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ABSTRACT 

Lake Erie is a hotspot for large harmful algal blooms, which damage human health, 

degrade natural habitats, and impair industries reliant on the lake. The Maumee River watershed, 

the largest in the Great Lakes, often acts as a major driver for these blooms, as it is the largest 

contributor of nutrients to the lake, mainly attributed to intense agricultural activity. 

Consequently, surficial transport of phosphorus and nitrogen within the Maumee River 

watershed has been extensively studied. However, there has been very little research into the role 

of groundwater here, especially groundwater modeling studies. Here, I evaluate the literature that 

has explored nutrient transport to Lake Erie, with a focus on the Maumee River watershed, and 

examine groundwater nutrient transport. This knowledge will inform nutrient management 

decisions, especially those regarding future and legacy nutrient loads.  

 In Chapter 1, I review the current state of literature on hydrologic nutrient modeling in 

the Lake Erie Basin. I highlight common themes in the literature and detail prominent gaps. 

Specifically, I focus on the role of groundwater in nutrient modeling studies within the Maumee 

River watershed and recommend future directions for research. In Chapter 2, I create a spatially 

explicit, process-based groundwater model of the Maumee River watershed. This model allows 

me to quantify the contributions of groundwater in the context of total basin loading. I then 

quantify the role of legacy nutrient accumulation by reducing input loads in a projected future 

scenario. This research completes the nutrient budget by highlighting ‘hidden’ groundwater 

nutrient loads and informs the timescale of subsurface nutrient management.
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CHAPTER 1:  
REVIEW OF HYDROLOGIC NUTRIENT MODELING IN THE LAKE ERIE BASIN 

1. Abstract 

 Eutrophication, caused by excess nutrient inputs, is a concern for water quality in 

freshwater and marine settings across the world, leading to hypoxic dead zones, toxic drinking 

water, and economic decline for local industry. Lake Erie has undergone an intense 

eutrophication over the past several decades, making it a prime target for nutrient reduction 

efforts. Modeling is an essential tool to quantify, predict, and manage loads to the lake, so a 

diverse variety of models exist for nutrient management in this basin. In this chapter, we compile 

and assess results from hydrologic nutrient transport models in the Lake Erie Basin, with a focus 

on the Maumee River watershed, the highest nutrient contributor to the lake. The role of 

groundwater in Maumee River watershed models is also evaluated. Models were found through 

an extensive literature search, and we searched articles for groundwater-relevant key words to 

quantify the extent to which groundwater was considered in each identified Maumee watershed 

model. Modeling results consistently showed that agriculture was the primary source of nutrients 

to Lake Erie, and suggested that tile drainage and no-till farming exacerbates nutrient loads. 

Cover crops and filter strips were recommended, but do not impact subsurface nutrient 

accumulation and transport. Subsurface nutrient accumulation was estimated to be substantial in 

areas in the Lake Erie Basin, especially for phosphorus. However, no models were found that 

explicitly simulate groundwater flow and transport in a process-oriented manner for the Maumee 

River watershed, nor did most papers consider groundwater. Future research should seek to 

estimate groundwater nutrient loading to the lake and quantify lag times associated with 

groundwater transport and legacy nutrient accumulation. 
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2. Introduction 

Lake Erie is the shallowest of the Great Lakes, containing the smallest volume of water 

despite having the second smallest area. However, owing to its warm shallow waters, it is 

naturally the most biologically productive of the Great Lakes, meaning it can support the greatest 

amount of living material, primarily concentrated in the form of algae (Botts and Krushelnicki, 

1995). Early and intense development of the area surrounding Lake Erie further increased the 

lake’s productivity, leading to nutrient loading and eutrophication. Lake Erie receives the highest 

annual phosphorus and nitrogen load of all the Great Lakes, driving an aggressive eutrophication 

of the lake (Robertson et al., 2019a; Hamlin et al., 2020). 

Eutrophication can cause many problems for life reliant on the lake. Of particular concern 

in Lake Erie are harmful algal blooms. Algal blooms are common under natural conditions but 

are generally limited in size by the nutrient (i.e., phosphorus and nitrogen) loads supplied in the 

water. With eutrophication, extra nitrogen and phosphorus are injected into the system, allowing 

algal blooms to vastly increase in size. These blooms cause deoxygenation of the underlying 

water, leading to hypoxic lake conditions, and release the toxin microcystin, which can be 

harmful to both human health and aquatic life. The Environmental Protection Agency estimates 

that in the Lake Erie basin, harmful algal blooms pose a threat to the quality of drinking water 

for about 10 million people relying on Lake Erie for their water supply (US EPA, 2018). At 

times, the microcystin concentration in drinking water supplies has been so high that warnings 

were put out to avoid contact with the water and public water supplies were shut off. One such 

case in Toledo, Ohio during August of 2014 caused about 400,000 people to be without water for 

nearly three days (Jetoo et al., 2015). Another in September 2013 in Carroll Township caused the 



 

 

3 

water treatment plant to be shut down for 2 weeks, affecting about 2,000 people (Smith et al., 

2015). 

In addition to concerns related to eutrophication, the nutrients themselves, namely nitrate 

and nitrite, can act as drinking water contaminants. In areas with high agricultural production and 

high groundwater extraction for use as drinking water, especially where private household wells 

are common, nitrate and nitrite concentrations can often exceed guideline values (World Health 

Organization, 2011). Excessive nitrate or nitrite intake can lead to methaemoglobinaemia, which 

blocks oxygen transport in the blood (World Health Organization, 2011). Nitrate/nitrite 

contamination is of particular concern for bottle-fed infants, who can develop cyanosis or blue-

baby syndrome as a consequence of methaemoglobinaemia (World Health Organization, 2011).  

To combat declining water quality in the Great Lakes, in 1972 the U.S. and Canada 

signed the Great Lakes Water Quality Agreement, a commitment to restoring and protecting the 

Great Lakes. One of the aims of the agreement is to designate and remediate Areas of Concern, 

which are defined as “geographic area[s]... where significant impairment of beneficial uses has 

occurred as a result of human activities at the local level” (Gov'ts of Canada and the U.S.A., 

2012, p. 21). The Maumee River was designated an Area of Concern in 1987 due to large 

amounts of agricultural runoff entering the river and moving into Lake Erie, causing excessive 

phosphorus, nitrogen, and sediment loading to the lake. It is the largest watershed draining into 

the Great Lakes, with about 90% of this land being used for agriculture (Brown et al., 2020; 

NASS, 2021). The Maumee River, on average, is the highest single tributary contributor of total 

phosphorus, soluble reactive phosphorus (SRP), and total nitrogen to Lake Erie (Robertson and 

Saad, 2011; Maccoux et al., 2016). Because of this, nutrient loading from the Maumee River, 
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especially in the spring, is generally considered to be a driver of algal bloom severity in the 

western Lake Erie basin (Baker et al., 2014; Kane et al., 2014; Cousino et al., 2015).  

Due to its importance to Lake Erie water quality, the Maumee River basin has been 

extensively studied. However, most of these studies focus on the surficial transport of nutrients 

to and within the Maumee River rather than on subsurface transport (e.g., Bosch et al., 2011; 

Baker et al., 2014; Kane et al., 2014; Stow et al., 2015; Cousino et al., 2015; Culbertson et al., 

2016; Verhamme et al., 2016; Kujawa et al., 2020; Apostel et al., 2021). Most studies that 

examine the groundwater transport of nutrients tend to use direct measurements and mass 

balance approaches to quantify groundwater transport of nutrients rather than modeling (e.g., 

Knights et al., 2017; Oldfield et al., 2020; Rakhimbekova et al., 2021). Modeling allows more 

flexibility to test how various hydrogeological parameters facilitate the transport of bioavailable 

nutrients and provide predictions for how nutrient transport might change under future 

conditions. This chapter aims to assess the current state of literature on hydrologic nutrient 

modeling in the Lake Erie Basin, placing particular emphasis on the Maumee River watershed 

and the role of groundwater in those studies. 

 3. Background 

3.1 Nutrient Inputs 

While both nitrogen and phosphorus are important to eutrophication, the limiting nutrient 

in a system depends on the typical nitrogen to phosphorus ratio. If this ratio is high, the limiting 

nutrient tends to be phosphorus, while if this ratio is low, nitrogen tends to be the limiting 

nutrient. In Lake Erie, the balance of nitrogen and phosphorus has shifted due to an increase in 

nitrogen loading concurrent with a decrease in the loading of bioavailable phosphorus (Hartig 

and Wallen, 1984). This shift has caused the primary limiting nutrient in the lake to change from 
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nitrogen to phosphorus. Bioavailable phosphorus loading from the Maumee River Basin has 

been shown in several studies to be closely interconnected with phytoplankton and 

cyanobacterial biomass in Lake Erie (Logan, 1987; Baker et al., 2014; Kane et al., 2014; Newell 

et al., 2019). However, the nitrogen-phosphorus balance in Lake Erie has also been shown to be 

delicate and sensitive to change. Should this balance shift again, the limiting nutrient could revert 

to nitrogen. Chaffin et al. (2014) suggest that nitrogen limitation already plays a role in later 

parts of the algal growth season in Lake Erie. In addition, a prolonged shift in nitrogen to 

phosphorus ratios could influence which taxa live in the lake (Hartig and Wallen, 1984; 

Jankowiak et al., 2019; Mooney et al., 2020). Newell et al. (2019) has shown that reduced forms 

of nitrogen are necessary for toxin production in non-nitrogen fixing cyanobacteria such as those 

prevalent in western Lake Erie. The proportion of reduced nitrogen forms within total nitrogen 

loading from the Maumee has increased concurrent with the re-eutrophication of Lake Erie, and 

this proportion is significantly correlated with cyanobacterial bloom biomass in western Lake 

Erie (Newell et al., 2019). Even if a shift in taxa or the nitrogen-phosphorus balance does not 

occur, nitrogen control is important to maintain the biological integrity of stream ecosystems in 

the Midwest and to meet drinking water quality standards (Logan, 1987; Robertson and Saad, 

2011). Nitrogen has been shown to drive invasive plant growth in the Great Lakes Basin 

(Hannah et al., 2020). There is ample evidence to support the importance of controlling both 

nitrogen and phosphorus inputs to protect Great Lakes water quality.   

3.1.1 Nutrient forms 

Not all nutrient inputs to Lake Erie can be used by phytoplankton. Nutrient forms that are 

readily available for use by phytoplankton are referred to as bioavailable. It is the relative 

concentrations of these forms that primarily drive changes in algal growth rather than changes in 
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total nutrient loads (Logan, 1987; Baker et al., 2014; Maccoux et al., 2016; Newell et al., 2019). 

For example, re-eutrophication of Lake Erie beginning in the 1990s occurred despite a decline in 

the amount of total phosphorus (Baker et al., 2014). Bioavailable forms of phosphorus are 

primarily considered to be concentrated in forms of dissolved phosphorus, especially dissolved 

reactive phosphorus (DRP), also called soluble reactive phosphorus. Some bioavailable forms 

(i.e., extractable NaOH) make up approximately 20-35% of particulate phosphorus (Sonzogni et 

al., 1982; Baker et al., 2014). However, not all bioavailable phosphorus, particularly in 

particulate form, is able to be used by algae immediately, as it must first be dissolved, desorbed, 

or mineralized, often converting to DRP in the process. The likelihood of these processes 

occurring depends on several factors, including the DRP concentration of the receiving waters 

and the location of the particle within the water (Sonzogni et al., 1982).  

Nitrogen input to Lake Erie is present in many forms, several of which are bioavailable. 

Despite potential bioavailability in both chemically reduced and oxidized forms of nitrogen, 

however, nitrate and total nitrogen seem to have little to no correlation with algal bloom biomass 

in Lake Erie (Kane et al., 2014), while organic nitrogen or total Kjeldahl nitrogen (TKN) is 

significantly correlated with western Lake Erie algal bloom biomass (Newell et al., 2019). TKN 

includes organic nitrogen as well as ammonium, which generally includes all nitrogen forms 

except nitrate, nitrite, and atmospheric nitrogen (N2). Forms of TKN are chemically reduced, 

while non-TKN forms tend to be oxidized (excepting atmospheric nitrogen). Nitrogen is a 

necessary component of toxin production in many varieties of non-nitrogen fixing cyanobacteria, 

but cyanobacteria prefer reduced forms of nitrogen inputs (Newell et al., 2019). Ammonium is 

particularly important, as low levels inhibit toxin production (Newell et al., 2019). However, all 

forms should be monitored due to their high reactivity. 
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3.2 Nutrient Sources 

Sources of nitrogen and phosphorus can roughly be divided into point and nonpoint 

source categories. Point sources include singular locations which lead to nutrient plumes (e.g., 

wastewater treatment plants), while nonpoint sources are distributed across the landscape (e.g., 

fertilizer). Early efforts to reduce nutrient loads to Lake Erie addressed both nonpoint and point 

source loading, with specified goals for point sources in the Great Lakes Water Quality 

Agreement (Baker et al., 2014). However, due to the relative ease with which point sources are 

identified and controlled in comparison to nonpoint sources, point source loading has decreased 

over time concurrent with increases in nonpoint source loading (Baker et al., 2014). 

Consequently, nonpoint sources comprise the largest proportion of nutrient loading to Lake Erie 

(Maccoux et al., 2016; Hamlin et al., 2020). Loads from groundwater are typically lumped with 

nonpoint or tributary sources rather than being explicitly quantified. Without addressing 

nonpoint source pollution, nutrient reduction efforts will not meet Lake Erie’s water quality 

goals (Baker et al., 2014; Maccoux et al., 2016). 

3.2.1 Agricultural sources 

In Lake Erie, nonpoint source agricultural runoff and discharge is a major source of both 

phosphorus and nitrogen (Watson et al., 2016). Chemical fertilizer production, referring to 

synthetically produced fertilizer, typically contains one or more of the elements nitrogen, 

phosphorus, and potassium to replenish nutrients lost in the soil from the previous growing 

season and increase production. Organic fertilizers, including animal manure, treated sewage 

sludge, plant waste, and animal waste, are also sometimes spread across fields. Often, however, 

it is difficult for farmers to know how much fertilizer should be applied. To maximize 

production, farmers err on the side of applying more fertilizer than is needed. As a result, surface 



 

 

8 

runoff from fertilized fields is enriched in nutrients from the overapplication of fertilizer and 

manure, which can then percolate into the underlying aquifer (Luscz et al., 2015; Robinson, 

2015). Extensive tile drainage can reduce the amount of nutrients in groundwater by increasing 

loading directly to surface waters (Robinson, 2015).  

In addition to manure applied to agricultural fields, nutrient-rich runoff is common from 

concentrated manure production at locations with intensive livestock husbandry, such as at 

concentrated animal feeding operations (Luscz et al., 2015; Robinson, 2015). Manure not applied 

to cropland is often stored in lagoons designed to treat the waste (Robinson, 2015). These storage 

locations can become significant point sources of nutrients. Lagoon linings can leak, leading to 

nutrient infiltration to soil water and groundwater. Large rainfall events can also overwhelm the 

system, leading to overflow and large amounts of nutrient-rich surface runoff. 

3.2.2 Urban sources 

Cities and other concentrated urban areas can act as a significant source of nutrients, 

largely due to poor infrastructure maintenance and substantial amounts of impervious surfaces 

with inadequate drainage. Wastewater treatment systems, generally considered point source 

pollution, are a major source of urban pollution (Maccoux et al., 2016). Effluent sludge, 

containing the solid sewage components, is often spread on agricultural fields as fertilizer or 

deposited in a landfill, where it becomes agricultural or urban runoff respectively (Robertson and 

Saad, 2011). Treated liquid wastewater effluent can be reused for agricultural irrigation or urban 

activities such as construction or dust control. However, oftentimes treated wastewater from 

household septic systems is directly discharged into the subsurface as a distributed grid of point 

sources, which can act like nonpoint sources due to their density in the landscape (Robinson, 

2015; Oldfield et al., 2020; Rakhimbekova et al., 2021). Consequently, in rural areas, heavy 
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reliance on domestic septic systems can lead to significant nutrient input to groundwater, 

especially if septic systems are leaky or poorly maintained (Robinson, 2015).  

 Other urban sources include landfills, industrial emissions, and non-agricultural 

fertilization. Overland runoff from landfills is rich in chemicals including metals and nutrients, 

especially nitrogen. Landfill leaching to groundwater is also quite common in landfills built 

before the enactment of the 1971 Protection of the Environment Act, which required the use of 

liners and other mitigation techniques (Robinson, 2015). Likewise, improperly stored industrial 

waste can act as a long-term source of nutrients both to groundwater and to surface waters 

(Robinson, 2015). Non-agricultural fertilization can be a large portion of total urban nutrient 

loading, including both lawn and golf course fertilization, and contributing more often to surface 

runoff than groundwater due to the surrounding impervious cover (Luscz et al., 2015). 

3.2.3 Environmental sources 

Encompassing a large range of primarily nonpoint sources, environmental sources are 

those sourced in, or delivered via, natural processes. Tributary discharge is by far the largest of 

these sources, exacerbated greatly by both agricultural and urban runoff (Robertson and Saad, 

2011; Maccoux et al., 2016). Tributary discharge, consequently, is difficult to separate from 

other sources. Additionally, due to the nonpoint source nature of overland runoff and large 

drainage areas of some Lake Erie tributaries, sourcing tributary loads is difficult to do 

(Robertson and Saad, 2011). Instead, many studies simply opt to account for tributary loads by 

watershed. 

 Atmospheric deposition and nitrogen fixation can also act as significant sources of 

nutrients. Both nitrogen and phosphorus can be delivered to landscapes via wet atmospheric 

deposition, whereby nutrients are added to the landscape by precipitation, or via dry deposition, 
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whereby nutrients are transported on the wind by dust particles that are deposited on the land 

surface (Luscz et al., 2015). Atmospheric deposition delivers a much higher proportion of total 

nitrogen loads to the landscape than of total phosphorus loads (Luscz et al., 2015). Another 

pathway for nitrogen to enter the landscape is through fixation, which occurs when lightning 

strikes or when bacteria or legumes transform atmospheric nitrogen into organic nitrogen 

(Robertson and Saad, 2011; Lewandowski et al., 2015). 

 Legacy nutrients, or nutrients present in the subsurface, is a source which is often 

overlooked. Even with reduced nutrient input, there is a large reservoir of phosphorus and 

nitrogen in the groundwater, plus additional mass can desorb from soil grains and enter the 

aqueous phase to be transported by groundwater or surface water to lakes, especially in wet 

conditions (Sharpley et al., 2013; King et al., 2017; Van Meter et al., 2021). Groundwater 

carrying these nutrients can either be directly discharged into Lake Erie, or indirectly discharged 

through baseflow to rivers and streams that discharge into Lake Erie (Robinson, 2015). 

Local biota in the lake have complex relationships with algal blooms and nutrient 

dynamics. For Lake Erie in particular, dreissenid mussels graze algae, reducing populations 

present in blooms. However, they also excrete significant amounts of nitrogen and phosphorus 

into the water column, fueling algal growth (Zhang et al., 2008). In addition, increased 

competition with other algal species may decrease the size or toxicity of blooms (Zhang et al., 

2008). Competition is in large part determined by the relative amounts of nitrogen and 

phosphorus in the lake, with some ratios favoring more toxic species (Newell et al., 2019). 

3.2.4 Subsurface nutrient mobility 

While nutrients may be present in groundwater, they do not always make it to Lake Erie 

due to reduced subsurface mobility and attenuation. Phosphorus is often thought of as largely 
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immobile in groundwater, especially in the vadose zone, due to its ability to readily sorb to soils 

in oxic conditions (Lewandowski et al., 2015). However, all available sorption sites can be filled 

with consistently high phosphorus loads, especially in silicon-dominant sediments, enhancing 

phosphorus mobility (Lewandowski et al., 2015). In the saturated zone, reducing redox 

conditions lower the sorption capacity for phosphorus, thus increasing the amount of dissolved 

phosphorus (Lewandowski et al., 2015). Phosphorus sorption is also diminished with increasing 

pH and decreasing oxygen content, enhancing phosphorus mobility in groundwater 

(Lewandowski et al., 2015; Robertson et al., 2019b). While sorption is the primary means by 

which phosphorus is removed from groundwater, mineralization to apatite in the presence of 

calcium can lead to more permanent phosphorus removal (Robertson et al., 2019b). 

The mobility of nitrogen is much more variable due to its variety of forms in differing 

redox states. Nitrate (NO3
-), one of the most common contaminants in groundwater, is highly 

mobile in oxic aquifers and easily flushed from rivers and streams with precipitation 

(Lewandowski et al., 2015; King et al., 2017). Under oxic conditions, nitrate can travel through 

groundwater with minimal sorption to soil or other aquifer materials, but is degraded in 

anaerobic aquifers through denitrification, primarily in upper layers where dissolved organic 

carbon is in highest abundance to act as an electron donor (Lewandowski et al., 2015). Nitrite 

(NO2
-) acts similarly to nitrate, and the two are often considered together, although nitrite is 

usually present at lower concentrations. Ammonium (NH4
+) is significantly less mobile in 

groundwater due to its ability to sorb to clays and other cation exchangers in aquifers; it is also 

much less prevalent in groundwater than nitrate, due in part to its oxidation to nitrate in aerobic 

conditions via nitrification and its conversion to atmospheric dinitrogen (N2) gas in anoxic 

conditions via microbial oxidation (Lewandowski et al., 2015). Dissolved organic nitrogen, 
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understudied and not well understood, may come from some combination of natural and 

anthropogenic sources in relatively high concentrations (Kroeger et al., 2006; Lewandowski et 

al., 2015). Some studies suggest that dissolved organic carbon, of which dissolved organic 

nitrogen is a type, experiences substantial losses in the vadose zone due to mineralization, 

sorption, and microbial transformation (Cronan and Aiken, 1985; Pabich et al., 2001). Although 

it is suspected that dissolved organic nitrogen plays a larger role than previously thought in 

lacustrine nutrient budgets, nitrate present in oxic aquifers is generally of the greatest concern 

due to its high mobility. 

 The temporary removal of phosphorus from groundwater by sorption leaves significant 

legacy phosphorus mass in the system, while the high mobility of nitrate is typically thought to 

leave little nitrogen remaining in subsurface storage (Sharpley et al., 2013; Robinson, 2015; King 

et al., 2017; Van Meter et al., 2021). Evidence of phosphorus accumulation in the subsurface can 

be found in many studies, such as Muenich et al. (2016), King et al. (2017), Robertson et al. 

(2019b), and Van Meter et al. (2021). However, nitrogen accumulation in the subsurface is more 

contested in literature. Some sources disregard nitrogen accumulation, often using the mobility 

and dominance of nitrate to contrast with phosphorus. For example, King et al. (2017) shows 

evidence of nitrate flushing in the Maumee and Portage Rivers to contrast it with dissolved 

reactive phosphorus concentrations, which have little to no trend. Van Meter et al. (2016), 

however, argues that accumulation of organic nitrogen in the soil constitutes a major portion of 

the ‘missing’ nitrogen component observed in nitrogen mass balance analyses. Wang et al. 

(2013, 2016) also predict delays in nitrogen delivery due to subsurface storage. 
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4. Methods 

The purpose of this review is to analyze previous efforts to model nutrient transport in the 

Lake Erie Basin with a focus on the Maumee River Watershed. I will assess the modeled efforts 

to explain the cause of lake re-eutrophication, especially models created for the Maumee River 

Watershed, and detail knowledge gaps in the literature to provide a foundation for future 

research and nutrient management. Emphasis is placed on the inclusion of groundwater in 

hydrologic models, shown in preliminary literature review to be highly understudied. To guide 

these objectives, I pose several questions: Which nutrient reduction strategies are likely to be 

most effective in the future? What gaps exist in the current modeling literature surrounding 

nutrient loads to Lake Erie? Has groundwater been well-characterized and simulated in Lake 

Erie nutrient modeling?  

 To answer these questions, literature was found through Web of Knowledge. Relevant 

articles were found by searching key words including “Lake Erie”, “Maumee”, “model”, 

“nutrient”, “phosphorus”, “nitrogen”, “nitrate”, “groundwater” and “surface water” in various 

combinations. Literature was analyzed in two phases. First, the literature was examined for any 

quantitative hydrologic nutrient model within the Lake Erie Basin. Each article was individually 

assessed for its relevance, and articles that did not use modeling or that did not quantitatively 

assess nutrient loading to the lake were excluded from study. The remaining papers were then 

individually examined to determine study area, model type, nutrient studied, and conclusions. I 

compiled the articles, placing particular emphasis on quantitative conclusions of the paper, for 

example estimated loading rates and relative loading proportions or changes. For the second 

phase, I quantitatively analyzed the number of existing groundwater models of the Maumee with 

searches for “Maumee” and “model” with “nutrient”, “phosphorus”, or “nitrogen” in Web of 
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Knowledge by topic. Resulting papers were not filtered for relevance; all resulting articles were 

considered. I then searched the resulting papers for the words “groundwater” (as well as its 

variations, including “ground water” and “ground-water”), “baseflow”, and “aquifer” to evaluate 

their relevance to groundwater. I individually assessed each paper containing these keywords to 

determine if a hydrologic model was built of the area. The models were also assessed to 

determine if they successfully accounted for groundwater. For the sake of brevity and the 

avoidance of repetition, models of the same type (e.g., Soil and Water Assessment Tool or 

SWAT) were considered together. 

5. Results 

5.1 Lake Erie Basin 

Of the 83 articles identified from the Web of Knowledge search on nutrient models in the 

Lake Erie Basin, 24 were deemed relevant to the topic at hand and analyzed for the study 

(Appendix). A large number of these studies examined part or all of the Maumee River 

watershed (Table 1.1). The most common nutrients modeled in the literature, in descending 

order, were total phosphorus, soluble reactive phosphorus, total nitrogen, and nitrate/nitrite 

(Table 1.2). Most articles focused on surface water or surface runoff of nutrients, while only 5 

articles primarily examined subsurface processes, such as legacy nutrient accumulation in soil 

and septic systems as a nutrient source. Commonly studied topics included agricultural 

management and best management practices (BMPs) (10 articles), responses of nutrient loading 

to climate change (5 articles), and nutrient source attribution (4 articles). 
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Table 1.1. Study locations in literature 

review.  Number and proportion of studies 

examined in each location. Some articles 

studied more than one watershed, so the total 

number of studies examined here is not 

equivalent to the sum of the total studies shown 

below. Most studies examined all or part of the 

Maumee River watershed. 

  

Watershed/location 
# of 

studies 

% of 

studies 

All of Lake Erie 1 4.2 

All of western Lake Erie 

basin 

1 4.2 

All or large part of 

Canadian Lake Erie basin 

3 12.5 

All of Michigan lower 

peninsula 

1 4.2 

Maumee watershed 9 37.5 

Grand watershed 3 12.5 

St. Clair-Detroit 

watershed 

4 16.7 

Sandusky watershed 4 16.7 

Raisin watershed 1 4.2 
 

Table 1.2. Nutrient forms in literature 

review.  Number and proportion of 

studies examining each nutrient form. 

Some articles studied more than one 

nutrient form, so the total number of 

studies examined here is not equivalent 

to the sum of the total studies shown 

below. Most studies modeled total 

phosphorus. 

  

Nutrient form 
# of 

studies 

% of 

studies 

Total P (TP) 17 70.8 

Total soluble P 

(TDP, SP) 

3 12.5 

Soluble reactive P 

(SRP, DRP, PO4) 

14 58.3 

Particulate P 1 4.2 

Total N (TN) 10 41.7 

Total soluble N 

(TDN, SN) 

2 8.3 

Dissolved organic N 2 8.3 

Total organic N 1 4.2 

Dissolved 

inorganic N 

1 4.2 

Ammonia (NH3) 2 8.3 

Nitrate/nitrite 

(NO3/NO2) 

6 25 

 

 

Articles that examined BMPs and agricultural management revealed a few common 

themes. On both a field-scale and watershed-scale, tile drains consistently increased nutrient 

loading in both nitrogen and phosphorus, and in many cases had higher nutrient loads than 

surface runoff (Nelson et al., 2018; Guo et al., 2020; Apostel et al., 2021). The only exception to 

this was Apostel et al. (2021), which predicted that field-scale total phosphorus and dissolved 

reactive phosphorus would have lower loads in tile drains than in surface runoff. However, Guo 

et al. (2020) found that tile drains transported higher dissolved reactive phosphorus loads than 

surface runoff. No-till farming techniques, despite their reputed advantages, were also generally 
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found to increase nutrient loads (Forster et al., 2000; Daloğlu et al., 2012; Wang and Boegman, 

2021). These increases were independent of nutrient type and spatial scale. However, the effects 

were dependent on the pathway examined. Forster et al. (2000) found increased nitrate in runoff 

under no-till farming scenarios, but decreased organic nitrogen and decreased total phosphorus in 

soil. Increases in nitrate for this study were minimal, 5-14%, compared to decreases in soil 

organic nitrogen and total phosphorus (44-47% and 45-46% respectively). Daloğlu et al. (2012) 

found increases in dissolved reactive phosphorus loads from the Sandusky watershed to Lake 

Erie under no-till scenarios ranging from 20-25%, while conventional tillage led to decreases of 

5-20% compared to baseline. Wang and Boegman (2021) found more conservative changes, with 

an increase of 2.5% in total phosphorus loads and a decrease of 1.54% in phosphate loads. The 

most effective BMPs in the mitigation of nutrient loading, outside of the avoidance of tile drains 

and no-till agriculture, tended to include cover crops and filter strips (Merriman et al., 2018; 

Dagnew et al., 2019; Igras and Creed, 2020; Wang and Boegman, 2021). Improvements in 

nutrient loads necessarily depended on percent implementation, with higher adoption rates 

achieving lower loads, and implementation location, with implementation in high source areas 

being most effective (Merriman et al., 2018; Dagnew et al., 2019; Igras and Creed, 2020; Wang 

and Boegman, 2021).  

 Modeled responses of nutrient loads to future climate change were highly variable, both 

within and between studies (Culbertson et al., 2016; Wallace et al., 2017; Mehan et al., 2019; 

Kujawa et al., 2020; Wang et al., 2021). All nutrient forms examined by these studies were 

predicted to both increase in some models and decrease in some models. In the Maumee River 

watershed, soluble phosphorus loads are predicted by some to decrease by as much as 25% by 

the end of the century (Wallace et al., 2017), but by others to increase by up to 42% (Culbertson 
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et al., 2016; Kujawa et al., 2020). Mehan et al. (2019) provides a range of estimates for soluble 

phosphorus loads in the Maumee River watershed by the end of the century, varying between a 

decrease of up to 60% to an increase of up to 75%. Phosphorus delivered via tile drains seems to 

have some consistency, with models from Mehan et al. (2019) and Wang et al. (2021) both 

predicting a decrease in soluble phosphorus tile loads (35-60% decrease and 22% decrease 

predicted respectively). Nitrogen predictions are inconclusive, with most predictions near a net 

zero change or with extremely large changes. Models from Wallace et al. (2017) predict no 

significant change in soluble nitrogen, while models from Mehan et al. (2019) predict a decrease 

in nitrate tile loads ranging from 25-75% and an increase in surface runoff nitrate loads ranging 

from 50-100% by the end of the century. In terms of total nitrogen loads, Wallace et al. (2017) 

predicts a range from no significant change to an increase of 20%, while similarly Kujawa et al. 

(2020) predicts a decrease of 1%, with estimates ranging from a decrease of 31% to an increase 

of 22%.  

 Nutrient source attribution studies examined a range of areas, sources, and topics, with 

results being largely incomparable (Luscz et al., 2015; Jarvie et al., 2017; Hu et al., 2019; Liu et 

al., 2021). However, some overlaps in the results can be found despite differences in study area. 

Findings tended to show that agricultural land uses generally contributed the highest nutrient 

loads to the areas studied (Luscz et al., 2015; Liu et al., 2021). Liu et al. (2021) found that 

agricultural sources, namely manure and inorganic fertilizer, contributed the highest amount of 

nitrogen to the Grand River watershed (about 23% and 25% respectively), followed by biological 

fixation (about 35%), atmospheric deposition (about 11%), and domestic waste (about 6%). 

Similarly, Luscz et al. (2015) found both the highest loading rates and highest nutrient 

contributions from agriculture in the lower peninsula of Michigan. However, Luscz et al. (2015) 
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found higher contributed proportions for agriculture than Liu et al. (2021), totaling about 60% 

for nitrogen (43% and 17% for chemical fertilizer and manure respectively) and about 87% for 

phosphorus (59% and 28% for chemical fertilizer and manure respectively. Outside of 

atmospheric deposition of nitrogen (about 33%), all other contributions were about 5% or lower. 

Loading rates from agricultural land uses for both total nitrogen (118 kg per hectare per year) 

and total phosphorus (17 kg per hectare per year) were over three times higher than the next 

highest land use loading rates, found in pastureland (36 kg per hectare per year for total nitrogen 

and 4 kg per hectare per year for total phosphorus) (Luscz et al., 2015). Urban loading rates were 

next highest (31 and 2 kg per hectare per year for total nitrogen and total phosphorus 

respectively), followed by the lowest rates in unmanaged land (17 and 0.2 kg per hectare per year 

for total nitrogen and total phosphorus respectively; Luscz et al., 2015). Hu et al. (2019) studied 

the urban St. Clair-Detroit River watershed, examining urban nutrient load proportions and load 

proportions to the Detroit River. In urban land uses, the Detroit wastewater treatment plant was 

by far the largest source of total phosphorus loads, making up 56% of total loads (Hu et al., 

2019). This was followed by other point sources, contributing 25%; runoff, contributing 10%; 

and combined sewer overflows, contributing 9% (Hu et al., 2019). More generally, Jarvie et al. 

(2017) investigated the cause of the rapid increase in soluble reactive phosphorus loads in 2002 

from the Sandusky, Raisin, and Maumee River watersheds. Jarvie et al. (2017) determined that 

the primary driver of this stepwise increase was increased soluble reactive phosphorus delivery 

from sources, with about 65% of the load increase sourced in delivery and only about 35% from 

increased runoff volumes.  

 Some other articles focused on subsurface nutrient sources (Oldfield et al., 2020; Van 

Meter et al., 2021; Rakhimbekova et al., 2021), while one model was designed to predict nutrient 
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loads (Thomas et al., 2018) and one quantified the amount of nutrients excreted by invasive 

mussels (Zhang et al., 2008). Oldfield et al. (2020) and Rakhimbekova et al. (2021) quantified 

the impact of septic systems on the Canadian side of the Lake Erie basin. Oldfield et al. (2020) 

determined that septic systems contribute about 1.7-2.3% of total phosphorus loads to the lake 

from Canada and predict future increases, but these estimates have a relatively large degree of 

error. Rakhimbekova et al. (2021) expand on this research to look at only septic systems near the 

shoreline, estimating that septic systems within 100 meters of the Lake Erie shoreline contribute 

up to 17 metric tons per year of phosphorus and 110 metric tons per year of nitrogen. Instead of 

examining a particular source, Van Meter et al. (2021) focused on the fate of phosphorus in the 

subsurface as accumulated legacy phosphorus. Since 1900, Van Meter et al. (2021) estimates that 

about 95.5% of net phosphorus inputs to the Grand River watershed have been retained in the 

subsurface, leaving about 4.5% to be exported to downstream waters. Of the phosphorus 

accumulated in the landscape, about 40% is in the form of soil organic phosphorus, 30% is 

strongly sorbed in soil, 19% is weakly sorbed, 6% is in reservoirs and riparian zones, 5% is in 

landfills, and less than 1% has accumulated in groundwater (Van Meter et al., 2021).  

Outside of the subsurface, Thomas et al. (2018) modeled land use descriptors as predictor 

variables for various nutrient forms. Thomas et al. (2018) found that wastewater treatment plant 

population density was the most common best predictor (for dissolved organic nitrogen, 

dissolved Kjeldahl nitrogen, soluble reactive phosphorus, and total phosphorus), followed by the 

percent of pervious surfaces in the headwaters (for total dissolved nitrogen and total nitrogen). 

Top predictors for other nutrient forms were percent of impervious surfaces within the watershed 

(for ammonia), percent of forage cropland in the entire stream buffer (for nitrate/nitrite), and 

percent of forage cropland in the stream buffer within 600 meters upstream of the water quality 
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sampling sites (for dissolved phosphorus). Zhang et al. (2008) modeled dreissenid mussel 

excretion, a source within the lake itself which was not included by any other article examined in 

this study. Zhang et al. (2008) found that significant portions of the total phosphorus and 

nitrogen measured in the water column were excreted daily by dreissenid mussels in the western 

Lake Erie basin, ranging from 19.4% to 55.5% for total phosphorus and from 11.8% to 14.6% 

for total nitrogen. Proportions remained under 5% for the central and eastern basins (Zhang et al., 

2008). 

5.2 Maumee River Watershed 

In this literature review of nutrient models in the Maumee River Watershed, 59 were 

found using the keywords “Maumee” and “model” with “nutrient”, “phosphorus”, or “nitrogen”. 

Of the 59 resulting articles, only 20 mentioned any of the groundwater-relevant keywords. Of 

those 20, four had mentions only within the citations, 14 had one to four mentions, and two had 5 

or more mentions of the groundwater-relevant keywords (Figure 1.1). Of the 20 articles which 

mention key words, eight used one model type, the Soil and Water Assessment Tool (SWAT) 

(Bosch et al., 2011; Verma et al., 2015; Cousino et al., 2015; Culbertson et al., 2016; Merriman 

et al., 2018; Arhonditsis et al., 2019; Liu et al., 2019; Kujawa et al., 2020); six used statistical 

models (including one article with 5 or more mentions) (Sinsabaugh et al., 1997; Stow et al., 

2015; Zhang et al., 2016; Sharma et al., 2018; Choquette et al., 2019; Fang et al., 2019); three 

used other hydrologic models distinct from SWAT, either surface water models (Yuan et al., 

2011; Liu et al., 2017) or crop models (Gunn et al., 2018); and three did not utilize a model, 

including one article with five or more mentions (Calhoun et al., 2002; Sinsabaugh and Shah, 

2010; River and Richardson, 2019). 
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Figure 1.1. Groundwater relevance of Maumee nutrient modeling studies. Sankey 

diagram showing how many times Maumee nutrient modeling articles mention groundwater-

relevant keywords and what type of models were used. Articles were found through Web of 

Knowledge. Created using sankeymatic.com. 
 

The relatively small number of articles with significant mentions of groundwater-relevant 

keywords indicate that the majority of previous studies focus on surface water nutrient transport, 

mentioning groundwater only in passing if at all (e.g., Bosch et al., 2011; Baker et al., 2014; 

Kane et al., 2014; Stow et al., 2015; Cousino et al., 2015; Culbertson et al., 2016; Maccoux et al., 

2016; Verhamme et al., 2016; King et al., 2017; Newell et al., 2019; Kujawa et al., 2020). This 

suggests that in studies based in the Maumee, groundwater is generally disregarded as a nutrient 
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transport pathway. The large majority of known studies that use modeling to examine nutrient 

transport in and from the Maumee River Basin, except Verhamme et al. (2016), Robertson and 

Saad (2011), Robertson et al. (2019a), and Liu et al. (2017), utilize the Soil and Water 

Assessment Tool (SWAT) for modeling (e.g., Bosch et al., 2011; Verma et al., 2015; Cousino et 

al., 2015; Culbertson et al., 2016; Merriman et al., 2018; Arhonditsis et al., 2019; Liu et al., 

2019; Kujawa et al., 2020). Arhonditsis et al. (2019) claim that over 70% of Lake Erie watershed 

modelling studies use SWAT.  

While it is a powerful tool for simulating surface processes, SWAT’s treatment of 

groundwater is simplistic and highly limited (Shao et al., 2019; Molina-Navarro et al., 2019). 

The SWAT model is divided into a series of individual Hydrologic Response Units, each of 

which has lumped parameters and effective no-flow groundwater boundaries. The use of a 

lumped parameter model prevents the characterization of intermixing and assumes constant 

groundwater travel times within each Hydrologic Response Unit. SWAT uses a linear reservoir 

model to characterize groundwater flow, which means that the relationship between change in 

storage and discharge is assumed to be constant (Neitsch et al., 2011). This simplistic assumption 

is violated anytime the storage-discharge relationship constant changes in the system, causing the 

groundwater portion of the model to fail. This constant must also be calibrated for each 

Hydrologic Response Unit based on the surface runoff response rather than true groundwater 

storage, and thus the model is unable to output groundwater head. The combination of lumped 

parameter modeling and linear reservoir modeling leads to a conflict in model resolution and 

accuracy. Models with higher ‘resolution’, or smaller Hydrologic Response Units, can more 

finely characterize spatial variability, but also tend to have less accuracy and reliability in 

groundwater results due to there being less points per Hydrologic Response Unit used to 
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calibrate the storage-discharge relationship constant. Additionally, SWAT treats groundwater as 

two layers with lumped parameters: an unconfined shallow aquifer layer and a confined deep 

aquifer layer (Neitsch et al., 2011; Shao et al., 2019; Molina-Navarro et al., 2019). Water is 

permitted to flow from the unconfined layer into the confined layer, but is not permitted to flow 

back out and is assumed to discharge somewhere outside of the modeled area (Neitsch et al., 

2011; Shao et al., 2019). Consequently, SWAT is unable to accurately characterize relationships 

between surface water and groundwater in areas with high groundwater contributions, such as 

the Maumee River watershed (Shao et al., 2019; Molina-Navarro et al., 2019). This leads to 

underestimation of groundwater flow and, accordingly, groundwater nutrient contributions (Shao 

et al., 2019).  

Other models used to characterize the Maumee River watershed are the Spatially 

Referenced Regression on Watershed Attributes (SPARROW) model (Robertson and Saad, 

2011; Robertson et al., 2019a), the Western Lake Erie Ecosystem Model (WLEEM) (Verhamme 

et al., 2016), and the Long-Term Hydrologic Impact Assessment-Low Impact Development (L-

THIA-LID) model (Liu et al., 2017). Again, although powerful, these models are unable to 

characterize the complexities of groundwater flow. SPARROW is a surface water model, 

focusing on the transport of nutrients in streams, rivers, and lakes, which by nature does not 

include a groundwater modeling component (Robertson and Saad, 2011; Robertson et al., 

2019a). The WLEEM model developed by Verhamme et al. (2016) couples four individual sub-

models to create a surface sediment transport model, able to link algal biomass to nutrient 

influxes. However, like SPARROW, the model does not incorporate a groundwater flow 

component. The L-THIA-LID model used in Liu et al. (2017), like the others, is a surface water 

model that does not characterize groundwater interaction. The models that have been utilized in 
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the Maumee River watershed to date are insufficient to understand groundwater’s contribution to 

Lake Erie nutrient inflows. 

Those studies on nutrient transport in the Maumee River watershed that do not utilize 

hydrologic modeling, primarily using direct measurements/observations, mass balance 

approaches, or geochemical analyses, also largely overlook the groundwater component (e.g., 

Baker et al., 2014; Kane et al., 2014; Stow et al., 2015; Maccoux et al., 2016; King et al., 2017; 

River and Richardson, 2019; Newell et al., 2019). Broadly, these studies focus on nutrient 

bioavailability and surficial input of nutrients to Lake Erie, aiming to characterize nutrient 

transport trends and describe how chemical form affects bioavailability. However, neglected 

groundwater-surface water interactions have a significant effect on trends and complicate 

bioavailability, adding additional layers of complexity to an already intricate system. Without 

this groundwater component, a major piece of the system is missing, leaving emergent properties 

to remain unseen. The only study found which examines groundwater transport of nutrients in 

the Maumee River watershed considers the whole Great Lakes Basin and does not estimate 

nutrient loads from the watershed (Knights et al., 2017). Knights et al. (2017) uses a water 

budget approach to estimate groundwater discharge, validated by field measurements 12 km 

away from the point at which the Maumee River discharges into the lake, and land use data to 

assess vulnerability to nutrient loading via groundwater. Modeling can be used to estimate 

missing groundwater nutrient loads, in addition to assessing lag times associated with legacy 

nutrient build-up in the subsurface. 

 Studies in other areas have found groundwater to be a significant component of nutrient 

transport to lakes (Brock et al., 1982; Nakayama and Watanabe, 2008; Lewandowski et al., 2015; 

Meinikmann et al., 2015; Schilling et al., 2016), so it is reasonable to assume that significant 
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groundwater nutrient transport to Lake Erie is possible. Schilling et al. (2016) used land cover, 

groundwater quality measurements, and mass balance equations to estimate groundwater loading 

of nitrate and phosphorus to West Lake Okoboji in Iowa, concluding that groundwater could be 

responsible for as much as 80% of total nitrate in the lake and 10% of phosphorus in the lake. 

Meinikmann et al. (2015) used direct phosphorus measurements and previously acquired volume 

fluxes to assess groundwater phosphorus fluxes to Lake Arendsee, Germany, concluding that 

lacustrine groundwater discharge could provide more than 50% of overall external phosphorus 

loads. Lewandowski et al. (2015) review groundwater nutrient transport to lakes, detailing why 

groundwater is traditionally disregarded in nutrient budgets, factors affecting nutrient transport in 

groundwater, and how groundwater can be an important contributor in lake nutrient budgets. 

Nakayama and Watanabe (2008) build a process-based model, incorporating interactions 

between surface water and groundwater, which showed that groundwater is an important source 

of nutrients in the eutrophication of Lake Kasumigaura in Japan. Early studies also recognize the 

importance of groundwater, such as Brock et al. (1982). This study quantified groundwater 

nutrient flux into Lake Mendota, Wisconsin using direct measurements and concluded that 

groundwater is a significant source of nutrient loading to the lake, especially for phosphorus. 

These studies refute notions that groundwater cannot be a significant source of both phosphorus 

and nitrogen to freshwater lakes. 

6. Discussion 

Lake Erie nutrient inputs are extensively studied and modeled. However, most of these 

studies focus on individual watersheds within the Lake Erie basin rather than the basin as a 

whole. The Maumee River is generally reported as delivering the highest nutrient loads to Lake 

Erie, and as such is often considered to be a primary driver of eutrophication; this explains its 
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prevalence in Lake Erie nutrient models (e.g., Robertson and Saad, 2011; Baker et al., 2014; 

Kane et al., 2014; Maccoux et al., 2016; Robertson et al., 2019a). In addition, most models 

tended to focus on surface nutrient loading, despite the demonstrated importance of groundwater 

nutrient delivery in other lacustrine settings (e.g., Brock et al., 1982; Nakayama and Watanabe, 

2008; Lewandowski et al., 2015; Meinikmann et al., 2015; Schilling et al., 2016). The most 

common incorporation of subsurface nutrient transport was in the SWAT model. In the Maumee 

River Watershed, SWAT modeling is insufficient to accurately characterize the contributions of 

groundwater, both direct and indirect (Shao et al., 2019; Molina-Navarro et al., 2019). Of those 

articles that did model subsurface nutrient transport, none quantified the indirect contribution of 

nutrients from groundwater via baseflow or tile drains. Although many studies stressed the 

importance of tile drains, this importance was almost never placed in context of groundwater. In 

addition, legacy nutrient storage remains highly understudied, despite nearly 96% of phosphorus 

inputs and 30% of nitrogen inputs ultimately ending up stored in the subsurface (Van Meter et 

al., 2021; Liu et al., 2021).  

The accumulation of legacy nutrients in the subsurface presents a significant setback for 

efforts to reduce nutrient loading to surface water. The presence of legacy nutrients can lead to a 

lag time between land use changes (e.g., changes in farming practices) and observable effects in 

nutrient loads, compounded by already increased travel times in groundwater (Meals et al., 2010; 

Wang et al., 2013, 2016; Muenich et al., 2016; Van Meter et al., 2016, 2018, 2021; Vero et al., 

2018; Martin et al., 2021; Liu et al., 2021). Muenich et al. (2016) used the SWAT model to 

estimate that even after total cessation of fertilizer use, DRP loads in the Maumee River 

watershed would take three to five years to reach target loads for spring in average weather 

conditions, and total phosphorus would take even longer. In the Grand River watershed, Liu et 
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al. (2021) estimated mean travel times for legacy nitrogen in the subsurface ranging from 5 to 34 

years. In the Mississippi River Basin, Van Meter et al. (2016) also estimate long residence times 

and biogeochemical lag times for nitrogen in the subsurface, especially in the form of soil 

organic nitrogen. If discounted in management plans, these lag times can lead to substantial 

demotivation in nutrient load reduction efforts, which severely harms chances that harmful algal 

bloom biomass will decrease. 

 Agricultural studies examining the most effective BMPs for reducing nutrient loads were 

very common for the agricultural Lake Erie basin. Studies generally found that tile drains 

increase nutrient loads to the lake, likely due to the immediate export pathway opened up in tile 

drains (Nelson et al., 2018; Guo et al., 2020; Apostel et al., 2021). Instead of allowing nutrient-

laden soil water to infiltrate downwards, encountering attenuation pathways via sorption, 

mineralization, microbial metabolism, denitrification, etc., the water and nutrients enter the tile 

drains and are carried directly to surface water bodies, where nutrient export to the lake is much 

faster. No-till farming also tended to increase nutrient loads, but overall conclusions were mixed 

(Forster et al., 2000; Daloğlu et al., 2012; Wang and Boegman, 2021). No-till farming, compared 

to conventional tillage, neglects to incorporate fertilizer into the soil and leaves a crop residue on 

the soil surface, which reduces soil erosion. Soil stratification leads to a buildup of nutrients at 

the surface, resulting in increased nutrient loads in runoff (Forster et al., 2000; Daloğlu et al., 

2012; Wang and Boegman, 2021). The most effective BMPs were cover crops and filter strips 

(Merriman et al., 2018; Dagnew et al., 2019; Igras and Creed, 2020; Wang and Boegman, 2021). 

Filter strips are a buffer of grass or other vegetation surrounding either the source fields or the 

destination waterbody, and act to reduce runoff velocity and promote infiltration and nutrient 

uptake. Cover crops are planted on fields in the off-season to reduce soil erosion and increase 
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plant uptake of residual nutrients in the soil. However, these proposed solutions are present only 

for surface sources and transport pathways, ignoring groundwater and legacy nutrients.  

Overall, the prediction of changes in nutrient loads due to climate change proves to be 

difficult using most available models, which provide highly variable and inconsistent results. 

Future nutrient loading under changing climatic conditions is highly dependent on outside 

variables, which are in turn reliant on the future decisions of stakeholders. The rate of fertilizer 

application and use of BMPs was highly influential in the Culbertson et al. (2016) models, while 

other models did not attempt to predict future changes in nutrient sourcing (Wallace et al., 2017; 

Mehan et al., 2019; Kujawa et al., 2020; Wang et al., 2021). Kujawa et al. (2020) determined that 

the primary source of uncertainty in nitrogen modeling came from the climate model, while the 

primary source of uncertainty in phosphorus modeling was the hydrologic model. 

Hydrologically, phosphorus pathway partitioning and subsurface phosphorus sorption/desorption 

are difficult to model and highly dependent on initial conditions, such as soil phosphorus 

concentrations, which are challenging to obtain sufficient measurements for (Kujawa et al., 

2020). Nitrogen transport, on the other hand, is dependent largely on its form, which is in turn 

determined by redox reactions and climatic conditions, such as O2 and CO2 availability. Despite 

these uncertainties, authors gave several possible explanations for changing nutrient loads with 

climate change. Increased runoff and river discharge can be expected to increase nutrient loads 

delivered to Lake Erie (Culbertson et al., 2016; Wallace et al., 2017; Mehan et al., 2019; Kujawa 

et al., 2020; Wang et al., 2021), as has been seen in previous decades (Jarvie et al., 2017). 

However, Culbertson et al. (2016) and Wang et al. (2021) predict lower nutrient loads due to 

increased plant uptake of nutrients from a longer growing season, decreased plant temperature 

stress, and increased radiation-use efficiency from increased CO2 concentrations.  
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 Determining the source of nutrients in the landscape is essential to mitigate future water 

quality degradation of the Great Lakes. While some increases in nutrient loading are related to 

direct effects of climate change (Culbertson et al., 2016; Wallace et al., 2017; Mehan et al., 2019; 

Kujawa et al., 2020; Wang et al., 2021), the primary driver of increasing nutrient loads is the 

increase of nutrient delivery at the sources (Jarvie et al., 2017). By concentrating efforts to 

reduce nutrient loading in high-source areas, we can greatly increase the likelihood of reaching 

nutrient loading targets (Dagnew et al., 2019; Wang and Boegman, 2021). Modeling studies 

conclusively find that agricultural sources, especially the application of fertilizer, are the primary 

source of nutrients in the Lake Erie basin (Luscz et al., 2015; Liu et al., 2021).  

Further research is necessary to determine the optimal amount of fertilizer necessary for 

crop growth. Ideally, a tool should be developed and distributed to farmers to advise them on 

how much fertilizer is necessary and to discourage overapplication, accounting for subsurface 

legacy nutrients. In urban areas, nutrient loading can be decreased by focusing efforts on 

wastewater effluent. The largest proportion of nutrients in urban areas comes from point sources, 

especially wastewater treatment plants (Hu et al., 2019). With better management of effluent 

before it is discharged into surface waters, the urban nutrient footprint can be greatly reduced. In 

addition, the use of green infrastructure and the reduction of impervious surface area in urban 

areas can reduce the amount of nutrient-laden runoff entering surface waters (Thomas et al., 

2018). However, nutrient sources within the lake itself should not be neglected. Invasive 

dreissenid mussels, introduced in the late 1980s to early 1990s, excrete significant amounts of 

ammonia and phosphate into Lake Erie (Zhang et al., 2008). While mussel grazing of algae 

slightly decreases algal biomass, the excretion of nutrients more than compensates, leading to a 

net increase of algal biomass due to the presence of the mussels (Zhang et al., 2008). 
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7. Conclusions 

This chapter compared the results of a variety of nutrient models within the Lake Erie 

basin, especially within the Maumee River Watershed. Nutrient reduction efforts within the basin 

are necessary to mitigate eutrophication of the lake, which causes harmful algal blooms and 

leads to lake water hypoxia and the release of toxic microcystin to the water. Models generally 

agree that agricultural areas are the primary source of nutrients, and that the use of no-till 

farming and tile drains exacerbates nutrient loading. Cover crops and filter strips are 

recommended as best management practices to reduce loads, focusing efforts on high-source 

areas and encouraging high adoption rates. However, these recommendations from the literature 

are only surface solutions, which would have little to no impact on legacy nutrients already 

present in the subsurface. Legacy nutrient accumulation in the subsurface and dreissenid mussel 

excretion should be considered when setting future nutrient reduction targets, as both will slow 

and diminish the effects of nutrient load reduction. Predicting future changes in nutrient loading 

due to climate change is highly uncertain, with hydrologic modeling driving uncertainty in 

phosphorus loading and climate modeling driving uncertainty in nitrogen modeling. Efforts 

should be made to improve both hydrologic and climate models to take the inevitable effects of 

climate change into account when planning nutrient reduction strategies and targets. In addition, 

modeling of the entire Lake Erie basin is lacking; future research should study the basin as a 

whole to examine emergent behavior. However, it is also clear that the Maumee River 

Watershed, as the highest tributary contributor of nutrients to the lake, should be the priority 

watershed studied in the basin. Subsurface processes are also understudied, with groundwater 

seldom modeled. No models were found that explicitly simulate groundwater flow and nutrient 
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transport in the Lake Erie basin. The role of groundwater, especially in its interactions with tile 

drains, should be another target for future studies. 
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CHAPTER 2:  
QUANTIFYING THE HIDDEN COMPONENT OF NUTRIENT BUDGETS: MODELING 

GROUNDWATER N AND P LEGACIES IN A MAJOR LAKE ERIE WATERSHED 

1. Abstract 

The Maumee River watershed is the largest source of nutrients to Lake Erie and is a 

primary driver of harmful algal blooms in the lake. Surficial transport of nutrients in the 

watershed has been extensively studied, but little is known about the role of groundwater in this 

system. More widely, the interactions of groundwater nutrient transport with tile drainage are not 

well characterized or modeled in the literature. To assess the importance of nutrients in 

groundwater, we built a spatially explicit, process-based groundwater and nutrient transport 

model using MODFLOW and MT3D. We also incorporate a surrogate model to simulate the 

farm-scale behavior of tile drainage within the larger model. Results show that 1.5–4.3% of total 

phosphorus and nitrogen loads from the Maumee River watershed can be attributed to 

groundwater, with most of these loads being delivered as baseflow to streams (50–66%) or via 

tile drains (34–48%). If we assume all phosphorus loading from groundwater is in the form of 

soluble reactive phosphorus (SRP), as much as 18% of SRP loads from the watershed may be 

attributable to groundwater. Simulations indicate that 264 km2 (1.4%) of the study area exceeds 

nitrogen concentration limits set by the World Health Organization, putting groundwater-reliant 

communities at risk. If nutrient leaching to groundwater were to stop today, except from 

atmospheric deposition, 82–99% of today’s groundwater loads would likely continue loading 

100 years into the future due to the compounding effects of long groundwater travel times and 

biogeochemical legacies. By quantifying the contributions of groundwater, often unintentionally 

hidden in nutrient source studies as nonpoint or tributary sources, we can inform nutrient 

management decisions with realistic expectations for future loads. 
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2. Introduction 

 Eutrophication is a major threat to fresh and coastal waters and can lead to serious 

consequences to human health, natural ecosystems, and industry. For decades, nations across the 

world have recognized the effects of eutrophication and harmful algal blooms, ranging from 

deoxygenation and dead zones to toxin release and drinking water contamination, and made 

efforts to reduce anthropogenic nutrient loading (Nolan and Hitt, 2006; Paerl and Otten, 2013; 

Watson et al., 2016; Wurtsbaugh et al., 2019). Despite these attempts, many locations still 

experience severe eutrophication (Nakayama and Watanabe, 2008; Dobiesz et al., 2010; Kane et 

al., 2014; Watson et al., 2016; Van Meter et al., 2018; Murray et al., 2019), and nutrient loads in 

some areas still trend upwards (Oelsner and Stets, 2019). Part of the reason for this continued 

degradation of global waters may be related to the overlooked role of nutrient loading from 

groundwater (Holman et al., 2008; Lewandowski et al., 2015; McDowell et al., 2015; 

Rosenberry et al., 2015; Robinson, 2015; Brookfield et al., 2021). Solutions to quantifying the 

importance of groundwater in the nutrient cycle remain incomplete, with considerable gaps in 

knowledge surrounding modeling and legacy nutrient stores (Lewandowski et al., 2015; 

Robinson, 2015; Brookfield et al., 2021).  

Several excellent reviews and case studies indicate groundwater can act as a significant 

source of nutrient loading to lakes, major tributaries, and coastal settings (e.g., Brock et al., 1982; 

Belanger et al., 1985; Oberdorfer et al., 1990; Valiela et al., 1990; Hagerthey and Kerfoot, 1998; 

Kang et al., 2005; Holman et al., 2008; Nakayama and Watanabe, 2008; Meinikmann et al., 

2013, 2015; Kidmose et al., 2015; Lewandowski et al., 2015; McDowell et al., 2015; Rosenberry 

et al., 2015; Robinson, 2015; Schilling et al., 2016; Martin et al., 2017; Kazmierczak et al., 2020; 

Förster et al., 2021; Brookfield et al., 2021). However, there is limited work on direct 
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quantification of the importance of groundwater in nutrient transport (Holman et al., 2008; 

Robinson, 2015). The body of literature on groundwater nutrient transport and retention 

primarily uses direct measurement and mass balance approaches to approximate groundwater 

nutrient contribution (e.g., Belanger et al., 1985; Oberdorfer et al., 1990; Hagerthey and Kerfoot, 

1998; Kang et al., 2005; Meinikmann et al., 2013, 2015; Schilling et al., 2016; Kazmierczak et 

al., 2020; Förster et al., 2021). While beneficial and valid, approaches based on direct 

measurements and mass balance rely on extensive data collection, are highly limited in scale, and 

are largely unable to predict nutrient loading under alternative scenarios. Modeling allows the 

flexibility to both quantify groundwater nutrient contributions over large areas and test how 

changes in inputs and land management practices affect nutrient fluxes.  

Groundwater nutrient modeling in lacustrine settings is commonly overlooked in favor of 

surficial modeling. The most common tool to simulate nutrient transport is the Soil and Water 

Assessment Tool (SWAT) (Wei and Bailey, 2021; e.g, Bosch et al., 2011; Verma et al., 2015; 

Cousino et al., 2015; Culbertson et al., 2016; Merriman et al., 2018; Arhonditsis et al., 2019; Liu 

et al., 2019; Kujawa et al., 2020). While SWAT includes groundwater flow in its simulations, 

this portion of the model is limited and underestimates groundwater nutrient contributions 

(Molina-Navarro et al., 2019; Shao et al., 2019). Briefly, SWAT uses a lumped parameter model 

in combination with linear reservoir equations to simulate groundwater flow (Neitsch et al., 

2011). This combination prevents intermixing, assumes constant groundwater travel times within 

lumped units, ignores local variability, and calibrates groundwater storage based on the surface 

response (Molina-Navarro et al., 2019; Shao et al., 2019). In addition, the model cannot output 

groundwater head and assumes that the confined aquifer discharges outside of the model domain. 

Paradoxically, groundwater results for SWAT are less accurate with smaller lumped units due to 
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less calibration points per unit, forcing a compromise between groundwater accuracy and 

resolution. Another model is needed to accurately assess and quantify the role of groundwater in 

nutrient transport and retention.  

Modeling the relationship between groundwater and nutrient transport is complicated by 

the presence of tile drainage and legacy nutrient accumulation in the subsurface. Tile drainage 

reduces groundwater travel times, thereby reducing the amount of time nutrients are exposed to 

subsurface attenuation mechanisms, such as sorption, mineralization, microbial degradation, and 

denitrification (Schilling et al., 2015). Traditional methods for modeling tile drainage in 

groundwater simulations involve setting a high conductance value on the drains, allowing large 

volumes of water to pass quickly out of them. However, this strategy does not reflect farm-scale 

drain behavior, especially local water table mounding between drains. Consequently, the high-

conductance technique can lead to an underestimation of average head in drained cells. In 

addition, models that do not incorporate time-variant nutrient input from previous decades of 

nutrient application may neglect to simulate subsurface nutrient accumulation in the subsurface, 

termed legacy nutrients. Legacy nutrients can act as both a sink and source of nutrients 

depending on sorption gradients. Accurate understanding of modeled tile drain-groundwater 

relationships and the magnitude and timescale of legacy nutrient retention is needed in the 

literature.  

The western Lake Erie basin is an ideal location to simulate groundwater nutrient loading 

due to its history of harmful algal blooms and rich data record (Watson et al., 2016). Lake Erie, 

as part of one of the largest collections of freshwater in the world, is an important resource. 

However, Lake Erie has a long history of biological productivity, exacerbated by large amounts 

of nutrient-rich runoff from intense agricultural activity in its surrounding watershed (Botts and 
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Krushelnicki, 1995). We still fail to consistently meet nutrient reduction targets, such as the 

phosphorus loading target of 11,000 metric tons annually set in 1972 by the Great Lakes Water 

Quality Agreement, exceeded in 2007 and 2011 (Gov'ts of Canada and the U.S.A., 2012; 

Maccoux et al., 2016). Moreover, phosphorus loads do not show a consistent decrease (Stow et 

al., 2015; Maccoux et al., 2016; Oelsner and Stets, 2019), with increases evident in bioavailable 

forms of phosphorus and nitrogen (Kane et al., 2014; Stow et al., 2015; Watson et al., 2016; 

Newell et al., 2019). Given these trends, it comes as no surprise that harmful algal bloom 

frequency and severity show increasing trends (Kane et al., 2014; Watson et al., 2016; Newell et 

al., 2019; Sayers et al., 2019). Discharge from the Maumee River, the highest tributary 

contributor of nutrients to Lake Erie, often drives these eutrophic events (Robertson and Saad, 

2011; Baker et al., 2014; Kane et al., 2014; Cousino et al., 2015; Maccoux et al., 2016).  

Here, we develop a minimally calibrated, spatially explicit, process-based nutrient 

transport and groundwater model using MODFLOW and MT3D to quantify the impact of 

nutrient transport and retention in groundwater on Lake Erie management efforts. Particular 

attention is paid to tile drainage and legacy nutrient accumulation. Our primary objective is to 

quantify groundwater nutrient contributions from the Maumee River watershed to Lake Erie to 

more accurately quantify the magnitude and timescale of these contributions related to nutrient 

load reduction goals. We also assess the magnitude of legacy nutrient accumulation in the 

Maumee River watershed and the role of tile drainage in groundwater nutrient transport. 

3. Methods 

3.1 Site Description 

 The Maumee River watershed, the largest in the Laurentian Great Lakes, is located 

primarily in northwest Ohio, USA, stretching into neighboring states including northeast Indiana 
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and southeast Michigan (Figure 2.1). The Maumee River is the top contributor of nitrogen and 

phosphorus to Lake Erie (Robertson and Saad, 2011; Maccoux et al., 2016; Verhamme et al., 

2016; US EPA, 2018; Newell et al., 2019), providing nearly 50% of total annual phosphorus 

loads to the western basin, about 94% of which is considered to be nonpoint source (Maccoux et 

al., 2016). Phosphorus reduction goals are set at 40% of 2008 loads to the lake, with reductions 

evenly proportioned to each watershed (US EPA, 2018). Algal bloom season in the western Lake 

Erie Basin generally starts in June and ends in October, with blooms usually reaching their 

highest extents in late August and early to mid-September (Wynne and Stumpf, 2015). 

Cyanobacteria in the blooms, primarily the genera Microcystis, Anabaena, and Planktothrix, 

release a toxin called microcystin as well as other cyanotoxins (World Health Organization, 

2011). This nitrogen-rich compound (Chaffin et al., 2014) can cause liver damage and is a 

possible carcinogen (World Health Organization, 2011). Effects of microcystin can propagate 

through the food chain, but human contact with microcystin typically occurs through ingestion of 

affected drinking water, or less commonly through recreational activities in affected waters 

(World Health Organization, 2011). 
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Figure 2.1. Map of the Maumee River Watershed.  The surface watershed is shown in light 

green and the modeled groundwatershed is in darker green. Major cities with over 30,000 people 

are located at the red dots. The Maumee River is shown as the dark blue line, while the light blue 

lines are other major rivers in the surface watershed. 

The watershed is covered primarily by agricultural farmland with a few large urban areas 

(Figure 2.2a), which drive its large nutrient loads. Cropland covers approximately 90% of the 

surface watershed, with the major crop being a corn-soybean rotation (Brown et al., 2020; 

NASS, 2021). Quaternary geology of the Maumee River watershed consists of glacial deposits 

from the Last Glacial Maximum deposited during the Wisconsinan, with fine-grained lacustrine 

deposits dominating the area (Michigan Natural Features Inventory, 1999; Pavey et al., 1999; 

Gray and Walls, 2002). Coarse lacustrine deposits of sand and gravel, glacial outwash, dune 
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sand, glacial till deposits, and peat and muck also cover parts of the watershed (Figure 2.2b). 

Bedrock in the area consists largely of Silurian and Devonian limestone and dolomite deposits, 

with some Silurian through Mississippian shale, sand, and evaporite deposits in the northwest 

and south of the study area (Figure 2.2c). Limestone and dolomite deposits tend to be karstic 

and/or fractured in northwest Ohio and western Indiana, resulting in a highly productive aquifer 

unit (Ohio EPA, 2014). Recharge is estimated to range from 0 to 376 cm per year, with highest 

rates in the Oak Openings region and in upland headwaters. 

 
 

 
 

Figure 2.2. Hydrogeologic characteristics of the Maumee River Watershed.  A) Land 

cover and land use. Most of the watershed is covered by cropland (orange), with some large 

urban areas (red). B) Quaternary geology, deposited primarily during the Wisconsinan 

glaciation. Lacustrine deposits (blue) dominate the watershed, with till in moraine deposits. C) 

Bedrock geology. The watershed largely has a carbonate limestone bedrock, which is highly 

karstic in nature and highly productive as an aquifer. Interbedded deposits of shale cover the 

northwest region. D) Recharge to groundwater averaged over the 2000-2014 time period, in 

meters per year, obtained from the Landscape Hydrology Model (LHM) (Hyndman et al., 

2007). 
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Figure 2.2 (cont’d) 

 

 

   

Before the late 1800s, poor drainage in the watershed combined with post-glacial lake 

formation resulted in a vast wetland known as the Great Black Swamp along the southern side of 

the Maumee River (Kaatz, 1955; Mitsch, 2017). The Great Black Swamp is estimated to have 

had an area of about 4,000 km2, consisting intermittently of forested swamps and marshland 

(Mitsch, 2017). Standing water was present in the swamp nearly constantly, greatly hindering 

travel through the area year-round (Kaatz, 1955). First efforts to drain portions of the swamp 

began in 1823, but did not gain much traction until the late 1800s, when public drainage laws 

were passed in 1859 and utilization of natural clay deposits fueled tile production through the 

1870s (Kaatz, 1955). By 1930, the swamp was nearly totally drained and agricultural production 

rapidly increased to become “the most completely cropped area in the state (Kaatz, 1955, p. 33)”. 

C D 
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3.2 Modeling Methods 

We used the USGS MODFLOW, MODPATH, and MT3D-USGS software to simulate 

saturated groundwater flow and transport in a multi-step process illustrated in Figure 2.3. First, a 

preliminary groundwater model was created to define more robust boundary conditions for the 

regional Maumee River groundwatershed. Then, we created a series of high-resolution flow 

models at the farm-scale to directly simulate agricultural tile drainage. From these, we created a 

statistical surrogate model for tile and county drain conductances that we used in our regional 

model. With this surrogate model embedded, we then calibrated the groundwater recharge and 

hydraulic conductivity values in the model by manually applying a multiplier to model-wide 

recharge, using baseflows as calibration targets, and to hydraulic conductivity zones with a 

substantial head bias. This final calibrated model was used to provide flows for MT3D-USGS. 

Finally, we ran transport simulations for total phosphorus and total nitrogen concentrations and 

loads in groundwater, accounting for phosphorus sorption and legacy inputs. 
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Figure 2.3. Methodology flow diagram.  First, an initial groundwater flow model was created 

using MODFLOW. This was used, in conjunction with MODPATH particle tracking, to 

delineate a groundwatershed of the study area. Next, we created surrogate farm-scale models 

using MODFLOW to simulate county and tile drain conductance, correlating conductances to 

soil hydraulic conductivity. The groundwatershed and conductance equations were then input to 

an updated MODFLOW model of the groundwatershed, which was calibrated using observed 

head and baseflows. Finally, the flow model was used to create an MT3D nutrient model to 

simulate nitrogen and phosphorus concentrations in the domain. 
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3.2.1 Initial groundwater flow model 

Our saturated groundwater model encompassed the groundwatershed of the Maumee 

River, conceptually divided into two geologic layers: a shallow unconsolidated glacial drift 

aquifer, and a deep bedrock aquifer. To delineate the spatial extent of the groundwatershed, we 

created a preliminary model domain by extending the surface watershed out to the next nearest 

major river where possible and connecting them with smaller flow lines in the National 

Hydrography Dataset (Figure 2.4A) (USGS and National Geospatial Program, 2020). A 

preliminary groundwater flow model was created with MODFLOW-2005, a saturated three-

dimensional groundwater flow model developed and maintained by USGS (Harbaugh et al., 

2017). The model was developed using the coding language Python and the package FloPy 

(Bakker et al., 2021), maintained by USGS. Cell size, layer elevations, boundary conditions, 

hydraulic conductivity, and groundwater recharge were set equal to initial model values (see 

Table 2.1 and Recharge estimation and calibration). Agricultural drain tiles and adjacent county 

drainage ditches were simulated using the MODFLOW DRN package with an assumed width 

and sediment thickness, using hydraulic conductivity values from the uppermost cell to estimate 

conductance (see equation 1). 

3.2.2 Defining the groundwatershed 

A groundwatershed is the land area within which aquifers will contribute water to the 

surface watershed, in this case the Maumee River watershed. We used MODPATH (Pollock, 

2017), a post-processing particle-tracking software used in conjunction with MODFLOW, to 

track the ending locations and travel times of 100,000 particles randomly distributed across the 

model domain. The starting locations for each particle whose tracking ended within the surface 

watershed were compiled and included in the groundwatershed. We created and dissolved a 500-
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meter buffer surrounding each starting point to be included, and combined areas covered by 

these buffers and the surface watershed. We then manually smoothed a few irregularities in the 

area, such as thin concavities, to avoid isolated sets of cells. This final estimated 

groundwatershed was used as the final model domain (Figure 2.4A). The travel times for each of 

those particles to reach their ultimate destination is shown in Figure 2.4B and range from less 

than a year to over 500 years. 

  

Figure 2.4. MODPATH groundwatershed delineation.  A) Comparison of the model 

domains used, with the Maumee River surface watershed shown for reference (light green). 

Preliminary model domain used for delineation of the groundwatershed is shown in dark green. 

Groundwatershed, delineated using MODPATH (Pollock, 2017), was used as the final model 

domain (medium green). B) Groundwater travel times, as modeled by MODPATH (Pollock, 

2017). Travel times range from less than a year in locations close to an outlet (e.g., tile drain, 

stream) to over 500 years.  

A B 
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3.2.3 Maumee groundwatershed flow model 

Using the boundary defined from the MODPATH simulations, we then defined the 

groundwatershed flow model. This model was created using MODFLOW-NWT (Niswonger et 

al., 2011), a saturated three-dimensional groundwater flow model using a Newton-Raphson 

formulation of MODFLOW-2005, intended to improve solutions in models involving drying and 

rewetting of cells in unconfined aquifers. As with the initial groundwater flow model, this model 

was developed using the coding language Python and the FloPy package (Bakker et al., 2021). 

All model boundaries except those adjacent to Lake Erie were considered to be no-flow cells. 

Cells bordering Lake Erie were modeled as constant-head cells, with long-term average lake 

levels estimated at 174.5 meters (NAVD88) from the NOAA Marblehead, Ohio lake monitoring 

station (NOAA). The domain was divided into 240-meter by 240-meter cells. Surface elevation 

was defined using a 1-arc second Digital Elevation Model (DEM) from the USGS National 

Elevation Dataset (USGS, 2018). Bedrock elevations were obtained from a USGS bedrock 

topography map (Soller and Garrity, 2018). After resampling to the model grid, the minimum 

layer thickness was set by lowering the bedrock elevation to 2 meters below the DEM in areas 

where the Quaternary sediment thickness was less than 2 meters. Because the complete bedrock 

portion of the groundwater flow system is not well-characterized, we assigned the bedrock layer 

a constant thickness of 200 meters. Providing for some substantial thickness allowed model 

convergence in areas with very thin Quaternary sediments overlying the bedrock. While this 

simplification is not representative of true bedrock geometries, bedrock flow is expected to 

contribute only a very small portion of Lake Erie nutrient loads. The inclusion of the bedrock 

aquifer allows for improved simulation in areas of minimal drift thickness. 
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3.2.4 Hydraulic conductivity estimation and calibration 

In both layers, hydraulic conductivity was estimated in groups based on local geologic 

classification (Table 2.1) (Geologic Survey Division of the MDEQ, 1987; Michigan Natural 

Features Inventory, 1999; Pavey et al., 1999; Gray and Walls, 2002; Slucher et al., 2006; Gray et 

al., 2010). Initial hydraulic conductivity values were only available for wells in Michigan, so this 

information was used to generalize Quaternary shallow aquifer layer estimates for each geologic 

type in the Michigan domain (Wellogic, 2005). Patterns in measured hydraulic conductivity 

values matched patterns in Quaternary geology type (Figure 2.2B, Michigan Natural Features 

Inventory, 1999; Pavey et al., 1999; Gray and Walls, 2002), so we assumed that these values 

were representative of the upper shallow aquifer layer and that each geologic type could be 

characterized by a single value. The data were first transformed by a natural log to approximate a 

normal distribution. Outliers from this distribution at unrealistic values were eliminated to reduce 

the impact of bedrock wells included in the dataset. For lacustrine deposits, measurements were 

highly variable; likely because a default hydraulic conductivity value was assigned by drillers 

when the wells encountered rock, vastly inflating the number of measurements at unrealistically 

low values. After these outliers were truncated, the median of log-transformed hydraulic 

conductivity values for each geologic type available was used as the model’s initial estimate. For 

geologic types not present in the Michigan portion of the model domain, namely sand, peat and 

muck, and coarse-to-medium till, no measured values were available to estimate from within the 

study area. For coarse-to-medium grained till, a value was chosen between the estimated values 

for medium-grained till and coarse-grained till. For sand and peat/muck, an initial central 

estimate was chosen as the mid-point between minimum and maximum hydraulic conductivity 

values within the Michigan lower peninsula model (Martin et al., 2021). 
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In the bedrock aquifer layer, initial hydraulic conductivity values for each geologic type 

were selected based on published ranges (Freeze and Cherry, 1979; Domenico and Schwartz, 

1990). A roughly central value was chosen from the karst and reef limestone category for 

limestone and dolomite, given its karstic nature (Ohio EPA, 2014). A high value was chosen for 

shale and sandstone to avoid convergence issues due to dramatic changes in hydraulic 

conductivity across adjacent cells. For sandstone, the highest literature value within published 

ranges (Freeze and Cherry, 1979; Domenico and Schwartz, 1990) was used. For shale, we used a 

value about two orders of magnitude below the next lowest initial estimate.  

We then manually calibrated hydraulic conductivity values to better match simulated and 

observed head values, obtained from state well databases and compiled in Hamlin et al. (2020), 

by calibrating a zone-specific multiplier. A multiplier was applied to geologic types that had a 

substantial bias in head (Figure 2.5). All values of till in addition to sandstone had low initial 

simulated heads, so a hydraulic conductivity multiplier of less than one was used. For sandstone 

and till (except coarse till), a multiplier of 0.008 was used, determined through calibration to 

observed heads. We optimized a separate multiplier of 0.0001 for coarse till, as heads were still 

abnormally low at higher multipliers. We estimated vertical anisotropy, or the ratio of horizontal 

to vertical hydraulic conductivity, using a priori knowledge in conjunction with published values 

(Chapuis and Gill, 1989). These values were also calibrated using a multiplier of 1.02, calibrated 

to observed head. 
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Table 2.1. Summary of model hydraulic conductivities.  Initial estimates of horizontal 

hydraulic conductivity, in meters per day, and vertical anisotropy for each geologic type. 

Estimates were later calibrated based on observed head values (compiled by Hamlin et al., 2020) 

using hydraulic conductivity multiplier values. 

  
Model Category Horizontal K (m/day) Vertical Anisotropy 

Quaternary Lacustrine (fine) 0.3048 5 * 1.02  
Lacustrine (coarse) 3.687114 4 * 1.02  
Till (fine) 8.150889 * 0.008 5.5 * 1.02  
Till (fine to medium) 8.16617 * 0.008 5 * 1.02  
Till (medium) 10.321953 * 0.008 4.7 * 1.02  
Till (medium to coarse) 15.068 * 0.008 4 * 1.02  
Till (coarse) 15.24 * 0.0001 3.5 * 1.02  
Peat and muck 10.5325 1.5 * 1.02  
Outwash 20.784177 1.5 * 1.02  
Sand 25.4 1 * 1.02 

Bedrock Limestone/dolomite 17.28 3 * 1.02  
Sandstone 4.32 * 0.008 2 * 1.02  
Shale/evaporites 0.001 5 * 1.02 

 

 

 

Figure 2.5. Model error by geologic type.  A) Model error (m) in Quaternary geology before 

calibration. Simulated heads for all types of till are low, with coarse till heads especially low. 

B) Model error in Quaternary geology after calibration. A multiplier of 0.008 was applied to 

the hydraulic conductivity of all till types except coarse, for which a multiplier of 0.0001 was 

used. C) Model error in bedrock geology before calibration. Simulated heads in sandstone are 

low. D) Model error in bedrock geology after calibration. A multiplier of 0.008 was applied to 

the hydraulic conductivity of sandstone. 
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Figure 2.5 (cont’d) 

 

 

3.2.5 Recharge estimation and calibration 

Variable average annual recharge rates across the study area were obtained from the 

Landscape Hydrology Model (LHM), averaged over the 2000-2014 time period (Hyndman et al., 

2007). LHM separates recharge estimates into wetland and upland deep percolation; however, 

wetland deep percolation values were initially up to 220 meters of recharge per year. 

Unreasonable values in the wetland deep percolation dataset, at or above 3 meters per year per 

cell, were truncated and set to 0 meters per year. We chose to set these cells to 0 as these 

anomalously high values are likely due to error with initial model estimates. The wetland and 

upland deep percolation estimates were then summed to get total recharge estimates. 

Unfortunately, LHM outputs do not cover the entire study area. To extrapolate recharge 

estimates to the rest of the model domain, land cover data from the National Land Cover 

Database, using classes matching those used in LHM, were used to extend the dataset (Dewitz, 

2019). Recharge estimates from LHM for each land cover class were averaged; these averaged 

values were applied to cells in each land cover class outside of the LHM domain.  

Calibration was performed on average annual recharge rates by applying a spatially 

constant multiplier of 0.18, selected using residuals between simulated and observed baseflows 

C D 
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(Read et al., 2017). This was done to calibrate the model to observed flows and nutrient 

concentrations taken during baseflow conditions, as the steady-state flow model is unable to 

output seasonal flows. Simulated flows were spatially aggregated for each observation point by 

delineating the watershed of each point and summing cell-by-cell outflows from drain cells 

within the watershed, following the methods of Mooney et al. (2020). Observation points with 

total simulated drain flows of 0, primarily watersheds in dry cells, were excluded from flow 

comparison. 

3.2.6 Tile drain modeling 

We assumed that all streams, subsurface tile drains, and surface ditches act as 

groundwater sinks and modeled them as drain cells using the MODFLOW DRN package (Figure 

2.6). Drain cells are a boundary condition in which water can leave the system when head 

exceeds the drain elevation at a rate controlled by the conductance. The assumption that surface 

drainage in the region is largely gaining (and thus can be well-represented by the DRN package) 

was supported by initial model runs, in which man-made subsurface drains were not included. In 

these initial runs, much of the model area was covered by flooded cells, especially surrounding 

the stream drain cells. Flooding in these cells indicates that groundwater levels are higher than 

land surface elevations and, consequently, above stream levels, providing evidence that the 

hydraulic gradient is from groundwater to stream channels. Streams were mapped using the 

ArcGIS Pro 2.8.1 Flow Accumulation tool, which creates a raster of the number of cells draining 

into each model cell. Cell size of the flow accumulation raster was equivalent to the DEM 

(USGS, 2018) cell size (1 arc-second, or approximately 27 meters). Cells with 4,000 or more 

other cells draining into them were considered as stream cells. This threshold was qualitatively 

chosen to resemble National Hydrography Dataset stream flowline lengths (USGS and National 
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Geospatial Program, 2020). Stream channel elevation was set equal to DEM elevation (USGS, 

2018) at those cells, and streams were given a constant width of 2 meters. Stream conductance 

was calculated by multiplying initial Quaternary hydraulic conductivity by stream area, then 

divided by an assumed streambed sediment thickness of 1 meter (Equation 1). Surface ditches 

were mapped using the National Hydrography Dataset’s canal features (USGS and National 

Geospatial Program, 2020) and given a constant width of 2 meters. Surface ditch elevation was 

set at 1.5 meters below the DEM. Subsurface tile drains were mapped using USGS areal 

coverage data from Nakagaki and Wieczorek (2016). Tile drain elevation was set at 1 meter 

below the DEM to account for the typical burial depth of tile drains in the region (Smith et al., 

2015; Gunn et al., 2018). 

 

Figure 2.6. Drain types used in model.  Tile drains, which typically drain agricultural fields 

using subsurface pipes, flow into surface ditches. These ditches are usually dug or cut at the 

edges of agricultural plots, and drain to nearby streams. 

To estimate conductance of subsurface tile drains and surface ditches, we built a 

surrogate model using MODFLOW to simulate farm-scale drain behavior at the regional model 

scale. Typical groundwater models use a constant high conductance for tile drains, which causes 

head in drained locations to lie at tile drain elevation. However, this underestimates head, as it 
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does not account for mounding of the water table between tile drains (Figure 2.7). This can have 

a significant impact on water fluxes to the drains, especially in an area as heavily tile drained as 

the Maumee River watershed.  

 

Figure 2.7. Tile drain conductance.  Typical models use an assumed high conductance in tile 

drains, resulting in average head in drained cells to lie at or very near the drain elevation. 

However, in reality areally-averaged head in a tile drained area would lie above tile drain 

elevations due to water table mounding between tile drains. 

The surrogate model covered a 720-meter by 720-meter area with a constant ground 

surface elevation to represent an individual agricultural field. Within the field, we placed three 

ditches at 2 meters below the land surface: one at the top of the field, making up the upper model 

boundary; one at the bottom of the field, making up the lower model boundary; and one 

approximately in the center of the field, connected to the top and bottom ditches. We then filled 

the field with tile drains, each connecting to its closest drainage ditch so that a diamond-shaped 

pattern was formed (Figure 2.8). Tile drains were given a variable elevation based on distance 

from the connected drainage ditch, starting at an elevation of 1.5 meters below the land surface at 

the ditches and increasing elevation by an assumed factor of 1:1000 with increasing distance 
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from the ditch. We placed specified head boundaries on the eastern and western edges of the 

model. We chose a sample area within the larger Maumee model to place the surrogate model in, 

from which we obtained recharge estimates. We used the resultant heads from the larger 

Maumee model (run without drains or ditches) as the specified head boundary inputs. We chose 

a 1-meter cell size to allow adequate space between each tile drain. 

 

Figure 2.8. Surrogate conceptual model.  The dark red lines represent tile drains, each of 

which lead to their nearest surface ditch. Surface ditches are shown in bright red, and lie in the 

center of the field as well as at the upper and lower boundaries. Left and right boundaries were 

modeled using specified head cells, with head taken from cells in the initial Maumee model. The 

surrogate model area covers the area of nine Maumee model grid cells. The centermost cell, 

highlighted in blue, was used to calculate conductances to avoid impacts from the boundary 

conditions. All cells in the tile drained area, colored light blue, were used to calculate 

conductance for the tile drains. The two columns of cells surrounding the surface ditches, colored 

dark blue, were used to calculate conductance for the surface ditches. 

We tested several tile drain spacings, corresponding to different values of soil hydraulic 

conductivity within the larger study area. With all other parameters held constant (Table 2.2), we 
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used the Michigan State University Drain Spacing Calculator to estimate appropriate drain 

spacings based on input values of hydraulic conductivity (www.egr.msu.edu/bae/water/drainage/

node/192). We estimated soil hydraulic conductivity within the larger study area using the 

gridded Soil Survey Geographic (gSSURGO) database (Soil Survey Staff, 2019). We then 

transformed the data using a natural log and chose values within the roughly normal distribution 

of log values to test (Table 2.3). We used a constant ratio of horizontal to vertical hydraulic 

conductivity of 5:1 for all simulations. 

Table 2.2. Drain spacing parameters.  

Parameters used to estimate tile drain spacing 

using the Michigan State University Drain 

Spacing Calculator (www.egr.msu.edu/bae/

water/drainage/node/192). Saturated soil 

hydraulic conductivity was the only parameter 

varied in the Calculator. 

Table 2.3. Summary of model hydraulic 

conductivities.  Saturated soil hydraulic 

conductivity values and corresponding drain 

spacings used in the surrogate tile drain 

model. Drain spacings were determined using 

the Michigan State University Drain Spacing 

Calculator (www.egr.msu.edu/bae/water/

drainage/node/192). 

Parameter Estimated value 

Drainage coefficient 0.0127 m/day 

Minimum water table 

depth 

0.3048 m 

Design drain depth 0.9144 m 

Depth of restrictive 

layer 

30.48 m 

Effective radius 0.018034 m 
 

Saturated hydraulic 

conductivity (m/day) 

Drain spacing 

(m) 

0.053 3.05 

0.059 3.05 

0.072 3.66 

0.088 4.27 

0.107 4.57 

0.118 5.18 

0.131 5.49 

0.160 6.40 

0.195 7.32 

0.239 8.53 

0.291 9.75 

0.322 10.7 

0.356 11.3 

0.494 14.6 

0.531 15.5 

0.875 23.5 

1.44 35.1 

2.38 53.0 

3.92 79.9 

6.47 119 

10.7 176 
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We calculated farm-scale drain and ditch conductance within the surrogate model using 

equation 1, where C is conductance, K is soil hydraulic conductivity, W is width of the tile drain 

or ditch, L is the intersecting cell length of the tile drain or ditch, and T is the thickness of the 

sediments below the drain or ditch. We used a tile drain width of 0.1016 meters, a ditch width of 

2 meters, a tile drain sediment thickness of 1 meter, and a ditch sediment thickness of 2 meters. 

𝐶𝑓𝑎𝑟𝑚 =
𝐾 ∗ 𝑊 ∗ 𝐿

𝑇
 1 

A simulation was run for each tile drain spacing and soil hydraulic conductivity value, 

resulting in 21 runs. To calculate the tile drain and ditch conductance of each simulation at the 

scale of the regional Maumee model (240 meter cell size), we used equation 2, where F is flow 

out of the drain, H̅ is the average head within the cell, and E is the drain elevation. We used the 

Zone Budget package to separate tile drains and ditches so conductances for each zone could be 

calculated separately. We defined a 240-meter by 240-meter area, representing a cell in the 

regional model, and divided it into two zones. One zone contained the single row of cells 

representing the ditch in the middle of the field, while the other zone contained all other cells 

representing the tile drained area. Flow from the drains and ditches for each zone was input to 

equation 2, which used average head from the entire sample area for both ditches and drains. We 

calculated drain conductance using drain elevation averaged across the whole zone, while ditch 

conductance simply used the constant input ditch elevation. 

𝐶𝑟𝑒𝑔𝑖𝑜𝑛 =
∑ 𝐹𝑓𝑎𝑟𝑚

𝐻̅𝑓𝑎𝑟𝑚 − 𝐸𝑟𝑒𝑔𝑖𝑜𝑛

 2 

Once we established a relationship between conductance and hydraulic conductivity for 

tile drains and ditches at the regional model scale (Figure 2.9), we used the representative 

equations for these relationships (equations 3 and 4) to determine conductance based on 
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gSSURGO hydraulic conductivity values (Soil Survey Staff, 2019). However, since the surrogate 

model assumed total field tile drain coverage, we reduced the calculated conductance value for 

each cell by the proportion of total drain coverage for that cell (equation 5). For ditches, 

however, the surrogate model only assumed a 240 m2 area per 240-meter by 240-meter cell, as 

ditches had a width of 1 meter along the length of the cell. To scale ditch conductance values, 

then, we multiplied the calculated conductance per cell by the ditch area in that cell divided by 

the 240 m2 assumed in the surrogate model (equation 6). 

𝐶𝑡𝑖𝑙𝑒 = 503.5 ∗ 𝐾𝑠𝑜𝑖𝑙
0.8184 + 122.9 3 

𝐶𝑑𝑖𝑡𝑐ℎ = −3.757 ∗ 𝐾𝑠𝑜𝑖𝑙
2 + 114.5 ∗ 𝐾𝑠𝑜𝑖𝑙 + 1.137 4 

𝐶𝑐𝑒𝑙𝑙 = 𝐶𝑒𝑞𝑛 ∗
𝐴𝑡𝑖𝑙𝑒

𝐴𝑐𝑒𝑙𝑙
 

5 

𝐶𝑐𝑒𝑙𝑙 = 𝐶𝑒𝑞𝑛 ∗
𝐴𝑑𝑖𝑡𝑐ℎ

𝐴𝑧𝑜𝑛𝑒
 

6 
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Figure 2.9. Predicting ditch and tile drain conductance.  Relationship between saturated soil 

hydraulic conductivity and conductance for tile drains (blue) and surface ditches (red) as 

modeled by MODFLOW surrogate model. The surrogate model took a field-scale portion of the 

initial regional Maumee model and varied soil hydraulic conductivity with drain spacing. 

Conductances were then calculated for tile drains and surface ditches using equation 2. These 

values were then graphed against hydraulic conductivity to develop a relationship between the 

two values, used to estimate farm-scale conductance in the regional Maumee model. 

3.2.7 Nutrient modeling 

Using results from the MODFLOW model, we created a nutrient transport and 

attenuation model with MT3D-USGS (Bedekar et al., 2016). We modeled total phosphorus (TP) 

and total nitrogen (TN) in groundwater, accounting for advection, dispersion, source-sink 

mixing, and phosphorus sorption. Initial background concentrations of 0.03 and 0.5 mg/L were 

used for phosphorus and nitrogen respectively (Dubrovsky and Hamilton, 2010; Welch et al., 

2010). Input nutrient concentrations to groundwater were extracted from the Spatially Explicit 

Nutrient Source Estimate maps (SENSEmap) and flux models (SENSEflux) (Luscz et al., 2015, 

2017; Hamlin et al., 2020; Martin et al., 2021). Briefly, the SENSE framework quantifies 
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nitrogen and phosphorus inputs, both from point sources and nonpoint sources (i.e., chemical 

agricultural fertilizer, manure, chemical non-agricultural fertilizer, septic tanks, nitrogen fixation 

via legumes, and nitrogen deposition), to the Great Lakes Basin circa 2010 and uses them to 

statistically model the transport and fate of nutrients in surface water and groundwater. More 

detailed methods on the SENSE framework are described in Luscz et al., 2015; Luscz et al., 

2017; Hamlin et al., 2020; and Martin et al., 2021. Nutrient loads to groundwater modeled by 

SENSEflux were divided by spatially explicit recharge estimates (scaled using an optimized 

multiplier) and used as baseline nutrient concentrations in recharge to the MT3D model.  

 To account for the effects of legacy nutrient inputs, we scaled baseline nutrient 

concentrations by source for each stress period modeled from 1900-2012. Legacy land uses and 

land covers are a significant predictor of legacy nutrient concentrations (Martin et al., 2017), so 

most sources were scaled by changes in land use and land cover. For legacy fertilizer and manure 

inputs, we scaled inputs to groundwater (equation 7) by TP and TN estimates in fertilizer and 

manure respectively (Falcone, 2021). Stress periods were set based on available data in Falcone 

(2021), with legacy inputs constant for each stress period and the year given in Falcone (2021) 

situated in the middle of the stress period (e.g., stress periods of 1948-1951, 1952-1956, 1957-

1963). Inputs for the stress period from 1900-1948 were constant and set equal to earliest 

available data in 1950. TP inputs from atmospheric deposition were scaled in the same manner 

by total fertilizer usage, as we assumed that atmospheric TP is primarily sourced in agriculture, 

and TN was scaled on historic atmospheric deposition data (Hegglin et al., in prep.). Nitrogen 

fixation was scaled by historical soybean acreage (Haines et al., 2018). We scaled input nutrients 

from septic tanks by population, linearly interpolated between census years (Manson et al., 

2021). 
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𝑙𝑜𝑎𝑑𝑙𝑒𝑔𝑎𝑐𝑦 = 𝑙𝑜𝑎𝑑𝑆𝐸𝑁𝑆𝐸 ∗
𝑠𝑐𝑎𝑙𝑒𝑟𝑙𝑒𝑔𝑎𝑐𝑦 𝑦𝑒𝑎𝑟

𝑠𝑐𝑎𝑙𝑒𝑟2010
 7 

To model dispersion, we used MODPATH to calculate the flow lengths of each cell to its 

destination surface water, used as the longitudinal dispersivity (Pollock, 2017). We used 0.1 as 

the ratio of horizontal transverse to longitudinal dispersivity, and 0.05 as the ratio of vertical to 

longitudinal dispersivity. We used published estimates for the ideal molecular diffusion 

coefficients for both phosphorus and nitrogen (Cussler, 1997) and scaled those estimates using 

porosity to obtain the effective diffusion coefficients (Ullman and Aller, 1982; Cheng et al., 

2014). Aquifer porosity was estimated using gSSURGO soil porosity maps in the lowest horizon 

for the Quaternary aquifer layer (Soil Survey Staff, 2019), and using published porosity 

estimates for each geologic type in the bedrock aquifer layer (Freeze and Cherry, 1979). A 

simple advection model was applied as well, using a Courant number of 1. We also implemented 

a simple source-sink mixing package, using measured concentrations in Lake Erie (0.158 mg/L 

for TP and 0.871 mg/L for TN) as constant concentrations in the constant head boundary cells. 

For TP, this measured concentration came from Rowland et al. (2020). For TN, we used the 

observation site for baseflow concentration nearest the mouth of the Maumee River (Read et al., 

2017).  

 To model phosphorus sorption, we used a Langmuir sorption isotherm. Isotherm 

parameters were determined through a combination of optimization and published estimates for 

soils in the Maumee River basin (McCallister and Logan, 1978). Simulated concentrations and 

loads were compared against samples taken during baseflow conditions, and a linear regression 

was performed to evaluate goodness-of-fit (Read et al., 2017). Baseflow conditions were defined 

by the samples taken during baseflow season, July 15 to September 15, and with flows below the 

5-year (2008-2012) 30th percentile. Observed loads were aggregated for each observation point 
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by multiplying cell-by-cell drain fluxes by simulated concentrations, then summing loads out of 

each drain cell contained in the point’s watershed (Mooney et al., 2020). To compare simulated 

loads to observed loads in baseflow, we also summed upstream seasonally constant point loads, 

obtained from SENSEmap (Hamlin et al., 2020), in each simulated point’s watershed with 

simulated aggregate loads. Loads were then divided by aggregated drain fluxes to get the 

simulated concentrations at each observation point. Observation points with total simulated drain 

fluxes of 0, primarily those watersheds lying in dry cells, were excluded from comparison. We 

also removed clear outliers from the observation data, having simulated concentrations or loads 

(with point loads) 0.5-2 orders of magnitude larger than other observation points. Values ranging 

from 1000 to 5000 m3/kg were tested as the Langmuir adsorption constant, but the model was 

found to be relatively insensitive to this parameter, with R2 values for both concentrations and 

loads varying by only a fraction of a percent regardless of the value of maximum adsorption. A 

final value of 2000 m3/kg was chosen based on the average of published estimates for soils 

(McCallister and Logan, 1978). A value slightly below that of soil was chosen, as soils tend to be 

more adsorptive than aquifer materials. We found modeled results to be much more sensitive to 

the adsorption maximum, so a range of values from 10-8 to 10-4 mg/mg were used in the final 

modeled results. Nitrogen was modeled conservatively, assuming no subsurface attenuation, as 

the dominant form (nitrate, NO3
-) is highly mobile in groundwater (Lewandowski et al., 2015).  

 To examine lag times in nutrient delivery, we modeled future concentrations and loads 

from groundwater with highly reduced nutrient inputs. Our scenario eliminated all future nutrient 

leaching to groundwater, except from atmospheric deposition, which was assumed to be constant 

at estimated SENSEflux values. This scenario builds on previous models, which quantify legacy 

nutrient accumulation and estimate ‘current’ 2012 nutrient concentrations in groundwater. 
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4. Results 

4.1 Flow Modeling 

Groundwater flow model results are consistent with observed static groundwater levels. 

Root mean squared error of head was 10.8 meters. Groundwater head generally follows patterns 

in surface elevation, with flow towards the Maumee River and Lake Erie from the north and 

south. Heads ranged from 173.5 to 426.1 meters. Flooded cells are primarily in stream networks, 

but a swath of flooded cells also covers an area of low elevation just northwest of the former 

Great Black Swamp and a patch in the northernmost point of the domain. Depth to water ranges 

from 0 to 86.72 meters, with shallow aquifers tending to lie in lacustrine deposits (Figure 2.10). 

Deep aquifers are generally found in glacial moraine deposits, with dry cells in the Quaternary 

layer most commonly in till areas. Errors in head are slightly heteroskedastic, with a larger range 

of simulated head values at high head (Figure 2.11). 
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Figure 2.10. Depth to water.  Modeled depth to water in the Quaternary aquifer layer in meters, 

ranging from 0 to 86.72 meters. Deep aquifers are most often found under glacial moraines, with 

dry cells occurring primarily in areas with till. Flooded cells lie in stream beds, with an 

additional flooded area in the northernmost point of the domain and one just northwest of the 

former Great Black Swamp. 
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Figure 2.11. Flow modeling validation.  Simulated versus observed head elevation at wells 

across the study area (Hamlin et al., 2020). Residuals are slightly heteroskedastic, with larger 

error in areas of high head. 

4.2 Nutrient Concentrations 

Model outputs provide maps of nutrient concentrations in solution and in sorption as well 

as mass fluxes from groundwater for each simulated time period. The spatial distributions of 

phosphorus in solution and attached to sediments across the study area are similar for each 

adsorption capacity tested (Figure 2.12). In the Quaternary aquifer, these patterns appear to be 

largely dependent on the patterns of input phosphorus concentrations in recharge and 

groundwater travel time. In simulations with higher adsorption capacities (more sorption), 

concentrations appear to be more dependent on input concentrations in recharge. However, at 

high sorption capacities, concentrations are smoothed with little variability. In simulations with 
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lower adsorption capacities (less sorption), concentrations are higher in areas with low 

groundwater travel times. Patterns in the bedrock aquifer appear to be opposite those of the 

Quaternary layer for simulations with low adsorption capacity, but similar to patterns in 

Quaternary concentrations for high adsorption capacity. Bedrock concentrations in sorption were 

consistently low. With the highest adsorption capacity tested (10-4 mg P/mg matrix), phosphorus 

concentrations in solution range from 0.0163 to 0.613 mg/L, while concentrations in sorption 

range from 0.00548 to 0.0395 mg/L. With the lowest adsorption capacity tested (10-8 mg/mg), 

phosphorus concentrations in solution range from 3.86x10-6 to 7.51 mg/L, while concentrations 

in sorption range from 1.03x10-9 to 9.30x10-6 mg/L. 

  

Figure 2.12. Phosphorus concentrations.  Spatial distribution of TP concentrations in 

groundwater solution for the Quaternary aquifer. White areas are dry cells or lie outside of the 

domain. A) Adsorption capacity of 10-4 mg/mg. Concentrations range from 0.0163 to 0.613 

mg/L. Concentrations have low variability and are smoothed across the domain. B) Adsorption 

capacity of 10-6 mg/mg. Concentrations range from 1.56x10-4 to 7.01 mg/L. C) Adsorption 

capacity of 10-8 mg/mg. Concentrations range from 3.86x10-6 to 7.51 mg/L. Concentrations 

generally follow patterns in groundwater travel time, with high concentrations in areas of low 

groundwater travel times. 

 

B A 



 

 

65 

Figure 2.12 (cont’d) 

 

Patterns in nitrogen distribution are similar to those of phosphorus modeled with low 

adsorption capacity, again following patterns in groundwater travel time (Figure 2.13). Areas of 

low groundwater travel time had the highest modeled concentrations in the Quaternary aquifer. 

In the bedrock aquifer, again concentrations are roughly opposite those in the Quaternary 

deposits, with lowest concentrations in areas of low groundwater travel time. Highest 

concentrations appear to be in relatively isolated plumes throughout the domain, with some in 

the northeast spreading from areas of low concentration and some in the southwest beyond St. 

Marys River. Nitrogen concentrations range from 0.00156 to 192 mg/L. 

C 
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Figure 2.13. Nitrogen concentrations.  Spatial distribution of TN concentrations in 

groundwater solution for the Quaternary aquifer. White areas within the domain indicate dry 

cells. Concentrations range from 0.00156 to 192 mg/L. Concentrations generally follow patterns 

in groundwater travel time, with high concentrations in areas of low groundwater travel time. 

4.4 Nutrient Loads 

Results indicate that a significant proportion of nutrient loads from the Maumee River 

watershed can be attributed to indirect groundwater discharge to streams and tile drains, while 

only a very small percentage of loads are attributed to direct groundwater discharge to Lake Erie. 

Total phosphorus loading to Lake Erie from groundwater ranges from 110.5 to 279.2 kg/day, 

depending on adsorption capacity. Total nitrogen loading to Lake Erie from groundwater is 

estimated to be 4,457.1 kg/day. Streams export the largest loads of phosphorus and nitrogen from 

groundwater within the study area, exporting about 55.0–65.6% and 50.6% of total phosphorus 

and nitrogen loads from groundwater respectively. Tile drains also have high loads, estimated to 

be about 33.5–43.7 % of TP from groundwater and 48.0% of TN from groundwater. Highest 

loads of TP from groundwater to tile drains are simulated at intermediate values of adsorption 
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capacity (10-6 mg/mg), while highest loads to streams are simulated at high and low values of 

adsorption capacity. Surface ditches and canals had the lowest loads via indirect pathways, 

contributing about 0.94–1.3% of TP from groundwater and 1.4% of TN from groundwater. 

Direct loading from groundwater was much lower, contributing less than 0.0001% of TP and TN 

loads from groundwater in all simulations.  

 Due to groundwater transport delays and desorption of stored nutrients, continued 

nutrient discharge from groundwater is predicted to contribute significant loads for decades to 

come, even if all nutrient leaching to groundwater was eliminated today. Average groundwater 

travel time in the model domain is 181 years, while median groundwater travel time is 110 years. 

Combined with decades-long legacies of nutrient input to the landscape, released via desorption 

when recharge concentrations are low relative to sorbed concentrations, delays in groundwater 

export of nutrients can lead to future loads that are similar or even higher those observed today. 

Model simulations indicate that after 100 years of near-complete nutrient leaching cessation 

(except atmospheric deposition), loads from groundwater in the Maumee River watershed may 

be as high as 110.0–247.5 kilograms per day for phosphorus (99.5% and 88.6% of estimated 

loads today) and 3,678.6 kilograms per day for nitrogen (82.5% of estimated loads today). Future 

nutrient delivery with reduced leaching to groundwater shifts towards streams, which receive 

>60% of groundwater nutrients in all simulations due to the relatively shorter time scales of tile 

drainage. 

4.5 Nutrient Validation 

Comparison of nutrient modeling results with upstream point loads to concentrations and 

loads observed in baseflow reveal a similar range of values despite low correlations (Figure 

2.14). Simple linear regressions performed on simulated TP concentrations with point loads 
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against observed concentrations have low R2 values, ranging from 0.0749 to 0.0893 (p < 0.01).  

Lower adsorption capacities have higher R2 values. Linear regressions on TP loads have R2 

values ranging from 0.333 to 0.341. For TN, R2 values were higher, at 0.264 for concentrations 

and 0.606 for loads. However, errors in concentration and yield plotted against observation site 

watershed size show that the largest errors occur in small watersheds, where local variation is 

less likely to be captured by the model and has a higher influence on observed values. 

  

  
 Figure 2.14. Nutrient validation.  A) Simulated and observed TP loads for an adsorption 

capacity of 10-6 mg/mg. Simple linear regression shows a significant R2 value of 0.339. Loads 

show similar magnitudes in simulated and observed values. B) Residual TP concentrations for 

an adsorption capacity of 10-6 mg/mg shown against the size of each observation site’s 

watershed. Largest errors are in small watersheds. C) Simulated and observed TN loads. 

Linear regression shows a significant R2 value of 0.606. Again, simulated and observed loads 

have a similar magnitude. D) Residual TN concentrations versus the size of each observation 

point’s watershed. Again, the largest errors tend to be in the smallest watersheds. 

C D 

A B 
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5. Discussion 

5.1 Contribution of Groundwater Pathways to Maumee Nutrient Loads 

Estimated groundwater nutrient loads make up a notable portion of total nutrient loads 

from the Maumee River watershed to Lake Erie. Groundwater loads are often lumped in total 

accounts of nutrient loading with tributary (as baseflow or input to tile drains) and nonpoint 

source loads. This practice is highly problematic for nutrient management efforts due to the time 

lags associated with groundwater nutrient transport (Meals et al., 2010; Wang et al., 2013; 

Martin et al., 2017, 2021; Van Meter et al., 2018, 2021; Vero et al., 2018). Based on reported 

measures of average TP loading from the Maumee River watershed (Maccoux et al., 2016), our 

simulated groundwater loads (including both direct and indirect loads via baseflow, tile drains, 

and ditches) make up 1.5–3.9% of total loads, with the low estimate based on high adsorption 

capacity and high estimate based on low adsorption capacity. However, given that groundwater 

is largely unable to transport large amounts of particulate phosphorus, we can reasonably assume 

that all phosphorus exported from groundwater is soluble reactive phosphorus. If we make this 

assumption, simulated groundwater loads make up 7.2–18.2% of soluble reactive phosphorus 

loadings from the Maumee River watershed (Maccoux et al., 2016). Based on simulated 

SPARROW model TP loads from the Maumee River watershed (Robertson et al., 2019a), our 

simulated groundwater loads make up 1.7–4.3%. Reported time-averaged estimates of TN 

loading from the Maumee River watershed were not found in the literature. However, utilizing 

smoothed TN trends from 2000-2010 (Stow et al., 2015), we estimate recent TN loads to be 

about 3,150 metric tonnes per month, or 37,800 metric tonnes annually. Of this, our simulated 

groundwater loads contribute 4.3%. Compared to simulated SPARROW model TN loads 

(Robertson et al., 2019a), our estimates of groundwater loads contribute 4.0% of loads from the 



 

 

70 

Maumee River watershed, which support assertions that groundwater can be a significant 

contributor of nutrients to lakes and large tributaries (e.g., Brock et al., 1982; Belanger et al., 

1985; Oberdorfer et al., 1990; Valiela et al., 1990; Hagerthey and Kerfoot, 1998; Kang et al., 

2005; Holman et al., 2008; Nakayama and Watanabe, 2008; Meinikmann et al., 2013, 2015; 

Kidmose et al., 2015; Lewandowski et al., 2015; McDowell et al., 2015; Rosenberry et al., 2015; 

Robinson, 2015; Schilling et al., 2016; Martin et al., 2017; Kazmierczak et al., 2020; Förster et 

al., 2021; Brookfield et al., 2021). Our results also directly refute findings that sorption and other 

natural subsurface attenuation processes negate groundwater nutrient transport, especially for 

phosphorus (Logan et al., 1980; Edwards and Withers, 2007; King et al., 2015). Instead, our 

simulations are consistent with other evidence that sorption is instead a temporary storage of 

phosphorus, leading to desorption upon saturation of the sorption capacity or reversal of 

diffusion gradients (Sharpley et al., 2013; Van Meter et al., 2021). 

5.2 Legacy Nutrient Loads 

While reducing nutrient inputs today is essential to reduce the formation of large harmful 

algal blooms in the future, we must also acknowledge the legacy impacts of past inputs to advise 

landscape management and meet water quality goals (Meals et al., 2010; Wang et al., 2013, 

2016; Van Meter et al., 2016, 2018, 2021; Martin et al., 2017, 2021; Vero et al., 2018; Liu et al., 

2021). The presence of legacy nutrients in the landscape leads to a lag time in land use changes 

or management practices and the effects those changes have on nutrient concentrations in surface 

waters such as Lake Erie (Meals et al., 2010; Wang et al., 2013, 2016; Van Meter et al., 2016, 

2018, 2021; Martin et al., 2017, 2021; Vero et al., 2018; Liu et al., 2021). Nutrients have two 

types of legacies: a hydrologic legacy, whose lag time is dependent on the travel times of 

groundwater carrying the nutrients; and a biogeochemical legacy, whose lag time is dependent 
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on accumulated subsurface nutrient mass and rates of biogeochemical transformation (e.g., 

sorption/desorption, mineralization, microbial degradation) (Van Meter et al., 2016). The 

combination of these legacies compound lag times, so it is essential for nutrient reduction efforts 

to quantify the amount of nutrients present as legacies and the associated potential lag times. 

Here, we quantify nutrient legacies by modeling nutrient loads 100 years into the future with no 

inputs during that time, except for input from atmospheric deposition. Simulations show that the 

vast majority of nutrients present in groundwater today will still be present 100 years in the 

future. Without concerted remediation efforts on nutrients already in the landscape, loads from 

groundwater will still be 82–99% of today’s loads from groundwater. Loads will diminish 

gradually over time, but the timescales on which reductions naturally happen are not feasible for 

current stakeholders. 

5.3 Nitrogen Contamination in Drinking Water 

The World Health Organization sets the limit for nitrate as nitrogen at 11.3 mg/L due to 

concerns about methemoglobinemia (2011). Simulated total nitrogen concentrations exceed this 

limit for 264 km2 of the study area, or roughly 1.4%. Most nitrogen in groundwater occurs as 

nitrate (Lewandowski et al., 2015), so the potential for high nitrate concentrations is dangerous 

for those in the study area who rely on groundwater as their source of potable water. Due to the 

hydrologic legacy, these concentrations are likely to remain high for decades, perpetuating this 

water quality issue. After 100 years of no nutrient leaching, except for atmospheric deposition, 

simulations show that concentrations will still exceed nitrogen limits for 0.23% of the domain. 

Natural attenuation and reduced inputs will not be sufficient to protect future drinking water 

quality in all groundwater-reliant communities; instead, active groundwater remediation is 

necessary. 
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5.4 Model Validation 

Validation of simulated nutrient concentrations and loads showed disparities in simulated 

versus observed values in baseflow, but overall magnitudes were similar. Variations in exact 

values should be expected in this case due to the nature of the observations used. For TP, 

observed soluble reactive phosphorus concentrations and loads may have been more appropriate 

for comparison to simulations, as groundwater is largely unable to transport significant amounts 

of particulate matter. Unfortunately, very few observations for soluble reactive phosphorus were 

available in the study area. For TN and TP, nutrient loading to baseflow can come from many 

sources outside of groundwater, such as point loading (e.g., wastewater treatment plant effluent), 

which we addressed based on available data. Other sources, such as runoff from dry season 

irrigated cropland, overland flow from dry season precipitation, or erosion of riverbed sediments 

could not be accounted for. We did not model in-stream processing of nutrients, which can also 

affect baseflow nutrient concentrations. In addition, the largest errors are located in the smallest 

watersheds, where local fluctuations are more likely to have a large influence on observed 

concentrations. Simulation resolution may not be able to accurately characterize concentrations 

in these watersheds. 

5.5 Tile Drainage 

In highly agricultural areas, tile drainage is an especially important consideration for 

nutrient modeling and management decisions, as it can both increase loads in overland runoff 

(Blann et al., 2009) and decrease groundwater travel times, short-circuiting natural subsurface 

attenuation mechanisms (Schilling et al., 2015). Without accurate representation of tile drains in 

nutrient transport models, contributions from groundwater and other subsurface transport 

pathways may be vastly underestimated. Modeling results indicate that tile drains in the Maumee 
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River watershed receive a high percentage of groundwater nutrient loads, emphasizing their 

importance to groundwater management considerations. These results support previous findings 

that tile drains carry a large proportion of total nutrient losses (Smith et al., 2015). To reduce 

future loads from groundwater and legacy nutrient stores, stakeholders should consider BMPs 

that target tile drainage, including drainage water management (Williams et al., 2015) and 

reduction of drainage density, as well as those that target agriculture. As the largest source of 

both nitrogen and phosphorus to Lake Erie (Hamlin et al., 2020), agricultural source reduction is 

essential. Reduced application of fertilizer may be a feasible solution, as previous studies have 

shown that legacy nutrient stores can sustain crop yields for some years with decreased fertilizer 

applications (Dalgaard et al., 2014; Rudolph et al., 2015; Muenich et al., 2016). Improved 

understanding of optimal fertilizer application to individual crops is needed to both increase crop 

yield and protect future water quality (Cammarano et al., 2021). In addition, manure application 

to fields is a significant contributor to nutrient leaching (Hamlin et al., 2020; Basso and Ritchie, 

2005). Reductions in manure application to fields also has the potential to improve water quality 

and future nutrient loads. 

5.6 Limitations 

As a process-based model, this study is reliant on an array of outside datasets, each of 

which have their own limitations and errors. We assumed legacy nutrient inputs to be constant 

from 1900-1952, with no nutrient input to groundwater before 1900. This time constraint may 

not allow groundwater nutrients sufficient time to travel to their current positions. Our 

groundwater flow model was built as a steady-state model, and does not simulate transient 

changes in flow conditions. With effects of climate change readily becoming apparent, this 

assumption becomes less valid with time, especially for future projections. Improvements could 
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be made to the model by incorporating spatially explicit estimates of hydraulic conductivity 

rather than relying on general assumptions about geological deposits. Additionally, more 

intensive calibration may improve comparisons between modeled results and observation points. 

Observed groundwater concentrations and loads, in addition to data on soluble reactive 

phosphorus, may have reduced much uncertainty in model performance. Arguably the most 

significant limitation was a lack of data on sorption isotherm parameters in aquifers of the area, 

leading to highly variable estimates of phosphorus loading and concentrations. Developing a 

fully coupled groundwater-surface water model was outside the scope of this study, but would 

likely lead to improved simulations and provide additional information about interactions of 

surface flow routing with tile drains, in-stream nutrient processing, vadose and hyporheic zone 

dynamics, and the effectiveness of surface-based best management practices. Here, we lay the 

foundation for a coupled groundwater-surface water model by providing focus and context to the 

understudied groundwater component of transport. 

6. Conclusions 

In this study, we used MODFLOW and MT3D-USGS to build a spatially explicit, 

process-based model of groundwater nutrient transport from the Maumee River watershed to 

Lake Erie. We found that groundwater contributes as much as 4% of total phosphorus and 

nitrogen loads from the Maumee River watershed, or as much as 18% of soluble reactive 

phosphorus loads if we assume all phosphorus from groundwater is in a soluble reactive form. 

Most of these loads are delivered to Lake Erie as baseflow in streams (51–66%) or via tile drains 

(34–48%). We find that even if all nutrient leaching to groundwater were to stop today, except 

for atmospheric deposition, loads would be sustained at 82–99% of current loads for at least 100 

years. To improve future nutrient loading, we recommend both that surface loading, as the 
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largest nutrient pathway, and groundwater legacies be reduced. Reducing nutrient inputs to the 

landscape, for example via decreased fertilizer application, is essential for decreased loading 

from all pathways and reduced future accumulation of subsurface legacies. However, 

groundwater legacies have the potential to sustain loads in the long-term when other sources are 

lowered. We argue that reducing the legacy store of subsurface nutrients, for example via tile 

drainage management or groundwater remediation, is also an important step to improve water 

quality. Simulations indicate that 264 km2 of the domain likely has groundwater nitrogen 

concentrations exceeding limits set by the World Health Organization. This is a significant 

concern for current and future groundwater-reliant communities, as concentrations are expected 

to remain dangerously high for several decades in some areas given estimated groundwater travel 

times. Active groundwater remediation is necessary to protect these communities. Future studies 

should couple spatially explicit groundwater models, like the one built here, and surface water 

models for a more holistic picture of nutrient transport and BMPs. Models with more accurate 

sorption isotherm parameters would constrain simulated phosphorus concentrations. 
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APPENDIX 

Table of all 24 articles examined in the first phase of Chapter 1 (Lake Erie nutrient models). Articles are color-coded by depth, with 

surface studies in grey and subsurface studies in blue. Studies are described by study area, nutrient form examined, model used, source 

analyzed, and nutrient quantifications. Abbreviations used: LE = Lake Erie, SWAT = Soil and Water Assessment Tool, ELEMeNT = 

Exploration of Long-tErM Nutrient Trajectories, OLS = ordinary least squares,  SENSEmap = Spatially Explicit Nutrient Source 

Estimate map, TP = total phosphorus, TDP = total dissolved phosphorus, SRP = soluble reactive phosphorus, DRP = dissolved 

reactive phosphorus, SP = soluble phosphorus, TN = total nitrogen, DKN = dissolved Kjeldahl nitrogen, DON = dissolved organic 

nitrogen, ON = organic nitrogen, SN = soluble nitrogen, DIN = dissolved inorganic nitrogen, TDN = total dissolved nitrogen. 

Table A1. Lake Erie articles in Chapter 1.  Table of articles examined in the first phase (Lake Erie) of Chapter 1.  

Paper 
Surface or 

subsurface 

Region/Study 

Area 
Nutrients Model Source/Quantification 

Forster et al., 

2000 

Subsurface Western LE 

basin 

TP, NO3, ON Erosion Productivity 

Impact Calculator (EPIC) 

model 

No-till nutrient losses compared to 

conventional tillage 

NO3: 5-14% increase in runoff 

ON: 44-47% decrease in soil 

TP: 45-46% decrease in soil 

Liu et al., 2021 Subsurface Grand River 

Watershed 

TN ELEMeNT-N Estimated N inputs to watershed 

Manure: ~23% 

Atmospheric deposition: ~11% 

Inorganic fertilizer: ~25% 

Biological fixation: ~35% 

Domestic waste: ~6% 

Fates of cumulative N surplus 

Exported through stream: 27% 
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Table A1 (cont’d) 

     Denitrification in subsurface: 35% 

WWTP removal: 10% 

Legacy N storage in groundwater: 

3.9% 

Legacy N storage in soil: 26.1% 

Oldfield et al., 

2020 

Subsurface Canadian LE 

basin 

TP Developed geospatial 

model 

Percent of TP loads from Canada 

sourced in septic tanks 

1.7 ± 0.8–5 ± 2.3% of P loads and 

predict future increases 

Rakhimbekova 

et al., 2021 

Subsurface Ontario LE 

shoreline 

PO4, NO3, 

NH3 

Developed geospatial 

model MODFLOW-

NWT 

Nutrient loads from septic systems 

within a distance of the LE 

shoreline 

Within 100m: Up to 17 MT/yr of P, 

up to 110 MT/yr of N 

Within 250m: Up to 25 MT/yr of P, 

up to 149 MT/yr of N 

Van Meter et 

al., 2021 

Subsurface Grand River 

Watershed 

TP ELEMeNT-P Legacy P accumulation in the 

subsurface since 1900 

Net P retained: ~96%, with 45% as 

soil organic P, 34% in strongly 

sorbed forms, and 21% in weakly 

sorbed forms 

P exported to downstream waters: 

~4.5% 

P inputs from manure: 86% from 

1900-1945, 59% in 1977 

Apostel et al., 

2021 

Surface  Maumee River 

Watershed 

TP, DRP, 

TN, NO3 

SWAT Field-scale annual loads with 

standard deviations 

TP: Surface 2.68 ± 2.59 kg/ha, tile 

0.04 ± 0.03 kg/ha 

DRP: Surface 0.29 ± 0.24 kg/ha, 

tile 0.04 ± 0.03 kg/ha 



 

 

93 

Table A1 (cont’d) 

     TN: Surface 7.10 ± 5.57 kg/ha, tile 

25.31 ± 27.04 kg/ha 

NO3: Surface 2.82 ± 3.27 kg/ha, tile 

25.31 ± 27.04 kg/ha 

Culbertson et 

al., 2016 

Surface  Maumee River 

Watershed 

TP, SRP SWAT Predicted responses to climate 

change by late-century holding 

fertilizer application rates constant 

Annual TP runoff: decrease by 7.8-

14.6% 

Annual SRP runoff: decrease by 

8.6-11.8% 

Predicted responses to climate 

change by late-century increasing 

fertilizer application with plant 

uptake 

Annual TP runoff: increase by 9.9-

24.6% 

Annual SRP runoff: increase by 

26.7-42.0% 

Dagnew et al., 

2019 

Surface  St. Clair-Detroit 

River system 

TP, DRP SWAT Predicted reductions in response to 

best-performing management 

strategies (combo of cover crops, 

filter strips, and wetlands) 

55% spatially random adoption: TP 

20-61%, DRP 10-51% 

55% targeted adoption: TP 14-37%, 

DRP 15-61%  

100% adoption: TP 32-81%, DRP 

23-83% 
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Table A1 (cont’d) 

Daloğlu et al., 

2012 

Surface  Sandusky River 

Watershed 

DRP SWAT Estimated responses in DRP load 

from baseline to tillage practice 

changes 

Conventional: decrease by ~5-20% 

No-till: increase by ~20-25% 

Guo et al., 

2020 

Surface  NW Ohio 

(within Maumee 

and Sandusky 

watersheds) 

DRP, 

particulate P 

Agricultural 

Policy/Environmental 

eXtender (APEX) model 

and Nutrient Tracking 

Tool 

Field-scale average annual P loads 

DRP in tile discharge: 0.14 kg/ha 

DRP in surface runoff: 0.12 kg/ha 

Particulate P in surface runoff: 0.30 

kg/ha 

Hu et al., 2019 Surface  St. Clair-Detroit 

River system 

TP EPA Storm Water 

Management Model and 

regression models 

Urban area TP load by source 

percentage 

Detroit WWTP: 56% 

Other point sources: 25% 

Runoff: 10% 

CSOs: 9% 

Detroit River TP load by source 

percentage 

Urban point sources: 19% 

Runoff: 2.5% 

CSOs: 2.5% 

Igras and 

Creed, 2020 

Surface  Grand River 

Watershed 

TP, DRP ISO 31010:2009 Bowtie 

Risk Analysis Tool with a 

Bayesian relief network 

model 

Probability of achieving ≤ 40% 

load reduction (TP/DRP) under 

different BMP adoption rates 

All BMPs: ≤ 20% adoption = 

91.3/29.2% chance, 20-40% 

adoption = 99.9/76% chance, 40-

60% adoption = 100/96.1% chance, 

60-80% adoption = 100/99.1% 

chance, >80% adoption = 

100/99.8% chance  
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Table A1 (cont’d) 

     Commonly used BMPs: ≤ 20% 

adoption = 17.5/2.1% chance, 20-

40% adoption = 82.2/10.5% 

chance, 40-60% adoption = 

99.6/32.3% chance, 60-80% 

adoption = 100/50.4% chance, 

>80% adoption = 100/64.1% 

chance 

TP-effective BMPs: ≤ 20% 

adoption = 71.5/37.3% chance, 20-

40% adoption = 99.4/84% chance, 

40-60% adoption = 100/98.2% 

chance, 60-80% adoption = 

100/99.8% chance, >80% adoption 

= 100/100% chance 

DRP-effective BMPs: ≤ 20% 

adoption = 43/26.5% chance, 20-

40% adoption = 93.6/86.6% 

chance, 40-60% adoption = 

100/99.9% chance, 60-80% 

adoption = 100/100% chance, 

>80% adoption = 100/100% chance 

Jarvie et al., 

2017 

Surface  Sandusky, 

Raisin, and 

Maumee 

watersheds 

SRP Empirical regression 

models 

Increase in SRP load source 

attribution by percent 

Sandusky: 65% increased SRP 

delivery, 35% increased runoff 

Raisin: 63% increased SRP 

delivery, 37% increased runoff 

Maumee: 66% increased SRP 

delivery, 34% increased runoff 
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Table A1 (cont’d) 

Kujawa et al., 

2020 

Surface  Maumee River 

Watershed 

TP, DRP, TN SWAT Predicted response of loads to 

climate change based on several 

models’ average 

TP: 7% decrease, range of 29% 

decrease to 20% increase 

DRP: 5% increase, range of 25% 

decrease to 38% increase 

TN: 1% decrease, range of 31% 

decrease to 22% increase 

Luscz et al., 

2015 

Surface  Michigan lower 

peninsula 

TP, TN SENSEmap Mean loading rates by land use 

Agriculture: TN 118 kg/ha/yr, TP 

17 kg/ha/yr 

Pasture: TN 36 kg/ha/yr, TP 4 

kg/ha/yr 

Urban: TN 31 kg/ha/yr, TP 2 

kg/ha/yr 

Unmanaged: TN 17 kg/ha/yr, TP 

0.2 kg/ha/yr 

Proportion of nutrient loading by 

source 

Chemical agricultural fertilizer: TN 

43%, TP 59% 

Manure: TN ~17%, TP ~28%  

Atmospheric deposition: TN ~33%, 

TP ~2% 

Non-agricultural fertilizer: TN 

~2%, TP ~2% 

Septic tanks: TN ~2%, TP ~5% 

Point sources: TN ~3%, TP ~4% 
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Table A1 (cont’d) 

Mehan et al., 

2019 

Surface  Mason Ditch 

Watershed 

(within Maumee 

watershed) 

TP, SP, TN, 

NO3 

SWAT Responses of annual nutrient loads 

to climate change by the end of the 

century 

Organic P: increase by 15-75% 

Soluble P: decrease of 60% to 

increase of 75% 

Subsurface drain soluble P: 

decrease by 35-60% 

Subsurface drain NO3: decrease by 

25-75% 

Surface runoff NO3: increase by 50-

100% 

Merriman et 

al., 2018 

Surface  Eagle Creek 

watershed 

(within Maumee 

watershed) 

TP, DRP, 

TN, NO3 

SWAT Percent reduction in field-scale 

average annual nutrient surface 

runoff loads with best-performing 

management (conservation cover 

and filter strips) 

TP: 94% 

DRP: 60% 

Percent reduction in watershed-

scale average annual nutrient loads 

under high BMP implementation 

TP: 23% 

DRP: 9.9% 

NO3: ~28% 

TN: ~32% 

Nelson et al., 

2018 

Surface  Rock Creek 

Watershed 

(within 

Sandusky 

watershed) 

TP, TN Agricultural 

Policy/Environmental 

eXtender (APEX) model 

Nutrient load ranges under 

differing water management 

scenarios 

With tile drainage: TP range = 

2.48-4.04 kg/ha, TN range = 26.03-

55.10 kg/ha 
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Table A1 (cont’d) 

     Without tile drainage: TP range = 

0.49-2.37 kg/ha, TN range = 5.36-

10.04 kg/ha 

Thomas et al., 

2018 

Surface  29 SW Ontario 

tributaries to LE 

and Lake Huron 

TP, TN, 

TDP, SRP, 

DKN, NH3, 

NO3/NO2, 

DON, DIN, 

TDN 

OLS regression model Most important land use descriptor 

variables in predicting nutrient 

loads and standard coefficients 

DON: WWTP population density, 

0.8688 

NH3: Watershed impervious %, 

0.7549 

DKN: WWTP population density, 

0.8461 

TDN: Headwater buffer pervious 

%, −0.9788 

TN: Headwater buffer pervious %, 

−1.0745 

NO3/NO2: Stream buffer forage %, 

−0.5636 

DP: 600m buffer forage %, 0.7514 

SRP: WWTP population density, 

0.8026 

TP: WWTP population density, 

0.9225 

Wallace et al., 

2017 

Surface  Cedar Creek 

Watershed 

(within Maumee 

watershed) 

TP, SP, TN, 

SN 

SWAT Responses of annual nutrient loads 

to climate change by the end of the 

century 

Total P: No significant changes 

Soluble P: No significant changes 

to decrease of 25.5% 

Total N: No significant changes to 

increase of 19.8% 

Soluble N: No significant changes 
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Table A1 (cont’d) 

Wang and 

Boegman, 2021 

Surface  Maumee River 

(for nutrient 

loading) 

TP, PO4 General Lake Model-

Aquatic Ecosystem 

Dynamics 

Load changes under various BMP 

scenarios 

No-till: TP +2.46%, PO4 −1.54% 

Cover crops: TP −2.37%, PO4 

−1.66% 

Filter strips: TP −2.97%, PO4 

−3.08% 

Combo spatially random: TP 

−0.88%, PO4 −4.41% 

Combo in high source areas: TP 

−6.92%, PO4 −8.04% 

Combo near river mouth: TP 

−0.86%, PO4 −0.18% 

Wang et al., 

2021 

Surface  Woodslee, ON 

(within St. Clair-

Detroit 

watershed) 

DRP Environmental Policy 

Integrated Climate 

(EPIC) model 

Average responses of annual DRP 

loads to climate change by mid-

century 

Total DRP loss: decrease by 11%,   

DRP in surface runoff: increase by 

4% 

DRP in subsurface drainage: 

decreased by 22% 

Wang et al., 

2018 

Surface  Woodslee, ON 

(within St. Clair-

Detroit 

watershed) 

DRP Environmental Policy 

Integrated Climate 

(EPIC) model and 

SurPhos model 

Proportion of DRP loss sources in 

surface runoff 

Solid manure plots: 19% from 

manure, 81% from soil 

Liquid manure plots: 4.5% from 

manure, 95.5% from soil 

Zhang et al., 

2008 

Surface  Lake Erie TP, TN EcoLE Percentages of TP and TN in the 

water column excreted by 

dreissenid mussels 

1997 P: 23.2% western basin, 1.6% 

central basin, 1.2% eastern basin 
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Table A1 (cont’d) 

     1997 N: 12.5% WB, 3.8% CB, 

2.8% EB 

1998 P: 19.4% WB, 1.1% CB, 

0.8% EB 

1998 N: 11.8% WB, 3.7% CB, 

3.4% EB 

1999 P: 55.5% WB, 1.7% CB, 

0.8% EB 

1999 N: 14.6% WB, 4.3% CB, 

2.5% EB 

 


