number. The grey dashed line is a linear
fit to the points showing a positive correlation between self-diffusion error and force error.

with transient bonding; only the NPA accounts for this. This case is marked with arrows in Fig. 2.8.

Conversely, for V at T = 1 eV, the relative self-diffusion percent error is low, yet the relative force

error is high. The imperfect mapping of relative self-diffusion error versus relative force error

suggests that physics beyond a RPP is needed, possibly at least a three-body angular dependence,

but further work is needed.

2.3.2 Radial Distribution Function and The Einstein Frequency

The radial distribution function [125] is a measure of spatial correlations normalized by the

ideal gas. It has been shown that in general, there always exists a RPP that can reproduce g(r) from

a N-body simulation [147], and the force-matching procedure provides an avenue for obtaining

this RPP. Fig. 2.9 compares g(r) computed from MD simulations for all RPP models for C, Al,

V, and Au. Each row corresponds to a different temperature, and clear trends can be observed,

such as the improvement in agreement between models as the temperature increases. We note that

the force-matched RPP always obtains the correct g(r), and the NPA model generally predicts the

location of the first peak but sometimes over-predicts the magnitude or misses the location of the

first peak altogether as observed in the case of V at 6.11 g/cm3 for T = 0.5 eV. The TFY model

always underestimates the magnitude of the first peak height, and the location is usually shifted.
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Figure 2.9: The radial distribution functions for C, Al, V, and Au are shown. The top row
corresponds to T = 0.5 eV, the middle row T = 2 eV, and the bottom row T = 5 eV. The
force-matched RPP always reproduces the g(r) obtained from KS-MD.

Insight into the connection between the g(r) peak height and the the self-diffusion coefficient

can be obtained from the normalized velocity autocorrelation function [148]

Z(t) =
〈v(t) · v(0)〉
〈v(0) · v(0)〉

, (2.14)

where v(t) is the velocity of a particle at time t and 〈·〉 is an ensemble average over particles and

time. A short time expansion of Eq. (2.14) yields

Z(t) = 1 −Ω2
0

t2

2!
+ · · · , (2.15)

where Ω0 is the Einstein frequency

Ω
2
0 =

4πρi

3mi

∫ ∞

0
dr r2g(r)∇2u(r), (2.16)

where mi is the ion mass in grams. The Einstein frequency gives insight into the relationship

between u(r) and g(r), highlighting how different regions are weighted more or less depending
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Figure 2.10: The integrand of the Einstein frequency Eq. (2.16). All integrands are consistent with
values reported in Table 2.1 as the self-diffusion coefficient decrease as the integral of the Einstein
frequency increases. This allows for a “by eye" comparison of the self-diffusion coefficient from
different RPP models.

on the curvature of u(r). In Fig. 2.10, the integrand of Eq. (2.16) is shown. For the TFY model,

the integrand is always smaller than those predicted by force-matched and NPA RPPs. The area

under each curve in Fig. 2.10 can be directly connected to the self-diffusion coefficient through the

Green-Kubo relation (in 3 dimensions)

D =
T
m

∫ ∞

0
dt Z(t), (2.17)

by substituting, Eq. (2.15) into Eq. (2.17). Doing so shows that the TFY model will always predict

a larger self-diffusion coefficient than the force-matched or NPA model as the area under these

curves is larger. This is confirmed later when the self-diffusion coefficients are explicitly calculated

as discussed in Sec. 2.3.3.

2.3.3 Self Diffusion

Another approach to compute the self-diffusion coefficient is via the the slope of the mean-

squared displacement from the Einstein relation

D = lim
t→∞

〈|r(t) − r(0)|2〉
6t

. (2.18)
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Figure 2.11: Self-diffusion coefficients for different elements and densities versus temperature. The
numerical values are reported in Table 2.1. For all cases all models predict values that have roughly
the same order of magnitude. The only case where the force-matched RPP fails to reproduce the
KS-MD self-diffusion coefficient is for C at 2.267 g/cm3 and T = 0.5 eV. The TFY RPP model
generally predicts larger self-diffusion coefficients, which is consistent with the Einstein frequency
in Fig. 2.10. Note that the NPA RPP model, in contrast, agrees with results obtained from the
force-matched RPP and KS-MD models very well.

Both Eqs. (2.17) and (2.18) can be used to compute the self-diffusion coefficient and have been

shown to be equivalent [149]. Here, the self-diffusion coefficient has been calculated from a linear

fit to the mean-squared displacement, 〈|r(t) − r(0)|2〉.

Due to finite-size effects, two problems arise when computing the slope and uncertainty of the

linear fit. First, we must ensure that the linear fit is carried out in the late-time linear regime of the

mean-squared displacement. Second, we dismiss statistically unconverged late-time behavior of

the mean-squared displacement where the ensemble average contains sparse amounts of data. To

remedy both of these concerns, we uniformly randomly sub-sample the mean-squared displacement

100 timeswith 10 points along each sub-sample. Next, a linear fit is determined for each sub-sample,

and the standard deviation of the sub-sample slopes is computed. Once the standard deviation is

known, a cutoff time is calculated by determining the point in time that the standard deviation of

the sub-sample fits is less than half of the standard deviation computed from sub-sample fits to the
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entire mean-squared displacement. The simulation data for the mean-squared displacement after

the cutoff time is discarded, and the fitting procedure described above is repeated. The average,

and standard deviation of the fits to the reduced dataset yield self-diffusion coefficient and the

uncertainty in the fit respectively and are reported in Table 2.1.

Given the values for the self-diffusion coefficient reported in Table 2.1, we can answer the

following question: at what temperature are computationally inexpensive models adequate? To

do this, we compute the relative self-diffusion coefficients DNPA/DKS−MD and DTFY/DNPA. For

example, the top panel in Fig. 2.12 suggests that NPA models may be accurate from T = 1 eV and

above if the target error tolerance is 50% of the self-diffusion coefficient computed from KS-MD.

Similarly in the bottom figure, the TFY model is generally accurate to within 50% of the NPA

model from T = 5 eV and beyond.

Two important observations can be made from the trends in Fig. 2.12. The top panel illustrates

temperatures at which an N-body potential is needed and when NPA is adequate. The bottom panel

shows a comparison with TFY, which has the simplest uei(k) and χ(k), and we see temperatures at

which TFY becomes comparable to NPA, suggesting when we can exploit simpler approximations

for those inputs.

2.3.4 Power Spectrum

The self-diffusion coefficient is useful for comparing and quantifying the accuracy of RPP

models and transport theories, but in order to assess how accurately the particle dynamics are

reproduced, we look at the power spectrum of the velocity autocorrelation function Z(t)

Z̃(ν) =
∫ ∞

0
dt cos (2πνt) Z(t). (2.19)

In Fig. 2.13, we compare Z̃(ν) calculated using TFY, force-matched, and NPA RPPs against results

obtained from KS-MD. We find that with the exception of low temperature C and V, force-matched

RPPs agree with the KS-MD results across the entire frequency range. This, combined with the low

relative force errors and accurate reproduction of static properties discussed previously, indicates

that the the force-matched RPPs accurately approximate the Kohn-Sham potential energy surface.
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Element ρi (g/cm3) T (eV) DKS−MD DFM DTFY DNPA
Li 0.513 0.054 1.4 ± 0.13 1.27 ± 0.054 5.6 ± 0.39 1.26 ± 0.077

C 2.267 0.47 2.4 ± 0.12 9.3 ± 0.20 11.0 ± 0.60 1.69 ± 0.060
1.0 18.6 ± 0.7 27.2 ± 0.77 25 ± 1.64 11.0 ± 0.45
2.0 46 ± 1.68 49 ± 1.0 42 ± 3.70 43 ± 3.86
4.9 85 ± 5 94 ± 5.82 106 ± 5.37 92 ± 3.45
10.0 – – 215 ± 4.49 151 ± 4.63
15 – – 266 ± 3.46 198 ± 5.10
20 – – 349 ± 7.60 249 ± 2.35
28 – – 423 ± 13.28 324 ± 12.17

Al 2.7 0.1 – – 1.6 ± 0.14 0.35 ± 0.0217
0.50 3.8 ± 0.16 4.1 ± 0.13 9.17 ± 0.099 3.9 ± 0.11
1.1 9.8 ± 0.30 9.4 ± 0.11 17.5 ± 0.70 8.5 ± 0.44
2.0 18.7 ± 0.50 18.8 ± 0.68 34.8 ± 0.52 18.8 ± 0.40
4.9 48 ± 3.56 49 ± 3.17 72 ± 3.03 54 ± 2.7
9.2 83 ± 1.63 84 ± 5.67 122 ± 5.83 94 ± 8.80
10.0 – – 131 ± 6.77 105 ± 13.53
15.4 134 ± 3.68 129 ± 3.37 169 ± 5.26 142 ± 6.17
20.0 – – 197 ± 5.21 151 ± 2.55
30.0 – – 252 ± 4.74 203 ± 6.44

Ar 1.395 0.48 10.7 ± 0.43 12 ± 1.03 19 ± 1.10 –
1.0 20.1 ± 0.89 26 ± 3.0 39 ± 2.22 –
2.0 48 ± 1.75 45 ± 2.84 85 ± 8.75 –
5 – – 143 ± 6.55 171 ± 4.09
10.0 – – 210 ± 14.53 179 ± 6.21
15.0 – – 235 ± 13.34 193 ± 11.95
20.0 – – 255 ± 6.73 209 ± 8.91
30.0 – – 268 ± 2.73 228 ± 8.26

V 6.11 0.49 2.25 ± 0.050 2.86 ± 0.079 3.9 ± 0.18 0.91 ± 0.027
1.0 5.5 ± 0.21 6.5 ± 0.16 7.9 ± 0.36 6.6 ± 0.15
2.1 11.6 ± 0.78 12.5 ± 0.68 17.8 ± 0.74 14.8 ± 0.50
4.8 24.2 ± 0.63 24.7 ± 0.88 41 ± 2.76 27.7 ± 0.90
9.5 46 ± 3.41 42 ± 2.65 68 ± 2.10 47.6 ± 0.93
14.6 53 ± 1.81 57 ± 3.25 84 ± 4.83 63 ± 1.19
20.0 – – 103 ± 6.10 82.7 ± 0.78
30.0 – – 134 ± 8.57 96 ± 1.86

Table 2.1: The self-diffusion coefficient for all systems. For each RPP model, the number of
particles, time step, and simulation length were kept identical for each element, density, and
temperature. Finite-size corrections are carried out in Sec. 2.3.5.
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Table 2.1 (cont’d)

Element ρi (g/cm3) T (eV) DKS−MD DFM DTFY DNPA
V 3.055 0.5 9.0 ± 0.81 11.3 ± 0.29 8.7 ± 0.23 –

0.97 14.7 ± 0.47 15.4 ± 0.43 19 ± 1.39 –
2.0 23 ± 1.13 24 ± 1.84 31 ± 1.26 27 ± 1.84
4.9 47 ± 4.38 44 ± 2.52 66 ± 7.30 48 ± 2.02

Fe 7.874 0.51 2.13 ± 0.047 2.34 ± 0.042 2.84 ± 0.030 –
1.1 5.27 ± 0.098 5.5 ± 0.16 5.9± 0.39 –
2.1 10.4 ± 0.72 10.4 ± 0.73 14.8 ± 0.46 9.2 ± 0.47
5.0 20.4 ± 0.61 22.0 ± 0.97 32 ± 1.41 27.1 ± 0.19
10.4 35 ± 1.14 38 ± 1.40 54 ± 1.25 49 ± 2.90
15.0 – – 83 ± 5.18 60 ± 2.60
20.0 – – 97 ± 2.93 70 ± 1.04
30.0 – – 103 ± 4.69 83.0 ± 0.94

Fe 3.937 0.51 6.0 ± 0.39 8.5 ± 0.94 6.2 ± 0.21 –
1.1 15.8 ± 0.70 15.6 ± 0.67 14.4 ± 0.33 –
2.1 20 ± 1.18 22 ± 2.07 27 ± 1.28 –

Au 19.30 0.52 0.92 ± 0.028 0.71 ± 0.084 1.67 ± 0.12 0.51 ± 0.042
1.1 2.0 ± 0.11 1.92 ± 0.088 3.9 ± 0.42 1.66 ± 0.069
1.9 4.0 ± 0.14 3.4 ± 0.15 6.6 ± 0.16 3.52 ± 0.05
5.0 7.8 ± 0.40 8.2 ± 0.21 15.3 ± 0.63 10.7 ± 0.50
9.7 14.4 ± 0.64 15 ± 1.19 25 ± 1.94 16.6 ± 0.86
15.0 19.82 ± 0.80 22 ± 2.56 30 ± 1.95 25 ± 2.79
20.0 – – 39 ± 3.49 28.0 ± 0.97
30.0 – – 56 ± 2.23 33 ± 1.26

For higher temperatures, the NPA RPP is very similar to the force-matched RPP for low and high

frequencies for all elements. For T = 0.5 eV, the dynamics predicted from the NPA model are

noticeably less similar to those from KS-MD where NPA underestimates the prevalence of low-

frequency modes in Au and both low and high-frequency modes in V. Interestingly, the NPA RPP

captures the single-particle dynamics of low temperature C very well, but Figs. 2.5 and 2.9 indicate

that this agreement comes at the expense of sacrificing the accuracy of static properties. Lastly, the

TFY RPP exhibits roughly the same trends across all elements and temperatures– overestimation

of the low frequency modes and underestimation of the high-frequency modes except for the case

of C at 2.267 g/cm3 and T = 5 eV where excellent agreement with KS-MD is observed.

35



0 5 10 151.0

0.5

0.0

0.5

1.0

D
N

PA
/D

KS
M

D
1

(a)

0 10 20 30
T (eV)

1

0

1

2

3

4

D
TF

Y/D
N

PA
1 ×1/2

(b) C (2.267 g/cm3)
Al (2.27 g/cm3)
V (6.11 g/cm3)
Fe (7.874 g/cm3)
Au (19.30 g/cm3)

Figure 2.12: Relative self-diffusion coefficients. The shaded region brackets the range of −0.5 and
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region. The NPA RPP fails to reproduce the KS-MD results at T = 0.5 eV, revealing a temperature
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2.3.5 Finite-Size Corrections

Generally, thousands or even millions of atoms are needed to approximate the thermodynamic

limit [88, 110]. While the KS-MD framework provides an accurate description of the electronic

structure and the N-body potential is determined on-the-fly, corrections for finite-size effects must

be considered. When the shear viscosity η of the system is known, finite-size corrections can be

determined from [150]

D∞ = DN +
ξT

6πηL
, (2.20)

where D∞ is the self-diffusion coefficient in the thermodynamic limit, DN is the self-diffusion

coefficient computed from a system of finite number of particles N , and ξ = 2.837297 for cubic
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Figure 2.13: The normalized power spectrum for C, Al, V, and Au. For C at T = 0.5 eV, the single
particle dynamics are poorly described by the TFY and force-matched models but more accurately
described with the NPA model. As the temperature increases from T = 0.5 to 5 eV, all models
more accurately reproduce small and high frequency dynamics with the most notable improvement
for C.

simulation boxes with periodic boundary conditions. When η is unknown, multiple simulations of

increasing particle number are carried out, and a linear fit is used to determine D∞. Results from

this procedure are shown in Fig. 2.14 where D∞ is determined via linear extrapolation to 1/L = 0.

By finding the percent difference in D∞ and DN , we approximate the errors from finite-size

effects in the KS-MD self-diffusion coefficient at these conditions. The approximate error in KS-

MD for the case shown in Fig. 2.14, is ∼ 20%. While the error will vary with {Z, n,T}, the impact

of finite-size effects is significant. From this study, the most promising approach is to fully converge

the NPA MD results, using force-matched RPPs when necessary (for low temperatures T . 1 eV).

Finite-size corrections allow for a direct comparison to analytic transport theories, namely the

Stanton-Murillo model [151]. The Stanton-Murillo model, provides a closed form solution for ionic

self diffusion by using an effective interaction potential in a Boltzmann kinetic theory framework.

The major benefit of this model is that the computation of ionic transport is nearly instantaneous.

However, its applicability in the cold dense matter and warm dense matter regimes is unknown.

The results in Table 2.2 show that the effective interaction approach of the Stanton-Murillo
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Figure 2.14: Finite-size effect study for V at 6.11 g/cm3 and T = 2 eV. Identical MD simulations
were carried out with increasing particle number. Extrapolating with a linear fit (grey dashed line)
to 1/L = 0 approximates the thermodynamic limit, correcting the values in Table 2.1.

model captures much of the many-body physics included in the TFY RPP results. The main

weakness of the model, and also TFY, is therefore the functional form of the interaction they

employ, as the differences with the force-matched and NPA columns reveal. Because self diffusion

is a relatively simple transport coefficient [151], more work is needed to quantify these trends for

other transport properties.

With the converged self-diffusion data, we generate an effective interaction correction to the

Stanton-Murillo model. The effective interaction corrected Stanton-Murillo model is

DCSM = α(Z,T)DSM, (2.21)

where α(Z,T) is determined by fitting the ratio of the self-diffusion coefficient from the best

performing RPPmodel and the self-diffusion coefficient computed from the Stanton-Murillo model

DSM to the functional form

α(Z,T) =
aerf(bT)

bT
+ 1, (2.22)

which asymptotes to DSM as T increases. Here the “best performing RPP model" refers to the RPP

model that most accurately reproduced the self-diffusion coefficient computed from 64 particle
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Element T (eV) DFM DNPA DTFY DSM DCSM
C 0.47 10.55 2.14 12.66 13.08 2.14

1.0 32.44 14.21 25.57 26.11 13.87
2.0 56.70 43.12 51.14 50.53 39.23
4.9 99.51 109.55 117.88 118.34 106.76
10.0 – 169.91 210.76 217.34 206.71
15.0 – 219.99 296.21 293.54 284.10
20.0 – 256.33 342.15 356.41 348.04
28.0 – 327.32 470.10 439.44 432.07

V 0.49 4.14 1.01 5.42 6.76 4.39
1.0 8.54 8.53 11.53 12.26 7.96
2.1 15.67 18.87 22.56 23.14 15.03
4.8 28.72 31.34 42.42 46.25 30.18
9.5 49.49 54.90 73.76 77.10 51.16
14.6 66.98 74.44 99.82 99.78 67.97
20.0 – 87.90 118.24 117.89 83.15
30.0 – 105.60 143.63 141.66 106.94
50.0 – 131.84 175.35 171.07 143.02
75.0 – 178.34 202.93 194.31 172.91
100.0 – 209.50 207.20 211.86 194.36

Table 2.2: Self-diffusion coefficient in the thermodynamic limit. Both elements are at solid density
(2.267 g/cm3 for C, and 6.11 g/cm3 for V).

KS-MD simulations. The parameters a and b are reported in Table 2.3 for C at 2.267 g/cm3 and

V at 6.11 g/cm3, and their values vary considerably between both cases emphasizing the need for

a comprehensive finite size effect study to produce correction factors for additional elements and

conditions. This correction factor allows for the use of the Stanton-Murillo model in regions of

previously unknown accuracy. The finite-size corrections along with the corrected Stanton-Murillo

model results are shown Fig. 2.15 with the numerical values given in Table 2.2. Note that for low

temperature C at 2.267 g/cm3, the best performing RPP model was NPA (as reported in Fig. 2.11

and Table 2.1) explaining why the corrected Stanton-Murillo model tends towards the NPA RPP

at low temperatures. For V at 6.11 g/cm3, the best performing RPP model was the force-matched

RPP again explaining the low temperature trend.

In an attempt to summarize our work in a single figure, Fig. 2.16 shows our suggested use

cases for all RPPs studied here for two relative self-diffusion accuracies computed from Table 2.1.
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Figure 2.15: Self-diffusion coefficient versus temperature in the thermodynamic limit. The points
displayed here are taken from Table 2.2. (a) Self-diffusion coefficient for C at 2.267 g/cm3. (b)
Self-diffusion coefficient for V at 6.11 g/cm3. The Stanton-Murillo model (denoted SM) fails for
low temperature C. For V, the Stanton-Murillo model shows excellent agreement with the force-
matched RPP even at low temperatures. The validity of the Stanton-Murillo model is extended to
low temperatures with an effective interaction correction (denoted CSM).

Element a b
C (2.267 g/cm3) 2.198 -1.032
V (6.11 g/cm3) 0.03767 -0.3112

Table 2.3: Coefficients a, and b for the effective interaction correction Eq. (2.22). Note that the
values of a and b vary considerably for each element.
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When points (the average value or its uncertainty) for a given model are within the appropriate

tolerance (30% for the top panel and 15% for the bottom panel), we consider the model as being

accurate for that temperature and element and is denoted with a colored bar or arrow. We rank the

computational expense from lowest to highest as: TFY, NPA, force matching, and KS-MD.When a

computationally cheaper model is accurate, it replaces the more computationally expensive model

in Fig. 2.16. Based on trends observed in Figs. 2.7, 2.12, and 2.15, we assume that the models

remain accurate for higher temperatures and illustrate this by upward pointing colored arrows.

For example, consider the case of Fe in the top panel of Fig. 2.16. The force-matched RPP is

accurate to within 30% of the KS-MD result from T = 0.5 eV and up. The NPA model, which is

computationally cheaper than the force-matched RPP, becomes accurate (within 30% of KS-MD)

at T = 2 eV and up, hence the transition between the force-matched and NPA models. For Al, the

NPA RPP is within 15% of KS-MD at all temperatures. However, at T = 15 eV the TFY model

becomes accurate therefore replacing the NPA RPP.

2.4 Conclusions and Outlook

A systematic study of various RPPs for molecular dynamics simulations of dense plasmas was

performed for a wide range of elements versus temperature for solid and half-solid density cases.

Of the RPPs studied here, RPPs constructed from a NPA approach come closest to accurately

reproducing the transport and structural properties predicted by KS-MD. The failures of NPA for

metals near T = 0.5 eV are expected: V is a polyvalent metal and s-d hybridization occurs in Au,

which is not treated at all in our variant of the NPA model. Thus, it is unclear if inaccuracies in

NPA reveal the need for N-body interactions or an improved NPA treatment. Moreover, finite-

size corrections to KS-MD are seen to be significant; prior work on Si suggests that at least 108

particles are needed to accurately treat elements like C at low temperatures [152]. Studies on C and

Si where there are transient covalent bonding at low temperatures have raised the inadequacy of

the PBE XC-functional that has been used here. In [152], the SCAN functional was used showing

remarkable agreement between VASP calculations and NPA results for super-cooled high-density

Si. This implies that VASP calculations for systems in the low temperature warm dense matter
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Figure 2.16: Suggested use cases for RPPs based on the relative self-diffusion coefficient error
(between RPP-MD and KS-MD) and cheapest computation cost. The top and bottom panels
correspond to a 30% and 15% relative error respectively. The elements denoted with a subscript of
“1/2" corresponds to half solid density (V at 3.055 g/cm3 and Fe at 3.937 g/cm3). The colored bars
indicate the computationally cheapest RPP that generates a self-diffusion coefficient to within the
specified error tolerance available for that system based on Table 2.1. The empty space under each
bar indicates regions where no KS-MD data was collected so no assessment on a RPPs accuracy
can be made.
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regime become sensitive to the choice of the XC-functional. Similarly, the XC-functionals for

transition metals like V, Fe, etc., are known to need Hubbard-type corrections that are not included

in our studies. Although this work does not fully resolve these issues, the trends seen for the lowest

temperature for C, V and Au should be examined in detail in future work. Additionally, the NPA

model is exceptionally accurate for Al. As Al is a free electron metal, its electronic structure is

well described as a Fermi-Liquid, the precise physical model in which NPA performs well. In

the cases where the electronic structure of the system is not well described as a Fermi-liquid, the

performance of the NPA model decreases at low temperature, further emphasizing the need for a

comprehensive study over a range of elements and conditions.

As in previous works [89,103], the TFYmodel predicts the least structured g(r). Notionally, the

accuracy of the TFY model appears to follow the machine learning trend of 〈Z〉/Z > 0.35 [153],

although it was not possible to use all models here at high enough temperatures to be quantitative.

In contrast, the NPA model with its improved Kohn-Sham treatment and use of a pseudopotential

in Eq. (2.7) eliminates most of these errors except for C and V at T = 0.5 eV, elements for which we

would recommend NPA for T > 2 eV. Because we examined seven diverse elements over the warm

dense matter regime, the accuracy of NPA (and for moderate temperature, even TFY) suggests that

no additional “short-range repulsion" [32, 103, 141–145] is needed beyond Eq. (2.7); as Eq. (2.7)

does not contain core-core repulsion, the structure of the interaction is more likely to be effective

core-valence repulsion captured by uei(k), as well as structure in χ(k) beyond χTF(k). However,

we note, that in treating weakly ionized systems like warm-dense Ar with a mean ionization of

〈Z〉 = 0.3, some 70% of the Ar atoms are neutral, while about 30% of the atoms are singly ionized.

Thus, the neutrals interact via a core-core interaction screened by the free electrons. In such cases

the use of Eq. (2.7) alone is inadequate. The NPA model treats such a two-component mixture

using three pair potentials. In general, core-core interactions are important for weakly-ionized

atoms with a large core. These core-core interactions can be readily calculated using the core-

electron density obtained from the NPA Kohn-Sham calculation. As expected, the force-matched

RPP reproduced the g(r) computed from KS-MD for all cases. In only one case, again C at 2.267
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g/cm3 and T = 0.5 eV, the force-matched RPP overestimated the self-diffusion coefficient; this

suggests that the spherical pair interaction isn’t applicable, and non-spherical corrections, which

could include three-body contributions, are needed as suggested by the near-perfect agreement of

the SNAP and KS-MDmicrofield of force magnitudes in Fig. 2.6. However, for all cases considered

with T > 1 eV, the g(r) and self-diffusion coefficient are adequately described by a RPP. With the

force-matched-validated NPA interaction, pre-computing the interaction allows for much larger

pair-potential simulations.

As fast analytic expressions for transport coefficients are needed for hydrodynamic modeling,

we compared our self-diffusion results from all models to the Stanton-Murillo model for both C

and V. In both cases, the Stanton-Murillo model was consistent with the TFY model (on which it is

based) and both have agreement with force-matched-based results. The error between the Stanton-

Murillo model and the force-matched results is < 65% below T = 10 eV for V and < 25% below

T = 5 eV for C, adding confidence to the use of this model in hydrodynamics models above that

temperature. For experiments that are rapidly heated above a few eV, little time is spent where the

errors are large; because the transport coefficients are numerically very small during this transient

heating, negligible transport can occur during that time. For example, note that the V diffusion

coefficient varies by a factor of about 30 in the rangeT = 0.5 to 100 eV. Conversely, for experiments

that dwell at lower temperatures, we provide a RPP-based correction factor to the Stanton-Murillo

model with an error of less than 1% for C at T = 0.5 eV and 6% for V at T = 0.5 eV.

Our results suggest several new avenues of investigation. From a data science perspective, larger

collections of systematically-obtained simulation results would aid in better defining accuracy

boundaries. In particular, more elements that produce more material types should be studied.

For mixtures, N-body potentials could be explored; here, we cast all of the pair potentials as

heteronuclear. Additionally, our conclusions are based on studies of the microfield distribution

of forces, Einstein frequency, power spectrum, self-diffusion coefficient, and g(r), which could be

extended to include other properties such as viscosities and interdiffusion in mixtures, electrical

conductivity, thermal conductivity, and ion-dynamical properties like the speed of sound [109].
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While we focused primarily on force matching, effective interaction potentials can be obtained

through “structure matching" [125,154,155]. Finally, as very large scale simulations become more

common, spatially heterogeneous plasmas can be modeled; much less is known about potentials in

such environments, although recent work has explored non-spherical potentials [88].
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CHAPTER 3

ANALYTIC MODELS FOR INTERDIFFUSION IN DENSE PLASMAMIXTURES

3.1 Introduction

The contents of Chapter 2 were focused on assessing the validity of force laws for MD simu-

lations of plasmas of a single ion species. In this chapter1, we extend our study to binary plasma

mixtures where we focus on formulating analytic models for the interdiffusion coefficient.

Interdiffusion, which is atomic-scale mixing driven by density gradients, occurs in extremely

disparate physical systems. Early experimental work in alloys addressed interdiffusion at interfaces

between solids [157–159]. The interpretation of these experiments led to the development of early

theories in an attempt to quantify observed effects [160]. Interdiffusion remains important for

industrial applications and has been studied in the context of neutral liquids [161, 162] and liq-

uid metals [163–165]. In stellar environments, interdiffusion controls the distribution of elements

throughout the star, impacting its evolution [166–168]. Additionally, diffusive mixing of thermonu-

clear fuel in inertial confinement fusion experiments [169] can spoil the burn conditions through

radiative losses [170–174]. Recent large-scale MD simulations [88] of heated plasma interfaces

have exposed many complex issues: multiple ionic temperatures, jetting of light particles across

the interface, uncoupled velocity fields, and intense electric fields. Experimental data for these

processes is minimal, but has motivated several current experiments [175–179].

Despite progress in the theory of interdiffusion and charged particle transport [180], several

gaps remain. In contrast with its one-particle counterpart, self diffusion, interdiffusion, a collec-

tive property, is investigated relatively rarely. In most computational studies of interdiffusion, the

thermodynamic factor is set to unity [102, 148, 181, 182]. While this may be accurate in some

cases [161], a complete exploration across physical regimes for a wide range of mixtures is lacking.

This has been addressed only recently in work that employed MD to create a data set of thermody-

namic factors [183]. Computation of the relevant autocorrelation function, and the thermodynamic
1The content of this chapter has been reproduced from Lucas J. Stanek and Michael S. Murillo , “Analytic models

for interdiffusion in dense plasmamixtures", Physics of Plasmas 28, 072302 (2021) https://doi.org/10.1063/5.0047961"
with the permission of AIP Publishing; see Ref. [156] for the full published article.
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factor, is subject to finite-size effects [184]. These effects are particularly important when compu-

tational models are very expensive, as is the case with on-the-fly potentials [87]. Because of these

computational issues, there is a lack of interdiffusion data within the dense-plasma community.

Seen from a data-science perspective, binary interdiffusion is at least seven dimensional: one must

specify, among other choices of variables, the mean density, stoichiometry, temperature, charge,

andmass of each species. If the interparticle potentials have other dependencies, then additional pa-

rameters must be used. Machine learning has been applied to this setting and has shown promising

results [183]. In practice, it is preferable to employ validated theoretical models that are very rapid

to compute [151,185,186]; more work is needed to validate such models in this seven-dimensional

space.

We begin Sec. 3.2 by stating the definitions used here to define a binary mixture, and we show

how the interdiffusion coefficient arises from hydrodynamic equations of motion. In Sec. 3.3, we

derive analytic forms for the thermodynamic factor that cover a wide range of plasma conditions;

these forms employ both the radial distribution function and the structure factor. Lastly, in Sec. 3.4,

we derive a rapidly computable analytic expression for the interdiffusion coefficient in a binary ionic

mixture (BIM). We compare this result to MD data, revealing excellent agreement in moderately

and strongly coupled regimes.

3.2 Interdiffusion

The description of interdiffusion, and the values of the interdiffusion coefficients, are not unique.

In this section, we review various formulations of interdiffusion and establish the conventions and

notations we will use. For simplicity, we examine only binary plasmas; we consider a binary

plasma that contains Ni ions of each species “i, ” with charge Zie and mass Mi. Note that in

contrast to Chapter 2, here we denote the mean ionization of species i as Zi instead of 〈Zi〉. The

total number of ions in the system is N = N1 + N2. We assume that the ionic species are in

thermodynamic equilibrium at inverse temperature β = 1/T and that the electrons are at inverse

temperature βe = 1/Te. The average number and mass densities are ni and ρi = Mini, respectively,

with corresponding total densities n = n1+ n2 and ρ = ρ1+ ρ2. Additionally, we define the number
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and mass concentrations as xi = ni/n and ci = ρi/ρ, respectively.

The mean ionization and mass of the binary mixture are given as

〈Zα〉 ≡ x1Zα
1 + x2Zα

2 , (3.1)

〈M〉 ≡ x1M1 + x2M2, (3.2)

where α ∈ R. From Eqs. (3.1) and (3.2), we define zi = Zi/〈Z〉 and mi = Mi/〈M〉. Lastly, we

define the Coulomb coupling parameter of the ions as

Γ0 =
e2

aT
, (3.3)

where

a =
(
4πn

3

)−1/3
(3.4)

is the total ion-sphere radius. Note that Eq. (3.3) does not depend on the mean ionization of the

ions. To include the mean ionization of the ions, we define

Γii′ =
Zi Zi′e2

aT
= Zi Zi′Γ0. (3.5)

We now begin our discussion of interdiffusion by defining the microscopic density and velocity

fields as

ni(r, t) =
Ni∑
j=1

δ[r − ri, j(t)], (3.6)

ui(r, t) =
Ni∑
j=1

vi, j(t)δ[r − ri, j(t)]. (3.7)

In Eqs. (3.6) and (3.7), the index j refers to the jth particle of species i. The time evolution of the

density Eq. (3.6), using Eq. (3.7), yields the continuity equation

∂ni(r, t)
∂t

= −∇ · [ni(r, t)ui(r, t)] . (3.8)

Equation (3.8) is not closed until we specify the evolution of the velocity field ui(r, t); it is such

closures that yield diffusion equations. However, in many physical systems, including plasmas, the
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flow fields can be complex and the velocity field must also be evolved as part of a hydrodynamic

description. As the fluid density evolves in time, both advection and diffusion occur. To isolate

diffusion from advection, we define the diffusive flux ji(r, t) relative to a reference frame as

ji(r, t) = ni(r, t) [ui(r, t) − uref(r, t)] , (3.9)

where uref(r, t) is a reference velocity. The choice of the reference velocity uref(r, t) is problem

dependent and some common choices are listed in Table 3.1. Written in terms of the reference

velocity, the continuity equation becomes

∂ni(r, t)
∂t

+ ∇ · [ni(r, t)uref(r, t)] = −∇ · ji(r, t). (3.10)

The diffusion model and the values of the diffusion coefficients depend on the choice of reference

velocity. While the reference-velocity field is assumed to be evolved by a separate equation, the

closures for the diffusive flux are usually in the form of a slowly varying ansatz.

Most hydrodynamic models employ mass densities rather than number densities. In this

scenario, natural choices for the reference velocity and fluxes are the center-of-mass velocity (see

Table 3.1) and

ji(r, t) = ρi(r, t) [ui(r, t) − ucom(r, t)] , (3.11)

respectively. With Eq. (3.11) as the choice for the diffusive flux, we can propose a closure of the

form

ji(r, t) = −Dx∇x, (3.12)

where the mass density flux is driven by forces caused by x with proportionality Dx; again, there

is considerable leeway in how these quantities are chosen. Different choices for the diffusive flux

will yield different proportionality coefficients that have different physical meanings. Two of the

most common choices for x are the chemical potential and the number density; these choices yield

the diffusive fluxes [148,187–189]

ji(r, t) = −
1
T

Dµ∇µi(r, t), (3.13)

49



and

ji(r, t) = −Dn∇ni(r, t), (3.14)

respectively. For the specific choices of x in Eq. (3.13) and (3.14), the relationship between Dµ and

Dn is given by the thermodynamic factor [187, 190], which is addressed in Sec. 3.3. In a plasma

hydrodynamics context, it is reasonable to choose to write the diffusive flux as [191]

ji(r, t) = −ρ(r, t)D∇ci(r, t), (3.15)

where D is the interdiffusion coefficient. Note that Eq. (3.15) assumes that particle fluxes are not

driven by other gradients (e.g., temperature, pressure, electrostatic potential, etc.) or that other

gradients are present but are collectively in equilibrium. Although we presume a separate time-

evolution equation for uref(r, t) in Eq. (3.10), the slowly varying form of Eq. (3.15) is assumed for

ji(r, t).

It is worth summarizing the steps taken so far. To arrive at Eqs. (3.10) and (3.15), many

non-unique choices were made. Perhaps more importantly, the form of Eq. (3.15) is an ansatz that

may or may not be accurate for a given plasma scenario. The use of a chemical-potential gradient is

associated with a special state referred to as “mechanical equilibrium,” [189] in which the pressure

and temperature gradients have already relaxed; thus, the flux is not driven by gradients in those

quantities. A generalized form for Eq. (3.15) may be needed to account for baro- and thermo-

diffusion processes [70, 192, 193], for example. Nevertheless, in this work, we will proceed under

the assumptions that the diffusive flux is given by Eq. (3.15).

One can obtain a Green-Kubo relation consistent with these choices [188]. The interdiffusion

coefficient is calculated as [181]

D =
J

3N x1x2

∫ ∞

0
dt〈j(t) · j(0)〉, (3.16)

where j(t) is the interdiffusion current defined as

j(t) = x2

N1∑
j=1

v1, j(t) − x1

N2∑
j=1

v2, j(t). (3.17)
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Name Reference Velocity

barycentric (center of mass) ucom =
∑
i=1

ρi

ρ
ui

mean molar velocity ummv =
∑
i=1

ni

n
ui

mean volume velocity umvv =
∑
i=1

ρiviui

Table 3.1: Possible choices for the reference velocity. Here, vi is the partial molar volume of species
i.

In reduced form, the interdiffusion coefficient is given by

D∗ = D/ωpa2, (3.18)

ω2
p =

4πn〈Z〉2e2

〈M〉
, (3.19)

where ωp is the “hydrodynamic" plasma frequency [181]. The evolution of the interdiffusion

current is assumed to be stationary and to include all interparticle interactions. The brackets 〈· · · 〉

represent an ensemble average over initial conditions (time and position) of the interacting plasma

mixture. The prefactor J is the thermodynamic factor [191]

J =
x1x2

Scc(k = 0)
, (3.20)

where Scc(k) is the concentration-concentration structure factor that can be decomposed into partial

structure factors as

Scc(k) = x1x2[x2S11(k) + x1S22(k) − 2
√

x1x2S12(k)]. (3.21)

Models for the partial structure factors are discussed in Sec. 3.3.

Many researchers [186, 194–198] have explored a simplified form of Eq. (3.16) known as the

Darken relation [160]. We revisit the derivation of this relation to assess its utility formodeling dense

plasma mixtures. Key to obtaining the Darken relation is isolating the intraparticle contributions

51



from the interparticle contributions, as in

D =
J

3N x1x2

∫ ∞

0
dt〈j(t) · j(0)〉

=
J x2
3N x1

∫ ∞

0
dt

〈
N1∑
j=1

v1, j(t) ·
N1∑

j ′=1
v1, j ′(0)

〉
+
J x1
3N x2

∫ ∞

0
dt

〈
N2∑
j=1

v2, j(t) ·
N2∑

j ′=1
v2, j ′(0)

〉
−

2J
3N

∫ ∞

0
dt

〈
N1∑
j=1

v1, j(t) ·
N2∑

j ′=1
v2, j ′(0)

〉
. (3.22)

Although all particles are interacting and the ensemble average 〈. . .〉 is taken over initial conditions

of the interacting system, we can define a type of self-diffusion coefficient in analogy with the

single-species case as

Di =
1

3Ni

∫ ∞

0
dt

〈
Ni∑
j=1

vi, j(t) · vi, j(0)

〉
=

1
3

∫ ∞

0
dt

〈
vi, j(t) · vi, j(0)

〉
( j = 1, 2, · · · , Ni). (3.23)

Note that self diffusion refers to only intraparticle correlations (independent of species), whereas

interparticle correlations (of any species) are described by the terms [188,199]

fii =
1

3N

∫ ∞

0
dt

〈
Ni∑
j=1

Ni∑
j ′, j

vi, j(t) · vi, j ′(0)

〉
, (3.24)

f12 =
1

3N

∫ ∞

0
dt

〈
N1∑
j=1

N2∑
j ′=1

v1, j(t) · v2, j ′(0)

〉
. (3.25)

Note that fii and f12 are intraspecies and interspecies contributions, respectively. Finally, we arrive

at the form

D = J

[
x2D1 + x1D2 + x1x2

(
f11

x2
1
+

f22

x2
2
− 2

f12
x1x2

)]
. (3.26)

The Darken relation is obtained by assuming that the third term vanishes, yielding

D ≈ J(x2D1 + x1D2). (3.27)

The Darken relation has direct application to systems for which experimental measurements yield

D1 and/or D2 [198]; in a computational setting, no such limitation exists.
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Figure 3.1: The interdiffusion coefficient, Eq. (3.16), and the Darken relation, Eq. (3.27) versus
time. An MD simulation was carried out for a H+-He2+ BIM where N = 2000 particles, x1 = 0.5,
ni = 1.62 × 1028 cm−3, and T = 14.7 eV. Each point is calculated from a subset of the total
simulation length (ωpt = 51946). The value of D∗ for the total simulation time is shown as a
dotted (using Darken) or dashed [using Eq. (3.16)] line. The Darken relation has smaller statistical
uncertainty but converges to the incorrect value.

Note that use of the Darken relation does not impact MD simulations needed to create trajectory

information; the Darken relation reduces the post analysis to two autocorrelation functions rather

than five. Thus, the Darken relation potentially produces a less accurate result for a small improve-

ment in computational cost. However, it is possible that the terms that the Darken relation retains

have smaller statistical fluctuations, thereby allowing for a smaller MD trajectory calculation (as

well as the faster post-MD analysis). We explore this hypothesis in Fig. 3.1 by performing MDwith

increasingly longer trajectories to identify when the statistical errors in the full autocorrelation,

Eq. (3.26), are comparable to the Darken relation, Eq. (3.27). We find that, indeed, the full form of

Eq. (3.26) has larger statistical errors and Eq. (3.27) converges more quickly. However, the mean

value of the full autocorrelation is either consistent with the mean value from the Darken relation or

better. Thus, suggesting that there is no penalty for using the full form even for small simulations.

Moreover, converged full results are easily obtained with a modestly longer simulation. Here, we

will always use the full result.
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3.3 Thermodynamic Factor

Once the values of Eqs. (3.23), (3.24), and (3.25) have been converged in particle number

and simulation length, it remains to compute the prefactor J in Eq. (3.26). Typically, J is

taken to be unity [102, 148, 181, 182, 200], often in analogy with neutral (Lennard-Jones) systems

[161,201,202]. Other non-unity forms have been suggested [191,194] but have been explored very

little. Comprehensive MD results have been obtained recently [183] in the context of the Darken

relation.

The thermodynamic factor can be obtained from integral equation theory, which gives the radial

distribution functions [148] as

gii′(r) = exp [−βuii′(r) + hii′(r) − cii′(r) + Bii′(r)] , (3.28)

where uii′(r) is a pair potential [87], hii′(r) = gii′(r) − 1 are the pair correlation functions, cii′(r)

are the direct correlation functions (DCFs), and Bii′(r) are the bridge functions [203]. While many

choices for uii′(r) are possible, a BIM assumes the form of

uBIMii′ (r) =
Zi Zi′e2

r
. (3.29)

The binary Yukawa model (BYM) includes effects from electron screening (e.g., Thomas-Fermi

screening) and has the form

uBYMii′ (r) =
Zi Zi′e2

r
e−r/λTF, (3.30)

λ−2
TF ≈

4πnee2√
T2

e +
(

2
3 EF

)2
, (3.31)

where EF = ~
2(3π2ne)

2/3/2me for electron number density ne and mass me. Note that in con-

trast to Chapter 2, the Thomas-Fermi screening length, Eq. (3.31), now depends on the electron

temperature; here, the ions and electrons are assumed to have different temperatures.

Equation (3.28) is a closure to the Ornstein-Zernicke equations (OZEs) that are given by

hii′(r) = cii′(r) +
∑

k

nk

∫
d3r′ cik(|r − r|′)hki′(r′). (3.32)
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For weakly to moderately coupled plasmas, we can employ the hypernetted chain approximation

by setting Bii′(r) = 0 which allows us to find gii′(r) given uii′(r).

After Fourier transformation, the pair correlation functions can be defined in terms of partial

static structure factors [148] given by

Sii′(k) = δii′ +
√

xi xi′nhii′(k). (3.33)

For a two-component mixture, we can write hii′(k) in terms of the DCFs as
h11

h12

h22


=


1 − n1c11 −n2c12 0

0 1 − n1c11 −n2c12

0 −n1c21 1 − n2c22



−1 
c11

c12

c22


. (3.34)

We can write the partial structure factors Sii′(k) (i, i′ ∈ {1, 2}) in terms of the direct correlation

functions (DCFs) cii′(k) as [148,204,205]

S12(k) =
√

x1x2nc12(k)
∆(k)

, (3.35)

S11(k) =
1 − x2nc22(k)
∆(k)

, (3.36)

S22(k) =
1 − x1nc11(k)
∆(k)

, (3.37)

where

∆(k) = [1 − x1nc11(k)] [1 − x2nc22(k)] − x1x2n2c2
12(k). (3.38)

Various approximations for theDCFs yield corresponding approximations forJ . We give examples

of such approximations in Secs. 3.3.1, 3.3.2, and 3.3.4 where we derive the thermodynamic factor

from approximations of the DCFs for the following cases: classical weakly coupled plasmas,

two-temperature electron-ion plasmas, partially degenerate dense plasmas, and strongly coupled

plasmas. In Sec. 3.3.3, we derive the thermodynamic factor from estimates of the radial distribution

functions (RDFs) gii′(r), showing equivalence to the DCF approach.

When the system is at high temperature, transport coefficients will have the largest numerical

value; thus, the thermodynamic factor in that limit is an important special case. Therefore, we
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expand the exponential in Eq. (3.28) to obtain

cii′(r) = −βuii′(r), (3.39)

which is referred to as the mean-field limit. Substituting Eq. (3.39) into Eq. (3.34) allows us to

compute hii′(k) directly; using hii′(k), J can easily be found in k-space from Eq. (3.33). Using

Eq. (3.39) and setting Bii′(r) = 0 in the nonlinear form, Eq. (3.28), we arrive at an approximation

for the RDFs in r-space

gii′(r) ≈ exp[hii(r)]. (3.40)

Now, given an interaction potential uii′(r), the pair correlation function hii′(r) in Eq. (3.40) can be

obtained by solving Eq. (3.34) for hii′(k) and applying an inverse Fourier transform. Specifically,

when uii′(r) = uBYMii′ (r), we have a non-linear (NL) model for the RDFs

gii′(r) ≈ exp
(
−
Γii′

r
e−r k̃t

)
, (3.41)

where k̃t =
√
κ2 + 3x1Γ11 + 3x2Γ22 is the dimensionless total screening wavevector, and κ =

a/λTF . Notice the effective potential in Eq. (3.41) depends on the total screening length from all

species, which arose from solving the mixture OZE in Eq. (3.34). Effective potentials with wider

applicability beyond Eqs. (3.39) and (3.34) will be discussed in Sec. 3.3.4.

3.3.1 Classical Mean-Field Approximation

As mentioned in Sec. 3.3, hot plasmas that are classical and weakly coupled have the largest

interdiffusion coefficients; mixing processes are rapid in such plasmas. Apart from some astro-

physical plasmas, most laboratory plasmas have separate electron and ion temperatures; we allow

for an independent electron temperature dependence through the effective ionic pair interaction.

For two-temperature hot plasmas, we assume a standard Debye-Hückel model, which is expressed

in terms of the mean-field DCF form, Eq. (3.39).

For plasma mixtures, the DCF can be written in Fourier space as

cii′(k) ≈ −
4πZi Zi′e2β

k2 + k2
e

. (3.42)
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Electronic screening of the ionic Coulomb interaction enters through the wavevector

k2
e = 4πe2βene. (3.43)

Using Eq. (3.42), the partial structure factors are

S12(k) = −
√

x1x2Z1Z2k2
r

k2 + k2
e + k2

1 + k2
2
, (3.44)

S11(k) =
k2 + k2

e + k2
2

k2 + k2
e + k2

1 + k2
2
, (3.45)

S22(k) =
k2 + k2

e + k2
1

k2 + k2
e + k2

1 + k2
2
, (3.46)

in terms of reference and ionic species wavevectors

k2
r = 4πe2βn, (3.47)

k2
i = 4πZ2

i e2βni, (3.48)

respectively. Note the general trends that S12(k) < 0 and 0 < Sii(k) < 1. Moreover, in the

long-wavelength limit, there is no dependence on e2, and when βe = β, there is no temperature

dependence, except possibly through the Zi.

Using the intermediate results, Eqs. (3.44) - (3.46), inEq. (3.21), the concentration-concentration

structure factor is then

Scc(k) =
x1x2(k2 + k2

e + k2
r 〈Z〉

2)

k2 + k2
e + k2

r 〈Z2〉
. (3.49)

Taking the long-wavelength limit (k → 0) of Eq. (3.49) and using Eq. (3.20), we have

JDH =
βe〈Z〉 + β〈Z2〉

βe〈Z〉 + β〈Z〉2
. (3.50)

Equation (3.50) is the main result of this subsection and will be derived below in Eq. (3.69) using

the RDFs to show the equivalence of the two approaches. The first terms in both the numerator

and denominator arise from electronic screening; while Eq. (3.43) implies that the screening is

given by classical electrons, the electronic wavevector could instead be chosen to include electron

degeneracy via Thomas-Fermi screening, Eq. (3.31).
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Note that Eq. (3.50) generalizes a prior result for a one-temperature plasma [194,206],

J 1T-DH =
〈Z〉 + 〈Z2〉

〈Z〉 + 〈Z〉2
, (3.51)

to two temperatures. Note that with this generalization we can examine the limit βe → 0 for fixed

β (i.e., the limit in which the electrons have a much higher effective temperature than the ions); in

that limit, Eq. (3.51) reduces to the known BIM limit [191],

JBIM =
〈Z2〉

〈Z〉2
. (3.52)

Unless otherwise noted, we use a Thomas-Fermi ionization model to determine the mean ionization

state of each species in the mixture [151].

To assess the importance of electron screening in computing the thermodynamic factor, we

compare calculations from Eqs. (3.51) and (3.52) as shown in column (a) of Fig. 3.2. At high

temperatures, where ionization increases, the value of J increases. Additionally, when the number

concentration differs (top and bottom rows), we find that the asymptotic value of J also differs.

Column (b) shows the dependence of the value of J on ionization by using Eq. (3.51) for different

combinations of fully ionized plasmas of species with charges Z1 and Z2. We see that as the

difference in charge between the ion species increases, J also increases and is maximized in the

most extreme case (e.g., H-Og mixtures). Column (c) shows the value of J in the two-temperature

setting via Eq. (3.50); a strong dependence of J on the electron temperature is evident. The red

diagonal line indicates where T = Te, which is equivalent to using Eq. (3.51). The region above

the red line (T < Te) corresponds to plasmas produced using lasers in laboratory experiments. The

region below the red line (T > Te) shows common scenarios of plasmas produced by shocks.

It is worth commenting on the ideal-gas limit of J ; the results in Fig. 3.2 reveal that J , 1. For

neutral systems, such as Lennard-Jones systems, J is typically of order unity [161] and is strictly

unity in the ideal-gas limit. The ideal-gas limit can be recovered by choosing cii′(r) = 0, which

yields Scc(k) = 1. However, the plasma case is qualitatively different from neutral systems [191].

Note that Eq. (3.51), which we expect to be accurate in hot plasmas, has no temperature dependence

above temperatures at which a plasma is fully ionized. At very high temperatures, J has a constant,
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(a) (c)(b)

laser produced 
plasmas

shock produced 
plasmas

laser produced 
plasmas

shock produced 
plasmas

Figure 3.2: (a) Comparison of the thermodynamic factor J for a H-Ar binary mixture at n = 1022

cm−3. The subscript “1" denotes H, and “2" denotes Ar. In the top row, x1 = 0.5; in the bottom row,
x1 = 0.6. Curves for J computed from Eqs. (3.51) and (3.52) are shown with their corresponding
high temperature limiting values as dashed lines. (b) Contour lines show the thermodynamic factor
for fully ionized mixtures (ranging from H to Og), calculated using Eq. (3.51). The contours show
that J increases with the difference in charge between the species. The value of J is lowest for
mixtures where Z1 ≈ Z2. When x1 > x2, J increases more quickly with Z1 than with Z2. (c)
Contours show J for the H-Ar mixture of (a) computed from the DH model Eq. (3.50), where
T̃ = T/eV and T̃e = Te/eV. Note that J tends to unity as the ion temperature increases which is
equivalent to setting β = 0 in Eq. (3.50). The red line along the diagonal shows where T = Te,
the situation described by Eq. (3.51). The region above the red line shows a typical scenario for a
laser produced plasma. The region below the red line shows typical scenarios for shock produced
plasmas.
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non-unity value unless 〈Z2〉 = 〈Z〉2. The lack of an ideal-gas limit can be traced to the fact

that screening decreases with increasing temperature because the interaction strength increases

with temperature; unlike Lennard-Jones systems, plasmas have explicit temperature-dependent

interactions that strengthen both as ionization increases and as screening decreases, yielding a J

that tends to a constant, non-unity value at high temperatures. Mathematically, this can be seen by

the fact that at very high temperatures J depends on charge ratios that are inherent to the plasma

composition. The exception to this rule is the two-temperature plasma case in which there are very

cold electrons (βe →∞) and very hot ions (β→ 0), which yields Scc(0) → 1. (The inverse of this

limit, βe →∞, is the BIM case.) Cold electrons and hot ions could occur in a plasma shock wave;

however, degeneracy plays a role in that low electron-temperature limit and predictions based on

the models discussed so far are inadequate. Thus, we now turn to treating electronic degeneracy

and exchange.

3.3.2 Yukawa Screening

We generalize the classical result, Eq. (3.50), to dense plasmas in which the electrons can be

partially degenerate. We retain the functional form of Eq. (3.42) but allow for a more general

form of the electron screening length k−1
e ; we will refer to such a model generically as a “Yukawa"

model. As in the previous subsection, we allow for separate electron and ion temperatures.

The electronic wavevector in our Yukawa model is given by

k2
e−TF =

1
λ2

TF

, (3.53)

The electronic screening contribution now has a degeneracy correction through the Thomas-Fermi

screening length λTF , Eq. (3.31), which generalizes Eq. (3.50) to

JTF =
βTFe 〈Z〉 + β〈Z

2〉

βTFe 〈Z〉 + β〈Z〉2
, (3.54)

where

βTFe =
1√

T2
e +

(
2
3 EF

)2
. (3.55)
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Importantly, βTFe is finite for Te → 0 (βe → ∞). We can add a finite-temperature exchange-

correlation (XC) contribution [12, 104, 207] to obtain the modified Yukawa electronic wavevector

k2
e−XC =

1
λ2

TF − γ0
, (3.56)

where γ0 is defined as

γ0 ≈
~2βeθ

8me
[h(θ) − 2θh′(θ)], (3.57)

and we employ the form

h(θ) =
N(θ)

D(θ)
tanh(θ−1), (3.58)

N(θ) = 1 + 2.8343θ2 − 0.2151θ3 + 5.2759θ4, (3.59)

D(θ) = 1 + 3.9431θ2 + 7.9138θ4, (3.60)

where θ = Te/EF . These steps yield the thermodynamic factor

JXC =
βXCe 〈Z〉 + β〈Z

2〉

βXCe 〈Z〉 + β〈Z〉2
, (3.61)

where our final effective inverse electron temperature is

βXCe =
1√

T2
e +

(
2
3 EF

)2
− 4πnee2γ0

. (3.62)

The XC correction has the effect of lowering the effective temperature relative to its over-estimated

Thomas-Fermi value.

3.3.3 Kirkwood-Buff Approach

All of the above derivations were preformed in k-space. However, approximate forms for the

partial structure factors, and therefore J , can be obtained through standard approximate forms for

the RDFs. The partial structure factors are related to the RDFs by

Sii′(k) = δii′ +
√

nini′

∫
d3r [gii′(r) − 1] eik·r. (3.63)

In the long-wavelength limit, Eq. (3.63), reduces to

Sii′(0) = δii′ +
√

nini′

∫ ∞

0
dr 4πr2 [gii′(r) − 1] , (3.64)

61



where δii′ is the Kronecker delta. The integral that appears here is related to the well-known

Kirkwood-Buff integrals [183, 208, 209]

Gii′ =

∫ ∞

0
dr 4πr2 [gii′(r) − 1] , (3.65)

which, using Eq. (3.21), yield

J =
1

1 + x2n1 (G11 + G22 − 2G12)
. (3.66)

With approximate forms for the RDFs, we can construct predictions for J .

Approximate RDFs can be constructed in different limits. Because transport coefficients tend

to be largest in hot plasmas,We first consider J in the high temperature limit. For example, hot

plasmas are well described by Debye-Hückel theory, which, for a BYM, yields the RDFs and

Kirkwood-Buff integrals

gii′(r) ≈ 1 − β
Zi Zi′e2

r
e−ktr, (3.67)

Gii′ = −4πβZi Zi′e2k−2
t , (3.68)

resulting in

JDH =
βe〈Z〉 + β〈Z2〉

βe〈Z〉 + β〈Z〉2
. (3.69)

Note that Eq. (3.69) is identical to Eq. (3.50) but has been derived in r-space. Here, kt =√
k2

e + k2
1 + k2

2 is the total screening wavevector and ke is given by Eq. (3.43). Note that by using

alternative forms of ke [e.g., Eqs. (3.53) or (3.56)] as inputs to kt , we would arrive at Eqs. (3.54)

and (3.61) respectively.

All results for analytic expressions of the thermodynamic factor, namely Eqs. (3.50), (3.54),

and (3.61), have relied on the mean-field approximation, Eq. (3.39). While these results are

applicable for hot plasmas, we wish to quantify conditions for which these analytic expression may

fail. We begin by comparing estimates of the RDFs via Eq. (3.41) to results from MD simulation.

Molecular dynamics simulations of a H-He BYMwere carried out for a range of Γ0 with N = 10000

particles and x1 = 0.5, using standard techniques. Figure 3.3 shows the RDFs for MD simulations
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Figure 3.3: Hydrogen-helium RDFs generated from aMD simulation (solid lines) for a H-He BYM
with N = 10000 particles and n = 1023cm−3 using standard techniques. Note that Γ22 denotes the
Coulomb coupling between the He ions. For the weakly coupled case (Γ22 = 0.14), the RDFs have
been vertically displaced by unity for clarity. The NL model accurately reproduces the RDFs for
Γ22 = 0.14, but fails at strong coupling (Γ22 = 75) whereas the NL-SC model shows reasonable
agreement.

corresponding to two values of Γ22: a weakly coupled case (Γ22 = 0.14), and a strongly coupled

case (Γ22 = 75). At Γ22 = 0.14, the NL approximation Eq. (3.41), shown with dashed lines, agrees

with the MD results, differing most notably at small r . For the case of strong coupling (Γ22 = 75),

the NL approximation fails and a strong-coupling correction is needed. Following [151], such a

correction is introduced in the dimensionless total screening wavevector

k̃SCt =

√
κ2 +

∑
i

3xiΓii

1 + 3 (〈Z〉/Zi)
1/3
Γii
. (3.70)

Together, Eqs. (3.70) and (3.41) result in a NLmodel with a strong-coupling correction (NL-SC) for

the RDFs. We observe that the RDFs from the NL-SCmodel, shown with dotted lines for Γ22 = 75,

show reasonable agreement with the MD results, revealing that the substantial improvement that

Eq. (3.70) provides. The most notable improvement is observed in the “Coulomb hole" region.

For MD simulations, finite-size corrections to Eq. (3.65) must be considered [210] yielding

GFS
ii′ =

∫ ∞

0
dr 4πr2[gii′(r) − 1]

(
1 −

3x2

2
+

x3

2

)
, (3.71)
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Figure 3.4: Thermodynamic factor for a H-He BYM. Note that Γ22 denotes the Coulomb coupling
between the He ions in the mixture. The details of the MD are the same as in Fig. 3.3. The
thermodynamic factor was computed from MD using Eq. (3.71). The grey dashed line denotes
J = 1. We note that the mean-field approximation for J , Eq. (3.54), denoted as TF, begins to fails
for Γ22 > 2.

where x = r/L and L is the cutoff distance. Here, we chose L to be half the side length of the

cubic simulation cell. Calculations of J via Eq. (3.71) are displayed in Fig. 3.4. We find that

Eqs. (3.54), and (3.41), show excellent agreement with MD at weak coupling with less than a 2%

error at Γ0 = 0.01. The models remain accurate until roughly Γ0 = 11 where the error increases

to 12% for Eq. (3.54) and 14% for Eq. (3.41). Thus, based on results from Figs. 3.3 and 3.4, we

conclude that the mean-field approximation, Eq. (3.39) and corresponding thermodynamic factors,

Eqs. (3.50) - (3.52), (3.54), and (3.61), should only be used when Γ22 < 2; for Γ22 > 2, an alternate

approach to treating strong coupling, which results in an analytic form for J , is explored in the

next section.

3.3.4 Strongly Coupled Plasmas

In Secs. 3.3.1 and 3.3.2 we obtain results that include ion and electron screening, electron de-

generacy, finite temperature exchange, separate electron and ion temperatures, and strong coupling

through the electronic wavevector Eq. (3.70). However, the absence of oscillatory behavior limits
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their applicability to moderate coupling. In this subsection, based on numerical results from the

hypernetted chain approximation for a BYM, we formulate a DCF to capture oscillations in Sii′(k)

and gii′(r). Our DCF model for strongly coupled plasmas is given in real space by an “empty-core”

form

cii′(r) =


−βuii′(rc

ii′), r < rc
ii′,

−βuii′(r), r > rc
ii′,

(3.72)

uii′(r) =
Zi Zi′e2

r
e−ker, (3.73)

rc
ii′ =

Γii′dii′

1 + Γii′
. (3.74)

where dii′ is the distance of closest approach. To determine dii′, one can measure the “Coulomb

hole" portion of the RDFs (see Fig. 3.3). However, in order to produce an analytic expression for J

that does not rely on computing the RDFs, we approximate dii′ ≈ aii′, where aii′ = (4πnii′/3)−1/3

and

nii′ =


(ni + ni′)/2, i = i′,

n, i , i′.
(3.75)

Note that the DCF above could use any of the electronic wavevectors defined up to this point;

therefore, we denote the electronic wavevector generically as ke. Note that Eq. (3.72) reduces to

the mean-field form, Eq. (3.39), in the limit Γii′ → 0. In Fourier space, we find that

cii′(k) = −
4πZi Zi′e2β

k2 + k2
e
Λii′(k), (3.76)

where

Λii′(k) =
k2 + k2

e

krc
ii′

e−kerc
ii′

[ sin(krc
ii′) − krc

ii′ cos(krc
ii′)

k2 +
kerc

ii′ sin(krc
ii′) + krc

ii′ cos(krc
ii′)

k2 + k2
e

]
. (3.77)

The factor Λii′(k) is the strong-coupling correction factor, which has the long-wavelength limit

Λii′(0) =

(
1 + kerc

ii′ +
k2

erc
ii′

2

3

)
e−kerc

ii′ . (3.78)
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The partial structure factors are then

S12(k) = −
√

x1x2Z1Z2k2
r

k2 + k2
e + Λ11(k)k2

1 + Λ22(k)k2
2
Λ12(k), (3.79)

S11(k) =
k2 + k2

e + Λ22(k)k2
2

k2 + k2
e + Λ11(k)k2

1 + Λ22(k)k2
2
, (3.80)

S22(k) =
k2 + k2

e + Λ11(k)k2
1

k2 + k2
e + Λ11(k)k2

1 + Λ22(k)k2
2
, (3.81)

from which the concentration-concentration structure factor can be obtained.

Our final form for the thermodynamic factor that allows for two temperatures, degeneracy and

strong coupling is then

JTF-SC =
βTFe 〈Z〉 + βT(0)
βTFe 〈Z〉 + βB(0)

, (3.82)

T(0) = x1Z2
1Λ11(0) + x2Z2

2Λ22(0), (3.83)

B(0) = x2
1 Z2

1Λ11(0) + x2
2 Z2

2Λ22(0) + 2x1x2Z1Z2Λ12(0), (3.84)

where we have used the electronic wavevector Eq. (3.31).

We compare the impact of each screening model on J in Fig. 3.5 for a H-Ar mixture at density

n = 1022cm−3 for x1 = 0.5. In panel (a), screening is approximated via aDebye-Hückel formulation,

Eq. (3.50). In (b), the addition of degeneracy with Eq. (3.54) changes the low-temperature behavior

of J . In (c), the XC correction Eq. (3.61) once again changes the low-temperature behavior of J .

The regions where βXCe < 0 or θ < 0.1 have been omitted as the XC correction either fails (in the

case of negative screening) or may be inaccurate (when θ < 0.1 [207]). Additionally, the accuracy

of the XC correction is unknown for θ > 12; as a result, we set γ0 = 0 and recover Eq. (3.31). Panel

(d) shows the impact of strong coupling; the value of J is lower at lower ion temperatures in this

case than in the cases shown in panels (a) and (b).

To assess the validity of the analytic expressions for J we have derived, Table 3.2 shows a

comparison of different forms of J and results from MD simulation or the hypernetted chain

approximation. For the strongly coupled H+-C4+ BYM, the strong-coupling correction, Eq. (3.82),

is accurate to the hypernetted chain results to within 6%. For the moderately coupled H+-Al6+

BYM, Eq. (3.61) is within 5% of the MD data.
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(a) (b)

(d)

XC correction unsuitable

(c)

Figure 3.5: Comparison of J for a H-Ar plasma at n = 1022cm−3 for x1 = 0.5. As in Fig. 3.2,
T̃ = T /eV and T̃e = Te/eV. (a) The electrons are treated classically with Debye-Hückel screening,
Eq. (3.50). (b) Degeneracy is included with Thomas-Fermi screening, Eq. (3.54). (c) An XC
correction is added, Eq. (3.61), which fails in the region below the dashed horizontal line. The
failure occurs because either θ < 0.1 (as described in Ref. [207]) or βXCe < 0. (d) Strong coupling
is included, Eq. (3.82). The red line shows the case in which T = Te; this case is equivalent to
Eq. (3.51).
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Figure 3.6: The mixture partial structure factor S12(k), Eq. (3.79), of a H+-C4+ BYM at n =
5 × 1023 cm−3, where x1 = 0.5 and T = 1.7 eV. The hypernetted chain results, denoted as HNC,
were obtained from Ref. [211]. The strong-coupling correction, Eq. (3.79), with distance of closest
approach estimated from the RDFs of the HNC results is denoted as rc,HNC

ii′ . The strong-coupling
correction using Eq. (3.75), is denoted as rc

ii′. When rc
ii′ = 0, we obtain the mean-field result,

Eq. (3.44). Note that the strong-coupling correction accurately approximates k = 0 and predicts
oscillations.

Additionally, we compare the results of the S12(k) with a hypernetted chain calculation [211].

In Fig. 3.6, we evaluate Eqs. (3.44) and (3.79) using Eq. (3.31). The distances of closest approach

dii′ are approximated from the corresponding RDFs in Ref. [211]. Specifically, their values are

d11 = 0.5, d12 = 0.9, and d22 = 1.25. The prediction for Eq. (3.79) using these values of dii′ is

denoted as rc,HNC
ii′ in Fig. 3.6. For the entire domain of k, Eq. (3.79) shows reasonable agreement

with the hypernetted chain calculations, and excellent agreement is achieved as k → 0. Predictions

of the partial structure factor are also computed by using Eq. (3.79) with the distance of closest

approach from Eq. (3.75), are denoted as rc
ii′. The predictions show reasonable agreement as k → 0.

The agreement in this limit increases our confidence in the resulting thermodynamic factor from

Eq. (3.79).

3.4 Interdiffusion Models

The previous sections have focused on approximations toDCFs and the resulting thermodynamic

factors. We now turn our focus to two analytic models for the interdiffusion coefficient, including
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an analytic expression for the BIM autocorrelation function. The models are then compared with

MD data for a H+-He2+ BIM.

3.4.1 BIM Gaussian Autocorrelation Function

We begin by deriving an analytic expression for the interdiffusion coefficient of a BIM. To

do this, we rewrite the Green-Kubo result of Eq. (3.16) in terms of a normalized autocorrelation

function J(t) as

J(t) =
〈j(t) · j(0)〉
〈j(0) · j(0)〉

, (3.85)

D =
J

β〈M〉m1m2

∫ ∞

0
dtJ(t). (3.86)

Given the known behaviors of autocorrelation functions at short and long times [148, 212], we

propose a Gaussian ansatz [213] for J(t) of the form

J(t) = exp
(
−Ω2t2/2

)
, (3.87)

which satisfies d2J(0)/dt2 = −Ω2. Here,Ω is the Einstein frequency associated with interdiffusion;

Hansen et al. [181] compute this quantity for a BIM and obtain

Ω =
ωp
√

3

√
x1m2

1z2 + x2m2
2z1

m1m2
, (3.88)

which is the familiar relation between the hydrodynamic plasma frequency Eq. (3.19) and the

Einstein frequency generalized to a BIM [181]. Statistical mechanics reveals that autocorrelation

functions are even in time [148] and decay to zero; these requirements are approximately satisfied

with a Gaussian ansatz. For a normalized autocorrelation function, this is a single-parameter model

that can be computed analytically for the case of a BIM [181]. Such an ansatz is reasonably accurate

for strong coupling, although in principle, a richer ansatz could be used [212] if more parameters

could be determined (e.g., fit to MD data).

The reduced interdiffusion coefficient in this Gaussian approximation is then

D∗GAF =
J
√

6π

3〈Z〉2Γ0

√
x1m3

1m2z2 + x2m1m3
2z1

. (3.89)

69



0 5 10 15 20 25
pt

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

J(t
)

H + -He2 + , x1 = 0.5, 0 = 39.79 MD
GAF

Figure 3.7: Autocorrelation function for a H+-He2+ BIM versus time. The system conditions are
the same as described in Table 3.2, and we compute Ω/ωp = 0.87. The GAF approximates the
early-time decay of the autocorrelation function calculated from MD data.

We will refer to the above model as the Gaussian autocorrelation function (GAF) model. Taking

the GAF model together with the thermodynamic factors from Sec. 3.3, we have a complete, albeit

approximate, analytical model of interdiffusion. We compare an autocorrelation function calculated

using the Gaussian ansatz, Eq. (3.87), to one computed fromMD simulation data of H+-He2+ BIM

in Fig. 3.7. We see that the early-time decay of J(t) computed using the GAF is comparable to that

found with a direct computation fromMD data. The GAF model, Eq. (3.89), is most accurate when

the decay is roughly exponential, as is the case for strongly coupled plasmas. The GAF model

relies on the cancellation of oscillations in the integral of the autocorrelation function to generate

an accurate value for the interdiffusion coefficient.

Such a simple result arises only for a BIM. Below, we will explore the accuracy of the GAF

model compared with a transport theory that has been derived from an effective interaction potential

in a Boltzmann kinetic theory framework [151].

3.4.2 Stanton-Murillo Transport Model

The analytic model, Eq. (3.89), by definition, includes no screening effects. The Stanton-

Murillo transport (SMT) model, however, includes screening effects in the effective interaction

potential that is used to compute the collision integrals numerically. From the SMT model [151],
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mixture x1 Γ0 θ JBIM JDH JTF JXC JDH-SC JTF-SC J

H+-He2+ (BIM) 0.5 40 0.5 1.11 1.03a

H+-C4+ (BYM) 0.5 11 0.1 1.26 1.35 0.99 1.23 1.16b

H+-Al6+ (BYM) 0.3 1.5 0.3 1.21 1.24 1.25 1.15 1.21 1.31a

Table 3.2: Comparison of the thermodynamic factor J from different models with those fromMD
(denoted with superscript “a”) and the hypernetted chain approximation (denoted with superscript
“b”) [211] results. To compute J for cases a and b, Eq. (3.20) was employed. The MD simulations
were carried out for N = 2000 particle using standard techniques. After computing the partial
structure factors, an extrapolation to k = 0 was implemented. JDH-SC corresponds to the strong-
coupling correction, Eq. (3.82) using (3.43).

we have the following expression for the interdiffusion in a BYM:

DSMT =
3T5/2

16
√

2πµ12nZ2
1 Z2

2 e4K11(g)
, (3.90)

where µ12 = M1M2/(M1+M2), and Knm(g) is a fit to the collision integral for the effective coupling

g. The expression for Knm(g) is given in Appendix C of [151]. For a BIM, the effective coupling g

is

g = Γ12

[ 2∑
i=1

3xiΓii

1 + 3(xi/Zini)
1/3Γii

]1/2

. (3.91)

We note that in Ref. [151], the numerator of the summation term was written as 3x−1
i Γii, when

it should be 3xiΓii as written here. In Ref. [181], the interdiffusion coefficient was computed for

H+-He2+ mixtures for three cross-species coupling parameters Γ12 = 0.8, 8, 80. We compare the

interdiffusion coefficient calculated from this data with those computed using the GAF and SMT

models, and the results are shown in Fig. 3.8. We see that the simple form of the GAF model

estimates the interdiffusion coefficient for moderate and strong coupling reasonably well, with

errors similar to those of the SMT model. However, for weak coupling, the GAF model begins to

fail, while the SMT model remains accurate.

3.5 Conclusions and Outlook

In summary, we have explored interdiffusion in plasmas with a focus on the Darken relation

that thermodynamic factor. The Darken relation simplifies the autocorrelation function necessary

for computing interdiffusion by neglecting cross-species current correlations. By comparing the
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Figure 3.8: Normalized interdiffusion coefficient D∗ of various BIMs. The MD data in (a)–(d)was
collected from Refs. [181, 214]. The GAF model accurately reproduces the MD data at moderate
and strong coupling but fails at weak coupling.

Darken approximation to the full result, we found that theDarken relation results in smaller statistical

errors, but does not converge to the full result. To explore the possible advantages of the Darken

relation, we set up a series of MD simulations of varying lengths. For short simulations, the full

result had larger uncertainty but a mean value that was comparable to the Darken approximation;

thus, showing that the Darken relation was not advantageous. At increasingly longer simulations,

we identify where the uncertainty bands no longer overlapped, highlighting where the Darken

relation fails. Further studies for a wider range of systems is warranted.

Next, we turned to the development of rapidly computable analytic expressions for the thermo-

dynamic factor to model plasmas in disparate regimes. We provide the derivation of Eqs. (3.52)

and (3.51) revealing the physical regime in which they apply. Furthermore, we have generalized

Eq. (3.51) to allow for separate electron and ion temperatures, allowing for a description of laser

or shock produced plasmas. We account for electron degeneracy with Thomas-Fermi screening

and finite temperature exchange. We extended these results to strong coupling in two ways: by

including a modified screening length and through an empty-core DCF. Comparisons to MD and

hypernetted chain calculations give confidence of their use but a more comprehensive study should

be performed.

We formulated a complete model for the interdiffusion of a BIM using a GAF, which is based

on the short-time expansion of the interdiffusion current correlation function. A comparison of

the GAF model with MD data shows reasonable accuracy in the intermediate to strong coupling
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regime. However, at weak coupling, the GAF model begins to fail and but the SMT model remains

accurate. Combining the GAF and SMT models, gives a reasonable prediction for interdiffusion

across the entire coupling regime.

There are many opportunities to extend the results presented here. First, the inputs to the

analytic expressions derived here could be improved upon with a more robust finite-temperature

exchange-correlation potential. Furthermore, numerical calculations of the hypernetted chain

equations allows one to calculate quantities of interest (e.g., gii′(r), Sii′(k), J , etc.) for strongly

coupled systems. Such calculations have a slightly increased computational cost relative to the

results here but much less than MD.Additionally, we assumed that the pair-interaction potentials

were Coulombic. That assumption may not apply to warm dense matter and a pair-interaction

potential with gradient corrections [104] or one constructed from N-body MD simulations with

force matching [87] may be needed.
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CHAPTER 4

MULTI-FIDELITY REGRESSION FOR PLASMA PROPERTIES DATA

4.1 Introduction

The types of plasmas that were studied in Chapters 2 and 3 were strongly coupled plasmas that

spanned both the non-degenerate and degenerate regimes. In this chapter1, we expand the scope of

our study and parameter regime to include weakly coupled plasmas. Our aim is to make accurate

predictions of ionic transport property data across two disparate physical regimes: the strongly

coupled and weakly coupled regimes. Having accurate predictions of transport coefficients and

equations of state across these regimes is necessary for closures of macroscopic simulations of

plasmas at large time and length scales. Due to the computational cost associated with generating

microscopic data, closure data is typically precomputed and cast in the form of “look-up" tables

which are used as inputs to macroscopic simulations. Because it is impossible to generate a

look-up table with infinitely small resolution, interpolation between values is needed. These

interpolation methods should be robust by providing uncertainty associated with the interpolation

as well as numerically efficient for high-dimensional data. As mentioned in Chapter 2, the fidelity

of numerical results rely directly on these look-up tables and therefore it is of interest to 1) quantify

uncertainty associatedwith usingmodels to generate them, and 2) create tables that arewide-ranging

that agree with known results in limiting regimes (e.g., the ideal-gas law).

The plasma conditions we study here are displayed in Figure 4.1 which include four elements

pertinent to HED experiments across a wide temperature regime. Because out dataset is multi-

modal and uses a low fidelity model that is rapidly computable anywhere in this range of conditions,

we have continuous lines throughout the Γ−θ plane in Figure 4.1(a). We also note that Figure 4.1(b)

highlights that our study spans well into the highly-collisional and free-flight regimes.

The low-fidelity (LF) models used in this work provide a computationally efficient, wide-
1The content described in this chapter was reproduced from Lucas J. Stanek, Shaunak D. Bopardikar, and

Michael S. Murillo, “Multifidelity regression of sparse plasma transport data available in disparate physical regimes",
Physical Review E 104, 065303 (2021) https://doi.org/10.1103/PhysRevE.104.065303. This article was published by
the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license and has
been modified to address the requirements of this dissertation; see Ref. [215] for the full published article.
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Figure 4.1: (a) electron degeneracy parameter versus coulomb coupling parameter and (b) Knudsen
number versus temperature for all plasma conditions of this chapter. Note that the Knudsen number
ranges from the highly collisional regime to the free-flight regime. A goal of this chapter is to
use high-fidelity data that is local to the highly-collisional regime and free-flight regime to make
predictions across the transition and kinetic regimes.

ranging prediction of transport coefficients that span disparate regimes. However the LF models

lacks accuracy in certain regimes where high-fidelity (HF) data are needed. The generation HF data

requires substantial resources that limit the volume of data that can be generated. Moreover, the

size and scope of datasets are constrained by the experimental accessibility of physical regimes and

by the applicability and efficiency of computational models. These limitations can be addressed

by combining data from several sources to form a dataset that contains multiple, separated point

clouds that can be “interpolated.” For example, the equation of state can be measured in one

regime with a laser-heated diamond anvil cell [216] and computed in another regime with accurate

electronic-structure methods [217]. Or, one may combine experimental data obtained along a shock

Hugoniot with computational data available only at very low temperatures. Computational models

for equations of state, atomic properties, and charged-particle transport [12, 87, 180, 218] can also

be combined to create a larger dataset.

Combining data sources in this way creates two challenges. First, predictions will be based on

data in potentially very different physical regimes. Second, while it is natural to consider adding

LF data, which can be generated cheaply, to datasets to cover a parameter space more uniformly, it
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is not clear how to exploit such LF data in making predictions.

Machine-learning (ML) methods offer promising alternative frameworks for interpolating phys-

ical data [115, 219, 220]. ML treats the interpolation problem as regression in a high-dimensional

space using non-traditional techniques such as neural networks. Gaussian-process regression [221]

(GPR) is a nonparametric ML technique that interpolates data in multiple dimensions; importantly,

GPR provides an uncertainty estimate that can be used to suggest where new data points should be

acquired.

Here, we will explore GPR as an approach for interpolating physical data. In particular, we

will examine the situation in which there are islands of HF data in parameter space, possibly from

different sources, and we will fill the space between these islands with easier-to-compute LF data.

Such an approach utilizes multi-fidelity (MF) extensions [222] of GPR. Here, we use GPR to refer

to the methodology described in [221], and MF-GPR to refer to its MF extensions [222–225].

The generality of MF-GPR methods enables their use in many disciplines and applications

[226–233]. The original MF-GPR framework has been improved to reduce the risk of overfitting

during the training procedure [225], to include nonlinear relationships between LF and HF models

[223, 224], and to address concerns that arise with diverse data structures and dataset selection

[234,235].

This chapter is organized as follows. As described in the following section, we will illustrate our

ML ideas using the example of ionic transport coefficients. The methods we used to generate our

dataset of ionic transport coefficients are discussed in Sec. 4.2.1. In Sec. 4.2.2, we compare single-

fidelity regression methods and highlight the benefit of GPR over simple cubic spline regression.

We then transition to MF regression and discuss the formulation of MF-GPR, as introduced by

Kennedy and O’Hagan [222], in Sec. 4.2.3. Using toy examples, we show when MF-GPR adds

value over single-fidelity GPR; we also show where improvements to this formulation are needed.

We conclude Sec. 4.2.3 by reporting a table of computation times and regression errors forMF-GPR

and single-fidelity GPR to assess the cost-benefit trade-off for these methods.

Sec. 4.3 illustrates an approach for choosing an LF model that is the most appropriate for an
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MF-GPR setting and examines how this choice impacts the resulting MF-GPR fit. A natural choice

for LF and HF models are those with the same output quantity (e.g., both predict the viscosity

of a system). However, the outputs of both models need not be the same quantities. We explore

the use of models in MF-GPR that have different output quantities, as well as different levels of

computational complexity.

In Sec. 4.4.1, we compare regression errors resulting from single-fidelity GPR and MF-GPR

analyses of sparse, disparate plasma transport-coefficient datasets. We find that whileMF-GPRmay

result in modestly smaller errors compared to single-fidelity GPR, the uncertainty of the MF-GPR

prediction is consistently much smaller. Finally, in Sec. 4.4.2, we compare three approaches for

sampling HF data to reduce the MF-GPR regression error. For a fixed number of HF data points,

a simple approach we explored outperforms sampling from a uniform grid. We offer conclusions

and discuss potential areas for future work in Sec. 4.5.

4.2 Dataset and Regression Methods

In this section, we discuss our dataset and review theML approaches wewill employ in Secs. 4.3

and 4.4. We begin in Sec. 4.2.1 by describing plasma transport-coefficient data and the fidelities

of several commonly used models based on the approximations they employ. In Secs. 4.2.2 and

4.2.3, we describe the GPR methodology, including standard, single-fidelity GPR and its MF

generalization. Our goals in Secs. 4.2.2 and 4.2.3 are to answer the following questions: what

value does GPR add compared to simpler regression methods? And, how does including data from

multiple levels of fidelity impact a prediction?

4.2.1 Ionic Transport-Coefficient Dataset

For our study, we chose to explore MF-GPR in the context of plasma ionic transport coefficients

because plasmas span many orders of magnitude in density, temperature and nuclear charge.

Plasmas can include many species, which makes it difficult to use a single (computational or

experimental) method to make accurate predictions. Computational methods that are typically

used can be divided into LF and HF methods by examining the underlying assumptions of the
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models. Moreover, we can usually identify a limited parameter regime in which each model is HF.

These delineations occur because the theoretical models that underpin the computational methods

are known to have high accuracy only in certain limits (e.g., asymptotically at high temperature);

methods that are not asymptotically accurate in a parameter regime are designated as LF there.

The limiting regimes typically depend on multiple dimensionless parameters (e.g., the Coulomb

coupling parameter and the degeneracy parameter) that rely on some combination of nuclear charge,

density, and temperature of the system. We will use just the temperature of the system to specify

the limiting regimes since models developed at extremes of temperature tend to have very different

assumptions.

Data in the low-temperature regime, loosely defined here as T < O(101) eV, and in a high-

temperature regime, defined here as T > O(103) eV, will be generated using appropriate LF

and HF models. For the self-diffusion transport coefficient D, we will use the following HF

models to generate data. At low temperatures, the HF data are obtained from density functional

theory molecular dynamics (DFT-MD) simulations [83, 236–238], which accurately calculate the

electronic structure on-the-fly. At high temperatures, the Stanton-Murillo transport (SMT) model

[151], which uses numerically computed cross-sections and an effective interaction potential, is

employed. The LF model used across the entire temperature range is given by Hansen, McDonald,

and Pollock (HMP) for a one-component plasma (OCP) [239].

Similarly, for viscosity η, we use one HF model at low temperatures and a different HF model

at high temperatures. Once again, the HF data at low temperatures are obtained from DFT-MD

simulations. We employ the Yukawa viscosity model (YVM) [140], which is based on a quasi-

universal form fit to MD data, as our HF model at high temperatures. Our LF model is derived from

a correspondence between an OCP system and a Yukawa system. The correspondence is obtained

from the Gibbs-Bogolyubov inequality [137]; this model will be referred to as the YGBI model.

The HF and LF models for the self-diffusion and viscosity coefficients in each temperature

range are summarized in Table 4.1. These models are used in analyses presented in Sec. 4.4.1.
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Coeff. T (eV) HF LF
D T < O(101) DFT-MD [83,236–238] HMP [239]

O(101) < T < O(103) – HMP [239]
T > O(103) SMT [151] HMP [239]

η T < O(101) DFT-MD [83,236–238] YGBI [137]
O(101) < T < O(103) – YGBI [137]

T > O(103) YVM [140] YGBI [137]

Table 4.1: HF and LF models for the self-diffusion and viscosity transport coefficients in each
temperature regime. Each LF model is used across the entire temperature range.

4.2.2 Single-Fidelity Regression

To provide a baseline to which results of MF-GPR can be compared in later sections, we first

consider approaches that require only one level of data fidelity, i.e., single-fidelity approaches.

We consider cubic-spline regression and GPR. Cubic-spline regression is a parametric regression

method that aims to determine the optimal parameters that define a cubic-spline fit to data. In

contrast, GPR is a nonparametric regression approach that determines the optimal function that is

fit to data. We begin with a brief overview of GPR that will provide a framework for understanding

its MF generalization.

We introduce GPR with a discussion of prior and posterior distributions. Before observing the

data, we have some prior beliefs about functions that are suitable. These functions are drawn from

a prior distribution: a distribution of random functions that are consistent with our prior beliefs

about the data. An example of a prior distribution is one in which the distribution of functions have

zero mean at each input point and vary smoothly over the entire input space. For plasma transport

data, we could impose constraints on our prior distribution of functions to enforce nonnegativity

and such that the functions reflect the known behaviors of different transport coefficients (e.g.,

increasing with temperature). After constructing a prior distribution, a posterior distribution is

created by using available data to constrain the random functions by ensuring that they pass through

the observed data points. As we will see, the mean and the covariance matrix of a posterior

distribution are the prediction and uncertainty estimates of GPR.
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Defining the prior and posterior distributions for GPR requires a kernel function that defines

a measure of similarity among the input variables of a dataset. The kernel function determines

the representation of the functions from the prior and posterior distributions (e.g., smoothness,

periodicity, etc.). A common choice of kernel function, that we will use here, is the squared-

exponential kernel

k(xi, x j ;σ2, `) = σ2exp
(
−

1
2`2 ‖xi − x j ‖

2
)
, (4.1)

where for d-dimensional data, we have m points xi ∈ R
d and n points x j ∈ R

d . Evaluating the

kernel k(xi, x j ;σ2, `) gives the i jth entry of the kernel matrix (or covariance matrix) K ∈ Rm×n.

The hyperparameters of Eq. (4.1) are the variance σ2 and the length scale `; they will be compactly

denoted as the set θ ∈ {σ2, `}. These hyperparameters reveal the strength and extent of correlations

in the data. As we will see, the values of the hyperparameters are particularly useful for quantifying

the quality of MF-GPR methods.

A single-fidelity GPR problem is posed as follows: given a set of n training points in d

dimensions, represented by the columns of a matrix XSF ∈ R
d×n and the corresponding (scalar)

output values y ∈ Rn of the unknown function at each training point, predict the value of the

unknown function at a set of m test points X∗ ∈ Rd×m. As shown in Ref. [221], the posterior

distribution of the unknown function using GPR at the new set of data points X∗ is a multivariate

Gaussian with mean µ∗ and covariance Σ∗ given by

µ∗(X∗) = K(X∗, XSF ; θ)K(XSF, XSF ; θ)−1y, (4.2)

Σ∗(X∗) = K(X∗, X∗; θ) − K(X∗, XSF ; θ)K(XSF, XSF ; θ)−1K(XSF, X∗; θ), (4.3)

where the hyperparameters θ of the kernel function are determined by optimizing the log-likelihood

function L(y, XSF, θ), as discussed in Ref. [221]. The function L measures the likelihood that the

observations are given by the values y at training locations XSF for a given value of θ.

We now examine a simple example of GPR and compare with a cubic spline interpolation.

Viscosity data were generated using the YVM for the element C at ni = 5.01 × 1022 cm−3, and

fits to these data using GPR [240] and cubic-spline regression [241] are shown in Fig. 4.2. The
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Figure 4.2: Comparison of GPR and cubic-spline regression for a single-fidelity viscosity dataset
using the YVM for the element C at ni = 5.01 × 1022 cm−3. The training points (black diamonds)
were fit using both GPR (blue line) and a cubic spline (grey dashed line). The shaded bands show a
95% confidence interval around the GPR fit. Locations of future HF training points are suggested
by the confidence band.

GPR fit, denoted as “GPR," corresponds to µ∗(X∗) from Eq. (4.2); the shaded bands around µ∗(X∗)

correspond to a 95% confidence interval and are computed from Eq. (4.3). The fit generated using

cubic-spline regression on the same dataset is denoted as “cubic spline." For all GPR fits, the

data were first scaled to unit variance and zero mean. The hyperparameter optimization routine

was carried out using the limited-memory quasi-Newton algorithm [242] with 15 random restarts,

and a measurement noise with a variance of 10−6 was added to ensure that the kernel matrix

K(XSF, XSF ; θ) for computing the posterior distribution would be guaranteed to be positive-definite

(and therefore, invertible) during fitting. Both the cubic-spline regression and GPR methods

produced accurate fits, as shown by comparison to the underlying true solution, which is denoted

with a black line in Fig. 4.2 and labeled “exact." A key difference between cubic splines and GPR

is that the GPR method provides a confidence interval (shaded bands) around the GPR prediction

– suggesting where additional data are needed to improve the prediction.
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4.2.3 Multi-Fidelity Gaussian-Process Regression

We now turn to the case where there are two sources of data, one LF and one HF. The outputs

of the LF model are denoted as yLF ∈ R
NLF and are evaluated at XLF ∈ R

d×NLF . Similarly, the

outputs from the HF model are denoted as yHF ∈ R
NHF and are evaluated at XHF ∈ R

d×NHF . Here,

the numbers of LF and HF data points are denoted as NLF and NHF , respectively.

To understand how the LF data can be used in HF predictions with an MF method, consider this

simple procedure with three steps. First, in step (a), we combine the LF and HF data into a single

dataset with greater coverage than the HF data alone offer. In step (b), we use LF data to influence

HF predictions by quantifying correlations between the LF and HF datasets with a correlation

hyperparameter, ρ. Finally, step (c) of the procedure imposes a constraint that a prediction at a HF

data point ignores the LF data.

Each part of the above procedure is addressed by the original MF-GPR formulation proposed

by Kennedy and O’Hagan [222], which begins by assuming that there is a linear mapping between

fidelities that is described by the autoregressive model

fHF(x) = ρ fLF(x) + δHF(x). (4.4)

The function δHF(x) is to be viewed as the error or bias between the HF data and a scaled value

of the LF data, where the correlation hyperparameter ρ is the scaling term. Notice that if the LF

and HF data are uncorrelated, i.e., ρ = 0, then δHF = fHF . The key idea in this approach is to use

the LF and HF data to learn the parameters governing the unknown functions fLF and δHF and the

hyperparameter ρ to be able to predict the value of fHF at a test point x. The functions fLF and δHF

are typically assumed to be realizations of independent Gaussian processes with zero mean and a

kernel matrix K . This means that on a test set X∗, fLF(X∗), and δHF(X∗) are independent Gaussian

random variables that are normally distributed as per

fLF(X∗) ∼ N[0,K(X∗, X∗; θLF)], (4.5)

δHF(X∗) ∼ N[0,K(X∗, X∗; θHF)], (4.6)
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where θLF and θHF denote the hyperparameters for the LF and HF models, respectively. The

notation N(0, Σ) denotes a multivariate Gaussian random variable with mean 0 and covariance Σ.

Because fLF and δHF are independent, it follows that 2

fHF(X∗) ∼ N[0, ρ2K(X∗, X∗; θLF) + K(X∗, X∗; θHF)]. (4.7)

For brevity, we denote

K11(X, X′) ≡ K(X, X′; θLF), (4.8)

K12(X, X′) ≡ ρK(X, X′; θLF), (4.9)

K21(X, X′) ≡ K12(X, X′), (4.10)

K22(X, X′) ≡ ρ2K(X, X′; θLF) + K(X, X′; θHF). (4.11)

Equations (4.5), (4.6), and (4.7) can be jointly written as [222,223]
fLF(XLF)

fHF(XHF)

fHF(X∗)


∼ N



0

0

0


,


K11(XLF, XLF) K12(XLF, XHF) K12(XLF, X∗)

K21(XHF, XLF) K22(XHF, XHF) K22(XHF, X∗)

K21(X∗, XLF) K22(X∗, XHF) K22(X∗, X∗)



. (4.12)

The form of Eq. (4.12) reveals how the LF and HF data are combined (i.e., through K12 and K21),

completing step (a). Note that when the hyperparameter ρ, which couples the LF and HF models,

is equal to zero, Eq. (4.12) reduces to two decoupled Gaussian processes. This means that when

the LF and HF models are uncorrelated, the LF data will not influence the HF regression, resulting

in one single-fidelity GPR at each fidelity level.

Following the procedure for determining optimal hyperparameters θ for a kernel function,

the hyperparameter ρ is also determined by optimizing a log-likelihood function, as discussed in

Sec. 2.4 of Ref. [222]. As a result of this optimization procedure, if ρ turns out to have a large value,

then there is substantial correlation between the LF and HF models. Otherwise, the LF and HF

models are uncorrelated. Thus, the correlation hyperparameter ρ determined from the MF dataset
2Recall that for two independent normally distributed random variables A ∼ N(µA, σ

2
A) and B ∼ N(µB, σ

2
B), then

C = A+ B ∼ N(µA+ µA, σ2
A+σ

2
B). Also, for some constant α, a random variable D ∼ αN(µD, σ

2
D) = N(µD, α

2σ2
D)
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directly quantifies the influence of the LF data on the HF fit, completing part (b) of the procedure

mentioned above.

We have shown how data from LF and HF models can be combined into a single MF dataset

and how the degree of influence of LF data on fits to HF data can be quantified using the correlation

hyperparameter ρ. However, we still need to show how to produce a fit to HF data using Eq. (4.12),

while also completing step (c) of the procedure mentioned above. By conditioning the joint

Gaussian prior distribution, Eq. (4.12), the predictive mean and the covariance matrix are obtained

from the Gaussian posterior distribution

f∗,HF |X∗, XLF, XHF, y ∼ N[K∗K−1y,K22(X∗, X∗) − K∗K−1KT
∗ ], (4.13)

where f∗,HF denotes the posterior distribution of the HF data, and

y ≡


yLF

yHF

 , (4.14)

K∗ ≡
[
K21(X∗, XLF) K22(X∗, XHF)

]
, (4.15)

K ≡


K11(XLF, XLF) K12(XLF, XHF)

K21(XHF, XLF) K22(XHF, XHF)

 . (4.16)

We note that the hyperparameters θLF and θHF of the kernels and ρ are all determined simultane-

ouslyby optimizing the log-likelihood function, as discussed in Refs. [222–224]. From Eq. (4.13),

the MF predictive mean and covariance for the HF data are

µ∗,HF(X∗) = K∗K−1y, (4.17)

Σ∗,HF(X∗) = K22(X∗, X∗) − K∗K−1KT
∗ . (4.18)

Note that when X∗ = XHF , we have µ∗,HF(XHF) = yHF 3, which guarantees that the regression

will pass through the HF data. This satisfies the constraint imposed in step (c) of the procedure and

is due to the independence assumption of fLF and δHF , as discussed in Ref. [243].
3This can be most easily seen by using a single test point x∗ = xHF and single training points xLF and xHF
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To highlight how the MF-GPR approach given by Eq. (4.4), which we denote as “linear MF-

GPR," may add value over single-fidelity GPR, we consider the pedagogical case where the LF and

HF models have the form

yLF(x) = sin(2πx), (4.19)

yHF(x) =
1
3

sin(2πx), (4.20)

for x ∈ [0, 4]. Note that the LF and HF models are linearly related by the factor of 1/3 in Eq. (4.20).

Predictions from single-fidelity GPR and linear MF-GPR are shown in Fig. 4.3, with NHF = 6 and

NLF = 22. For all MF-GPR and GPR fits, the data were first scaled to unit variance and mean zero.

The hyperparameter optimization routine was carried out using the limited-memory quasi-Newton

algorithm for 15 random restarts, and a measurement noise with a variance of 10−6 was added

to each kernel matrix to ensure a positive-definite matrix during fitting (see Ref. [244] for more

information on the numerical implementation used here).

In Fig. 4.3, the linear MF-GPR fit, denoted by a purple solid line, corresponds to µ∗,HF(X∗)

from Eq. (4.17); the confidence bands around µ∗,HF(X∗) were computed from Eq. (4.18) and are

approximately the width of the thickness of the purple line. The GPR fit, denoted by a blue solid

line, corresponds to µ∗(X∗) from Eq. (4.2), and the shaded confidence bands around µ∗(X∗) are

computed from Eq. (4.3). We see that inclusion of the LF data leads to a more accurate prediction,

as linear MF-GPR recovers the exact HF solution. The GPR result, which is fit to only the HF

data, is unable to recover the HF true solution. In addition, the 95% uncertainty band reported in

Fig. 4.3 around the fit is much narrower with linear MF-GPR than with GPR, and the agreement of

the linear MF-GPR fit with the HF true solution persists even beyond the last HF data point. It is

important to note that all regression methods based on GPR will generate a fit that will regress to

the mean of the data when the distance between a new test point and an HF training point is greater

than the length-scale of the kernel(s).

This particular example can also be viewed through an information-theoretic lens. Observe

that the LF and HF models have the same period of 1 s and therefore, according to the Nyquist-

Shannon sampling theorem [245, 246], the sampling period must be less than 0.5 s to reconstruct
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Figure 4.3: Comparison of linear MF-GPR and single-fidelity GPR for a linear mapping between
fidelities. The shaded bands represent a 95% confidence interval around a fit. The single-fidelity
GPR result is shown as a blue line; single-fidelity GPR is used to fit only the HF data and does
not recover the exact HF solution. The linear MF-GPR result is shown in purple; linear MF-GPR
accurately predicts the exact HF solution by using the LF data in addition to the HF data, and
this result overlaps the exact HF solution. The confidence interval for the linear MF-GPR fit is
approximately the width of the thickness of the purple line.

the HF model with sufficient accuracy. Note that the HF data by themselves do not satisfy the

Nyquist-Shannon sampling rate. Thus, a GPR fit to the given HF data will be unable to recover the

exact HF solution. If the LF model is sampled sufficiently to satisfy the Nyquist-Shannon sampling

theorem, then it allows the linear MF-GPR model to recover the exact HF solution. If the LF model

is not sampled sufficiently or if the LF model has a different frequency than the HF model, then

the LF model is uncorrelated with the HF and, therefore, does not add any new information to the

MF-GPR.

Lastly, we note that the LF model introduces bias in the resulting MF regression, and the

MF-GPR fit is dependent on the choice of LF model; we compare various choices of LF models

and their impact on MF-GPR in Sec. 4.3.

Fig. 4.3 illustrates how the autoregressive model, Eq. (4.4), results in more accurate fits to HF

data when the LF and HF models are related linearly. However, in many cases, the LF and HF
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models may be related nonlinearly, and schemes beyond the original MF-GPR approach [222] are

needed. In recent years, there have been many improvements to the original MF-GPR approach that

explore more efficient numerical schemes [247], transform input data to more accurately predict

discontinuities in HF data [223], have the ability to learn a nonlinear mapping between LF and

HF models [224], and more accurately propagate uncertainty between fidelity levels [225]. The

approach proposed in [224] goes beyond the linear autoregressive scheme, Eq. (4.4), by allowing

for a spatially dependent nonlinear mapping between fidelities; we denote this mapping as z(·).

Following [224], the modified autoregressive equation that includes this mapping is

fHF(x) = z[x, fLF(x)] + δHF(x), (4.21)

where z(·) is sampled from of a Gaussian process. Note that z[x, fLF(x)] is now a Gaussian

process of a Gaussian process and is referred to as a “deep GP" [248, 249]. While the form of

Eq. (4.21) has been shown to provide improvements over simpler models [248], computing themean

and covariance of the posterior distribution corresponding to Eq. (4.21) is often computationally

intractable [249]. To address this intractability, the Gaussian-process prior fLF(x) is often replaced

with the corresponding posterior distribution f∗,LF(x) [247], resulting in a recursive multi-fidelity

model (i.e., performing GPR at each fidelity level separately and then propagating the results to

each successive level of fidelity).

Replacing fLF(x) with f∗,LF(x) in Eq. (4.21) and using the independence assumption of

z[ fLF(x), x] and δHF(x) results in a compact recursive multi-fidelity formulation [224]

fHF(x) = g[x, f∗,LF(x)], (4.22)

where the prior distribution g includes dependencies of both x and f∗,LF(x). It is shown in Ref. [224]

that this recursive multi-fidelity model Eq. (4.22) can be modeled by using a kernel of the form

kg(xi, x j) = kρ(xi, x j ; θρ) · k f [ f∗,LF(xi), f∗,LF(x j); θ f ] + kδ(xi, x j ; θδ). (4.23)

In contrast with the linear autoregressive model Eq. (4.4), the kernel kρ is now a spatially-dependent

scaling factor responsible for measuring the correlations between the LF and HF models, k f
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measures the correlations of the outputs of the GPR performed on the LF data, and kδ accounts

for the bias between the LF and HF data; in this work, each term in Eq. (4.23) is represented by a

kernel of the form in Eq. (4.1).

The set of hyperparameters (variance and length scale) for each kernel is denoted by θρ, θ f ,

and θδ, respectively. Importantly, unlike the linear autoregressive formulation Eq. (4.4) where

all hyperparameters at all fidelity levels are trained simultaneously, the hyperparameters at each

fidelity level using the recursive formulation Eq. (4.22) are trained separately. This aspect greatly

reduces computation costs associated with hyperparameter estimation. When the correlations

between the LF and HF data are small, the product kρk f will be close to zero, and the MF-GPR

fit approximately recovers the GPR fit to the HF data. Recall that this was also the case for the

correlation hyperparameter ρ in Eq. (4.4). The product kρk f in Eq. (4.23) is plotted in Sec. 4.3 to

reveal the effectiveness of different choices of LF models.

Next, we turn to the three steps for making an MF prediction using Eq. (4.22) with kernel

Eq. (4.23). These are discussed in detail in Ref. [224]; for completeness, we summarize them

here. Step 1 involves performing GPR on the lowest-fidelity data. This includes optimizing the

kernel hyperparameters using the LF data. Step 2 takes as input the trained GPR model from

Step 1, together with the HF data, to construct the posterior distribution according to the kernel

in Eq. (4.23) (see Eq. (2.14) of Ref. [224]). The last step, Step 3, calculates the predictive mean

and covariance by sampling the posterior distribution using numerical integration techniques (e.g.,

Monte Carlo [224,225]). Numerical integration is necessary because unlike the prior distributions

of single-fidelity GPR and linear MF-GPR, the prior distribution in Eq. (4.22) ,ay not be Gaussian.

As a result, we will be unable to express its posterior distribution as a Gaussian. More details

of the MF-GPR approach used in this work and its numerical implementation can be found in

Refs. [224, 225, 244].

Recall that the LF and HF models given by Eqs. (4.19) and (4.20) are linearly related, with the

quantity in Eq. (4.20) equal to the quantity in Eq. (4.19) multiplied by a coefficient of 1/3. To

highlight the limitations of the linear MF-GPR approach given by Eq. (4.4), we now consider LF
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and HF models of the form

yLF(x) = sin(8πx), (4.24)

yHF(x) = x sin(8πx), (4.25)

for x ∈ [0, 1]. Note that the coefficient by which Eq. (4.24) is multiplied to get Eq. (4.25) has been

changed from 1/3 to x. As a result of this mapping, we expect that predictionsmade using Eq. (4.17)

will be of poor quality. This expectation is verified in Fig. 4.4, which shows a comparison between

predictions from Eqs. (4.4) and (4.22), with NHF = 8 and NLF = 30. We find thatMF-GPR not only

exhibits excellent agreement with the exact HF solution but also has far smaller confidence bands

than those obtained with the linear MF-GPR model. Fig. 4.4 illustrates the ability of MF-GPR to

produce accurate results with limited HF data by incorporating additional data from an LF model

that is not linearly related to the HF model.

It would be undesirable to restrict MF-GPR approaches to plasma transport-coefficient data

to linear relationships alone, as such data are known or derived to be accurate in certain physical

regimes that need not be related linearly. The plasma transport coefficients we are considering

illustrate this point; they are obtained using a variety of methods (recall Sec. 4.2.1) that have

no simple, prescribed relationship to each other. Thus, we will use the nonlinear formulation of

MF-GPR, Eq. (4.22), throughout the reminder of this work, referring to it simply as “MF-GPR."

4.2.4 Error Calculations and Computation Cost

We have shown the benefit of MF regression over single-fidelity techniques by considering

toy examples. However, the computational cost of MF-GPR over single-fidelity GPR can not be

disregarded. Thus, we would like to determine the cost-benefit trade-off for using MF-GPR over

single-fidelity GPR. To begin, we define an error metric to measure the regression error between

the HF test set and MF-GPR/GPR predictions. The metric we use is the root-mean-square error

(RMSE)

RMSE =

√√√
1

Ntest

Ntest∑
i=1
‖yi,true − yi,pred ‖

2, (4.26)
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Figure 4.4: Comparison of two MF-GPR approaches. One MF-GPR approach assumes a linear
relationship between the fidelity levels [see Ref. [222] and Eq. (4.4)] and is denoted as “linear MF-
GPR." The other approach assumes a nonlinear mapping between fidelity levels [see Ref. [224] and
Eq. (4.21)] and is denoted as “MF-GPR"; the shaded bands represent a 95% confidence interval
around the fit. The MF-GPR approach that assumes a nonlinear mapping between fidelities (orange
solid line) is able to recover the underlying exact HF solution, in contrast to the MF-GPR approach
that assumes a linear mapping between fidelity levels (purple solid line).

where i denotes the location of a test point, Ntest is the total number of test points, yi,true is the true

solution at location i, and yi,pred is the value of the fit (MF-GPR or GPR) at location i. Table 4.2

compares the computational costs, which includes the costs of both hyperparameter training and

predictions, and regression errors for the GPR and MF-GPR methods using the LF and HF models

Eqs. (4.24) and (4.25). We find that while MF-GPR is roughly six to ten times more expensive

than single-fidelity GPR, the MF-GPR method results in regression errors that are often a couple

orders of magnitude lower than those obtained with single-fidelity GPR.

4.3 Multi-fidelity Regression of Plasma Transport-Coefficient Data

In Secs. 4.2.2 and 4.2.3, we have demonstrated the effectiveness and limitations of single-

fidelity GPR and different MF-GPR approaches using toy examples. Additionally, in Sec. 4.2.4, we

assessed the cost-benefit trade-off between GPR and MF-GPR approaches. We illustrated the fact

that relative to single-fidelity GPR, MF-GPR increases computation cost but decreases prediction
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NLF NHF T∗GPR TMF-GPR/TGPR RMSEGPR RMSEMF-GPR

30 8 1 6 ± 1 3.2[−1] 8.7[−3]
34 9 1.0 ± 0.1 6 ± 1 3.5[−1] 1.5[−2]
38 10 1.0 ± 0.1 5 ± 1 3.8[−1] 9.4[−4]
43 11 1.3 ± 0.7 6 ± 3 3.5[−1] 1.1[−3]
50 13 1.1 ± 0.1 6 ± 1 3.6[−1] 2.0[−3]
60 15 1.1 ± 0.2 8 ± 2 1.1[−1] 1.9[−4]
75 19 1.4 ± 0.2 7 ± 2 9.0[−3] 1.5[−4]

100 25 1.2 ± 0.2 8 ± 2 5.4[−3] 9.9[−5]
150 38 1.7 ± 0.3 7 ± 2 3.1[−4] 7.7[−5]
300 75 2.1 ± 0.3 10 ± 2 2.1[−4] 6.5[−5]

Table 4.2: Average computation time and regression errors for single-fidelity GPR and MF-GPR,
Eq. (4.22) fits using the LF and HF models Eqs. (4.24) and (4.25). Each entry is an average over
ten fits, and the hyperparameters for each fit were trained using the limited-memory quasi-Newton
algorithm with 15 random restarts. For the RMSE values, the numbers in brackets denote the power
of ten that the value in front of the brackets is multiplied by (e.g., 3.2[−1] = 0.32). The column
labeled T∗GPR shows the computation time for single-fidelity GPR normalized by the computation
time when NHF = 8. The computational cost of single-fidelity GPR increases by a factor of two
when the number of HF training points increases by roughly ten. We note that when NLF = 50
and NHF = 13, MF-GPR is six times more expensive than single-fidelity GPR but reduces the
regression error by more than two orders of magnitude.

error. While these toy examples were useful for building intuition and providing a baseline for

computation-cost and error estimates, we will now consider real data generated for ionic plasma

transport coefficients; we will begin by analyzing what role the choice of LF model plays in

MF-GPR. The LF and HF models will be chosen from those listed in Table 4.1.

We first consider two choices for the LF model for predicting the viscosity for the element C at

ni = 5.01 × 1022 cm−3, as shown in Fig. 4.5. MF-GPR fits produced using the LF SMT model are

shown in panel (a) of the figure, and fits produced using the LF YGBI model are shown in panel

(b). The HF training data were computed from the YVM. The inserts in Fig. 4.5 show the kernel

matrix corresponding to kρk f in Eq. (4.23).

In panel (a) of Fig. 4.5, with the SMTmodel used as the LF model, we see that the only nonzero

values of the kernel matrix occupy the diagonal and quickly decay to zero a short distance from the

diagonal, corresponding to a small length scale for the kernel. Because the entries of the kernel

matrix have nearly zero magnitudes, the MF-GPR fit is nearly equivalent to the fit obtained by
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performing GPR on the HF data alone; this equivalence explains the overlap of the fits produced

by GPR and MF-GPR.

In panel (b) of Fig. 4.5, with the YGBI model used as the LF model, two findings are of note.

The first is that there are regions where the MF-GPR and GPR fits do not overlap; this is most

clearly seen around T = 0.2 eV. Second, the entries of the kernel matrix are nonzero away from the

diagonal, implying substantial correlations between the LF and HF data. However, the values are

nearly constant throughout the matrix, differing from each other by at most by 1%. Thus, in contrast

with the MF-GPR fit shown in panel (a), the MF-GPR fit shown in panel (b) includes information

from the LF data and suggests correctly that the LF and HF data differ by an approximately constant

shift.

A comparison of the sizes of the confidence bands for the MF-GPR results in panels (a) and (b)

in Fig. 4.5 shows that the MF-GPR fit in panel (b) is superior to that in panel (a). The choice of the

YGBI model as the LF model for MF-GPR in panel (b) results in a superior fit because the YGBI

model provides additional information that is used to improve the fit. This additional information

can be seen in the kernel matrix computed from kρk f ; an LF model for which kernel entries off the

diagonal are non-zero improved the MF-GPR fit over the GPR fit more than an LF model for which

the kernel entries are close to zero. Thus, we have found that the kernel matrix computed from

kρk f is a natural indicator of when an LF model is insufficient for MF-GPR and that a different, or

more precise, LF model is needed to impact the MF-GPR fit. When kernel matrix entries decay

rapidly to zero off the diagonal, it would be best to consider alternative LF models.

In Fig. 4.5, we considered LF and HF models that both predict the same quantity. ML models

have been developed in which the LF and HF models do not predict the same quantity; for example,

the prediction of rainfall using an elevation model has been examined [250, 251]. As discussed

in [250, 251], a large amount of elevation data are available, but only a minimal amount of rainfall

data are available; together, these data have been used to construct MF rainfall models. Similarly, a

large amount of self-diffusion coefficient data and a minimal amount of viscosity data are available,

and MF models of plasma transport coefficients could be constructed using both data sources.
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Figure 4.5: MF-GPR prediction of the viscosity of the element C at ni = 5.01 × 1022 cm−3 versus
temperature. In both (a) and (b), GPR was performed using the HF training data computed from
the YVM, and the GPR results are compared with those of an MF-GPR model constructed using
data from both an HF model and an LF model. (a) The LF model is given by the SMT model. (b)
The LF model is given by the YGBI model. The inserts in (a) and (b) display the kernel matrix
from kρk f with optimized hyperparameters. In (a), little correlation is found between the HF and
LF models, as the only non-zero entries of the kernel matrix are on, or close to, the diagonal; in
(b), however, the correlation is substantial, as demonstrated by the extent of the non-zero values off
the diagonal of the kernel matrix, as shown in the insert.

93



Figure 4.6: Using self diffusion as the LF model to predict viscosity. The reduced transport
coefficients φ ∈ {D∗, η∗} are shown for the element C at ni = 5.01× 1022 cm−3 versus temperature.
In both (a) and (b), GPR was performed using the HF training data computed from the YVM, and
the GPR results are compared with those of an MF-GPR model constructed using data from both
an HF model and an LF model. (a) The LF model is the reduced self-diffusion coefficient D∗ from
the HMP model. (b) The LF model is D∗ computed from the SMT model. The inserts display the
kernel matrix from kρk f with optimized hyperparameters.

Thus, we also consider LF and HF models that do not predict the same quantity. In particular, we

assess the validity of using the self-diffusion coefficient (LF model) as a predictor for the viscosity

(HF model).

MF-GPR fits for viscosity of the element C at ni = 5.01 × 1022 cm−3 using self-diffusion data

for the LFmodel and viscosity data for the HFmodel are shown in Fig. 4.6; two different LF models

for predicting the self-diffusion coefficient are considered. In both panels (a) and (b), HF data were

calculated from the YVM model. In panel (a), the LF data were computed using the HMP model,

and in panel (b), the LF data were computed from the SMT model. The transport coefficients have
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been reduced such that D∗ = D/ωpa2
i and η∗ = η/miniωpa2

i . Here, ωp = (4πni Z2e2/mi)
1/2 is the

ion plasma frequency, and ai = (4πni/3)−1/3 is the ion-sphere radius, where ni is the ion number

density, Z is the mean ionization state, e is the elementary charge, and mi is the ion mass. The

inserts once again show the kernel matrix kρk f .

Fig. 4.6 demonstrates that using self-diffusion coefficient data as our LF model and viscosity

as our HF model substantially improves the MF-GPR model of the viscosity compared to using

viscosity data for both models. What we mean by this is that the LF data used in both panels of

Fig. 4.6 are more strongly correlated with the HF data than the LF data used in panel (a) of Fig. 4.5

are. A comparison between the kernel matrices shown in the insert of panel (a) of Fig. 4.5 and in

the insert of both panels of Fig. 4.6 demonstrates this point; in contrast to panel (a) of Fig. 4.5, the

kernel matrices shown in both panels of Fig. 4.6 have a non-zero value away from the diagonal. This

means that the LF data used in both panels of Fig. 4.6 have a larger contribution to the MF-GPR

model than the LF data used in panel (a) of Fig. 4.5 does.

Also note that the entries of the kernel matrix in both panels of Fig. 4.6 are not a constant

value, in contrast with the entries in the kernel matrix shown in the insert in panel (b) of Fig. 4.5.

Therefore, the LF and HF data used in both panels of Fig. 4.6 are not related by a shift but rather

by a nonlinear relationship. Comparisons of the kernel matrix kρk f provide valuable insight into

the effectiveness of an LF model in an MF-GPR framework by quantifying the spatial extent of

correlations and type of relationship between the low- and high-fidelity models e.g., linear or

nonlinear. In particular, these comparisons revealed the effectiveness of using self-diffusion LF

data to predict viscosity HF data. As self-diffusion data are more readily available and are cheaper

to compute than viscosity data, Fig. 4.6 illustrates how MF-GPR provides improved estimates of

viscosity at low computational cost where it has not been measured.

In addition to selecting a sufficient LF model for MF-GPR, it is imperative to include data in

the LF and HF datasets that capture essential special features of a physical system. For example,

it is possible that neither the LF data nor the HF data include information about features such as

sudden changes (i.e., a jump discontinuity). For plasma transport coefficient data, sudden changes
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Figure 4.7: MF-GPR and GPR fits, with 95% confidence intervals (shaded bands), of the self-
diffusion coefficient versus temperature for multiple elements. The models used to generate this
data are given in Table 4.1. Panels (a) through (d) show MF-GPR and GPR fits obtained using a
portion (filled diamonds) of the HF data (all diamonds). Panels (e) through (h) compare MF-GPR
and GPR fits obtained using all of the available data; GPR is fit to only HF data, whereas MF-GPR
uses both the LF and HF data. In general, the MF-GPR fit is less prone to spurious oscillations than
the GPR fit, and the size of the uncertainty band is much smaller with MF-GPR than with GPR.

in quantities such as the electrical conductivity may result from a phase transition. In the absence of

such data, MF-GPR is incapable of predicting a discontinuity. If this behavior is known in advance,

then the LF and HF models should be sampled accordingly to ensure that the MF-GPR framework

has sufficient training data near the discontinuity; then, an MF-GPR approach capable of handling

a discontinuity, such as that described in Ref. [223], can be used.

4.4 Regression of Sparse Disparate Data

In this section, we will use MF-GPR to predict transport coefficients when HF data are available

in disparate physical regimes. We will consider a transport-coefficient dataset, which has “gap"

regions, i.e., temperature ranges in which no HF data are available, as shown in Table 4.1.

This section is organized as follows. First, we use MF-GPR to fit gapped transport-coefficient

data as a function of temperature. Then, we consider a higher-dimensional feature space of ion

number density and temperature. We conclude by varying the approach used to sample the HF
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Figure 4.8: MF-GPR and GPR fits, with 95% confidence intervals (shaded bands), of the viscosity
coefficient versus temperature for multiple elements. The models used to generate this data are
given in Table 4.1. Panels (a) through (d) show MF-GPR/GPR fits obtained using a portion (filled
diamonds) of the HF data (all diamonds). Panels (e) through (h) showMF-GPR fits obtained using
all of the data. In general, the MF-GPR fit is less prone to oscillations than is the GPR fit which
uses only HF data.

dataset. We find that using a low-discrepancy sequence 4 to select data-sampling locations yields

smaller regression errors than does sampling data on a uniform grid.

4.4.1 Self-diffusion and Viscosity Predictions versus Temperature

We apply MF-GPR to gapped transport-coefficient data for the elements H, He, Be, and Fe. We

first consider an HF training set that consists of only four data points – two points at both high and

low temperatures – and thus features a large gap between the patches of HF data. Then, this gap is

reduced in size by including all HF points in the training set.

This approach is illustrated in Fig. 4.7, which showsMF-GPR and GPR fits for the self-diffusion

coefficient. In the top row, we note that multiple inflection points in the GPR predictions for He,

Be, and Fe can be seen, while the MF-GPR fits are monotonically increasing. For Fe, a large

oscillatory pattern is seen in the GPR fit. These oscillations are not physical and are likely due
4A sequence of points is said to be low-discrepancy if the proportion of points in the sequence falling into an

arbitrary set is (on average) near-proportional to the measure of that set.
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to the hyperparameters responsible for specifying the length scale of the kernel Eq. (4.1). With

MF-GPR, oscillations do not appear, as the three terms in Eq. (4.23) do not restrict the form of the

fit to a single length scale. Similar patterns are observed for the viscosity in Fig. 4.8.

4.4.2 Viscosity Predictions versus Temperature and Number Density

Because only a small amount of HF data were used in the work described in Sec. 4.4.1, a

well-defined error metric could not be reported. Therefore, we constructed an HF dataset in the

ni −T plane containing 900 points sampled on a grid. The data were generated using the YVM for

H and Fe, and these data will act as a test set for the results described in this section. The dataset

spans a temperature range ofT = 101−104 eV and an ion number density of ni = 1018−1026 cm−3.

Next, we constructed an MF training dataset. When this MF training dataset is used together

with the HF test set described above, we will be able to compute regression errors for GPR and

MF-GPR using Eq. (4.26), now in ni−T space. With the view of mimicking the scenario of datasets

containing “gaps," as discussed in Sec. 4.4.1, an MF training dataset was constructed to contain

a region lacking HF data. We chose the YGBI model as our LF model and assumed that this LF

model can be evaluated everywhere in the domain.

Fig. 4.9 illustrates the concept of physical regimes that include an area or “gap" in which no HF

data exist. The figure shows three regions, labeled as “1," “2," and “3." In regions 1 and 3, both

the HF (YVM) and LF (YGBI) models can be evaluated. The area between the red dashed lines,

denoted with a 2 and labeled as “no HF data," shows the region where no HF data are available.

We refer to this region as the “gap region." A summary of the choices of LF and HF models for all

of the regions shown in the figure are given in Table 4.3.

Having defined the models used to generate the test and training datasets, we will describe,

below in Sec. 4.4.2.1, the three HF sampling approaches we used to create the MF training dataset.

4.4.2.1 Sampling Methods for HF Data

We used three approaches to sample the HF gapped dataset initially: an evenly spaced grid,

a low-discrepancy sequence, namely a Halton-23 sequence [252], and a hybrid method that used
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Region HF LF
1 YVM [140] YGBI [137]
2 – YGBI [137]
3 YVM [140] YGBI [137]

Table 4.3: HF and LF models for the viscosity used in the temperature/number-density regions
shown in Fig. 4.9. The same LF model is employed across all regions.

Figure 4.9: The regions of the temperature/number-density space where HF and LF models were
used to generate viscosity data for the MF training dataset. The red dashed lines indicate the
divisions between the regions. In the regions labeled as “1" and “3," both HF and LF data are
available. In the region labeled as “2," only LF data are available. The models used for each region
are listed in Table 4.3.

both approaches. For the LF data, we restricted the sampling approach to an evenly spaced grid.

The details of each sampling approach are discussed below and summarized in Table 4.4.

To place data on an evenly spaced grid, we first specify the total number of HF data points (e.g.,

NHF = 100). Then, the grid spacing is computed by

∆x =
xu − x`
√

NHF
, (4.27)

where x ∈ {ni,T}, and the subscripts “u” and “`” denote the upper and lower bounds of x,

respectively. Using Eq. (4.27) to determine the spacing between HF points is straightforward;

however, we note that in order to refine the grid spacing by a factor of two, four times as many
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HF data points are needed. As a result, the evenly spaced grid approach becomes increasingly

computationally expensive as the dimension of the input space increases.

Instead of restricting the locations of HF data to points on an evenly spaced grid, their locations

may be determined randomly. However, two HF points chosen in this way could be extremely close

together, and in such a circumstance, calculations would be repeated at roughly the same location

in parameter space. By enforcing a constraint on the minimum distance between two points,

calculating HF data at close locations can be avoided. An alternative to enforcing a constraint on

the distance between data sampling locations is to use a low-discrepancy sequence to determine

sampling locations; this is the second of our samplingmethods. Low-discrepancy sequences consist

of “quasi-random" numbers that are generated deterministically, and points constructed using these

numbers as coordinates cover a domain more quickly and evenly than do points constructed with

random numbers as coordinates. Here, we use a Halton-23 low-discrepancy sequence [252]. In the

name “Halton-23," “23" denotes the bases 2 for dimension ni) and 3 (for dimension T); the bases

2 and 3 were chosen as they are mutually prime, which results in a uniform, limiting density of the

points in the sequence [252].

While use of only a low-discrepancy sequence to determine HF sampling locations reduces the

chance of performing repeated calculations, the edges of the domain may not be included in an

HF dataset constructed in this way. If a specific domain is desired, it is necessary to augment the

low-discrepancy sequence locations with data along the domain boundary. To ensure coverage in a

fixed domain, we used a hybrid sampling method. In this hybrid method, the four extreme corners

of the domain of the HF dataset are sampled first. Then, the remainder of the allocated HF data

points are sampled using a low-discrepancy sequence.

The three sampling approaches we used are summarized in Table 4.4. In Fig. 4.10, we compare

the MF-GPR prediction of the viscosity using each of these sampling methods, for NLF = 100 and

NHF = 12. In the top row, we show the locations in the ni − T plane where the HF data, indicated

by filled black diamonds, and the LF data, indicated by open blue circles, were sampled using each

method. The bottom row shows heat maps of the absolute error between the prediction and the
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Figure 4.10: MF-GPR prediction of the viscosity of the element Fe using NLF = 100 and NHF = 12.
The HF data were sampled (a) on a uniformly spaced grid, (b) using a Halton-23 sequence, and
(c) using a hybrid method. Top row: The locations of the HF training data (filled black diamonds)
and LF training data (open blue circles) used to construct the MF training dataset are shown. The
red dashed lines denote the boundaries between the regions shown in Fig. 4.9. Bottom row: The
absolute differences between the predicted viscosities ηpred and the true viscosities ηtrue are shown.
The hybrid sampling approach improves the prediction in the gap region between the dashed white
lines. Note that the failure of the Halton-23 sampling approach to include the boundaries of the HF
data in the training set results in large errors at the boundaries.

true solution, for each sampling method; differences between the sampling methods are apparent.

In particular, the regression error in the gap region is substantially smaller with the hybrid method

than with the grid method.

4.4.2.2 Regression Error

Fits produced using GPR and MF-GPR are shown in Fig. 4.11, with the HF sampling approach

varied as described in Table 4.4. Each point in the figure shows an average of 10 fits, with error

bars indicating one standard deviation from the average. For MF-GPR, the LF data were sampled

from a grid, and the cases NLF = 25 and 400 are shown. The GPR fits were carried out using

only the HF data from the MF dataset. We see that the RMSE decreases as NHF increases for all
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HF Sampling LF Sampling Description

Grid Grid HF and LF data were sampled on an evenly spaced grid
in ni and T .

Halton-23 [252] Grid
HF data were sampled using a Halton-23 sequence.
LF data were sampled on an evenly spaced grid
in ni and T .

Hybrid Grid

The HF dataset includes the four extreme corners of the
domain and data sampled using a Halton-23 sequence.
The LF data were sampled on an evenly spaced grid
in ni and T .

Table 4.4: Sampling approaches used to sample the MF training dataset. The LF data were always
evaluated on a grid; sampling methods for the HF data varied.

methods, and that the MF-GPR fit yields smaller RMSE values than does GPR. In almost all cases,

MF-GPR performs at least as well as GPR.

We next computed the RMSE of fits to HF viscosity data for different combinations of NHF

and NLF for H and Fe. The results for H are displayed in Fig. 4.12, and for Fe, in Fig. 4.13; each

column in the figure corresponds to a different HF sampling method. We note that the RMSE values

for NHF = NLF = 4 should be the same in columns (a) and (c), because the hybrid method first

samples the four corners from the grid and then adds points sampled using the Halton-23 sequence.

The average value of the RMSE for NHF = NLF = 4 in column (a) is within one standard deviation

of the average value of the RMSE for the same case in column (c), and vice versa. Therefore, we do

not consider these differences to be statistically significant. As shown in Figs. 4.12 and 4.13, fits

generated using the hybrid sampling approach result in smaller RMSE values overall than do those

generated using a simple grid approach. It is also worth noting that the pure Halton-23 method

often produced higher RMSE values than did the grid method; this is because the boundaries of

the domain were not sufficiently sampled in the HF training set. As a result, the MF-GPR fit tends

to the mean of the HF data, and the largest errors are incurred near the boundaries, as shown in

Fig. 4.10.
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Figure 4.11: The RMSE of log10(η) for GPR and MF-GPR fits for the element H using different HF
sampling methods. We sampled NHF and NLF points from the gapped dataset shown in Fig. 4.9.
The models used to generate the data are specified in Table 4.3. Each RMSE value was determined
from an average of ten fits, and standard deviations for the values are shown as error bars. The HF
data were sampled (a) on an evenly spaced grid, (b) using a Halton-23 sequence, and (c) using a
hybrid method. We note that in most cases, MF-GPR outperformed GPR.

Figure 4.12: The RMSE of log10(η) for the element H using MF-GPR with different MF training
sets constructed using various HF sampling approaches. (a) The HF data were sampled on a grid.
(b) The HF data were sampled using a Halton-23 sequence. (c) The HF data were sampled using
our hybrid approach.
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Figure 4.13: The RMSE of log10(η) for the element Fe using MF-GPR with different MF training
sets constructed using various HF sampling approaches. (a) The HF data were sampled on a grid.
(b) The HF data were sampled using a Halton-23 sequence. (c) The HF data were sampled using
our hybrid approach.

4.5 Conclusions and Outlook

We have investigated the use of MF-GPR to interpolate plasma transport data over a wide

parameter space in which HF data are available in localized patches. We have examined the

improvements in both the predicted mean and the predicted uncertainty that MF-GPR provides over

GPR. We have seen that in most cases, MF-GPR results in a lower uncertainty than does single-

fidelity GPR, sometimes by an order of magnitude. Examining the hyperparameters governing the

structure of the kρk f kernel reveals the improvement in the mean and uncertainty, or lack thereof,

given by the LF data.

As a “black-box" regression method, MF-GPR provides increased reliability over single-fidelity

methods, as trends from LF models are used during regression where HF data are sparse; the use of

such LF trends enables MF-GPR to reduce the occurrence of nonphysical oscillations or inflection

points that occur with single-fidelity GPR. In addition, confidence bands generated byMF-GPR and

GPR suggest where additional HF data are needed once a fit has been produced; simpler regression

methods do not offer this benefit.

From an experimental-design perspective, HF data are often sampled on a grid that is refined
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uniformly when finer resolution is needed [253]. We found that when performing MF-GPR,

sampling HF data on a uniformly spaced grid can bias length-scale hyperparameters and results in

larger regression errors. Therefore, we developed a simple hybrid approach for initially sampling

HF data that combines sampling both on a grid and using a low-discrepancy sequence, resulting in

smaller regression errors.

The results here can be expanded upon in multiple ways. For example, the MF-GPR framework

could be extended to include physically motivated constraints, such as enforcing non-negativity

[254]. Additionally, we restricted the work here to the self-diffusion and viscosity transport

coefficients, but other transport coefficients, such as the thermal conductivity, the resistivity, and

the interdiffusion coefficient in plasma mixtures, can also be investigated. The sampling methods

described here can also be improved upon greatly and optimized for higher-dimensional feature

spaces to avoid the curse of dimensionality. However, our approaches offer a starting point that

highlights the importance of avoiding regressing beyond the bounds of available data in a GPR/MF-

GPR setting.

Through the confidence intervals it provides, the GPR approach suggests where it would be

most useful to generate additional data; the confidence of a fit would be improved most by obtaining

additional HF data points in regions with the greatest uncertainties. Comparing GPR and MF-

GPR results show the utility of generating LF data in parallel with HF datasets. In addition, it

could be possible to improve the ML approach itself by developing customized kernels for this

application [255–257].
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CHAPTER 5

KINETIC MODELING OF STRONGLY COUPLED PLASMAMIXTURES

5.1 Introduction

In Chapter 4, we highlighted how machine learning can be used for interpolating multi-modal

plasma transport data in disparate physical regimes. Much of the data in Chapter 4 were obtained

for dense plasmas using methods like MD or analytic models that have known accuracy in certain

limits. We change focus in this chapter to applications of ultracold neutral plasmas (UNPs) which

have many orders of magnitude lower number density and ion temperature than dense plasmas; this

property of UNPs is illustrated in Table 1.1 and Table 5.1. From these tables, we see that UNPs

have strongly coupled ions and are non-degenerate. Moreover, UNPs are highly-collisional and

close to equilibrium. The method that we develop and employ in this chapter stems from kinetic

theory and aims to characterize all of the aforementioned details.

The organization of this chapter is as follows. First, In Sec. 5.2, we provide a brief review

kinetic theory where we present the governing equations and specific choices surrounding the

collision operator. Then, we derive expressions for the entropy generation in a system from the

viewpoint of kinetic theory which will be used to assess the time-reversibility of multi-species

element ni (cm−3) Ti (K) Te (K) Γ θ Kn Ref.
Ca 1.8×1010 1 96 7.1 3.4×103 6.3×10−5 [15]
Yb 2×109 1 96 3.4 1.5×104 1.5×10−3 [15]
Sr 5×109 1.4 70 3.3 5.7×105 4.5×10−4 [258]
Sr 1×109 1 100 2.7 2.4×106 1.1×10−3 [259]
Ca 3.4×109 1.8 96 2.3 1.9×104 1.1×10−3 [260]
Yb 1.9×109 1 96 3.3 1.5×104 6.0×10−4 [260]
Xe 2×1010 1 500 7.3 3.2×103 5.7×10−4 [261]

Table 5.1: Comparison of non-dimensional parameters for UNPs. To compute the Knudsen
numbers, a reference length-scale of L = 1 mm was used. While the ion species in UNPs are
typically laser-cooled to temperatures on the order of micro-Kelvin (µK), disorder-induced heating
increases the ion temperature to the order of Kelvin (K). Based on the magnitude of the non-
dimensional parameters, we classify UNPs as strongly coupled, non-degenerate, highly-collisional
systems.
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UNPs. Next, we derive the Vlasov equation in the Cartesian, cylindrical [262], and spherical

coordinate system showing that additional acceleration terms appear as a result of the coordinate

transformation. We present the conservative form of the 1D-1V Vlasov equation that can be used

to model plasma with certain symmetries, like the radial symmetry found in Gaussian UNPs. In

Sec. 5.6, we detail the numerical methods used to solve the equations derived in Sec. 5.2. The

basis of our numerical scheme consists of a fourth-order finite-volume method [262]. We show

numerical results for single- and multi-species UNPs as well as multi-species high-energy-density

(HED) plasmas. We find that the amount of entropy generated in multi-species UNPs is largely

controlled by the initial conditions of the plasma. Additionally, we use our numerical method to

simulate the interfacial mixing in multi-species HED plasmas. We interrogate our numerical results

to find that the dominant drivers of diffusion across the interface is dominated by the self-consistent

electric field. We conclude by summarizing the results and discuss future work in Sec. 5.7.

5.2 Kinetic Theory

Non-equilibrium statistical mechanics or kinetic theory [263, 264] is a vast field of physics

that has many applications. The theoretical basis for kinetic theory stems from the Liouville

equationwhich describes the phase-space evolution of the N-particle distribution function. Through

statistical averaging, we obtain the so-called “BBGKY" hierarchy which is the starting point for

“kinetic equations." Kinetic equations are defined as a closed equation of motion for f1, the one-

particle distribution function. In this work, we will omit the subscript “1" and simply use fi to

denote the one-particle distribution function of species i. A generic set of kinetic equation for N

species has the form

∂ fi
∂t
+ v · ∇r fi + ai · ∇v fi =

N∑
j=1
Q( fi, f j), i = 1, 2, · · · , N, (5.1)

where, in a Cartesian coordinate system, the phase-space distribution for species i is fi = fi(r, v, t),

for r = (x, y, x), v = (vx, vy, vz), and the acceleration (or force) acting on species i is ai =

(ai,x, ai,y, ai,z). The term Q( fi, f j) is the collision operator between species i and j which introduces

microscopic information by way of particle collisions. There are many treatments for Q( fi, f j)
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which all stem from the Boltzmann equation. Some examples include the so-called Fokker-Planck,

Lenard-Balescu, Lenard-Bernstein, and Bhatnagar-Gross-Krook collision operators; we explore

three versions of the collision operator in this work and they are described in Sec. 5.2.1.

A benefit of kinetic equations for modeling plasmas is that they have fewer degrees of freedom

than MD, which has 6N degrees of freedom, but more degrees of freedom than hydrodynamic

models, which have 3 degrees of freedom. The saying that “a distribution function is worth a

thousand macroscopic variables" [263] encapsulates this relation of kinetics and hydrodynamics.

In essence, you can derive hydrodynamic equations and macroscopic variables by taking specific

moments of the distribution function f . Specifically, the first three moments yield the number

density, bulk velocity, and temperature of species i

ni(r, t) =
∫

fi(r, v, t) dv, (5.2)

ni(r, t)ui(r, t) =
∫

v fi(r, v, t) dv, (5.3)

3
2

ni(r, t)Ti(r, t) =
mi

2

∫
[v − ui(r, t)]2 fi(r, v, t) dv. (5.4)

In Sec. 5.2.1 we present three distinct collision operators that we will employ in this chapter. We

note that all collision operators stem from approximations to the Boltzmann equation. In particular

an assumption of two of the collision operators we discuss is that the system is near equilibrium.

5.2.1 Collision Operators

The simplest choice for the collision operator consists of settting Q( fi, f j) = 0 and replacing

the acceleration term ai in Eq. (5.1) with a force computed from the self-consistent electric field

(the mean-field approximation) obtained from Poisson’s equation. These choices result in the

“Vlasov-Poisson" equation, or simply the “Vlasov" equation

∂ fi
∂t
+ v · ∇r fi +

ZieE
mi
· ∇v fi = 0, (5.5)

E = −∇ϕ, (5.6)

−
1

4π
∇2ϕ =

N∑
i=1

Zie
∫

fi(r, v, t) dv. (5.7)
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It is important to note that here, we have assumed that the system is electrostatic and thus nomagnetic

fields are generated from electric currents. More generally we would replace ai = Zie(E+v×B)/mi

which is the Lorentz force with the magnetic field B; in this case, obtaining E and B would require

solving Maxwell’s equations. We note that while the Vlasov equation is often referred to as

“collisionless" the particles still interact via the self-consistent electric field. For our study of

UNPs using kinetic equations, we will require the use of a collision operator as UNPs are highly

collisional (see Table 5.1).

One choice of non-zero collision operator that applies to systems near equilibrium is the

Bhatnagar, Gross, and Krook (BGK) [265] collision operator. We begin our discussion of collision

operators for a single species kinetic equation (dropping all subscripts so that fi = f ). For a single

species, the BGK collision operator is

QBGK( f ) = ν [M(v; n, u,T) − f ] , (5.8)

where ν is the ion collision frequency andM(v; n, u,T) is a Maxwellian distribution that is param-

eterized by moments of f [see Eqs. (5.2) - (5.4)].

M(v; n, u,T) = n(r, t)
[

m
2πT(r, t)

]3/2
exp

{
−

m [v − u(r, t)]2

2T(r, t)

}
. (5.9)

The choice of M(v; n, u,T) depending on the moments of f ensures the conservation of mass,

momentum, and energy. We stress that the BGK collision operator is not to be confused with a

strikingly similar collision operator proposed by Krook which replacesM(v; n, u,T), with some

arbitrary equilibrium distribution f0 independent of the moments of f so that

QKrook( f ) = ν( f0 − f ). (5.10)

Since f0 in Eq. (5.10) does not rely on moments of f conservation of mass, momentum, and energy

is not guaranteed.

The BGKmodel has the effect of relaxing the distribution function to equilibrium in phase-space

at a time scale determined by ν. We note that the BGK collision operator is computationally simple:

it consists of a subtraction and a multiplication. However, because of the underlying assumptions
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resulting its simplistic nature, it may fail to accurately model certain plasmas. Another option

for the collision operator is one proposed by Lenard and Bernstein (LB) [266]. The LB collision

operator is derived from a linearization of the Fokker-Planck equation, which is obtained in the

“small-angle" or “weak-scattering" approximation of the Boltzmann equation. The LB equation

includes information about gradients in velocity space viz.

QLB( f ) = ν∇v ·
[
(v − u0) f + v2

0,th∇v f
]
, (5.11)

where u0 is the initial bulk/drift velocity and v0,th =
√

3T0/m is the initial root-mean-square speed

of the ions. Much like the Krook version of the BGK operator, Eq. (5.11) is non-conservative. To

remedy this, conservation is imposed by the form

QLBD( f ) = ν∇v ·
{
[v − u(r, t)] f + v2

th∇v f
}
, (5.12)

where u0 had been replaced with the first moment of f and vth =
√

3T(r, t)/m is the root-mean-

square speed that now depends on the second central moment of f . To extend the collision operator

to N-species, we need to make modifications to the expressions given in Sec. 5.2.1. For example,

the multi-species BGK operator between species i and j is

QBGK( fi, f j) = νi j
[
Mi j(v; ni, ui j,Ti j) − fi

]
. (5.13)

Equation (5.13) now depends on a Maxwellian distribution that is parametrized by the mixture

quantities ui j and Ti j . There are non-unique choices for these quantities and the versions we

implement in this chapter are derived in Ref. [267] and ensure that the multi-species BGK model

is conservative and entropic. The mixture bulk velocity is

ui j =
ρiνi jui + ρ jν jiu j

ρiνi j + ρ jν ji
, (5.14)

and the mixture temperature is

Ti j =
niνi jTi + n jν jiTj

niνi j + n jν ji
+
ρiνi j(v

2
i − ν

2
i j) + ρ jν ji(v

2
j − ν

2
i j)

3(niνi j + n jν ji)
. (5.15)

Note that both the BGK and LBD operators depend on the same input: the collision frequency

νi j . There are many choices for obtaining the collision frequency, and the specific choices used in
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this chapter are described in Secs. 5.2.2 and 5.2.3. Since we are interested in simulating UNPs,

we chose a collision rate model that is accurate for strongly coupled plasmas. We note that most

collision rate models are typically accurate for weakly coupled plasmas.

5.2.2 Ion-Ion Collision Rate

As shown in Table 5.1, UNPs are moderately-coupled systems; therefore, the collision rate νi j

must be accurate in these regimes. There are many collision rate models that exist [268, 269] that

often make approximations to circumvent issues associated with computing the necessary collision

integrals. These approximations introduce the so-called “Coulomb logarithm" which is known to

fail at strong coupling. Here, we employ a collision rate model derived in Ref. [267] which is valid

for moderately-coupled systems and does not rely on a Coulomb logarithm. The specific collision

rate we use in this chapter is the the rate derived from temperature relaxation rate denoted as “ET"

in Ref. [267]. The collision rate between species i and j is given by

νi j =
1
ni

256π2nin j(mim j)
1/2(Zi Z je2)2

3(2π)3/2(miTj + m jTi)
3/2 K11(gi j), (5.16)

gi j =
Zi Z je2(mi + m j)

λeff(miTj + m jTi)
. (5.17)

Where K11 is a fit to the collision integrals with an effective interaction potential

K11(g) =


−1

4 ln
(∑5

k=1 akg
k
)
, g < 1

b0 + b1 ln(g) + b2 ln2(g)

1 + b3g + b4g2 g ≥ 1,
(5.18)

where the a coefficients are a1 = 1.4660, a2 = −1.7836, a3 = 1.4313, a4 = −0.55833, and

a5 = 0.061162 and the b coefficients are b0 = 0.081033, b1 = −0.091336, b2 = 0.051760,

b3 = −0.50026, and b4 = 0.17044; these coefficients are provided in Appendix C of Ref. [151].

Here, the plasma parameter gi j appears in Eq. (67) of Ref. [151] but with a modified temperature

to account for multiple ion temperatures. The effective screening length is given by both the ions

and electron species as

λeff =

[
1
λe
+

N∑
i=1

1
λi

(
1

1 + 3ΓISi

)]−1/2

, (5.19)
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where the electron and ion screening lengths are

λ2
e =

√
T2

e +
(

2
3 EF

)2

4πe2ne
, (5.20)

λ2
i =

Ti

4πZ2
i e2ni

, (5.21)

and the modified Coulomb coupling parameter is given by

Γ
IS
i =

(Zie)2

aISi Ti
, (5.22)

aISi =
(

3Zie
4πρtot

)1/3
, (5.23)

ρtot =

N∑
i=1

Zieni . (5.24)

We will use Eq. (5.16) in all kinetic simulations where ion-ion interactions are present. Ion-ion

kinetic simulations are carried out for HED plasmas in Secs. 5.6.1.1 and 5.6.2.3 and for UNPs in

Secs. 5.6.1.2 and 5.6.2. If we are interested in simulating electron-electron collisions, modifications

to the collision rate need to be made. We describe eight collision rate models for electron-electron

interactions in Sec. 5.2.3.

5.2.3 Electron-Electron Collision Rate

To compute the electron-electron collision rate, we implement eight collision rate models,

seven of which require the use of a Coulomb logarithm. The seven models that require a Coulomb

logarithm are the Landau-Spitzer (LS) model [270], which assumes a straight-line trajectory and

binary interactions, and six models proposed by Gericke, Murillo, and Schlanges (GMS) [269],

three of which make modifications to the LS straight-line trajectory assumption and three additional

models that introduce the concept of hyperbolic trajectories and binary collisions. The electron-

electron collision rate νee can be obtained from [151,271]

νee =
8
√
πnee4 lnΛ

3√meT
3/2
e

, (5.25)

Where lnΛ is the Coulomb logarithm. Expression for the Coulomb logarithm can be found in

Refs. [270] and [269]. The final model used for obtaining collision rates does not depend on
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a Coulomb logarithm as proposed by Haack, Hauck, and Murillo (HHM) [44, 267]. The HHM

collision rate includes effects of particle correlations beyond a binary scattering viewpoint by

numerically evaluating the collision integral with an effective interaction potential [151]. The

HHM collision rate is given by

νHHMee =
32
√
πnee4

3√meT
3/2
e

K11(γee), (5.26)

γee =
e2

TeλTF
, (5.27)

λ2
TF =

4πe2ne

T2
e + (

2
3 EF)

2
, (5.28)

where EF = ~
2(3π2ne)

2/3/2me is the Fermi energy.

Table 5.2 shows a comparison of the eight collision rate models described here applied to an

electron UNP. In Sec. 5.6.1.3 we will use these electron-electron collision rates to simulate the

tail-filling in an electron UNP. Tail filling is the process by which "depleted" high-energy tails

of a velocity distribution for a system of particles equilibrates. That is, the plasma equilibrates

to equilibrium on some time-scale determined by the collision rate – “replenishing" the tails. In

general, a system that is in equilibrium does not generate entropy. In Sec. 5.2.4, we mathematically

define the process of entropy generation starting from a kinetic theory viewpoint.

5.2.4 Entropy Generation and Time-Reversibility

Ultimately, the role of a collision operator is to drive a system to equilibrium. To quantify when

a system has equilibrated, we consider the amount of entropy being generated in a system. When

entropy is no longer being generated, the system has reached thermodynamic equilibrium. Later

in this chapter, we will show that the initial conditions of a plasma mixture dictate the amount

of entropy that is generated. We begin with an equation for the entropy density of an N-species

system [189]

ρs = −kB

N∑
i=1

∫
fi(ln fi − 1)dv. (5.29)
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Taking the time derivative of Eq. (5.29) we get

∂ρs
∂t
= −kB

N∑
i=1

∫
ln fi

∂ fi
∂t

dv

= kB

N∑
i=1

∫
ln fi

v · ∇r fi +
ZieE
mi
· ∇v fi −

N∑
j=1
Q( fi, f j)

 dv

= kB∇r ·
N∑

i=1

∫
v[ fi(ln fi − 1)]dv + kB

N∑
i=1

∫
ZieE
mi
· ln fi∇v fidv

− kB

N∑
i, j=1

∫
Q( fi, f j) ln fidv, (5.30)

where we have used the relation that ln fi∇r fi = ∇r[ fi(ln fi −1)]. Integration by parts on the second

term in Eq. (5.30) yields zero and holds for any arbitrary non-velocity dependent force. Therefore

we have
∂ρs
∂t
= kB∇r ·

N∑
i=1

∫
v[ fi(ln fi − 1)]dv − kB

N∑
i, j=1

∫
Q( fi, f j) ln fidv. (5.31)

Adding and subtracting the barycentric velocity defined as

u =
1
ρ

N∑
i=1

ρiui, (5.32)

ρ =

N∑
i=1

mini, (5.33)

we obtain

∂ρs
∂t
= kB∇r ·

N∑
i=1

∫
(v − u + u)[ fi(ln fi − 1)]dv − kB

N∑
i, j=1

∫
Q( fi, f j) ln fidv. (5.34)

Rearranging the first term we have

∂ρs
∂t
= kB∇r · u

N∑
i=1

∫
fi(ln fi − 1)dv + kB∇r ·

N∑
i=1

∫
(v − u)[ fi(ln fi − 1)]dv

− kB

N∑
i, j=1

∫
Q( fi, f j) ln fidv. (5.35)
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Using Eq. (5.29) and defining the entropy flux and entropy source term as

Js = −kB∇r ·
N∑

i=1

∫
(v − u)[ fi(ln fi − 1)]dv, (5.36)

σ = −kB

N∑
i, j=1

∫
Q( fi, f j) ln fidv, (5.37)

respectively, Eq (5.35) becomes

∂ρs
∂t
= −∇r · (ρsu + Js) + σ. (5.38)

Equation (5.38) is simply an advection equation plus a source term for the entropy density or in other

words, a time- and space-dependent equation for the second law of thermodynamics. We stress that

the entropy source term σ is characterized purely by the collision operator. In the case of Vlasov,

no entropy will be generated in the system implying that the system is not evolving to equilibrium.

In fact, solutions of the Vlasov equation, as well as MD, are completely deterministic and time-

reversible. The fact that MD is also time-reversible should be alarming since fundamentally, our

universe is made up of atoms with interactions that could be described by Newton’s second law. The

time-reversibility of Newton’s second law implies that our universe is time-reversible and that after

some amount of time, we would expect to return to our “initial condition." While mathematically

true, the Poincaré recurrence theorem suggests that the time that would need to pass in order for

that to happen would be nearly infinite as there are essentially infinite number of particles in our

universe.

5.2.5 Entropy Density in Thermodynamic Equilibrium

Consider the case where of thermodynamic equilibrium where the distribution function has the

form of a Maxwellian

f eqi = ni

( mi

2πT

)3/2
exp

[
−

mi(v − u)2

2T

]
. (5.39)

We can re-write the above expression by substituting in the thermodynamic potential for an ideal

gas mixture

µi =
T
mi

(
ln ni −

3
2

ln
2πT
mi

)
, (5.40)
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we get that

exp
(miµi

T

)
= ni

( mi

2πT

)3/2
, (5.41)

which we can substitute into Eq. (5.39) to obtain

f eqi = exp
(miµi

T

)
exp

[
−

mi(v − u)2

2T

]
= exp

[
mi
µi −

1
2 (v − u)2

2T

]
. (5.42)

Using Eq. (5.42) into Eq. (5.29) gives

ρs = −kB

N∑
i=1

∫
f eqi

[
mi
µi −

1
2 (v − u)2

2T
− 1

]
dv, (5.43)

which reduces to

ρs = −
kB

T

(
N∑

i=1
ρiµi − ρu − p

)
. (5.44)

Equation(5.44) shows that the kinetic theory opinion of the entropy density in equilibrium is con-

sistent with the thermodynamic expression. Using the Gibbs relation, we arrive at an expression for

the entropy source term in terms of the diffusion flux, heat flux, and pressure tensor. Decomposing

the entropy source term this way allows for an analysis of the dominant terms that generate entropy.

That is, we can connect quantities like interdiffusion, thermal conductivity, and viscosity to the

amount of entropy production in a plasma.

5.3 The Vlasov Equation in Conservative Form

Before beginning our discussion on the numerical methods we employ to solve our kinetic

equation, we wish to represent our kinetic equation in conservative form. Doing so will allow us to

utilize numerical methods for conservation laws, in particular, finite-volume methods. Returning

to the single-species Vlasov equation, which will be the left-hand-side for all of our spatially

dependent kinetic equations in this chapter, we expand Eq. (5.5) as

∂ f
∂t
+ vx

∂

∂x
f + vy

∂

∂y
f + vz

∂

∂z
f + ax

∂

∂vx
f + ay

∂

∂vy
f + az

∂

∂vz
f = 0. (5.45)

Note that if the ax, ay, and az are determined from the self-consistent electric field [see Eq. (5.6)],

then both the velocity and acceleration components commute with the partial derivatives and
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Eq. (5.45) becomes

∂ f
∂t
+

∂

∂x
(vx f ) +

∂

∂y
(vy f ) +

∂

∂z
(vz f ) +

∂

∂vx
(ax f ) +

∂

∂vy
(ay f ) +

∂

∂vz
(az f ) = 0. (5.46)

Equation (5.46) can be written in a compact notation as

∂ f
∂t
+ ∇X · ( ÛX f ) = 0, (5.47)

where

X = [x, y, z, vx, vy, vz]
T, ÛX = [vx, vy, vz, ax, ay, az]

T . (5.48)

We note that Eq. (5.47) is written in conservative form, i.e., the time derivative of the distribution

function changes due to the divergence of fluxes ÛX f .

Representing Eq. (5.5) in conservative form was a trivial task in Cartesian coordinates. The

triviality was a direct consequence of the fact that the velocity and acceleration components do not

depend on the partial derivatives, allowing them to commute. In Secs. 5.3.1 and 5.3.2, we derive the

conservative form of the Vlasov equation in both cylindrical and spherical coordinate systems. The

cylindrical form was discussed in detail in Ref. [262] and we follow the same derivation procedure

for spherical coordinates. For completeness, we repeat the derivation for cylindrical coordinates

carried out in Ref. [262] here. Our ultimate goal is to numerically implement our kinetic model

in spherical coordinates. The reason the spherical coordinate system is desirable is due to the fact

that UNPs are often initialized as spherically symmetric clouds which then expand radially outward

into the surrounding vacuum. Additionally, many diagnostics used in UNP experiments report the

radial expansion of the plasma and we wish to compare our work against available experimental

data.

5.3.1 Cylindrical Coordinates

In cylindrical coordinates, a vector r is defined by (ρ, φ, z) where

r = ρêρ + φêφ + zêz, (5.49)
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where êξ denote unit vectors point along the coordinate ξ. The relation of unit vectors in cylindrical

coordinates to the unit vectors in Cartesian coordinates by

êρ = cos φêx + sin φêy, (5.50)

êφ = − sin φêx + y cos φêy, (5.51)

êz = zêz . (5.52)

The relation of a vector in cylindrical coordinates to Cartesian coordinates is given by

rcyl ≡


rρ

rφ

rz


=


ρ

φ

z


=


(x2 + y2)1/2

arctan
( y

x

)
z


. (5.53)

The velocity in cylindrical coordinates is found via

vcyl =
d
dt

(
ρêρ + zêz

)
= ρ Û̂eρ + Ûρêρ + z Û̂ez + Ûzêz

= Ûρêρ + ρ Ûφêφ + Ûzêz .

The velocity vector in cylindrical coordinates is now related to Cartesian coordinates by

vcyl ≡



vρ

vφ

vz


=



Ûρ

ρ Ûφ

Ûz


=



xvx + yvy

(x2 + y2)1/2

(x2 + y2)1/2
xvy − yvx

x2 + y2

vz


=



xvx + yvy

(x2 + y2)1/2

xvy − yvx

(x2 + y2)1/2

vz


. (5.54)

Now define F̄ ≡ ÛX f . The goal is to convert the divergence of the fluxes F̄ into a new coordinate

system which can be done by using the following relation:

∇X · F̄ = J∇ξ ·
(

1
J

JF̄
)
. (5.55)

Where J denotes the Jacobian matrix with determinant J. The Jacobian matrix is

J =


∂rcyl
∂rcar

∂rcyl
∂vcar

∂vcyl
∂rcar

∂vcyl
∂vcar


, (5.56)
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where

∂rcyl
∂rcar

=



∂rρ
∂x

∂rρ
∂y

∂rρ
∂z

∂rφ
∂x

∂rφ
∂y

∂rφ
∂z

∂rz

∂x
∂rz

∂y

∂rz

∂z


=



x
ρ

y

ρ
0

−y

x2 + y2
x

x2 + y2 0

0 0 1


, (5.57)

∂rcyl
∂vcar

=



∂rρ
∂vx

∂rρ
∂vy

∂rρ
∂vz

∂rφ
∂vx

∂rφ
∂vy

∂rφ
∂vz

∂rz

∂vx

∂rz

∂vy

∂rz

∂vz


= 0, (5.58)

∂vcyl
∂rcar

=



∂vρ

∂x
∂vρ

∂y

∂vρ

∂z
∂vφ

∂x
∂vφ

∂y

∂vφ

∂z
∂vz

∂x
∂vz

∂y

∂vz

∂z


=



y(yvx − xvy)
ρ3

x(xvy − yvx)

ρ3 0

y(xvx + yvy)

ρ3 −
x(xvx + yvy)

ρ3 0

0 0 0


, (5.59)

∂vcyl
∂vcar

=



∂vρ

∂vx

∂vρ

∂vy

∂vρ

∂vz

∂vφ

∂vx

∂vφ

∂vy

∂vφ

∂vz

∂vz

∂vx

∂vz

∂vy

∂vz

∂vz


=



x
ρ

y

ρ
0

−y

ρ

x
ρ

0

0 0 1


. (5.60)
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The Jacobian transformation matrix from Cartesian to cylindrical coordinates is

J =



x
ρ

y

ρ
0 0 0 0

−y

ρ2
x
ρ2 0 0 0 0

0 0 1 0 0 0

y(yvx − xvy)
ρ3

x(xvy − yvx)

ρ3 0
x
ρ

y

ρ
0

y(xvx + yvy)

ρ3 −
x(xvx + yvy)

ρ3 0
−y

ρ

x
ρ

0

0 0 0 0 0 1



. (5.61)

We note that the determinant of J is J = 1/ρ. Computing the matrix-vector product defined in

Eq. (5.55), we have

∇X · F̄ =
1
ρ



∂

∂ρ

∂

∂φ

∂

∂z
∂

∂vρ

∂

∂vφ

∂

∂vz



·



ρ



x
ρ

y

ρ
0 0 0 0

−y

ρ2
x
ρ2 0 0 0 0

0 0 1 0 0 0

y(yvx − xvy)
ρ3

x(xvy − yvx)

ρ3 0
x
ρ

y

ρ
0

y(xvx + yvy)

ρ3 −
x(xvx + yvy)

ρ3 0
−y

ρ

x
ρ

0

0 0 0 0 0 1





vx f

vy f

vz f

ax f

ay f

az f





, (5.62)
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which simplifies to

∇X · F̄ =
1
ρ



∂

∂ρ

∂

∂φ

∂

∂z
∂

∂vρ

∂

∂vφ

∂

∂vz



·



ρvρ f

vφ f

ρvz f(
ρar + v

2
φ

)
f(

ρaφ − vρvφ
)

f

ρaz f



. (5.63)

Where we have made the definitions that

aρ ≡
xax + yay

ρ
, (5.64)

aφ ≡
xay − yax

ρ
. (5.65)

Now that we have an expression for the divergence of the fluxes in the cylindrical coordinate system,

we use Eq. (5.47) to obtain the Vlasov equations in cylindrical coordinates

∂ f
∂t
+

1
ρ

∂

∂ρ
(ρvρ f ) +

1
ρ

∂

∂φ
(vφ f )

+
1
ρ

∂

∂z
(ρvz f )

+
1
ρ

∂

∂vρ

[
(ρaρ + v2

φ) f
]
+

1
ρ

∂

∂vφ

[
(ρaφ − vρvφ) f

]
+

1
ρ

∂

∂vz
(ρaz f ) = 0, (5.66)

which is the same result obtained in Refs. [262, 272]. We can further simplify Eq. (5.66) by

canceling the pre-factor of ρ to yield

∂ f
∂t
+

1
ρ

∂

∂ρ
(ρvρ f ) +

1
ρ

∂

∂φ
(vφ f ) +

∂

∂z
(vz f ) +

∂

∂vρ

[(
aρ +

v2
φ

ρ

)
f

]
+

∂

∂vφ

[(
aφ −

vρvφ

ρ

)
f
]
+

∂

∂vz
(az f ) = 0. (5.67)

We note that in contrast to the conservative form in the Cartesian coordinate system, additional

acceleration terms in Eq. (5.67) appear. Specifically, these additional acceleration terms correspond
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to the acceleration from the Coriolis force −vrvθ/r and the centripetal force v2
φ/r . We will repeat

this procedure for the spherical coordinate system in Sec. 5.3.2 and show that these additional

acceleration terms also appear.

5.3.2 Spherical Coordinates

A vector in spherical coordinates is described at a point (r, θ, φ) so that

r = r êr + θêθ + φêφ, (5.68)

where the unit vectors in spherical coordinates are related to the unit vectors in Cartesian coordinates

by

êr = sin θ cos φêx + sin θ sin φêy + cos θêz, (5.69)

êθ = cos θ cos φêx + cos θ sin φêy − sin θêz, (5.70)

êφ = − sin φêx + cos φêy . (5.71)

The relation of a vector in spherical coordinates to Cartesian coordinates is given by

rsph ≡


rr

rθ

rφ


=


r

θ

φ


=


(x2 + y2 + z2)1/2

arccos
[

z
(x2 + y2 + z2)1/2

]
arctan

( y
x

)

. (5.72)

The velocity of a point in spherical coordinates is computed by taking a time derivative

vsph ≡
d
dt

rêr = r Û̂er + Ûr êr

= Ûr êr + r Ûθêθ + r Ûφ sin θêφ.
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The velocity vector is related to Cartesian coordinates by

vsph ≡



vr

vθ

vφ


=



Ûr

r Ûθ

r sin θ Ûφ


=



xvx + yvy + zvz

(x2 + y2 + z2)1/2

(x2 + y2 + z2)1/2
xzvx + yzvy − (x2 + y2)vz

(x2 + y2)1/2(x2 + y2 + z2)

(x2 + y2 + z2)1/2 sin
[
arccos

(
z

(x2+y2+z2)1/2

)] (
−yvx + xvy

x2 + y2

)


(5.73)

=



xvx + yvy + zvz

r

xzvx + yzvy − (x2 + y2)vz

(x2 + y2)1/2r
−yvx + xvy
(x2 + y2)1/2


. (5.74)

The Jacobian for representing how vectors in a spherical coordinate system vary with respect to

vectors in a Cartesian coordinate system is

J =


∂rsph
∂rcar

∂rsph
∂vcar

∂vsph
∂rcar

∂vsph
∂vcar


, (5.75)
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where

∂rsph
∂rcar

=



∂rr

∂x
∂rr

∂y

∂rr

∂z
∂rθ
∂x

∂rθ
∂y

∂rθ
∂z

∂rφ
∂x

∂rφ
∂y

∂rφ
∂z


=



x
r

y

r
z
r

xz
(x2 + y2)1/2r2

yz
(x2 + y2)1/2r2

−x2 − y2

(x2 + y2)1/2r2

−y

x2 + y2
x

x2 + y2 0


,

∂rsph
∂vcar

= 0,

∂vsph
∂rcar

=



∂vr

∂x
∂vr

∂y

∂vr

∂z
∂vθ
∂x

∂vθ
∂y

∂vθ
∂z

∂vφ

∂x
∂vφ

∂y

∂vφ

∂z


=



(y2+z2)vx−xyvy−xzvz
r3

−xyvx+(x2+z2)vy−yzvz
r3

−xzvx−yzvy+(x2+y2)vz
r3

αvx+βvy+γvz
(x2+y2)3/2r3

βvx+ρvy+ηvz
(x2+y2)3/2r3

(x2+y2)1/2(xvx+yvy+zvz)
r3

xyvx+y2vy
(x2+y2)3/2

−x2vx−xyvy
(x2+y2)3/2

0


,

∂vsph
∂vcar

=



∂vr

∂vx

∂vr

∂vy

∂vr

∂vz

∂vθ
∂vx

∂vθ
∂vy

∂vθ
∂vz

∂vφ

∂vx

∂vφ

∂vy

∂vφ

∂vz


=



x
r

y

r
z
r

xz
(x2 + y2)1/2r

yz
(x2 + y2)1/2r

−(x2 + y2)

(x2 + y2)1/2r
−y

(x2 + y2)1/2
x

(x2 + y2)1/2
0


,

where α = −z(x4 − y4 − y2z2), β = −xyz(2x2 + 2y2 + z2), γ = −xz2(x2 + y2), ρ = z(x4 + x2z2 − y4),

and η = −yz2(x2 + y2). We note that the determinant of J is J = 1/r2 sin θ and thus Eq. (5.55)
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becomes

∇X · F̄ =
1

r2 sin θ



∂
∂r

∂
∂θ

∂
∂φ

∂
∂vr

∂
∂vθ

∂
∂vφ



·



r2 sin θ J



vx f

vy f

vz f

ax f

ay f

az f





. (5.76)

Computing the matrix-vector product defined in Eq. (5.76) and using Eq. (5.55), we have that the

Vlasov equation in conservative form in spherical coordinates is

∂ f
∂t
+

1
r2 sin θ

∂(r2 sin θvr f )
∂r

+
1

r2 sin θ
∂(r2 sin θ vθr f )

∂θ
+

1
r2 sin θ

∂(r2 sin θ vφ
r sin θ f )

∂φ

+
1

r2 sin θ

∂
{
r2 sin θ

[
ar +

1
r

(
v2
θ + v

2
φ

)]
f
}

∂vr
+

1
r2 sin θ

∂
{
r2 sin θ

[
aθ − 1

r

(
vrvθ − cot θv2

φ

)]
f
}

∂vθ

+
1

r2 sin θ
∂

{
r2 sin θ

[
aφ − 1

r

(
vrvφ + cot θvθvφ

) ]
f
}

∂vφ
= 0. (5.77)

Simplifying the pre-factors yields

∂ f
∂t
+

1
r2
∂(r2vr f )

∂r
+

1
r sin θ

∂(sin θvθ f )
∂θ

+
1

r sin θ
∂(vφ f )
∂φ

+
∂

{[
ar +

1
r

(
v2
θ + v

2
φ

)]
f
}

∂vr
+
∂

{[
aθ − 1

r

(
vrvθ − cot θv2

φ

)]
f
}

∂vθ

+
∂

{[
aφ − 1

r

(
vrvφ + cot θvθvφ

) ]
f
}

∂vφ
= 0. (5.78)

The Vlasov equation in conservative form in spherical coordinates also include acceleration terms

that are a result of the coordinate system transformation – just like in cylindrical coordinates.

These acceleration terms correspond to acceleration due to the Coriolis effect that manifests itself
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as a product of radial and angular velocities – the terms vrvθ and vrvφ. Additional acceleration

terms also appear due to centripetal acceleration which appear as squared velocities. We reiterate

that only the ar, aθ, and aφ terms in Eq. (5.78) that are due to the Lorentz force; the additional

acceleration terms are purely a result of the coordinate transformation. In Sec. 5.3.3, we present the

1D-1V representation of the Vlasov equation in the Cartesian, cylindrical, and spherical coordinate

system. These 1D-1V representations are the starting point for the numerical methods we use for

solving kinetic equations as discussed in Sec. 5.5.1.

5.3.3 The 1D-1V Vlasov Equation in Cartesian, Cylindrical, and Spherical Coordinates

In this section we show the comparison of 1D-1V representations for Eqs. (5.47), (5.67), and

(5.78). Equation (5.47) is the easiest to reduce to 1D-1V as the velocity and acceleration components

do not depend on the differentiation variable. Thus, the 1D-1V conservative form of Eq. (5.47) is

∂ f
∂t
+

∂

∂x
(vx f ) +

∂

∂vx
(ax f ) = 0. (5.79)

Mathematically, by 1D-1V we are enforcing that f (x, y, z, vx, vy, vz, t) = f (x, vx, t) and as a result,

many of the partial derivatives equate to zero.

In cylindrical coordinates, we must explicitly carry out the product rule as some of the terms in

the fluxes depend on the differentiation variable. Equation (5.67) becomes

∂ f
∂t
+
vρ

ρ

(
ρ
∂

∂ρ
f + f

)
+
vφ

ρ

∂

∂φ
f + vz

∂

∂z
f +

(
aρ +

v2
φ

ρ

)
∂

∂vρ
f (5.80)

+ aφ
∂

∂vφ
f −

vρ

ρ

(
vφ

∂

∂vφ
f + f

)
+ az

∂

∂vz
f = 0, (5.81)

which in 1D-1V reduces to

∂ f
∂t
+ vρ

∂

∂ρ
f +

(
aρ +

v2
φ

ρ

)
∂

∂vρ
f = 0, (5.82)

which can also be readily expressed in conservative form:

∂ f
∂t
+

∂

∂ρ
(vρ f ) +

∂

∂vρ

[(
aρ +

v2
φ

ρ

)
f

]
= 0. (5.83)
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We follow a similar procedure for spherical coordinates where Eq. (5.78) becomes

∂ f
∂t
+ vr

∂

∂r
f +

2vr f
r
+
vθ

r
∂

∂θ
f +

cot θvθ f
r

+
vφ

r sin θ
∂

∂φ
f + ar

∂

∂vr
f +

(
v2
θ + v

2
φ

r

)
∂

∂vr
f

+ aθ
∂

∂vθ
f +

vrvθ

r
∂

∂vθ
f −

vr f
r
+

cot θv2
φ

r
∂ f
∂vθ
+ aφ

∂

∂vφ
f −

vrvφ

r
∂

∂vφ
f

−
vr f
r
−

cot θvθvφ
r

∂

∂vφ
f −

cot θvθ f
r

= 0,

where the underlined terms cancel. In 1D-1V the above equation reduces to

∂ f
∂t
+ vr

∂

∂r
f +

(
ar +

v2
θ + v

2
φ

r

)
∂

∂vr
f = 0, (5.84)

which can also be readily expressed in conservative form:

∂ f
∂t
+
∂

∂r
(vr f ) +

∂

∂vr

[(
ar +

v2
θ + v

2
φ

r

)
f

]
= 0. (5.85)

The 1D-1V representations of the Vlasov equation in conservative form lend themselves nicely to

numerical methods derived for hyperbolic conservation laws. Moreover, the assumed symmetries in

1D-1V result reduce the dimensionality of the problem from 6D to 2D decreasing the computational

demands associated with numerically solving the Vlasov equation. In the case of the spherical

coordinate system, radial symmetries are often observed in the expansion of UNPs into a vacuum

when the UNP is initialized with a Gaussian density profile. In Sec. 5.4, we derive analytic models

that approximate the radial expansion of a Gaussian plasma into a vacuum. our ultimate goal is

to compare numerical simulations of the 1D-1V Vlasov equations to these analytic models to test

their validity for single-species UNPs. Moreover, as no analytic models exist for describing the

expansion of a multi-species UNP, these 1D-1V forms provide means of computing the evolution

of UNP mixtures.

5.4 Plasma Expansion Into a Vacuum

The density profiles of UNPs in the absence of magnetic fields are often initialized as a

spherically symmetric Gaussian profile. Additionally, UNPs are created in a vacuum in which

they expand radially outward. One goal of this chapter is to compare analytic models to numerical
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simulations of Gaussian UNPs. If the analytic models derived below are valid, we avoid the

computation cost associated with the kinetic simulations for these plasmas. In what follows,

we will derive expressions for the time evolution of the ion density and electron temperature in

two cases: an isothermal case, and an adiabatic case. The derivations presented here have been

originally presented in Ref. [273]; for completeness, we provide them here and provide our own

insights.

To begin, we start with an expression for a Gaussian profile of the ion density

ni(r, t = 0) = ni0exp

(
−

r2

σ2
0

)
, (5.86)

where ni0 is the “peak" ion number density and σ0 characterizes the initial width of the plasma.

We now consider the conservation laws for the ion species where we assume that the plasma is

isotropic such that we can describe the expansion in one-spatial dimension. The continuity and

momentum equation for the ion species are

∂ni

∂t
+

∂

∂x
(niui) = 0, (5.87)

∂ui

∂t
+ ui

∂

∂x
ui +

1
mini

∂

∂x
p =

F
mi
, (5.88)

where ni = ni(x, t) and ui = ui(x, t). Note that, p = niTi is the ideal gas pressure where Ti = Ti(x, t)

is the ion temperature in energy units and F is an internal or external force. For an initially cold

plasma, we approximate Ti = 0 which also means that p = 0. We also assume that there are no

external forces acting on the ions and that F describes the self-consistent electric field. That is

F = ZieE = −Zie
∂

∂x
ϕ, (5.89)

where ϕ = ϕ(x, t) is the electrostatic potential. The momentum equation with the above approxi-

mations becomes
∂ui

∂t
+ ui

∂

∂x
ui = −

Zie
mi

∂

∂x
ϕ. (5.90)

The momentum equation for the electrons is

∂ue

∂t
+ ue

∂

∂x
ue +

1
mene

∂

∂x
(neTe) =

e
me

∂

∂x
ϕ. (5.91)
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Now we assume that the electron temperature is independent of space so that Te = Te(t). By

quasineutrality we have ne = Zini. From the continuity equation from the electrons and ions we

find that ui = ue. With these assumptions, we have that Eq. (5.91) is

∂ui

∂t
+ ui

∂

∂x
ui =

e
me

∂

∂x
ϕ −

Te

mene

∂

∂x
ne. (5.92)

Subtracting Eqs. (5.92) and (5.90) re-arranging terms we get

∂

∂x
ne = ne

(
1 +

Zime

mi

)
e
Te

∂ϕ

∂x
. (5.93)

The solution of the above equation is

ne(x, t) = ne0exp
[(

1 +
Zime

mi

)
eϕ
Te

]
, (5.94)

where ne0 = ne(x, t = 0). Since mi � me, we arrive at the familiar Boltzmann equilibrium

distribution for the electron number density

ne(x, t) = ne0exp
(

eϕ
Te

)
. (5.95)

We can once again make use of the quasineutral assumption that ne = Zini and Eq. (5.93) to write

∂ϕ

∂x
=

Te

nie
∂

∂x
ni . (5.96)

Substituting the above equation into Eq. (5.90), we get

∂ui

∂t
+ ui

∂

∂x
ui = −c2

s
∂

∂x
ni, (5.97)

where cs = (ZiTe/mi)
1/2 and is known as the ion acoustic velocity. Equation (5.97) admits a

self-similar [274] solution of

ni(x, t) = ni0
σ0
σ(t)

exp
[
−

x2

σ2(t)

]
. (5.98)

From Eq. (5.98), the quasineutrality assumption, and Eq. (5.95) we get that

ne0exp
(

eϕ
Te

)
= ne0

σ0
σ(t)

exp
(
−

x2

σ2(t)

)
. (5.99)
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By solving for ϕ we obtain

ϕ = −
Tex2

eσ2(t)
+

Te

e
ln

[
σ0

σ2(t)

]
. (5.100)

By substituting Eq. (5.98) into Eq. (5.87) we get

∂

∂t

{
ni0

σ0
σ(t)

exp
[
−

x2

σ2(t)

]}
+

∂

∂x

{
ni0

σ0
σ(t)

exp
[
−x2

σ2(t)

]
ui

}
= 0. (5.101)

Applying the product rule we get

ni0σ0

{
1
σ(t)

exp
[
−

x2

σ2(t)

]
2x2

σ3(t)
dσ(t)

dt
−

1
σ2(t)

exp
[
−

x2

σ2(t)

]
dσ(t)

dt

}
+

ni0σ0
σ(t)

{
exp

[
−

x2

σ2(t)

]
∂ui

∂x
−

2xui

σ2(t)
exp

[
−

x2

σ2(t)

]}
= 0.

Dividing the exponential terms and using the fact that σ−1(t)dσ(t)/dt = d lnσ(t)/dt, we have

ni0σ0
σ(t)

[
2x2

σ2(t)
d lnσ(t)

dt
−

d lnσ(t)
dt

]
+

ni0σ0
σ(t)

[
∂ui

∂x
−

2xui

σ2(t)

]
= 0. (5.102)

Note that from the above equation, ∂ui
∂x =

d lnσ(t)
dt implies that

ui = x
d lnσ(t)

dt
. (5.103)

Substituting Eq. (5.103) into Eq. (5.102) yields

ni0σ0
σ(t)

[
2x2

σ2(t)
d lnσ(t)

dt
−

d lnσ(t)
dt

]
+

ni0σ0
σ(t)

[
d lnσ(t)

dt
−

2x2

σ2(t)
d lnσ(t)

dt

]
= 0, (5.104)

which is a solution to the above equation. Substituting Eq. (5.103) into Eq. (5.90) gives

x
d2 lnσ(t)

dt2 + x
d lnσ(t)

dt
∂

∂x
x

d lnσ(t)
dt

= −
Zie
mi

∂

∂x
ϕ, (5.105)

which by using Eq. (5.100) reduces to

x
d2 lnσ(t)

dt2 +

[
d lnσ(t)

dt

]2
=

Zie
mi

Te2x
eσ2(t)

, (5.106)

which is

x
d
dt

[
Ûσ(t)
σ(t)

]
+

[
Ûσ(t)
σ(t)

]2
=

Zie
mi

Te2x
eσ2(t)

. (5.107)
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where Ûσ(t) ≡ dσ(t)/dt. Taking another time derivative gives

x
σ(t) Üσ(t) − Ûσ2(t)

σ2(t)
+
Ûσ2(t)
σ2(t)

=
Zie
mi

Te2x
eσ2(t)

, (5.108)

which simplifies to
d2σ(t)

dt2 = 2
c2

s

σ(t)
, (5.109)

or
d2σ(t)

dt2 = 2
ZiTe(t)
miσ(t)

, (5.110)

where the time dependence of the electron temperature has been made explicit. In the sections

that follow, we solve Eq. (5.110) for two approximations: and isothermal approximation and an

adiabatic approximation.

5.4.1 Isothermal Expansion

Isothermal expansion is one in which the temperature of a system remains constant during the

expansion. This means that for a gas to expand and keep a constant temperature, an external energy

source would need to provide energy to the expanding gas. Therefore, the statistical ensemble that

this gas would occupy would be the canonical ensemble (NVT). In the context of the self-similar

expansion model shown above, this would imply that the electron temperature Te is independent of

space and time. With this assumption, we can integrate Eq. (5.110) from 0 to t gives

1
2

[
dσ(t)

dt

]2
−

1
2

[
dσ(0)

dt

]2
= 2c2

s lnσ(t) − 2c2
s lnσ(0). (5.111)

Since the ions are initially at rest, dσ(0)/dt = 0 and Eq. (5.111) becomes

dσ(t)
dt
= 2cs

√
ln

[
σ(t)
σ0

]
. (5.112)

Solving Eq. (5.112) for dt and integrating both sides gives

t =
1

2cs

∫ σ(t)

σ0

1√
ln

[
σ(t)
σ0

]
dσ(t)

. (5.113)
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Carrying out the integral in Eq. (5.113) results in

t =
√
πσ0
2cs

erfi

√

ln
[
σ(t)
σ0

]
=

√
πσ0
2cs

1
√
π

(
2
{
ln

[
σ(t)
σ0

]}1/2
+

2
3

{
ln

[
σ(t)
σ0

]}3/2
+ · · ·

)
. (5.114)

Retaining only the first term in the Taylor expansion of Eq. (5.114) gives

t =
σ0
cs

{
ln

[
σ(t)
σ0

]}1/2
. (5.115)

Solving for σ(t) in Eq. (5.115) yields

σ(t) = σ0exp

(
c2

s t2

σ2
0

)
. (5.116)

For small t (i.e., t � σ0/cs), Taylor expansion of the exponential gives

σ(t) = σ0

(
1 +

c2
s t2

σ2
0

)
. (5.117)

Using Eq. (5.117) in Eq. (5.98) gives an analytic expression for the self-similar evolution of ions in

an isothermal system.

5.4.2 Adiabatic Expansion

In adiabatic expansion, the total energy in the system in conserved. During plasma expansion

in a vacuum there is a transfer of energy between the electrons to the ions. To account for this in

our determination of σ(t), we begin with the temperature equation for the electrons in 1D

1
2

[
∂(neTe)

∂t
+

∂

∂x
(neTeue)

]
+

∂

∂x
qe + pe

∂

∂x
ue = 0. (5.118)

where qe and pe denote the heat flux and pressure of the electrons respectively. If we assume that

qe = 0 and pe = neTe, Eq. (5.118) becomes

1
2

[
∂(neTe)

∂t
+

∂

∂x
(neTeue)

]
+ neTe

∂

∂x
ue = 0. (5.119)

After selectively expanding out the derivative terms in the brackets and multiplying by 1/2, we get

ne
∂Te

∂t
+ Te

∂ne

∂t
+ Te

∂

∂x
(neue) + neue

∂Te

∂x
+ 2neTe

∂

∂x
ue = 0. (5.120)
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The second and third term are zero from the continuity equation which reduces Eq. (5.120) to

ne
∂Te

∂t
+ neue

∂Te

∂x
+ 2neTe

∂

∂x
ue = 0. (5.121)

Also note that by the continuity equation Eq. (5.121) becomes

ne
∂Te

∂t
+ neue

∂Te

∂x
− 2Te

∂ne

∂t
− 2Teue

ne

∂x
= 0, (5.122)

which can be written as

1
Te

(
∂Te

∂t
+ ue

∂Te

∂x

)
=

2
ne

(
∂ne

∂t
+ ue

∂ne

∂t

)
. (5.123)

Equation (5.123) can be solved to obtain a spatio-temporal description of the electron temperature.

If we assume that the electron temperature is constant in space, Eq. (5.123) reduces to

1
Te

dTe

dt
= −2

∂ui

∂t
, (5.124)

where we have yet again used the continuity equation along with the relation ue = ui. From

Eq. (5.103), Eq. (5.124) becomes
1
Te

dTe

dt
= −

2
σ

dσ
dt
. (5.125)

Rearranging Eq. (5.125) and integrating from τ = 0 to t yields

Te(t) =
Te(0)σ2(0)
σ2(t)

. (5.126)

Substituting Eq. (5.126) into Eq. (5.110) yields

dσ(t)
dt2 = 2

c2
s0σ

2
0

σ3(t)
, (5.127)

where we have defined cs0 ≡ (ZiTe0/mi)
2. Integrating Eq. (5.127) yields[

dσ(t)
dt

]2
= 2c2

s0

[
1 −

σ2
0

σ2(t)

]
, (5.128)

which has a solution of

σ(t) = (σ2
0 + 2c2

s0t2)1/2. (5.129)
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Using Eq. (5.126) we get that

Te(t) = Te0
σ2

0

σ2
0 + 2c2

s0t2
. (5.130)

By substituting Eq. (5.129) into Eq. (5.98) we have an analytic model for the adiabatic expansion

of a plasma along with an expression for the time evolution of the electron temperature.

In Sec. 5.6.2, we compare numerical solutions of 1D-1V kinetic equation and compare our

numerical results with the analytic formulae given by Eq. (5.98) using Eq. (5.117) and (5.129).

We show that the expansion of Gaussian single-species UNPs are well-described by the adiabatic

model. The focus of Sec. 5.5 is on the presentation of the numerical methods we use to solve the

1D-1V equations.

5.5 Numerical Methods for Kinetic Equations

We numerically solve Eq. (5.1) in steps; the first step considers the advection terms on the

left-hand side and the second step considers the collision operator on the right-hand side. We refer

to the two steps as the “advection step" and the “collision step." We treat the advection step by using

a second-order operator split method (Strang split) [275] to first advect the phase-space distribution

function in physical space. Next, we advect the phase-space distribution function in velocity space

and the advection step is complete1. After the advection step, we carry out the collision step which,

for the BGK operator, consists of solving a time dependent ordinary differential equation. In the

sections that follow, we detail the specifics of how we numerically treat each step.

In Sec. 5.5.1, we discuss how we treat the advection step using a high-order finite volume

method [262, 272, 276] (FVM). The component of the advection step that advects the phase-space

distribution function in velocity space requires the determination of a self-consistent electric field.

In Sec. 5.5.2, we describe an approach for obtaining the electrostatic potential – and thus the self-

consistent electric field – via Poisson’s equation. In most cases studied here, we do not explicitly

model the electron species with a kinetic equation. Instead, we approximate the electron number

density with a linear Poisson-Boltzmann or non-linear Poisson-Boltzmann approach. In the linear
1To be more precise, we advect in physical space with time step ∆t/2, use the results to advect in velocity space

for ∆t, and then finally use that result and advect for ∆t/2.
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case, the system is solved exactly via matrix inversion; in the non-linear case, we employ a Newton

iteration. In both cases, the Poisson equation is discretized to second-order using a simple second

order central finite-difference. In practice, one could explicitly simulate the electrons as their

own species but due to their small mass, a much smaller simulation time step is needed to retain

numerical stability. Therefore, unless otherwise mentioned, the electron species is assumed to be

treated with a non-linear Poisson solve. In this way, the interactions between the electrons and

ions are implicitly accounted for in calculation of the self-consistent electric field through the total

charge density.

The numerical treatment of the collision step varies in different stages of this work. For the 0D-

1V simulations, the method of lines [277] is employed to allow the use of high-order implicit time

integrators that are accessible in extant computational libraries. For the 0D-3V BGK simulations,

we employ an explicit fourth-order Runge-Kutta time integrator. For the 1D-1V simulations, we

employ a simple first order explicit time step for the BGK operator.

5.5.1 Finite Volume Methods

In contrast to finite difference methods (FDMs), FVMs are derived for numerically solving

conservation laws – the governing equation of this chapter. We begin our discussion of FVMs by

considering a conservation law in one space dimension that is in differential form

∂q(x, t)
∂t

+
∂

∂x
f [q(x, t)] = 0, (5.131)

where q(x, t) is some conserved quantity (e.g., total number density of a system), and f (q) is a

flux. Finite difference methods numerically discretely approximate the derivatives in Eq. (5.131)

using “stencils" – the choice of stencil distinguishes FDMs. In contrast, FVMs instead work

with conservations laws in integral form where we integrate Eq. (5.131) over some volume Vi =

(xi−1/2, xi+1/2) that yields

d
dt

∫
Vi

q(x, t) dV +
∫

Vi

∂

∂x
f [q(x, t)] dV = 0, (5.132)
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which reduces to

d
dt

∫
Vi

q(x, t) dV + f [q(xi+1/2, t)] − f [q(xi−1/2, t)] = 0. (5.133)

With the definition that

Qi =
1
Vi

∫
Vi

q(x, t) dV, (5.134)

we have
d
dt

Qi =
1
Vi

{
f [q(xi−1/2, t)] − f [q(xi+1/2, t)]

}
= 0. (5.135)

Equation (5.135) represents the time evolution of average flux of q in some volume Vi. Integrating

Eq. (5.135) over a time interval of tn to tn+1 gives

Qn+1
i = Qn

i −
∆t
∆x

(
Fi+1/2 − Fi−1/2

)
, (5.136)

where we have assumed a simple Forward Euler time integration and have made the definition that

Fi+1/2 =

∫ tn+1

tn
f [q(xi+1/2, t)]dt . (5.137)

It is the choice of how we approximate the flux Fi+1/2, with an appropriate numerical flux that

distinguishes FVMs from one another. Different choices of numerical fluxes usually result in

methods of varying orders of accuracy or methods which attempt to control oscillations that

occur in discontinuous solutions. A similar choice appears in FDMs where instead of choosing a

numerical flux, we choose a numerical derivative (i.e., first-order forward, second-order central,

etc.). Additionally, one could choose a different time integration for example, Backward Euler or a

fourth-order Runge-Kutta method.

In this work, we implement three different choices for the numerical flux function. The first is

the first-order upwinding flux [276], a second-order superbee flux limiter [276], and a fourth-order

upwinding flux [262,272]. A convergence study for each of these choices is displayed in Figure 5.1

for the linear advection equation
∂u(x, t)
∂t

+ v
∂u(x, t)
∂x

= 0 x ∈ [0, 1],

u(x, 0) = exp
[
−32(x − 0.5)2

]
cos[16π(x − 0.5)],

(5.138)
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Figure 5.1: Comparison of different numerical flux functions for the linear advection equation. (a)
numerical solution of the advection equation for a wave packet initial condition [Eq. (5.138)] with
periodic boundary conditions. The wave passes two times through the domain and comparisons
are shown with first, second, and fourth order methods; The first order method severely damps
the numerical solution. (b) grid resolution convergence test. The first, second, and fourth order
methods scale appropriately with grid resolution.

where we set v = 1 and we assume periodic boundary conditions. For the first and second-order

method, a forward Euler time step was implemented, for the fourth-order upwinding flux a fourth-

order Runge-Kutta time integrator was used as described in Ref. [262,272]. Figure 5.1(a) shows the

numerical solution for each choice of numerical flux function with 2 passes through the domain. In

contrast to the second- and fourth-order methods, we see that the first-order upwindmethod severely

dampens the solution. Figure 5.1(b) shows a grid resolution convergence study using the L∞-norm

for each method; we have added three lines with slopes 1, 2, and 4, to guide the eye. We see that

for smooth problems, each choice of numerical flux gives a reasonable approximation to the true

solutions albeit in the first-order case, the numerical solution may be severely damped. For non-

smooth problems, we cannot use the fourth order upwinding flux as it will introduce oscillations

near the discontinuity. The appearance of oscillations from using the fourth-order upwinding flux
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Figure 5.2: Comparison of numerical fluxes for a square pulse initial condition. Note that the fourth
order upwinding scheme introduces oscillations in the numerical solution near the discontinuities;
the first-order method does not introduce unphysical oscillations but smears the numerical solution.

is shown in Fig. 5.2 where we assume

∂u(x, t)
∂t

+ v
∂u(x, t)
∂x

= 0 x ∈ [0, 1],

u(x, 0) = 1 |x | ≤ 0.5,

u(x, 0) = 0 otherwise,

(5.139)

where again we let v = 1 and assume periodic boundary conditions. We observe that the first-

order upwinding and second-order superbee numerical fluxes do not introduce oscillations near

the discontinuity in contrast to the fourth-order upwinding flux. The comparison of the different

numerical fluxes informs us on their appropriateness for solving kinetic equations. We conclude

that if we expect the phase-space distribution function to be smooth for all time, a high-order

upwinding method is appropriate for treating the advection terms on the left-hand side of Eq. (5.1).

The smoothness of the phase-space distribution function is largely set by the initial condition but

discontinuities may appear as a result of self-consistent forces or collisions in the plasma. For

UNP simulations, the phase-space distribution function remains smooth for the problems studied

in this chapter and we employ the fourth-order upwinding flux. However, if the problem of interest
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includes a phase-space distribution with discontinuities, as is the case when there is an interface

between two plasma species, a slope limiter methods, essentially non-oscillatory methods, or

weighted essentially non-oscillatory, methods [278] are necessary to achieve higher than first-order

accuracy.

5.5.2 Poisson’s Equation in 1D Cartesian Coordinates

In 1D Cartesian coordinates Poisson’s equation has the form

d2

dx2ϕ(x) = −4πρ, (5.140)

where ρ =
∑N

i Zieni is the total charge density of the system. We use a second order central

difference approximation to Eq. (5.140) so that at some grid point i = 0, 1, · · · , N , we have

ϕi−1 − 2ϕi + ϕi+1

∆x2 = −4πρi . (5.141)

If we impose periodic boundary conditions at i = 0 and i = N , then we have that ϕ0 = ϕN and

construct a linear system that is solved to obtain ϕ. Specifically, for a 6 cell system the linear system

takes the following form:



−2 1 0 0 0 1

1 −2 1 0 0 0

0 1 −2 1 0 0

0 0 1 −2 1 0

1 0 0 0 1 −2





ϕ0

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5



= −4π∆x2



ρ0

ρ1

ρ2

ρ3

ρ4

ρ5



. (5.142)
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Since the above system is singular, an additional constraint specifying that the average value of the

potential is zero is introduced which results in the modified linear system



−2 1 0 0 0 1

1 −2 1 0 0 0

0 1 −2 1 0 0

0 0 1 −2 1 0

1 0 0 0 1 −2

1 1 1 1 1 1





ϕ0

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5



= −4π∆x2



ρ0

ρ1

ρ2

ρ3

ρ4

ρ5

0



. (5.143)

Equation (5.143) can be solved using various linear algebra techniques that exist in extant

computational libraries. If using the electron density as defined in Eq. (5.94), a non-linear approach

must be used since the total charge density will non-linearly depend on ϕ; in this work, a Newton

iteration was implemented to determine ϕ. To avoid a non-linear solve, one can linearize Eq. (5.94)

which results in a linear system that can be solve exactly; Figure 5.3 shows a comparison of a

numerical solution from the linear case of Eq. (5.143) with a manufactured analytic solution. We

note that the linearization holds in the high electron-temperature limit. Additional approaches for

treating the electrons as quantum mechanical with Fermi-Dirac statistics can be found in Ref. [44].

The self-consistent electric field can be obtained via Eq. (5.6), where second-order central difference

has been employed.
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Figure 5.3: Electrostatic potential ϕ(x) computed from Eq. (5.143) and compared against a manu-
factured analytic solution ϕ(x) = sin(2πx) with ∆x = 0.001.

5.5.3 Poisson’s Equation in 1D Spherical Coordinates

To convert Eq. (5.7) to spherical coordinates, we transform the gradient into spherical coordi-

nates to obtain
1
r2

d
dr

(
r2 d

dr
ϕ

)
= −4πρ. (5.144)

To discretize Eq. (5.144), we use a FVM framework. Importantly, the choice of FVM over FDM

circumvents singularities at r = 0. Additional numerical implementations as well as extensions to

higher dimensions can be found in Refs. [279,280]. Following the procedure outlined in Ref. [281],

we obtain the discretization of Eq. (5.144)

(r2F̃r)i+ 1
2
− (r2F̃r)i− 1

2

∆Vr,i
= −4πρi . (5.145)

where we define the flux F̃r ≡ dϕ/dr and ∆Vr,i = (r3
i+1/2 − r3

i−1/2)/3. Evaluating the fluxes at the

cell interfaces we have
r2
i+ 1

2

r3
i+ 1

2
− r3

i− 1
2

F̃r,i+ 1
2
−

r2
i− 1

2

r3
i+ 1

2
− r3

i− 1
2

F̃r,i− 1
2
= −

4πρi

3
. (5.146)

We approximate the fluxes with an upwinding numerical flux so that Eq. (5.146) becomes

r2
i+ 1

2

r3
i+ 1

2
− r3

i− 1
2

(ϕi+1 − ϕi

∆r

)
−

r2
i− 1

2

r3
i+ 1

2
− r3

i− 1
2

(ϕi − ϕi−1
∆r

)
= −

4πρi

3
. (5.147)
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Multiplying by ∆r and grouping terms of ϕ with the same index we get

r2
i− 1

2

r3
i+ 1

2
− r3

i− 1
2

ϕi−1 +
©­«

r2
i+ 1

2
− r2

i− 1
2

r3
i+ 1

2
− r3

i− 1
2

ª®¬ ϕi +

r2
i+ 1

2

r3
i+ 1

2
− r3

i− 1
2

ϕi+1 = −
4πρi∆r

3
. (5.148)

The boundary conditions we use at the left, and right endpoints of the grid are chosen to be
d
dr ϕ
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r=0 = 0 at the left boundary and an outflow boundary at the right boundary. Together,
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We validate our numerical method against the test case shown in Appenxdix A of constant charge

density inside a sphere. In Fig. 5.4, we see a comparison of the analytic solution to our numerical

solution for the electric field.
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Figure 5.4: Electric field E(r) computed the numerical method Eq. (5.5.3) and compared against
the analytic solution Eq. (A.17). This case considers a sphere of size R = 2, with constant density
of ρ0 = 1, and ∆r = 0.01, all with arbitrary units. We see that for r ≤ 2, the numerical method
correctly predicts the linear electric field and then transitions to the quadratic decay for r > 2.

5.6 Numerical Results

Using the numerical methods described in Sec. 5.5, we simulate a range of problems related to

UNPs and HED plasmas.

We begin in Sec. 5.6.1 by simulating plasmas with zero spatial dimension where we focus

on three distinct applications. The first application focuses on the verification of our numerical

implementation in the context of temperature and momentum relaxation for HED plasmas. The

second application focuses on the validation of our numerical implementation by simulating tem-

perature relaxation in multi-species UNPs where we find that our kinetic model agrees well with

experimental and MD simulation data. The third application is concerned with simulating the

velocity distribution tail filling rate in an electron UNP where we compare two different collision

operators.

In Sec. 5.6.2, we extend the scope of our numerical study to include one spatial dimension

with two particular applications. Namely, the expansion of single- and multi-species UNPs into

a vacuum, and the diffusion of materials across an interface in HED mixtures. First, we find

that the single-species UNP expansion is adiabatic and that the plasma is so quickly driven to
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equilibrium by collisions, that the expansion is well described by the Vlasov equation. Because

of this, our simulations suggest that the expansion of a single-species UNP is time-reversible.

Next, we compare results from our numerical simulations to results from the analytic models

derived in Sec. 5.4 and find that although the assumption that the electron temperature is spatially

independent is invalid for the cases studied here, the overall dynamics of the UNP do not appear

to be significantly impacted by this choice. Then, for the case of multi-species UNPs, we find that

our multi-species BGK simulations disagree with multi-species Vlasov simulations which implies

that thermodynamic forces such as heat flux, viscous flux, and diffusive fluxes generate entropy in

the plasma. Lastly, we carry out numerical simulations of diffusive mixing in HED experiments.

We find that the dominant drivers of diffusion in our simulations are caused by electrodiffusion:

diffusion driven by electric fields.

The kinetic calculations in all sections of this chapter except for those reported in Sec. 5.6.2.3

were numerically implemented in the “Python" programming language; the specific version used

here is Python 3.7. To increase the performance of our Python code, which is an interpreted lan-

guage, we (i) utilized numerically efficient pre-compiled libraries likeNumPy [282] and SciPy [283]

and (ii) compiled non-compiled portions of the code separately using the Numba just-in-time com-

plier [284]. For the latter, we saw drastic performance gains; in many cases the computation cost

was reduced by orders of magnitude. All simulations, except for those reported in Sec. 5.6.2.3,

were carried out on a single core of a 2.7 GHz Core i7-8559U CPU. In Sec. 5.6.2.3, a variant of

the multi-component BGK code2 – which is written in the “C" programming language – was used.

5.6.1 0D Kinetic Simulations

Kinetic equations are composed of advection terms – the left-hand side of Eq. (5.1) – and a

collision operator – the right hand-side of (5.1). We begin our presentation of numerical results by

first verifying the multi-species BGK collision operator is conservative and also validate it against

experimental data. By reducing Eq. (5.1) to 0D-3V, i.e., retaining only the velocity degrees of

freedom, we carry out a direct numerical study of the collision operator. For the multi-species
2See: https://github.com/lanl/Multi-BGK.
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BGK collision operator, Eq. (5.1) becomes

dfi
dt
=

N∑
i=1

νi j[Mi j(v; ni, ui j,Ti j) − fi], j = 1, 2, · · · , N . (5.150)

5.6.1.1 Verification of the Multi-Species BGK Operator

Toverify themulti-speciesBGKcollision operator, Eq. (5.150), we compare our implementation

to one reported in Ref. [267]. We compare our numerical results to a test case of a C6+-H+ mixture

where nC = nH = 1 × 1023 cm−3, the initial temperatures of each species are TC = 10 eV, and

TH = 12 eV, and their initial velocity vectors are uC = (1.26 × 105, 0, 0) cm s−1, and uH = (0, 0, 0)

cm s−1. For the electron species, we set ne = 2 × 1023 cm−3 and Te = 11 eV. The equilibrium

temperature and momentum can be calculated by via the conservation of energy and momentum.

The equilibrium velocity of the mixture is

u2
eq =

m1n1u2
1 + m2n2u2

2
ρ

, (5.151)

which for the above conditions is u2
eq ≈ 1.162 × 105 cm s−1. Similarly, for the temperature of the

system, conservation of energy yields

Teq =
n1T1 + n2T2 + m1n1u2

1 + m2n2u2
2 − ρu2

eq

n
, (5.152)

which for the conditions above is Teq ≈ 11.0 eV.

In our implementation, Eq. (5.150) is numerically solved using a fourth-order explicit Runge-

Kutta time integrator with a time step of ∆t = 1×10−16s. The 3D velocity grid is initialized with an

upper (and lower) bound of magnitude |vmax | = 4 ×
√

T/m cm/s with a grid resolution of ∆v = 0.2

cm/s in each velocity direction. The simulations took approximately 40 minutes to complete. We

note that these particular simulations are highly resolved in time in order to compare our results to

data in the literature; a time step that is a factor of 10 larger appears to be sufficient for obtaining

data and a simulation using this time step takes roughly 4 minutes to complete. We compare our

results with those reported in Ref. [267]. Our comparison is displayed in Figure 5.5 where we

compare our calculations with the results provided in Figure 2 of Ref. [267]; we denote their data
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Figure 5.5: 0D-3V multi-species BGK simulations of a C6+-H+ mixture with plasma conditions
described in Sec. 5.6.1.1. The collision rate model used here is given by Eq. (5.16). (a) temperature
relaxation and (b) shows momentum relaxation between the species. Note that in the absence
of electron screening (1/λe = 0), the system equilibrates more quickly because the collision rate
is larger. Our numerical results without electron screening match data provided in Ref. [267].
The equilibrium velocity and temperature values are computed from Eq. (5.151) and (5.152)
respectively; our results show that the multi-species BGK operator approaches the correct result;
this is not the case for some multi-species BGK operators [267].

by “HHM." We find that by setting the inverse electron screening length to zero in Eq. (5.19), we

recover their results. By including a non-zero inverse electron screening length (solid lines), we

see that in Figure 5.5(a) and Figure 5.5(b), the relaxation time is longer because the collision rate

decreases due to the presence of electron screening. Electron screening plays an important role in

many HED and UNP experiments and we include it by using Eq. (5.20) in Eq. (5.19) for all results

shown in this chapter.

5.6.1.2 Validation of the Multi-Species BGK Operator

Now that we have verified our numerical scheme, we validate it with data of temperature

relaxation in UNP mixtures. In Figure 5.6, we compare results from our multi-species BGK model

to experimental and simulation data for a UNP Ca+-Yb+ mixture at two different conditions (see

Refs. [260] and [24]). In both simulations, the 3D velocity grid is initialized with an upper (and

lower) bound of magnitude |vmax | = 4 ×
√

T/m cm/s with a grid resolution of ∆v = 0.2 cm/s in

each velocity direction; an explicit fourth-order Runge-Kutta time integrator was employed with
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Figure 5.6: 0D-3V multi-species BGK simulations of a Ca+-Yb+ UNP mixture with plasma
conditions described in Sec. 5.6.1.2. The collision ratemodel used here is the temperature relaxation
rate given in Eq. (5.16). We show the temperature relaxation predicted by the BGKmodel compared
to (a) experimental data from Ref. [260] and (b) MD data obtained from Ref. [24]. We find that
the BGK model accurately predicts the temperature relaxation rate compared to both experimental
and MD data. These results provide confidence in the use of the BGK model for modeling UNP
mixtures beyond the disorder-induced heating region which is labeled as “DIH" and denoted with
a grey shaded rectangle in (a) and (b).

time step of ∆t = 1 × 10−7 s. In Fig. 5.6(a) we set the ion densities to be nCa+ = 2.9 × 109 cm−3

and nYb+ = 1.9 × 109 cm−3. The initial ion temperatures are computed from the average of the

experimental data from t = 0.4 to 0.5 µs which results in TCa+ = 1.9 K, and TYb+ = 0.8 K. The

electrons have a temperature of Te = 96 K and we assume the electron temperature decreases

according to a modified form of the adiabatic model Eq. (5.130) which is

Te(t) =
Te0

1 + t2/τ̄2 , (5.153)

where Te0 = Te(0) and τ̄ ≡ σ̄0/c̄s0. We define the mixture width and sound speed parameters

σ̄0 =
σi,0ni + σj,0n j

n
, (5.154)

c̄2
s0 = Te0

〈Z2
i /mi〉

〈Zi〉
, (5.155)

where n = ni + n j , 〈Aαi 〉 ≡ xi Aαi + x j Aαj , and xi = ni/n denotes the number concentration of species

i. Lastly, we assume that the drift velocities are uCa+ = uYb+ = 0. We see that our numerical results

well approximate experimental data for temperature relaxation and can be used to extrapolate past
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the disorder induced heating region denoted as "DIH." In Fig. 5.6(b) we compare our multi-species

BGK results against temperature relaxation data from an MD simulation. For this case, the ion

densities are nCa+ = 4.3 × 109 cm−3 and nYb+ = 1.3 × 1010 cm−3. The initial ion temperatures are

determined from the average of the MD data from t = 0.4 to 0.5 µs which results in TCa+ = 3.27 K,

andTYb+ = 1.97 K. The initial electron temperature isTe0 = 100 K and its time dependence is given

by Eq. (5.153). Additionally, we set uCa+ = uYb+ = 0. For this case, we see that our multi-species

BGK model accurately predicts the equilibrium temperature to within 4%; this discrepancy is

due to uncertainties from the approach used to compute the initial ion temperatures. To account

for these uncertainties, an ensemble of simulations could be carried out with different initial ion

temperatures. These temperatures could be generated by sampling from a normal distribution of

temperatures with mean and variance determined by experimental or MD data. Additionally, we

can measure the rate at which equilibration of these simulation occurs by computing the entropy

source term in Eq. (5.37). Figure 5.7 shows the entropy source term for both cases in Fig. 5.6.

It is important to note that by using a kinetic simulation in place of MD, we drastically reduce

the dimensionality of the problem – from 6N dimensional to 3 dimensional – which decreases the

computation time by a factor of roughly 3000. Specifically, the MD results reported above state

an MD run – using the Sarkas MD code [285] – took approximately 20 hours to complete on a

single core of an Intel Core i7-8700K CPU for a total simulation length of approximately 4 µs. In

contrast, our 0D-3V kinetic simulations took approximately 3 minutes and 51 seconds for a total

simulation time length of 100 µs.

5.6.1.3 Tail Filling in UNPs

The previous sections were concerned with multi-species ion plasmas. In this section, we

change our focus to simulating the equilibration of a velocity distribution of a single-species

electron plasma with conditions relevant to UNPs. Specifically, we consider an electron plasma

with a truncated distribution function that is nearly zero over some range of velocities: a depleted

tail. An example of physical systems in which this type of distribution function occurs is in

situations where evaporation occurs. In this scenario, the highest energy particles escape and leave
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Figure 5.7: Entropy source term calculated from Eq. (5.37) from the simulations displayed in
Fig. 5.6. (a) corresponds to the plasma conditions in Fig. 5.6(a) and (b) corresponds to the plasma
conditions in Fig. 5.6(b). We see that certain terms correspond to a larger amount of entropy than
others, specifically, the Yb+-Yb+ and cross-species collisions. Since entropy is being generated,
the system is irreversible. The source of irreversibility is associated with transport coefficients like
the interdiffusion, thermal conductivity, and viscosity of the plasma.

behind particles with a missing high-energy tail. Thermonuclear fusion also results in a distribution

function with a depleted tail by converting the fast tail particles into different species through a

nuclear reaction. The question we aim to answer with kinetic theory is: how long does it take for

these distribution functions to become Maxwellian?

Ultracold neutral plasmas provide a unique laboratory for studying the rate at which the tails of

the velocity distribution repopulate because their low densities effectively slow physical processes

to a measurable time scale. To examine just the physics of the forms of the collision operators,

we consider a kinetic model with zero spatial dimensions and one velocity dimension (0D-1V).

Numerical results are obtained for spatially homogeneous tail filling. In 0D-1V, Eq. (5.1) has the

form
∂ fe
∂t
= Q( fe, fe), (5.156)

where fe ≡ fe(v, t) is the distribution function of an electron species. We will consider two forms

for the collision operator in this section: the BGK and LBD operators which in 0D-1V have the
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form

QBGK = νee [Me(v; ne, ue,Te) − fe] , (5.157)

QLBD = νee
∂

∂v

[
(v − ue) fe + v2

th
∂

∂v
fe

]
. (5.158)

We discretize each of the collision operators using the method of lines approach allowing us

to use high-order time integrators3 in extant software libraries [283]. The initial Maxwellian

distribution function is shown in Fig. 5.8 and is given by

Me(v) = ne

(
me

2πTe

)1/2
exp

[
−me

2Te
(v − ue)

2
]
. (5.159)

Here, we set ne = 3 × 107 cm−3, ue = 0 cms−1, and Te = 3.5 K which are conditions relevant to

UNPs. We “truncate" the tails of the equilibrium distribution to remove the fastest 1% of electrons

on either side as shown in Fig. 5.8; this reduces the electron temperature to roughly Te = 3.1 K.

Using the truncated distribution function as our initial condition, we carry out simulations using

the BGK and LBD operator to measure to rate at which the tails of the truncated distribution

replenish/fill. For these simulations, the distribution function was first truncated, and the collision

rate νee is calculated using eight distinct models – see Table 5.2. We simulate the expansion

of the electron distribution function for a total simulation length of 0.2 µs with a time step of

∆t = 0.002 µs. The 1D velocity grid is initialized with an upper (and lower) bound of magnitude

|vmax | = 4 ×
√

T/m cm/s with a grid resolution of ∆v = 0.026 cm/s.

Figure 5.8 shows the initial condition at t = 0 and at the final time t = 0.2µs. We see that

the BGK and LBD operators equilibrate to the same equilibrium distribution to within 1% at

the peak. The distribution does not return to its initial condition prior to truncation because of

evaporation: the high-energy tails have been removed; this results in an equilibrium distribution

function that has a larger magnitude at v/vth = 0. In Fig. 5.9(a), we compare the time evolution

of the distribution function using the BGK and LBD collision operators with the HHM collision

rate given in Table 5.2. By plotting the difference of the distribution functions, we highlight the

impact each collision operator has on the tail-filling rate. Because the LBD operator incorporates
3We used the “Radau" time integrator for this work.
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Model lnΛ νee (Hz×10−7) Description Ref.

LS 1.41 3.96 Straight-line trajectories [270]
GMS-1 1.41 3.96 Straight-line trajectories [269]
GMS-2 1.71 4.80 Straight-line trajectories [269]
GMS-3 2.00 5.62 Straight-line trajectories [269]
GMS-4 1.44 4.04 Hyperbolic trajectories [269]
GMS-5 1.72 4.84 Hyperbolic trajectories [269]
GMS-6 1.72 4.84 Hyperbolic trajectories [269]

HHM – 3.41 Correlations beyond
binary interactions [267]

Table 5.2: A comparison of the numerical values of the electron-electron collision rate νee. All
values of νee were obtained via Eqs. (5.25) and (5.26) with values of ne = 2.9 × 107 gcm−3 and
Te = 3.1 K; these values of ne and Te correspond to the electron density and temperature of the
truncated distribution shown in Fig. 5.8.

velocity gradients in its functional form, the tails fill more quickly than the BGK operator. We see

that after t ≈ 0.12 µs, the difference between the LBD and BGK operator is small and the truncated

distribution function has equilibrated.

Tomeasure the rate of tail filling, we compute the ratio of the number of electrons in the truncated

regions to the number of electrons in the tail of the full distribution N0 given by Eq. (5.159); results

using both the BGK and LBD operator using all eight of the collision frequencies given in Table 5.2

are shown in Fig. 5.9(b). Because the initial condition of the distribution function contained

essentially infinite gradients at the truncated regions, we expect the LBD operator to drive the

distribution function to equilibrium more quickly than the BGK operator which relaxes the the

distribution function to equilibrium by the difference of Me and fe. At a high level, we have found

that two models result in two different tail-filling rates which is not surprising. However, one

model – the LBD operator – predicts a four times quicker tail filling rate than the BGK operator.

The difference in the tail-filling rate predicted by the BGK and LBD models is non-negligible and

should be compared to experimental data in order to appropriately simulate these processes using

kinetic models. Additionally, by increasing the electron temperature, we find that the collision

frequencies begin to converge to the same results in contrast to the results shown in Fig. 5.9(b). To
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Figure 5.8: Initial velocity distribution of electrons with ne = 3 × 107cm−3, and Te = 3.5 K. The
“full" and “truncated" distributions overlap until |v/vth | ≈ 2.3, where the tails of the full distribution
have been truncated beyond this amount; this removes the fastest 1% of the electrons on either side
of the distribution. We show the equilibrated velocity distribution function using the BGK and
LBD collision operators with the HHM collision rate; both collision operators results in the same
equilibrated distribution function. Note that the distribution function does not return to its original
shape because of evaporation.

maximize the benefit of this analysis, an ensemble of experiments should be carried out at different

temperatures to assess the validity of different collision operators and collision rate models.

5.6.2 1D Kinetic Simulations

We now extend our kinetic simulations to include one spatial dimension where we focus our

simulations on quantifying (i) the expansion of single-species UNPs, (ii) the expansion of multi-

species UNP, and (iii) the diffusive mixing in HED plasma mixtures.

5.6.2.1 Expansion of Single-species UNPs

In this section, we answer the following three distinct questions: (1) can we approximate the

electron species with analytic formulae avoiding the need for explicit calculations [See Eqs. (5.130)

and (5.94)] (2) what is the role of a collision operator for single-species UNPs and (3) are single-

species UNPs time-reversible? For the simulations carried out here, the initial ion density is
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Figure 5.9: (a) Difference of distribution functions using the BGK and LBD operator with HHM
collision rate versus velocity and time. The dashed vertical lines mark that locations where the
full distribution was truncated (see Fig. 5.8). The negative values show where the distribution
function evolved using the LBD operator is smaller than the corresponding BGK operator opinion.
Large gradients at the truncation locations cause the LBD operator to quickly fill the tail regions in
contrast to the BGK operator which does not use information of velocity gradients. (b) tail filling
rate using the BGK and LBD collision operators in 0D-1V dimensions (spatially homogeneous)
with the collision rates given in Table 5.2. N0 denotes the number of electrons originally in the tails
of the full distribution before truncation (see Fig. 5.8). Approximately 60% of the original number
of electrons replenish the tail after equilibration which occurs at t ≈ 0.12 µs.

assumed to be Gaussian and given by

ni(x, t = 0) = ni,0exp

(
−

x2

2σ2
i,0

)
, (5.160)

where ni,0 is the initial “peak" ion density and σi,0 is the initial width of the plasma.

We begin by answering the question: can we approximate the electron species with analytic

formulae and avoid the need for explicit calculations? The main assumptions we will check in

deriving the analytic formulae given by Eqs. (5.130) and (5.94) is the spatial independence of the

electron temperature and that the electron density can be well-approximated by Eq. (5.94). To do

this, we carry out a multi-species Vlasov simulation of a UNP mixture of Ca+ ions and an electron

species where we approximate the electron’s mass to be me = mCa+/183. While this is not the

true proton-electron mass ratio, it should be a good approximation for the electron species in that

the electrons respond relatively quickly to the dynamics of the ion species. Additionally, since the

electrons in an UNP are classical – see Table 5.1 – we can directly use Eq. (5.1) without introducing
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Figure 5.10: Density profiles for a Ca+-e UNP computed from a multi-species Vlasov simulation.
Two simulation snapshots are shown: one at t = 0 µs and another at t = 2 µs. The density
profile obtained from the adiabatic self-similar hydrodynamics model [Eq. (5.129)] is also shown.
The density evolution of the Ca+ species agrees with the self-similar hydrodynamics model to
sub-percent accuracy.

quantum statistics in the distribution function. We initialize our Ca+-e mixture with conditions

relevant to ongoing UNP experiments. For the case shown here, we initialize the peak ion density

to be nCa+,0 = 1 × 109 cm−3 with a width of σCa+,0 = 3 mm and an ion temperature of TCa+ = 1 K.

The initial density of the electron species is calculated self-consistently from the ion density with

an initial temperature of Te = 100 K. We then solve the multi-species Vlasov equation [Eq. (5.5)]

where the self-consistent electric field is obtained with a fast-Fourier transform [262]. The total

simulation length time was 2µs with a Courant–Friedrichs–Lewy (CFL) value of 0.4. The 1D

spatial grid is initialized with an upper (and lower) bound of magnitude |xmax | = 0.5 cm with a grid

resolution of ∆x = 0.001 cm. The 1D velocity grid is initialized with an upper (and lower) bound

of magnitude |vmax | = 40×
√

T/m cm/s with a grid resolution of ∆v = 0.02 cm/s. For the advection

terms, we use a fourth-order upwinding FVM reconstruction. The simulation took approximately

60 hours to complete.
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Figure 5.11: Velocity profiles of a Ca+-e UNP computed from a multi-species Vlasov simulation at
various time steps. The dotted lines denoteT = 0.03 µs, the dashed lines denote t = 0.08 µs, and the
solid lines denote t = 0.95 µs. After roughly t = 0.1 µs, the velocity profiles ofCa+ and the electrons
“lock" together i.e., the process of momentum relaxation. Since the momentum relaxation occurs
on a timescale much quicker than the ion dynamics, the assumption of instantaneous momentum
relaxation – the basis for the derivation of the self-similar hydrodynamics models – is valid.

The simulation results of the Ca+-e expansion are shown in Fig. 5.10. Initially, the electrons and

ions differ themost in the tails as shown by the insert of Fig. 5.10. At t = 2µs, the ions agree with the

adiabatic expansion model to within 0.5% at the peak density (x = 0 cm). Moreover, the electron

density retains the form of Eq. (5.94) from t = 0 to 2 µs suggesting that the Poisson-Boltzmann

form [Eq. (5.94)] is sufficient in describing the electron density in an expanding UNP. Figure 5.11

shows the velocity profiles for different times throughout the simulation. We see that momentum

relaxation between the ions and electrons occurs roughly on the order of 0.1 µs which is much

faster than the dynamics of the ion species. We note that the Poisson-Boltzmann approximation

essentially enforces instantaneous momentum relaxation which appears to be a valid assumption

for the case of the Ca+-e UNP mixture.

Lastly, we assess the temperature evolution of the electron species – the input to the Poisson-

Boltzmann expression Eq. (5.94) – and compare our simulation results to the adiabatic model

Eq. (5.130). The comparison of the simulation and the adiabatic expansion model Eq. (5.130) is
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Figure 5.12: Electron temperature of a Ca+-e UNP computed from a multi-species Vlasov sim-
ulation. (a) the electron temperature at the center of the plasma compared to the self-similar
hydrodynamics model Eq. (5.130). The electron temperature is within ∼2% for all time as shown
by the insert. (b) the electron temperature versus space and time. The adiabatic self-similar hydro-
dynamics model Eq. (5.130) agrees well with an isothermal model for

√
2σ0/cs0 � 1. Although

there is a spatial dependence of the electron temperature, 90% of the plasma is within a region of
space for which the electron temperature is within 10% of the self-similar hydrodynamics model
Eq. (5.130). This substantiates the approximation of a spatially independent electron temperature
in the derivation of the self-similar hydrodynamics models.

displayed in Fig. 5.12. Figure 5.12(a) shows that that the electron temperature from the Ca+-e

simulation results agree to within ∼2% of the adiabatic model at the peak region (x = 0 cm). In

Fig. 5.12, we see that there is indeed a spatial dependence of the electron temperature however,

the adiabatic model for the electron temperature holds to within ∼10% for all time between the

range of x ∈ [−0.07, 0.07] cm. We note that only ∼10% of the ion and electron density occupy

the region outside of this range of x. Therefore, although the electron temperature differs from the

adiabatic model, the majority of the plasma occupies the range where Eq. (5.130) is accurate. We

also note that the isothermal and adiabatic models are approximately equivalent when the parameter
√

2σ0/cs0 � 1. We plot a horizontal line in Fig. 5.12(b) that validates this approximation. That

is, below the horizontal line, the electrons are essentially at a constant temperature. The Ca+-e

simulations verify that for a single species UNP, the adiabatic expansion model is accurate for

approximating the expansion of an UNP modeled by the Vlasov equation. However, the analytic

formulae were derived under the assumption of a collisionless plasma. Since UNPs are highly
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Figure 5.13: Comparison of the (a) isothermal electrons (b) adiabatic electrons. The relative error
at the peak between the BGK simulations and the self-similar hydrodynamics model is ∼ 1%. Note
that the density profiles from the BGK and Vlasov simulations agree nearly exactly for all time.

collisional – see Table 5.1 – we extend the numerical study of single-species UNPs to include

collisions by introducing a BGK collision operator with collision rates given by Eq. (5.16). We

carry out single-species BGK simulations of Ca+ and treat the electrons in two ways: isothermally

with density given by Eq. (5.94) and adiabatically with density given by Eq. (5.94) and temperature

given by Eq. (5.130). For these simulations, we pick plasma conditions relevant to ongoing UNP

experiments. Specifically, we set nCa+,0 = 3.4 × 109 cm−3 with width σCa+,0 = 0.57 mm and

TCa+ = 1.9 K. For the isothermal case we set Te = 96 K for all time and for the adiabatic case, we

set Te0 = 96 K and calculate the temperature profile from Eq. (5.130). The total simulation time

is 8µs with a CFL of 0.7. The 1D spatial grid is initialized with an upper (and lower) bound of

magnitude |xmax | = 0.5 cm with a grid resolution of ∆x = 0.00125 cm. The 1D velocity grid is

initialized with an upper (and lower) bound of magnitude |vmax | = 50 ×
√

T/m cm/s with a grid

resolution of ∆v = 0.2 cm/s. We carry out two simulation for both the isothermal and adiabatic

cases. One simulation is collisionless (i.e., the Vlasov equation) and another is with the BGK

collision operator. Each of the four simulations took approximately 1 hour to complete. In contrast

to the explicit Ca+-e simulations, the Ca+ simulations with an implicit electron species decreased

computation time by roughly a factor of 240.
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The density profiles of the simulation results are displayed in Fig. 5.13. In Fig. 5.13(a) we

show results from assuming the electrons are isothermal, and in Fig. 5.13(b) we show results from

assuming the electrons are adiabatic. In the isothermal case, we see that both the Vlasov and BGK

data disagree with the isothermal self-similar expansion model Eq. (5.117). In the adiabatic case,

we see that the Vlasov, BGK, and adiabatic self-similar model [Eq. (5.129)] all agree implying that

the plasma expansion is adiabatic. Moreover, in both cases, the Vlasov and BGK models agree

almost exactly – to within a few percent for the first three moments of the distribution function –

implying that the dynamics of the single-species UNP are time-reversible since the Vlasov equation

does not generate entropy.

The above simulations showcase interesting features of single-species UNPs. Namely, we have

verified that the electron and ion species are well-approximated by a self-similar hydrodynamic

model. While other work has been done to validate this point Ref. cite, we have quantified the

validity of various approximations in the derivation of the self-similar hydrodynamics models

with kinetic simulations. Specifically, we have shown that although the electron temperature is

not spatially independent, the errors associated with that approximation are on the order of a few

percent. Additionally, we have assessed the role that collisions have in the expansion of UNPs.

We have found that the Vlasov and BGK simulations agree to sub-percent accuracy in the first

three moments and within 1% of the self-similar expansion model Eq. (5.129). Therefore, the UNP

expansion is adiabatic and little to no entropy is being generated by collisions. Because of this,

single-species UNPs should be time-reversible which perhaps can be verified experimentally. We

note that the self-similar model is based around a Gaussian UNP which may not be the case in the

presence of magnetic fields. Thus, if the initial condition is not carefully controlled, the UNPs may

no longer be time-reversible. We will show in the next section, that UNP mixtures do not follow

the same self-similar expansion properties of single-species UNPs and that the amount of entropy

generated in them can be mitigated by the initial plasma conditions.
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5.6.2.2 Expansion of Multi-species UNPs

In this section, we extend our numerical study to plasmas UNP mixtures where we answer the

question: can the UNP mixture conditions be chosen to minimize the amount of entropy being

generated? Recently the capability to create UNP mixtures has provided the ability to validate

models for plasma mixtures and allowed for measurements of process otherwise unattainable such

as temperature relaxation. We begin this section by studying the impact that changing the plasma

conditions has on entropy generation.

We compare the numerical results of four different plasma conditions. The first case we

will analyze is a Ca+-Yb+ mixture with plasma conditions relevant to ongoing UNP mixture

experiments [24]. Specifically, the plasma conditions here are nCa+,0 = 1.4 × 1010 cm−3, and

nYb+,0 = 2.7 × 1010 cm−3 with widths σCa+,0 = 0.76 mm and σYb+,0 = 0.44 mm. The initial ion

temperatures are taken to be TCa+ = 2 K and TYb+ = 1 K. The second case we study is the same as

the first case but instead with σCa+,0 = σYb+,0 = 0.5 mm. For the third case we now assume that

both species share the same peak density and width. Specifically, nCa+,0 = nYb+,0 = 2 × 1010 cm−3

with widths σCa+,0 = σYb+,0 = 0.5 mm. The initial ion temperatures are taken to be TCa+ = 2 K and

TYb+ = 2 K with the initial electron temperature is Te0 = 96 K. The fourth and final case is instead

a UNP mixture of Ca+-K+ with nCa+,0 = nK+,0 = 2 × 1010 cm−3 with widths σCa+,0 = σK+,0 = 0.5

mm. The initial ion temperatures are taken to be TCa+ = 1 K and TK+ = 1 K. For all cases the initial

electron temperature is Te0 = 96 K and we assume that the electron temperature profile follows

Eq. (5.130). The plasma conditions for all four cases are summarized in Table 5.3; each simulation

took approximately 2.5 hours to complete.

For all simulations, the following conditions are the same: (i) the total simulation time is 8

µs with a CFL of 0.6, (ii) the 1D spatial grid is initialized with an upper (and lower) bound of

magnitude |xmax | = 0.5 cm with a grid resolution of ∆x = 0.001 cm, (iii) the 1D velocity grid is

initialized with an upper (and lower) bound of magnitude |vmax | = 40 ×
√

T/m cm/s with a grid

resolution of ∆v = 0.1 cm/s, and (iv) a fourth-order upwinding FVM reconstruction is used with a

Newton iteration to obtain the electron density. To assess the timer-reversibility of each case given
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Case Species 1 Species 2 n1 (cm−3) n2 (cm−3) σ1,0 (mm) σ2,0 (mm) T1 (k) T2 (K)
(a) Ca+ Yb+ 1.4 × 1010 2.7 × 1010 0.76 0.44 2 1
(b) Ca+ Yb+ 1.4 × 1010 2.7 × 1010 0.5 0.5 2 1
(c) Ca+ Yb+ 2 × 1010 2 × 1010 0.5 0.5 2 2
(d) Ca+ K+ 2 × 1010 2 × 1010 0.5 0.5 1 1

Table 5.3: Plasma conditions of four UNPmixtures. By varying the initial conditions of the plasma
mixture, we aim to minimize the amount of entropy generated in the system. Numerical results
for cases (a) - (d) are displayed in the corresponding panels of Fig. 5.14. We see that by selecting
certain plasma parameters, the Vlasov and BGK numerical results agree suggesting that specific
UNP mixtures are time-reversible.

in Table 5.3, both a Vlasov and BGK simulation were carried out. The initial condition and final

density profiles are for each case in Table 5.3 are displayed in Fig. 5.14. In Fig. 5.14(a), we see

that the Vlasov and BGK results differ greatly. The role of collisions in this case prevent the Ca+

species from being forced away from the more massive Yb+ species. In an attempt to control the

spread of the Ca+ species in the Vlasov simulations, we make the initial width of Ca+ and Yb+ the

same which is shown in Fig. 5.14(b). The Vlasov results show that the Ca+ ions still spread away

from the Yb+ species but the Ca+ species retains an overall Gaussian profile. Next, we make the

densities and temperatures of the Ca+ and Yb+ the same and the numerical results are shown in

Fig. 5.14(c). We observe that for the Ca+ species, the Vlasov results are in better agreement to the

BGK results. Lastly, we change the second species to K+ so that both species have similar mass.

These results are shown in Fig. 5.14(d). We see that the Vlasov and BGK results agree to within

sub-percent accuracy and retain an overall Gaussian shape. Our numerical results suggests that of

all the cases given in Table 5.3 case (d) is the most likely multi-species UNP to be time-reversible.

It is worth summarizing the results of comparing the Vlasov and BGK results for the different

cases of UNPmixtures. From our numerical results, we see that enforcing the samewidth parameter

results inGaussian profiles for both species; this suggests that the expansion of theUNPmixturemay

be self-similar although there is currently no self-similar expansion models for plasma mixtures.

Next, by enforcing that the number densities of both species are the same, we find that the expansion

of the Ca+ species is less than the case where both species only have the same width parameters.
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Figure 5.14: Number density profiles for UNP mixtures for the plasma conditions given by cases
(a)-(d) in Table 5.3.

Lastly, we see that by picking both species to have roughly the same mass, number density, and

temperature, the Vlasov and BGK agree nearly exactly. Unfortunately, no experimental data exist

to validate these numerical simulations. As was the case of the time-reversible single-species UNP,

it may be possible to “reverse" the dynamics of UNP mixture experiments; our numerical results

suggest that the highest probability of success for time-reversible UNP mixtures is case (d) of

Table 5.3. The claim of time-reversibility of the UNP mixture with conditions given by case (d) of

Table 5.3 is substantiated by calculating the total entropy that is generated during these simulations.

Figure 5.15 displays the total entropy source term given by Eq. (5.37) for each of the four cases

in Table 5.3. Noting the scale of the colorbar for each panel, we see that the cases (a) and (b)

generate roughly the same amount of entropy. In contrast, cases (c) and (d) generate considerably
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Figure 5.15: Total entropy source [Eq. (5.37)] for cases (a)-(d) in Table 5.3. Note the scale on the
colorbar for each case. Cases (a) and (b) generate roughly the same amount of entropy, whereas
(c) and (d) generate considerably less entropy. The amount of entropy being generated in case (d)
suggests that the dynamics of the UNP mixture are time-reversible. This is further confirmed by
the agreement of the Vlasov and BGK results in Fig. 5.14.

less entropy with the latter case generating roughly 4 orders of magnitude less that cases (a) and

(b).

5.6.2.3 Diffusive Mixing in HED Plasmas

As illustrated by Fig. 1.1, HED plasmas are much higher in density and temperature than

UNPs. However as previously mentioned there is a crossover regime at which UNPs and HED

plasmas roughly share the same dimensionless parameters. Using the multi-species BGK model4,

we simulate a system that is pertinent to ongoing experiments on the Z machine at Sandia National
4For this section, the 1D-3V code used to simulate this work can be found at: https://github.com/lanl/Multi-BGK.
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Laboratory5. The main goal of the experiment and the simulations of the experiments is to quantify

atomic-scale mixing across an interface of between a material with high nuclear charge and a

material with low nuclear charge. The initial condition is displayed in Fig. 5.16. We assume the

system is periodic and is comprised of a region made up of the elements V and Al in the center that

is 50 µm wide. The VAl region is surrounded on either side by a 50 µm plastic region made up of

the elements C,H, and O.

Figure 5.16: Initial condition for the 1D-3V multi-species BGK simulation. The dotted vertical
lines denote the VAl/CHO interface and the number density of O has been multiplied by 10 for
visual clarity.

To account for partially-degenerate electrons, we employ a linear Thomas-Fermi model [44]

instead of the classical Possion-Boltzmann formula Eq. (5.94). As previously mentioned a main

benefit of kinetic models is that they return an infinite number of macroscopic variables via

moments of the distribution function. Additionally, in contrast to many hydrodynamic models,
5Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &

Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This section
describes objective technical results and analysis. Any subjective views or opinions that might be expressed in this
section do not necessarily represent the views of the U.S. Department of Energy or the United States Government:
SAND2022-16353 T.
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kinetic models allow for each species to have distinct moments which results in density, velocity

and temperature fields for each species in the system. In interface mixing in particular, the need

for multiple continuity, momentum, and temperature fields is crucial as the velocity fields of each

species become uncoupled [44, 88].

The work done in this section is part of a much larger simulation effort at Sandia National Lab-

oratories that also consists of radiation-hydrodynamic simulations6. The radiation-hydrodynamics

simulations include models of radiation that ultimately turns the initial condition shown in Fig. 5.16

into a plasma. Since the current kinetic models do not directly treat radiation, we use data from

the radiation-hydrodynamics simulations to estimate an electron temperature ramp that acts as an

external (radiation) energy source in the kinetic simulations. The electron temperature ramps are

determined from the ion temperature of the radiation-hydrodynamics simulations and are shown

in Fig. 5.17. To obtain a functional form for the electron temperature that can be evaluated at any

time, we fit ion temperature data of the VAl portion of two radiation-hydrodynamics simulations.

The data follow linear trends (see Fig. 5.17) and a linear best-fit function is used as the electron

temperature ramp for the electron temperature model.
6The radiation-hydrodynamics simulations were carried out using the ALEGRA code [286].
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Figure 5.17: Temperature of ion species calculated from two radiation-hydrodynamics simulations.
The data are shown as solid lines with linear fits denoted by dashed lines. We assume that the
temperature of the electrons follows the linear trend and the linear fits are used as the electron
temperature ramp in the multi-species BGK simulations.

For brevity, we denote the temperature ramp with the larger magnitude as the “high-temperature

ramp" (HTR), and the temperature ramp with the lower magnitude as the “low-temperature ramp"

(LTR).

The kinetic simulations have simulation length of 12ns and use a first-order upwinding flux; a

CFL number is chosen to ensure stability. A Newton iteration was employed for determining the

self-consistent electric field. For the BGK operator, we employ a collision rate given by Eq. (5.16).

The density profiles at t = 12 ns using both the LTR and HTR are displayed in Figs. 5.18(a) and

5.18(b). We see qualitative differences between the density profiles computed with the low- and

high-temperature ramps but the overall number density of each species appears to be the same in

each region of both cases. For example, the amount of V in the region from x ∈ [25, 75]µm appears

to be roughly equivalent in Figs. 5.18(a) and 5.18(b).
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Figure 5.18: Simulation snapshot at t = 12 ns of the density profile with the (a) the LTR shown in
Fig. 5.17 and (b) the HTR shown in Fig. 5.17. The initial condition is denoted by horizontal dotted
lines and the location of the interface is shown as vertical black dotted lines.

To quantify the amount of diffusion that occurs throughout the simulation time, we introduce a

metric for computing the amount of diffusion across the interfaces at x = −25 µm and x = 25 µm.

The total number density of N ion species in the region of x1 and x2 is computed via

A(t) =
N∑
i

∫ x2

x1

ni(x, t) dx. (5.161)

Using Eq. (5.161) we compute the total amount of V and Al in the region of x ∈ [25, 75]µm; the

initial density of V and Al in this region is zero. We see that for the case of the HTR, the amount

of V and Al diffuses in to the CHO region more quickly than does the case where we use the LTR.

This is consistent with the fact that for higher temperatures, the diffusion will be greater. Between

the time range of t =∼ 9 to 12 ns, we see that the amount of V and Al in the CHO region decreases

and is approximately the same as the amount of diffusion using the LTR. This phenomenon is due

to the periodic nature of the system; the V and Al expand outwards into the CHO region and then

return to the VAl region more quickly in the HTR case.
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Figure 5.19: Total density of V and Al in the CHO region using the HTR and LTR. We see that the
HTR results in more diffusion of the VAl species than the LTR. Due to the periodic nature of the
system, the total density of VAl decreases between t =∼ 9 to 12 ns.

While Fig. 5.19 provides some insight into the amount of diffusion that has occurred during

the simulation, it does not provide any insight as to what factors caused the diffusion to occur. To

answer the question of what factors are driving the diffusion in the simulations, we consider the

diffusion driving forces defined by [44]

di = ∇xi + (xi − yi)∇ ln p +
ρi

p

(
Zie
mi
−

∑
j

y j
Z je
m j

)
E, (5.162)

where p = nT , E is the electric field, and ρi = mi/ni is the mass density. The atom fraction and

mass fraction are given by xi = ni/n and yi = ρi, /ρ, respectively, with n =
∑Ni

i ni and ρ =
∑Ni

i ρi.

The first term on the right-hand side of Eq. (5.162) corresponds to Fickian diffusion (diffusion due

to concentration gradients), the second term corresponds to barodiffusion (diffusion due to pressure

gradients) and the last term corresponds to electrodiffusion (diffusion due to electric fields).

We display the spatio-temporal evolution of the diffusion driving forces with the LTR and HTR

for C [panels (a) – (c)] and V [panels (d) - (f)] in Figs. 5.20 and 5.21. A comparison of Fig. 5.20(c)

and Fig. 5.21(c) highlight the periodic boundary conditions and show how the HTR causes faster

diffusion than does the LTR. In both for both the HTR and LTR cases, the dominant diffusive flux
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Figure 5.20: Space-time diagrams of Fickian, electro-, and barodiffusion fluxes with the LTR. (a)
− (c) show the diffusive fluxes for C where (a) is the Fickian diffusion flux, (b) is the barodiffusion
flux, and (c) is the electrodiffusion flux. (d) − (f) show the diffusive fluxes for V where (d) is the
Fickian diffusion flux, (e) is the barodiffusion flux, and (f) is the electrodiffusion flux.

is electrodiffusion. The charge imbalance at the interface results in stron electric fields. The role

that these electric fields play is that the C species in the CHO region moves away from the interface

and the V species in the VAl region move toward the center of the VAl region.

5.7 Conclusions and Outlook

The focus of this chapter has been on the development and numerical implementation of kinetic

models for simulating strongly coupled plasmas. We have validated our numerical scheme against

data for multi-species UNP temperature data and have used our simulations to elucidate various

processes in UNPs and HED plasmas. Specifically, we have been able to simulate the tail filling

rate in UNPs showing that the tail filling rate is sensitive to the choice of collision operator and

collision frequency. The next steps are to validate our models with experimental data.

We have also analyzed the role that collisions play in the expansion of single-species UNPs

with a Gaussian initial condition. We find that the collisions rapidly drive the system to equilibrium

as evidenced by the agreement of the Vlasov and BGK simulations. By carrying out explicit
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Figure 5.21: Space-time diagrams of Fickian, electro-, and barodiffusion fluxes with the HTR. (a)
− (c) show the diffusive fluxes for C where (a) is the Fickian diffusion flux, (b) is the barodiffusion
flux, and (c) is the electrodiffusion flux. (d) − (f) show the diffusive fluxes for V where (d) is the
Fickian diffusion flux, (e) is the barodiffusion flux, and (f) is the electrodiffusion flux.

Ca+-e simulations, we test various assumptions of analytic models for the electron temperature in

a single-species UNP. We find that the spatial independence assumption is quite accurate and that

the electrons can be treated adiabatically eliminating the need to explicitly simulate them.

For UNP mixtures initialized with a Gaussian profile, we find that certain plasma conditions

result in self-similar expansion. Specifically, by picking two ion species with similar mass, we find

that Vlasov and BGK simulations agree to within a percent. Our numerical results suggests that for

this choice of plasma conditions, the UNP mixture is time-reversible like the case of single species

UNPs with a Gaussian initial condition. These results can be used to guide future experimental

calculations to verify our models.

Lastly, for HED plasmas relevant to experiments on the Z machine at Sandia National Labora-

tories, we find that the main source of diffusive mixing is due to strong electric fields that occur in

regions of a sharp interface. To mitigate the diffusive mixing, specific choices of elements can be

chosen to avoid a disparate charge imbalance reducing the strength of the electric field.
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The results in this chapter can be expanded upon in a variety of ways. First, UNPs are often

spherically symmetric which lends itself to simulations in a spherical coordinate system. As such,

we have provided a derivation of the Vlasov equation in spherical coordinates, showing that there

are additional terms that appear due to fictitious forces. Additionally, we have developed a second-

order spherical FVM stencil (see Appendix C) in r space which still needs to be implemented

numerically. In general, the numerical method provided here relies on the operator splitting

technique and one improvement could be to solve the “two-dimensional" FVM directly allowing

for the implementation of high-order time integrators. Moreover, an implicit time integrator could

be used for the multi-species BGK collision operator allowing for larger time steps when needed.
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CHAPTER 6

CONCLUSIONS AND FUTUREWORK

In this dissertation, we have presented four projects all with applications to non-ideal plasmas.

The first project focused on an exhaustive benchmarking study which validated the use of simple

force laws for molecular dynamics simulation of dense plasmas. The results of this work have

allowed us to dismiss force laws that lack the non-parametric nature of the force-matched potentials

we employed here. By using multiple metrics for comparison, we found that an agreement of

time-independent properties like the radial distribution function is not sufficient for estimating the

validity of force laws as compared to a Kohn-Sham MD calculation. We have also illustrated

that although Kohn-Sham MD includes important physics that simpler models, results from Kohn-

Sham MD can be heavily plagued by finite-size effects, introducing large amounts of statistical

errors. Extensions of this work include simulations of additional elements at different densities and

temperatures. This will allow for a greater understanding of the functional form of pair potentials

in the warm dense matter regime. Additionally, the natural extension of this work is to apply

this data-driven discovery of force laws from high-fidelity data to plasma mixtures. By obtaining

pair potentials for plasma mixtures, we gain access to Kohn-Sham MD accurate pair potentials for

simulating systems that are pertinent to nuclear fusion experiments.

The second project focused on deriving theoretical models for interdiffusion of binary plasma

mixtures. For multiple plasma conditions, our models eliminate the need to perform costly MD

simulations altogether while only incurring an error on the order of a few percent. Our closed form

formulae provide accurate approximations for values that are typically ignored altogether in theMD

community. Additionally, we were able to dismiss and highlight the inadequacies of the so-called

“Darken formula" for the interdiffusion coefficient by highlighting its inability to converge to the

true result. The culmination of the work results in a simple-to-use closed form expression for the

interdiffusion in a binary ionicmixture, which is reasonably accurate in the strongly coupled regime.

Extensions of this work include a more comprehensive study of the efficacy of these models for

the thermodynamic factor which relies on the generation of datasets that span temperature, density,
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and atomic number.

The third project focused on employing machine learning techniques for combining datasets

of multiple fidelities. By applying this general machine learning framework to plasma transport

coefficient data, we showed that interpolating data from multiple models ranging in fidelity results

in a more accurate, confident prediction in regions absent of high-fidelity data. We highlighted

the use of this framework in multiple dimensions and developed a sampling approach for high-

fidelity data to reduce prediction errors. We could further extend the work done in this project by

developing models which allow for more accurate extrapolation beyond the range of data based on

a low-fidelity trend. Additionally, while Gaussian-process regression was the primary method used

for interpolation in this project, we could explore the use of other methods such as neural networks

for multi-fidelity modeling.

Lastly, the fourth project focused on developing kinetic models to simulate strongly coupled

plasma mixtures. We simulated UNPs and HED plasmas using 0D and 1D kinetic simulations.

Our kinetic model included the LBD collision operator, the BGK collision operator and multi-

species BGK operator. We used our kinetic models to study the time evolution of single-species

UNPs and UNP mixtures and also the rate of entropy production in these plasmas. By varying the

initial plasma conditions, we determined plasma conditions that minimize the amount of entropy

being produced suggesting that the specific UNP mixture is time-reversible. In addition, we used

experimental data to validate collision rate models for the BGK operator adding confidence to their

use for non-ideal plasmas. We found that in our 0D simulations that we can accurately reproduce

data from MD simulation for UNP mixtures decreasing the computation cost by approximately

3000 times. By carrying out an explicit ion-electron UNP simulation, we quantified the errors

associated with various approximations in analytic formulae used to approximate electrons in a

UNP. We found that the temperature of the electrons in a UNP well-treated by an adiabatic mode

that assumes no spatial dependence. For the HED plasmas, we simulated a plasma mixture that is

relevant to ongoing interface mixing experiments on the Z machine at Sandia National Laboratory.

We found that the diffusive mixing in these experiments is dominated by strong electric fields that
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originate due to charge imbalances between the species on either side of the interface. Although

much of this work in this project is numerical, we have used our results to suggest experimental

cases to further validate our models. Extensions of this work could be to include the electrons as

an explicit species in the BGK model to examine their contribution to the amount of entropy being

generated. Moreover, we can connect the rate of entropy production to the various thermodynamic

forces driving the system to equilibrium in order to determine the dominant transport processes in

UNPs.
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APPENDIX A

ANALYTIC SOLUTION TO POISSON’S EQUATION IN SPHERICAL COORDINATES

For simple test cases, we can obtain an analytic solution to Poisson’s equation which will be used

to test the accuracy of our numerical method described in Sec. 5.5.3. Consider a uniform charge

density ρ0 inside a sphere of radius R. The charge density is assumed to be zero for r > R.

Therefore, Poisson’s equation for these two cases is
1
r2

d
dr

(
r2 d

dr ϕ
)
= −4πρ0, for r ≤ R,

1
r2

d
dr

(
r2 d

dr ϕ
)
= 0, for r > R.

(A.1)

We solve the first equation by first expanding out the derivative using the product rule which yields

d2

dr2ϕ +
2
r

d
dr
ϕ = −4πρ0. (A.2)

Multiplying by r2 we get

r2 d2

dr2ϕ + 2r
d
dr
ϕ = −4r2πρ0. (A.3)

We now assume a solution of the form a ϕ = rλ and determine the complementary solution from

r2 [
λ(λ − 1)rλ−2] + 2rλrλ−1 = 0. (A.4)

The above equation yields the auxiliary equation

λ(λ + 1) = 0, (A.5)

which implies a complementary solution of the form

ϕc(r) = c1 +
c2
r
. (A.6)

We note that the complementary solution is also the solution to the r > R case in Eq. (A.1). For

the particular solution, we use variation of parameters. The particular solution has the form

ϕp(r) = u1ϕ1 + u2ϕ2 = u1 + u2
1
r
. (A.7)
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We have the following Wronskians:

W =

�������1
1
r

0 − 1
r2

������� , W1 =

������� 0 1
r

−4πρ0 −
1
r2

������� , W2 =

�������1 0

0 −4πρ0

������� . (A.8)

Using the fact that u′1 = W1/W and u′2 = W2/W , we have

u1 = −2πρ0r2, u2 =
4
3
πρ0r3, (A.9)

which gives

ϕp = −
2πr2ρ0

3
. (A.10)

Thus, the solution to Eq. (A.1) is
ϕin = c1 +

c2
r −

2πr2ρ0
3 , for r ≤ R,

ϕout = c3 +
c4
r , for r > R.

(A.11)

Where the subscripts “in" and “out" denote the solution inside and outside the sphere of uniform

charge density respectively. To determine the unknown constants c1, c2, c3 and c4, we employ the

boundary conditions

d
dr
ϕin

����
r=0
= 0, (A.12)

d
dr
ϕin

����
r=R
=

d
dr
ϕout

����
r=R

, (A.13)

ϕin(R) = ϕout(R), (A.14)

lim
r→∞

ϕout = 0. (A.15)

Applying these conditions result in c1 = 6πR2ρ0/3, c2 = 0, c3 = 0, and c4 = 4πR3ρ0/3. Eq. (A.11)

becomes 
ϕin = 2πρ0

(
R2 − r2

3

)
, for r ≤ R,

ϕout =
4πR3ρ0

3r , for r > R.

(A.16)
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From Eq. (A.16) we can obtain the electric field via E = − d
dxϕ which gives

Ein =
4πρ0r

3 , for r ≤ R,

Eout =
4πR3ρ0

3r2 , for r > R.

(A.17)

We use Eq. (A.17) to verify that our numerical scheme for solving Eq. (5.144) in Sec. 5.5.3.
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APPENDIX B

DYNAMIC STRUCTURE FACTOR IN THE RANDOM PHASE APPROXIMATION

The dynamic structure factor for a Coulomb potential (OCP) can be computed by

S(k, ω) = −
T

πuC(k)ω
Im

[
1

ε(k, ω)

]
, (B.1)

where uC(k) = 4π(Ze)2/k2 is the Coulomb potential and

ε(k, ω) = 1 +
(

kD

k

)2
W

(
ω

k
√

T/m

)
, (B.2)

W(Z) =
1
√

2π

∫ ∞

−∞

dx
x

x − Z − iη
exp

(
−x2

2

)
, (B.3)

where k2
D = 4πnZ2e2/T . For a generic potential u(k), we re-write the dynamic structure factor

using the density response function

χ(k, ω) = −
1

uC(k)

[
1 −

1
ε(k, ω)

]
, (B.4)

which can be rearranged so that

uC(k)χ(k, ω) + 1 =
1

ε(k, ω)
. (B.5)

Substituting Eq. (B.5) into Eq. (B.1) gives

S(k, ω) = −
T
πω

Im [χ(k, ω)] . (B.6)

With the ideal gas density response function, we have for some arbitrary potential u(k) that

χ(k, ω) =
χ0(k, ω)

1 − u(k)[1 − G(k, ω)]χ0(k, ω)
. (B.7)

Setting the dynamic local-field correction G(k, ω) = 0, we have the random phase approximation

(RPA)

χRPA(k, ω) =
χ0(k, ω)

1 − u(k)χ0(k, ω)
. (B.8)

By plugging Eq. (B.8) into Eq. (B.6), we have

SRPA(k, ω) = −
T
πω

Im
[
χRPA(k, ω)

]
, (B.9)
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where the imaginary part of χRPA(k, ω) is obtained from solving

1 − uC(k)χ0(k, ω) = 1 +
(

kD

k

)2
W

(
ω

k
√

T/m

)
, (B.10)

which simplifies to

χ0(k, ω) = −
1

uC(k)

(
kD

k

)2
W

(
ω

k
√

T/m

)
. (B.11)

Note that when ω = 0, the ideal gas response function is simply

χ0 = −
n
T
. (B.12)

B.1 Fourier Transform of Interaction Potentials

We begin with

v(k) =
∫

d3rv(r)eik·r. (B.13)

Writing the above equation in spherical coordinates (assuming that the potential is radially sym-

metric), we have

u(k) =
∫ 2π

0
dφ

∫ ∞

0
dr

∫ π

0
dθ v(r)eikr cos θr2 sin θ

= 2π
∫ ∞

0
dr

∫ π

0
dθ v(r)eikr cos θr2 sin θ

= 2π
∫ ∞

0
drv(r)

∫ π

0
dθ eikr cos θr2 sin θ. (B.14)

Letting u = cos θ means that du = − sin θdθ and the new limits of the θ integral are u = −1 and 1 .

Thus,

u(k) = 2π
∫ ∞

0
drv(r)r2

∫ 1

−1
du eikru

= 2π
∫ ∞

0
drv(r)r2 1

ikr
[
eikru]1

−1

= 2π
∫ ∞

0
drv(r)r2 2

kr
sin(kr)

= 4π
∫ ∞

0
drv(r)r

1
k

sin(kr). (B.15)

Which yields

u(k) =
4π
k

∫ ∞

0
dr rv(r) sin(kr). (B.16)
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B.2 Computing u(k) Using a Discrete Sine Transform

We make use of Python’s discrete sine transform (DST-I) function to compute u(k). We begin

by making the following definitions

xi = a + i∆x, k j = b + j∆k . (B.17)

The DST-I algorithm assumes the form

F(k j) = 2
N−1∑
i=0

f (xi) sin
[
π(i + 1)( j + 1)

N + 1

]
. (B.18)

To map our problem into the above convention, we begin by defining, for some maximum distance

rmax, the real space grid and the Fourier grid

xi =
rmax(i + 1)

N + 1
, k j =

π( j + 1)
rmax

. (B.19)

With a Riemann sum, we have

I(k j) =
π

k j
∆x

N−1∑
i=0

xiu(xi) sin(k j xi). (B.20)

B.3 Computing the W(Z) function

To compute the W(Z) function we have from Ref. [8] that

W(Z) = 1 − Zexp
(
−

Z2

2

) ∫ Z

0
dy exp

(
y2

2

)
+ i

√
π

2
Zexp

(
−

Z2

2

)
= 1 − Zexp

(
−

Z2

2

) [∫ Z

0
dy exp

(
y2

2

)
− i

√
π

2

]
= 1 − Z

√
π

2
exp

(
−

Z2

2

) [√
2
π

∫ Z

0
dy exp

(
y2

2

)
− i

]
= 1 − iZ

√
π

2
exp

(
−

Z2

2

) [
1
i

√
2
π

∫ Z

0
dy exp

(
y2

2

)
− 1

]
. (B.21)
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The above expression reduces further

W(Z) = 1 + iZ
√
π

2
exp

(
−

Z2

2

) [
1 −

1
i

√
2
π

∫ Z

0
dy exp

(
y2

2

)]
= 1 + iZ

√
π

2
exp

(
−

Z2

2

) [
1 −

1
i

√
2
π

√
2i

∫ −ix

0
dt exp

(
−t2

)]
= 1 + iZ

√
π

2
exp

(
−

Z2

2

) [
1 −

2
√
π

∫ −ix

0
dt exp

(
−t2

)]
= 1 + iZ

√
π

2
exp

(
−x2

)
erfc(−ix). (B.22)

We can use Python’s “wofz" function to obtain

W(Z) = 1 + iZ
√
π

2
wofz(Z/

√
2). (B.23)
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APPENDIX C

SECOND-ORDER UPWINDING STENCIL IN SPHERICAL COORDINATES

The procedure shown here has been detailed in Ref. [262] for Cartesian and cylindrical coordinates;

we extend the approach to spherical coordinates. Our goal is to construct a second-order upwinding

stencil for the Vlasov equation in Spherical coordinates. We use a one-dimensional polynomial

reconstruction with a second-order polynomial

P(r) = p2r2 + p1r + p0.d (C.1)

We can derive a second-order FVM stencil by solving a linear system for the unknown coefficients

{p2, p1, p0} in terms of the cell averaged distribution function which we denote here as 〈 f 〉i. Once

we have the coefficients of the polynomial P(r), we evaluate it at the cell interfaces to obtain a

numerical flux function at the interface. For a second-order upwinding stencil, we require three

values of our cell averaged distribution function. Specifically, we have that the linear system is

given by the relations

〈 f 〉i−2 =

∫ ri−3/2

ri−5/2

P(r)4πr2 dr, (C.2)

〈 f 〉i−1 =

∫ ri−1/2

ri−3/2

P(r)4πr2 dr, (C.3)

〈 f 〉i =
∫ ri+1/2

ri−1/2

P(r)4πr2 dr, (C.4)

〈 f 〉i+1 =

∫ ri+3/2

ri+1/2

P(r)4πr2 dr . (C.5)

From the above relations, we solve the linear system to obtain the coefficients {p2, p1, p0}. For the

case where the advection speed v > 0, we construct a linear system from 〈 f 〉i−1, 〈 f 〉i, and 〈 f 〉i+1.

When v < 0 we construct a linear system from 〈 f 〉i−2, 〈 f 〉i−1, and 〈 f 〉i. Assuming that v > 0 and
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solving the linear system for the coefficients of P(r) and then evaulating P(r) at ri+1/2 yields

〈 f 〉i+1/2 =
1

24π∆r3(4 + 6` − 9`2 − 20`3 + 15`4 + 30`5 + 10`6)

{
+(24 + 96` + 144`2 + 90`3 + 20`4)〈 f 〉i−1

+(69 − 96` − 63`2 + 90`3 + 50`4)〈 f 〉i

+(−3 + 9`2 − 10`4)〈 f 〉i+1

}
, (C.6)

where ` = ri+1/2/∆r . For v < 0

〈 f 〉i+1/2 =
1

24π∆r3(4 − 6` − 9`2 + 20`3 + 15`4 − 30`5 + 10`6)

{
+(−3 + 9`2 − 10`4)〈 f 〉i−2

+(69 + 96` − 63`2 − 90`3 + 50`4)〈 f 〉i−1

+(24 − 96` + 144`2 − 90`3 + 20`4)〈 f 〉i

}
. (C.7)
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