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ABSTRACT

Understanding and reasoning over natural language is one of the most crucial and long-standing

challenges in Artificial Intelligence (AI). Question answering (QA) is the task of automatically

answering questions posed by humans in a natural language form. It is an important criterion to

evaluate the language understanding and reasoning capabilities of AI systems. Though machine

learning systems on Question Answering (QA) have shown tremendous success in language

understanding, they still suffer from a lack of interpretability and generalizability, in particular,

when complex reasoning is required to answer the questions. In this dissertation, we aim to build

novel QA architectures that answer complex questions using the explicit relational structure of the

raw data, that is, text and image, and exploiting external knowledge. We investigate a variety of

problems, including answering natural language questions when the answer can be found in multiple

modalities, including, 1) Textual documents (Document-level QA), 2) Images (Cross-Modality QA),

3) Knowledge graphs (Commonsense QA) and, 4) Combination of text and knowledge graphs. First,

for Document-level QA, we develop a new technique, Semantic Role Labeling Graph Reasoning

Network (SRLGRN), via which the explicit semantic structure of multiple textual documents is

used. In particular, based on semantic role labeling, we form a multi-relational graph that jointly

learns to find cross-paragraph reasoning paths and answers multi-hop reasoning questions. Second,

for the type QA that requires causal reasoning over textual documents, we propose a new technique,

Relational Gating Network (RGN), that jointly learns to extract the entities and their relations to

help highlight the important entity chains and find how those affect each other. Third, for the type

of questions that require complex reasoning over language and vision modalities (Cross-Modality

QA), we propose a new technique, Cross-Modality Relevance (CMR). This technique considers

the relevance between textual tokens and visual objects by aligning the two modalities. Fourth,

for answering questions based on given Knowledge Graphs (KG), we propose a new technique,

Dynamic Relevance Graph Network (DRGN). This technique is based on a graph neural network

and re-scales the importance of the neighbor nodes in the graph dynamically by training a relevance

matrix. The new neighborhoods trained by relevance help fill in the knowledge gaps in the KG for



more effective knowledge-based reasoning. Fifth, for answering questions using a combination

of textual documents and an external knowledge graph, we propose a new technique, Multi-hop

Reasoning Network over Relevant Commonsense Subgraphs (MRRG). MRRG technique extracts the

most relevant KG subgraph for each question and document and uses that subgraph combined with

the textual content and question representations for answering complex questions. We improve the

performance, interpretability, and generalizability of various challenging QA benchmarks based on

different modalities. Our ideas have proven to be effective in multi-hop reasoning, causal reasoning,

cross-modality reasoning, and knowledge based reasoning.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Understanding and reasoning over natural language play a significant role in many real-world artificial

intelligence applications. Question Answering (QA) is one of the most crucial problems in evaluating

the understanding and reasoning over natural language text [41, 2]. Question answering is a computer

science discipline within the fields of Natural Language Processing (NLP), Machine Learning, and

Information Retrieval (IR), which is concerned with building systems that automatically answer

questions posed by humans in a natural language. Nowadays, QA systems are now widely used in

many real-world applications, such as search engines (Google, Bing, Baidu), reading comprehension,

and AI conversational systems (Alexa assistant). In this dissertation, we address different types

of QA problems categorized into five classes. We use a simple but straightforward example of a

“crying child” story shown in Figure 1.1 to introduce these five types of QA problems.

Introduction: Game! Find Answers!

3

Text: (1, 2, and 5)

The boy was sitting on the sofa and crying. 
I hugged him and asked about the issue and the reason why he was crying. 
He said he lost his favorite toy. 
I drove him to the gift store to buy him a new toy.

Questions and Answers:
1. Where was the child sitting when he was crying?

Answer: Sofa. (Document-level QA)

2. What did cause the child to cry?
Answer: The child lost the toy. (Causal-effect QA)

3. Where is the child sitting in the picture?
Answer: Arm. (Cross-modality QA)

4. Is the car used for transportation?
Answer: Yes. (Knowledge based QA)

5. Where was the child sitting when I drove him to the store?
Answer: Car. (Document-level & Knowledge based QA)

Image:
(3)

Knowledge: (4)

drive car
RelatedTo

driver

transport
MannerOf

RelatedTo

Figure 1.1 The “Crying child” example of four categories of QA tasks.

• Document-level Question Answering. The first question in Figure 1.1 shows a straightforward

example of a Document-level QA task. Given the question “Where was the child sitting when

he was crying?” and the text “The boy was sitting on the sofa and crying”, the problem is to

find the answer “sofa”. This type of QA allows humans to ask questions based on the given
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document. The QA system requires reading and understanding the text, capturing the line of

reasoning from the document, and answering the question effectively [93].

• Cause-effect Question Answering. The second question in Figure 1.1 shows a simple

example of Cause-effect QA [107]. Given the question “What did cause the child to cry?”, we

extract the causal events “child cry” and “the child lost the toy” in the text and answer the

question. Cause-effect QA is a particular type of document-level QA, where the QA system

should understand the causal and effect events and find explicit causal relationships between

events.

• Cross-modality Question Answering. Cross-modality QA combines multidisciplinary

fields, including language, vision, speech processing, etc [104]. We select Visual Question

Answering (VQA) as the Cross-modality QA task in this dissertation. VQA task aims to

answer a natural language question using an image. Vision-and-language reasoning requires

the understanding of visual contents, language semantics, cross-modality alignments, and

relationships between two modalities [118]. Let us look back to the “crying child” story and

the third question “where is the child sitting in the picture?” We cannot state the answer

just based on the text. However, after providing the image, we can quickly know the correct

answer, “arm”.

• Knowledge based Question Answering. Commonsense knowledge reflects the natural

understanding of the world and human behavior. Structured knowledge is another modality of

resources that can be fed into QA systems for answering natural language questions [61]. This

type of QA task aims to answer natural language questions utilizing a knowledge base or a

knowledge graph. The fourth question in Figure 1.1, “Is the car used for transportation”, shows

an example in which QA requires commonsense knowledge. In this case, QA systems should

utilize the commonsensense like a human being about “car” ! “used for” ! “transportation”.

• Combine Document-level and Knowledge-based QA. In some document-level QA scenarios,

the contents included in a given text are sufficient to find the answer. However, there are

2



many cases in which the required knowledge is not included in the text itself [125, 107]. The

fifth question in Figure 1.1, “Where was the child sitting when I drove him to the toy store?”,

shows an example in which QA requires commonsense knowledge. Individuals can provide

the answer “car” because the human has the commonsense knowledge “drive” ! “car” in

their mind.

Traditionally, building QA systems have relied on natural language processing (NLP) technologies

as backbones, including semantic role labeling [38], named entity recognition [57], part-of-speech

tagging [70], relation extraction [95], text matching [138], etc. Intuitively, an ideal QA system

should be able to understand the meanings of the text and the semantic relations between questions,

documents, and answers. Over the past decade, deep learning, a particular category of machine

learning, has achieved great success in multiple real-world NLP tasks, especially in Question

Answering domain [87, 125, 4, 106, 103]. Specifically, the deep neural network is constructed

by many neural layers. Each neural layer includes a massive number of “computational neurons”

represented by scalars, tensors, and matrices. The neurons between two layers have connection

edges, and the neural network propagates information via forward and backward directions. Deep

learning QA architectures automatically extract the contextual and semantic features by pre-training

from the large corpora and learn hundred-dimensional dense vectors to represent a word, a phrase, a

sentence, or even a document. Based on the conceptually simple but empirically powerful language

representations, Large-scale language models (LMs), like BERT [24] and RoBERTa [65], have

achieved success in many QA benchmarks.

However, most of the current QA architectures directly utilize LMs to predict the answer but fall

short of providing interpretable predictions. The semantic structures of the data and knowledge

in the corpus are not explicitly stated but rather implicitly learned from a large corpus. It is thus

difficult to create an explicit reasoning chain, capture high-order relations for the generalizability

of reasoning, or establish the evidence used in the reasoning process. In other words, most of

the existing deep learning QA works cannot track the explicit semantic relationships from various

modalities, including Textual documents, Images (Cross-Modality QA), Knowledge graphs, etc.
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In this dissertation, five critical challenges and contributions are addressed to make neural

networks more effective for various QA tasks.

1.2 Challenges and Contributions of the Dissertation

Question: What team did the recipient of the 2007 
Brownlow Medal play for?

Paragraph 1: Title: "2007 Brownlow Medal"
0. “The 2007 Brownlow Medal was the 80th year the award …
(AFL) home and away season."
1. “Jimmy Bartel won the medal by polling twenty-nine votes ..."

Answer: Geelong Football Club
Support fact: ["2007 Brownlow Medal", 1], 

["Jimmy Bartel", 0]

Paragraph 2: Title: "Jimmy Bartel"
0: “James Ross Bartel (born 4 December 1983) is a former 
Australian rules footballer who played for the Geelong Football 
Club in the …"
1: "A utility, 1.87 m tall and weighing 86 kg , Bartel is able …"

�
Question: What causes precipitation to fall?

Paragraph: In meteorology, precipitation is any product of
the condensation of atmospheric water vapor that falls
under gravity. The main forms of precipitation include 
drizzle, rain, sleet, snow, graupel and hail.

Answer: gravity

Figure 1.2 Two benchmark examples of the document-level Question Answering Task. The left
side is the example of the SQuAD benchmark, while the right side is the example of the HotpotQA
benchmark.

Challenge 1: Multi-hop Reasoning for Document-level QA. Answering questions over long

documents usually requires the ability to understand the entities and find their connections throughout

the whole document to be able to reason over them in multiple steps. The left side of Figure 1.2

shows an example of one-hop document-level QA from SQuAD benchmark [87]. Given the question

“What causes precipitation to fall?” and a paragraph, we obtain the answer “gravity” after we read

the sentence “Precipitation is any product of the condensation of atmospheric water vapor that falls

under gravity”. In contrast to one-hop question answering, where answers can be derived directly

from a single paragraph [87, 86], many recent studies on question answering focus on multi-hop

reasoning across multiple documents or paragraphs and aim to build multi-hop reasoning chains to

capture the explicit semantic structure of the documents. In Section 2.2.1, we overview the related

work about these recent studies in more detail. Even after successfully identifying a reasoning

chain through multiple paragraphs, it remains a critical challenge to collect evidence from different
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granularity levels (e.g., paragraphs, sentences, entities) for jointly predicting the answer and lines of

reasoning. The right side of Figure 1.2 shows an example of complicated multi-hop reasoning QA

task from HotpotQA benchmark [125]. Given the question “What team did the recipient of the 2007

Brownlow Medal play for?” and ten documents, we should find two sub-questions: 1) Who won the

medal? 2) Where is this person playing? Then we filter out the two related documents and extract

the reasoning chain: “2007 Brownlow Medal” ! “Jimmy Bartel won the medal” ! “Jimmy Bartel

played for Geelong Football club”. Finally, we obtain the answer “Geelong Football club” by the

above line of reasoning.

Contribution: To solve the first challenge, we utilize the semantic role labeling to extract

the semantic structure of the sentences. Semantic role labeling provides the semantic structure in

terms of argument-predicate relationships [38], such as “who did what to whom.” We innovatively

construct a graph with entities and multiple relational edges from documents using semantic role

labeling (SRL). We connected the SRL graphs using shared entities. This semantic structure of

multiple documents can significantly improve the multi-hop reasoning capacity to find the line of

reasoning to answer the questions. Then we use a graph neural model as the backbone to learning

the graph node representations. We jointly train a multi-hop supporting fact prediction module that

finds the cross-paragraph reasoning path, and an answer prediction module that obtains the final

answer. Our experiments show that using the semantic structure of the document is effective in

finding the cross-paragraph reasoning path and answering the question.

Document:
1. A frog lays eggs in the water.
2. Tadpoles develop inside of the eggs.
3. The eggs hatch.
4. The tadpoles eat and grow.
5. The tadpoles grow legs and form into frogs.
6. The frogs leave the water.

Questions and Answers:
1. Suppose tadpoles eat more food happens, how 
will it affect frogs?

(A) More (B) Less (C) No effect
2. Suppose the weather is unusually bad happens, 
how will it affect the tadpoles that will need food?

(A) More (B) Less (C) No effect

Document:
1. A plant produces a seed.
2. The seed falls to the ground.
3. The seed is buried.
4. The seed germinates.
5. A plant grows.
6. The plant produces flowers.
7. The flowers produce more seeds.

Questions and Answers:
Suppose the soil is rich in nutrients happens, 
how will it affect seeds are produced. 
(A) More (B) Less (C) No effect

Commonsense Knowledge:
Nutrient is used for plant growth.

Figure 1.3 Two examples of the Cause-effect Question Answering Task.

Challenge 2: Causal Reasoning for Document-level QA. Cause-effect QA is a special type of

Document-level QA. Causal reasoning requires the machine to effectively extract the explicit causal
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relationships between cause and effect events (entities) over the entire document. For example,

predicting a “sunny day” results in the direct effect of “sunshine” is less challenging than the indirect

effect in “photosynthesis”. Figure 1.3 shows an example of a cause-effect QA task from WIQA

benchmark [107]. Given the procedural story and the question “Suppose tadpoles eat more food

happens, how will it affect more frogs?”, the following line of casual reasoning should be extracted

from the text: “tadpole eat” ! “tadpole grow,” and “tadpole grow” ! “tadpole form into frog”. In

Section 2.2.1, we overview the related work about finding the line of causal reasoning and limitations

in more detail.

Contribution: To solve the second challenge, we aim to find relations between entities and

the line of causal reasoning. Concretely, we build an entity gating module to extract and filter the

involved entities in the question and context. Furthermore, we design a relation gating module with

an alignment of entities to capture the higher-order chain of causal reasoning based on pairwise

relations. Moreover, we propose an efficient module, called contextual interaction module, to

incorporate cross-information from Question and Content interactions during training in an efficient

way to help entities alignments.

Cross-modality Question Answering

Text: Where is the child sitting?
Fridge Arm
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Abstract

We introduce a new dataset for joint reason-
ing about natural language and images, with a
focus on semantic diversity, compositionality,
and visual reasoning challenges. The data con-
tains 107,292 examples of English sentences
paired with web photographs. The task is
to determine whether a natural language cap-
tion is true about a pair of photographs. We
crowdsource the data using sets of visually
rich images and a compare-and-contrast task
to elicit linguistically diverse language. Quali-
tative analysis shows the data requires compo-
sitional joint reasoning, including about quan-
tities, comparisons, and relations. Evaluation
using state-of-the-art visual reasoning meth-
ods shows the data presents a strong challenge.

1 Introduction

Visual reasoning with natural language is a
promising avenue to study compositional seman-
tics by grounding words, phrases, and complete
sentences to objects, their properties, and rela-
tions in images. This type of linguistic reason-
ing is critical for interactions grounded in visually
complex environments, such as in robotic appli-
cations. However, commonly used resources for
language and vision (e.g., Antol et al., 2015; Chen
et al., 2016) focus mostly on identification of ob-
ject properties and few spatial relations (Section 4;
Ferraro et al., 2015; Alikhani and Stone, 2019).
This relatively simple reasoning, together with bi-
ases in the data, removes much of the need to
consider language compositionality (Goyal et al.,
2017). This motivated the design of datasets that
require compositional1 visual reasoning, including

� Contributed equally.
† Work done as an undergraduate at Cornell University.

1In parts of this paper, we use the term compositional dif-
ferently than it is commonly used in linguistics to refer to
reasoning that requires composition. This type of reasoning
often manifests itself in highly compositional language.

The left image contains twice the number of dogs as the
right image, and at least two dogs in total are standing.

One image shows exactly two brown acorns in
back-to-back caps on green foliage.

Figure 1: Two examples from NLVR2. Each caption
is paired with two images.2 The task is to predict if
the caption is True or False. The examples require
addressing challenging semantic phenomena, includ-
ing resolving twice . . . as to counting and comparison
of objects, and composing cardinality constraints, such
as at least two dogs in total and exactly two.3

NLVR (Suhr et al., 2017) and CLEVR (Johnson
et al., 2017a,b). These datasets use synthetic im-
ages, synthetic language, or both. The result is
a limited representation of linguistic challenges:
synthetic languages are inherently of bounded ex-
pressivity, and synthetic visual input entails lim-
ited lexical and semantic diversity.

We address these limitations with Natural Lan-
guage Visual Reasoning for Real (NLVR2), a new
dataset for reasoning about natural language de-
scriptions of photos. The task is to determine if a
caption is true with regard to a pair of images. Fig-
ure 1 shows examples from NLVR2. We use im-

2Appendix G contains license information for all pho-
tographs used in this paper.

3The top example is True, while the bottom is False.
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The left image contains twice the number of dogs as the
right image, and at least two dogs in total are standing. Yes

Figure 1.4 Two benchmark examples of the Cross-Modality Question Answering task. The left side
is an example of the VQA benchmark, while the right side is an example of the NLVR benchmark.

Challenge 3: Relational Reasoning for Cross-Modality QA. In cross-modality QA, we require

an understanding of both language and vision modalities and their connections and reason over

them to be able to answer the questions. One line of research addresses this challenge by learning

representations for cross-modality data and enabling reasoning for target tasks. This is done

by the alignment of the representation for multiple modalities. Researchers develop models by
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training features and aligning representation using Transformer architectures as the backbone [104].

However, these approaches have well-known issues for robust joint representations and reasoning

for cross-modality QA [59]. In Section 2.2.3, we detailed describe the related work about these

approaches. Explicit modeling of entities and relations in the neural model is one key factor that

can alleviate this problem but is less explored. The right side of Figure 5.1 shows an example of a

cross-modality QA task from NLVR benchmark [101]. Given two pictures and the statement, “The

left image contains twice the number of dogs as the right image, and at least two dogs in total are

standing,” we should know the number of standing dogs in the left image and right image and reason

over the twice number.

Contribution: To solve the third challenge, we aim to explicitly ground the entities as well as

their relationships from language modality into vision modality. We proposed a novel cross-modality

relevance (CMR) architecture that considers the relevance between textual token representations

and visual object representations by explicitly aligning them in the two modalities. The relevance

metric between two modalities is shown to be helpful for aligning multiple spaces of modalities

in our work. We model the higher-order relational relevance for the generalizability of reasoning

between entity relations in the text and object relations in the image.

The student practiced his guitar often, where is he
always spent his free period? 
A. Music room B. Toy store C. Concert

Q: What is the largest island in the world? 
A: Greenland.

Figure 1.5 Two benchmark examples of the document-level Question Answering Task. The left side
is the example of the WikiQA benchmark, while the right side is the example of the CommonsenseQA
benchmark.

Challenge 4: Commonsense Reasoning for Knowledge based QA. Knowldge base QA is a task of

answering questions given a structured source of knowledge, e.g. Knowledge Graph (KG). However,

this task is challenging because firstly, often the given KG is very large, and secondly, the answer

can not be directly retrieved, but multiple steps of reasoning over KG are needed to obtain the

answer. The common approach for solving this problem is to extract a subgraph that is relevant

to the question [30]. However, the challenge is that the extracted KG subgraph sometimes misses
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some edges between entities, which breaks the chain of reasoning. This issue can be due to two

possible scenarios. First, the KG is originally imperfect and does not include all the required edges.

Second, when constructing the subgraph, some intermediate concept (entity) nodes and edges are

omitted [30]. In such cases, the subgraph does not contain a complete chain of reasoning. The right

side of Figure 1.5 shows an example from the CommonsenseQA benchmark. Given the question

“The student practiced his guitar often, where is he always spent his free period?”, the model should

understand “free period” in the question and exploit the line of knowledge reasoning: “guitar” !

“instrument (miss)” ! “music room”.

Contribution: To solve the fourth challenge, we aim to recover missing edges in the KG that

were needed for finding the line of reasoning and answering the questions. We use ConceptNet [97],

a general-domain knowledge graph, as the commonsense KG. ConceptNet graph has multiple

semantic relational edges, e.g., HasProperty, IsA, AtLocation, etc. We extract the entities and

retrieve related external knowledge from KG. Then, we construct a KG subgraph as part of the

QA model to help fill the knowledge gaps and perform multi-hop reasoning. We proposed a novel

Dynamic Relevance Graph Network (DRGN) that learns the node representations while exploiting

the existing edges in KG and establishes new direct edges between graph nodes based on the

relevance scores. As a byproduct, our model improved handling the negative questions due to deeply

considering the relevance between the question node and the graph entities.

Document:
1. A frog lays eggs in the water.
2. Tadpoles develop inside of the eggs.
3. The eggs hatch.
4. The tadpoles eat and grow.
5. The tadpoles grow legs and form into frogs.
6. The frogs leave the water.

Questions and Answers:
1. Suppose tadpoles eat more food happens, how 
will it affect frogs?

(A) More (B) Less (C) No effect
2. Suppose the weather is unusually bad happens, 
how will it affect the tadpoles that will need food?

(A) More (B) Less (C) No effect

Document:
1. A plant produces a seed.
2. The seed falls to the ground.
3. The seed is buried.
4. The seed germinates.
5. A plant grows.
6. The plant produces flowers.
7. The flowers produce more seeds.

Questions and Answers:
Suppose the soil is rich in nutrients happens, 
how will it affect seeds are produced. 
(A) More (B) Less (C) No effect

Commonsense Knowledge:
Nutrient is used for plant growth.

Figure 1.6 One example of Exploiting Commonsense Knowledge for Document-level QA.

Challenge 5: Exploiting Commonsense Knowledge for Document-level QA. Sometimes,

answering questions over documents not only requires finding the line of the reasoning in the whole

document but also exploiting the external knowledge to be able to help complete the Document-
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level reasoning chain. However, the challenge is effectively extracting the most relevant external

information and reducing the noise from the large KG. The irrelevant and noisy knowledge from KG

will seriously mislead the QA model in predicting the answer. There are less sophisticated techniques

proposed for using external knowledge explicitly in Document-level QA tasks [107, 106]. Figure 1.6

shows an example of Exploiting Commonsense Knowledge for Document-level QA. Given the

question, “Suppose the soil is rich in nutrients happens, how will it affect seeds are produced”, the

model should understand “A plant produces a seed”, and exploit the external knowledge “Nutrient is

used for plant growth” to fill in the knowledge gap between the question and text and find the answer.

Contribution: To solve the fifth challenge, we aim to effectively learn to find the most relevant

KG subgraph in a given large KG and combine that with the document-level information to answer the

questions. We proposed a Multi-hop Reasoning network over Relevant CommonSense SubGraphs

(MRRG) architecture that extracts the entities from the document and learns to retrieve the relevant

external knowledge from KG using a novel KG attention neural mechanism [137]. Then, we

construct a KG subgraph and use it as a part of the document-level QA model to help perform

multi-hop reasoning and find the answer.

1.3 Outline of the Dissertation

The rest of this dissertation organizes as follows:

• In Chapter 2, following the Introduction Chapter, we describe the background and related

works about document-level QA, cause-effect QA, cross-modality QA, and knowledge-based

QA.

• In Chapter 3, we present our work on multi-hop reasoning for Document-level QA. We

describe our Semantic Role Labeling Graph Reasoning Network (SRLGRN) for solving

the multi-hop reasoning challenge. We clarify how it exploits the semantic structure of

multiple documents based on semantic role labeling models and forms a novel multi-relational

graph. We evaluate our SRLGRN architecture on the HotpotQA and SQuAD benchmark. The
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experimental results and analysis indicate the effectiveness of SRLGRN on the Document-level

QA task.

• In Chapter 4, we present our work on causal reasoning for Document-level QA. We describe

an end-to-end Relational Gating Network (RGN) to solve the casual reasoning challenge. We

clarify how it finds explicit causal relationships between entities facilitate causal reasoning

over the whole document. We evaluate the model performance on the WIQA benchmark. The

analysis demonstrates the effectiveness of the proposed entity gating module, relation gating

module, and contextual interaction module in the RGN model.

• In Chapter 5, we present our work on relational reasoning for Cross-Modality QA. We describe

a Cross-Bodality Relevance (CMR) architecture to solve the challenges of cross-modality

QA by learning and reasoning over visual and text. CMR considers the relevance between

textual token representations and visual object representations by explicitly aligning them in

the two modalities. We model the higher-order relational relevance for reasoning between

entity relations in the text and object relations in the image. We evaluate the proposed CMR

architecture on NLVR and VQA benchmarks. Moreover, we perform a detailed analysis of

our CMR approach to show the effectiveness of entity relevance and relational reasoning.

• In Chapter 6, we present our work on commonsense reasoning for Knowledge based QA. We

describe a novel Dynamic Relevance Graph Network (DRGN) to solve the commonsense

reasoning challenge by exploiting the existing relations in KG and re-scaling the importance of

the neighbor nodes in the graph based on training a dynamic relevance matrix. Our proposed

approach shows competitive performance on two QA benchmarks, CommonsenseQA and

OpenbookQA. The experiment results and analysis demonstrates that our DRGN model

facilitates answering complex questions that need multiple hops of knowledge reasoning.

• In Chapter 7, we present our work on knowledge reasoning for document-level QA. We

describe Multi-hop Reasoning Network over Relevant Commonsense SubGraphs (MRRG)

to solve the knowledge reasoning challenges by exploiting the external knowledge subgraph
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extracted in the most relevant information from a large KG using a novel KG attention neural

mechanism. We evaluate our model on the WIQA benchmark. The experimental results

and analysis indicate that our MRRG model helps in filling the knowledge gaps between the

question and the document and performing reasoning over the extracted knowledge.

• In Chapter 8, we draw the conclusion of the dissertation and several points for future direction.

11



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we first provide a background of Transformer Architecture and Graph Neural

Networks, which are the two main architectural components that we used in our neural models

for QA systems. Then we introduce the related work about document-level QA, cause-effect QA,

cross-modality QA, and knowledge based QA.

2.1 Background

2.1.1 Background of Transformer Architecture

Transformer Architecture is a stacked self-attention model for learning effective natural language

features [111]. The Transformer has been shown to achieve extraordinary success in natural language

processing not only for better performance but also for efficiency due to their parallel computations.

The Transformers architecture uses a self-attention mechanism and multi-head attention as two key

components to extract each token feature that helps in learning the features from all the other tokens

trained in the huge natural language corpora [24, 124, 83].

Self-attention is the “soul” mechanism to learn token representations based on the Scaled

Dot-Product operator. The input of Self-attention consists of Queries & of dimension 3@, Keys  of

dimension 3: , and Values + of dimension 3E. The Self-attention process is computed as follows:

(4; 5 �CC=(&, ,+) = B> 5 C<0G(& 
) )p
3:

+ , (2.1)

where & ) is the dot-product operation for Quires and Keys.

Multi-head attention is the “brain” module of the Transformer architecture, allowing for attending

to parts of the sequence differently and running through self-attention mechanism ⌘ times in parallel.

Then, all the single-head Attention outputs are combined together to obtain the integrated Attention

output. The Multi-head attention is computed as follows:

"D;C8�403 (&, ,+) = ⇠>=20C (�4031,�4032, . . . ,�403⌘),$

, (2.2)
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where,$ ,,& ,, ,,+ are learnable parameter matrices.

In recent years, Bidirectional Encoder Representations from Transformers (BERT) [24] and

Robustly Optimized BERT Pretraining Approach (RoBERTa) [65] have been proposed and widely

deployed in countless natural language processing tasks, especially in Question Answering [74,

139, 125]. We take BERT architecture as an example. BERT utilizes a bidirectional self-attention

Transformer as the backbone to learning the pre-train deep bidirectional representations considering

both left and right contexts from the large-scaled unlabeled corpus. Moreover, to better pre-train

contextualized representations, BERT architecture employed two unsupervised tasks, Masked

Language Model and Next Sentence Prediction. Furthermore, BERT uses an English Wikipedia

corpus that contains 2, 500 million words and BooksCorpus [142] that contains 800 million words to

train the architecture. However, the obstacle of BERT is the memory limitation because of millions

or billions of parameters. To address this issue, ALBERT [55] utilizes two technologies, factorized

embedding parameterization and cross-layer parameter sharing, to lower memory consumption and

increase the training speed of BERT. Researchers also extended Transformers with both textual and

visual modalities [59, 102, 104, 99, 109]. Sophisticated pre-training strategies were introduced to

boost the performance [104].

2.1.2 Background of Graph Neural Networks

Graph Neural Network (GNN), which generalizes the deep learning neural network to structured

graphs, has attracted increasing attention and gained valuable significance in various Natural

Language Processing tasks, including Question Answering, Machine Reading Comprehension, etc.

Graph Neural Networks can effectively learn robust representations from nodes, edges, and relations

between the nodes in the structured graph [140, 37, 129]. Graph neural networks follow two types

of approaches, which are spectral graph approaches and spatial graph approaches [23, 140, 52, 112].

Spectral graph approaches learn the spectral representation of the graphs. Spectral graph
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methods commonly use the graph Fourier transform and graph convolution operator in the spectral

domain [140]. Graph convolutional network (GCN) [52] is a classic multi-layer graph neural

network and a typical spectral graph approach. For each layer of GCN, the node representations

capture the information of their neighborhood nodes and edges via message passing and graph

convolutional operation. R-GCN is a variation of GCN that deals with the multi-relational graph

structure [90]. Adaptive Graph Convolution Network (AGCN) [60] learns the underlying relations

and learns the residual graph Laplacian to improve spectral graph performance. Meanwhile, some

variants of GCN replace the graph Fourier transform with other transform formats. For example,

Graph Wavelet Neural Network (GWNN) [123] applies the graph wavelet transform to the graph,

and achieves better performance compared to the graph Fourier transform in some tasks.

Spatial graph approaches learn the spatial graph representations based on the graph topology

architecture and utilize the spatial information of the node directly [140, 7, 33]. For example,

the graph attention network (GAT) [112] uses the graph attention layer and multi-head attention

mechanism (like Transformer) on spatial graphs to learn the node representations efficiently. In

particular, the graph attention layer consists of 3 components: (1) Linear Transformation, which

is used to apply a learned parameter matrix to the feature vectors of the nodes, (2) Computation

and Normalization of Attention Coefficients, which is used to determine the relative importance

of neighboring features to each other, (3) Computation of Final Output Features, which is used to

generate the Non-Linear Transformation node representations.

2.2 Related Work

In this dissertation, we address different types of QA that are categorized into four classes including

document-level QA, cause-effect QA, cross-modality QA, and knowledge based QA. In the following

subsections, we will describe the relevant benchmarks for each QA class and point to the related

published QA architectures.
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2.2.1 Document-level QA

Many QA tasks have been proposed to evaluate the language understanding capabilities of ma-

chines [87, 47, 28]. These tasks are single-hop QA and consider answering a question given only

one single paragraph. These single-hop QA benchmarks, such as TriviaQA [47] and SearchQA [28],

and MRC datasets, like SQuAD [87], rarely require complex reasoning (i.e., chain of reasoning)

to obtain the answer. In these years, several multi-hop QA datasets, such as WikiHop [120] and

HotpotQA [125], were proposed. They provide both multiple paragraphs and the ground-truth line

of reasoning from question to answer. Those QA datasets require a multi-hop reasoning model to

learn the cross-paragraph reasoning paths to predict the correct answer.

Primary studies prefer to use a neural retriever model and a neural reader model to solve the

challenges of document-level multi-hop QA tasks [74, 139, 125]. First, they use a neural retriever

model to find the relevant paragraphs to the question. After that, a neural reader model is applied to

the selected paragraphs for answer prediction. Although these approaches obtain promising results,

the performance of evaluating multi-hop reasoning capability is unsatisfactory [74]. Recently

proposed multi-hop QA models [110, 122, 29] utilize the semantic structures of the data and

construct a semantic graph in different ways. For example, Coref-GRN [25] utilizes co-reference

resolution to build an entity graph. MHQA-GRN [96] is an updated version of Coref-GRN that

adds sliding windows. Entity-GCN [13] builds the graph using entities and different types of edges

called match edges and complement edges. DFGN [122] and SAE [110] construct an entity graph

through named entity recognition (NER). Besides, some QA research works construct an entity

graph using Spacy1 or Stanford CoreNLP [71] and then apply a graph model to infer the entity path

from question to the answer [14, 122, 16, 29].

In contrast to the models mentioned above, our SRLGRN replaces entity-based graphs with

semantic role labeling graphs to take the semantic structure of the sentences into account. Semantic

role labeling provides the semantic structure of the sentence in terms of argument-predicate

relationships [141, 105, 72, 39, 38], such as “who did what to whom.” In Chapter 3, our SRLGRN
1https://spacy.io
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model utilizes graph convolutional network [52] as the backbone to learn the representations of the

SRL graph, find the cross-paragraph reasoning path, and answer the question.

2.2.2 Cause-effect QA

Cause-effect Question Answering is a particular type of QA that aims to find relations between

entities and the line of causal reasoning. Several new QA benchmarks were created in recent years

for this purpose [20, 21]. In particular, WIQA benchmark [107] is proposed that aims solve the

so called“what . . . if” kind of questions, containing multi-hop causal reasoning and commonsense

reasoning, making the task more challenging.

Multiple previous works achieved impressive performance by modeling cause-and-effect entity

representations on causal-effect QA [69, 44, 5, 107]. For example, REM-Net [44] architecture

refines the evidence by a recursive memory mechanism and then uses a generative model to predict

the answer. Logic-Guided [5] model uses logic rules, including symmetry and transitivity rules

as regularization during training to impose consistency between the answers to multiple questions.

However, these QA models fail to answer the questions when causal reasoning is required [27].

Therefore, we propose the Relational Gating Network (RGN) described in Chapter 4. RGN finds the

line of causal reasoning and relations using entity gating and relation gating modules to solve the

casual reasoning challenge.

Moreover, there are many cases in which the required knowledge for answering the question

is not included in the document itself [107]. In other words, answering questions over documents

not only requires finding the line of the reasoning in the whole document, but also exploiting the

external knowledge to help complete the Document-level reasoning chain. EIGEN [69] builds an

event influence graph based on a document and leverages LMs to create the chain of reasoning to

predict the answer. However, EIGEN cannot deal with the challenge when the required knowledge is

not in the given document. To address this challenge, we propose an MRRG architecture, described

in Chapter 7, that captures the entities from the document and extracts external knowledge from KG.
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2.2.3 Cross-Modality QA

Real-world problems often involve data from multiple modalities and resources. Learning and

decision-making based on natural language and visual information have attracted the attention

of many researchers due to exposing many exciting research challenges to the AI community.

Solving a problem at hand usually requires reasoning about the components across all the involved

modalities[62, 54, 46]. The VQA benchmark [4, 36] contains open-ended questions about images

that require an understanding of and reasoning about language and visual components. In addition,

the natural language visual reasoning (NLVR) [100, 101] benchmark is proposed that asks models

to determine whether a sentence is matched with the image. Moreover, VQACP [1] was proposed

to evaluate the capacity of language and visual understanding. Besides, several datasets contain

extensive visual information such as bounding boxes, labels, etc, e.g., Flickr30k [81] and Visual

Genome [54]. In addition, some visual Question Answering tasks aim to learn visual relation facts

with a rich structure, such as FVQA [116], R-VQA [67], and KVQA [92]. The Video Question

Answering task is a special type of visual Question Answering. Some related benchmarks were

published, like PororoQA [75], Social-IQ [130], TVQA [56], and MovieQA [114], etc.

There are several challenges in learning and reasoning over cross-modality QA, including

understanding visual contents, language semantics, and relationships between two modalities [45, 80,

82]. Researchers develop models by learning the joint features using Transformers architectures [59,

104]. For instance, VisualBERT [59] consists of Transformer layers that align textual and visual

representation spaces with self-attention. LXMERT [104] aims to learn cross-modality encoder

representations from a cross-Transformer architecture. Besides, LXMERT pre-trains the architecture

with a large number of image-sentence pairs, via five diverse representative pre-training tasks.

Moreover, contrastive learning positively influences learning robust joint representations for two

modalities [82]. On the vision side, contrastive loss brings visual representations of two similar

images closer together while distinguishing the representations of two dissimilar images [68, 50]. On

the language side, contrastive loss makes two language representations closer [34, 117]. However,

those approaches do not consider relational reasoning [82].
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In contrast to these methods, we proposed a novel cross-modality relevance (CMR) architecture

in Chapter 5 that exploits the textual and visual entities and relations and finds their relevance in the

two modalities for learning joint representations. In addition, we model the higher-order relational

relevance for aligning not only textual/visual entities but also the relations between them in the text

and image.

2.2.4 Knowledge based QA

Using structured knowledge is another type of modality that can feed the QA systems for answering

natural language questions. Some benchmarks for QA systems that provide structured sources

of knowledge were published in recent years [26], such as QALD [15], WebQuestions [9], Sim-

pleQuestion [11], and KBQA [19]. To answer the questions in these benchmarks, the structured

sources of explicit knowledge are different from each other. Specifically, WebQuestions and

SimpleQuestions contain questions that can be answered using Freebase [10], while QALD uses

DBpedia [8] as the knowledge source. Meanwhile, CommonsenseQA [103] and OpenbookQA [73]

are two benchmarks focusing on commonsense question answering that required external knowledge

provided in ConceptNet [97].

However, current QA models can not effectively utilize the KG’s information [30] and mostly

rely on implicit knowledge stored in large language models [24, 30]. The reason is that the existing

KGs are usually large and contain many nodes that are irrelevant to the question and text. Moreover,

with larger KGs, the computational complexity of learning over them will increase. To deal with this

issue, pruning KG nodes based on a variety of metrics has been proposed [23, 140, 112, 37, 129].

Moreover, GraphTransformer[53] and QAGNN [127] include the sentence node in the graph, while

HGN [29] and SRLGRN [134] add the paragraph node and sentence node to construct a hierarchical

graph structure. However, the extracted KG subgraph sometimes misses some edges between

entities, which breaks the chain of reasoning [136].

To solve this challenge, in contrast to the models mentioned above, we proposed a Dynamic

Relevance Graph Network (DRGN), described in Chapter 6, that learns the node representations
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while exploiting the existing edges in KG and establishes new direct edges between graph nodes

based on the relevance scores.
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CHAPTER 3

MULTI-HOP REASONING FOR DOCUMENT-LEVEL QA

3.1 Background and Motivation

Understanding and reasoning over natural language play a significant role in Machine Reading

Comprehension (MRC) and Question Answering (QA). Several types of QA tasks have been

proposed in recent years to evaluate the language understanding capabilities of machines [87, 47, 28].

However, most of the current benchmarks focus on simple single-hop QA problems over a single

paragraph. Many existing neural models rely on learning context and type-matching heuristics [119].

Those rarely build reasoning modules but achieve promising performance on single-hop QA tasks.

The main reason is that these single-hop QA tasks lack an in-depth evaluation of the reasoning

capabilities of the learning models because they do not require complex reasoning.

Question 430: What team did the recipient of the 2007 
Brownlow Medal play for?

Paragraph 1: Title: "2007 Brownlow Medal"

0. “The 2007 Brownlow Medal was the 80th year the award …

(AFL) home and away season."

1. “Jimmy Bartel won the medal by polling twenty-nine votes ..."

Answer: Geelong Football Club
Support fact: ["2007 Brownlow Medal", 1], 

["Jimmy Bartel", 0]

Paragraph 2: Title: "Jimmy Bartel"

0: “James Ross Bartel (born 4 December 1983) is a former 

Australian rules footballer who played for the Geelong Football 

Club in the …"

1: "A utility, 1.87 m tall and weighing 86 kg , Bartel is able …"

Paragraph 10: Title: "2005 Brownlow Medal"

0: "The 2005 Brownlow Medal was the 78th year the award …"

1: "Ben Cousins of the West Coast Eagles won the medal …"

�

Figure 3.1 An example of HotpotQA data.
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Recently multi-hop QA benchmarks, such as HotpotQA [125] and WikiHop [120], have been

proposed to assess the multi-hop reasoning ability of the learning models. HotpotQA task provides

annotations to evaluate document-level question answering and finding supporting facts. Providing

supervision for supporting facts improves the explainability of the predicted answer because they

clarify the cross-paragraph reasoning path. Due to the requirement of multi-hop reasoning over

multiple documents with strong distractions, multi-hop QA tasks are challenging. Figure 3.1 shows

an example of HotpotQA. Given a question and 10 paragraphs, only paragraph 1 and paragraph

2 are relevant. The second sentence in paragraph 1 and the first sentence in paragraph 2 are the

supporting facts. The answer is “Geelong Football Club”.

Primary studies in HotpotQA task prefer to use a reading comprehension neural model [74, 139,

125]. First, they use a neural retriever model to find the relevant paragraphs to the question. After

that, a neural reader model is applied to the selected paragraphs for answer prediction. Although

these approaches obtain promising results, the performance of evaluating multi-hop reasoning

capability is unsatisfactory [74].

To solve the multi-hop reasoning problem, some previous models tried to construct an entity

graph using Spacy1 or Stanford CoreNLP [71] and then applied a graph model to infer the entity

path from question to the answer [14, 122, 16, 29]. However, these models ignore the importance

of the semantic structure of the sentences and the edge information and entity types in the entity

graph. To take the in-depth semantic roles and semantic edges between words into account, here

we use semantic role labeling (SRL) graph as the backbone of a graph convolutional network.

Semantic role labeling provides the semantic structure of the sentence in terms of argument-predicate

relationships [38]. The argument-predicate relationship graph can significantly improve the multi-

hop reasoning results. Our experiments show that SRL is effective in finding the cross-paragraph

reasoning path and answering the questions.

Our proposed Semantic Role Labeling Graph Reasoning Network (SRLGRN) jointly learns

to find cross-paragraph reasoning paths and answer questions on multi-hop QA. In the SRLGRN
1https://spacy.io
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model, firstly, we train a paragraph selection module to retrieve gold documents and minimize

distractors. Second, we build a heterogeneous document-level graph that contains sentences as nodes

(question, title, and sentences) and SRL sub-graphs, including semantic role labeling arguments

as nodes and predicates as edges. Third, we train a graph encoder to obtain the graph node

representations that incorporate the argument types and the semantics of the predicate edges in the

learned representations. Finally, we jointly train a multi-hop supporting fact prediction module that

finds the cross-paragraph reasoning path and answers prediction module that obtains the final answer.

Notice that both supporting fact prediction and answer prediction are based on contextual semantics

graph representations as well as token-level BERT pre-trained representations. The contributions of

this work are as follows:

1) We propose the SRLGRN framework that considers the semantic structure of the sentences in

building a reasoning graph network. Not only the semantics roles of nodes but also the semantics of

edges are exploited in the model.

2) We evaluate and analyze the reasoning capabilities of the semantic role labeling graph compared

to usual entity graphs. The fine-grained semantics of the SRL graph help in both finding the answer

and the explainability of the reasoning path.

3) Our proposed model obtains competitive results on both HotpotQA (Distractor setting) and the

SQuAD benchmarks.

3.2 Semantic Role Labeling Graph Reasoning Network

Our proposed SRLGRN approach is composed of Paragraph Selection, Graph Construction, Graph

encoder, Supporting Fact prediction, and Answer Span prediction modules. Figure 3.2 shows the

proposed architecture. In this section, we introduce our approach in detail and then explain how to

train it with an efficient algorithm.
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Figure 3.2 Our proposed SRLGRN model is composed of Paragraph Selection, Graph Construction,
Graph Encoder, Supporting Fact prediction, and Answer Span prediction.

3.2.1 Problem Formulation

Formally, the problem is to predict supporting fact H(� and answer span H0=B given input question @

and candidate paragraphs. Each paragraph content C = {C, B1, . . . , B=} includes title C and several

sentences {B1, . . . , B=}.

3.2.2 Paragraph Selection

Most of the paragraphs are distractors in the HotpotQA task [125]. SRLGRN can select gold

documents and minimize distractors from given # documents by a Paragraph Selection module.

The Paragraph Selection is based on the pre-trained BERT model [24]. Our Paragraph Selection

module has two phases explained in section 3.2.2.1 and section 3.2.2.2.

3.2.2.1 First Round Paragraph Selection

For every candidate paragraph, we take the question @ and the paragraph content C to form the text

input [[⇠!(]; @; [(⇢%];C], where [CLS] and [SEP] are the BERT special tokens in the tokenizer

process [24]. We form the input and feed it into a pre-trained BERT encoder to obtain token

representations. Then we use ⌫⇢')[⇠!(] token representation as the summary representation of

the paragraph. Meanwhile, we utilize a two-layer MLP to output the relevance score, HB4; . The

paragraph which obtains the highest relevance score is selected as the first relevant context. We
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!"#: William Keith Bostic (born January 17, 1961) 
became a former football player who played for 
seven seasons in the National Football League.

William Keith 
Bostic: ARG

January 17, 1961
: TEMPORAL

a former football 
player: ARG

for seven seasons
:TEMPORAL

National Football 
League : LOC

played

played

became

born

!"#

!##: Jerry Michael Glanville (born October 14, 1941) 
became a former football player, former NASCAR 
driver, and former sportscaster.

Jerry Michael 
Glanville :ARG

October 14, 1941
:TEMPORAL

former NASCAR 
driver :ARG

former sportscaster
:ARG

became born

!##

became
became

!"" !#$

%

!"$ !#" !#&!"& � �'" '#

!""
!#$

Figure 3.3 An example of Heterogeneous SRL Graph. The question is “Who is younger Keith
Bostic or Jerry Glanville?” The circles show the document-level nodes, i.e., sentences. The blue
squares show the argument nodes. The argument nodes include argument phrases and argument-type
information. The solid black lines are semantic edges between two arguments carrying the predicate
information. The black dashed lines show the edges between sentence nodes and argument nodes.
The red dashed lines show the edges between two sentences if there exists a shared argument (based
on an exact string match). The orange blocks are the SRL argument-predicate sub-graphs for
sentences. B 9

8
means the 9-th sentence from the 8-th paragraph.

concatenate @ to the selected paragraph as @=4F for the next round of paragraph selection.

3.2.2.2 Second Round Paragraph Selection

For the remaining # � 1 candidate paragraphs, we use the same model as first-round paragraph

selection to generate a relevance score that takes @=4F and paragraph content as input. We call

this process as second-round paragraph selection. Similar to section 3.2.2.1, one of the remaining

candidate paragraphs with the highest score is selected. Afterward, we concatenate the question and

the two selected paragraphs to form a new context used as the input text for the graph construction.

3.2.3 Heterogeneous SRL Graph Construction

We build a heterogeneous graph that contains document-level sub-graph S and argument-predicate

SRL sub-graph �A6 for each data instance. In the graph construction process, the document level

sub-graph S includes question @, titles C, and sentences B from the selected paragraphs. The

argument-predicate SRL sub-graphs �A6, including arguments as nodes and the predicates as
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edges, are generated using AllenNLP-SRL model [94]. Each argument node is the concatenation of

argument phrase and argument type, including “TEMPORAL”, “LOC”, etc.

Figure 3.3 describes the construction of the heterogeneous graph. The edges of the heterogeneous

graph are added as follows: 1) There will be an edge between a sentence and an argument if the

argument appears in the sentence (the black dashed lines in Figure 3.3); 2) Two sentences will have

an edge if they share an argument by exact matching (the red dashed lines); 3) Two argument nodes

�A6
8
and �A6

9
will have an edge if they share a predicate (the black solid lines); 4) There will be an

edge between the question and a sentence if their arguments exactly matching their lexical surface

(the red dashed lines). Figure 3.3 shows an example of a heterogeneous SRL graph. B21 and B22 are

connected because of a shared argument node “a former football player: ARG”. Besides, the shared

argument node has several semantic edges, such as “played” and “became”. In this way, the shared

argument node and other connected argument nodes have argument-predicate relationships.

We create two matrices based on the constructed graph. We will describe the way we use these

matrices in section 3.2.4. We build a weight matrix  to express the predicate-based semantics of

the edges and a weight matrix � to express various types of edges.

The semantic edge matrix  is a matrix that stores the word index of the predicates that is

shared between the two arguments. We initialize all the elements of  with empty, ;. If two

argument nodes �A6
8
and �A6

9
are related to the same predicate, we add that predicate word index

to  (�A68 ,�A6 9 ) . � is a matrix that stores different types of edge weights. We divide the edges into

three types: sentence-argument edges, argument-argument edges, and sentence-sentence edges.

The weight of a sentence-sentence edge is 1 when two sentences share an argument. Meanwhile,

the weight of a sentence-argument edge is 1 if there exists an edge between a sentence and an

argument. If two argument nodes have an edge, the weight can be calculated by point-wise mutual

information (PMI) [12]. The reason we use PMI is that it can better explain associations between

nodes compared to the traditional co-occurrence count method [126].
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3.2.4 Graph Encoder

Here we provide a background to Graph convolutional network that we use in our model to

obtain graph embedding. We introduce the Graph Convolution Network [52] to obtain the graph

embeddings. The Graph Convolution Network (GCN) is a multi-layer network that uses the graph

input directly and generates embedding vectors of the graph.

GCN plays an essential role in incorporating neighborhood nodes and helps in capturing the

structural graph information. The SRL graph uses the semantic structure of the sentence to form the

graph nodes and semantic edges. For instance, the GCN nodes of the document level sub-graph help

in finding the supporting fact path, while GCN nodes of the argument-predicate level sub-graph

help in identifying the text span of the potential answers. In this work, we consider a two-layer GCN

to allow message-passing operations and learn the graph embeddings. The graph embeddings are

computed as follows:

⌧
0 = (⇡� 1

2 �⇡
� 1

2 ) [-�A6; -S],1, (3.1)

⌧ = (⇡� 1
2 �⇡

� 1
2 ) 5 (⌧0),2, (3.2)

where ⌧0 and ⌧ are graph embedding outputs of two GCN layers that incorporate higher-order

neighborhood nodes by stacking GCN layers. 5 (G) is an activation function, ⇡ is the degree matrix

of the graph [52], � is the heterogeneous edge parameters matrix, and,1 and,2 are the learned

parameters. - represents node embeddings, including argument-predicate embedding -�A6 and

sentence embedding -S . Given graph embedding ⌧, we use ⌧S to represent document-level node

embeddings, and ⌧�A6 to represent argument-predicate level node embeddings.

3.2.5 Supporting-Fact Prediction

The goal of supporting fact (SF) prediction is to find the supporting fact path that is necessary to

obtain the answer. Inspired by previous research [6], we utilize RNN with a beam search to find the

best document-level supporting fact path. This approach turns out to be effective for selecting the
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Figure 3.4 An example of Supporting Fact Prediction.

SF reasoning path. Notice that, our supporting fact prediction not only relies on BERT and RNN

but also incorporates document-level graph node embeddings ⌧S .

Formally, we use the concatenation of the graph sentence embedding, ⌧S (blue circles in

Figure 3.4), and BERT’s [CLS] representation of the candidate sentence (orange circles) to represent

the candidate supporting fact sentence -20=3S . The process of selecting supporting facts is as follows:

⌘C = f(,⌘C�1 +*-20=3S + 1⌘), (3.3)

>C = +⌘C + 1>, (3.4)

where ⌘C is the hidden state of the RNN at the C-th supporting fact selection step, f is the activation

function. , ,*, + , 1⌘ and 1> are the parameters.

Finally, we use the beam search to output SF paths, choosing the highest scored path as our final

supporting fact answer HSF:

HSF = arg max
1C)

÷
>C , (3.5)

where ) is the maximum number of reasoning hops. We penalize with the cross-entropy loss.

Figure 3.4 shows an example of the predicted SF process. Based on the constructed heterogeneous

graph, two sentence nodes have an edge if they share an argument. We start from question node @

as the first input sentence. Since @ is a unique input, we select @ as the first SF candidate. In the

second step, two candidate sentence nodes, B2 and B3, which are neighbor nodes of @, are chosen as

the input. We separately feed B2 and B3 to the RNN layers. The sentence B3 that obtains a larger

logit score is selected as the second SF candidate of the reasoning path. In the third step, B4 and B5
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are neighbor nodes of the second SF, B3. Then the model chooses B5 as the third SF. In the end, B1,

B3, and B5 are the supporting facts.

3.2.6 Answer Span Prediction

The goal of the answer prediction module is to output “yes”, “no”, or answer span for the final

answer. We first design an answer type classification based on BERT and an additional two fully

connected feed-forward layers. If the highest probability of type classification is “yes” or “no”, we

directly output the answer. The input of type classification is ⌫⇢')[⇠!(] . The answer type HCH?4

can be calculated as

Htype = "!%type( [⌫⇢')[⇠!(]]). (3.6)

If the answer is not “yes” or “no”, we compute the logit of every token to find the start position 8

and end position 9 for the answer span. The input token representation is the concatenation of BERT

token representation ⌫⇢')C>: and graph embedding ⌧�A6. The answer span H0=B can be computed

as

Hans = arg max
8, 9 , 8 9

H
8

BC0AC
H
9

4=3
, (3.7)

H
8

start = "!%start( [⌫⇢')8
C>:

;⌧8
�A6

]), (3.8)

H
8

end = "!%end( [⌫⇢')8C>: ;⌧8�A6]), (3.9)

where Hans is the index pair of (start position, end position), H8start represents the logit score of the 8-th

word as the start position, and H8end represents the logit score of the 8-th word as the end position.

3.2.7 Objective Function

Inspired by [122] and [110], the joint objective function includes the sum of cross-entropy losses for

the span prediction !ans, answer type classification !type, and supporting fact prediction !SF. The

loss function is computed as follows:

!joint = !ans + !SF + !type
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= _1(�Hstart log Hstart � Hend log Hend) � _2HSF log HSF � _3Htype log Htype,

where _1, _2, and _3 are hyper-parameters which are weighting factors indicating the importance of

each component in the loss.

3.3 Experiments

3.3.1 Dataset Description

We use the HotpotQA dataset [125], a popular benchmark for multi-hop QA tasks, for the main

evaluation of the SRLGRN. For each question in the Distractor Setting, two gold paragraphs and 8

distractor paragraphs, which are collected by a high-quality TF-IDF retriever from Wikipedia, are

provided. Only gold paragraphs include ground-truth answers and supporting facts. In addition,

we use Machine Reading Comprehension task, Stanford Question-Answering Dataset (SQuAD)

v1.1 [87] and v2.0 [86], to demonstrate the language understanding ability of our model.

3.3.2 Implementation Details

We implemented SRLGRN using PyTorch. We use a pre-trained BERT-base language model with

12 layers, 768-dimensional hidden size, 12 self-attention heads, and around 110" parameters

[24]. We keep 256 words as the maximum number of words for each paragraph. For the graph

construction module, we utilize a semantic role labeling model [94] from AllenNLP2 to extract the

predicate-argument structure. For the graph encoder module, we use 300-dimensional GloVe [79]

pre-trained word embedding. The model is optimized using Adam optimizer [51].

3.3.3 Baseline Models

In this subsection, we select three SOTA models as our main baselines. In particular, Multi-Paragraph

Reading Comprehension Model [16] uses a neural retriever model and a neural reader model to find
2https://demo.allennlp.org/semantic-role-labeling.
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the span answer. In addition, we select DFGN [122] and SAE [110] models that construct entity

graphs through named entity recognition (NER) as the backbone to find the supporting fact path.

Multi-Paragraph Reading Comprehension Model [16] is our first strong baseline. This baseline

model combines the popular technical neural modules as the components in the QA domain,

including self-attention and bi-attention modules [91].

DFGN [122] is a strong baseline method for the HotpotQA task. DFGN builds an entity graph from

the text. Moreover, DFGN includes a dynamic fusion layer that helps in finding relevant supporting

facts.

SAE [110] is the recent SOTA model that is an effective Select, Answer and Explain system for

multi-hop QA. SAE is a pipeline system that first selects the relevant paragraphs and uses the

selected paragraphs to predict the answer and the supporting fact.

3.4 Experimental Results and Analysis

3.4.1 Results

Model Ans(%) Sup(%) Joint(%)
EM F1 EM F1 EM F1

Baseline Model [125] 45.60 59.02 20.32 64.49 10.83 40.16
KGNN [128] 50.81 65.75 38.74 76.79 22.40 52.82

QFE [76] 53.86 68.06 57.75 84.49 34.63 59.61
DecompRC [74] 55.20 69.63 - - - -

DFGN [122] 56.31 69.69 51.50 81.62 33.62 59.82
TAP 58.63 71.48 46.84 82.98 32.03 61.90

SAE-base [110] 60.36 73.58 56.93 84.63 38.81 64.96
ChainEx [14] 61.20 74.11 - - - -

HGN-base [29] - 74.76 - 86.61 - 66.90
SRLGRN-base 62.65 76.14 57.30 85.83 39.41 66.37

Table 3.1 HotpotQA Result on Distractor setting. Except for the Baseline model, all models deploy
BERT-base uncased as the pre-training language model to compare the performance.

Evaluation metrics. In the HotpotQA benchmark, two sub-tasks are included in this dataset:

Answer prediction and Supporting facts prediction. For each sub-task, Exact Match (EM) and

Partial Match (F1) are two official evaluations that were proposed in [87]. Given the precision and
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recall of the answer span prediction and the supporting facts, respectively, the joint Exact Match

(EM) and joint Partial Match (F1) scores are computed to evaluate the model performance on the

HotpotQA Distractor Setting.

Table 3.1 shows the results of HotpotQA (Distractor setting). We can observe the SRLGRN

model outperforms the previous state-of-the-art results in most of the evaluation criteria. Our

model obtains a Joint Exact Matching (EM) score of 39.41% and a Joint Partial Matching (F1)

score of 66.37% that combines the evaluation of answer spans and supporting facts. Our SRLGRN

model has a significant improvement, about 28.58%, on Joint EM and 26.21% on F1, over the

Baseline Model [125]. Compared to the current published state of the art, i.e. SAE model [110],

SRLGRN improves the results for 2.29% on the Joint Exact Match and 2.56% on the joint F1. To

our analysis, the main reason for the effectiveness of our model is that it uses not only token-level

BERT representations but also uses graph-level SRL node representations that help in learning the

line of the multi-hop reasoning.

3.4.2 Model Analysis

Our framework provides an effective way for multi-hop reasoning taking advantage of the SRL

graph and the pre-trained language models. In the following section, we give a detailed analysis of

the SRLGRN model.

Effect of SRL Graph. The SRL graph extracts argument-predicate relationships, including

in-depth semantic roles and semantic edges. The constructed graph is the basis of reasoning as the

inputs of each hop are directly selected from the SRL graph, as shown in Figure 3.4. The SRL graph

provides a rich graph network, that is, providing the key semantic edges between the words to cover

reasoning paths, see Figure 3.3.

Compared to the NER graph in the previous models [122], the proposed SRL graph covers the

86.5% of reasoning paths for the data samples. The NER graph of DFGN can only cover 68.7% of

the reasoning paths [122]. The coverage of the semantic edges in the graph is one major reason
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that the SRLGRN model has higher accuracy compared to other published models. As shown in

Table 3.1, the SRLGRN improves 5.79% on joint EM and 6.55% on joint F1 over DFGN that is

based on the NER graph.

Ablation Model Ans(%)
EM F1

Graph
w/o graph 53.06 67.68

w/o Argument type
and Semantic edge 60.10 73.24

Joint w/o joint training 58.50 71.58

Language ALBERT-base 59.87 74.20
BERT-base 62.65 76.14

Table 3.2 SRLGRN ablation study on HotpotQA.

To evaluate the effectiveness of the types of semantic roles and the edge types, we perform an

ablation study. First, we removed the whole SRL graph. Second, we removed the predicate-based

edge information from the SRL graph. Table 3.2 shows the results. The complete SRLGRN

improves 8.46% on the F1 score compared to the model without the SRL graph. The model loses

the connections used for multi-hop reasoning if we remove the SRL graph and only use BERT for

answer prediction.

We also observe that the F1 score of answer span prediction decreases 2.9%, if we did not

incorporate semantic edge information and argument types. The reason is that removing predicate

edges and argument types will destroy the argument-predicate relationships in the SRL graph and

breaks the chain of reasoning. For example, in Figure 3.3, the main arguments of the two supporting

facts in B21 and B22 (William and Jerry) are connected with a predicate edge, “born”, to the temporal

information necessary for finding the answer. Both the “born” edge and the adjunct temporal roles

are the key information in the two sentences to find the final answer to this question. The shared

ARG node, “football player”, also helps to connect the line of reasoning between the two sentences.

These two results indicate that both semantic roles and semantic edges in the SRL graph are essential

for the SRLGRN performance.

In a different experiment, we tested the influence of the joint training of the supporting facts and
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answer prediction. As shown in Table 3.2, the performance will decrease by 4.56% when we do not

train the model jointly.

Effect of Language Models. We use two popular and widely-used pre-trained language rep-

resentation models, BERT and ALBERT [55]. The last two lines of Table 3.2 show the results.

Although BERT achieves relatively better performance, ALBERT architecture has significantly

fewer parameters (18x) and is faster (about 1.7x running time) than BERT. In other words, ALBERT

reduces memory consumption by cross-layer parameter sharing, increases the speed, and obtains a

satisfactory performance.

Effect of SRLGRN on Single-hop QA. We evaluate the SRLGRN (excluding the paragraph

selection module) on SQuAD [87] to demonstrate its reading comprehension ability. We evaluate

the performance on both SQuAD v1.1 and SQuAD v2.0. Table 3.3 describes the results of several

baseline methods on SQuAD v1.1. Our model obtains a 1.8% improvement over BERT-large and a

1.6% improvement over BERT-large+TriviaQA [24].

Model Ans(%)
EM F1

Human 82.3 91.2
BERT-base 80.8 88.5
BERT-large 84.1 90.9

BERT-large+TriviaQA 84.2 91.1
BERT-large+SRLGRN 85.4 92.7

Table 3.3 SQuAD v1.1 performance.

We further test the SRLGRN on SQuAD v2.0. The main difference is that SQuAD v2.0 combines

answerable questions (like SQuAD v1.1) with unanswerable questions [86]. Table 3.4 shows that

our proposed approach improves the performance of the SQuAD benchmark compared to several

recent strong baselines.

We recognize that our SRLGRN improves 7.1% on EM compared to the robust BERT-large

model and improves 1.0% on EM compared to SemBERT [132]. The two experiments on SQuAD
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Model Ans(%)
EM F1

Human 86.3 89.0
ELMo+DocQA [86] 65.1 67.6

BERT-large [24] 78.7 81.9
SemBERT [132] 84.8 87.6

BERT-large+SRLGRN 85.8 87.9

Table 3.4 SQuAD v2.0 performance.

v1.1 and SQuAD v2.0 demonstrate the significance of the SRL graph and the graph encoder.

Error Type Model Prediction Label

Synonyms

washington dc district of columbia
sars severe acute respiratory syndrome
ey ernst young

writer author

MLV
australian australia
hessian hessians

mcdonald’s, co mcdonalds

Month-Year
1946 1945

25, november, 2015 3, december
10, july, 1873 1, september, 1864

Number
11 10

fourth 4
2402 5922

External Knowledge Coker NCAA I FBS football

Other
taylor, swift usher

film documentary
fourteenth 500th episode

Table 3.5 Error types on HotpotQA dev set.

3.4.3 Qualitative Analysis

Synonyms Answers is the most frequent cause of the reported errors in many cases where the

predicted answer is semantically correct. As shown in the first row of Table 3.5, our predicted

answer and gold label have the same meaning. For example, SRLGRN predicts "sars", while the
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label is "severe acute respiratory syndrome." We know that "sars" is the abbreviation of the gold

label.

Question: Which is a type of herb, Brassia or Achimenes?
Supporting Facts:
1. Brassia is a genus of orchids classified in the Oncidiinae subtribe. 
2. Achimenes is a genus of about 25 species of tropical and subtropical rhizomatous perennial herbs in the flowering plant family Gesneriaceae. 
Answer: Achimenes

Question: When was the University established where Laura Landweber is a professor? 
Supporting Facts:
1. As of 2016, she is a professor of biochemistry and molecular biophysics and of biological sciences at Columbia University. 
2. Columbia University (Columbia; officially Columbia University in the City of New York), established in 1754, is a private Ivy League research 
university in Upper Manhattan, New York City, often cited as one of the world's most prestigious universities. 
Answer: 1754
Question: Luke Null is an actor who was on the program that premiered its 43rd season on which date? 
Wrong Paragraph Selection:  1. Luke Null    2. 43rd Battalion (Australia)
Label Paragraphs Selection :  1. Luke Null    2. Saturday Night Live
Supporting Facts:
1. Luke Null is an American actor, comedian, and singer, who currently works as a cast member on "Saturday Night Live", having joined the show 
at the start of its forty-third season.
2. The forty-third season of the NBC comedy series "Saturday Night Live" premiered on September 30, 2017 with host Ryan Gosling and musical 
guest Jay-Z during the 2017-2018 television season.
Answer: September 30, 2017

Comparison

Bridge

Wrong 
Paragraph
Selection

Question: Who is younger, Wayne Coyne or Toshiko Koshijima? 
Supporting Facts:
1. Wayne Michael Coyne (born January 13, 1961) is an American musician.
2. Toshiko Koshijima (������� , Koshijima Toshiko , born March 3, 1980 in Kanazawa, Ishikawa) is a Japanese singer. 
Wrong Answer: Wayne Coyne 
Answer: Toshiko Koshijima

Question: What Division was the college football team that fired their head coach on November 24, 2006? 
Supporting Facts:
1. The 2006 Miami Hurricanes football team represented the University of Miami during the 2006 NCAA I FBS football season.
2. Coker was fired by Miami on November 24, 2006 following his sixth loss that season.
Wrong Answer: Coker
Label Answer: NCAA Division I FBS football

Comparison

Bridge

Successful
Cases

Failing
Cases

Figure 3.5 Successful cases and Failing cases on our proposed SRLGRN framework.

Minor Lexical Variation (MLV) is another major cause of mistakes in the SRLGRN model. As

shown in the second row of Table 3.5, our model’s predicted answer is "Australian", while the gold

label is "Australia". Many wrong predictions occur in the singular noun versus plural noun selection.

Dates and numbers are other common mistakes. By looking into the graphs, we observed that

sometimes SRLGRN predicts the wrong answer when two or more arguments of the same type, in

particular with “TEMPORAL” types of arguments, are connected to the same predicate. In such

cases, it is hard to disambiguate the actual time that is the answer to the question.

Paragraph Selection is the cause of a small portion of errors in the SRLGRN model. As shown

in Figure 3.5, the model chooses the wrong paragraph “43rd Battalion”. The reason is that “43rd” is

a distractor since the “43rd season” appears in the question. The paragraph “Saturday Night Live”

is the correct relevant paragraph that includes both “forty-third season” and the true answer. To
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resolve this issue in the future, we will try to combine our model with a robust retrieval module

designed for multi-hop QA similar to the Multi-step entity-centric model proposed in [35].

Comparison questions seem to be a source of error when answering the questions in HotpotQA.

For example, as is shown in Figure 3.5, the question is “ Who is younger, Wayne Coyne or Toshiko

Koshĳima?” To correctly answer the “comparison” type of question, the model requires the ability

to compare two entities that existed in the question. In the failing case of Figure 3.5, we predict the

wrong answer “Wayne Coyne”. The model keeps answering “Wayne Coyne” even after replacing

the word “younger” with “older”, which happens to be the correct answer this time.

.65: Coker was fired by Miami on 
November 24, 2006.

Coker :ARG

fire

.65

q: What Division was the college football team 
that fired their head coach on November 24, 2006

November 24, 
2006 :TEMPORAL

head coach :ARG
fire

7

.55: The 2006 Miami Hurricanes football team represented the 
University of Miami during the 2006 NCAA I FBS football season.

Miami Hurricanes 
football team :ARG

2006: TEMPORAL

NCAA I FBS football 
season : LOC

represent

.55

University of 
Miami : ARG

represent

represent

fire
fire

Miami :ARGthe college football 
team :ARG

Figure 3.6 The “Disconnection” failing case that SRL fails to lead to the correct answer. The
meaning of different lines and node colors are the same as Figure 3.3.

Disconnection is another type of error. While the SRL graph helps if finding the chain of

reasoning, in some cases, the line of reasoning was broken. By looking into the errors, we realized

in most cases, obtaining the answer needed multiple hops of reasoning while external knowledge

was required to form the connections. As is shown in “Disconnection” failing cases of Figure 3.5,
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the selected paragraphs do not show the relation between “Coker” and “Miami Hurricanes football

team”. Figure 3.6 describes the SRL construction for this failing case. The second supporting fact

and the question have the same temporal argument node “November 24, 2006”. However, there is

no chain between the first supporting fact and the second supporting fact due to the lack of external

knowledge that can connect “Coker”, “coach” and “Miami Hurricanes football team”. Therefore,

the isolated reasoning chain leads to a wrong answer.

3.5 Summary

We proposed a novel semantic role labeling graph reasoning network (SRLGRN) to deal with

multi-hop QA. SRLGRN has a graph convolutional network (GCN) as the backbone, which is

created based on the semantic structure of the multiple documents. We innovatively construct

a graph with entities and multiple relational edges from documents using semantic role labeling

(SRL). This semantic structure of multiple documents can significantly improve the multi-hop

reasoning capacity to find the line of reasoning to answer the questions. We jointly train a supporting

fact prediction module that finds the cross-paragraph reasoning path, and an answer prediction

module that obtains the final answer. SRLGRN exceeds most of the SOTA results on the HotpotQA

benchmark. Moreover, we evaluate the model (excluding the paragraph selection module) on other

reading comprehension benchmarks. Our approach achieves competitive performance on SQuAD

v1.1 and v2.0.
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CHAPTER 4

CAUSAL REASONING FOR DOCUMENT-LEVEL QA

4.1 Background and Motivation

Cause-effect QA is a specific type of question answering over a given document in which the

questions ask about the causal impact of entities or events on each other. The recent research on

reasoning over cause-effect QA has achieved promising results [87, 86, 40, 20, 106]. Specific to

this problem, the WIQA benchmark [107] was proposed for the evaluation of causal reasoning

capabilities of learning models on a procedural text by introducing “what . . . if” reasoning. The

“what . . . if” reasoning task is a type of cause-effect QA that relates to reading comprehension,

multi-hop reasoning, and commonsense reasoning. This task is rich in containing various challenging

linguistic and semantic phenomena. The “what . . . if” reasoning is built based on linguistics and

generating possible cause-effect relationships expressed in the context of a paragraph. Its goal is to

predict what would happen if a process was perturbed in some way. It requires understanding and

tracing the changes in events and entities through a paragraph. Figure 4.1 shows some examples

of the WIQA benchmark. There are two types of questions in the dataset, including in-paragraph,

where the answer to the question is in the procedure itself, and out-of-paragraph, where the answer

does not exist in the text and needs external knowledge [107].

There are several challenges in the “what . . . if” cause-effect QA. The first challenge is reasoning

over the comparative expressions for describing the effect of the entities on each other in the text

that can convey a positive or negative effect (promoting or demoting each other). For example,

comparative expressions such as (larger, smaller), (more, less), (higher, lower). This task requires

extracting the important entities through the procedural text and understanding their influences.

BERT is used as a strong baseline in [107] to predict answers by implicit representations. However,

they ignore explicit comparative expressions between entities and the way they affect each other.

The second challenge is causal reasoning over relations between pairs of entities. Although

recent pre-trained language models (LM) achieve promising performance on QA, there is still a
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Procedural Text:
1. A frog lays eggs in the water.
2. Tadpoles develop inside of the eggs.
3. The eggs hatch.
4. The tadpoles eat and grow.
5. The tadpoles grow legs and form into frogs.
6. The frogs leave the water.

Questions and Answers:
1. Suppose tadpoles eat more food happens, 
how will it affect more frogs?

(A) More (B) less (C) No effect
2. Suppose the weather is unusually bad 
happens, how will it affect the tadpoles will 
need more food?

(A) More (B) less (C) No effect

Figure 4.1 WIQA task contains procedural paragraphs and a large collection of “what . . . if” questions.
The bold font candidate answers are the gold answers.

gap between LM and human performance due to the lack of causal reasoning over entities [30].

For example, given the question “suppose more animals that hunt frogs happen, how will it affect

more tadpoles lose”, the LM has difficulty to consider the relation “hunt” between the entity pair

(“animals”, “frogs”). This recent research work [5] uses a Transformer model with regularization to

produce consistent answers to multiple related questions. The model obtains a good result with

augmented data following logical constraints. However, these constraints ignore the importance of

causal reasoning, and can not capture the higher-order chain of causal reasoning.

The third challenge is the lexical variability in expressing the same concept, which makes

entity alignment hard. For example, the same entities and events are referred to by different terms,

like (insect, bee), (become, form). Entity alignment requires the alignment between question and

paragraph entities, and the alignment between the entities appearing in the different paragraphs

themselves. Unfortunately, all current works ignore the importance of entity alignment for tracing

the entities and finding the relation between different entities in the question and paragraph.

Therefore, we propose a novel end-to-end Relational Gating Network (RGN) for causal reasoning

over cause-effect QA. The RGN framework answers the “what . . . if” questions and solves challenges
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of comparative expressions, causal reasoning, and entity alignment. RGN jointly learns to extract the

key entities through our entity gating mechanism, finds the line of reasoning and relations between

the key entities through the relation gating mechanism, and captures the entity alignment through

contextual entity interaction. The main motivation of the two gating mechanisms is to learn the line

of causal reasoning. Concretely, we build an entity gating module to extract and filter the key entities

in the question and context and highlight the entities that are compared qualitatively. Furthermore,

we design a relation gating module with an alignment of entities to capture the higher-order

chain of causal reasoning based on pairwise relations. Moreover, we propose an efficient module,

called contextual interaction module, to incorporate cross-information from Question and Content

interactions during training in an efficient way to help entities alignments.

The contributions of this chapter are as follows: 1) We propose a Relational Gating Network

(RGN) that captures the most important entities and relationships involved in comparative expressions

and causal reasoning. 2) We propose a contextual interaction module to effectively and efficiently

align the question and paragraph entities. 3) We evaluate the methods and analyze the results on the

“what . . . if” question answering using the WIQA benchmark. We improve the recent state-of-the-art

results and show the significance of the entity gating module and relation gating module on causal

reasoning over text.

4.2 Relational Gating Network

Relational Gating Network (RGN) aims to establish an end-to-end architecture for reasoning over

cause-effect QA. RGN model uses an entity gating module to extract and filter the critical entities in

question and paragraph content. We enable a higher-order chain of causal reasoning based on the

pairwise relationships between key entities through the relation gating mechanism. We propose a

contextual interaction module to improve entity alignment in an efficient way. Figure 4.2 shows the

proposed architecture. This section introduces our network and the training approach in detail.
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Figure 4.2 Relational Gating Network (RGN) is composed of pre-training contextual representation,
entity gating module, relation gating module, and contextual interaction module followed by a
task-specific classifier.

4.2.1 Problem Formulation

Formally, the task is to select one of the candidate’s answers 0, (A) More; (B) Less; (C) No effect,

given a question @ and the paragraph content C. The paragraph content includes several sentences

C = {B1, B2, . . . , B=}. For each data sample, the data format is a triplet of (@, C, a).

4.2.2 Entity Representations

For each data sample, we form the input ! by concatenating the question @ and the paragraph content

C as follows:

! = [[⇠!(]; @; [(⇢%];C], (4.1)

where [CLS] and [SEP] are the special tokens used in Language Models (LMs) [65]. We feed input

! to a pre-trained LM to obtain all question and content token representations. Meanwhile, we use

⇢ [⇠!(] representation as the summary representation of the paragraph. After that, we obtain the

RoBERTa token representations, ⇢ [⇠!(] , ⇢@, and ⇢C , which are shown as follows:

⇢@ = [⇢F1
@
, ⇢

F2
@
, . . . , ⇢

F<
@

] 2 R<⇥3 , (4.2)
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⇢C = [⇢F1
C , ⇢

F2
C , . . . , ⇢

F=
C ] 2 R=⇥3 , (4.3)

where ⇢@ represents the list of question representations, ⇢C represents the list of paragraph content

representations, 3 is the learned representation dimension for tokens, < represents the max length

of the question, and = represents the max length of the paragraph content.

4.2.3 Entity Gating

The intuition behind the entity gating module is to filter several key entity representations from

both question, ⇢@, and paragraph content, ⇢C . We call this process entity gating which is shown in

Figure 4.2. Given the question ⇢@, for each entity ⇢F8
@

2 ⇢@, we use a multi-layer perceptron and a

softmax layer to obtain an entity importance score*F8
@

:

*
F8
@

=
exp

�
"!%(⇢F8

@
)
�

Õ
<

9=1 exp
⇣
"!%(⇢F 9

@
)
⌘ , (4.4)

⇢
0
@
= *@⇢@ 2 R<⇥3 . (4.5)

We compute the new entity representations ⇢0
@

by multiplying the entity representations and

their scores in*@. Then we choose the most important entities with top-: scores. We denote the set

of filtered key entities after gating the question as +@ = [+1
@
,+

2
@
, . . . ,+

:

@
] 2 R:⇥3 . +@ is the list of

question gated entity representations, : is the number of filtered entities and +8
@

is 3-dimensional

embedding for the 8-th filtered entities.

Notice that the process of computing paragraph entity gating +C 2 R:⇥3 is the same as the

question entity gating +@. Using the entity gating mechanism improves the generalizability of our

deep model as we can explicitly see the selected entities and comparative expressions. The detailed

analysis of entity gating is shown in Section 4.4.2.

4.2.4 Relation Gating

We consider the representations beyond entities by using a Relation Gating module. This extension

allows RGN to capture the higher-order chain of causal reasoning based on pairwise relations, which
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is the main contribution in this chapter. The pairs of entities enable the model to understand the

relationships between words and find the line of causal reasoning. Moreover, relation gating aims to

pair un-directed relations between entities for capturing the crucial relations, like “tadpole (losses)

tail” and “less severe”, as well as the pairs of entities that help to understand the line of reasoning.

We call this process relation gating module, which is shown in Figure 4.2.

In this module, first, we concatenate +@ and +C , which are obtained from Section 4.2.3 and form

candidate set + = {+@;+C}. Then we pair every two gated entities and form +
8, 9

A4;
= [+8;+ 9 ] 2 R1⇥23 .

Furthermore, the candidate relational representation, +A4; , is a non-linear mapping R23 ! R23

modeled by fully connected layers from candidate relation.

+A4; = [+1
A4;
,+

2
A4;
, . . . ,+

A

A4;
] 2 RA⇥23

,

where A is the size of total relation candidate pairs, that is, A = 2:⇥(2:�1)
2 . Given each candidate

relation +8
A4;

, we compute a multi-layer perceptron and a softmax layer to obtain a relational

importance score, )8:

)
8 =

exp
⇣
"!%(+8

A4;
)
⌘

Õ
?

9=1 exp
⇣
"!%(+A4;

9
)
⌘ , (4.6)

+
0
A4;

= )+A4; 2 R:⇥23
. (4.7)

We compute the new relation representation + 0
A4;

by multiplying the relation representations and

their scores in ) . We select the relations with top-: scores because using all the scores increases the

number of parameters and the computational cost significantly. Moreover, the redundant entities

make learning harder and consequently less accurate. We denote the set of filtered key relations

after gating relations as �A4; 2 ':⇥23 to the gated relation representation.

4.2.5 Contextual Interaction Module

Entity alignment is one of the challenges in Document-level QA. Although we propose entity

and relation gating in the above sections separately, aligning questions with the paragraph is still
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Figure 4.3 Contextual Interaction Module comprises self-interactions and cross-interactions. The
inputs are the question’s and paragraph’s filtered entities representations, and the outputs are question
and paragraph contextual representations.

important. We found that a simple concatenation of gated entity representations from the question

+@ and the paragraph content +C shows a good performance. However, concatenated representations

and multi-layer perceptrons have a limited capacity for modeling the interactions.

As shown in Figure 4.3, we have developed a novel and fast encoding model, namely Contextual

Interaction Module. The model needs to incorporate information from Question-Content interactions

and, meanwhile, avoid expensive architectures such as Multi-Head attentions [111] because those

are infeasible for large-scale datasets. Thus, we developed a model that uses only linear projections

and inner products of both sides, i.e., question and context, and we apply a mechanism like simplified

self-attention to model the interactions as described below.

Given the +@, we compute the self-interaction of the question’s gated entities, �B4; 5
@

,

�
B4; 5

@
= +)

@
,
B4; 5

+@ 2 R:⇥3 , (4.8)

where ,B4; 5 2 R3⇥: is a projection matrix. The cross-interactions between gated entities and

paragraph entities can be calculated as

�
2A>BB

@
= +)C,

2A>BB

+@ 2 R:⇥3 , (4.9)
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where,2A>BB 2 R3⇥: is also a projection matrix. Then we concatenate the two matrices �B4; 5
@

and

�
2A>BB

@
. Finally, we obtain the question contextual representation �@ as follows:

�@ = [�B4; 5
@

; �2A>BB
@

] 2 R:⇥23 (4.10)

Notice that the process of paragraph contextual representation �C 2 '
:⇥23 is the same as the

question contextual representation �@. Therefore, the output includes two representations. One is

the paragraph contextual representation containing information from the question, and the question

contextual representation contains information from the paragraph.

4.2.6 Output Prediction

After acquiring all the contextual entity representations and gated relations representations, we

concatenate them and use the result as the final representation, �. The process is described as

follows:

� = [�@; �2; �A4;] 2 R3:⇥23 (4.11)

Finally, a task-specific classifier MLP (�) predicts the output.

4.3 Experiments

Data Train Dev Test V1 Test V2 Total
Questions 29808 6894 3993 3003 43698

in-para 7303 1655 935 530 10423
Question out-of-para 12567 2941 1598 1218 18326
type no-effect 9936 2298 1460 1255 14949

Total 29808 6894 3993 3003 43698
#hops=0 9936 2298 1460 1255 14949

Number #hops=1 6754 1510 835 245 9254
of hops #hops=2 8969 2145 1153 1027 13294

#hops=3 4149 941 545 476 6111
Total 29808 6894 3993 3003 43698

Table 4.1 WIQA Dataset Statistics.
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4.3.1 Dataset Description

WIQA [107] benchmark contains procedural paragraphs and a large collection of “what . . . if”

questions. The task is to answer the questions given paragraph contents and a list of the candidate’s

answers. Table 4.1 shows the detailed data statistics and data distribution of the WIQA dataset.

4.3.2 Implementation Details

We implemented RGN using PyTorch. We used RoBERTa-Base Language Model as the backbone

to train our model. All of the representations are 768�dimensions. For each data sample, we keep

128 tokens as the max length for the question, and 256 tokens as the max length for paragraph

contents. Notice that both gated entity representations for question and paragraph use : = 10 for

selecting top-: entities in our experiments. The value of this hyper-parameter was selected after

experimenting with various values in {3, 5, 7, 10, 15, 20} using the development dataset. For the

Gated relation representations, top-10 ranked pairs are used to reduce the computational cost and

reduce the unnecessary relations. In the relation gating process, we use two hidden layers for

multi-layer perceptrons. The task-specific output classifier contains two MLP layers. The model

is optimized using the Adam optimizer. The training batch size is 4. During training, we freeze

the parameters of RoBERTa in the first two epochs, and we stop the training after no performance

improvements are observed on the development dataset, which happens after 8 epochs.

4.4 Results and Discussion

4.4.1 Result Comparison

We show the model performance on the WIQA benchmark compared to various strong baselines

in Table 4.2 and Table 4.3. We observe that, in general, Transformer-based models outperform

other models, like Deomp-Attn [78]. This promising performance demonstrates the effectiveness

of Transformers [111] and large-scale pre-trained Language Models [24, 65]. Moreover, our RGN

achieves state-of-the-art results compared to all baseline models. Especially, RGN outperforms [107]
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Models in-para out-of-para no-effect Test V1 Acc
Majority 45.46 49.47 55.0 30.66
Adaboost [24] 49.41 36.61 48.42 43.93
Decomp-Attn [78] 56.31 48.56 73.42 59.48
BERT (no para) [24] 60.32 43.74 84.18 62.41
BERT [107] 79.68 56.13 89.38 73.80
RoBERTa [107] 74.55 61.29 89.47 74.77
EIGEN [69] 73.58 64.04 90.84 76.92
REM-Net [44] 75.67 67.98 87.65 77.56
Logic-Guided [5] - - - 78.50
RGN 80.32 68.63 91.06 80.18
Human - - - 96.33

Table 4.2 Model Comparisons on WIQA test V1 dataset. WIQA test data has four categories,
including in-paragraph accuracy, out-of-paragraph accuracy, no-effect accuracy, and overall test
accuracy.

Models in out no-eff Test V2
Random 33.33 33.33 33.33 33.33
Majority 00.00 00.00 100.0 41.80
RoBERTa 70.69 60.20 91.11 75.34
REM-Net 70.94 63.22 91.24 76.29
REM-Net (RoBERTa-large) 76.23 69.13 92.35 80.09
QUARTET 74.49 65.65 95.30 82.07
[85]
RGN (RoBERTa-base) 75.91 66.15 92.12 79.95
RGN (RoBERTa-large) 78.40 68.83 93.01 82.46
Human - - - 96.30

Table 4.3 Model Comparisons on WIQA test V2. “In” represents in-paragraph accuracy, “out”
represents out-of-paragraph accuracy, and “no-eff” represents no effect accuracy, .

by 6.38% and outperforms current state-of-the-art model on test V1, logic-guided [5], by around

1.6%. Moreover, our RGN model achieves the SOTA on WIQA test V2. The improved performance

demonstrates that entity gating, relation gating, and contextual interaction module are effective

for “what . . . if” causal reasoning. We provide a detailed analysis of the advantage of RGN from

different perspectives.
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Model # hops = 1 # hops = 2 # hops = 3
BERT(no para) 58.1% 47.3% 42.8%
BERT 71.6 % 62.5% 59.5%
RoBERTa 73.5 % 63.9% 61.1%
EIGEN 78.78 % 63.49% 68.28 %
RGN 80.5% 71.2% 70.0%

Table 4.4 The accuracy when the number of hops increases.

4.4.2 Model Analysis

Effects on Causal Reasoning and Multi-Hops: In-para and out-of-para question categories require

multiple hops of causal reasoning to answer the questions. As shown in Table 4.4, we found that the

accuracy improved 7.0% for 1 hop, 7.3% for 2 hops, and 8.9% for 3 hops compared to RoBERTa

which does not have the two gating mechanisms and Contextual Interaction Module. As we expect,

the RGN framework has made tremendous progress in causal reasoning with multiple hops, and the

improvement in the performance of the baselines is more when the number of hops increases. For

qualitative analysis, we show successful cases from our RGN in Figure 4.4. We observe that RGN is

capable of bridging question and paragraph content by extracting key entities. In the successful

cases, which is shown in Figure 4.4, RGN helps in constructing the chain of “water droplets are

in clouds ! droplets combine to form bigger drops in the clouds” through key entities “water”,

“clouds”, and “droplets”. Moreover, we observe that the key entities “water”, “clouds”, and “droplets”

obtain high gating entity scores.

Effects of Entity Gating: As shown in Table 4.5, in the first ablation study, we remove the entity

gating and relation gating modules. Notice that the contextual interaction module uses the whole

question entities and paragraph entities when RGN does not use these two modules. Using whole

entities significantly increases the computational cost. Moreover, Table 4.5 shows that the accuracy

is lower by about 5.3% compared to full RGN when applied to the development dataset. This

experiment demonstrates that using all the entities without a gating mechanism has a negative

influence on the contextual interaction module and drops the performance.

Effect of Relation Gating: The goal of relation gating is to capture the higher-order chain of causal
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Ablations in out no-eff dev acc
RGN (w/o gating ent & rel) 76.2 61.1 89.2 75.3

RGN (w/o gating rel) 78.4 63.6 89.9 77.4
RGN 81.7 69.2 91.3 80.6

RGN (w/o CIM) 80.2 68.4 90.5 79.7
RGN (- CIM + Multi-Head) 81.3 68.9 91.7 80.3
RGN (add regularization) 82.0 69.1 91.6 80.8

Table 4.5 Ablation Study. CIM: Contextual Interaction Module.

reasoning based on pairwise relations. The relation gating module extracts the important candidate

relations by pairing up entities after gating entities. More importantly, the relation gating module

helps in understanding the connections between entities and finding the line of causal reasoning.

Our model captures the important pairs of influencing entities “tadpole (losses) tail” and “animal

(hunts) frog”.

When we keep the entity gating module and remove the relation gating module, we observe

that the accuracy of WIQA decreases 3.3% compared to the full RGN architecture. Moreover, the

model without the relation gating module can not capture the key relations. The results show that

the performance on the out-of-para questions decreases 5.6% compared to the full RGN model.

Section 4.4.3 shows more examples and analysis.

Effects of Contextual Interaction Module (CIM): WIQA research work [107] shows that around

15% of the influence changes have difficulties handling the entity alignment part due to language

variability. In other words, paragraph entities use different terms, such as (“removes”, “expels”) to

express the same semantics. Especially, the problem of language variability becomes more severe

for the multi-hop cases that require aligning the question with several sentences in the paragraph.

Without the Contextual Interaction Module, the development accuracy decreases more than 1%.

As shown in Table 4.4, the accuracy improves significantly in the direct effect (1 hop) and indirect

effects (2 hops or 3 hops) compared to all strong baselines. This demonstrates the effectiveness

of the interaction module. In an additional experiment, we replaced the CIM with the Multi-Head

attention that uses an encoder of the Multi-Head attention composed of a stack of N = 6 identical

layers. Each layer has two sub-layers. The first layer is multi-head self-attention, and the second is
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Question: suppose water is absorbed into the clouds and grow happens, how will it affect clouds are filled with rain droplets?
Content: [‘Water evaporates from the ground up to the sky’, ‘Water droplets are in clouds’, ‘Droplets combine to form bigger 
drops in the clouds’, ‘The drops get heavy’, ‘Gravity makes the drops fall.’] Gold Answer: More

Question: suppose more fruit is produced happens, how will it affect MORE plants. 
Content: [‘The seed germinates’, ‘The plant grows’, ‘The plant flowers’, ‘Produces fruit’, ‘The fruit releases seeds’, ‘The plant 
dies.’] Gold Answer: More

Question: suppose more activity of the heart happens, how will it affect less waste being removed from the body.
Content: [‘Blood is full of different waste’, ‘Blood travels through the body’, ‘The blood enters the kidneys’, ‘The kidneys filter 
the blood’, ‘The waste is seperated’, ‘The urine contains the waste’, ‘The urine is expelled from the body.’] Gold Answer: Less

Successful
Cases

Failing
Cases Question: suppose the climate changes happens, how will it affect there are fewer clouds?

Content: [‘Water evaporates because of the sun’, ‘Water vapor rises into the air as it evaporates’, ‘Water vapor forms clouds as it 
mixes with dust and impurities’, ‘Clouds become heavier and larger over time’, ‘Clouds eventually become too heavy to stay in
the sky’, ‘Some water vapor exits clouds as rain.’] Gold Answer: Less

Figure 4.4 Successful and failing cases of RGN network.

a fully connected network [111]. The computational time was 936 (ms/batch) for our contextual

interaction module, while it is 3002 (ms/batch) for the Transformer while the accuracy is fairly

similar.

4.4.3 Qualitative Analysis

For a better understanding of how our proposed model performs qualitatively, we show successful

cases and failing cases from our RGN framework in Figure 4.4. We can observe that RGN is

surprisingly capable of bridging the question and content in the in-para category.

Although the RGN framework has achieved state-of-the-art performance, the framework cannot

always capture the line of causal reasoning. The bottom part of Figure 4.4 shows some failing cases.

In the first failing case, RGN gives a wrong prediction because the content sentence “the plant dies”

is captured as a strong negative influence by our model. Although our model bridges the relation

between “fruit” and “plant”, the critical term “dies” obtains a high gating score and misleads our

final prediction.

Commonsense reasoning is the other type of error made by RGN model. There are two types

of questions in the dataset, including in-paragraph where the answer to the question is in the text

itself, and out-of-paragraph, where the answer does not exist in the text and the source of external

knowledge is required [107]. For example, in the second failing case of Figure 4.4, the question
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contains “climate change,” and the paragraph does not contain the cause of the “climate change”.

This needs external knowledge between “climate change,” and “water evaporating”. Since answering

the question requires external knowledge, it is hard to build a casual relationship for this example.

However, the improvement in the out-of-paragraph is due to observing multiple examples in the

dataset that use the same type of commonsense. Because relational gating helps to find the line of

reasoning, our RGN model captures those from observing the relationships frequently and learns

shortcuts. For example, in the second successful case of figure 4.4, the relational gating module

captures the pairwise relation between “heart body” and “blood body” due to multiple occurrences

in the data –filling the information gap for reasoning.

4.5 Summary

In this chapter, we propose an end-to-end Relational Gating Network (RGN) to help “what . . . if”

causal reasoning over text for answering cause-effect questions. Particularly, we propose an entity

gating module, relation gating module, and contextual interaction module to find the answer. We

demonstrate that the proposed approach can effectively solve the challenges in the “what . . . if”

reasoning, including causal reasoning, comparative expressions, and entity alignment. We evaluate

our RGN on the WIQA benchmark and achieve state-of-the-art performance. Our gating mechanism

and contextual interaction module can be easily used in solving various QA tasks that need to reason

over entities and their relationships and follow a procedure. The gating mechanism can be extended

to work at various levels of granularity, such as sentence and paragraph levels, to filter important

pieces of information and to find the line of reasoning for answering the questions.
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CHAPTER 5

RELATIONAL REASONING FOR CROSS-MODALITY QA

5.1 Background and Motivation

In many real-world situations, the answers to natural language questions can be found in different types

of modalities. One important modality that can convey information is the visual one. The problem

of answering natural language questions based on a given image is called visual question answering

(VQA). VQA requires the understanding of visual contents, language semantics, cross-modality

alignments, and relationships between two modalities [118, 4, 36, 100, 101]. Recently, there have

been many efforts to build such multi-modal QA benchmarks [62, 54, 46, 4, 100, 36, 101]. Inspired

by the effectiveness of deep learning [24], researchers develop deep architectures on multi-modal

QA by learning representations for each modality, combining two representations, and predicting

answers [59, 104]. For instance, VisualBERT [59] consists of Transformer layers that separately

learn textual and visual representation with the self-attention module. LXMERT [104] learns

entity representations by concatenating textual tokens and visual objects and using cross-modality

Transformer architecture. However, the current performance of these models is unsatisfactory because

the conventional deep learning models have difficulties in learning a robust joint representation and

relational reasoning cross-modalities.

Our hypothesis is that exploiting the structure of the entities and their relationships in the two

modalities and explicitly aligning them is one key factor that can facilitate solving the challenges

of multi-modal QA, but this is less explored. In our proposed model, we learn robust joint

representations by directly modeling the relations between different modality components based on

the relevance scores inspired by the ideas from information retrieval litrature [77, 113, 24, 111].

Following the above-mentioned hypothesis, in this chapter, we propose a novel cross-modality

relevance (CMR) architecture that considers the relevance between textual token representations and

visual object representations for explicitly aligning them. We first encode data from each modality

with single-modality Transformers and combine two encoding representations and pass it into a
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Cross-modality Question Answering

Text: Where is the child sitting?
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Abstract

We introduce a new dataset for joint reason-
ing about natural language and images, with a
focus on semantic diversity, compositionality,
and visual reasoning challenges. The data con-
tains 107,292 examples of English sentences
paired with web photographs. The task is
to determine whether a natural language cap-
tion is true about a pair of photographs. We
crowdsource the data using sets of visually
rich images and a compare-and-contrast task
to elicit linguistically diverse language. Quali-
tative analysis shows the data requires compo-
sitional joint reasoning, including about quan-
tities, comparisons, and relations. Evaluation
using state-of-the-art visual reasoning meth-
ods shows the data presents a strong challenge.

1 Introduction

Visual reasoning with natural language is a
promising avenue to study compositional seman-
tics by grounding words, phrases, and complete
sentences to objects, their properties, and rela-
tions in images. This type of linguistic reason-
ing is critical for interactions grounded in visually
complex environments, such as in robotic appli-
cations. However, commonly used resources for
language and vision (e.g., Antol et al., 2015; Chen
et al., 2016) focus mostly on identification of ob-
ject properties and few spatial relations (Section 4;
Ferraro et al., 2015; Alikhani and Stone, 2019).
This relatively simple reasoning, together with bi-
ases in the data, removes much of the need to
consider language compositionality (Goyal et al.,
2017). This motivated the design of datasets that
require compositional1 visual reasoning, including

� Contributed equally.
† Work done as an undergraduate at Cornell University.

1In parts of this paper, we use the term compositional dif-
ferently than it is commonly used in linguistics to refer to
reasoning that requires composition. This type of reasoning
often manifests itself in highly compositional language.

The left image contains twice the number of dogs as the
right image, and at least two dogs in total are standing.

One image shows exactly two brown acorns in
back-to-back caps on green foliage.

Figure 1: Two examples from NLVR2. Each caption
is paired with two images.2 The task is to predict if
the caption is True or False. The examples require
addressing challenging semantic phenomena, includ-
ing resolving twice . . . as to counting and comparison
of objects, and composing cardinality constraints, such
as at least two dogs in total and exactly two.3

NLVR (Suhr et al., 2017) and CLEVR (Johnson
et al., 2017a,b). These datasets use synthetic im-
ages, synthetic language, or both. The result is
a limited representation of linguistic challenges:
synthetic languages are inherently of bounded ex-
pressivity, and synthetic visual input entails lim-
ited lexical and semantic diversity.

We address these limitations with Natural Lan-
guage Visual Reasoning for Real (NLVR2), a new
dataset for reasoning about natural language de-
scriptions of photos. The task is to determine if a
caption is true with regard to a pair of images. Fig-
ure 1 shows examples from NLVR2. We use im-

2Appendix G contains license information for all pho-
tographs used in this paper.

3The top example is True, while the bottom is False.
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The left image contains twice the number of dogs as the
right image, and at least two dogs in total are standing. Yes

Figure 5.1 Two benchmark examples of the Cross-Modality Question Answering task. The left side
is an example of the VQA benchmark, while the right side is an example of the NLVR benchmark.

cross-modality Transformer. We consistently refer to the words in text and objects in images(i.e.

bounding boxes in images) as “entities” and their representations as “Entity Representations”. We

use the relevance between the components of the two modalities to model the alignment between

them. We measure the relevance between their entities called “Entity Relevance”, and high-order

relevance between their relations called “Relational Relevance”. We learn representations from the

affinity matrix of the relevance scores by convolutional layers and fully-connected layers. Finally,

we predict the answer based on the relevance representations.

The contributions of this chapter are as follows: 1) We propose a cross-modality relevance (CMR)

architecture that considers entity relevance and high-order relational relevance for aligning the two

modalities. 2) We evaluate the method and analyze the results on both VQA and NLVR tasks

using VQA v2.0 and NLVR2 benchmarks, respectively. We improve state-of-the-art on both tasks’

published results. Our analysis shows the significance of exploiting relevance for relational reasoning

for cross-modality QA.

5.2 Cross-Modality Relevance

Figure 5.2 shows our proposed Cross-Modality Relevance (CMR) architecture. As an end-to-end

model, it encodes the relevance between the components of input modalities under task-specific

supervision. We further add a high-order relevance between relations that occur in each modality.

This architecture can help to solve tasks that need reasoning on two modalities based on their

relevance. In this section, we first formulate the problem. Then we explain each component of the
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Figure 5.2 Cross-Modality Relevance model is composed of the single-modality transformer,
cross-modality transformer, entity relevance, and high-order relational relevance, followed by a
task-specific classifier.

CMR model, loss function, and training procedure of CMR in detail.

5.2.1 Problem Formulation

Formally, the problem is to model a mapping from a cross-modality data sample D =
�
D`

 
to an

output H in a target task, where ` denotes the type of modality. And D` =
�
3
`

1 , · · · , 3
`

#
`

 
is a set of

entities in the modality `. In visual question answering, VQA, the task is to predict an answer given

two modalities, that is, a textual question (DC) and a visual image (DE). In NLVR, given a textual

statement (DC) and an image (DE), the task is to determine the correctness of the textual statement.

5.2.2 Representation Alignment

Single Modality Representations. For the textual modality DC , we utilize BERT [24] as shown

in the bottom-left part of Figure 5.2, which is a multi-layer Transformer [111] with three different

inputs: token embeddings [121], segment embeddings, and position embeddings. We refer to

all the words as the entities in the textual modality and use the BERT representations for textual

single-modality representations
�
B
C

1, · · · , BC# C
 
. We assume to have #C words as textual entities.

For visual modality DE, as shown in the top-left part of Figure 5.2, Faster-RCNN [88] is used

to generate regions of interest (ROIs), extract dense encoding representations of the ROIs, and
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predict the class of each ROI. We refer to the ROIs on images as the visual entities
�
3
E

1, · · · , 3E#E
 
.

We consider a fixed number, #E, of visual entities with the highest probabilities predicted by

Faster-RCNN each time. The dense representation of each ROI is a local latent representation of a

2048-dimensional vector [88]. To enrich the visual entity representation with the visual context,

we further project the vectors with feed-forward layers and encode them by a single-modality

Transformer, as shown in the second column in Figure 5.2. The visual Transformer takes the dense

representation, segment embedding, and bounding box positional embedding [104] as input and

generates the single-modality representation
�
B
E

1, · · · , BE#E
 
. In case there are multiple images, for

example, NLVR data (NLVR2) has two images in each example, each image is encoded by the

same procedure, and we keep #E visual entities per image. We restrict all the single-modality

representations to vectors of the same dimension 3. However, these single-modality representations

should be aligned.

Cross-Modality Alignment. To align the single-modality representations in a uniformed rep-

resentation space, we introduce a cross-modality Transformer as shown in the third column of

Figure 5.2. All the entities are treated uniformly in the cross-modality Transformer. Given the

set of entity representations from all modalities, we define the matrix with all the elements in the

set ( =
⇥
B
C

1, · · · , BC# C , BE1, · · · , BE#E
⇤
2 R3⇥(# C+#E) . Each cross-modality self-attention calculation is

computed as follows [111]1,

Attention ( ,&,+) = softmax
✓
 

>
&p
3

◆
+ , (5.1)

where in our case the key  , query&, and value+ , all are the same size of tensor (. A cross-modality

Transformer layer consists of a cross-modality self-attention representation followed by residual

connection with normalization from the input representation, a feed-forward layer, and another

residual connection normalization. We stack several cross-modality Transformer layers to get a

uniform representation over all modalities. We refer to the resulting uniformed representations
1Please note here we keep the usual notation of the attention mechanism for this equation. The notations might have

been overloaded in other parts of this chapter.
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as the entity representation and denote the set of the entity representations of all the entities

as
�
B

0
C

1 , · · · , B
0
E

#
C , B

0
E

1 , · · · , B
0
E

#
E

 
. Although the representations are still organized by their original

modalities per entity, they carry the information from the interactions with the other modality and

are aligned in uniform representation space. The entity representations, as the fourth column in

Figure 5.2, alleviate the gap between representations from different modalities, as we will show in

the ablation studies, and allow them to be matched in the following steps.

5.2.3 Entity Relevance

Exploiting relevance, independent of the input representation, plays a critical role in reasoning ability,

which is required in many tasks such as information retrieval, visual question answering, etc. To

consider the entity relevance between two modalities D` and Da, the entity relevance representation

is calculated as shown in Figure 5.2. Given entity representation matrices (0
` =

h
B

0
`

1 , · · · , B
0
`

#
`

i
2

R3⇥#` and (0
a =

⇥
B

0
a

1 , · · · , B
0
a

#
a

⇤
2 R3⇥#a , the relevance representation is calculated by

�
`,a =

⇣
(

0
`

⌘>
(

0
a

, (5.2a)

M
�
D`,Da

�
= CNND` ,Da (�`,a) , (5.2b)

where �`,a is the affinity matrix of the two modalities as shown in the right side of Figure 5.2. �`,a
8 9

is the relevance score of 8th entity in D` and 9 th entity in Da. CNN`,a (·) is a Convolutional Neural

Network, corresponding to the sixth column of Figure 5.2, which contains several convolutional

layers and fully connected layers. Each convolutional layer is followed by a max-pooling layer.

Fully connected layers finally map the flattened feature maps to a 3-dimensional vector. We refer to

�D` ,Da = M
�
D`,Da

�
as the entity relevance representation between ` and a.

We compute the relevance between different modalities. For the modalities considered in

this chapter, when there are multiple images in the visual modality, we calculate the relevance

representation between them too. In particular, for the VQA benchmark, the above setting results

in one entity relevance representation: a textual-visual entity relevance �DC ,DE . For NLVR2

benchmark, there are three entity relevance representations: two textual-visual entity relevance
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�DC ,DE1
and �DC ,DE2

, and a visual-visual entity relevance �DE1 ,DE2
between two images. Entity

relevance representations will be flattened and joined with other features in the next layer of the

network.

5.2.4 Relational Relevance

We also consider the relevance beyond entities, that is, the relational relevance of the entities’

relations. This extension allows our CMR to capture higher-order relational relevance between

different modalities. We consider pair-wise relations between entities in each modality and calculate

the relevance of the relations across modalities. The procedure is similar to entity relevance as

shown in Figure 5.2. We denote the relational representation as a non-linear mapping R23 ! R3

modeled by fully-connected layers from the concatenation of representations of the entities in the

relation:

A
`

(8, 9) = MLP`,1
⇣ h
B

0
`

8
, B

0
`

9

i ⌘
2 R3

. (5.3)

Relational relevance affinity matrix can be calculated by matching the relational representation,n
A
`

(8, 9) ,88 < 9

o
, from different modalities. However, there will be⇠2

#`
possible pairs in each modality

D`, most of which are irrelevant. The relational relevance representations will be sparse because of

the irrelevant pairs on both sides. Computing the relevance score of all possible pairs will introduce

a large number of unnecessary parameters which makes the training more difficult.

We propose to rank the relation candidates (i.e. pairs) by the intra-modality relevance score and

the inter-modality importance. Then we compare the top- ranked relation candidates between two

modalities as shown in Figure 5.3. For the intra-modality relevance score, shown in the bottom

left part of the figure, we estimate a normalized score based on the relational representation by a

softmax layer.

*
`

(8, 9) =
exp

⇣
MLP`,2

⇣
A
`

(8, 9)

⌘⌘
Õ
:<; exp

⇣
MLP`,2

⇣
A
`

(: ,;)

⌘⌘ . (5.4)

To evaluate the inter-modality importance of a relation candidate, which is a pair of entities in

the same modality, we first compute the relevance of each entity in text with respect to the visual
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Figure 5.3 Relational Relevance is the relevance of top-K relations in terms of intra-modality
relevance score and inter-modality importance.

objects. As shown in Figure 5.3, we project a vector that includes the most relevant visual object for

each word, denoted this importance vector as EC . This helps to focus on words that are grounded in

the visual modality. We use the same procedure to compute the most relevant words to each visual

object.

Then we calculate the relation candidates importance matrix +` by an outer product, ⌦, of the

importance vectors as follows,

E
`

8
= max

9

�
`,a

8 9
, (5.5a)

+
` = E` ⌦ E`, (5.5b)

where E`
8

is the 8th scalar element in E` that corresponds to the 8th entity, and �`,a is the affinity

matrix calculated by Equation 5.2a.

Notice that the inter-modality importance +` is symmetric. The upper triangular part of +`,

excluding the diagonal, indicates the importance of the corresponding elements with the same index

in intra-modality relevance scores *`. The ranking score for the candidates is the combination

(here the product) of the two scores ,`

(8, 9) = *
`

(8, 9) ⇥ +
`

8 9
. We select the set of top- ranked
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candidate relations K` = {^1, ^2, · · · , ^ }. We reorganize the representation of the top- relations

as '` =
⇥
A
`

^1 , · · · A
`

^ 

⇤
2 R3⇥ . The relational relevance representation between K` and Ka can be

calculated similarly to the entity relevance representations as shown in Figure 5.2.

M
�
K`,Ka

�
= CNNK` ,Ka

�
('`)> 'a

�
. (5.6)

M
�
K`,Ka

�
has its own parameters which results in a 3-dimensional feature �K` ,Ka .

In particular, for the VQA task, the above setting results in one relational relevance representation:

a textual-visual relevance M (KC ,KE). For the NLVR task, there are three entity relevance

representations: two textual-visual relational relevance M
�
KC ,KE1

�
and M

�
KC ,KE2

�
, and a visual-

visual relational relevance M
�
KE1 ,KE2

�
between two images. Relational relevance representations

will be flattened and joined with other features in the next layers of the network.

After acquiring all the entity and relational relevance representations, namely �D` ,Da and

�K` ,Ka , we concatenate them and use the result as the final feature � =
⇥
�D` ,Da , · · · ,�K` ,Ka , · · ·

⇤
.

A task-specific classifier MLP� (�) predicts the output of the target task as shown in the right-most

column in Figure 5.2.

5.2.5 Training

In CMR architecture, we predict the output H from a specific task with the final feature � with a

classification function. The gradient of the loss function is back-propagated to all the components in

CMR to penalize the prediction and adjust the parameters. We freeze the parameters of BERT for

textual modality and Faster-RCNN for visual modality. The parameters of the following parts will

be updated by gradient descent: single modality Transformers, the cross-modality Transformers,

CNND` ,Da (·), CNNK` ,Ka (·), MLP`,1 (·), MLP`,2 (·) for all modalities and modality pairs, and the

task-specific classifier MLP� (�).

The VQA task can be formulated as a multi-class classification that chooses a word to answer

the question. We apply a softmax classifier on � and penalize it with the cross-entropy loss. For the

NLVR2 dataset, the task is the binary classification that determines whether the statement is correct
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regarding the images. We apply a binary classification on � and penalize it with the cross-entropy

loss.

5.3 Experiments

In this section, We introduce the datasets, experiment settings, and results compared to state-of-the-art

published works.

5.3.1 Dataset Description

NLVR2 [101] is a dataset that aims to joint reasoning about natural language descriptions and

related images. Given a textual statement and a pair of images, the task is to indicate whether the

statement correctly describes the two images. NLVR2 contains 107, 292 examples of sentences

paired with visual images and designed to emphasize semantic diversity, compositionality, and

visual reasoning challenges.

VQA v2.0 [36] is an extended version of the VQA dataset. It contains 204, 721 images from

the MS COCO [62], paired with 1, 105, 904 free-form, open-ended natural language questions and

answers. These questions are divided into four categories: Yes/No, Number, and Other.

5.3.2 Implementation Details

We implemented CMR using Pytorch. We consider the 768-dimension single-modality repre-

sentations. For textural modality, the pre-trained BERT base model [24] is used to generate the

single-modality representation. For visual modality, we use Faster-RCNN pre-trained by BUTD [3],

followed by a five-layers Transformer. Parameters in BERT and Faster-RCNN are fixed. For

each example, we keep 20 words as textual entities and 36 ROIs per image as visual entities.

For relational relevance, top-10 ranked pairs are used. For each relevance-CNN, CNND` ,Da (·)

and CNNK` ,Ka (·), we use two convolutional layers, each of which is followed by a max-pooling,

and fully connected layers. For the relational representations and their intra-modality relevance
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score, MLP`,1 (·) and MLP`,2 (·), we use one hidden layer for each. The task-specific classifier

MLP� (�) contains three hidden layers. The model is optimized using the Adam optimizer with

U = 10�4
, V1 = 0.9, V2 = 0.999, n = 10�6. The model is trained with a weight decay of 0.01, a max

gradient normalization clip of 1.0, and a batch size of 32.

5.3.3 Baseline Description

We briefly describe the recent four SOTA baselines. The first two baselines use non-Transformer

neural models as the backbone, while the other two baselines use Transformer-based architectures.

We describe these baselines as follows.

Compositional Attention Network (MAC) [45] is a fully differentiable neural network that aims

to facilitate machine reasoning. The model designs explicit and structured reasoning by a new

recurrent Memory, Attention, and Composition cell.

Feature-wise Linear Modulation (FiLM) [80] is a strong baseline on visual reasoning tasks.

In the FiLM model, each layer influences neural network computation via a feature-wise affine

transformation based on conditioning information.

VisualBERT [59] is an End-to-End model for language and vision tasks, consisting of Transformer

layers that align textual and visual representation with self-attention. VisualBERT and CMR have

a similar cross-modality alignment approach. However, VisualBERT only uses the Transformer

representations, while CMR uses the relevance representations.

LXMERT [104] aims to learn cross-modality encoder representations from Transformers. It

pre-trains the model with a set of tasks and fine-tunes another set of specific tasks. LXMERT is the

currently published state-of-the-art on both NLVR2 and VQA v2.0.
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Models Dev% Test%
N2NMN 51.0 51.1

MAC-Network 50.8 51.4
FiLM 51.0 52.1

CNN+RNN 53.4 52.4
VisualBERT 67.4 67.0
LXMERT 74.9 74.5

CMR 75.4 75.3

Table 5.1 Accuracy on NLVR2.

Model Dev% Test Standard%
Overall Y/N Num Other Overall

BUTD 65.32 81.82 44.21 56.05 65.67
ReGAT 70.27 86.08 54.42 60.33 70.58

ViLBERT 70.55 - - - 70.92
VisualBERT 70.80 - - - 71.00

BAN 71.4 87.22 54.37 62.45 71.84
VL-BERT 71.79 87.94 54.75 62.54 72.22
LXMERT 72.5 87.97 54.94 63.13 72.54

CMR 72.58 88.14 54.71 63.16 72.60

Table 5.2 Accuracy on VQA v2.0.

5.4 Results and Discussion

5.4.1 Result Comparison

NLVR2 The results of NLVR task are listed in Table 5.1. Transformer based models (VisualBERT,

LXMERT, and CMR) outperform other models (N2NMN [42], MAC [45], and FiLM [80]) by a large

margin. This is due to the strong pre-trained single-modality representations and the Transformers’

ability to learn the representations. Furthermore, CMR shows the best performance compared to all

Transformer-based baseline methods and achieves state-of-the-art. VisualBERT and CMR have

similar cross-modality alignment approaches. CMR outperforms VisualBERT by 12.4%. The gain

mainly comes from entity relevance and relational relevance that model the relations.
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Textural Visual Cross Dev% Test%
12 3 3 74.1 74.4
12 4 4 74.9 74.7
12 5 5 75.4 75.3
12 6 6 75.5 75.1

Table 5.3 Accuracy on NLVR2 of CMR with various Transformer sizes. The numbers in the left
part of the table indicate the number of self-attention layers.

Models Dev% Test%
CMR 75.4 75.3

without Single-Modality Transformer 68.2 68.5
without Cross-Modality Transformer 59.7 59.1

without Entity Relevance 70.6 71.2
without Relational Relevance 73.0 73.4

Table 5.4 Test accuracy of different variations of CMR on NLVR2.

VQA v2.0: In Table 5.2, we show the comparison with published models, excluding the ensemble

ones. Most competitive models are based on Transformers (ViLBERT [66], VisualBERT [59],

VL-BERT [99], LXMERT [104], and CMR). BUTD [3, 108], ReGAT [58], and BAN [49] also

employ an attention mechanism for a relation-aware model. The proposed CMR achieves the

best test accuracy on Y/N questions and Other questions. However, CMR does not achieve the

best performance on Number questions. This is because Number questions require the ability to

count numbers in one modality, while CMR focuses on modeling relations between modalities.

Performance on counting might be improved by explicit modeling of quantity representations.

CMR also achieves the best overall accuracy. In particular, we can see a 2.3% improvement over

VisualBERT [59], as in the above-mentioned NLVR2 results. This shows the significance of the

entity and relational relevance.

5.4.2 Model Analysis

To better understand the influence of each part in CMR, we perform the ablation study. Table 7.3

shows the performances of four variations on NLVR2.
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The  bird   on      the    branch   is   looking  to     left  

Figure 5.4 The entity affinity matrix between textual (rows) and visual (columns) modalities. The
darker color indicates a higher relevance score. The ROIs with a maximum relevance score for each
word are shown paired with the words.

Effect of Single Modality Transformer. In the first ablation study, we remove both textual

and visual single-modality Transformers and map the raw input with a linear transformation to

3-dimensional space instead. Notice that the raw input of textual modality is the WordPieces [121]

embeddings, segment embeddings, and the position embeddings of each word, while that of visual

modality is the 2048-dimension dense representation of each ROI extracted by Faster-RCNN. It

turns out that removing single-modality Transformers decreases the accuracy by 9.0%. Single

modality Transformers play a critical role in producing a strong contextualized representation for

each modality.

Effect of Cross-Modality Transformer. We remove the cross-modality Transformer and use single-

modality representations as entity representations. As shown in Table 7.3, the model degenerates

dramatically, and the accuracy decreases by 16.2%. The huge accuracy gap demonstrates the

unparalleled contribution of the cross-modality Transformer to aligning representations from input

modalities.

64



Figure 5.5 The relation ranking score of two example sentences. The darker color indicates a higher
ranking score.

Effect of Entity Relevance. We remove the entity relevance representation �D` ,Da from the final

feature�. As shown in Table 7.3, the test accuracy is reduced by 5.4%. This is a significant difference

in performance among Transformer based models [59, 66, 104]. To highlight the significance of

entity relevance, we visualize an example affinity matrix in Figure 5.4. The two major entities, “bird”

and “branch”, are matched perfectly. More interestingly, the three ROIs which are matching the

phrase “looking to left” capture an indicator (the beak), a direction (left), and the semantics of the

whole phrase.

Effect of Relational Relevance. We remove the entity relevance representation �K` ,Ka from the

final feature �. A 2.5% decrease in test accuracy is observed in Table 7.3. We argue that CMR

models high-order relations, which are not captured in entity relevance, by modeling relational

relevance. We present two examples of textual relation ranking scores in Figure 5.5. The learned

ranking score highlights the important pairs, for example “gold - top”, and “looking - left”, which

describe the important relations in textual modality.
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5.4.3 Qualitative Analysis

To investigate the influence of model sizes, we empirically evaluated CMR on NLVR2 with various

sets of Transformers sizes which contain the most parameters of the model. All other details are

kept the same as descriptions in Section 5.3.2. Textual Transformer remains 12 layers because it is

the pre-trained BERT. Our model contains 285" parameters. Among these parameters, around

230" parameters belong to pre-trained BERT and Transformer. Table 5.3 shows the results. As we

increase the number of layers in the visual Transformer and the cross-modality Transformer, it tends

to improve accuracy. However, the performance becomes stable when there are more than five layers.

We choose five layers of visual Transformer and cross-modality Transformer in other experiments.

5.5 Summary

In this chapter, we propose a novel cross-modality relevance (CMR) for language and vision

reasoning. Particularly, we claim the significance of relevance between the components of the two

modalities of reasoning, which include entity relevance and relational relevance. We propose an

end-to-end Cross-Modality Relevance (CMR) architecture that is tailored for language and vision

reasoning. We evaluate the proposed CMR on NLVR and VQA tasks. Our approach exceeds the

state-of-the-art on NLVR2 and VQA v2.0 datasets. The experiments and the empirical analysis

demonstrate CMR’s capability of modeling relational relevance. This result indicates the significance

of exploiting relevance. Our proposed architectural component for exploiting relevance can be used

independently from the full CMR architecture and is potentially applicable for other multi-modality

tasks.
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CHAPTER 6

COMMONSENSE REASONING FOR KNOWLEDGE BASED QA

6.1 Background and Motivation

Large-scale pre-trained language models (LMs) are shown to cover large amounts of world-knowledge

and common sense and have achieved success in many QA benchmarks [87, 86, 74, 125]. However,

the current research shows LMs have difficulties in answering questions merely based on their

implicit knowledge [127, 30].

Therefore, using the external sources of knowledge explicitly in the form of knowledge graphs

(KGs) is a recent trend in Question Answering [61, 30]. Figure 6.1, taken from the CommonsenseQA

benchmark, shows an example for which answering the question requires commonsense reasoning.

In this example, the external KG provides the required background information to obtain the

reasoning chain from question to answer. We highlight two challenges in this type of QA task:

(a) the extracted KG subgraph sometimes misses some edges between entities, which breaks the

chain of reasoning (b) the semantic context of the question and connection to the answer is not used

properly, for example, reasoning when negative terms exist in the question, such as no and not, is

problematic.

The challenge (a) is caused by the following reasons. First, the knowledge graph is originally

imperfect and does not include the required edges. Second, since the size of knowledge graphs is

tremendously large, many models use a subgraph of KG for each example [61, 31, 127]. However, to

reduce the size of the graph, most of the models select the entities that appear in two-hop paths [30].

Consequently, some intermediate concept (entity) nodes and edges are missed in the extracted KG

subgraph. In such cases, the subgraph does not contain a complete chain of reasoning. Third,

the current models often cannot reason over paths when there is no direct connection between the

involved concepts. While finding the chain of reasoning in QA is challenging in general [135],

this problem is more critical when the KG is the only source of knowledge, and there are missing

edges. Looking back at Figure 6.1, the KG subgraph misses the direct connection between guitar
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The student practiced his guitar often, where is he
always spent his free period?
A. music room B. rock band C. toy store
D. stage E. concert

Music room

guitar

Playing instrument

band concert instrument

rock
band

Q

free period

UsedFo
r

IsA

AtLocation
IsA

Us
edF
or

AtLocation

UsedFor

Figure 6.1 An example of the CommonsenseQA benchmark. Given the question node Q, question
entity nodes (blue boxes), correct answer entity node (red box), and wrong answer entity nodes
(orange boxes), we predict the answer by reasoning over the question and the extracted KG subgraph.

and playing instrument (green arrow). For challenge (b) about considering question semantics, as

KagNET [61] points out, previous models are not sensitive to the negation words and consequently

predict opposite answers. QA-GNN [127] model is the first work to deal with the negative questions.

QA-GNN improves the reasoning under negation, to some extent, by adding the QA global node to

the graph. However, the challenge still exists.

To solve the above challenges, we propose a novel architecture, called Dynamic Relevance Graph

Network (DRGN). The motivation of our proposed DRGN is to recover the missing edges and

establish direct connections between relevant concepts to facilitate multi-hop reasoning. In particular,

the DRGN model uses a relational graph network module while considering the importance of the

neighbor nodes using an additional relevance matrix. It can potentially recover the missing edges

by establishing direct connections based on the relevancy of the node representations in the KG

during the training. The module can potentially capture the connections between distant nodes while

benefiting from the existing KG edges. Our proposed model learns representations directly based on

the relevance scores between subgraph entity pairs that are computed by the Inner Product operation.

At each convolutional layer of the graph neural network, we compute the inner product of the nodes
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based on their current layer’s node representations dynamically and build the neighborhoods based

on this relevance measure and form a relevance matrix accordingly. This can be seen as a way

to learn new edges as the training goes forward in each layer while influencing the weights of

the neighbors dynamically based on their relevance. As shown in Figure 6.1, the relevance score

between guitar and playing instrument is stronger than other nodes in the subgraph. Moreover, since

the graph includes the question node, the relevance between the question node and entity nodes is

computed at every layer, making use of the contextual information more effectively. It becomes

more evident that the student will spend the free period in the music room rather than the concert.

In summary, the contributions of this work are as follows: (1) The Proposed DRGN architecture

exploits the existing edges in the KG subgraph while explicitly using the relevance between the

nodes to establish direct connections and recover the possibly missing edges dynamically. This

technique helps in capturing the reasoning path in the KG for answering the question. (2) Our

model exploits the relevance between the question and the graph entities, which helps consider the

semantics of the question explicitly in the graph reasoning and boost the performance. In particular,

it improves dealing with the negation. (3) Our proposed model obtains competitive results on both

CommonsenseQA and OpenbookQA benchmarks. Our analysis demonstrates the significance and

effectiveness of the DRGN model.

6.2 Dynamic Relevance Graph Network

In this section, we first define the problem, formally. Then we explain each component of our

proposed model, loss function, and training procedure in detail.

6.2.1 Problem Formulation

The task of QA over pure knowledge is to choose a correct answer 00=B from a set of # candidate

answers {01, 02, ..., 0=} given input question @ and an external knowledge graph (KG). Since the

knowledge graphs are often huge, as a part of the solution, we only consider a subgraph of KG as an

input for each example. A subgraph is selected for each example based on a previously proposed
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Figure 6.2 Our proposed DRGN model is composed of the Language Context Encoder module, KG
Subgraph Construction module, Graph Neural Network module, and Answer Prediction module.
The blue color entity nodes represent the entity mentioned in the question. The yellow color node
represents the answer node. The red color node is the question node. We use different colors to
draw the dynamic relevance matrix 1 and 2 because the relevance matrix changes dynamically in
each graph neural layer.

approach [31]. The approach is to construct a subgraph from KG that contains the entities mentioned

in the question and answer choices.

6.2.2 Model Description

Figure 7.2 shows the proposed Dynamic Relevance Graph Network (DRGN) architecture. Our

DRGN includes four modules: Language Context Encoder module, KG Subgraph Construction

module, Graph Neural Network module, and Answer Prediction module. In this section, we describe

the details of our approach and the way we train our model efficiently.

6.2.3 Language Context Encoder

For the given question @ and each candidate answer 08, we concatenate them to form the Language

Context !:

! = [[⇠!(]; @; [(⇢%]; 08], (6.1)
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where [CLS] and [SEP] are the special tokens used by large-scale pre-trained Language Models

(LMs). We feed input ! to a pre-trained LMs encoder to obtain token represetnations, denoted as

⌘! 2 R|! |3 , where |! | represents the length of the sequence. Then we use the [CLS] representation,

denoted as ⌘[⇠!(] 2 R3 , as the representation of !.

6.2.4 KG Subgraph Construction

We use ConceptNet [97], a general-domain knowledge graph, as the commonsense KG. ConceptNet

graph has multiple semantic relational edges, e.g., HasProperty, IsA, AtLocation, etc. We follow

MHGRN [30] research work to construct the subgraphs from KG for each example. The subgraph

entities are selected with the exact match between n-gram tokens and ConceptNet concepts using

some normalization rules. Then another set of entities is added to the subgraph by following the KG

paths of two hops of reasoning based on the current entities in the subgraph.

Furthermore, we add the semantic context of the question as a separate node to the subgraph.

This node provides an additional question context to the KG subgraph, ⌧BD1, as suggested by

QAGNN [127]. We link the question node to entity nodes mentioned in the question. The semantic

context of the question node & is initialized by the [CLS] representation described in Section 6.2.3.

The initial representation of the other entities is derived from applying RoBERTa and pooling over

their contained tokens [30].

6.2.5 Graph Neural Network Module

The basis of our learning representation is Multi-relational Graph Convolutional Network (R-

GCN) [90]. R-GCN is an extension of GCN that operates on a graph with multi-relational edges

between nodes. In our case, the relation types between entities are taken from the 17 semantic

relations from ConceptNet. Meanwhile, an additional type is added to represent the relationship

between the question node and question entities, making the graph structure different from previous

works. We denote the set of relations as '.
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Our dynamic relevance graph network (DRGN) architecture is a variation of the R-GCN model.

To establish the direct connection between the graph nodes and re-scale the importance of the

neighbors, we compute the relevance score between the nodes dynamically at each graph layer based

on their current learned representations. Then we build the neighborhoods based on this relevance

measure and form a relevance matrix, "A4; , accordingly. This can be seen as a way to learn new

edges based on the relevance of the nodes as the training goes forward in each graph layer. We use

the inner product to compute the relevance matrix:

"
(;)
A4;

= ⌘(;)>⌘(;) 2 R( |+ |+1) ( |+ |+1)
, (6.2)

where |+ | is the graph entity node sizes, and 1 is added due to using the question node in the

graph. The relevance matrix re-scales the weights and influences the way the neighborhood nodes’

representations are aggregated in the R-GCN model. "A4; is computed dynamically, and the

relevance scores change while the representations are computed at each graph layer. In our proposed

relational graph, the forward-pass message passing updates of the nodes, denoted by ⌘8, is calculated

as follows:

⌘
(;+1)
8

= f(
’
A2'

’
92NA8

1
38,A

,
(;)
A

· (" (;)
A4;8, 9

⌘
(;)
9
) +, (;)

0 · (" (;)
A4;8,8

⌘
(;)
8
)) 2 R3 , (6.3)

where NA
8

represents the neighbor nodes of node 8 under relation A, A 2 '. f is the activation

function, ,A denotes the learnable parameters. Besides, we calculate the updated question node

representation as follows,

⌘
(;+1)
&

= f(
’
92N&

,
(;)
&

· �2 ( [⌘(;)
&

; (" (;)
A4;&, 9

⌘
(;)
9
)]) +, (;)

0 · (" (;)
A4;&,&

⌘
(;)
&
)) 2 R3 , (6.4)

where �2 is a two-layer MLP, ⌘& is the question node representation. Finally, we stack the node

representations to form ⌘
0(;+1):

⌘
0(;+1) = [⌘(;+1)

0 ; ⌘(;+1)
1 ; · · · ; ⌘(;+1)

|+ | ; ⌘(;+1)
&

] 2 R( |+ |+1)3
. (6.5)

We then compute the (; + 1) layer’s dynamic relevance matrix " (;+1)
A4;

that shows the relevance scores

of node representations. Finally, we use the " (;+1)
A4;

to multiply the node representation matrix ⌘0(;+1)
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that helps the node representation to learn the weights of the edges based on the learned relevance

and specifically to include the additional relevance edges between the nodes during the massage

passing as follows:

⌘
(;+1) = f

⇣
"

(;+1)
A4;

· ⌘0(;+1) ·,6

⌘
2 R( |+ |+1)3

, (6.6)

where,6 is the learnable parameters.

6.2.6 Answer Prediction

Given the Language Context ! and KG subgraph, we use the information from both the language

representation ⌘[⇠!(] , question node representation ⌘& learned from the KG subgraph, and the KG

subgraph representation pooled from the last graph layer, ?>>; (⌘⌧BD1), to calculate the scores of the

candidate answers as follows:

?(0 |!,⌧BD1) = 5>DC ( [⌘[⇠!(] ; ⌘&; ?>>; (⌘⌧BD1)]), (6.7)

where 5>DC is a two-layer MLP. Finally, we choose the highest-scored answer from # candidate

answers as the prediction output. We use the cross entropy loss to optimize the end-to-end model.

6.3 Experiments

6.3.1 Dataset Description

We evaluate our model on two different QA benchmarks, CommonsenseQA [103] and Open-

bookQA [73]. Both benchmarks come with an external knowledge graph. We apply ConceptNet to

the external knowledge graph on these two benchmarks.

CommonsenseQA is a QA dataset that requires human commonsense reasoning capacity to answer

the questions. Each question in CommonsenseQA has five candidate answers without any extra

information. The dataset consists of 12, 102 questions.

OpenbookQA It is a multiple-choice QA dataset that requires reasoning with commonsense

knowledge. The OpenbookQA benchmark is a well-defined subset of science QA [17] that requires
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finding the chain of commonsense reasoning to answer a question. Each data sample includes the

question, scientific facts, and candidate answers. In our experimental setting, scientific facts are

added to the question part. This makes the problem formulation consistent with the CommonsenseQA

setting.

6.3.2 Implementation Details

We implemented our DRGN architecture using PyTorch. We use the pre-trained RoBERTa-large [65]

to encode the question. We use cross-entropy loss and RAdam optimizer [63] to train our end-to-end

architecture. The batch size is set to 16, and the maximum text input sequence length is set to 128.

Our model uses an early stopping strategy during the training. We use a 3-layer graph neural module

in our experiments. Section 6.4.2 describes the effect of the different number of layers. The learning

rate for the LMs is 14 � 5, while the learning rate for the graph module is 14 � 3.

6.3.3 Baseline Description

We select three SOTA models as our main baselines. One model is KagNET [61] that finds the

line of reasoning without using a graph neural module. We use two more models, MHGRN [30]

and QAGNN [127] that use graph neural module as the backbone to find the line of reasoning over

knowledge graph.

KagNET [61] is a path-based model that models the multi-hop relations by extracting relational

paths from Knowledge Graph and then encoding paths with an LSTM sequence model.

MHGRN [30]: Multi-hop Graph Relation Network (MHGRN) is a strong baseline. MHGRN model

applies LMs to the question and answer context encoder, uses the GNN encoder to learn graph

representations, and chooses the candidate answers by these two encoders.

QA-GNN [127] is the recent SOTA model that uses a working graph to train language and KG

subgraph. The model jointly reasons over the question and KG and jointly updates the representations.

QA-GNN uses GAT as the backbone to do message passing on the graph. To learn the semantic

edge information, QA-GNN directly adds the edge representation to the local node representation
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Models Dev ACC% Test ACC%
RoBERTa-no KG 69.6% 67.8%

R-GCN 72.6% 68.4%
GconAttn 72.6% 68.5%
KagNet 73.3% 69.2%

RN 73.6% 69.5%
MHGRN 74.4% 71.1%
QA-GNN 76.5% 73.4%
DRGN 78.2% 74.0%

Table 6.1 Dev accuracy and Test accuracy (In-House split) of various models on the CommonsenseQA
benchmark, following by [61].

and cannot learn the global structure of the edges, which is inefficient. However, our model uses the

global multi-relational adjacency matrices to learn the edge information.

The student practiced his guitar often, where is he always
spent his free period?
A. music room B. rock band C. toy store D. stage E. concert
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Figure 6.3 The complete reasoning chain from the question node to the candidate answer node. The
blue nodes are question entity nodes, and the red and green nodes are the candidate answer nodes.
The thicker edges indicate a higher relevance score to the neighborhood node, while the thinner
edges indicate a lower score. The left side is the reasoning chain selected from our model (orange
edges), while the right side is selected from the baseline models (grey edges).
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Models Dev Test
RoBERTa-large 66.7% 64.8%

R-GCN 65.0% 62.4%
GconAttn 64.5% 61.9%

RN 66.8% 65.2%
MHGRN 68.1 % 66.8%
QA-GNN 68.9 % 67.8%
DRGN 70.1% 69.6%

AristoRoBERTaV7 79.2% 77.8%
T5(3 Billion Parameters) - 83.2%

UnifiedQA(11 Billion Parameters) - 87.2%
AristoRoBERTaV7+MHGRN 78.6% 80.6%
AristoRoBERTaV7+QA-GNN 80.4% 82.8%
AristoRoBERTaV7+DRGN 81.8% 84.1%

Table 6.2 Development and Test accuracy of various model performances on the OpenbookQA
benchmark.

6.4 Results and Discussion

6.4.1 Result Comparison

Table 6.1 shows the performance of different models on the CommonsenseQA benchmark. KagNet

and MHGRN are two strong baselines. Our model outperforms the KagNet by 4.8% and MHGRN

by 2.9% on the CommonsenseQA benchmark. This result shows the effectiveness of our DRGN

architecture. Table 6.2 shows the performance on the OpenbookQA benchmark. There are a few

recent papers that exploit larger LMs, such as T5 [84] that contains 3 billion parameters (10x larger

than our model,) and UnifiedQA [48] (32x larger). For a fair comparison, we use the same RoBERTa

setting for the input representation when we evaluate OpenbookQA. Our model performance,

potentially, will be improved after using these larger LMs. To demonstrate this point, we did

additional experiments using AristoRoBERTaV7 [18] as a backbone to train our model. Our model

achieves better performance when using the larger LMs compared to other baseline models. The

performance shows that the more implicit information learned from pre-trained language models,

the more effective relevance information established between graph nodes. We should note that

GREASELM [131] and GSC [115] are the two most recent models that are developed in parallel with

76



Why do parents encourage their kids to play baseball? 
A. round B. cheap C. break window D. hard E. fun to play

Why don’t parents encourage their kids to play baseball? 
A. round B. cheap C. break window D. hard E. fun to play

MHGRN:
QA-GNN:
DRGN: play baseball baseball fun to playused for has property

MHGRN:
QA-GNN:
DRGN:

play baseball baseball fun to playused for has property

play baseball play ball break windowused for has subevent
play baseball baseball A ballused for type of used for break window

play baseball baseball fun to playused for has property
play baseball baseball fun to playused for has property

Figure 6.4 The case study of the negation examples. The question in the bottom box includes the
negation words. The red colored text represents the gold answer, and the purple colored represents
the wrong answer. In the blue box, each line represents the commonsense reasoning chain of each
model.

our DRGN. GREASELM aims to ground language context in a commonsense knowledge graph by

fusing token representations from pretrained LMs and GNN over Modality Interaction layers [131].

GSC designs a Graph Soft Counter layer [115] to enhance the graph reasoning capacity. Our results

are competitive with the reported ones in those parallel works, while each work emphasizes different

contributions.

6.4.2 Model Analysis

In this section, we analyze the effectiveness of our DRGN model that helps in recovering the missing

edges and establishing direct connections based on the relevancy of the node representations in the

KG.

Effects on Finding the Line of Reasoning As we described in Section 7.2.3, to keep the graph

size small, most of the models construct the KG subgraph by selecting the entities that appear in

two-hop paths. Therefore, some intermediate concept nodes and edges are missed in the extracted

KG subgraph, and the complete reasoning chain from the question entity node to the candidate
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Models Test ACC % Test ACC%
(Overall) question w/ negative

RoBERTa-large 68.7 % 54.2%
KagNet 69.2 % 54.2 %

MHGRN 71.1 % 54.8%
QA-GNN 73.4 % 58.8%

DRGN 75.0% 60.1%

Table 6.3 Performance on questions with negation in In-house split test CommonsenseQA.

answer node can not be found.

For example, as shown in Figure 6.3, the question is “The student practiced his guitar often,

where is he always spent his free period?” and the answer is “music room”. The reasoning chain

includes 2 hops, that is, “guitar ! playing instrument ! music room”. Since the constructed

graph misses the direct edge between “guitar” and “playing instrument”, MHGRN and QA-GNN

baselines select the wrong intermediate node and predict the wrong answer “concert” and “rock

band” by the grey edges described in the Figure 6.3. In contrast, our DRGN model makes a correct

prediction by computing the relevance score of the nodes based on their learned representations and

forming new edges accordingly. As we describe in Section 7.2.3, our model initializes the entity

node representation by large-scale pre-trained language models (LMs). The implicit representations

of LMs are learned from the huge corpora, and the knowledge is implicitly learned. Therefore, these

two entities, “guitar” and “playing instrument”, start with an implicit connection. By looking at

the relevance changes, after several layers of graph encoding, the relevance score between “guitar”

and “playing instrument” becomes stronger. In contrast, the relevance score between “guitar” and

“concert” becomes weaker because of the contextual information “free period”. This is the primary

reason why our DRGN model obtains the correct reasoning chain.

Effects on Semantic Context While the graph has a broad coverage of knowledge, the semantic

context of the question and connection to the answer is not used properly. For example, dealing with

negation can not perform well [127]. Since our dynamic relevance matrix includes the semantic

context of the question, the relevance between the question and graph entities is computed at every

78



CommonsenseQA Dev Accuracy 

K Selection DRGN MHGRN QA-GNN

L=1 0.759 0.7324 0.75

L=2 0.776 0.7394 0.757

L=3 0.778 0.7465 0.762

L=4 0.781 0.7415 0.765

 

0.7 0.72 0.74 0.76 0.78 0.8

L=1

L=2

L=3

L=4

CommonsenseQA Dev Accuracy 

QA-GNN MHGRN DRGN

Figure 6.5 The Effect of number of layers in QA-GNN, MHGRN, and DRGN models on Common-
senseQA.

graph neural layer while considering the negation in the node representations. Intuitively, this should

improve handling the negative question in our model.

To analyze this hypothesis for DRGN architecture, we compare the performance of various models

on questions containing negative words (e.g., no, not, nothing, unlikely) from CommonsenseQA

following recent research [127]. The result is shown in Table 6.3. We observe that the baseline

models of KagNet and MHGRN provide limited improvements over RoBERTa on questions with

negation words (+0.4%). However, our DRGN model exhibits a huge boost (+5.9%). Moreover,

the DRGN model gains a larger improvement in accuracy compared to the QA-GNN model,

demonstrating the effectiveness of considering relevance between question semantics and graph

entity that experimentally confirms our hypothesis. An additional ablation study in Table 7.3

confirms this idea further. When removing the question information from DRGN, we observe that

the performance on negation becomes close to the MHGRN.

Figure 6.4 shows qualitative examples of the positive and negative questions. For the positive

question, all the models obtain the same reasoning chain “play baseball-(used for)! baseball-(has

property)! fun to play”, including MHGRN, QA-GNN, and our architecture. However, when

adding the negative words, MHGRN obtains the same reasoning chain as the positive situation,

while QA-GNN and DRGN find the correct reasoning chain. One interesting finding is that DRGN

can detect the direct connection using fewer hops to establish the reasoning chain.
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Models Time Space
;-layer KagNet $ ( |' |; |+ |;+1

;) $ ( |' |; |+ |;+1
;)

;-layer MHGRN $ ( |' |2 |+ |2;) $ ( |' | |+ |;)
;-layer QA-GNN $ ( |+ |2;) $ ( |' | |+ |;)
;-layer DRGN $ ( |' |2 |+ |2;) $ ( |' | |+ |2;)

Table 6.4 The time complexity and space complexity comparison between DRGN and baseline
models.

Effects of Number of Graph Layers The number of graph layers is an influencing factor for

DRGN architecture because our relevance matrix is computed dynamically, and the relevance scores

change while the representations are computed at each graph layer. We evaluate the effects of

multiple layers ; for the baseline models and our DRGN by evaluating its performance on the

CommonsenseQA. As shown in Figure 6.5, the increase of ; continues to bring benefits until ; = 4

for DRGN. We compare the performance after adding each layer for MHGRN, QA-GNN, and our

DRGN. We observe that DRGN consistently achieves the best performance with the same number

of layers as the baselines.

Table 6.4 shows the time complexity and the space complexity comparison between the DRGN

model and the baseline model. We compare the computational complexity based on the number

of layers ;, the number of nodes + , and the number of relations '. Our model and MHGRN have

the same time complexity because both models use the R-GCN model as the backbone. Besides,

QA-GNN directly adds the edge representation to the local node representation during the graph

pre-processing step and learns the graph node representation without the global semantic relational

adjacency matrices. After adding the dynamic relevance matrix at each graph layer, our DRGN model

achieves better performance compared to other baseline architectures. For the space complexity,

our model’s space complexity is slightly larger than MHGRN because DRGN introduces the extra

dynamic relevance matrix. However, this cost depends on the size of the subgraph, which is usually

small, and it leads to a huge improvement.
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Models Dev ACC
DRGN w/o KG subgraph 69.6%
+ KG subgraph 72.6%
+ relational edges in graph 73.7%
+ question node in graph 74.9%
+ dynamic relevance matrix 78.2%

Table 6.5 Ablation Study on CommonsenseQA dataset.

6.4.3 Qualitative Analysis

To evaluate the effectiveness of various components of DRGN, we perform an ablation study on the

CommonsenseQA development benchmark. Table 7.3 shows the results of the ablation study. First,

we remove the whole commonsense subgraph. Our model without the subgraph obtains 69.6%

on the CommonsenseQA. This shows how the implicit language model can answer the questions

without the external KG, which is not high-performing but yet impressive. After adding the KG

subgraph, the accuracy improves to 72.6% on the CommonsenseQA benchmark. Second, we keep

the KG subgraph and add multiple relational edge information from the subgraph (described in

section 6.2.5). Without the relational edges, the accuracy becomes 73.7%. This result shows that

the multiple relational edges help in learning better graph node representations and obtaining higher

performance. Third, we keep the multi-relational subgraph and add the question node. In other

words, we incorporate the semantic relationship between the question node and the graph entities.

The accuracy of the model improves to 74.9%. It demonstrates the importance of the relevance

mechanism between the question information and the KG subgraph. Finally, we add the most

important component, the dynamic relevance matrix, to each graph layer. The large improvement

demonstrates the importance of the dynamic relevance matrix and the effectiveness of DRGN

architecture.

6.5 Summary

In this paper, we propose a novel Dynamic Relevance Graph Network (DRGN) architecture for

commonsense question answering given an external source of knowledge in the form of a Knowledge
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Graph. Our model learns the graph node representation while a) exploits the existing relations in

KG, b) re-scales the importance of the neighbor nodes in the graph based on training a dynamic

relevance matrix, c) establishes direct connections between graph nodes based on measuring the

relevance scores of the nodes dynamically during training. The dynamic relevance edges help in

finding the chain of reasoning when there are missing edges in the original KG. Our quantitative

and qualitative analysis shows that the proposed approach facilitates answering complex questions

that need multiple hops of reasoning. Furthermore, since DRGN uses the relevance between the

question node and graph entities, it exploits the richer semantic context of the question in graph

reasoning, which leads to improvements in the performance on the negative questions. Our proposed

approach shows competitive performance on two QA benchmarks, including CommonsenseQA and

OpenbookQA.
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CHAPTER 7

EXPLOITING COMMONSENSE KNOWLEDGE FOR DOCUMENT-LEVEL QA

7.1 Background and Motivation

Solving Question Answering (QA) problems usually requires both understanding and reasoning

over natural language. In recent years, large-scale pre-trained Language Models (LMs) have made

breakthrough progress and demonstrated effectiveness on language understanding in many Question

Answering tasks [107, 85]. There is a large amount of world knowledge that is stored implicitly in

language models that can be directly encoded and, sometimes, help in Document-level QA [24]. For

example, as shown in the question 1 of Figure 7.1, “suppose plants will produce more seeds happens,

how will it affect plants”, the knowledge contained in a given text, (A plant produces seed, the seed

germinates, the plant grows), is sufficient to predict the answer. However, there are many cases in

which the required knowledge is not included in the text itself. For example, for the question 2 in

Figure 7.1, the information about the “nutrient” on the seeds does not exist in the text. Therefore, an

external source of knowledge is required to answer the question.

Procedural Text:
1. A plant produces a seed.
2. The seed falls to the ground.
3. The seed is buried.
4. The seed germinates.
5. A plant grows.
6. The plant produces flowers.
7. The flowers produce more seeds

Questions and Answers:
1. suppose plants will produce more seeds 
happens, how will it affect less plants.
(A) More (B) Less (C) No effect

2. suppose the soil is rich in nutrients happens, 
how will it affect more seeds are produced.
(A) More (B) Less (C) No effect

3. suppose The sun comes out happens, how 
will it affect less plants.
(A) More (B) Less (C) No effect

Figure 7.1 WIQA contains procedural text and different types of questions. The bold choices are the
answers.
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There are several existing resources that contain world knowledge and commonsense. Examples

are knowledge graphs (KGs) like ConceptNet [97] and ATOMIC [89]. Looking back at question 2 in

Figure 7.1, we observe that an explicit line of reasoning can be generated after providing the external

knowledge triplets (nutrient, related to, soil) and (soil, related to, seed) derived from ConceptNet.

Two challenges exist in procedural text reasoning and using external KGs. The first challenge

is effectively extracting the most relevant parts of external knowledge and reducing the irrelevant

information from the KG. The second challenge is reasoning over the extracted knowledge. The

irrelevant knowledge from KG will mislead the QA model in predicting the answer. Moreover,

there are less sophisticated techniques proposed for using external knowledge explicitly (i.e. not

through LMs) in document-level QA tasks. REM-Net [44] uses commonsense for WIQA and

uses a memory network to extract the relevant triplets from the knowledge graph and solve the

first challenge. However, this work has no specific mechanism for reasoning over the extracted

knowledge. It just uses a simple multi-head attention operator, which combines the knowledge

triplets and documents as input, to predict the answer. DFGN [122] and SAE [110] construct entity

graphs using named entity recognition (NER) as the backbone to do multi-hop reasoning given the

text itself. However, these models cannot deal with the challenge when the required knowledge is

not in the given document.

To solve these two challenges, we propose a Multi-hop Reasoning network over Relevant

CommonSense SubGraphs (MRRG) that deals with the challenge of document-level QA when the

answer requires a combination of modalities that is both document and external KG. Our motivation is

to effectively and efficiently extract the most relevant information from a large KG to help procedural

reasoning. First, we extract the entities, and retrieve related external triplets from KG, by learning

to extract the most relevant triplets to a given text. In particular, we propose the KG Attention

module to extract the most relevant triplets from large KG given the text and question and reduce the

irrelevant concepts from candidate triplets. Then, we construct a commonsense subgraph based on

the extracted KG triplets in a pipeline. We use the extracted subgraphs as a part of the end-to-end

QA model to help in filling the knowledge gaps in the text and perform multi-hop reasoning. Our
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Figure 7.2 MRRG Model is composed of Candidate Triplet Extraction, KG Attention, Commonsense
Subgraph Construction, Text encoder with contextual interaction, Graph Reasoning, and Answer
prediction modules.

model predicts the answer by reasoning over the contextual interaction representations over the text

and learning graph representations over the KG subgraphs. We evaluate our MRRG on the WIQA

benchmark. MRRG model achieves SOTA and brings significant improvements compared to the

existing baselines.

The contributions of our work are: 1) We train a separate module that extracts the relevant

parts of the KB given the procedure and question and reduces the noisy and inefficient usage of the

information in large KBs. 2) Our end-to-end model uses the extracted QA-dependent KG subgraph

to guide the reasoning over the procedural text. 3) Our MRRG achieves SOTA on the WIQA

benchmark.

7.2 Model Description

Figure 7.2 shows the proposed architecture. We have numbered the parts in the figure, and here we

point to the functionality of each part. (1) We extract the entities from the question and context in

a preprocessing step and use them to retrieve the set of candidate triples from the ConceptNet.

(2) We propose a novel KG Attention module to extract the most relevant triplets and reduce the

noisy concepts from candidate triplets. (3) We augment the commonsense subgraph based on the

relevant triplets. (4) We train a model that uses the commonsense subgraph as a relational graph

network and a text encoder including question and document to do procedural reasoning. Below,

we describe the details of each module.
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7.2.1 Candidate Triplet Extraction from KG

Given the input @ and C, we extract the contextual entities (concepts) using an off-the-shelf open

Information Extraction (OpenIE) model [98]. For each extracted entity C8=, we retrieve the relational

triplets C = (C8=, A, C>DC) from KG, where C>DC is the concept taken from ConceptNet and A is a semantic

relation type. We then apply a pre-trained Language Model, RoBERTa, to obtain the representation,

⇢
C , of each triplet:

⇢
C = 5!" ( [C8=, A, C>DC]) 2 R3⇥3

, (7.1)

where 5!" denotes the language model operation, and the triplets are given as a sequence of concepts

and relations to the LM.

7.2.2 KG Attention

The KG attention module is shown in Figures 7.3. We concatenate @ and C to form &:

& = [[⇠!(]; @; [(⇢%];C], (7.2)

where [CLS] and [SEP] are special tokens in the LMs tokenizer process [65]. We use RoBERTa to

obtain the list of token representations ⇢ [⇠!(] , ⇢@, and ⇢C. ⇢ [⇠!(] is the summary representation

of the question and paragraph, ⇢@ is the list of the question tokens embeddings, and ⇢C is the list of

the paragraph tokens embeddings output of RoBERTa.

Given triplet ⇢C that is generated based on the triplet extraction described in Section 7.2.1, we

build a context-triplet pair ⇢C
I

as follows:

⇢
C

I
= [⇢ [⇠!(] ; ⇢C8=; ⇢

C

A
; ⇢C

>DC
], (7.3)

where ⇢C
8=

is the representation of the head entity from text, ⇢C
>DC

is the representation of the tail

entity from KG, and ⇢C
A

is the representation of the relation. Afterward, we compute context-triplet

pair attention and a softmax layer to output the Context-Triplet pairwise importance Score ⇠)(.

The process is computed as follows:

⇠)(C =
exp

�
"!%(⇢C

I
)
�

Õ
<

9=1 exp
�
"!%(⇢C

I
)
� . (7.4)
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Then we choose the top-: relevant triplets with the top ⇠)( scores and then use the relevant

triplets to construct the subgraph. For each selected triplet, we obtain the triplet representation, ⇢0C ,

as follows:

⇢
0C = [⇢0C

8=
, ⇢

C

A
, ⇢

0C
>DC

] 2 R3⇥3
, (7.5)

⇢
0C
8=
= 58= ( [⇠)(C · ⇢C8=;⇠)(C · ⇢CA]), (7.6)

⇢
0C
>DC

= 5>DC ( [⇠)(C · ⇢C>DC ;⇠)(C · ⇢CA]), (7.7)

where 58= and 5>DC are MLP layers, [; ] is the concatenation, and [·] is the scalar product.

7.2.3 Commonsense Subgraph Construction

We construct the commonsense subgraph ⌧B based on the relevant triplets from KG attention for

each question and answer pair. We add more edges to the subgraph as follows: Two entities in the

triplets will have an edge if a relation A in the KG exists between them. We use ⇢0C
8=

and ⇢0C
>DC

for the

KG subgraph initial node representation ⌘(0) which is used in RGCN formulation in Section 7.2.4.

7.2.4 Reasoning over Document-level QA

To facilitate finding the answer, our MRRG architecture composes of two modules: the Graph

Reasoning Encoder module and the Text Contextual Interaction Encoder module.

Graph Reasoning Encoder: this module is shown in Figure 7.2-B. Given the subgraph ⌧B, we use

RGCN [90] to learn the representations of the relational graph. RGCN learns graph representations

by aggregating messages from its direct neighbors and relational semantic edges. The (; +1)-th layer

node representation ⌘(;+1)
8

is updated based on the neighborhood node representations ⌘;
9

from the

;-layer multiplied by the relational matrices, (;)
A1 , . . . ,,

(;)
A |' | . The representation ⌘(;+1)

8
is computed

as follows:

⌘
(;+1)
8

= f(
’
A2R

’
92#A8

1
|#A
8
|,

(;)
A
⌘
(;)
9

+, (;)
0 ⌘

(;)
8
), (7.8)

where f denotes a non-linear activation function, #A
8

represents a set that includes neighbor indices

of node 8 under semantic relation A . Finally, we obtain the ⇢⌧B after several hops of message passing.
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Text Contextual Interaction Encoder: We have obtained the contextual token representations

⇢ [⇠!(] , ⇢@, and ⇢C in the KG attention module that is described in Section 7.2.2. Followed

by BI-DAF research work [91], we utilize contextual interaction module to feed ⇢@ and ⇢C to

Context-to-Question Attention:

⇢C!@ = B> 5 C<0G(B8<(⇢)
@
, ⇢C))⇢@, (7.9)

and Question-to-Context Attention ⇢@!C to obtain the contextual interaction between question and

context. Then we use LSTM to obtain the hidden state representations: �@!C = !()" (⇢@!C),

and �C!@ = !()" (⇢C!@).

��
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Figure 7.3 The architecture of training the KG Attention module.

7.2.5 Answer Prediction

We concatenate ⇢ [⇠!(] , �@!C , �C!@, and the compact subgraph representation ⇢ 0
⌧B

obtained from

attentive pooling, and use it as the final representation:

� = [⇢ [⇠!(] ; �@!C; �C!@; ⇢
0
⌧B
] . (7.10)

Then we utilize a classifier MLP (�) to predict the answer.

7.2.6 Training Strategy

Training KG Attention for Triplet Selection: Figure 7.3 and the left block of Figure 7.2 show the

same triplet selection model. The same KG attention module, shown in Section 7.2.2 is taken, and 3
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extra MLP layers are added to the module for training as shown in Figure 7.3. The MLP is applied

on the concatenation of the concatenation of [⇢ [⇠!(] ; ⇢@; ⇢C; ⇢0C
1 ; . . . ; ⇢0C

:
] to predict the answer.

We use the cross-entropy as the loss function to train the model.

Training End-to-End MRRG: After pre-training the KG attention module, we keep the learned

parameters and extract the most relevant concepts and construct the multi-relational commonsense

subgraph ⌧B. We combine subgraph representation and text interaction representation as input to

train the answer prediction module by cross-entropy loss.

7.3 Experiments

7.3.1 Dataset Description

WIQA benchmark [107] is a large collection of Document-level QA examples. WIQA contains two

types of questions: 1) the questions can be directly answered based on the text, called in-paragraph

questions. 2) the questions require external knowledge to be answered, called out-of-paragraph

questions. WIQA contains 29808 training samples, 6894 development samples, 3993 test samples

(test V1), and 3003 test samples (test V2).

7.3.2 Implementation Details

We implemented our MRRG framework using PyTorch. We use a pre-trained RoBERTa [65] to

encode the contextual information in the input. The maximum number of triplets is 50, and the

maximum number of nodes in the graph is 100. Further details of hyper-parameters of the graph are

shown in Table 7.3. The maximum number of words for the paragraph context is 256. For the graph

construction module, we utilize open Information Extraction model [98] from AllenNLP1 to extract

the entities. The maximum number of hops for the graph module is 3. The learning rate is 14 � 5.

The model is optimized using Adam optimizer [51].
1https://demo.allennlp.org/open-information-extraction.
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7.3.3 Baseline Description

We briefly describe the recent SOTA baselines that use the Transformer-based language model as

the backbone. The descriptions of each strong baseline are shown below:

EIGEN [69] is a baseline that builds an event influence graph based on a document, and leverages

LMs to create the chain of reasoning to predict the answer. However, EIGEN does not use any

external knowledge to solve the problem.

Logic-Guided [5] uses logic rules, including symmetry and transitivity rules to augment the training

data. Moreover, Logic-Guided uses the rules as a regularization term during training to impose

consistency between the answers to multiple questions.

RGN [135] is the recent SOTA baseline that utilizes a gating network [133] to jointly learns to

extract the key entities through an entity gating module, finds the line of reasoning and relations

between the key entities through a relation gating module, and captures the entity alignment through

contextual entity module.

REM-Net [44] proposes a recursive erasure memory network to find out the line of reasoning.

Specifically, REM-Net refines the evidence by a recursive memory mechanism and then uses a

generative model to predict the answer. REM-Net is the only work that uses external knowledge for

WIQA. REM-Net uses external knowledge by training an attention module that encodes the KG

triplet representations for finding the answer. It does not explicitly select the most relevant triplets

as we do, and the graph reasoning is not exploited for finding the chain of reasoning.

7.4 Results and Discussion

7.4.1 Result Comparison

Table 7.1 and Table 7.2 show the performance of MRRG on the WIQA task compared to other

baselines on two different test sets V1 and V2. First, Both tables show that our proposed KG

Attention triplet selection model outperforms the RoBERTa and has a 3.3% improvement on the

out-of-para category. Second, our MRRG achieves SOTA results compared to all baseline models.
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Models in-para out-of-para no-effect Test V1 Acc
Majority 45.46 49.47 55.0 30.66
Polarity 76.31 53.59 27.0 39.43
Adaboost [32] 49.41 36.61 48.42 43.93
emphDecomp-Attn [78] 56.31 48.56 73.42 59.48
BERT (no para) [24] 60.32 43.74 84.18 62.41
BERT [107] 79.68 56.13 89.38 73.80
EIGEN [69] 73.58 64.04 90.84 76.92
REM-Net [44] 75.67 67.98 87.65 77.56
Logic-Guided [5] - - - 78.50
RoBERTa+KG-attention Triplet Selection 72.21 64.60 89.13 75.22
MRRG (RoBERTa-base) 79.85 69.93 91.02 80.06
Human - - - 96.33

Table 7.1 Model Comparisons on WIQA test V1 dataset. WIQA has four evaluation metrics,
including in-paragraph, out-of-paragraph, no effect, and overall test accuracy.

MRRG achieves the SOTA on both in-para, out-of-para, and no-effect questions in WIQA V1 and

V2.

Models in-para out-of-para no-effect Test v2 Acc
Random 33.33 33.33 33.33 33.33
Majority 00.00 00.00 100.0 41.80
BERT 70.57 58.54 91.08 74.26
REM-Net 70.94 63.22 91.24 76.29
REM-Net (RoBERTa-large) 76.23 69.13 92.35 80.09
QUARTET (RoBERTa-large) 74.49 65.65 95.30 82.07
[85]
RGN [135] 75.91 66.15 92.12 79.95
RoBERTa+KG Attention Triplet Selection 70.02 62.30 91.23 75.86
MRRG (RoBERTa-base) 76.80 67.83 92.28 80.39
MRRG (RoBERTa-large) 78.82 71.10 93.53 82.95
Human - - - 96.30

Table 7.2 Model Comparisons on WIQA test V2 dataset.

7.4.2 Model Analysis

Effects of Using External Knowledge In the WIQA, all the baseline models achieve significantly

lower accuracy in the out-of-para than in-para and no-effect categories. MRRG achieves SOTA in
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the out-of-para category because of using highly relevant commonsense subgraphs. As is shown in

table 7.2, the advantage of the MRRG model is reflected in out-of-para questions. MRRG improves

4.61% over REM-Net. Notice that REM-Net is the only model that utilizes external knowledge on

WIQA. Figure 7.4 shows a case in which the “soil” and “nutrient” only appear in the question and

do not exist in the text. The baseline models fail to answer this out-of-para question due to missing

external knowledge. However, our model predicts the correct answer by explicitly incorporating the

(nutrient, relatedto, soil), (soil, relatedto, seed) that connects the critical information between the

question and the document.

Effect of Combine Knowledge Reasoning and Multi-hop Reasoning Both in-para and out-of-

para types of questions require multiple hops of reasoning to find the answer in the WIQA benchmark.

MRRG made a sharp improvement in reasoning with multiple hops due to the effectiveness of the

extracted commonsense subgraph. In Particular, the MRRG model accuracy improved 2% for 1

hop, 8% for 2 hops, and 2% for 3 hops compared to EIGEN. We study some cases to analyze the

multi-hop reasoning and the reasoning chains. In the third case in Figure 7.4, the extracted relevant

triplets (land, relatedto, surface), (surface, relatedto, igneous rock) construct a two-hop reasoning

chain “land!surface!igneous rock” that helps MRRG to find the correct answer.

7.4.3 Qualitative Analysis

Table 7.3 shows the ablation study results of MRRG in the WIQA benchmark. Firstly, we remove the

commonsense subgraph and graph network. The accuracy decreases 3.4% compared to MRRG. It

demonstrated the effectiveness of using external knowledge graphs on Document-level QA. Second,

we report results about the impact of changing the dimensionality of the node representations in the

model. we try the different dimensions of graph representation. The best performance achieved

by the dimension of graph representation is 100. In an additional experiment, we use the KG

attention triplet selection module to directly predict the answer without the pipeline of constructing

the subgraph and using the graph reasoning module. We show the result as KG Attention Triplet
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Question and Document Content RoBERTa +Interaction Incorporating Triplets +KG
Attention

+Graph

Question: suppose more fruit is produced happens,
how will it affect MORE plants?

Content: [“The seed germinates.”, “The plant grows.”, “The plant flowers.”,
“Produces fruit.”, “The fruit releases seeds.”

Gold Answer: More

X √ (fruit, createdby, plant) √ √

Question: suppose the soil is rich in nutrients happens, 
how will it affect more seeds are produced. 

Content: [“A plant produces a seed”, “The seed falls to the ground”, “The 
seed is buried”, “The seed germinates”, “A plant grows”, “The 
plant produces flowers”, “The flowers produce more seeds.”] 

Gold Answer: More

X X
(nutrient, relatedto, soil) 
(soil, relatedto, seed) √ √

Question: suppose more land available happens, 
how will it affect less igneous rock forming.

Content: [“Different kinds of rocks melt into magma”, “Magma cools in 
the crust”, “Magma goes to the surface and becomes lava”, “Lava cools”, 

“Cooled magma and lava become igneous rock.”]
Gold Answer: Less

X X

(igneous rock, isa, rock)
(land, relatedto, rock) 
(land, relatedto, surface) 
(surface, relatedto, 
igneous rock)

X √

Figure 7.4 Case study of the MRRG Framework. “+interaction” means adding the contextual
interaction module. “KG ATTN” means adding the KG Attention Triplet Selection module. ’X’
indicates the model failed to predict the correct answer, and “X” means the prediction was successful
with the included module.

Selection in Table 7.3. The result shows that removing the triplet selection module decreases the

accuracy by 1.8%. It demonstrates that the KG attention neural mechanism itself helps in extracting

the most relevant information from a large KG and filling the knowledge gaps in the document.

Ablation Model Dev Acc
Text only RoBERTa-base 75.51%
Text only KG Attention Triplet Selection 77.39%

GNN dim=50 79.18%
Text+Graph GNN dim=100 80.30%

GNN dim=200 79.88%

Table 7.3 Ablation and hyper-para. choices on WIQA. “GNN dim” is the dimension of graph
representation.

7.5 Summary

We propose the MRRG model for using external knowledge graphs in reasoning over procedural

text. Our model extracts a relevant subgraph for each question from the KG and uses that knowledge

subgraph to answer the question. The extracted subgraph includes the reasoning path for answering

the question and helps in filling the knowledge gap between the question and text. We evaluate
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MRRG on the WIQA and achieve SOTA performance.
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CHAPTER 8

CONCLUSION AND FUTURE DIRECTIONS

In this chapter, we summarize our work presented in this dissertation and highlight the contributions.

Meanwhile, we discuss several potential directions for future work.

8.1 Summary of Contributions

This dissertation proposes new techniques for exploiting external knowledge and the semantic

structure of data in different modalities in QA systems. My study covers a broad range of QA

problems where the answer to a natural language question can be found in multiple modalities,

including, Textual documents (Document-level QA), Images (Cross-Modality QA), Knowledge

graphs (Commonsense QA), and combination of text and knowledge graphs.

In Chapter 3 of this dissertation, we addressed the challenges of Document-level QA. In particular,

we focused on answering questions that need multiple hops of reasoning that expand over multiple

documents. We exploited the semantic structure of multiple documents to find the line of reasoning

to answer the questions. We extracted a graph with entities and multiple relational edges from

documents using semantic role labeling (SRL). We connected the SRL graphs using shared entities.

We proposed a Semantic Role Labeling Graph Reasoning Network (SRLGRN) that utilizes LM and

GNN as the backbone to find the cross-paragraph reasoning paths while answering the questions.

Exploiting the semantic structure of the documents makes the line of reasoning more explicit and

explainable. Our proposed model obtains competitive results on both multi-hop document-level QA

and single-hop document-level QA benchmarks, including HotpotQA and SQuAD.

In Chapter 4 of this dissertation, we addressed the challenges of cause-effect QA, a special

type of Document-level QA. In contrast to relying on the implicit representation of the pre-trained

language models, finding explicit causal relationships between entities facilitate causal reasoning

over the whole document. We proposed a Relational Gating Network (RGN) that jointly extracts the

most important entities and models their relations explicitly. The RGN contains an entity gating

module, relation gating module, and contextual interaction module. These modules help solve
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different aspects of cause-effect QA challenges, including multiple-hop causal reasoning and entity

alignment. We demonstrated that modeling pairwise relationships help to capture higher-order

relations. Our proposed approach achieves state-of-the-art results on the cause-effect QA benchmark,

WIQA.

In Chapter 5 of this dissertation, we addressed the challenges of Visual Question Answering,

a classic type of cross-modality QA. Our main contribution was to explicitly ground the entities

as well as their relationships from language modality into vision modality. We proposed a novel

cross-modality relevance (CMR) architecture that is an end-to-end framework that considers the

relevance between textual token representations and visual object representations by explicitly

aligning them in the two modalities. We model the higher-order relational relevance for the

generalizability of reasoning between entity relations in the text and object relations in the image.

Our proposed CMR approach shows competitive performance on two different language and vision

benchmarks, including NLVR and VQA. The proposed architecture improves robustness and

effectiveness compared to the previous state-of-the-art models.

In Chapter 6 of this dissertation, we addressed the challenge of knowledge-based QA given an

external source of knowledge in the form of a Knowledge Graph. The main contribution has been

recovering missing edges in the KG that were needed for finding the line of reasoning and answering

the questions. We proposed a novel Dynamic Relevance Graph Network (DRGN) that learns the

node representations while a) exploits the existing edges in KG, b) establishes direct edges between

graph nodes based on the relevance scores, c) re-scales the importance of the neighbor nodes in the

graph based on training a dynamic relevance matrix. As a byproduct, our model improved handling

the negative questions due to deeply considering the relevance between the question node and the

graph entities. Our proposed approach showed competitive performance on two QA benchmarks,

CommonsenseQA and OpenbookQA, compared to the state-of-the-art published architectures.

In Chapter 7 of this dissertation, we deal with the challenge of document-level QA when

the answer needs a combination of modalities that is both document and external KG. The main

contribution is to effectively extract the most relevant external information from a given large KG
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and combine that with the document-level information to answer the questions. We proposed a

novel architecture called MRRG that extracts the entities from the document and learns to retrieve

the relevant external knowledge from KG using a novel neural KG attention mechanism. Then, we

constructed a KG subgraph as part of the document-level QA model to help fill in the knowledge

gaps and facilitate multi-hop reasoning. We evaluated our model on the commonly used WIQA

benchmark for this task. The proposed model achieves SOTA and brings significant improvements.

8.2 Future Directions

Beyond the topics covered in this dissertation, there are many new exciting directions related to the

Question Answering problem, including Prompt Learning for Question Answering and Integration

of Domain-Knowledge into Question Answering. In the following subsections, we point to some

QA future directions.

8.2.1 Prompt Learning for Question Answering

Recent Research on large-scale pre-trained LMs demonstrates that a unified paradigm [48] could

potentially apply to solve various existing NLP tasks. Developing a unified framework for QA based

on prompt learning becomes a new trend for solving various QA tasks.

The QA architectures usually are based on a supervised learning paradigm. In general, these

QA architectures take in an input G (question, context, image, knowledge, etc.) and predict an

output H (yes/no, span answer, multiple choices of candidate answer, etc.) as %(H |G; \) in a

“pre-train, fine-tune” architecture, where \ represents the learned parameters in the model. However,

prompt-based QA architectures reformulate the original input G to a prompt, ) (G), where ) is a

prompting transformation function. In general, the generated prompt ) (G) has several empty slots

like cloze that require filling in. The empty slots are the outputs H in a “pre-train, prompt, and

predict” architecture. From the application point of view, UnifiedQA [48] is a pioneer research work

that reformulates various QA tasks as a unified text generation prompting problem. UnifiedQA

model first generates the prompts from the questions and the corresponding context, then utilizes a
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pre-trained Sequence-to-Sequence LM, T5 model, to predict the answer directly. As mentioned

in [64], prompt learning models use the “pre-train, prompt, and predict” architecture to achieve

SOTA on many QA tasks, including Document-level QA and Knowledge based QA.

Following this new trend of prompt-based tuning, we can point to two possible future research.

The first is how to develop prompt learning for QA in different structured modalities, such as

relational knowledge graphs, and SQL tables. The second is how to design prompts that can learn

the required type of reasoning that is needed for generating output. For example to learn different

types of reasoning, including spatial, temporal, compositional, etc, to enhance transferability and

generalizability among different types of QA.

8.2.2 Integration of Domain-Knowledge into Question Answering

Integration of explicit domain knowledge can alleviate deep learning QA challenges [22], including

inconsistent decisions, and low performance on tasks with complex reasoning. The domain

knowledge can be represented through explicit constraints such as logical rules, context-free

grammar, or probabilistic relations. While there are many recent research efforts on the integration

of knowledge graphs based on neural representations, using knowledge in symbolic form and with

explicit reasoning in neural models is less explored. Given the challenges that we faced on complex

QA reasoning problems with long hops of reasoning, we think the neuro-symbolic direction is

key for better generalizability of the models. This is very important in cross-modality QA, where

multiple modalities need to be understood and grounded in each other.

There are very recent neuro-symbolic solutions to solve visual question answering with external

knowledge such as in VQAR task [43]. In VQAR, given a query, “Identify the tall animal on the

left.”, we require external knowledge and commonsense reasoning (“what is the tall animal in the

real world”), and spatial reasoning (“which animal is on the left of the image”), to answer the

question. While these solutions are very futuristic and interesting, the main issue in dealing with

this task is their scalability and efficiency to make them practical for real scenarios. Exploiting

symbolic reasoning over commonsense in VQA will raise efficiency problems. On the image side,
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the obtained visual features (e.g., object, attribute, and relation) are associated with the deep learning

model. With the increase of the extensive visual information, such as bounding boxes, detected

from the image, the time complexity of computing the deep learning model will be extremely

high. Moreover, although integrating commonsense knowledge into VQA can possibly offer good

interpretability, the models are hardly scalable because the number of knowledge facts using in each

data example is huge.
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