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 ABSTRACT 

Weigh-in-Motion (WIM) technology is one of the primary tools used for pavement management. 

It can provide essential and accurate truck traffic information, including vehicle class and speed, 

vehicle count, gross vehicle weight (GVW), single axle (SA) and tandem axle (TA) weights, axle 

spacing, and the date and time of the event. The State Departments of Transportation (DOTs) 

gather WIM data for various applications, including highway planning, pavement and bridge 

design, commercial vehicle weight enforcement, asset management, and freight planning and 

logistics. Because of the wide range of applications, the data obtained at WIM stations must be 

accurate, consistent, and reflect actual field conditions. 

This study addressed four critical concerns related to WIM equipment performance, 

calibration needs, traffic loading data quality, and applications. Precisely, the current research 

advanced the state of the practice knowledge about (a) potential factors impacting WIM system 

accuracy, (b) accuracy and consistency of traffic loading data and calibration needs of WIM 

stations, (c)  revised/modified guidelines for WIM equipment calibration, and (d) estimation of 

commercial freight tonnage from Gross Vehicle Weight (GVW) data. The research objectives 

were accomplished by synthesizing and analyzing the WIM performance and traffic loading data 

available in the Long Term Pavement Performance (LTPP) traffic database and data available 

through other state DOTs. The WIM sites analyzed in this study are from 30 states within the 

United States and 3 Canadian provinces.   

Decision tree models were developed in this study to illustrate a potential for estimating 

the expected WIM measurement error range using information about the WIM site and sensor-

related factors. The results show that the sensor array and sensor types are the most important 

predictors, followed by WIM controller functionality (speed points). The data analysis and 



 

 

results also show that the climate can be important for some sensor types. One can integrate this 

information with equipment installation and life cycle costs to determine the most reliable and 

economical WIM equipment while also considering accuracy requirements by WIM data users. 

One way to evaluate WIM measurement errors is by using the data collected immediately 

before and after equipment calibration. The limitation of this approach is that the data represent a 

snapshot in time and may not represent a long-term WIM site performance. Consequently, an 

alternative approach was needed to characterize temporal variations in WIM data consistency. 

This study presents a method to estimate WIM system accuracy based on axle load spectra 

attributes [Normalized Axle Load Spectra (NALS) shape factors]. This analysis's main objective 

is to determine WIM system errors based on axle loading without physically performing 

equipment calibration. Using NALS to estimate WIM system accuracy can save a significant 

amount of time and resources, usually spent on equipment calibrations yearly. Successful WIM 

equipment calibration can eliminate systematic weight, speed, and axle spacing errors. The 

suggested changes in current WIM calibration procedures related to truck type (loaded truck), 

number of truck runs, and truck speed (multiple speed points) can significantly reduce the time 

and resources needed for successful equipment calibration.  

Accurate freight tonnage estimates and trends are essential due to their implications on 

economic, infrastructure development, and transportation policy decision-making. This study 

presents a practical application of WIM data to estimate freight tonnage and classify commodity 

types. The payloads computed for Class 9 trucks from GVW data strongly correlated with the 

average freight tonnage obtained from a commercial data source, i.e., Transearch from the IHS 

market. The user can independently verify the freight estimates from surveys at locations close to 

WIM sites. 
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND 

Weigh-in-Motion (WIM) technology is one of the primary tools used for pavement management. 

It can provide accurate information about the traffic on road networks, including but not limited 

to vehicle class and speed, vehicle count,  gross vehicle weight (GVW), wheel and axle weights, 

axle spacing, and date and time of the event [1]. The State Department of Transportations (DOTs) 

are required to collect and submit WIM data to the Federal Highway Administration (FHWA) as 

part of its traffic monitoring program. Apart from reporting WIM data to FHWA, agencies collect 

WIM data for many reasons, including highway planning, pavement and bridge design, 

commercial vehicle weight enforcement, asset management,  and freight planning and logistics 

[2]. 

Overloaded trucks pose severe challenges to road transport operations. Compared to a 

truck loaded within legal weight limits, an overloaded truck is likely to cause more damage to 

the pavement and can lead to severe consequences if involved in a traffic accident. Law 

enforcement agencies divert potentially overloaded trucks to static scales and issue tickets based 

on the information collected at a WIM station [3]. Therefore, with so many potential uses, the 

data collected at WIM stations must be accurate and represent actual field loadings and 

conditions. 

1.2 KNOWLEDGE GAPS AND RESEARCH NEEDS 

Past studies pointed to the importance of various factors on WIM measurement accuracy [4-13]. 

However, no comprehensive study was found to quantify the relative importance of multiple 

factors and under what conditions these factors become critical for WIM measurement accuracy. 
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Most of the past studies were based on limited field data, which raised questions about the 

adequacy and broad applicability of the results.  

While several WIM guidance documents are available to assist state highway agencies in 

collecting WIM data, the advice requires specialized knowledge to implement that traffic data 

collectors frequently don't have. There is a lack of practical tools to help agencies implement the 

available guidance. Based on the review of the current state of the practice, two research focus 

areas were identified in this study (a)  advancing the state of knowledge in managing WIM data 

quality through an understanding of the effects of various site conditions and WIM equipment 

characteristics on WIM measurement accuracy and consistency, and (b) addressing the critical 

need for the practical tools that highway agencies can successfully implement to improve WIM 

data accuracy and support WIM data quality assurance functions. 

1.3 RESEARCH OBJECTIVES 

This study addresses multifaceted issues related to WIM systems performance, calibration 

procedures, and site and sensor-related factors that affect the accuracy of different sensors. The 

ultimate goal of the data analysis is to develop guidelines that state highway agencies can easily 

implement to collect accurate and reliable WIM data. The primary objectives of the research are 

to (a) describe statistical concepts in establishing WIM data accuracy, (b) draw comparisons 

between available WIM accuracy standards, (c) provide representative WIM measurement errors 

for different sensors (d) develop models for WIM equipment, and site selection (e) assess WIM 

data consistency and calibration needs based on axle load spectra (f) provide guidelines for 

successful WIM equipment calibration by quantifying the effect of sample size (truck runs), 

speed, temperature, and truck type on WIM errors, and (g) extend WIM loading data applications 
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to estimate commercial freight from Class 9 trucks payloads. These objectives were 

accomplished by synthesizing and analyzing the WIM error data available in the LTPP database. 

1.4 RESEARCH APPROACH 

There is a need to understand the relative importance of various sources of error on WIM data 

accuracy and for methods that could help minimize the effect of external factors on WIM data 

quality. Several factors affecting WIM data quality have been identified through the literature 

review. A comprehensive study was designed to quantify the effect of multiple factors on WIM 

data accuracy and evaluate the relative significance of different factors on WIM performance. 

WIM calibration is an essential activity for maintaining WIM data accuracy. Statistical analysis 

and machine learning techniques were used to develop data-driven methods for identifying WIM 

calibration needs based on analysis of statistical attributes computed based on WIM data 

reported by the WIM system for FHWA Class 9 trucks. The models developed in this research 

investigate the use of axle load spectra attributes to assess the systematic changes (bias) in WIM 

measurements for gross vehicle weight (GVW), single axle (SA) load, and tandem (TA) load. 

This methodology can save significant time and resources required for field validation of WIM 

performance using test trucks when applied in practice. Additionally, depending on the extent of 

information related to the site, sensor, and calibration-related factors, the decision tree models 

developed in this study can help highway agencies to optimize WIM sensor type and array 

selection. This information can be integrated with WIM equipment installation costs and life 

cycle costs to determine the most reliable and economical equipment while also considering 

WIM data accuracy requirements received from WIM data users. 
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1.5 POTENTIAL BENEFITS OF THE STUDY 

The details about representative WIM measurement errors by sensor type are presented in this 

report. These findings have an immediate practical application by providing highway agencies 

with the benchmark values demonstrating the practically achievable accuracy and variability of 

WIM measurements for different WIM sensor types after successful calibration.  

Decision tree models were developed in this study to illustrate a potential for estimating the 

expected WIM measurement error range using information about the WIM site and sensor-

related factors. One can integrate this information with equipment installation and life cycle costs 

to determine the most reliable and economical WIM equipment while also considering accuracy 

requirements by WIM data users. 

Successful WIM equipment calibration can eliminate systematic weight, speed, and axle 

spacing errors. The suggested changes in current WIM calibration procedures related to truck 

type (loaded truck), number of truck runs, and truck speed (multiple speed points) can 

significantly reduce the time and resources needed for successful equipment calibration. 

Accurate freight tonnage estimates and trends are essential due to their implications on 

economic, infrastructure development, and transportation policy decision-making. This study 

presents a practical application of WIM data to estimate freight tonnage and classify commodity 

types. The proposed method has good potential for application at WIM sites collecting loading 

data. Using WIM data is a different approach to traditional freight data collection methods like 

truck surveys, consumer reports, vehicle inventory & user surveys, commodity flow surveys, 

freight analyses framework, and other commercial data sources. The user can independently 

verify the freight estimates from surveys at locations close to WIM sites. 



5 

1.6 OUTLINE OF THE DISSERTATION 

This dissertation contains eight chapters. Chapter 1 outlines the background, problem statement, 

research objectives, and potential benefits of this research and briefly describes the research 

approach. Chapter 2 documents a comprehensive literature review, including a description of 

WIM accuracy and system performance requirements, international WIM accuracy assessment 

standards, factors affecting WIM system accuracy, and issues with WIM system calibration. 

Chapter 3 describes the criteria for data selection, data sources, extent, and limitations. This 

chapter also discusses sources of various data types used in this study. The summary of available 

LTPP and other state-owned WIM sites considered for this analysis is also presented in chapter 

3. Chapter 4 provides data analyses approach to evaluate and quantify the effect of site, sensor, 

and calibration-related factors on WIM measurement errors. This chapter presents a 

methodology that WIM data users and WIM data providers can use to estimate the expected 

WIM measurement accuracy for a given set of site conditions and WIM system design attributes. 

Chapter 5 provides a set of statistical procedures developed to identify and quantify changes in 

WIM measurement bias (calibration drift) based on analysis of changes in axle load spectra 

attributes for FHWA Class 9 vehicles (typically used as a calibration truck type) for WIM 

equipment calibration events. Chapter 6 addresses three core issues related to WIM systems 

accuracy and calibration procedures, i.e., how to; (1) perform successful calibration of a WIM 

system by quantifying the effect of sample size (truck runs), speed, temperature, and truck type 

on measurement errors, (2) model gross vehicle weight (GVW) WIM errors as a function of 

individual axle errors [(single axle (SA) and two tandem axles (TA), (drive and trailer)], and (3) 

estimate WIM measurement errors using the LTPP and the ASTM protocols. Chapter 7 

demonstrates useful applications of axle load spectra to estimate commercial freight tonnage. 



6 

The presented methodology uses GVW loading data for Class 9 trucks to estimate vehicle 

payload and commodity type. Chapter 8 provides conclusions and highlights the most critical 

findings from the WIM data analysis, the significance of the results, and the potential benefits of 

the research outcomes for collecting high-quality WIM data. This chapter also makes 

recommendations for future data collection.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 BACKGROUND 

Weigh-in-motion (WIM) technology is one of the primary tools used for pavement management. 

It can provide accurate information about the traffic on road networks, including but not limited 

to vehicle class and speed, vehicle count,  gross vehicle weight (GVW), wheel and axle weights, 

axle spacing, and date and time of the event [1]. The State Department of Transportation (DOTs) 

must collect and submit WIM data to the Federal Highway Administration (FHWA) as part of its 

traffic monitoring program. Apart from reporting WIM data to FHWA, agencies collect WIM 

data for many reasons, including highway planning, pavement and bridge design, commercial 

vehicle weight enforcement, asset management,  and freight planning and logistics [2]. For the 

last few years, the traditional WIM stations amalgamated with advanced traffic monitoring 

technologies (e.g., image acquisition devices) collect additional vehicle and traffic information 

that Artificial Intelligence (AI) techniques can process. This data collection and processing 

approach at WIM stations has opened many innovative applications, including vehicle color 

identification, tire footprint information, missing/flat/mismatched tires, lane potion, out-of-lane 

detection, and load types detection [14]. Overloaded trucks pose severe challenges to road 

transport operations. Compared to a truck loaded within legal weight limits, an overloaded truck 

is likely to cause more damage to the pavement and can lead to severe consequences if involved 

in a traffic accident. Law enforcement agencies divert potentially overloaded trucks to static 

scales and also issue tickets based on the information collected at a WIM station [3]. Therefore, 

with so many potential uses, the data collected at WIM stations must be accurate and represent 

actual field loadings and conditions. 
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The accuracy of the WIM systems is a primary concern for its manufacturers and users. The 

accuracy of weighing results obtained from WIM systems largely influences the control of the 

overloaded vehicle on highways. Several WIM technologies exist to capture the applied forces 

and predict static weight. Because WIM technology estimates static weight for a moving vehicle, 

there are many potential sources of measurement error. Some errors are due to the variation in 

the forces transferred by the moving truck to the sensor; the others are because of WIM 

equipment type and site conditions.  

The long-term pavement performance (LTPP) traffic data module is one of its most 

significant components. The module provides data related to traffic inputs for pavement 

analyses, distributions to create AASHTOWare inputs, Pavement-ME tables, truck volumes, 

WIM calibration details, axle counts, vehicle classification, traffic summary statistics, and many 

more. The LTPP traffic data are the foundation for new pavement designs for years to come [11, 

15]. Initially, the Pavement-ME traffic loading defaults were developed based on the data 

collected by the state agencies using the early generations of WIM sensors and submitted to 

LTPP. Since then, the LTPP has undertaken the specific pavement sections transportation pooled 

fund study 5(004) (SPS TPF) study. This program uses permanent WIM systems with more 

accurate and reliable sensors to collect high-quality axle loading data. The study was designed 

with the support of the Transportation Research Board Traffic Expert Task Group (ETG), and 

the data were collected by using (a) a centralized effort and (b) standardized data collection 

equipment and procedures [16]. 

2.2 WIM SYSTEM ACCURACY AND PERFORMANCE REQUIREMENTS 

Establishing a baseline for assessing the impact of multiple factors on WIM data accuracy would 

require an understanding of measurement accuracy and consistency concepts. Figure 2-1 shows 

the target analogy to visualize the differences between accuracy and consistency. Accuracy is the 
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conformity of results to the true value, i.e., the absence of bias. Bias is a tendency of an estimate 

to deviate in one direction from the true value. Consistency or precision is related to the 

repeatability of a process. The variability of repeat measurements can characterize precision 

under carefully controlled conditions. Figure 2-1 also illustrates that it is possible to be consistent 

(or precise, as applied to target shooting) without being accurate or accurate without being 

consistent (low precision). Ideally, we would like a measurement process to be accurate and 

consistent. 

 

Figure 2-1 Target analogy for understanding precision and bias. 

The WIM system accuracy is measured in terms of the relative difference between WIM 

and static weights. The following equation can express the relative WIM error: 

 

 
 -    

100
 

WIM weight Static weight

Static weight
     (2.1) 
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This relative error is commonly referred to as measurement error for a WIM scale. Further, 

this accuracy will vary for different types of WIM sensor technologies. For a well-calibrated WIM 

system, typical WIM measurement error follows a normal distribution with a zero mean (no bias) 

and a standard deviation [17], as shown in Equation 2.2:    

  2'
~ 0,

X X
N

X


 


   (2.2) 

Where  

'X = load measured on a WIM scale for an axle configuration 
X = load measured on a static scale for the same axle configuration 




= 
standard deviation (SD) characterizing the accuracy of the WIM 

scale 

Several WIM accuracy assessment protocols are available these days. The American 

Society for Testing and Materials International Standard, ASTM E1318-09 [18] is mainly 

adopted in the US, and the European Road Specification COST-323 [19, 20] is used in European 

countries. In addition, the LTPP field operations guide also documents the procedures to evaluate 

the WIM system accuracy [21-25].  The following section presents a brief discussion of available 

WIM accuracy assessment protocols.  

2.2.1 ASTM WIM Protocol ASTM E1318-09 (2017) 

American Society for Testing and Materials International Standard, ASTM E1318-09 (updated in 

2017), is a broadly recognized WIM measurement protocol in the United States. This 

specification classifies four types of WIM systems according to their application. Table 2-1 

summarizes performance specifications for different WIM systems. The Types I and II systems 

can be installed at traffic data collection sites for vehicles moving at highway speeds (10 to 80 

mph). Types III and IV are designed for weight-enforcement stations [18]. The ASTM Type I 

accuracy criterion was used to assess the WIM system performance for the SPS-TPF study. The 

static load (reference load) error limits as defined by ASTM WIM standard are ± 2 %, ± 3 %, ± 4 
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%, and ± 5 % for GVW, TA, SA, and wheel loads, respectively. WIM system performance is 

ascertained by comparing the reference and WIM weights for all the data items listed in Table 2-

1. The following relationship is used in the specification to calculate the percent difference 

between the WIM system and the reference values, as shown in Equation 2.3: 

 D C R    (2.3) 

The relative difference, d, in loads and weights (%) can be obtained by Equation 2.4: 

 
C R D

d
R R


    (2.4) 

where,  

D = The difference in speed (mph), axle spacing (ft.), and wheelbase (ft.) 

d = The difference in the value of the data item (wheel load, axle load, axle-group 

load, and gross vehicle weight) produced by the WIM system and the 

corresponding reference value is expressed as a percent of the reference value 

C = Value of the data item produced by the WIM system 

R = The corresponding reference value for the data item 

Table 2-1 Functional performance requirements for WIM systems (ASTM). 

Function 

Tolerance for 95 % Compliancea 

Type I Type II Type III 
Type IV 

value ≥ lbs.b ± lbs. 

Wheel Load ± 25 % - ± 20 % 5000 300 

Axle Load ± 20 % ± 30 % ± 15 % 12000 500 

Axle-Group Load ± 15 % ± 20 % ± 10 % 25000 1200 

Gross-vehicle Weight ± 10% ± 15 % ± 6 % 60000 2500 

Speed  ± 1 mph 

Axle-Spacing and wheelbase                                              ± 0.5ft 
a 95 % of data produced by the WIM must fall within tolerance. b Lower values are not a concern for enforcement. 

2.2.2 COST-323 WIM Standard 

This specification mainly addresses the issues associated with high-speed WIM systems, i.e., the 

WIM systems installed on one or more traffic lanes and operated under normal traffic conditions.  

According to this specification, under defined operating conditions (moving traffic, tire loads, 

etc.), the accuracy of a WIM system may only be defined statistically by a confidence interval of 

the relative error of a unit (an axle, an axle group, or a gross weight) defined as by Equation 2-1. 
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Such a confidence interval centered on the static load/weight is [-δ; +δ], where δ is the tolerance 

for a confidence level π (for example, 90 or 95%). A typical standardized table of δ values taken 

from European WIM specifications is shown in Table 2-2 [20]. 

Table 2-2 Accuracy classes definition, [value of δ, i.e., confidence interval width (%)]. 

Function 
Accuracy classes 

A(5) B+ (7) B (10) C (15) D+(20) D (25) E* 

Gross Weight (GW) 5 7 10 15 20 25 > 25 

Group of axle (AoG) 7 10 13 18 23 28 > 28 

Single axle (SA) 8 11 15 20 25 30 > 30 

Axle of group (GA) 10 15 20 25 30 35 > 35 
* Class E is defined for the WIM systems which do not meet the class D (25) requirements. 

2.2.2.1 Test Conditions and Confidence Levels (π⸰) 

This specification allows the user to set a test plan by selecting an appropriate combination of 

repeatability/reproducibility and environmental conditions. As per the specification, Table 2-3 

provides the minimum levels of confidence (πo) for different tests and environmental conditions. 

As compared to environmental repeatability (I), smaller πo values are required for limited (II) 

and full (III) environmental reproducibility conditions. 

Table 2-3 Minimum percentage levels of confidence πo of the centered confidence intervals case. 

Test conditions 
Sample Size (n) 

10 20 30 60 120*   

Full repeatability 

I 95.0 97.2 97.9 98.4 98.7 99.2 

II 93.3 96.2       97.0 97.8 98.2 98.9 

III 91.4 95.0 96.0 97.0 97.6 98.5 

Extended repeatability 

I 90.0 94.1 95.3 96.4 97.1 98.2 

II 87.5 92.5 93.9 95.3 96.1 97.5 

III 84.7 90.7 92.4 94.1 95.1 96.8 

Limited reproducibility 

I 85.0 90.8 92.5 94.2 95.2 97.0 

II 81.9 88.7 90.7 92.7 93.9 96.0 

III 78.6 86.4 88.7 91.1 92.5 95.0 

Full reproducibility 

I 80 87.4 89.6 91.8 93.1 95.4 

II 76.6 84.9 87.4 90.0 91.5 94.3 

III 73.0 82.3 85.1 88.1 89.9 93.1 
* Sample sizes (n) not mentioned in the table may be interpolated. 
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2.2.2.2 Accuracy Assessment of the WIM System 

The European WIM standard uses a pre-weighed or post-weighed vehicle to check the accuracy 

of a WIM system. The sample statistics, including mean (bias) m, standard deviation s, and the 

number values n are calculated and used as per the specification. "A lower bound π of the 

probability that an individual error falls within the specified interval [-δ; +δ] is calculated and 

compared to the specified π⸰.
" 

According to the statistics provided in the standard, an upper bound on the customer risk, π, for 

an α=0.05, is given by: 

 
1 2

( ) ( )u u       (2.5) 

 1,0.975

1

n
tm

u
s n

 
    (2.6) 

 1,0.975

2

  
 

n
tm

u
s n

  (2.7) 

The function  is the cumulative distribution function of a student variable and 𝑡𝑛−1,0.975 is a 

student variable with (𝑛 − 1) degrees of freedom. For a sample size greater than 60, the 

cumulative function  in the above equation can be approximated by the cumulative distribution 

of a standard normal variable. The following criteria are used for the acceptance of WIM 

systems: 

 If π ≥πo, the system is accepted in the accuracy class of tolerance for the criterion 

considered. 

 If π<πo, the system cannot be accepted in the proposed accuracy class, and the 

acceptance test is repeated with a lower accuracy class, i.e., a larger value of . 
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2.2.3 LTPP Field Operations Guide 

The WIM equipment calibration or pre-validation is performed using a known truck weight on 

the static scales. As per the LTPP Field Operations Guide, the static weights are collected at the 

certified scales using the procedure documented in the ASTM WIM standard and remain 

constant during the WIM equipment calibration or pre-validation. However, the WIM weights 

may vary based on truck speed, temperature fluctuations, and other site factors. The WIM 

equipment pre-validation is a process of assessing the performance of a WIM system based on an 

earlier calibration event. The compensation (the process of altering the equipment calibration 

factors) does not apply during WIM equipment pre-validation [18, 26, 27]. The LTPP Field 

operations guide developed for SPS-TPF WIM sites describes a WIM site that can provide 

research quality loading data if it meets the ASTM Type I tolerance limits. The ASTM criterion 

of no more than 5% of the errors exceeding tolerance is not applied to determine the WIM site 

performance. The LTPP method does not apply to wheel loads. This guide presents a procedure 

for calculating WIM accuracy (total measurement error, abbreviated as TE in this paper) that 

uses measurement bias (mean error) and SD of errors based on sample size for multiple truck 

runs. As per this guide, the total WIM measurement error based on the test truck data obtained 

from a calibration event can be estimated using Equation 2.8. The equation is a combination of 

bias (mean error) and margin of error (MOE) with 95% CI as described in the LTPP Field 

Operations Guide for SPS WIM sites [26].  

 1
2

Total Error  ,nX t      (2.8) 

 

 

 



15 

where,  

X = Mean error (bias) that can be reduced (to an extent) through successful equipment 

calibration. 

t=  t is the critical value (depending on the confidence level) of the student's t 

distribution based on the n-1 degree of freedoms 

n= Sample size, 40 for the LTPP SPS-TPF WIM sites (20 each for fully loaded and 

partially loaded trucks) 

σ= SD of the errors based on test truck data 

   The significance level, a 95% confidence level, its value is 0.05 

2.2.4 WIM Technology Austroads (AP-R168) 

Austroads (2000) defined WIM as a device that measures the dynamic axle mass of a moving 

vehicle to estimate the corresponding static axle mass. That is, the WIM device captures and 

records the axle or axle group mass and the gross vehicle weight as the vehicle is moving. WIM 

systems should not be confused with onboard vehicle weighing systems. Onboard weighing 

systems are mounted or attached to the vehicle, while WIM systems are independent of the 

vehicle being weighed. WIM system falls into two main groups concerning their speed; low-

speed WIM (less than or equal to 15 Km/h) and high-speed WIM (greater than 15 Km/h). At the 

time of the Austroads report, there were 12 high speed and 5 low-speed WIM systems by 

different vendors and suppliers that were either being used or available in Australia (and New 

Zealand). Limited quantitative or field information exists on the performance and life span of 

mass sensors (i.e., the primary component of a WIM system) [10]. 

No standard Australian specification or test method is available to determine and report 

WIM system accuracy results. Generally, accuracy is specified in terms of 95% tolerance of the 

vehicle being weighed. For example, an accuracy result such as 95% of vehicles weighed was 

within 10% and 20% for gross vehicle mass and individual axle mass. Austroads (2000) 

recommended adopting or modifying any existing standard (ASTM 1994 and COST-323 1997) 

for the evaluation and accuracy of WIM systems in Australia.  
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2.2.4.1 Types of errors  

Different types of errors can affect the accuracy of a WIM system. Austroads (2000) reported the 

following types of errors that can be associated with WIM system accuracy: 

 Actual error: associated with the error in determining the true mass of the vehicle. 

 Systematic error: associated with flaws in initial calibration or drift in existing 

calibration; quantified as the mean or average. 

 Random error: associated with WIM system errors or vehicle characteristics quantified as 

the standard deviation. 

2.2.4.2 Factors affecting WIM accuracy 

Austroads (2000) also described the following factors which impact WIM system performance 

and accuracy: 

 WIM location characteristics: Pavement-related factors like longitudinal and transverse 

profile, curvature, cross slope, pavement surface deflection, and pavement surface 

condition can be influential factors.   

 Vehicular characteristics: vehicle speed, acceleration/deceleration, body and suspension 

type, and type condition can all affect the performance of the WIM system 

 Environmental characteristics: Temperature, wind, and ice can significantly affect WIM 

system performance. Mostly, information related to these factors and their effect on the 

WIM system performance is well known to vendors, but most vendors don't disclose it. 

2.2.5 The Dutch Metrology Institute (NMi) International WIM Standard 

The Dutch Metrology Institute (NMi) International WIM standard was prepared in Europe by a 

group of international experts with specialized knowledge of metrology, standardization, and 

WIM technology. The NMi team believed the existing international standards (COST 323, 
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ASTM, and OIML-R134) and specifications on WIM system performance have their areas of 

application with some pros and cons. They also found that none of the existing standards 

encompass all the applications and operating conditions for WIM systems, e.g., for direct 

enforcement of overloading under normal highway conditions. The NMi international standard 

was developed with specific intended characteristics, including ease of access, widely 

acceptable, objectiveness, and independence for technology or commercial bias. Some of the 

procedures related to accuracy and tolerance levels defined in the NMi standard are somewhat 

like ASTM 1318-09 and COST 323. The NMi standard provides the performance requirements 

of WIM systems and the minimum testing methods required to achieve desired performance. An 

advancement in NMi standard is its legal application specifications and test methods for WIM 

systems [28]. Essential features of NMi international WIM standard are discussed next. 

2.2.5.1 Weighing specifications for statistical applications 

For statistical applications, the NMi standard classified WIM systems according to their 

weighing performance into five accuracy classes using the capital letter 'S'. Accuracy levels for 

each statistical class are summarized in Table 2-4. Here, the accuracy level quantifies the 

maximum size of the two standard deviation interval [-2σ, +2σ] of the relative measurement 

error, and under the normal or Gaussian distribution, this interval includes 95% of all 

measurements. 

Table 2-4 Statistical accuracy levels δ (%) per class. 

Measured quantity 
Accuracy classes 

S (5) S (7) S (10) S (15) S (20) 

Gross Vehicle Weight  5 7 10 15 20 

Axle Group Load 8 11 15 20 25 

Axle Loads 10 15 20 25 30 
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2.2.5.2 Weighing specifications for legal applications 

For legal applications, the NMi standard classified WIM systems according to their weighing 

performance into four accuracy classes using the capital letter 'S'. Accuracy levels for each legal 

class are summarized in Table 2-5. For legal applications, the accuracy level quantifies the 

maximum size of the maximum permissible error (MPE) [-MPE, +MPE] of the relative 

measurement error. This interval includes 100% of all measurements. Table 2-6 summarizes 

NMi test specifications for statistical and legal applications of WIM systems. 

Table 2-5 Legal accuracy levels MPE (%) per class. 

Measured quantity 
Accuracy classes 

L (3) L (5) L (7) S (10) 

Gross Vehicle Weight  3 5 7 10 

Axle Group Load 5 8 11 15 

Axle Loads 7 10 15 20 

 

2.2.5.3 Reference values (Static accuracy) and length measurements 

According to this standard, the gross weight and the axle (group) loads shall be determined using 

a static weighbridge, portable scales, or low-speed WIM systems capable of weighing the 

complete vehicle at once with an error less than or equal to one-third (1/3) of the applicable error 

specified for statistical and legal applications.  
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Table 2-6 Summary of NMi standard specifications. 

Application 

Type 

Test  

Method 
Test Method Description 

Minimum 

number of test 

vehiclesa 

Number 

of runs  

Acceptance criteria for 

accuracy 

Statistical 
Initial 

verification 

Typically done after 

installation or major 

repairs affecting the 

sensors 

2 20 

95% measurements for 

relative error lie within 

±δb 

Statistical 
In-service 

verification 

Used to verify if a system 

is still operating within 

specifications 

1 10 

95% measurements for 

relative error lie within 

±δ 

Legal 
Type 

approval 

First extensive 

performance test of a new 

system under full 

operating conditions 

3 90 

100% measurements for 

relative error should be 

less than 0.5MPE 

Legal 
Initial 

verification 

Typically done after 

installation or major 

repairs affecting the 

sensors 

2 60 

100% measurements for 

relative error should be 

less than MPE 

Legal 
In-service 

verification 

Used to verify if a system 

is still operating within 

specifications 

1 10 

100% measurements for 

relative error should be 

less than MPE 
a Different types of test vehicles make multiple runs at maximum, minimum, and middle operating speed. 
b Procedure for calculation of relative error measurements for each quantity and percentage of relative error   

measurements exceeding a specified criterion for each quantity is like ASTM 1318-09 [28]. 

2.3 FACTORS IMPACTING WIM SYSTEM PERFORMANCE 

Vehicle, site, and sensor characteristics can influence WIM accuracy considerably. These factors 

have an individual and a combined effect on the WIM measurements [29].  

Sensor type and array (number and spacing of sensors) are essential factors affecting 

WIM system accuracy. A recent synthesis of highway practice on WIM data reported findings 

based on survey data collected from 45 state DOTs within the US and six Canadian provinces. 

The results showed that 70%, 30%, 28%, 18%, and 20% of agencies use the quartz piezo (QP), 

bending plate (BP), piezo cable (PC), load cells (LC), and other WIM systems for data 

collection, respectively. Most agencies have more than one type of system and a few agencies 

with three or more kinds of WIM systems. Nearly 80% of the agencies were facing problems 

related to WIM sensors, and 60% indicated that they had problems with the WIM system going 

out of calibration. Some agencies faced more than one problem related to either WIM equipment 
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or data [2]. The WIM vendors make recommendations about sensor configuration (number and 

spacing of sensors) that can be influenced by site limitations, road conditions, vehicle dynamics, 

and the expected speed.  Intercomp (a renowned WIM sensor vendor); reported that the average 

WIM relative error could be reduced from 41% to 26% by using 4 to 6 sensors as compared to 2 

to 4 sensors. More sensors result in improved WIM performance (low measurement errors), but 

the equipment cost increases. Currently, a single threshold (2 sensors) and a double threshold (4 

sensors) are used for high-speed WIM stations. The triple (6 sensors) and tetra thresholds (8 

sensors) are used primarily for low-speed WIM or static scales, which are more accurate [14]. 

More details related to the WIM sensor and array are given in the FHWA WIM Pocket Guide 

(Part-1) [30]. A study by Haider et al. reported that the multiple speed points functionality of the 

WIM controller has a /significant influence on WIM sensor precision. More speed points could 

significantly improve the WIM precision. The results were based on 35 LTPP WIM sites as part 

of the Specific Pavement Studies Traffic Pooled Fund Study (SPS TPF). The authors also 

reported that no consistent trends were observed between International Roughness Index (IRI) or 

WIM roughness index (WRI) and consistency in WIM measurements based on the available data 

[22]. 

The European road specification reports that WIM site characteristics influence vehicle 

motion behavior and may cause significant discrepancies between the impact forces and 

corresponding static loads [19, 20, 31, 32].  A recent study by Qin et al. presented a finite 

element model of a WIM system that allowed the WIM sensor to be placed anywhere in the 

pavement. The simulation results showed that multiple sensors embedded in the middle of the 

asphalt layer had improved their ability to capture dynamic responses [33]. Similar findings were 

reported by Darestani et al. [34]. Several other studies documented that regardless of the WIM 
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system calibration, the WIM accuracy can deteriorate over time due to several factors, including 

temperature, pavement roughness, and fatigue of load sensors [4, 29, 35, 36]. 

Additionally, the vehicle suspension and oscillation can affect the WIM accuracy, 

resulting in the most significant possible errors in WIM systems. A multi-sensor WIM system 

may significantly reduce the influence of vehicle and axle oscillation. During the accuracy 

analysis of WIM systems using pre-weighed vehicles, Gajda et al. [7, 8, 37] reported that the 

dynamic component in the signal of the vehicle axle load exerted on the road surface is the 

primary cause of limited WIM system accuracy. The amplitude of the dynamic component 

depends on the pavement condition, vehicle speed, and suspension and may even amount to 40% 

of the static axle load values.  

Table 2-7 summarizes potential factors affecting WIM system accuracy [4, 6, 9, 16, 22, 

38, 39]. The WIM technology selection, site design, installation, maintenance, and calibration 

minimize WIM errors, while a portion is an inherent part of site characteristics. These errors lead 

to diminished WIM system performance, lower quality of WIM data, and a lack of users' 

confidence in the data. There is a need for practical tools to quantify the relative importance of 

various sources of error on WIM data accuracy for a given set of site-specific conditions. In 

addition, WIM data collectors need guidance and practical tools to improve WIM data quality 

through improved WIM site selection, technology selection, installation, calibration, 

maintenance, data analysis, and quality control/quality assurance (QC/QA) [22, 40, 41]. 
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Table 2-7 Summary of factors influencing WIM system performance. 

Potential factors Description 

Sensor, calibration, and traffic-related   

Sensor type 

Number and spacing of sensors in the array 

WIM controller and speed points 

Calibration using heavy test trucks, truck dynamics 

Truck speed, acceleration, deceleration 

Traffic congestion and lane changes 

Drivers behavior, braking 

Site conditions 

Pavement type  

Pavement support under the sensor and  

Surface smoothness 

pavement surface distresses 

Roadway geometry (longitudinal grade and cross slope) 

Installation and maintenance  

Proper installation, including oversight 

Type of installation material (grout) 

Routine maintenance 

Calibration frequency 

Environmental  

Temperature  

Crosswind 

Precipitation 

Calibration season 

2.4 CALIBRATION OF WIM SYSTEMS 

The WIM systems go out of calibration, and their accuracy deteriorates over time because of 

many factors. These factors may include changes in measurement conditions (e.g., temperature 

and speed), pavement deflection, roughness caused by distresses, and fatigue of WIM sensors. 

The authors of the referenced studies also reported that regardless of the WIM system 

calibration, the WIM accuracy could deteriorate over time because of these factors [4, 5, 29, 36, 

42, 43]. In another study in Arkansas, 10 out of 25 WIM sites yielded suitable loading data. The 

authors reported that the other sites exhibited WIM scale (sensor) failures and inconsistent 

loading data because of calibration concerns [44]. 

WIM equipment requires periodic calibrations to yield accurate and reliable loading data. 

Many agencies rely on a variety of auto-calibration techniques using different software-based 

algorithms to reduce the calibration cost. The most common auto-calibration methods offered by 

the WIM vendors include using the (a) average front axle weight of Federal Highway 
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Administration (FHWA) Class 9 trucks, (b) average weight of specific types of vehicles (often a 

loaded five-axle tractor semi-trailer). The auto-calibration techniques may be beneficial but have 

some limitations; for example, weight laws, truck characteristics, and front axle weights can vary 

among states. Therefore, these techniques could be implemented only after confirming the local 

WIM site conditions [45, 46]. The LTPP field operations guide uses multiple runs of a pre-

weighed class-9 truck to perform equipment calibration. Figure 2-2 shows the FHWA vehicle 

Classifications.  

 

Figure 2-2 FHWA Vehicle Classifications [47-51]. 

2.5 CHAPTER SUMMARY 

The types and sources of WIM error and the specific factors affecting WIM data quality and 

reliability were reviewed at length. Some WIM error sources are related to WIM site conditions, 

including road geometry, pavement roughness, pavement surface condition, pavement support 
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under the sensor, and truck flow and composition. Other sources of WIM measurement errors are 

related to WIM system design (the sensor type, sensor array, sensor longevity, and WIM 

controller functions), quality of installation, calibration, and maintenance. Additional intermittent 

errors may result from temporal changes in pavement support under the sensor and changes in 

material properties of some sensors due to daily and seasonal temperature variations and 

environmental changes (softening of the support under pavement due to spring thaw, hardening 

of the support during a winter freeze, water penetration into the sensor). Some of the errors can 

be controlled through sensor selection and system design/configuration, QA of installation, 

routine maintenance, and calibration, while others are an inherent part of site characteristics that 

need to be understood and accounted for during the WIM site and WIM technology selection 

phase.  

Most of the past studies were based on limited field data, which raised questions about 

the accuracy and adequacy of the results [4, 6-8, 12, 29, 52]. While many studies pointed to the 

importance of various factors, no comprehensive study was found to quantify the relative 

importance of multiple factors and under what conditions these factors become critical for WIM 

measurement accuracy. The factors mentioned above need to be evaluated further using quality 

WIM data to improve the desired accuracy of WIM systems.  
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CHAPTER 3 DATA ASSESSMENT AND EXTENT 

3.1 PURPOSE 

The literature review identified many factors affecting WIM data quality, including factors 

leading to systematic bias in WIM data and low precision (i.e., high WIM measurement error 

variability). These errors lead to diminished WIM system performance, lower quality of WIM 

data, and lack of users' confidence in the data. The purpose of the data assessment task is to 

investigate if sufficient data are available for the analyses to quantify the effect of different 

factors on WIM data accuracy and develop predictive models to infer the likely WIM data 

accuracy in the presence of certain site conditions and WIM operation practices.  

3.2 FACTORS AFFECTING WIM BIAS AND VARIABILITY 

Based on the literature review results, Table 3-1 presents the preliminary list of factors affecting 

WIM measurement bias and variability.  

3.3 CRITERIA USED FOR DATA SELECTION 

WIM data accuracy and consistency criteria and minimum calibration procedure requirements 

shown in Table 3-2 were used to identify WIM sites in the LTPP and other candidate databases 

suitable for analyses.  
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Table 3-1 List of potential factors affecting WIM measurement errors. 

WIM Site Factors WIM Equipment Factors 

Pavement  Sensor 

Pavement type Sensor type 

Pavement thickness Sensor array 

Pavement age Sensor age 

Pavement stiffness Controller function 

Surface condition Additional Steering factor 

Pavement Roughness Number of speed points 

Roadway Geometry Temperature compensation 

Grade Auto-calibration 

Curvature Calibration 

Slope Number of test trucks 

Traffic Flow Test truck type 

Truck dynamics Number of test truck passes 

Lane discipline Test truck speed 

Environment Temperature during calibration 

Average seasonal temperature Maintenance 

Average rainfall Maintenance frequency 

Climatic region Corrective maintenance events 

Wind force on the trucks Installation quality assurance 

 

Table 3-2 Criteria used for data selection. 

Data 

Quality 

Category 

Calibration WIM Data accuracy criteriaa 

Total runs Vehicle class GVW bias 
GVW  

total error 

TA  

total error 
SA total error 

High 

Quality 
≥10 9 ≤ ± 5 % ≤ ± 10 % ≤ ± 15 % ≤ ± 20 % 

Low 

Quality 
≥10 9 ≤ ± 15 % ≥ ± 10 % ≥ ± 15 % ≥ ± 20 % 

Note: a= Must meet all 4 WIM data accuracy criteria if all 4 data attributes are available. Exception: If TA and SA 

errors are missing (not collected by the agency), only GVW bias and GVW total error values were used to qualify the 

data. 

3.4 DATA SOURCES  

The data needed for this study include information about WIM site performance encountered 

under different site conditions (pavement and road conditions and characteristics, traffic flow, 

and environment), WIM site designs, and WIM equipment installation and management 

practices. For this research, several potential data sources were considered. The primary data 

source was identified as LTPP program databases and supporting documentation. The LTPP 

databases contain WIM data from all the states within the US and the Canadian provinces. 

Because these data were collected as part of the Long-Term Pavement Performance program, in 
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addition to WIM data, the databases also have extensive data about pavement, climate, traffic, 

and other site conditions.  

3.4.1 Data Elements Identified in the LTPP Data Sources 

Data elements associated with potential factors affecting WIM system efficiency were acquired 

from different LTPP database tables and ancillary data sources. Table 3-3 provides a summary of 

data elements identified in the LTPP databases, along with the name and description of the 

corresponding LTPP data tables containing the required data elements [21-25, 53-61].  

In addition to the LTPP database mining, the paper reports and documentation collected 

by LTPP from the state agencies were reviewed, as well as the reports and documentation 

associated with the LTPP TPF 5(004) and SPS-10 WIM sites. These additional sources provided 

information about WIM installation, WIM calibration and/or validation, information about the 

WIM maintenance schedule, sensor type, array, and age, and information about pavement 

condition, road roughness, and road geometry. Table 3-4 summarizes the data elements 

identified in the LTPP documentation. The required data elements were obtained from the LTPP 

database standard release 32.0 using online Infopave® features. In addition to the LTPP WIM 

data identified for the study, the data were obtained from California, Wisconsin, Michigan, 

Pennsylvania, Indiana, New Jersey, and British Columbia for BP, LC, and QP sensors. 

The data elements necessary for analyses included: 

 WIM data, including (a) WIM measurements for calibration test trucks collected during 

field calibration and reference static truck weights obtained before and after each 

calibration, (b) daily axle load spectra computed based on WIM data,  

 Information about the WIM sites, including (1) location, (2) roadway, (3) pavement 

characteristics, and (4) climatic data. 
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 Information about WIM equipment, including (1) sensor type, (2) sensor array, and (3) 

WIM controller functionality. 

 Information about WIM calibration, including calibration dates, test truck characteristics, 

calibration speeds, number of test truck runs, and temperature data collected during 

calibration. 
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Table 3-3 The LTPP database tables and extracted data types. 

 

 

Data type Data fields 
LTPP table 

name 
Table alias Table description Class name 

Pavement and 
Site Inventory 

Pavement layer 
type and 

thickness 

TST_L05B 

Material 

Characterization 

and Thickness 
Data 

Table containing layer descriptions for 

all constructions. 

Representative 
Pavement 

Structure 

Construction 

no, experiment 

type, 
experiment no. 

EXPERIMENT_

SECTION 

Experiment 

Section 

Stores current experiment information 
that is driven by Maintenance and 

Rehabilitation activities. 

Experiment 

Type and 

Improvement 
(M&R) History 

Site information SHRP_INFO 
LTPP Traffic Site 

Information 

Data describing the traffic data relations 

and site conditions for a given SPS 
project or GPS Site. 

Basic 

Information 

WIM 
calibration 

and equipment 

Calibration 

information 

TRF_CALIBRA

TION_WIM 

Weigh-in-Motion 

Equipment 

Calibration Data 

Equipment calibration or calibration 

check information for WIM equipment 

used at LTPP test sites. 

Equipment 

Calibration 

WIM sensor 

types 

TRF_EQUIPME

NT_MASTER 

Traffic Equipment 

Master 

Information on WIM and AVC 

equipment used at LTPP test sites 

collected from the calibration data sheet 
(Sheet 16). 

Basic 
Equipment 

Information 

Pavement 

Condition 

 

Longitudinal 

profile 

MON_HSS_PR
OFILE_SECTIO

N 

Longitudinal 
Profile Section 

Summary 

High Speed Survey section level profile 
and computed statistics based on 150 mm 

interval data. 

Section Level 

IRI 

Transverse 
profile 

MON_T_PROF_

INDEX_SECTI
ON 

Transverse Profile 
Index Section 

Test section statistical summary of 

transverse pavement surface profile 
distortion indices. 

Section Level 
Transverse 

Profile 
Distortion 

Indices (Rut) 

AC distresses 
MON_DIS_AC_

REV 

AC Distress 

Survey Ratings 

Distress survey ratings from manual field 

inspections of pavements with AC 
surfaces 

Manual 

Distress 

JPCC distresses 
MON_DIS_JPC

C_REV 

JPCC Distress 

Survey Ratings 

Distress survey ratings from manual field 

inspections of pavements with jointed 
PCC surfaces 

Manual 

Distress 

CRCP 
distresses 

MON_DIS_CRC
P_REV 

CRCP Distress 
Survey Ratings 

Distress survey ratings from manual field 

inspections of pavements with 

continuously reinforced PCC surfaces 

Manual 
Distress 

JPCP faulting 

MON_DIS_JPC

C_FAULT_SEC

T 

JPCC Faulting 
Section Data 

Contains section faulting statistics from 

transverse joints and cracks using data 

from MON_DIS_JPCC_FAULT table 

Section Level 

Back 
calculation 

(BC) 

BAKCAL_MOD
ULUS_SECTIO

N_LAYER 

Average BC 

modulus values 

This table contains back calculated 
modulus values averaged for each 

FWD_PASS. 

Section Level 

Traffic AADTT TRF_TREND AADT tend values 
This table contains AADTT values for 
each section and each year they were in-

study.  

Estimated 

Traffic Data  

Climate and 

Environment 

Climatic 

regions, SN,D-
Value(Effective 

slab thickness) 

TRF_ESAL_INP

UTS_SUMMAR

Y 

TRF ESAL Inputs 
Summary 

Summary of ESAL equation inputs for a 
given section. 

Computed 
ESAL Inputs 

Temperature 
CLM_VWS_TE

MP_MONTH 

Virtual Weather 
Station  Month 

Temperature  

Virtual weather station monthly air 

temperature statistics. 
Monthly 

Precipitation 
CLM_VWS_PR

ECIP_MONTH 

Virtual Weather 
Station 

Precipitation 

Month 

Virtual weather station monthly 

precipitation statistics. 
Monthly 

WIM Data Axle counts MM_AX Load Spectra 
Axle counts by load bin by site, vehicle 
class, axle group, year, month, and DOW 

Monthly 
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Table 3-4 The LTPP project documentation and reports and extracted data types. 

Figure 3-1 presents the distribution of sites with the most typical WIM sensor type for each State 

in the LTPP database. A majority of WIM sites have PC, followed by BP and QP sensors in 

North America. It should be noted that Figure 3-1 only shows the distribution of sites for states 

reporting WIM data to the LTPP. While it illustrates the WIM sites available in the LTPP 

database, it may not represent all WIM sites in the United States. Table 3-5 provides the 

Data type Data fields Report Name Report/Document description 

Pavement 
Pavement type, age, and 
thickness 

Phase II WIM Site 
Acceptability Report 

Report provides information on pavement type, age or 
installation date, and construction. 

Pavement 

Surface 

Condition 

Longitudinal profile LTPP ERD files 

Profile data collected by the RSC and provided o WIM 

validation contractor for pavement profile roughness 
analysis 

Pavement distresses 

LTPP Validation and 

Calibration Summary 

Report 

Pavement discussion on the possible influence of pavement 
condition on WIM accuracy based on visual inspection. 

Average IRI 

LTPP Validation and 

Calibration Summary 

Report 

Report on average IRI values within WIM section and 
approach 

Maximum IRI 

LTPP Validation and 

Calibration Summary 

Report 

Report on maximum IRI value within WIM section and 
approach 

Traffic 

Truck Dynamics 
LTPP Validation and 
Calibration Summary 

Report 

Report provides truck dynamics in the WIM section and 

approach that may affect WIM accuracy 

Lane Discipline 
LTPP Validation and 
Calibration Summary 

Report 

Report provides information on whether trucks travel down 

the center of the lane. 

Sensor 

Sensor type 

Phase II WIM Installation 

Report 
Ancillary information provides site layout. 

Traffic Sheet 17 WIM Site inventory 

Sensor Array 
Phase II WIM Installation 
Report 

Ancillary information provides site layout. 

Sensor Age 

LTPP Validation and 

Calibration Summary 
Report 

Report provides the site installation date. 

Traffic Sheet 14 WIM Site installation information 

WIM 

Controller 

Steering factor, number of 
speed points, temperature 

compensation, auto-

calibration 

LTPP Validation and 

Calibration Summary 
Report 

Report provides WIM controller information which is cross-

referenced with vendor information. 

WIM 
calibration 

and equipment 

WIM calibration bias and 
standard deviation values 

LTPP Validation and 
Calibration Summary 

Report 

Report provides WIM calibration bias and standard 

deviation values 

Traffic Sheet 16 
Information on WIM and AVC equipment used at LTPP test 
sites collected from the calibration data sheet (Sheet 16). 

Test truck data Traffic Sheet 19 Provides information on test trucks used for validation 

Test truck speeds, number 

of passes 
Traffic Sheet 20 Provides information on test truck runs, including speed 

Temperature during 
calibration 

LTPP Validation and 

Calibration Summary 

Report 

Temperature based analysis conducted on calibration results.  

Maintenance Maintenance frequency 
LTPP Phase II Maintenance 
Reports 

Provides information on semi-annual preventive 
maintenance and repairs 
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distribution of available WIM sites and calibration records for different sensors. A record 

represents a single calibration event for which the bias and SD were calculated based on multiple 

runs of a class 9 truck. This dataset was used to study the potential factors that can impact WIM 

system performance.  

 

 

 Figure 3-1 Distribution of LTPP WIM site location with different sensors in the US.  

Table 3-5 Number of available WIM sites. 

Data type 
Sensor type 

Total 
BP LC QP PC 

Total sites 24 9 79 58 170 

Total records 114 13 172 115 414 

The daily axle load spectra (ALS) for class 9 trucks [single axle (SA) and tandem axle (TA)] 

were extracted from the LTPP database to assess the long-term performance of WIM systems 

between calibration events. This data set contained all four-sensor types, i.e., BP, LC, QP, and 

PC. Table 3-6 shows the distribution of the 51 sites by climate, pavement, and sensor types. The 

number of available WIM sites and calibration events for LC sensors was limited compared to 

the other three sensor types. The small sample (6 replicates for LC sensor) size can result in 

wider 95% confidence intervals (CI). 
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Table 3-6 Distribution of sites used to assess WIM consistency over time. 

Pavement type 
Sensor 

type 

Climatic region 

Total Dry freeze 

(DF) 

Dry no freeze 

(DNF) 

Wet freeze 

(WF) 

Wet no freeze 

(WNF) 

Asphalt concrete 

(AC) 

BP - - - 1 (1) 1 (1) 

LC - - - - - 

PC - - 8 (12) 2 (3) 10 (15) 

QP - 3 (8) 6 (19) 7 (22) 16 (49) 

Portland cement 

concrete (PCC) 

BP 1 (8) 3 (8) 3 (8) 4 (12) 11 (36) 

LC - - 3 (6) - 3 (6) 

PC - 1 (1) - 1 (2) 2 (3) 

QP 1 (2) - 7 (16) - 8 (18) 

Total 2 (10) 7 (17) 27 (61) 15 (40) 51 (128) 

Note: Numbers outside the parenthesis show available WIM sites, and numbers inside the parenthesis show number 

of available calibration records."-"indicates no data are available.  

Table 3-7 presents the WIM data for BP and QP sensors before and after WIM equipment 

calibration. This dataset was used to provide guidelines for successful WIM equipment 

calibration. In total, 111 (53+58) and 62 (34+28) WIM records were available for pre-and post-

calibration data, respectively. At least 40 test truck runs were used to obtain pre- and post-

calibration data for these events. 

Table 3-7 Distribution of WIM sites and records by sensor type and climate. 

Data Sensor type 
Climatic regions 

Total 
DF DNF WF WNF 

Pre calibration 
BP - 3a (17 b) 3 (18) 4 (18) 10 (53) 

QP 3 (9) 5 (16) 7 (18) 6 (15) 21 (58) 

Post calibration 
BP - 3 (13) 3 (10) 4 (11) 10 (34) 

QP 2 (5) 3 (5) 3 (8) 6 (10) 14 (28) 
a No of WIM sites, b No of WIM records 
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3.4.2 Description of Analysis Data Sets and Data Attributes 

The following three categories of WIM sites were considered for analysis based on WIM data 

accuracy and consistency obtained from calibration records: 

1. LTPP TPF 5(004) and SPS 10 research-quality WIM data (LTPP RQD): The WIM 

sites consistently meet the ASTM Type 1 performance requirements (i.e., GVW total 

error ≤ ± 10 % for ≥ 75% of the calibration events) were included in this data set. This 

data set consisted of 170 calibration records from 36 WIM sites that are part of the 

LTPP SPS TPF 5(004) and SPS-10 studies. These sites represent the highest quality 

WIM data set used for this study due to the stringent LTPP WIM calibration protocol 

and daily WIM data review implemented by the LTPP program. This subset contains 

WIM data for BP, QP, and LC sensors.  

2. State-owned WIM sites providing high-quality WIM data (RQD Equivalent): This 

category included the state-owned WIM sites with the available WIM calibration data 

meeting or exceeding the criteria defined for LTPP RQD data accuracy standards. This 

data set included 164 calibration records from 94 WIM sites. This data set includes 

four sensor types: BP, QP, LC, and piezo-polymer cables (PC).  

3. State-owned WIM sites providing data of lesser quality than LTPP RQD sites (Less 

than RQD):  This category included the state-owned WIM sites that did not meet the 

LTPP RQD criteria based on the available calibration data. The subset includes 80 

calibration records from 40 WIM sites. This subset contains WIM data for BP (two 

sites with one calibration record each) and PC sensors (predominantly PC data with 38 

sites and 78 calibration records).  
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Tables 3-8 and 3-9 provide the distribution of available WIM sites and calibration records 

for different sensors and data categories, respectively. Note that based on the data collected for 

the analysis, all available WIM sites with LC, QP, and most BP sites had WIM data accuracy and 

consistency similar to the LTPP RQD sites. Only WIM sites with PC sensors had a significant 

number of sites with performance data lower than LTPP RQD. The low number of poor-

performing WIM sites might be explained by the proactive actions by state highway agencies in 

correcting the problems or not sending WIM data to the LTPP if the WIM site was not meeting 

the required performance standards. Also, many WIM sites included in the LTPP database did 

not have calibration data, thus, reducing the pool of potential analysis sites. 

Table 3-8 Number of available WIM sites. 

Data type 
Sensor type 

Total 
BP LC QP PC 

LTPP RQD  11 2 23 - 36 

RQD Equivalent 11 7 56 20 94 

Less than RQD 2 - - 38 40 

Total 24 9 79 58 170 

 

Table 3-9 Number of available calibration records. 

Data type 
Sensor type 

Total 
BP LC QP PC 

LTPP RQD 84  5 81 - 170 

RQD Equivalent 28  8 91 37 164 

Less than RQD 2 - -  78 80 

Total 114 13 172 115 414 

 

Table 3-10 provides the distribution of available WIM sites for different sensors and climates. 

The results show that several sensor-climate combinations in the matrix are missing or have a 

limited number of sites. For example, no LC sites are available in dry no-freeze (DNF) and wet 

no-freeze (WNF) climates. Also, only one BP site is available in the dry freeze (DF) climate. The 

majority of the QP sensor sites were available in the wet freeze (WF) climate. More PC sites 
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were available in wet climates as compared to dry climates. The explanation for such distribution 

is that the WF climate is the most common in the highly populated regions of the US.  

Table 3-11 shows the distribution of available records for multiple calibrations for sites 

presented in Table 3-10. There are 414 total records; however, the unbalanced design of this 

experiment matrix is apparent from the data availability. Because of the various missing or limited 

sensor-climate combinations, the experimental matrix considered is unbalanced. Therefore, it is 

challenging to conduct an overall ANOVA to isolate the influence of site factors on WIM data 

accuracy, considering multiple sensor types. The overall data extents show that majority of the 

data are available for QP, and PC sensors, followed by BP, while the LC sensor has only 13 WIM 

records. 

Table 3-10 Distribution of WIM sites by sensor and climate. 

Sensor type 
Climatic region 

Total 
DF DNF WF WNF 

BP 1 8 8 7 24 

LC 5 - 4 - 9 

PC 2 9 26 21 58 

QP 3 5 63 8 79 

Total 11 22 101 36 170 

Table 3-11 Distribution of calibration records by sensor and climate. 

Sensor type 
Climatic region 

Total 
DF DNF WF WNF 

BP 10 39 27 38 114 

LC 5 - 8 - 13 

PC 15 9 55 36 115 

QP 9 12 123 28 172 

Total 39 60 213 102 414 

3.5 DATA SUMMARY 

Table 3-12 summarizes data attributes for three data quality categories. The assessment of the 

individual data elements availability was required to analyze site conditions affecting WIM data 

accuracy and consistency (such as pavement smoothness, distresses, road geometry, pavement 
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thickness, structural stiffness, traffic conditions, temperature, and speed during calibration, etc.). 

The data extent revealed that while the data elements to characterize WIM data accuracy and 

consistency were available, data elements for describing site conditions were missing for many 

candidate WIM sites. The absence of data elements characterizing site conditions resulted in the 

limited number of sites that could be used in the analysis of site factors affecting WIM data 

accuracy and consistency. The most complete data set was the LTPP RQD, with adequate data 

for most factors.  

The site factors, including pavement type, thickness, longitudinal grade, curvature, and transverse 

slope, were analyzed for all the data categories wherever the data were available.  

Table 3-12 Distribution of calibration records by sensor and climate. 

Data attribute 
Number of calibration records by data quality category 

Total 
RQD RQD equivalent Less than RQD 

Climate 170 164 80 414 

Calibration temperature 126 4 - 130 

Pavement type 170 164 80 414 

Pavement thickness 131 107 80 318 

Longitudinal grade 170 39 18 227 

Curvature 170 74 80 324 

Cross slope 170 74 80 324 

IRI 68 32 - 100 

Deflection - 8 - 8 

Sensor array 170 164 80 414 

Speed points 170 164 80 414 

Calibration speed 158 84 20 262 

3.6 CHALLENGES WITH THE AVAILABLE DATA  

The data analysis approach depends on an adequate experimental design. The design of 

experiments uses power and sample size to examine the relationship between power, the number 

of replicates, and the maximum difference between the main effect means. Ideally, the 

experiment design precedes the data collection to ensure that the design has enough replicates to 

achieve adequate power.  
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For this study, the data analysis task used previously collected data from the LTPP and 

state highway agencies. The extent of the data was evaluated to determine its sufficiency and 

adequacy to support the analysis methods and objectives. There were several practical challenges 

in identifying enough WIM sites with documented high-quality WIM data and sufficient 

information about WIM site conditions. The LTPP technical support and state highway agencies 

were approached in an attempt to collect missing data. Unfortunately, since no experiment was 

designed to collect pavement data (smoothness, distress, stiffness, and thickness) and road 

geometry data at WIM site locations, the availability of these data elements beyond the LTPP 

SPS TPF and SPS 10 WIM sites was minimal. Pavement stiffness or other structural data were 

unavailable for any WIM site locations since no falling weight deflectometer (FWD) testing or 

pavement coring and testing were conducted near WIM sensor locations.  

The FWD data at or closer to WIM sensors were collected by Indiana DOT specifically 

for this project at 8 non-LTPP WIM sites in Indiana. In summary, the following were some 

reasons for the unbalanced distribution of the WIM sites representing unique site conditions:  

 High-performing WIM sites were constructed under favorable site conditions and regularly 

maintained, thus, limiting the range of site conditions to be analyzed. 

 Sites were purposefully not installed under conditions likely to adversely affect WIM data 

accuracy and reliability, resulting in the absence of site entries for some site conditions. 

 Field data collection efforts at LTPP pavement experiments did not cover the exact WIM site 

locations, limiting the number of known factors at WIM site locations (except for pavement 

roughness data collected at LTPP TPF WIM sites). 

 The addition of state-owned WIM data for BP and QP sensors also resulted in an unbalanced 

design. Most of the BP and QP sensor's WIM data were provided by the states of California 
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and Michigan, located in dry and wet climates, respectively. These WIM sites were 

calibrated under similar site conditions for various factors, including climate, pavement type 

and thickness, sensor array, speed points, truck speed, and the number of truck runs. 

 The number of sites and calibration records for LC sensors was relatively small compared to 

the other three sensors, resulting in an unbalanced distribution of data for the different 

locations and sensor-related factors. Therefore, the data for LC sensors were analyzed 

separately. 

 The distribution of WIM data for PC sites was also not uniform for different factors, as most 

of these data are only available in wet climates.  

 The non-availability of continuous variables was another challenge in selecting the analysis 

approach because most of the variables available for the data analysis were categorical, i.e., 

climate, pavement, sensor, sensor array, and speed points. 

3.7 CHAPTER SUMMARY 

This chapter documents the criteria for data selection, sources, extent, and limitations. The 

purpose of the data assessment task is to investigate if sufficient data are available for the 

analyses to quantify the effect of different factors on WIM data accuracy and for building 

predictive models for inferring the likely WIM data accuracy in the presence of certain site 

conditions and WIM operation practices. The required data elements were obtained from the 

LTPP database standard release 32.0 using online Infopave® features. The data mainly 

comprised the LTPP research quality WIM stations. These sites are calibrated according to LTPP 

protocol with a complete set of supporting information about the WIM station and the pavement. 

These WIM sites are part of the Specific Pavement Studies Traffic Pooled Fund Study (SPS-TPF 

and SPS-10) and follow a more stringent LTPP WIM calibration protocol. In addition to the 
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LTPP WIM data identified for the study, the data were obtained from California, Wisconsin, 

Michigan, Pennsylvania, Indiana, New Jersey, and British Columbia for BP, LC, and QP sensors. 

In total, data from 170 WIM sites spread over 30 states within the United States and 3 Canadian 

provinces were analyzed.  

The extent of the data was evaluated to determine its sufficiency and adequacy to support 

the analysis methods and objectives. There were several practical challenges in identifying 

enough WIM sites with documented high-quality WIM data and sufficient information about 

WIM site conditions. The LTPP technical support and state highway agencies were approached 

in an attempt to collect missing data. Unfortunately, since no experiment was designed to 

specifically collect pavement data (smoothness, distress, stiffness, and thickness) and road 

geometry data at WIM site locations, the availability of these data elements beyond the LTPP 

SPS TPF and SPS 10 WIM sites was minimal. Pavement stiffness or other structural data were 

unavailable for any WIM site locations since no FWD testing or pavement coring and testing 

was conducted near WIM sensor locations. The last section of this chapter presented the data 

limitations and potential challenges associated with the data analysis task.  
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CHAPTER 4 FACTORS IMPACTING WIM PERFORMANCE 

4.1 PURPOSE 

The relative influence of the factors presented in Table 2-7 on WIM measurement errors is not 

well understood or quantified. These factors contribute to poor WIM system performance and 

users' lack of confidence in the collected data. As a result, analytical techniques and models are 

needed to assess the relative significance of different sources of error on the accuracy of WIM 

data. WIM data collectors also require direction and practical tools to increase WIM data quality 

through improved procedures related to WIM site selection, technology selection, installation, 

calibration, maintenance, data processing, and quality control/quality assurance (QC/QA) [22, 

40, 41]. 

4.2 INTRODUCTION 

Vehicle, site, and sensor characteristics can influence WIM accuracy considerably. These factors 

have an individual as well as a combined effect on the WIM measurements [29]. Sensor type and 

array (number and spacing of sensors) are essential factors affecting WIM system accuracy. A 

recent synthesis of highway practice on WIM data reported findings based on survey data 

collected from 45 state DOTs within the US and six Canadian provinces. The results showed that 

70%, 30%, 28%, 18%, and 20% of agencies use the quartz piezo, bending plate, piezo cable, 

load cells, and other WIM systems for data collection, respectively. Most agencies have more 

than one type of system, and a few have three or more kinds of WIM systems. Nearly 80% of the 

agencies were facing problems related to WIM sensors, and 60% indicated that they had issues 

with the WIM system going out of calibration. Some agencies faced more than one problem 

related to either WIM equipment or data [2]. The WIM vendors make recommendations about 

sensor configuration (number and spacing of sensors) that can be influenced by site limitations, 



41 

road conditions, vehicle dynamics, and the expected speed. Intercomp (a renowned WIM sensor 

vendor); reported that the average WIM relative error could be reduced from 41% to 26% by 

using 4 to 6 sensors as compared to 2 to 4 sensors. More sensors improved WIM performance 

(low measurement errors), but the equipment cost increased. Currently, a single threshold (2 

sensors) and a double threshold (4 sensors) are used for high-speed WIM stations. The triple (6 

sensors) and tetra thresholds (8 sensors) are mainly used for low-speed WIM or static scales, 

which are more accurate [14]. More details related to the WIM sensor and array are given in the 

FHWA WIM Pocket Guide (Part-1) [30]. A study by Haider et al. reported that the multiple 

speed points functionality of the WIM controller has a /significant influence on WIM sensor 

precision. More speed points could significantly improve the WIM precision. The results were 

based on 35 LTPP WIM sites as part of the Specific Pavement Studies Traffic Pooled Fund 

Study (SPS TPF). The authors also reported that no consistent trends were observed between IRI 

or WRI and consistency in WIM measurements based on the available data [22]. 

The European road specification reports that WIM site characteristics influence vehicle 

motion behavior and may cause significant discrepancies between the impact forces and 

corresponding static loads [19, 20, 31, 32]. A recent study by Qin et al. presented a finite element 

model of a WIM system that allowed the WIM sensor to be placed anywhere in the pavement. 

The simulation results showed that multiple sensors embedded in the middle of the asphalt layer 

had improved their ability to capture dynamic responses [33]. Similar findings were reported by 

Darestani et al. [34]. Several other studies documented that regardless of the WIM system 

calibration, the WIM accuracy can deteriorate over time due to several factors, including 

temperature, pavement roughness, and fatigue of load sensors [4, 29, 35, 36]. 
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Additionally, the vehicle suspension and oscillation can affect the WIM accuracy, resulting 

in the most significant possible errors in WIM systems. A multi-sensor WIM system may 

significantly reduce the influence of vehicle and axle oscillation. During the accuracy analysis of 

WIM systems using pre-weighed vehicles, Gajda et al. [7, 8, 37] reported that the dynamic 

component in the signal of the vehicle axle load exerted on the road surface is the primary cause 

of limited WIM system accuracy. The amplitude of the dynamic component depends on the 

pavement condition, vehicle speed, and suspension and may even amount to 40% of the static 

axle load values. 

4.3 OBJECTIVES 

This study addresses two core topics related to WIM technology, (a) representative WIM 

measurement errors for different sensor types and (b) factors affecting WIM data accuracy and 

consistency. The research outcomes presented in this chapter include (a) representative WIM 

measurement error ranges for different sensors after calibration and (b) statistical models 

(decision trees) to quantify the effect of site, sensor, and calibration-related factors on WIM data 

accuracy. 

4.4 DATA ANALYSES APPROACH  

Based on the data limitations discussed in Chapter 3 previously, the full factorial analysis was not 

a viable option for data analysis. Therefore, several statistical methods and strategies were adopted 

to address data limitations. Subsequently, wherever possible; the results obtained from different 

methods were compared and findings were reported based on the most accurate and easily 

interpretable prediction methods. The following data analysis methods were used to study the 

factors affecting WIM data accuracy: 
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 The analysis of site factors' influence on WIM performance was focused on the evaluation of 

WIM data precision (as a measure of consistency and variability) and total error (computed 

as the mean error (or bias) +/- margin of error with 95% CI). The test truck data collected 

immediately after each WIM successful calibration event were used to ensure that the data 

were free of measurement bias (mean error) for quantifying the variability of WIM 

measurement error attributed to site and WIM equipment characteristics.  

 A full factorial design with two levels was considered for ANOVA if adequate WIM data 

were available. 

 Two-level partial factorial designs were used to analyze the factors with limited or 

unbalanced data. The ANOVA was conducted with partial factorial data to investigate the 

main effects of all the identified factors. Only two-way interactions were included in the 

model where adequate data were available.  

 One factor at a time analysis was considered to conduct a one-way ANOVA or paired t-test 

to compare means of different levels within a factor if WIM sites had limited and unbalanced 

data. However, no interaction between factors can be considered in this type of data analysis. 

 The interval plots were used to show the 95% confidence levels (CI) within the levels of 

various factors to show statistical differences (i.e., overlapping CI shows insignificant 

differences). 

 Multiple comparisons were conducted to compare multiple levels of factors where over two 

levels were available within a factor.  

 The non-parametric data analysis techniques were employed when the data did not meet the 

assumptions of parametric tests. The non-parametric tests are suitable and more robust for the 

data that do not meet normality assumptions. 
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 Linear and multiple regression models were developed wherever adequate data were 

available. The artificial neural network (ANN) models were also developed, and the results 

were compared with multiple regression wherever possible. 

 The classification and regression trees (CART) regression techniques were also used in the 

data analysis. A CART regression is a predictive algorithm used in machine learning. The 

CART regression can be used for a continuous response variable with many categorical or 

continuous predictors. It illustrates important patterns and relationships between a continuous 

response and important predictors within highly complicated data without using parametric 

methods. 

4.5 HOW TO QUANTIFY WIM ERROR 

Class Compared to ground truth (static weights), WIM measurement errors can be divided into 

bias and precision. An estimate's tendency to stray in one direction from the true value is known 

as bias. Bias is typically characterized by mean error. The variability of repeated measurements 

under carefully controlled conditions can indicate measurement precision. It implies that lower 

random errors will result in higher precision. WIM data should result in low bias and high 

precision. WIM equipment requires calibration to yield highly accurate and precise data.  

The relative difference between WIM and reference static weights is used to determine the 

accuracy of an individual WIM measurement. For the static weights to be used as a reference 

value, the ASTM E1318-09 section 7.1.3.4 requires the static weight limits to be within  ± 4%, ± 

3%, and ± 2% of the mean value for the SA, TA, and GVW measurements, respectively [62]. 

The true value for calibrating WIM systems is reference static weight measurements. The 

following equation can be used to express the relative WIM error [17, 25, 49, 63-65].  



45 

 
WIM weight Static weight

100
Static weight




    (4.1) 

Where: WIM weight = load, measured by a WIM sensor for an axle type, static weight = load 

measured on a static scale for the same axle type.  

This relative error is commonly referred to as a WIM measurement error. Furthermore, the 

errors can differ depending on the type of WIM sensor technology used. Typical WIM 

measurement error for a calibrated WIM system follows a normal distribution [66] with a zero 

mean (no bias) and a standard deviation (SD), i.e.,   

  2'
~ 0,  




X X
N

X   (4.2)

 

Where  

'X = measured load for an axle configuration on a WIM scale  
X = measured load for the same axle configuration on a static scale 




= WIM measurement error standard deviation 

The WIM equipment bias (mean measurement error) and σε (SD of measurement errors) data 

were collected for all the calibration records. Another statistical attribute, the total WIM 

measurement error, was calculated using the equipment bias (Xɛ) and SD (σε) and the total number 

of runs for each calibration record. Equation 4.3 combines bias (mean error) and margin of error 

with 95% confidence, as described in the LTPP Field Operations Guide for SPS WIM sites [26]. 

A WIM site can be qualified as an ASTM Type I site if the gross vehicle weight (GVW) total 

measurement error after successful equipment calibration is ≤ ±10% [22]. There are additional 

requirements to qualify a site as ASTM Type I, i.e., error thresholds for wheel load, single and 

tandem axles, speed, axle spacing, and Wheelbase. More details can be found elsewhere [62]. 
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2

Total measurement error  x t      (4.3) 

Where  

x = mean measurement error based on multiple test truck runs 

2
t = student's t distribution with α=0.05 

 = WIM measurement error standard deviation 

4.6 REPRESENTATIVE ERROR VALUES FOR WIM SENSORS 

The three data sets described in the previous section (LTPP RQD, RQD Equivalent, and Less 

than RQD) were analyzed to determine typical WIM measurement accuracy and consistency 

achieved after equipment calibration. Ideally, a successful WIM equipment calibration should 

eliminate bias in all categories of weight measurements (GVW, group axle weights, and 

individual axle weights). However, in practice, it is nearly impossible to eliminate bias in all 

types of weight measurements simultaneously due to differences in dynamic forces present at the 

measurement time. Therefore, the data obtained after calibration still show some bias. Tables 4-1 

to 4-3 present the representative values for GVW mean error (bias), the margin of error with 

95% CI, and the total error for different sensors and data categories. The ASTM E1318-09 WIM 

protocol provides the threshold values for different classes of WIM systems. Type I WIM 

systems are typically used for highway traffic monitoring and pavement design using the 

AASHTOWare Pavement ME method. Type I WIM systems' gross vehicle weight error 

tolerance is ±10% [62, 67]. This value is compared with the total measurement error range 

(|bias|+ margin of error with 95% CI) for WIM performance evaluation. 

WIM measurement errors and associated descriptive statistics for WIM performance attributes 

(i.e., mean error, the margin of error with 95% CI, and total error) were computed for each 

calibration event. Then, the averages were obtained to get representative values of all GVW 

WIM attributes for different sensor types and data sets.  
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Table 4-1 Representative values for GVW mean measurement errors (bias).  

Data type 
Sensor type 

BP LC QP PC 

LTPP RQD ± 0.82%  ± 1.60% ± 0.92%  - 

RQD Equivalent ± 0.81%  ± 1.00% ± 1.12%  ± 1.50% 

Less than RQD - - -  ± 4.51% 

All except LTPP RQD ± 0.81% ± 1.00% ± 1.12% ± 3.01% 

All combined ± 0.82% ± 1.30% ± 1.02% ± 3.01% 

 

Table 4-2 Representative values for GVW margin of error with 95% CI. 

Data type 
Sensor type 

BP LC QP PC 

LTPP RQD 3.65%  3.80% 4.86%  - 

RQD Equivalent 3.20%  4.80% 4.22%  4.20% 

Less than RQD - - -  8.64% 

All except LTPP RQD 3.20% 4.80% 4.22% 6.42% 

All combined 3.43% 4.30% 4.54% 6.42% 

 

Table 4-3 Representative values for GVW total errors. 

Data type 
Sensor type 

BP LC QP PC 

LTPP RQD ± 4.47%  ± 5.40% ± 5.78%  - 

RQD Equivalent ± 4.01%  ± 5.80% ± 5.34%  ± 5.70% 

Less than RQD - - -  ± 13.15% 

All except LTPP RQD ± 4.01% ± 5.80% ± 5.34% ± 9.43% 

All combined ± 4.25% ± 5.60% ± 5.56% ± 9.43% 

The following observations can be made from the results in Tables 4-1 to 4-3: 

 When the WIM systems were calibrated, the GVW mean errors (bias) were significantly 

reduced (within ± 1.60%) for all sensors available in LTPP RQD and RQD equivalent 

data categories. A considerably higher bias was observed for the PC sensor in less than 

the RQD data set (up to 4.5%, see Table 4-1).  

 The average random errors due to GVW measurement variability (margin of error with 

95% CI) did not expect to exceed ± 5.00% for all the sensors available in LTPP RQD 

and RQD equivalent data set. However, these ranges were higher for the PC sensor in 

the third (less than RQD) data set (up to 8.6%, see Table 4-2).  
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 The GVW total error for all available sensors in LTPP RQD and RQD equivalent data 

set was within ± 5.8%, well within ASTM Type I thresholds (± 10.0% for GVW total 

error) (see Table 4-3).  

 Overall, BP sensors showed the least amount of error. The error ranges of LC, and QP 

sensors were similar for all three GVW attributes and within a 2% difference of the BP 

total errors.  

 The PC sites part of the RQD equivalent data set showed low errors for all GVW error 

attributes compared to the sites part of less than the RQD category. Overall, the PC sites 

in less than the RQD data category showed the highest total error, where the average 

GVW total error values were within ± 13.15% (see Table 4-3). 

The information presented in Tables 4-1 to 4-3 has an immediate practical application. It provides 

highway agencies with the benchmark values demonstrating the practically achievable accuracy 

and variability of WIM measurements for different WIM sensor types after successful calibration. 

Highway agencies could use this information to evaluate their WIM site performance against the 

benchmarks and establish realistic expectations for WIM measurement accuracy for different WIM 

sensors. However, the above benchmarks and findings are based on the WIM data obtained 

immediately after each calibration event. They may not reflect changes in the WIM sensor's 

performance between calibration events. 

4.7 COMMON CHARACTERISTICS OF WELL AND POORLY-PERFORMING WIM 

SITES 

4.7.1 BP Sensors 

For the BP sensor, the WIM performance data and statistics computed after calibration events 

provided by the states of California and Wisconsin were found to be comparable or slightly more 

accurate than LTPP RQD data. The two BP sites with one calibration record each showed 
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performance lower than LTPP RQD. These poorly performing BP sites were installed in Indiana 

with the staggered sensor array and calibrated using a single speed point with 10 test truck runs. 

One site showed unusually high bias (possibly due to calibration criteria used), and the other 

showed high SD. These sites were not considered for further analysis because there were only two 

records, and both records were statistically identified as outliers. Also, the number of records 

showing poor performance was significantly lower compared to LTPP RQD and RQD equivalent 

data categories. Table 4-4 indicates that except for the two outlier sites, the state-maintained BP 

sites had WIM performance data similar to LTPP RQD sites. 

Table 4-4 Descriptive statistics for BP sensor by data categories.  

Data category Sites Calibration events Bias SD Total error 

LTPP RQD 11 84 ± 0.82% 1.83% ± 4.52% 

RQD Equivalent 11 28 ± 0.81% 1.60% ± 4.30% 

Less than RQD 2  
1 (site18-2009) ±0.50% 5.8% ± 13.60% 

1 (site 18-3031) ±6.80% 3.8% ± 15.40% 

 

The effect of site, sensor, and calibration-related factors on BP sensors' WIM performance 

was analyzed by performing one-way ANOVA. Table 4-5 provides the descriptive statistics of the 

GVW performance data by different site factor levels computed for WIM sites with BP sensors in 

the RQD equivalent data category. The analysis showed no significant differences (i.e., no more 

than a 2 percent difference in the average total GVW errors) in the performance characteristics of 

BP WIM sites for the factors analyzed.  

4.7.1.1 Common Characteristics of Well-Performing WIM Sites with BP Sensors 

Some common characteristics of well-performing BP WIM sites were observed, as summarized 

below. 

 Climate: The climate did not affect the performance of the BP sensor for the state-owned 

WIM sites. BP WIM sites perform well in all climates. 
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 Sensor array: The better quality data were obtained by using the BP sensors in a 

staggered configuration.  

 Truck runs, and calibration speeds: The state-owned BP sites that were calibrated using 

10 truck runs showed slightly lower variability in calibration data. However, the 

difference was small, with a 0.5% error difference.  

 Speed points: All the BP sites part of these analyses were calibrated using multiple speed 

points and showed good performance with low variability in measurement error. 

 Pavement: all high-performing BP plates were installed in 12-inch thick PCC pavements. 

Table 4-5 Descriptive statistics for RQD equivalent BP data. 

Factor 
Levels 

Number of 

calibration events 

GVW SD GVW total error 

Climate Dry 16 1.4% ± 4.1% 

Wet 12 1.8% ± 4.6% 

Sensor array BP in-line 24 1.6% ± 4.3% 

BP staggered 4 1.7% ± 4.1% 

Truck runs 10 5 1.4% ± 3.8% 

>10 23 1.6% ± 4.4% 

Speed points Single - - - 

Multiple 28 1.6% ± 4.3% 

Pavement AC - - - 

PCC 28 1.6% ± 4.3% 

 

4.7.2 QP Sensor 

The WIM performance data for QP sensors were obtained for the WIM sites located in the states 

of Michigan, Pennsylvania, Connecticut, New Jersey, and Wisconsin. The computed WIM 

performance attributes for these sites were either comparable or slightly better than LTPP RQD 

data. The descriptive statistics of the GVW data are shown in Table 4-6. The results show 

insignificant differences between the GVW WIM performance data for these two data categories. 

Table 4-6 Descriptive statistics QP sensor (GVW). 

Data category Sites 
Calibration 

events 
Bias SD Total error 

LTPP RQD 23 81  ± 0.9% 2.4% ± 5.9% 

RQD Equivalent 56 89 ± 1.1% 2.1% ± 5.7% 
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The effect of site, sensor, and calibration-related factors on QP WIM performance was analyzed 

for state-owned WIM sites in the LTPP equivalent category using one-way ANOVA. Table 4-7 

provides descriptive statistics for various factors used in the analysis.  

Table 4-7 Descriptive statistics for RQD equivalent QP sensor data. 

Factor Levels Calibration events GVW SD GVW total error 

Climate 
Dry - - - 

Wet 89 2.1% ± 5.7% 

Sensor array 

QP double 

staggered 
6 1.8% ± 4.6% 

QP double in-line 16 2.7% ± 6.7% 

QP single staggered 67 2.0% ± 5.5% 

Truck runs 
10 14 2.1% ± 6.0% 

>10 75 2.1% ± 5.6% 

Speed points 
Single 16 2.18% ± 6.03% 

Multiple 73 2.13% ± 5.68% 

Pavement 
AC 40 2.3% ± 5.9% 

PCC 49 2.0% ± 5.5% 

 

The analysis showed no significant differences (i.e., no more than a 2 percent difference in the 

average total GVW errors) in performance characteristics of QP WIM sites for the factors 

analyzed, with exception of the sensor array.  

4.7.2.1 Common Characteristics of Well-Performing WIM Sites with QP Sensors 

 Climate: All good-performing QP sites were located in a wet climate (no data in Dry 

climates were available for analysis). 

 Pavement: QP WIM sites performed well both in AC and PCC pavements. WIM sites 

with QP sensors installed in PCC pavements showed slightly better but not statistically 

significant improvement in WIM performance. On average, less than 0.5% 

improvement was observed for QP WIM sites in PCC pavements. 

 Truck runs: The state-owned QP WIM sites that were calibrated using more than 10 truck 

runs showed slightly lower variability in calibration data.  
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 Calibration speed points: Statistically, the GVW total error was not significantly 

different when multiple speed points were used to install calibration factors, as 

compared to a single speed point. The GVW average values for standard deviation and 

total error were slightly better for sites calibrated using multiple calibration speed 

points, as compared to the sites with single points.   

 Sensor array: WIM sited with QP sensors in a double-staggered sensor array (i.e., a 

total of four half-lane sensors) showed the best performance. However, state-owned 

Michigan WIM sites with a single-staggered sensor array (i.e., a total of two half-lane 

sensors) also showed very good performance. 

4.7.3 PC Sensor 

The WIM performance data for PC sensors were obtained from the states of Alberta, Arizona, 

Indiana, Iowa, Manitoba, Maryland, Missouri, New Jersey, North Carolina, Pennsylvania, and 

Washington. The computed GVW WIM performance data for these sites were subdivided into two 

categories, (a) LTPP RQD equivalent and (b) less than LTPP RQD. The descriptive statistics of 

the GVW data attributes and comparisons between data types are shown in Tables 4-8 and Figure 

4-1, respectively. The results show that GVW SD and total error are significantly lower for RQD 

equivalent data than the other category (see Figure 4-1 for details).  

Table 4-8 Descriptive statistics PC sensor (GVW). 

Data category 
WIM sites Calibration 

events 
Bias SD Total error 

RQD Equivalent 20 37 ± 1.6% 2.2% ± 6.5% 

Less than RQD 38 78 ± 4.6% 4.4% ± 14.4% 

The analysis of different factors that may affect the performance of WIM systems with 

PC sensors was conducted separately for RQD equivalent and less than RQD data to identify 

different site factors associated with these two data sets. Table 4-9 provides descriptive statistics 
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for RQD equivalent and less than RQD data sets. The distribution of the data for some of the 

factors is highly unbalanced and thus can lead to subjective outcomes. For example, the PC 

sensor part of the RQD equivalent data category had only two sites with one record, each located 

in a dry climate (Arizona). Similarly, the unbalanced distribution in the data matrix was observed 

for other factors. In general, statistically significant differences were observed between the two 

data categories, whereas the data were comparable for different factors within each category. An 

exception was the effect of climate, where PC sensor sites located in a dry climate showed 

significantly higher bias, SD, and total error as compared to the sites located in a wet climate. 

One explanation is that changes in hourly temperatures in dry climates are typically more rapid, 

and the effects of temperature changes on PC sensor performance during calibration are more 

apparent in dry climates (in WIM calibration practice, this phenomenon is termed as "chasing the 

error"), as compared to wet climates. 

It was observed during the data analysis that the PC sensor showed significantly higher 

bias than other sensors even after the calibration (again, most likely attributed to the effect of 

changing temperature on WIM measurement accuracy). Therefore, the data analysis for GVW bias 

(using absolute values) was also conducted. 

Statistically significant differences were observed in PC WIM error between LTPP RQD 

and RQD equivalent categories. However, the available data could not isolate the site 

characteristics for good and poorly performing PC sites. 
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(a) GVW absolute bias and total error 

 

(b) GVW SD and total error 

 

(c) Effect of data type on SD (p-value <0.000) 

 

(d) Effect of data type on total error (p-value <0.000) 

Figure 4-1 Scatterplot and 95%CI interval plots for PC sensor by data categories. 
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Table 4-9 Descriptive statistics for RQD equivalent and Less than RQD data for PC sensor. 

Factor Data type 
Levels 

Calibration 

events 

Bias (%) GVW SD 

(%) 

GVW total 

error (%) 

Climate RQD 

equivalent 

Dry 2 ± 2.35 2.0 ±  6.4 

Wet 35 ± 1.57 2.2 ± 6.5 

Less than 

RQD 

Dry 22  ± 6.25 5.9 ± 19.5 

Wet 56 ± 3.91 4.37 ± 13.58 

Sensor array RQD 

equivalent 

PC half 4 ± 0.56 2.5 ± 6.2 

PC full 33 ± 1.74 2.2 ± 6.6 

Less than 

RQD 

PC half 11 ± 2.3 4.4 ± 12.2 

PC full 67 ± 4.9 4.8 ± 15.76 

Speed points RQD 

equivalent 

Single 28 ± 1.62 2.2 ± 6.6 

Multiple 9 ± 1.52 2.3 ± 6.4 

Less than 

RQD 

Single 49 ± 4.2 4.8 ± 15.1 

Multiple 29 ± 5.2 4.8 ± 15.5 

Truck runs RQD 

equivalent 

10 29 ± 1.7 2.2 ± 6.7 

>10 8 ± 1.3 2.1 ± 5.8 

Less than 

RQD 

10 62 ± 4.5 4.2 ± 14.1 

>10 16 ± 5.0 7.1 ± 19.94 

Pavement 

type 

RQD 

equivalent 

AC 26 ± 1.75 2.1 ± 6.4 

PCC 7 ± 1.78 2.5 ± 7.3 

Less than 

RQD 

AC 41 ± 5.05 5.3 ±  16.9 

PCC 28 ± 3.74 4.68 ± 14.0 

 

4.7.3.1 Common Characteristics of High and Poorly Performing PC WIM sites  

 Climate: The PC sensor located in the wet climate showed significantly lower bias, SD, 

and total error as compared to the sites located in a dry climate in less than the RQD data 

category. The effect of climate on the PC sensor is similar but more significant to the 

one observed for the QP sensor. It is essential to highlight that most of the available PC 

sites in the analysis data set were located in wet climates. 

 Pavement: On average, the PC sensor showed lower bias, SD, and total error in PCC 

pavements as compared to AC pavements in less than the RQD data category. 

 Sensor array: For the available sensor array configurations, the effect of the sensor array 

was insignificant on GVW SD and total error in RQD equivalent data category. On 

average, higher values of GVW total error were observed for the PC full-lane sensor 

array in the Less than the RQD data category. This trend needs more careful evaluation 

as this is not usually observed in the field. The PC half-sensor array was only used in PC 
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sites located in Indiana (wet climate may have a more significant effect than the sensor 

array in this case). All other PC sites located in Alberta, Arizona, Iowa, Manitoba, 

Maryland, Missouri, New Jersey, North Carolina, Pennsylvania, and Washington were 

equipped with PC full-lane sensor array.  

 Speed points: The PC sensor sites were calibrated using three or more speed points, and 

less than three-speed points showed insignificant differences in SD and total error within 

each data category (see Table 4-9). The GVW bias (absolute) values were higher for the 

events calibrated using 3 or more speed points. The probable reason for this trend is the 

extended duration of the calibration time needed for multiple speed points that may result 

in higher temperature fluctuations and ultimately result in higher differences between 

static and WIM weights. 

 Calibration: several PC sites had bias over 2 percent event right after calibration, pointing 

to potential issues with maintaining consistency of WIM measurement for sites with PC 

sensors.  

4.7.4 LC Sensor 

The LC sample size (based on just 9 sites and 13 calibration records) was significantly small 

compared to the other three sensor types considered in the analyses. Table 4-10 provides the 

available number of GVW WIM calibration records and descriptive GVW error statistics for LC 

sensors.  

Table 4-10 Descriptive statistics LC sensor (GVW). 

Data category Calibration events Bias (%) SD (%) Total error (%) 

LTPP RQD 5 ± 1.64 1.86 ± 5.40 

RQD Equivalent 8 ± 0.97 2.38 ± 6.22 

 

Based on the results, none of the factors available for analysis were found to have a 

statistically significant effect on the performance of WIM systems with LC sensors. The LC 
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sensor data analysis results were very similar to the results obtained for the BP sensor. Similar to 

BP, all the LC sites were installed on PCC pavements. Table 4-11 provides the descriptive 

statistics of the LC sensor WIM performance data, stratified for different factors. Common 

Characteristics of High-Performing LC WIM Sites 

4.7.4.1 Common Characteristics of High-Performing LC WIM sites  

Based on the analysis results, WIM systems with LC sensors were found capable of collecting 

RQD data under the following conditions: 

 Any climate (dry or wet) 

 Any sensor array (in-line or staggered) 

 PCC pavements(LC WIM technology requirement) 

 Any controller compatible with LC sensors (single or multiple speed points) 

4.8 MODELS TO DETERMINE EXPECTED WIM ERROR RANGES 

This analysis aims to evaluate if effective statistical, machine learning, or logical modeling 

techniques could be used to quantify the effects of essential site, sensor, and calibration-related 

factors on the variability of WIM measurement error. In developing the model concepts, the 

practicality of the model implementation and how easy it would be for highway agency personnel 

to obtain the necessary model input factors were considered. The aim is to provide practical means 

to highway agencies to predict the expected level of error in WIM measurements based on local 

WIM site conditions, selected WIM equipment, and calibration efforts. The following independent 

variables were considered in the analyses based on the available data.  

 Sensor type  

 Sensor array  

 Climate   
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 Calibration speed points   

 Pavement type 

Table 4-11 Descriptive statistics of LC sensor data by different factors. 

Factor 
Levels 

Number of 

calibration events 

GVW SD (%) GVW total error 

(%) 

Climate Dry 5 2.1 ± 5.5 

Wet 8 2.2 ± 6.1 

Sensor array LC in-line 5 2.1 ± 5.5 

LC staggered 8 2.2 ± 6.1 

Truck runs 10 7 2.2 ± 6.0 

>10 6 2.1 ± 5.8 

Speed points Single 8 2.4 ± 6.2 

Multiple 5 1.9 ± 5.4 

Pavement AC - - - 

PCC 13 2.2 ± 5.9 

All the available independent variables were categorical and had limited replicates or were 

missing for several combinations in the data matrix. Due to limited data availability, the above 

list does not include several essential site factors (road geometry, pavement smoothness, and 

pavement strength information). Separate predictive models were developed for the PC, QP, and 

BP sensor types.  

As mentioned earlier, the LC sensor data were available for a very limited number of sites 

compared to the other three sensors. There was no site or sensor-related factor that significantly 

affected the performance of the LC sensor. Therefore, the LC sensor data were not included in 

the model development. However, the models developed for BP could apply to LC, based on 

similarities of the effects of different site features on LC and BP sensor performances observed 

based on limited data and literature review findings. The following dependent variables were 

used in the analyses: 

 GVW mean measurement errors (bias) 

 GVW standard deviation of measurement errors (precision) 

 GVW total measurement errors  
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4.9 DECISION TREE MODELS FOR WIM EQUIPMENT AND SITE SELECTION - 

NETWORK LEVEL  

 

National-level models were developed based on all WIM data available for analysis. This 

analysis aimed to evaluate if effective statistical or logical models could be developed and used 

to quantify the effects of essential site, sensor, and calibration-related factors on the variability of 

WIM measurement error. In developing the model concepts, the practicality of the model 

implementation and how easy it would be for highway agency personnel to obtain the necessary 

model input factors were considered. The National-level models were developed for BP, QP, and 

PC sensors.  

This analysis was conducted using the supervised machine-learning algorithm called 

classification and regression trees (CART®) available in Minitab. The CART Regression 

illustrates critical patterns and relationships between a continuous response and significant 

predictors within highly complex data without using parametric methods. Since CART 

regression uses non-parametric techniques, it is preferred for model development when data do 

not follow a particular distribution. The visual representation of the CART regression can make a 

complex predictive model much easier to interpret [68]. Moreover, this model development 

approach does not require variable transformations and is an effective alternative for categorical 

predictors. This study developed the decision tree models for all three WIM performance 

attributes, i.e., GVW bias, SD, and total error, to account for measurement precision and bias. 

Table 4-12 provides the model summary and description of terms related to model accuracy for 

all three attributes. Figure 4-2 presents the relative variable importance and model accuracy 

based on CART regression. The results show that the sensor array and types are the most 

important predictors, followed by controller functionality (speed points). The relative variable 
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importance also shows that the climate (dry=DF and DNF vs. wet= WF and WNF) is important 

for predicting WIM measurement errors. However, the pavement type showed little significance. 

Table 4-12 CART regression (summary). 

GVW data 

attribute 

Total 

predictors 

Important 

predictors 

Number of terminal 

nodes 

Minimum terminal 

node size 

R2 

(Trg2) (Tst3) 

Bias  51 51 5 13 0.45 0.40 

SD 51 51 10 5 0.32 0.25 

Total error 51 51 8 5 0.46 0.43 

Note: 1=sensor type, sensor array, speed points, climate, pavement type. 2=Training, 3=Testing 
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(a) GVW SD (Training R2 = 0.32) 

 

 

(b) GVW total error (Training R2 = 0.46) 

 

(c) GVW bias (absolute) (Training R2 = 0.45) 

Figure 4-2 Relative variable importance CART regression. 
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4.9.1 Model for GVW Total Error and its Interpretation 

Figure 4-3 presents the decision tree model developed for GVW TE. For simplification and 

decision-making for equipment selection based on: site, sensor, and calibration-related factors, 

the model can be interpreted with the help of Table 4-13. The first row shows that BP sensors in-

line and staggered and QP sensors double staggered can yield the most accurate WIM data in any 

pavement and climate. Similarly, the last row shows that the PC sensor sites calibrated with a 

single-speed point and installed in a dry climate yielded the least accurate WIM data. It was 

observed that the BP sites used in this analysis were only installed on PCC pavements. The "-" 

symbol in Table 4-13 shows the factor is less/not important (insignificant effect on representative 

precision values based on available data). The "X" symbol in Table 4-13 shows the selection of a 

particular factor can lead to high or low WIM errors. "PC half" means 2 half-lane sensors in a 

staggered array providing a single threshold. "PC full" means 2 full-lane sensors, one on each 

side providing a double threshold. 
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Figure 4-3 Decision tree model for GVW total error. 

Table 4-13 Model interpretation for GVW total error. 

Accuracy 

(Most to 

least 

accurate) 

Factors resulting in high accuracy GVW total 

error (%) 

Sensor Sensor array 
Speed points Climate Pavement 

Single Multiple Dry wet AC PCC  

1 
QP, 

BP 

BP in-line and 

Staggered, QP 

double staggered 

- - - - - - ± 4.48 

2 QP 

QP double  

in line, QP 

single staggered 

- - - X - - ± 5.66 

3 QP 

QP double  

in line, QP 

single staggered 

- - X  - - ± 7.43 

4 PC PC full, PC half X - - X - - ± 9.43 

5 PC PC full, PC half - X - X X - ± 11.26 

6 PC PC full, PC half - X X - - - ± 13.14 

7 PC PC full, PC half - X - X - X ± 14.83 

8 PC PC full, PC half X - X - - - ± 19.82 

4.9.2 GVW Total Error Model Application 

Utilizing the supervised machine learning decision tree models based on the CART® algorithm, 

the presented methodology shows good potential for estimating the WIM measurement error 
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range using information about the WIM site and sensor-related factors. The decision tree model 

can be conveniently used for WIM equipment selection. Depending on the extent of information 

related to the site, sensor, and calibration-related factors, the decision tree model can help 

highway agencies choose the optimal WIM sensor type and sensor array by considering WIM 

errors. This information can be integrated with equipment procurement, installation, and life 

cycle costs to determine the most reliable and economical equipment while also considering 

WIM data accuracy requirements received from WIM data users. 

4.9.3 GVW Total Error Model Application 

The presented model is developed based on WIM error data that showed minor variations in site 

conditions (especially BP and QP). 98% of the QP sensor data (167 calibration records out of 

171) and 99% of the BP sensor data (111 calibration records out of 112) used in the analysis 

were within ASTM Type I accuracy based on GVW total error, i.e., the total error was within ± 

10%. Additionally, the results need careful interpretation because the data were split at different 

nodes based on the available replicates, inducing some bias in the results. For example, a PC 

sensor installed in dry climates and calibrated using multiple speed points had only five 

replicates. 

4.9.4 Models for GVW SD and Measurement Bias 

The GVW SD and measurement bias models are presented in Figures 4-4 and 4-5, respectively. 

Similar to GVW total error model, the first row shows that BP sensors in-line and staggered 

(single threshold, 2 half-lane sensors in total), and QP sensors staggered in double threshold 

configuration (4 half-lane sensors in total) can yield the most consistent and accurate WIM data 

in any climate. In contrast, PC sensor sites calibrated with a single-speed point and installed in 

dry climates resulted in the least accurate and most inconsistent WIM data (see Figure 4-4 and 
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Table 4-14). Table 4-15 shows the summary of the GVW bias model. Ideally, the measurement 

bias should be zero just after calibration. However, most PC sites show bias values above 2% 

(see Table 4-15). Therefore, practical limitations of representative measurement accuracy must 

be considered, and it is recommended that all three models should be consulted for the final 

equipment selection. 

 

Figure 4-4 Decision tree model for GVW SD. 

 

Node 1

Mean = 2.62

Total Count =396

Node 5

Mean = 3.98

Total Count =115

Sensor = {BP,QP} Sensor = {PC}

Dry_Wet = {D}

Node 2

Mean = 2.06

Total Count =281

Terminal Node 1

Mean = 1.78

Total Count =124

Node 3

Mean = 2.29

Total Count =157

S_array = {BP in-line, BP staggered

QP double staggered}

S_array = {QP double in-line, 

QP single staggered}

Dry_Wet = {W}

Terminal Node 4

Mean = 3.20

Total Count =17

Dry_Wet = {D}

Terminal Node 2

Mean = 1.95

Total Count =58

Ptype = {PCC}

Terminal Node 3

Mean = 2.33

Total Count =82

Ptype = {AC}

Node 4

Mean = 2.18

Total Count =140

Dry_Wet = {W}

Terminal Node 5

Mean = 3.14

Total Count =57

Ptype = {AC}
Ptype = {PCC}

Node 6

Mean = 3.55

Total Count =91

Node 9

Mean = 5.60

Total Count =24

Node 7

Mean = 4.24

Total Count =34

Speed_P = {Multiple}
Speed_P = {Single}

Terminal Node 9

Mean = 3.94

Total Count =5

Terminal Node 10

Mean = 6.03

Total Count =19

Speed_P = {Single}

Terminal Node 8

Mean = 5.10

Total Count =16

Speed_P = {Multiple}

Terminal Node 6

Mean = 2.34

Total Count =7

S_array = {PC full}

Terminal Node 7

Mean = 4.2

Total Count =11

S_array = {PC half}

Node 8

Mean = 3.48

Total Count =74



66 

 

Figure 4-5 Decision tree model for GVW bias. 
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Table 4-14 Model interpretation for GVW SD. 

Accuracy 

(Most to 

least 

accurate) 

Factors resulting in high accuracy GVW 

Precision (%) 

Sensor Sensor array 
Speed points Climate Pavement 

Single Multiple Dry Wet AC PCC  

1 
QP 

BP 

BP in-line and 

Staggered, QP 

double 

staggered 

- - - - - - 1.78 

2 QP 

QP double 

in line, 

QP single 

staggered 

- - - X - X 1.95 

3 QP 

QP double 

in line, 

QP single 

staggered 

- - - X X - 2.33 

4 PC PC full X - - X - X 2.34 

5 PC PC full, PC half - - - X X - 3.14 

6 QP 

QP double 

in line, 

QP single 

staggered 

- - X - - - 3.20 

7 PC 
PC full, 

PC half 
- X X - - - 3.94 

8 PC PC half -   X  X 4.20 

9 PC PC full, PC half - X - X - X 5.10 

10 PC 
PC full, 

PC half 
X - X - - - 6.03 

 

Table 4-15 Model interpretation for GVW bias. 

Accuracy 

(Most to 

least 

accurate) 

Factors resulting in high accuracy GVW bias 

(%) 

Sensor Sensor array 
Speed points Climate Pavement 

Single Multiple Dry wet AC PCC  

1 

QP, 

BP, 

PC 

BP in-line and 

Staggered, QP 

double 

staggered, QP 

single 

staggered PC 

half 

- - - - - - ± 1.00 

2 PC PC full - X - X X - ± 2.35 

3 PC PC full X - - X - - ± 2.54 

4 PC PC full - X - X - X ± 5.46 

5 PC PC full - - X - - - ± 5.92 

4.9.5 Analyses of Additional Factors Including Speed, Grade, IRI, Deflection 

Highway agencies can use the information on representative WIM measurement errors presented 

in this study. They can compare their WIM site performance to industry standards and set 
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reasonable expectations for WIM measurement accuracy for various sensor types and arrays 

installed in multiple climates.  

A few additional factors were also studied where data were available, including traffic 

speed, longitudinal grade, IRI, and FWD deflections. The effect of climate and site-related 

factors on the performance of WIM systems with different sensors is summarized in Table 4-16.  

Table 4-17 summarizes the effects of WIM sensor type, array, calibration test truck speed, and 

WIM system features on WIM measurement errors. 

Table 4-16 Effect of climate and pavement-related factors on the performance of WIM systems. 

Factor Sensor type 

Statistical 

significance 

(Yes/No) 

Comments 

Climate 

BP and LC No BP and LC errors are not affected by climate. 

QP, PC Yes 
Both sensors showed better precision in wet 

climates. 

Pavement 

types 

BP, LC - 
All BP and LC sensors were installed in PCC 

pavements. 

QP No Lower errors were observed in PCC pavements. 

PC No Lower errors were observed in AC pavements. 

Longitudinal 

grade 
BP, QP Yes 

Generally, flatter pavement (low grades, i.e., 1% or 

less) showed better precision.  

IRI 

(pavement 

smoothness) 

BP, PC, QP No 

There were no clear trends between IRI and 

consistency in WIM measurements based on the 

available data. (IN, NJ, and CA WIM sites). 

FWD 

(pavement 

strength) 

QP No 

Based on the available data for 8 WIM sites in 

Indiana, no consistent relationships were found 

between recorded deflection and consistency in 

WIM measurements.  
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Table 4-17 Effect of traffic speed and WIM system features on WIM errors 

Factor Sensor type 

Statistical 

significance 

(Yes/No) 

Comments 

Sensor type BP, LC, QP, PC Yes 
PC sensor accuracy and consistency were 

significantly different compared to other sensors. 

Sensor array BP, LC, QP, PC Yes 

Significant differences amongst sensor arrays were 

observed during the analysis. Sensor array design is 

a critical factor in achieving the desired WIM data 

accuracy. 

Calibration 

Speed points 
BP, LC, QP, PC Yes 

WIM controllers with multiple speed points could 

significantly improve WIM precision and reduce 

measurement bias. However, some inconsistencies 

were observed for the PC sensor. 

Calibration 

speed 
BP, LC, QP No 

A speed range between 5 to 10 mph at the time of 

calibration showed less variability in calibration 

data. The use of a narrow speed range may lead to 

incorrect computation of WIM measurement error 

for the sites with a wide range of operating speeds.  

4.10 EFFECT OF GRADE, DEFLECTION, AND IRI AT STATE LEVEL  

The possibility of developing a state-level model for estimating the WIM measurement accuracy 

was also evaluated based on a more extended set of the site and pavement-related factors 

available on a state level. The pavement-related factors include falling weight deflectometer 

(FWD) deflections, IRI, and longitudinal grade near WIM sensors. The state-level analyses were 

conducted using data obtained from the states of IN, NJ, and CA. Table 4-18 presents the 

descriptive statistics of the data obtained from all three states. The IRI data were available for 25 

WIM sites. The detailed deflection data were available for 8 WIM sites located in IN. All the 

available WIM sites in CA sites followed ASTM specifications for the longitudinal grade, i.e., 

<2%. The average IRI values closer to WIM sensors were ≤ 84 inches/mile for all the sites 

considered for this analysis. The Indiana DOT provided Eclipse Resource Database (ERD) files 

with raw profiles and FWD deflections that were processed and synthesized to match WIM site 

locations. The average, maximum, and 95th percentiles were computed for the IRI (500 ft. 

segment) and deflection (300 ft. segment) data for IN WIM sites. The deflection data were not 
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available for CA and NJ WIM sites. Information on roadway grades was also not available for 

NJ WIM sites. The states of CA and NJ provided the IRI values closer to the WIM site, and the 

ERD files with raw profiles were not available.  

Table 4-18 Descriptive statistics of the IRI, deflection, and longitudinal grades (IN, CA, NJ). 

State 
Sites 

(records) 

Average IRI 

(in/mile) 

Maximum 

IRI 

(in/mile) 

Average 

deflection 

(mils) 

Maximum 

deflection 

(mils) 

Average 

longitudinal 

grade 

IN 8 (8) 61 149 3.3 5.3 0.64 % 

CA 7 (24) 78.1 390.9 - - <2% 

NJ 10 (19) 84.42 169.0 - - - 

The scatter plots, boxplots, and correlations were used to assess the relationship between 

site factors and WIM measurement accuracy [see Figures 4-6 to 4-8]. Figures 4-6(a) and (b) 

show the IRI and GVW total error relationship for the WIM sites in NJ and CA, respectively. 

These WIM sites did not show a clear relationship (increase or decrease in WIM errors with 

increased or decreased IRI values) between the IRI and WIM measurement errors. All the NJ 

WIM sites considered for this analysis were equipped with PC sensors (2 full-lane, in-line 

sensors providing a double array threshold). Out of 19 calibration events for the NJ WIM sites, 

only 5 events (one each for five different sites) showed GVW errors greater than 10% [see 

Figure 4-6(a)]. All the CA WIM sites used BP sensors (2 half lane, in-line sensors providing a 

single array threshold). All the CA WIM sites showed highly accurate WIM data irrespective of 

the fluctuations in IRI values. The mean and maximum GVW total errors for the CA WIM sites 

were 4.3% and 6.3%, respectively [see Figure 4-6(b)].  

Figures 4-7(a) to (e) show the deflection, IRI, and longitudinal grade relationships with 

GVW total errors for the IN WIM sites. Figures 4-7(a) and (b) present the detailed IRI and 

deflection data for 8 WIM sites in Indiana. All the IN WIM sites were equipped with QP sensors 

(2 half-lane, staggered sensors providing a single array threshold). The mean and maximum 
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GVW total errors for the IN WIM sites were 5.7% and 9.6%, respectively [see Figure 4-8(b)]. 

No consistent trends were observed between the GVW errors and the deflection, IRI, and 

longitudinal grades for the IN WIM sites [see Figure 4-7(c) to (e)]. The IN WIM site 95-6100 

with a significantly higher GVW total error (122.2%) was not included while calculating the 

GVW total error summary statistics. Figures 4-8(a) and (b) summarize IRI and GVW error 

values for the IN, CA, and NJ WIM sites. The key findings for this analysis based on Figures 4-6 

to 4-8 are presented next. 

 

(a) Maximum IRI and GVW total error (NJ) 

 

(b) Maximum IRI and GVW total error (CA) 

Figure 4-6 GVW errors and maximum IRI relationship - CA and NJ. 
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(a) Raw IRI data for IN 

 

(b) Raw deflection data for IN 

 

(c) Average IRI and GVW total error (IN) 

 

(d) Average deflection and GVW total error (IN) 

 

(e) Longitudinal grade and GVW total error (IN) 

Figure 4-7 GVW errors and IRI, and deflection relationship – IN WIM sites. 
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(a) Average IRI 

 

(b) GVW total error 

Figure 4-8 GVW errors and IRI data extents –IN, NJ, and CA. 

4.11 KEY FINDINGS FROM STATE-LEVEL DATA ANALYSES  

 There were no clear trends between WIM measurement accuracy and IRI for all three 

states. Similar findings related to IRI data analysis were reported for the LTPP RQD 

dataset.  

 The IN WIM site 956100 (AC pavement on I-64) showed significantly higher total error 

than all other sites used in the analysis. The same site showed the highest values for the 

longitudinal grade and the FWD pavement deflection average value. The higher values of 

deflection and grade could be the probable reasons for the WIM site 956100, resulting in 

unusually high errors. However, further investigation revealed that the leading cause for 

unusually high error was a bad sensor that was replaced. 

 The mean deflection, IRI values, and grade observed for the WIM sites were within limits 

defined in the COST-323 (European) WIM standard for Class I (Excellent) WIM sites. 
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o Dynamic deflection (mean): ≤ 4 and 8 mils for rigid and flexible pavements, 

respectively. 

o IRI: 0 to 82 inch/mile, 82 to 165, 165 to 250 for Class-I (Excellent), Class-II 

(Good), and Class-III (Acceptable) WIM sites, respectively.  

o Grade: < 1%, < 2%, Class-I (Excellent), and all others sites, respectively. 

4.12 CHAPTER SUMMARY 

The details about representative WIM measurement errors by sensor type are presented in this 

chapter. These findings have an immediate practical application by providing highway agencies 

with the benchmark values demonstrating the practically achievable accuracy and variability of 

WIM measurements for different WIM sensor types after successful calibration.  

The primary goal of this analysis was to evaluate if effective statistical or logical models could 

be developed to quantify the effects of essential site, sensor, and calibration-related factors on the 

variability of WIM measurement error. The purpose of such a model would be to help WIM data 

users and WIM data providers in estimating the expected WIM measurement accuracy for a 

given set of site conditions and WIM system design attributes. The presented methodology 

utilizing the decision tree models shows good potential for estimating the WIM measurement 

error range using information about the WIM site and WIM sensor-related factors. These 

decision tree models can support WIM equipment selection. Ideally, the WIM measurement bias 

should be zero just after calibration. However, the available WIM calibration data showed that 

some small bias was present even after calibration for most WIM sites. Therefore, practical 

limitations of the achievable measurement accuracy must be considered, and it is recommended 

that the model for predicting the GVW total measurement error, which accounts for both 

measurement bias and precision, should be used for practical implementation and support WIM 
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equipment selection. Specifically, the decision tree model presented in this study can help 

highway agencies make an optimal selection of sensor type, sensor configuration, and controller 

functionality while considering achievable WIM errors and site conditions (climate and 

pavement type). This information, along with information about equipment longevity, length of 

data collection, and costs, can be used for equipment procurement, life cycle cost analysis and to 

assist WIM program managers in identifying the most reliable and economical equipment while 

also considering WIM data accuracy requirements specified by WIM data users.  
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CHAPTER 5 CONSISTENCY OF WIM DATA AND CALIBRATION 

NEEDS 

5.1 PURPOSE 

The analysis results reported in Chapter 4 focused on WIM measurement errors observed in the 

data collected immediately after equipment calibration. The limitation of this approach is that the 

data represented a snapshot in time and may not represent the long-term WIM site performance. 

Only a few WIM sites (SPS TPF sites) had WIM performance validation data available between 

calibrations and before the next calibration event. The available WIM performance data are not 

sufficient to analyze changes in WIM data over time following a calibration event. 

Consequently, an alternative approach is needed to characterize temporal changes in WIM data 

consistency. This chapter documents the procedures to analyze changes in WIM data over time 

during the year following the calibration event. 

5.2 INTRODUCTION 

This study investigated other ways of inferring WIM data accuracy and consistency over time. 

One approach is to relate errors in WIM data to the attributes of the normalized axle load spectra 

(NALS) for Class 9 vehicles. This approach can be employed to monitor and quantify temporal 

changes in WIM data consistency. There are several advantages to using axle weight data for 

Class 9 trucks. Class 9 is a recommended WIM calibration and validation class per ASTM 

E1318-09. Class 9 typically is the only vehicle class with supporting data for the computation of 

WIM precision and bias statistics because ASTM E1318 specifies this truck as a recommended 

calibration/validation test truck. Class 9 has a stable and well-understood gross vehicle weight 

(GVW) and axle weight distribution that helps identify and analyze WIM data changes over 

time. Class 9 is the most frequently observed heavy commercial vehicle type for most roads. The 

exceptions are load-restricted or secondary roads with a large percentage of small, lightweight 
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service trucks. Typically, these are recreational, urban, or suburban roads with stop-and-go 

traffic not conducive to WIM measurements and thus do not represent recommended WIM site 

locations. The main objective of this analysis was to develop a methodology for assessing WIM 

measurement errors based on axle loading data analysis without physically performing WIM 

equipment validation in the field. The presented methodology can help highway agencies to 

monitor changes in WIM data and to select optimum timings for routine maintenance and 

calibration of WIM equipment without compromising data accuracy. 

5.3 OBJECTIVES 

This chapter addresses one core issue related to traffic loadings, i.e., getting accurate and 

consistent WIM data. Therefore, the primary objectives of the study are to provide (a) 

consistency of WIM data and recommendations for WIM equipment calibration frequency (b) 

WIM accuracy relationship with NALS shape factors, and (c) statistical analysis to develop a 

predictive model for WIM accuracy. These objectives were accomplished by synthesizing and 

analyzing the WIM and loading data in the LTPP database. 

5.4 APPROACH FOR USING AXLE LOAD SPECTRA TO ASSESS CHANGES IN 

WIM SYSTEM PERFORMANCE  

 

The following approach was followed to investigate how the WIM data collected from the 

uncontrolled traffic stream can be used to diagnose changes in WIM performance over time and 

to support decisions on whether to perform field WIM validation or calibration: 

 Use WIM data samples collected from the traffic stream (one month) to develop Normalized 

Axle Load Spectra (NALS) and assess NALS characteristics for FHWA Class 9 trucks. 

 Define statistical variables (shape factors) to monitor changes in NALS. 

 Analyze NALS before and after calibration of a WIM site and between two calibration events. 
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 Assess WIM data consistency over time using the NALS shape factors developed for different 

periods after calibration (i.e., 1, 4, 8, and 12 months) for selected WIM sites. 

 Correlate changes in WIM accuracy and consistency over time using NALS statistics (shape 

factors) and WIM measurement error data collected for test trucks. Develop predictive models 

using changes in NALS statistics. 

 Develop a procedure for using NALS statistics (shape factors) to estimate the likely changes 

in WIM measurement errors and predict potential calibration drift. 

5.5 DATASET DESCRIPTION 

The data used for the analysis were obtained from LTPP research quality data (RQD) WIM sites 

installed with QP, LC, and BP sites. All available normalized axle load spectra (NALS) for Class 

9 truck (single and tandem axles) data for TPS and SPS-10 sites were used in this analysis. As 

mentioned in Chapter 4, the LTPP research quality data only contains three sensor types (BP, 

LC, and QP); therefore, a few sites with piezo cables (PC) from the ASTM Type I dataset were 

added to this analysis. These sites will assist in quantifying the consistency of WIM 

measurements for sites with PC sensors and the other three sensor types. These sites represent 

the highest quality WIM data sets because of the more stringent LTPP WIM calibration protocol 

and daily WIM data review. The  TPS and SPS-10 sites had detailed WIM measurement 

accuracy data collected before and after each calibration event that allowed the development of 

computational models to assess calibration drift. The additional data from the Michigan 

Department of Transportation (MDOT) for the QP sites were used for the model validations. 

Tables 5-1 and 5-2 present the summary of available WIM sites and records of axle load spectra 

data analyses. It should be noted that a record represents a single calibration event for which the 
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bias and SD were calculated based on multiple class 9 truck runs (i.e., 25 to 40). It can be noted 

that the majority of the WIM accuracy data are available for the sites located in a wet climate. 

Table 5-1 Distribution of sites for WIM data consistency analyses over time. 

Pavement type Sensor type 
Climatic region 

Total 
DF DNF WF WNF 

AC 

BP - - - 1 (1) 1 (1) 

LC - - - - - 

PC - - 8 (12) 2 (3) 10 (15) 

QP - 3 (8) 6 (19) 7 (22) 16 (49) 

PCC 

BP 1 (8) 3 (8) 3 (8) 4 (12) 11 (36) 

LC - - 3 (6) - 3 (6) 

PC - 1 (1) - 1 (2) 2 (3) 

QP 1 (2) - 7 (16) - 8 (18) 

Total 2 (10) 7 (17) 27 (61) 15 (40) 51 (128) 

Note: DF=dry freeze, DNF=dry no freeze, WF=wet freeze, WNF= wet no freeze, Numbers outside the parenthesis 

show available WIM sites, and numbers inside the parenthesis show number of available records."-"indicates no 

data are available. 

 

Table 5-2 Distribution of WIM sites and records by the sensor, climate, and pavement type. 

  Model development Model validation 

Sensor Pavement Climate 
Total 

Climate 
Total 

  Dry Wet Dry Wet 

QP 

AC 2a (5 b) 9 (25) 11 (30) - 6 (9) 6 (9) 

PCC 1 (3) 1 (4) 2 (7) - 10 (14) 10 (14) 

Total 3 (8) 10 (329) 13 (37) - 16 (23) 16 (23) 

BP 

AC - - - - - - 

PCC 4 (11) 7 (22) 11 (33) - - - 

Total 4 (11) 7 (22) 11 (33) - - - 
a No. of WIM sites, b No. of WIM records (one record each for pre and post-calibration) 

5.6 MODELLING OF AXLE LOAD SPECTRA DATA 

Class 9 single-axle (SA) NALS can be modeled as a single normal or log-normal distribution 

with a mean value corresponding to the NALS' peak load frequency value ("bell"-shaped 

distribution). The changes in the location of the peak of this distribution can be related to the 

changes in mean error. The spread of this distribution can be related to the changes in WIM 

measurement consistency or the precision of WIM measurements. Similarly, tandem axle (TA) 

NALS could be modeled by using a mixture of two normal distributions (i.e., the bi-modal 

distribution). The mean value of the first normal distribution corresponds to the unloaded (first) 
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peak of tandem NALS, and the mean value of the second normal distribution corresponds to the 

loaded (second) peak of tandem NALS ("camelback"-shaped distribution).  

Analysis of LTPP WIM data indicates more precise WIM data results for Class 9 NALS 

with well-defined high peaks (high mean) and skinny tails of the distribution (low standard 

deviation of normal distribution). Similarly, NALS based on the WIM data with low precision 

has low and poorly defined peaks of the distribution and fat tails of the distribution 

(corresponding to low mean and high standard deviation of normal distribution). NALS based on 

the data with a significant error due to bias has peaks of distribution shifted to the left or the right 

from the typical values. Consequently, such shifts in NALS may affect the pavement design 

thicknesses using mechanistic-empirical analysis and design procedures.   

In this study, a sample of single and tandem axle NALS based on the data collected 

during 4 weeks immediately before or after calibration (i.e., based on the data that have well-

documented measurement errors) is used to develop the approximating normal distributions and 

their descriptive statistics (height, mean, and standard deviation). These attributes and their 

combination are used to define axle load spectra shape factors. Figures 5-1(a) and 5-1(b) show 

two typical NALS for an SPS-2 WIM site in Colorado for single and tandem axles, respectively. 

This site was equipped with BP sensors. The bold vertical lines in the figures illustrate the 

typical ranges for peak loads. 
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(a) Single axle NALS 

 

(b) Tandem axle NALS 

Figure 5-1 Example of single and tandem axle NALS for site 8-0200 (BP). 
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The mean and variance of a single axle NALS were determined by using a discrete 

distribution. Equations 5.1 and 5.2 can be used to obtain the mean and variance of NALS with a 

single peak.  

  X
x

x P X x      (5.1) 

    
22

X X
x

x P X x      (5.2) 

For the tandem axle, typically, two peak loads are observed in a NALS. Figures 5-2 and 

5-3 show examples of pre and post-calibration NALS data for four WIM sites with positive, 

negative, or negligible bias. In another study, a mixture of statistical distributions to characterize 

the predominantly bimodal axle load spectra were considered [69]. It was shown that two or 

more normal probability density functions (PDFs) could be added with appropriate weight 

factors to obtain the PDF of the combined distribution, as shown by Equation 5.3: 

 
*

n

i i
i

f p f  (5.3) 

Where *f = PDF of combined distribution, pi= proportions (weight factors) for each normal 

PDF, and fi= PDFs for each normal distribution. 

For a bimodal mixed normal distribution containing two normal PDFs, the two-weight 

factors are complementary (i.e., p2 = 1 – p1), as shown in Figure 5-4. Haider and Harichandran 

determined that the bimodal shape of axle spectra could be effectively captured by using a 

combination of two normal distributions [17, 69-72]: 
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Where 
1

  the average of empty or partially loaded axle loads, 
1

  the standard deviation of 

empty or partially loaded axle loads, 
2

  the average of fully loaded axle loads, and 
2

   the 

standard deviation of fully loaded axle loads. 

Figure 5-5 shows an example of the observed and fitted distribution for one of the tandem 

NALS in Minnesota. The vertical dotted lines show the typical range for the loaded and unloaded 

peaks for class-9 trucks. 

 

(a) QP sensor with 12.7% positive bias 53-0200 (2007)  

 

(b) QP sensor with 0.90% negative bias 42-0600 (2008) 

Figure 5-2 Tandem axle load spectra example for QP sites. 
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(a) BP sensor with 6.3% negative bias 17-0600 (2014) 

 

(b) BP sensor with 1.2% negative bias 20-0200 (2006) 

Figure 5-3 Tandem axle load spectra example for BP WIM sites. 
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Figure 5-4 Tandem axle load spectra modeling using bimodal mixed normal distributions. 

 

Figure 5-5 Example of a bimodal distribution fitting for TA NALS (27-0500 — Nov 2016). 
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5.7 CONSISTENCY OF WIM MEASUREMENT ERROR USING AXLE LOAD 

SPECTRA 

For LTPP SPS TPF and SPS-10 WIM sites, measurement error data were available both before 

and after calibration. Pre-calibration WIM measurement errors were collected 1 to 3 days before 

every calibration event. Post-calibration WIM measurement errors were typically determined on 

the same day after a successful calibration event. The WIM measurement errors computed before 

and after each calibration event were analyzed to evaluate the effect of sensor calibration on the 

reduction in WIM measurement bias and variability. The pre and post-calibration data were only 

available for LTPP RQD sites. The consistency of WIM data was also evaluated using NALS 

shape factors. The NALS shape factors were obtained for 30 days, loading data collected 

instantly after calibration as a reference. The NALS were developed for 51 WIM sites using axle 

loading data. The daily data were used to compute SA and TA NALS for 1 month immediately 

after calibration and NALS (based on 1 month of data) at 4, 8, and 12 months after a calibration 

event. The analyses and comparisons of NALS over time were conducted separately for single 

and tandem axles of Class 9 trucks to assess the consistency of WIM data 

5.7.1 Methodology for NALS Consistency Data Analyses  

The NALS for single and tandem axles of Class 9 trucks were developed for the available WIM 

sites to analyze the consistency of WIM data over time. The axle load data for the following 

periods were considered: 

 The NALS based on 30 days of WIM data collected after a successful calibration 

event. 

 The NALS based on one entire calendar month of WIM data collected after a 

successful calibration event—4, 6, 8, and 12 months after a calibration event. 
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The NALS based on 14 and 30 days of data collected immediately after calibration are typically 

used by WIM practitioners for developing a comparison data set to evaluate consistency in WIM 

data over time. The 14 days of data are used for high truck volume sites, and 30 days (1 month) 

of data are used for low truck volume sites. Monthly NALS developed at different periods after 

the calibration event are useful for investigating changes in WIM data characteristics between 

calibration events. The process of obtaining NALS shape factors for single and tandem axles is 

presented in the previous section 5.6. 

5.7.2 Single and Tandem Axle Shape Factors 

The following statistical attributes were used to analyze differences in single axle SA and TA 

NALS over time: 

5.7.2.1 Single Axle NALS Shape Factors 

 The absolute differences in peak load (PL) values were computed to examine potential 

calibration drift or measurement bias overtime for the first 30 days after calibration, 

and the data collected at 4, 6, 8, and 12 months (i) After calibration were computed:  

ΔPL = |PLi − PL30|   

 The absolute differences in standard deviations (SD) of SA load values were calculated 

to analyze potential changes in measurement precision overtime for the first 30 days 

after calibration (as a reference), and data collected at 4, 6, 8, and 12 months (i) After 

calibration were computed: ΔSD = |SDi − SD30|. 

5.7.2.2 Tandem Axle NALS Shape Factors 

 The absolute differences in peak load (PL2) values of the loaded tandem axles (second 

peak in the TA load distribution) were computed to examine potential calibration drift 

or measurement bias over time using several time points: the first 30 days after 
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calibration, and the data collected at 4, 6, 8, and 12 months (i) After calibration: 

ΔPL2 = |PLi − PL30|. 

 The absolute differences in standard deviations (SD) of the loaded tandem axles 

distribution values were calculated to analyze potential changes in measurement 

precision overtime for the first 30 days after calibration (as a reference), and data 

collected at 4, 6, 8, and 12 months (i) After calibration were computed: ΔSD2 = |SDi −

SD30|. 

 The absolute differences in TA NALS mean of the loaded axles (axle weighing 

>26,000 lbs.) were calculated to analyze potential changes in measurement bias 

overtime for the first 30 days after calibration (as a reference), and data collected at 4, 

6, 8, and 12 months after calibration were computed. ΔTAmean > 26,000 = |TAmean >

26,000i − TAmean > 26,00030|. 

5.7.3 Significant Differences Criteria for NALS Consistency 

Changes in NALS distribution shape factors corresponding to the increase in the measurement 

error of 5 percent or more over time were considered as significant in this analysis: 

1. If ΔPL >=5% for single NALS (or >=500 lb.), then there is a practical difference 

(measurement bias > 5%) between the peak loads for the reference month and ith month. 

2. If ΔPL2>=5% for tandem NALS second peak or μ2 (or >=1,500 lb.), then there is a 

practical difference (measurement bias > 5%) between the peak loads for the reference 

month and ith month. 

5.7.4 Key Findings Based on NALS Consistency Data Analyses 

Table 5-3 and Figure 5-6  present the typical values for the percentage change in SA and TA 

NALS (calibration drift or bias) at 4, 8, and 12 months after calibration. The shape factors used 



89 

for this analysis are SA mean load and TA mean of loaded bins (bins>26,000 lbs.). These shape 

factors could be used as surrogate measures of calibration drift. The available number of LC sites 

and records was limited (6 records for 3 sites) compared to the other three sensors considered for 

this analysis. Therefore, the results for the LC sensor were included only for completeness and 

may not represent the true performance of the sensor. The following are the key findings based 

on this analysis: 

 The BP sensor showed the best performance with the lowest changes in SA and TA 

NALS one year after calibration. The changes for SA and TA NALS shape factors 

were less than 2 percent, indicating BP sensors can collect accurate data even one year 

after calibration. The results imply that calibration frequency longer than 1 year may be 

acceptable for the sites with BP sensors. 

 The QP sensor relatively showed higher changes in NALS one year after calibration. 

The percentage changes in SA and TA NALS shape factors were 4.12 and 2.15, 

respectively. Therefore, at least an annual calibration frequency is recommended for 

sites with QP sensors.  

 The PC sensor showed the highest changes in SA and TA NALS as compared to all 

other sensors. The sensor performance started deteriorating as early as four months 

after calibration (see Figure 5-6). The changes in PC NALS were even significant one 

year after calibration, with 4.92 and 4.52 percent changes for SA and TA, respectively. 

Due to significantly higher NALS inconsistencies, the sites with PC sensors may need 

multiple calibrations during the year. 
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Table 5-3 Percentage change in SA and TA NALS after calibration. 

Sensor 

type 

Number 

of sites 

Calibration 

records 

Time after calibration 

(months) 

Average SA bias using 

NALS (%) 

Average TA bias using 

NALS (%) 

BP 12 36 

4 ± 1.75 ±  1.37 

8 ±  2.39 ±  1.60 

12 ±  1.86 ±  1.46 

LC 3 6 

4 ±  1.88 ±  0.35 

8 ±  2.33 ±  0.81 

12 ±  3.20 ±  1.18 

QP 23 60 

4 ±  3.00 ±  2.00 

8 ±  3.69 ±  2.41 

12 ±  4.12 ±  2.51 

PC 12 18 

4 ±  3.50 ±  3.48 

8 ±  4.40 ±  4.41 

12 ±  4.92 ±  4.52 

 

 

(a) SA bias over time 

 

(b) TA bias over time 

Figure 5-6 Percentage change in SA and TA NALS after calibration. 

5.8 ASSESSING CALIBRATION DRIFT FROM AXLE LOAD SPECTRA 

The current section presents an approach to estimate WIM system accuracy based on axle load 

spectra attributes (NALS shape factors). This approach can be employed to monitor and quantify 

temporal changes in WIM data consistency. The WIM measurement error computed before and 
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after calibration was related to NALS shape factors for Class 9 vehicles. The main objective of 

this analysis was to develop a methodology for assessing WIM measurement errors based on 

axle loading data analysis without physically performing WIM equipment validation in the field. 

The presented method can help highway agencies to monitor changes in WIM data and to select 

optimum timings for routine maintenance and calibration of WIM equipment without 

compromising data accuracy. This section presents the procedure used to relate differences in 

WIM measurement errors, calculated based on pre and post-calibration data, with the differences 

in NALS shape factors. Table 5-4 presents the single and tandem axle NALS shape factors 

considered for analyses. 

Table 5-4 SA and TA NALS shape factors. 

Data Single axle shape factors  Tandem axle shape factors  

Based on 30 

days of 

weight data 

collected 

before and 

after the 

calibration 

event 

 

 

 

SA NALS mean (SAmean) Unloaded peak (TAPL1) 

SA NALS SD (SASD) Unloaded peak SD (TASD1) 

SA NALS mean of the distribution <16,000 

lbs. (SAmean<16,000) 
Loaded peak (TAPL2) 

Ratios (Pre/Post) of SA mean and standard 

deviation 
Loaded peak SD (TASD2) 

- The overall mean of the distribution (TAOAM) 

- Overall SD of the distribution (TAOASD) 

- 
TA NALS mean of the loaded axles (axle 

weighing >26,000 lbs.) (TAmean>26,000) 

- 
Ratios (Pre/Post) of mean and SD for the first 

and second peaks for TA NALS. 

 

The data selection, analyses, and model development process are explained with the help of a 

flow chart (see Figure 5-7).  

 Step 1: is mainly data selection and syntheses  

 Step 2: estimation of SA and TA NALS shape factors   

 Step 3: differences of pre and post-calibration data (dependent and independent variables)  

 Step 4: statistical modeling  

The following variables (NALS shape factor differences) were obtained by taking differences of 

SA and TA NALS shape factors for pre and post-calibration loading data. These data attributes 



92 

were used as independent variables for model development to assess changes in WIM errors over 

time.  

5.8.1 Single Axle (SA) Shape Factors 

Equations 5.5 to 5.7 were used to obtain the shape factors for SA. The ratios (pre/post) of SA 

mean and standard deviations were also obtained. 

 

 where:

SAdiffMean=SA mean difference

 Pre PostSAdiffMean SAmean SAmean 

 (5.5) 

 

 where:

SAdiffMean<16,000=SA mean difference<16,000 lbs.

16,000 16,000 16,000Pre PostSAdiffMean SAmean SAmean    

 (5.6) 

 where:

SAdiffSD=SA SD difference

 Pre PostSAdiffSD SASD SASD 

 (5.7) 

5.8.2 Tandem Axle (TA) Shape Factors 

Equations 5.8 to 5.14 were used to obtain the shape factors for TA. The ratios (pre/post) of mean 

and SD for the first and second peaks were also obtained for TA NALS. 

 

 

1( ) 1( )

where:

TAdiffM1=TA unloaded peak difference

1 Pre PostTAdiffM TAPL TAPL 

 (5.8) 

 

1( ) 1( )

where:

TAdiffSD1=TA unloaded peak SD difference

 1 Pre PostTAdiffSD TASD TASD 

 (5.9) 

 

2( ) 2( )

where:

TAdiffM2=TA loaded peak difference

2 Pre PostTAdiffM TAPL TAPL 

 (5.10) 
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2( ) 2( )

where:

TAdiffSD2=TA loaded peak SD difference

2 Pre PostTAdiffSD TASD TASD 

 (5.11) 

 where:

TAdiffMean>26,000=TA mean difference>26,000 lbs.

26,000 26,000 26,000Pre PostTAdiffMean TAmean TAmean    

 (5.12) 

 where:

TAdiffOAM=TA overall mean difference

Pre PostTAdiffOAM TAOAM TAOAM 

 (5.13) 

 where:

TAdiffOSD=TA overall SD difference

 Pre PostTAdiffOSD TAOASD TAOASD 

 (5.14) 
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Figure 5-7 Flowchart for ALS and WIM performance data analyses. 
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5.8.3 Variables Obtained from WIM Calibration Data 

The following variables (see Equations 5.15 to 5.23) were obtained by taking differences in SA, 

TA, and GVW WIM errors for pre and post-calibration data. These data attributes were used as 

dependent variables for model development to assess changes in WIM errors over time. 

 where:

SABdiff=SA bias difference

 Pre PostSABdiff SAbias SAbias 

 (5.15) 

 where:

SASDdiff=SA SD difference

 Pre PostSASDdiff SASD SASD 

  (5.16) 

 where:

SATEdiff=SA total error difference

 Pre PostSATEdiff SAtotalerror SAtotalerror 

 (5.17) 

 where:

TABdiff=TA bias difference

 Pre PostTABdiff TAbias TAbias 

 (5.18) 

 where:

TASDdiff=TA SD difference

 SD difference ( ) Pre PostTA TASDdiff TASD TASD 

 (5.19) 

 where:

TATEdiff=TA total error difference

 Pre PostTATEdiff TAtotalerror TAtotalerror 

 (5.20) 

 
where; GVWBdiff=GVW bias difference

  Pre PostGVWBdiff GVWbias GVWbias
 (5.21) 

 
where; GVWSDdiff=GVW SD difference

  Pre PostGVWSDdiff GVWSD GVWSD
 (5.22) 

 

 
where; GVWTEdiff=GVW total error difference

  Pre PostGVWTEdiff GVWtotalerror GVWtotalerror
 (5.23) 
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5.8.4 Statistical Analyses and Results 

Data visualization is the first step before running any statistical analyses. A strong correlation 

was observed between TA shape factors and TA bias differences (see Table 5-5). The TA shape 

factors were also highly correlated with each other. This high correlation amongst TA shape 

factors could lead to the potential issue of multicollinearity. No clear relationship was observed 

between TA SD differences and TA NALS shape factors (see Table 5-6). A strong correlation 

was observed between SA shape factors and bias differences (see Table 5-7). The SA shape 

factors were also highly correlated with each other. This high correlation amongst SA shape 

factors could lead to the potential issue of multicollinearity. 

Table 5-5 Correlation between TA bias and TA NALS shape factors 

Variable TAdiffM1 TAdiffM2 
TAdiffM2 

(Man) 

TAM2 

(Pre/Post) 

TAdiffMean

>26,000 
TAdiffOAM TABdiff 

TAdiffM1 1       

TAdiffM2 0.22 1      

TAdiffM2 (Man) 0.10 0.86 1     

TAM2(Pre/Post) 0.21 1.00 0.85 1    

TAdiffMean>26,000 0.17 0.86 0.83 0.85 1   

TAdiffOAM 0.55 0.57 0.41 0.57 0.61 1  

TABdiff 0.22 0.75 0.72 0.74 0.89 0.60 1 

Table 5-6 Correlation between TA SD and TA NALS shape factors. 

Variable TAdiffSD1 TAdiffSD2 TASD2(Pre/Post) TAdiffOSD TASDdiff 

TAdiffSD1 1     

TAdiffSD2 -0.45 1    

TASD2(Pre/Post) -0.32 0.63 1   

TAdiffOSD 0.065 0.23 -0.11 1  

TASDdiff -0.11 0.17 0.21 -0.21 1 

Table 5-7 Correlation between SA bias and SA NALS shape factors. 

Variable SAdiffMean SAdiffMean<16,000 SAMean (Pre/Post) SABdiff 

SAdiffMean 1    

SAdiffMean<16,000 0.96 1   

SAMean(Pre/Post) 1.00 0.96 1  

SABdiff 0.88 0.86 0.89 1 
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The dependent and independent variables presented by Equations 5.5 to 5.23 were used 

to develop a model that would assess changes in WIM weight measurement errors over time. 

Different statistical techniques, including scatter plots, correlation, linear, non-linear, and 

multiple regression, were used to identify the most significant variables. The Next section 

presents the final models developed for SA, TA, and GVW bias estimation. 

5.8.4.1 Model for Estimating Bias in TA Weight Measurement 

Equation 5.24 shows the final model developed for QP and BP sensors. The sensor type was also 

considered an independent variable, but it was not significant. The coefficient of determination 

for the TA bias model is 0.8, showing that the independent variable can explain 80% of the 

variance in the dependent variable. Figure 5-8(a) shows the goodness-of-fit for the TA bias 

model. This graph compares the model-predicted and observed TA bias values for all the 

available data for the QP and BP sensors. 

 
2

0.0041* 26,000

0.80

TABdiff TAdiffMean

R

 


 (5.24) 

The significant term, i.e., the difference between pre and post TA MEAN >26,000 

(TAdiffMean>26,000), can be a good predictor for assessing and quantifying changes in TA bias 

in WIM systems. This shape factor represents the mean load of tandem axles weighing greater 

than 26,000 lb. For a bimodal tandem axle load distribution, it would be the loads in bins greater 

than 26,000 lb. The models can be improved further by adding more data in the future. The 

above model should be used in combination with the visual inspection of the shifts in the 

location of TA peak loads for the loaded peaks. This analytical approach can aid in estimation 

changes in WIM measurement accuracy and facilitate identifying the WIM calibration needs 

without performing the actual field validations of WIM equipment performance using calibration 



98 

trucks. This methodology can save a significant amount of time and resources required for field 

validation using test trucks. 

5.8.4.2 Validation of the Model for Estimating Bias in TA Weight Measurement 

The WIM performance and axle loading data from the pre and post-calibration events were 

obtained from the MDOT and used for the model validation. Figure 5-8(b) shows the goodness 

of fit for the TA bias prediction model using the validation data. The TA bias predictions for the 

model validation data are reasonably accurate (R2 = 0.82). These data were not used during the 

model development, and the prediction errors seem logical since both the data are subjected to 

different loading patterns and conditions. The TAdiffMean>26,000 data were simulated within 

the observed range to study the model's sensitivity. Figure 5-8(c) shows the sensitivity of the 

model to the independent variable. The model shows that when the pre and post-difference 

between TAdiffMean>26,000 for class 9 trucks exceeds almost 1250 lbs., the TA bias difference 

exceeds 5%, indicating equipment would require calibration. 

5.8.4.3 TA Model Predictions 

Table 5-8 provides the 95% confidence and prediction intervals based on the TA bias model as a 

function of TA shape factors. It can be noted that when pre and post-TA mean>26,000 difference 

exceeds 1250 lbs., the bias difference exceeds 5 percent. 

Table 5-8 TA model predictions and 95% confidence and prediction intervals. 

TAdiffMean>26,000 (lbs.) TABdiff (%) (Predicted) 
95 %CI 95 %PI 

Lower Upper Lower Upper 

250 1.03 0.90 1.15 -3.03 5.08 

500 2.05 1.79 2.31 -2.01 6.11 

750 3.08 2.69 3.46 -1.00 7.15 

1000 4.10 3.58 4.62 0.02 8.19 

1250 5.13 4.48 5.77 1.02 9.23 

1500 6.15 5.37 6.93 2.03 10.28 

1750 7.18 6.27 8.08 3.02 11.33 

2000 8.20 7.17 9.24 4.02 12.38 
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5.8.4.4 Model for Estimating Bias in SA Weight Measurement 

Equation 5.25 shows the final SA bias estimation model developed for QP and BP sensors. The 

coefficient of determination for the SA bias model is 0.78, showing that the independent variable 

SAdiffMean can explain 78% of the variance in the dependent variable SABdiff. Figure 5-9(a) 

shows the goodness-of-fit for the SA bias model. 

 
2

0.008572*

0.78

SABdiff SAdiffMean

R




 (5.25) 

Overall, the SA model made predictions accurately (R2=0.78). The significant term, i.e., the 

difference between Pre and Post SA MEAN (SAdiffMean) can be used as a good predictor for 

assessing and quantifying changes in SA bias in WIM systems. This shape factor represents the 

mean load value of the NALS for single axle load distribution. The models can be improved 

further by adding more data in the future. The above model should be used in combination with 

the visual inspection of SA peak load shifts in the NALS distributions.  
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(a) Goodness of fit 

 

(b) Model validation 

 

(c) Model simulations 

Figure 5-8 Goodness-of-fit, validation, and simulations for the TA bias model. 
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5.8.4.5 Validation of the Model for Estimating Bias in SA Weight Measurement 

The pre and post-calibration WIM performance and axle loading data from the MDOT were used 

for the SA model validation. Figure 5-9(b) shows the goodness of fit for the SA bias model using 

the validation data. The SA bias predictions for the model validation data are reasonably accurate 

(R-Sq=0.68). The SAdiffMean data were simulated within the observed range to study the 

model's sensitivity. Figure 5-9(c) shows the sensitivity of the model to the independent variable. 

The model shows that when the pre and post-difference between SAdiffMean for class 9 trucks 

exceeds almost 500 lbs., the SA bias difference exceeds almost 4.5 to 5%, indicating equipment 

would calibration. 

5.8.4.6 Model for Estimating Bias in GVW Weight Measurement 

The SA and TA NALS shape factors were used as potential predictors to assess changes in GVW 

bias. The SA and TA shape factors were used in combination and separately to determine 

changes in GVW bias. Of all shape factors and combinations tested, TAdiffMean>26,000 was 

the best predictor for assessing GVW bias changes. Equation 5.26 shows the final GVW bias 

model developed for QP and BP sensors. The coefficient of determination for the GVW bias 

model is 0.75, indicating that the independent variable TAdiffMean>26,000 can explain 75% of 

the variance in the dependent variable GVWBdiff. Figure 5-10(a) shows the goodness-of-fit for 

the GVW bias model. 
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0.004030* 26,000

0.75

GVWBdiff TAdiffMean
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 (5.26) 

Overall, the GVW model made accurate predictions (R2=0.75). The significant term, i.e., 

the difference between pre and post-mean weights of loaded TA (TAdiffMean>26,000), can be a 

good predictor for assessing and quantifying changes in GVW bias in WIM systems.  
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(a) Goodness of fit 

 

(b) Model validation 

 

(c) Model simulations 

Figure 5-9 Goodness-of-fit, validation, and simulations for the SA bias model. 
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5.8.4.7 Validation of the Model for Estimating Bias in GVW Weight Measurement 

Figure 5-10(b) shows the goodness of fit for the GVW bias model using the validation data 

obtained from MDOT. The TAdiffMean>26,000 data were simulated within the observed range 

to study the model's sensitivity. Figure 5-10(c) shows the sensitivity of the model to the 

independent variable. The model shows that when the Pre and Post difference between 

TAdiffMean>26,000 for class 9 trucks exceeds 1250 lbs., the GVW bias difference exceeds 5%. 

GVW bias models were also developed using a combination of SA (SAdiffMean) and TA 

(TAdiffMean>26,000) NALS shape factors. Also, the SA NALS shape factor, SAdiffMean; was 

independently used to estimate GVW bias differences. Equations 5.27 and 5.28 provide the 

models developed for GVW bias using both SA and TA shape factors combined and SA shape 

factor alone, respectively. Table 5-9 provides the coefficients for both models. The TA NALS 

shape factor TAdiffMean>26,000 showed up as the significant predictor when a linear 

combination of SA and TA NALS shape factors was used to estimate GVW bias differences. The 

model's accuracy is similar to the model presented in Equation 5.26 based on the TA NALS 

shape factor alone (R2=0.75). The model accuracy significantly decreased (R2=0.53) for the 

model based on the SA NALS shape factor. Figure 5-11 presents the goodness of fit for the 

model presented in Equation 5.28. Based on the results, it can be concluded that the TA NALS 

shape factors are better predictors to estimate GVW bias differences. 

Table 5-9 GVW bias as a function of SA and TA NALS shape factors. 

Term 
Coef SE Coef T-Value p-Value VIF 

Model type 

TAdiffMean>26,000 0.003489 0.000476 7.32 0.000 2.54 Model-based on SA 

and TA NALS shape 

factors SAdiffMean 0.001271 0.000877 1.45 0.152 2.54 

SAdiffMean 0.006275 0.000748 8.39 0.000 1.00 Model-based on SA 

shape factor alone 
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(a) Goodness of fit 

 

(b) Model validation 

 

(c) Model simulations 

Figure 5-10 Goodness-of-fit, validation, and simulations for the GVW bias model. 
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 (5.27) 
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2

0.006275*

0.53

GVWBdiff SAdiffMean

R




 (5.28) 

 

Figure 5-11 Goodness of fit for GVW model as a function of SA NALS shape factor. 

5.8.4.8 Model for TA Measurement Bias Estimation for Different WIM Sensors 

Equations 5.29 and 5.30 show the TA bias models developed separately for BP, and QP sensors. 

Although the sensor type is insignificant, these models can be used for making predictions for 

individual sensors. The model coefficients and accuracy are very much similar to the model that 

was developed by combining data for both sensors. Figure 5-12 shows the goodness of fit for the 

combined model. 

For BP sensor: 
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 (5.29) 

For QP sensor: 
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Figure 5-12 TA bias model for different sensors. 

5.8.5 Application of Models – Case Study 

This section presents the application of the TA bias model with the help of an example. The axle 

loading data were obtained from the SPS-10 WIM site located in Nevada (32AA00). This is a 

QP sensor WIM station installed in AC pavements. At this site, the calibration was performed on 

November 28, 2018, and the equipment showed negligible bias (-0.7% for TA). The next 

equipment calibration was scheduled for August 2019. The TA NALS data for one month after 

calibration (December 2018) and one month before the next scheduled calibration (July 2019) 

were obtained to study changes in WIM performance. Figure 5-13 shows the NALS for 

December 2018 and July 2019. The WIM site started overestimating TA loads within 7 months 

after calibration. The TA NALS shape factor (TAMean>26,000) was calculated for both 

datasets, and the TA bias was estimated using Equation 5.24. This shape factor can be calculated 

without fitting the bimodal distribution. The mean is the product sum of the midpoints and 

frequencies divided by the total of frequencies for the load bins greater than 26,000 lbs. The 
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calculated values for TAMean>26,000 were 31810 and 34185 lbs. for December 2018 and July 

2019, respectively. The TAdiffMean>26,000 value was 2375 lbs., and the estimated bias was 

9.74 % for TA. The results show that the WIM system significantly overestimates weights and 

needs calibration. The WIM system field calibration and validation summary report also 

confirmed that the site is overestimating loads based on pre-validation results obtained using test 

truck runs on August 14, 2019. This example shows the application and significance of the TA 

bias model that can help identify the equipment calibration needs without physically making the 

test truck runs. 

 

Figure 5-13 TA NALS for SPS-10 Nevada WIM site (32AA00). 

5.9 KEY FINDINGS 

The following are the key findings based on the analyses of NALS shape factors and WIM 

performance data: 
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 The NALS analyses show that a Calibration frequency longer than 1 year may be 

acceptable for the sites with BP sensors. A calibration frequency of at least 1 year is 

recommended for sites with QP sensors. Due to significantly higher NALS 

inconsistencies, the sites with PC sensors may need multiple calibrations in a yea 

 No clear relationship was observed between the changes in SD values for SA and TA 

computed based on NALS and SD changes computed using pre- and post-calibration 

data based on test trucks data for SA and TA WIM SD. 

 The pre and post-TA bias differences (TABdiff) can be accurately estimated using 

changes in TA mean value for the loaded (>26,000 lbs.) Class 9 trucks 

(TAdiffMean>26,000), obtained from pre and post-TA NALS. When the 

TADiffMean>26,000 difference exceeds 1250 lbs., the TA bias difference exceeds 5%, 

indicating the equipment requires calibration.  

 The pre and post-SA bias differences (SABdiff) can be accurately estimated using 

differences in SA means (SAdiffMean) obtained from pre and post-SA NALS. When 

the SAdiffMean difference exceeds almost 500 lbs., the SA bias difference exceeds 4.5 

to 5%, indicating the equipment requires calibration. 

 A strong correlation exists between the GVW bias differences and 

TADiffMean>26,000 differences, indicating that TA WIM errors are significant 

contributors to GVW WIM errors. 

 The pre and post-GVW bias differences (GVWBdiff) can be accurately estimated using 

pre and post-differences in TA mean>26,000 lbs. (TAdiffMean>26,000). When the 

TADiffMean>26,000 difference exceeds 1250 lbs., the GVW bias difference exceeds 

5%, indicating the equipment requires calibration. The data results also showed that the 
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TA NALS shape factor (TADiffMean>26,000) is a better predictor (R2=0.75) of GVW 

bias differences  as compared to the SA NALS shape factor (R2=0.53) 

 The models presented should be combined with the visual inspection of SA and TA 

peak loads and the information about seasonal changes in traffic loading of Class 9 

trucks due to land use activities (such as major agricultural harvests, if any). 

 Using NALS to estimate the TA WIM accuracy can save a significant amount of time 

and resources, which are usually spent on equipment calibrations every year.  

5.10 CHAPTER SUMMARY 

A set of statistical procedures was developed to aid in identifying and quantifying changes in 

WIM measurement bias (calibration drift) based on analysis of changes in axle load spectra 

attributes for FHWA Class 9 vehicles (typically used as a calibration truck type) between WIM 

equipment calibration events. The results show that changes in single and tandem axle load 

spectra attributes, such as SA mean axle load and TA mean load for the loaded axles weighing 

over 26,000 lbs., can be effectively used to estimate the systematic changes (bias) in WIM 

measurements for GVW, SA, and TA.  

WIM measurement accuracy estimation methodology through axle load spectra analysis 

can be used to identify WIM equipment calibration needs, saving a significant amount of time 

and resources required for field validation of WIM system performance using test trucks. The 

statistical models developed in this study for the prediction of WIM measurement bias for GVW 

and SA and TA loads could be fully automated and used to screen WIM data to identify data sets 

with significant deviations in key shape factors (SA mean axle load and TA mean load for the 

loaded axles weighing over 26,000 lbs.). Flagged WIM data sets could then be subjected to 

visual inspection of SA and TA load spectra, along with reviewing information about the 
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expected seasonal changes in traffic loading due to land use (if any). These results could be used 

to decide if WIM equipment calibration is necessary.  
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CHAPTER 6 GUIDELINES FOR WIM EQUIPMENT 

CALIBRATION 

6.1 PURPOSE 

The relative influence of the factors presented in Table 2-7 on WIM measurement errors is not 

well understood or quantified. These factors contribute to poor WIM system performance and 

users' lack of confidence in the collected data. As a result, analytical techniques and models are 

needed to assess the relative significance of different sources of error on the accuracy of WIM 

data. WIM data collectors also require direction and practical tools to increase WIM data quality 

through improved procedures related to WIM site selection, technology selection, installation, 

calibration, maintenance, data processing, and quality control/quality assurance (QC/QA) [22, 40, 

41]. 

6.2 INTRODUCTION 

The WIM systems go out of calibration, and their accuracy deteriorates over time due to many 

factors. These factors may include changes in measurement conditions (e.g., temperature and 

speed), pavement deflection, roughness caused by distresses, and fatigue of WIM sensors. The 

authors of the referenced studies also reported that regardless of the WIM system calibration, the 

WIM accuracy could deteriorate over time due to these factors [4, 5, 29, 36, 42, 43]. In another 

study in the state of Arkansas, 10 out of 25 WIM sites yielded suitable loading data. The authors 

reported that the other sites exhibited evidence of WIM scale (sensor) failures and inconsistent 

loading data because of calibration concerns [44]. 

WIM equipment requires periodic calibrations to yield accurate and reliable loading data. 

To reduce the calibration cost, many agencies rely on various auto-calibration techniques using 

different software-based algorithms. The most common auto-calibration methods offered by the 

WIM vendors include using the (a) average front axle weight of Federal Highway 
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Administration (FHWA) Class 9 trucks, (b) average weight of specific types of vehicles (often a 

loaded five-axle tractor semi-trailer). The auto-calibration techniques may be beneficial but have 

some limitations; for example, weight laws, truck characteristics, and front axle weights can vary 

among states. Therefore, these techniques could be implemented only after confirming the local 

WIM site conditions [45, 73]. The LTPP field operations guide uses multiple runs of a pre-

weighed class-9 truck for calibrating a WIM site.  

6.3 OBJECTIVES 

This study addresses three main issues related to WIM systems accuracy and calibration 

procedures; i.e., how to  (1) perform successful calibration of a WIM system, (2) model gross 

vehicle weight (GVW) WIM errors as a function of individual axle errors [(single axle (SA) and 

two tandem axles (TA), drive and trailer tandem)], and (3) estimate WIM measurement errors 

using the LTPP and the ASTM protocols. Therefore, the primary objectives of the paper are to 

provide (a) a review of high-quality LTPP WIM data, (b) provide guidelines for successful WIM 

equipment calibration by quantifying the effect of sample size (truck runs), speed, temperature, 

and truck type on WIM errors, (c) develop models for GVW error predictions as a function of 

SA and TA, and (d) compare the ASTM and the LTPP WIM accuracy estimation methods using 

SA, TA, and GVW WIM errors. These objectives were accomplished by synthesizing and 

analyzing the WIM error data in the LTPP database for BP and QP sensors. 

6.4 DATA EXTENTS 

Table 6-1 presents the climate and sensor type distribution of WIM sites and associated records 

available in the LTPP database. It can be noted that the majority of the WIM sites are located in a 

wet climate. In total, 111 (53+58) and 62 (34+28) WIM records were available for pre-and post-
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calibration data, respectively. At least 40 test truck runs were used to obtain pre- and post-

calibration data for these events. 

Table 6-1 Distribution of WIM sites and records by sensor type and climate. 

Data Sensor type 
Climatic regions 

Total 
DF DNF WF WNF 

Pre calibration 
BP - 3a (17 b) 3 (18) 4 (18) 10 (53) 

QP 3 (9) 5 (16) 7 (18) 6 (15) 21 (58) 

Post calibration 
BP - 3 (13) 3 (10) 4 (11) 10 (34) 

QP 2 (5) 3 (5) 3 (8) 6 (10) 14 (28) 
a No of WIM sites, b No of WIM records 

6.5 IMPROVED PROCEDURES FOR SUCCESSFUL WIM EQUIPMENT 

CALIBRATION 

 

This section quantifies the effect of speed, temperature, number of runs (sample size), truck type 

(loaded vs. unloaded), and number of trucks on measured WIM errors. 

6.5.1 Desired Sample Size 

The WIM equipment needs periodic calibrations, and the calibration frequency can vary from 

site to site for different sensor types [22]. The WIM equipment is calibrated using multiple runs 

of a test truck of known static weight, and the static weights are compared with the WIM 

weights. The truck type (fully and partially loaded Class 9 trucks) and the number of trucks (1 to 

3) can vary for WIM equipment calibration. The number of runs per test truck can also vary from 

10 (even fewer) to 60 depending on the calibration protocols in practice. The number of runs can 

be more than 60 if the truck data is used from the traffic stream [74]. The LTPP WIM protocol 

uses 40 test truck runs (20 each for two different trucks) to calibrate/validate a WIM site at 

varying speed levels. However, many other state DOTs use 10 truck runs or even fewer for a 

single test truck to calibrate/validate a WIM site. More runs can cover higher speed ranges and 

temperature fluctuations, consuming more time and resources. The sample size can influence the 

computed accuracy of WIM data and the reliability of the results.  
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This section addresses an important question. i.e., what sample size is large enough to be 

considered representative for the mean (bias) and SD (consistency) error computations? 

Different sample sizes ranging from 5 to 40 were analyzed to evaluate their effect on WIM 

accuracy using pre and post-calibration WIM equipment data for BP and QP sensors. Different 

combinations (details below) of truck runs were used to impose randomness that can account for 

varying speed and temperature fluctuations. Figures 6-1 and 6-2 present the scatter plots and 

95% CI interval plots of GVW total errors based on varying sample sizes (n) for BP and QP 

sensors, respectively. One horizontal line in the scatter plots represents a single pre- or post-

calibration event. Figure 6-3 presents the line plots for GVW bias, SD, the margin of error at 

95% confidence (MOE), and the GVW total error. The results show that the varying sample size 

has a statistically insignificant effect (mostly flat lines and overlapping 95% CI) on computed 

WIM errors, especially when n>=10, even when the errors were calculated for a different 

combination of truck runs [see Figures 6-1(a) to (d) and 6-2(a) to (d)]. The line plots suggest 

some differences (MOE and TE increase) when the sample size is extremely small, i.e., n<=5 

[see Figures 6-3(a) to (d)]. It can be concluded based on data analyses that a WIM site can be 

successfully calibrated/validated using 10 or more runs.  

The details of truck run combinations used in this analysis are shown below: 

 1st 5: 1 to 5  1st 10: 1 to 10  1st 15: 1 to 

15 

 1st 20: 1 to 

20 

 1st 25: 1 to 

25 

 1st 30: 1 to 30  1st 35: 1 to 

35 

 1st 40: 1 to 

40 

 2nd 10: 11 

to 20 

 3rd 10: 21 to 

30 

 4th 10: 31 

to 40 

 Last 20: 21 to 

40 

 1st and 4th 10: 1 to 10, and 31 to 40  2nd  and 3rd 10: 11 to 20, and 21 

to 30 
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(a) BP-Pre (scatterplots with runs) 

 

(c) BP-Pre (95%CI plots) 

 

(b) BP-Post (scatterplots with runs) 

 

(d) BP-Post (95%CI plots) 

Figure 6-1 Scatter and 95% CI plots for varying sample size (BP sensor). 
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(a) QP-Pre (scatterplots with runs) 

 
(c) QP-Pre (95%CI plots) 

 
(b) QP-Post (scatterplots with runs) 

 
(d) QP-Post (95%CI plots) 

Figure 6-2 Scatter and 95% CI plots for varying sample size (QP sensor). 
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(a) BP-Pre 

 

(c) BP-Post 

 

(b) QP-Pre 

 

(d) QP-Post 

Figure 6-3 Impact of sample size on WIM error. 

6.5.2 Effect of Temperature 

The LTPP Field operations guide for SPS WIM sites details the procedure for collecting 

pavement temperature data during equipment calibration [26]. The methodology is similar to the 
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LTPP FWD hand-held infrared temperature sensors. The guide recommends that the calibration 

be performed at a wide range of temperatures, 30˚F or more, and collecting data over more than 

8 hours a day may be necessary. The protocol suggests that at least 12 runs (where possible) be 

performed for each temperature category.   

The calibration temperature data were categorized into 6 distinct categories, i.e., (<=30.0, 

30.1-50.0, 50.1-70.0, 70.1-90.0, 90.1-110.0, >110.1) ˚F. Figures 6-4 and 6-5 present the results to 

evaluate the effect of temperature on GVW WIM errors. The scatter plots for temperature data 

show that mostly the effect is random except for QP sensor data below the freezing temperatures 

[see Figures 6-4(a) and (b)]. The individual value plots show that BP sensor GVW errors are 

very stable across different temperature categories [see Figure 6-4(c)]. However, some increase 

in GVW errors for QP sensors can be tied to low temperatures [see Figure 6-4(d)]. 

Further investigation revealed that all these data with high errors were collected at the QP site 

installed in PCC pavements located in Washington. Figures 6-5(a) to (c) clearly show that the 

GVW errors significantly increased as the temperature dropped below 40˚F at this site. This site's 

detailed calibration/validation report revealed that this WIM site also had issues with the PCC 

pavement conditions/support. 
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(a) Temperature-Pre 

 

(b) Temperature-Post 

 

(c) Temperature-BP 

 

(d) Temperature-QP 

Figure 6-4 Effect of temperature on GVW errors  
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(a) QP-53-0200 (Washington) 

 

(b) QP-53-0200 (Washington)-Pre 

 

(c) QP-53-0200 (Washington)-Post 

Figure 6-5 Effect of temperature on GVW errors  
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6.5.3 Effect of Truck Speed 

The WIM error data were analyzed at different truck speeds. For this analysis, the calibration 

speed data were categorized into 7 distinct categories, i.e., (<=45.0, 45.1-50.0, 50.1-55.0, 55.1-

60.0, 60.1-65.0, 65.1-70.0, >75.1) mph. The results are presented using scatter, individual values, 

and interval plots (see Figures 6-7 and 6-8). The scatter and interval plots do not show any clear 

relationship for the QP sensor, though a small increase in errors with increased speed was 

observed for BP sensors. Although the differences were statistically significant (using interval 

plots), the differences are very small (less than 1-2 %) and have no practical significance. The 

speed dependency (increase or decrease in errors with change in speed) was observed for 

individual sites/events; however, no clear effect was observed when all the data were combined. 

Therefore, applying the compensation based on different speed levels should continue for 

equipment calibration/validation. 

 
(a) Speed-Pre calibration data 

 
(b) Speed-Post calibration data 

Figure 6-6 Scatterplot-Effect of truck speed 
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(a) Speed -BP 

 
(b) Speed -QP 

 
(c) Speed -BP 

 
(d) Speed -BP 

Figure 6-7 Effect of truck speed 

6.5.4 Effect of Truck Type 

The LTPP SPS WIM sites were calibrated and validated using two truck types, loaded Truck-1 

and partially loaded Truck-2. Figure 6-8 and Table 6-2 present the GVW error results for trucks 

1 and 2. The results show that the errors are significantly low for Truck-1 compared to Truck-2 
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for the BP sensor [see Figure 8 (b)]. The summary results for the BP sensor show that 

statistically significant (p-value <0.05) higher bias values were observed for Truck-2 as 

compared to Truck-1 in both pre and post-calibration data [see Table 6-2]. However, the 

magnitude of differences is very small and has limited practical implications, especially in post-

calibration data (less than 0.25%). The truck type was not significant for QP sensor bias or SD 

values. It is pertinent to mention that both the truck types were used separately, using 20 test runs 

each to compute errors for individual calibration events. 

 

(a) Individual value plots by truck type 

 

(b) 95% CI plots by truck type 

Figure 6-8 Effect of truck type (loaded vs unloaded) 
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Table 6-2 Summary results with significance (loaded vs unloaded truck). 

Sensor and calibration Truck No. Bias (%) SD (%) 
Significance (p-value) 

Bias SD 

BP-Pre 
Truck-1 2.66 1.57 

0.003 0.055 
Truck-2 3.27 1.74 

BP-Post 
Truck-1 1.44 1.10 

0.03 0.054 
Truck-2 1.68 1.15 

QP-Pre 
Truck-1 3.87 1.83 

0.735 0.934 
Truck-2 3.78 1.82 

QP-Post 
Truck-1 2.39 1.73 

0.448 0.503 
Truck-2 2.50 1.79 

6.5.5 Static Weights, WIM Speed, and Overall vehicle Length 

Finally, the truck speed and overall vehicle length estimated by the WIM system and the static 

truck weights were analyzed in this section. Figure 6-9 presents the results for static weights and 

WIM vs. radar speeds and WIM vs. static overall vehicle lengths. The results are based on the 

entire population, and it can be seen that the Truck-1 average static weight is 76,000 lbs. Truck-2 

average static weight is around 66,000 lbs. for both sensor types in pre and post-calibration data. 

This variation in weights is imposed during calibration/validation procedures to account for the 

truck dynamics, adversely affecting WIM errors. Figures 6-9(b) and (c) show the comparisons of 

WIM and radar speed. The truck speeds collected by both; the WIM and the speed gun are 

generally in agreement. However, QP sensors underestimated WIM speeds for some pre-

calibration records, and the issue was resolved in post-calibration data. 

Similarly, the overall truck length estimates are more accurate for BP sensors [see 

Figures 6-9(d) and (e)]. The error in overall length or axle spacing can lead to vehicle 

misclassification. The data showed that the issue of under or over-estimation of vehicle length 

was eliminated in post-calibration data. 
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(a) Static weights for Truck 1 and 2 

 
(b) WIM vs radar speed (pre-calibration) 

 
(c) WIM vs radar speed (post-calibration) 

 
(d) WIM vs static vehicle length (pre-calibration) 

 
(e) WIM vs static vehicle length (post-calibration) 

Figure 6-9 Static truck weights, speed, and vehicle length results    
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6.6 GVW ERRORS AS A FUNCTION OF SA, TA1, AND TA2 

 

A WIM site can be categorized as ASTM Type I, if SA, TA, and GVW errors are within ±20%, 

±15%, and ± 10 %, respectively. Due to complex truck configurations and dynamics, the static 

and dynamic weights collected for SA and two TA can vary substantially because individual 

wheel weights (left and right) are added to obtain a single axle (SA) and TA weights. The SA is a 

front axle in a Class 9 truck. During the WIM equipment calibration, the calibration factors (also 

known as compensation) are generally applied based on GVW errors obtained as a function of 

SA and two TA (drive tandem and trailer tandem). The LTPP field operation guide suggests a 

combination of the front axle (FA) and GVW can apply for compensation if a WIM site is 

equipped with such technology. This section presents the modeling of GVW errors as a function 

of FA and two TA. Before the model development, the pre and post-calibration data 

correlograms were generated to see the correlation between dependent and independent 

variables. Figures 6-10(a) and (b) show the results for Pre and post-calibration data, respectively. 

Strong correlations (0.80 to 0.90) were observed between GVW errors and drive tandem (T1) 

and trailer tandem (T2). 

The Multiple Linear Regression (MLR) technique is used when one dependent variable is 

affected by more than one factor, assuming a linear relationship. Equation 6.1 shows the general 

form of MLR, where response y (independent variable) is predicted using inputs (dependent 

variables) x1, x2, and xi, βo is the intercept (constant term), and βi is the coefficient of the 

predictor xi. The multiple linear regression models developed for pre and post-calibration data 

are shown in Equations 6.2 and 6.3, respectively. All the independent terms (FA, T1, and T2) 

were significant (p-value <<0.05)) in both models. 
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(a) Pre-calibration WIM errors 

 

(b) Post-calibration WIM errors 

Figure 6-10 Correlogram for pre and post-calibration WIM errors 

 1 1 2 2 ......o i iy x x x            (6.1) 

Pr (%) 0.02536 0.162758* (%) 0.41884* 1(%) 0.408246* 2(%)     GVW e SA T T  (6.2) 

(%) 0.01003 0.16140* (%) 0.40427* 1(%) 0.41215* 2(%)    GVW Post SA T T  (6.3) 

Table 6-3 presents the summary of pre and post-calibration models developed for GVW errors. 

The model goodness of fit shows that the GVW errors for pre and post-calibration data can be 

accurately estimated using the front axle and two tandem axles [see Figures 6-11(a) and (b)]. The 

results show that the models are sensitive to T1 and T2 errors (higher slope of predicted vs. the 

measured fit line), followed by SA errors [see Figures 6-11(c) and (d)]. The sensitivity analysis 
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was performed by changing one variable at a time while keeping constant values for the other 

two variables. The average values and ranges were estimated for all the variables based on the 

actual WIM errors for pre and post-calibration data.  

Table 6-3 Summary- pre and post-calibration GVW models. 

Data Significant terms 
Variable importance 

(higher to lower) 
MSE a RMSE b 

R-Sq 

(Trg) 

R-Sq 

(Test) 

Pre 3 
SA (45.48% c), T1 

(40.53%), T2 (13.64%) 
0.077 0.277 99.65 99.64 

Post 3 
T1 (44.58%), T2 

(25.79%), SA (28.67%) 
0.080 0.283 99.05 99.04 

a Mean squared error, b Root mean squared error, b Higher percentages indicate that the source (variable) 

accounts for more of the variation in the response. 
 

The SA load remains relatively stable after WIM equipment calibration because it mainly carries 

the engine's weight and is not affected by other truck payloads. Therefore the main contributors 

to the GVW errors are the two TAs. The distribution of load differences can cause a shift or 

change in axle weights observed by the WIM. The LTPP field guide suggests the use of steel 

plates or concrete blocks or beams securely attached [26]. At some TPF SPS sites, the test trucks 

loaded with crane counterweights were used for calibration. The developed models show that SA 

and two TA can accurately predict GVW errors. Therefore, the equipment calibration factors can 

be applied considering the calibration drift (positive or negative bias) in GVW errors. This 

information has huge potential for immediate application by highway agencies to optimize 

calibration procedures. This information validates agencies' practice of calibrating WIM sites 

based on GVW errors. Finally, agencies calibrating the WIM sites using SA only may revisit 

their technique and compare the results with the approach suggested in this study. 

6.7 COMPARISONS OF WIM ERROR ESTIMATION METHODS 

This section provides the results to accomplish the third and final objective of the paper. The 

three accuracy estimation methods described above are compared based on pre-and post-

calibration data for varying sample sizes. Figures 6-12(a) and (b) show the number of passing 
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records based on SA (<=20%), TA (<=15), and GVW (<=10) tolerance limits. Figures 6-13(a) 

and (b) show the number of failure events based on SA, TA, and GVW total errors computed for 

pre and post-calibration data. In general, all three methods are in agreement with each other. The 

LTPP accuracy estimation method is the most conservative of all three, especially with a smaller 

sample size (10 or fewer runs). Both the techniques using ASTM methods with slightly different 

interpretations are comparable. 

Any pre- or post-calibration event that qualified as a passing event based on GVW error 

also passed SA and TA accuracy checks. However, there are events in pre-calibration data 

(compared to the LTPP method with 40 runs) that qualified as passing events based on SA (19 

events) or TA (10 events) tolerance but did not pass the tolerance threshold based on the GVW 

errors (21 failure events). This analysis further augments the findings from the last section that if 

a WIM system is calibrated/validated using GVW errors, there is enough data-driven evidence 

that the system will also meet the SA and TA tolerance threshold. Some effect of sample size is 

also seen in the failure events part of post-calibration data. Only two events truly failed the 

equipment calibration from the WIM calibration reports. The two events were identified for the 

QP sensor, each for SPS WIM sites 350500 (New Mexico) and 530200 (Washington). Both these 

events were also declared as failure events using all three methods. Reviewing the detailed 

calibration reports revealed that the New Mexico site had a bad sensor that needed replacement. 

In contrast, the Washington site reported issues with pavement conditions/support. In addition, 

the LTPP accuracy computation approach resulted in three passing events as failures based on 

GVW data for a smaller sample size (10 runs). The three additional events [(total 5 in Figure 6-

13(b)] were declared as failures with tolerance marginally crossing the thresholds. Due to a few 

outliers, these additional events had issues with the normality assumption considered in the 
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LTPP estimation approach. Based on this analysis, it can be concluded that for a smaller sample 

size (10 or less), all three methods should be compared to characterize a calibration event as pass 

or fail. Overall, the differences among all three methods were negligible, especially in post-

calibration data. The results of the pre-calibration data also supported this analysis. However, at 

that time, the WIM sites were assessed based on a previous calibration performed 8 to 12 months 

(sometimes even more) before the data collection.   
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(a) Goodness of fit (pre) 

 
(b) Goodness of fit (post) 

 
(c) Model sensitivity (pre) 

 
(d) Model sensitivity (post) 

Figure 6-11 Comparison of models and sensitivity 
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(a) Passing events- pre-calibration 

 

(c) Passing events- post-calibration 

Figure 6-12 Comparisons of different accuracy estimation methods 
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(a) Failure events- pre-calibration 

 

(b) Failure events- post-calibration 

Figure 6-13 Comparisons of different accuracy estimation methods 

6.8 KEY FINDINGS  

Successful WIM equipment calibration can eliminate weight, speed, and axle spacing errors. 

Following are the conclusions and recommendations based on data analyses. 
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 The results show that the effect of sample size on WIM errors was negligible, especially 

when the sample size is sufficiently large (n>=10) for QP and BP sensors. faltered 

 The WIM site calibration can be performed using one test truck to achieve a 

representative range of BP and QP sensor errors. A single test truck with 12 runs (4 at 

each speed point) can be used for equipment calibration. 

 The current LTPP filed operation guide recommendations of calibrating a WIM site at 

different speed levels should continue, preferably at three-speed points 50, 60, and 70 

mph or as per the recommendations of the posted speed limits. 

 Pre and post-calibration data can be collected on the same day for BP sensors, as no 

apparent effect of temperature was observed for BP WIM sites. If possible, the pre and 

post-calibration data can be collected for an extended period for QP sensors to account 

for higher temperature fluctuations. 

 The representative post-calibration data can be collected accurately using one test truck 

with 12 passes at 3-speed points for QP and BP sensors. If a site shows higher speed 

dependency, the number of test truck runs may be increased to 20. 

 The ASTM and the LTPP accuracy estimation methods are generally in agreement; 

however, the methods should be compared when the sample size is small and in the 

presence of potential outliers.  

 The developed models showed that the GVW errors could be accurately predicted using 

SA and two TAs. 

 The results show that if GVW errors are within ASTM Typ1 I tolerance, the SA and TA 

errors will also be within acceptable limits. Therefore, the practice of calibrating a WIM 

site using GVW errors should continue.  
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 The suggested changes in current WIM procedures can significantly reduce time and 

resources for successful equipment calibration. 

6.9 CHAPTER SUMMARY 

This chapter addresses three core issues related to WIM systems accuracy and calibration 

procedures, i.e., how to; (1) perform successful calibration of a WIM system by quantifying the 

effect of sample size (truck runs), speed, temperature, and truck type on measurement errors, (2) 

model gross vehicle weight (GVW) WIM errors as a function of individual axle errors [(single 

axle (SA) and two tandem axles (TA), (drive and trailer)], and (3) estimate WIM measurement 

errors using the LTPP and the ASTM protocols. The research objectives were accomplished by 

synthesizing and analyzing the WIM error data available in the LTPP database for bending plate 

(BP) and quartz piezo (QP) sensors. 

Successful WIM equipment calibration can eliminate systematic weights, speed, and axle 

spacing errors. The ASTM and the LTPP accuracy estimation methods agree; however, the 

methods should be compared when the sample size is small (10 or fewer truck runs). The 

representative pre and post-calibration data can be collected accurately using one test truck with 

12 or more runs at multiple speed points for QP and BP sensors. The developed models showed 

that the GVW errors could be accurately predicted using SA and two TAs. The results also show 

that if GVW errors are within ASTM Type I tolerance, the SA and TA errors will likely be 

within acceptable limits. Therefore, calibrating a WIM site using GVW errors should continue. 

The suggested changes in current WIM procedures can significantly reduce time and resources 

for successful equipment calibration. The preliminary models developed in this study can be 

validated in the field and improved further by adding more data in the future.  
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CHAPTER 7 ESTIMATION OF VEHICLE PAYLOAD FROM GVW 

DATA 

7.1 INTRODUCTION 

The freight transportation system in the United States contributes significantly to the country's 

economy, security, and quality of life. Strategic, operational, and investment decisions by 

governments at all levels will be necessary to maintain freight system performance and requires 

sound technical guidance based on research. The National Cooperative Freight Research 

Program (NCFRP) highlighted that the quality and extents of freight data are important for 

freight demand models to support public sector decision-making [75]. A region's economy 

substantially benefits from increased intra, and inter-regional freight flows between trading 

partners and intermodal centers. Freight generation and movement patterns are not well 

understood by planners and policymakers tasked with making complex strategic land use and 

transport planning decisions [76-78]. A study by Hwang et al. reported that the commonly used 

inputs for freight and regional travel demand and emission models include vehicle miles traveled 

(VMT), payload by commodity type, and vehicle loading. The study also documented that 

according to the commodity flow survey (CFS) of 2012, 71% and 73% of total goods by weights 

and values are transported by trucks compared to other mode shares (rail, water, air, pipeline, 

etc.). Also, FHWA Class 9 (5-axles semis) trucks accounted for 54% of the truck volumes 

collected in the 2017 Travel Monitoring Analysis System (TMAS). This study also presented an 

approach to calculating the average payload of loaded trucks by subtracting the empty trucks' 

estimated average GVW from the loaded trucks' average GVW. This report had a significant 

limitation: no data source was available to compare and validate the estimated payloads. A 

Gaussian mixture model (GMM) procedure is adopted to compare the weights of empty and 

loaded trucks and average payloads [79, 80]. This study computed average payloads by 
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subtracting the average empty weight from the loaded weights using data from 4 WIM stations. 

The findings reported differences in estimated weight values (loaded, empty, and payload) from 

WIM data and the values obtained from the National and California Vehicle Inventory Use 

Survey (VIUS). Luis et al. applied a similar technique to Tandem axle distributions to improve 

the characterization of the axle load spectra for pavement design [81].  

The State Departments of Transportation (DOTs) use several methods and data sources 

for freight tonnage estimation. A study in Florida thoroughly reviewed truck tonnage estimation 

methodologies and data sources [82]. The report documented several methods to estimate freight, 

including but not limited to freight analysis framework (FAF), commodity flow survey (CFS), 

truck traffic and counts, WIM data, and Origin-Destination Matrix Estimation (ODME). The 

authors also provided a list of data sources to estimate freight, including Annual Average Daily 

Truck Traffic (AADTT), American Transportation Research Institute (ATRI), and commercial 

data sources like Transearch. This study also proposed a new methodology to estimate freight 

tonnage based on WIM data and compared it with FAF tonnage estimates. The average 

aggregated tonnage estimated by WIM based method was 22 % and 23% higher than FAF-based 

methods for the years 2012 and 2017, respectively. Naveen et al. presented a freight data fusion 

approach by combining FAF and Transearch data to study commodity flow in the spatial domain 

[83]. The results also covered empty truck flow generation using WIM data and the origin-

destination matrix. A study in Manitoba evaluated the use of portable WIM systems to collect 

axle weights for several applications, including pavement design and traffic patterns [84]. This 

study estimated and validated the weights of empty, partially loaded, and loaded trucks based on 

GVW WIM data. However, no discussion was available related to freight tonnage. Daniel et al. 

successfully demonstrated using WIM data to study temporal analyses of freight in Southern 
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California. The authors presented models to estimate the average GVW per year in metric tons 

based on data from 22 WIM sites [85]. However, the estimates were not validated against actual 

freight at these locations. Finally, a study completed in Florida used Class 9 GVW average 

values for partially loaded, full trucks, and empty trucks to investigate truck empty backhaul 

issues [86]. The empirical analyses resulted in strategies to help address the empty backhaul 

issue and improve Florida freight mobility and trade plan.  

Most studies discussed above used the WIM data to get valuable information about 

freight movement. However, the freight tonnage estimates were not validated by other data 

sources, except in a few studies [80, 82, 83]. The main reason is the non-availability of adequate 

data sources in the public domain: additional costs and labor limit freight data monitoring, 

recording, and reporting regularly. Therefore, there is a need to develop a cost-effective and 

easily implementable approach to get general freight trends on highways and other state routes. 

The Long Term Pavement Performance (LTPP) database traffic module contains detailed gross 

vehicle weight (GVW) data for different FHWA truck classes. The data summaries are available 

by truck class daily, monthly, and yearly [73, 87]. This data can be used to identify empty, 

partially loaded, and fully loaded trucks based on the GVW reference weight ranges. 

Subsequently, this information can be validated with the freight and commodity survey data 

gathered by the state DOTs. The results can be incorporated into freight demand models to make 

informed transportation policy decisions. An effort is made to formulate a procedure to get 

freight information from WIM data, considering the freight data limitations. This study estimated 

freight tonnage (vehicle payload) from WIM data and validated it using Transearch data from 

IHS Markit. In addition, this research evaluates the feasibility of using the LTPP WIM data to 
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estimate freight tonnage over time. The analysis presents freight estimates using the LTPP WIM 

data from the states of Michigan, Ohio, and Washington ranging from 1997 to 2020 (23 years).  

7.2  OBJECTIVES 

This chapter further extends applications of WIM data to address an important issue related to 

freight data, i.e., how to estimate freight tonnage and classify commodities based on GVW WIM 

data. The methodology uses GVW loading data to estimate vehicle payload and commodity type. 

The primary objectives of the research are to provide (a) a review of Michigan freight and GVW 

data, (b) an estimation of freight tonnage from GVW data, (c) a methodology to classify freight 

commodities based on GVW data, and (d) feasibility of potential application using the LTPP 

case studies. These objectives were accomplished by synthesizing and analyzing the freight and 

GVW loading data from the Michigan Department of Transportation (MDOT). Further, the 

models' adequacy and potential applications were assessed using the GVW WIM data for three 

LTPP sites. 

7.3 DATA USED FOR ANALYSES 

The authors obtained the GVW loading and freight data from the Michigan Department of 

Transportation (MDOT). The MDOT acquired freight and commodity type from the Transearch 

data from IHS Markit. The shape files containing freight and location information were 

processed in Quantum Geographic Information System (QGIS) software to obtain total tonnage 

and tonnage per commodity for a year. All the available sites were assigned a unique ID by 

combining county and route IDs. In addition, MDOT also provided GVW distributions for all 

truck classes based on available WIM stations on the same route for the same year as freight 

data. The county and road IDs were matched to correlate the GVW and freight information. 
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Table 7-1 and Figure 7-1 show the distribution of sites for GVW and freight data. In summary, 

35 sites were available to analyze freight and GVW data.  

Table 7-1 Detail of available WIM sites. 

Station for GVW County Located on route Functional class Transearch freight data 

03-7319 Allegan I-196 Interstate Available 

09-6429 Bay I-75 Interstate Available 

11-7189 Berrien I-94 Interstate Not available 

12-7269 Branch I-69 Interstate Available 

13-7159 Calhoun I-94 Interstate Not available 

13-7169 Calhoun I-94 Interstate Available 

19-5019 Clinton US-127 Freeway and Expressway Available 

19-5319 Clinton I-96 Interstate Available 

21-1459 Delta US-2 Other Principal Arterial Available 

21-2229 Delta US-2 Other Principal Arterial Available 

22-1199 Dickinson M-95 Other Principal Arterial Available 

23-8869 Eaton I-69 Interstate Available 

25-6119 Genesee I-75 Interstate Available 

25-6449 Genesee I-69 Interstate Available 

30-8129 Hillsdale US-12 Other Principal Arterial Available 

33-8029 Ingham US-127 Freeway and Expressway Available 

38-7029 Jackson I-94 Interstate Available 

38-7049 Jackson US-127 Other Principal Arterial Not available 

40-3069 Kalkaska US-131 Other Principal Arterial Available 

41-9759 Kent M-6 Freeway and Expressway Available 

47-8049 Livingston I-96 Interstate Available 

49-2029 Mackinac US-2 Other Principal Arterial Available 

58-8729 Monroe US-23 Freeway and Expressway Available 

61-5289 Muskegon US-31 Freeway and Expressway Available 

69-4049 Otsego I-75 Interstate Available 

70-5059 Ottawa I-196 Interstate Available 

70-5099 Ottawa I-196 Interstate Available 

72-4129 Roscommon US-127 Freeway and Expressway Not available 

72-4149 Roscommon I-75 Interstate Available 

75-2199 Schoolcraft M-28 Other Principal Arterial Available 

77-6369 Saint Clair I-69 Interstate Available 

77-6469 Saint Clair I-94 Interstate Available 

78-7119 Saint Joseph US-131 Other Principal Arterial Available 

80-7219 Van Buren I-94 Interstate Available 

81-8239 Washtenaw US-23 Freeway and Expressway Available 

82-8839 Wayne I-94 Interstate Available 

82-9189 Wayne I-275 Interstate Available 

82-9699 Wayne I-75 Interstate Available 

7.3.1 Overview of Freight Data 

The total freight tonnage for different commodities was visualized first. Most of the sites 

contained multiple records for freight tonnage. Therefore, the representative freight statistics, 

including minimum, average, and maximum freight values, were calculated for each location. 
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The freight list contained information on 32 different commodities. However, the heat map and 

pie charts in Figures 7-2 and 7-3 show the details of the top 5 commodities for each site. Each 

county and road exhibited a unique distribution of freight. The predominating commodities in 

different counties were food and farm products, ores and minerals, petroleum products, logs and 

lumbers, chemical products, transportation equipment, and waste materials. Overall, the 

available data had farm products, food products, and nonmetallic ores and minerals as the top 3 

commodities [see Figures 7-2 and 7-3(a)]. The trends varied for individual sites; for example, 

nonmetallic ores and logs/lumber products represent the maximum tonnage on M-95, Dickinson, 

and US-2, Mackinac Counties, respectively [see Figures 7-3(c) and (d)]. 

Figure 7-4 shows the relationship between different freight statistics computed for each 

site. The average freight shows a strong correlation (R2 >0.86) with minimum and maximum 

freight values [see Figures 7-4(a) and (b)]. The sites' maximum and minimum freight values 

show a weaker relationship [see Figure 7-4(c). Therefore, this research assesses the GVW 

relationship with average freight values only. Figure 7-4(d) presents different routes' average and 

maximum freight information. The results show that the maximum freight travels on interstates 

I-75 and I-94 within Michigan, whereas; US-2, US-12, and US-131 carry minimum cargo. 
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Figure 7-1 Location of available WIM sites.  
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Figure 7-2 Heat map for freight data by commodity type and route.  
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(a) Overall (based on 35 sites) 

 
(c) Location 22-95 

 
(b) Location 11-94 

 

(d) Location 49-2 

 

Figure 7-3 Freight data for different predominating commodities. 
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(a) Minimum freight vs. average freight 

relationship   

 
(c) Minimum freight vs. maximum freight 

relationship   

  
(b) Average freight vs. maximum freight 

relationship   

 

(d) Average vs. maximum freight relationship (by 

route)   

Figure 7-4 Relationship between freight data statistics. 

7.3.2 Axle Loading Data for Gross Vehicle Weight  

The GVW data were available on a monthly and yearly basis. The annual data were analyzed 

because the freight data were available yearly. The investigation used one year (i.e., 2018) of 

GVW data from 35 WIM stations. Each datasheet contained information on WIM ID truck class, 

direction, route functional class, city, and county. The GVW data were quarried separately for 
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Class 9 trucks and all other truck classes (4 to 13 excluding Class 9). The GVW data contained 

41 bins at 3 kip intervals ranging from the smallest and the largest bins of 0-3 kip, and 120+ kip, 

respectively. Figures 7-5(a) and (b) show the GVW data for Class 9 trucks and all other truck 

classes. The GVW data for Class 9 trucks show two prominent peaks. The first and second peaks 

occur approximately from 24 to 36 Kip, and 68 to 80 Kip, respectively. 

7.4 MODELLING OF GVW DISTRIBUTIONS 

The GVW distributions were modeled using a set of three distinct distributions, i.e., empty, 

partially loaded, and fully loaded. Typically, two peak loads are observed in the GVW data. A 

mixture of statistical distributions was considered to characterize the predominantly bimodal axle 

load spectra [69]. It was shown that two or more normal probability density functions (PDFs) 

could be added with appropriate weight factors to obtain the PDF of the combined distribution, 

as shown by Equation 7.1: 

*
n

i i
i

f p f  (7.1) 

Where 
*f = PDF of combined distribution, pi= proportions (weight factors) for each normal 

PDF, and fi= PDFs for each normal distribution. 

For a mixture distribution containing three normal PDFs, the three-weight factors are 

complementary (i.e., p1+ p2+p3 = 1). Haider and Harichandran determined that the shape factors 

of axle load spectra could be effectively captured by using a combination of the normal 

distributions: 
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Where 1
  the average for GVW of empty trucks, 1

  the standard deviation for GVW of 

empty trucks, 2
  the average for GVW of partially loaded trucks, 2

   the standard deviation 

for GVW of partially loaded trucks, 3
  the average for GVW of fully loaded trucks, and 3

 

the standard deviation for GVW of fully loaded trucks, 1 2 3
, ,p p p   weights of the three 

probability distributions. 

Figures 7-6(a) and (b) show an example of the observed and fitted GVW distribution and 

individual distributions for one WIM station in Clinton County.  

7.5 PROCEDURE FOR RELATING WIM-BASED GVW PAYLOAD WITH 

TRANSERACH FREIGHT  

 

This section presents the procedure to estimate freight tonnage based on GVW data for Class 9 

and other truck classes. The data selection, analyses, and model development process are 

explained with the help of a flow chart (see Figure 7-7). Different statistical techniques were 

used to identify the most significant variables, including scatter plots, correlation, linear, non-

linear, and multiple linear regression. The final models developed to estimate freight based on 

GVW data are presented next. 
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(a) GVW weights for Class-9 trucks 

 
(b) GVW weights for all other trucks (Class 4 to 13 

excluding Class 9) 

Figure 7-5 GVW weight data from different Class 9 and other trucks (2018, Michigan).  

0%

4%

8%

12%

16%

0 4 8
1

2
1

6
2

0
2

4
2

8
3

2
3

6
4

0
4

4
4

8
5

2
5

6
6

0
6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0

0
1

0
4

1
0

8
1

1
2

1
1

6
1

2
0

R
el

at
iv

e 
fr

eq
u
en

cy
 (

%
)

Gross vehicle weight (Kips)

0%

4%

8%

12%

16%

20%

24%

0 4 8
1

2
1

6
2

0
2

4
2

8
3

2
3

6
4

0
4

4
4

8
5

2
5

6
6

0
6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0

0
1

0
4

1
0

8
1

1
2

1
1

6
1

2
0

R
el

at
iv

e 
fr

eq
u
en

cy
 (

%
)

Gross vehicle weight (Kips)



149 

 
(a) Example of GVW distribution fitting (Station 19-5019, Clinton County, US-127) 

 
(b) Individual distributions (Station 19-5019, Clinton County, US-127) 

Figure 7-6 GVW weight data - example of GVW distribution fitting.  
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Figure 7-7 Flowchart for GVW and freight data analyses. 

WIM and Freight Data

WIM Data (GVW) Freight data (Match with 

WIM data using County and route).
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 Filter data for year 2018

Modelling of GVW distributions
 Normalize GVW distributions

 Fit a mixture distribution using three distributions, i.e., fully loaded, 

partially loaded, and empty.
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 Obtain freight for other truck classes by  using a discrete distribution,  

i.e.,   fixi 

GVW NALS shape factors for Class 9 GVW data
 Obtain mean values for three distributions (m1, m2, m3)
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using GVW shape factors

Freight data visualization
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Step 1 Data processing
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Equations 7.3 to 7.6 were used to estimate vehicle payload from GVW data for Class 9 

and other truck classes. 

 

where:

    

Total GVW load = Total load for GVW mixture distribution

 = Noramalized frequency for GVW mixture distribution

mid point of th bin

Total counts for Class 9 trucks

 

i

i

i iTotal GVW load

f

x i

N

f x N





  

 (7.3) 

 

where:

    

Empty GVW load = GVW load carried by empty trucks

 = Noramalized frequency for GVW empty truck distribution

mid point of th bin

Total counts for Class 9 trucks
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i iEmpty GVW load
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x i
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 (7.4) 
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Class 9

where:

   

Pay load  = Freight carried by Class 9 trucks

  -   ClassPay load Total GVW load Empty GVW load

 (7.5) 

 

others

where:

   

Pay load  = Freight carried by other trucks

 = Frequency for GVW distribution (other trucks)

mid point of th bin

 Others

i

i

i iPay load

f

x i

f x



 

 (7.6) 

 

The model to estimate freight tonnage uses dependent and independent variables 

presented in Step 3 of Figure 7-7. The presented model estimates freight as a function of Class 9 

GVW payload and GVW load for other truck classes. The tonnage computed based on the Class 

9 truck's GVW data strongly correlated with actual freight average values [see Table 7-2]. 

Equation 7.7 shows the model based on the payload computed from Class 9 trucks. The review 

of model diagnostics highlighted one unusual observation that was deleted. This point showed a 

significantly large residual as compared to other data points. Equation 7.8 shows the freight 



152 

estimation model that contains payloads for both, i.e., Class 9 and all other truck classes. 

Although the second term was significant (p-value <0.05), its contribution to explaining model 

variance was negligible. Equation 7.9 shows the model developed as a function of GVW freight 

for other truck classes only. This model is not a very good fit for estimating freight. Figures 7-

8(a) to (c) show the goodness of fit for the freight estimation models (Equations 7.7 to 7.9). The 

deletion of unusual observations slightly improved the model goodness of fit with approximately 

similar regression coefficients. 

Further, no issue was found with regression assumptions [see Figures 7-9(a) to (c)]. The 

developed methodology has the potential for immediate application. This can be applied to 

estimate freight at any route, provided GVW WIM data are available.  

Table 7-2 Correlation between GVW and average freight. 

Variable Pearson correlation Spearman correlation p-value 

GVW freight_CL9 vs Freight_avg 0.879 0.868 <<0.005 

GVW freight_others vs Freight_avg 0.446 0.583 <<0.005 

GVW freight_CL9 vs GVW freight_others 0.694 0.806 <<0.005 

 

 

2

where:

_ ( )  1.937 1.055  _ 9

( 84.57, 34)

Freight_avg(MT)=Average freight in  Mega ton

GVW freight_CL9=Freight (paylaod) calculated from GVW distributions for class 9 trucks

Freight avg MT GVW freight CL

R N

 

 

 (7.7) 

 

  

2

where:

_ ( )  4.30 1.244  _ 9-0.608  _

( 86.91, 34)

Freight_avg(MT)=Average freight in  Mega ton

GVW freight_CL9=Freight (payload) calculated from GVW distributions

Freight avg MT GVW freight CL GVW freight others

R N

 

 

 for class 9 trucks

GVW freight_others=Freight (paylaod) calculated from GVW distributions for other truck classes

 (7.8) 
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2

where:

_ ( )  3.43 1.541  _

( 32.58, 34)

Freight_avg(MT)=Average freight in  Mega ton

GVW freight_others=Freight (payload) calculated from GVW distributions for other truck c

Freight avg MT GVW freight others

R N

 

 

lasses

 (7.9) 
  

7.6 CLASSIFYING FREIGHT COMMODITIES FROM GVW DATA 

This section presents the procedure to classify freight commodities based on normalized GVW 

shape factors for Class 9 trucks. Because it was not possible to model their GVW distributions 

for other trucks, those were not considered. Table 7-3 presents the normalized GVW shape 

factors considered for analyses. The partially loaded trucks SD is the largest among the three 

groups. In this analysis, an attempt is made to classify freight commodity types based on shape 

factors as predictors. The freight commodities with maximum tonnage for each site were 

grouped into four classes. The four classes contain the following freight commodities:  

Class 1: farm and food products (counts: 19) 

Class 2: nonmetallic ores and minerals and waste or scrap material (counts: 8) 

Class 3: logs, lumber, and wood products (counts: 2) 

Class 4: chemical products and secondary traffic (counts: 6) 
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(a) Goodness of fit (Class 9 only) 

 
(b) Goodness of fit (Class 9 and others)  

  

  
(c) Goodness of fit (Other truck classes only) 

Figure 7-8 Goodness of fit for freight estimation models. 
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(a) Residuals for model (Equation 7.7) 

 
(b) Residuals for model (Equation 7.8) 

   
(c) Residuals for model ( Equation 7.9) 

Figure 7-9 Diagnostics for freight estimation models. 

 

 

 

 

 

 

 



156 

Table 7-3 GVW shape factors for Class 9 trucks. 

GVW shape factors Symbol Min. Max. Mean 

Average values from the 

literature 
Units 

[88] [89] [86] [13] 

Empty trucks distribution m1 26.1 35.7 31.6 34.2 33 <40 32.2 

kips 

Partially loaded trucks distribution m2 37.3 55.1 43.6 - 46 40 - 60  

Fully loaded trucks distribution m3 62.2 74.9 70.8 - 67 >60 82.7 

Empty truck loads σ1 2.4 7.7 3.7 - - - 1.8 

Partially loaded trucks distribution σ2 7.6 13.1 10.4 - - - - 

Fully loaded trucks distribution σ3 3.9 16.5 6.9 - - - 4.0 

Empty trucks distribution COV1 0.08 0.25 0.11 - - - 0.06 No 

units 
Partially loaded trucks distribution COV2 0.18 0.27 0.23 - - - - 

Fully loaded trucks distribution COV3 0.06 0.25 0.09 - - - 0.05 

This analysis was conducted using the supervised machine-learning algorithm called 

classification and regression trees (CART®) Classification. The CART Classification illustrates 

critical patterns and relationships between a categorical response and continuous or categorical 

predictors within highly complex data without using parametric methods. The visual 

representation of the CART regression can make a complex predictive model much easier to 

interpret [68]. Table 7-4 provides a set of logical rules for classifying freight commodities. These 

rules can help classify a commodity type by analyzing the available information on GVW shape 

factors. Figures 7-10(a) and (b) present the relative variable importance and model accuracy 

based on the CART Classification model. The optimal tree with 7 terminal nodes has a relative 

misclassification cost of 0.31, i.e., the model can correctly classify 69% of the total events 

(24/35). The results show that the average of fully and partially loaded trucks are the most 

important predictors, followed by the average of empty trucks. Other variables listed in Table 7-4 

showed an insignificant effect. Figure 7-11 presents the CART decision tree model of this data.  

The results show that 11 out of 19 (57.9%) events were correctly classified as Class 1. The 

percentage of correctly classified events for Classes 1 and 2 was 100% (10 out of 10). In 

contrast, 50% (3 out of 6) events were correctly marked in Class 4. Figure 7-12 presents the 
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receiver operating characteristics (ROC) curves for all four classes. The area under the ROC 

curve (AUC) is a measure of discrimination; a model with a high area under the ROC curve 

suggests that the model can accurately predict observation value [90]. All the plots show an AUC 

> 0.9, indicating that the commodity type can be classified using GVW shape factor information. 

This analysis considers one class at a time as an event like a binary (event, no event) response. 

The model also incorrectly classified 31% of the total events. In Class 1, 8 events were 

misclassified; 3 and 5 events were marked as Classes 2 and 3, respectively. In Class 4, 3 events 

were misclassified: 1 and 2 as Class-1 and 2, respectively. These results are based on a very 

small dataset and need careful interpretation. The variability in independent variables was 

limited because the GVW distributions were similar for most available locations. The number of 

cases in each sub-class was also limited, especially in Class 3. Additionally, although the top 

commodity carries a maximum share of freight at a particular location, it does not explain the 

entire freight pattern. This top commodity is just one out of a list of 32 other commodities part of 

total freight tonnage. The process presented here is a way of getting valuable information from 

WIM data. More data can augment the existing findings in the future. 

Table 7-4 Decision tree model rules for the commodity classification model.  

Variable Terminal node m1 (empty) kip m2 (partially loaded) kip m3 (loaded) kip 

Class 1 
6 - - > 45.42 <= 73.28 

2 <= 31.93 39.50 < <= 43.77 <= 70.20 

Class 2 
3 < = 31.92 39.50 < <= 43.77 > 70.20 

7 - - > 45.42 > 73.28 

Class 3 
5 - - 43.77 < <= 45.42 - - 

1 - - < = 39.50 - - 

Class 4 4 > 31.93 39.50 < <= 43.77 - - 
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7.7 POTENTIAL APPLICATIONS TO LTPP WIM DATA - CASE STUDIES  

This section presents the feasibility of applying the proposed method to three LTPP WIM sites. 

Table 7-5 details the relevant LTPP tables used for data extraction. The site details are given 

below: 

 Michigan SPS-1 site located on US-27 (South) Rural Principal Arterial – Other lanes all), 

Clinton County (26-0113). 

 Ohio SPS-1 site located on US-23 (South) Rural Principal Arterial – Other all lane (1), 

Delaware County (39-0101). 

 Washington GPS-6A site located on State Route 167 Urban Other Principal Arterial lanes 

(all), King County (53-6049). 

The Michigan site was selected because the Transearch freight tonnage was available closer to 

this section. The other two sites were chosen because of varying traffic levels and patterns.  

Table 7-5 LTPP database tables used to extract data elements. 

Type of data Data elements Relevant LTPP tables Table description 

General 

information 

LTPP section 

inventory 

EXPERIMENT_SECTI

ON 

The three key fields that define a unique record in 

this table are STATE_CODE, SHRP_ID, and 

CONSTRUCTION_NO. 

General 

information 

LTPP Traffic 

Site Information 
SHRP_INFO 

This table contains combined data from INV_ID, 

INV_GENERAL, SPS_ID, SPS_GENERAL, and 

SPS_PROJECT_STATIONS. 

GVW 

counts 

Yearly 

Aggregate Of 

GVW 

YY_GVW 
Gross Vehicle weights are aggregated by vehicle 

class yearly by day of the week. 
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(a) Model performance 

 
(b) Relative variable importance  

Figure 7-10 CART Classification model performance and variable importance. 
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Figure 7-11 CART Classification model Decision Tree.  
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(a) Class-1 

 
(b) Class-2 

  
(c) Class-3 

  
(d) Class-4 

Figure 7-12 ROC Curves for different commodity classes. 

7.7.1 GVW Distributions and Freight Estimates for LTPP WIM sites  

Figures 7-13 to 7-15 present the yearly GVW distributions for three LTPP WIM sites. The Class 

9 GVW distributions show different shapes at the LTPP WIM sites. The Michigan and 

Washington sites show a higher percentage of empty trucks, whereas; the Ohio WIM site shows 

a somewhat similar frequency for empty and fully loaded trucks. The GVW distribution 
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variability over time is also less at the LTPP Ohio WIM site. Figure 7-16 presents the freight for 

the LTPP WIM sites predicted using Equation 7.7. Also, it shows the count of days in a year. 

The freight values were consistent over time except for the LTPP-OH WIM site. The primary 

reason for fluctuations in freight over time was fewer days in a calendar year. Figure 7-17 

presents the estimated freight comparisons for the LTPP WIM sites. Figure 7-17(a) compares the 

Transearch freight tonnage and the LTPP WIM site in Michigan. At this LTPP site, the freight 

carried by Class 9 trucks was 5.01 MT for the most recent year, i.e., 2016. At the same site, the 

Transearch average, maximum, and MDOT WIM-based (Class 9) freight for 2018 were 4.22, 

5.32, and 4.94 MT, respectively. The results show that the freight estimates from the three data 

sources are comparable. Figures 7-17(b) to (d) show the freight tonnage predicted for Class 9 

trucks only, freight predicted for all trucks, and all trucks excluding Class 9, respectively. The 

results show that the Class 9 trucks carry the maximum freight at the LTPP WIM sites in 

Michigan and Ohio [see Figure 7-17(b)]. In contrast, the other truck classes have the maximum 

contribution at the LTPP WIM site in Washington. The percentage of Class 9 trucks was 

obtained at all the sites to investigate this pattern (see Figure 7-18). On average, 26, 45, 48, and 

71% of the traffic comprises Class 9 trucks for the LTPP-WA, MDOT, LTPP-MI, and LTPP-OH 

WIM sites, respectively. The findings imply that most freight at the Washington WIM site is 

carried by other trucks.  

The predictions at the LTPP-WA site also show the Class 9 freight estimation model 

limitations. This model was developed for the MDOT WIM and Transearch freight data and may 

not fully capture Washington Class 9 traffic trends. Therefore, a careful evaluation of estimates 

is recommended, and these should be compared independently against actual freight tonnage 
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where possible. The percentage of Class 9 trucks should be within the range of data for the 

model development.   

7.7.2 Class 9 GVW Shape Factors for the LTPP WIM sites  

This final section briefly discusses the GVW shape factors for empty, partially loaded, and fully 

loaded Class 9 trucks. The comparison data set includes three LTPP and 35 MDOT WIM sites. 

Figure 7-19 to 7-21 shows the 95% confidence interval plots for individual distributions for 

GVW mean, SD, and coefficient of variation (COV). Statistically significant differences were 

observed in GVW mean and SD values at these sites [see Figures 7-19(a) to (c) and 7-20(a) to 

c)]. The differences are more pronounced for partially loaded and fully loaded trucks. The LTPP-

OH and LTPP-WA WIM sites generally show the lowest and highest variability in GVW data. 

The average loaded peak values in ascending order are 67, 72, 71, and 77 Kips for LTPP-WA, 

LTPP-MI, MDOT-MI, and LTPP-OH WIM sites, respectively. 
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(a) LTPP-MI (Class-9) 

 
(b) LTPP-MI (Others) 

Figure 7-13 GVW weights for Class 9 and other trucks-Michigan. 
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(a) LTPP-OH (Class-9) 

  
(b) LTPP-OH (Others) 

Figure 7-14 GVW weights for Class 9 and other trucks-Ohio. 
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(a) LTPP-WA (Class-9) 

  
(b) LTPP-WA (Others) 

Figure 7-15 GVW weights for Class 9 and other trucks-Washington. 
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(a) LTPP- MI (26-0113) US-27 (South) Rural Principal Arterial – All lanes 

 

 
(b) LTPP-WA (53-6049) US-27 (South) State-167 – Urban Other Principal Arterial – All lanes ) 

 
(c) LTPP-OH (39-0101) US-23 (South) Rural Principal Arterial – Lane 1 

Figure 7-16 Predicted freight for Class 9 trucks and number of days. 
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(a) LTPP-MI (Class-9) 

 
(b) Predicted freight based on Class 9 

 

 
(c) Predicted freight based on all trucks 

  
(d) Predicted freight based on other trucks 

Figure 7-17 Comparisons of predicted freight – LTPP WIM sites. 
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Figure 7-18 Percent of Class 9 trucks at LTPP and MDOT WIM sites. 
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(a) Empty trucks GVW mean 

 
(b) Empty trucks GVW SD 

 
(c) Empty trucks GVW COV 

Figure 7-19 Comparisons of GVW shape factors – Empty trucks distributions. 
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(a) Partially loaded trucks GVW mean 

 
(b) Partially loaded trucks SD 

 
(c)  Partially loaded trucks COV 

Figure 7-20 Comparisons of GVW shape factors – partially loaded trucks distributions. 
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(a) Fully loaded trucks GVW mean 

 
(b) Fully loaded trucks SD 

 
(c) Fully loaded trucks COV 

Figure 7-21 Comparisons of GVW shape factors – fully loaded trucks distributions. 

7.8 KEY FINDINGS 

The following are the key findings based on the analyses of freight and GVW WIM data: 

 This study presents a practical application of WIM data as an additional approach to 

estimating freight tonnage. 

 The investigation used one year of WIM data collected at 35 WIM sites within 
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Michigan to estimate freight tonnage (payload) carried by Class 9 and other trucks.  

 The freight (payload) computed for Class 9 trucks from GVW data strongly correlated 

with actual average freight tonnage. 

  The regression model presented in the study can be used with reasonable accuracy (R2 

=0.84) to estimate freight tonnage using GVW data for Class 9 trucks.   

 The research also presents a procedure to classify freight commodities based on 

normalized GVW shape factors for Class 9 trucks. 

 The decision tree model correctly classified 24 out of 35 events (69%).  

 The case studies from the LTPP WIM data show the potential of model application to 

estimate freight.  

 The Michigan and Washington sites show a higher percentage of empty trucks, 

whereas; the Ohio WIM site shows an almost similar frequency for empty and fully 

loaded trucks. 

 The results show that the freight estimates from three data sources (Transearch, 

MDOT, and LTPP) are comparable. 

7.9 CHAPTER SUMMARY 

This chapter further extends applications of WIM data to address an important issue related to 

freight data, i.e., how to estimate freight tonnage and classify commodities based on GVW WIM 

data. The methodology uses GVW loading data to estimate vehicle payload and commodity type. 

The investigation used one year of WIM data collected at 35 WIM sites within Michigan to 

estimate freight tonnage (payload) carried by Class 9 and other trucks. The freight (payload) 

computed for Class 9 trucks from GVW data strongly correlated with actual average freight 

tonnage. The regression model presented in the study can be used with reasonable accuracy (R2 
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=0.84) to estimate freight tonnage using GVW data for Class 9 trucks. The results show that the 

freight estimates from three data sources (Transearch, MDOT, and LTPP) are comparable. 

The presented methodology has good potential for application at WIM sites collecting GVW 

data. The use of WIM data is a different approach to traditional freight data collection methods 

like truck surveys, consumer reports, vehicle inventory and use surveys (VIUS), commodity flow 

survey (CFS), freight analyses framework (FAF), and other commercial data sources. The user 

can independently verify the freight estimates from surveys at locations close to WIM sites. The 

developed method can estimate freight at any route provided WIM data are available.  
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

8.1 PROBLEM STATEMENT 

Highway agencies use WIM technology to collect vehicle and axle weights on highways. WIM 

sensors measure the transient dynamic tire forces transmitted by vehicles moving at highway 

speeds. The WIM controller uses the signals from the WIM sensors to estimate the vehicle's 

static weight and axle loads at rest.  

Because WIM technology estimates static weight for a moving vehicle, there are many 

potential sources of measurement error. Some errors are due to the variation in the forces 

transferred by the moving truck to the sensor that is caused by truck movement and pavement or 

bridge characteristics. Other factors affecting the accuracy of WIM measurement are related to 

WIM equipment operating characteristics, site design, installation, maintenance, and calibration.  

State and other highway agencies collect WIM data for highway planning, pavement and bridge 

design, freight movement studies, motor vehicle enforcement screening, and vehicle size and 

weight regulatory studies. The data collected must be accurate and consistent with so many 

potential uses. 

8.2  OBJECTIVES 

The objective of this research was to conduct an analysis of different factors affecting WIM 

measurement accuracy and develop practical tools and procedures to improve accuracy and 

increase the reliability of WIM data through more appropriate: 

 WIM site selection.  

 WIM system selection.  

 WIM installation quality assurance.  

 WIM calibration and maintenance.  
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 WIM data analysis methods and QC/QA processes. 

8.3 ADVANCING STATE OF KNOWLEDGE IN MANAGING WIM DATA 

ACCURACY  

There is a need to understand the relative importance of various sources of error on WIM data 

accuracy and for methods that could help minimize the effect of external factors on WIM data 

quality. Several factors affecting WIM data quality were identified through the literature review. 

A comprehensive and robust data analysis study was conducted to quantify the effect of multiple 

factors on WIM data accuracy and evaluate the relative significance of different factors on WIM 

performance. WIM calibration is an essential activity for maintaining WIM data accuracy. 

Statistical analysis and machine learning techniques were used to develop a data-driven method 

for identifying WIM calibration needs based on analysis of statistical attributes computed based 

on WIM data reported by the WIM system for FHWA Class 9 trucks. The models developed in 

this research investigation use axle load spectra attributes to assess the systematic changes (bias) 

in WIM measurements for gross vehicle weight (GVW), single axle (SA) load, and tandem (TA) 

load. This methodology can save significant time and resources required for field validation of 

WIM performance using test trucks when applied in practice. Additionally, depending on the 

extent of information related to the site, sensor, and calibration-related factors, the decision tree 

models developed in this study can help highway agencies to optimize WIM sensor type and array 

selection. This information can be integrated with WIM equipment installation costs and life cycle 

costs to determine the most reliable and economical equipment while also considering WIM data 

accuracy requirements received from WIM data users. 
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The scope of the chapter includes:  
 

 Summary of conclusions from the data analysis task 

 Description of benefits of estimating WIM errors using influential factors, and potential 

application 

 Description of benefits of using NALS shape factors to estimate changes in WIM 

measurement errors, and potential application 

 Key findings related to WIM calibration guidelines and freight data analyses 

 Data limitations and their effect on data analysis results 

 Recommendations for future data collection and research 

8.4 DATA SETS USED IN ANALYSES 

The WIM sites used in the analysis were categorized as follows: 

 LTPP WIM sites providing Research Quality Data (RQD) from TPF5(004) study and 

SPS 10 sites (LTPP RQD): The WIM sites consistently meet the ASTM type 1 

performance requirements (i.e., GVW total error ≤ ± 10 % for ≥ 75% of the calibration 

events were included in this data set). This data set consisted of 170 calibration records 

from 36 WIM sites that are part of the SPS TPF 5(004) and SPS-10 studies. These sites 

represent the highest quality WIM data due to the stringent LTPP WIM calibration 

protocol and daily WIM data review implemented by the LTPP program. This subset 

contains WIM data for BP, QP, and LC sensors. 

 State-owned WIM sites providing high-quality WIM data (RQD Equivalent): This 

category included the state-owned WIM sites with the available calibration data meeting 

or exceeding the LTPP RQD data accuracy standards. The data set included 164 
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calibration records from 94 WIM sites. Four sensor types, i.e., BP, QP, LC, and PC, were 

included in this data set.  

 State-owned WIM sites providing data of lesser quality than LTPP RQD sites (Less than 

RQD):  The state-owned WIM sites with calibration data not meeting the LTPP RQD 

accuracy standards were considered in this category. The subset includes 80 calibration 

records from 40 WIM sites. This subset contains WIM data for BP (two sites with one 

calibration record each) and PC sensors (predominantly PC data with 38 sites and 78 

calibration records).  

8.5 REPRESENTATIVE RANGES OF WIM MEASUREMENT ACCURACY AND 

CONSISTENCY AFTER CALIBRATION 

The representative ranges of WIM measurement accuracy and consistency achievable after 

calibration were developed based on the available data sets. Tables 8-1 to 8-3 show the key results 

for different sensors. The following conclusions were derived based on the observations of the 

representative ranges of WIM measurement accuracy and consistency. 

 The results also show that, immediately after successful calibration, the GVW total error 

for all available sensors in LTPP RQD and RQD equivalent data set were within ± 5.8%, 

which is well within ASTM type 1 thresholds (± 10.0% for GVW total error). This included 

all BP, LC, and QP WIM sites and some PC WIM sensors.  

 The results show that, when the WIM system was calibrated, the mean errors (i.e., 

measurement bias) in GVW were significantly reduced (all values within ± 1.60%) for all 

sensors available in the LTPP RQD set and RQD-equivalent WIM data set for state-owned 

WIM sites. However, even after calibration, a relatively higher bias was observed for all 

available sensors in less than the RQD WIM category. The highest average bias values 

were observed for PC sensors.  
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 Overall, bending plates (BP) sensors showed the best data accuracy and consistency results, 

followed by the load cell LC and QP sensors.  

 Based on calibration results, the PC WIM sites included in the RQD equivalent data set 

showed low errors for all GVW data attributes, compared to the PC sites in less than the 

RQD category. However, the data showed that these errors tend to increase after calibration 

with the seasonal changes. Practitioners describe this phenomenon as a calibration drift. 

 Only a limited number of LTPP WIM sites had measurement error data collected during 

pre-calibration test truck runs. These data were collected and reported before each routine 

field equipment validation or calibration. These data show that WIM measurement 

accuracy and consistency degrade over time for all WIM sensors in this investigation.  

 These findings have an immediate practical application by providing highway agencies 

with the benchmark values demonstrating the practically achievable accuracy and 

variability of WIM measurements for different WIM sensor types after successful 

calibration. 
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Table 8-1 A representative range for GVW mean measurement errors (bias) observed for 

available WIM sites after calibration. 

Data type 
Sensor type 

BP LC QP PC 

LTPP RQD ± 0.82%  ± 1.60% ± 0.92%  - 

RQD Equivalent ± 0.81%  ± 1.00% ± 1.12%  ± 1.50% 

Less than RQD - - -  ± 4.51% 

All except LTPP RQD ± 0.81% ± 1.00% ± 1.12% ± 3.01% 

All combined ± 0.82% ± 1.30% ± 1.02% ± 3.01% 

Table 8-2 A representative range for GVW random errors observed for available WIM sites after 

calibration. 

Data type 
Sensor type 

BP LC QP PC 

LTPP RQD ± 3.65%  ± 3.80% 4.86%  - 

RQD Equivalent ± 3.20%  ± 4.80% 4.22%  ± 4.20% 

Less than RQD - - -  ± 8.64% 

All except LTPP RQD ± 3.20% ± 4.80% 4.22% ± 6.42% 

All combined ± 3.43% ± 4.30% 4.54% ± 6.42% 

Table 8-3 A representative range for GVW total observed for available WIM sites after 

calibration. 

Data type 
Sensor type 

BP LC QP PC 

LTPP RQD ± 4.47%  ± 5.40% ± 5.78%  - 

RQD Equivalent ± 4.01%  ± 5.80% ± 5.34%  ± 5.70% 

Less than RQD - - -  ± 13.15% 

All except LTPP RQD ± 4.01% ± 5.80% ± 5.34% ± 9.43% 

All combined ± 4.25% ± 5.60% ± 5.56% ± 9.43% 

8.6 WIM PERFORMANCE OVER TIME-BASED ON WIM VALIDATION DATA 

AND AXLE LOAD SPECTRA ANALYSIS 

 Findings from the WIM performance data analysis show that to objectively evaluate WIM 

measurement accuracy and consistency, it is critical to consider data collected before and 

after calibration. 

 The analysis results show that data accuracy deteriorates between calibration events for all 

sensor types included in this investigation (see Table 8-4). 
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 Calibration scheduling should be data-driven to prevent significant calibration drift. This 

could be accomplished by monitoring changes in axle load spectra and other GVW and 

axle loading summary statistics over time. 

Table 8-4 Pre and post-calibration GVW WIM data (average values). 

Data type Data set Sensor type 

BP QP 

GVW bias  Pre- Calibration ± 2.98%  ± 4. 98% 

Post-Calibration ± 0.84%  ± 1.10% 

GVW SD Pre- Calibration 2.5 3.10 

Post- Calibration 2.0 2.71 

GVW total error Pre- Calibration ± 8.01%    ± 11.13% 

Post- Calibration ± 4.87%    ± 6.58% 

Pre = pre-calibration, Post = post-calibration. 

8.6.1 WIM Sensor Performance and Calibration Frequency 

Based on the analysis of NALS results (see Table 8-5), the following conclusions about the 

recommended frequency of field calibration were made: 

 Calibration frequency longer than 1 year may be acceptable for the sites with BP sensors, 

provided the equipment maintenance schedule follows the manufacturer's specification 

(typically every 6 months). 

 Annual calibration frequency is recommended for sites with QP sensors.  

 Due to significantly higher NALS inconsistencies, the sites with PC sensors may need 

multiple calibrations in a year, especially in climates with high differences in seasonal 

temperatures.  
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Table 8-5 Percentage Change in SA and TA NALS over time after calibration. 

Sensor 

type 

Number 

of sites 

Calibration 

records 

Time after calibration 

(months) 

Average SA bias using 

NALS (%) 

Average TA bias using 

NALS (%) 

BP 12 36 

4 ± 1.75 ±  1.37 

8 ±  2.39 ±  1.60 

12 ±  1.86 ±  1.46 

LC 3 6 

4 ±  1.88 ±  0.35 

8 ±  2.33 ±  0.81 

12 ±  3.20 ±  1.18 

QP 23 60 

4 ±  3.00 ±  2.00 

8 ±  3.69 ±  2.41 

12 ±  4.12 ±  2.51 

PC 12 18 

4 ±  3.50 ±  3.48 

8 ±  4.40 ±  4.41 

12 ±  4.92 ±  4.52 
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8.7 INFLUENTIAL FACTORS AFFECTING WIM SYSTEM PERFORMANCE 

8.7.1 Climatic Factors Affecting WIM Measurement Accuracy and Consistency 

The effect of climatic factors was investigated, and the conclusions were summarized in Table 8-

6. 

Table 8-6 Effect of climate-related factors on WIM errors. 

Factor Sensor type 

Statistical 

significance 

(Yes/No) 

Comments 

Climate 

BP and LC No BP and LC errors are not affected by climate. 

QP, PC Yes 
Both sensors showed better precision in wet 

climates. 

Calibration 

season 
All sensors No 

Generally, calibrations performed in Fall (i.e. a 

season with moderate temperatures vs. seasons 

with extremely high or low temperatures) yield 

low WIM errors during a calibration event. 

Calibration 

temperature 

(pavement) 

BP, LC, QP No 

Generally, low WIM errors were observed with 

average pavement temperatures during 

calibration ranging between 75 to 100oF and 

with a differential of 30 to 40oF. 

8.7.2 Road and Pavement Factors Affecting WIM Measurement Accuracy and 

Consistency 

The effect of pavement-related factors on WIM measurement errors was investigated, and 

conclusions were summarized in Table 8-7. 

8.7.3 Traffic Speed and WIM System Features Affecting WIM Measurement Accuracy 

and Consistency 

The effects of traffic speed and WIM system features on WIM measurement errors were 

investigated, and conclusions were summarized in Table 8-8.  
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Table 8-7 Effect of pavement-related factors on WIM errors. 

Factor Sensor type 

Statistical 

significance 

(Yes/No) 

Comments 

Pavement 

type 

BP, LC - 
All BP and LC sensors were installed in PCC 

pavements. 

QP No Lower errors were observed in PCC pavements. 

PC No Lower errors were observed in AC pavements. 

Pavement 

thickness 
BP, LC, QP, PC No 

No significant impacts of surface thickness on 

WIM precision were observed based on the 

available data. However, based on the data 

analyses, the BP sensors can be installed in 10 

inches or thicker PCC slabs to yield ASTM Type I 

accuracy. Irrespective of pavement type, 8 inches 

or above (PCC or HMA thickness) is 

recommended for QP sensors to obtain accurate 

WIM data. 

Longitudinal 

grade 
BP, LC, QP Yes 

Generally, flatter pavement (low grades, i.e., 1% or 

less) showed better precision.  

Transverse 

slope 
BP, LC, QP No 

No significant impacts of the transverse slope on 

WIM precision were observed based on the 

available data. 

IRI, WRI BP, LC, QP No 

No consistent trends were observed between IRI or 

WRI and consistency in WIM measurements based 

on the available data. Roughness data and WIM 

data were not collected at the same time for most 

sites. 

FWD QP No 

No consistent trends were observed between 

measured deflection and consistency in WIM 

measurements based on the available data for 8 

WIM locations in Indiana. 
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Table 8-8 Effect of traffic speed and WIM system features on WIM errors. 

Factor Sensor type 

Statistical 

significance 

(Yes/No) 

Comments 

Sensor type BP, LC, QP, PC Yes 

PC sensor accuracy and consistency were 

significantly different compared to other 

sensors. 

Sensor 

array 
BP, LC, QP, PC Yes 

Significant differences amongst sensor arrays 

were observed during the analysis. Sensor array 

design is a critical factor in achieving the 

desired WIM data accuracy. 

Calibration 

Speed 

points 

BP, LC, QP, PC Yes 

WIM controllers with multiple speed points 

could significantly improve WIM precision and 

reduce measurement bias. However, some 

inconsistencies were observed for the PC 

sensor. 

Calibration 

speed 
BP, LC, QP No 

A speed range between 5 to 10 mph at the time 

of calibration showed less variability in 

calibration data. However, the use of a narrow 

speed range may lead to incorrect computation 

of WIM measurement error for the sites with a 

wide range of operating speeds.  

8.7.4 Benefits of Estimating WIM Errors Using Influential Factors, and Potential 

Application  

This analysis aimed to evaluate if effective statistical or logical models could be developed and 

used to quantify the effects of essential site, sensor, and calibration-related factors on the 

variability of WIM measurement error. Due to limited data availability, the analysis was focused 

on the following independent variables: 

 Climate  

 Pavement type  

 Sensor array  

 Sensor type 

 Calibration speed points 
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The above list does not include several essential site factors (road geometry, pavement 

smoothness, and pavement strength information).  

The following dependent variables were used in the analyses: 

 GVW mean measurement errors (bias) 

 GVW standard deviation of measurement errors  

 GVW total measurement errors 

The decision tree models show a vital application of site and sensor-related factors based on 

comprehensive data. The presented methodology utilizing the decision tree models shows good 

potential for estimating the WIM measurement error range using information about the WIM site 

and sensor-related factors. The decision tree models can help highway agencies to make an 

optimal WIM equipment selection giving due consideration to achievable WIM errors, climatic 

conditions, pavement type, and equipment life cycle costs.  

8.7.5 Benefits of Estimating WIM Errors Using NALS Attributes, and Potential 

Application 

A data analysis study was conducted to develop statistical attributes (NALS shape factors) and 

procedures to aid in identifying and quantifying changes in WIM measurement bias (calibration 

drift) based on analysis of changes in axle load spectra attributes between WIM equipment 

calibration events. The pre-and post-calibration data and axle load spectra were used in these 

analyses. The models developed using axle load spectra shape factors can be used to estimate 

measurement bias with reasonable accuracy (R2 is about 80%). The results show that single and 

tandem axle load spectra attributes (SA mean axle load and TA mean load for the loaded axles 

weighing over 26,000 lbs.) can be effectively used to assess the systematic changes (bias) in 

WIM measurements for GVW, SA, and TA.  



187 

The methodology of WIM accuracy estimation through axle load spectra analysis can facilitate 

identifying the WIM equipment calibration requirements. The NALS analysis based on changes 

in shape factors can be used to estimate the changes in the SA, TA, and GVW WIM 

measurement bias. This methodology can save significant time and resources required for field 

validation of WIM performance using test trucks. The statistical models developed in this study 

for the prediction of WIM weight measurement bias should be used in combination with the 

visual inspection of SA and TA peak loads, along with information about the expected seasonal 

changes in traffic loading due to land use (if any).  

8.8 KEY FINDINGS RELATED TO WIM CALIBRATION GUIDELINES 

Successful WIM equipment calibration can eliminate weight, speed, and axle spacing errors. 

Following are the conclusions and recommendations based on data analyses. 

 The results show that the effect of sample size on WIM errors was negligible, especially 

when the sample size is sufficiently large (n>=10) for QP and BP sensors. faltered 

 The WIM site calibration can be performed using one test truck to achieve a 

representative range of BP and QP sensor errors. A single test truck with 12 runs (4 at 

each speed point) can be used for equipment calibration. 

 The current LTPP filed operation guide recommendations of calibrating a WIM site at 

different speed levels should continue, preferably at three-speed points 50, 60, and 70 

mph or as per the recommendations of the posted speed limits. 

 Pre and post-calibration data can be collected on the same day for BP sensors, as no 

apparent effect of temperature was seen on BP WIM sites. If possible, the pre and post-

calibration data can be collected for an extended period for QP sensors to account for 

higher temperature fluctuations. 
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 The representative post-calibration data can be collected accurately using one test truck 

with 12 passes at 3-speed points for QP and BP sensors. If a site shows higher speed 

dependency, the number of test truck runs may be increased to 20. 

 The ASTM and the LTPP accuracy estimation methods agree; however, the methods 

should be compared when the sample size is small and in the presence of potential 

outliers.  

 The developed models showed that the GVW errors could be accurately predicted using 

SA and two TAs. 

 The results show that if GVW errors are within ASTM Typ1 I tolerance, the SA and TA 

errors will also be within acceptable limits. Therefore, the practice of calibrating a WIM 

site using GVW errors should continue.  

The suggested changes in current WIM procedures can significantly reduce time and resources 

for successful equipment calibration. The preliminary models developed in this study can be 

validated in the field and improved further by adding more data in the future. 

8.9 KEY FINDINGS BASED ON FREIGHT DATA ANALYSES 

The following are the key findings based on the analyses of freight and GVW WIM data: 

 This study presents a practical application of WIM data as an additional approach to 

estimating freight tonnage. 

 The investigation used one year of WIM data collected at 35 WIM sites within 

Michigan to estimate freight tonnage (payload) carried by Class 9 and other trucks.  

 The freight (payload) computed for Class 9 trucks from GVW data strongly correlated 

with actual average freight tonnage. 

  The regression model presented in the study can be used with reasonable accuracy (R2 
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=0.84) to estimate freight tonnage using GVW data for Class 9 trucks.   

 The research also presents a procedure to classify freight commodities based on 

normalized GVW shape factors for Class 9 trucks. 

 The decision tree model correctly classified 24 out of 35 events (69%).  

 The case studies from the LTPP WIM data show the potential of model application to 

estimate freight.  

 The Michigan and Washington sites show a higher percentage of empty trucks, 

whereas; the Ohio WIM site shows an almost similar frequency for empty and fully 

loaded trucks. 

 The results show that the freight estimates from three data sources (Transearch, 

MDOT, and LTPP) are comparable. 

The presented methodology has good potential for application at WIM sites collecting 

GVW data. The use of WIM data is a different approach to traditional freight data collection 

methods like truck surveys, consumer reports, vehicle inventory and use surveys (VIUS), 

commodity flow surveys (CFS), freight analyses framework (FAF), and other commercial data 

sources. The user can independently verify the freight estimates from surveys at locations close 

to WIM sites. The developed method can estimate freight at any route provided WIM data are 

available. 

8.10 DATA LIMITATIONS 

The following data availability limitations were noted during the data analysis task. As these data 

become available, an extended analysis may be beneficial: 

 Pavement stiffness or other structural data were not available for any of the LTPP WIM 

site locations since no FWD testing or pavement coring and testing was conducted at 
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WIM site locations. Therefore, this factor was not considered in the network-level 

analysis. 

 The IRI data were available for a limited number of WIM sites, and this factor was not 

considered at network-level analysis. The IRI data collection schedule was not 

coordinated with WIM field calibrations. Ideally, IRI and WIM performance data should 

be available for the same climatic conditions. 

 The limited availability of sensor removal/replacement information resulted in missing or 

inaccurate sensor age calculations. Therefore, the effect of sensor age could not be 

assessed on WIM system performance. 

 Limited or non-availability of pavement thickness at the WIM site locations resulted in 

eliminating this factor at network-level analysis. 

 Pavement distress and FWD data collection efforts at LTPP pavement experiments did 

not cover the exact WIM site locations, limiting the number of known pavement factors 

at WIM site locations (except for pavement roughness data collected at LTPP TPF and 

Indiana DOT WIM sites). 

 Adding state-owned WIM data for BP and QP sensors resulted in an unbalanced design. 

Most of the additional data for BP and QP sensors WIM data were provided by the states 

of California and Michigan, located in dry or wet climates, respectively.  

 The distribution of WIM data for PC sites was not uniform for different factors, as most 

of these data were only available in wet climates. 

 The non-availability of continuous variables was another challenge because most of the 

variables available for the data analysis were categorical, i.e., climate, pavement, sensor, 
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sensor array, and speed points, providing challenges for using regression modeling 

techniques. 

8.11 RECOMMENDATIONS FOR FUTURE DATA COLLECTION AND RESEARCH 

Based on the findings of this study, the following recommendations are made in order of priority 

for future data collection efforts to support additional analyses to improve the models developed 

in this study: 

Table 8-9 Recommendations for future data collection. 

Order of priority Comments 

1 

The sensor array and controller functionality are essential factors affecting WIM data 

accuracy and consistency and should be documented for all LTPP WIM sites. This expanded 

data set will allow a more comprehensive analysis of the effect of sensor arrays on WIM 

measurement error and will help identify optimum sensor arrays for different WIM 

applications. 

1 
Additional data should be collected for WIM sites installed in dry climates (DF/DNF) for all 

four sensor types to investigate the effect of climate on WIM performance (especially for QP 

and PC WIM sites that show some sensitivity to climatic effects). 

2 

The sensor installation, repair, and removal/replacement dates should be documented to help 

in determining the sensor age and sensor performance over time accurately. These data will 

provide means for WIM equipment life cycle cost-benefit analysis and development of 

guidelines for sensor selection based on cost and length of data collection. 

2 

The pre-calibration data provide valuable information to assess the effectiveness of a 

previous calibration event, as well as the quantification of changes in WIM measurement 

accuracy and consistency over time. These data should be routinely collected by state 

highway agencies during WIM validation and calibration events, especially for PC sensors 

that show high variability in measurements between calibrations. 

3 

To analyze the effect of pavement smoothness on WIM measurement error, detailed 

pavement profile data should be collected in conjunction with WIM calibration or validation 

visit (to assure similar climatic conditions for collecting both WIM and pavement profile 

data) for road segments 400 feet before and 100 feet after WIM sensors. 

3 To analyze the effect of pavement strength on WIM measurement error, detailed FWD data 

is needed for road segments 50 feet before and 50 feet after WIM sensors. 

3 
The pavement structure, grade, and slope at the WIM sites should be recorded in WIM 

installation documentation. This information is important for assessing the effect of 

pavement-related factors on WIM performance. 

4 
The calibration speed and temperature data for WIM sites outside of the LTPP RQD set 

should be recorded for each calibration event to support the analysis of the effect of speed 

and temperature on WIM measurement accuracy and consistency. 

5 More QP and PC WIM sites installed in PCC pavements should be added to the dataset to 

evaluate the effect of pavement type on WIM performance. 
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