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ABSTRACT

Rolling Contact Fatigue or Damage (RCF/RCD) is the surface and near-surface damage

that occurs on the rail head and wheel treads of rail cars. The damage in the rail head due

to progressive cyclic loading from the contact between the wheel and the rail head can lead to

formations of small cracks that can ultimately grow and join up to form a flake that falls loose,

leaving behind a cavity in the running surface of the rail or turn downward to a limited depth

forming a fatigue crack commonly referred to as head checks and gauge corner cracks. Quanti-

fying RCF/RCD crack depths and density in rails is important for all the railroad authority and

industries to manage their grinding programs effectively and efficiently. Detecting RCF/RCD

can be challenging due to the size of the cracks, which typically starts out at 2−10µm and pro-

gressively can grow up to depths of 3mm to 5mm. It becomes impossible to characterize these

early stage RCF cracks without physically destroying the sample to get to the area of interest.

To gain a better understanding, the cracks that are formed from RCF/RCD can be simplified

into four different types: (I ) vertical/normal, (II ) oblique, (III ) branched, and (IV ) clustered

cracks. Methods that can accurately detect and characterize these cracks non-destructively have

been of high interest for the rail community.

This work focuses on utilizing Surface Acoustic Waves (SAWs) for detection and charac-

terization of RCF/RCD defects through numerical simulations the using finite element method

(FEM). A transient, elastodynamics wave propagation model was used to simulate SAW prop-

agation. Parameters such as the transmission (Tc), reflection (Rc), scattered (Ps), and time of

flight(TOF) were extracted from the model and quantified to build relationships for understand-

ing the mode conversion and interaction phenomena. The different type of defects that were

modeled in FE included vertical, oblique, and branched defects. First, SAW interaction with a

set of vertical, oblique and branched RCF defects were studied by quantifying Tc. The Tc values

exhibit duality at certain crack angles, which makes it challenging to accurately characterize

oblique RCF/RCD type of defects. Experiments have been done to validate vertical and oblique

defects: the results also exhibit a duality in Tc for the oblique defects. To understand branched

crack morphology, the complex crack geometry can be simplified into a series of varying an-

gled elastic wedges, which is part of a classical problem within elastodynamics. Finally, SAW

interaction with clustered cracks for two sets of densely packed RCF/RCD type of defects: a

uniform cluster and a non-uniform cluster to further develop characterization techniques using

Tc/Rc relationships and through signal processing methods.

The impact of this work is to provide a proof of concept that the presented numerical

results can be validated through experiments and become field implemented.
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Chapter 1

INTRODUCTION

1.1 Rolling Contact Fatigue/Damage

RCF/RCD is the surface and near-surface damage that occurs on the rail head and wheel treads

of rail cars. It encompasses ductility exhaustion, cracking, and material flow, as well as near-

surface cracks and material fatigue in the layers below the surface[1, 2]. RCF/RCD in the rail is

primarily a result of the wheel-rail interaction. The damage in the rail head due to progressive

cyclic loading from the contact between the wheel and the rail head can lead to the formations

of small cracks that can ultimately grow and join up to form a flake that falls loose, leaving

behind a cavity in the running surface of the rail or turn downward to a limited depth forming

a fatigue crack commonly referred to as head checks and gauge corner cracks. The onset of

RCF/RCD and its propagation mechanism are governed by the contact stresses, traction forces

on rails along with shear stresses and residual stresses evolved from asymmetric load-unload

pattern giving rise to plastic strain accumulation[3, 4], which continually gets more severe with

more load cycles. Head checks, gauge-corner cracks, flaking, squats, spalling, and shelling are

all names for surface or near-surface initiated RCF/RCD in railroad rails[5, 6]. RCF/RCD

has been at the forefront of railroad research for years, and accurate in-motion non-contact

Nondestructive Evaluation(NDE) methods of defect characterization remain a challenge to be

discovered[5, 6]. Fig. 1.1,a-c shows simpler cases of RCF/RCD crack configurations in the rail

head. A simplified crack progression model for the various stages of RCF/RCD propagation

from crack initiation to full rail-break was used by Kapoor et al[7] for easier visualization of

RCF/RCD defects. Fig. 1.2,a and b shows two different cases of RCF/RCD cracks that can

form in the rail head in a cluster configuration. Detecting RCF/RCD can be challenging due

to the size of the cracks, which typically starts out at 2 − 10µm and progressively can grow

to depths of 3mm to 5mm[5, 6, 8–11]. At the early stage, due to the relatively small size of

the cracks, the sensitivity can be poor due to numerous additional variables such as operating

temperature, contamination, and harsh railroad environment[5, 12]. Due to these challenges,

some of the existing NDE techniques explored or developed have shown limited success to

effectively detect and characterize RCF/RCD cracks in the rail head. Failure to accurately

characterize RCF/RCD crack depth can cause other severe underlying issues, which is of critical

importance to the rail safety[5, 6, 13, 14].

A traditional UT approach has been used for inspecting rails for internal deep fatigue

defects[15–18]. This includes roller search units (RSUs) equipped with ultrasonic probes that

can roll over the track and maintain contact, which makes it field implementable. Traditional
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Figure 1.1: Micrograph images of 3 surface breaking cracks (These micrographs, were
provided by Dr. Anish from MxV Rail).

UT cannot be used for characterizing surface or near surface cracks due to physical limitations.

Therefore, surface breaking defects in the rail head have traditionally been detected and charac-

terized using electromagnetic NDE methods, primarily Eddy Current Testing (ET)[12, 19, 20].

ET is fully non-contact, which makes it desirable for in-motion field implementation; however,

RCF/RCD crack depth cannot be measured accurately, and it has limited depth sensitivity

[12, 17, 19–23]. Recently, research lead by MxV rail is investigating the use of electromagnetic

field imaging (EMFI) technology for RCF/RCD crack depth characterization[1, 2, 10, 11].

However, for surface breaking defects Rayleigh wave NDE can offer alternatives to defect

characterization due to localized wave propagation[24]. Rayleigh waves are surface propagating

waves that satisfy a stress-free boundary condition along the surface of a half-space, with the

acoustic energy typically being confined to 1.5 times the wavelength. This makes them advanta-

geous in UT NDE of surface and sub-surface features [24–27]. RCF/RCD defects typically tend

to form as oblique and branched cracks rather than straight cracks. While there are several

research articles that have explored Rayleigh wave interaction with vertical surface breaking

defects, research on oblique cracks in a wide range of angles is limited [28, 29] and research on

branched cracks where it continues down through the rail has not yet been explored. There are

a few articles that have explored branch cracks from a stress corrosion cracking(SCC) process,

where the crack can start out as a vertical slot and can either branch from the top or the center

of the vertical slot[29, 30]. But, these are fundamentally different from RCF/RCD defects in

the rail head.

The objective of this work is to understand how Rayleigh waves can be used for detection

and characterization of RCF/RCD in the rail head. Therefore, it is necessary to understand

their interactions with the four different types: (I ) vertical/normal, (II ) oblique, (III ) branched,

and (IV ) clustered cracks of RCF/RCD defects and the expected response. By building a set

of calibration curves, we envision eventually applying these directly to determine the crack

morphology such as length, orientation, and the overall severity of the crack. This work utilizes
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Figure 1.2: Micrograph images of 2 different sets of surface breaking cluster cracks
(These micrographs, were provided by Dr. Anish from MxV Rail).

FEM to study the interaction of Rayleigh wave with surface breaking, vertical, oblique, and

branch defects. Further, to understand the response from real cracks, the crack morphology was

modeled from a micrograph and wave propagation simulation was carried out. This emphasizes

the challenges when characterizing real cracks with curvilinear profile and rough surfaces. The

numerical approach allows us to fully understand the Rayleigh wave response and help with

experimental design to detect these complex defects in the field.

1.2 Elastic Wedge

In order to understand the complex morphology of branched RCF/RCD type of defects, they

can be simplified into a series of varying angled elastic wedges as observed in Fig. 1.3.

Figure 1.3: Schematic of simplification of branched crack to elastic wedge.

Surface or Rayleigh wave interaction with an elastic wedge is one of the more interesting

and unsolved classical problems in the area of geophysics and acoustics[31–35]. Rayleigh surface

waves can propagate only along the stress-free boundary of a half-space, with their energy con-

fined to the sub-surface and decays exponentially along the thickness [24, 36–39]. Rayleigh wave
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interaction with discontinuities can produce mode conversions, that will result in transmission,

scattering, and reflection. Rayleigh wave interaction with discontinuity has been of significant

interest to several communities including geophysics, acoustics, and nondestructive evaluation

[24, 33, 40–42]. Raleigh wave propagation and interaction with a wedge like discontinuity can

be simplified as two ends of an elastic boundary that meet at a non-orthogonal angle while sat-

isfying stress-free boundary conditions. This approach has been used in geophysics to simplify

the complex topography caused by mountains and other landmarks in geophysics[33, 40]. These

studies provide a gateway to understanding the Rayleigh wave scattering on a seismic scale by

analysis via analytical or numerical methods. Many researchers such as A.K. Mal[31, 33], L.

Knopoff[31–34], A.F. Gangi[34, 35], A.K. Gautesen[43–47], and more[41, 48–50] have studied the

mode conversion, transmission, reflection, and scattering phenomena in an elastic wedge. An

incident Rayleigh wave mode converts into bulk modes upon interacting with the discontinuity.

Both transmission and reflection coefficients for Rayleigh wave interaction with a step-change

and at a corner has been reported by A.K. Mal[31, 33]. These types of wedges can be similar

to a 90◦ or a 270◦ wedge. The transmission and reflection coefficients for Rayleigh wave inter-

action with a varying angled wedge has also been observed experimentally by A.K. Mal[33], L.

Knopoff[33, 34], and A.F. Gangi[34, 35].

The numerical models used in this work were based on Gautesen’s analytical models[43–

47] using a set of Green’s function integrals to capture the Tc, Rc(will be referred to as “coeffi-

cients” afterwards), and their respective phase at a Poisson’s ratio of v = 1/3 and v = 1/4 for

a wedge angle range of 63◦ to 350◦. Gautesen observed many fluctuations for the coefficients at

angles θ < 180◦, while Tc reduces in value, Rc experiences a small increase for wedge angles θ >

180◦. A.K. Mal and L. Knopoff[31–33] also used a set of Green’s function integrals derived from

Huygens’ principle to capture the displacements for the reflected and transmitted waves. This

approach seems to reduce the error between the analytical and experimental results. Other

researchers, such as K. Fuji et al[48, 49], had proposed wedge models using sets of complex

integrals and that the coefficients experienced high fluctuations from a wedge angle of 36◦ to

180◦. B.V. Budaev et al[41] has proposed Sommerfeld’s integrals to capture the transmitted,

reflected, and scattered energy. The experimental coefficients at small wedge angles less than or

equal to 90◦ exhibited considerable error; thus, they only considered wedge angles greater than

95◦. One of the challenges in using analytical models is being able to calculate the coefficients

effectively when the wedge angle would become very small such that it would produce many

irrelevant reflected waves[31, 33, 41, 43, 44] thus complicating the resulting coefficients. Another

challenge with classical analytical models is that the scattering phenomena may not be fully
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captured. Rayleigh wave interaction with discontinuities can result in a wide range of mode con-

versions and different incident waves on the half-space boundary. This can be more complicated

for the case of an acute wedge, where multiple overlapping internal reflections can cause mode

conversions and constructive and destructive interference. Therefore, revisiting the interaction

for the acute angles using powerful numerical solvers can be beneficial to our understanding of

the classical wedge problem.

While the previous research in literature have studied several different structures and

geometries, they have not studied the effect of frequency. Changing the excitation frequency

will change the wavelength of the incident wave, which may change interaction phenomenon,

primarily due to the amount of out-of-plane energy that interacts with the discontinuity. This

might have little effect on wedge angles θ > 180◦ shown in Fig. 2.5,b, since the 2nd stress-free

edges of the wedge is beyond the incident energy. But for wedge angles θ < 180◦ shown in

Fig. 2.5,a, the incident wavelength may have a larger effect, especially since the two stress-free

edges wedge converge as shown in Fig. 2.5,a[31, 33, 41, 43, 44]. We can hypothesize that the

incident wavelength will have an effect on the interactions especially for wedge angles θ < 180◦.

The change in wavelength may also affect the phase of the transmitted wave. As the wedge

angle reduces to < 90◦, superposition and multiple interactions of waves can affect the phase

of the transmitted waves. The primary source of reflection, transmission, and scattering of

an incident Rayleigh wave is the discontinuity (D1 as shown in Fig. 5.3,a-b). Rayleigh wave

interaction with D1 can change if the geometry of D1 changes, i.e, going from a sharp transition

to a smooth/continuous transition. Many researchers[41, 43–50] have studied similar problems

analytically. A.F. Gangi[40], H. Wong[35], and F.J. Sanchez-Sesma et al[51] have also explored

the effects of various mode conversion phenomena in a changing semi-elliptical geometry.

The objective of this work is to revisit Gautesen’s models[43–47] using numerical sim-

ulations to understand the limitations and gain a deeper understanding of the classical wedge

problem. In order to understand the mode conversion phenomena, a relationship between the

transmission, reflection, and scattered coefficients as a function of wedge angle for changing

excitation frequencies and will be presented in Sect. 5.1. Understanding the effect of changing

the excitation frequency is very important to this work, such that it will provide insight on its

dependence for mode conversion, interaction, coefficients, and phase. From this idea, a hypoth-

esis was formed and will be discussed in Sect. 5.1. The same hypothesis was applied to the

effect on the phase and transition geometry type at each wedge angle, which will be discussed

in Sects. 5.2 - 5.3.
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Chapter 2

NUMERICAL MODEL

2.1 Numerical Setup

Numerical simulations were carried out using ANSYS, which allows us to capture phenomena

like mode conversion, interaction, transmission, reflection, and scattered coefficients. A rect-

angular two-dimensional (2D) model with different types of cracks and varying angled wedges

were created using simple Boolean operations as observed in Fig. 2.3, 2.4 and in Fig. 2.5,a-b

respectively. All the surfaces and boundaries for each model and including the inside of the

cracks were attributed with stress-free properties.

Each model was sufficiently large to ensure reflections from the boundaries do not in-

terfere with the incident and scattered wave packets within the prescribed time. The models

were meshed with 8 noded quadrilateral elements with quadratic shape functions to satisfy the

convergence criteria of 10 elements per λ[25, 52, 53], and the total solve time and time step was

varied to satisfy the Nyquist criteria. A meshed area at the crack can be found in Fig. 2.1,a.

When the excitation frequency changes, the model was re-meshed to re-satisfy the convergence

and Nyquist criteria. Standard steel isotropic material properties were assigned to a 2D model

and are as follows: ν = 0.3, E = 210GPa, ρ = 7850kg/m3. The objective of the 2D plane strain

approximation is to focus on understanding the interaction and mode conversion phenomenon.

Figure 2.1: (a) Example meshed area of a vertical crack. (b) Vector plot of incident
Rayleigh wave before interaction.

A transient analysis was carried out with an initial input of 1 MHz, 7 cycle tone-burst[25,

54] with a total simulation time of 50µs and 50ns time step. Newmark’s time integration scheme

was used for time stepping, and the direct sparse solver was used to solve the problem. Once

the model is solved, at each node, the temporal profile of the displacement components were

extracted to measure the coefficients.

The source was modeled on the horizontal boundary at a distance away from the start

of the crack shown in Figs. 2.3, 2.4 and D1 shown in Fig. 2.5 such that a single reflected wave
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packet of Rayleigh wave could be extracted. The position of the receiver was selected based

on shape of the transmitted wave packet, i.e. a complete wave packet without any additional

overlapping waves. The y-displacement A-Scan is shown in Fig. 2.2,a and b where, Ai, Ar and

At are the incident, received and transmitted amplitudes. The acoustic power of the Rayleigh

wave is given by Eq. (2.1)[55]:

P =
1

t

∫ t

0

∫ Di

(σxxu̇+ σxyv̇) dydt (2.1)

For Rayleigh waves, the integration must be carried out over the section Di, which

corresponds to 1.5 × λ. σxx and σxy are the axial stress and in-plane shear stresses, and u̇

and v̇ are the in-plane velocities. The transmission (Tc) and reflection (Rc) coefficients can

be directly calculated using the acoustic power: Tc = Pt/Pi, and Rc = Pr/Pi. The scattering

coefficient Ps (included in reference as ”coefficients” with Tc and Rc) can be obtained using

the power flux balance: Tc + Rc + Ps = 1. Since the incident, transmitted and reflected

modes are Rayleigh waves; the transmission and reflection coefficients can also be calculated

by using simpler definition: Tc = At/Ai, and Rc = Ar/Ai [28, 56], which was used in the

work. A validation was also performed to ensure that both definitions produce the same value

of transmission and reflection coefficient.

Figure 2.2: Numerical A-Scans showing (a) Uy amplitude displacement for incident and
reflection. (b) Uy amplitude displacement for transmission.

2.2 RCF Setup

2.2.1 Single defects

This work extends previously presented numerical results at a conference [57]. For all cracks

shown in Fig. 2.3 the parameters will be as followed. For the vertical cracks, the width w being

kept at a 1:2 ratio to the depth, and depth A varied from 0 to 3mm. For the oblique cracks, the

depth B ranged from 0.5 to 3mm with the width w being kept at a 1:2 ratio to the depth, and

the angle θ was swept from −70◦ to 70◦ measured from the vertical. Branched cracks can be

7



considered as a continuation of obliques, in a sense that the first section was kept at a constant

depth h of 1mm and an incident angle θ1 of 25
◦ [5, 6, 8]. The second section begins at the end of

the former by varying the length L from 1 to 5mm and the angle θ2 from 0◦ to −80◦ clockwise

(CW) measured from the vertical.

Figure 2.3: Schematic of Cracks: vertical, oblique and branched.

2.2.2 Uniform cluster defects

To determine some parameters when creating the model for the uniform cluster defects, approx-

imations were taken from the micrographs shown in Fig. 1.2,a and b. It was determined that

the average spacing between each defect was ≈ 500µm. The depths of each defect came to be

≈ 200µm to 400µm. The oblique angle θ measured from the vertical, was determined to be

≈ 45◦ to 65◦.

Figure 2.4: Schematic of uniform cluster cracks.

Using these approximations taken from the micrographs, they were applied to the uni-

form clusters by modeling a single oblique defect and then adding an exact copy to the right of

the first defect depending on the number in a given cluster as shown in Fig. 2.4. The width w,

the pitch p and the oblique angle θ were kept constant at 10µm, 500µm and 45◦ respectively.

The number of defects in a cluster varied from 3 - 7 cracks. The depth of the defect B was

varied from 200µm - 1000µm at increments of 100µm.
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2.3 Wedge Setup

The wedge was created by fixing the top/inner horizontal boundary in place and sweeping the

inner angled boundary by an angle θ at the wedge point vertex from 60◦ to 350◦ as shown in

Fig. 2.5,a-b. Where 330◦ to 350◦ wedges mimic a horizontal semi-infinite crack and have been

previously reported by Chakrapani[25].

Figure 2.5: Schematic of wedge for angles (a) 60◦ to 180◦. (b) 180◦ to 350◦.
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Chapter 3

RAYLEIGH WAVE INTERACTION WITH RCF TYPE OF

DEFECTS

This chapter will focus on the numerical analysis of surface wave interaction with RCF type

of defects. The following results presented in this chapter were part of a collaborative effort

submitted to the Journal of Research in Nondestructive Evaluation(RNDE).

3.1 Vertical Defects

The Tc vs Normalized Depth plot is shown in Fig. 3.1. The crack depth has been normalized

to the wavelength to generalize the results. From this plot, it can be seen that the Tc value

becomes asymptotic at ≈ 19% when the defect is at a normalized depth value of 0.67. The Tc

then experiences a 2% fluctuation beyond a normalized value of 0.67. In general, the results

agree with the idea of Tc being inversely proportional to defect depth. An additional study on

the effect of changing crack width on the Tc response was done at a 3mm crack depth and a

crack width ranging from 0.1mm to 1.1mm shown in Fig. 3.8.

Figure 3.1: Vertical Defect: Tc vs Depth normalized to wavelength.

3.2 Oblique Defects

The variation of Tc as a function of the crack orientation is shown in Fig. 3.2,a-d for different

crack depths. As can be observed in Fig. 3.2,b , the Tc as a function of crack orientation

exhibits a sinusoidal variation. Furthermore, these are symmetric between the -ve and +ve

oblique angles. But both the symmetry and sinusoidal variation seem to disappear as the crack

depth increases. Furthermore, due to the combined effects of symmetry and sinusoidal behavior,

a duality in the value of Tc can be observed, i.e, both 0◦ and −60◦ cracks exhibit the same Tc

values. This makes it challenging to describe a simple calibration plot.
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Figure 3.2: Oblique cracks: Tc vs Angle at a normalized depth: (a) 0.17(0.5mm). (b)
0.33(1.0mm). (c) 0.67(2.0mm). (d) 1.0(3.0mm).

3.3 Branch Defects

The branch crack studies involve more parameters such as branch angle (θ2) and branch length

(L). A total of 26 (25 branch combinations and 1 reference) simulations were carried out to

expand on all the combinations of θ2 and L. The Tc values are plotted in Fig. 3.3,a and b in

two different ways. Both show a decreasing trend, which is expected as a function of angle and

length. For branch angles of 0◦,−20◦, and−40◦, they follow the fundamental wave propagation

idea as discussed in Sect. 3.1 and Sect. 3.2. However, the −60◦, and − 80◦ angles exhibit a

sinusoidal variation with increasing branch length. Once again, this results in a duality of Tc.

Figure 3.3: Transmission coefficient of branch cracks: (a) Tc vs. Branch angle θ2 for
different branch lengths L. (b) Tc vs. Branch length L for different branch angle θ2.

The same data has been represented in two different forms.
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3.4 Cracks from Micro-graphs

The cracks presented in Sect. 2.2 are idealized cracks, which have planar and smooth crack

faces. However, real RCF/RCD cracks as shown in Fig. 1.1,a-c have curvilinear profile and

rough faces. To test the ideal crack results in Sect. 3.1 - 3.3 and compare them against real

cracks, the micrographs were used to model real cracks. The cracks that were picked from the

micrographs, were decided so that they would ideally be as close as possible to the numerical

models in overall crack depth. Cracks (a) and (c) from Fig. 1.1,a-c averaged 1mm in overall

crack depth, whereas crack (b) was approximately 500µm.

Figure 3.4: Real defect modeling process: (a) Micrograph. (b) 2D CAD model with
crack. (c) FE Meshed area of a real crack.

From a given micrograph an initial assumption can be assigned to the defect as to what

the geometry can be from the three options: vertical, oblique, or branched. The cracks were

then modeled using computer aided design software(CAD) to create the 2D geometry, which

was then meshed and a transient analysis was carried out. A schematic of this process is shown

in Fig. 3.4,a-c. This process was carried out for the three cracks shown in Fig. 1.1,a-c. The

numerical Tc for these cracks are shown in Fig. 3.7. These will be further discussed in Sect.

3.6.

3.5 Uniform Clusters

The uniform clusters involve two varying parameters such as the depth B and the number of

defects in the section. In total, 26 simulations were carried out to expand on all quantity and

defect depth combinations (25 cluster combinations and 1 reference). The Tc and Rc has been

plotted as a function of defect depth for an increasing number of defects shown in Fig. 3.5,a

and b. Between 3 - 7 defects, there is no clear distinction in Tc or Rc across any number of

defects as they all follow a relatively similar value for all depths. In Fig. 3.5,a and b the Tc and

Rc follow a parabolic trend with no separation for a defect depth of 200µm to about 400µm

and 500µm for Tc and Rc respectively. Although after the parabolic trend, they then follow
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an inverse monotonic trend to a defect depth of 1000µm. This is expected for Tc and Rc as a

function of defect depth.

Figure 3.5: Comparing the number of defects in a cluster for (a) Tc vs Defect depth.
(b) Rc vs Defect depth.

The data from Fig. 3.5 can also be represented in a different form to show the dependence

of Tc and Rc on the number of defects for different defect depths as shown in Fig. 3.6,a and

b. It can be observed that for an increasing number of defects in the cluster, the Tc and Rc

exhibits an asymptotic response. At a defect depth of 500µm, the Tc does not exhibit a similar

asymptotic response for an increasing number of defects as observed in Fig. 3.6,a.

Figure 3.6: Comparing the defect depths in a cluster for (a) Tc vs Number of defects.
(b) Rc vs Number of defects.

3.6 Discussion

Effect of crack geometry: The objective of this work is to use the model to capture the

physics and trends, which can further be extrapolated to real applications.

Comparing the present results to previously published results[56, 58], there is a good

qualitative agreement in terms of trends for all the defects. In certain cases, the absolute

values don’t match. Compared to other existing models, there are a few differences in the

assumptions: (a) this work uses sharp crack tips, whereas most existing work uses slot-like

structures, (b) this work assumes a non-constant crack width, whereas existing work uses the

same slot width. Several researchers [59–61] have explored the effects of scattering from the crack

tip with rectangular geometry or slot-like structures. However, real RCF/RCD cracks will be
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Figure 3.7: Transmission coefficients of three defects from the micrographs with as-
sumed crack geometry: Crack (a) 10deg Oblique. Crack (b) 50deg Oblique. Crack (c)

0deg Branch.

similar to the sharp cracks as seen in the micrographs shown in Fig. 1.1,a-c. A triangular crack

has finite width or crack opening, which is important to capture while simulating. Therefore,

the numerical models presented here use triangular cracks with sharp crack tips.

Figure 3.8: Tc vs varying crack width for a vertical triangular defect at a 3mm depth.

To understand the effect of varying crack width on the Tc, numerical analysis was

performed to calculate Tc as a function of varying defect width, which can be observed in Fig.

3.8 at a 3mm vertical crack depth. It is observed that by varying the crack width, it does not

affect the resulting Tc response using a triangular defect geometry. Several researchers[28, 59–

61] have studied the effect of slot width on Tc and reported minimal change. Fig. 3.8 shows

the similar trend.

Duality of transmission coefficients: To understand the duality in Tc, it is impor-

tant to understand the interaction of Rayleigh waves with the different RCF type of defects.

Typically, this interaction results in reflection and transmission but also strong scattering into

bulk modes. The spatial vector plots showing displacement at specific time step is shown in Fig.

3.9,a-c. The scatter patterns for the oblique and vertical cracks are much simpler compared to

the branched crack. Since branch crack morphology is more complicated than the others, the

scattering of shear (SV) and longitudinal (P) waves will also be higher, this can be observed in
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Fig. 3.9,a-c. The scattered modes can further interact with the transmitted waves thus giving

anomalous effects as shown in Fig. 3.3,a and b.

Branch Cracks vs Real Cracks: As stated above in Sect. 1.1, branched cracks

where the branched section has propagated down into the rail section have yet to be explored,

therefore this analysis was purely used to show the complexity in Tc behavior. The real cracks

from micrograph images shown in Fig. 1.1,a-c were approximated to three different categories:

crack (a) 10◦ oblique crack, crack (b) 50◦ oblique crack, and crack (c) 0◦ branch crack. Crack

(a) and (c) exhibit nearly the same Tc value as shown in Fig. 3.7. Correlating the Tc for crack

(a) and (c) (from Fig. 3.7) with the oblique results at B/λ = 0.33 in Fig. 3.2,b (since this

matches closely with the Tc value), we notice that it can exhibit a Tc of a −60◦ to −30◦; and

due to symmetry, they could also be a 30◦ to 60◦ oblique cracks as well. This becomes crucial

for crack (c), which is the assumed 0◦ branch crack, because it can be incorrectly characterized

as an oblique defect. Furthermore, if we correlate the Tc for crack (b) (from Fig. 3.7) with the

oblique results at B/λ = 0.17 in Fig. 3.2,a we notice that it could either be a −70◦ to −60◦

oblique crack or a 60◦ to 70◦ oblique crack because of symmetry. This highlights the challenge

of characterizing RCF/RCD defects. This also suggests that the linear cracks assumed in the

simulations might not be able to help with characterization. A more data driven approach

might be necessary to characterize the RCF/RCD.

Figure 3.9: Vector plot of scattered waves during defect interaction (a) Vertical. (b)
Oblique. (c) Branch.

Effect of number of defects: Understanding a depth dependence on RCF/RCD

type of defects has already been researched extensively in the previous sections for a single

vertical/normal, oblique, and branched defect. The overall goal of this work is to use the

understanding gained from the depth dependence and couple it with the density data to be able

to accurately gauge what the relative geometry is for a cluster section.

In the fourth stage of the types of RCF defects that can form along the rail, the com-

plexity in geometry increases with the addition of each defect into the cluster section. A similar

trend shown in Fig. 3.6,a and b can also be observed in Fig. 3.1 where the Tc experiences an

asymptotic relationship after the defect reaches a normalized depth of 0.67. Combining this
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understanding along with the duality of Tc experienced with oblique and branched defects, re-

iterates the fact that a more data driven approach is necessary in order to be able to accurately

characterize RCF/RCD type of defects.
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Chapter 4

EXPERIMENTAL VALIDATION

The results in this chapter will show experimental validation for the vertical and oblique cracks

shown in Chapter 3.

4.1 Experimental Setup

Due to the complex geometry of each type of RCF defect shown in Sect. 2.2 and the current

manufacturing limitations, only samples for vertical and oblique cracks were fabricated. The

vertical and oblique cracks were fabricated on a rectangular steel plate 3” wide and 1/2” thick.

Three defects on both sides of the plate were placed 3” apart to give sufficient space for the

transducers to be able to test one defect at a time. Surface grinding was used to create the

vertical cracks and the oblique defects were fabricated via wire Electrical Discharge Machin-

ing(EDM). For the vertical sample, a 2:1 ratio was kept between depth and width of the defect.

For the oblique sample, a 350µm diameter wire was used to create the six different oblique

slots. The physical cracks for vertical defects have sharps crack tips, which is also captured in

the models. However, for oblique cracks, sharp crack tips could not be fabricated as the wire

EDM results in small slots. But the sharp crack tips of the oblique and branched cracks were

captured in the numerical models.

Figure 4.1: Schematic of experimental setup with defect sample, oscilloscope, and wave-
form generator.

A pair of 1MHz contact transducers were placed in a pitch-catch configuration at an

angle relative to the surface of the sample for Rayleigh wave generation. The pair of transducers

were connected to a Panametrics Pulser-Receiver Model 5055R for creation of the forcing and

sync signals. A simple fixture was used to maintain constant separation of 25.4mm between

the transducers. This electrical signal was then directed to the wavesurfer 3024z Oscilloscope

for conversion to digital form. A full schematic of the experimental setup can be found in Fig.

4.1. For quality data acquisition between the transducers and steel sample, couplant glycerin
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B was used to ensure a non-porous connection. It is important to note that when setting the

oscilloscope, to not change the trigger voltage threshold and to keep the seconds per division

constant. Since the cracks extend along the Y-axis, a total of 5 measurements were captured

at different spatial positions and the amplitudes were averaged as shown in Fig. 4.2,b and c.

The Tc was calculated using the same equation used in Sect. 2.1. The incident amplitude

was measured by placing the T-R pair on a sample without any defects at the same spacing

as observed in Fig. 4.2,a. The P/R and oscilloscope settings were not changed between the

different measurements. This allows us to compare the experimentally measured coefficients.

Figure 4.2: Experimental A-Scans showing Uy amplitude displacement for: (a) Refer-
ence. (b) 1mm depth. (c) 3mm depth.

4.2 Vertical Defects

The numerical results observed in Fig. 3.1, has been overlaid with the experimental results

for vertical defects and shown in Fig. 4.3. By doing a similar post-processing analysis on the

steel vertical sample that was fabricated via surface grinding, through experiments a similar

asymptotic transmission coefficient trend was captured.

Figure 4.3: Transmission coefficient for vertical cracks. The dashed line is numerical
results and the solid diamonds are experimental results. The error bars are also shown

for the experimental measurements.

4.3 Oblique Defects

The numerical results observed in Fig. 3.2,b and d, has been overlaid with the experimental

results for oblique defects and shown in Fig. 4.4,a and b. Recall that for oblique defects, the
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numerical results in Fig. 3.2,a-d display both a duality and sinusoidal effects for Tc. Applying

the same post-processing analysis as the vertical experiments, the oblique results show a duality

in Tc, but does not exhibit the sinusoidal effects shown previously.

Figure 4.4: Oblique Defects: Tc vs Angle at a normalized depth: (a) 0.33(1.0mm). (b)
1.0(3.0mm). The dashed line is numerical results and the solid diamonds are experi-
mental results. The error bars are also shown for the experimental measurements.

4.4 Discussion

Although, it is possible to create a vertical defect with a triangular geometry through surface

grinding. It will result in a rounded crack tip and not the desired sharp crack tip similar to real

RCF cracks. When comparing between the numerical and experimental results for the vertical

cracks, it can be observed that a similar asymptotic trend occurs at a normalized depth value

of 0.67 shown in Fig. 4.3. It was also observed that the absolute experimental values do not

match up exactly with its numerical counterpart, where the difference can be attributed to the

change in crack tip geometry of a rounded edge to a sharp edge.

As stated in Sect. 4.1 a limitation of the oblique sample is the presence of a flat crack

tip as opposed to a sharp crack tip. Another limitation was the ability to create a triangular

geometry compared to a slot via wire EDM. It is important to note that from a surface breaking

RCF perspective, it is not possible to model real RCF defects without slicing the rail sample

nor do RCF defects rarely form with a flat crack tip geometry. Based on the following two

limitations, as observed in Fig. 4.4,a and b the experimental results experience changes in

overall trend compared to the numerical results. Due to the wire EDM limitations, the width

of crack and crack tip is not made exactly as the numerical models. To understand the effect

of width on Tc, a numerical analysis was performed and discussed in Sect. 3.6, where it is was

observed that the change in width is not a significant contributor to the overall Tc. The major

difference between numerical and experimental Tc in Fig. 4.4,a and b is caused by the crack

tip geometry.
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Chapter 5

RAYLEIGH WAVE INTERACTION WITH AN ELASTIC

WEDGE

The following results presented in this chapter, were part of a collaborative effort submitted to

the Journal of the Acoustical Society of America(JASA).

5.1 Effect of Frequency

The results of the numerical simulations carried out at different frequencies; 1 MHz (λ ≈ 3mm),

0.5MHz (λ ≈ 6mm) and 2 MHz (λ ≈ 1.5mm) are shown in Fig. 5.1,a-c. Gautesen had

previously presented the coefficients as a function of wedge angle from 63◦ to 350◦[43, 44]. The

present results have been overlayed with Gautesen’s results as shown in Fig. 5.1,a-c. Overall,

the results seem to agree well when θ > 180◦. The largest difference in Tc can be observed

when θ < 180◦; ≈ 113% at a wedge angle of 80◦ as shown in Fig. 5.1,a. Rc results presented in

Fig. 5.1,b show good agreement at lower wedge angles. Ps values as a function of wedge angle

are plotted in Fig. 5.1,c. Similarly, compared to Tc and Rc in Fig. 5.1a-b, the present results

agree well with Gautesen’s results at wedge angles θ > 180◦.

It can be observed that the coefficients also show a dependence on frequency. The Tc at

2MHz agrees well with Gautesen’s results for a wider range of wedge angles rather than just

θ > 180◦. The Rc and Ps at 2MHz also match with Gautesen’s results. The largest difference

can be observed at 0.5MHz, which does not seem to match Gautesen’s results. These results

confirm the hypothesis that the coefficients have a frequency dependence.

5.2 Effect of Wedge Angle on Phase

This work extracts the time-amplitude data at different points along the angled boundary

depending on the wedge angle. This was done to minimize any such overlap or superposition.

This method will essentially give a different phase value depending on the separation between

the source and the receiving nodes, which makes it impossible to study the effect on phase.

Since the phase will be proportional to the time of flight (TOF), the total travel time can be

calculated and correlated with the numerical TOF. The expected TOF from a nodal position

before and after the wedge point interaction can be calculated using tx = Dx/Vx; where Dx

is the nodal position in mm relative to the input signal location along the boundaries, and Vx

is the Rayleigh wave velocity[62, 63] for a given material. Numerical TOF was extracted by

performing a Hilbert transform[64] on the time-amplitude data shown in Fig. 2.2,a-b by a red

dotted line. From the Hilbert data, the time corresponding to the maximum amplitude was

collected at the receiver positions, and the time difference between them was calculated using

20



Figure 5.1: Comparing present work at 0.5, 1, 2MHz and Gautesen’s model[43, 44]: (a)
Tc vs Wedge Angle. (b) Rc vs Wedge Angle. (c) Ps vs Wedge Angle.

∆Tx = t2 − t1.

%Diff =
∆T1 −∆T2

∆T2
(5.1)

Fig. 5.2,a-c shows the difference between numerical vs expected TOF as a function of

wedge angle for 0.5MHz, 1MHz, and 2MHz. Fig. 5.2,a at 0.5MHz shows that for wedge

angles θ < 180◦, ∆T is observed to have small fluctuations. At angles θ > 180◦, ∆T is observed

to have a duality in value. By increasing the excitation frequency to 1MHz and 2MHz for a

wedge angle of 60◦ to 350◦, the fluctuations for ∆T and absolute value in Fig. 5.2,b and c is

observed to dissipate.

5.3 Effect of Curvature

To evaluate the effect of the geometry of the discontinuity, a curved geometry as the diffraction

source (D2) was modeled as shown in Fig. 5.3. The same material properties described in Sect.

2.1 were used, and 0.5MHz was chosen as the excitation frequency. A total of four different

wedge angles were modeled and tested with a λF = 2.5 and the resulting radii of curvature

values R are shown in Table (5.1). The radius of curvature R was determined by fixing the

distance from D1, along both boundaries by a wavelength factor λF relative to the excitation

frequency used shown in Fig. 5.3 with D2 as the result. A secondary criteria was also used

in deciding the radius of curvature R, such that once the λF is set, the two end points of the

curved section must be tangent with the two connecting straight boundaries denoted with a
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Figure 5.2: Time of Flight: Numerical vs Expected w/ % Difference vs Wedge Angle
at (a) 0.5MHz. (b) 1MHz. (c) 2MHz.

light blue dash shown in Fig. 5.3.

Comparing the Tc values in Fig. 5.4,a, it can be observed that the sharp discontinuities

have a smaller Tc compared to smoother discontinuity with the exception of 80◦. For angles

θ > 180, the difference between sharp vs. smooth geometry is smaller. The sharp geometries

have higher Rc and Ps values as shown in Fig. 5.4,b and c compared to the curved geometry.

Finally, comparing the TOF values, with the exception of 80◦, the curve geometry shows no

change in TOF as a function of the angle. This is naturally not the case for the sharp geometry,

which shows up to 5% change in ∆T as a function of wedge angle.

Figure 5.3: Schematic of Curved Wedge Model at 0.5MHz.

5.4 Discussion

Superposition of waves: One of the reasons for the difference between Gautesen’s results and

the present results could be due to the superposition of the waves. When extracting displace-

ments numerically, the position of the receiver node was chosen such that a single Rayleigh wave
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Table 5.1: Radius of Curvature for different wedge angles at λF = 2.5.

Wedge Angle (deg) Radius of Curvature R (mm)

80 12.59

130 32.17

220 41.21

300 8.66

Figure 5.4: Sharp vs Curved Diffraction Source at 0.5MHz (a) Tc vs Wedge Angle. (b)
Rc vs Wedge Angle. (c) Ps vs Wedge Angle. (d) Time of Flight (∆T ) vs Wedge Angle.

packet without superposition or interference can be extracted. The local interference between

multiple waves after the discontinuity at different time steps is shown in Fig. 5.5,a and b. The

vector plots were obtained by extracting the displacement vectors at a given time instance for

the entire half-space. As observed in Fig. 5.5,a after interaction the compression(P), shear(SV)

and Rayleigh(R) wave modes have not fully separated into clear packets, which is called “un-

developed”. In Fig. 5.5,b the transmitted Rayleigh(Rt), reflected Rayleigh(Rr), and shear(SV)

wave modes have clearly separated, which is called “fully-developed”. By following this cri-

teria of the transmitted wave being undeveloped vs fully-developed, Table (5.2) compares the

difference in Tc between the two conditions and Gautesen’s results for a 110◦ wedge angle. It

can be observed that the undeveloped wave Tc approximately matches with Gautesen’s results,

compared to the fully developed wave. The present results suggest that the “undeveloped” wave

could possibly be the reason behind the discrepancy for the Tc,Rc values. However, this is valid

only at 1MHz or lower and at 2MHz; the Tc values seem to match well with Gautensen’s work.

This increase in wavelength with decreasing frequency could possibly result in higher superpo-

sition. But while extracting displacements, only the fully-developed, discrete wave packets were
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used for the analysis.

Figure 5.5: Vector Plots for a 110◦ wedge showing the incident wave packet after D1
interaction (a) Undeveloped wave packet. (b) Fully-developed wave packet.

Table 5.2: Tc at a 110◦ Wedge comparing an undeveloped wave, fully-developed wave,
and previous results.

110◦ Wedge Time(s) Amp(m) Tc

Undeveloped 3.1E − 5 1.659E − 6 0.39

Fully Developed 3.94E − 5 1.01E − 6 0.24

Gautesen - - 0.435

Effect of frequency: From the results shown in Sect. 5.1, it can be observed that

there is a frequency dependence on the coefficients at certain wedge angles with the largest

excitation frequency being 2MHz. The reason for this can be seen from a FE perspective: the

larger the excitation frequency, the smaller the Rayleigh wavelength. Based on the convergence

criteria stated in Sect. 2.1, if the Rayleigh wavelength decreases, it will increase the amount of

elements that are required in a mesh and it becomes very difficult to create a mesh that small.

For θ > 180◦, there seems to be no dependence on the frequency, and the Tc values seem to

follow closely as observed in Fig. 5.1,a. For 100◦ < θ < 180◦, the 0.5MHz and 1MHz results

match closely, and the 2MHz results match with Gautesen’s results. The Tc values in Fig. 5.1,a

between 100◦ < θ < 180◦ have been plotted as a function of the excitation frequency in Fig.

5.6. The absolute Tc values as a function of angle and frequency were extracted and fitted with

different functions. For the Tc vs. θ, a power law fit had the best coefficient of determination

(R2), and a quadratic dependence was observed; Tc ∝ θ2. To determine a functional relationship

between Tc and frequency, the data in Fig. 5.6 were fitted with an exponential function, which

was once again found to have the highest R2 value. The frequency dependence was determined

to be Tc(f) ∝ ef/3.

For 60◦ < θ < 90◦ the Tc follows a weak parabolic dependence with frequency but does

not show any clear dependence. This could be due to the strong interaction of the Rayleigh

wave between the two half-space surfaces.
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Figure 5.6: Tc vs Excitation Frequency for a 100◦ to 170◦ angled wedge.

Phase term: To understand the change in the arrival times for the transmitted wave

mode, it is important to understand the phase of the wave modes with a varying angled wedge.

As stated in Sect. 1.2 for the analytical models, as the wedge angle decreases, the number

of reflected wave modes increases[31, 33, 41, 43, 44]. This can cause multi-mode interactions

between the transmitted Rayleigh and the re-reflected wave modes. In any case they could

either be in constructive or destructive interference with each other. From the initial excitation

frequency of 1MHz, the change in time of flights(∆T ) does not seem to be affected as much for

wedge angles ranging from 180◦ to 350◦. This is contrary to the trend observed in Sect. 5.1 for

the change in excitation frequency on the coefficients. The change in excitation frequency for

the TOF in Fig. 5.2 does not experience the same linear relationship.

Geometry of the discontinuity: The influence of the type of discontinuity on the

Rayleigh wave interaction can be observed in Fig. 5.4,a-c. The sharp transition can act as a

single diffraction source resulting in higher scattering. This is evident in the increase Rc and

Ps values for the sharp geometry vs. smooth geometry. The Rc and Ps values follow an inverse

trend compared to Tc, which is consistent with the hypothesis of higher scattering from sharp

discontinuity. However, at 80◦ and 300◦ this observation is not true, with the curved geometry

having a higher Ps value.

To further analyze this qualitatively, displacement vector plots were extracted for differ-

ent wedge angles as shown in Fig. 5.7,a-h. The mode conversion of an incident Rayleigh wave

into bulk modes (L, S), and the diffraction of the bulk modes is well captured in the vector

plots. It is interesting to note that in all the sharp discontinuity (D1) plots, the directivity of

the bulk modes, specifically the shear waves are stronger than the curved case. The reflected

bulk and Rayleigh modes are also higher in magnitude in the case of D1. Interestingly, there

seems to be an angle dependence as well. For example, in the case of θ < 90◦ and θ > 270◦, the

diffraction of the bulk waves seems greater for the curved geometry than the sharp geometry. It
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can be hypothesized that since the wave is propagating from left to right towards the disconti-

nuity, at certain angles the mode conversion of incident Rayleigh waves into bulk modes will be

based on the curvature. Mode conversion of Rayleigh waves into bulk modes has been explored

extensively by several authors[25, 65, 66]. The geometry of the wedge can be approximated to

a semi-infinite crack when θ → 360. Previous studies show that incident Rayleigh waves will

diffract into bulk modes with a strong shear window. The curved defect can be approximated

into a series of step discontinuities. This will result in each point along the curvature acting like

a diffraction source, unlike the sharp discontinuity, where only D1 acts as a discontinuity. As

can be noticed in Fig. 5.7,a,b g,h, when the Pointing vector of the scattered mode is opposite to

the incident mode, i.e, backward propagating waves[25], (not be confused with reflected waves),

the curvature seems to scatter/diffract bulk modes along the entire curve. This is evident in the

shear window being much broader for the curved geometry as opposed to the sharp geometry.

On the contrary, when the pointing vector is aligned with the incident angle as shown in Fig.

5.7,c,d e,f the overall scatter from the discontinuity is less, and the shear window is smaller

as well. This qualitatively agrees with our hypothesis of the effect of the curved geometry.

Unfortunately, it is challenging to do a comprehensive quantitative analysis. To establish a

quantitative relationship between curvature radius, wedge angle, and Tc can be tedious due to

the number of combinations that are possible. The objective of this study is simply to show

the effect of curvature on the mode conversion and scattering. An analytical model that can

capture these effects would be a more workable solution compared to numerical analysis, which

are more suited to capturing the full physics. Secondly, the scatter coefficient can be evaluated

from the full scatter field. However, capturing the discrete models as a function of time as

performed earlier by Chakrapani[25], is not possible due to the number of overlapping modes.

The superposition of the modes makes it impossible to calculate the power flux of the scattered

modes.
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Figure 5.7: Vector plot of incident Rayleigh wave after the discontinuity D1 and D2
interaction: (a) 80◦ sharp wedge. (b) 80◦ curved wedge. (c) 130◦ sharp wedge. (d) 130◦

curved wedge. (e) 220◦ sharp wedge. (f) 220◦ curved wedge. (g) 300◦ sharp wedge. (h)
300◦ curved wedge.
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Chapter 6

SUMMARY

The interaction of Rayleigh waves with surface breaking RCF/RCD type of defects has been

studied using a numerical model. The interaction was characterized using the transmission co-

efficient of Rayleigh waves. Vertical defects display an asymptotic trend in Tc as the normalized

depth increases past 0.67. The oblique defects exhibit a symmetric and sinusoidal Tc response

at shallower defect depths between but slowly dissipates as the depth increases. The branched

cracks are more complicated and exhibit duality in Tc values. This results in the same Tc value

for different branch lengths and orientation combinations.

In order to gain a deeper understanding of the branched crack results, the classical

problem of surface/Rayleigh wave interaction with different wedge angles has been revisited.

The results from the literature have been compared with the presented studies using numerical

methods. The mode conversion and interaction phenomena has been explored by quantifying

three main parameters: Tc, Rc, and Ps. In total, three excitation frequencies have been ex-

plored with changing wedge angle for Tc, Rc, and Ps; and based on the analysis, the following

relationships could be observed for Tc: Tc ∝ ef/3θ2, where f is the excitation frequency and

θ is the wedge angle. It was also shown that when the excitation frequency increases, the

higher agreement there is with the literature results for different wedge angles. Although, when

comparing the presented work and literature results, the superposition of wave modes after in-

teraction with D1 and changing excitation frequencies has been shown to affect the coefficients

and TOF with a changing wedge angle, where an extracted Rayleigh mode being “undeveloped”

or “fully-developed” as a possible reason for the discrepancies in the coefficients. By introducing

a curved transition D2, it was shown to have adverse effects on the coefficients at certain wedge

angles opposed to a sharp transition D1. It was also shown to have effects on the Rayleigh to

bulk mode conversion where the size of the shear window changes with a transition of D1 to

D2.

The cluster defects for Tc and Rc, when represented as a function of defect depth and the

number of defects displays both an asymptotic trend and a duality when increasing the depth

and the number of defects. These results highlight the complexity of using just the transmission

coefficient for characterizing RCF defects. To fully characterize these complex defects, a more

data driven approach through signal processing methods might be required but will be explored

elsewhere.

The impact of this work is to use the results from the numerical simulations and the

signal processing to provide a proof of concept that it can be replicated through experiments and
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eventually implemented into the field. With all the results then gathered from the experiments,

they can be coupled with the numerical works to develop a calibration tool for accurately

detecting and characterizing RCF/RCD type of defects for the rail industry. Although being

able to determine the exact geometry of the defects can be very difficult, the calibration tool

will be used to provide an accurate approximation for some of the defect properties such as

depth, incident angle, type, etc.
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