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ABSTRACT

Electrochemical impedance spectroscopy (EIS) is a powerful and non-destructive character-

ization technique widely used in the electrochemical research field. It can measure many

macroscopic properties such as internal resistance, capacitance, and diffusivity by fitting the

obtained impedance with equivalent circuits. Each of the acquired quantities reflects an

electrochemical mechanism, e.g, charge-transfer reaction, double layer formation, and mass

transport, taking place in the electrode. However, the obtained quantity is a total value

for the whole electrode. The underlying connections between the macroscopic properties,

intrinsic material parameters, and electrode microstructures are not well understood. This

dissertation focuses on building a modeling framework to simulate EIS processes with given

electrode microstructures and intrinsic material parameters. With this simulation tool, we

provide a digital bridge between battery electrode material properties, electrode microstruc-

tures, and their corresponding EIS impedance.

Capacitance of an electrochemical device originates from double layer formation in the

electrolyte. However, there is a huge spatial discrepancy between the dimensions of double

layer and electrode particles (or interparticle space). Thus, smoothed boundary method

and adaptive mesh refinement are used to handle the scale discrepancy and the complex

geometries of electrode particles in solving the Nernst-Planck-Poisson equations in simulating

the double layer formation under voltage loading. The obtained double-layer capacitance

is incorporated into multiphysics electrochemical simulations. Cathode electrode made of

Nickel-Manganese-Cobalt (NMC111) oxide, is examined with this simulation tool. As a solid

solution material, lithium transport in the NMC111 electrode particles is described by Fick’s

law. EIS curves for various conditions, including different states of charge, electrolyte salt

concentration, electrode microstructures, are extracted from the simulations and analyzed.

The simulations properly reflect the relationships between particle exchange current density,

reactive surface area, and the total resistance of the electrode.

Anodes made of graphite, a phase-transforming material upon lithiation/delithiation,



are also examined using the simulation tool. The Cahn-Hilliard equation is employed to

model the phase transformation processes in the particles. EIS simulations are conducted

on single-phase and multi-phase graphite. For single-phase or core-shell phase-distributed

graphite particles, the simulated EIS curves exhibit a typical semicircle with a Warburg part.

Interestingly, if phase boundaries intersect particle surfaces, a low frequency inductive loop

appears on the EIS curve.

Lastly, the simulation tool is applied to simulate EIS processes of a full-cell battery of

both cathode and anode microstructures. On each electrode, the total current is comprised

of capacitance and reaction currents. It is observed that, depending on the loading frequency,

the ratio of capacitance-to-reaction current on the two electrodes can be significantly differ-

ent. The simulation tool allows us to examine the details of electrochemical processes during

EIS measurements.
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CHAPTER 1

BACKGROUND

1



1.1 Motivation

Nowadays, with pressing world environmental concerns, clean energy has received extended

attention. Among them, a clear trend is that electric vehicles will gradually replace internal-

combustion-engine vehicles. The market demands of advanced electric vehicles raise in-

creasing requirements for electrochemical energy storage systems, especially for lithium-ion

batteries. To improve the range, charging time, lifespan, and safety of electric vehicles, re-

search efforts have been put on enhancing the capacity, rate performance, cyclability, and

reliability of lithium-ion batteries.

A lithium-ion battery consists of two electrodes: anode and cathode that are separated

by an insulating layer to prevent internal shortcuts. Electrolyte fills the interparticle space in

the electrodes and pores in the separator to allow lithium (Li) ions shuttling between the two

electrodes. A battery’s macroscopic performance is determined by many microscopic pro-

cesses simultaneously occurring in the electrodes. For example, deintercalation of cathode

(also called charging process) involves Li outward diffusion in the particles, electron migra-

tion through the particle network, electrochemical reaction on particle surfaces, and Li-ion

diffusion in the electrolyte, all of which take place in a complex cathode microstructure. The

Li ions leaving the cathode migrate through the electrolyte, reach the anode particle surfaces,

and are then inserted into anode particles. As can be envisioned, microstructural features,

such as porosity [1], tortuosity [2] of interparticle space, reactive surface area [3], and particle

size [1, 4], all affect a battery’s performance. These microstructural features sometimes vary

through the electrode, which can result in substantially non-uniform reaction current density

and might deteriorate cell performance or even cause safety concerns [5]. Without a com-

prehensive understanding of the relationship between electrode microstructure and battery

performance, it is impossible to improve electrode designs or optimize battery performance.

Electrochemical impedance spectroscopy (EIS) is a widely used technique to measure

properties of electrochemical devices, such as batteries and fuel cells. The EIS measures

the response current (or voltage) to an oscillating voltage (or current) loading [6]. The
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obtained EIS curve is fitted with an equivalent circuit model (ECM) that comprises of re-

sistors, capacitors, and constant-phase elements [7], such that the total values of resistance,

capacitance, and Warburg impedance are evaluated from the fitting. These resistance, ca-

pacitance, and Warburg impedance correspond to the physical mechanisms of charge transfer

reaction, polarization, and diffusion (mass transport) involved in the whole electrochemical

process. However, the connection between the acquired values and the microscopic informa-

tion is absent in the ECM fitting. It cannot provide physical insights of microstructural-level

electrochemical processes. To investigate the relationship between macroscopic electrode

performance and microscopic processes, complex microstructures must be explicitly consid-

ered, which can be realized using electrochemical simulations [8, 9, 10]. Thus, this work

aims to create a simulation tool based on physical mechanisms taking place in electrode

microstructures to unravel the electrochemical processes during EIS measurements. The key

components of this simulation framework are electrochemical double layer formation and

coupled multiphysics electrochemical dynamics in EIS processes. The relevant backgrounds

are reviewed in the following sections.
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1.2 Electrochemical Double Layer

Double layer is the key part in electrochemical capacitor and has a large effect on the EIS

behavior of liquid-electrolyte batteries. This section will provide a literature survey of the

formation of double layer and the resulting electrochemical capacitor. The following para-

graphs contains brief descriptions of terminologies used in this thesis and a summary of

published research progress related to the content of this thesis.

1.2.1 Electrochemical Capacitor

Electrochemical capacitor (EC), also known as electrochemical double layer capacitor, su-

percapacitor and ultracapacitor, is one type of electrical energy storage devices. A simple

EC can be represented by two electrodes connected by an external circuit and immersed in

a electrolyte, for example two metal plates in salt water. When applying external voltage to

these two electrodes, an electron current flows from one to the other via the external circuit.

To counter the electropotential polarization, ionic charge separation takes place at each side

of the liquid-solid interface since electrons can not enter the electrolyte and ions can not

enter the electrodes. Once the external circuit is cut off, the voltage persists and the energy

is stored. In this state, the ions in the electrolyte are attached to the surface of each electrode

by an equal but opposite charge. This status is maintained by electrostatic attractive force.

The thin region with charge separation near the surfaces of electrodes is named “diffuse

double layer”, which is the working mechanism of EC’s energy storage. Thus, understanding

the double layer formation process is of great importance in developing physics-based EIS

simulations.

Conway described the difference between supercapacitor and battery behavior in mecha-

nism and performance of electrochemical energy storage [11]. While the structure of ECs is

somehow similar to batteries, their working mechanisms for storing energy are significantly

different. In batteries, electrochemical energy is stored via chemical reactants by redox re-
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actions taking place on the interfaces between electrode and electrolyte. A charge transfer

process, or called Faraday process, occurs on the surface of electrode particles during charging

or discharging. In many cases phase transformations occur in the bulk of electrode particles.

Those processes usually lead to side reactions, and thus battery performance decays and their

cycle live are limited. Additionally, the amount of energy that a battery can store depends on

the quantity of electroactive materials that can accommodate the charge-transfer reactions.

In contrast, in an electrochemical capacitor, electrostatic energy storage is achieved by the

amount of charge separation, Q, and the stored energy is ∆G = CV 2/2 = QV/2, where C

is the capacitance and V is the electrostatic potential difference between the two electrodes.

The cell performance curve of an EC shows a linear (or almost linear) function of the de-

gree of charge, which is essentially different from batteries that shows a hyperbolic-sine-type

curve determined by the thermodynamic behavior of single-phase battery reactants. Such a

difference reflects the different work mechanisms of these two devices. Note that the working

voltage of an EC or a battery must be lower than the breakdown potential of the electrolyte

(namely, where electrolysis occurs): typically, < 1 V for aqueous or < 3 V for organic

electrolyte [12].

ECs have some common features with electronic capacitors. Both of them store electric

energy by charge separation, but the media between two electrodes normally contains no

movable charged particles for electronic capacitors. When plotting the power density of dif-

ferent basic energy storage devices as a function of energy density (see Figure 1.1), EC is

at the middle between electronic capacitors and batteries and can fairly operate in a wide

range of power density and energy density. Electronic capacitors have very high power and

very fast response time and almost unlimited cycle life while their energy density is as low

as 0.1 Wh/kg or even lower [13]. Hence electronic capacitors are often used in the situations

that need fast response and to detect tiny signals but not require significant energy storage.

Compared to an electronic capacitor, an electrochemical capacitor has a higher energy den-

sity. ECs can have specific capacitances exceeding 200 F/g, cycle lives above 1× 106 cycles.
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Figure 1.1 Power density as a function of energy density for various energy storage
devices(figure taken from [13])

If including pseudocapacitances, the total capacitance will be much higher as pseudocapaci-

tances can contribute more than 100 times double-layer capacitance [14]. Pseudocapacitance

is a process of battery-like energy storage mechanism. This means it involves charge transfer

processes, but behaves like a electrochemical capacitance. Since the bolder between pseudo-

capacitances and battery behavior is still subtle, Simon and Gogotsi [15] gave their principles

to distinguish pseudocapacitances and battery behaviors. Using fast and highly reversible

redox reactions at the surface of active material, is defined as the pseudo-capacitive behavior.

Transition metal oxides such as RuO2, MnO2 as well as electronically conducting polymers

are usually used as electrodes for pseudo-capacitors. However, this thesis does not consider

pseudocapacitances in the modeling and simulations.

ECs have already been found to have a wide range of applications in hybrid energy storage
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Figure 1.2 Schematic diagram of the electrochemical desalination device (figure taken from
[16])

system [17], desalination [18] and biochemical system design [19]. An illustration of using ECs

in water desalination is shown in Fig. 1.2. The capacitance of a modern EC can range from

µF to kF. ECs are used in the places where rapidly varying load power profiles are needed

such as hybrid electric vehicles. Influenced by battery technologies, porous carbon electrodes

and propylene carbonate electrolyte that are commonly used in Li-ion batteries are directly

used in ECs. Nevertheless, little attention has been paid on modeling ECs. For example,

there have been numerous modeling studies applying to batteries [20, 21, 22, 23, 24] but only

few was specific for ECs. Since the diffuse double layer, the ECs’ energy storage mechanism,

also plays an important role in battery’s EIS behavior, developing a new continuum modeling

and simulation capability of double layers is essential to this thesis work. This requires an

understanding of the fundamental principle of the physical and chemical processes that occur
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in ECs.

1.2.2 Physical Models of Double Layer Structure

Helmholtz [25] was the first to realize that a charged electrode would form an ionic interface

on its surface and called such a surface structure as the electric double layer in 1853. In

Helmholtz’s model, all counter-ions are assumed to directly attach to the electrode surface.

This structure is analogous to that of conventional dielectric capacitors with two planar

electrodes separated by a distance H. See Fig. 1.3(a) for an illustration.

Figure 1.3 Schematics of the electric double layer organization revealing the distribution of
solvated anions and cations around the electrode/electrolyte interface. (a) Helmholtz
model, (b) Gouy-Chapman model, and (c) Gouy-Chapman-Stern model. (figure taken from
[26])

Gouy and Chapman (1910) developed an electric double layer model accounting for the

fact that the ions are mobile in the electrolyte solutions and are dirven by the coupled

influence of diffusion and electrostatic forces. This results in the so-called diffuse layer

shown in Fig. 1.3(b). In this model, the ions are treated as point-charges and the equilibrium
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concentration ci of ion species ‘i’ is given by the Boltzmann distribution as

ci = ci∞ exp(−zieϕ
kBT

) (1.1)

where zi and ci∞ are the valency and bulk molar concentration of ion species ‘i’, respectively.

The absolute temperature is denoted by T , e is the elementary charge, while kB is the

Boltzmann constant (kB = 1.381 × 10−23 m2kgK−1s−2). In the Gouy-Chapman model, the

local electric potential ϕ in the diffuse layer is determined by the Poisson’s equation assuming

a constant electrolyte permittivity.

Stern (1924) combined the Helmholtz model and the Gouy-Chapman model and described

the electric double layer as two layers seen as Fig. 1.3(c). The Stern layer referring to the

compact layer of immobile ions strongly adsorbed to the electrode surface and the diffuse

layer is where ions are mobile and the Gouy-Chapman model applies. Note that there are no

free charges within the Stern layer. The total electric double layer capacitance consists of the

Stern layer and diffuse layer capacitance in series. Today, the Stern model is considered the

standard model of double layer structure. For most of electrolytes in practical applications,

the predicted thickness of the diffuse double layer is less than 50 nm.

The models above are only valid for dilute solutions and low electric potential because

they didn’t count finite ion size. In actuality, ions have finite ion size and cannot be treated as

point charges. Bikerman (1942) developed the first equilibrium modified Poisson-Boltzmann

model accounting for finite ion size [27]. The ion concentration is limited to the concentra-

tion of close packed structure which is given by cmax = 1/(NAa
3) if we assume it’s simple

cubic packing. Here NA is the Avogadro constant and a is the diameter of ions. There-

fore, the equilibrium ion concentration given by Equation (1.1) cannot exceed cmax. The

corresponding maximum surface potential can be calculated by

ϕmax =
kBT

zie
ln(NAa

3c∞). (1.2)

The magnitude of local electric potential |ϕ| in the diffuse layer should not exceed ϕmax

referenced to the potential at infinity (in the deep bulk of the electrolyte). For instance, a
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= 0.3 nm, c∞ = 10−5 M and z = 1 in solvated bulk K+–Cl− interactions, then ϕmax = 0.33

V [28].

Figure 1.4 Two flat plates at constant surface potentials of ψa and ψb (figure taken from
[29])

Analytical solution exists for the Stern model on one-dimensional case and for some simple

two-dimensional geometries. For example, the Poisson equation for the case of parallel plates

is given by

ϵ
d2ϕ

dx2
= −ρ (1.3)

where ϵ is the dielectric constant and ρ is the charge density. After applying Debye-Huckel

approximation [29], it becomes

d2ϕ

dx2
= κ2ϕ (1.4)

where κ =
√

2e2z2c∞/(ϵkBT ). The solution of Eq. (1.4) gives

ϕ = A1 coshκx+B1 sinhκx (1.5)
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Making use of the boundary conditions of ϕ at x = ±h/2 as shown in Fig. 1.4, where (ϕa −

ϕ(h/2))/λ = ϕ′(h/2) and (ϕb−ϕ(−h/2))/λ = −ϕ′(−h/2), the coefficients are determined as

A1 =
ϕa + ϕb

2 coshκh/2 + 2λκ sinhκh/2
and B1 =

ϕa − ϕb

2λκ coshκh/2 + 2 sinhκh/2
(1.6)

where λ represents the Stern layer thickness which is often several layers of ions thick.

1.2.3 Simulations of Double Layer Formation

Due to the importance of double in many applications, simulations of double layer formation

have been developed and performed using several methods, such as equivalent-circuit-based,

atomic simulation-based, statistics-based, macrohomogeneous-electrochemistry-based tech-

niques, etc. The equivalent RC circuit models and more complex transmission line models

are used to investigate the performance of supercapacitors and batteries, in which the dou-

ble layer is represented by a capacitor component. However, the equivalent circuit models

(ECM) require prior knowledge of macroscopic parameters such as the resistance and ca-

pacitance of the devices, which are usually determined by experiments or other empirical

methods. In fact, the ECM is typically used to fit the experimental data to extract an ef-

fective capacitance of the device [30, 31, 32] rather than to predict or explain the formation

of the double layer.

In statistical mechanical theories, the electric double layer is often simulated by the

primitive model where the ions are treated as charged hard spheres. The solvent and the

electrode are represented as dielectric continuum with the same dielectric constant because

Poisson-Boltzman theory assumes that the dielectric constant has no influence on the ionic

profile. Henderson et al. [33] used a classical density functional theory (DFT) to study the

electric double layer formed by charged hard spheres near a planar charged surface. Their

DFT predictions are found to be in good agreement with the results from Monte Carlo simu-

lations. The primitive model can also applied to model electrodes with a dielectric constant

different from that of electrolyte, e.g., a value approach to infinity for metal electrodes. It
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was shown by Torrie et al. [34] that the assumption of Poisson-Boltzmann theory is not

valid, especially when the electrolyte contains multivalent ions. Nagy et al. [35] modified the

primitive model by adding an inner layer (or called Stern layer in this thesis). Their Monte

Carlo simulation results reported that the inner layer with lower dielectric constant than

that of the bulk electrolyte, bringing the results into agreement with experiments. They also

showed the ionic profile of diffuse layer depends on the dielectric constants of both inner

layer and diffuse layer. Bhuiyan et al. [36] reported a Monte Carlo simulation result based

on a new density functional theory, in which each cation is represented by two touching hard

spheres: one positively charged and the other neutral, and each anion is still represented by

a negatively charged hard sphere. However, due to the physical scale of those statistical me-

chanical simulations, they were all equivalent to one-dimensional cases and cannot account

for the 3D irregular morphology/geometry of electrodes.

Homogeneous models were developed to investigate the dynamics of double layer for-

mation and charge/discharge processes of supercapacitors. Those models treat the hetero-

geneous microstructure of electrodes as a homogeneous medium with effective macroscopic

properties such as porosity, tortuosity and capacitance per area or per volume. Newman

pioneered the theory of porous electrodes to treat the complex porous solid as a homoge-

neous phase [37]. He and coworkers successfully fitted theoretical current-time curves with

experimental data and determined the capacitance of double layer. Bazant et al. further

implemented the porous electrode theory by nonequilibrium thermodynamics methods [38].

Additionally, they treated porosity accounting for interparticle void and intraparticle micro-

pores differently by a modified-Donnan approach when dealing with electrodes composed of

primary particles that are porous themselves [39]. Despite the simplicity of using macroho-

mogeneous properties to simulate macroscale electrochemical processes, they cannot consider

the detailed three-dimensional electrode morphology and microstructure.

Simulations based on Poisson-Boltzmann theory assume that the profile of ions in the

diffuse layer obeys Boltzmann distribution when the system reaches steady-state. Such a
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treatment makes predicting double-layer structure at equilibrium convenient. For example,

the diffuse layer around a nm-sized micropore in porous electrodes has been studied by solving

Poisson-Boltzmann equation [40] although micropores in that work were still viewed as cylin-

ders. Other simulations accounted for the finite ion size [28, 41] and electrode morphology

have been reported. These studies largely extended the applicability of Poisson-Boltzmann

theory into cases with high applied voltage and concentrated solutions. However, one of the

limitations is that they cannot reveal the dynamic process of the double layer formation.

And many of these simulations are still confined to one-dimension or two-dimension with

regular geometries.

The classical Nernst-Planck-Poisson (NPP) model is physics-based on the ionic trans-

port driven by diffusion and electromigration, in which the electrostatic potential field is

determined by the charge density distribution. Thus, it can describe the ionic concentration

evolution in the diffuse double layer and the transient electric potential evolution. Details of

the model will be introduced in the next section. While the Nernst-Planck-Poisson model is

suitable to track the dynamics of double layer formation, most of the related simulation work

was limited to one-dimensional problems; for example, the 1D dynamic simulation of double

layer formation between two planar metal plates reported by Bazant et al. [42]. The main

difficulty of implementing multidimensional NPP simulations is to resolve the extremely thin

diffuse double layer (typically less than 50 nm) while keeping track of the ionic concentration

and electrostatic potential evolution spanning several order of magnitudes larger than the

diffuse layer (e.g., few or tens of µm space between particles and between electrodes). Very

fine mesh for the diffuse layer region will be required for numerical methods to solve the

governing equations. In Chapter 2, we will introduce an approach that allows a straightfor-

ward reformulation of governing equations that can be solved on non-body conforming mesh

on complex electrode microstructures. The reformulated equations are solved on adaptively

refined grid systems that have fine grids near the diffuse layer regions and coarse grids in the

particle or electrolyte bulk phases. Thus, it allows us to simulate the dynamics of double
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layer formation on complex 2D and 3D electrode particles which is difficult for the conven-

tional sharp-interface numerical methods that require generating mesh systems conformal

with the complex microstructure.
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1.3 Electrochemical Impedance Spectroscopy and Electrochemi-
cal Modeling for Batteries

There are electrochemical characterization techniques widely employed to study battery

electrodes, such as potentiostatic intermittent titration (PITT) [43], galvanostatic intermit-

tent titration (GITT) [44], cyclic voltammetry (CV) [45], and electrochemical impedance

spectroscopy (EIS) [6]. In this work, we place our focus on electrochemical impedance

spectroscopy (EIS) because it involves an electrode’s charge-transfer reaction, double-layer

formation, and diffusion/migration process simultaneously in one measurement. A detailed

modeling will reveal those coupled multiphysics mechanisms occurring in complex electrode

microstructures. This knowledge is crucial for optimally designing battery electrodes. As

mentioned earlier, EIS is widely used to measure electrodes’ (or batteries) resistance, capac-

itance, and Warburg impedance, which correspond to the charge transfer reaction, polariza-

tion, and mass transport, respectively, during the measurement process. Since each of those

physical responses has a different time scale, as the source frequency sweeps from low to

high values (or vice versa), the dominant mechanism will be separated at its corresponding

frequency. Thus, values of different properties can be obtained from the EIS curve.

Electrochemical processes can be controlled by voltage (potentiostat) or current (gal-

vanostat) loadings, which maintains a potential difference between the working electrode

and a reference electrode or maintains a current through the two electrodes, respectively. A

current will be measured as the response for the potentiostat mode and a voltage will be the

response for the galvanostat mode. EIS measurements can be conducted by either mode.

In potentiostat experiments, a voltage adder is used to combine the direct-current potential

corresponding to the polarization point (equilibrium potential) and the alternating-current

potential generated by the frequency function analyzer [6]. Currents are measured as the

output signal. Both the input and output signals are oscillatory in time domain, and they

are related by a transfer function of frequencies. If the transfer function takes the form of a

ratio of potential over current, the transfer function is called an impedance. The amplitude
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of the source signal is usually small to ensure that the system is not perturbed to be far

away from the equilibrium, thus returning a linear response [46]. However, nonlinear EIS is

sometimes also utilized to investigate more complicated situations [47].

Figure 1.5 Bode plot and Nyquist plot for expressing EIS of an RC circuit [48].

The value of impedance depends on the loading frequency and is a complex quantity that

can be expressed by an amplitude (absolute value) and a phase shift between the input and

output signals. Bode plot and Nyquist plot are the two most common ways to express EIS

results. Bode plot contains two pieces of information in one figure. The abscissa is frequency

in logarithmic scale and one ordinate is the amplitude of the impedance Z in logarithm scale

while the second ordinate is the phase shift ϕ. The lower left panel in Fig. 1.5 illustrates

a Bode plot of an RC circuit (a capacitor in parallel with a resistor). The advantage of

Bode plot is that all information is displayed together. At high frequencies, the phase shift

is approaching to 90 degree while the impedance amplitude is down to nearly zero. On a

Nyquist plot, negative of the impedance’s imaginary part (−Z ′′
) is plotted versus the real

part of the impedance (Z
′
). In this case, the distance between an impedance point and the

origin is the impedance’s amplitude, and the angle between the that connecting line and

the abscissa is the phase shift. The lower right panel in Fig. 1.5 illustrates a Nyquist plot.

At high frequencies, the impedance is close to the origin, also showing a 90-degree phase
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delay and zero impedance as in the Bode plot. The low frequency impedance is away from

the origin. At zero frequency, the phase delay is zero. While it is difficult to directly read

impedance values from a Nyquist plot, differences between different EIS curves can be easily

noticed on a Nyquist plot. The shapes of EIS curves on a Nyquist plot can also be quickly

recognized to be related to relevant equivalent circuits. Thus, it is widely used in presenting

EIS results. Additionally, some parameters can still be read from the plot. For instance,

the resistance of RC circuit can be obtained by the diameter of semicircle as on lower right

panel of Fig. 1.5.

One of the applications of EIS measurements is to estimate battery’s degradation [49].

The internal resistance of electrode can increase either due to the growth of solid electrolyte

interphase [50, 51], crack of electrode particles [52], or change of crystal structure of the

host crystals [53, 54]. Such increases in resistance over cycling can be easily observed on

EIS curves. However, only a total value of the whole system can be obtained, which may be

convoluted with changes in both the intrinsic material properties and the microstructures.

However, any further information to separate the contributions from material properties and

microstructural features is absent in the EIS results.

As mentioned, although ECM can be used to extract batteries’ overall properties, it

does not provide physical insights of electrochemical processes. Such insights can only be

obtained by physics-based electrochemical simulations [8, 9, 10] that explicitly consider the

relevant electrochemical processes. However, due to the complexity of electrode microstruc-

tures, porous electrode theory (PET) [55, 56], also known as pseudo-2D (P2D) modeling, is

currently the most prevalent simulation tool for studying electrochemical energy storage or

conversion devices. The PET models treat porous electrodes as homogeneous media that

have uniform microstructural features, such as tortuosity of interparticle space, porosity,

and reactive surface area density, throughout the entire electrodes. As a result, Li salt

diffusion and electron migration through an electrode are calculated using only uniform

effective salt diffusivity and effective electric conductivity of the electrode. The Li intercala-
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tion/deintercalation is modeled by diffusion in/outward of spherical particles with uniform

radii but uniformly located at different places in the electrode. Thus, 3D electrode simula-

tions are decoupled to three 1D simulations (salt concentration, electrostatic potentials in

the solid and electrolyte) along the electrode thickness direction and many 1D simulations

(Li concentration) along the particle radial direction [57]. This types of models are also called

P2D models because there are only two coordinate directions: one along the electrode thick-

ness, x, and the other along the radial direction, r. See Fig. 1.6 for an illustration. Although

electrochemical simulations are greatly simplified in the PET models [58, 59, 60], all mi-

crostructural phenomena are absent. For example, small and large particles will (de)lithiate

differently and salt diffuses non-uniformly in regions with different porosities and tortuosities

in real electrode microstructures. Those microstructural phenomena are difficult to be con-

sidered in PET models. To interpret the significance of EIS measurements, electrochemical

processes in the electrode microstructures must be resolved.

Figure 1.6 Schematic of the PET model for an LiC6/LiCoO2 cell

Nowadays image processing techniques have well advanced such that three-dimensional

(3D) microstructure reconstructions become mature experimental methods to characterize

electrode materials. Both focus-ion-beam scanning-electron-microscopy (FIB-SEM) [8, 61,

62] and nano/micro X-ray computing tomography (µ-CT) [9, 63, 64] are widely utilized in
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the battery research community for 3D electrode microstructure reconstruction. As opposed

to the destructive FIB-SEM technique, nano/micro X-ray CT is a non-destructive method,

which has been employed to in situ study electrode’s microstructural evolution, porosity,

and tortuosity variation [64]. The abundant microstructure data open a window for directly

simulating the electrochemical processes in complex electrode microstructures.

To investigate the relationship between macroscopic electrode performance and micro-

scopic processes, complex microstructures must be explicitly considered in electrochemical

simulations. In the conventional sharp-interface modeling, governing equations are numeri-

cally solved on mesh systems that conform with the domain where the equations are solved;

for instance, as in typical finite element method (FEM) [61, 65] or finite volume method

(FVM) [8, 63] simulations. However, since electrodes are made of packed particles with very

tortuous interparticle space, generating mesh conformal with those complex microstructures

are very time-consuming. We acknowledge that mesh generation for electrode microstruc-

tures are possible, as being demonstrated using commercial software packages such as COM-

SOL [65], Ansys [8], GeoDict [62], etc. Multiphysics phenomena coupled with electrochemical

processes and EIS response can be simulated using conventional methods [66]. However, in

many cases, manually fixing thousands of broken elements is required, which is extremely

tedious [8, 67]. As such, mesh generation is still usually the most time-consuming task in

microstructure simulations. Recently, Shodiev et al. [68] demonstrated a framework of using

coarse-grained molecular dynamics method to generate a composite porous electrode, mim-

icking the slurry-drying process of fabricating NMC (LixNi1/3Mn1/3Co1/3O2) cathodes, and

split voxels that represent the microstructure into elements for FEM simulations [69]. They

performed a set of electrochemical simulations with explicit considerations of three phases

(NMC active material, carbon-binder domain, and electrolyte in pores) in an composite elec-

trode and extracted EIS curves from the simulations. However, this method may also face

the challenge as in other voxelization-mesh-generation processes, such as a large number of

voxels.
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As will be presented in Chapter 2, the diffuse interface approach developed for simulating

double layer formation is also employed to circumvent the requirement of using conformal

mesh in simulating the electrochemical processes in complex electrode microstructures. The

capacitance due to double-layer formation is calculated based on the Nernst-Planck-Poisson

model. The obtained capacitance is incorporated into the electrochemical simulations to ex-

tract the total current responding to oscillating cell voltage loadings. Thus, this simulation

tool allows a very efficient implementation of physics-based microstructure-level electrochem-

ical impedance simulations. The simulated EIS curves on the Nyquist plot well agree with

physical interpretation and demonstrate the capability of physics-based microstructure sim-

ulations for EIS behavior.
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1.4 Dissertation Outline

In this thesis work, a model of electrochemical double layer formation is developed. The

calculated capacitance is input to microstructure-level electrochemical simulations with os-

cillating loadings. This simulation framework is applied to investigate EIS behavior of dif-

ferent electrodes under various states. The main content of this thesis is briefly summarized

below.

In Chapter 2, the methodologies of Smoothed Boundary Method (SBM), Finite Difference

Method (FDM), and Adaptive Mesh Refinement (AMR), in the simulations are introduced.

The SBM is used to reformulate governing equations sucha the new equations can be solved

on non-body conforming meshes. FDM is employed to approximate differential operators.

AMR is utilized to create fine grids near the diffuse interface regions These methods are

developed for solving governing differential equations in irregular and complex domains.

In Chapter 3, electrochemical double layer formation is simulated using the methods

mentioned above. The Nernst-Planck-Poisson equations are reformulated with SBM and are

solved on tree-structured AMR grid systems. One dimensional simulations are conducted

to verify the correctness and accuracy of the methodologies. Two dimensional simulations

show how complex geometry surfaces affect the formation of double layers. Furthermore,

a three dimensional simulation demonstrates the capability of the presented framework. In

multi-dimensions, the simulation results exhibit a dynamic process of double layer formation.

The charge separation starts on high curve surfaces and then spread throughout the entire

particle surfaces.

In Chapter 4, we describe the multi-physics electrochemical model for a half-cell config-

uration, which couples the Li diffusion in the cathode particles, current continuity in the

particles, ionic diffusion in the electrolyte, current continuity in the electrolyte, and the

Butler-Volmer reaction on the particle surfaces. The double-layer capacitance is calculated

using the methods in Chapter 2. This simulation framework is employed to investigate

the EIS behavior of NMC cathode electrodes. We examine the effects of initial Li fraction
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(state of charge) in the cathode, average salt concentration of electrolyte, and microstruc-

tures of electrodes on the resulting EIS behavior. The results well reflect the connection

between intrinsic material properties, microstructure, and the EIS behavior. For instance,

the charge-transfer resistance is inversely proportional to the exchange current density at

respective state of charge. The salt concentration in the electrolyte dominates the the ex-

change current density. At the same state of charge, the resistance is inversely proportional

to the active particle surface areas.

In Chapter 5, we simulate the EIS curves of complex graphite electrode. Graphite is a

multi-phase material and is widely used as the anode in Li-ion batteries. The Cahn-Hilliard

phase field equation is used to model the phase transformation processes in graphite particles

upon lithiation/delithiation. In single-phase stages, the obtained charge-transfer resistances

reflect the total active surface areas as in typical solid-solution materials. In contrast, in

two-phase coexisting graphite electrodes, when phase boundaries are present on the particle

surfaces, the simulations exhibit an inductive loop on the EIS curve. Yet, in core-shell

phase-morphology cases, the EIS results reflect only the properties of the shells.

In Chapter 6, we combine a NMC cathode and a graphite anode to a full-cell configuration

to simulate the EIS of a Li-ion battery at the microstructure level. The EIS curves of the

full cell at different states of charge are extracted and analyzed. The results demonstrate

that our simulations correctly reflect the input material property parameters. However, due

to the uncertainty in material properties, the simulated EIS curves do not well agree with

reported data. As result, the presented tool is utilized to back estimate the input material

properties, which demonstrate the capability of our model in calibrating material properties.

Chapter 7 summarizes this thesis work presented in Chapter 2–6. The key findings

and challenging issues in the investigations of physical-based electrochemical simulation of

lithium-ion batteries are described. Lastly, we provide an outlook for future research in the

relevant field.
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CHAPTER 2

NUMERICAL METHOD AND TECHNIQUES FOR SOLVING
DIFFERENTIAL EQUATIONS IN SIMULATIONS
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2.1 Introduction

Numerical methods and techniques used in this dissertation work in simulating the electro-

chemical processes in battery electrode microstructures are presented in this chapter. This

project aims to develop a framework with a broad application involving complex microstruc-

tures in the materials science field. In section 2.2, the Smoothed Boundary Method (SBM) is

introduced to reformulate differential equations, such that the new equations can be solved

on mesh/grid systems non-conformal to complex geometries. This technique is particularly

advantageous in simulations involving real electrode particles with irregular shapes. Finite

difference method (FDM) is used to implement the differential operators in solving the SBM-

forumlated equations. Basic stencils for a uniform grid are described in section 2.3. With

a diffuse interface of non-zero thickness in the SBM, errors between the SBM and the con-

ventional sharp-interface results are inevitably introduced. Thus, tree-structured Adaptive

Mesh Refinement (AMR) is employed to allow the use of thinner diffuse interfaces, which

significantly reduces the modeling error of SBM simulations. Using AMR grids also greatly

saves computational cost, compared to simulations with uniform fine-grid systems. The

details of tree-refinement methods and associated FDM stencils are provided in section 2.4.
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2.2 Smoothed Boundary Method

Smoothed boundary method has been demonstrated to be a convenient tool for solving

partial differential equations with boundary conditions imposed on irregular boundaries [70].

In the SBM, the complex geometries are embedded in the computational box, and a regular

grid system is generated by discretizing that computational box. The immersed boundary

is obtained by smearing the original sharp interface to a diffuse interface with four-to-six

grid points across. Since the interface is no longer ‘sharp’, structural mesh conforming with

geometries are not required. This circumvents the tedious processes of generating conformal

meshes on complex geometries.

In the conventional sharp-interface modeling, which are usually implemented by finite

element method (FEM) or finite volume method (FVM), it is required to discretize the do-

main with mesh (elements) conformal to the geometry of the domain. The equations are

solved within the meshed domain. For instance, the FEM subdivides the domain into smaller

and simpler parts, such as triangles (in 2D) and tetrahedrons (in 3D). These subdivisions

are called the elements, and the total union of the elements is referred to mesh. To accu-

rately represent a complex geometry, a high quality conformal mesh is required, especially

in the regions with high curvatures. The meshing process is very time-consuming and te-

dious. In many cases, manually creating or modifying elements are necessary. Furthermore,

an individual mesh system must be generated for each complex geometry. To investigate

microstructure effects using a series of different microstructures, the total efforts for gener-

ating many conformal mesh systems will be extremely high. It is acknowledged that there

have been many complex microstructure simulations performed on successfully meshed ge-

ometries. However, the efforts for generating conformal meshes is still a main challenge in

microstructure simulations.

Figure 2.1 shows a typical finite element mesh in lithium-ion battery simulations [71].

From left to right, it consists of a lithium metal anode (gray), a solid electrolyte (green),

and the cathode active material particles (anthracite). The dimension of composite cathode
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Figure 2.1 Finite element mesh of a simplified solid state lithium-ion battery electrode.
The active particles have a spherical shape.

is about ten micrometers. The spatial discretization is based on tetrahedral elements using

Coreform Cubit, and it consists of 2,430 nodes for the mesh as a reduced cluster for a realistic

geometry. A representative electrode geometry will result in finite element mesh consisting

of over 1.3 million tetrahedral elements. Figure 2.2 shows finite volume mesh of a three-

Figure 2.2 A segment of reconstructed cathode with cut-cell mesh structure on the top
face, taken from [8]

dimensional cathode microstructure geometry generated by ANSYS TGRID software [8].
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Cartesian finite volume meshes are produced within the interiors of electrode particles. It

requires approximately 1.5 million volume cells and 5 million cell faces to render this electrode

volume. Despite highly automated algorithms for generating cells for finite volume method,

there are sometimes pathologically skewed cells that need to be manually repaired. Such a

manual repairing procedure is commonly faced in electrode microstructure simulations [63].

While the meshing process itself might be computationally modest, the repairing process is

usually very tedious, which poises one of the main challenge in electrode microstructure level

simulations.

On the contrary, SBM uses a continuous domain parameter, ψ, to describe the domain

of interest (denoted as Ω), where the differential equations are solved. Within the domain

Ω, ψ is uniformly one.

ψ(x, y, z) = 1 ∈ Ω. (2.1)

It continuously transitions through the domain boundary and its value becomes uniformly

zero outside of the domain Ω.

ψ(x, y, z) = 0 /∈ Ω. (2.2)

Since the domain parameter is continuous, the domain boundary becomes a diffuse interface

with a finite thickness. Thus, the region where

0 < ψ(x, y, z) < 1 ∈ ∂Ω (2.3)

implicitly defines the location of the interface. The original boundary now becomes an

embedded interface within the computational box. There are various choices of functions

that can be used as the domain parameter ψ, as long as they are Sigmoid functions. They

need to be continuous, differentiable, and monotonically transitioning through the diffuse

interface. In this work, a hyperbolic tangent function is selected to be used as the domain

parameter:

ψ =
1

2

[
1 + tanh

(
d

ζ

)]
(2.4)
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where d is a signed distance function, which describes the the shortest distance from a point

to the original boundary. A positive distance indicates grid points inside the domain. If a

grid point is outside the domain, the distance is defined as negative. ζ is a parameter that

can control the thickness of the diffuse interface.

Figure 2.3 (a) Domain parameter distribution in the computational domain, (b) modified
hyperbolic tangent function profile ψ versus distance to the boundary.

The original differential equations will be reformulated to include the their boundary

conditions. For example, the mass conservation equation is expressed as

∂C

∂t
= −∇ · j⃗ + S (2.5)

where C is the concentration, t is time, j⃗ is the flux vector, and S is the source term.

Multiplying both sides by ψ, and using the identity ψ∇ · j⃗ = ∇ · (ψj⃗) − ∇ψ · j⃗, we obtain

the SBM-formulated equation as

ψ
∂C

∂t
= −[∇ · (ψj⃗)−∇ψ · j⃗] + ψS. (2.6)

Using diffusion as an example for the formulation, the mass flux is defined by Fick’s law as

j⃗ = −D∇C, where D is the diffusion coefficient. Equation (2.6) becomes

ψ
∂C

∂t
= [∇ · (ψD∇C)−∇ψ ·D∇C] + ψS. (2.7)
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The flux across the domain boundary is referred to as the Neumann boundary condition,

which specifies the gradient normal to the boundary.

jB = n⃗ · j⃗ = −D∂C
∂n

, (2.8)

where n⃗ in the inward unit normal vector to the boundary. The inward normal vector

is defined as n⃗ = ∇ψ/|∇ψ| in the diffuse interface description. Thus, we can obtain the

relation:

n⃗ · (−D∇c) = ∇ψ
|∇ψ|

· (−D∇c) = −D∂C
∂n

=⇒ ∇ψ ·D∇c = −|∇ψ|jB. (2.9)

Using Eq. (2.9), the SBM-formulated diffusion equation is

ψ
∂C

∂t
=

[
∇ · (ψD∇C) + |∇ψ|jB

]
+ ψS. (2.10)

The second term on the right side serves as the internal boundary condition imposed on

the diffuse interface. The computational box is discretized with a regular grid system that

does require grid points to be on the embedded boundary. The SBM-reformulated equation

is solved in the entire computational box with the embedded boundary conditions. The

SBM formulation is applicable for other types of mass transport equations by replacing

different definitions of mass flux j⃗ in Eq. (2.6), e.g., using the Cahn-Hilliard equation of phase

transformation. For a closed system of the complex geometry (no-flux boundary condition

on the diffuse interface), the second term in Eq. (2.6) vanishes. The domain parameter can

be employed to couple the governing equations in connect domains. For instance, in the

electrochemical simulations, ψp = 1 is used to define the particle regions, and ψe = 1−ψp is

used to defined the electrolyte regions. Further details of SBM-formulated equations for the

simulations are provided in the respective chapters later.
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2.3 Finite Difference Method on Uniform Grid Systems

SBM formulated differential equations can be solved on regular grid systems with the complex

geometries embedded in the computational box. For a uniform, regular grid, finite difference

method (FDM) is the most efficient numerical technique to implement. Although FDM on

uniform grids is baraly used through this work, the basics of FDM is still provided here as

a necessary background knowledge for the derivation of FDM stencils on adaptively refined

grid systems later. The central difference scheme approximates a second order 1D derivative

by

u′′(x) ≈ 1

h2
[u(x+ h)− 2u(x) + u(x− h)], (2.11)

where h is the grid spacing. Using Taylor series

u(x+ h) = u(x) + hu′(x) +
1

2
h2u′′(x) +

1

6
h3u′′′(x) +O(h4) (2.12)

u(x− h) = u(x)− hu′(x) +
1

2
h2u′′(x)− 1

6
h3u′′′(x) +O(h4), (2.13)

The truncation error can be shown to be proportional to h2. The first order 1D derivative

is approximated by

u′(x) ≈ u(x+ h)− u(x− h)

2h
(2.14)

with a truncation error in the order of h2. In 2D, the Laplace operator is expressed as

∇2u ≈ u(x+ h, y) + u(x− h, y) + u(x, y − h) + u(x, y + h)− 4u(x, y)

h2
(2.15)

and the gradients are

∂u

∂x
≈ u(x+ h, y)− u(x− h, y)

2h
(2.16)

∂u

∂y
≈ u(x, y + h)− u(x, y − h)

2h
. (2.17)

The truncation error of the gradient calculated using central different method is also pro-

portional to h2. The FDM stencils for 3D cases can be derived similarly.
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2.4 Adaptive Mesh Refinement

In this thesis, quadtree and octree decomposition are utilized to create adaptive meshes for

the 2D and 3D simulations, respectively. The adaptive mesh refinement is used to decrease

the computational burden and to increase the model accuracy. As introduced in Chapter

1, the diffuse double layer spans only tens of nanometers near the electrode surfaces. In

contrast, the dimensions of electrode particles and electrolyte space span over several (or tens

of) micrometers. Using a uniformly fine grid that is able to resolve the ionic concentration

and electropotential gradients within the double layer will lead to an enormous number of

grid points for the entire system. Thus, we must use fine mesh in the region of double layer

and use coarse mesh in the bulk of particles and electrolyte. Moreover, the SBM introduces

an interface with a non-zero thickness. This treatment inevitably leads to deviations [70]

in the results obtained using SBM and the conventional sharp-interface methods. This

modeling error quickly diminishes if the interface is sufficiently thin. Generally four to six

grid spacings are required to span over the diffuse interface to ensure the gradients can be

properly calculated within the interface. Fine grid near the diffuse interface region allows

the use of domain parameter that results in a thin interface, which can significantly reduce

the modeling error. Note that even though AMR grid is used in the simulations, the grid

points are not required to locate on the original sharp interface.

In the following, we briefly describe the quadtree refinement and the data structure

associated with the refinement. Two nouns are defined here: cell and node. In 2D cases, a

cell is a square formed by four equal edges. For example, cell-a and cell-c in Fig. 2.4(a). A

node is the intersect of different edges and it is also referred as a grid point. For instance,

node-3 and node-7 in Fig. 2.4(a). The 2D domain is initially discretized into a regular

Cartesian grid system, resulting in all equal-sized square cells. The resulting discretization

is called the Root Level of the tree. A Cell-List is created, in which each row contains the

labels of the four corner nodes in clockwise order. See Fig. 2.4(a): for example, cell-a with

node-1 through node-4 are stored in the first row of the cell list. If the distance from a
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Figure 2.4 An example of cell dividing and node labeling (a) cell and node label before
dividing (b) cell and node label after cell-b was divided

cell’s center to the embedded boundary is less than a threshold value, that cell is split to

four equal-sized squares, and the original cell is eliminated. Consequently, four new cells are

created and new nodes are inserted into the Cell-List. See Fig. 2.4(b) for instance, cell-b is

eliminated and cell-e through cell-h are created which are referred to as the Level-1 cells.

In the meantime, node-10 through 14 are inserted as shown in Fig. 2.4(b). The Level-1

cells can be further quadtree-decomposed into Level-2 cells, so on and so forth to higher

levels of refinement. Note here special care must be taken to set the threshold distances

such that there will be only one level of refinement between adjacent cells. A cross-level

refinement will require a more complicated FDM stencils. Thus, for the simplicity of FDM
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implementation, we constrain the refinements to ensure that all cells are adjacent to cells

that are only one-level higher or lower in the refinements.

Figure 2.5 An example Node-Neighbor-List of Fig. 2.4(b), regular node 3 and 11 have four
neighbors; T-junction node 12 and 14 have five neighbors, two west neighbors and two
south neighbors respectively.

During the refinement process, two additional files are generated: (1) Node-List that

stores the position coordinate of each node, and (2) Node-Neighbor-List that stores the

labels of the neighboring nodes of each node along the coordinate axial directions. For

instance, see Fig. 2.5, in which node-3 has four direct neighboring nodes in the four axial

directions. However, due to the refinement, some nodes do not have direct neighbors along

axial directions. For example, node-12 has two indirect neighbors in the west direction.

As shown in Fig. 2.6(a), a typical node (e.g., u0) will have four neighbor nodes on its

north, south, west and east directions, respectively. When a node inserted on the boundary

of two different levels of refinement, it can miss some of its direct neighbor nodes, e.g.,

see u0 in Fig. 2.6(b). The u0 does not have a direct west neighbor node but it has two

indirect neighbor nodes: u5 and u6. The indirect neighbor nodes will also be stored in the

Node-Neighbor-List (mentioned above) for calculating the derivatives using FDM. Instead

of storing the values of u in a 2D array as in a typical FDM simulation on a uniform grid

system, the values of u in this work are stored in a 1D vector, in which the indices are the

node labels. Derivatives can be calculated by using the values at the neighboring nodes ui
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according to the node labels stored in the Node-Neighbor-List. The FDM stencils for AMR

grid systems will be introduced in the next paragraph.

Figure 2.6 (a) Regular cross node Node u0 has four direct neighbor nodes, u1, u2, u3, and
u4 in the west, east, south and north directions respectively. (b) West facing T-junction,
node u0 has three direct neighbor nodes, u2, u3, and u4; and two indirect neighbor nodes,
u5 and u6.

As mentioned earlier, the finite difference method is used to solve governing differential

equations. It is a node-based sampling method, meaning values are calculated at nodes (or

grid points), instead of at the cell centers. In 2D cases, there are two types of nodes. One

with four direct neighbor nodes as shown in Fig. 2.6(a). This type of nodes is referred to the

regular nodes. The other type of nodes has only three or less direct neighbors. For instance,

u0 on Fig. 2.6(b) has u2, u3, and u4 as the east, south, and north neighbors, respectively.

There is no direct neighbor node on its west (u1 is a virtual node) but two indirect neighbor

nodes u5 and u6 instead. This type of nodes is referred to the T-junction nodes, specifically

west facing T-junction node in this case. Clearly, the difference in neighboring relations,

compared to the regular node, will lead to a different FDM stencil for the T-junction node.

Below, an example derivation of the FDM stencil for AMR grid system is presented.
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We will begin with the Laplace operator ∇2u. As in Fig. 2.6(a), for regular node u0 with

four neighbor nodes, the Taylor series gives

u1 = u0 − s1ux +
s21
2
uxx + ... (2.18)

u2 = u0 + s2ux +
s22
2
uxx + ... (2.19)

u3 = u0 − s3uy +
s23
2
uyy + ... (2.20)

u4 = u0 + s4uy +
s24
2
uyy + ... (2.21)

where the subscripts x and y denote differentiation. Eq. (2.18)×s2 + Eq. (2.19)×s1 leads to

s1(u2 − u0) + s2(u1 − u0) =
s1s2(s1 + s2)

2
uxx (2.22)

which can be reorganized to

uxx =
2

s1 + s2

(
u2 − u0
s2

− u0 − u1
s1

)
. (2.23)

Eq. (2.20)×s4 + Eq. (2.21)×s3 gives

uyy =
2

s3 + s4

(
u4 − u0
s4

− u0 − u3
s3

)
. (2.24)

Finally, Eq. (2.23) + Eq. (2.24) results in the stencil for Laplace operator

∇2u = uxx + uyy =
2

s1 + s2

(
u2 − u0
s2

− u0 − u1
s1

)
+

2

s3 + s4

(
u4 − u0
s4

− u0 − u3
s3

)
. (2.25)

With the domain parameter function ψ as in the SBM equations, we have

∇ · ψ∇u =
2

s1 + s2

(
ψ2 + ψ0

2
· u2 − u0

s2
− ψ0 + ψ1

2
· u0 − u1

s1

)
+

2

s3 + s4

(
ψ4 + ψ0

2
· u4 − u0

s4
− ψ0 + ψ3

2
· u0 − u3

s3

)
=

2

s1 + s2

(
ξ2 ·

u2 − u0
s2

− ξ1 ·
u0 − u1
s1

)
+

2

s3 + s4

(
ξ4 ·

u4 − u0
s4

− ξ3 ·
u0 − u3
s3

)
(2.26)

where ξi = (ψi + ψ0)/2 is the average of ψ between the center node and its individual

neighbors, and i = 1, 2, 3 and 4.

35



Here, we use a west facing T-junction node as an example for deriving the FDM stencil

for Laplace operator. For the T-junction node u0 on Fig. 2.6(b), the Taylor series of its

indirect neighbor nodes u5 and u6 can be written as

u5 = u0 − s1ux − s5uy +
s21
2
uxx +

s25
2
uyy + s1s5uxy + ... (2.27)

u6 = u0 − s1ux + s6uy +
s21
2
uxx +

s26
2
uyy − s1s6uxy + ... (2.28)

Neglecting high order terms (after second order derivatives), Eq. (2.27)×s6 + Eq. (2.28)×s5

yields

s6u5 + s5u6 = (s5 + s6)(u0 − s1ux) + (s5 + s6)

(
s21
2
uxx +

s5s6
2
uyy

)
=⇒ 1

s5 + s6

[
s5(u0 − u6) + s6(u0 − u5)

]
= s1ux −

s21
2
uxx −

s5s6
2
uyy

=⇒ u0 −
s5u6 + s6u5
s5 + s6

= s1ux −
s21
2
uxx −

s5s6
2
uyy

=⇒ u0 − u1 = s1ux −
s21
2
uxx −

s5s6
2
uyy

(2.29)

where u1 represents the value on a virtual node between u5 and u6, and its value is an

weighted average of u5 and u6. Eq. (2.19)×s1 − Eq. (2.29)×s2 eliminates ux, yielding

s1(u2 − u0)− s2(u0 − u1) =
s1s2(s1 + s2)

2
uxx +

s2s5s6
2

uyy

=⇒ uxx =
2

s1 + s2
(
u2 − u0
s2

− u0 − u1
s1

)− s5s6
s1(s1 + s2)

uyy

(2.30)

On the y direction, node u0 has two direct neighbors. Thus, uyy has the same form as the

regular node as expressed in Eq. (2.24). Summing Eq. (2.30) and Eq. (2.24) gives

uxx + uyy =

2

s1 + s2

(
u2 − u0
s2

− u0 − u1
s1

)
+

2

s3 + s4

(
u4 − u0
s4

− u0 − u3
s3

)
·
(
1− s5s6

s1(s1 + s2)

)
.

(2.31)

This stencil is similar to that of a regular node, except for the correction factor β =

s5s6/s1(s1+ s2) that arises due to the lack of a direct neighbor. With the domain parameter

function ψ, we start with second derivative in the y direction:

(ψuy)y =
2

s3 + s4

(
ψ4 + ψ0

2
· u4 − u0

s4
− ψ0 + ψ3

2
· u0 − u3

s3

)
=

2

s3 + s4

(
ξ4 ·

u4 − u0
s4

− ξ3 ·
u0 − u3
s3

)
.

(2.32)
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On the x direction, we use the two indirect neighbor nodes to represent the virtual west

neighbor node, which yields

(ψux)x =
2

s1 + s2

[
ψ2 + ψ0

2
· u2 − u0

s2
−(

s5
s5 + s6

· ψ0 + ψ6

2
· u0 − u6

s1
+

s6
s5 + s6

· ψ0 + ψ5

2
· u0 − u5

s1

)]
− s5s5
s1(s1 + s2)

(ψuy)y

=
2

s1 + s2

[
ξ2
u2 − u0
s2

−
(

s5
s5 + s6

· ξ6 ·
u0 − u6
s1

+
s6

s5 + s6
· ξ5 ·

u0 − u5
s1

)]
− β(ψuy)y.

(2.33)

Again, due to the lack of a direct neighbor, the correction factor β appears in the stencil.

We can define

ξ1 =
s5ξ6 + s6ξ5
s5 + s6

=
1

s5 + s6

(
s5 ·

ψ0 + ψ6

2
+ s6 ·

ψ0 + ψ5

2

)
=
ψ0

2
+

1

2

(
s5ψ6

s5 + s6
+

s6ψ5

s5 + s6

)
=

1

2

(
ψ0 + ψ1

) (2.34)

where ψ1 = (s5ψ6 + s6ψ5)/(s5 + s6) is the weighted average value of ψ on the virtual

neighboring node. Substituting ψ1 into Eq. (2.33), we obtain

(ψux)x =
2

s1 + s2

[
ξ2 ·

u2 − u0
s2

− ξ1 ·
1

s1

(
u0 −

(
s5

s5 + s6
· ξ6
ξ1

· u6 +
s6

s5 + s6
· ξ5
ξ1

· u5
))]

− β(ψuy)y

=
2

s1 + s2

(
ξ2 ·

u2 − u0
s2

− ξ1 ·
u0 − u1
s1

)
− β

(
ψuy

)
y

(2.35)

where the value at the virtual neighbor node is obtained by a weighted average:

u1 =
s5

s5 + s6
· ξ6
ξ1

· u6 +
s6

s5 + s6
· ξ5
ξ1

· u5. (2.36)

Note that if ψ is a uniform value, u1 equals that in Eq. (2.29). Combining Eq. (2.32) and

Eq. (2.35), we obtain

∇·ψ∇u =
2

s1 + s2

(
ξ2 ·

u2 − u0
s2

−ξ1 ·
u0 − u1
s1

)
+

2

s3 + s4

(
ξ4 ·

u4 − u0
s4

−ξ3 ·
u0 − u3
s3

)
·
(
1−β

)
.

(2.37)
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Stencils for T-junction nodes in other directions can be derived in a similar manner. A

general form of the Laplace operator with domain parameter on the AMR grid system is

(∇ · ψ∇u)T =
2

s1 + s2

(
ξ2 ·

u2 − u0
s2

− ξ1 ·
u0 − u1
s1

)
· (1− β1)+

2

s3 + s4

(
ξ4 ·

u4 − u0
s4

− ξ3 ·
u0 − u3
s3

)
· (1− β2)

(2.38)

where β1 and β2 are the correction factors for nodes missing direct neighbor nodes in the

x and y directions, respectively. For a west facing T-junction, β2 = s5s6/(s1(s1 + s2)), β1

= 0, u1 = (s6u5 + s5u6)/(s5 + s6) which represents the value at a virtual neighbor on the

west side. ξ1 = (ψ1 + ξ0)/2, where ψ1 = (s6ψ5 + s5ψ6)/(s5 + s6) is the average of ψ at the

two indirect neighbors. It is noted that in a given direction, a T-junction node may have

immediate indirect neighbors located at different distances away from the node. Consider

node u0 in Fig. 2.6(b) as an example, where the immediate northwest neighbor (u7) is closer

than the immediate southwest neighbor (u5) in that direction. In a such case, instead of

using the closest neighbor, the next neighbor in that direction is chosen in order to ensure

that distance from a T-junction to all its neighbors in a given direction is the same. This

means that for a node like u0 on Fig. 2.6(b), u6 will be chosen as the northwest neighbor

rather than u7.

For an east-facing T-junction, β2 = s5s6/(s2(s1 + s2)), β1 = 0, and u2 and ψ2 are the

respective average values of u and ψ from the two indirect neighbors. For south or north-

facing T-junctions, β2 = 0 and β1 is nonzero to account for the fact that a direct neighbor

in the south or north direction is missing. The ui and ψi values at their virtual neighbors

are obtained by respective average from the two indirect neighbors.

The first order derivatives (gradient) of regular nodes and T-junction nodes will be derived

as the following. For a regular node,

ux =
u2 − u0
s2

· s1
s1 + s2

+
u0 − u1
s1

· s2
s1 + s2

(2.39)

uy =
u4 − u0
s4

· s3
s3 + s4

+
u0 − u3
s3

· s4
s3 + s4

. (2.40)
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Note that since the distances between u0 and its neighbor are not always the same, the

accuracy of approximation for those points is no long second order. For the T-junction node

in Fig. 2.6(b), we have

u1 =
s6u5 + s5u6
s5 + s6

=

1

s5 + s6

[
(s6 + s5)u0 − s1(s6 + s5)ux + (s6 + s5)

s21
2
uxx + (s6 + s5)

s5s6
2
uyy

]
= u0 + s1ux +

s21
2
uxx +

s5s6
2
uyy

(2.41)

which leads to

u1 = u0 − s1ux +
s21
2
uxx +

s5s6
2
uyy. (2.42)

On the other hand, for node u2, its Taylor series is given as Eq. (2.19). Eq. (2.42)×s22 + Eq.

(2.19)×s21 results in

s21(u2 − u0) + s22(u0 − u1) = (s22s1 + s21s2)ux −
s21s5s6

2
uyy (2.43)

Reorganizing the equation, it is obtained that

ux =
u2 − u0
s2

· s1
s1 + s2

+
u0 − u1
s1

· s2
s1 + s2

+
s1s5s6

2s1(s1 + s2)
uyy. (2.44)

The last term represents a correction factor due to the lack of a direct neighbor. Generalized

expressions of FDM stencils for the gradient operator ∇u can be written as

∂u

∂x
=
u2 − u0
s2

· s1
s1 + s2

+
u0 − u1
s1

· s2
s1 + s2

+ α2uyy (2.45)

∂u

∂y
=
u4 − u0
s4

· s3
s3 + s4

+
u0 − u3
s3

· s4
s3 + s4

+ α1uxx. (2.46)

The correction factors, α1 and α2, account for the effect of missing direct neighbor nodes

in the y and x direction, respectively. For a regular node, α1 and α2 are zero. For a

west-facing T-junction as in Fig. 2.6(b), α1 = 0 and α2 = s5s6s2/(2s1(s1 + s2)). For an east-

facing T-junction, α1 = 0 and α2 = −s5s6s1/(2s2(s1 + s2)). Similarly, the correction factor

α1 = s5s6s4/(2s3(s3 + s4)) for a south-facing T-junction and α1 = −s5s6s3/(2s4(s3 + s4))
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node type α1 α2 β1 β2

Tw 0 sssnse
2sw(sw+se)

0 sssn
sw(sw+se)

Te 0 − sssnsw
2se(sw+se)

0 sssw
se(sw+sw)

Ts
swsesn

2ss(ss+sn)
0 ssse

ss(ss+sn)
0

Tn − swsess
2sn(ss+sn)

0 ssse
sn(ss+sn)

0

Table 2.1 Correction factors used in the finite difference stencils for 2D quadtree AMR. α1

and α2 are the coefficients that appear in Eqs. (2.46) and (2.45). β1 and β2 are the
coefficients that appear in Eq. (2.38). The subscripts w, e, s, and n in T and s denote
west, east, south, and north, respectively. For example, sw, se, ss, and sn correspond to the
notations s1, s2, s3, and s4, respectively, for the west-facing T-junction (Tw) at node 0 in
Fig. 2.6(b). For a regular node, all correction factors are zero.

for a north-facing T-junction, while α2 = 0. Table 2.1 lists the correction factors of gradient

operator and Laplace operator for different facing T-junctions in 2D cases.

In 3D cases, Octree refinement is performed, in which cells are cubes instead of squares

in 2D. Cubic cells will be split into eight equal-sized cubes. The Cell-List contains the labels

of eight corner nodes. Similar procedures as in the quadtree refinement are conducted to

generate nodes and identify the neighboring nodes. A cell list is created to store the cell

labels and their eight vertex nodes in a consistent order. A node list is also created to

store the labels and positions of the nodes. If the distance from the center of a cell to the

embedded boundary is less than a threshold value, that cell will be divided into eight new

equal-sized cubes. The original cell is eliminated from the cell list and the newly generated

eight cells are inserted into the cell list. The new cells are referred to as the Level-1 of the

tree. New nodes are added to the node list. This process can be continued to multiple levels

of refinement. Once the refinement is completed, the neighboring nodes of each node can

be determined according to the node positions and stored the labels to a node neighbor list.

The FDM stencils for 3D differential operators can be derived via similar procedures as in
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the 2D cases presented earlier, with a general form as

∇ · ψ∇u =
2

s1 + s2

(
ξ2 ·

u2 − u0
s2

− ξ1 ·
u0 − u1
s1

)
·
(
1− β21 − β31

)
+

2

s4 + s3

(
ξ4 ·

u4 − u0
s4

− ξ3 ·
u0 − u3
s3

)
·
(
1− β12 − β32

)
+

2

s6 + s5

(
ξ5 ·

u6 − u0
s6

− ξ5 ·
u0 − u5
s5

)
·
(
1− β13 − β23

)
.

(2.47)

Note here, in the 3D case, u5 and u6 are used to denote the neighbors (direct or virtual

(a) (b)

(c)

Figure 2.7 Examples of configurations of T-junctions: (a) west-facing T on the x-z plane,
(b) a node that is simultaneously a west-facing T on the x-y plane and a bottom-facing T
on the y-x plane, and (c) west-facing face-centered T, which has four indirect neighbors in
the west direction. The black, magenta, and cyan dots indicate the center node, direct
neighbors, and indirect neighbors. The green circles indicate virtual neighbors.

neighbors) in the down (−z) and up (+z) directions, respectively. ξi = (ψi + ψ0)/2 is the

average value of ψ between the center node and its neighbor. For regular nodes having 6
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direct neighbors in 3D, all correction factors β vanish and Eq. (2.47) reduces back to a typical

7-point 3D FDM stencil. For a T-junction missing a direct neighbor in the x direction, β12

and β13 are the correction factors calculated using the indirect neighbors on the x-y plane

and x-z plane, respectively. Their values are listed in the Table 2.2. Figure 2.7(a) shows

an example of a west-facing T-junction on the x-z plane. In this case, the center node has

two indirect neighbors in the bottom-west and top-west directions. The correction factor

of β13 is calculated according to β13 = sBsT/(sW (sW + sE)) and zero for all other βs. The

subscript ‘13’ indicates this T-junction is along the x-axis and on the x-z plane. The value

of ψW at the virtual west neighbor node can be calculated by averaging those at the two

indirect neighbors in the west direction as ψW = (ψBW + ψTW )/2, where ψBW and ψTW are

the values of ψ in the two indirect neighbors on the bottom-west and top-west directions,

respectively. The value of uW (on the virtual west neighbor indicated by the green circle in

Fig. 2.7(a)) is calculated by a weighted average of those at the two indirect neighbors as

uW =
(ψBW + ψC)uBW + (ψTW + ψC)uTW

(ψBW + ψC) + (ψTW + ψC)
. (2.48)

It is possible that a node can be a T-junction on two orthogonal planes in 3D, as shown

in Fig. 2.7(b). In this case, the values of u at the two virtual neighbors can be calculated

separately using a similar method as in Eq. (2.48). If a node is simultaneously a T-junction

on the x-y and y-z planes, β12 and β23 are nonzero. Furthermore, if a node has four indirect

neighbors, as shown in Fig. 2.7(c) for an example of west-facing face-centered T-junction,

the values at the virtual neighbor is obtained by a weighted average according to uW =∑
i(ψi + ψC)ui/

∑
i(ψi + ψC). The formulae of βs are provided in Table 2.2. Similar to the

2D case, the generalized FDM stencils for 3D gradient operator can also be derived, but they

are not repeated here. Details can be found in Ref. [72, 73]. For the time derivatives, the

fully forward Euler explicit method and fully backward Euler implicitly are used for different

transport equations in this thesis.

For a uniform grid system, parallel computing can be straightforwardly implemented by

the technique of domain decomposition. The entire computational box is divided into several
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sections, and each section is allocated to one CPU for the calculations within the subdivision.

Figure 2.8 illustrates a domain decomposition along the x-axis. Communication between dif-

ferent CPUs is conducted using MPI (Message Passing Interface), as calculating derivatives

for the boundary points of one section will need the information from the neighboring sec-

tions. On AMR grid systems, decomposition can be performed similarly. As the grid points

are not aligned as in the uniform grid case, an additionally procedure is conducted to detect

the labels of the neighbor nodes across the dividing boundary. These labels are stored such

that the node values on those points can be sent to and received by the neighboring sections

by MPI send and MPI receive functions during the computation .

Figure 2.8 Illustration of domain dividing and section assigning to different ranks
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2.5 Conclusions

In this chapter, SBM is introduced to handle complex geometries such that conformal mesh

is not required in relevant simulations. A general SBM formulation for imposing Neumann

boundary conditions on the diffuse interface is demonstrated. Finite difference method is

used in this work to approximate derivatives in solving differential equations. To reduce

the computational burden and increase the modeling accuracy tree-structure adaptive mesh

refinement is employed such that fine mesh is used near the diffuse interface but coarse mesh

is used in the bulk phase. The relevant FDM stencils for AMR is also presented. While those

FDM stencils have been previously derived for general non-uniform grid systems [74, 75], for

graded tree-structure AMR systems, we organize those 2D and 3D stencils into a generalized

form, which is very similar to the standard uniform grid FDM stencils. This greatly simplifies

the development of simulation code. SBM introduces a diffuse interface with a non-zero

thickness, which deivates the conventional sharp-interface modeling. Such a modeling error

in double layer formation is examined in the next chapter.
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Table 2.2 Correction factors for the finite difference stencils used in this work. Adapted
from Ref. [72].

Note that αij(T∗) and βij(T∗) refer to the
αij(T∗) and βij(T∗) value from T-junction type of T∗.

node type α12 α13 β12 β13

Tw−xy
sssnse

2sw(sw+se)
0 sssn

sw(sw+se)
0

Tw−xz 0 sbstse
2sw(sw+se)

0 sbst
sw(sw+se)

Tw−xy−xz 0.5α12(Tw−xy) 0.5α13(Tw−xz) 0.5β12(Tw−xy) 0.5β13(Tw−xz)
Tw−4i α12(Tw−xy) α13(Tw−xz) β12(Tw−xy) β13(Tw−xz)

Te−xy - sssnsw
2se(sw+se)

0 sssn
se(sw+se)

0

Te−xz 0 - sbstsw
2se(sw+se)

0 sbst
se(sw+se)

Te−xy−xz 0.5α12(Te−xy) 0.5α13(Te−xz) 0.5β12(Te−xy) 0.5β13(Te−xz)
Te−4i α12(Te−xy) α13(Te−xz) β12(Te−xy) β13(Te−xz)

node type α21 α23 β21 β23

Ts−xy
swsesn

2ss(ss+sn)
0 swse

ss(ss+sn)
0

Ts−yz 0 sbstsn
2ss(ss+sn)

0 sbst
ss(ss+sn)

Ts−xy−yz 0.5α21(Ts−xy) 0.5α23(Ts−yz) 0.5β21(Ts−xy) 0.5β23(Ts−yz)
Ts−4i α21(Ts−xy) α23(Ts−yz) β21(Ts−xy) β23(Ts−yz)

Tn−xy - swsess
2sn(ss+sn)

0 swse
sn(ss+sn)

0

Tn−yz 0 - sbstss
2sn(ss+sn)

0 sbst
sn(ss+sn)

Tn−xy−yz 0.5α21(Tn−xy) 0.5α23(Tn−yz) 0.5β21(Tn−xy) 0.5β23(Tn−yz)
Tn−4i α21(Tn−xy) α23(Tn−yz) β21(Tn−xy) β23(Tn−yz)

node type α31 α32 β31 β32

Tb−yz 0 sssnst
2sb(sb+st)

0 sssn
sb(sb+st)

Tb−xz
swsest

2sb(sb+st)
0 swse

sb(sb+st)
0

Tb−yz−xz 0.5α31(Tb−xz) 0.5α32(Tb−yz) 0.5β31(Tb−xz) 0.5β32(Tb−yz)
Tb−4i α31(Tb−xz) α32(Tb−yz) β31(Tb−xz) β32(Tb−yz)

Tt−yz 0 - sssnsb
2st(sb+st)

0 sssn
st(sb+st)

Tt−xz - swsesb
2st(sb+st)

0 swse
st(sb+st)

0

Tt−yz−xz 0.5α31(Tt−xz) 0.5α32(Tt−yz) 0.5β31(Tt−xz) 0.5β32(Tt−yz)
Tt−4i α31(Tt−xz) α32(Tt−yz) β31(Tt−xz) β32(Tt−yz)
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CHAPTER 3

DOUBLE LAYER FORMATION ON ELECTRODES WITH COMPLEX
MICROSTRUCTURE
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3.1 Introduction

The formation of double layers is the key mechanism for energy storage of electrochemical

capacitors (ECs). The double layer capacitance also play a crucial role in batteries’ electro-

chemical impedance spectroscopy measurements. Upon applying external voltage to the two

electrodes of an EC, cations and anions in the electrolyte move to the surfaces of the cathode

and anode, respectively, in order to counter the charges on the electrodes. This leads to a

thin layer of charge separation in the proximity of the liquid-solid interfaces. The illustration

of formation and disintegration is shown on Fig. 3.1. The same mechanism can take place

in all other electrochemical systems that contain mobile ions to counterbalance polarization

at electrodes; e.g., the electrochemical processes in liquid-cell batteries [76], flow batteries

[77], electrochemical desalination [16], as well as the ion diffusion in biochemical systems.

Figure 3.1 (a) ions move directionally under the electric field. (b) ions are attached to the
electrodes accordingly. (c) electrolyte returns neutral without external electric field [78]

The double-layer region usually spans 20 to 50 nanometers, whereas other significant

length scales, e.g., particle size or inter-particle space in electrodes, are in tens to hundreds

of microns. Thus, a direct numerical simulation in the continuum scale must resolve the

ionic concentration and potential gradients in spatial scales across 3∼4 orders of magnitude
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difference and is highly challenging. As mentioned in Chapter 1, double layer models and

Nernst-Planck-Poisson equations have been developed to describe the ionic concentration

and electrostatic potential evolution due to charge separation in the double layer. However,

because of the challenges in handling a huge discrepancy in spatial dimensions, only 1D

analytical solution or numerical solutions on extremely simple geometries were reported.

In this chapter, we use the smoothed boundary method (SBM) introduced in Chapter

2 to formulate the NPP governing equations such that conformal mesh is not required for

simulating the formation of electrochemical double layers on complex electrode particle ge-

ometries. Specifically, the SBM formulated equations are solved on grid systems generated

by AMR as described in the previous chapter. Thus, the ion concentration and electric

potential variations are resolved in both the very thin diffuse layer and in the interparticle

space that are several orders of magnitude larger. This approach allows the simulations of

the dynamics of double layer formation in complex 2D and 3D cases, which is difficult for the

conventional numerical methods. One-dimensional simulations are performed to verify the

accuracy of the presented method. Two- and three-dimensional simulations are conducted to

demonstrate the importance of considering the geometric effects on multidimensional cases.

The results show that, depending on the charges, ions first rapidly adsorb onto or are repelled

from the particle surfaces, followed by long-distance diffusion to alleviate the concentration

gradient until the system reaches the steady state. The concentration and potential evo-

lutions highly depend on the particle geometries. These geometric effects have not been

investigated computationally before this work.
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3.2 Model Construction and Computational Methods

3.2.1 Governing Equations

Ionic diffusion and migration in electrolyte, referred to as electrodiffusion, are governed by

the ionic concentration gradient and the electric field gradient, as described by the Nernst-

Planck-Poisson equations [79]:

∂c+
∂t

= −∇ · J+ = ∇ ·
[
D+∇c+ + z+u+Fc+∇ϕ

]
, (3.1)

∂c−
∂t

= −∇ · J− = ∇ ·
[
D−∇c− + z−u−Fc−∇ϕ

]
, (3.2)

∇2ϕ = −F
ε
(c+ − c−), (3.3)

where ci, Di, zi, and ui denote concentration, diffusivity, charge number, and transport

mobility of the ions, respectively, and Ji = −(Di∇ci + ziuiFci∇ϕ) is the flux vector. The

subscripts, + and −, indicate cations and anions, respectively. F is the Faraday constant, ϕ

is the electrostatic potential, and ε is the dielectric constant (or relative permittivity) of the

electrolyte. Here, ε is assumed to be a constant throughout the electrolyte.

In this chapter, we focus only on binary electrolyte (i.e., the electrolyte contains only one

species of cation and one species of anion) with monovalence ions (i.e., z+ = 1 and z− = −1).

In a closed system, the boundary conditions for the two electrodiffusion equations are no-

flux, such that n ·Ji = 0, where n is the inward unit normal vector of the domain boundary.

The Poisson’s equation is subject to a Robin boundary condition (combination of specified

value and gradient) [42]:

ϕ− ϕd

λs
= n · ∇ϕ, (3.4)

where ϕd is the electropotential on the electrode surface and λs is the thickness of the Stern

layer. λs is illustrated as d2, the thickness of Helmholtz layer, in Fig. 3.2. Within the outer

Helmholtz plane, the gradient of electrostatic potential is assumed to be linear. Equation

(3.4) ensures that the gradient of potential across the Stern layer (the left hand side) matches
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that in the electrolyte phase (the right hand side) at the boundary (outer Helmholtz plane)

of diffuse layer.

Figure 3.2 Boundary condition for electrostatic potential near the double layer region [80].

As discussed earlier, the NPP equations for 1D problems have been solved by researchers.

Several studies have implemented and modified the NPP model to fit different conditions,

such as concentrated solution and high applied potential [40, 28, 41]. However, there are only

a few 2D simulations available in the literature [41, 81, 40] and they are for regular-shaped

geometries. In the conventional numerical methods with sharp interfaces, solving differential

equations requires discretizing the domain of interest with conformal mesh or grid systems.

Such meshing processes for complex geometries are usually time-consuming and difficult.
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Here, we employ the SBM [70] to circumvent the tedious mesh generation process required

for sharp-interface methods. A continuous domain parameter, ψ, is introduced to describe

the domain of interest (i.e., the electrolyte) where the differential equations are solved.

Within the electrolyte phase, ψ is uniformly one. It continuously transitions through the

electrolyte-electrode interface and becomes uniformly zero in the electrode phase. There are

multiple choices of mathematical of Sigmoid functions, such as hyperbolic tangent function,

error function, etc., that can be used as the domain parameter ψ. In this work, we choose a

hyperbolic tangent function as the ψ function (as in Ref. [70]), see Fig. 3.3.

Figure 3.3 Hyperbolic tangent function used as domain parameter

Assuming the electrolyte is a dilute solution, the mobility and diffusivity are related by

the Einstein relation: ui = Di/RT , where R is the ideal gas constant. Multiplying Eqs. (3.1)
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and (3.2) with ψ, and using the product rule of differentiation, we obtain

ψ
∂c+
∂t

=∇ · ψ
[
D+∇c+ + z+u+Fc+∇ϕ

]
−∇ψ ·

[
D+∇c+ + z+u+Fc+∇ϕ

]
=∇ · ψ

[
D+∇c+ +D+

F

RT
c+∇ϕ

]
+
∣∣∇ψ∣∣(n · J+

)
,

(3.5)

ψ
∂c−
∂t

=∇ · ψ
[
D−∇c− + z−u−Fc−∇ϕ

]
−∇ψ ·

[
D−∇c− + z−u−Fc−∇ϕ

]
=∇ · ψ

[
D−∇c− −D−

F

RT
c−∇ϕ

]
+
∣∣∇ψ∣∣(n · J−

)
,

(3.6)

where the last terms in Eqs. (3.5) and (3.6) are obtained by n · Ji = (∇ψ/|∇ψ|) · [Di∇ci +

ziuiFci∇ϕ] according to n = ∇ψ/|∇ψ| for the inward unit normal vector of the electrolyte-

electrode interface. |∇ψ| is nonzero only at electrolyte-electrode interface and thus it indi-

cates the location of the interface. The last terms in Eqs. (3.5) and (3.6) represent electro-

chemical reactions occurring at the electrolyte-electrode interface and can be replaced with

|∇ψ|ri, where ri is the insertion rate of cation or anions through the electrolyte-electrode

interface. For a closed system (no reaction at electrolyte-electrode interface), ri = 0 and

thus the last terms vanish.

Similar procedures are performed to reformulate Poisson’s equation, Eq. (3.3), to the

SBM form:

∇ · ψ∇ϕ+ |∇ψ|ϕd − ϕ

λs
= −ψF

ε
(c+ − c−), (3.7)

in which the second term on the left-hand side represents the Robin boundary condition for

the electropotential across the electrolyte-electrode interface.

Equations (3.5), (3.6), and (3.7) can be nondimensionalized with a reference diffusivity

(D0), a reference concentration (c0), an electropotential unit (U = 1V), a time scale τ =

l2/D0, and a length scale l, such that D± = D̂±D0, c± = ĉ±c0, ϕ = ϕ̂U , t = t̂τ , and

x = x̂l, where ‘∧’ denotes dimensionless quantities. Substituting these variables into Eqs.

(3.5) through (3.7), and organizing terms, we obtain

ψ
∂ĉ+

∂t̂
= ∇̂ · ψ

(
D̂+∇̂ĉ+ + A1D̂+ĉ+∇̂ϕ̂

)
, (3.8)
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ψ
∂ĉ−

∂t̂
= ∇̂ · ψ

(
D̂−∇̂ĉ− − A1ĉ−D̂−∇̂ϕ̂

)
, (3.9)

∇̂ · ψ∇̂ϕ̂+ |∇̂ψ|A2(ϕ̂d − ϕ̂) = −A3ψ(ĉ+ − ĉ−), (3.10)

where A1 = FU/RT , A2 = 1/λ̂s, and A3 = Fc0l
2/(εU) are three dimensionless parameters,

and ∇̂ = l∇. Note that we have assumed a closed system for these equations. Hereafter,

we will drop the ‘∧’ notation in the equations for the readability. The SBM formulated

NPP equations are the governing equations for simulating the electrodiffusion through com-

plex geometries in which ψ defines the regions where evolutions of ionic concentration and

electropotential field occur.

While the dynamics is of importance in understanding the double layer formation, in some

cases, only the steady-state ionic concentration and electropotential distributions are sought,

for which the Poisson-Boltzmann model is used to obtain the equilibrium concentration and

electropotential distributions (as described in Chapter 1). The SBM can also be used to solve

the Poisson-Boltzmann equations. At equilibrium, the concentration of cation and anion no

longer change with time. Thus, the mass transport equations (3.8) and (3.9) become

∇ · ψ(D+∇c+ + A1D+c+∇ϕ) = 0 =⇒ ∇ · ψ(∇c+ + A1c+∇ϕ) = 0, (3.11)

∇ · ψ(D−∇c− − A1D−c−∇ϕ) = 0 =⇒ ∇ · ψ(∇c− − A1c−∇ϕ) = 0, (3.12)

in which the diffusivities in the equations on the left are assumed to be constant in a dilute

electrolyte solution, and thus cancelled. The Poisson’s equation remains the same as Eq.

(3.10). Equations (3.11), (3.12), and (3.10) are coupled differential equations, which are

extremely unstable if solved by typical iterative methods (i.e., solving c+ and c− based

on ∇ϕ, then solving ϕ based on the obtained c+ and c−, and iterating until numerical

equilibrium). Thus, to solve the static equations, we introduce the Slotboom variables:

η+ = exp(A1ϕ + ln c+) = c+ exp(A1ϕ) and η− = exp(−A1ϕ + ln c−) = c− exp(−A1ϕ), as in

Slotboom’s work [82]. Substituting them into Eqs. (3.11), (3.12), and (3.10) and rearranging

terms, we obtain

∇ · (ψ exp(−A1ϕ)∇η+) = 0 and ∇ · (ψ exp(A1ϕ)∇η−) = 0, (3.13)
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∇ · ψ∇ϕ+ |∇ψ|A2(ϕd − ϕ) = −A3ψ[η+ exp(−A1ϕ)− η− exp(A1ϕ)]. (3.14)

Furthermore, Slotboom [82] introduced a linearization procedure with ϕ = ϕ0+ δϕ and used

Taylor expansion to approximate exp(±A1δϕ) ≈ 1± A1δϕ to obtain

∇ · ψ∇δϕ− |∇ψ|A2δϕ− ψA3A1

(
η+ exp(−A1ϕ0) + η− exp(A1ϕ0)

)
δϕ =

−∇ · ψ∇ϕ0 − |∇ψ|A2(ϕd − ϕ0)− A3ψ
(
η+ exp(−A1(ϕ0)− η− exp(A1(ϕ0)

)
.

(3.15)

An iterative scheme is utilized where ϕ0 is the value from the former iteration and δϕ is a

perturbation on ϕ0. δϕ is solved to obtain a new ϕ = ϕ0 + δϕ, which is then substituted

into Eq. (3.13) for solving η+ and η−. The process is repeated until η+, η−, and ϕ all reach

numerical equilibrium. This iterative method above was proved to be convergent by Varga

[83] since the matrix is symmetric and positive definite if written in the matrix form.

3.2.2 Simulation Parameters

The parameters used in the simulations are discussed here. Chemical diffusivity of ions can

be expressed as Dchem
i = Di

(
1+∂ ln γi/∂ ln ai

)
, where Di is the diffusivity at the dilute limit,

ai = γici is the chemical activity, and γi is an activity coefficient [84]. The second term in the

parenthesis represents the thermodynamic factor. An assumption is made in this work that

the temperature is constant at 298 K, and the electrolyte is a dilute solution, such that the

thermodynamic factor is zero and thus ionic diffusivities are constant. The cation diffusivity

for Li+ is D+ = 1.25× 10−6 cm2/s, and the anion diffusivity PF−
6 is D− = 4.00× 10−5 cm2/s

[85, 86, 87]. The dielectric constant ε in Poisson’s equation, Eq. (3.10), is set to be the value

of dielectric constant of ethylene carbonate at 298 K [88]. Based on the prediction that the

dielectric constant increases as salt concentration increases [89], we extrapolate the dielectric

constant to a projected value at 1 M of LiPF6 dissolved in ethylene carbonate which is 8.85

×10−8 F/m. Debye length is used to approximate the characteristic thickness of double layer

(the Stern layer thickness λs) [90]:

λD =

√
εRT

F 2
∑

i z
2
i ci0

(3.16)
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where ci0 is the initial average concentration of species i in the electrolyte. Thus, we obtain

λs = 0.5 nm. This value is kept as a constant in the following simulations by neglecting the

variation of Stern layer thickness with loading potential and electrode surface properties.

In this work, the width of the diffuse double layer is approximately 20 nm. Roughly 10

grid cells are set to span the diffuse double layer to ensure a sufficient resolution. In the 2D

simulations, where the root level cell width is 256 nm, this requires 7 levels of refinement. It

should be also noted that since the Euler explicit time scheme is used for solving Eqs. (3.8)

and (3.9), the stable time step size must be smaller than the square of the length of the

smallest cell size (∆t < min(∆x)2). As a result, the time step size used in the simulations

needs to scale 1/4 as one more level of AMR is implemented.
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3.3 Results and Discussion

3.3.1 One-dimensional (Pseudo-1D) Simulations

To verify the correctness and accuracy of the presented method, a series of pseudo-1D sim-

ulations were performed. (Simulations are performed on 2D domains but the results are

effectively 1D. Hereafter, they are referred to as 1D simulations.) In these 1D simulations,

the left and right boundaries represent two metal plates and the region between is filled

with a uniform, stable electrolyte. This setup is the same as in Bazant’s work [90]. Figure

3.4(b) illustrates the domain with a 3-level refinement. It can be clearly seen that the grid

becomes denser as being close to the boundary in the magnified view. The centers of dif-

fuse interfaces (ψ = 0.5) in the SBM represent the left and right electrode surfaces and are

located at x = 13 and 113 nm, respectively. Thus, the effective domain for electrodiffusion

and electropotential calculations is 100 nm (with ∆x = 1 nm for the Root-Level grid).

A constant voltage of 0.05 volt is imposed by setting the electropotential, ϕd in Eq.

(3.10), to be 0.05 volt on the right boundary and 0 volt on the left boundary. Thus, the

left and right boundaries serve as the cathode and anode surfaces, respectively. Snapshots

of ion concentrations and electropotential profiles taken during the simulation with a 3-level

refinement are provided in Fig. 3.5. Because the external potential is lowest at the cathode

surface, the cations are quickly adsorbed and aggregated while the anions are repelled there,

resulting in a peak of cation concentration and a depletion of anions on the cathode surface

(see Fig. 3.5(a)). As more cations aggregate on the cathode surface, a small depletion of

cations from the bulk value can be observed at the location slightly away from the cathode

surface; see the red curve near x = 22 nm corresponding to t = 50 s in Fig. 3.5(b). t is

a non-dimensional number used in 1D simulation indicating the output frame. The anion

concentration profile corresponding to the same time is still smooth at the same location.

This cation concentration depletion is an indication that the cation diffusivity is low such

that it requires a longer time for cation supply from the bulk of electrolyte to the cathode
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Figure 3.4 (a) Adaptive mesh refinement applied to electrode boundaries with 7 levels of
quadtree refinement. The grid system is used in the 2D simulation. (b) Domain and
refinement used in the 1-D simulations. There are three levels of quadtree refinement for
the grid system.

surface. The concentration profiles of cations and anions gradually reduce back to the bulk

value in the electrolyte as the distance from the cathode surface increases. In the vicinity

of the cathode surface, cation concentration is much higher than that of anion, resulting

in a charge separation region with a thickness of approximately 8 nm (14 < x < 22 nm).

This region is the diffuse double layer. On the anode surface, charge separation occurs in

an opposite manner where anion concentration is much higher than cation concentration.

Similar to the cation case, depletion of anion concentration immediately outside the diffuse

double-layer region also occurs but in a much lesser degree due to the anions’ high diffusivity.

In the early stage, electropotential drop across the electrode surface is relatively small and

the gradient of electropotential in the bulk of electrolyte is large. See the red curve in Fig.
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Figure 3.5 (a) 1D cation and anion concentration profile evolution obtained by SBM with
3-level quadtree AMR. (b) Magnified view of (a) from 15 nm to 35 nm (c) Evolution of
electropotential profile corresponding to the same times in (a). (d) Magnified view of (c)
from 13 nm to 30 nm. A discontinuity at x = 13 nm represents the electropotential
difference across the Stern layer.

3.5(c). This electropotential drop represents the potential drop across the Stern layer. As

the double layer is developed, the drop of electropotential across the cathode surface becomes

large while the gradient of electropotential in the bulk of electrolyte decreases. Once reaching

the steady state, the electropotential profile becomes completely flat in the bulk electrolyte

region (see the green curve in Fig. 3.5(c)), indicating that the charge separation in the

double layer (including Stern layer and diffuse layer) has completely counterbalanced the

polarization induced by the imposed voltage.

To investigate the effect of interfacial thickness in the SBM simulation of double layer

formation, five sets of simulation results, using Level-0 through Level-3 refinement and a
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sharp interface method, for the same domain are presented. The cation concentration profiles

at the steady state are shown in Fig. 3.6(a) & (b). These results are obtained from solving

Eqs. (3.8) through (3.10) until ∂c+/∂t, ∂c−/∂t, and the variation of ϕ between time steps

are all negligible. Level-0 is the original uniform grid system. As the refinement level

increases, finer grids are used in the region of SBM diffuse interface. Since the width of

the SBM diffuse interface is kept to be approximately 4 grid spacings, the width of SBM

diffuse interface for Level-3 is only 1/8 of that in Level-0 case. The sharp-interface method

is implemented by using a plain 1D finite difference method to solve the NPP governing

equation, as in Ref. [42], with the domain boundaries at x = 13 and 113 nm. In the sharp-

interface simulation, the grid spacing is set to be uniform and equal to the smallest grid

spacing in Level-3 refinement, which is 1/8 of ∆x in Level-0 case. The analytical steady-

state cation concentration distribution, calculated using the electropotential that is obtained

by solving the Poisson-Boltzmann equation [29], is also provided in the same figure. The

corresponding electropotential profiles in the electrolyte are provided in Fig. 3.6(c) & (d).

Note that since the Poisson-Boltzmann model has assumed the electrolyte is an infinite

reservoir, the ion depletion in the bulk of electrolyte (observed in Fig. 3.5(b)) due to charge

separation does not appear.

The shapes of all the simulated cation concentration profiles in Fig. 3.6(a) are similar, but

they are slightly different near the boundaries. Simulations with more levels of refinement

at the boundary regions give results closer to the analytical ones. The increase in accuracy

can be clearly observed in the magnified view in Fig. 3.6(b). More accurate SBM results

with higher levels of refinement are also observed in the simulated electropotential profiles;

see Fig. 3.6(c) & (d). Because a higher level of refinement effectively reduces the diffuse

interface thickness in the SBM, the curves for Level-3 refinement closely approach those

of the sharp-interface result. Both the Level-3 and sharp-interface results almost overlap

the analytical ones. The relative error between the steady-state results of the Level-3 AMR

SBM and the sharp-interface is less than 0.05%. The errors between SBM and sharp-interface
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Figure 3.6 (a) 1D cation distribution at the steady state obtained by the sharp interface
simulation and diffuse interface SBM simulations with four different levels of refinement.
(b) Magnified view of (a) from 14.6 nm to 16.1 nm. (c) Potential field corresponding to (a).
(d) Magnified view of (c) from 14.75 nm to 17.40 nm. The x scales in (b) and (d) are
selected to highlight the differences between the curves.

methods during transient state are observed to be in the same order of magnitude. Thus,

the comparisons here demonstrate that the SBM with a sufficiently thin diffuse interface can

reach approximately the same result as that from conventional sharp-interface method.

In a pure 1D domain (grid system), a Level-3 refined case will lead to a total of 166

grid points. On the other hand, a uniform grid system, with the grid spacing equal to the

smallest grid spacing in the Level-3 refined case, will result in a total of 1040 grid points.

Since the computational cost is approximately proportional to the number of grid points
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in the simulations, the AMR reduces the computational effort by roughly 6 folds, but still

maintains the numerical accuracy comparable to the sharp-interface results.

3.3.2 Two-dimensional Simulation with Complex Geometry

With the AMR-SBM approach verified, we extended the simulation to 2D case. Figure

3.4(a) shows the geometries of two arbitrarily shaped particles used in the 2D simulation.

The average diameters of the two particles are approximately 10 and 15 µm, and the center-

to-center distance between the two particles is roughly 35 µm, which is almost 4375 times

the diffuse layer thickness of the double layer. Quadtree refinement of 7 levels is taken to

generate the grid system. The smallest grid spacing is 2 nm, and the largest grid spacing

is 256 nm. The particles on the left and right serve as the cathode and anode particles,

respectively, in a virtual electrochemical capacitor. The rest of the domain is occupied by

electrolyte. Initially, the cation and anion concentrations are uniformly 1 M throughout the

electrolyte region. Electropotential on the cathode and anode particles was set to be 0 V

and 0.05 V, respectively, to induce a voltage across the two electrodes. No-flux boundary

conditions are imposed on the four sides of the computational domain.

Figures 3.7(a) through (d) shows the snapshots of anion distribution corresponding to

physical times from t = 0.133 to t = 2.13 ms. Here, anion concentration is presented

because of more prominent evolution during the simulation. The anion concentration rises

surrounding the anode particle but drops around the cathode particle. This behavior is

similar to that in the 1D cases. However, in two dimensions, the concentration can be

observed to be nonuniformly distributed surrounding the particles.

Two distinct time scales for the concentration evolution process are observed. First, ions

are adsorbed on the particle surface very rapidly without long-distance diffusion. The ion

concentration changes more rapidly in response to the imposed voltage when the local dis-

tance between cathode and anode surfaces is shorter. For example, the anion concentration

increases more rapidly on anode surfaces that are located closer to the cathode than on anode
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Figure 3.7 Simulated anion concentration in the electrolyte taken in side-view (2D
projection in the y-direction) at t = (a) 0.133 ms (b) 0.266 ms (c) 0.532 ms and (d) 2.13
ms.(e)Anion concentration taken in a different view angle to highlight the difference in the
concentration at the convex and concave region. The image is taken at the same time as (a)

surfaces that are located farther away from the cathode; see Fig. 3.7(a). Additionally, it can

be observed that the anion concentration at the convex surface facing the cathode particle

is higher than that at the nearby concave surface during the evolution because the convex

regions are effectively closer to the cathode particle, as indicated in Fig. 3.7(e). Similarly,

the anion concentration decreases more rapidly on cathode surfaces that are located closer

to the anode than on cathode surfaces that are located farther away from the anode, as can

be seen in Fig. 3.7(a). Later, the effect of long-distance diffusion plays a role. For exam-
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ple, as shown in Fig. 3.7(b) and (c), the anions start to diffuse around the anode particle

from the side facing cathode particle to the back of the anode particle, smoothing the anion

concentration variation around the particle. As the system reaches the steady state, the

anion concentration eventually reaches a uniform distribution over the cathode surface as

well as the anode surface; see Fig. 3.7(d). Similar dynamics, but in an opposite manner, are

observed for cation concentration evolution.

The electropotential distributions corresponding to Fig. 3.7 are provided in Fig. 3.8. At

the early stage, a significant gradient of the potential over the entire domain is observed.

A large potential drop across the double layer is seen on the anode surface that is located

closer to the cathode particle while the potential drop on the back side of the anode particle

is small; see Fig. 3.8(a). The high electropotential drops on the particle surfaces near the

regions with the narrowest inter-particle-surface distance causes the rapid ion absorption

and repelling there during the first stage mentioned above. As the simulation progresses, the

electropotential field within the electrolyte begins to flatten. The potential drop across the

double layer becomes more uniform over the whole particle surface. See Fig. 3.8(b) and (c).

At the steady state the electropotential is completely flat over the entire electrolyte domain

and the potential drop becomes uniform on the whole particle surfaces, as shown in Fig.

3.8(d).

It is important to point out that the simulation shows that this system requires at least

2 ms to reach its steady state. This suggests that, in an electrochemical impedance spec-

troscopy (EIS) measurement for a system with a similar physical dimension, the steady state

cannot be reached if the oscillation frequency of the load is higher than 500 Hz. Therefore,

the measured double layer capacitance from an EIS study is far away from the equilibrium

capacitance when frequencies on the order of kHz or MHz are used.

Furthermore, as discussed in Section 3.2.1, the steady-state solution of cation concen-

tration, anion concentration, and electropotential distribution can be directly solved with

Slotboom variables. This is convenient when the transient behavior is not of interest and
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Figure 3.8 Potential field in the electrolyte at (a) 0.133 ms (b) 0.266 ms (c) 0.532 ms and
(d) 2.13 ms. Each subfigure corresponds to that in Fig. 3.7.

only the steady-state solution is desired. Figure 3.9 shows the steady-state results from

solving Eq. (3.13) and (3.15) for the presented 2D system. These results are the same as the

steady-state results from the transient SBM simulation. This demonstrates the versatility

of SBM formulation for solving NPP types of coupled equations.
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Figure 3.9 Steady state concentration and potential distribution in the electrolyte obtained
using Slotboom method: (a) cation concentration (b) anion concentration (c) potential
distribution

3.3.3 Three-dimensional Simulation

The presented method is also extended to 3D simulation. Two electrodes are placed within

a 3D domain initially of 128 × 64 × 56 (x × y × z) root-level grid points; see Fig. 3.10(a).

A planar plate serves as the cathode on one end, and a dendrite-like particle is used as the

anode particle on the other side. The cathode-electrolyte interface is set at x = 96 nm. The

shape of anode particle is inspired by phase field modeling of dendrite growth [91, 92]. The

Root-Level grid spacing is equal to 8 nm, and the effective radius of the anode particle is

roughly 160 nm. As a demonstration simulation, only 2 levels of refinement are performed.

As a result, the smallest grid spacing is 2 nm. The potential on the cathode and anode is

set to be 0 V and 0.005 V, respectively. Similar to the 2D simulation, no-flux boundary

conditions are imposed on the 6 sides of the computational domain.

The dynamic behavior of ionic concentration and electropotential evolution is similar to

the 2D case. Therefore, we do not repetitively describe it. Figure 3.10 shows one result

taken before the system reaches steady state. A pronounced diffuse double layer has formed

on the cathode and anode surfaces; see the bright yellow region near the cathode surface

and the dark blue region near the particle surface in Fig. 3.10(b). In the meantime, the

electropotential field still shows a noticeable gradient throughout the electrolyte phase; see

Fig. 3.10(c). This simulation clearly demonstrates the capability of the presented SBM-AMR
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Figure 3.10 (a) Domain used in 3D simulation. The dendrite-like particle served as anode
particle and the plate on the other side served as the cathode. (b) Simulation results for
cation concentration. The bright yellow region in the cathode and the dark blue region on
the particle indicate double layer regions. (c) Simulation results for potential distribution
in electrolyte.

approach in simulating double layer formation in 3D complex geometries.
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3.4 Conclusion

In this chapter, the SBM with AMR approach is applied for simulating the double layer

formation. It can resolve the thin double layer while handling the complex geometry of

electrode particles. One-dimensional simulations are performed to verify the correctness and

accuracy of this method. Two-dimensional simulations with irregular shaped electrodes are

performed to demonstrate the importance of considering the geometric effect that cannot be

included in 1D simulations. Both dynamic process during transient states and the steady-

state results obtained from the direct solver are studied. A clear two-stage ion concentration

evolution has been observed during the double-layer formation. Three-dimensional simula-

tion is also provided to highlight the capability of presented method. With this method,

further investigation into the effects of material properties, such as diffusivity, dielectric con-

stant, as well as more complicated geometries, on electrochemical double layer formation can

be performed.
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CHAPTER 4

PHYSICAL-BASED SIMULATION OF ELECTROCHEMICAL
IMPEDANCE SPECTRUM ON CATHODE MATERIAL
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4.1 Introduction

A battery’s macroscopic performance is determined by many microscopic processes simul-

taneously occurring in the electrodes. For example, deintercalation of the cathode involves

Li outward diffusion in the particles, electron migration through the particle percolation

network, electrochemical reaction on the particle surfaces, and Li-ion diffusion in the elec-

trolyte, all of which take place in a complex electrode microstructure. As can be envisioned,

the microstructural features, such as porosity [1], tortuosity [2] of interparticle space, re-

active surface area [3], and particle size [1, 4], all affect the battery’s performance. These

microstructural features sometimes vary through the electrode, which can result in substan-

tially non-uniform reaction current density and might deteriorate cell performance or even

cause safety concerns [5]. Without a comprehensive understanding of the relationship be-

tween electrode microstructure and battery performance, it is impossible to improve electrode

designs or optimize battery performance.

Electrochemical impedance spectroscopy (EIS) is a widely used technique to measure

properties of electrochemical devices, such as batteries and fuel cells. The EIS measures the

response current (or voltage) to an oscillating voltage (or current) loading [6]. The device’s

resistance, capacitance, and Warburg impedance are evaluated by fitting the obtained EIS

curve to an equivalent circuit model (ECM) comprised of resistors, capacitors, and constant-

phase elements [7]. These resistance, capacitance, and Warburg impedance correspond to

the charge transfer reaction, polarization, and diffusion (mass transport) involved in the

whole electrochemical process.

In this chapter, we employed SBM and AMR as described in Chapter 2 to handle the

complex electrode microstructures so that the implementation of simulations can be greatly

accelerated. This work emphasizes the ease of using non-conformal mesh in simulating

coupled electrochemical phenomena in complex microstructures. The SBM-reformulated

governing equations can be solved using other numerical methods (e.g., FEM or FVM), not

limited to those presented (FDM) in this work. Further improvements using more advanced
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numerical methods can greatly accelerate the complex microstructure simulations and make

them accessible tools for the research community.

In order to extract EIS curves from physics-based microstructure electrochemical simula-

tions, capacitance due to double-layer formation was calculated based on the Nernst-Planck-

Poisson model separately [73], which is presented in Chapter 3. The obtained capacitance is

incorporated into the electrochemical simulations in calculating the total current respond-

ing to the oscillating cell voltage loadings. Similar to Refs. [68, 69, 93], synthetic NMC

microstructures were generated using discrete element method. We examine the effects of

initial Li fractions (state of charge) in the cathode, average salt concentration in the elec-

trolyte, and microstructures on the EIS curves. The obtained charge-transfer resistance is

inversely proportional to exchange current density, which is a function of state of charge

of the cathode particles. While the salt concentration in the electrolyte can simultaneously

affects double layer capacitance, ionic diffusion, and exchange current density, the simulation

results indicate that the change in the exchange current density dominates the variation of

semicircle diameter of the EIS curve. With different cathode microstructures, the change in

active surface area determines the variation of total charge-transfer resistance of the elec-

trode. The simulated EIS curves on the Nyquist plot well agree with physical interpretation

and demonstrate the capability of physics-based microstructure simulations for EIS behavior.
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4.2 Model Construction and Simulation Details

4.2.1 Electrochemical Model

During an EIS measurement, a current arises responding to an oscillating voltage loading.

Generally, the amplitude of loading is sufficiently small such that the amplitude of response

(concentration and electrostatic potential variations) are also small. Thus, the variations ap-

proximately linearly respond to the loading. While this macroscopic behavior appears intu-

itive, there are multiple coupled electrochemical processes occurring in the complex electrode

microstructures. In a full-cell battery, those processes take place in five regions: cathode

particles, cathode-electrolyte interface, electrolyte, electrolyte-anode interface, and anode

particles. Even in a simplified half-cell case, which consists of only a cathode, electrolyte,

and metallic Li anode, multiple electrochemical processes still need be considered, which in-

clude (1) Li-ion transport and electric-current flow in the solid cathode particles, (2) solute

ion transport and ionic-current flow in the liquid electrolyte, and (3) the electrochemical

intercalation reaction at the cathode-electrolyte interface. Those processes are described by

the classical electrochemical governing equations [79] within their respective domains. They

are briefly presented below. More detailed descriptions can be found in Ref. [93].

In cathode particles, Li diffuses through interstices in the host crystal, as described by

∂Cp

∂t
= ∇ ·

(
Dp∇Cp

)
∈ Ωp =⇒ ∂X

∂t
= ∇ ·

(
Dp∇X

)
∈ Ωp (4.1)

where Cp, X, and Dp are the Li concentration, Li site occupancy fraction, and diffusivity in

the particles, respectively. Cp = ρX, where ρ is Li site density of the cathode crystal. t and

Ωp denote time and the domain of the particle. Here, a simple Fickian diffusion is assumed

for the Li transport. For more complicated Li transport behavior, the phase field method can

be utilized to describe the concentration evolution [94, 95, 96, 97]. Li insertion/extraction

occurs on particle surfaces via electrochemical intercalation reaction, which is described as

a Neumann boundary condition (specifying flux or gradient): rxn/ρ = np · jp ∈ ∂Ωp for Eq.

(4.1), where rxn is the surface reaction rate, np is the inward surface normal vector, and jp is
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the intercalation flux. The electron current continuity in the particle regions is described as

∇ ·
(
κp∇ϕp

)
= 0 ∈ Ωp, (4.2)

where κp and ϕp are the electrical conductivity and electro-potential in the particles. This

equation is subject to the boundary condition, np · ip = np ·
(
− κp∇ϕp

)
= z+Frxn ∈ ∂Ωp,

where ip is the electrical current, z+ is the charge number, and F is the Faraday constant.

Here, we have ignored the additive phases for the clarity of presenting equations, which

can be included by introducing another domain that allows electron conduction but no Li

diffusion.

Here, for simplicity, the electrolyte is assumed to be a monovalent binary electrolyte,

which contains only one species for cation and one species for anion with +1 and −1 charge

number, respectively. The diffusion and migration processes of ions can be described as

∂Ce

∂t
= ∇ ·

(
De∇Ce

)
− ie · ∇t+
z+ν+F

∈ Ωe, (4.3)

where Ce, De, and ie are the salt concentration, the ambipolar diffusivity of the salt, and

the ionic current in the electrolyte, respectively. Ωe indicates the domain of electrolyte. νi

and ti are the dissolution number and transference number, respectively, where the subscript

+ denotes cation. The salt concentration is related to ion concentrations by Ce = ν+C+ =

ν−C−. The ambipolar diffusivity is related to the ionic mobilities and diffusivities by De =

(z+m+D− − z−m−D+)/(z+m+ − z−m−) where mi is the transport mobility and Di is the

diffusivity of the ions. The transference number of cation is t+ = z+m+/(z+m+ − z−m−) =

1−t−. In this work, z+ = 1 and ν+ = 1. Equation (4.3) is subject to the boundary condition:

rxn = ν+(ne · je) ∈ ∂Ωe, where je = −De∇Ce + t+ie/(z+ν+F ) is a virtual salt flux. Note

that ne is the inward normal to the electrolyte and ne = −np. If t+ is constant, the second

term in Eq. (4.3) vanishes. In the simulation work presented later, the Einstein relationship

(mi = Di/RT ) is assumed for simplicity in calculating the values of ambipolar diffusivity.

The double layer thickness (a few tens of nm) is negligible in the microstructure scale

(µm). Thus, current continuity is still assumed in the electrolyte at the microstructure-scale
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equations, i.e.,∇·ie = 0 ∈ Ωe, where ie = −Fz+ν+[(z+m+−z−m−)FCe∇ϕe+(D+−D−)∇Ce].

This leads to the governing equation of electrostatic potential in the electrolyte as

∇ · [(z+m+ − z−m−)FCe∇ϕe + (D+ −D−)∇Ce] = 0 ∈ Ωe. (4.4)

The coefficients in the first term of Eq. (4.4) are related to the electrolyte’s electric con-

ductivity by κe = (z+m+ − z−m−)F
2Ce. The boundary condition for Eq. (4.4) is ne · ie =

z+Frxn ∈ ∂Ωe.

The intercalation rate through particle-electrolyte interfaces is determined by the Li

concentrations and electrostatic potentials on the different sides of the interfaces and is

expressed as the Butler-Volmer equation [79]:

rxn = kfCe exp

[
−αz+F
RT

[ϕ]pe

]
− kbCp exp

[
(1− α) z+F

RT
[ϕ]pe

]
(4.5)

where kf and kb are the forward and backward rate constants, respectively, α is the symmetry

factor, R is the ideal gas constant, T is the absolute temperature, and [ϕ]pe = ϕp − ϕe ∈ ∂Ωp

is the electro-potential drop across the particle-electrode interface. This equation provides

the necessary boundary condition for solving Eqs. (4.1) through (4.4).

4.2.2 Smoothed Boundary Method

Solving partial differential equations in the conventional sharp-interface methods requires

discretization of the domain with a mesh system conformal to that domain (e.g., using

FEM). The mesh generation processes for complex geometries are very time-consuming,

which hinders complex microstructure simulations. In this chapter, we continue employ-

ing the SBM [70, 73] to circumvent the tedious mesh generation process that are required

in the sharp-interface methods. A brief derivation of the SBM-formulated electrochemical

governing equations is provided below.

Here, ψp is used to define the regions of electrode particles: ψp = 1 inside the particles

and ψp = 0 outside. Multiplying ψp on both sides of Eq. (4.1), we obtain

ψp
∂Xp

∂t
= ψp∇ · (Dp∇Xp). (4.6)
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Using the product rule of differentiation on the right-hand side, this equation can be further

written as

ψp
∂Xp

∂t
= ∇ · (ψpDp∇Xp)−∇ψp · (Dp∇Xp). (4.7)

The second term on the right-hand side serves as an ‘internal’ boundary condition embedded

inside the computational domain. In the diffuse-interface description, np = ∇ψp/|∇ψp|. The

Neumann boundary condition on the particle surface (rxn/ρ = np ·jp ∈ ∂Ωp) can be expressed

as

rxn
ρ

= np · jp =
∇ψp

|∇ψp|
· (−Dp∇Xp). (4.8)

Thus, we obtain

∂Xp

∂t
=

1

ψp

∇
(
· ψpDp∇Xp

)
+

|∇ψp|
ψp

rxn
ρ

(4.9)

as the SBM equation for the Li fraction evolution in the particles. Following a similar

procedure, the SBM formulation for Eq. (4.2) can be obtained as

∇ · (ψpκp∇ϕp)− |∇ψp|z+Frxn = 0. (4.10)

Similar to the derivation of Eq. (4.9), we multiply Eq. (4.3) with ψe, which is the domain

parameter of electrolyte and ψe = 1− ψp. The obtained equation is written to

∂Ce

∂t
=

1

ψe

∇ · (ψeDe∇Ce)−
1

ψe

∇ψe · (De∇Ce)−
ie · ∇t+
z+ν+F

. (4.11)

Recall that De∇Ce = −je + t+ie/(z+ν+F ), rxn/ν+ = ne · je, z+Frxn = ne · ie, and ne =

∇ψe/|∇ψe|, Eq. (4.11) is reorganized to

∂Ce

∂t
=

1

ψe

∇ · (ψeDe∇Ce) +
|∇ψe|
ψe

rxnt−
ν+

− ie · ∇t+
z+ν+F

. (4.12)

In the cases where the transference numbers are constant, the last term vanishes. Lastly,

using the relation z+Frxn = ne · ie = (∇ψe/|∇ψe|) ·
{
− z+ν+F

[
(z+m+ − z−m−)FCe∇ϕe +

(D+ −D−)∇Ce

]}
, the SBM equation for current continuity in the electrolyte is obtained as

∇ · [ψe (z+m+ − z−m−)FCe∇ϕe] + |∇ψe|
rxn
ν+

= ∇ · [ψe (D− −D+)∇Ce] . (4.13)
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In summary, Eqs. (4.9), (4.10), (4.12), and (4.13) are the SBM-formulated equations

based on the classical Eqs. (4.1), (4.2), (4.3), and (4.4), respectively. These equations can be

solved on grid systems (mesh) nonconformal to the complex electrode microstructures, while

imposing the reaction flux (Butler-Volmer equation) at the diffuse interfaces. At each time

step, Xp and Ce are updated based on rxn by Eqs. (4.9) and (4.12), respectively. Since De

is typically more than five orders of magnitude larger than Dp, the stable time step size for

Eq. (4.9) is too large for Eq. (4.12). Thus, a fully implicit time scheme is used for Eq. (4.12)

in order to use the same ∆t of Eq. (4.9). Within each time step, the static Eq. (4.10) is

solved for ϕp with rxn from Eq. (4.5) as a flux boundary condition on the particle-electrolyte

interface and ϕp|c as a Dirichlet boundary condition (specifying value) on the cathode current

collector (computational domain boundary). Similarly, static Eq. (4.13) is solved for ϕe with

rxn as a flux boundary condition on the particle-electrolyte interface and ϕe|a as a value

boundary condition on the metallic anode surface (on the opposite side of computational

domain boundary). The obtained ϕp and ϕe are substituted back to Eq. (4.5) to calculate a

new rxn. This process is repeated until ϕp, ϕe, and rxn all reach numerical equilibrium. Then,

the next time step starts. In this work, the implicit time evolution Eq. (4.12), static Eqs.

(4.10) and (4.13) are solved using a standard Jacobi relaxation method. More aggressive

relaxation methods can be employed to accelerate simulations if needed, which however is

beyond the scope of the current work.

4.2.3 Double Layer Capacitance

Electrochemical double layers form near the charged electrode surfaces to balance the ex-

ternally imposed electrostatic potential field. Charge separation between cations and anions

in the diffuse double layer generates the capacitance observed in EIS measurements. The

ion concentration and electrostatic potential evolution during double layer formation can

be described by the Nernst-Planck-Poisson (NPP) equations as shown in Chapter 3. For
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readers’ convenience, they are provided again here:

∂C+

∂t
= −∇ · J+ = ∇ ·

(
D+∇C+ + z+m+FC+∇ϕe

)
, (3.1)

∂C−

∂t
= −∇ · J− = ∇ ·

(
D−∇C− + z−m−FC−∇ϕe

)
, (3.2)

∇2ϕe = −F
ε
(C+ − C−), (3.3)

where Ji = −(Di∇Ci + zimiFCi∇ϕe) is the flux vector and ε is the dielectric constant (or

relative permittivity) of the electrolyte. The SBM has been utilized to solve the NPP equa-

tions for complex geometries previously. The relevant SBM equations and numerical details

can be found in Chapter 3 and Ref. [73]. Based on the simulations, the charge separation

reaches the steady state to form double layers in about 2 ms for the electrolyte considered

in this work and the double layer thickness is approximately 20 nm. Since the thickness

of double layer is several orders of magnitude smaller than other characteristic scales, it is

difficult to solve the NPP equations for explicit ion concentrations and electrostatic potential

within the double layer regions while obtaining the concentrations and potential distribu-

tions spanning throughout the electrode scales. Although it is possible to accommodate both

double layer formation and microstructure electrochemical processes together in one SBM

simulation, extremely high levels of mesh refinement is required to resolve the huge spatial

discrepancy, which would demand an enormous computational resource. Thus, we did not

pursue such routes.

There are two methods to calculate the resulting capacitance from the charge separation

in the double layers [98]. In the time domain, the capacitance can be computed from the

ratio between the total separated charges within the double layer and the potential difference

across the double layer: Cdl = ∆q/∆ϕ. This type of calculations are performed using the

simulation results from the steady states. In the frequency domain, the capacitance can be

extracted from the impedance as Cdl = −1/(fZIm), where ZIm is the imaginary part of the

total impedance and f is the ordinary frequency in the unit of Hz. The angular frequency

is ω = 2πf in the unit of radian per second. In the relevant simulations, an oscillating
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potential (ϕe = Φ0 sin(ωt) ∈ ∂Ωe) are imposed on the electrodes as the boundary condition,

which is equivalent to the expression of Φ0 exp(jωt) ∈ ∂Ωe, where j is the imaginary unit.

The response current is calculated by dq/dt = i = I0 exp(j(ωt + η)) ∈ ∂Ωe, where η is the

phase shift. The impedance is then obtained by Z = Φ0 exp(jωt)/{I0 exp[j(ωt + η)]}. As

discussed later, our simulations show that the double layer capacitance becomes constant

when the frequencies are below ∼500 Hz. The difference between the results from those two

methods mentioned above are negligible. Since the double layer formation (∼20 nm near the

electrode particle surface) reaches the steady state within milliseconds, it is reasonable to

assume that the double layer capacitance is a constant value in the EIS measurements that

the loading frequencies are under 100 Hz. Therefore, in this chapter, the SBM with AMR

techniques were used only on the electrochemical governing equations (Eqs. (4.9), (4.10),

(4.12), and (4.13)) for simulating the diffusion and surface reaction phenomena. The double

layer capacitance was calculated separately as a constant.
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4.3 Results and Discussion

4.3.1 Specific Capacitance

The NPP equations in Section 4.2.3 were solved to simulate the double-layer evolution under

sinusoidal voltage boundary conditions in pseudo-1D cases. The oscillating voltage loading

was imposed by setting ϕe = 0 on the left electrode surface and ϕe = V0 sin(ωt) on the right

electrode surface, where V0 = 50 mV. The values of D+ and D− in Eqs. (3.1) and (3.2) were

set to be 1.25× 10−6 and 4.0× 10−6 cm2/s [99, 73], respectively. The dielectric constant in

Eq. (3.3) was set to be 8.85× 10−10 F/cm [73]. The details of SBM simulations of the NPP

model can be found in Ref. [73]. Figures 4.1(a) and (b) show snapshots of C+ and ϕe profiles

between the two electrode plates in the pseudo-1D simulation taken at t = 2.5 × 10−5 and

3.0×10−5 s at a loading frequency f = 10000 Hz. The two electrode plates were separated

apart in a distance of 1.5 µm. At t = 2.5 × 10−5 s, cell voltage was highest, the C+ rose

on the left plate and dropped on the right plate to balance the ϕe variations near the plate

surfaces; see the red dashed line and green solid line in Fig. 4.1(a) and (b), respectively. At

t = 3.0× 10−5 s, the boundary value of ϕe on the right decreased to 45 mV and ϕe changed

accordingly; see the green dashed line in Fig. 4.1(b). Responding to the voltage loading, C+

on the left decreased and that on the right increased, see the blue line in Fig. 4.1(a). C−

profiles have similar shape to C+ but with opposite signs. For clarity of view, C− profiles

are not presented in the figure. The amount of charge separation in the double layer can be

calculated by F
∫
(C+ − C−)dx. Here, the response current was calculated according to

I =
dq

dt
=

d

dt

[
F

∮ (
C+ − C−

)
ds

]
, (4.14)

where the circular integration is over one half of the electrolyte domain. This is because

only the charge separation on one of the two electrode surface is enough for calculating the

resulting current. The positive and negative charge separations will neutralize each other if

intergated over the whole domain. The time derivative is taken using the first-order forward

difference. The response current was also a sinusoidal function in time with a phase shift to
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the voltage loading. See Fig. 4.1(c), in which the the red curve is the response current to the

voltage loading (the blue curve). We used MATLAB curve-fit function to extract the phase

shift and amplitude of the simulated current for constructing the Nyquist plot. Note that

Figure 4.1 Pseudo 1D simulation of double layer evolution under oscillating loads: (a) the
cation profile at t = 2.5× 10−5 and 3.0× 10−5 s, and (b) the electrostatic potential profiles
corresponding to (a). (c) The voltage loading and current response in the simulation of
f = 10000 Hz. (d) The Nyquist plot for electric double layer capacitor with different
inter-plate distances extracted from the simulations. The impedance curve for (a)-(c) is not
shown in (d).

since the sinusoidal form of the response current were not completely developed in the first

wave, the curve-fitting started from the third period. Figure 4.1(d) shows impedance curves

extracted from pseudo-1D simulations with loading frequencies from 10 to 10k Hz. The
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four curves are for inter-plate distances of 100, 200, 500, and 1000 nm. At low frequencies,

the impedance curves are nearly vertical lines, indicating a constant capacitance. See the

black curve for an example. Here, when f < 500 Hz, the evolution of the double layer is no

longer limited by diffusion. The capacitance current (change rate of the amount of separated

charges) exhibits a constant 90-degree phase delay to the voltage oscillation, thus leading

to a constant capacitance. In contrast, a Warburg impedance behavior is observed in the

high frequency regime: the curve bends toward the lower-left direction; see the black curve

below f = 500 Hz. This can be attributed to the fact that the ionic diffusion is limiting the

double layer evolution. Such an effect is more pronounced when the two plates are separated

further.

Based on the simulation results presented in Fig. 4.1(d), ZIm is nearly independent of

the distance between the two electrodes, which can be attributed to the fact that the steady-

state ion concentrations in the double layer is independent of the inter-plate distance due

to the assumption in Eq. (3.3) that ϕe profile can be established regardless how far the two

plates are separated. The capacitance is almost constant when the frequency is lower than

∼500 Hz because most of ionic diffusion occurs only within the double layer.

As in Section 4.2.3, the impedance was calculated according to Z = V/I, from which

the capacitance in the frequency domain was obtained by Cdl = −1/
(
fZIm

)
. Note here Cdl

is the total double-layer capacitance on one electrode surface. The specific capacitance is

the capacitance per electrode surface area: Csp = Cdl/A. The values of specific capacitance

obtained from the pseudo-1D simulations is 140 µF/cm2, which is approximately four times

an experimentally measured value, 29.4 µF/cm2 [100]. This deviation may be due to the

extrapolated, high dielectric constant used in the NPP simulations [73]. Calculations with

concentration-dependent ion diffusivities in Eqs. (3.1) and (3.2) were also performed to ex-

tract the specific capacitance. The concentration-dependent ionic diffusivities are shown in

the next section later. The obtained Csp was of negligible difference to that from constant-

diffusivity simulations since the voltage loading amplitude (50 mV) was small. Thus, it is
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valid to use the Csp values obtained from constant salt diffusivity simulations in further

EIS simulations. Here, we also neglect possible variation of Csp due to change in loading

potential. Moreover, specific capacitance was also calculated using two circular electrodes

in 2D configurations. See Fig. 4.2 for simulated cation, anion, and electrostatic potential

distributions taken at t = 1.505× 10−4 s (under a loading frequency of f = 10000 Hz), and

the Nyquist plot constructed based on the calculated impedance at several frequencies. The

Figure 4.2 Simulation of two-circular-electrode case: (a) the cation, (b) the anion
concentration, (c) the electrostatic potential distributions over the electrolyte and
electrodes, and (d) Nyquist plot generated from impedance calculations under different
frequencies

impedance curve in Fig. 4.2(d) at the lowest simulated frequency bends slightly to the left

due to the numerical error in curve fitting. The obtained Csp (∼ 136 µF/cm2) are close to

those from the pseudo-1D simulations and is also nearly independent of frequencies when the

frequency is below 500 Hz. Therefore, we will use the value of Csp from the two-plate simula-

tions for the electrochemical simulations presented in the following sections. The capacitance

81



current is calculated according to

Ic =

∫ (
Csp

∂[ϕ]pe
∂t

)
dA, (4.15)

where [ϕ]pe is the voltage across particle-electrolyte interface, and dA indicates all active

electrode particle surfaces. In the diffuse interface SBM method, we use

Ic =

∫ (
Csp

∂[ϕ]pe
∂t

|∇ψ|
)
dΩ (4.16)

instead for the calculation, since the interface has a nonzero thickness. The time derivative

is calculated explicitly between two successive time steps in the simulations.

4.3.2 Electrochemical Simulation

In this chapter, we use NMC-111 (LixNi1/3Mn1/3Co1/3O2) as the model cathode material,

for which the secondary particles have a nearly spherical shape. It is convenient to use

the discrete element method (DEM) [101, 102] to computationally generate synthetic mi-

crostructures. 166 spheres following a truncated log-normal distribution of radius (with a

mean radius µ = 5.8 µm, and variance σ2 = 0.25) were created and initially randomly placed

in the 3D domain. The particle radius distribution is shown in Fig. 4.3(a). Those spheres

were relaxed with a downward body force such that they eventually descended to an agglom-

erate at the bottom when equilibrium was reached; see the green spheres in Fig. 4.3(b). The

region around the particle agglomerate was selected as the computational domain (height

to 100 and 70×90 in the horizontal plane). The domain was truncated in the dimension of

the horizontal plane such that the particle domain in the simulations will be similar to those

cropped from a large electrode. This computational domain was discretized into a uniform

grid system. The distances from each grid point to the particle surfaces were calculated using

a level-set distancing method [103], and the domain parameter function ψ was obtained by

substituting the distance function to a hyperbolic tangent as ψ =
[
1 + tanh(d/ζ)

]
/2, such

that ψ = 1 in the particles and ψ = 0 outside, where d is the shortest distance to the particle

surfaces and ζ is used to control the interfacial thickness.
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Figure 4.3 (a) particle radius generated based on log normal distribution (b) NMC cathode
accumulated by small spherical particles (c) half cell model with grey particles being NMC
cathode, brown plate being the current collector and green plate being lithium metal (d)
side view of AMR with 2 layers of refinement

The virtual cell used in the simulations is shown in Fig. 4.3(c), in which the NMC

agglomerate was truncated to fit the rectangular-prism computational domain as mentioned

earlier. The root-level grid system contains 70× 100× 90 point in the x, y, and z directions,

respectively, with the grid spacing ∆x = 1 µm. Note that this virtual cell has been rotated

90◦ in the z-x direction from that in Fig. 4.3(b). Two levels of octree refinement were

implemented, which resulted in a total of 10,551,898 grid points. The value of ζ was set to
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be ∆x/(22), such that approximately four Level-2 grids spanned over the diffuse interface.

The time step size was ∆t = 1× 10−4 s. Figure 4.3(d) shows the AMR mesh on the domain

boundary at y = 0. The semitransparent cyan slab in Fig. 4.3(c) represents a metal Li

anode and the dark brown slab represents the current collector on the cathode side. The

transparent region is the space between particles and is filled by electrolyte. The empty

space in the region (0 < x < 35 µm) serves as the separator. Based on our experiences [93],

two levels of refinement are sufficient for SBM electrochemical simulations to reach results

close to those obtained from traditional sharp interface simulations. The value of ϕe|a was

set to be zero on the metallic anode as the boundary condition for solving ϕe and the

ϕp|c = 0.03 sin(ωt) + ϕOCV (V) was imposed on the current collector to create an oscillating

voltage loading, where ϕOCV is the open circuit voltage (OCV) at the respective state of

charge. Li diffusivity in Eq. (4.6) and electric conductivity in Eq. (4.10) are functions of Li

fraction in NMC crystals. The Li diffusivity in NMC particles used in this work is

DLi = (0.0277− 0.0840X + 0.1003X2)× 10−8 cm2/s (4.17)

where X is the Li fraction. This function is fitted from experimental data taken from Ref.

[104], in which Li diffusivity was measured from NMC disk pellets using EIS techniques. The

electric conductivity of NMC as a function of Li fraction is given as

κ = 0.0193 + 0.7045 tanh(2.399X)− 0.7238 tanh(2.412X) S/cm. (4.18)

It is also fitted from experimental data in Ref. [104]. Since no data point is available in the

low Li fraction region (X < 0.2), the curve was extrapolated to the low Li fraction region.

At equilibrium, the net reaction described by Eq. (4.5) is zero, from which the reaction

rate constants can be calculated according to

kf =
i0

z+FC+

exp

(
αz+F

RT
ϕeq

)
and kb =

i0
z+FCp

exp

(
(α− 1)z+F

RT
ϕeq

)
, (4.19)

where i0 is the exchange current density and ϕeq is the equilibrium voltage drop across the

particle-electrolyte interface. Here, ϕeq ≈ ϕOCV since the open circuit voltage is measured
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Figure 4.4 (a) Li diffusivity in NMC, (b) electric conductivity in NMC, (c) diffusivity in the
electrolyte, (d) OCV as a function of XLi, (e) exchange current density as a function of XLi

at Ce=1 M, and (f) calculated forward and backward reaction constants from the exchange
current density and OCV. The image is taken from Ref. [93].

at a near equilibrium condition. Both i0 and ϕOCV are functions of Li fraction in the NMC

particles. Here, we assume α = 0.5. The open circuit voltage function of NMC cathode

materials is

ϕOCV = 1.095X2 − 8.234× 10−7 exp (14.32X) + 4.692 exp (−0.5389X) V. (4.20)

This OCV function is fitted from the data taken from Ref. [105] using the formula in Ref.

[106]. Since open circuit voltages are measured at quasi-equilibrium conditions in which the
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Li concentration is nearly uniform throughout the whole cathode and the salt concentration

is also nearly uniform at 1 M, the OCV can be viewed as the equilibrium potential. The

exchange current density function is

i0 = 10−0.2(X−0.37)−0.9376 tanh(8.961X−3.195)−1.559 mA/cm2, (4.21)

which is fitted from the data measured using EIS techniques on single NMC particles in Ref.

[107].

Binary electrolyte was assumed in the simulations, in which the ionic diffusivities for

Li+ and PF−
6 at 1 M of LiPF6 salt concentration in the electrolyte were 1.25 × 10−6 cm2/s

and 4.0 × 10−6 cm2/s, respectively, as in Ref. [99]. The ambipolar diffusivity of salt in the

electrolyte is

De = 0.004649× exp(−7.02− 0.83Ce + 0.05C2
e ) cm2/s. (4.22)

The curve of this function has a shape following the measured data in Ref. [108], but the

magnitude was scaled to match the values of D+ and D− (1.25× 10−6 cm2/s and 4.0× 10−6

cm2/s, respectively) at 1 M. In our test simulations, the difference between the obtained

EIS curves from constant and variable ambipolar diffusivities was negligible because the

amplitude of salt concentration variation was very small under the oscillating loading. Thus,

ambipolar and ion diffusivities were later set to be constant values corresponding to the

average salt concentration of 1 M in further simulations. As experimentally observed in

Ref. [108], transference numbers were set to be constant. Thus, the last term in Eq. (4.12)

vanished. The electrolyte conductivity can be calculated according to

κe =

(
z+
D+

RT
− z−

D−

RT

)
F 2Ce S/cm. (4.23)

The details of parameterizing material properties can be found in Ref. [93].

The initial Xp was uniform 0.25 throughout all particles and the initial Ce was 1 M

throughout the electrolyte. (Here, we use Xp and X as interchangeable notations for Li

fraction in the electrode particles.) AtXp = 0.25, ϕOCV = 4.17 V. Figure 4.5 shows snapshots
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of simulated Xp and ϕp, and Fig. 4.6 shows snapshots of simulated Ce and ϕe distributions

under f = 0.1 Hz, taken at t = 1.51, 1.75, and 2.01 s. At lithiation phase, increased Xp

can be observed on the particle surfaces in Fig. 4.5(a) because the Li diffusion time scale

was comparable to the oscillation time scale. The Xp in the bulk of particles remains fairly

uniform. As lithium was extracted from the particle surfaces, Li fraction on the particle

surfaces decreases, as shown by Fig. 4.5(a), (b), and (c).

Figure 4.5 Top row: Simulated Li fraction in the particles. Bottom row: Simulated
electrostatic potential in the particles. The columns from left to right are taken at t = 1.51,
1.75, and 2.01 s, respectively, under a loading frequency of f = 0.1 Hz.

The ϕp corresponding to Xp in Fig. 4.5(a) through (c) are shown in Fig. 4.5(d) through

(f), respectively. The negative gradient of ϕp along the +x direction in Fig. 4.5(d) indicates

an intercalation flux to the cathode, during which high Xp was seen on particle surfaces in

in Fig. 4.5(a). At t = 1.75 s, the positive ϕp gradient along the +x direction in Fig. 4.5(e)

indicates that Li was extracted from the particles. At this moment, Li near particle surfaces

was extracted such that Xp in Fig. 4.5(b) was relatively uniform. Li extraction continued as
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indicated by the positive ϕp gradient along the +x direction in Fig. 4.5(f), which led further

Xp decrease on NMC particles, as observed in Fig. 4.5(c).

Figures 4.6(a) through (c) are the simulated Ce taken at the times corresponding to Fig.

4.5(a) through (c), respectively. The negative Ce gradient near the x = 0 plane (anode-

Figure 4.6 Top row: Simulated salt concentration in the electrolyte. Bottom row:
Simulated electrostatic potential in the electrolyte. The columns from left to right are taken
at t = 1.51, 1.75, and 2.01 s, respectively, corresponding to the three columns in Fig. 4.5.

electrolyte interface) in Fig. 4.6(a) indicates that Li enters the computation domain at there

to compensate those Li ions intercalated into NMC particles. At t = 1.75 s, as shown in Fig.

4.6(b), the gradient of Ce near the x = 0 plane was positive, which meant that Li ions were

removed from that plane to maintain a conservation of ions during Li deintercalation. The

Ce gradient remained positive in Fig. 4.6(c).

Figures 4.6(d), (e), and (f) show the snapshots of simulated electrostatic potential field

in the electrolyte, corresponding to Fig. 4.6(a), (b), and (c), respectively. Since the ϕe

gradients are very small, individual color scales were used for each subplot to clearly show
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the contrast of the gradients. The negative gradient near x = 0 in Fig. 4.6(d) indicates that

Li ions enters the system through the anode-electrolyte interface, and the positive gradients

near x = 0 in (e) and (f) indicate Li ion leave the system. The behavior of ϕe distributions

are generally similar to that of Ce since their gradients are mainly determined by the Li

ion flux in the system. However, some difference can still be discerned due to the different

governing physics. For example, the undulation of Ce near x = 15 µm in Fig. 4.6(b) does

not appear in (e). These results clearly demonstrate the versatility and capability of using

SBM with AMR to properly simulate the coupled multiphysics electrochemical processes in

the electrode microstructures.

During the simulation, the total response current was recorded as shown in Fig. 4.7(a).

The total current includes the reaction and capacitance currents and is calculated according

to

Itot = F

∫
|∇ψp|rxndΩ + Ic, (4.24)

where Ic is given in Eq. (4.16). MATLAB curve-fit function was used to extract the phase

shift and amplitude of the response current, which allow the calculation of impedance using

the method mentioned in Section 4.2.3. Similar simulations were performed for 20 other

loading frequencies, ranging from 0.001 to 200 Hz. Figure 4.7(b) shows the EIS curve on a

Nyquist plot constructed from the 21 sets of simulations.

The obtained EIS curve has a well-developed semicircle in the intermediate-to-high fre-

quency range: 0.25–200 Hz. In the results, 0.25 Hz is considered to be the minimal frequency

as it is on the right-hand side end of the semicircle. The critical frequency is the point at the

middle of the semicircle (the maximum height on the semicircle), which is approximately 5

to 6 Hz on the simulated EIS curve. On the right to the semicircle, the EIS curve enters

the Warburg section, which usually exhibits a straight line with 45 degrees from the x-axis

and eventually changes to a vertical line at very low frequencies. Here, however, due to the

long computational time for further lower frequencies, our simulations stopped at 0.001 Hz,

which does not yet reach the capacitance-dominated regime in the Warburg part.
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Figure 4.7 EIS simulation for half cell with lithium fraction equal to 0.25 in cathode. (a)
Applied voltage signal (blue), simulated response current (black circles) at frequency f = 1
Hz and fitted sine function (red). (b) EIS curve with frequencies from 200 to 0.001 Hz.

As is observed above, when the amplitude of voltage loading is limited to a small value

(here, less than 0.05 V), the entire system is not driven far away from the equilibrium

condition. Thus, the current response can still be approximated to a linear response, which

has the sinusoidal format similar to the loading voltage. However, when we increase the

amplitude of loading voltage (e.g., to 0.5 V), the current no long linearly responds to the

loading. Figure 4.8 shows an example of non-linear current response at f = 0.1 Hz for

the electrode with average Xp = 0.5. Sharp peak and valley regions are observed on the

response current curve. In this simulation, the surface Xp can vary between 0.17 and 0.91,

which can lead to a significant material property variation (e.g., Li diffusivity, conductivity,

and exchange current density) within the cyclic loading. The resulting current curve cannot

be fitted with a single sine/cosine function. The analyses of non-linear EIS require much

more simulation results and efforts, which is beyond the scope of our current work. Thus,

we will not further discuss non-linear EIS behavior here. However, the presented simulation

still demonstrates the potential of using SBM with AMR electrochemical simulations to

investigate non-linear EIS behavior in future extensions.
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Figure 4.8 Non-linear current response due to large loading amplitude: (blue) loading
voltage with amplitude of 0.5 V, and (red) current response. The loading frequency is
f = 0.1 Hz, which is the same as in Fig. 4.7(a), but the initial Li fraction in this set of
simulations is Xp = 0.5.

4.3.3 Effect of Average Li Fraction

The intrinsic material properties of cathode particles, such as open circuit voltage (Eq.

(4.20)), diffusivity of lithium (Eq. (4.17)), and electric conductivity (Eq. (4.18)), are functions

of Li fraction. Even with the same cell voltage imposed on the current collectors, voltage drop

across the particle-electrolyte interface can be significantly different due to concentration-

dependent conductivity. As in the Butler-Volmer equation, Eq. (4.5), different [ϕ]pe and Cp

are expected to result in a substantial difference of the reaction rate on the particle-electrolyte

interface.

To investigate how electrode Li fractions affect EIS behavior, additional simulations with

initial average Xp = 0.50, 0.75, and 0.90 were performed on the same cathode microstructure

described in the previous section. Using Eq. (4.20), the values of ϕOCV corresponding to
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Figure 4.9 (a) The OCV of NMC for different Li fractions used in the simulations. (b)
Nyquist plot of simulated EIS curves with Li fractions equal to 0.25, 0.50, 0.75, and 0.90 in
the NMC electrode

Xp = 0.5, 0.75, and 0.90 are 3.85, 3.71, and 3.45 V, respectively, as shown in Fig. 4.9(a).

Those are used to set up the electro-potential boundary conditions on the anode and current

collector as the equilibrium cell voltage. The boundary conditions on the remaining four

computational domain boundaries are kept the same as in the previous case (Xp = 0.25).

Following the same simulation procedure described in the previous section, three additional

EIS curves were obtained, which are shown in Fig. 4.9(b). As can be observed in the figure,

the radii of the semi-circles increase as the Li fraction increases. This indicates the charge

transfer resistance on the particle surface increases when surface Xp increases. The charge

transfer resistance at the equilibrium condition can be written as [109]

Rct =
RT

zFi0
. (4.25)

Since the amplitudes of applied oscillating loading are sufficiently small, the lithium fraction

on the particle surfaces will not significantly deviate from the initial (average) lithium frac-

tion. The values of i0 calculated using Eq. (4.21) are 1.448×10−1, 4.079×10−3, 2.685×10−3,

and 2.495× 10−3 mA/cm2 for Xp = 0.25, 0.50, 0.75, and 0.90, respectively. Those i0 values

lead to a Rct ratio of approximately 1 : 35 : 53 : 58 for the four cases. This resulting ratio

is consistent with that observed from the semi-circles on the Nyquist plot in Fig. 4.9(b), in
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which the values of Rct can be extrapolated at where the extended semi-circles intersecting

the horizontal axis or two times the radii of the semi-circles. Those values are approximately

0.26×106, 8.5×106, 12.8×106, and 14.2×106 Ω. This result demonstrates that the presented

electrochemical simulation and impedance calculation methods can properly reflect the input

material parameters. Here, the low-frequency results of the three additional simulations do

not well extend to the Warburg regime. Since the obtained impedance has already exhibited

the effect of i0 variation at different initial Li fraction, we did not pursue further simulations

at lower frequencies.

4.3.4 Effect of Electrolyte Salt Concentration

As indicated in the Butler-Volmer equation, Eq. (4.5), the salt concentration (Ce) affects

the intercalation/deintercalation reaction rates. To investigate such an effect on the EIS

behavior, two more simulations, one with average Ce = 0.5 M and the other with Ce = 2 M,

were performed in addition to the case in Section 4.3.2. The ambipolar (De) and ionic (D+

and D−) diffusivities are functions of Ce as described in Eq. (4.22). Figure 4.11(a) shows

those functions, in which the three diffusivities monotonically decrease as Ce increases. The

calculated De values at 0.5, 1, and 2 M are 2.778×10−6, 1.904×10−6, and 9.650×10−7 cm2/s,

respectively. As in Eq. (4.23), the shape of κe curve is non-monotonic, with a maximum of

0.02066 S/cm near Ce = 1.2 M. The calculated κe at Ce = 0.5, 1, and 2 M are 0.01429,

0.01959, and 0.01985 S/cm, respectively. Thus, predicting the EIS behavior simply just by

De and κe is difficult. Here, because we cannot acquire i0 data measured at Ce = 0.5 and 2

M in the literature, the functions of kf and kb obtained based on Ce = 1 M were still used

in this set of simulations. The equilibrium potential, ϕeq, for the two additional simulations

were calculated by setting the net reaction to be zero in Eq. (4.5) with Xp = 0.25 (as in

Section 4.3.2). The obtained values are 4.151 and 4.187 V, which are utilized to set up the

boundary conditions for the equilibrium cell voltage. The dielectric constant (ε) in Eq. (3.3)

also varies with Ce. As in Ref. [73], we also simply assumed that ε linearly increases as the
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Figure 4.10 Calculated κe based on Eq. 4.23 with a maximum point around 1.20 mol/L.

salt concentration increases [110]. The calculated specific capacitances using the method in

Section 4.3.1 are 107.8 and 190.0 µF/cm2 at Ce = 0.5 and 2 M, respectively.

The simulated EIS curves, with that from Section 4.3.2, are plotted in Fig. 4.11(b).

Again, 21 loading frequencies ranging from 200 to 0.001 Hz were sampled. Three main

observations are summarized from the results. First, the Warburg impedances are almost

the same: nearly horizontal translation toward the right on the Nyquist plot as Ce decreases.

This indicates that the diffusional impedance is limited by Li diffusion inside the particles

because De is six orders of magnitudes larger than Dp. In the low frequency regime, salt

concentration can easily reach its equilibrium. The variation of salt diffusivity due to Ce

change in the electrolyte has minimal impact on the Warburg part of EIS curve. Second,
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Figure 4.11 (a) Salt ambipolar diffusivity and ionic diffusivity as functions of salt
concentration used in the simulations. (b) Nyquist plot of simulated EIS curves for
different salt concentrations in the electrolyte.

the radii of the semi-circles significantly increase as the Ce decreases, indicating that the

reaction rate sufficiently decreases. This effect is likely attributed to the fact that Ce in the

first term of Eq. (4.5) dominates the total reaction rate. Thus, i0 decreases as Ce decreases,

which leads to the increase in Rct. Lastly, the critical and minimal frequencies in the three

simulations are all approximately at 5 and 0.25 Hz, respectively. There are only slight shifts

of their positions on the semi-circles. This manifests that the variations of double-layer

capacitance in the salt concentration range examined here has only a negligible impact on the

EIS behavior. The specific capacitance varies between 107 and 190 µF/cm2. The presented

simulation framework exhibits the potential of computationally investigating the role of salt

concentration on the EIS behavior. However, because variation of Ce simultaneously affects

De, κe, ε, and also likely i0, further study with more material properties is highly expected.

4.3.5 Effect of Microstructures

Battery electrodes are agglomerates of active particles for Li storage and non-active additive

particles for structural adhesion and electrical percolation. The electrode microstructures
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are highly complex with tortuous inter-particle space. Many microstructure-related fea-

tures, such as active surface areas, particle size distribution, electrical percolation network,

tortuosity of inter-particle space, and channel width of electrolyte regions, can all affect the

electrode performance. Here, we use the presented simulation tool to explore the effect of

microstructures on the resulting EIS. Due to the fact that the time scale for salt diffusion is

much smaller than that of loading frequencies examined in this work, as already discussed in

Section 4.3.4, the effects of tortuosity of inter-particle space and the effects of channel width

will be unable to be examined in the simulated EIS. Nevertheless, the effects of surface areas

and diffusion in the particles should be able to be observed in the EIS curves.

Another electrode microstructure was generated using the DEM mentioned earlier with

172 spheres, as shown in Fig. 4.12(a). Hereafter, this microstructure is referred to as Ge-

ometry 2 (Geo-2) and that in the previous section is referred to as Geometry 1 (Geo-1).

The particles in Geo-2 have the same mean radius (5.8 µm) as in Geo-1 on the log-normal

distribution, but with a smaller variation (variance: σ2 = 0.0625). This new electrode is

thinner compared to that in Fig. 4.3(c) because the spheres packed more tightly. The parti-

cle surface area in this electrode is calculated to be 49151 µm2, which is approximately 28%

less than that of Geo-1 (68061 µm2). The surface area is calculated by summing the areas

of all triangular patches of the isosurface at ψ = 0.5 generated using MATLAB software.

The total volumes of Geo-2 and Geo-1 are 1.733 × 105 and 3.135 × 105 µm3, respectively.

These numbers lead to surface-volume ratios of 0.28 and 0.22 µm−1 in Geo-2 and Geo-1,

respectively. The two geometries have a similar porosity of 0.72, calculating in the range of

66 < x < 100 µm.

Following the same simulation procedures in Section 4.3.2 with average Xp = 0.25, the

EIS curve of Geo-2 is extracted from the simulation results at a series of loading frequencies,

as the red curve in Fig. 4.12(b). The charge transfer resistance of Geo-2 is 3.45×105 Ω (twice

the semi-circle radius), which is significantly larger that of Geo-1 (2.60×105 Ω). The ratio

between Geo-2 and Geo-1 resistances, Rct,2/Rct,1 = 1.33, is consistent with the inverse of the
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Figure 4.12 (a) Configuration of the virtual cell for Geo-2. (b) Simulated EIS curves of
Geo-2 and Geo-1 electrodes. (c) Configuration of single-particle virtual cell with particle
radius of 10 µm. (d) Simulated EIS curves of R2 and R1 cases.

ratio between the two electrodes’ surface areas, AGeo1/AGeo2 = 68061/49151 = 1.38. Because

i0, as a material properties, is the same for the two electrodes, the total reaction fluxes are

proportional to the active surface areas. Under the same voltage loading, the resistance is

inversely proportional to the current. As a result, the sizes of the semi-circles reflect the

active surface areas of the electrodes.

Interestingly, the Warburg impedance also approximately follows a similar ratio ofRct,2/Rct,1

in the frequency range probed. For instance, at f = 0.001 Hz, the magnitudes of the imagi-

nary component of the Warburg impedance are 5.62×105 Ω and 3.94×105 Ω for Geo-2 and
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Goe-1, respectively, which lead to a ratio of 1.43. This observation is counter intuitive to

that Geo-2 has a larger surface-volume ratio, meaning a shorter effective diffusion length for

inserted/extracted Li. This discrepancy can be attributed to the fact that the diffusional

flux in the particles is still limited by the reaction flux. In the frequencies probed in the

Warburg regime here, the time scales are still sufficiently close to that of surface reaction.

If at an extremely low frequency, where the diffusion time scale completely dominates the

EIS behavior, we expect the Warburg impedance would eventually reflect the inverse of the

volume ratio (VGeo1/VGeo2 = 3.135/1.733 = 1.91) between the two electrodes as studied in

Ref. [111], instead of the surface ratio.

To verify the discussion above, another set of simulations with a simple geometry were

performed. The virtual battery cell contains only one single spherical NMC particle: one

with radius of R1 = 5 µm and the other with radius of R2 = 10 µm. Figure 4.12(c) shows

the configuration of virtual cell of the R2 case. Note that a small region of the particle

is truncated at the contact to the current collector. The simulated EIS curves are plotted

in Fig. 4.12(d). As inferred from the curves, the semi-circle radii are approximately in a

4 : 1 ratio between the R1 and R2 cases, with 6.1 × 107 and 1.5 × 107 Ω for the charge

transfer resistance, respectively. The 4 : 1 ratio is the reverse of the particle surface area

ratio between these two cases. Also, the imaginary magnitudes of the Warburg impedance

at 0.001 Hz are 1.36×108 and 2.88×107 Ω, which still follow an approximately 4 : 1 ratio but

already shows the effect of finite space Warburg behavior. Therefore, the discussions for the

Geo-2 and Geo-1 comparison are confirmed by the simple single-particle simulations.
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4.4 Conclusion

In this chapter, an electrochemical simulation framework with explicit considerations of elec-

trode microstructures is demonstrated capable of properly capture the concentration and

electro-potential evolution under sinusoidal voltage loadings. Through the use of smoothed

boundary method, the simulations do not require mesh conforming to complex electrode

microstructures. EIS curves are extracted from the physics-based simulations. With double-

layer capacitance, surface reaction, and Li bulk diffusion, the obtained impedance curves

resemble the typical curves that have a semi-circle in the high-to-intermediate frequency

regime and a finite-space Warburg curve in the low frequency regime. Simulations with var-

ious initial electrode Li fractions demonstrate the effects of Li-fraction-dependent i0 on the

EIS curves. The total charge-transfer resistance is inversely proportional to i0 for the same

electrode. This tool is also utilized to investigate the role of initial salt concentration in the

electrolyte. The results suggest that i0 variation due to salt concentration dominates the EIS

behavior, rather than concentration-dependent salt diffusivity or dielectric constant. Due to

the fact that salt diffusivity is several orders of magnitude larger than Li diffusivity in the

particles, the Warburg impedance is only determined by the Li bulk diffusion. Lastly, simu-

lations with different electrode microstructures demonstrate that the EIS can be employed

to probe the active surface areas. For electrodes have the same i0, the total charge-transfer

resistance is inversely proportional to the active surface area. This physics-based simulation

framework is expected to be widely used in studying the relationship between EIS behavior,

intrinsic material properties, and electrode microstructures.
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CHAPTER 5

PHYSICAL-BASED SIMULATION OF ELECTROCHEMICAL
IMPEDANCE SPECTRUM ON GRAPHITE
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5.1 Introduction

In Chapter 4, we investigate the EIS behavior of cathode electrode. In this chapter, we focus

on simulating EIS of anode microstructures. The electrode microstructure will significantly

impact a battery’s electrochemical performance. Different from NMC cathode that shows a

solid-solution behavior, the anode material studied here (graphite) exhibits multiple phase

transformation upon lithiation/delithiation. The common anode material, graphite, has a

theoretical gravitational capacity (372 mAh/g [112]) significantly larger than that of cath-

odes. Instead of increasing the capacity, research interests of anode materials are placed on

increasing rate capabilities [113] or preventing Li plating[114]. Graphite has a layered struc-

ture consisting of stacked graphene sheets. In the intercalation processes, Li ions migrate in

the space between the graphene sheets, and thus the Li migration shows strong anisotropic

behavior: fast in the direction parallel to, but slow in the direction perpendicular to the

graphene sheets. The insertion leads to some expansion in the off-plane direction. During

lithiation, graphite undergoes three interlayer-ordering phase transition processes: Phase

1’ to 3, 3 to 2, and 2 to 1 [115]. At the fully lithiated state (Phase 1), one Li atom is

accommodated by six carbon atoms as LiC6. Other carbonaceous anode materials include

soft carbon and hard carbon. Unlike graphite, soft carbon and hard carbon are amorphous

solid. Soft carbon is moderately disordered and can be converted to graphite around 2300 ◦C.

Hard carbon is highly disordered and can hardly be converted to graphite [116]. Because

of the amorphous structures, soft and hard carbons exhibit solid-solution behavior during

Li insertion processes, leading to a lithiation potentials higher than that of graphite. These

three carbon materials all have the advantages of high electronic conductivity and low cost.

While graphite’s intrinsic properties are difficult to alter, improvement of electrochemical

performance of graphite anode can still be achieved by microstructure designs [117, 118],

e.g., introducing tunnels to facilitate Li salt diffusion throughout the electrode.

As in the classical electrochemical modelings, the double-layer capacitance is calculated

by solving Nernst-Planck-Poisson equations. Li salt transport in the electrolyte is mod-
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eling by Fickian diffusion. Li insertion/extraction on the particle surfaces is governed by

the Butler-Volmer equation. However, we employ the Cahn-Hilliard equation to model Li

transport in the graphite particles, as proposed by Guo et al [115] to account for the phase

separation in graphite. Gao et al also pointed out that describing Li transport in graphite

with phase-separation or solid-solution models will lead to different results [119]. The use of

phase field model in the graphite particles differs our work from those using Fickian diffusion

for graphite (e.g., as in Ref. [66]).

We simulated the EIS curves of an experimentally reconstructed graphite electrode at

different stages of lithiation to highlight the effect of Li-fraction dependent properties. The

effect of microstructure was examined with simulations on two different experimentally re-

constructed graphite electrodes. We also investigated the effect of tunnels in electrodes on

the resulting EIS curves. The EIS behavior of two-phase coexisting case was investigated.

Interestingly, a unique inductive loop was observed on the simulated EIS curves. The simu-

lations also demonstrate that EIS cannot distinguish the difference between core-shell phase

coexistence morphology and single phase morphology. Drifting in the EIS simulation was

also noticed in some of the simulations, in which the electrodes were not yet relaxed to

near equilibrium conditions. Lastly, even though Fick’s diffusion is commonly mistakenly

employed to simulate Li transport in graphite, our simulations show that, for an equilibrium

system, the Cahn-Hilliard model and Fickian diffusion model produce the same EIS curve.

These simulations exhibit a myriad of rich physical phenomena taking place in electrode

microstructures, which will not be uncovered without detailed microstructure-level simula-

tions. With the advantages of SBM electrochemical simulations, such as speed and ease of

implementation, demonstrated in this paper, we expected the presented tool to be widely

employed in simulating electrode dynamics to study a variety of electrochemical systems.
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5.2 Model and Methods

Graphite (LiXC6) exhibits multiple phase transformations upon lithiation (or delithiation).

It undergoes four stages (or phases) from a fully delithiated to a fully lithiated state. At the

first stage (1’ where X < 0.06), it can be considered a dilute Li solid solution in graphite

with Li atoms sparsely distributed across all inter-graphene layers. These Li atoms are

disordered and isolated (nearly noninterative) from each other. As more Li atoms are present

in graphite, ordering occurs in the inter-graphene layers and simultaneously a sequence of

one filled layer next to two consecutive empty layers appears. This stage is named Stage 3.

Further insertion leads to a configuration that one filled layer in every two layers, i.e., Stage

2. At the last stage, every inter-graphene layers are filled with ordered Li atoms: Stage 1

(stoichiometrically denoted as LiC6). Different phases can coexist within a graphite particle.

The classical Fick’s diffusion model, which is valid only for describing mass transport in solid

solutions, cannot properly describe the processes of phase domain propagation/recession.

Although the Li ordering within the phase boundaries is not as simple as a monotonic

transition, as proposed by Guo et al [115], the phase transformation processes in graphite in

the continuum scale can still be modeled by phase-field methods.

Since no crystal structure change occurs and mass of Li is conserved in graphite. The

Cahn-Hilliard equation will be adequate to model the second-order phase transformation

process in graphite, which reads

∂Xp

∂t
= ∇ ·Mp∇

(
µp(Xp)− ε∇2Xp

)
(5.1)

where Xp is the Li occupancy fraction, Mp is the transport mobility, µp is the Li chemical

potential in the bulk phase, ε is the gradient energy coefficient, and the subscript p denotes

graphite particles. Different from typical phase field simulations, we do not use a deter-

ministic double-well function for the thermodynamic free energy. Instead, µp in this work is

parameterized from measured data in the literature. For a half cell, the Li chemical potential

in the electrode is related to the cell open-circuit voltage (OCV) by ϕOCV =
(
µp − µ0

Li

)
/e,
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where µ0
Li is the chemical potential of metallic Li (a constant value), and e is the elemental

electron charge. Here, we assume that no concentration gradient is present in the particles.

Thus, the Li chemical potential in graphite is obtained by

µp(Xp) = −e · ϕOCV (eV). (5.2)

The chemical potential is related to the Gibbs free energy by

Figure 5.1 (a) Open circuit voltage (or open circuit potential) as a function of Li fraction in
graphite electrodes. (b) Modified chemical potential of Li ions in graphite electrode. The
blue dashed curve is the negative of OCV times electron charge. (c) Gibbs free energy of
lithium in graphite electrode. The three black dashed lines are the common tangent lines,
which indicate two-phase coexistence regions. (d) Exchange current density from kinetic
Monte Carlo chronoamperometric simulation (gray dashed curve) and modified exchange
current density (red curve) used in the simulations.
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µp(Xp) =
∂G(Xp)

∂Xp

, (5.3)

where the Gibbs free energy function will have four energy wells (local minima) corresponding

to the four stable phases of graphite. Note that we have assumed that metallic Li is the

counter-electrode for our simulations and the potential of the reference electrode (Li metal) is

zero. Figure 5.1(a) shows the OCV [120] used in this work, which shows three flat plateaus on

the curve. Each plateau corresponds to a two-phase coexistence region in graphite. The dark

green curve in Fig. 5.1(b) shows µp parameterized from the ϕOCV . Because ϕOCV in the two-

phase coexistence regions are flat plateaus, we extrapolated µp to be non-monotonic in the

three two-phase regions (i.e., 0.05 < Xp < 0.12, 0.23 < Xp < 0.51, and 0.56 < Xp < 0.97).

Without those non-monotonic functions in the two-phase regions, no phase separation will

occur. The extrapolated curve leads to a nucleation barrier about 15–40 e·mV. Here, we

constructed the non-monotonic regions of the µp curve simply for numerical ease of phase-

field simulations such that stable phase boundaries spanning about 4 grid spacings can form

inside graphite particles. Some measured intrinsic voltage hysteresis on graphite OCV is

reported to be approximately 10–40 e·mV [121, 122, 123]. The voltage hysteresis is equivalent

to the barrier mentioned above. Since our values do not deviate much from the reported

one, the simulation results using the parameterized µp should be acceptable. Integrating

µp function, we obtained the Gibbs free energy as the light green curve in Fig. 5.1(c), in

which there are four local energy wells corresponding to the four stbale phases and the three

common tangent (dashed) lines indicate the three two-phase regions. Again, since we do not

have access to the interfacial energy of the phase boundaries in graphite, the value of ε in

Eq. (5.1) was chosen for numerical convenience, such that the the phase boundaries span

approximately 4 root-level grid spacings.

The Li mobility in Eq. (5.4) is parameterized using the relation: Mp = Dp/
(
∂µp/∂Xp

)
,

where µp is shown as the dark green curve in Fig. 5.1(b). The composition-dependent

mobility is plotted as the red curve shown in Fig. 5.2(a). As in Refs. [124, 125], we assume four

constant values of Dp in the four respective single-phase regions (see Fig. 5.2(b)) and use the
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Figure 5.2 (a) Li mobility in graphite used in the simulations. (b) Diffusivity values in the
four single phases (gray solid lines) and linear interpolation in the two-phase regions (gray
dashed lines).

gradient of chemical potential function to estimate the mobility in the single phase regions.

The mobility in the two-phase regions (the humps on the red curve) is extrapolated from

the single-phase regions (the valleys on the red curve). Although Li transport in graphite is

anisotropic, we used isotropic Mp in this work. This is justified based on Ref. [125], in which

the simulations showed only a negligible difference between the cell performance results of

anisotropic and isotropic models if the isotropic model uses an effective mobility averaged

over the anisotropic mobility.

We used a continuous domain parameter, ψp, to define graphite particles: ψp = 1 in the

particles and ψp = 0 outside the particles. The particle-electrolyte interfaces are the regions

where ψp varies from 1 to 0. Note that this diffuse interface defined by ψp is a mathematically

smeared boundary, not a physical interface. The domain parameter was used to reformulate

Eq. (5.1) to

∂Xp

∂t
=

1

ψp

∇ · ψpMp∇
(
µp(X)− ε∇2Xp

)
+

1

ψp

|∇ψp|
ρ

rxn (5.4)

where ρ is Li site density in graphite (0.0312 mol/cm3), rxn is the (de)intercalation rate on

the particle surfaces, and |∇ψp| indicates the particle surfaces. Because the particle regions
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are defined by ψp function, Eq. (5.4) can be solved on numerical mesh non-conformal to the

particles. Thus, the implementation of simulations can be performance much easier than the

conventional sharp-interface methods.

As shown in Chapter 4, the rest of SBM electrochemical governing equations in the

simulations are provided here again for readers’ convenience,

∇ · (ψpκp∇ϕp)− |∇ψp|z+Frxn = 0, (4.10)

∂Ce

∂t
=

1

ψe

∇ · (ψeDe∇Ce) +
|∇ψe|
ψe

rxnt−
ν+

− ie · ∇t+
z+ν+F

, (4.12)

∇ · [ψe (z+m+ − z−m−)FCe∇ϕe] + |∇ψe|
rxn
ν+

= ∇ · [ψe (D− −D+)∇Ce] , (4.13)

where κp is the electric conductivity of graphite, ϕp is the electrostatic potential in graphite,

Ce is the salt concentration in the electrolyte, De is the ambipolar diffusivity of the salt,

ψe is the domain parameter for the electrolyte region, ti is the transference number, νi is

the dissolution number, zi is the valence number, ie is the ionic current, F is the Faraday

constant, mi is the ionic mobility, and Di is the ionic diffusivity. The subscripts + and −

denote cations and anions, respectively. These equations have appeared in Chapter 4, but

we provide them again here for readers’ convenience. Here, ψe = 1 − ψp. The material

parameters in Eqs. (5.4) through (4.13) can be found in Refs.[93, 124, 125].

The surface (de)intercalation reaction (charge transfer process) is governed by the Butler-

Volmer equation:

rxn = kfCe exp

[
−αz+F
RT

[ϕ]pe

]
− kbCp exp

[
(1− α) z+F

RT
[ϕ]pe

]
, (4.5)

where kf and kb are the forward and backward reaction rate constants, α is the symmetry

factor, R is the ideal gas constant, T is the absolute temperature, Cp is the Li concentration

(Cp = ρXp), and [ϕ]pe is the electrostatic potential drop across particle-electrolyte interface.

The rate constants can be calculated from the exchange current density as in Refs. [93,

124]. The exchange current density can be obtained by performing chronoamperometric

simulations at different electrode potentials and letting the system approach towards the
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steady state. At steady state, the net Li ion flow across the interface becomes zero, i.e.,

the oxidation current equals the reduction current. The gray dashed line in Fig. 5.1(d)

shows an exchange current density curve obtained by Gavilan-Arriazu et al using kinetic

Monte Carlo chronoampreometric simulations. This curve exhibits a nearly flat plateau in

the region 0.2 < Xp < 0.8 and the value decreases towards the two ends of the horizontal

axis. If this i0 curve were used in the EIS simulations, the charge transfer resistance would

be almost the same within the entire plateau region. Thus, to highlight the effect of i0 on the

EIS simulations, we modified the gray curve to the red curve in Fig. 5.1(d). As mentioned

earlier, there are two stable single-phase regions of Li in graphite (Stages 3 and 2) within

the plateau on the gray dashed curve. These single phase regions are thermodynamically

stable. Thus, we hypothesize that the respective i0 values in the single phase regions are

smaller than those in the two-phase regions. However, there is no available literature data

for the parameterization. Here, we selected i0 values to be approximately 1.5 and 1 mA/cm2

for Stages 3 (Xp ∼ 0.19) and 2 (Xp ∼ 0.54), respectively. These values are moderately

larger than those in Stages 1’ and 1, but enough to result in different EIS curves in the

simulations. Here, we emphasize that the i0 values for Phases 3 and 2 are chosen only to

contrast the differences in exchange current density in different phases. We acknowledge

that the red curve in Fig. 5.1(d) was constructed for the ease of demonstrating the EIS

simulations, which does not represent the real values of i0 on graphite surfaces. If available

literature data exist, a more reliable i0 function could be parameterized for the simulations.

We used experimentally reconstructed 3D graphite electrode microstructures in the sim-

ulations. These microstructures were obtained using X-ray computed nano-tomography and

are publicly accessible [126, 127]. Electrode II on the online repository consists spherical par-

ticles and Electrode IV has flaky particles. We selected these two microstructures to examine

the effect of microstructures on the EIS behavior. The voxel centers in the 3D microstructure

data arrays were directly used as the root-level grid points in the SBM simulations. With

the voxel size of 0.325 µm, the root-level grid spacing is ∆x = 0.325 µm.
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To increase the simulation accuracy, octree adaptive mesh refinement (AMR) [93, 72]

was performed to generate the mesh systems, in which fine mesh was used near the dif-

fuse interfaces while coarse mesh was used in the particle and electrolyte bulk regions.

Figure 5.3 Experimentally reconstructed 3D graphite electrode microstructures: (a)
Electrode II with spherical particles, (b) Electrode IV with flaky particles, (c) Electrode II
with a tunnel at the center, and (d) Electrode IV with a tunnel at the center.

With one-level of refinement, the diffuse interface thickness was controlled to be approx-

imate 2 root-level grid spacings. We solved the electrochemical governing equations, Eq.

(5.4) through Eq. (4.5), to obtain the reaction current responding to the oscillating voltage
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loadings. The specific capacitance stemming from double layer formation on the particle

surfaces was calculated separately by solving the Nernst-Planck-Poisson (NPP) equations as

in Refs. [73, 128]. The total response current consists of reactive and capacitive currents.

The phase angle and amplitude of the impedance was fitted using MATLAB as in Ref. [128]

and in Chapter 4.
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5.3 Results and Discussion

5.3.1 Electrochemical Simulation of Graphite Lithiation

Two graphite electrode microstructures [126] were used as the input geometries for the

simulations. We cropped a region of 180×120×180 voxels out of the data, which corresponds

to a region of 58.5×39×58.5 µm3. Fig. 5.3(a) and (b) show the microstructures taken from

Electrode II and Electrode IV, respectively, from the online data. Hereafter, these two

microstructures used in the simulations are referred to as E II and E IV in this text.

The total particle surface areas are approximately 3.54 × 10−4 and 3.67 × 10−4 cm2 for

E II and E IV, respectively. The values were obtained by summing all triangular patches

on the isosurface of ψp = 0.5 generated using MATLAB. An empty space with a thickness

Figure 5.4 The virtual cell used in the simulations. The yellow color indicates graphite
particles, the semitransparent cyan slab indicates the Li foil anode, and the brown slab
indicates the current collector. The transparent region is filled with electrolyte. The space
between Li foil and graphite electrode serves as the separator.

of 50 root-level ∆x (16.25 µm) was included between the Li foil and the electrode as the

separator layer. Figure 5.4 shows the virtual cell for E II simulations, for which Eqs. (5.4)
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and (4.9) are solved in the particles (yellow region), Eqs. (4.12) and (4.13) are solved in the

electrolyte (transparent region), and Eq. (4.5) is calculated on the particle surfaces. The

semi-transparent cyan and solid brown slabs represent the Li foil and the current collector,

respectively. We assume an EC/EMC electrolyte with 1 M of LiPF6 salt dissolved within.

The ionic diffusivities were set to be 1.25×10−6 and 4.0×10−6 cm2/s for D+ and D−, respec-

tively, at 1 M as in Ref. [99]. The electrostatic potential on the Li foil was set to be constant

(ϕe|a = 0 V). The electrostatic potential on the current collect (ϕp|c) was constantly adjusted

to maintain a constant current loading for lithiation (or delithiation).

Figure 5.5 Simulated Li fraction in graphite electrode (a) at average XLi = 0.54 and (b)
XLi = 0.85. Clear multi-phase coexistence in graphite particles can be seen in (a) and (b).
Simulated (c) electrostatic potential in graphite particles, (d) salt concentration in
electrolyte, and (e) electrostatic potential in electrolyte corresponding to (a). (f) Simulated
cell voltage curve at 0.5C lithiation of E II. The circular and square markers correspond to
(a) and (b), respectively.

Figures 5.5(a) and (b) show simulated Li fraction in E II at two different times during a

0.5C (or C/2) lithiation. 1C (or C/1) means a rate that completely delithiates or lithiates

the whole electrode in 1 hour. As Li is inserted into the particles, Li fraction increases near
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the surface regions and the particle cores have a lower Li fraction. Clear phase coexistence

in graphite particles can be observed. For example, Stage 2 (green) and Stage 3 (light blue)

in Fig. 5.5(a). See the cyan dashed oval. In Fig. 5.5(b), three phase coexistence can be

distinguished by the yellow, green, and blue colors. See the red dashed ovals. Other physical

fields, i.e., electrostatic potential in the particles, electrostatic potential in the electrolyte,

and salt concentration in the electrolyte are also solved in the simulations. They are plotted

in Fig. 5.5(c), (d) and (e), respectively. The cell voltage curve during the lithiation process

is plotted in Fig. 5.5(f). In a slow lithiation process, like 0.5C here, the cell voltage curve

exhibits multiple steps as graphite’s OCV curve. These steps indicates lithiation via two-

phase processes. The details of electrochemical simulations of charge/discharge cycling of

graphite electrodes can be found in Ref. [125].

E IV has flaky graphite particles with a slightly larger total particle surface area than

that of E II. Because the plate-like particles are perpendicular to the primary electrolyte

diffusion direction (the electrode thickness direction), the tortuous channels for electrolyte

will hinder Li ion migration through the electrolyte at high lithiation rates, thus leading to

a lower cell performance of E IV. Figure 5.6(a) shows the cell voltage (CV) curves of E IV

and E II at 6C lithiation. Compared to the CV curve of 0.5C lithiation, the 6C CV (the red

curve in Fig. 5.6(a)) drops much quicker. It reaches 0 V near XLi ∼ 0.6, which means only

60% of graphite material is utilized up to the cutoff point. The details of cycling simulations

can be found in Ref. [125]. The E IV CV curve is below the E II CV curve, indicating

E IV has a poorer performance compared to E II. Here, because the electrode is only 39-µm

thick, the hindrance of cell performance due to pore tortuosity is not prominent. In thicker

electrodes, the performance of E IV will be much deteriorated.

Tunnels have been introduced in cathodes [129] and anodes [130, 117, 118] to enhance the

ion transports in electrolyte at high-rate operations. The effect of including tunnels has also

been studied in simulations [66]. Here, we present the simulated electrochemical performance

of the two electrodes, each of which has a tunnel through the middle. Figures 5.3(c) and (d)

113



Figure 5.6 Simulated cell voltage curve at 6C lithiation of (a) E II and E IV, and (b) E IV
and E IV with tunnel.

show the microstructures of E II and E IV, respectively, with a straight tunnel each along

the thickness direction. The tunnel diameter is 13 µm. The two microstructures are referred

to as E II T and E IV T. The simulated CV curve of E IV T at 6C lithiation is plotted as the

black curve in Fig. 5.6(b), with E IV CV curve (red) in the same figure for comparison. The

E IV T cell voltage curve is above the E IV one, indicating that E IV T has a better rate

performance due to the enhancement of electrolyte transport through the tunnel. Again, the

effect of enhancement will be much magnified in thicker electrodes. The case of E II T versus

E II also shows an improvement of rate performance, but in a much smaller degree relative

to the E IV T-to-E IV case. The tunnel did not significantly enhance the long range ion

transport in E II T. This is because the pore tortuosity in E II (∼1.6) is significantly smaller

than that in E IV (∼2.6). The E II T 6C cell voltage curve is not presented here to avoid

repetitive descriptions. In a brief summary, an electrode with less tortuous pore channels

has a better high rate performance (e.g., E I) versus E IV). An electrode with a tunnel that

can facilitate salt ion transport throughout will also has a better high rate performance (e.g.,

E IV T versus E IV).
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5.3.2 EIS of Single Phase Graphite

The same electrochemical simulation code was employed to simulate EIS processes. While

the electrostatic potential on the Li foil was still set to be constant (ϕe|a = 0 V), an oscillating

voltage load was imposed by setting ϕp|c = V0 sin(ωt) on the current collector, where ω = 2πf

was the angular frequency, f was the ordinary frequency, and the amplitude was V0 = 15 mV.

The specific capacitance (Csp), originating from double-layer formation, was 140 µF/cm2

[128]. The details of simulation implementations can be found in Refs. [93, 128] and in

Chapter 4.

The total response current under the oscillating voltage loading includes reactive and

capacitive currents as

itot = irxn + idl (5.5)

where irxn represents reactive current and is obtained from the Butler-Volmer reaction, Eq.

(4.5). The capacitive current idl originates from double layer formation and is calculated

using idl =
∫
Csp

(
∆V/∆t

)
dA [128] as in Chapter 4, where ∆V is the voltage drop across

particle-electrolyte interfaces, ∆t is the time step size, and A is the particle surface area.

These currents were integrated over the entire electrode region. The total current was fitted

to a sinusoidal function using MATLAB curve fitting function. An example of voltage

loading and total current response is shown on Fig. 5.7, in which the Li fraction is 0.54

and frequency is 32 Hz. Finally, the impedance was calculated as Z(f) = ϕp|c/itot. We

examine EIS behavior over a frequency range from 512 to 0.01 Hz. Again, the details of the

implementations can be found in Ref. [128] and in Chapter 4.

The first set of simulations were performed to examine graphite electrodes with stable,

uniform single phases, i.e., Stage 1’, 3, 2, and 1. The Xp was set to be uniformly 0.02, 0.19,

0.54, and 1 throughout all particles in E II. Hereafter, we use XLi and Xp interchangeably

since both of them are Li fraction in graphite particles. The corresponding equilibrium cell

voltage are 0.694, 0.159, 0.109, and 0.0 V for these four simulations. These values were

selected based on the OCV at the respective XLi. Figure 5.8(a) shows the simulated EIS
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Figure 5.7 The blue curve is the voltage loading imposed on the half cell, the black circles
are the current response at the sampling timings, the red line is the fitted current response
curve. There is a clear phase shift between the loading and response.

curves with magnified views in Fig. 5.8(b). All the curves exhibit a well-developed semicircle

in the intermediate-to-high frequency range: 2.0–512 Hz. The four curves (black, green, blue,

and red) all show recognizable Warburg impedance: a line 45 degrees from the horizontal

axis.

On the blue curve (XLi = 0.54), the critical frequency is between 32 and 64 Hz. This value

agrees with that estimated from the total charge-transfer resistance and total capacitance.

The critical frequency can be analytically expressed as fc = 1/(RctCtot)/(2π), which for E II

is 43.97 Hz. The total capacitance for E II would be Ctot = CspA = 4.96 × 10−8 F. At

XLi = 0.54, i0 = 1 mA/cm2, and the total charge-transfer resistance [109] for E II would be

Rct =
RT

zFi0A
, (5.6)

which leads to 7.29 × 104 Ω. The Rct calculated from i0 and A is close to the diameter

(7.16×104 Ω) of the blue semicircle. Note that the semicircles do not intersect the horizontal

axis because of the overlap with Warburg impedance. Hereafter, E II with a uniform Stage 2
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Figure 5.8 EIS curves extracted from 3D graphite microstructure simulations. (a) EIS
curves for single-phase Stage 1’, 3, 2, and 1 on E II electrode. (b) Magnified view of (a).
(c) Simulated EIS curves for E II, E IV, E II with tunnel, and E IV with tunnel. (d)
Magnified view of (c).

phase (XLi = 0.54) is selected to be the baseline case in this chapter unless otherwise stated.

The cross-sectional area of this electrode is 3.42× 10−5 cm2, which leads to a cross-sectional

resistance of the electrode to be 2.45 = (7.16×104)× (3.42×10−5) Ω · cm2. Such a unit may

be more commonly used in the battery community. However, for the clarity of expressing

results, we still use the total resistance in this chapter. For Stage 3 and Stage 1, the values of

Rct calculated based on i0 and A are 4.86×104 and 1.82×105 Ω, respectively. The diameters

of the green and red semicircles are 4.68×104 and 1.75×105 Ω, respectively, which agree with
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those values estimated from i0 and total surface area. These semicircle radii were obtained

from circle fitting using MATLAB. (Only the data points on the semicircle are used to fit

into the circle function. See Fig. 5.9 for an example. The diameter of the circle represents

the charge transfer resistance). The obtained values are slightly smaller than those directly

predicted from i0 and A. The difference could originate from a slight overestimate of the

total particle surface area in generating the isosurface for visualization in MATLAB.

Figure 5.9 The red semicircle is fitted from the calculated impedance data points of the
baseline case (with XLi = 0.54 in E II). The diameter is 7.16× 104 Ω.

For Stage 1’ (XLi = 0.02), the semicircle diameter (9.18 × 105 Ω) also agrees with the

estimated Rct (9.35× 105 Ω). However, a significant overlap with the Warburg part can be

observed on the black curve, which is caused by the shift of Warburg part to the left. For a

typical resistor-capacitor-Warburg circuits, increasing diffusivity will translate the Warburg

part toward the origin [131]. The diffusivity used in parameterizing Li mobility at XLi = 0.02

is more than one order of magnitude larger than those in Stages 3 through 1. This explains

the large overlap between the semicircle and Warburg part, as well as the extension of
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Warburg part toward the upper right corner, on the black curve. These results demonstrate

that the SBM electrochemical microstructure simulations reliably capture the EIS behavior

of single-phase graphite electrodes qualitatively and quantitatively.

Although E IV has a poorer performance, its simulated EIS curve (the red curve in Fig.

5.8(c)) shows that E IV has a smaller total resistance than E II (the blue curve in Fig.

5.8(c)). The red curve in Fig. 5.8(c) was obtained from simulations with XLi = 0.54 (Stage

2) uniformly throughout all particles in E IV. Figure 5.8(d) shows the magnified view of

Fig. 5.8(c) near the region corresponding to the minimum frequencies. The Rct (semicircle

diameter 6.68×104 Ω) estimated from simulated Nyquist plot agrees with the value (7.04×104

Ω) calculated based on the i0 and particle surface area. The smaller resistance of E IV stems

from the fact that E IV has a larger active surface area than that of E II. Since EIS is

conducted in near equilibrium conditions, it can only probe properties at near equilibrium

conditions. High C rate performances, which in this case are limited by Li-ion transport in

the electrolyte, cannot be reflected in the EIS results.

As in the comparison between E IV and E II, EIS behavior cannot reflect the improve-

ment of high-rate performance enabled by tunnels. The simulated EIS curve of E IV T is

shown as the black curve in Fig. 5.8(c). Although E IV T has a better rate performance,

its total resistance is larger than that of E IV. The semicircle diameter (7.06 × 104 Ω) of

the black curve is slightly larger than that of the red curve. The diameter of the black

semicircle agrees with the value (7.23×104 Ω) calculated using i0 and the active surface area

(3.58 × 10−4 cm2). While E II T has a similar 6C rate performance to E II, its EIS curve

has a larger diameter (7.34× 104 Ω) than E II. See the green curves in Figs. 5.8(c) and (d).

The tunnel in E II T results in a decrease of total particle surface area from 3.54× 10−4 to

3.46× 10−4 cm2, which leads to the calculated Rct for E II T to be 7.47× 104 Ω. Again, the

resistance (semicircle diameter 7.34 × 104 Ω) of the simulated EIS curve agrees with that

value.

While the simulations above were all controlled to confine the particle XLi variations
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Figure 5.10 Simulated EIS curve with a large loading amplitude (V0 = 30 mV). The
Warburg region exhibits a high capacitive response.

within their respective single-phase regions, one additional set of simulations were conducted

to examine the scenario if XLi entered a two-phase region (miscibility gap between two stable

phases). The simulations were performed with uniform XLi = 0.54 (Stage 2) throughout the

graphite particles, but the voltage amplitude was much larger (V0 = 30 mV). Figure 5.10

shows the obtained EIS curve. The semicircle portion of the curve is very similar to that of

the baseline E II case (the blue curve in Fig. 5.8(a)). However, the Warburg region exhibits

a strong finite-space Warburg (FSW) capacitive impedance, as shown by a nearly vertical

line at low frequencies, which indicates a low effective diffusivity. (This phenomenon under

large loading amplitudes has been similarly observed in other continuum-scale simulation

results [132] for mass-transport (Warburg) impedance.) The strong FSW behavior is very

different from the baseline case (with V0 = 15 mV) even though the same material properties

were used in the simulations. We attribute this phenomenon to the fact that the particle

surface XLi exists the single-phase region (solubility limit) and enters the two-phase region
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Figure 5.11 Snapshots of XLi in graphite particles. (a)–(c) Under a large loading amplitude
(V0 = 30 mV) and (d)–(f) under a small loading amplitude (V0 = 15 mV). The surface XLi

in (b) enters the miscibility gap between Stage-2 and Stage-1 phases. All surface XLi under
a small loading amplitude remains within the solubility limit of Stage-2 phase. (a) through
(f) use the same color bar.

under the large loading amplitude. Diffusivity is related to mobility by D = M(∂µ/∂X).

The thermodynamic factor ∂µ/∂X is usually small in a two-phase region. As a result,

the effective diffusivity is smaller in the two-phase regions (miscibility gap) than in the

single-phase regions (if modeled as a phase-separating material). This behavior of significant

decrease of effective diffusivity in two-phase regions has been observed in many first-order

phase-transformation materials [133, 134, 135]. In experimental observations, this would be

understood as a sluggish phase boundary motion. Fig. 5.11(a) through (c) show snapshots

of XLi in the graphite particles under the larger loading amplitude. At t = 4 s, the particle

surface XLi (> 0.58) is above the solubility limit of Stage 2 (0.56), which supports our

explanation of the strong FSW impedance behavior under large loading amplitude. However,

we should note that there was still no phase boundary present on the particle surfaces. The
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hindering of Li insertion/extraction was along the direction normal to the particle surfaces.

Figures 5.11(d) through (f) show snapshots of XLi in the baseline case (V0 = 15 mV) for

comparison, in which particle surface XLi remained within the solubility limit throughout

the entire simulation.

In these single-phase test cases, the SBM simulations well predict the EIS curves of the

graphite electrodes. As EIS can only probe properties at near equilibrium conditions, the

effect of transport in electrolyte, which is the limiting factor of the high-rate performance,

cannot be reflected on the EIS behavior. Additionally, a low-tortuosity structure can usually

has a smaller active surface area that results in a larger total Rct of the electrode. Thus, it

could mislead to a counter-intuitive scenario that an electrode has a high Rct on the EIS but

has a better high-rate performance.

5.3.3 EIS of Multi-phase Graphite

It is common for graphite to stay in a two- (or possibly more) phase coexistence. Thus, the

electrochemical simulations were used to examine the EIS behavior of graphite with a two-

phase coexistence. To highlight the role of phase boundaries on the EIS behavior, first we

examined a hypothetical phase morphology of spindoal decomposed phase distribution. We

used the Cahn-Hilliard equation to generate an initial configuration that contained Stage-2

and Stage-1 phases in the particles in the E II microstructure. The composition was initially

XLi = 0.75 with a small noise throughout the graphite particles while all other governing

equations were switched off (i.e., no surface reactions involved). Spinodal decomposition

occurred within the graphite particles, leading to phase separation and resulting in regions

of XLi ∼0.56 and ∼0.98 as shown in Fig. 5.12(a). Note that the spinodal decomposition here

is a hypothetical scenario that could occur when a lithiated graphite electrode is first heated

to become a random solid solution of Li and then tempered down to the room temperature

during which phase separation takes place. As discussed later, phase morphology resulting

from typical lithiation/delithiation would exhibit a core-shell distribution, which is different
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Figure 5.12 (a) Phase morphology in graphite particles generated using the Cahn-Hilliard
equation. The equilibrium is established between Stage-2 and Stage-1 phases. (b)
Simulated EIS curve for the configuration in (a). The curve exhibits an inductive loop. (c)
The Bode plot corresponding to (b), which shows an decrease in the amplitude at the
frequencies corresponding to the inductive loop.

from the spinodal morphology. However, simulating the EIS curve of a spinodal morphology

provides a potential way to identify phase separation behavior of graphite electrodes. The

volumes occupied by the two phases were approximately equal. The simulated EIS curve is

shown as the black curve in Fig. 5.12(b). Interestingly, this EIS curve exhibits a ‘loop’ near
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the minimum frequency region. The curve bends inward into the semicircle when f < 4 Hz.

As the frequency continued to decrease, the curve moved outward following a Warburg type

curve when f < 0.1 Hz. This type of loops are commonly referred to as inductive loops,

which have been observed in many EIS measurements involving phase transformations such

as magnetization [136] and corrosion [137]. Recently, a chemical inductance mechanism

has been introduced to explain the low-frequency inductive loop [138]. However, to the

best of our knowledge, we are unaware of reported inductive loops on graphite electrode

measurements. Inductive loops on battery EIS curves are usually in the high-frequency

regime and are stemming from the induction of metal wires or metal casings. If inductive

loops appear in a low-frequency regime, they are commonly attributed to the formation of

solid electrolyte interphases (SEI). Nevertheless, we did not include SEI formation in this

model.

Here, we hypothesize that the low-frequency loop originates from the following mecha-

nism. As can be seen in Fig. 5.12(a), the boundaries between Stage-2 and Stage-1 phases

intersect the particle surfaces. Thus, the particle surfaces can be viewed as a parallel con-

nection of Stage 2, Stage 1, and phase boundaries, in which the phase boundaries region

(0.58 < XLi < 0.96) have a larger i0 value (∼2.77 mA/cm2) than the remaining two types

of surfaces (∼1.9 and ∼0.72 mA/cm2). See the red i0 curve in Fig. 5.1(d). The semicircle

radius reflects the average Rct of those three types of surfaces, thus being smaller (i.e., lower

resistance) compared to those individually in the Stage-2 or Stage-1 cases. Near the mini-

mum frequency regime, the phase boundaries dominated the response, which led to a smaller

overall Rct. Figure 5.12(c) shows the Bode plot of the impedance response. A local minimum

of impedance can be observed in the frequency range of 0.01 < f < 1 Hz. This frequency

range corresponds to where the inductive loop appears on the Nyquist plot. As a result of

the decreased impedance, the EIS curve bent inward. Further decrease in frequency led to

the regime where the Li transport in the bulk of the particles dominated the impedance.

Thus, the curve followed the typical Warburg line again.
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Figure 5.13 Phase morphologies of Stage 3-2 coexistence generated using (a) the
Cahn-Hilliard equation and (b) planar case. (a) and (b) use the same color bar. (c)
Simulated EIS curves for the two Stage 3-2 cases, which also show inductive loops.

To verify this hypothesis of inductive loop formation, another series of electrochemical

simulations were performed on a configuration that contained coexisting Stage-3 and Stage-2

phases. The configuration was generated in a similar manner but with an averageXLi around

0.375. The spinodal decomposition led to regions of XLi ∼0.26 (Stage 3) and ∼0.51 (Stage

2), as shown in Fig. 5.13(a). The volumes occupied by these two phases were similar. The

simulated EIS curve is plotted as the blue curve in Fig. 5.13(c). Again, an inductive loop

appears on the EIS curve. Yet, the loop is much smaller compared to that in the previous

Stage 2-1 coexistence case. This may be due to the fact that the i0 value (∼2.75 mA/cm2)

in the Stage 3-2 phase boundaries is less deviated from those in the Stage-3 (∼2.6 mA/cm2)

or Stage-2 (∼1.6 mA/cm2) phases, compared to the previous Stage 2-1 case. Note that if i0

in the phase boundaries were the same as in those bulk phases, the loop would not appear

and the EIS curve would exhibit a typical semicircle with Warburg part as in those single-

phase cases. Here, the EIS curve of the Stage 2-1 case is also plotted as the black curve in

Fig. 5.13(c) for comparison. The semicircle radius of the blue curve is smaller than that of

the black curve. As discussed earlier, the radius reflects an average of Rct on the particle

surfaces. The Stage 3-2 equilibrium here is established between XLi ∼0.26 and ∼0.51. (The

Stage 2-1 equilibrium is between XLi ∼0.56 and ∼0.98.) The average i0 value in the Stage

3-2 case is higher than that in the Stage 2-1 case. Therefore, the semicircle radius of the
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Stage 3-2 case is smaller.

Another series of simulations were performed on an artificially created configuration, in

which the region (x < 37 µm) close to the separator was assigned to be XLi = 0.25, while

the rest of the electrode was assigned to be XLi = 0.5. The volumes of the two phases are

approximately the same. See Fig. 5.13(b) for this configuration. The simulated EIS curve is

plotted as the red curve in Fig. 5.13(c), which also shows an inductive loop. The red curve is

overall similar to the blue curve but with a slightly smaller radius. This is expected because

the average i0 value based on the XLi values here will be larger than that in the previous

State 3-2 coexistence case. In this planar phase morphology case, the values of i0 are ∼2.48

and ∼2.5 mA/cm2 at XLi = 0.25 and 0.5, respectively, which are larger than those values in

the previous Stage 3-2 case.

We acknowledge that a recent Cahn-Hilliard phase-field simulation of a LiFePO4 single

particle demonstrated strong inductive behavior on the EIS curve when phase boundaries are

present on the particle surface [139]. The miscibility gap of LixFePO4 is much wider than that

of graphite. The inductance observed in Ref. [139] is much larger than those in our work. The

authors attributed the inductance to the hysteresis arising from a high lithiation flux across

the particle surface but a slow phase-boundary motion in the particle. In our simulations,

the enhanced insertion rate is due to the increase i0 at the phase boundary present on the

particle surfaces. Nevertheless, Ref. [139] and our work both demonstrate that, for phase-

separating materials, inductance could occur in the EIS processes when phase-boundaries

intersect with the active particle surfaces. This highlights the importance of physics-based

3D microstructure simulations because intersections between phase boundaries and particle

surfaces can only be resolved in particle-level simulations. The conventional PET simulations

are difficult to capture such detailed dynamics because they cannot consider concentration

or phase distribution other than along the particle radial direction. Thus, phase boundaries

cannot intersect spherical particle surfaces.

Li is inserted/extracted via the particle surfaces during lithiation/delithiation processes.
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Figure 5.14 Stage 3-2 core-shell phase morphologies of (a) thick shell and (b) thin shell.
The shell layers have a XLi similar to that of Stage 2. (a) and (b) use the same color bar.
(c) Simulated EIS curves for the two core-shell Stage 3-2 cases, which are similar to the
single-phase Stage 2 case. The black curve in covered underneath the red curve.

As shown in Section 5.2, XLi gradient will develop along the particle radial direction. A

concentric core-shell phase coexistence is expected [115, 119, 125, 124] in this case. Since

most EIS measurements are performed on electrodes that have been charged or discharged,

we anticipate that a core-shell phase coexistence is a likely configuration of graphite electrode

particles in typical EIS measurements. Thus, we employed the electrochemical simulations to

examine the EIS behavior of core-shell phase coexistence. Figure 5.14(a) shows a manually

created phase morphology configuration, in which the particle shell regions (within 3.25

µm to the surfaces) were assigned to be XLi = 0.54 (Stage-3 phase). The core regions

were assigned to be XLi = 0.19 (Stage-2 phase). In this scenario, while the average Li

fraction over the electrode was 0.507, all particle surfaces were covered by Stage-3 phase.

The simulated EIS curve is plotted as the red curve in Fig. 5.14(c). The EIS curve of the

baseline case (uniformly XLi = 0.54 throughout the electrode) is provided as the blue curve

for comparison. The red and blue curves mostly overlap, except for the low-frequency region.

Because the surface XLi in this core-shell configuration is the same as in the baseline case

and that double layer capacitance and charge-transfer reaction occur only on the particle

surfaces, the semicircles of the red and blue curves overlap. At a low frequency where Li

transport in the particles dominated the response, the presence of phase boundaries in the
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particles slightly increased the Warburg impedance, thus leading to the small difference

between the red and blue curves. Note that no inductive loop appears on the EIS curve of

the core-shell two-phase coexistence case because no phase boundaries intersect the particle

surfaces.

The configuration in Fig. 5.14(b) is another phase morphology created in the same man-

ner but with a thinner shell (within 1.95 µm to the surfaces) of Stage-3 phase. The average

Li fraction is 0.443. Again, all particle surfaces were covered with Stage-3 phase. The black

curve in Fig. 5.14(c) is the simulated EIS curve. The black curve closely overlaps the red

one and covered underneath the red curve. These concentric core-shell simulations demon-

strate that even though the average Li fraction (equivalently the degree of discharge (DOD)

or the state of charge (SOC)) of the electrode is substantially different, the resulting EIS

curves are indistinguishable if the shell layers have the same XLi. This means that an EIS

measured property will vary step-wisely versus the electrode’s DOD (or SOC). For example,

the semicircle diameter remains a constant (due to the same surface XLi) for a range of

DOD, then followed by a rapid change (due to formation of a new phases of the shell layer).

Therefore, if probed surface properties remain the same over a significant range of an elec-

trode’s DOD (or SOC), that electrode could be undergoing a core-shell two-phase lithiation

process. Conversely, if the semicircle diameter varies continuously versus the DOD, this is

an indication that the material is undergoing a solid-solution lithiation. See a schematic il-

lustration in Fig 5.15. Furthermore, as EIS measurements are usually performed on graphite

particles with core-shell phase morphologies, the low-frequency inductive loops seen in the

previous simulations are unlikely to be observed in experiments. The phase morphology gen-

erated from spinodal decomposition (using the Cahn-Hilliard equation) probably only exists

in the scenario of annealing partially lithiated graphite electrode. This may explain why

low-frequency inductive loops have never been reported for graphite electrodes (in addition

to the possibility that the manually constructed i0 function in this work could be overly de-

viated from the physical one). Nevertheless, this work proposed a method to experimentally
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Figure 5.15 A schematic illustration of step-wise variation of EIS measured properties
versus electrode DOD. The red curve is continuously varying, which is an indication of a
solid-solution material.

verify whether spinodal decomposition will occur by EIS measurements.

5.3.4 EIS of Graphite Immediately after Lithiation

Inheriting from charging/discharging processes, XLi gradients form along the particle radial

direction. Moreover, degrees of lithiation/delithiation can vary heterogeneously in the elec-

trode at high C-rate operations. Before a long-term rest, the composition distributions in

the particles may not be in the equilibrium state. Thus, we here examine the EIS behavior

of E II with Li distributions taken immediately after lithiation processes. Figures 5.16(a)

and (b) show the simulated Li fraction distributions under 0.5C and 6C lithiation at average

XLi = 0.54 (from initially XLi = 0.02). As expected, relatively uniform XLi distribution

under a low-rate lithiation is seen in Fig. 5.16(a). The graphite particles near the separator

exhibit a relatively higher concentric XLi gradient (with surface XLi ∼0.8, as indicated by

the dark yellow color, and Stage-3 cores, as indicated by the light blue color) than in the
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particles away from the separator. For example, see the particle in the magenta dashed

circle. The particles near the current collector have a relatively small XLi gradient (with

surface XLi ∼0.54 in Stage 2, as indicated by the light green color, and Stage-3 cores, as

indicated by the light blue color). See the particle in the cyan dashed oval in Fig. 5.16(a).

Under a high rate, a prominent core-shell phase morphology is observed in the graphite par-

Figure 5.16 XLi distributed in the graphite particles immediately after (a) 0.5C and (b) 6C
lithiation. Response currents (c) and (d) are for configurations (a) and (b), respectively,
under a cell voltage of 0.109 V. (e) Response currents for (b) under a cell voltage of 0.0 V.

ticles, in which the particle surface XLi is close to ∼1 (Stage 1 phase), as indicated by the

bright yellow color. The particle cores are still in a low XLi (∼0.05, Stage 1’ phase). See the

magenta arrow in Fig. 5.16(b).

Since the average XLi is 0.54, we first used the cell OCV (0.109 V) corresponding to

XLi = 0.54 as the equilibrium cell voltage for the oscillating voltage loading on the phase
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configuration obtained after 0.5C lithiation. All other conditions remained the same as in

the baseline case. The black markers in Fig. 5.16(c) show the response current in the 0.5C-

lithiation case. The amplitude of the oscillation slightly decreased over time. Besides the

oscillating response, the average current approached the horizontal axis during the simula-

tion, as indicated by the gray dashed line. The oscillating response current curve is difficult

to be fitted with a single sinusoidal function. Thus, we cannot obtain an EIS curve of this

setup. The response current in the 6C-lithiation case is provided in Fig. 5.16(d). It can

be observed that the amplitude of the response increased overtime but the average of the

current slightly moved to the more negative direction (see the gray dashed line). These re-

sults demonstrate a ‘drifting’ during the EIS processes. During the simulations, the systems

did not reach their equilibrium states yet. In the 0.5C case, the inward Li transport, which

occurred to equilibrate the Li distribution, decreased the surface XLi (∼0.8) towards the

equilibrium Stage-3 value (∼0.54). Thus, i0 value on those particle surfaces decreased and

the amplitude of the response current decreased accordingly. In the 6C case, the inward

transport decreased the surface XLi from ∼1 towards ∼0.97 (equilibrium Stage 1 value). In

this case, the i0 value on those particle surfaces increased, according to the i0 function in

Fig. 5.1(d). As a result, the amplitude magnified. The overall variation of the current is

also related to the slow Li transport across particles to equilibrate the whole electrode. For

instance, the 0.5C case was under a slowly decelerated delithiation of the electrode at the

designated cell voltage. The average current was still negative but approaching towards zero.

The 6C case, with a slowly increasing negative average current, was under slow delithiation

over time. (Note that the equilibrium XLi mentioned above depends on the phase fraction

of the system and is not a constant value throughout all cases.) Moreover, we expect that

the systems in the two simulations examined above will eventually evolve to a single-phase

Stage-2 case because the average XLi corresponds to the value of Stage-2 phase. However,

the drifting process will likely take a very long time.

In the two cases above, the equilibrium cell voltages were away from those corresponding
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to the particle surface XLi. Based on the experience in the core-shell phase morphology EIS

simulations in the previous section, we conducted another test for the 6C-lithiation case.

The equilibrium cell voltage was set to be 0.0 V, which was selected based on the OCV

corresponding to the particle surface XLi. However, note that this cell voltage value was

roughly estimated because XLi was not uniform through all particle surfaces. Figure 5.16(e)

shows the response current, which again exhibits drifting behavior. The overall current

decreased toward zero and the amplitude gradually decreased toward a constant value. The

positive response current shows that the particles were under lithiation. The lithiation

originated from the fact that Li migrated inward to equilibrate the Li distribution at the

designated cell voltage. If the simulation were to continuing over a much longer time, the

system could eventually reach its equilibrium state, such that a sinusoidal response current

symmetric around the horizontal axis could be observed. In that case, the EIS curve would

be able to be extracted from the simulations. This set of simulations demonstrate that EIS

processes can only be conducted on an equilibrium system. If an electrochemical system is

still evolving towards its equilibrium, the material properties can vary during the process,

which will lead to a varying amplitude of the response current as observed in the simulations.

In such cases, the obtained response current cannot be fitted to a simple sinusoidal function

to extract the amplitude and phase angle. Perhaps nonlinear EIS studies would be necessary

to analyze those scenarios, which is beyond the scope of this paper.

5.3.5 Comparison between Phase Separation and Solid Solution Models

As mentioned earlier, Fick’s diffusion is sometimes utilized to simulate Li transport inside

graphite particles. In that case, phase separation will not occur. Only a Li solid solution

will be observed. Here, we use our simulations to examine whether such incorrect treatments

will impact the EIS behavior. In this series of electrochemical simulations, we replaced the

governing equation of Li transport in the electrode particles with Fick’s diffusion equation
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as:

∂Xp

∂t
=

1

ψp

∇ ·
(
ψpDp∇Xp

)
+

|∇ψp|
ψp

rxn
ρ
, (5.7)

where the Li diffusivity Dp is shown as the gray solid-dashed curve in Fig 5.2(b). In the

first test case, we examined the EIS behavior of a stable single-phase electrode. The value

of Xp was set to be uniformly 0.54 (Stage 2) as in the baseline case. All other material

properties and setups remained the same as in the baseline case. The red curve in Fig.

5.17(a) shows the simulated EIS curve using Fick’s diffusion model. The EIS curve of the

between

Figure 5.17 (a) Simulated EIS curves of graphite electrode in single-phase Stage 2 using
Fick’s diffusion model and Cahn-Hilliard model. (b) Simulated EIS curves of two-phase
coexisting graphite using Fick’s diffusion and Cahn-Hilliard models, as well as the EIS
curve for an artificial single phase using Fick’s law.

baseline case is plotted as the blue curve on the same figure for comparison. The semicircle

region of the two curves almost completely overlap. This is because the same i0 function was

used in the two simulations (multi-phase model and solid-solution model). The difference

in modeling Li transport barely affects the Rct. On the Warburg part, a slight difference

can be observed between the red and blue curves. We attribute that small deviation to the

error of parameterizing Mp from Dp. Generally, the difference in the resulting EIS curves

obtained using the Cahn-Hilliard model or Fickian diffusion model is very small when the
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initial configuration is a single-phase electrode.

In the second test, we used the configuration in Fig. 5.12(a), in which stable Stage-2

(XLi = 0.54) and Stage-1 (XLi = 0.98) phases coexisted. The simulated EIS curve obtained

using Fick’s law on this configuration is plotted as the red curve in Fig. 5.17(b). The EIS

curve obtained using the Cahn-Hilliard equation is provided as the black curve on the same

figure for comparison. Similar to the single-phase test case, the semicircle region of two

curves closely overlap. Both the two curves exhibit an inductive loop near the minimum

frequency region. Again, a slight difference is observed in the Warburg region due to the

same issue as in the single-phase test case. In the third test case, an artificial scenario was

set with uniform XLi = 0.75 throughout the entire electrode. This configuration will not

exist in reality because phase separation (spinodal decomposition) will occur in graphite at

this composition. A Li solid-solution within the miscibility gaps can only exist if Fick’s law

is employed to mistakenly model Li transport during charge/discharge cycles. The simulated

EIS curve is plotted as the blue curve in Fig. 5.17(b), which exhibits a typical semicircle

with a Warburg part as in those stable single-phase cases discussed earlier. No inductive

loop appears on the blue curve. The semicircle radius is significantly smaller than that

of the two-phase case (either red or black curves) because the i0 at XLi = 0.75 is greater

than those in Stage-2 and Stage-1 phases. The Warburg impedance is close to that of the

red curve (two-phase but using Fick’s law) because value of Dp at XLi = 0.75 is similar

to those in Stages 2 and 1. Even though the scenario examined here is unphysical, our

electrochemical simulations still properly reflected the impact of input material properties

and phase morphologies on the resulting EIS curve.

Based on the results of these simulations, we find that the EIS curves obtained using

either the Cahn-Hilliard model or Fickian model on an equilibrium, stable configuration is

very similar. Thus, since experimental EIS measurements are conducted at equilibrium con-

ditions, it is difficult to distinguish whether Li transport proceeds via a two-phase coexisting

or solid-solution process from the measured EIS data. As mentioned in the core-shell two-
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phase case, perhaps EIS can detect a material’s phase transformation only if the measured

properties (e.g., semicircle diameter) exhibit step-wise variation versus the electrode’s DOD.
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5.4 Conclusion

In this Chapter, we used the Cahn-Hilliard equation to model the Li transport in graphite

particles such that two- (or multiple) phase coexistence in experimentally reconstructed

graphite electrodes can be considered in physics-based simulations. We examined the EIS

behavior of stable single phase cases on different electrode microstructures and found that

EIS measurements could mislead to a counter-intuitive scenario that an electrode exhibiting

a high resistance but posses an enhanced high-rate performance. The effective diffusivity,

calculated based on the Warburg impedance, could be underestimated if the particles compo-

sition enters the miscibility gap under a large loading amplitude. In two-phase coexistence

cases, low-frequency inductive loops appear on the Nyquist plots if phase boundaries are

present on particle surfaces. Furthermore, EIS measurements cannot distinguish the differ-

ence between a core-shell phase coexistence and a single uniform phase, as EIS only probes

the particle surface conditions. The simulations also demonstrate that drifting occurs if

the system is away from equilibrium. Lastly, although Fick’s diffusion is widely mistakenly

employed in simulating Li transport in phase-separating graphite particles, the EIS curves

obtained using the Cahn-Hilliard equation and Fick’s diffusion equation is very similar if the

system is in equilibrium. Determining if an electrode particle is phase-separating or solid-

solution material should be based on whether the EIS semicircle diameter (or other measured

properties) varies step-wisely versus the DOD. We expect this presented simulation tool to

be widely used to investigate complex EIS behavior of many other electrochemical systems.
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CHAPTER 6

FULL CELL SIMULATION
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6.1 Introduction

In the previous chapters, we have demonstrated that the presented simulation framework

worked properly for half cell configurations with NMC in Chapter 4 and with graphite

in Chapter 5. For both cases, lithium metal was used as the counter electrode. In those

simulations, we solved the governing equations of electrochemical processes in the electrolyte,

in the electrode particles, and on the particle-electrolyte interfaces. A full cell simulation

will require to solve two sets of equations for the mass transport and current continuity

conditions: one set for the cathode and the other set of the anode. Furthermore, there

will be two sets of Butler-Volmer equations: one on the cathode-electrolyte interface and

the other on the anode-electrolyte interface. While there is only one governing equation

for salt concentration evolution in the electrolyte, This equation is subject to Neumann

boundary conditions (specifying reaction fluxes) on both sides. Fig. 6.1 shows the full cell

Figure 6.1 Full cell model used in simulation, the gray part represents graphite electrode
and the yellow part represents cathode electrode; the rest pores and interparticle space are
filled with electrolyte.
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configuration used in the simulations, which consists of the NMC cathode and graphite

anode used in Chapter 4 and Chapter 5, respectively. The yellow color indicates spherical

NMC particles and the microstructure is generated using discrete element method. The gray

color indicates the graphite particles reconstructed using X-ray computed nano-tomography

[126, 127]. The transparent regions are interparticle space and filled with liquid electrolyte.

The empty space between the cathode and anode serves as the separator to avoid direct

contact between the two electrodes.

In the conventional sharp-interface methods, the microstructures must be discretized to

mesh conformal with the complex geometries. Electrochemical simulations of a symmetric

cell [68] consisting of 3D electrode microstructures have been performed to investigate EIS

processes and compared the resulting EIS with electric circuit model and macro-homogenized

physical models (e.g., PET model). Full-cell 3D microstructure simulations were also per-

formed to investigate the effect of structuring techniques (introducing tunnels in the elec-

trodes) on the electrochemical performance and thermal behavior of lithium-ion batteries

[66]. These simulations all involved tedious mesh generation processes. In this chapter, we

apply our diffuse-interface method to simulate the EIS processes in a full cell configuration,

such that no body-conforming mesh is required. The simulations reveal detailed electrochem-

ical dynamics occurring in the cathode and anode, which allow us to connect the macroscopic

EIS behavior to the intrinsic material parameters of the two electrode materials and to the

electrode microstructures. As demonstrated in this work, the ease of implementing full-cell

complex electrode microstructure simulations opens a door for investigating electrochemical

processes using simulations on a large number of different microstructures.
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6.2 Method

6.2.1 Material Properties and Microstructures

In this chapter, NMC-111 and graphite are used as the cathode material and the anode

material. Synthetic sphere agglomerate cathode and experimentally reconstructed graphite

electrode II, which have been employed in half-cell simulations in Chapter 4 and 5, respec-

tively, are used in the full-cell simulations. The material properties remain the same as in

the previous chapters. The dimensions of computational box are 320×150×150 along the x,

y, and z directions, which correspond to 104×48.75×48.75 µm in physical unit. The thick-

nesses of the cathode and anode are similar to typical dimensions of real battery electrodes,

as used in full-cell testing experiments.

6.2.2 Full Cell Solver Workflow

As discussed in Chapter 4, NMC is treated as a solid solution of Li. Thus, Fick’s diffusion

equation is used to describe the lithium concentration evolution in the NMC particles.

∂Xc

∂t
=

1

ψc

∇
(
· ψcDc∇Xc

)
+

|∇ψc|ce
ψc

rcxn
ρc
. (6.1)

This equation is the same as Eq. (4.9). Note that the subscript c indicates cathode particles.

The subscript ce indicates cathode particle-electrolyte interface. The (de)intercalation rate,

rcxn, on cathode particle surface is described by the Bulter-Volmer equation:

rcxn = kcfCe exp

[
−αz+F
RT

[ϕ]ce

]
− kcbCc exp

[
(1− α) z+F

RT
[ϕ]ce

]
, (6.2)

where [ϕ]ae is the electrostatic potential drop across cathode particle-electrolyte interface.

This equation also provides the flux boundary condition on the cathode particle-electrolyte

interface for the salt concentration evolution in the electrolyte:

∂Ce

∂t
=

1

ψe

∇ · (ψeDe∇Ce) +
|∇ψe|ce
ψe

rcxnt−
ν+

++
|∇ψe|ae
ψe

raxnt−
ν+

, (6.3)
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where the second and third terms are for the reaction rate on the cathode particle surfaces

and the anode particle surfaces, respectively.

As discussed in Chapter 5, phase transformation occurs in graphite during (de)lithiation.

The Cahn-Hilliard phase field equation is utilized to model the phase transformation pro-

cesses:

∂Xa

∂t
=

1

ψa

∇ · ψaMa∇
(
µa(X)− ε∇2Xa

)
+

|∇ψa|ae
ψa

raxn
ρa
, (6.4)

where the subscript a indicates anode particles, and the subscript ae indicates the anode

particle-electrolyte interface. The reaction rate on the anode particle-electrolyte interface is

also governed by the Butler-Volmer equation as

raxn = kafCe exp

[
−αz+F
RT

[ϕ]ae

]
− kabCa exp

[
(1− α) z+F

RT
[ϕ]ae

]
. (6.5)

Note that there are three regions inside the entire computational domain: cathode, elec-

trolyte, and anode. These three regions are defined by domain parameters: ψc, ψe, and

ψa. Equations (6.1), (6.3), and (6.4) update the Li fractions and salt concentration in the

respective regions. Forward Euler methods are employed for Eqs. (6.1) and (6.4) between

time steps. Backward Euler method is used for Eq. (6.3).

Within each time step, three Poisson’s equations are solved for the electrostatic potentials

in the cathode, electrolyte, and anode regions:

∇ · (ψcκc∇ϕc)− |∇ψc|cez+Frcxn = 0, (6.6)

∇ · [ψe (z+m+ − z−m−)FCe∇ϕe] + |∇ψe|ce
rcxn
ν+

+|∇ψe|ae
raxn
ν+

=∇ · [ψe (D− −D+)∇Ce] ,

(6.7)

∇ · (ψaκa∇ϕa)− |∇ψa|z+Fraxn = 0. (6.8)

Equation (6.6) is subject to a Dirichlet boundary condition, ϕc|cc, on the computation box

boundary (x = 104 µm) and is subject to an internal boundary condition, rcxn. The subscript

‘cc’ indicate cathode current collector. The second and third terms on the left hand side

of Eq. (6.7) are the reaction rates on the cathode and anode particle surfaces, respectively.
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Equation (6.8) is subject to a Dirichlet boundary condition, ϕa|ac, on the computation box

boundary (x = 0 µm) and is subject to an internal boundary condition, rcxn. The subscript

‘ac’ indicates anode current collector.

For the three electrostatic potential fields, Eqs. (6.6), (6.2), (6.7), (6.5), and (6.8) are

solved in an iterative scheme. An oscillatory voltage loading is first imposed on the cathode

current collector by setting ϕc|c = ϕc
0 + V0 sin(ωt), where ϕ

c
0 is the equilibrium potential,

V0 is the amplitude, and ω is the angular frequency. Then, we adjust the value of ϕa|ac,

and relax Eqs. (6.6), (6.2), (6.7), (6.5), and (6.8) until all these five equations reach their

numerical equilibrium. Next, we calculate the total current on the cathode side which

comprises of reaction and capacitance currents (Ictot = Icrxn+ I
c
c , as mentioned in Chapter 4),

and that on the anode side (Iatot = Iarxn + Iac ). These two total currents have opposite signs.

Positive/negative means insertion/extraction from the particle. If the magnitude of Iatot is

different from that of Ictot, we adjust ϕa|ac and relax the five equations again. This process

is repeated until the difference between the magnitudes of Ictot and Iatot is less than some

threshold value. In this work, the threshold is 0.25% of the magnitude of Ictot, below which

the equilibrium ϕc, ϕe, ϕa, r
c
xn, and raxn are accepted as the solutions and the cell voltage

across the cathode and anode is obtained by

ϕCV = ϕc|cc − ϕa|ac. (6.9)

In the next time step, Xc, Ce, and Xa are updated with rcxn and raxn. See the flow chart in

Fig. 6.2.

6.2.3 EIS Curve Extraction

The EIS curve is comprised of many data points, each of which is the impedance value at

a loading frequency. The impedance value is calculated as Z = V/I. As mentioned in the

previous section, the total cell voltage (ϕCV ) is different from the imposed sinusoidal voltage

(ϕc|cc = V0 sin(ωt)) on the cathode current collector because ϕa|ac is adjusted to ensure the
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Figure 6.2 Flowchart of the simulation scheme for solving the coupled equations in a full
cell configuration.

conservation of currents throughout the whole cell. For a close-to-fully-discharged cell, Li

fraction on the cathode is set to be 0.92 and that on the anode is 0.04. Based on the OCV

curve of NMC, the equilibrium potential for the cathode is ϕc
0 = 3.350 V at Xc = 0.92.

The equilibrium potential for the anode is ϕa
0 = 0.246 V at Xa = 0.04. A slight sinusoidal

potential perturbation is imported on the cathode current collector, with V0 = 10 mV and

ordinary frequency f = 32 Hz, which is shown on Fig. 6.3(a). The electrostatic potential on

the anode current collector is adjusted to maintain the conservation of current. The result

ϕa|ac versus time is shown in Fig. 6.3(b), which also exhibits a sinusoidal function oscillating

around the equilibrium potential ϕa
0 = 0.246 V with an amplitude about 2.5 mV. Note that,
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Figure 6.3 (a) Sinusoidal voltage loading imposed on the cathode. (b) The resulting
electrostatic potential on the anode current collector in order to maintain a current
balance. (c) The cell voltage across the cathode and the anode current collectors.

due to the numerical scheme of adjusting ϕa|ac, the values in the first half of the period is very

low. The sinusoidal form is well developed after two periods. Interestingly, there is a small

phase shift between ϕc|cc in Fig. 6.3(a) and ϕa|ac in Fig. 6.3(b). Thus, the total voltage cannot

be obtained by simply adding the two amplitudes. The cell voltage, Eq. (6.9), is plotted as

the black circles in Fig. 6.3(c). The fitted sinusoidal curve is shown as the yellow curve in

the same figure. The amplitude of the cell voltage is approximately 11.5 mV. Note that the

response voltage on the anode side can change with frequency. Based on our simulations,

at a higher frequency, the anode response voltage amplitude becomes larger. Furthermore,
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because graphite is a conductive material, NMC at XLi = 0.92 is reasonably conductive,

and ionic diffusivity in the electrolyte is high, ϕa, ϕc, and ϕe all have a small variation

throughout their respective domains. Thus, ϕa|ac and ϕc|cc can be viewed as approximately

the electrostatic potential drop across the anode particle-electrolyte interface and that across

the cathode particle-electrolyte interface, respectively, to result in the same magnitude of

total anode current and total cathode current, but with opposite signs. The simulation

reveals the difference in the electrostatic potential drops on the cathode particle surfaces

and on the anode particle surfaces, and reveals the phase shift between those sinusoidal

voltage responses. These phenomena taking place inside a battery cell are difficult to be

directly observed in experiments.

Figure 6.4 Total current (a) across the cathode and electrolyte interface (b) across the
anode and electrolyte interface

As mentioned in the previous section, conservation of total current is maintained at

each time step. The magnitudes of cathode current and anode current are the same, but

the two currents have opposite signs. Figures 6.4(a) and (b) show the total current on

the cathode and anode sides, respectively. These two curves can be fitted to almost the

same sinusoidal function, but with different signs. With the obtained cell voltage and total

current, the impedance is then calculated by Z(f) = ϕCV /Itot. In the next section, the
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full-cell simulations are performed over a frequency range from 512 Hz to 0.05 Hz to extract

the impedance spectroscopy.

The total current on each of the electrodes consists of reaction current and capacitance

current. Figures 6.5(a) and (b) show the reaction current and capacitance currents across

Figure 6.5 (a) Capacitive current and (b) reaction current across the cathode
particle-electrolyte interfaces. (c) Capacitive current and (d) reaction current across the
anode particle-electrolyte interfaces.

the cathode particle-electrolyte interfaces. The capacitance current is roughly one order of

magnitude large than the reaction current at this case (f = 32 Hz and Xc = 0.92). On

the anode side, the reaction current is approximately 60 times larger than the capacitance

current. See Fig. 6.5(c) and (d). The anode reaction current is about one order of magnitude
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larger than the cathode reaction current because i0 of graphite at Xa = 0.04 is much larger

than i0 of NMC at Xc = 0.92. Most of the total cathode current is matched by the anode

reaction current. Thus, the anode capacitance current is much smaller, which compensates

the small difference between the total cathode current and anode reaction current. Note

that there are noises on the anode capacitance current in Fig. 6.5(c) due to the adjustment

processes of ϕa|ac. In some cases, those noises can be large and will be removed before the

curve fitting procedure.
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parameter description NMC graphite

A surface area [cm2] 1.210×10−4 3.086×10−4

V volume [cm3] 5.425×10−8 7.584×10−8

ρLi Li site density [mol/cm3 ] 0.0501 0.312
Csp specific capacitance [F/cm2] 1.40×10−4 1.40×10−4

Table 6.1 Electrode property parameters used in simulation

6.3 Result and Discussion

Three full-cell simulations are performed to examine the EIS behavior at different conditions.

In the first study, all material properties are kept the same as in Chapters 4 and 5. The

main focus is to figure out how the state of charge affects the resulting EIS curves. We

first simulate the EIS process of a close-to-fully discharged cell. Next, the simulation is

performed on the same cell but at a close-to-fully charged state. Hereafter, these two cases

are referred to as fully discharged and full charged cases for convenience. The two EIS

curves significantly differ. However, on those curves, the two semicircles (each for one of

the electrodes) highly overlap. Thus, in the last case, the simulation is conducted with

with different values of specific capacitances on the two electrodes such that two distinct

semicircles can be observed on the simulated EIS curve.

6.3.1 Fully Discharged Configuration

The first full-cell simulation is performed to study the EIS behavior of a fully discharged cell.

In this case, most of the lithium in the graphite anode is extracted and is inserted into the

NMC cathode. Therefore, the lithium fraction is set to be 0.04 in the graphite anode and

to be 0.92 in the NMC cathode. Here, we set the upper utilization limit of NMC particles

to be XLi = 0.95, because above which NMC becomes an electrically insulating ceramic

metal oxide. This study aims to investigate the effect of different i0 values of the anode and

cathode on the full-cell EIS behavior. Thus, the same specific capacitance is used on both

the anode and cathode sides. As mentioned in Chapter 5, graphite has four stable single
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phases. At Xa = 0.04, the lithium-graphite system will stay the Stage-1’ phase. Based on

the Li-in-graphite OCV curve (Fig. 5.1(a)), the equilibrium potential for the anode is 0.246

V. Similarly, according to the Li-in-NMC OCV curve (Fig. 4.4(d)), the equilibrium potential

for the cathode is 3.350 V. Using the method described in the previous section, we calculate

the sinusoidal cell voltage loading and the sinusoidal response total current at each loading

frequency. Impedance values for 15 frequencies, ranging from 512 to 0.05 Hz, are calculated

from the simulation results. For every frequency point, Li concentration and electrostatic

potential are solved in the full cell scale. An example of fully discharged cell is shown on

Fig. 6.6 at f = 1 Hz, t = 1.5 s.

Figure 6.6 Example images of simulation results in the fully discharged cell at f = 1 Hz
and t = 1.5 s: (a) Li fraction in the graphite anode particles, (b) Li fraction in the NMC
cathode particles, and (c) salt concentration in the electrolyte.
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Figure 6.7 (a) Nyquist plot of EIS curve for a fully discharged cell. (b) Magnified view of
the EIS curve in the high frequency region.

Figure 6.7(a) shows the EIS curve of a fully discharged cell on the Nyquist plot. The shape

of the EIS curve appears as a large semicircle, though only part of the circle is obtained from

the simulations. The Warburg tail has not been reached in this figure because the frequencies

sampled are not low enough. Here, the explicit Euler method for time integration is used

in updating the Li fractions in NMC (Eq. (6.1)) and graphite (Eq. (6.4)). Because of Li

diffusivity in graphite (at XLi = 0.04) is about 3–4 times larger than that in NMC (at

XLi = 0.92), the stable time step size determined by Li diffusivity in graphite is too small

for updating of Xc in NMC. Simulations for frequencies lower than those shown above will

require significantly longer times. Thus, we stop the simulations at 0.05 Hz.

While the EIS curve in Fig. 6.7(a) seems to be a single semicircle, it in fact is consisted of

two semicircles: one very large and the other very small. Figure 6.7(b) shows the EIS curve

in the high frequency region, from which part of the small semicircle can be observed near

the origin. Excluding the mass transport impedance, the analytical formula of impedance

for an RC-RC circuit is

Z = Za + Zc =
Ra

1 + jfCaRa

+
Rc

1 + jfCcRc

, (6.10)

where j is the imaginary unit, Ri is the resistance, Ci is the capacitance, and the subscripts
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Figure 6.8 Illustration of the RC-RC circuit.

a and c indicate anode and cathode, respectively. An illustration of RC-RC circuit is shown

on Fig. 6.9. Assuming Ca < Cc, the center of anode semicircle is Ra/2 and the center of

cathode semicircle is Ra + Rc/2. Note that since our electrochemical simulations did not

reach the Warburg tail yet, we do not include diffusion-impedance components in the circuit

model above. The cathode semicircle will be on the right to the anode one because the low

frequency region is dominated by the high capacitance component. Ca and Cc determine the

impedance point on the EIS curve. If Ca and Cc have the same value, the EIS curve forms

a semicircle with a radius of nearly (Ra + Rc). Here, since the specific capacitance used for

the two electrodes is the same, the total capacitance of the two electrodes are proportional

to the respective particle surface areas. The surface area of the graphite anode is 3.086×104

µm2, and the surface area of the NMC cathode is 1.210×104 µm2. The values are provided

in Table 6.1. Thus, the total capacitance of the NMC cathode (4.3204× 10−2 µF) is roughly

only 2.5 times that of the anode total capacitance (1.694× 10−2 µF). The exchange current

density i0 for graphite at XLi = 0.04 is 1.050×10−3 A/cm2, and that for NMC at XLi = 0.92

is 2.474×10−6 A/cm2. Using Eq. (5.6), the total charge transfer resistance of the graphite

anode is 7.9788 × 104 Ω, and that for the NMC cathode is 8.6312 × 107 Ω. The calculated
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charge-transfer resistances are provided in Table 6.2. For these values, the semicircles of

the anode, the cathode, and the full cell predicted using the circuit model are plotted in

Fig. 6.9. The radius of the cathode semicircle is roughly three orders of magnitude larger

Figure 6.9 The Nyquist plot of EIS curves calculated from RC-RC circuit model, Eq.
(6.10), using the resistance and capacitance data of (a) fully discharged cell and (b)
magnified view of (a) in the high frequency range. (c) Fully charge cell and (d) fully
charged cell with modified material parameters.

than that of the anode semicircle. In this case, because the total capacitances of the two

electrodes are similar, the small anode semicircle is mostly merged into the large cathode

semicircle. Only a small fraction of the anode semicircle can still be traced on the EIS curve.

The EIS curve extracted from microstructure simulations is very similar to that obtained

from the RC-RC circuit model. The total resistance of the full cell from the electrochemical

simulations is 6.282×107 Ω according to the radius of the fitted circle, which is smaller than
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the value predicted from the circuit model. The discrepancy may be due to numerical error

of calculating total active surface areas. The surface area calculated using
∫
|∇ψ|dΩ in

the electrochemical simulation can be different from the value calculated by summing all

triangular patches of the isosurface. This error can be reduced by using finer mesh. This set

of simulations demonstrate that, in a fully discharged cell, the resistance on the EIS curve is

dominated by the cathode property because the i0 of the NMC cathode is very small (which

leads to a large total charge-transfer resistance).

Moreover, an interesting phenomenon is observed in the simulations. As demonstrated

in Section 6.2.3, even though the same specific capacitance is used on both the anode and

cathode, the resulting capacitance currents on the two electrodes are significantly different

(here, Iac ≪ Icc ); for example, as shown in Figs. 6.5(a) and (c). Because graphite i0 at

XLi = 0.04 is much larger than NMC i0 at XLi = 0.92, most of the total cathode current is

matched by the anode reaction current. This simulation illustrates an interesting distribution

between reaction and capacitance currents in an electrode to satisfy the conservation of total

current. The distribution is determined by the electrode’s i0 value if the capacitances are

similar in the anode and cathode.

6.3.2 Fully Charged Configuration

In the second study, the cell is charged to a fully charged state. In this case, Li is extracted

from the NMC cathode and is inserted into the graphite anode. The average Li fraction in

the NMC cathode decreases from XLi = 0.92 to 0.25. Here we set the lower utilization limit

of NMC to be XLi = 0.25, because below which exfoliation of the NMC layered oxide occurs

and the cathode decomposes. For NMC at XLi = 0.25, the equilibrium voltage is 4.169 V

(see Fig. 4.4(d)). The average Li fraction in the graphite anode increases from XLi = 0.04

to 0.81 in the fully charged cell according to their Li site densities. As described in Chapter

5, a core-shell phase morphology exhibits in the graphite particles at this Li fraction. The

surfaces are in Stage-1 phase with Xa = 0.97 and the particle cores are in Stage-2 phase with
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Xa = 0.56. As concluded in Chapter 5, the EIS measurement will probe only the particle

surface properties. Thus, treating all graphite particles to be uniformly in Stage-1 phase

will offer the same simulation result as that obtained from a core-shell phase morphology.

For graphite at XLi = 0.97, the equilibrium voltage is 0.0854 V (see Fig. 5.1(a)). In this

fully charged case, the graphite i0 is 7.2 × 10−4 A/cm2 and the NMC i0 is 1.448 × 10−4

A/cm2, which lead to the theoretical total charge-transfer resistances for the graphite anode

and for the NMC cathode to be 1.1636 × 105 Ω and 1.475 × 106 Ω, respectively. Note

that the cathode resistance is only roughly one order of magnitude larger than that of the

anode. This ratio is much smaller compared with the fully discharged case (roughly three

orders of magnitude). Because the same Csp is used in the simulations, the theoretical total

capacitance is still 1.694 × 10−2 µF and 4.3204 × 10−2 µF for the graphite anode and the

NMC cathode, respectively, as in the previous section. All other simulation conditions are

the same as in the previous section. The simulations are performed for 15 loading frequencies

ranging from 512 to 0.05 Hz.

Figure 6.10 (a) Nyquist plot of simulated EIS curve for a fully charged cell. (b) EIS curve
from simulated data together with two fitted semi-circles using different segments of the
curve.

Figure 6.10(a) shows the EIS curve extracted from the simulations of a fully charged cell.

The impedance curve seems to exhibit a single semicircle with a Warburg tail. Here, because
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the Li diffusivity in graphite (at XLi = 0.97) is similar to that in NMC (at XLi = 0.25),

the stable time step size determined by the Li diffusivity in graphite is also suitable for

updating Li fraction in NMC. Thus, the result can extend to the Warburg region in a

reasonable simulation time. It can be noted that the shape of the semicircle is distorted:

the region corresponding to the intermediate-to-high frequencies is a little compressed. The

impedance data points in the semicircle region cannot be perfectly fitted with one single

circle. Figure 6.10(b) shows two circles fitted from the impedance data. The red circle

is fitted using the points at frequencies from 4 to 0.5 Hz. Its diameter is 1.276 × 106 Ω.

Since the cathode has a larger capacitance, the red circle obtained from the low frequency

points is more affected by the cathode resistance. On the other hand, the green circle, fitted

using the points at higher frequencies from 512 to 16 Hz, is more affected by the anode

resistance. The diameter of the green circle is 1.187× 106 Ω, which is slightly smaller than

that of the red circle. Similar to the fully discharged case in the previous section, because

the two electrodes have similar capacitances, the semicircles of the anode and the cathode

merge into one EIS arch. Therefore, resistance estimated from the circle fitting may not be

quantitatively accurate although the values are reasonably close to that obtained from the

RC-RC circuit model (Ra + Rc = 1.5914× 106 Ω). Again, the deviation can be originating

from the numerical error of calculating the surface area in the simulations. Moreover, the

EIS curve extracted from the physics-based electrochemical simulations is similar to that

obtained from the RC-RC circuit model, see the EIS curve in Fig. 6.9(b). The presented

physics-based microstructure electrochemical simulations bridge across the intrinsic material

properties, electrode microstructures, and the macroscopic EIS measured quantities.

6.3.3 Fully Charged Cell with Modified Material Parameters

In the two previous cases, the semicircles of the anode and the cathode deeply merged. In

many experimental measurements, two separate semicircles can be observed. As discussed

earlier, the capacitances of the two electrodes need to be sufficiently different such that the
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two semicircle can be distinguished. In Ref. [66], the value of specific capacitance of double

layer on the NMC electrode is roughly a hundred times that on the graphite electrode. As

discussed in Chapters 1 and 3, the charge separation in the electrolyte is determined by

the dielectric constant of the liquid. Since the two electrodes are immersed in the same

electrolyte, the charge separation region should be the same. However, the thicknesses (λs

in Eq. (3.4)) of the Helmholtz layer can be significantly different, depending on the electrode

surface structures. Thus, specific capacitance can be different on the anode particle surfaces

and the cathode particle surfaces. Here, we increase Csp on NMC surfaces by a factor of five

to 7 × 10−4 F/cm2 and decrease that on graphite surfaces by ten folds 1.4 × 10−5 F/cm2.

Note that because there is a large range of Csp values reported in the literature data, these

values are selected simply to highlight the effect of significantly different capacitances on

the two electrodes. Furthermore, in the previous case, the charge-transfer resistance on

NMC surface is ten times that on the graphite surface. To result in two semicircles with

comparable radii, the exchange current density of NMC is magnified by a factor of three.

The relevant quantities are also provided in Table 6.2. Simulations are performed for 16

frequencies ranging from 1024 to 0.1 Hz.

Figure 6.11 (a) Nyquist plot of simulated EIS curve for a fully charged cell with modified
material parameters. (b) EIS curve from simulated data together with two fitted
semi-circles using different segments of the curve.
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Figure 6.11(a) shows the EIS curve extracted from the simulations. Two distinct semi-

circles are observed on the curve: the small one in the high frequency region and the large

one in the intermediate frequency region. The Warburg tail appears in the low frequency

region. These two arches are fitted with two circles as shown in Fig. 6.11(b). The circles

well overlap the data points. The red circle is fitted using points corresponding to frequen-

cies from 1024 to 128 Hz. In this regime, the capacitance current stemming from double

layer formation is comparable to the reaction current on the anode particle surfaces. The

diameter of the red circle is 1.297 × 105 Ω. The green circle is fitted using the data points

corresponding to frequencies from 16 to 0.5 Hz, which is the regime where the capacitance

and reaction currents on the NMC cathode are comparable. The diamter of the green circle

is 4.678 × 105 Ω. These charge-transfer resistances are reasonably close to those calculated

using Eq. (5.6): 1.1636 × 105 Ω for the anode and 4.9181 × 105 Ω for the cathode. Since

the specific capacitances used in this set of simulations has a 50 folds difference between the

cathode and the anode, the semicircles are separate enough from each other. Furthermore,

the EIS curve extracted from the simulations is similar to curve predicted using RC-RC

circuit model (shown in Fig. 6.9(c)). This demonstrates that the presented microstructure

level simulation properly reflects the input material parameters. As ready mentioned, this

physics-based electrochemical simulation tool can connect material properties, microstruc-

tures, and measured macroscale quantities. As material properties usually contain significant

uncertainties, this tool can be utilized to calibrate material parameters.
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Case Fully Discharged Fully Charged I Fully Charged II

Li fraction of anode [%] 0.04 0.97 0.97
Li fraction of cathode [%] 0.92 0.25 0.25
i0 of anode [A/cm2] 1.050×10−3 7.200×10−4 7.200×10−4

i0 of cathode [A/cm2] 2.474×10−6 1.448×10−4 4.344×10−4

Calculated Rae
ct [Ω] 7.979×104 1.164×105 1.164×105

Calculated Rce
ct [Ω] 8.631×107 1.475×106 4.918×105

Ca [µF] 1.694× 10−2 1.694× 10−2 1.694× 10−3

Cc [µF] 4.3204× 10−2 4.3204× 10−2 2.1602× 10−1

Table 6.2 Parameters for the different full cell cases.

6.4 Conclusions

In this chapter, a NMC cathode microstructure and a graphite anode microstructure are

combined to form a full-cell configuration for simulating the EIS process. The EIS curves of

the full cell at different states of charge are studied. At the fully discharged state, because the

charge transfer resistance of NMC is much higher than that of graphite, the NMC semicircle

dominates the entire EIS curve of the full cell. At the fully charged state, the Rct of two

electrodes are comparable. However, due to the fact that the Csp used for the two electrodes

is the same in the simulations, the semicircles for the anode and cathode deeply merge. With

modified values of Rct and Csp, the EIS curve resembles those experimentally observed, show-

ing two distinct semicircles and a Warburg tail. The simulations also reveal an interesting

voltage distribution between the cathode and anode, as well as an distribution of reaction

current and capacitance current in each of the electrodes. These microstructure phenomena

is difficult to be directly observed in EIS experiments. This work demonstrates that the

physics-based microstructure electrochemical simulations can provide a proper connection

between intrinsic material properties, microstructures, and macroscale measured quantities.

As material properties usually contain significant uncertainties, this presented simulation

framework will be powerful for calibrating intrinsic material properties from measured EIS

curves, with experimentally reconstructed electrode microstructures. The simulations on

different cathode microstructures illustrate that, for the same material, the charge-transfer
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resistance on the EIS measurement is also inversely proportional the active surface areas.
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CHAPTER 7

SUMMARY AND OUTLOOK
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7.1 Summary

Battery operations involve coupled multiphysics electrochemical processes, and these pro-

cesses occur in highly complex electrode microstructures. Studying the detailed electrochem-

ical processes in very challenging because of the complexities of both mutliphysics phenomena

and microstructures. Electrochemical impedance spectroscopy (EIS) technique is widely em-

ployed to measure battery electrode properties. However, the obtained quantities, such as

capacitance, resistance, and diffusional impedance, are for the whole cell. The underlying

connections between the electrode materials’ intrinsic properties, electrode microstructures,

and the measured macroscale values, remain poorly understood. This work aims to de-

velop a simulation framework that allows us to simulate the detailed process taking place

in electrode microstructures during a EIS measurement process. Such that the relationship

between material properties, microstructures, and measured EIS values can be elucidated in

the simulations.

As double layer capacitance plays an important role in the EIS processes, the starting

point is to develop a method to simulate double layer formation in complex geometries. The

smoothed boundary method (SBM) is employed to reformulate the Nernst-Planck-Poisson

(NPP) equations, so that the new governing equations can be solved on mesh non-conformal

to the complex geometries. This method greatly accelerates the simulation implementa-

tion. Adaptive mesh refinement (AMR) is used to reduce the modeling error stemming

from the diffuse interface in the SBM. It also significantly decreases the computational bur-

dens. One-dimensional simulations, verified against analytical solutions, demonstrate the

accuracy of the presented SBM-AMR method for simulating double layer formation. Multi-

dimensional simulations reveal a two-step double layer formation process. First, ions are

rapidly adsorbed on (or repelled from) the particle surfaces that have short distances to

another particle surfaces. Then, adsorbed ions diffuse around the particle until the double

layer uniformly surrounds the whole particle. In the electrolyte examined in the simulations,

charge separation (double layer formation) reaches equilibrium in the millisecond scale.
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To simulate the EIS processes in battery electrodes, we develop a multi-physics electro-

chemical model, which solves the coupled governing equations for Li diffusion and current

continuity in electrode particles, ionic diffusion and current continuity in the electrolyte, and

chemical reaction on the particle surface. The developed SBM-AMR approach is applied to

simulate these electrochemical processes in complex electrode microstructures. The double

layer capacitance calculated by solving the NPP equations is incorporated into the elec-

trochemical modeling. Electrochemical simulations are performed under sinusoidal voltage

loading, and impedance values are calculated from the voltage loading and current response.

We start with NMC cathode, which is a Li solid solution. Thus, Fick’s diffusion equation

is used to model Li transport in the electrode particles. The developed simulation tool is

utilized to investigate the impact of exchange current density at different state of charge

on the EIS curves. The results demonstrate that the charge-transfer resistance is inversely

proportional to the exchange current density. We also study how salt concentration in the

electrolyte affects the EIS curves. While the salt concentration affects exchange current den-

sity, double-layer capacitance, and ionic diffusivities simultaneously, the simulation results

show that the changes of exchange current density has the largest effect on the EIS behavior.

In contrast to the Li-solid-solution NMC cathode particles, graphite particles exhibit

second-order phase transition upon lithiation/delithiation. Thus, the Cahn-Hilliard phase-

field equation is employed to model the phase transition processes in graphite particles. The

simulations are performed on experimentally reconstructed graphite electrode microstruc-

tures. The results show that the charge-transfer resistance on the EIS curve is inversely

proportional to the product of exchange current density and active surface area when the

graphite particles are in their four stable single phases. While an electrode with a low tortu-

osity of the electrolyte channels can have a better high-rate performance, it likely has a larger

resistance on the EIS curve, compared to those having a worse high-rate performance. The

results illustrate that this counter-intuitive behavior is due to the fact that a low-tortuosity

electrode usually has a smaller active surface area. In graphite particles with a core-shell
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phase morphology, the EIS measurement only probe the particle surface properties. Our

simulations reveal an interesting phenomenon that if phase boundaries intersect particle sur-

faces, a low-frequency inductive loop appears on the EIS curve. While Fick’s diffusion model

is commonly mistakenly used to model the Li transport during the phase transition processes

in graphite, our simulations show that the EIS curves obtained from the phase-field model

and from Fick’s diffusion model are indistinguishable. Therefore, EIS measurements cannot

detect whether a material can undergo phase transition if this material is in equilibrium.

A material undergoes phase transition can only be discerned by whether the EIS measured

quantities exhibit a step-wise variation.

Lastly, the simulations are performed on a full cell configuration consisting of a NMC

cathode microstructure and a graphite anode microstructure. EIS curves of the full cell are

extracted from those simulations. While typical experiments only access the cell voltage

between the two electrodes, the presented electrochemical simulations show the individual

electrostatic potential drop across the cathode particle-electrolyte interfaces and that across

the anode particle-electrolyte interfaces. These two quantities impose the conservation of

currents in the electrodes. The simulations also reveal a distribution between reaction cur-

rent and capacitance current on each of the two electrodes, which is determined by the

double-layer capacitance and exchange current density according to the state of charge of

that electrode. Ideally, the anode and the cathode each has a semicircle on the EIS curve.

The diameter of that semicircle is the charge-transfer resistance of that electrode. If the

capacitances of the two electrodes are similar, the two semicircles deeply merge and form

one large semicircle. Our simulation results demonstrate this behavior on the resulting EIS

curves. If the capacitance of the two electrodes are sufficiently different, the two semicircle

separate apart on the EIS curve, which is also illustrated in the simulations. In conclusion,

the presented simulation framework incorporates the double-layer capacitance into electro-

chemical simulations on electrode microstructures. It successfully provides the bridge to

connect the intrinsic material properties, electrode microstructure, and the measured EIS
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quantities. This open a new door using detailed multiphysics simulations in battery research.

7.2 Outlook

Overall, we have successfully developed a physics-based model, which connects electrode

microstructures and material properties to their electrochemical performance and resulting

EIS curves. However, many material parameters for battery electrode materials, such as

exchange current density, double layer capacitance, Li diffusivity, etc., are scarce in the liter-

ature data. Even if the data are available, the values contain a high degree of uncertainties

due to the difficulties in conducting the relevant measurements. Thus, a potential use of

this simulation framework is to calibrate input material parameters based on measured EIS

data.

Furthermore, additional mechanisms can be incorporated on to the presented electro-

chemical model. For instance, the resistance due to the formation of solid electrolyte inter-

face (SEI) on the electrode particle surfaces can be included into the model. The resistance

increase due to lattice structure change in the electrode particles could also be included in

the model. Li loss due to side reaction between plated Li metal and the organic electrolyte

can also be considered. In this case, the total active Li in the system could be estimated

from the sizes of the two semicircles of the two electrodes.

This framework uses the Jacobi relaxation method in solving all the static equations.

There are other numerical schemes that can be employed to accelerate the simulations;

for instance, using over-relaxation or conjugate gradient methods. The SBM-reformulated

governing equations can be solved using finite element methods on non-body-conforming

mesh systems. This may be more stable than using finite difference method as in this work.

Moreover, there are five coupled equations that are solved using iterative schemes in the full

cell simulation code. The iteration usually converges slowly. Particularly, the adjustment

procedure in controlling the current conservation frequently leads to noises on the response

current. Often, it can lead to divergence of the simulations. A better solver scheme could
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greatly improve the code performance. Adaptive time steps can also increase the speed of

simulations.

This framework can be extended to study other different electrochemical systems. For

instance, the simulations can be used to simulate the electrochemical processes and EIS

behavior of solid-state batteries. This framework can also be applied to simulate the EIS

behavior of solid oxide fuel cells. Redox flow cell could be a potential application if computa-

tional fluid dynamics is incorporated to the model. Further, the charge separation model for

the double layer formation can be combined with computational fluid dynamics to simulate

the processes of capacitive desalination for water purification.
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