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ABSTRACT 

Additively manufactured (AM) lattice structures are designed and optimized while 

accounting for the effects of manufacturing-induced material orthotropy, the resolution 

limitations of AM, and multiphysics (structural and thermal) loading conditions. A model is 

formulated for general 3D orthotropy in each member of an AM lattice structure, with principal 

material coordinates associated with the AM build direction. This model is used within a bi-level 

design optimization strategy to simultaneously optimize the radius of each lattice member and 

the manufacturing build direction. Design study results illustrate the importance of accounting 

for material anisotropy in the design of AM lattice structures and the benefits of simultaneously 

optimizing the lattice and the manufacturing build direction.  

To account for AM resolution limitations, a model-based approach is implemented that 

accounts for geometrical tolerances while minimizing the geometric differences between the as-

designed structure and the as-manufactured one. The influences of both material orthotropy and 

manufacturing resolution are studied and compared, demonstrating that both printing direction 

and process resolution play crucial roles in guaranteeing the performance and manufacturability 

of the as-manufactured lattice structure. 

For lattice design under multiphysics fields, a method is proposed to generate lattice structure 

designs under multiphysics loading, including stress, heat conduction, and heat convection. For a 

given set of loading and boundary conditions, a lattice trajectory is generated with an orientation 

vector selection algorithm based on the principal vectors of each field. Considering the design 

bias for a given physics field, weighting factors are assigned for each field to generate the lattice 

layout. A set of design studies are conducted to demonstrate the impact of different combinations 

of weighting factors on the lattice layout. It is shown that the proposed approach is capable of 



 
 

generating efficient lattice designs that represent effective trade-offs between mechanical and 

thermal load-carrying capabilities.   
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Chapter 1 

Introduction 

 

1.1  Motivation 

Additive manufacturing (AM) allows much greater design freedom compared to subtractive 

manufacturing strategies [1], and AM is well suited to producing lattice structures. These 

structures are sometimes constructed with repeating unit cells, within which differently oriented 

struts are interconnected [2], and advanced design strategies allow the lattice member 

orientations to be locally optimized to align with dominant stress or thermal fields [3]–[6].  

Compared to traditionally manufactured solid structures, lattice structures have many 

potential advantages, such as high strength and stiffness-to-weight ratios, efficient heat 

dissipation due to the high porosity and large surface area, tunable energy absorption [7], and 

more. The mechanical properties of a lattice structure can be tailored to meet special system 

requirements and/or local performance requirements that may vary from region to region within 

a structure. Considering these performance advantages and their material and energy-saving 

properties, lattice structures hold great potential for enabling novel designs of advanced 

structures, and for re-designing many existing systems [8]. 

Due to the mechanism of AM process, some forms of AM induce local material anisotropy. 

For example, the laser powder bed fusion process produces parts with different mechanical 

properties in the build direction compared to those properties in the printing plane [9]. The 

printing direction controls the principal directions of the resulting orthotropy and thus can have a 
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significant effect on the performance of the AM structure. Several experimental studies have 

demonstrated the material strength dependence on the build direction [10], [11]. 

The design, manufacturing, and optimization of AM lattice structures have been investigated 

by many researchers. However, material anisotropy has seldom been considered. The 

performance of AM structures is also known to be affected by the printing direction (or the 

orientation of the part). Previous studies [12], [13] show that the printing direction can have a 

significant effect on performance, with the strength of parts varying with printing direction [14], 

[15]. The principal material directions of the manufacturing-induced material orthotropy are 

associated with the printing direction [16]. It is necessary to take into consideration this material 

orthotropy in the design optimization of AM lattice structures [17].  

Advanced design strategies allow the lattice member orientations to be locally optimized to 

align with dominant stress or thermal fields [5], [6]. Compared to traditionally manufactured 

solid structures, lattice structures have many potential advantages such as high strength- or 

stiffness-to-weight ratios, efficient heat dissipation due to the high porosity and large surface 

area, tunable energy absorption [7], and more. The mechanical properties of a lattice structure 

can be tailored to meet special system requirements and/or local performance requirements that 

may vary from region to region within a structure. Considering these performance advantages 

and their material and energy-saving properties, lattice structures hold great potential for 

enabling novel designs of advanced structures, and for re-designing many existing systems [8]. 

1.2  Dissertation Outline 

The remainder of the dissertation is structured as follows. A background and literature review 

of existing studies on lattice structure design and optimization is provided in Chapter 2. The 

study on the effect of manufacturing-induced anisotropy on the design of additively 
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manufactured lattice structure optimization is presented in Chapter 3. Optimization studies of 

lattice structure incorporated both geometry correction and material orthotropy are presented in 

Chapter 4. In Chapter 5, the study of design optimization of lattice structure layout under 

thermo-mechanical loadings is demonstrated. Finally, conclusions are drawn, and future work 

directions are provided in Chapter 6. 



4 
 

Chapter 2 

Background 

 

2.1 Anisotropic Material Properties in AM Specimens 

The anisotropic mechanical properties of various AM materials and processes have been 

investigated broadly. Ahn et al. [18] investigated the anisotropic material properties for fused 

deposition modeling ABS structures with tensile and compressive tests for different raster 

direction specimens, and the results showed that both tensile and compressive strengths for 

transverse specimens are lower than those for axial specimens. In addition to tension and 

compression testing, Ziemian et al. [19] conducted flexural testing, impact testing, and fatigue 

testing for ABS specimens, finding that the tensile and bending yield strengths are largest for a 

0-degree raster orientation, and a 45-degree raster orientation is weakest for compression. With 

the constitutive material models developed for fused deposition modeling printed parts using a 

numerical homogenization procedure, Somireddy et al. [20] investigated the influence of AM 

process parameters and printing directions on the material properties. For 3D printed ABS and 

polycarbonate (PC), Cantrell et al. [21] characterized both tensile and shear modulus and yield 

strength, finding that anisotropic properties varied as the raster orientation and build orientation 

changed. For the directed energy deposition additive manufacturing process, Carroll et al. [22] 

studied the anisotropic tensile behavior of Ti-6Al-4V material components. The anisotropy was 

also characterized for laser powder bed fusion processed materials [9]. Within this study, the 

material anisotropy was calculated based on the classic laminate theory for stress analysis.  
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2.2 Lattice Structure Design 

Several investigations have focused on new design strategies for AM lattice structures. 

Assuming a periodic distribution of unit cells in regions of the lattice structure, Tao et al. [23] 

reviewed design methods for the lattice structure design process, which could be classified into 

unit cell design and pattern design. For the unit cell design, three methods were summarized: 

primitive-based method, implicit surface method, and topology optimization method. For the 

pattern design, direct patterning, conformal patterning, and topology optimization were utilized 

for distributing the unit cells to the structure. The phases of the design process of additively 

manufactured mesoscale lattice structures were also reviewed by Tamburrino et al. [24]. A novel 

approach was investigated by Daynes et al. [4] to generate lattice structures aligning with the 

strain trajectories, yielding lattice structures with better stiffness and strength. The design of the 

lattice structure focused not only on the geometry but also on the material properties, 

manufacturing testing, and analysis. The material anisotropy was accounted for in the lattice 

design, and new methods were proposed for designing the lattice structure with the prescribed 

anisotropic properties [25]. 

2.3 Lattice Structure Optimization 

A large number of lattice optimization studies have been conducted based on topology 

optimization. The hexagonal unit cells have been distributed with the energy-based 

homogenization filter [26]. The topology optimization has also been applied with other methods 

for AM lattice design. The cooling channel design is based on lattice structure topology 

optimization and the movable design-dependent feature [27]. For AM lattice structure fabrication, 

the Bidirectional Evolutionary Structural Optimization (BESO) based design method was also 

got employed [28]. 
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From the material perspective, Stanković et al. [29] conducted optimization on the 

anisotropic material properties of AM lattice structures. Using the formulated anisotropy material 

properties related to the build orientation, the effect of anisotropy on the performance of the 

lattice structure was studied. Additional investigations studied the effect of anisotropy with the 

inkjet 3D printing model, in which they implemented an algorithm for modeling anisotropic 

compression and tension states into the Generalized Optimality Criteria (GOC). The study 

demonstrates the importance of considering the anisotropy effect and printing direction influence 

within the lattice structure design [30]. 

2.4 Manufacturability of AM Process 

Due to the effects of AM process parameters [31], [32] such as manufacturing resolution and 

minimum printable feature size, the shape of as-manufactured parts can be different than as-

designed parts [33], [34]. These AM process parameters can also introduce accuracy errors to the 

manufactured lattice structure[35]. For example, at a sharp corner of the structure, as the 

minimum printable feature size of the process increases the variation between the finished 

product and the designed model also increases. Lattice structures that have small beam members 

or small angles at beam intersections also present a challenge to AM, which may not be able to 

accurately produce these geometries due to lack of resolution.  

Each AM process has a typical resolution limit [36]. For fused deposition melting (FDM), the 

resolution is normally around 0.3mm [37], which is used in this study. Stereolithography (SLA) 

has a higher resolution than FDM at 0.05mm. For metal additive manufacturing processes, the 

minimum printing feature size for Selective Laser Sintering (SLS) is 0.762mm, and for Electron 

Beam Melting (EBM) is 0.1mm. 
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To account for these geometric limitations associated with an AM process, a 

manufacturability analysis based on model correction [38] is used here within the design process. 

The model correction analysis first slices the designed AM geometry into voxels. Then, the 

critical features affected by the given AM process are identified by considering the resolution or 

the minimum printable feature of the AM process. Modifications are based on the topology of 

the original design geometry and the toolpath of the print head. 

The performance of AM structures is also known to be affected by the printing direction (or 

the orientation of the part). Previous studies [12], [13] show that the printing direction can have a 

significant effect on performance, with the strength of parts varying with printing direction [14], 

[15]. The principal material directions of the manufacturing-induced material orthotropy are 

associated with the printing direction [16]. It is necessary to take into consideration this material 

orthotropy in the design optimization of AM lattice structures [17]. 

Additive manufacturing (AM), as a newly developing technology, is raising more 

possibilities and ideas for the manufacturing area. The complexity of the fabricated part also 

increases for more possibilities and adaptivity. For the manufacturability of the structure 

fabricated by the additive manufacturing process, the printing direction (or the orientation of the 

model) for the process is a crucial setting. From the studies [11], [39], the printing direction has 

an undeniable effect on the performance of the fabricated structure. 

With the mechanism of additive manufacturing, the strength of the fabricated parts would 

vary with different printing directions and the performance of the structure could change 

accordingly[18]. The material orthotropy gets introduced and is correlated to the printing 

direction. For the manufacturability of additively manufactured structures, it is necessary to take 

into consideration the material orthotropy of various printing directions [40]. The former study 
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includes the additive manufacturing (AM) process that introduced material orthotropy in the 

optimization of the additively manufactured lattice structure.  

From another perspective of lattice structure manufacturability, the restriction of the AM 

processes could also introduce errors to the manufactured parts[41]. Like the sharp corner of the 

structure, as the resolution of the process decreased, the variation between the finished product 

and the designed model would be larger. Especially for the lattice structure, the size of beams 

could be small and the intersections between beams would have various angles, some of the 

lattice beams may lose the material strength since the size is smaller than the resolution, or the 

fabricated corner would lose its geometry accuracy.  

2.5 Multiphysics Lattice Design 

The development of Additive Manufacturing (AM) technology creates new possibilities for 

complex yet manufacturable geometries, wherein the scale of the manufactured part varies from 

the microscale unit cell to macroscale structures, and the manufacturing materials change from a 

single material to multiple materials [42]. Lattice structures have the advantages of a high 

strength-to-weight ratio, versatility, and broad applications, which have attracted much attention 

in the AM field of research. Multifunctional lattice structures [43] were designed for support 

structures [44], heat dissipation [45], energy absorption [46], negative Poisson's ratio [47], 

bioimplants [48], and aerospace components [49]. 

The design and optimization of lattice structures could be categorized into periodic lattice 

structures and stochastic lattice structures[50]. The research on periodic lattice structure is 

focused on the properties of the different lattice unit cells to improve the performance of the 

lattice structure[51]. Due to the repetitive property of the lattice structure, a large number of 

studies applied topology optimization (TO) to design and optimize the design with lattice unit 
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cells [52], [53]. TO method could minimize the total material and maximize the stiffness of the 

design part by changing the material distribution of the meshed design domain according to the 

loading conditions. For lattice structure, the lattice unit cell could be regarded as the meshed 

element which could be assigned to the remaining region of the TO domain. 

For ununiform lattice structures, another lattice design approach is based on the load path or 

trajectory of the prescribed field[54]–[57].  With a preprocessed Finite Element Analysis (FEA) 

of the given design domain, a trajectory based on the principal field could be obtained. Gao et 

al.,[5] developed an algorithm to generate a stress trajectory with principal stress values and 

vectors for a model under certain mechanical loading conditions and aligned the lattice beams 

along the stress trajectory to optimize the loading carrying efficiency of the lattice layout.  

Lattice structure was also investigated under certain thermal conditions. The thermal 

conductivity of lattice structures under different metallic AM processes was studied[58]. The 

lattice structure was also designed for AM heat conduction[27], enhancing thermal 

dissipation[59]. Jiang et al., [6] applied the field-aligned lattice algorithm [5] within the thermal 

field to generate the lattice layout aligning the heat flux trajectory, and optimized the lattice 

beam radii with the Method of Moving Asymptotes (MMA) [60] to minimum compliance. 

As a promising multifunctional structure, lattice structure could be beneficial for applications 

in multi-physics fields, which is one of the research areas that need to draw more attention. The 

uniform cellular material composed of thermoelastic structures was optimized for under 

mechanical and thermal loads[61], [62]. With the multi-physics topology optimization method, 

the graded porous structures were optimized for structural and thermal performance [63]. 
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Chapter 3 
 
Effect of Manufacturing-Induced Anisotropy on the Design of Additively 
Manufactured Lattice Structures  

 

In this chapter, the material anisotropy induced by the AM process is modeled within each 

lattice member, and a bi-level optimization strategy is employed to simultaneously optimize the 

lattice and the AM build direction. Application examples demonstrate the influence of material 

anisotropy on the resulting lattice structure design as well as the importance of simultaneously 

optimizing the build direction and the lattice properties. 

 

3.1 Methodology 

In the current model, three different coordinate systems are used to fully describe the 

orthotropic material behavior in a lattice member: 

1. Global coordinate system (GCS): The global coordinate system is defined at the lattice 

structure level. The global coordinate axes are denoted by capital letters X, Y, Z.  

2. Local coordinate system (LCS): A local coordinate system is defined for each beam element 

within the lattice structure. It may vary from beam to beam according to its orientation. The 

local coordinate axes are denoted by lowercase letters x, y, z, where x is the centroidal axis 

along the length of the beam, and the y and z axes are in the plane of the beam cross-section 

that is perpendicular to the x-axis. 

3. Material coordinate system (MCS): The material coordinate system is defined within each 

layer of the material buildout. As the depositing direction of the nozzle changes, the 

orientation of the principal material coordinates for each beam will change as well. The 
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material coordinate axes are denoted by numbers 1, 2, 3, where axis 3 is defined as the 

nozzle’s depositing direction, which is normal to the 3D printing plane and often referred to 

as the “printing direction.” Note that material coordinate 3 is often, but not necessarily, 

defined globally for the entire part being manufactured.  

 

Figure 3.1: Different coordinate systems shown for an AM beam. 

3.1.1 Orthotropic Material Properties of 3D lattices 

3.1.1.1 Stress-strain relations for an orthotropic material in the MCS 

From generalized Hooke’s law, the strain-stress relations can be expressed as: 

{𝜀𝜀} = [𝑆𝑆]{𝜎𝜎}                                                                   (1) 

where [𝑆𝑆] is the compliance matrix, {𝜀𝜀} is the strain vector and {𝜎𝜎} is the stress vector. For a 

transversely isotropic material [64], (1) can be expressed in principal material coordinates as: 

Y 

X (GCS) 

2 (MCS)   

3 

x 
y 

z 

Z 

1 

(LCS) 
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                                 (2) 

The components of the compliance matrix can be expressed in terms of the engineering 

material constants as: 

𝑆𝑆11 = 1
𝐸𝐸1

, 𝑆𝑆33 = 1
𝐸𝐸3

, 𝑆𝑆12 = −𝜗𝜗12
𝐸𝐸1

, 𝑆𝑆13 = −𝜗𝜗31
𝐸𝐸3

, 𝑆𝑆44 = 1
𝐺𝐺13

, 𝑆𝑆66 = 2(𝑆𝑆11 − 𝑆𝑆12)                (3) 

where 𝐸𝐸1,𝐸𝐸3,𝐺𝐺13 are transversely isotropic material moduli.  

3.1.1.2 Stress-strain relations for an orthotropic material in terms of LCS 

Transforming the constitutive relations (Equation 1) from the printing material coordinate 

system (MCS) 1, 2, 3 into the beam local coordinate system (LCS) x, y, z relies on the direction 

cosines in Table 3.1.   

Table 3.1: Direction cosines between MCS and LCS. 

 1 2 3 

x 𝑙𝑙1 𝑚𝑚1 𝑛𝑛1 

y 𝑙𝑙2 𝑚𝑚2 𝑛𝑛2 

z 𝑙𝑙3 𝑚𝑚3 𝑛𝑛3 

In Table 3.1, the term 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3,𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,𝑛𝑛1,𝑛𝑛2,𝑛𝑛3  denotes the cosines of the angles 

between axes in the two coordinate systems. For example: 𝑚𝑚3=cos (2, z). 

The relationship between the stress tensor σ′ in the beam LCS and stress tensor σ in the 

MCS is: 

{σ′} = [A] ∗ {σ} ∗ [A]T                                                      (4) 
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where σ′ and σ are expressed in matrix form and A is the rotation matrix generated from the 

transformation Table 3.1: 

[A] = �
𝑙𝑙1 𝑚𝑚1 𝑛𝑛1
𝑙𝑙2 𝑚𝑚2 𝑛𝑛2
𝑙𝑙3 𝑚𝑚3 𝑛𝑛3

�                                                         (5) 

Thus, (4 ) can be written as: 
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The relationship between the stress in the beam LCS and the corresponding stress state in 

MCS can be simplified as: 
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where T is the transformation matrix: 

[𝑇𝑇]−1 =

⎣
⎢
⎢
⎢
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𝑙𝑙1𝑙𝑙3 𝑚𝑚1𝑚𝑚3 𝑛𝑛1𝑛𝑛3 𝑚𝑚3𝑛𝑛1 + 𝑚𝑚1𝑛𝑛3 𝑙𝑙3𝑛𝑛1 + 𝑙𝑙1𝑛𝑛3 𝑙𝑙3𝑚𝑚1 + 𝑙𝑙1𝑚𝑚3
𝑙𝑙1𝑙𝑙2 𝑚𝑚1𝑚𝑚2 𝑛𝑛1𝑛𝑛2 𝑚𝑚2𝑛𝑛1 + 𝑚𝑚1𝑛𝑛2 𝑙𝑙2𝑛𝑛1 + 𝑙𝑙1𝑛𝑛2 𝑙𝑙2𝑚𝑚1 + 𝑙𝑙1𝑚𝑚2⎦

⎥
⎥
⎥
⎥
⎥
⎤

           (8) 

For small strains undergoing elastic deformation, the transformation equation is similar in 

form to the stress transformation equation:  

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜀𝜀x
𝜀𝜀y
𝜀𝜀z
𝛾𝛾yz
2
𝛾𝛾xz
2
𝛾𝛾xy
2 ⎭
⎪⎪
⎬

⎪⎪
⎫

= [𝑇𝑇]−1

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜀𝜀1
𝜀𝜀2
𝜀𝜀3
𝛾𝛾23
2
𝛾𝛾31
2
𝛾𝛾12
2 ⎭
⎪⎪
⎬

⎪⎪
⎫

                                                      (9) 
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The transformation between the engineering strain vector and the tensor strain vector could 

be multiplied by the Reuter matrix R 

⎩
⎪
⎨

⎪
⎧
𝜀𝜀x
𝜀𝜀y
𝜀𝜀z
𝛾𝛾yz
𝛾𝛾zx
𝛾𝛾xy⎭

⎪
⎬

⎪
⎫

= [R]

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜀𝜀x
𝜀𝜀y
𝜀𝜀z
𝛾𝛾yz
2
𝛾𝛾zx
2
𝛾𝛾xy
2 ⎭
⎪⎪
⎬

⎪⎪
⎫

   ,   

⎩
⎪
⎨

⎪
⎧
𝜀𝜀1
𝜀𝜀2
𝜀𝜀3
𝛾𝛾23
𝛾𝛾31
𝛾𝛾12⎭

⎪
⎬

⎪
⎫

= [R]

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜀𝜀1
𝜀𝜀2
𝜀𝜀3
𝛾𝛾23
2
𝛾𝛾31
2
𝛾𝛾12
2 ⎭
⎪⎪
⎬

⎪⎪
⎫

                                    (10) 

where 

[R] =

⎣
⎢
⎢
⎢
⎢
⎡



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2⎦

⎥
⎥
⎥
⎥
⎤

                                                (11) 

According to (1), (2), (7), (9), and (10), the relationship between the stress and engineering 

strain in the beam local coordinate system (LCS) becomes 

⎩
⎪
⎨

⎪
⎧
𝜀𝜀x
𝜀𝜀y
𝜀𝜀z
𝛾𝛾yz
𝛾𝛾zx
𝛾𝛾xy⎭

⎪
⎬

⎪
⎫

= [R][T]−1[R]−1[S][T]

⎩
⎪
⎨

⎪
⎧
𝜎𝜎x
𝜎𝜎y
𝜎𝜎z
𝜏𝜏yz
𝜏𝜏zx
𝜏𝜏xy⎭

⎪
⎬

⎪
⎫

= [𝑆𝑆̅]

⎩
⎪
⎨

⎪
⎧
𝜎𝜎x
𝜎𝜎y
𝜎𝜎z
𝜏𝜏yz
𝜏𝜏zx
𝜏𝜏xy⎭

⎪
⎬

⎪
⎫

                          (12) 

Expanding equation (12): 

⎩
⎪
⎨

⎪
⎧
𝜀𝜀x
𝜀𝜀y
𝜀𝜀z
𝛾𝛾yz
𝛾𝛾zx
𝛾𝛾xy⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑆𝑆11
���� 𝑆𝑆12���� 𝑆𝑆13����
𝑆𝑆21���� 𝑆𝑆22���� 𝑆𝑆23����
𝑆𝑆31���� 𝑆𝑆32���� 𝑆𝑆33����

𝑆𝑆14���� 𝑆𝑆15���� 𝑆𝑆16����
𝑆𝑆24���� 𝑆𝑆25���� 𝑆𝑆26����
𝑆𝑆34���� 𝑆𝑆35���� 𝑆𝑆36����

𝑆𝑆41���� 𝑆𝑆42���� 𝑆𝑆43����
𝑆𝑆51���� 𝑆𝑆52���� 𝑆𝑆53����
𝑆𝑆61���� 𝑆𝑆62���� 𝑆𝑆63����

𝑆𝑆44���� 𝑆𝑆45���� 𝑆𝑆46����
𝑆𝑆54���� 𝑆𝑆55���� 𝑆𝑆56����
𝑆𝑆64���� 𝑆𝑆65���� 𝑆𝑆66����⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝜎𝜎x
𝜎𝜎y
𝜎𝜎z
𝜏𝜏yz
𝜏𝜏zx
𝜏𝜏xy⎭

⎪
⎬

⎪
⎫

                           (13)  

where [𝑆𝑆̅] is used to compute the effective material properties in the local coordinate system 

(LCS) for the beam finite element model.  
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3.1.2 Finite Element Analysis 

Each lattice member is represented as a single 1D beam finite element based on classical 

(Euler-Bernoulli) beam theory [65]. A finite element model is developed in Abaqus [66] using 

the B33 element type, which uses a cubic interpolation of the transverse displacement 

components. We assume the stress of the beam caused by tension, bending, and torsion are 

decoupled. 

3.1.3 Beam Strain and Stress 

To predict failure in the orthotropic material within each lattice member, the stress state in 

the material coordinate system is required. Starting with the displacement and rotation fields in 

the global coordinates, the following procedure is used. This process is programmed in 

MATLAB [67].  

Step 1: Extract the nodal displacement and rotation fields from the Abaqus simulation results 

and calculate the strain components at various section points on the circumference of each 

element node. Note that the beam strains are exact throughout each element when external loads 

are applied only at lattice joints, neglecting the effects of the joint geometry. Strains are 

calculated at nodes of beam elements, where they are the largest. Since the joint geometry is not 

considered, these strains are considered to be nominal but sufficiently accurate for the current 

purpose of the overall design.  

The nodal displacements and rotations of the beam are originally in the global coordinate 

system (GCS), and these must be converted to the beam local coordinate system (LCS). Each 

beam element has 2 nodes, with 6 degrees of freedom at each node (3 translations and 3 
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rotations). The vector of element displacements and rotations in the global coordinate system 

(GCS) is:  

{𝑈𝑈} =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝑢𝑢𝑋𝑋𝑋𝑋
𝑢𝑢𝑌𝑌𝑋𝑋
𝑢𝑢𝑍𝑍𝑋𝑋
𝜃𝜃𝑋𝑋𝑋𝑋
𝜃𝜃𝑌𝑌𝑋𝑋
𝜃𝜃𝑍𝑍𝑋𝑋
𝑢𝑢𝑋𝑋𝑋𝑋
𝑢𝑢𝑌𝑌𝑋𝑋
𝑢𝑢𝑍𝑍𝑋𝑋
𝜃𝜃𝑋𝑋𝑋𝑋
𝜃𝜃𝑌𝑌𝑋𝑋
𝜃𝜃𝑍𝑍𝑋𝑋⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

                                                          (14) 

where the displacement components in the GCS of node A are (𝑢𝑢𝑋𝑋𝑋𝑋, 𝑢𝑢𝑌𝑌𝑋𝑋, 𝑢𝑢𝑍𝑍𝑋𝑋), the displacement 

components in the GCS of node B are (𝑢𝑢𝑋𝑋𝑋𝑋, 𝑢𝑢𝑌𝑌𝑋𝑋, 𝑢𝑢𝑍𝑍𝑋𝑋), the rotation components in the GCS for 

node A are ( 𝜃𝜃𝑋𝑋𝑋𝑋,𝜃𝜃𝑌𝑌𝑋𝑋,𝜃𝜃𝑍𝑍𝑋𝑋 ) and the rotation components in the GCS for node B are 

(𝜃𝜃𝑋𝑋𝑋𝑋,𝜃𝜃𝑌𝑌𝑋𝑋,𝜃𝜃𝑍𝑍𝑋𝑋). 

The length of the beam element is: 

L = √𝑑𝑑𝑑𝑑2 + 𝑑𝑑𝑑𝑑2 + 𝑑𝑑𝑑𝑑2                                                    (15) 

where 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑋𝑋 − 𝑑𝑑𝑋𝑋, 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑋𝑋 − 𝑑𝑑, 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑋𝑋 − 𝑑𝑑𝑋𝑋. Let l = 𝑑𝑑𝑋𝑋
𝐿𝐿

, m = 𝑑𝑑𝑌𝑌
𝐿𝐿

, n = 𝑑𝑑𝑍𝑍
𝐿𝐿

.  

When D = √𝑙𝑙2 + 𝑚𝑚2 > 0, we define the pointwise rotation matrix r as: 

[𝑟𝑟] = �

𝑙𝑙 𝑚𝑚 𝑛𝑛
−𝑚𝑚
𝐷𝐷

𝑙𝑙
𝐷𝐷

0
−𝑙𝑙∗𝑛𝑛
𝐷𝐷

−𝑚𝑚∗𝑛𝑛
𝐷𝐷

𝐷𝐷
�                                                   (16.1) 

When D = √𝑙𝑙2 + 𝑚𝑚2 = 0, the rotation matrix r is: 

[𝑟𝑟] = �
0 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛(𝑛𝑛)
−1 0 0
0 −𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛(𝑛𝑛) 0

�                                       (16.2) 

Assembling the 12x12 rotation matrix for each beam element as: 
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[𝑅𝑅] = �
𝑟𝑟 0
0 𝑟𝑟

0 0
0 0

0 0
0 0

𝑟𝑟 0
0 𝑟𝑟

�                                                    (16.3) 

the displacement vector in the local coordinate system {𝑢𝑢} can be defined in terms of the global 

displacement vector {𝑈𝑈}: 

{𝑢𝑢} = [𝑅𝑅]{𝑈𝑈}                                                          (17) 

For the beam model, the “centroidal axis” coincides with the axis where the strain due to 

bending is zero, and the strains caused by tension F, torsion T, and orthogonal bending moments 

𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 are decoupled (shear due to bending is neglected). These loading conditions are 

illustrated in Figure 3.2 (loads are only applied at nodes). 

 
Figure 3.2: The loadings on the beam, where M is bending moment, F is axial load, and T is 

torsion.   

The strain components are calculated for bending in both XY and XZ planes. The 

calculation steps are similar for each plane; thus, we only demonstrate the steps of calculating 

strains for bending in the XY plane. For the Euler Bernoulli beam element, the shape functions 

are cubic polynomials: 

𝑁𝑁1 = 𝐿𝐿3−3𝐿𝐿𝑥𝑥2+2𝑥𝑥3

𝐿𝐿3
  𝑁𝑁2 = 𝐿𝐿3𝑥𝑥−2𝐿𝐿2𝑥𝑥2+𝐿𝐿𝑥𝑥3

𝐿𝐿3
  𝑁𝑁3 = 3𝐿𝐿𝑥𝑥2−2𝑥𝑥3

𝐿𝐿3
  𝑁𝑁4 = −𝐿𝐿2𝑥𝑥2+𝐿𝐿𝑥𝑥3

𝐿𝐿3
               (18) 

From the shape functions, the strain-displacement matrix for bending in the XY plane is: 
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{𝐵𝐵1}𝑇𝑇 = 1
𝐿𝐿3

[−6𝐿𝐿 + 12𝑥𝑥, −4𝐿𝐿2 + 6𝐿𝐿𝑥𝑥, 6𝐿𝐿 − 12𝑥𝑥, −2𝐿𝐿2 + 6𝐿𝐿𝑥𝑥]    𝑥𝑥 = [0, 𝐿𝐿]         (19) 

The strain displacement matrix for the axial load is: 

{𝐵𝐵2}𝑇𝑇 = 1
𝐿𝐿

[−1,1]                                                        (20) 

The strain displacement matrix for torsion is: 

{𝐵𝐵3}𝑇𝑇 = 1
𝐿𝐿

[−1,1]                                                        (21) 

 

Figure 3.3: The displacement and rotation components in the XY plane. 

From Figure 3.2, the axial strain at the beam element node is the combination of strains due 

to bending in the XY plane and axial load. Using equations (20) and (21), the axial strain is at 

the top and bottom positions on the y-axis are:  

𝜀𝜀𝑥𝑥𝑥𝑥 = ±𝑀𝑀 {𝐵𝐵1}𝑇𝑇 {𝑢𝑢1} + {𝐵𝐵2}𝑇𝑇 {𝑢𝑢2} 

{𝑢𝑢1} = {𝑢𝑢𝑌𝑌𝑋𝑋 𝜃𝜃𝑍𝑍𝑋𝑋 𝑢𝑢𝑌𝑌𝑋𝑋 𝜃𝜃𝑍𝑍𝑋𝑋}𝑇𝑇                                          (22) 

{𝑢𝑢2} = {𝑢𝑢𝑋𝑋𝑋𝑋 𝑢𝑢𝑋𝑋𝑋𝑋}𝑇𝑇 

where y=r (-r) at the top (bottom) of the section.  

From Figure 3.3, the shear strain at the beam element node results from the torsion. With 

Equation (22), the shear strain component is: 

𝜀𝜀𝑥𝑥𝑥𝑥 = ±𝑟𝑟 {𝐵𝐵3}𝑇𝑇 {𝑢𝑢3}                                                     (23) 

{𝑢𝑢3} = {𝜃𝜃𝑋𝑋𝑋𝑋 𝜃𝜃𝑋𝑋𝑋𝑋}𝑇𝑇 
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where +r is the counterclockwise rotation around the x-axis, -r is the clockwise rotation around 

the x-axis. 

From the equations above, we can calculate the 𝜀𝜀𝑥𝑥𝑥𝑥strain components at the beam ends for 

bending in the XY plane. Similar computations are performed for bending in the XZ plane. 

After we obtain all strain components for bending in both planes, along with torsion and 

pure axial deformation, we inspect the strain (and stress) state at 36 section points distributed on 

the beam cross-section (Figure 3.2), equally spaced by 10°. 

Step 2: Stress in the Material Coordinate System  

Failure criteria are expressed and evaluated in the MCS, so it is necessary to compute the 

stress state at each point of interest in the MCS. This can be achieved in the following method. 

Compute the strain in the beam LCS, compute the stress state in the beam LCS, then transform 

the stress state into the MCS. The flowchart in Figure 3.4 illustrates the stress calculation process. 

 

Figure 3.4: The process to calculate stress in the MCS. 

The strain state in the beam LCS is calculated using (13). To calculate the strain in the MCS, 

we start from the plane stress assumption used in classical beam theory: 

𝜎𝜎y = 𝜎𝜎z = 𝜏𝜏yz = 0                                                            (24) 

Thus, at the section points where the strain components were computed formerly, the stress 

in the local coordinate system (LCS) becomes  

{𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿} =

⎩
⎪
⎨

⎪
⎧
𝜎𝜎x
𝜎𝜎y
𝜎𝜎z
𝜏𝜏yz
𝜏𝜏zx
𝜏𝜏xy⎭

⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧
𝜎𝜎x
0
0
0
𝜏𝜏zx
𝜏𝜏xy⎭

⎪
⎬

⎪
⎫

                                                          (25) 
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Then (13) turns to 

⎩
⎪
⎨

⎪
⎧
𝜀𝜀x
𝜀𝜀y
𝜀𝜀z
𝛾𝛾yz
𝛾𝛾zx
𝛾𝛾xy⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑆𝑆11
���� 𝑆𝑆12���� 𝑆𝑆13����
𝑆𝑆21���� 𝑆𝑆22���� 𝑆𝑆23����
𝑆𝑆31���� 𝑆𝑆32���� 𝑆𝑆33����

𝑆𝑆14���� 𝑆𝑆15���� 𝑆𝑆16����
𝑆𝑆24���� 𝑆𝑆25���� 𝑆𝑆26����
𝑆𝑆34���� 𝑆𝑆35���� 𝑆𝑆36����

𝑆𝑆41���� 𝑆𝑆42���� 𝑆𝑆43����
𝑆𝑆51���� 𝑆𝑆52���� 𝑆𝑆53����
𝑆𝑆61���� 𝑆𝑆62���� 𝑆𝑆63����

𝑆𝑆44���� 𝑆𝑆45���� 𝑆𝑆46����
𝑆𝑆54���� 𝑆𝑆55���� 𝑆𝑆56����
𝑆𝑆64���� 𝑆𝑆65���� 𝑆𝑆66����⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝜎𝜎x
0
0
0
𝜏𝜏zx
𝜏𝜏xy⎭

⎪
⎬

⎪
⎫

                          (26)  

Since the effective material properties were used within the 1D beam element, defining 

effective material properties 

𝐸𝐸𝑥𝑥 = 1
𝐿𝐿11�����   𝐸𝐸𝑦𝑦 = 1

𝐿𝐿22�����   𝐸𝐸𝑧𝑧 = 1
𝐿𝐿33�����   𝐺𝐺𝑦𝑦𝑧𝑧 = 1

𝐿𝐿44�����   𝐺𝐺𝑥𝑥𝑧𝑧 = 1
𝐿𝐿55�����   𝐺𝐺𝑥𝑥𝑦𝑦 = 1

𝐿𝐿66�����                                                (27)                                   

𝜗𝜗𝑦𝑦𝑧𝑧 = −𝐸𝐸𝑦𝑦
1
𝐿𝐿32�����   𝜗𝜗𝑥𝑥𝑧𝑧 = −𝐸𝐸𝑥𝑥

1
𝐿𝐿32�����   𝜗𝜗𝑥𝑥𝑦𝑦 = −𝐸𝐸𝑥𝑥

1
𝐿𝐿12�����                         

the effective Young’s modulus and poison ratio are used for calculating the stress in the local 

coordinate system (LCS).   

𝜎𝜎x  = 𝐸𝐸𝑥𝑥 ∗ 𝜀𝜀x                                                       (28.1) 

𝜏𝜏zx  =  𝐸𝐸𝑥𝑥
2(1+𝜗𝜗𝑥𝑥𝑥𝑥)

 ∗  𝛾𝛾zx                                               (28.2) 

𝜏𝜏xy  =  𝐸𝐸𝑥𝑥
2(1+𝜗𝜗𝑥𝑥𝑥𝑥)

 ∗  𝛾𝛾xy                                               (28.3) 

Thus, all strain and stress components in the beam local coordinate system (LCS) are known.  

For the stress in the material coordinate system (MCS), with (2), we have: 

{𝜎𝜎𝑀𝑀𝐿𝐿𝐿𝐿} = [𝑆𝑆]−1{𝜀𝜀𝑀𝑀𝐿𝐿𝐿𝐿}                                                   (29) 

Then the stress state can be transformed into the MCS by (7) to obtain: 

{𝜎𝜎𝑀𝑀𝐿𝐿𝐿𝐿} = [𝑇𝑇]{𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿}                                                      (31) 

3.1.4 Failure Criteria 

Within the optimization study, three failure criteria are used as constraints: 
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𝐹𝐹𝐹𝐹𝑠𝑠𝑙𝑙𝑢𝑢𝑟𝑟𝐹𝐹 𝑠𝑠𝑛𝑛𝑑𝑑𝐹𝐹𝑥𝑥 𝛼𝛼1 = 𝑀𝑀𝑀𝑀𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑛𝑛 𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑝𝑝 𝑝𝑝𝑙𝑙𝑀𝑀𝑛𝑛𝑠𝑠
𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑝𝑝𝑠𝑠ℎ 𝑖𝑖𝑛𝑛 𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑝𝑝 𝑝𝑝𝑙𝑙𝑀𝑀𝑛𝑛𝑠𝑠

= 𝜎𝜎1
𝐿𝐿1

                            (32.1) 

𝐹𝐹𝐹𝐹𝑠𝑠𝑙𝑙𝑢𝑢𝑟𝑟𝐹𝐹 𝑠𝑠𝑛𝑛𝑑𝑑𝐹𝐹𝑥𝑥 𝛼𝛼2 = 𝑀𝑀𝑀𝑀𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑣𝑣𝑀𝑀𝑙𝑙 𝑠𝑠𝑡𝑡 𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑝𝑝 𝑝𝑝𝑙𝑙𝑀𝑀𝑛𝑛𝑠𝑠
𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑝𝑝𝑠𝑠ℎ 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑣𝑣𝑀𝑀𝑙𝑙 𝑠𝑠𝑡𝑡 𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑝𝑝 𝑝𝑝𝑙𝑙𝑀𝑀𝑛𝑛𝑠𝑠

= 𝜎𝜎3
𝐿𝐿3

                   (32.2) 

𝐹𝐹𝐹𝐹𝑠𝑠𝑙𝑙𝑢𝑢𝑟𝑟𝐹𝐹 𝑠𝑠𝑛𝑛𝑑𝑑𝐹𝐹𝑥𝑥 𝛼𝛼3 = 𝑀𝑀𝑀𝑀𝑥𝑥 𝑠𝑠ℎ𝑠𝑠𝑀𝑀𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑛𝑛 𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑝𝑝 𝑝𝑝𝑙𝑙𝑀𝑀𝑛𝑛𝑠𝑠
𝐿𝐿ℎ𝑠𝑠𝑀𝑀𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑝𝑝𝑠𝑠ℎ 𝑖𝑖𝑛𝑛 𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑝𝑝 𝑝𝑝𝑙𝑙𝑀𝑀𝑛𝑛𝑠𝑠

= 𝜎𝜎13
𝐿𝐿13

                     (32.3) 

For failure index 𝛼𝛼1, the maximum stress is calculated as the principal stress within the 

printing plane (1st -2nd material plane). For the failure index 𝛼𝛼2, the stress is calculated in the 

plane vertical to the printing plane (the 3rd material plane). The failure index 𝛼𝛼3 considers the 

shear stress between each layer of material deposited. 

3.1.5 Material Properties 

For the study, we used the ABS material of the FDM process as an example. The orthotropic 

material properties of ABE material listed in Table 3.2 [21], [68] were applied in the subsequent 

studies. To test the reliability of the optimized lattice structure based on isotropic material 

properties, the isotropic material properties of ABS material were also listed in Table 3.2 for 

comparison studies. 
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Table 3.2: Material properties for ABS 
Orthotropic material properties 

 Young’s modulus (MPa) 
Strength 

Compression (MPa) Tension (MPa) 

𝐸𝐸1 2,078 28.83 25.51 

𝐸𝐸3 16,48 29.48 14.35 

𝐺𝐺12 E1/2/(1+v12)  

𝐺𝐺13 686 

𝐺𝐺23 686 

𝛾𝛾12 0.3 

𝛾𝛾13 0.315 

𝛾𝛾23 0.315 

Isotropic material properties 

 Young’s modulus (MPa) Strength (MPa) 

E 2200 31 

 

3.2 Model Validation 

The beam model formulation and implementation were validated by comparing the model 

results with those of a 3D solid beam with orthotropic material properties. For this single-beam 

validation model, the beam radius was set to 5mm, and the length was 100mm. For both models, 

one end of the beam was clamped, and the forces in x and y directions 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦, and torsion in 

the x-axis 𝑇𝑇𝑥𝑥 were applied at the opposite end of the beam. Figures 3.5 and 3.6 illustrate the 

models for the 1D beam element and the 3D solid beam. 
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Figure 3.5: 1D beam element model used for validation. 

 

Figure 3.6: 3D solid beam model used for validation. 
For deflection and stress components of the end of the lattice beam, the results were tested 

for different manufacturing orientations within the first quadrant, as shown in Figure 3.7. Recall 

that the principal MCS is aligned with the printing direction. The printing direction is defined by 

2 angles in the spherical coordinate system (𝜃𝜃,𝜑𝜑), where 𝜑𝜑 is the angle between the printing 

direction and the XY plane of the global coordinate system, and the 𝜃𝜃 is the angle between the 

reflection of the printing direction on the XY plane and the X coordinate of the global coordinate 

system. The range of printing angles considered was: 𝜑𝜑 = [−𝜋𝜋
2

, 𝜋𝜋
2
], 𝜃𝜃 = [0,2𝜋𝜋].  

The ranges of the print direction angles were discretized in 15-degree increments for both φ 

and θ. For each build direction (set of angles) the ratio of results from the two models (1D and 

3D) was calculated. A ratio near 1 indicated good agreement between the results. 
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Figure 3.7: Definition of the angles that define the print direction. 

The validation study was performed for three different E1 to E3 ratios: 𝐸𝐸1
𝐸𝐸3
≈ 1, 10, and 100. 

In all three cases, the ratios of deflection and stress components in the principal MCS were 

compared favorably. For brevity, only the results for 𝐸𝐸1
𝐸𝐸3
≈ 10 (E1=2,078 MPa, E3=210 MPa) are 

shown here in Figures 3.8 and 3.9. 

It is well-known that stress components having a small contribution to the overall strain 

energy may not be accurately predicted in a finite element model, where the objective is the 

minimization of total potential energy. Thus, when the value of a stress component was less than 

1% of the maximum stress value among all other stress components for that print direction, the 

stress ratio results for these small stress components were not included in the plots.  

At some locations, the values of some stress components are very small compared to the 

other components. While the difference between the two computed values is also very small, the 

ratio of these two small values can be large, falsely implying a significant error. We have chosen 

to neglect these components where this numerical issue occurs. 
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Figure 3.8: Ratio of beam deflections predicted by 1D and 3D orthotropic beam models. 

  

Figure 3.9: Ratio of beam stress components (S11, S22, S33, S12) predicted by 1D and 3D 
orthotropic beam models. Components S13 and S23 were less than 1% of the maximum 

stress value at all points, so these plots were omitted.   
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3.3 Studies and Results 

In an additively manufactured lattice structure, the principal directions of material 

orthotropy are related to the build direction, and the orientation of lattice members relative to 

those principal material directions can have a significant effect on the structural performance of 

each lattice member as well as the overall structure. In other words, the design of each lattice 

member (e.g., its minimum radius) depends on the build direction. For this reason, it is necessary 

to simultaneously optimize the manufacturing build direction of the overall structure and the 

radius of each lattice member. In the current study, we consider the build (or printing) direction 

as well as the radius of each lattice member as design variables to be optimized. The goal of the 

study is to generate the lightest lattice structure (minimize volume) that also satisfies constraints 

on strength under a prescribed loading condition.  

Due to the strong coupling of beam radii to a particular build direction, a bi-level 

optimization strategy is used here to increase the efficiency of the design exploration. In the 1st 

optimization level (the upper level), the objective is to minimize the material volume of the 

lattice structure by modifying the printing direction. In the 2nd optimization level (the lower or 

inner level), the objective is to minimize the material volume of the lattice structure for a given 

printing direction by modifying the beam radii while accounting for material orthotropy in 

stiffness and strength. The optimization process is shown in the flowchart in Figure 3.10. 
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Figure 3.10: Flowchart of the bi-level optimization process. Procedures within the solid line 
belong to the 2nd (lower) level optimization, while procedures within the dotted line belong 
to the 1st (upper) level optimization. The software package(s) used for each procedure are 

listed beside the blocks. 

The 1st (upper) level optimization defines a proposed printing direction by assigning values 

to θ, φ. Then, for that printing direction, optimization is performed on the radii variables to 

minimize the material volume within the 2nd (lower) level, while satisfying constraints on 

orthotropic material strength. The failure criteria are defined in terms of failure indices 𝛼𝛼𝑖𝑖, as 

defined herein. The bi-level optimization returns the optimized radii and the printing angles for 

the optimal solutions with minimum volume. 

The software packages HEEDS MDO, Abaqus, Python, and MATLAB are utilized in various 

steps within this study. HEEDS MDO [69] is a multi-disciplinary design exploration software 

package. It is used here to perform design space exploration at both levels and to control the 

overall process automation. Abaqus[66], [70] is used to perform the structural finite element 
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analysis of each lattice design. Internal code written in the Python [70], [71] scripting language is 

used to extract simulation results from the Abaqus output (*.odb) file and to send it to MATLAB 

for post-processing. Internal code written in MATLAB [67] is used to compute orthotropic 

material properties and effective beam properties for a set of given printing angles and beam 

orientation, and to post-process the stress state and evaluate failure criteria in the material 

coordinate system. 

3.3.1 Bi-level 1D Beam Optimization 

To illustrate the effect of material orthotropy on the design of an additively manufactured 

lattice structure, several optimization studies have been performed. The first one is a simple 1D 

single beam model, as shown in Figure 3.11. 

 

Figure 3.11: 1D beam model clamped at one end and loaded at the opposite end.  

The beam is fixed (clamped) at one end and loaded at the other end by a torque along the X-

axis and forces in the X and Y directions, producing axial, bending, shear, and torsional loading 

on the beam. 

At the 1st optimization level (the upper level), the study sweeps along the printing angles 𝜃𝜃 ∈

[0°, 90°] and 𝜑𝜑 ∈ [0°, 90°] with an increment of 10°. At the 2nd optimization level (the lower 

level), the objective is to minimize the material volume of the beam for a given printing direction 

by modifying the beam radius while accounting for material orthotropy in stiffness and strength. 

The optimization problem statement for the 1D beam element is: 
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Optimization statement: 

1st (upper) level sweep (not optimization): 

Objective: 

  Minimize the volume of the beam 

Constraints: 

  Failure indices 𝛼𝛼𝑖𝑖 ≤ 1 (i =1,2,3) 

Variables: 

Printing angles (θ, φ) 

𝜃𝜃 ∈ [0°, 90°] and 𝜑𝜑 ∈ [0°, 90°], the increment is 10°  

2nd (lower) level optimization (for a fixed set of printing angles θ, φ): 

Objective: 

  Minimize the volume of the beam 

Constraints: 

  Failure indices 𝛼𝛼𝑖𝑖 ≤ 1 (i =1,2,3) 

Variables: 

   The radius of the beam 𝑟𝑟 ∈ [4, 6], the increment is 0.05mm 

Results 

The sweep method is employed to demonstrate the influence of the printing angles on the 

beam volume. For the 1D beam optimization study, we only choose the first quadrant, in which 

printing angle 𝜃𝜃 ∈ [0°, 90°] and 𝜑𝜑 ∈ [0°, 90°], to display the results. In Figure 3.12, the color of 

each square as well as its height on the volume axis represent the volume for the given printing 

angles 𝜃𝜃 and 𝜑𝜑.  



30 
 

 

Figure 3.12: Bi-level 1D beam optimization result. 

For this 1D beam bi-level optimization study, the maximum volume design occurs at a build 

direction defined by (θ, φ) = (90, 0) and (θ, φ) = (90, 90), where the volume is 7390 𝑚𝑚𝑚𝑚3 and 

shown in yellow on the left and right corners in Figure 3.12. The minimum volume design occurs 

at the build direction (30, 30), where the volume is 5670 𝑚𝑚𝑚𝑚3 and shown at the concave part in 

Figure 3.12.  

The difference between designs with maximum volume and minimum volume is about 

23.3%. This significant difference and the strong variations in allowable volume shown in Figure 

3.12 illustrate the importance of including build direction and material orthotropy when 

designing an AM lattice.  

Comparison with the isotropic material lattice 

To further demonstrate the influence of orthotropic material strengths on the performance of 

the lattice structure, an optimization study with the isotropic material property was performed. In 

this isotropic case, the isotropic material properties were used (Table 3.2) and the isotropic 

material strength was considered as the constraint. Within the same range of the radii, an 

optimization study was performed to obtain the optimal design for the isotropic material beam.  
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Using the radii from the optimal design using isotropic materials, a study using the sweep 

method was performed by varying the printing angle (θ, φ). Using the corresponding orthotropic 

material properties, it was found that for all printing angles, the optimized isotropic design 

violated the orthotropic material strength constraints. Thus, the optimized beam based on 

isotropic material properties would likely fail, again illustrating the risk of ignoring the 

manufacturing orientation-induced orthotropy. 

 

3.3.2 Bi-level BCC Lattice Structure Optimization 

To illustrate the influence of printing direction and the corresponding material orthotropy on 

the design of a lattice structure, an optimization study of a BCC lattice structure was performed. 

A 2 × 1 × 1 BCC lattice structure was considered. It is fixed at one end, and loads were applied 

on the other end in the negative Y-axis, as seen in Figure 3.13. 

 

Figure 3.13: 3D bcc lattice structure. 

A bi-level optimization strategy is used. In the 1st optimization level (the upper level), the 

study sweeps along the printing angles 𝜃𝜃 ∈ [0°, 90°] and 𝜑𝜑 ∈ [0°, 90°] with an increment of 15° 

to show the printing direction’s effect on the volume of the structure. At the 2nd optimization 

level (the lower level), the objective is to minimize the material volume for the given printing 
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direction by modifying the members' radii, while accounting for material orthotropy in stiffness 

and strength. The optimization statement is shown below. 

Optimization statement: 

1st (upper) level sweep (not optimization): 

Variables: 

Printing angles (θ, φ) 

𝜃𝜃 ∈ [0°, 90°] and 𝜑𝜑 ∈ [0°, 90°], the increment is 15°  

2nd (lower) level optimization (for a fixed set of printing angles θ, φ): 

Objective: 

  Minimize the material volume of the BCC lattice structure 

Constraints: 

  Failure indices 𝛼𝛼𝑖𝑖 ≤ 1 (i =1,2,3) 

Variables: 

  Radii of lattice members 𝑟𝑟𝑖𝑖 (i=1 to number of lattice members) 

𝑟𝑟𝑖𝑖 ∈ [0.05,0.1], the increment is 0.01mm 

Results 

The sweep method was used for the 1st (upper) level of the BCC lattice structure 

optimization study with an increment of 15° for each printing angle, and the first quadrant with 

printing angle 𝜃𝜃 ∈ [0°, 90°] and 𝜑𝜑 ∈ [0°, 90°] was chosen to demonstrate the volume for each 

printing angle. 
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Figure 3.14: Bilevel BCC lattice structure optimization result. 

From the sweeping study of the printing angle for the BCC lattice structure (Figure 3.14.), 

the maximum volume of the lattice structure occurs at the printing angle (θ, φ) = (90°, 15°), 

which is 0.34398 𝑚𝑚𝑚𝑚3. The minimum volume of 0.2788 𝑚𝑚𝑚𝑚3 occurs at the printing angle (θ, φ) 

= (30°, 60°), (45°, 75°). Comparing the maximum and the minimum volume of the BCC lattice 

structure, there is a difference of 18.9%. From the results, the printing angles do have a 

significant impact on the volume of the AM BCC lattice structure.  

Comparison with the isotropic material lattice 

With the aim of comparison and validation, an optimization study using the isotropic 

material properties was performed. Using the radii from this optimization study, a sweeping 

study was then performed on the printing angles, using orthotropic material properties. This 

study demonstrated that the optimal isotropic design was no longer feasible under the orthotropic 

material strength constraints for all printing angles. This further confirms the necessity for 

considering manufacturing orientation-induced orthotropy. 
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3.3.3 3D Bracket Lattice Structure Optimization 

To demonstrate the influence of orthotropic material strength effects on a medium-scale 

lattice structure, a 3D bracket with 1,369 lattice members was considered. All members were 

assumed to have the same radius, so there was only one design variable. 

 

Figure 3.15: The 3D bracket lattice model. 

As shown in Figure 3.15, this model was a hanger bracket. Its outer dimensions for were: 

length in x direction = 300 mm, width in z direction = 200 mm, depth in y = 20 mm. The two 

mounting holes on the left of the bracket were fixed, and a vertical load (in the z-direction) was 

applied to the mounting hole on the right side.  

Problem statement: 

1st (upper) level optimization: 

Objective: 

  Minimize the material volume of the 3D bracket lattice structure 

Constraints: 

  Failure indices 𝛼𝛼𝑖𝑖 ≤ 1(i =1,2,3) (Values of 𝛼𝛼𝑖𝑖are obtained from Level 2) 

Variables: 

Printing angles (θ, φ) 
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𝜃𝜃 ∈ [0°, 90°] and 𝜑𝜑 ∈ [0°, 90°], the increment is 5°  

2nd (lower) level optimization (for a fixed set of printing angles θ, φ): 

Objective: 

  Minimize the material volume of the 3D bracket lattice structure 

Constraints: 

  Failure indices 𝛼𝛼𝑖𝑖 ≤ 1 (i =1,2,3) 

Variables: 

Radii of lattice members 1 ≤  𝑟𝑟𝑖𝑖  ≤ 3, the increment is 0.05mm 

Results 

Multiple solutions were found through the bilevel optimization of this 3D lattice bracket. As 

seen in the parallel plot for the bi-level optimization study (Figure 3.16), several different 

printing angles are possible for designs with the same minimum volume. This is illustrated more 

clearly in Figure 3.17, where only the minimum volume solutions are shown. For the optimal 

design of the 3D lattice bracket, the minimum volume is 474,400 𝑚𝑚𝑚𝑚3; however, the printing 

angles for the optimal solutions vary, with 𝜑𝜑 ranging from [−35°, 25°], and 𝜃𝜃 ranging between 

[ 95° ,  120° ]. This allows the designer and manufacturer to select the most convenient or 

economical printing angle from among the optimal solutions. One of these optimal solutions 

from the bi-level optimization is shown in Figure 3.18. 
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Figure 3.16: Parallel coordinates plot for bi-level optimization for 3D bracket lattice model. 

 

Figure 3.17: Parallel coordinate plot for optimal solutions for 3D bracket lattice model. 

 

Figure 3.18: Optimized 3D lattice bracket for 3D bracket lattice model. 
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Comparison between the optimized isotropic material lattice hanger and the orthotropic 

material strength constraints 

An optimization study was also conducted using the isotropic material properties in Table 

3.2. The young’s modulus for isotropic material is higher than 𝐸𝐸1, the minimum volume for the 

isotropic material lattice was 394,380 𝑚𝑚𝑚𝑚3. When this design was evaluated using orthotropic 

material strength constraints, it violated the constraints for all printing angles. 

 

3.3.4 Bottle Opener Lattice Structure Optimization 

The final example application is a lattice bottle opener, shown in Figure 3.19. The overall 

dimensions of the model are 80 mm × 20 mm × 15 mm. The model is symmetric about the mid-

plane, but the full structure is represented in the model.  

For the FEA simulation of this model, boundary conditions representing the levering 

mechanism of a real bottle opener were used. Region A in the model was acting as the fulcrum, 

in which the movement was fixed on the cap (𝑈𝑈𝑀𝑀 = 𝑈𝑈𝑀𝑀 = 0, with 𝑈𝑈𝑥𝑥 = 0 at the center). Before 

the cap is removed, the tooth or lip B remained still (𝑈𝑈𝑀𝑀 =  𝑈𝑈𝑀𝑀 = 0, with 𝑈𝑈𝑥𝑥 = 0 at the center). A 

distributed force was exerted on the edge of handle C, with a total magnitude of 36N in the y-

direction.  

 
B 
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Figure 3.19: Boundary conditions for bottle opener lattice structure. 

Optimization statement: 

1st (upper) level optimization: 

Objective: 

Minimize the material volume of the bottle opener lattice structure 

Constraints: 

Failure indices 𝛼𝛼𝑖𝑖 ≤ 1, i =1,2,3 (Values of 𝛼𝛼𝑖𝑖 are obtained from 2nd level) 

Variables: 

Printing angles (θ, φ),  𝜑𝜑 ∈ [−90°, 90°] the increment is 5°; 𝜃𝜃 = 90° 

2nd (lower) level optimization (for a fixed set of printing angles θ, φ): 

Objective: 

Minimize the material volume of the bottle opener lattice structure 

Constraints: 

Failure indices 𝛼𝛼𝑖𝑖 ≤ 1 (i =1,2,3) 

Variables: 

Radii of lattice members    1 ≤  𝑟𝑟𝑖𝑖  ≤ 3.6 the increment is 0.1mm 

Settings for the optimization study: 

For the 1st (upper) level optimization, due to the symmetry, the printing angle 𝜃𝜃 is fixed at 

90°, so only the printing angle 𝜑𝜑 is varied. The number of iterations (the optimization budget) at 

this level was set to 16. 

At the 2nd (lower) level optimization, there are 102 lattice beams in total to be optimized. Due 

to the symmetry of the model, the number of optimization variables was reduced to 51. Based on 

initial experiments, it was found that 12,000 evaluations were needed to achieve nearly 
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converged results at this level. While it cannot be easily proven, these experiments suggested that 

the design space is non-convex, likely due to the complexity of the orthotropic material strength 

constraints.  

Results 

Because the optimization approach is stochastic, three sets of optimization studies were 

conducted, each starting with a different baseline design. These three baseline designs had 

uniform initial lattice beam radii (volume) of 1.5 mm (9593.3 𝑚𝑚𝑚𝑚3), 2.5 mm (26648 𝑚𝑚𝑚𝑚3), and 

3.5 mm (52230 𝑚𝑚𝑚𝑚3).  

For the three sets of optimization results, the trends for different printing angles 𝜑𝜑 were 

similar (Figure 3.20). When 𝜑𝜑 =  0° or −30°, the volume of the lattice structure was the highest. 

The optimal solution was at 𝜑𝜑 =  50° with a minimum volume of 6949.8 𝑚𝑚𝑚𝑚3. These results 

illustrate that, when material orthotropy is considered, the printing angle has a significant impact 

on the volume of the lattice structure.  

 

Figure 3.20: Bi-level optimization results from 3 baseline designs: 1.5 mm, 2.5 mm, and 3.5 
mm. 
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The optimized bottle opener lattice structure is shown in Figure 3.21. The thickest members 

are located at the lever mechanism, where the stress concentration occurs. The beam members 

are very thick in that region, so beam theory may not represent the behavior adequately. 

Nevertheless, the results are useful from an intermediate design stage perspective. Figure 3.22 

shows the optimal build orientation for additive manufacturing. 

 

Figure 3.21: Optimal lattice structure from 2.5mm baseline design. 

As shown in Figure 3.20, near the optimal build angle of  𝜑𝜑 =  50°, several printing angles 

generate good designs, namely at 𝜑𝜑 = 45°, 50°, 55°. To further investigate the results at these 

printing angles, a convergence study of these points was performed.  

 

Figure 3.22: The optimal printing orientation (Z) of the bottle opener lattice. 
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Using each optimized solution as baseline designs for 𝜑𝜑 = 45°, 50°, 55° , more search 

evaluations were performed within a reduced range of radii containing the optimized designs. 

Assuming that the design space is convex within this limited range, a gradient-based 

optimization algorithm, quadratic programming (QP), was applied to search for the local 

minimum.  

 

Figure 3.23: The optimal results from the convergence study. 

As shown in Figure 3.23, after 3,000 additional search evaluations in the region of each 

optimized design, the minimum volume of all three designs for 𝜑𝜑 =  50° converge to 

approximately 6932 𝑚𝑚𝑚𝑚3.  For other print angles, the solutions did not change. These results 

imply that 𝜑𝜑 =  50° is the best choice for printing angle. 
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Chapter 4 
 
Optimizing the Manufacturability and Performance of Additively 
Manufactured Lattice Structures 

 

To account for these geometric limitations associated with an AM process, a 

manufacturability analysis based on model correction [38] is used here within the design process. 

The model correction analysis first slices the designed AM geometry into voxels. Then, the 

critical features affected by the given AM process are identified by considering the resolution or 

the minimum printable feature of the AM process. Modifications are based on the topology of 

the original design geometry and the toolpath of the print head. 

In this chapter, we evaluate the manufacturability of the AM lattice structure with both the 

material orthotropy and manufacturing resolution limitations. First, the theory based on material 

orthotropy analysis and manufacturability-oriented model correction is explained. Then, the 

effect of geometry influence is studied based on the optimization of the example cases. Last, a 

comprehensive manufacturability analysis with bi-level optimization studies based on geometry 

effects and material orthotropy is conducted.  

4.1 Methodology 

4.1.1 Design of As-Manufactured Lattice Structures 

In this study, the originally designed geometry and material of the lattice structure compose 

what is called the as-designed lattice. Because AM processes have material and resolution 

limitations, there may be significant differences between the original as-designed model and the 

final manufactured part. To account for this, a model correction was introduced into the design 

process to generate an optimized as-manufactured design.  
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In a previous study [17], additively manufactured lattice structures were optimized while 

accounting for manufacturing-induced material orthotropy. A generalized three-dimensional 

orthotropic material model was introduced into each lattice beam, with the principal material 

coordinates dependent on the manufacturing build direction or other manufacturing features. It 

was shown that not accounting for this orthotropy in strength and stiffness led to very 

unconservative designs.   

To account for as-manufactured geometry, we aim to analyze as-designed lattice structures 

and make necessary geometric modifications to solve any manufacturability issues for a selected 

AM approach and process parameters associated with it. We target to alleviate problems such as 

thin features, sharp corners, and topological changes caused by these issues. We adopt a similar 

approach to [38] in generating a corrected model. The corrected model accurately approximates 

the as-manufactured part, and it can be printed using the indented AM process without any 

failure. This approach allows us to evaluate the manufacturability of each candidate lattice 

design and measure the minimal amount of change required to make the design manufacturable 

quantitatively. 

Given an input 3D lattice model and minimum printable feature size dictated by the selected 

AM process, we slice the shape in intervals equivalent to the print layer height and rasterize them 

to generate images representing 2D slices, 𝑆𝑆𝑖𝑖. Each slice is then processed to construct a meso-

skeleton, 𝑀𝑀𝑖𝑖— the maximal area where a print head can be positioned during the printing 

process— that is topologically equivalent to the corresponding slice. Dilation of a meso-skeleton 

with a circular structuring element, 𝐹𝐹 corresponding to the minimum printable feature results in a 

corrected slice 𝐶𝐶𝑖𝑖, i.e., 𝐶𝐶𝑖𝑖 =  𝑀𝑀𝑖𝑖 ⨁𝐹𝐹, denoting a morphological dilation operation. The union of 

the corrected slices constitutes the corrected model.   
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In order to compute the meso-skeleton of a slice, we perform a topology preserving thinning 

operation described in [38]. Starting from a binary image representing a slice 𝑆𝑆𝑖𝑖, contour pixels 

that do not contribute to the topology are removed iteratively. Deletion or retention of a contour 

pixel is determined based on the configuration of the pixel in its local 8-connected neighborhood. 

The thinning process continues until there is no removable contour pixel left such that (1) 

removal of any contour pixel changes the topology or (2) shrinks the meso-skeleton beyond the 

erosion of the slice 𝑆𝑆𝑖𝑖  with 𝐹𝐹 , i.e., 𝑆𝑆𝑖𝑖 ⊖ 𝐹𝐹 . While the former condition guarantees that the 

topology of the meso-skeleton is identical to the input slice, the latter one prevents unnecessary 

iterations as the erosion serves as an upper bound for the maximal allowable region that the print 

head can traverse during the printing process.  

In model correction, the rasterization resolution and structuring element size play an 

important role in the accurate estimation of the as-manufactured shape. Suppose the 

manufacturing resolution is defined by the minimum printable feature size that is represented by 

a circle of diameter d. We discretize d by 𝑛𝑛𝑑𝑑  pixels to approximate the circular structuring 

element 𝐹𝐹. Then, the rasterization resolution of slices is selected as 𝑛𝑛𝐿𝐿 = 𝑙𝑙 × 𝑛𝑛𝑑𝑑  / 𝑑𝑑 where 𝑙𝑙 is 

the largest dimension of the input object bounding box. Expectedly, the selection of a large 𝑛𝑛𝑑𝑑 

value results in a more accurate approximation of the as-manufactured shape. Yet, larger 𝑛𝑛𝑑𝑑 

increases the computational cost, as well as the memory usage as the number of iterations in the 

thinning process and the size of each image representing the slices increase simultaneously. In 

our experiments, we observed that 𝑛𝑛𝑑𝑑 ≥ 5 is sufficient for our purposes. 
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4.2 Studies and Results 

We first investigated the influence of voxel size on the final volume of the as-manufactured 

lattice structure. We conducted convergence tests with a different number of voxels for a given 

AM process resolution. 

Based on the convergence tests, we optimized the printing direction of AM lattice structure 

models with different voxel sizes to get the minimum material difference between the as-

designed lattice and the as-manufactured lattice. 

Last, we combined manufacturability-oriented model correction and the AM-induced 

material orthotropy within the evaluation of potential AM lattice structures to optimize the lattice 

structure for a specific AM process minimum printable feature size and material orthotropic 

strengths. In the study, we are ignoring the possible need for support structures in the 

manufacturing process. 

4.2.1 Convergence Test for Different Voxel Sizes 

To analyze the result of a study based on manufacturability-oriented model correction, there 

are several parameters needed.  

Voxel size (measured in mm) is an input parameter that can be adjusted according to the 

minimum printable feature size of the given AM process. 

The absolute difference is the absolute number of voxel changes throughout the model 

correction process. Thus,  

          absolute difference = number of voxels added + number of voxels removed              (1) 

The absolute material change is: 

                         absolute material change = absolute difference * 𝑣𝑣𝑣𝑣𝑥𝑥𝐹𝐹𝑙𝑙 𝑠𝑠𝑠𝑠𝑀𝑀𝐹𝐹3                      (2) 
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For the final modified geometry, the total volume of the as-manufactured model is calculated 

by: 

total volume = (original voxels + added voxels – removed voxels) * 𝑣𝑣𝑣𝑣𝑥𝑥𝐹𝐹𝑙𝑙 𝑠𝑠𝑠𝑠𝑀𝑀𝐹𝐹3        (3) 

To illustrate the influence of voxel size on the final volume of the as-manufactured lattice 

structure, we optimized a single beam of circular cross-section with different voxel sizes. The 

length of the lattice beam was 10mm and the radius was 0.25mm. The Selective Laser Melting 

(SLM) with 0.1mm resolution was selected as the AM process for the model. 

 

Figure 4.1: Single lattice beam 

We conducted optimization studies based on different voxel sizes, try to compare the final 

volume of the as-manufactured lattice beam between different voxel sizes and printing angles to 

test what voxel size would be reasonable, and got the results converged.  

Optimization statement 

Objective: 

Minimize the absolute volume difference (voxelized volume) 

Variables: 

Rotation angles of the lattice beams (𝜑𝜑,𝜃𝜃)  

𝜑𝜑 ∈ [−90°, 90°],    𝜃𝜃 ∈ [−90°, 90°] 

𝜑𝜑,𝜃𝜃  define the print angle for the SLM process and represent the rotation of the geometry about 

the z and x-axes, respectively. 
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(a)                                                                       (b) 

Figure 4.2: Definition of rotation angles 𝜑𝜑,𝜃𝜃.  

Allowing a 5-degree increment of the rotation angle, the optimization results are shown in 

Table 4.1. With different voxel sizes, the absolute difference and absolute material change vary, 

but the total volume of the model changes very little, with the difference between the maximum 

volume and minimum volume being 0.2% (Figure 4.3). Thus, even the largest voxel size 

considered (4mm) is sufficiently small to represent the geometry for the purposes of this study.  

Table 4.1: Results with optimization of 5-degree incremental rotation angle 

1 
D

 b
ea

m
 Same AM 

resolution 
with 

different 
voxel sizes 

Absolute 
difference 

Voxel size 
(mm) 

Absolute 
Material 
Change 

Total volume 
       

4 0.05015 0.0005 2.2258  

336 0.02503 0.00527 2.23057  

 
432 0.01667 0.002 2.2273  

 
656 0.0125 0.00128 2.22658  

 
955 0.01 0.00096 2.22626  

 
715 0.00834 0.00041 2.22571  

 
2992 0.00714 0.00109 2.22639  

 
8662 0.00625 0.00211 2.22741  
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Figure 4.3:The total volume of optimized beams allowing a 5-degree increment of the 
rotation angles. 

The above study was repeated using a 1-degree increment of the rotation angles. In Table 4.2, 

with different voxel sizes, the total volume is almost the same, the difference between the 

maximum and minimum volume is less than 0.18% for this study (Figure 4.4). 

Table 4.2:  Results with optimization of 1-degree incremental rotation angle 
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711 0.01 0.00071 2.22601  

 
398 0.00834 0.00023 2.22553  

 
2829 0.00715 0.00103 2.22633  

 
7635 0.00625 0.00186 2.22716  

 
 

2.2258

2.23057

2.2273
2.22658 2.22626 2.22571 2.22639

2.22741351

2.223
2.224
2.225
2.226
2.227
2.228
2.229
2.23

2.231

To
ta

l V
ol

um
e

Voxel Size

Total Volume



49 
 

 

Figure 4.4: Total volume of optimized beams allowing a 1-degree increment of the rotation 
angles. 

These results suggest that as long as the voxel size is less than half of the minimum printable 

feature size, the final volume of the modified lattice model is predicted with sufficient accuracy. 

To decrease the computational time for subsequent optimization studies, we will use this rule to 

set the voxel size. 

4.2.2 Optimization Studies Based on the Manufacturability-Oriented Model Correction 

The influential parameters for the manufacturability of AM processes are material properties 

and geometric features. We have already performed some optimization studies on the orthotropic 

material strength influence on the AM lattice structure performance [reference]. Here, we are 

going to employ a model correction approach to analyze the manufacturability of the lattice 

geometries and the restriction of the AM process parameters [38]. The study aims to optimize the 

build orientation of the designed lattice structure so that the as-manufactured lattice structure will 

have the least amount of volume difference compared to the as-designed structure. 

The model correction approach is a voxel-based analysis method considering the 

manufacturability of AM processes, which slices the 3D geometry into 2D images and voxelizes 
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the 2D plane for manufacturability checking. The most crucial input parameters are the 

maximum number of voxels in the largest dimension and the number of voxels that constitute the 

smallest manufacturing size of the specific AM process. Due to the different dimensions of 

designs and different AM processes, these parameters should be carefully tuned for the 

optimization study. 

4.2.2.1 Optimization Settings 

For the optimization study, the optimization algorithm SHERPA within the HEEDS multi-

disciplinary optimization software [reference] has been used. . The FDM process was selected as 

the AM process for lattice manufacturing. The minimum printable feature of FDM was selected 

to be 0.3 mm.  The number of optimization evaluation iterations was chosen to be 300. The study 

was conducted for various numbers of voxel sizes for further comparison and validation. 

           

(a)                                                                 (b) 

Figure 4.5: (a) 1D beam, (b) 3D bcc lattice. 

Two lattice models were selected for demonstrating the influence of the orientation of the 

lattice beams. Model 1 is a single 1D beam with a circular cross-section of a radius of 0.5mm 

and a length of 10mm, Figure 4.5(a). Model 2 is a 3D lattice structure composed of two BCC 

unit cells, Figure 4.5(b). The dimensions of model 2 are 20 mm x 10 mm x 10 mm, and the radii 

are 0.5 mm.  
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For each of these structures, the optimization problem statement is the same as follows: 

Objective: 

Minimize the absolute volume difference (voxelized volume) 

Variables: 

Rotation angles of the lattice beams (𝜑𝜑,𝜃𝜃)  

𝜑𝜑 ∈ [−90°, 90°],    𝜃𝜃 ∈ [−90°, 90°] 

𝜑𝜑,𝜃𝜃 represents the rotation of the geometry about the z and x-axes, respectively. 

4.2.2.2 Results 

As seen in Table 4.3, the optimal solutions may arrive at the different printing orientations 

with different sizes of voxelization.  

Table 4.3.a: Optimal solutions for 1D beam orientation optimization 

Voxel size (𝑚𝑚𝑚𝑚3) Optimal Orientation (𝜑𝜑,𝜃𝜃) 

0.05 (−75°, 30°) 
0.025 (80°, 25°) 

Table 4.3.b: Optimal solutions for 3D lattice orientation optimization 

Voxel size (𝑚𝑚𝑚𝑚3) Optimal Orientation (𝜑𝜑,𝜃𝜃) 
0.05 (50°,−5°) 
0.025 (90°,−70°) 

For model 1, when the voxel size is 0.05𝑚𝑚𝑚𝑚3, the optimal orientation with minimum volume 

difference is [-75, 30], when the voxel size changes to 0.025mm^3, the optimal orientation with 

minimum volume difference is [80, 25]. For model 2, when the voxel size is 0.05𝑚𝑚𝑚𝑚3, the 

optimal orientation with minimum volume difference is [50, -5] when the voxel size changes to 

0.025𝑚𝑚𝑚𝑚3, the optimal orientation with minimum volume difference is [90, -70].  
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Based on the results, there are some possible hypotheses made: 

1. With only the absolute difference of the model volume as the optimization objective, the 

optimal solution may not be reliable.  

2. the studies are not converged yet, and the modified volume of the as-manufactured lattice 

structure may not be minimized through optimization.  

3. since the 1D beam is simple, the volume difference due to different orientations is quite 

small, and different angles provide a suitable solution within the allowed variations 

4. Because the voxel size compared to the beam size is small enough, which results in 

similar results between optimal orientations. 

Additional studies are needed to further investigate on this problem. 

4.2.3 Optimization Studies Based on Both Geometry Correction and Material Orthotropy 

In addition to considering AM effects on material orthotropy and performance, we also take 

geometric manufacturability into account. Following the optimization of lattice members’ radii 

for a given build direction, we employ a separate model [38] to analyze the manufacturability of 

that design for an assumed set of manufacturing process parameters. This model determines 

where and how much material must be added or removed for a specific AM process in order to 

produce the design. The result of this is called the as-manufactured design. The mass (or volume) 

of the as-manufactured design will be slightly different from that of the as-designed lattice. 

The build direction will impact the design in terms of both material and geometrical effects. 

There will be a strong coupling between build direction-induced material orthotropy and the radii 

of lattice members needed to meet the strength criteria, as shown in a previous section. Similarly, 

there is often a strong coupling between build direction and the material volume of the as-

manufactured part, as shown in [38].  
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Due to the complex design space resulting from this type of coupling, a bi-level optimization 

strategy is used here to increase the efficiency of the design exploration. In the 1st optimization 

level (the upper level), the objective is to minimize the material volume of the as-manufactured 

lattice by modifying the printing direction. The as-manufactured design is obtained by 

performing a manufacturability analysis of the as-designed lattice, which is obtained in the 2nd 

optimization level. In the 2nd optimization level (the lower level), the objective is to minimize the 

material volume of the as-designed lattice for a given printing direction by modifying the 

member radii to account for material orthotropy in stiffness and strength. 

 

Figure 4.6: Flowchart for bi-level optimization with model correction and material 
orthotropy 

The complete problem statement for the bi-level lattice optimization study is:  

1st (upper) level optimization: 

Objective: 

Minimize the material volume of the as-manufactured lattice structure 

As-manufactured total volume=(original voxels + added voxels - removed voxels) * 𝑣𝑣𝑣𝑣𝑥𝑥𝐹𝐹𝑙𝑙 𝑠𝑠𝑠𝑠𝑀𝑀𝐹𝐹3 

Constraints: 
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Failure indices for orthotropic material strengths 𝛼𝛼𝑖𝑖 ≤ 1 (i =1,2…5) 

(Values of 𝛼𝛼𝑖𝑖 are obtained from Level 2, and the constraints are defined in [17]) 

Variables: 

Printing angles θ, φ 

−90° ≤ 𝜑𝜑 ≤ 90°  

                                            0° ≤ 𝜃𝜃 ≤ 180° 

2nd (lower) level optimization (for a fixed set of printing angles θ, φ): 

Objective: 

 Minimize the material volume of the as-designed lattice structure 

Constraints: 

 Failure indices for material strengths constraints 𝛼𝛼𝑖𝑖 ≤ 1 (i =1,2…5) 

Variables: 

 Radii of lattice members 𝑟𝑟𝑖𝑖 (i=1 to number of lattice members) 

The detailed workflow of the bi-level optimization is illustrated in Figure 4.7.  

To achieve coherence with the former material orthotropy study, the FDM process is selected. 

For a good voxelization of the lattice structure with a given minimum printable feature size, the 

radius of the lattice beam would be equal to or greater than 3 times the voxel size. 
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Figure 4.7: Flowchart of the bi-level optimization process. Procedures within the solid line 
belong to the 2nd (lower) level optimization, while procedures within the dotted line belong 
to the 1st (upper) level optimization. The software package(s) used for each procedure are 

listed beside the blocks. 

The 1st (upper) level optimization determines the proposed printing direction first by 

assigning values to θ, φ. Then, for that printing direction, optimization is performed on the radii 

variables to minimize the material volume of the originally designed lattice within the 2nd (lower) 

level, while satisfying constraints on material strength. The failure criteria are defined in terms of 

failure indices 𝛼𝛼𝑖𝑖, as defined in [reference of previous paper]. Thereafter, the parameters of the 

optimal as-designed lattice are returned to the 1st level, where a manufacturability analysis is 

performed to produce the as-manufactured lattice. This process is repeated until an optimal 

printing direction and associated as-manufactured design are obtained.  
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HEEDS, Mithril, Abaqus, Python, Manufacturability Oriented Model Correction, and 

MATLAB are software tools utilized in various procedures of this study.  

HEEDS [72] is used to perform the design space search and to automate the entire 

optimization process between the software packages mentioned above.  

Mithril is a generative design package for lattice structures [need a reference]. It allows a 

very large design to be represented as a few lines of code (a script). In the current optimization 

process, each as-designed lattice model emerging from the lower level is converted into the 

format of a Mithril output file (*.mtl), which is used as the input for the manufacturability-

oriented model correction analysis. 

Abaqus [66] is a finite element analysis software package that is used to perform the 

structural analysis of each lattice design. Python [71] is used as the scripting language to extract 

simulation results from the Abaqus output (*.odb) file and to send them to MATLAB for post-

processing. MATLAB [73] is employed to compute orthotropic material properties for given 

printing angles and post-processing the stress state at the material coordinate system, as 

described in [17]. 

 

4.2.3.1 3D BCC Lattice Structure 

The 3D bcc lattice structure is composed of two BCC unit cells. The dimensions of the model 

are 20 mm * 10 mm * 10 mm, and the radii are 0.5 mm. For the loading condition, a force is 

applied in the negative z-direction on the lattice nodes of the right surface. On the left surface, 

the nodes are fixed, as shown in Figure 4.8.  
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Figure 4.8: 3D bcc lattice structure optimized results 

The optimal orientation of the lattice structure was found to be (𝜑𝜑, 𝜃𝜃) = (15°,0°).  This 

orientation is shown in Figure 4.8. From the figure above, the optimal orientations of the as-

designed lattice structure to the as-manufactured lattice are quite different which shows that both 

material orthotropy and AM process resolution are crucial for the manufacturability analysis of 

the lattice structure. 

4.2.3.2 3D Bracket Lattice  

The 3D bracket lattice structure shown in Figure 4.9 was optimized using the same process. 

The overall dimensions of the bracket were 300 mm * 200 mm * 20 mm. The two mounting 

holes on the left of the bracket were fixed, and a vertical load (in the negative z-direction) was 

applied to the mounting hole on the right side. 

 

Figure 4.9: Bracket lattice structure optimized results 
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The optimal orientation of the bracket lattice structure was found to be (𝜑𝜑, 𝜃𝜃) = (-30°,95°)   

(see Figure 4.9). The original as-designed volume is 313815 𝑚𝑚𝑚𝑚3  and the as-manufactured 

volume of the lattice is 469,239 𝑚𝑚𝑚𝑚3. The difference is 33%. 

 

(a)                                                                       (b) 

Figure 4.10: Bracket lattice structure built-in XY plane (a), XZ plane (b) 

Recalling that the Z direction is the printing head deposit direction, Figure 4.10 compares the 

optimal orientation of the as-manufactured lattice (Figure 4.10(a)) to the build orientation along 

Z axis (Figure 4.10(b)). Accounting for material orthotropy and AM resolution limitations, the 

optimal printing direction yields a lattice volume that is 10.76% lower than the direction shown 

in Figure 4.10(b).  

Z 

X 
Y 
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Chapter 5 
 
Multiphysics Design Optimization of Lattice Structures 
 
 
 

Within this study, we are going to generate lattice layouts under both mechanical and thermal 

loads with the field-aligned lattice algorithm. Based on the preference of different physic fields, a 

weight factor could be assigned within the load trajectory selection algorithm. The lattice beams 

would also be optimized on radii to achieve minimum mechanical and thermal compliance. 

This study is composed of three sections. First, we present an intermediate method and 

studies on this topic. Second, we introduce the method of lattice trajectory generation, which 

includes the algorithm of computing the principal vectors between multi-physics fields. Last, 

based on the multi-physics trajectory selection algorithm, we conduct a comparative study based 

on different weighting factors for the stress and the heat conduction field, to illustrate the trade-

off of lattice layout between the different importance of multi-physics fields. 

5.1 Intermediate Methods and Results 

5.1.1 The Trajectory Method 

In order to estimate the output fields for each type of loading, we initially assume that the 

domain is solid and uniform. For each physics field (e.g., structural or thermal), we use finite 

element analysis (FEA) to predict the distribution of the responses (e.g., stress field or heat flux). 

The principal vectors are computed at each nodal point, and these vectors are used in the creation 

of the lattice trajectories, as described below.  
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5.1.2 The Multifield Trajectory 

The lattice structure is designed to be applied to different scenarios, stress, heat conduction, 

and heat convection. Within earlier studies, the lattice layout aligned with the stress field and 

thermal field were studied separately [5], [6]. In this study, we propose a method to generate the 

lattice layout considering both the stress field and heat flux field applied simultaneously.  

The lattice layout is based on the trajectory of the stress and heat flux. To generate the trajectory 

for each field, the stress and heat flux values within a finely meshed domain are employed. The 

stress and heat flux values are obtained from Abaqus FEA. Then based on the start point and the 

weight factor for each field, the trajectory of the lattice is drawn based on the vectors for each 

field.  

5.1.3 Multiphysics Fields Vector Selection Algorithm 

Input:   i = number of physic fields 

 𝛾𝛾𝑖𝑖: user-defined global weights for each physics field 

 𝑢𝑢𝑖𝑖: local computed weight based on local physics field values at the point 

 𝑆𝑆1, 𝑆𝑆2, 𝐻𝐻1, 𝐻𝐻2, 𝑅𝑅1,(𝑅𝑅2): principal field vectors at the point 

While i:  

 𝑣𝑣1= 𝑢𝑢1*𝛾𝛾1*𝐿𝐿1+𝑢𝑢2*𝛾𝛾2*𝐻𝐻1
𝑢𝑢1*𝛾𝛾1+ 𝑢𝑢2*𝛾𝛾2

 (based on the angle between two vectors) 

 𝑣𝑣2= 𝑢𝑢1*𝛾𝛾1*𝐿𝐿2+𝑢𝑢2*𝛾𝛾2*𝐻𝐻2
𝑢𝑢1*𝛾𝛾1+ 𝑢𝑢2*𝛾𝛾2

 

 New weight for 𝑣𝑣1 and 𝑣𝑣2 is n= (𝑢𝑢1*𝛾𝛾1+ 𝑢𝑢2*𝛾𝛾2) 

 𝑚𝑚1 = 𝑛𝑛*𝑣𝑣1+𝑢𝑢3*𝛾𝛾3*𝑅𝑅1
𝑛𝑛+𝑢𝑢3*𝛾𝛾3

 =(𝑢𝑢1*𝛾𝛾1+ 𝑢𝑢2*𝛾𝛾2) *𝑣𝑣1+𝑢𝑢3*𝛾𝛾3*𝑅𝑅1
(𝑢𝑢1*𝛾𝛾1+ 𝑢𝑢2*𝛾𝛾2)+𝑢𝑢3*𝛾𝛾3

 = 𝑢𝑢1*𝛾𝛾1*𝐿𝐿1+𝑢𝑢2*𝛾𝛾2*𝐻𝐻1+𝑢𝑢3*𝛾𝛾3*𝑅𝑅1
𝑢𝑢1*𝛾𝛾1+ 𝑢𝑢2*𝛾𝛾2+𝑢𝑢3*𝛾𝛾3

  

 𝑚𝑚2 = 𝑛𝑛*𝑣𝑣2+𝑢𝑢3*𝛾𝛾3*𝑅𝑅2
𝑛𝑛+𝑢𝑢3*𝛾𝛾3

 =(𝑢𝑢1*𝛾𝛾1+ 𝑢𝑢2*𝛾𝛾2) *𝑣𝑣2+𝑢𝑢3*𝛾𝛾3*𝑅𝑅2
(𝑢𝑢1*𝛾𝛾1+ 𝑢𝑢2*𝛾𝛾2)+𝑢𝑢3*𝛾𝛾3

 = 𝑢𝑢1*𝛾𝛾1*𝐿𝐿1+𝑢𝑢2*𝛾𝛾2*𝐻𝐻1+𝑢𝑢3*𝛾𝛾3*𝑅𝑅2
𝑢𝑢1*𝛾𝛾1+ 𝑢𝑢2*𝛾𝛾2+𝑢𝑢3*𝛾𝛾3

 

 New weight for 𝑚𝑚1 and 𝑚𝑚2 is n= (𝑢𝑢1*𝛾𝛾1+ 𝑢𝑢2*𝛾𝛾2+ 𝑢𝑢3*𝛾𝛾3) 
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End 

The weighted function terms must satisfy the condition: 

𝛾𝛾1+ 𝛾𝛾2 + ⋯+ 𝛾𝛾𝑖𝑖 = 1 

The local weight functions are calculated as follows: 

𝑢𝑢1 = Max(Abs(Sig1), Abs(Sig2)) / Max(Abs[Globalsig1],Abs[Globalsig2]) 

𝑢𝑢2 = Abs(heat flux value)/ Max (abs (global heat flux values)) 

𝑢𝑢𝑖𝑖 =  Abs(R field value)/ Max (abs (global R field values)) 

Where, 

𝑢𝑢1 computed weight based on local principal stress values at the point 

𝑢𝑢2 computed weight based on local heat flux value at the point 

𝑢𝑢𝑖𝑖 computed weight based on local R field values at the point 

a. Angle Definition 

 

Figure 5.1: the angle definition of the principal vectors 

S1= 1st principal stress direction 

S2=2nd principal stress direction 

H1= heat flux direction 

H2=direction orthogonal to heat flux direction H1 

𝛼𝛼 angle: from 1st principal stress direction S1 to heat flux direction H1 

 

H1: heat flux direction 

S1: 1st principal stress direction 
𝛼𝛼 

S2: 2nd principal stress direction 

𝛽𝛽 
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𝛽𝛽 angle: between 2nd principal stress direction S2 and heat flux direction H1 

b.  Vector Selection 

1. 𝛼𝛼=[0, 𝜋𝜋/2 , 𝜋𝜋 , -𝜋𝜋/2] 

              

(a)                                                          (b) 

                    

(c)                                                       (d) 

Figure 5.2: The angle 𝜶𝜶 between S1 and H1 equals 𝝅𝝅 (a), 0 (b), 𝝅𝝅/2 (c), −𝝅𝝅/2 (d) 

In this case, select 2 principal stress directions S1, S2, or heat flux direction H1 and its 

orthogonal direction H2 as the lattice trajectory vectors, depending on the weighting factor of 

each field: 

V1= S1 or H1  V2= S2 or H2 

2. -𝜋𝜋/4 ≤ 𝛼𝛼 ≤ 𝜋𝜋/4 [𝛼𝛼 ≠ 0] 

 

 
H1 S1 

 

H

 

S

 

𝛼𝛼 
 H

 

S

 𝛼𝛼 

S1 H1 
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(a)                                                          (b) 

Figure 5.3: The angle between S1 and H1,  𝟎𝟎 < 𝜶𝜶 ≤ 𝝅𝝅/4 (a), -𝝅𝝅/4 ≤ 𝜶𝜶 < 0 (b). 

When −𝜋𝜋/4 ≤ 𝛼𝛼 ≤ 𝜋𝜋/4 [𝛼𝛼 ≠ 0], select the 2 principal vectors based on the following equations: 

V1= w1* γ1*S1+ w2*γ2*H1
w1* γ1+ w2*γ2

   V2= w1* γ1*S2+ w2*γ2*H2
w1* γ1+ w2*γ2

 

3. 𝜋𝜋/2 < |𝛼𝛼|< 𝜋𝜋/4  

 

(a)                                                          (b) 

Figure 5.4: The angle between S1 and H1. (a) 𝝅𝝅/2 < |𝜶𝜶|< 𝝅𝝅/4, 𝝅𝝅/𝟒𝟒 < 𝜶𝜶 ≤ 𝝅𝝅/𝟐𝟐 & 𝜷𝜷 < 𝝅𝝅/2, 
(b) -𝝅𝝅/2 < 𝜶𝜶 < -𝝅𝝅/4 & 𝜷𝜷 > 𝝅𝝅/2. 

When 𝜋𝜋/4 < 𝛼𝛼 ≤ 𝜋𝜋/2 & 𝛽𝛽 < 𝜋𝜋/2, Cos(𝛽𝛽)>0, then 

V1= w1* γ1*S2+ w2*γ2*H1
w1* γ1+ w2*γ2

   V2= w1* γ1*(-S1)+ w2*γ2*H2
w1* γ1+ w2*γ2

 

When -𝜋𝜋/2 < 𝛼𝛼 < -𝜋𝜋/4 & 𝛽𝛽 < 𝜋𝜋/2, Cos(𝛽𝛽)<0, then 

V1= w1* γ1*(-S2)+ w2*γ2*H1
w1* γ1+ w2*γ2

  V2= w1* γ1*S1+ w2*γ2*H2
w1* γ1+ w2*γ2

 

4. 𝜋𝜋/2 < |𝛼𝛼 |<3𝜋𝜋/4 
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(a)                                                          (b) 

Figure 5.5: The angle between S1 and H1 𝝅𝝅/2 < |𝜶𝜶 |<𝟑𝟑𝝅𝝅/4, 

𝜋𝜋/2 < 𝛼𝛼 ≤ 3𝜋𝜋/4 & 𝛽𝛽 < 𝜋𝜋/2 (a),  -3𝜋𝜋/4 < 𝛼𝛼 < 𝜋𝜋/2 & 𝛽𝛽 > 𝜋𝜋/2  (b). 

When 𝜋𝜋/2 < 𝛼𝛼 ≤ 3𝜋𝜋/4 & 𝛽𝛽 < 𝜋𝜋/2, shown in Figure 5.5(a), Cos(𝛽𝛽)>0, the vector is 

V1= w1* γ1*|S2|+ w2*γ2*H1
w1* γ1+ w2*γ2

  V2= w1* γ1*(-S1)+ w2*γ2*H2
w1* γ1+ w2*γ2

 

When -3𝜋𝜋/4 < 𝛼𝛼 < 𝜋𝜋/2 & 𝛽𝛽 > 𝜋𝜋/2, shown in Figure 5.5(b), Cos(𝛽𝛽)<0, the vector is 

V1= w1* γ1*(-S2)+ w2*γ2*H1
w1* γ1+ w2*γ2

  V2= w1* γ1*S1+ w2*γ2*H1
w1* γ1+ w2*γ2

 

5. 3𝜋𝜋/4 <|𝛼𝛼 |< 𝜋𝜋 

 

(a)                                                          (b) 

Figure 5.6: The angle between S1 and H1 is 3𝝅𝝅/4 < 𝜶𝜶 ≤ 𝝅𝝅 (a), -3𝝅𝝅/4 < 𝜶𝜶 < 𝝅𝝅 (b). 

In this case, select 2 lattice trajectory vectors: 

V1= w1* γ1*(-S1)+ w2*γ2*H1
w1* γ1+ w2*γ2

  V2= w1* γ1*(-S2)+ w2*γ2*H2
w1* γ1+ w2*γ2
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5.1.4 Studies and Intermediate Results 

5.1.4.1 Model Settings 

The model used for the lattice trajectory generation is the plate with a hole. The dimensions 

of the plate are 40 mm* 20 mm*2 mm, in length, height, and thickness respectively. The model 

is shown in Figure 5.7. The origin is at the center of the circle and the radius of the hole is 5 mm. 

 

Figure 5.7: Plate with a hole model 

For the stress field, we use the same loading and boundary conditions as the study [5], shown 

in Figure 5.8. The left edge of the plate is fixed, and the force is applied to the right edge of the 

plate. For the material properties of the given model, the elasticity is 1 and the poison ratio is 

0.33. 

 

Figure 5.8: Load and boundary conditions for stress field 

For the thermal field, we adopt a similar surface-to-point problem as [6]. Within the design 

domain, heat flux q = 1/12 is applied at the left edge, top half, and bottom half of the plate. At 
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the right edge, a constant temperature To = 0 is set at the 2 mm region in the middle. The load 

and boundary conditions for the heat conduction field are shown in Figure 5.9. The heat 

conductivity for the model is set to 1. 

 

Figure 5.9: Load and boundary conditions for heat conduction field 

5.1.4.2 Optimization Problem Statement 

 The optimization for the lattice structure would be set into bi-level optimization, at the 1st 

level, the lattice trajectory would be optimized on the input parameters of the field-aligned lattice 

algorithm, which includes the start point, the gap between seed points, the radius of merge circle 

and spacing constant. At the 2nd level, for a specific lattice layout, the radii would be optimized 

by MMA to minimize the weighted sum compliance of both mechanical and thermal compliance. 

1st  level optimization:  

 Objective:     minimize compliance C = 𝑤𝑤1 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎
𝐿𝐿𝑚𝑚_𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

+ 𝑤𝑤2 𝐿𝐿𝑡𝑡ℎ𝑚𝑚𝑜𝑜𝑚𝑚𝑎𝑎𝑎𝑎
𝐿𝐿𝑡𝑡_𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 

 Constraints:  combined compliance C of the lattice structure is larger than 0(>1e-5) 

 Variable:   𝑥𝑥 and 𝑀𝑀 coordinate of the start point (𝑥𝑥2 + 𝑀𝑀2 > 52) 

       𝑀𝑀𝐹𝐹𝑥𝑥𝐺𝐺𝐹𝐹𝑀𝑀 , 𝑀𝑀𝑠𝑠𝑛𝑛𝐺𝐺𝐹𝐹𝑀𝑀  (maximum and minimum allowable distance between the seed 

points) 

2mm 
Heat Flux 𝑞𝑞𝑠𝑠 Temperature 

𝑇𝑇0=0 
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       the radius of the merged circle: 𝑅𝑅 

       spacing constant: 𝛼𝛼 

2nd  level optimization: (with the optimized lattice layout) 

 Objective:      

Minimize compliance C= 𝑤𝑤1 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎
𝐿𝐿𝑚𝑚_𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 + 𝑤𝑤2 𝐿𝐿𝑡𝑡ℎ𝑚𝑚𝑜𝑜𝑚𝑚𝑎𝑎𝑎𝑎
𝐿𝐿𝑡𝑡_𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 

 Constraints:   

The total volume of the lattice structure is less than 20% 𝑉𝑉𝑠𝑠𝑡𝑡𝑠𝑠𝑀𝑀𝑙𝑙  

 Variable:  

Radii of lattice members: 𝑟𝑟𝑖𝑖: 𝑟𝑟𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑟𝑟𝑖𝑖 ≤ 𝑟𝑟𝑖𝑖𝑚𝑚𝑀𝑀𝑥𝑥 

(𝑠𝑠 = 1,  2,  … 𝑡𝑡𝑣𝑣𝑡𝑡𝐹𝐹𝑙𝑙 𝑛𝑛𝑢𝑢𝑚𝑚𝑛𝑛𝐹𝐹𝑟𝑟 𝑣𝑣𝑜𝑜 𝑙𝑙𝐹𝐹𝑡𝑡𝑡𝑡𝑠𝑠𝑙𝑙𝐹𝐹 𝑚𝑚𝐹𝐹𝑚𝑚𝑛𝑛𝐹𝐹𝑟𝑟𝑠𝑠) 

   where 𝑟𝑟𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑟𝑟𝑖𝑖𝑚𝑚𝑀𝑀𝑥𝑥 represent the minimum and maximum allowable radius for the 𝑠𝑠𝑠𝑠ℎ 

lattice member 

5.1.4.3 Weighting Factor Comparison Studies 

a.   Mechanical field weighting factor =1, thermal field weighting factor =0. 

To begin the comparison study, I start with a pure stress field, in which the weighting factor 

for the stress field is set to 1. The lattice layout of the optimization is shown in Figure 5.10.  

 

Figure 5.10: Lattice layout for mechanical weighting factor =1  
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The temperature distribution of the optimal solution is shown in Figure 5.11, the unit of the 

temperature is K. As a result, the thermal compliance is 224.2889. Figure 5.12 is the stress plot 

of the lattice layout, and the stress compliance is 0.1804. 

 

Figure 5.11: Temperature distribution of the lattice layout 

 
Figure 5.12: The stress distribution of the lattice layout which is calculated at the midpoint 
of each lattice beam, color shows the stress selected based on the maximum absolute value 

of the compression and tension stress values. 

 

b. Mechanical field weighting factor =0, thermal field weighting factor =1. 

To compare with the former study results, another study with a thermal field weighting factor 

equal to 1 is also conducted. The optimal lattice layout is shown below. 
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Figure 5.13: Lattice layout for thermal weighting factor =1  

 
Figure 5.14: Temperature distribution of the lattice layout 

 

Figure 5.15: The stress distribution of the lattice layout which is calculated at the midpoint 
of each lattice beam, color shows the stress selected based on the maximum absolute value 

of the compression and tension stress values. 
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The temperature distribution of the optimal solution is shown in Figure 5.14, the unit of the 

temperature is K. As a result, the thermal compliance is 674. Figure 5.15 is the stress plot of the 

lattice layout, and the stress compliance is 2.0526. 

 

5.2 Methodology 

To generate a lattice layout for the solid domain, typically, the topology optimization method 

is used to optimize the material layout for the solid domain, then distribute lattice unit cells to the 

optimized layout or mesh element. Within this study, a novel algorithm is developed to generate 

the lattice trajectory directly considering multi-physics fields.  

The algorithm was invented to address the following problems: 

1. Combine multiple physics fields, considering the characteristics/properties of each field. 

For example, within the mechanical field, the stress components are represented by 2D 

tensors; but in the thermal field, the heat flux is 1D vectors. How to combine 2D tensor 

and 1D vector is the problem that should be addressed by the algorithm. 

2. Account for the importance of each field at local points. Since multi-physics fields could 

introduce different components within the domain, they will have different values and 

even differences in magnitude. 

3. Implement the designer’s preference and input within the layout generation. For a lattice 

design, the designer may have some requirements or preferences for each field. This 

algorithm can take consider of designer’s bias. 

4. Be generic and could be applied to multiple physics fields. With this criterion in mind, 

we want to develop the algorithm as a generic method that could be applied to different 

physics fields rather than be tuned for each problem.  
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5.2.1 The Trajectory Method 

From studies [54]–[57], the concept and theory of the lattice design based on the trajectory of 

the principal field were introduced. Gao et al.,[5] proposed the method to generate lattice with a 

principal stress trajectory.  

For the mechanical field, the way to generate a stress trajectory is: first, conduct a Finite 

Element Analysis (FEA) for a uniform solid domain, with the given boundary conditions and 

mechanical loads. Since the interpolation of stress values will be used in the following steps, a 

really fine mesh is strongly recommended for the analysis. Then, with the stress components 

generated from the FEA study at each point, the principal stress vectors could be computed at 

each point. The 1st principal stress trajectory would go along the 1st principal stress vectors and 

the trajectory orthogonal to the 1st principal stress trajectory would go along the 2nd principal 

stress vectors. 

For the thermal field, the same trajectory idea could be applied to heat flux vectors. With a 

thermal analysis of the solid domain, the heat flux vectors could be computed. With the same 

algorithm from [5], the heat flux trajectory could be generated. 

After the trajectories are generated for the whole domain, we would distribute the lattice 

elements along the trajectories to convert the trajectories to lattice layout for further studies. 
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Figure 5.16: Flowchart for lattice trajectory method. 

 

5.2.2 The Multiphysics Field Trajectory 

The lattice structure is designed to be applied to different physics fields at the same time, 

including mechanical, heat conduction, heat convection, vibration, etc. Within earlier studies, the 

lattice layout aligned with the principal stress trajectories and heat flux trajectories is studied 

separately[5], [6]. In this study, we propose a method to generate the lattice layout considering 

both the principal stress field and heat flux field.  

The lattice layout is based on the trajectory of the principal stress and heat flux. To generate 

the trajectory for each field, the stress and heat flux values within a finely meshed domain are 

employed. The stress and heat flux values are obtained from Abaqus FEA. Then based on the 

start point and the weight factor for each field, the trajectory of the lattice is drawn based on the 

vectors for each field.  
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5.2.3 Multiphysics Fields Pseudo Principal Vector Computation Algorithm 

Since the trajectory generation is based on the principal vectors at each point, the first 

problem we want to solve is how to generate the pseudo principal vectors with two physics fields. 

As we know, mechanical fields and thermal fields have different values and properties. 

Within the same 2D solid domain, the stress components from the mechanical field are 

represented by 2D tensors. However, for the thermal field, the heat flux is a 1D vector. The 

algorithm to compute the pseudo principal vector for 2 physics fields is discussed below. 

5.2.3.1 Vector Transformation 

In the global XY coordinate systems, the mechanical/stress field has 3 stress components, Sx, 

Sy, and Sxy, the heat flux field has heat flux H, shown in Figure 5.17.  

 

Figure 5.17: Stress tensor and heat flux vector in the global coordinate system 

Stress components in XY coordinate could be represented in the 2D tensor: 

𝑆𝑆 = �
𝑆𝑆𝑥𝑥 𝑆𝑆𝑥𝑥𝑦𝑦
𝑆𝑆𝑥𝑥𝑦𝑦 𝑆𝑆𝑦𝑦

�                                                                (1) 
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In order to combine the 1D vector with a 2D tensor, we want to transform the heat flux 

vector into a 2D tensor within XY coordinates. 

𝐻𝐻1 is the 1D heat flux vector, which could be regarded as a 2D tensor with only one non-zero 

eigenvalue in principal coordinates: 

𝐻𝐻1 = �𝐻𝐻1 0
0 0�                                                               (2) 

H in the XY coordinate would then be: 

𝐻𝐻 = �
𝐻𝐻𝑥𝑥 𝐻𝐻𝑥𝑥𝑦𝑦
𝐻𝐻𝑥𝑥𝑦𝑦 𝐻𝐻𝑦𝑦

�                                                            (3)                                         

From the 2nd order tensor transformation equation, the principal tensor 𝐻𝐻1 

𝐻𝐻1 = 𝑄𝑄 ∗ 𝐻𝐻 ∗ 𝑄𝑄𝑇𝑇                                                       (4) 

�𝐻𝐻1 0
0 0� = �cos 𝜃𝜃 −sin𝜃𝜃

sin𝜃𝜃 cos 𝜃𝜃 � �
𝐻𝐻𝑥𝑥 𝐻𝐻𝑥𝑥𝑦𝑦
𝐻𝐻𝑥𝑥𝑦𝑦 𝐻𝐻𝑦𝑦

� � cos𝜃𝜃 sin𝜃𝜃
−sin𝜃𝜃 cos 𝜃𝜃�                        (5) 

The 𝜃𝜃 is the angle between the heat flux vector 𝐻𝐻1 and X axis. 

Then, the heat tensor H in the XY coordinate is 

𝐻𝐻 = 𝑄𝑄𝑇𝑇 ∗ 𝐻𝐻1 ∗ 𝑄𝑄                                                       (6) 

�
𝐻𝐻𝑥𝑥 𝐻𝐻𝑥𝑥𝑦𝑦
𝐻𝐻𝑥𝑥𝑦𝑦 𝐻𝐻𝑦𝑦

� = � cos 𝜃𝜃 sin𝜃𝜃
−sin𝜃𝜃 cos𝜃𝜃� �

𝐻𝐻1 0
0 0� �

cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 � 

= � 𝐻𝐻1 cos𝜃𝜃 cos 𝜃𝜃 −𝐻𝐻1 cos𝜃𝜃 sin𝜃𝜃
−𝐻𝐻1 cos 𝜃𝜃 sin𝜃𝜃 𝐻𝐻1 sin𝜃𝜃 sin𝜃𝜃 �                                   (7) 

Now, with both stress components and heat flux components in the 2D tensor format, we 

could superimpose them together.  

5.2.3.2 Normalization 

Considering the values of components from each physics field, normalization is needed for 

the combination of components.  
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𝑆𝑆𝑣𝑣𝑡𝑡𝑛𝑛 = 𝐴𝐴𝑣𝑣𝑠𝑠(�𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 − 𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦 + 3𝜏𝜏𝑥𝑥𝑦𝑦2)                                     (8) 

𝐻𝐻𝑀𝑀𝑣𝑣𝑝𝑝 = 𝐴𝐴𝑣𝑣𝑠𝑠(𝐴𝐴𝑛𝑛𝑠𝑠(𝐻𝐻1))                                                  (9) 

In order to consider the sign of each component, the normalization factors were chosen to be 

positive values. The normalization factor for the stress components is the average of all von-

mises stress within the domain. For the heat flux, since it is a 1D vector, the normalization factor 

is the average of absolute values of heat flux. 

For each component, the normalized components are: 

𝑢𝑢𝑥𝑥 =  𝐿𝐿𝑥𝑥
𝐿𝐿𝑣𝑣𝑜𝑜𝑎𝑎

                    𝑢𝑢𝑦𝑦 =  𝐿𝐿𝑦𝑦
𝐿𝐿𝑣𝑣𝑜𝑜𝑎𝑎

                𝑢𝑢𝑥𝑥𝑦𝑦 =  𝐿𝐿𝑥𝑥𝑦𝑦
𝐿𝐿𝑣𝑣𝑜𝑜𝑎𝑎

                              (10) 

𝑣𝑣𝑥𝑥 =  
𝐻𝐻𝑥𝑥
𝐻𝐻𝑀𝑀𝑣𝑣𝑝𝑝

                     𝑣𝑣𝑦𝑦 =  
𝐻𝐻𝑦𝑦
𝐻𝐻𝑀𝑀𝑣𝑣𝑝𝑝

                𝑣𝑣𝑥𝑥𝑦𝑦 =  
𝐻𝐻𝑥𝑥𝑦𝑦
𝐻𝐻𝑀𝑀𝑣𝑣𝑝𝑝

 

5.2.3.3 Designer Preference 

With a multi-physics problem, the designer may have a design preference for each field. The 

weighting factor defined with the designer’s preference is as follows: 

𝛾𝛾1+ 𝛾𝛾2 + ⋯+ 𝛾𝛾𝑖𝑖 = 1                                                   (11) 

𝛾𝛾1: Given weight for mechanical field 

𝛾𝛾2: Given weight for thermal field 

𝛾𝛾𝑖𝑖: Given weight for any physics field i 

5.2.3.4 Weighted Sum Function 

We use the weighted sum function in the global coordinate: 

𝑤𝑤𝑥𝑥 = 𝑢𝑢𝑥𝑥*𝛾𝛾1+𝑣𝑣𝑥𝑥*𝛾𝛾2                                                   (12) 

𝑤𝑤𝑦𝑦 = 𝑢𝑢𝑦𝑦*𝛾𝛾1+𝑣𝑣𝑦𝑦*𝛾𝛾2                                                   (13) 

𝑤𝑤𝑥𝑥𝑦𝑦 = 𝑢𝑢𝑥𝑥𝑦𝑦*𝛾𝛾1 + 𝑣𝑣𝑥𝑥𝑦𝑦*𝛾𝛾2                                               (14) 
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5.2.3.5 Tensor Combination 

The combined tensor is: 

𝑊𝑊 = [
𝑤𝑤𝑥𝑥 𝑤𝑤𝑥𝑥𝑦𝑦
𝑤𝑤𝑥𝑥𝑦𝑦 𝑤𝑤𝑦𝑦 ]                                                      (15) 

5.2.3.6 Pseudo Principal Vector in 2D 

Calculate the pseudo principal vector and principal values by finding the eigenvector and 

eigenvalues from the combined tensor: 

𝑤𝑤1,2 = 𝑤𝑤𝑥𝑥+𝑤𝑤𝑦𝑦
2

± ��𝑤𝑤𝑥𝑥−𝑤𝑤𝑦𝑦
2

�
2

+ 𝑤𝑤𝑥𝑥𝑦𝑦2                                   (16) 

With the pseudo principal vectors computed, the new trajectories and lattice layout could be 

generated.  

 

5.2.4 Multiphysics Fields Lattice Optimization 

Within this study, we are going to use the optimization method to test and demonstrate the 

ability of the algorithm and the influence of the designer’s preference on the design of lattice 

layout.  

We use multi-objective optimization studies to investigate the design parameters and 

weighting factors’ impact on the lattice layout. One objective is to minimize thermal compliance, 

and another is to minimize the mechanical compliance of the structure. 

Since for each lattice layout, the radii of the lattice beams would also impact the objectives, 

the 2nd level of optimization was adapted to minimize the weighted sum of both objectives by 

MMA [60]. The weighted sum approach works for convex pareto fronts, but may not work well 

for non-convex fronts. 
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1st  level optimization:  

Objective:      

minimize mechanical compliance 𝐶𝐶𝑚𝑚𝑠𝑠𝑣𝑣ℎ𝑀𝑀𝑛𝑛𝑖𝑖𝑣𝑣𝑀𝑀𝑙𝑙 

minimize mechanical compliance 𝐶𝐶𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑚𝑚𝑀𝑀𝑙𝑙 

Constraints:   

Each compliance C of the lattice structure is larger than 0(>1e-5) 

Variable:   

  𝑥𝑥 and 𝑀𝑀 coordinate of the start point 

𝑀𝑀𝐹𝐹𝑥𝑥𝐺𝐺𝐹𝐹𝑀𝑀, 𝑀𝑀𝑠𝑠𝑛𝑛𝐺𝐺𝐹𝐹𝑀𝑀 (maximum, minimum allowable distance between the seed points) 

the radius of the merged circle: 𝑅𝑅 

spacing constant: 𝛼𝛼 

the weighting factor for each field: 𝛾𝛾1, 𝛾𝛾2 

2nd  level optimization: (with the optimized lattice layout) 

Objective:      

Minimize compliance C=  𝛾𝛾1 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎
𝐿𝐿𝑚𝑚_𝑜𝑜𝑜𝑜𝑡𝑡𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎

 + 𝛾𝛾2 𝐿𝐿𝑡𝑡ℎ𝑚𝑚𝑜𝑜𝑚𝑚𝑎𝑎𝑎𝑎
𝐿𝐿𝑡𝑡_𝑜𝑜𝑜𝑜𝑡𝑡𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎

         (𝛾𝛾2 = 1 − 𝛾𝛾1) 

𝐶𝐶𝑚𝑚_𝑡𝑡𝑝𝑝𝑠𝑠𝑖𝑖𝑚𝑚𝑀𝑀𝑙𝑙,𝐶𝐶𝑠𝑠_𝑡𝑡𝑝𝑝𝑠𝑠𝑖𝑖𝑚𝑚𝑀𝑀𝑙𝑙 are the optimal solution from the single optimization study 

Constraints:   

The total volume of the lattice structure is less than 10% 𝑉𝑉𝑠𝑠𝑡𝑡𝑠𝑠𝑀𝑀𝑙𝑙  

Variable:  

Radii of lattice members: 𝑟𝑟𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑟𝑟𝑖𝑖 ≤ 𝑟𝑟𝑖𝑖𝑚𝑚𝑀𝑀𝑥𝑥 

 𝑠𝑠 = 1,  2,  … 𝑡𝑡𝑣𝑣𝑡𝑡𝐹𝐹𝑙𝑙 𝑛𝑛𝑢𝑢𝑚𝑚𝑛𝑛𝐹𝐹𝑟𝑟 𝑣𝑣𝑜𝑜 𝑙𝑙𝐹𝐹𝑡𝑡𝑡𝑡𝑠𝑠𝑙𝑙𝐹𝐹 𝑚𝑚𝐹𝐹𝑚𝑚𝑛𝑛𝐹𝐹𝑟𝑟𝑠𝑠 

where 𝑟𝑟𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑟𝑟𝑖𝑖𝑚𝑚𝑀𝑀𝑥𝑥 represent the minimum and maximum allowable radius for the 𝑠𝑠𝑠𝑠ℎ 

lattice member.  
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5.3 Studies and Results 

Based on the method and the algorithm discussed in the sections above, we deployed two 

examples to demonstrate the approach. One is a cantilever beam model, and another is the plate 

with a hole model. 

5.3.1 Cantilever Beam Example 

First, an example of a cantilever beam is deployed for demonstrating the approach.  

5.3.1.1 Model Settings 

The dimensions of the plate are 40 mm* 20 mm*1 mm, in length, height, and thickness 

respectively. The representation of the cantilever beam is shown in Figure 5.18.  

 

Figure 5.18: Load and boundary conditions for mechanical field and heat conduction field 

To show the contrast of lattice layout due to two physics fields, we set the loading and 

boundary conditions in Figure 5.18 so as to maximize the trade-off between designs that are ideal 

for mechanical versus thermal loading conditions. 
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For the mechanical field, we use the loading and boundary conditions as the cantilever beam, 

as shown in Figure 5.18. The left edge of the plate is fixed, and the uniform distributed force F=5 

N/mm is applied on the top edge of the beam. For the material properties of the given model, the 

modulus of elasticity is 2078 MPa and the poison ratio is 0.33. 

For the thermal field, the loading and boundary conditions are assigned to the design domain 

as shown in Figure 5.18. The heat flux 𝑞𝑞𝑠𝑠= 1 W/𝑚𝑚𝑚𝑚2 is applied at the center of the left edge. At 

the right edge, a constant temperature 𝑇𝑇0 = 0 ℃ = 273 K is set at two 4 mm regions at two 

corners of the right edge. The heat conductivity for the model is set to 0.1 𝑊𝑊/𝑚𝑚 ∙ 𝐾𝐾. 

5.3.1.2 Optimization Problem Statement 

A bi-level optimization procedure was used. In the 1st level, the lattice trajectory was 

optimized on the orientation input parameters of the field-aligned lattice algorithm, which 

includes the start point, the gap between seed points, the radius of the merging circle, and the 

spacing constant. In the 2nd level, for a specific lattice layout, the radii were optimized by MMA 

to minimize the weighted sum compliance of both mechanical and thermal compliance. 

1st  level optimization:  

Objective:      

minimize mechanical compliance 𝐶𝐶𝑚𝑚𝑠𝑠𝑣𝑣ℎ𝑀𝑀𝑛𝑛𝑖𝑖𝑣𝑣𝑀𝑀𝑙𝑙 

minimize mechanical compliance 𝐶𝐶𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑚𝑚𝑀𝑀𝑙𝑙 

Constraints:   

Each compliance C of the lattice structure is larger than 0(>1e-5) 

Variable:   

  𝑥𝑥 and 𝑀𝑀 coordinate of the start point 

𝑀𝑀𝐹𝐹𝑥𝑥𝐺𝐺𝐹𝐹𝑀𝑀, 𝑀𝑀𝑠𝑠𝑛𝑛𝐺𝐺𝐹𝐹𝑀𝑀 (maximum, minimum allowable distance between the seed points) 
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the radius of the merged circle: 𝑅𝑅 

spacing constant: 𝛼𝛼 

the weighting factor for the mechanical field: 𝛾𝛾1 

2nd  level optimization: (with the optimized lattice layout) 

Objective:      

Minimize compliance C=  𝛾𝛾1 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎
𝐿𝐿𝑚𝑚_𝑜𝑜𝑜𝑜𝑡𝑡𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎

 + 𝛾𝛾2 𝐿𝐿𝑡𝑡ℎ𝑚𝑚𝑜𝑜𝑚𝑚𝑎𝑎𝑎𝑎
𝐿𝐿𝑡𝑡_𝑜𝑜𝑜𝑜𝑡𝑡𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎

         (𝛾𝛾2 = 1 − 𝛾𝛾1) 

𝐶𝐶𝑚𝑚_𝑡𝑡𝑝𝑝𝑠𝑠𝑖𝑖𝑚𝑚𝑀𝑀𝑙𝑙,𝐶𝐶𝑠𝑠_𝑡𝑡𝑝𝑝𝑠𝑠𝑖𝑖𝑚𝑚𝑀𝑀𝑙𝑙 are the optimal solution from the single optimization study 

Constraints:   

The total volume of the lattice structure is less than 10% 𝑉𝑉𝑠𝑠𝑡𝑡𝑠𝑠𝑀𝑀𝑙𝑙  

Variable:  

Radii of lattice members: 𝑟𝑟𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑟𝑟𝑖𝑖 ≤ 𝑟𝑟𝑖𝑖𝑚𝑚𝑀𝑀𝑥𝑥 

 𝑠𝑠 = 1,  2,  … 𝑡𝑡𝑣𝑣𝑡𝑡𝐹𝐹𝑙𝑙 𝑛𝑛𝑢𝑢𝑚𝑚𝑛𝑛𝐹𝐹𝑟𝑟 𝑣𝑣𝑜𝑜 𝑙𝑙𝐹𝐹𝑡𝑡𝑡𝑡𝑠𝑠𝑙𝑙𝐹𝐹 𝑚𝑚𝐹𝐹𝑚𝑚𝑛𝑛𝐹𝐹𝑟𝑟𝑠𝑠 

where 𝑟𝑟𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑟𝑟𝑖𝑖𝑚𝑚𝑀𝑀𝑥𝑥 represent the minimum and maximum allowable radius for the 𝑠𝑠𝑠𝑠ℎ 

lattice member 

 

5.3.1.3 Weighting Factor Comparison Studies 

After testing the impact of different weighting factors on the layout of the lattice structure, 

the results are summarized in the following table of different combinations of weighting factors. 

From the lattice layouts shown in Table 5.1, it is clear that as the weighting factor for 

mechanical loading changes from 1 to 0, the lattice layout varies from preferring mechanical 

loading to biasing the thermal loading. The mechanical compliance increases and the thermal 

compliance decreases. There is a strong tradeoff of the lattice designs between mechanical 

compliance and thermal compliance.  
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Table 5.1: Lattice layout under different weighting factors 

The weighting 
factor for 

mechanical field 

Mechanical 
compliance (mm/N) / 
Thermal compliance 

(103𝐾𝐾/𝑊𝑊) 

Optimized Lattice layout 

1 1.1227/ 
37414 

 

0.7 1.9194/ 
9776.8 

 

0.5 2.3036/ 
8072.3 

 

0.3 8.58/ 
8707.3 

 

0 114500/ 
4833.8 
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In order to investigate the tradeoff of the lattice design, we used multi-objective optimization 

to systematically investigate the impact of the weighting factor and design parameters on the 

design of the lattice layout. We used the bi-level optimization strategy discussed in subsection 

5.3.1.2. 

Within the 2nd level optimization, we used MMA to minimize the weighted sum of two 

objectives. To help with comparing the values for each objective within the weighted sum 

function, normalization factors are necessary for normalizing each objective. We deployed two 

single objective optimization studies for simply mechanical loading conditions and simply 

thermal loading conditions to find the normalization factors for each objective. The optimal 

values for each study are shown in the table below. 

Table 5.2: The optimal solution for single objective optimization 

Single optimization study Mechanical compliance Thermal compliance 

Mechanical 1.1227 37414 

Thermal 114500 4833.8 

 

With the normalization factors for mechanical compliance and thermal compliance, we 

conducted the bi-level optimization with three sets of baseline designs to test the consistency of 

the results. The multi-objective optimization study results are presented in the figure below. 
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Figure 5.19: Pareto fronts from 3 sets of bilevel optimization studies 

With three sets of bilevel optimization studies, the Pareto fronts show the same tendency in 

the distribution of designs. And the weight factor of mechanical is decreasing as the designs 

move from the upper left corner to the lower right corner. In Figure 5.19, two optimal solutions 

from two single objective optimization studies are also shown. The plot demonstrates that two 

extreme cases are distributed in the two corners. Most designs in the knee region could be more 

interesting to explore the tradeoff between each objective. 

Besides three sets of optimization studies, we also did a convergence test ahead to choose a 

reasonable number for all optimization studies. The hypervolume for different evaluation 

numbers is calculated in the table and figure below. It’s clear that the study gets converged at 

800 evaluations.  
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Table 5.3: Hypervolume for optimization evaluation numbers 

Evaluation numbers Hypervolume 

50 0.2953 

100 0.4871 

200 0.5401 

400 0.4820 

600 0.4872 

800 0.5564 

1000 0.4872 

 

 

Figure 5.20: Hypervolume for different evaluation numbers. 
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5.3.2 Plate with a Hole Example 

Second, an example of a plate with a hole using the approach is presented below. (The study 

hasn’t been completed yet, some preliminary results are shown in this section) 

5.3.2.1 Model Settings 

The model used for the lattice trajectory generation is the plate with a hole. The dimensions 

of the plate are 40 mm* 20 mm*1 mm, in length, height, and thickness respectively. The model 

is shown in Figure 5.21. The origin is at the center of the circle and the radius of the hole is 5 

mm. 

 

Figure 5.21: Plate with a hole model. 

For the mechanical field, we use the loading and boundary conditions shown in Figure 5.22. 

The left edge of the plate is fixed, and the uniform distributed force F=10 N/mm is applied to the 

right edge of the plate. For the material properties of the given model, the modulus of elasticity is 

2078 MPa and the poison ratio is 0.33. 

For the thermal field, the loading and boundary conditions are assigned to the design domain 

as shown in Figure 5.21. The heat flux 𝑞𝑞𝑠𝑠= 1 W/𝑚𝑚𝑚𝑚2 is applied to the center of the bottom edge. 

A constant temperature 𝑇𝑇0 = 0 ℃ = 273 K is set to left, right and top edge. The circle and the 

bottom edge are adiabatic. The heat conductivity for the model is set to 0.1 𝑊𝑊/𝑚𝑚 ∙ 𝐾𝐾. 
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Figure 5.21: Load and boundary conditions for mechanical field and heat conduction field 

 

5.3.2.2 Optimization Problem Statement 

A bi-level optimization procedure was used. In the 1st level, the lattice trajectory was 

optimized on the orientation input parameters of the field-aligned lattice algorithm, which 

includes the start point, the gap between seed points, the radius of the merging circle, and the 

spacing constant. In the 2nd level, for a specific lattice layout, the radii were optimized by MMA 

to minimize the weighted sum compliance of both mechanical and thermal compliance. 

1st  level optimization:  

Objective:      

minimize mechanical compliance 𝐶𝐶𝑚𝑚𝑠𝑠𝑣𝑣ℎ𝑀𝑀𝑛𝑛𝑖𝑖𝑣𝑣𝑀𝑀𝑙𝑙 

minimize mechanical compliance 𝐶𝐶𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑚𝑚𝑀𝑀𝑙𝑙 

Constraints:   

Each compliance C of the lattice structure is larger than 0(>1e-5) 

Variable:   

  𝑥𝑥 and 𝑀𝑀 coordinate of the start point 

𝑀𝑀𝐹𝐹𝑥𝑥𝐺𝐺𝐹𝐹𝑀𝑀, 𝑀𝑀𝑠𝑠𝑛𝑛𝐺𝐺𝐹𝐹𝑀𝑀 (maximum, minimum allowable distance between the seed points) 
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the radius of the merged circle: 𝑅𝑅 

spacing constant: 𝛼𝛼 

the weighting factor for the mechanical field: 𝛾𝛾1 

2nd  level optimization: (with the optimized lattice layout) 

Objective:      

Minimize compliance C=  𝛾𝛾1 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎
𝐿𝐿𝑚𝑚_𝑜𝑜𝑜𝑜𝑡𝑡𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎

 + 𝛾𝛾2 𝐿𝐿𝑡𝑡ℎ𝑚𝑚𝑜𝑜𝑚𝑚𝑎𝑎𝑎𝑎
𝐿𝐿𝑡𝑡_𝑜𝑜𝑜𝑜𝑡𝑡𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎

         (𝛾𝛾2 = 1 − 𝛾𝛾1) 

𝐶𝐶𝑚𝑚_𝑡𝑡𝑝𝑝𝑠𝑠𝑖𝑖𝑚𝑚𝑀𝑀𝑙𝑙,𝐶𝐶𝑠𝑠_𝑡𝑡𝑝𝑝𝑠𝑠𝑖𝑖𝑚𝑚𝑀𝑀𝑙𝑙 are the optimal solution from the single optimization study 

Constraints:   

The total volume of the lattice structure is less than 10% 𝑉𝑉𝑠𝑠𝑡𝑡𝑠𝑠𝑀𝑀𝑙𝑙  

Variable:  

Radii of lattice members: 𝑟𝑟𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑟𝑟𝑖𝑖 ≤ 𝑟𝑟𝑖𝑖𝑚𝑚𝑀𝑀𝑥𝑥 

 𝑠𝑠 = 1,  2,  … 𝑡𝑡𝑣𝑣𝑡𝑡𝐹𝐹𝑙𝑙 𝑛𝑛𝑢𝑢𝑚𝑚𝑛𝑛𝐹𝐹𝑟𝑟 𝑣𝑣𝑜𝑜 𝑙𝑙𝐹𝐹𝑡𝑡𝑡𝑡𝑠𝑠𝑙𝑙𝐹𝐹 𝑚𝑚𝐹𝐹𝑚𝑚𝑛𝑛𝐹𝐹𝑟𝑟𝑠𝑠 

where 𝑟𝑟𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑟𝑟𝑖𝑖𝑚𝑚𝑀𝑀𝑥𝑥 represent the minimum and maximum allowable radius for the 𝑠𝑠𝑠𝑠ℎ 

lattice member 

 

5.3.2.3 Weighting Factor Comparison Studies 

After testing the impact of different weighting factors on the layout of the lattice structure, 

the results are summarized in the following table of different combinations of weighting factors. 

(The study hasn’t been completed yet, some preliminary results are shown in this section) 
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Table 5.4: Lattice layout under different weighting factors 

The weighting 
factor for 

mechanical field 
Optimized Lattice layout 

1 

 

0 

 



89 
 

Chapter 6 
 
Summary, Conclusions, and Future Work 

 

6.1 Summary and Conclusions 

Chapter 3 

A method to calculate orthotropic material properties in an AM process for 3D lattice 

structures has been developed and achieved using a bi-level design optimization approach. The 

optimization results have demonstrated the importance of accounting for material orthotropy 

within the lattice structure design and optimization process.  

Investigations on the effect of the printing direction have demonstrated that a feasible lattice 

made with the optimal printing direction could result in as much as a 20% reduction in volume 

compared to one made with the worst printing direction. Designs that ignored manufacturing-

induced material orthotropy have been found to be unreliable as well. 

Further, since the principal material coordinates are often associated with the printing 

direction, a simultaneous optimization of the printing direction and lattice structure has been 

found to be important.  

Chapter 4 

In this study, a lattice design methodology was developed that considers both material 

orthotropy and AM process resolution. Material orthotropy impacts the structural performance of 

the AM lattice structure and thus must be included in the design, while the minimum printing 

feature size of AM process influences the geometry of the final additively manufactured model. 

Both aspects are considered to produce and optimized as-manufactured lattice structure.  
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Chapter 5 

Within the study in Chapter 5, we generate optimized lattice layouts under multiphysics 

loadings, with both mechanical and thermal loadings. The lattice layout algorithm combines 

multi-physics fields in a generalized way. This new field can then be used to generate the lattice 

layout. With the new algorithm, the new vector could be computed regardless of tuning for 

different boundary conditions.  

Based on different weighting factors for the stress and the heat conduction field, the trade-off 

of lattice layout between the different importance of multi-physics fields is presented. 

6.2 Future Work 

With some preliminary results from multi-physics lattice optimization studies, future work 

would focus on the following studies: 
1. Design and optimize lattice structures for different models with various loads, and boundary 

conditions, including heat convection. 

The current study for multi-physics fields lattice is only based on the loading conditions 

similar to former studies [5], [6] for validating the results. Further studies could apply the 

algorithm to more physics fields, including heat convection, thermal stress, etc. Different design 

domains could also be used. 

2. Extend the lattice layout generation algorithm to 3D. 

Within the study, we only consider the 2D domain with all examples. To generate lattice 

structures for the 3D space, the algorithm should be extended to 3D space and consider more 

dimension combinations of multi-physics fields.  
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3. Collaborate with the geometric and material orthotropic manufacturability analysis within the 

multi-physics lattice design and optimization.  

Combining the manufacturability analysis within the design of multi-physics lattice structure 

could be investigated in the future. For multi-physics lattice structures, it is crucial to consider 

the manufacturing of lattice structures to be practical. Including both material orthotropy and 

AM process restrictions on multi-physics lattice design, the solution could be more realistic. 
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