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ABSTRACT 

Skill acquisition theorists conceptualize second language (L2) learning as the acquisition 

of a set of perceptual, cognitive, and motor skills. The dominant view in skill acquisition theory 

is to regard L2 skill acquisition as a three-stage process “from initial representation of knowledge 

through initial changes in behavior to eventual fluent, spontaneous, largely effortless, and highly 

skilled behavior” (DeKeyser, 2020, p. 83). While there is indirect evidence that indicates the 

existence of such developmental stages, the number and the nature of those stages are often 

assumed a priori, and whether or not these stages actually exist remains untested. My dissertation 

study was designed to test and validate the three-stage model of L2 skill acquisition derived from 

cognitive psychological research, namely, the cognitive, associative, and autonomous stage (Fitts 

& Posner, 1967), each of which draws on distinct cognitive processes for learning. 

Sixty-five adult learners deliberately learned and practiced a miniature language based on 

Japanese, called Mini-Nihongo, for a total of 1,056 practice trials. The participants also took a 

battery of tests on three dimensions of cognitive abilities that are known to be active at each 

stage of skill acquisition: declarative memory, procedural memory, and psychomotor ability 

(Ackerman, 1988, 1992; Anderson, 1982). Comprehension practice took place in the form of a 

sentence-picture matching task, and production practice was implemented in the form a 

productive maze task. Accuracy, reaction time (RT), and the coefficient of variability (CV) of 

RT were analyzed as the dependent variables. There were six tests of cognitive abilities: the 

Continuous Visual Memory Task and LLAMA-B for declarative memory ability, an alternating 

serial reaction time task and a statistical learning task for procedural memory ability, and the 

alternating serial reaction time task and a two-choice RT task for psychomotor ability. 



 

I analyzed the data from the language practice and the battery of cognitive tests in two 

steps. First, I fitted a series of hidden Markov models (HMMs) to the RT data that represented 

different hypotheses regarding the number of skill acquisition stages (i.e., one, two, or three 

stages). This first step of the analysis revealed that the acquisition of comprehension skills can be 

best conceptualized as a three-stage process, whereas the acquisition of production skills 

encompassed two stages. 

Based on the best-fitting HMMs and the corresponding number of learning stages, I then 

utilized a series of generalized linear mixed models to investigate the nature of the identified 

skill acquisition stages. Specifically, I examined whether the three dependent variables, 

accuracy, RT, and the CV, could be predicted by the three dimension of cognitive abilities at 

each stage of skill acquisition. The results showed that different cognitive abilities variably 

predicted learning at each stage, with the trends largely consistent with the general skill 

acquisition theory (DeKeyser, 2020; Lyster & Sato, 2013; Y. Suzuki, 2022). 

Overall, the findings of the study lend support to the three-stage model of L2 skill 

acquisition, but its proposed mechanisms may have to be revised to suit the specific cognitive 

processes involved in L2 learning. In addition, when applying the skill acquisition theory (or 

variants thereof) to L2 learning, one may have to analyze the theory not only at the level of 

learning mechanisms and processes (e.g., declarative learning, proceduralization, and production 

tuning) but also at the level of cognitive processing (e.g., lexical and grammatical de/encoding, 

syntactic parsing, and monitoring) that are specific to L2 learning.
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INTRODUCTION 

Second language (L2) learning is often conceptualized as the acquisition of a set of 

perceptual, cognitive, and motor skills (see DeKeyser, 2020; Lyster & Sato, 2013; Y. Suzuki, 

2022 for reviews). In this view, mastering L2 skills is equated with acquiring skills in other non-

linguistic domains, such as typing, driving a car, or solving arithmetic problems. The current 

research base in the field of second language acquisition (SLA) has provided ample evidence for 

the parallel nature of L2 learning and skill acquisition with respect to both the process and the 

product of learning (e.g., De Jong, 2005; DeKeyser, 1997; Ferman, Olshtain, Schechtman, & 

Karni, 2009; Robinson, 1997; Robinson & Ha, 1993). This collection of evidence suggests that 

L2 learning can and should be done by the same domain-general learning mechanisms that apply 

to learning of other non-linguistic skills (e.g., perceptual, motor, and cognitive skills). 

L2 researchers to date have turned to neighboring fields, mainly cognitive psychology, 

for accounts of L2 skill acquisition processes using domain-general cognitive mechanisms (e.g., 

memory, attention, and problem-solving ability). The current dominant view is to regard L2 skill 

acquisition as a three-stage process: learning progresses from the cognitive, through the 

associative, to the autonomous stage (Fitts, 1964; Fitts & Posner, 1967); or the declarative, 

transitional, and procedural stage (Anderson, 1982, 1983b, 2007). At present, there is indirect 

evidence that indicates the existence of such developmental stages in L2 learning (Ferman et al., 

2009; Pili-Moss, Brill-Schuetz, Faretta-Stutenberg, & Morgan-Short, 2020), yet the number and 

the nature of the stages are assumed a priori and not themselves the object of research. As an 

interdisciplinary discipline, the field of SLA has benefited from cross-fertilization with other 

scientific disciplines, but any theories adopted into L2 research must be tested for their validity 

vis-à-vis L2 learning. This is critical because the three-stage model (or part thereof) is already 
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represented in many subdomains of SLA (e.g., language instruction: DeKeyser, 1998; 2001; 

Lyster & Sato, 2013; language assessment: ACTFL, 2012; Council of Europe, 2020), but the 

model itself is currently only theoretical and lacks empirical support. In the oft-cited review of 

skill acquisition research in L2 learning, DeKeyser (2020) lamented this fact: “More importantly 

for our purposes here, not much research in the field of second language learning has explicitly 

set out to gather data from second language learners to test (a specific variant of) Skill 

Acquisition Theory” (p. 88). 

Against this backdrop of the gap in the literature, this dissertation brings together three 

lines of research in SLA and cognitive psychology to provide the first direct evidence for (or 

against) the influential three-stage model of L2 skill acquisition. The first line of research 

concerns a collection of SLA studies that investigated the parallel nature of L2 learning and skill 

acquisition by documenting how people develop accuracy and fluency in a novel language as a 

function of practice (e.g., De Jong, 2005; DeKeyser, 1997; Ferman et al., 2009; Robinson, 1997; 

Robinson & Ha, 1993). The second line of research focuses on the study of individual 

differences in skill acquisition to identify what cognitive abilities underlie learning during skill 

acquisition in general (Ackerman, 1987, 1988, 1990, 1992; Ackerman & Cianciolo, 2000; 

Ackerman, Kanfer, & Goff, 1995) and L2 skill acquisition in particular (Li, 2017; Maie, 2021; 

Pili-Moss et al., 2020; Y. Suzuki, 2018). Lastly, the third line of research involves using 

cognitive modeling to mathematically model skill acquisition processes to detect distinct phases 

of learning during skill acquisition (Tenison & Anderson, 2016; Tenison, Fincham, & Anderson, 

2016). By taking conceptual and methodological insights from each of the three lines of research, 

this dissertation sets out to test the number and the nature of skill acquisition stages in the 

context of L2 learning. 
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Before moving forward, I would like to clarify the terminology that will be used 

throughout the dissertation. First, the term L2 learning will refer to any kind of development in 

L2 knowledge or performance without recourse to a specific learning process or mechanism 

involved. Hence, the term covers L2 development in any approach, be it formal, usage-based, or 

skill acquisition approaches. When discussing L2 learning in general, I will thus prefer the word 

learn over acquire. However, I will use the term skill acquisition to refer to the entire process of 

mastering skills because it is generally preferred over the other terms such as skill learning or 

development. Hence, skill acquisition in L2 learning will specifically be called second language 

skill acquisition or L2 skill acquisition, and the general theory of skill acquisition (without 

recourse to any specific models of process or mechanism) will be the skill acquisition theory. 

Lastly, I will use the term second language acquisition or SLA to refer to the scientific research 

on how people learn and use any additional language after one’s first language; hence, I will use 

the term second language or L2 to mean any languages other than one’s first language. 
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CHAPTER 1: REVIEW OF THE LITERATURE 

In this chapter, I review the literature on skill acquisition as it relates to L2 learning. I 

will first provide an overview of skill acquisition processes and discuss phenomena that are 

almost universally observed in skill acquisition research (Section 1.1). I will then define the 

concept of automaticity and automatization as the end product of skill acquisition and review 

some methods that have been proposed to operationalize automaticity/automatization (Section 

1.2). Theoretical models of skill acquisition will then be introduced, including the three-stage 

model and its rival models, with particular attention paid to how each model accounts for the 

skill acquisition phenomena and the development of automaticity (Section 1.3). I will then 

review a recent line of research in cognitive psychology that attempted to pit the rival theoretical 

models against each other by modeling skill acquisition processes using cognitive modeling 

(Section 1.4). After clarifying the underpinning concepts and theories of skill acquisition, I will 

review the literature on L2 skill acquisition, focusing on evidence that shows the parallel nature 

of skill acquisition in general and L2 learning and research that investigates the role of cognitive 

individual differences in (L2) skill acquisition (Section 1.5). Finally, I will point out the 

fundamental problems in the L2 skill acquisition literature and discuss how the present 

dissertation research achieves to fill the gaps. Because the overall theme of the dissertation is to 

investigate the applicability of cognitive skill acquisition theory in the context of L2 skill 

acquisition, in Section 1.1–1.4, I will primarily draw from the cognitive psychology literature to 

review the basic phenomena of skill acquisition, the definition and measurement of 

automaticity/automatization, and theoretical models of skill acquisition. 
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1.1 Skill Acquisition and the Associated Phenomena 

Skill acquisition is the process of learning skills to advanced proficiency “from initial 

representation of knowledge through initial changes in behavior to eventual fluent, spontaneous, 

largely effortless, and highly skilled behavior” (DeKeyser, 2020, p. 83). The process of skill 

acquisition has been well documented in a variety of domains, ranging from perceptual (e.g., 

Kolers, 1975; Neisser, Novik, & Lazar, 1963) and motor skills (e.g., Card, English, & Burr, 

1978; Crossman, 1959; Snoddy, 1926) to complex cognitive routines (e.g., Anderson, 1983a; 

Card, Moran, & Newell, 1980; Compton & Logan, 1991; Neves & Anderson, 1981). Although 

the interpretation of the process varies in detail from one researcher to another, there is a general 

consensus that (a) extended practice is necessary to achieve full mastery of the skill and that (b) 

the end state of skill acquisition is automaticity (see Section 1.2 for more discussion of 

automaticity) (see VanLehn, 1996; DeKeyser, 2001, 2020, for a review in cognitive skill 

acquisition and in L2 skill acquisition, respectively). Additionally, the current stockpile of skill 

acquisition research has shown that two phenomena are almost universally observed in learning 

of any skill. These phenomena are (a) the power-law of practice and (b) the skill specificity. Due 

to the ubiquity of the phenomena, every theoretical model of skill acquisition is expected to 

account for how proposed learning mechanisms give rise to the phenomena. 

1.1.1 The Power-Law of Practice 

The power-law of practice is a scientific law of learning that states that the time it takes 

one to perform a skill decreases with the amount of practice, and the decrease follows a specific 

non-linear curve defined by a power function. Figure 1.1 (left panel) provides an example of a 

power function applied to skill acquisition data. The speedup in performance following the 

power law is typified by an initial short period of rapid decrease in performance times followed 
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by a gradual and slow process of fine-tuning skill performance to reach the asymptotic level of 

performance. The seminal article by Newell and Rosenbloom (1981) illustrated that the same 

power function applies to a great variety of skills and domains, qualifying the phenomenon as a 

scientific law. Although the exact form of the power function is a subject of debate, its basic 

form can be expressed in the following formula: 

𝑇 = I + 𝛽N!" 

𝑇 = is the time to perform a skill, I is the asymptote (i.e., the psycho-physical limit of speed one 

can achieve after an infinite amount of practice), 𝛽 is the difference between the initial trial and 

the asymptote, and therefore how much one can speedup (after an infinite amount of practice), N 

is the number of practice trials, and 𝛼 is the learning rate that controls how fast one can speed up. 

The minus sign on the exponent (𝛼) produces the decelerating decrease in performance times. 

One mathematical corollary of the power function is that plotting the logarithm of performance 

times (𝑇) against the logarithm of practice trials (N) yields a straight line; log(𝑇)~ log(N) 

produces 𝑅# = 1.0. Hence, the linear regression of log(𝑇) (as the dependent variable) on log(N) 

(as the predictor) serves as a test tube of whether one’s dataset conforms to the power-law of 

practice. This is why Newell and Rosenbloom (1981) alternatively called the phenomenon the 

log-log linear law. Some researchers showed that the accuracy of performance (Anderson, 1995) 

and the standard deviation of performance times (Logan, 1988, 1992, 2002) also follow the 

power-law of practice. However, evidence is currently too limited to draw any conclusions. 
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Figure 1.1. An example of the power function fit to skill acquisition data. 

Note. The left panel shows data on the original scale and the right panel shows the data with 
performance times and practice trials transformed to their natural logarithms. The dataset was 
simulated from a power function: 𝑇 = 200 + 800𝑁!$.& + N(0, 30), where T is performance 
times, N  is the number of practice trials, and N(0, 30) is a normal distribution with the mean of 0 
and the standard deviation of 30 to add sampling error. For this dataset, 𝑅#= .992. 

 

One recurring criticism against the power-law of practice is that it often does not apply to 

individual data points and hence its ubiquity may be an artifact of data averaging (Adi-Japha et 

al., 2008; Gallistel et al., 2004; Haider & Frensch, 2002; Heathcote et al., 2000; Myung et al., 

2000). For instance, Adi-Japha et al. (2008) pointed out that applying a power function to 

aggregated data may conceal important patterns in individuals’ gains. Heathcote et al. (2000) 

revealed that an exponential function fit better than a power function for all 7,910 learning series 

(from 475 participants) of performance times. The exponential function takes the form of 𝑇 =

I + 𝛽𝑒!"'; hence, the practice trials (N) is the exponent of e (i.e., the Euler’s number or ≈ 

2.71828) rather the base of the exponent 𝛼 in the power function. Heathcote et al. further 

proposed what they called the APEX function, which incorporated an additional pre-

experimental practice parameter. One reason of the power function’s inability to explain 
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individual data is that raw data are (more) prone to inherent variability (than when they are 

aggregated). However, the variability not only results from systematic effects caused by the 

underlying learning mechanisms but also due to pure performance or sampling error that is 

nothing to do with the process of skill acquisition. While deviations from the power function due 

to the systematic effects are worth of close theoretical and empirical attention, it is unwise to 

question the power-law of practice if the deviations result from sampling error. Recently, some 

researchers showed that when sampling error is incorporated in a model (coupled with different 

power functions for distinct learning phases; see below), the power function and the exponential 

function become highly equivalent in how they fit individual and item-level data (but the APEX 

function shows substantially poorer fit) (e.g., Tenison & Anderson, 2016). Consequently, the 

compatibility of the power function to raw data is still an open question at best. 

Another issue surrounding the power-law of practice is the number of power functions 

required to account for skill acquisition data. Initially, Newell and Rosenbloom (1981) and other 

trailblazing research (e.g., Anderson, 1981; Logan, 1988; MacKay, 1982) only considered using 

a single power function. However, Rickard (1997, 1999) later demonstrated that two power 

functions better account for data (see Delaney et al., 1998 for the same finding). As described in 

Section 1.3 (Models of Skill Acquisition), the number of power functions crucially depends on 

whether a given theory of skill acquisition describes the speedup in skill execution as a 

quantitative change in the underlying cognitive process (i.e., improvement of the same process) 

or a qualitative change (i.e., shifting to more efficient processes). The idea of connecting the 

power-law of practice to the underlying cognitive mechanisms is crucial because “[the power-

law] has captured little attention, especially theoretical attention, in basic cognitive or 

experimental psychology, though it is sometimes used as the form for displaying data” (Newell 
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& Rosenbloom, 1981, p. 2). It is thus incumbent on skill acquisition researchers to theorize and 

investigate what its shape and ubiquity signify in terms of psychological mechanisms. 

1.1.2 The Skill Specificity 

The skill specificity refers to the negative correlation between the amount of practice and 

the generalizability of a skill; when the skill is highly practiced through a specific task or in a 

specific domain (e.g., visual vs. auditory), it becomes less available for transfer on another task 

or in a different domain. The classic experiment on the transfer of learning by Thorndike and 

Woodworth (1901) (see also Thorndike, 1906) was the first to document that skills may not 

transfer well from one task to another unless the tasks share “identical elements” (e.g., content 

and procedure). In skill acquisition research, a corpus of evidence has demonstrated the 

specificity of extensively practiced skills (see Healy & Bourne, 1995; Rogoff & Lave, 1984). 

Singley and Anderson (1989) provided the most impressive demonstration of the specificity of 

cognitive skills to date (and also an extensive literature review on the issue of transfer), showing 

that the skill of reading versus writing computer programs, when highly practiced, give rise to an 

overwhelming directional asymmetry in that performing the same skill in a reverse direction (i.e., 

writing computer programs when one extensively practiced reading or vice versa) leads to more 

errors and slower performances (see also Anderson & Fincham, 1994). As with the power-law of 

practice, the ubiquity of the skill specificity demands theoretical explanations. 

The specificity of skill is not without counterevidence, however. Ackerman (1990) 

reviewed that two independent camps have investigated the issue of transfer in skill acquisition, 

a group of traditional transfer-of-training experiments (see Adams, 1987; Singley & Anderson, 

1989 for reviews) and a group of individual-differences studies (see Marteniuk, 1974 for a 

review). While the former includes research reviewed above and examines whether training of a 
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skill through a criterion task or in a specific domain influences performance on a transfer task or 

in a different domain, the latter group of studies investigates how individual differences in 

performing the criterion task can be predicted by individual differences in abilities that are 

theoretically related to the target skill. The underlying argument behind the individual-

differences paradigm is “difficulties in discovering abilities that predict individual differences at 

highly skilled levels of performance” (Ackerman, 1990, p. 883); that is, if learning a skill is 

specific to a task or domain, abilities that are related to the performance of the skill should not 

predict the asymptomatic performance of the skill (see also Fleishman, 1972; Marteniuk, 1974). 

With this prediction, several studies show that some cognitive abilities indeed predict 

performances of a skill even at the asymptomatic level (Ackerman, 1987, 1988, 1990, 1992; 

Adams, 1957, 1987), therefore discrediting the skill specificity phenomenon. However, a caveat 

in interpreting these findings is that the correlational design of the individual-differences 

paradigm does not directly speak to transfer. In this light, findings from the traditional transfer-

of-training experiments bear more empirical credibility. Nonetheless, Ackerman and colleagues 

provided a useful theoretical model of individual differences in skill acquisition (Ackerman, 

1987, 1988, 1990, 1992; Ackerman & Cianciolo, 2000; Ackerman et al., 1995), which will be 

reviewed as one of the main theoretical bases for my dissertation study (Section 1.5.2). 

1.2 Automaticity and Automatization 

The concept of automaticity (or an automatic process) abounds in one’s everyday life. A 

sliding door opens automatically reading from an overhead motion sensor, a vehicle with an 

automatic transmission shifts gears by itself, and a modern robotic vacuum cleaner operates 

automatically on itself. Humans also display an amazing degree of automaticity. One does not 

(or is not able to) think about the process of standing or moving hands (i.e., innate automaticity), 
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or even when carrying out complex skills such as using a smartphone, driving a car, or speaking 

the first language; as long as one is highly experienced, the underlying perceptual, cognitive, and 

motor processes do not even come to the mind (i.e., acquired automaticity). The word 

“automatic” originates from the Greek word (adjective) automatos: “self-acting” or “acting on its 

own”. Therefore, automaticity implies that the process operates without any intervention from an 

active agent. Although the omnipresence of automaticity seemingly attests that its concept is well 

understood by scientists and the general public alike, cognitive psychologists have diverged 

regarding the specific features that characterize automaticity. 

1.2.1 Concepts of Automaticity and Automatization 

The first systematic attempt to tackle the concept of automaticity was Shiffrin and 

Schneider’s (1977) (also Schneider & Shiffrin, 1977) dichotomy of controlled and automatic 

processing (i.e., the dual-process theory). The theory was innovative in that the researchers 

tackled the construct of automaticity as a problem of attention: a process is said to be automatic 

if it takes place “without the necessity of active control or attention by the subject” (Shiffrin & 

Schneider, 1977, pp. 155–156). An automatic process is thus a cognitive activity that does not 

expend (or barely requires) one’s attentional resources in working memory, whereas a controlled 

process entails attentional processing that calls for one’s cognitive resources. Learning is 

considered a transition from a controlled to an automatic process (see Schneider & Chein, 2003 

for a more recent treatment of the dual-process theory). In L2 learning, Johnson (1996) also 

defined automaticity from the same perspective, as “the ability to get things right when no 

attention is available for getting them right” (p. 137). 

The consequence of theorizing the dichotomy with respect to attention is that automatic 

and controlled processes can be juxtaposed with other in terms of their functional characteristics. 
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While an automatic process is parallel, ballistic, and effortless, a controlled process is serial, 

controllable, and effortful. In the context of visual search tasks (i.e., searching for a target from a 

display with other similar objects), Schneider and Shiffrin (1977) operationalized automatic 

processing as load-independent processing; if the process of visually searching a target is 

automatic (and hence does not require attentional resources), it should operate regardless of how 

much information needs to be processed at the same time. Schneider and Shiffrin found that 

automaticity only developed in a specific condition called “consistent-mapping” (as opposed to 

“variable-mapping”) in which a stimulus (e.g., a visual image) always appeared as a target in the 

experiment but never as a distractor. As Segalowitz (2003) discussed, the role of consistent 

stimulus-response experiences has an important implication for language learning because a 

linguistic unit (stimulus) (e.g., a word or a morpheme) may not exclusively map onto a single 

semantic referent (response).  

One caveat of Shiffrin and Schneider’s (1977) dichotomy is that it presents automaticity 

as a binary phenomenon, automatic or not automatic. However, many cognitive psychologists 

now view automaticity as being on a continuum, and the transition from controlled to automatic 

processing is investigated as a gradual (rather than an abrupt) process. Along with domain-

independent processing, researchers have also proposed many additional features of 

automaticity: (a) fast, (b) parallel, (c) effortless, (d) ballistic, (e) result of consistent practice, (f) 

unimpeded (little interference from) by a secondary task, (g) unconscious, and (h) based on 

memory retrieval. This large collection of the features does not mean that cognitive 

psychologists agree on the nature of automaticity. Moors and De Houwer (2006) (also Moors, 

2016) discussed the field’s inability to reach a consensus concerning which set of the features 

one should use to define the construct of automaticity. As a case in point, Posner and Snyder 
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(1975) claimed three features (ballistic, little interference from a secondary task, and 

unconscious), whereas MacKay (1982) proposed four features (fast, effortless, little interference, 

and unconscious). Schneider and Detweiler (1988) mentioned only one feature (little 

interference), but Anderson (1992) listed five features (fast, little attention, ballistic, consistent 

practice, and little interference) (see DeKeyser, 2001, p. 128 for a very similar but more 

extensive illustration). Given the researchers’ wide disagreement, providing componential 

explanations of automaticity that “unpacks the components of automaticity and specifies the 

relations among them” (Moors, 2016, p. 264) may be an intractable problem. Rather, the aim of 

this dissertation is to seek a mechanistic explanation of automaticity that “specifies the low-level 

processes underlying automatization” (Moors, 2016, p. 264). 

The word automatization is also a multi-sense term. Cognitive psychologists have largely 

used the term with three different levels of generality with respect to the developmental 

continuum of automaticity (see Figure 1.2 for illustration): (a) the entire process of developing 

automaticity, from initial slow(er) performance through the initial sharp drop in performance 

times to the gradual fine-tuning of the skill and increasing speed to reach the asymptotic 

performance (see Figure 1.1, left panel); (b) the initial drop in performance times only; or (c) the 

gradual fine-tuning of the skill only. Currently, the interpretation of the term depends on the 

underlying mechanisms posed to explain the development of automaticity (see Section 1.3). In 

the three-stage model, the initial slower performance is due to the interpretive application of 

declarative knowledge, and the abrupt reduction in performance times is attributed to 

proceduralization (Anderson, 1982, 1983b, 2007; see Section 1.3.1). In this dissertation, I will 

thus reserve the term automatization to refer to the flatter part of the curve where one gradually 

fine-tunes the performance to reach the asymptotic level (the right panel in Figure 1.2). This 
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characterization of automatization is also consistent with how the term is defined in the SLA 

literature (DeKeyser, 2020; Y. Suzuki, 2022). 

 
Figure 1.2. The three meanings of automatization. 

Note. The left panel shows automatization as the entire process of developing automaticity, the 
middle panel shows automatization as the initial sharp drop in performance time, and the right 
panel shows automatization as the gradual fine-tuning of the skill performance. 

 

One issue that surrounds the mechanistic explanation of automaticity is whether it arises 

from a quantitative change in the underlying mechanism (i.e., improvement of the same process), 

a qualitative change (i.e., shifting to more efficient processes), or the combination of both. Rival 

models of skill acquisition propose competing proposals on this point (see Section 1.3). As 

reviewed in the next section, theorizing the exact mechanism of developing automaticity is 

crucial as it has an implication for how the construct of automaticity can be measured. 

1.2.2 Measuring Automaticity 

Establishing reliable measurements of automaticity is crucial for understanding the 

process and the mechanism of developing automaticity. It is possible that one operationalizes all 

potential features of automaticity (see Section 1.2.1) and observes how indices operationalizing 

the features change as a result of practice. However, since cognitive psychologists disagree as to 

the best set of features that characterize automaticity (Moors, 2016; Moors & De Houwer, 2006), 
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this method may not be an empirically realistic plan. Traditionally, skill acquisition researchers 

have focused on the speed aspect of skill performance (i.e., an automatic process is fast). The 

most common method is to track the reaction time (RT) of performance and examine how it 

declines as a function of practice. Given the robust findings on the power-law of practice, 

observing that participants have reached an asymptotic level of performance (i.e., reaching 

almost the end of the power-law curve; see Figure 1.1) likely indicates that the participants have 

achieved automaticity. Obviously, this method captures only one aspect of automaticity as it 

singly focuses on how fast one carries out the skill. 

The most innovative development in the measurement of automaticity comes from a 

research program in the field of SLA led by Norman Segalowitz and colleagues (Phillips, 

Segalowitz, O’Brien, & Yamasaki, 2004; Segalowitz & Freed, 2004; Segalowitz & Segalowitz, 

1993; Segalowitz, Segalowitz, & Wood, 1998; Segalowitz, Watson, & Segalowitz, 1995; see 

Segalowitz, 2010 for a review). Segalowitz and Segalowitz (1993) asserted that automaticity not 

only requires performance to be fast but also carried out with stability (i.e., less variability in the 

speed of performance). This proposition is based on the belief that automaticity results from 

“qualitative changes in the functioning of the underlying processes through a restructuring 

effect”, whereby component processes underlying the skill performance “become organized 

differently; for selected, inefficient processes to drop out; for new, more efficient processes to 

replace older, less efficient ones; or for some mixture of all these possibilities to occur” 

(Segalowitz & Segalowitz, 1993, p. 373–374) (see also McLauglin, Rossman, & McLeod, 1983; 

McLeod & McLaughlin, 1986 for theoretical reviews, especially in L2 contexts). Operationally, 

Segalowitz and Segalowitz proposed the coefficient of variability (CV) of RT (i.e., the standard 

deviation of RT divided by the mean of the RT) as a measure of processing stability and 
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suggested that a researcher must examine reductions in both RT and the CV. This is because 

when learners simply speeds up their performance, only RT is expected to drop (but not CV), 

and the standard deviation (SD) of the RT decreases at the same rate (due to the mathematical 

nature of smaller numbers being associated with smaller variability). However, when one’s 

performance becomes more stable, and hence more automatic, not only RT but also the CV 

would decrease, and because the SD (of RT) decreases disproportionately to the rate of the RT 

decrease, RT and CV will positively correlate. Therefore, the evidence of automaticity in this 

paradigm requires both (a) RT and (b) CV decrease in some meaningful way (e.g., statistical 

significance), and (c) the RT and CV positively correlate with each other. 

Currently, the CV has been most widely used to investigate the automaticity of lexical 

processing, measured through such tasks as a lexical decision task (e.g., Segalowitz & 

Segalowitz, 1993; Segalowitz et al., 1998; Elgort, 2011) and a semantic classification task (e.g., 

Phillips et al., 2004; Segalowitz & Freed, 2004; Hui, 2020; Maie & Godfroid, 2022). An issue, 

however, is whether the CV can also be a valid measure of automaticity at the sentence-level 

performance. While the first validation attempt by Hulstijn, Van Gelderen, and Schoonen (2009) 

showed that the validity of the CV may be limited to lexical-processing tasks only, a conceptual 

replication by Lim and Godfroid (2015) showed that the CV can be as useful in the study of 

sentence processing (using sentence construction and verification tasks) as in the study of lexical 

processing. More recent findings seem to support the conclusion of Lim and Godfroid (see Y. 

Suzuki, 2018; Pili-Moss et al., 2020; but cf. McManus & Marsden, 2019).  

Segalowitz and Segalowitz (1993) and subsequent research called the CV a measure of 

“automatization”, but they neither explicated the exact mechanism of automatization nor 

specified what level on the continuum of developing automaticity (see Figure 1.2) the reduction 
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in the CV corresponds to. Theoretical models of skill acquisition (Section 1.3.1 and 1.3.2) 

largely argue that the putative qualitative changes in the underlying processes occur at the initial 

level of development, causing the early abrupt reduction in performance times. In Section 1.2.1, 

we defined the term automatization to refer to the latter (and flatter) end of the power-law curve. 

Hence, the definition of automatization as used by Segalowitz and Segalowitz (1993) does not 

match what is considered automatization in this dissertation. Using the terminology from the 

three-stage model of skill acquisition (Anderson, 1982, 1983b, 2007), the CV is rather a measure 

of proceduralization than automatization. 

One last issue surrounding the use of the CV concerns how it may decrease as a function 

of practice. Does it linearly decrease with the amount of practice, or does the decrease follow 

some specific mathematical function such as a power function? A common finding in skill 

acquisition research is that RT tends to deviate from the power-law curve at the very initial level 

of development (e.g., Delaney et al., 1998; Logan, 1988; Newell & Rosenbloom, 1981; Neves & 

Anderson, 1981; Rickard, 1997). This is primarily because initial performance is slow and hence 

subject to higher variability. Intuitively, it is thus possible to predict that the CV (as a measure of 

performance stability and variability) may not decrease smoothly in the early phase of learning. 

In a similar vein, Solovyeva and DeKeyser (2018) focused on cases where the CV initially 

increases rather than decreases as a function of practice. They argued that the increase could be 

due to the addition of a new knowledge representation: “If reductions in the CV result from the 

elimination of (inefficient) component processes or their restructuring, increases in the CV 

should signal the opposite—the addition of component processes or new representations” (p. 

228). Later, Hui (2020) also demonstrated that the CV can initially increase before it starts to 

decrease as an index of automaticity. However, a recent longitudinal study of practice (using an 
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artificial language) by Pili-Moss et al. (2020) found that the CV simply decreased without the 

initial increase. At present, the issue is far from being settled. Nonetheless, the CV has the 

potential to index the changes in the functioning of the underlying processes as long as its use is 

accompanied by a detailed analysis of how it changes as a function of practice. 

1.3 Models of Skill Acquisition 

In cognitive psychology, several models of skill acquisition propose competing 

explanations of how learners achieve automaticity through repeated practice. Crucially, the 

models are classified according to whether they are based on a ruled-based approach or an item-

based approach. In this section, I first review the three-stage model as the leading theory of the 

rule-based approach. Specifically, I draw on Fitts and Posner’s (1967) (also see Fitts, 1964) 

three-stage model of learning and Anderson’s Adaptive Control of Thought (ACT) theory 

(Anderson, 1982, 1983b, 1992, 2007; Anderson et al., 2004, 2019) to describe how the three-

stage model provides a mechanistic explanation of skill acquisition and the development of 

automaticity (Section 1.3.1). Rival models are then introduced, and I specifically focus on the 

Race model (Compton & Logan, 1991; Logan, 1988, 2002) as a major theoretical model from 

the item-based approach, and the Component Power Laws (CMPL) theory (Bajic & Rickard, 

2011; Rickard, 1997, 1999, 2004) as a model that combines the rule-based approach and the 

item-based approach (Section 1.3.2). The three theoretical models advance rival hypotheses 

regarding the number and the nature of skill acquisition stages and how they account for the 

phenomena widely observed in skill acquisition research (Section 1.3.3).  

1.3.1 The Three-Stage Model 

In theorizing the process of skill acquisition, Fitts (1964) made the first observation that 

learning a skill seems to consist of three phases, with transitions between stages caused by 
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“gradual shifts in the factor structure of skills, or in the nature of processes (strategies and tactics, 

executive routines and subroutines) employed” (p. 261). This proposition of the “gradual shifts” 

assumed that each learning phase involved distinct cognitive processes. Later, Fitts and Posner 

(1967) summarized the three stages as the cognitive stage, the associative stage, and the 

autonomous stage. Although Fitts and Posner originally proposed the three stages within the 

context of perceptual-motor skill learning, they believed that the same theory applies to the 

learning of cognitive and linguistic skills as well (see Fitts, 1964, p. 243). 

The cognitive stage is characterized by initial slow and controlled performance in which 

learners must encode the skill into some crude form that can produce the target behavior. 

Executing a skill in this stage is mentally taxing because the encoding process heavily relies on 

one’s working memory. Hence, learners are commonly observed to use working memory to 

verbally rehearse information required to execute the skill (i.e., verbal mediation). The necessity 

of this verbal mediation drops out in the associative stage because learners develop direct 

behavioral routines to execute the skill, and this direct route significantly reduces one’s time on 

task. However, the newly developed procedure can be error-prone and variable in its application, 

so it requires further practice to be applied more correctly and efficiently. Eventually, one 

achieves the autonomous stage after a long period of practice applying the direct procedure. At 

this point, the execution of the skill becomes automatic, which means that the skill can be 

performed effortlessly and simultaneously with another task that is cognitively demanding. 

The three-stage model by Fitts and Posner (1967) remained agnostic on the specific 

psychological mechanisms responsible for learning during each stage. Anderson’s Adaptive 

Control of Thought (ACT) theory (Anderson, 1982, 1983b) and its computer-implemented 

cognitive architecture, Adaptive Control of Thought-Rational (ACT-R: Anderson, 2007; 
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Anderson et al., 2004, 2019; Anderson & Fincham, 1994; Anderson & Lebiere, 1998), extended 

the three-stage model by adding cognitive explanations of how learners come to master skills 

through the three stages. A cognitive architecture such as ACT-R is a theory of how human 

cognition learns and organizes knowledge to produce intelligent behaviors (see Anderson, 2007 

for a more extensive treatment of how ACT-R simulates human cognition). In particular, ACT-R 

is specific to account for the acquisition of cognitive skills. In ACT-R, knowledge is represented 

as either declarative knowledge or procedural knowledge. Declarative knowledge is the 

knowledge of factual information (i.e., episodic and semantic knowledge), whereas procedural 

knowledge is the knowledge of how to perform a given skill. ACT-R implements declarative 

knowledge as “chunks” of information (Miller, 1956), and procedural knowledge is represented 

as sets of production rules. A production rule is a primitive rule in the form of a condition-action 

pair (or an IF-THEN conditional, see Table 1.1 below), which encodes a cognitive contingency 

such that when(ever) the condition is met, the action is performed (Anderson, 1982). As 

Anderson (1983b) explained, “[i]f there is one term that is most central to the ACT theory, it is 

‘production’”. The central role of production rules makes ACT-R a rule-based approach. 

Skill acquisition in ACT-R begins with learners gaining declarative knowledge about a 

skill through receiving instruction or observing others acting out the skill. At this initial stage, 

the only way to execute the skill is by engaging general skill-independent procedures (i.e., 

general-purpose production rules), which interpret declarative knowledge and produce the target 

behavior at a rudimentary level. According to Anderson (1983b), there are at least three ways in 

which declarative knowledge can be interpretively used by the general-purpose production rules: 

by (a) faithfully following declarative information that takes the form of direct instruction (e.g., a 

recipe); (b) using general problem-solving algorithms that will work out the skill using general 
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knowledge within a domain (e.g., for unknown arithmetic problems, using general knowledge of 

mathematics); and (c) using analogy-forming procedures that map a declarative representation of 

a previously observed behavior onto a new behavior. The variety in which declarative knowledge 

can be used to guide a behavior creates the flexibility of how human cognition learns in different 

learning environments. The flexibility of learning at this stage is also crucial because a skill 

becomes hard to modify after it is extensively practiced (i.e., the skill specificity, see Section 

1.1.2). This phase of learning corresponds to the cognitive stage in Fitts and Posner’s model. 

While the interpretation of declarative knowledge has the advantage of flexibility, it is 

often a slow and costly process because it requires declarative information to be retrieved from 

long-term memory and maintained in working memory. As a result, learners develop skill-

specific procedures, or procedural knowledge, to optimize their performance. These procedures 

are still production rules, but they are skill-specific so that they can be applied directly, without 

the mediation of interpretive productions. ACT-R implements this process through knowledge 

compilation, a process subsuming two mechanisms: composition and proceduralization 

(Anderson, 1986; 1987; Neves & Anderson, 1981). Composition collapses sequences of 

production rules into one larger production, and proceduralization creates a novel procedure that 

is specific to the skill being practiced. The new, proceduralized production no longer requires the 

interpretation of declarative knowledge because the production directly incorporates declarative 

knowledge in its procedure. Table 1.1 illustrates the process of knowledge compilation for 

learning how to produce the word broke as the irregular past tense form of the word break (cf. 

Taatgen & Anderson, 2002). Declarative knowledge here is the fact that (a) some words take a 

specific irregular form for the past tense and (b) the past tense form of break is broke.  
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Table 1.1. Production rules to produce the past tense form of the word break. 
Interpretive use of declarative knowledge 

P1: IF the goal is to produce a past tense of a word AND there is a specific form for 
the past tense of the word 
THEN set the answer of the goal to retrieving the specific form. 

P2: IF the goal is to retrieve a specific form for the past tense of a word AND the word 
is break 
THEN set the answer of the goal to retrieving the past tense form of break. 

P3: IF the goal is to retrieving the past tense form of break AND the past tense form of 
break is broke 
THEN set the answer of the goal to retrieving broke. 

Macro-production created by composition 
P4: IF the goal is to produce a past tense of a word AND there is a specific form for 

the past tense of the word AND the word is break AND the past tense form of the 
word is broke 
THEN set the answer of the goal to retrieving broke. 

Skill-specific production created by proceduralization 
P5: If the goal is to produce the past tense form of the word break 

THEN set the answer of the goal to retrieving broke. 
 

Initially, producing the past tense form broke requires three production rules that need to 

be executed serially (i.e., P1→P2 →P3). However, composition collapses the three productions 

into one larger macro-production, and this process greatly reduces one’s time on task because 

what used to take three productions is now done by a single production. Proceduralization further 

takes the macro-production and develops a novel production that is skill-specific (producing 

broke as the past tense of break). Notice that the two pieces of declarative knowledge, (a) there 

is a specific form for the past tense of the word and (b) the past tense form of the word is broke, 

have dropped out in the new production. This is how proceduralization develops procedural 

knowledge based on declarative knowledge, thereby obviating the necessity of learners’ reliance 

on working memory. Assuming that automatic behaviors are ones that do not entail attention (as 

one aspect of automaticity: Schneider & Chein, 2003; Shiffrin & Schneider, 1977), 

proceduralization is what drives automaticity. The process of knowledge compilation is a 

transitional stage during which one relies on both declarative and procedural knowledge. Hence, 

this phase of learning corresponds to the associative stage in Fitts and Posner’s model. 
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Later, compiled productions undergo the process of tuning. Production tuning is a 

piecemeal process that increases or lowers the probability of a given production rule being 

chosen as the method for the skill (see also Rumelhart & Norman, 1978 for a review of tuning as 

part of the fundamental human learning mechanisms). Often, there are multiple ways to carry out 

the same skill, and learners must search for the best method to perform the task. To achieve the 

optimal balance between the cost and benefit of finding the solution, the search process must be 

both correct and fast. Anderson, Kline, and Beasley (1980) proposed three subprocesses (of 

tuning) to make this possible: generalization, discrimination, and strengthening. While 

generalization makes a production rule broader in its applicability, discrimination makes the 

scope of the production narrower. Strengthening controls the probability of selecting among 

different production rules such that more useful rules are strengthened and poorer rules are 

weakened. Although its process is more gradual than that of knowledge compilation, tuning also 

increases one’s speed in performing the skill. Note that knowledge compilation is a qualitative 

change in the underlying cognitive processes, whereas tuning is a quantitative change that 

incrementally optimizes the same process. Additionally, ACT-R also allows declarative 

strengthening, which increases the accuracy and the speed of retrieving declarative knowledge 

per se. In Fitts and Posner’s model, this phase corresponds to the autonomous stage. 

Before concluding the review of the three-stage model, it is worth clarifying the 

distinction between the concept of within-stage speedup and between-stage speedup. When one 

increases the speed to perform a skill, an individual can become faster either within or between 

stages. The within-stage speedup results from improving the same psychological process; that is, 

by a continual quantitative change in the underlying mechanism. In contrast, the between-stage 

speedup is caused by qualitative changes by shifting the underlying cognitive process (or 
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strategy) to a more efficient process. The major prediction of the three-stage model is that a 

majority of the performance speedup is ascribed to between-stage speedup (see Tenison & 

Anderson, 2016 for empirical support). This is because the between-stage speedup, such as 

knowledge compilation, not only increases the speed of performance but also makes its 

procedures more efficient. 

1.3.2 Rival Models of Skill Acquisition 

The Race model is an item-based approach to the mechanism of skill acquisition and the 

development of automaticity that has been cited as widely as the ACT theory in the cognitive 

psychology literature. The model was proposed by a cognitive psychologist, Gordon Logan, as 

part of the instance theory of automatization (with a larger sense than defined in this dissertation) 

(Compton & Logan, 1991; Lassaline & Logan, 1993; Logan, 1988, 1992, 2002). The Race model 

claims that each experience of carrying out a skill becomes encoded in memory as an “instance”. 

Although the model does not explicate what constitutes an instance, it is considered a type of 

memory trace that contains contextual and task-specific cues that are relevant to the skill. The 

more instances learners accrue in memory, the faster one’s performance becomes. Initially, 

learners perform a skill using general problem-solving algorithms (e.g., directly calculating an 

answer for an arithmetic problem), but they begin to rely more on retrieving past solutions as the 

number of instances increases with practice. The model assumes that algorithm and retrieval run 

in parallel; initially, algorithm strategies outpace retrieval, but the gradual accumulation of 

instances (with themselves racing against each other) speeds up the retrieval process and 

eventually takes over. A skill is thus considered automatic “when it is based on single-step 

direct-access retrieval of past solutions from memory” (Logan, 1988, p. 493). Note that the 

model does not conceive any speedup in the use of algorithms. Rather, any reductions in 
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performance latency must be attributed to a single mechanism of accumulating instances. 

Because the same cognitive state (i.e., the parallel execution of algorithmic processing and 

memory retrieval) is maintained throughout the entire process of skill acquisition, the Race 

model is a one-stage model that conceptualizes the development of automaticity as a quantitative 

change (see also Section 1.3.3 for conceptualizing the Race model as a one-stage model).  

While the Race model accounts for the practice-induced speedup using the process of 

accruing instances, the Component Power Laws (CMPL) Theory offers a slightly different 

mechanism of skill acquisition (Rickard, 1997, 1999, 2004; see also Bajic & Rickard, 2011 for a 

recent treatment of the theory). The CMPL theory maintains that the transition from algorithms 

to memory retrieval drives the development of automaticity. However, it does not assume that 

the two processes run in parallel. Rather, learners choose between the two from the outset, either 

applying algorithms or retrieving the answer from memory. More importantly, the CMPL theory 

suggests that the speedup not only applies to the memory retrieval process (as in the Race model) 

but also to the execution of algorithmic processing. In the CMPL theory, the speedup in skill 

execution is driven by two forces. On the one hand, learners learn to behave more efficiently by 

shifting the task strategy from algorithms to direct memory retrieval (between-stage speedup). 

On the other hand, algorithmic processing or retrieval process can themselves be accelerated 

(within-stage speedup). This is why Rickard (1997, 1999) proposed that two power functions, 

one for algorithm use and the other for memory retrieval, better account for experimental data 

(see Section 1.1.1). This makes the CMPL theory a two-stage model. 

In summary, existing models of skill acquisition offer some insights into how skill 

acquisition may occur in learning of cognitive skills. ACT-R, the Race model, and the CMPL 

theory all share that skills are initially performed using general-purpose mechanisms, but later, 
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skill-specific procedures (or specific memory instances) overtake as learners accumulate 

experience using the skills. The Race model conceives the development of automaticity as a 

single quantitative change (i.e., a single stage). The CMPL theory conceptualizes two stages, 

with the first stage characterized by performance based on general algorithms and the second 

stage marked by direct memory retrieval. ACT-R, on the other hand, advocates three stages, with 

the first stage characterized by reliance on declarative knowledge (the cognitive stage), the 

second marked by a mixture of both declarative and procedural knowledge (the associative 

stage), and the third dominated by procedural knowledge (the autonomous stage). Qualitative 

changes in the underlying cognitive processes drive the progression through the skill acquisition 

stages; for the CMPL theory, it is the shift from problem-solving algorithms to memory retrieval, 

and for ACT-R, the first shift is caused by knowledge compilation (by which procedural 

knowledge is developed) and the second is marked by the end of knowledge compilation, at 

which point only the long process of production tuning remains. Acceleration in skill execution 

is driven by two forces. On the one hand, learners accelerate within stages by gradually refining 

the same process. On the other hand, they can optimize the performance between stages by 

making qualitative changes to the underlying cognitive processes. The latter not only increases 

the speed of performance but also makes its procedures more efficient. 

1.3.3 The Explanatory Power and Empirical Predictions of the Skill Acquisition Models 

The power-law of practice and the skill specificity are two empirical phenomena that are 

widely observed in skill acquisition research (see Section 1.1). The three theoretical models 

reviewed previously provide unique explanations of how the proposed learning mechanisms give 

rise to the phenomena. The Race model describes that the power-law of practice results from two 

counteracting factors (see Logan, 1988, p. 496). As learners accumulate instances in memory, 
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there are more opportunities to achieve extreme values of low performance times, thereby 

creating the speedup in performance. At the same time, the more extreme values they observe, 

the lower the likelihood of achieving even faster performance times, so the speedup decelerates. 

Since the CMPL theory is basically an extension of the Race model, it makes the same prediction 

for the power-law of practice. Interestingly, neither the Race model nor the CMPL theory 

provides an explicit description of why extensively practiced skills become less available for 

transfer. In this light, ACT-R offers higher explanatory power because it accounts for both the 

power-law of practice and the skill specificity. 

Concerning the power-law of practice, Anderson and Fincham (1994) stated that the 

initial reduction in performance times “would reflect the compilation of the production rule [i.e., 

knowledge compilation], and the remaining power-raw learning would reflect the accumulation 

of production strength [i.e., production tuning]” (p. 1324). Knowledge compilation leads to 

abrupt changes in one’s performance times because it fundamentally restructures the underlying 

mechanism of performance (see Section 1.3.1 and Table 1.1). In contrast, production tuning is a 

pure optimization process, so its benefit diminishes as the performance gradually approaches the 

optimal level. ACT-R further explains that the skill specificity results from proceduralization and 

production tuning (Anderson & Fincham, 1994; Anderson & Lebiere, 1998; Singley & 

Anderson, 1989). Once production rules are proceduralized, they become specific to the skill 

being practiced. Furthermore, production tuning adjusts the applicability of the production rules 

so that they apply in specific conditions or contexts only. 

More importantly, to the aim of this dissertation, the three theoretical models propose 

opposing hypotheses regarding the number and the nature of skill acquisition stages. Figure 1.3 

summarizes how each model accounts for the practice-induced speedup in relation to the number 
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and the nature of skill acquisition stages. Notice that the number of stages, and hence the number 

of distinct cognitive states, corresponds to the number of power functions required to account for 

the performance speedup (see Section 1.1.1; Delaney et al., 1998; Rickard, 1997, 1999; Tenison 

& Anderson, 2016 for findings that each cognitive phase requires separate power functions). The 

Race model (the top panel) attributes any reductions in performance times to the mechanism of 

instance accumulation. Since there is only one mechanism improving the same cognitive state 

(i.e., the parallel implementation of problem-solving algorithms and memory retrieval), the 

model predicts that a single power function best fits experimental data. Hence, any speedup 

occurs within a single stage as a continuous quantitative change in the underlying mechanism 

(Logan 1988, 1992). 

 

 
Figure 1.3. Model predictions of practice-induced speedup. 

Note. The top panel shows the prediction from the Race model, the middle panel shows the 
CMPL theory, and the bottom panel shows ACT-R. 
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In contrast, the CMPL theory (the middle panel) allows for the speedup both within and 

between stages. Algorithmic processing and memory retrieval themselves can be accelerated 

(i.e., within-stage speedup), but more speedup is expected by shifting the cognitive processes 

(i.e., between-stage speedup). Therefore, the CMPL theory incorporates both quantitative and 

qualitative changes in the underlying mechanism. Two power functions, one for algorithmic 

processing and the other for memory retrieval, are hypothesized to best account for latency data 

(Rickard, 1997, 1999). Lastly, ACT-R (and Fitts and Posner’s theory of learning) (the bottom 

panel in Figure1.3) predicts that skill acquisition is a three-stage process. Each phase (i.e., the 

cognitive, associative, and autonomous stage) requires separate power functions to account for 

the practice-induced speedup. Learners can increase the speed of performance both within and 

between stages, but the largest drops in performance times take place between stages by 

transitioning from the cognitive stage to the associative stage and from the associative to the 

autonomous stage (Anderson, 1982, 1983b; Tenison & Anderson, 2016).  

Testing these model-based implications in empirical research is crucial for the 

scholarship of skill acquisition research because it allows researchers to pit rival theoretical 

models against each other. Recently, a line of research in cognitive psychology has attempted to 

test the model predictions within the framework of cognitive modeling (i.e., using computer and 

mathematical simulations to model human cognition). In particular, Tenison and Anderson 

(2016) (also Tenison et al. 2016) conducted an innovative study to investigate the tenability of 

the three models within cognitive skill acquisition. In the next section, I will turn to such line of 

research as it provides a model approach for how theoretical models of skill acquisition can be 

tested in L2 contexts. 
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1.4 Testing the Models of Skill Acquisition 

Figure 1.3 in Section 1.3.3 showed that testing rival models of skill acquisition boils 

down to the question of whether the practice-induced speedup is caused by quantitative changes 

or qualitative changes in the cognitive processes underlying skill performance. The number of 

learning stages (or the number of distinct cognitive states) corresponds to the number of power 

functions required to account for latency data. However, what does it mean exactly to fit a power 

function to each stage of learning? Analytically, the following updated form of the power 

function can be used to test the number of learning stages: 

𝑇(,* = I + 𝛽(𝑗!" 

In addition to the basic form of the power function discussed in Section 1.1.1 (i.e., 𝑇 =

I + 𝛽N!"), this formula incorporates two subscripts, 𝑖 for each learning stage and 𝑗 for each 

practice trial. Hence, 𝑇(,* denotes the time to perform a skill in the stage 𝑖 on the trial 𝑗, and 𝛽( 

indicates the slope of the power function specific to each learning stage. Hence, the number of 

learning stages is represented as the number of power-function slopes that are estimated. For 

instance, the Race model requires a single slope (𝛽) because it assumes skill acquisition within a 

stage. In contrast, the CMPL theory and ACT-R claim multiple learning stages, each of which 

requires a different slope parameter. In (linear) regression modeling, this is analogous to having 

varying slopes for learning stages or treating the stages as separate dummy-coded predictor 

variables (e.g., 𝑦 = 𝑎 + 𝑏+,-./0 + 𝑏+,-./# + 𝑏+,-./& + 𝜀). In this light, testing the three theoretical 

models entails evaluating the plausibility of different power function models that incorporate 

varying numbers of slope parameters. 

One criticism against the power-law of practice is that the power function may not apply 

to individual data (see Section 1.1.1). Traditionally, skill acquisition researchers have applied a 
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power function to aggregated data after averaging raw data across individual participants and 

items (e.g., Anderson, 1981; Logan, 1988; MacKay, 1982; Newell & Rosenbloom, 1981). 

However, this practice of (only) fitting a single function over the entire sample makes an 

unrealistic assumption that individual learners become faster at the same rate and that every 

learner transitions to subsequent stages after the same amount of practice. The ideal method thus 

requires a type of statistical models that enables researchers to fit a power function to individual 

data points while at the same time evaluating the feasibility of the power-function model at the 

group level. Furthermore, unaggregated data are inherently subject to (more) variability, so the 

method must be able to detect whether the trial-by-trial speedup is due to sheer performance (or 

sampling) error or to systematic learning effects triggered by practice.  

One candidate means to avoid modeling aggregated data is to apply a class of multilevel 

power-function models that incorporate varying intercepts and slopes for participants and items 

(e.g., mixed-effects models) (see Gelman & Hill, 2007 for how). The estimation of participant- 

and item-specific parameters makes it possible to test whether the form of the power function 

dictated by theoretical models makes sense at every level of analysis (i.e., participants, items, 

and the entire group); hence, it enables researchers to examine the number of skill acquisition 

stages at the individual and the group level within one coherent model. However, one critical 

limitation of the method is that it provides too little information regarding how fast individual 

learners move through learning stages or which stage they may reside in after a given number of 

practice trials. In a recent study of cognitive skill acquisition, Tenison and Anderson (2016) took 

advantage of a technique called hidden Markov modeling to overcome the limitation. The hidden 

Markov model (HMM) is a stochastic time-series model consisting of a Markov chain, a 

mathematical system that represents a sequence of states. A Markov chain makes an assumption 
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that a given state is only dependent on the previous state (i.e., the Markov assumption). The 

HMM is a special type of Markov chain that treats the actual states as hidden (and hence latent) 

but whose probability can be estimated based on observed data. It is most commonly used as a 

stochastic pattern-recognition method in computational linguistics, such as research in speech 

recognition, where the HMM is used to segment and identify words based on temporal structures 

in speech as well as a database of various sounds in a variety of languages (Rabiner, 1989; see 

Chan, Verspoor, & Vahtrick, 2015 for using a HMM in L2 research). 

Figure 1.4 provides a visual illustration of the structure of a HMM applied to skill 

acquisition data (see Section 2.3.2 for the mathematical rendition of the HMM used in this 

dissertation study). In this example, Markov states represent two learning stages. Using a vector 

of RTs as the dependent variable (RT1–RT5), the HMM provides two types of likelihood: (a) 

transition probability, the probability of individuals eventually moving from one state to another 

(i.e., from State 1 to State 2), and (b) emission probability, the probability of a data point being 

generated by a given state. Assuming two learning stages, the transition probability in Figure 1.4 

means that learners eventually transition to the second stage with the probability of .96. In 

contrast, the emission probability of RT5 in State 2, for example, is .90, which means that with 

the probability of .90, learners have already transitioned to the second stage at the fifth practice 

trial. Of particular interests to the current discussion is the emission probability because it can be 

used as the estimate of which learning stage participants reside in after a particular number of 

practice trials. The estimation of the HMM parameters considers every trajectory of learners 

transitioning to subsequence stages after every number of practice trials and provides the relative 

likelihood of the trajectories given the data. 
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Figure 1.4. The illustration of a hidden Markov model applied to skill acquisition data. 

 

In the study, Tenison and Anderson (2016) examined how learners developed fluency in 

an arithmetic task called a Pyramid problem. A typical item of the Pyramid problem takes the 

form of “base$height” where the base is the starting number, and the height indicates the number 

of terms to be summed, with each term being less than the previous one. For instance, the answer 

for the problem 8$3 can be found as 8 + 7 + 6 = 21. In the study, participants (N = 23) practiced 

solving 21 unique problems over six blocks of 36 trials. Of the item set, three items were chosen 

as practice problems that were repeated 36 times, while the remaining 18 problems were 

practiced only twice as novel problems. The researchers applied a HMM to the latency history of 

each individual participant on each practice item. As deliberated in Section 2.3.2, the HMM 

adopted by Tenison and Anderson (2016) was a unique HMM model that yielded the probability 

of each participant being in a given stage by considering how well the data are consistent with a 

power function that incorporated varying numbers of slope parameters (e.g., the CMPL theory 

requires two slopes). Since the number of slopes corresponds to the number of learning stages 
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(see Section 1.3.3), the number of HMM states also corresponds to the number of slopes in the 

power function. Comparing HMMs that assumed one to five states, Tenison and Anderson found 

that the three-state HMM showed the best fit, while the one- and two-state HMMs were 

substantially less consistent with the data. 

Tenison and Anderson (2016) hypothesized that the three stages identified by the HMM 

analysis corresponded to the cognitive, the associative, and the autonomous stage, following the 

three-stage theory by Fitts and Posner (1967). Specifically, they drew on the learning 

mechanisms proposed by ACT-R and suggested that the first stage involved a sequence of direct 

calculations to find the answer, the second stage involved an effortful retrieval of the past 

solution from memory, and the third stage involved an automatic recognition of the problem 

such that the solution is produced as a reflex. To validate the prediction, Tenison and Anderson 

collected neural signatures from an functional magnetic resonance imaging (fMRI) and 

examined how brain activation patterns changed as the participants transitioned from the first to 

the second stage and from the second to the third stage. The researchers conducted a region of 

interest analysis on specific regions that were hypothesized to be engaged in skill acquisition of 

the Pyramid problem: (a) the left horizontal intraparietal sulcus (HIPS) for numerical processing 

in the first stage, (b) the left lateral inferior prefrontal cortex (LIPFC) for effortful retrieval in the 

second stage, and (c) the left fusiform gyrus for visual recognition of stimuli and the left motor 

cortex for motor responding in the third stage. A regression analysis of the fMRI data showed 

that the left HIPS was more strongly activated when the participants were in the first stage than 

in the second stage, the left LIPFC was more actively involved in the second stage than in the 

third stage, and the left fusiform gyrus and the left motor cortex were most strongly activated in 

the third stage. These findings, combined with the results of the HMM analysis, provided 
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convincing evidence that cognitive skill acquisition (at least of the Pyramid problem) is a three-

stage process and that the cognitive process involved in each of these three stages is consistent 

with the predictions from Fitts and Posner (1967) and ACT-R (Anderson, 2007; Anderson et al., 

2004, 2019; Anderson & Lebiere, 1998). 

The study by Tenison and Anderson (2016) is one of the rarest studies in cognitive 

psychology that attempted to formally test rival theoretical models of skill acquisition using an 

appropriate analytical method to overcome the issues that pervaded in previous research (e.g., 

applying a power function to individual data points and identifying the speedup of performance 

due to mere performance error or systematic learning effects). In SLA, the skill acquisition 

theory has been one of the major theoretical approaches to explaining the process of L2 learning 

(DeKeyser, 2020; Lyster & Sato, 2013; Y. Suzuki, 2022). While researchers often cite and adopt 

various theoretical models of skill acquisition to account for L2 phenomena, the validity of the 

models is rarely tested vis-à-vis L2 learning. This gap in the literature thus calls for an empirical 

study that adopts the research design and the analytical method of Tenison and Anderson (2016) 

in L2 learning contexts. The aim of my dissertation study is to do just that. However, before 

introducing the study, it is worthwhile to review the available literature on skill acquisition in L2 

learning. The literature on L2 skill acquisition mostly concerns (a) providing evidence for the 

parallel nature of L2 learning and skill acquisition in general and (b) investigating individual 

differences in L2 skill acquisition and their cognitive correlates. 

1.5 Second Language Skill Acquisition 

It is clear from the outset that L2 learning can be more complex than typical skill 

acquisition studied in cognitive psychology (e.g., arithmetic tasks such as the Pyramid problem) 

because successful performance in L2 requires the coordination of multiple levels of linguistic 
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knowledge (e.g., phonology, vocabulary, morphosyntax, and pragmatics). Furthermore, L2 

learning can take place in varying conditions (e.g., classroom learning through instruction vs. 

naturalistic learning from mere exposure or usage), which can engage different learning 

processes (e.g., intentional vs. incidental learning). It is thus no surprise that different approaches 

to L2 learning espouse different models of skill acquisition. For instance, from a usage-based 

perspective, N. Ellis (2002) accounted for the relationship between automaticity and frequency 

effects in language processing using Logan’s (1988) instance theory (of which the Race model is 

a part). Presumably, this is due to the theory being an instance-based approach, which is 

compatible with the primary role of item-based learning in usage-based linguistics. In contrast, 

DeKeyser’s (1997) seminal study on automatization of L2 morphosyntax and his accounts of L2 

skill acquisition are based on the concepts in ACT-R (e.g., production rules and 

declarative/procedural knowledge) (see DeKeyser, 2020). Individual models (or parts thereof), 

therefore, should be useful to different extents, depending on different conditions and linguistic 

targets of learning (DeKeyser, 2001). The instance theory, for instance, may be useful to 

explaining incidental learning of vocabulary items, whereas ACT-R may be informative to 

account for learning of morphosyntax under instructed settings. 

To date, there has been considerable evidence in SLA that points to the parallel nature of 

L2 learning and (cognitive) skill acquisition (e.g., De Jong, 2005; DeKeyser, 1997; Ferman et al., 

2009; Li & DeKeyser, 2017; Robinson, 1997; Robinson & Ha, 1993; Y. Suzuki & Sunada, 

2020). In this section, I review and discuss the existing literature on L2 skill acquisition. In 

Section 1.5.1, I focus on evidence for conceptualizing L2 learning as a type of skill acquisition. I 

achieve this aim by specifically discussing available evidence for the power-law of practice and 

the skill specificity in L2 contexts. In Section 1.5.2, I focus on individual differences in L2 skill 
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acquisition and what kinds of cognitive correlates predict the individual differences. Such 

research has the potential of revealing what cognitive mechanisms underlie L2 skill acquisition. 

1.5.1 Evidence for Second Language Skill Acquisition 

The most extensive evidence for L2 skill acquisition comes from the seminal study by 

DeKeyser (1997). In the study, participants (N = 61) longitudinally learned and practiced how to 

comprehend and produce an artificial language called Autopractan for over eight weeks. 

DeKeyser specifically posed three hypotheses to find evidence for L2 skill acquisition: (a) RT 

and error rates (of performance) would decrease as the result of practice; (b) the decrease in RT 

and error rates would follow a power function; (c) resulting competence would become skill-

specific such that performing in a reverse condition (i.e., comprehending the language when one 

extensively practiced production or vice versa) leads to more errors and slower performances. 

Prior to practice, participants were taught vocabulary and grammar rules of the language by 

means of a direct presentation, accompanied by an explicit explanation of how sentences in 

Autopractan can be constructed using the learned words and four case markers. Subsequently, 

the participants engaged in 15 sessions of comprehension and production practice (1,440 trials in 

total, with 720 trials for comprehension and production practice). 

An observation of RT and error data showed that the decrease in RT clearly followed the 

power-law of practice (𝑅12.(4)12.	(7)#  = .974 and .966 for comprehension and production, 

respectively), even though the improvement in error rates was less consistent with the power 

function (𝑅12.(4)12.	(7)#  = .613 and .651 for comprehension and production, respectively). 

Additionally, practice led to linguistic competence that was skill-specific in that when learners 

were tested during the final practice session, they made more errors and performed noticeably 

slower in the opposite mode of language use (i.e., comprehension vs. production). Interestingly, 
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DeKeyser also implemented a within-participant manipulation of single-task and dual-task 

conditions in the practice tasks so that in half of the practice trials, the participants engaged in a 

secondary task while simultaneously carrying out the primary task of language practice. As 

reviewed in Section 1.2.1, one indication of automaticity is that learners get little interference 

from performing a secondary (cognitively demanding) task. The results showed that participants 

initially performed slower and made more errors in the dual-task condition, but the difference 

between the two conditions disappeared in the final practice session. This finding, together with 

the evidence for the power-law of practice and the skill specificity, led DeKeyser to conclude 

that “the learning of second language grammar rules can proceed very much in the same way that 

learning in other cognitive domains, from geometry to computer programming, has been shown 

to take place” (p. 214). 

Since DeKeyser (1997), many L2 studies have attested the power-law of practice and the 

skill specificity, but there is imbalance in the supporting evidence. Much fewer studies have 

explicitly tested the power-law of practice than the skill specificity (e.g., N. Ellis & Schmidt, 

1998; Ferman et al., 2009; Robinson, 1997) probably because the power-law, as it is a scientific 

law, is already well accepted in SLA, or the exact form of how learners increase the speed or the 

accuracy of performance is not sometimes of primary interests to L2 researchers. Despite the 

limitation, Table 1.2 summarizes the available evidence for the power-law of practice in L2 

learning, especially concerning the speed of performance (i.e., log(RT)~ log(practice)). 

Although the exact fit of a given power function varies from one study to another, it is clear that 

when learners are provided with a sufficient amount of practice (i.e., excluding Robinson, 1997, 

who only had 55 practice trials, which is usually not enough for automatization to take place), 

the applicability of the power function is robust and consistent. Furthermore, the evidence seems 
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to hold across different types of linguistic target, whether it is the entire language, 

morphosyntactic structures, or vocabulary items. 

 
Table 1.2. Summary of previous L2 research on the power-law of practice. 

Study N R2 Trials Target 
DeKeyser (1997) 61 .96-.97 720 Language 
Robinson (1997) 60 .12 55 Grammar 
N. Ellis & Schmidt (1998) 7 .74-.97 344 Language 
Ferman et al. (2009) 8 .80-.95 1904 Language 
Cornillie et al. (2017) 23 .97-.98* 264 Grammar 
Hui (2020) 35 .98* 160 Vocabulary 
Pili-Moss et al. (2020) 14 .92* 720 Language 
Maie (2021) 40 .94 320 Vocabulary 

Note. N indicates the sample size in the study. * indicates a reanalysis of open-access data or 
descriptive statistics reported in the article. When the study had multiple target grammatical 
structures or modes of language use (i.e., comprehension and production), the number of practice 
trials was divided by the number of targets; however, this was not applied to Hui (2020) and 
Maie (2021), who studied skill acquisition in learning of 16 vocabulary words. “Language” in 
the rightmost column indicates that the participants did not possess any knowledge of the 
language and hence learned and practiced the entire language from scratch. 

 

Conversely, the skill specificity has been captured in many L2 studies, mostly in terms of 

how the learned product of practice transfers to performance in another task or in another domain 

(e.g., Allen, 2000; De Jong, 2005; DeKeyser & Sokalski, 1996; Keating & Farley, 2008; Li & 

DeKeyser, 2017; Morgan-Short & Bowden, 2006; Y. Suzuki & Sunada, 2020; Toth, 2006; 

VanPatten & Cadierno, 1993a, b). This line of research can be traced back to the classic debate 

on the superiority of comprehension versus production practice in facilitating L2 learning. 

VanPatten and Cadierno (1993a, b) and Cadierno (1995) initially showed that comprehension 

practice (labeled as processing instruction in the original studies) led to increase in both 

comprehension and production skills, while production practice (traditional instruction in the 

original studies) only led to development in production skills (see also VanPatten, 2020 for a 

discussion). Later, DeKeyser and Sokalski (1996) pointed out methodological limitations in the 
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previous studies, including an instructional design that unfairly favored input practice groups and 

used a highly narrow operationalization of production practice that was implemented as a type of 

mechanical practice (i.e., practice that can be completed without understanding semantically 

what one is saying) (see DeKeyser, Salaberry, Robinson, & Harrington, 2002 for a more 

theoretical discussion). DeKeyser and Sokalski showed that when such methodological 

limitations are taken into account, both practice types gave rise to the skill specificity: 

comprehension practice is most useful in developing comprehension skills and production 

practice is most effective in developing production skills. A later meta-analysis by Shintani, Li, 

and Ellis (2013) points to the same finding. 

In summary, there is copious evidence for the power-law of practice and the skill 

specificity in L2 learning, hence showing the plausibility of conceptualizing L2 learning as a 

type of skill acquisition. What is lacking, however, is empirical research that tests specific 

models of skill acquisition in L2 contexts. In his review of L2 skill acquisition research, 

DeKeyser (2020) alluded to this fact: “More importantly for our purposes here, not much 

research in the field of second language learning has explicitly set out to gather data from second 

language learners to test (a specific variant of) Skill Acquisition Theory” (p. 88). In the seminal 

study, DeKeyser (1997) held the ACT theory as “[t]he most widely accepted theory on how 

automaticity is brought about” (p. 196). This view is consistent with a contemporary review of 

L2 skill acquisition research (DeKeyser, 2020; Lyster & Sato, 2013; Y. Suzuki, 2022). In 

discussing the external validity of the ACT theory, Anderson (1983b) believed that “all higher-

level cognitive functions are achieved by the same underlying architecture” (p. 261). This claim 

makes language no exception. In fact, Anderson (1983b, Chapter 7) provided examples of how 

the learning principles in ACT-R can be used to explain the process of first language (L1) 
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acquisition, especially focusing on how children come to learn and produce syntactic structures. 

However, as DeKeyser (1997, 2001) pointed out, the application of the ACT theory to L1 

acquisition can be controversial because the theory maintains that all learning must start out from 

declarative knowledge (see Anderson & Fincham, 1994, however, for relenting that not all 

knowledge need to start out in declarative forms). In contrast, L2 learning is (far) more likely to 

involve declarative learning at the initial levels of development (see DeKeyser, 1994, 2017, for 

discussion) especially when learners are adults, and targets of learning are explicitly taught 

through instruction. In this light, L2 learning affords greater compatibility with ACT-R and 

serves as a better place to test its learning theory. Recently, L2 researchers have investigated 

individual differences in L2 skill acquisition and their cognitive correlates (e.g., Li, 2017; Maie, 

2021; Pili-Moss et al., 2020; Y. Suzuki, 2018). Of typical interests to this dissertation study is a 

group of studies that investigated the role of declarative and procedural memory ability in L2 

skill acquisition. Studying the relationship between individual differences in L2 skill acquisition 

and declarative and procedural memory ability has the potential of revealing whether those 

cognitive abilities are involved in L2 skill acquisition and hence testing the applicability of the 

ACT-R learning mechanisms in L2 learning (see DeKeyser, 2012 for a rationale). 

1.5.2 Individual Differences in Second Language Skill Acquisition 

The different learning mechanisms proposed by the Race model, the CMPL theory, and 

ACT-R entail different predictions for cognitive abilities that are active at each stage of skill 

acquisition. The Race model predicts that skill acquisition is a one-stage process, and the 

development of automaticity results from the accumulation of instances. Although the Race 

model does not fully define what constitutes an “instance”, it certainly assumes that an instance 

is “represented as a processing episode” (Logan, 1988, p. 495). Hence, learning must be 
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controlled by cognitive processes that are dependent on declarative memory, given that 

declarative memory subsumes episodic memory (see Eichenbaum, 2017; Squire & Wixted, 

2011). The same reasoning also extends to the CMPL theory in that the transition from the first 

to the second stage is dependent on declarative memory. On the other hand, ACT-R presupposes 

three stages, with the transition from the first to the second stage controlled by declarative 

memory and the transition from the second to the third stage controlled by procedural memory. 

Declarative memory is a long-term memory system that stores factual information such as 

episodic and semantic knowledge. On the other hand, procedural memory is one of the 

nondeclarative memory systems specializing in encoding, storing, and retrieving procedures for 

performing various types of skills. While declarative learning is conceptualized as (primarily) 

conscious, rapid, and categorical, procedural learning is known to be unconscious, incremental, 

and probabilistic (see Eichenbaum, 2017; Squire & Wixted, 2011). 

Drawing on Fitts and Posner’s three-stage theory of learning, Ackerman (1988, 1992) 

made the first attempt in the cognitive psychological literature to theorize and empirically test the 

role of (cognitive) individual differences in skill acquisition. Ackerman posited that three sets of 

cognitive abilities underlie each stage of skill acquisition: 

1. The cognitive state is associated with demands on general intellectual abilities. 

2. The associative stage is associated with demands on perceptual speed abilities. 

3. The autonomous stage is associated with demands on psychomotor abilities. 

General intellectual abilities are cognitive abilities that pertain to declarative, effortful, 

and attentional learning, such as general intelligence, declarative memory, and working memory. 

Perceptual speed abilities are used when one must develop a simple procedure for skill 

performance, including procedural memory, statistical learning ability, and classical 
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conditioning. Finally, psychomotor abilities represent “individual differences predominantly in 

the speed of responding to test items with little or no cognitive processing demands” (Ackerman, 

1988, p. 291). The psychomotor abilities differ from the perceptual speed abilities in that they 

only concern psychophysical limitations in the subject’s motor programming, which are largely 

independent of information processing. In a series of experiments, Ackerman and his colleagues 

examined the degree of correlations between the latency of skill execution and the three sets of 

abilities at each block of practice. They found evidence for a dynamic interplay of the cognitive 

abilities and how each becomes more or less dominant depending on the learning stages (e.g., 

Ackerman, 1987, 1988, 1992; Ackerman & Cianciolo, 2000; Ackerman et al., 1995). 

In the field of SLA, only a few studies of individual differences explicitly adopted the 

skill acquisition theory as the primary theoretical framework (see Li, 2017; Maie, 2021; Pili-

Moss et al., 2020; Y. Suzuki, 2018). However, there is an independent line of research that has 

investigated the role of two long-term memory systems, declarative and procedural memory, in 

accounting for individual differences in L2 achievement (e.g., Faretta-Stutenberg & Morgan-

Short, 2018; Hamrick, 2015; Morgan-Short et al., 2014; Pili-Moss et al., 2020; see Buffington & 

Morgan-Short, 2019 for a review). Recent SLA research has collectively shown that L2 learning 

(especially for adults) is initially supported by declarative memory and later dominated by 

procedural memory (see Hamrick et al., 2018 for a meta-analysis). Although this is consistent 

with what ACT-R would predict, these studies were conducted independently of the L2 skill 

acquisition research. Rather, Ullman’s (2004, 2016, 2020) declarative and procedural (D/P) 

model served as the guiding framework. The D/P model is a neurobiologically motivated model 

of language, which claims that declarative and procedural memory underlie the learning, 

representation, and retrieval of different types of linguistic knowledge. Specifically, declarative 
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memory supports learning and using L2 lexical items across all levels of proficiency, but for 

grammar, it is only responsible for the initial stages of learning, and procedural memory takes 

over as learners practice and develop proficiency. There is recent evidence in SLA that the use of 

vocabulary knowledge also involves procedural memory (Maie, 2021), but the general idea of 

initial reliance on declarative memory and the later involvement of procedural memory is 

consistent with the learning mechanisms in ACT-R. 

While many have already examined the role of declarative and procedural memory in L2 

achievement, only a handful investigated their role in developing L2 automaticity (Li, 2017; 

Maie, 2021; Pili-Moss et al., 2020; Y. Suzuki, 2018). The available evidence, however, seems to 

favor the prediction from ACT-R and the D/P model. For example, Pili-Moss et al. (2020) 

investigated how the two memory systems predicted the accuracy and automaticity of 

comprehending and producing a newly learned artificial language over extensive practice 

sessions (see also Morgan-Short et al., 2014 for details). Concerning automaticity 

(operationalized as the CV of RT), the researchers found a three-way interaction effect of 

practice sessions, declarative memory, and procedural memory, such that when the practice 

sessions were divided into three stages, procedural memory was predictive of automaticity at the 

two later stages, but this was contingent on whether learners had a higher declarative learning 

ability. Given the declarative-procedural transition proposed in ACT-R and the D/P model, this 

result seems reasonable as the transition becomes impossible if learners lack any declarative 

knowledge to proceduralize. However, this study did not collect RT data for production practice 

and only addressed skill acquisition specific to comprehension skills. The researchers, 

furthermore, divided practice blocks into three stages on an arbitrary basis, which precluded 

them from contrasting claims about the number and the nature of skill acquisition stages. 
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The current dominant view in SLA is to regard L2 skill acquisition as a three-stage 

process. However, the theory must be formally tested in L2 contexts before one can put trust in 

the skill acquisition theory (and variants thereof) as applied to L2 learning. This is critical 

because the three-stage model (or part thereof) is already represented in many subdomains of 

SLA (e.g., language instruction: DeKeyser, 1998; 2001; Lyster & Sato, 2013; language 

assessment: ACTFL, 2012; Council of Europe, 2020), but the model itself is currently only 

theoretical and lacks empirical support. In this dissertation research, I investigated the number 

and the nature of skill acquisition stages in L2 learning. The number of skill acquisition stages 

was tested by adopting the analysis methodology of Tenison and Anderson (2016) in an 

empirical study of L2 learning that longitudinally examined how L2 learners developed accuracy 

and fluency in a novel language as a result of practice. The nature of stages, or distinct cognitive 

states active at each stage of learning, was tested by adopting the research design of those L2 

studies that investigated the role of cognitive individual differences in L2 skill acquisition (e.g., 

Maie, 2021; Pili-Moss et al., 2020; Y. Suzuki, 2018). Following the theoretical model of 

individual differences in cognitive skill acquisition by Ackerman (1988, 1992) and the previous 

research on the role of declarative and procedural memory in L2 learning, I elected declarative 

memory, procedural memory, and psychomotor ability as the candidate cognitive abilities. 

Hence, by bringing together the three lines of research in SLA and cognitive psychology, the 

study attempted to provide the first direct evidence for (or against) the influential three-stage 

model of L2 skill acquisition. In the next chapter, I describe the research and analytical design of 

the study, including the research questions and hypotheses, methods, procedure, and analysis. 
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CHAPTER 2: THE CURRENT STUDY 

2.1 Research Questions and Hypotheses 

The overarching goal of the study was to test the validity of the three-stage model of skill 

acquisition in the context of L2 learning. If, as Anderson (1983b) claimed, “language is cut from 

the same cloth as the other cognitive processes” (p. 261), the process and the mechanisms of L2 

learning must be explained by the cognitive models of skill acquisition reviewed in the last 

chapter, including the three-stage model. To investigate this claim, I conducted a language 

learning experiment in which participants deliberately learned and practiced a novel foreign 

language for an extended period of time. I asked the following questions for the study: 

Research Question 1: How many stages of skill acquisition, each characterized by distinct 

cognitive states for learning and consolidation, do L2 learners go through while learning 

and practicing a novel miniature language for an extended period of time? 

Research Question 2: Which cognitive abilities, declarative memory, procedural memory, 

and psychomotor ability, are implicated at each stage of skill acquisition? 

Research Question 3: Do the results for the number (RQ1) and the nature (RQ2) of skill 

acquisition stages in L2 learning differ between comprehension and production of the 

target language? 

I hypothesized that L2 learning consists of three stages, given the dominant view of L2 

skill acquisition as a three-stage process (RQ1) (DeKeyser, 2020; Lyster & Sato, 2013; Y. 

Suzuki, 2022). Assuming that the three-stage model best encapsulates L2 skill acquisition, I 

predicted that individual differences in declarative memory, procedural memory, and 

psychomotor ability would manifest themselves at the first, second, and third stage of learning, 

respectively (RQ2). This is to follow Ackerman’s (1988, 1992) theory and predictions based on 
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ACT-R and the D/P model. Furthermore, because learners in this study were trained on an entire 

language, beginning with explicit-deductive instruction on vocabulary items and 

morphosyntactic rules, I expected that the learning mechanisms proposed in ACT-R would show 

the highest consistency with how learners learn to comprehend and produce the target language 

(DeKeyser, 1997, 2001). Although there is good evidence that procedural knowledge for 

comprehension skills does not transfer well to production skills (or vice versa) (De Jong, 2005; 

Li & DeKeyser, 2017; Y. Suzuki & Sunada, 2020), the mechanisms underlying L2 skill 

acquisition must be identical regardless of the mode of language use. Hence, the same (or at least 

similar) results should be observed for comprehension and production of the language (RQ3). 

2.2 Methods 

2.2.1 Participants 

Seventy-three participants whose L1 was English were recruited to participate in the 

study. In total, eight participants were excluded from the analysis (i.e., 10.75% attrition) because 

they either did not complete the entire study (i.e., six data collection sessions) or provided 

responses that were psychophysically implausible for the experimental tasks at hand. For 

instance, one participant produced responses with RT lower than 300 milliseconds (ms) in 

71.30% (1,004/1,408 trials) of the final session of production practice. With the mean accuracy 

of 54.75%, I deemed that this participant did not pay close attention to the task because L1 

speakers, whose processing is highly automatized, take at least 300 ms to recognize a word and 

then manually produce a response (Jiang, 2012). After discarding data from such participants, the 

final sample consisted of 65 participants (46 female, 14 male, and 5 non-binary or not specified) 

with a mean age of 20.35 years old (SD = 2.61, Min = 18, Max = 30). Additionally, five 

participants were excluded for production data because they did not properly perform production 
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tasks in terms of the accuracy and the speed of performance (while their performance on 

comprehension tasks did not pose a problem). Hence, the dataset for production practice only 

consisted of 60 participants. The sample size is comparable to that of L2 skill acquisition 

research in general (e.g., De Jong, 2005 with N = 59; DeKeyser, 1997 with N = 61; Robinson, 

1997 with N = 60)  

Due to the nature of the target language, I only invited those participants who had not 

learned or studied any case-marking languages, such as German, Greek, Korean, Russian, and 

Turkish. On average, the participants knew 1.2 additional languages (SD = 0.79, Min = 0, Max = 

4), including Spanish (n = 46), French (n = 11), Mandarin Chinese (n = 4), American Sign 

Language (n = 4), Arabic (n = 3), Italian (n = 3), Portuguese (n = 2), Albanian (n = 1), Latin (n = 

1), Punjabi (n = 1), and Yiddish (n = 1). All participants were recruited through the Registrar 

Data Request System (https://reg.msu.edu/Forms/DataRequest/DataRequest.aspx) at Michigan 

State University, which distributed recruitment emails to eligible participants. The participants 

contacted the researcher to indicate their interest in participating in the study, and after 

confirming that they were indeed eligible, I sent them a URL link to access the experiment 

(because the study was held online: see Section 2.2.3). The participants received 60 U.S. dollars 

upon the completion of the entire study. 

2.2.2 Language 

Due to the nature of the study facing limited budget and resources, it was necessary to find 

a linguistic target that could be trained to automaticity within a reasonable duration of time. I 

chose a miniature version of Japanese, called Mini-Nihongo (translated as “Mini-Japanese”), that 

was originally constructed by Mueller and colleagues (Mueller, 2006; Mueller et al., 2005, 

2007). The researchers have shown consistent evidence that grammatical and semantic violations 
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in Mini-Nihongo elicit ERP (i.e., even-related potential) signatures that are identical to those that 

L1 Japanese speakers show when comprehending Japanese. The language thus preserves an 

appropriate level of complexity and naturalness in its grammatical and semantic system while at 

the same time allowing L2 learners to be trained to advanced proficiency within a relatively brief 

period of time. The decision to use part of a natural language (i.e., Japanese) rather than an 

artificial language such as Autopractan (DeKeyser, 1997) or Broncanto2 (e.g., Pili-Moss et al., 

2022) was that learning a natural language (or part thereof) affords some practical value, which 

in turn may motivate the participants to engage in the study.  

Figure 2.1 illustrates the entire structure of Mini-Nihongo adopted in the study. Most 

features of the language in the original form were kept, except that (a) two verbs (out of four), 

tsukitobasu (push away) and oiharau (chase away), were replaced with tsukamaeru (capture) and 

otozureru (visit) because the original verbs conveyed meanings that were hard to represent with 

pictures or overlapped with those of the other two verbs; (b) an adjective modifier, akai (red), 

was removed to equalize the length of the sentences across the entire item set; and (c) a temporal 

adverbial, tokoro desu (about to take place), was dropped because it added unnecessary 

complexity to the target language. 
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Figure 2.1. The entire structure of Mini-Nihongo. 

 

Mini-Nihongo used in this study consisted of five grammatical categories: four nouns, 

four verbs, two numerals, two numerical classifiers, and three postpositions (see Figure 2.1). 

Although Japanese in general allows scrambling of word order, I only used the Subject-Object-

Verb order, which is canonical in Japanese. Hence, a sentence in Mini-Nihongo always 

contained two noun phrases followed by a main verb. The first noun phrase corresponded to the 

grammatical subject and the second to the object. A noun phrase consisted of a case-marked head 

noun that was modified by a numeral and a classifier. In Japanese, number is not marked 

morphologically and hence must be conveyed by numerical classifiers. The choice between two 

classifiers depended on whether the noun they marked was a bird (hato, kamo) or another type of 

small animal (nezumi, neko). The postposition -ga was the nominative marker, -o was the 

accusative marker, and the -no was the genitive marker. Numerals and classifiers must be 

marked by the genitive marker in order to connect to the head noun. The entire structure afforded 

256 unique sentences, with four examples listed below. Each sentence was matched with a 

colored picture that conveyed the meaning of the sentence. Because each practice session 
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consisted of 128 trials for comprehension and production practice, I divided the stimulus list into 

two sets (List A and List B) and counterbalanced the order of the stimuli across the mode of 

language use and the number of practice sessions. In comprehension practice, the participants 

thus saw sentences from List A for the first and the third session of practice and from List B for 

the second and the fourth session. In production practice, the participants conversely saw 

sentences from List B for the first and the third session and from List A for the second and the 

fourth session. All the stimuli and the corresponding pictures can be found at: 

https://osf.io/x9u6h/. 

1. Ichi wa no hato ga ni hiki no nezumi o tsukamaeru. 
one [bird] [gen.] pigeon [nom.] two [small-animal] [gen.] mouse [acc.] capture. 
A pigeon captures two mice. 

2. Ni hiki no neko ga ichi wa no kamo o tobikoeru. 
two [small-animal] [gen.] cat [nom.] one [bird] [gen.] duck [acc.] jump over. 
Two cats jump over a duck. 

3. Ni wa no kamo ga ichi hiki no nezumi o oikakeru. 
two [bird] [gen.] [duck] [nom.] one [small-animal] [gen.] mouse [acc.] visit. 
Two ducks visit a mouse. 

4. Ichi hiki no nezumi ga ni wa no hato o oikakeru. 
one [small-animal] [gen.] mouse [nom.] two [bird] [gen.] red duck [acc.] chase away. 
A mouse chased away two ducks. 

2.2.3 General Procedure 

The general procedure of the study is summarized in Table 2.1. The study consisted of 

six sessions of data collection (Day 1–Day 6). In principle, the participants were required to 

complete the study over six consecutive days, but a two-day interval was allowed in case of 

emergency (see Pili-Moss et al., 2020 for the same range of intervals between study sessions). 

On average, the participants completed the study in 6.13 days (SD = 0.39). Because the entire 

experiment was held online on GorillaTM (https://app.gorilla.sc/), every procedural instruction 
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within and between tasks was implemented as video instruction so that the participants fully 

understood what they were supposed to do (and not supposed to do). 

 
Table 2.1. The procedure of the entire study. 

Day 1 (39 minutes)  Day 4 (65 minutes) 
Task Min.  Task Min. 

1. Background questionnaire 1  1. Vocabulary and grammar tests 5 
2. Two-choice response task 3  2. Production practice 40 
3. Alternating serial reaction time task 15  3. Comprehension practice 20 
4. Statistical learning task 20  Day 5 (60 minutes) 

Day 2 (60 minutes)  1.Vocabulary and grammar tests 5 
1. Continuous visual memory task 10  2. Comprehension practice 20 
2. LLAMA-B 10  3. Production practice 35 
3. Explicit instruction of Mini-Nihongo 20  Day 6 (55 minutes) 
4. Vocabulary and grammar tests 5  1. Vocabulary and grammar tests 5 
5. Warmup practice of Mini-Nihongo 15  2. Production practice 30 

Day 3 (70 minutes)  3. Comprehension practice 20 
1. Vocabulary and grammar tests 5    
2. Comprehension practice 20    
3. Production practice 45    

 

Upon logging into the study, the participants were guided to the first session of the study 

(Day 1). They first completed an IRB-approved consent form and filled out a background 

questionnaire that asked about their email, age, gender, and knowledge of L1 and L2. The 

questionnaire is available at https://osf.io/zr9j8/. In Day 1, the participants only completed tasks 

of psychomotor ability and procedural memory capacity, in the order of a two-choice reaction 

time task (2CRT), an alternating serial reaction time task (ASRT), and a statistical learning task 

(SL). See Section 2.2.6 for each individual cognitive task. After completing SL, the participants 

were reminded that they must come back to the study on the next day for Day 2 and that they 

would receive a reminder email. 

In Day 2, the participants first took two tasks of declarative memory, the Continuous 

Visual Memory Task (CVMT) and LLAMA-B, in that order. Afterward, they received explicit 



 53 

instruction of Mini-Nihongo by watching a 19-minute video that described and quizzed about the 

vocabulary and grammar structure of the language (see Section 2.2.4 for the content of the 

instruction). Vocabulary and grammar knowledge tests subsequently followed the instruction, 

which ascertained that the participants indeed developed explicit, declarative knowledge of the 

language. The participants were then guided to warmup practice, the purpose of which was to 

familiarize them with the format of comprehension and production tasks. Day 3–Day 6 had an 

identical structure: the vocabulary and grammar knowledge tests were administered first and then 

comprehension and production practice tasks. In Day 3 and Day 5, comprehension practice 

preceded production practice, but in Day 4 and Day 6, the order was reversed. In every 

beginning and end of a study session, the participants also completed a self-checklist to report 

that (a) they are/were in a quiet room, (b) to the best of their knowledge, they have/had a reliable 

internet connection, and (c) they will not/did not step away from the computer during a task. The 

purpose of the checklist was to remind the participants of the importance of following the criteria 

due to the nature of the study being offered online. The participants were informed that if they 

should fail to comply with the requirements (e.g., stepping away from the computer during a task 

for one hour), they may not be able to continue with the study. The checklist can be found at 

https://osf.io/69eap. 

2.2.4 Language Training 

The three-stage model (represented by ACT-R) holds declarative memory as the 

fundamental mechanism at the initial level of learning (e.g., Anderson, 1982, 1983b, 2007). It 

was thus important that the participants developed declarative knowledge of the target language 

before engaging in comprehension and production practice. To achieve this aim, the participants 

received explicit instruction on vocabulary and grammar rules of Mini-Nihongo in the form of a 
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19-minute video (https://osf.io/vh6ap/). The instruction began with a slide showing that Mini-

Nihongo is comprised of five vocabulary categories: four animal words (nouns), four action 

words (verbs), two words of number, two words of animal class (classifiers), and three words of 

grammar category (case markers). The video subsequently presented nouns of Mini-Nihongo 

twice by directly presenting word-picture pairs. After the first presentation, the participants were 

told to memorize the nouns using 30 seconds. This step was followed by a mini-exercise (four 

items) that asked the participants to match the words with corresponding pictures. The first 

presentation of the nouns was accompanied by their English equivalent (neko = cat), but the 

translation was removed in the second presentation to ensure that the participants associated the 

words with the pictures rather than with the L1 equivalents. The same form of presentation-

exercise-presentation cycle took place for the verbs and the number words. 

The instruction subsequently introduced two classifiers, -wa and -hiki, explaining that (a) 

the former is used to indicate a bird class and the latter to indicate a small animal class and that 

(b) these two words are used when combining a noun (e.g., neko) with a number word (e.g., 

ichi). A small exercise (four items) followed the explanation, which asked the participants to 

choose either -wa or -hiki depending on the picture presented. For instance, the participants 

chose -wa when they were presented with a picture of two pigeons. Lastly, three case-markers, -

ga, -o, and -no, were presented with a description that these words (a) attach to the end of a noun 

and (b) indicate the subject (-ga) or the object (-o) of a sentence or the status of possession (-no) 

just like the English word “of” or the possessive construction “John’s”. Afterward, all the five 

vocabulary categories of Mini-Nihongo were presented once again and the participants were told 

to review the content for one minute. 
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The participants then learned the phrasal and sentence structures of Mini-Nihongo. For 

the (noun) phrase structure, the instruction first presented all eight renditions of the noun phrase 

structure (i.e., ichi/ni + wa/hiki + no + hato/kamo/nezumi/neko) twice and asked the participants 

to figure out the ordering of the words. The participants were then presented a rule that a noun 

phrase (NP) in Mini-Nihongo takes the word order of [number] + [animal class] + [possessive 

marker] + [noun]. To deeper the participants’ understanding of the rule, two examples were 

provided, showing that for instance, a noun phrase ichi wa no hato corresponds to [one] [bird] 

[of] [pigeon]. The participants then worked on a small exercise (four items) that asked them to 

reorder the provided words to match them with a picture. For instance, the participants saw a 

picture of a duck and reordered wa/no/ichi/kamo to ichi wa no kamo. Lastly, the participants 

learned how to create a sentence in Mini-Nihongo. From the outset, they were explicitly told that 

(a) the language has the strict S-O-V word order or NP + NP + Verb and that (b) the subject of 

the sentence is marked by -ga and the object with -o. The participants took 30 seconds to process 

and memorize the rule. This step was followed by an exercise (four items) that asked the 

participants to reorder eleven provided words to create a sentence that corresponded to the 

picture presented. At the end of the instruction, the participants were reminded that it is 

important that they review the vocabulary and grammar rules of the language because they 

would be tested at the beginning of every subsequent study session. 

After the instruction as well as at the beginning of every subsequent session, the 

participants were tested on their declarative knowledge of vocabulary and grammar rules of 

Mini-Nihongo. The vocabulary test dealt with the nouns and verbs of the language and was 

implemented as a picture-word matching task. The participants saw a picture and two words 

presented together and chose the word that conveyed the meaning of the picture. Each noun was 
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paired with every other noun as distractors (12 combinations) and every verb was paired with 

every other verb (12 combinations), which made up a total of 24 trials (i.e., each word tested 

three times). The grammar test was a metalinguistic knowledge test in a fill-in-the-blank format. 

The participants were presented with nine metalinguistic statements (randomly ordered) that 

described a morphosyntactic rule of Mini-Nihongo with some portion of the statement left blank. 

They were asked to choose an answer from two options. Figure 2.2 shows the outlook of the 

vocabulary and the grammar knowledge test, and Figure 2.3 summarizes the participant’s scores 

on the two tests. Immediately after the explicit instruction (in Day 2), the participants had 

already developed solid declarative knowledge of vocabulary (M = .95, SD = .06, Min = .71, 

Max = 1.00) and grammar of the language (M = .89, SD = .11, Min = .56, Max = 1.00). Note that 

although the mean on the grammar test was lower than .90, the test only contained nine items; 

hence, missing even one item could make the participant’s score lower than .90 (i.e., 8/9 = .88). 

One participant scored .56 on the grammar test in Day 2, but s/he showed a steady improvement 

through Day 3–Day 6, with the score of .66, .88, .88, and 1.00, respectively. 

 

 
Figure 2.2. The outlook of the vocabulary (left) and grammar (right) test. 
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Figure 2.3. The participants’ scores on the vocabulary and grammar test. 

Note. The error bars show 95% confidence intervals. 
 

2.2.5 Language Practice 

In Day 3–Day 6, the participants engaged in comprehension and production practice of 

Mini-Nihongo after taking the vocabulary and grammar knowledge tests. The comprehension 

task was designed as a sentence-picture matching task in which the participants saw a sentence 

with two pictures and chose which picture corresponded to the sentence by pressing either the S-

key or the K-key on the keyboard. Figure 2.4 shows the outlook of the task. Although DeKeyser 

(1997) implemented a four-picture format (instead of two) for his comprehension task to ensure 

that the participants fully read the sentence before making a decision, I deemed that this design 

was not feasible for my study because doing so for Mini-Nihongo at least required six picture 

options, which was likely confusing and too demanding to the participants. In this study, the two 

options were chosen by contrasting the pictures in terms of either (a) the subject noun, (b) the 

number on the subject, (c) the object noun, (d) the number on the object, or (e) the verb. Note 



 58 

that the word order and the case markers could not be tested directly because their positions were 

fixed in Mini-Nihongo. However, making a correct decision in the task required the participants 

to understand and process those features; for instance, the participants must recollect the word 

order (i.e., S-O-V) and the case-marking rules (i.e., -wa markers the subject and -o marks the 

object) to understand which noun phrase in the sentence corresponded to the subject or the 

object. The presentation of test items was randomized, with the five critical features evenly 

distributed throughout the task. In addition, the position of the correct answer (versus the 

distractor) was randomized. Each trial began with a fixation cross that was presented for 250 

milliseconds (ms), and it subsequently turned into a test item. The participants received 

correctness feedback throughout the task. 

 

 
Figure 2.4. The outlook of the comprehension practice task. 

 

The production task was implemented as a maze task (see Forster, Guerrera, & Elliot, 

2009 for a review). A maze task, first introduced by Freedman and Forster (1985), is an online 

measure of incremental sentence processing that asks test-takers to build a sentence by choosing 

from a series of two alternative options as if they were going through a maze. For instance, in a 

five-frame trial, one sees four two-alternative options: A / bird * play / is * our / think * 
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singing / a song * beautiful. Figure 2.5 shows the outlook of the maze task adopted in the 

current study. At each frame, the participants selected the continuation that best represented the 

pictured event. Since the numerals and classifiers had only two variants, one was always the 

distractor for the other (i.e., ichi and ni, wa and hiki). Each noun, verb, and case marker was 

paired with every other word from the same category with equal frequency. The position of the 

correct answer (versus the distractor) was randomized except for the number words and the 

classifiers because they only had two options. As in the comprehension task, trials in the 

production task began with a fixation cross that remained on the screen for 250 ms. Note that 

because Mini-Nihongo sentences consisted of eleven words, a single trial always consisted of a 

collection of 11 responses. For each response, the participants received correctness feedback. 
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Figure 2.5. The outlook of the production practice task. 

 

Traditional maze tasks (as used in psycholinguistic research) do not directly pertain to 

production skills. However, the way the task was adopted in the study rendered it (more) 

applicable to assessing production skills because the participants chose one of the two options to 

match a picture prompt rather than choosing according to whether a given option is 

grammatically correct or incorrect. These features are in contrast with ordinary maze tasks, for 

which distractors are chosen such that they are always grammatically and semantically 
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impossible. In Figure 2.5, both ichi and ni (in the first frame) are grammatically plausible, but the 

latter does not match the content of the picture. Hence, the maze task in this study can be 

considered a type of controlled production tasks. In recent L2 research, Y. Suzuki and Sunada 

(2018) successfully adopted a maze task to gauge L2 speakers’ sentence processing speed and 

automaticity. Furthermore, a large-scale study by S. Suzuki and Kormos (2022) demonstrated 

that RT measured by a maze task correlated well with L2 speakers’ oral fluency. Through a 

structural equation modeling analysis, they found that RT in the maze task was the best indicator 

of learners’ general processing speed (as part of cognitive fluency), which, in turn, was the best 

predictor of an aspect of (utterance) fluency termed speed fluency (indicated by articulation rate 

and mean length of run). Based on the findings, together with how the task was designed in the 

study, I deemed that the maze task was a useful measure of how the participants developed 

production skills. Adopting a maze task for production practice also obviated the need to 

consider when to start the timer of RT measurement, an issue often debated in L2 

psycholinguistic research (Jiang, 2012).  

Before the participants engaged in the main practice sessions in Day 3–Day 6, they were 

guided to initial warmup practice (in Day 2). This phase served as a familiarization period during 

which the participants became used to the format of the comprehension and production tasks. 

The warmup began with trials on individual words (i.e., nouns and verbs) and noun phrases 

([number] [animal class] [possessive] [noun]), but the task then progressed to full sentences. 

When practicing on individual words or noun phrases for comprehension, the participants saw a 

word (or a noun phrase) together with two pictures and responded by choosing the picture that 

matched the word (or the noun phrase). For production practice, they saw a single picture and 

constructed a sentence (or chose a word/noun phrase) through the maze task (see Figure 2.5). For 
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both comprehension and production warmup practice, there were 24 word-level trials (eight 

content words repeated three times), eight phrase-level trials, and 16 sentence-level trials. 

Identical items were used for both comprehension and production tasks. The entire item set for 

the warmup practice tasks can be found at: https://osf.io/x9u6h/.  

In each main practice session (Day 3–Day 6), the participants practiced comprehending 

and producing Mini-Nihongo sentences for 128 trials (i.e., 256 trials in total) in 8 blocks of 16 

trials. After each block, the participants were allowed to take a 3-to-5 minute break. Combining 

all four practice sessions in addition to the warm practice (32 trials), the participants thus 

practiced Mini-Nihongo for a total of 1,056 trials in 33 blocks. All participants practiced in the 

same list of items, but the order of presentation was randomized within the same list. In each 

block, the participants also encountered a surprise attention-check trial where they were asked to 

press the SPACE bar to continue with the task. This trial was intended to maintain the 

participant’s focus on the task and to detect if one was mindlessly pressing the response keys 

(i.e., S-key or K-key) without paying attention to the task. 

2.2.6 Cognitive Individual Differences 

In this study, I focused on declarative memory, procedural memory, and psychomotor 

ability as three dimensions of cognitive abilities that have been theorized to underlie the 

acquisition of cognitive skills (Ackerman, 1987, 1988, 1990, 1992; Ackerman & Cianciolo, 

2000; Ackerman et al., 1995). By extension, I predicted that they also play pivotal roles in L2 

skill acquisition (Li, 2017; Maie, 2021; Pili-Moss et al., 2020; Y. Suzuki, 2018). There were two 

tasks for each ability dimension: the Continuous Visual Memory Task (CVMT) and LLAMA-B 

for declarative memory capacity, an alternating serial reaction time task (ASRT15) and a 

statistical learning task (SL) for procedural memory capacity, and a two-choice reaction time 
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task (2CRT) and the first block of ASRT (ASRT1) for psychomotor ability. Within each 

dimension, I chose one domain-general (non-linguistic) and one domain-specific (linguistic) 

task. Table 2.2 summarizes the cognitive ability tasks. 

 
Table 2.2. The summary of the cognitive ability tasks.  
 Task Ability Domain 
1. CVMT Declarative General 
2. LLAMA-B Declarative Specific 
3. ASRT15 Procedural General 
4. SL Procedural Specific 
5. ASRT1 Psychomotor General 
6. 2CRT Psychomotor Specific 

 

2.2.6.1 The Continuous Visual Memory Task 

CVMT is a test of one’s ability for nonverbal declarative learning using a visual 

recognition paradigm (Trahan & Larrabee, 1988). The original CVMT consists of four phases 

(practice, acquisition, delayed recognition, and visual discrimination), but I only adopted the first 

two phases, which is typical of how L2 researchers have used the task (see Buffington & 

Morgan-Short, 2019). During the task, the participants saw a series of complex abstract designs, 

and they were tested on their ability to recognize seven target designs that were repeated among 

the other distractor designs. The task began with 11 practice trials (the practice phase) followed 

by 112 test trials (the acquisition phase). Of the 112 test trials, 49 were the seven target items that 

were presented seven times, and the remaining 63 trials were distractors that appeared only once. 

The order of presentation was the same as that of the original version of the task. The 

participants indicated whether they had seen the design (old) or not (new) in the sequence by 

pressing the S-key (old) or the K-key (new). Each design was only visible for two seconds, but 

the participants were able to respond any time later. Figure 2.6 shows the outlook of the task. 
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Figure 2.6. The outlook of the Continuous Visual Memory Task. 

 

In CVMT, learning ability is quantified using d-prime scores. d-prime is a sensitivity 

index that operationalizes one’s ability to discriminate signals from noise. In the current study, 

the statistic operationalized the participants’ ability to discriminate old items from new items. I 

calculated d-prime scores by subtracting the z-score for the proportion of old items that were 

incorrectly labeled as new items (i.e., false alarms) from the z-score for the proportion of new 

items that were correctly labeled s new items (i.e., hits). The effective limit of d-prime scores is 

±4.65. The internal consistency of the task based on the Kuder-Richardson Formula 20 (KR-20) 

was .72 [.63, .82].  

2.2.6.2 LLAMA-B 

LLAMA-B is a vocabulary learning subtest within the LLAMA language aptitude tests 

(Meara & Rogers, 2019). In L2 research, it has been used as a domain-specific (or language-

based) measure of learner’s declarative memory ability (e.g., Hamrick, 2015; Saito et al., 2022). 

The task assesses one’s ability to learn the name of unfamiliar objects in two phases: the study 

phase and the testing phase (see Figure 2.7). In the study phase, the participants were presented 
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with 20 unfamiliar objects with their names presented right beneath the objects. Given 2 minutes, 

the participants were asked to memorize the association between the names and the objects. The 

original version of the task implements a unique graphical user interface that allows test takers to 

move a cursor over an object to see its name. However, this feature was not available in Gorilla; 

instead, I presented an array of objects with their names together in a single screen (see Figure 

2.7, the left panel). This presentation format was similar to that of Part V of the Modern 

Language Aptitude Test, a conceptual model of LLAMA-B (see Bokander & Bylund, 2022; 

Rogers et al., 2017 for reviews). In the testing phase, the participants were tested regarding how 

many of the associations they were able to recollect. For each trial, an object name appeared at 

the bottom of the screen (see Figure 2.7, the right panel). The participants indicated which object 

corresponded to the name by clicking the picture of the object. Instruction of the task explicitly 

stated that the participants were not allowed to take any notes, and if they could not find the 

object or did not know the answer, they could guess by clicking an object at random. The testing 

phase consisted of 20 items with no time limit imposed on each item. I used raw scores as the 

participants’ declarative (and vocabulary) learning scores. The internal consistency of the task 

based on KR-20 was .76 [.67, .84]. LLAMA-B is publicly available at: 

https://www.lognostics.co.uk/tools/LLAMA_3/index.htm. 

 

 
Figure 2.7. The outlook of LLAMA-B. 

Note. The left panel shows the learning phase, and the right panel shows the testing phase. 
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2.2.6.3 Alternating Serial Reaction Time Task 

The ASRT examines one’s ability of implicit sequence learning (e.g., Howard & Howard, 

1997; Nemeth et al., 2010). In L2 research, it is one of the most popular tasks to assess learner’s 

procedural learning ability (e.g., Godfroid & Kim, 2021; Morgan-Short et al., 2014; Pili-Moss et 

al., 2020). As depicted in Figure 2.8, the participants saw an array of four circles, one of which 

was sequentially filled with an orange bird for each trial. The sequence in which one of the four 

circles was filled followed a second-order conditional rule where pattern trials were interleaved 

with random trials. In this study, the participants were exposed to the same sequence of 

1r4r3r2, where r corresponded to a random location. The participants made responses as 

quickly and accurately as possible by pressing the corresponding keys on the keyboard ([z] for 1, 

[x] for 2, [> .] for 3, and [? /] for 4, using their left middle and index fingers and the right index 

and middle fingers, respectively). The participants had to press a correct key to proceed to the 

next trial; in other words, the task did not proceed unless they produced a correct response. The 

task has been variably adopted by L2 researchers in terms of the amount of learning trials. For 

instance, Godfroid and Kim (2021) used 10 blocks of learning trials whereas Morgan-Short et al. 

(2014) (and also Pili-Moss et al., 2020) implemented 20 blocks. In this study, I chose a middle 

ground and exposed the participants to 15 blocks of learning trials. Each block consisted of 88 

trials, the first eight of which were random practice trials. In total, the participants went through 

600 patten trials and 720 random trials (including the practice trials). 
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Figure 2.8. The outlook of the alternating serial reaction time task. 

 

Learning in ASRT is often quantified by taking the difference in RT between pattern and 

random trials. This method of scoring yields two (overlapping) measures depending on whether 

one uses the entire learning blocks (e.g., Buffington et al., 2021; Morgan-Short et al., 2014; Pili-

Moss et al., 2020) or the final block (e.g., Godfroid & Kim, 2021). I adopted the latter measure 

because Godfroid and Kim (2021) provided evidence that it is a reliable predictor of procedural 

(or implicit) knowledge analyzed through structural equation modeling. I took the mean of each 

participant’s RT over the final block (Block 15) and subtracted the means on the pattern trials 

from those on the random trials. Any responses that had RT lower than 100 ms or did not fit 

within the range of individual’s mean ±3SD were removed from the analysis (1.6% of the 

dataset). Typically, L2 researchers estimate reliability coefficients for ASRT by splitting raw 

data (i.e., item-level responses) in two random halves and compute the correlation between the 

two halves using the Spearman-Brown prophecy formula. However, this method is not 

appropriate because the actual learning scores are calculated based on aggregated means rather 

than raw data. I thus simply took the mean of the participants’ RT on the pattern and the random 
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trials and calculated Cronbach’s alpha with two items (i.e., RT on the pattern and the random 

trials). The internal consistency of the scores was 𝛼 = .98 [.98, .99]. 

Finally, I calculated the mean of the participants’ RT in Block 1 as a measure of the their 

psychomotor ability (ASRT1). The internal consistency of the scores based on Cronbach’s alpha 

(using the mean RT on the pattern and the random trials) was .98 [.98, .99]. 

2.2.6.4 Statistical Learning Task 

A statistical learning task based on language(-like) stimuli typically examines one’s 

ability to learn either adjacent (e.g., Aslin, Saffran, & Newport, 1998; Saffran, 2002; Thompson 

& Newport, 2007) or non-adjacent dependencies (e.g., Gómez, 2002; Gómez & Maye, 2005; 

Newport & Aslin, 2004). However, Romberg and Saffran (2013) pointed out that learning of a 

language often involves the simultaneous learning of both adjacent (e.g., collocation) and non-

adjacent relationships (e.g., morphosyntax); therefore, investigating the learning of adjacent and 

non-adjacent dependencies at the same time is most conducive to examining a statistical learning 

ability relevant for language learning. In this study, I thus adopted a statistical learning task used 

in Romberg and Saffran (2013, Experiment 1). The target stimuli followed those of Gómez 

(2002), a list of three-word phrases in the form of A-X-B. There were three words for A words 

(pel, vot, and dak), three words for B words (rud, jic, and tood), and sixteen words for X words 

(balip, benez, deecha, fengle, gensim, gople, hiftam, kicey, loga, malsig, plizet, puser, roose, 

skiger, suleb, and vamey). Crucially, each A word was paired with a B word as a categorial non-

adjacent dependency frame (pel_rud, vot_jic, and dak_tood), but the relationship between A 

words and X words, and B words and X words was probabilistic, as shown in Figure 2.9. 

Specifically, the X words were grouped into four groups (of four words): XED, XHP, XLP, and 

Xunattested. XED were evenly distributed words that occurred with the same probability for each 
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A_B frame. For each X word, there was one A_B frame for which it was XHP (high probability 

words), one frame for which it was XLP (low probability words), and one frame for which it was 

Xunattested (unattested). In each frame, XHP words occurred four times more frequently than XLP 

words, and XLP and XED words were equally frequent. Xunattested word were not instantiated in the 

frame. The entire stimulus set can be found at: https://osf.io/cdy8b. 

 

 
Figure 2.9. The stimulus structure in the statistical learning task adopted from Romberg and 

Saffran (2013). 
 

In Romberg and Saffran (2013), the modality of the task was auditory following Gómez 

(2002). However, I adapted the task using visual stimuli to make the task consistent with the 

other tasks in the current study (including the practice tasks), which were all visually based. One 

issue associated with visual statistical learning tasks is that participants tend to perform better in 

the visual mode. For instance, Onnis, Christiansen, Chater and Gómez (2002) showed that 

participants, when exposed to a list of stimuli containing non-adjacent dependencies, on average 

scored more than 10% higher in the visual mode than in the auditory mode. This difference was 

likely due to the fact that the visual presentation of stimuli makes the target rule (whether hidden 

or not) more salient than otherwise. This feature of visual modality can be potentially 



 70 

problematic to statistical learning tasks because statistical learning is, by nature, an implicit 

process (see Monaghan, Schoetensack, & Rebuschat, 2019 for a review). To circumvent the 

issue, I piloted the task with four applied linguists who were familiar with some type of 

statistical learning tasks. The underlying logic was that if these linguists did not consciously 

identify the underlying rules (i.e., adjacent and non-adjacent dependencies), naïve participants in 

my study (who were not a linguist) would be unlikely to notice the rules. 

In the task, the participants were exposed to a list of 72 three-word phrases (i.e., A-X-B) 

for four repetitions (288 trials in total). An interstimulus interval between each phrase was set at 

750 ms, following Romberg and Saffran (2013). Subsequently, a recognition test assessed to 

what extent the participants developed knowledge of adjacent and non-adjacent dependencies. In 

the test, the participants saw two phrases in a sequence and decided which one of the two phrases 

sounded more familiar in that they have heard it during the familiarization phase. There were 30 

items, 12 for non-adjacent dependencies, 12 for adjacent dependencies, and 6 for checking 

whether the participants paid attention during the familiarization phase. Both options in the non-

adjacent dependency trials contained X words that were evenly distributed across the three A_B 

frames (i.e., XED) because the adjacent relationships between A words and X words and X words 

and B words could give rise to construct-irrelevant variance that is nothing to do with measuring 

one’s ability of learning the non-adjacent dependencies. For the adjacent dependency trials, I 

always contrasted XHP and Xunattested to test the knowledge of the adjacent dependencies. The 

attention-check trials contained X words that the participants never heard during the 

familiarization period (chila, coomo, nilbo, taspu, wadim, and wiffle). The participants were 

tested in three blocks, in the order of the non-adjacent dependency trials, the adjacent 

dependency trials, and the attention-checking trials (see Romberg & Saffran, 2013, pp. 7–9). 
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However, the order of presentation was randomized within each block. The test stimuli can be 

found at https://osf.io/cdy8b. 

After completing the recognition test, the pilot participants received a three-part 

questionnaire that asked them to (a) verbally report any rules they noticed during the task (i.e., 

retrospective verbal reports), (b) judge the familiarity of six phrases that contained non-adjacent 

dependencies (three correct and three incorrect A_B combinations) along with their confidence 

in judgment (i.e., confidence ratings), and (c) rate the familiarity of six phrases that contained 

adjacent dependencies (three high-frequency and three low-frequency phrase). For both 

confidence and familiarity ratings, the participants used a scale of 1 to 5, with 5 indicating higher 

confidence or familiarity. Figure 2.10 summarizes the mean confidence and familiarity ratings of 

the pilot participants. All four pilot participants rated correct phrases more confidently (M = 

3.75, SD = 0.86) than incorrect phrases (M = 3.66, SD = 0.88) and high-frequency phrases as 

being more familiar (M = 3.91, SD = 1.16) than low-frequency phrases (M = 3.66, SD = 1.33). 

However, the difference seemed quite minimal, and considering the variance associated with 

each mean, it was more likely that the participants rated all phrases equivalently. Two of the four 

pilot participants stated in the retrospective report that the first and the third words always 

constituted a pair, but none of them (even after 288 trials) provided an explicit example of the 

A_B frames (non-adjacent) or touched upon the probabilistic relationship between X words and 

A/B words (adjacent). These results met the so-called zero-correlation criterion for unconscious 

knowledge (Dienes, Altmann, Kwan, & Goode, 1995; Dienes & Scott, 2005). However, the 

results also need to be interpreted with caution given that the methodological reliability of 

confidence ratings has been questioned (e.g., Maie & DeKeyser, 2020) and that learners tend to 

underreport what they consciously know in retrospective reports (e.g., Hama & Leow, 2010). 
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Figure 2.10. The mean confidence/familiarity ratings of the pilot participants. 

Note. The error bars show 95% confidence intervals. 
 

Romberg and Saffran (2013) did not provide an estimate of reliability for the statistical 

learning task. I thus calculated KR-20 for each section (non-adjacent and adjacent dependency 

trials) as well as for the whole test: KR20,/+, = .70 [.60, .81], KR2089 = .70 [.60, .81], and 

KR209 = .44 [.25, .64]. The reliability of the adjacent-dependency section seemed low but was 

still on par with the reliability of procedural learning (or memory) tasks often used in L2 research 

(but see Perruchet, 2021 for a critical comment on the issue). I examined item-level statistics of 

the adjacent-dependency section to improve its psychometric quality. Specifically, I examined 

how removing each item changed the reliability coefficient. As a result, I excluded two items 

(Item 18 and 21), for removing these two items resulted in an increase in the overall internal 

consistency of the section. The correlation between the non-adjacent (k = 12) and adjacent 

sections (k = 10) was r = .32 [.09, .52], p = .007, suggesting that the abilities to learn categorical 

non-adjacent dependencies and probabilistic adjacent dependencies only coincide with each 

other to a small extent. However, scores in each section correlated strongly with scores on the 

entire test: r = .86 [.79, .91], p < .001 for the non-adjacent dependency section and r = .75 
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[.62, .84], p < .001 for the adjacent dependency section. In the main analysis, I thus adopted the 

participants’ raw scores on the entire test (k = 22) because the total scores on the test captured the 

participants’ scores in each section reasonably well. 

2.2.6.5 Two-choice Reaction Time Task 

Choice reaction time tasks are primarily used to investigate psychomotor functioning in 

humans and animals (see Smith, 1968; Trueman, Brooks, & Dunnett, 2021 for reviews). In 

contrast to simple reaction time tasks, during which one reacts to a single stimulus associated 

with only one response type (e.g., clicking as soon as one detects the word bird), choice reaction 

time tasks involve multiple stimuli each requiring a separate response (i.e., pressing the S-key 

when one sees the word apple and the K-key when orange). The task thus entails not only rapid 

identification of target stimuli but also accurate categorization of them depending on the 

responses assigned to each. Ackerman (1988, 1992) used choice reaction time tasks as measures 

of learner’s psychomotor processing speed. In this study, I adopted a two-choice RT task 

(2CRT), which is the most common format of the task. The participants were randomly 

presented with either the word falcon or eagle and asked to press the S-key as soon as they 

recognize falcon and the K-key whenever they saw eagle. There were 50 experimental trials (25 

trials for each word) with 10 practice trials with the words cat and dog. Each trial began with a 

fixation cross, which subsequently turned into the stimulus. I took an individual participant’ 

mean RT for correctly responded trials as their individual difference score. The mean accuracy 

of the participants’ responses was .95, SD = .03, 95% CI [.88, 1.00]. Responses with RT shorter 

or longer than an individual mean RT ±3SD were removed from the analysis (5.63% of the 

dataset). I took an individual participant’s mean RT for correctly responded trials as the 
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individual difference score. The split-half reliability of the scores (divided into items for falcon 

versus eagle) was r = .94 [.90, .96]. 

2.3 Analysis 

In this section, I describe the statistical analysis conducted to answer the research 

questions of the study (see Section 2.1 for the research questions and hypotheses). I will first 

describe how dependent and independent variables were defined and how the dataset was 

processed to identify and replace outlying data points. I will then review the conceptual and 

mathematical backgrounds of hidden Markov modeling, especially with reference to the specific 

hidden Markov model (HMM) adopted from Tenison and Anderson (2016). The HMM analysis 

was used to test the number of skill acquisition stages the participants underwent while 

practicing Mini-Nihongo (RQ1). Finally, I will lay out the details of regression models that were 

specified to investigate which cognitive individual difference variables predicted learning at each 

stage of skill acquisition identified by the HMM analysis (RQ2). 

2.3.1 Measurement 

In this study, I focused on three dependent variables: accuracy, RT, and coefficient of 

variability (CV) of RT. Table 2.3 presents the operational definitions of accuracy and RT as 

observed in each practice trial. CV was computed for each participant at the block level by 

dividing the standard deviation of RT by the corresponding mean. According to the three-stage 

model of skill acquisition, the first stage of learning (i.e., the cognitive stage) involves the 

reliance on declarative memory and general cognitive abilities such as problem-solving skills. In 

this stage of learning, it is important that learners develop accuracy of performance so they can 

proceduralize a correct set of behaviors (DeKeyser, 2015; Lyster & Sato, 2013; Y. Suzuki, 

2022). I predicted that accuracy shows the earliest sign of learning and hence would be 
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correlated with the participant’s declarative memory capacity. CV, on the other hand, was used 

to operationalize the degree of proceduralization (Segalowitz & Segalowitz, 1993; see also 

Section 1.2.2), which is known as a necessary process for learners to proceed to the second stage 

(i.e., the associative stage). CV should thus be predicted by one’s procedural memory capacity 

especially during the second stage. Lastly, after reaching the asymptotic level of performance 

(i.e., the autonomous stage), learners can only be distinguished in terms of their psychophysical 

limitations in generating motor responses. Hence, they were expected to only differ in mere RT 

of performance, which would be predicted by their psychomotor ability. 

 
Table 2.3. The operational definition of accuracy and RT. 

 Accuracy RT 
Comprehension Whether or not participants chose 

the correct picture out of two 
options (0 or 1) 

The time from the onset of a 
stimulus to the participant’s 
response (seconds) 

Production Whether or not participants chose 
the correct option out of two 
pictures across the entire sentence. 
Each trial consisted of 11 word-
level responses, and hence  the 
accuracy was calculated as 
∑ ($	2;	0)!"##
$"#

00
 (0–1.0)	

The sum of RT across 11 word-
level decisions, with each response 
involving choosing an option out 
of two words (seconds) 

 

Prior to the statistical analysis, I processed the RT data in two steps. At the trial level, I 

first winsorized 2.5% of the data from either end of the distribution and replaced the excluded 

values with the trial mean (aggregated over the participants). This step was necessary to filter out 

extremely fast or slow responses, given the structure of the comprehension and production 

practice tasks. Mean replacement is often criticized for its potential to overly inflate confidence 

in the mean as a summary of data (because it increases data points on the mean). I avoided the 

issue by using the trial mean over the entire sample rather than the mean of each participant. 

Figures 2.11 and 2.12 show the histogram of RT for each participant on comprehension and 
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production practice after the winsorization was applied. Note that RT was transformed to its 

logarithm because it only takes positive values, which often makes its distribution positively 

skewed. Mean replacement was preferred over simply removing the data points because the 

hidden Markov modeling analysis (see Section 2.3.3) required a complete dataset; it was also 

preferred over replacing with the corresponding boundary value (2.5% and 97.5% point of the 

distribution) because the analysis tends to be sensitive to extreme values. I applied the 

winsorization method because there is no consensus regarding the lower boundary of how long 

L1 or L2 speakers take to comprehend or produce a sentence in general. 

Subsequently, I computed the mean and standard deviation of RT for each participant in 

each block and removed any data points that were outside the range of the individual mean 

±3SD. The trimmed values were replaced with the respective block mean of the participant. 

Finally, I removed data points on the first trial of each practice session (Trial 17, 145, 273, and 

401) because the participants tended to perform unusually slow (or slower than expected) on 

those trials. See Figure 2.13 for the issue at hand (especially for comprehension data). When 

learners show this kind of regression between study sessions, it is unclear whether this is due to 

forgetting of the target skill or because they simply become less familiar with the experimental 

task at hand. Examining Figure 2.13, the initial slowness was only observed in the first trials, and 

the participants recovered their speed from the second trial and onwards. This suggested that the 

regressions were most likely due to the fact that the participants simply needed some time to 

briefly refamiliarize themselves with the experimental tasks. In skill acquisition research, this 

phenomenon is referred to as a warmup decrement (Adams, 1961; see also Anderson & Fincham, 

1994, Experiment 2). 
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Figure 2.11. Histogram of reaction time data for comprehension practice. 

Note. RT was transformed to its logarithm. 
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Figure 2.12. Histogram of reaction time data for production practice. 

Note. RT was transformed to its logarithm. 
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Figure 2.13. RT data before the removal of the first trials. 

Note. The dotted lines show the first trial of each practice session. 
 

The first and the second step of data cleaning in total affected 6.54% and 5.60% of the 

dataset for comprehension and production practice, respectively. Figure 2.14 shows the changes 

from the original dataset (RT) after the first step (RT.A) and the second step (RT.B). Those data 

points that did not coincide with their values in the previous step are marked in red. The denser 

concentrations of data points in the left panels (than in the right panels) show that the first step 

affected more data (6.15% and 5.01%) than the second step (0.39% and 0.58%). Furthermore, 

the fact that the discrepancies between RT.A and RT.B (the right panels) were mostly below the 



 80 

straight line indicated that the second step mostly affected data points that were beyond the 

individual mean +3SD (rather than −3SD). 

 

 
Figure 2.14. The summary of changes in the dataset following data processing. 

Note. Those data points that do not coincide with their previous step are marked in red. 
 

Table 2.4 summarizes variables that were used as independent (or predictor) variables in 

the study. In the regression analysis (Section 2.3.3), I subtracted 1 from Trial and Block so that 

the first trial or block corresponded to the intercept of the model. All variables from the cognitive 

tests were transformed to their z-scores to make the intercept and their coefficients (easily) 

interpretable. The state occupancy (Stage) was dummy-coded with the first stage as the baseline. 

Lastly, scores from the declarative memory measures (CVMT and LLAMA-B) and the 
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psychomotor ability measures were combined into corresponding factor scores. See 3.1.2 for (a) 

the convergent validity evidence of CVMT and LLAMA-B to operationalize one’s declarative 

memory capacity and 2CRT and ASRT1 as a measure to quantify one’s psychomotor ability and 

(b) the procedure of exploratory factor analysis to extract the factor scores. 

 
Table 2.4. The operational definition of independent variables. 

Variable Definition 
Trial The number of practice trials (1–524) 
Block The number of practice blocks (1–33) 
Stage Which learning stage the participants resided in, identified 

by the HMM analysis (First, Second, and Third)  
CVMT d-prime score (-4.65–4.65); see Section 2.2.6.1 
LLAMA-B Percentile of accurate responses across the test (0–100) 
ASRT15 The difference between the mean RT on random trials and 

that on pattern trials in Block 15 
SL Raw accuracy score across the test (1–22) 
2CRT The mean RT across the task 
ASRT1 The mean RT in the first block of the task 

 

2.3.3 Hidden Markov Modeling 

The Hidden Markov model (HMM) is an extension of the Markov chain, a stochastic 

model that represents a sequence of random variables called Markov states (Rabiner, 1989). 

Markov chain makes an assumption that the future state is only dependent on the current state, 

and the past state does not influence the future state except via the current state (i.e., the Markov 

assumption). In the current study, the Markov states represented learning stages defined as 

distinct cognitive states the participants went through while practicing how to comprehend and 

produce the target language. In this dissertation, I will use the term state to refer to the 

hypothesized learning stage encoded in the model and stage to refer to the actual learning stage 

whose ontological reality can be assumed. The HMM treats the actual states as hidden, but their 

probability can be estimated based on observed data by assuming that the hidden states produced 
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the observed data. It is a type of machine learning model often utilized in computational 

linguistics and natural language processing (see Jurafsky & Martin, 2021, Appendix Chapter A 

for a review). For instance, the HMM can be used to develop an automated speech recognition 

system by identifying words (states) based on acoustic information (observed data); it can be 

used to create a scheme of automatically tagging lexical items by categorizing words into 

respective parts of speech. In the current study, the HMM estimated the underlying learning 

stages based on an array of RT obtained through comprehension and production practice trials. 

In cognitive psychology, Anderson and colleagues have shown that the HMM analysis can be 

applied and generalized to a wide variety of cognitive tasks, and when tested with datasets where 

the true number of processing stages (or development stages) is known, the model recovers the 

stages with a reasonable degree of accuracy (e.g., Anderson, 2012; Anderson et al., 2018; 

Anderson & Fincham, 2014; Anderson, Zhang, Borst, & Walsh, 2016; Borst, Ghuman, & 

Anderson, 2016; Tenison, Fincham, & Anderson, 2016). 

Following Tenison and Anderson (2016), I fitted a series of HMMs to RT data at the trial 

level and estimated the probability of each participant residing in a given state on each practice 

trial (but see below for an issue in parameter estimation). Informed by the models of skill 

acquisition (Section 1.3), I compared three HMMs, with one, two, and three states, by examining 

how well each model fit the data. The one-, two-, and three-state models corresponded to the 

prediction by the Race model, the CMPL theory, and ACT-R, respectively. The HMM adopted 

in this study was a complex model in which a three-parameter power function was embedded. 

Note that Tenison and Anderson (2016) also tested a three-parameter exponential function and 

the APEX function (Heathcote et al., 2000), but I only focused on the power function because (a) 

the power-law of practice is already well established in skill acquisition research, (b) Tenison 
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and Anderson showed that the APEX function tended to provide worse fits than the power or the 

exponential function, and (c) as shown in Section 3.1.1, the power function was noticeably more 

compatible with the current dataset than the exponential function. As introduced in Section 1.4, 

the three-parameter power function can be denoted as 

RT(,* = I + 𝛽(𝑗!", 

where the reaction time on practice trial 𝑗 within State 𝑖 (RT(,*) was modeled as a function of the 

intercept (I), the slope per state (𝛽(), and the learning rate parameter (𝛽(). Following Tenison and 

Anderson (2016), I assumed that the intercept and the exponent were constant across learning 

states and estimated different values of the slope for each state. Note that the number of 

parameters was not exactly three in the model because estimating a slope per state meant that the 

model required one extra parameter for each additional learning state. Additionally, the HMM 

estimated transition probability, the probability of individuals eventually moving from one state 

to another (see Section 1.4). There were 𝑖 − 1 transition parameters for each 𝑖-state model; for 

instance, the three-state model required two transition parameters, one for transitioning from the 

first to the second state and the other from the second to the third state. In total, the entire HMM 

estimated 2𝑖 + 1 parameters for an 𝑖-state model (except for the one-state model which did not 

expect any state transition). I estimated the value of the parameters that maximized the 

probability of obtaining the current dataset. Specifically, the probability of a sequence of RT for 

each participant (524 trials) was estimated using the following formula: 

Pr(𝑗, 𝑖) = ) *(1 − 𝜋!,!#$)%&$𝜋!,!#$ ./𝑔
%

'($

1RT)#'&$, 3,
RT5!'

3
67Pr(𝑗 + 𝑘, 𝑖 + 1):

*&)

%($

+ (1 − 𝜋!,!#$)*&) ; / 𝑔1RT)#'&$, 3,
RT5!'

3
6
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Pr(𝑗, 𝑖) denotes the probability of RT from trial 𝑗 to the last trial given that the participant 

entered State 𝑖 on trial 𝑗. The equation consists of two parts, one within the summation sign (Σ) 

and the other outside. The former calculates the probability of trials in which the participant 

transitions to the next state, and the latter concerns trials in which the participant remains in the 

same state until the last trial. 𝜋(,(<0 is the transition probability from State 𝑖 to State 𝑖 + 1, and 

(1 − 𝜋(,(<0)=!0𝜋(,(<0 denotes the probability of spending 𝑘 trials in State 𝑖. This part of the 

equation allowed the model to consider every possible number of trials in each specified state 

and to choose the best number of trials that maximized the likelihood of obtaining the observed 

data. In other words, the model considered every possible way of partitioning a sequence of RT 

data (524 trials) into specified sets dictated by the learning states. Hence, the HMM jointly 

estimated the power-function parameters, the transition probability (or probabilities), and the 

number of practice trials within each state. 

The probability of spending 𝑘 trials in State 𝑖, (1 − 𝜋(,(<0)=!0𝜋(,(<0, was then multiplied 

by 𝑔(RT*<>!0, 3,
?@A $%
&
), the probability of the observed RT (i.e., RT*<>!0) on trial 𝑗 + 𝑚 − 1 

given the predicted latency from the power function, RTR(>, for the 𝑚th trial in State 𝑖. 𝑔(	) 

means that the probability was computed based on a gamma distribution, which made it possible 

to explicitly incorporate the variability among the RT data as part of the model. The Gamma 

distribution (or the Gamma function) is a class of continuous probability distributions among the 

exponential family, and it is often used in psychology to model the distribution of RT data (see 

Palmer et al., 2011 for example). Following Tenison and Anderson (2016), I set the shape 

parameter of the distribution to 3 and the scale parameter to 0
&
RTR(>. This assumed that the 

variance of RT decreased in proportion to the values of RT; that is, when RT decreased due to 

practice, so did the variance of RT. The last part of the equation within the summation sign, 
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Pr(𝑗 + 𝑘, 𝑖 + 1), is the probability of RT from trial 𝑗 + 𝑘 to the last trial given that the participant 

enters the next state (State 𝑖 + 1) on trial 𝑗 + 𝑘. 

Lastly, the equation outside the summation sign deals with cases in which the participant 

stays in the same state until the last trial. (1 − 𝜋(,(<0)'!* indicates subtracting the transitional 

probability (𝜋(,(<0) from 1, which is the probability of not transitioning between states during 

trial 𝑗 to the last trial (𝑁). Note that when the transition probability is 0, the entire equation 

reduces to what is outside the summation sign, the probability of trials where the participant 

remains in the same state until the last trials. 

In the current analysis, applying the HMMs to trial-level RT data led to an issue of 

scalability; that is, computational inability to calculate the probability of each participant residing 

in a given state at each trial. This is due to the fact participants in this study had substantially 

more practice trials (524 trials) than those in the original study (36 trials). As I inspected the 

issue, this was not an issue of the models per se, but rather an issue of the estimation method (the 

expectation maximization algorithm, see below) not being able to converge on a solution. In 

principle, there were other approaches to estimate the parameters (e.g., naïve Bayes), but those 

methods have not been used in skill acquisition research and hence were not available at the time 

of data analysis. To resolve the computational issue, I chose to find the lowest level of data 

aggregation required to make the computation tractable. Obviously, the first candidate was to 

analyze the RT data at the block level, which involved aggregating every 16 trials of practice (33 

blocks). However, DeKeyser (1997) showed that in his study of L2 skill acquisition 

(morphosyntax), proceduralization could have been complete as early as by the first 16 trials of 

practice. This meant that aggregating 16 practice trials into one data point could run the risk of 

missing the first (very brief) stage of skill acquisition. Instead, I engaged in an exploratory 
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approach, in which I aggregated every 2 to 16 trials of practice and searched for the lowest level 

of data aggregation that allowed the HMM algorithm to run. This was at the level of four trials 

(524 / 4 = 131 bins) for comprehension practice and at the level of six trials (514 / 6 ≈ 88 bins) 

for production practice. Hence, I averaged RT data in every 4-trial and 6-trial bins for 

comprehension and production practice, respectively, and used the resulting dataset to fit the 

HMMs. I acknowledge that it was most ideal to analyze the raw (trial-level) data, but as 

discussed in Section 3.2, this data averaging was unlikely to affect the results, especially in 

regards to the number of HMM states most consistent with the data. Hence, I assumed that at 

every four or six trials of practice, participants were in the stage of skill acquisition. 

Although HMM states represented leaning stages in this study, the mapping between the 

two sides was not completely one-to-one because the current HMM conceptualized a distinct 

state for each number of practice trial (or a 4- or 6-trial bin rather); that is, the model went 

through every trajectory of state transitions to be possible at each trial (or a bin). Figure 2.15 

illustrates the difference between a typical HMM (Figure 2.15a) and the model adopted from 

Tenison and Anderson (2016) (Figure 2.15b). At each trial, participants in the current model had 

two options: they either proceed to the next trial of the current state or transition to the first trial 

of the next state. The sheer reason of adopting this complex model was to circumvent the fact 

that models with within-state speedup violates the Markov assumption when there is only one 

Markov state for each learning state. Due to this complexity, if there were 𝑖 states, the HMMs 

had 131𝑖 states for comprehension practice and 88𝑖 states for production practice (if no 

aggregation had not been applied, there would have been 524𝑖 states). All parameters associated 

with the HMMs and the power function were estimated using the expectation maximization 

algorithm (Rabiner, 1989). The HMM fitting was done on Spyder (Version 5.1.5; 
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https://www.spyder-ide.org/), an open-source platform to program and execute the Python 

language. The codes to execute the analysis was provided by Dr. Caitlin Tenison, the 

corresponding author of Tenison and Anderson (2016). 

 
Figure 2.15. The difference between a typical HMM and the model in the current study. 

 

After fitting the HMM with differing number of states (i.e., one to three states), I 

compared the models based on Akaike Information Criterion corrected for small sample sizes 

(AICc) and Bayesian Information Criterion (BIC). Although Tenison and Anderson (2016) 

solely relied on BIC to compare the competing HMMs, the use of BIC assumes that the true 

model exists in the set of candidate models, which is rarely true in (most) psychological research. 

In contrast, AIC(c) does not make such an assumption, and it only computes the information loss 

when a researcher’s model is compared against the true model (even though AIC has a drawback 

of tending to prefer overly complex models, which is not the case for BIC) (see Burnham & 

Anderson, 2002; Kass & Raftey, 1995 for discussions advocating AIC or BIC). I chose AICc 

over AIC because AIC is only valid for large datasets, with a common threshold being B
=
< 40, 
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where 𝑛 is the sample size and 𝑘 is the number of parameters estimated (Burnham & Anderson, 

2002). AICc and BIC were defined as: 

AICc = −2 log 𝐿 + 2𝑘 +
2𝑘(𝑘 + 1)
𝑛 − 𝑘 − 1  

BIC = −2 log 𝐿 + 𝑘 log(𝑛) 

where log 𝐿 is the log likelihood of obtaining observed data under the model, 𝑘 is the number of 

parameters in the model, and 𝑛 is the sample size. Because examining the values of AICc or BIC 

per se does not indicate how well the best model compares to its rival models, I calculated the 

so-called Akaike weight and the BIC model weight, which can be interpreted as a conditional 

probability of a model when compared to the other candidate models in the set (with the value 

between 0 and 1). I followed the formulation of the weights summarized in Wagenmakers and 

Farrell (2004): 

𝑤((index) =
exp	 ]−12∆((index)_

∑ exp	 ]−12∆=(index)_
C
=D0

 

where ∆(index) is the difference between AICc or BIC of the best model and that of a model in 

focus. The primary purpose of using both AICc and BIC was to gather and triangulate multiple 

sources of information for (or against) competing HMM models. 

One caveat of the current HMM is that it did not conceptualize cases in which the 

participants regressed back to the previous learning states. However, as is clear in both cognitive 

psychology and SLA, the skill acquisition theory is also a theory of skill retention (Kim, Ritter, 

& Koubek, 2013; Li & DeKeyser, 2017; Y. Suzuki & Sunada, 2019). Fitting a power function to 

RT data thus assumed that there would be a smooth and continuous decrease in RT, which is not 

true particularly when a skill must be learned over a long period of time. While I was willing to 
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make such idealization for the purpose of the current study, any studies that span over multiple 

sessions/days necessarily invite some degree of forgetting on the participants’ side. 

2.3.3 Regression Modeling 

Regression modeling answered the second research question of the study by investigating 

which cognitive individual difference variables predicted learning at each stage of skill 

acquisition. I modelled three dependent variables, accuracy, CV, and RT by fitting generalized 

linear mixed models (GLMM) using Bayesian inference. I used the software R (Version 4.1.2; R 

Core Team, 2022) and the R package brms (Version 2.16.3; Büerkner, 2017), which was a front-

end R package of Stan (Version 2.21.3; Stan Development Team), a probabilistic programming 

language for Bayesian inference and optimization. In Bayesian analysis, prior knowledge in the 

form of probability distributions is combined with observed data to create posterior distributions 

(see Gelman et al., 2013; Kruschke, 2015; McElreath, 2020 for general reviews). 

Mathematically, posterior distributions are derived as the precision-weighted average of the prior 

and the observed data. Maie and Godfroid (2022), Murakami and Ellis (2022), and Saito et al. 

(2020) provide recent examples of Bayesian data analysis in SLA. 

Below, I list mathematical details of the GLMMs that were applied to the current 

dependent variables. To sum, accuracy from comprehension practice was modeled with a 

binomial GLMM, but the same variable from production practice was modeled using a zero-one 

inflated beta GLMM. Regardless of the mode of language practice, RT and CV were modeled 

with normal GLMMs. Often, these regression models are alternatively called a logistic, zero-one 

inflated beta, and linear mixed-effects model, respectively. 
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Binomial model for accuracy (comprehension) 

𝑦! 	~	Binomial(𝑛, 𝑝!), where	𝑖 = 1, 2, … , 𝑛 and indicates participants 

𝑝! =
1

1 + 𝑒+,
 

𝑋𝛽! = 𝛼 + 𝛼-./0123[!] + 𝛼6317[)] + R𝛽896:; + 𝛽-./0123[!]S𝑥896:; + 𝛽𝑥<3:=1> + 𝛽𝑥<3:=1? + 𝛽𝑥@12;:9:36A1 + 𝛽𝑥B<C8$D + 𝛽𝑥<E + 𝛽𝑥F-G2HI7I3I9

+ 𝛽𝑥<3:=1>:@12;:9:36A1 + 𝛽𝑥<3:=1>:B<C8$D + 𝛽𝑥<3:=1>:<E + 𝛽𝑥<3:=1>:F-G2HI7I3I9 + 𝛽𝑥<3:=1?:@12;:9:36A1 + 𝛽𝑥<3:=1?:B<C8$D

+ 𝛽𝑥<3:=1?:<E + 𝛽𝑥<3:=1?:F-G2HI7I3I9 

 

U
𝛼-./0123

𝛽-./0123,896:;V	~	MVNormal Z			[
			0			
			0			] ,			𝐒𝐬𝐮𝐛𝐣𝐞𝐜𝐭_ 

 

𝐒𝐬𝐮𝐛𝐣𝐞𝐜𝐭 = `
𝜎R!"#$%&'
> 𝜎R!"#$%&'𝜎S!"#$%&',)*+,-𝜌

𝜎S!"#$%&',)*+,-𝜎R!"#$%&'𝜌 𝜎S!"#$%&',)*+,-
> c 

𝛼 ~	Normal(1, 5) 

all 𝛽s ~	Normal(0, 1) 

𝜎R!"#$%&' 	~	HalfCauchy(1) 

𝜎S!"#$%&',)*+,- 	~	HalfCauchy(1) 

𝜌	~	LKJ(1) 

  



 91 

Zero-one inflated beta model for accuracy (production) 

𝑦! 	~	Beta(𝜐! , 𝜔!), where	𝑖 = 1, 2, … , 𝑛 and indicates participants 

𝜐!
𝜐! +𝜔!

= 𝜇! 

𝜇! =
1

1 + 𝑒+,
 

𝑋𝛽! = 𝛼 + 𝛼-./0123[!] + 𝛼6317[)] + 𝛽𝑥<3:=1> + 𝛽𝑥@12;:9:36A1 + 𝛽𝑥B<C8$D + 𝛽𝑥<E + 𝛽𝑥F-G2HI7I3I9 + 𝛽𝑥<3:=1>:@12;:9:36A1 + 𝛽𝑥<3:=1>:B<C8$D

+ 𝛽𝑥<3:=1>:<E + 𝛽𝑥<3:=1>:F-G2HI7I3I9 

 
𝛼-./0123~	Normal(0, 	𝜎R!"#$%&'

> ) 

𝛼 ~	Normal(1, 5) 

all 𝛽s ~	Normal(0, 1) 

𝜎R!"#$%&' 	~	HalfCauchy(1) 
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Normal model for CV (comprehension, production) 

𝑦! 	~	Normal(𝜇, 𝜎>), where	𝑖 = 1, 2, … , 𝑛 and indicates participants 

𝜇 = 𝛼 + 𝛼-./0123[!] + 𝛼6317[)] + R𝛽896:; + 𝛽-./0123[!]S𝑥896:; + 𝛽𝑥<3:=1> + 𝛽𝑥<3:=1? + 𝛽𝑥@12;:9:36A1 + 𝛽𝑥B<C8$D + 𝛽𝑥<E + 𝛽𝑥F-G2HI7I3I9

+ 𝛽𝑥<3:=1>:@12;:9:36A1 + 𝛽𝑥<3:=1>:B<C8$D + 𝛽𝑥<3:=1>:<E + 𝛽𝑥<3:=1>:F-G2HI7I3I9 + 𝛽𝑥<3:=1?:@12;:9:36A1 + 𝛽𝑥<3:=1?:B<C8$D

+ 𝛽𝑥<3:=1?:<E + 𝛽𝑥<3:=1?:F-G2HI7I3I9 

Note: 𝛽𝑥<3:=1?, 𝑥<3:=1?:@12;:9:36A1, 𝛽𝑥<3:=1?:B<C8$D, 𝛽𝑥<3:=1?:<E, and 𝛽𝑥<3:=1?:F-G2HI7I3I9 were dropped for production practice. 

 

U
𝛼-./0123

𝛽-./0123,896:;V	~	MVNormal Z			[
			0			
			0			] ,			𝐒𝐬𝐮𝐛𝐣𝐞𝐜𝐭_ 

 

𝐒𝐬𝐮𝐛𝐣𝐞𝐜𝐭 = `
𝜎R!"#$%&'
> 𝜎R!"#$%&'𝜎S!"#$%&',)*+,-𝜌

𝜎S!"#$%&',)*+,-𝜎R!"#$%&'𝜌 𝜎S!"#$%&',)*+,-
> c 

𝛼 ~	Normal(0, 1) for comprehension and production 

all 𝛽s ~	Normal(0, 1) for comprehension and production 

𝜎R!"#$%&' 	~	HalfCauchy(1) for comprehension and production 

𝜎S!"#$%&',)*+,- 	~	HalfCauchy(1) for comprehension and production 

𝜌	~	LKJ(1) for comprehension and production  
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Normal model for RT (comprehension, production) 

log	(𝑦!)	~	Normal(𝜇, 𝜎>), where	𝑖 = 1, 2, … , 𝑛 and indicates participants 

𝛼 + 𝛼-./0123[!] + 𝛼6317[)] + R𝛽896:; + 𝛽-./0123[!]S𝑥896:; + 𝛽𝑥<3:=1> + 𝛽𝑥<3:=1? + 𝛽𝑥@12;:9:36A1 + 𝛽𝑥B<C8$D + 𝛽𝑥<E + 𝛽𝑥F-G2HI7I3I9

+ 𝛽𝑥<3:=1>:@12;:9:36A1 + 𝛽𝑥<3:=1>:B<C8$D + 𝛽𝑥<3:=1>:<E + 𝛽𝑥<3:=1>:F-G2HI7I3I9 + 𝛽𝑥<3:=1?:@12;:9:36A1 + 𝛽𝑥<3:=1?:B<C8$D

+ 𝛽𝑥<3:=1?:<E + 𝛽𝑥<3:=1?:F-G2HI7I3I9 

Note: 𝛽𝑥<3:=1?, 𝑥<3:=1?:@12;:9:36A1, 𝛽𝑥<3:=1?:B<C8$D, 𝛽𝑥<3:=1?:<E, and 𝛽𝑥<3:=1?:F-G2HI7I3I9 were dropped for production practice. 

 

U
𝛼-./0123

𝛽-./0123,896:;V	~	MVNormal Z			[
			0			
			0			] ,			𝐒𝐬𝐮𝐛𝐣𝐞𝐜𝐭_ 

 

𝐒𝐬𝐮𝐛𝐣𝐞𝐜𝐭 = `
𝜎R!"#$%&'
> 𝜎R!"#$%&'𝜎S!"#$%&',)*+,-𝜌

𝜎S!"#$%&',)*+,-𝜎R!"#$%&'𝜌 𝜎S!"#$%&',)*+,-
> c 

𝛼 ~	Normal(0, 2) for comprehension and all 𝛼 ~	Normal(0, 3) for production 

all 𝛽s ~	Normal(0, 1) for comprehension and production 

𝜎R!"#$%&' 	~	HalfCauchy(1) for comprehension and production 

𝜎S!"#$%&',)*+,- 	~	HalfCauchy(1) for comprehension and production 

𝜌	~	LKJ(1) for comprehension and production 
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2.3.3.1 Accuracy (comprehension) 

The probability of choosing an correct answer, that is, 𝑝((𝑦( = 1), was modeled using a 

binomial distribution with the number of trials, 𝑛, set at 524 trials. A probability is by nature 

bound between 0 and 1 and hence was transformed to its logit (i.e., log odds) (which is bound 

between −∞ and +∞) by the logit link function so that the independent variables corresponded 

to the logit of the probability in a linear manner. The predictor variables included a main effect 

of residing in a given skill acquisition stage, that is, 𝛽𝑥E,-./# and 𝛽𝑥E,-./& (Stage 1 corresponded 

to the intercept) and a main effect of declarative memory capacity (𝛽𝑥F/G1-;-,HI/), ASRT15 

(𝛽𝑥9E?@0J), SL (𝛽𝑥EK), and psychomotor ability (𝛽𝑥L+MGN2O2,2;). I let each stage and cognitive 

variable interact with each other, so there was a two-way interaction of Stage 2 with declarative 

memory capacity (𝛽𝑥E,-./#:F/G1-;-,HI/), ASRT15 (𝛽𝑥E,-./#:9E?@0J), SL (𝛽𝑥E,-./#:EK), and 

psychomotor ability (𝛽𝑥E,-./#:L+MGN2O2,2;), and a two-way interaction of Stage 3 with 

declarative memory capacity (𝛽𝑥E,-./#:F/G1-;-,HI/), ASRT15 (𝛽𝑥E,-./#:9E?@0J), SL (𝛽𝑥E,-./#:EK), 

and psychomotor ability (𝛽𝑥E,-./#:L+MGN2O2,2;). Although I was primarily interested in how each 

cognitive variable predicted the logit-transformed accuracy rate at each learning stage, I added a 

main effect of Trial to account for the changes in the accuracy rate as a function of practice trials. 

Random effects consisted of the maximal structure allowed by the experimental design. 

Hence, I estimated varying intercepts and slopes of Trial for individual participants. Note that 

random effects for items could not be incorporated because there were only two repetitions of the 

same items across the four practice sessions. Random effects were estimated as if they were 

drawn from a multivariate normal distribution with the mean of 0 and with the standard deviation 

indicated by the variance-covariance matrix 𝐒𝐬𝐮𝐛𝐣𝐞𝐜𝐭.	See above for the content of the variance-

covariance matrix. A multivariate normal distribution is a multi-dimensional extension of a 
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normal distribution. This specification is the same as that of GLMMs implemented in lme4 

package (Bates et al., 2015).  

Because there was no a priori information regarding how the participants would increase 

accuracy (in the specific experimental tasks adopted in the current study) as a function of 

practice and how the cognitive individual difference variables predicted the participant’s 

accuracy rate, I used weakly informative priors so that the data would overwhelm the priors 

when there was (at least some) meaningful information in the dataset. Weakly informative prior 

can be defined as a class of prior distributions “that are explicitly designed to encode information 

that applies to a general class of problems without taking full advantage of problem-specific 

knowledge” (Gelman, Simpson, & Betancourt, 2017, p. 3). A weakly informative prior is made 

intentionally weak so that it does not affect the posterior distribution but still allows for the 

regularization of extreme values in the posterior samples. For the intercept (𝛼), I used a prior 

distribution in the form of a normal distribution with the mean of 1 and the standard deviation of 

5. This prior expected that aggregating over the cognitive variables, the mean accuracy rate of 

the participants at Stage 1 (and Trial 1) would be logit(1) = .731, but it can be between .017 

and .997 (= logit[1 − 5] and logit[1 + 5]) within ±1SD of uncertainty. For the regression 

coefficients, I set the prior distribution as a normal distribution with the mean of 0 and the 

standard deviation of 1. This prior expected that when the mean accuracy rate was .731, one 

standard deviation increase in CVMT, for instance, was associated with a 15% increase in 

accuracy (logit[1 + 1] − logit[1] = .149). 

For the random-effects parameters, that is, 𝜎"&'()*+, and 𝜎X&'()*+,,./012, I used a half-

Cauchy distribution with its scale parameter set at 1. The half-Cauchy distribution is a positive 

half of a Cauchy distribution, which can be derived by holding the degree of freedom parameter 
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of a student-t distribution to 1 (note, as df → ∞, t distribution → normal distribution). I chose a 

Cauchy distribution because Gelman (2006) showed that with complex models such as GLMMs, 

standard deviation parameters can often be better approximated by a half-Cauchy distribution 

than by an inverse-gamma or non-informative prior distribution (which are traditionally used to 

model error parameters). In addition, I used the Lewandowski-Kurowicka-Joe correlation (LKJ) 

distribution (Lewandowski, Kurowicka, & Joe, 2009) as the prior distribution for the correlation 

between the random-effects parameters. I set its scale parameter to 1 so that the distribution 

becomes (almost) uniform to allow for any value of the correlation between the varying 

intercepts and slopes for individual participants. 

I estimated the posterior distribution of the model parameters through a Markov chain 

Monte Carlo (MCMC) simulation consisting of four chains of 5,000 iterations each (with 1,000 

warmup trials). Stan implements a No-U-Turn Sampler as a MCMC algorithm, which is an 

extension of Hamiltonian Monte Carlo (Hoffman & Gelman, 2014). To check whether each 

MCMC chain converged on model parameters with a stationary distribution, I monitored 

whether the value of 𝑅l associated with each parameter (as a convergence index) was within the 

range of 1 ≤ 𝑅l ≤ 1.1 (Gelman & Rubin, 1992). I adopted expected a posteriori (i.e., the mean of 

the posterior distribution) and 95% credible intervals (CrI: i.e., highest posterior desity intervals) 

as the point and interval estimates of the model coefficients, respectively. The procedure of 

parameter estimation was the same throughout the regression analysis and hence it will not be 

described further in this dissertation unless any changes were made. 

2.3.3.2 Accuracy (production) 

The zero-one inflated beta regression is an extension of the beta regression, which, in 

addition to handling variables that are bound between 0 and 1 (as the beta regression does), deals 
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with data that have many data points near 0 or 1 (see Ospina & Ferrari, 2012 for a review of a 

general class of zero-or-one inflated beta models). It models a dependent variable with a beta 

distribution, a continuous probability distribution defined on the interval between 0 and 1. It 

takes two shape parameters, 𝜐 and 𝜔, whose relative values determine the shape of the 

distribution. The mean of the distribution, 𝜇, can be found as 𝜇 = Y
Y<Z

, and it is this mean that is 

predicted by independent variables in a beta-regression model. The fixed effects contained the 

same predictor variables as those in the binomial GLMM, except that (a) parameters that 

pertained to Stage 3 were dropped because the two-state HMM was the best model for 

production practice data and that (a) the main effect of Trial was removed because estimating its 

effect, that is, the trial-by-trial change in accuracy rates (that were already quite high), proved 

quite computationally challenging such that it was unable to draw samples from the posterior 

distribution to estimate the parameter. As shown in Figure 3.1 and 3.2 and Table 3.1, this change 

(of removing Trial) was unlikely to be an issue because the participants did not increase their 

accuracy over the course of practice trials (or blocks). Note that because Trial was not entered 

into a model as a covariate, the model also did not contain varying slopes of Trial for individual 

participants. Lastly, because I expected that the participants would have the same level of 

accuracy for comprehension and production practice, I assigned the same prior distributions for 

the intercept and slope parameters (i.e., Normal(1, 5) for 𝛼 and Normal(0, 1) for 𝛽s). 

2.3.3.3 CV (comprehension, production) 

The CV of RT was modeled with a normal GLMM. The fixed and random effects were 

identical to those in the models for accuracy rates. I used a prior distribution of Normal(0, 1) for 

the intercept, which expected that the mean CV at Stage 1 would equal 0, which can be between 

-1 and 1 within 1SD of uncertainty. The same prior distribution was used for the slope 
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parameters as well, which assumed that when the mean CV is 0, one standard deviation increase 

in CVMT, for instance, would be associated with 1 increase in CV. This prior did not assume 

any direction of the change in CV and only expected the degree of change so vaguely that it did 

not affect the resulting posterior estimate. 

2.3.3.4 RT (comprehension, production) 

As with CV, RT (log-transformed) was modeled with a normal GLMM. The only 

difference in the fixed effects was that Trial was transformed to its logit to expect that RT 

decreases as a power function of practice trials. Because CV and RT were on different scales, I 

assigned different prior distributions. For the intercept, I assigned a normal distribution of 

Normal(0, 2) for comprehension practice and Normal(0, 3) for production practice. These 

priors predicted that for comprehension of the target language, the participants’ mean RT at the 

first stage was 1 second (=log[0]) with uncertainty over the values of 0.13 to 7.38 seconds 

within ±1SD (log[−2] to log	[2] seconds); for production practice, the prior expected the mean 

of 1 second with uncertainty over values between 0.04 and 20.08 seconds within ±1SD. 

Similarly, for the slope parameters, I used Normal(0, 1), which predicted that one standard 

deviation increase in CVMT, for instance, is associated with an increase of 3.71 seconds in RT. 

Taken together, there were six GLMMs used to analyze the current comprehension and 

production practice datasets: a binomial GLMM for accuracy in comprehension practice, a zero-

one inflated beta GLMM for accuracy in production practice, and four normal GLMMs for CV 

and RT in both comprehension and production practice. Throughout the analysis, I used weakly 

informative priors so that when there were informative patterns in the data, the priors were 

overwhelmed by the data and hence bore no (or very little) influence on the statistical inference 

drawn from the results.  
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CHAPTER 3: RESULTS 

In this chapter, I report the results of the analysis conducted to investigate the number 

and the nature of skill acquisition stages in L2 learning. I will first present the results from a 

preliminary analysis of the data, including descriptive statistics of the dependent variables and 

cognitive individual difference variables. The results of the HMM analysis will then be presented 

with reference to the estimated parameter values (i.e., the power-function parameters, the 

transition probability, and the number of trials within each state) and the results of the model 

comparison based on AICc and BIC. Lastly, I will present the results of regression modeling to 

describe how the participants developed accuracy and fluency as a function of practice and the 

learning stages estimated by the HMM analysis. Furthermore, it will also reveal which cognitive 

variables predict the development at each stage of learning. 

3.1 Preliminary Analysis 

3.1.1 Language Practice 

3.1.1.1 Accuracy 

Figure 3.1 and 3.2 show the descriptive summary of the participants’ accuracy rate at the 

trial and block level of analysis for comprehension and production practice, respectively. 

Descriptive statistics of the accurate rates at the block level are summarized in Appendix A. 

Overall, the participants maintained a high level of accuracy throughout the study, and this 

applied to both comprehension and production practice. It seemed that the participants were less 

accurate and provided more variable responses during the first 25 trials or so, but the overall 

mean consistently revolved around or above 90% thereafter, reinforcing the earlier finding from 

the vocabulary and grammar knowledge test that the participants had developed solid declarative 

knowledge about the language before engaging in comprehension and production practice. 
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Although the variability in the accuracy rates was noticeably smaller in production practice than 

in comprehension practice, this was due to the fact that data points in production practice were 

an amalgamation of eleven responses, and hence their scale was graded (i.e., 0–1) rather than 

categorical in comprehension practice (i.e., 0 or 1). 

 

 
Figure 3.1. The mean accuracy rate over the practice trials (upper) and blocks (bottom) for 

comprehension practice. 
Note. The change performance is 0.5 (or 50%). The error bars in the lower panel show 95% CIs. 
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Figure 3.2. The mean accuracy rate over the practice trials (upper) and blocks (bottom) for 

production practice. 
Note. The change performance is 0.5 (or 50%). The error bars in the lower panel show 95% CIs. 

 

In order to validate the observations, I modeled the accuracy data with a generalized 

linear mixed model (GLMM). Note that because the accuracy rates for comprehension and 

production practice were on a different scale at the trial level (i.e., 0 or 1 for comprehension 

practice and the proportion of correct responses out of 11 responses for production practice), the 

comparison could be made only at the block level. Hence, the dependent variable was the 

proportion of correct responses per practice block; that is, the individual’s mean accuracy rate 

over 16 trials. Due to the scale of the dependent variable (i.e., a proportion) and the fact that the 

data were highly concentrated near 1, I modeled the accuracy rates using a zero-one inflated beta 

GLMM. See Section 2.3.3 for the description of the zero-one inflated beta regression. The fixed 

effects included the mode of language practice (comprehension = 0 vs. production = 1) and 

practice blocks (1–33); the random effects only included participant-specific varying (or random) 
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intercepts. I estimated the parameters using Bayesian inference with four MCMC chains of 5,000 

iterations each (1,000 warmup iterations). 

Table 3.1 shows the results. Although the participants did not seem to improve as they 

increased the amount of practice over 33 blocks (b = 0.002), they performed more accurately in 

production practice (b = 2.353+0.666) than in comprehension practice (b = 2.353). However, the 

difference could be considered minimal in effect size because the participants only scored 4% 

higher in production practice (logit[2.352 + 0.666] = 	 .953) than in comprehension practice 

(logit[2.353] = 	 .913). This is understandable as the model was dealing with accuracy data that 

were consistently high across the practice blocks, even from Block 1. Because the participants 

were already accurate from the first block of practice, it came as no surprise that the change in 

accuracy did not follow a power function of practice blocks, log(Accuracy)~ log(Block): R2 

= .22 and .29 for comprehension and production practice, respectively. 

 
Table 3.1. The posterior estimates from the accuracy model. 
 Fixed Effects 
 Estimate SEb 95% CrI 𝑅l 

Intercept 2.353 0.057 2.242 2.466 1.002 
Mode 0.666 0.023 0.621 0.710 1.001 
Block 0.002 0.001 -0.000 0.004 1.000 

 Random Effects 
 SD SESD 95% CrI 𝑅l 

Participant 0.405 0.039 0.339 0.491 1.001 
𝑅# =	.212	

Note. For Mode, comprehension practice was coded as the baseline (and hence corresponds to 
the intercept). 
 
 
3.1.1.2 Reaction Time 

Figure 3.3 and 3.4 present the mean reaction time of the entire sample and of individual 

participants as a function of comprehension and production practice trials, respectively. 

Descriptive statistics are provided in Appendix A. At the sample level, the participants displayed 



 103 

an impressive rate of learning; after 524 trials, the participants’ mean RT decreased from 7.15 

seconds (SD = 3.06, 95% CI [6.40, 7.90]) to 2.56 seconds (SD = 1.04, 95% CI [2.30, 2.81]) for 

comprehension practice and from 19.43 seconds (SD = 6.58, 95% CI [17.75, 21.12]) to 7.15 

seconds (SD = 3.44, 95% CI [6.29, 8.05]) for production practice. In the end, the participants 

thus required only about one-third of the time they initially needed to perform the task. The 

decrease in RT also seemed to follow a power function as the curve exhibited a initial sharp drop 

followed by a gradual speedup. To confirm the observation, I fitted a normal GLMM with an 

identity link function. The model regressed the logarithm of RT on the logarithm of practice 

trials (i.e., a log-log model). I tested the power-function model against an exponential-function 

model in which the logarithm of RT was predicted from practice trials on the original scale. 

Random effects included varying intercepts and slopes of practice trials for individual 

participants. Again, the models were Bayesian models estimated based on four MCMC chains of 

5,000 iterations each (with 1,000 warmup trials). 
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Figure 3.3. Individual reaction time as a function of practice trials (comprehension practice). 
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Figure 3.4. Individual reaction time as a function of practice trials (production practice). 
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Despite the previous finding that an exponential function in general provides a better fit 

to unaggregated data (Heathcote et al., 2000), the power function was more consistent with the 

current dataset for both comprehension (𝑅# = .36 vs. .32) and production practice (𝑅# = .59 

vs. .55). This result can also be seen in Figure 3.5, which summarizes the relationship between 

RT and practice trials in terms of the power function and the exponential function. In the figure, 

the more linear the relationship between RT and practice trials, the better the fit of a give 

function becomes. However, examining the value of the model fit (𝑅#), neither the power 

function nor the exponential function seemed to account for the RT-practice relationship well. 

This is likely due to the fact the power-law of practice tends not to apply to individual raw data. 

 

 
Figure 3.5. The power and exponential function on comprehension and production data. 
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To compare the results of the current study with those of previous (L2) skill acquisition 

research, I also tested the power and the exponential functions on RT data that were aggregated 

over participants and practice blocks. Figure 3.6 and 3.7 summarize the aggregated RT as a 

function of practice blocks for comprehension and production practice, respectively. The power 

function fit the RT data very well (𝑅# = .97 and .96), but the exponential function (𝑅# = .79 

and .81) provided a fit that was subpar, compared to the results of previous L2 skill acquisition 

research (see Table 1.2). Though roughly, not only RT but the standard deviation of RT also 

seemed to decrease as a power function of blocks: 𝑅# = .88 and .79 for comprehension and 

production practice. See Figure S1 and S2 in Appendix A for visual summaries of the standard 

deviation data. The current dataset is thus well consistent with the power-law of practice and 

justifies the use of a power function in the HMM analysis (see Section 2.3.3).  

 

 
Figure 3.6. Aggregated RT data at the block level for comprehension practice. 

Note. The black dots and line show the means over the participants and colored lines display the 
individual means. 
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Figure 3.7. Aggregated RT data at the block level for production practice. 

Note. The black dots and line show the means over the participants and colored lines display the 
individual means. 
 

3.1.1.3 Coefficient of Variability 

Figure 3.8 and Figure 3.9 summarize the changes in the coefficient of variability (CV) of 

RT as a function of practice blocks for comprehension and production of Mini-Nihongo, 

respectively. From Block 1 to Block 33, the CV decreased for both comprehension (from 0.37 

[.35, .39] to 0.33 [0.31, 0.35]) and production practice (from 0.22 [0.20, 0.24] to 0.20 [.18, .23]), 

but there was extreme variability in how the CV decreased for each individual participant. 

Previously, Hui (2020) demonstrated that at the group level, CV can initially increase before it 

begins to decrease for proceduralization, following an inverted U-shaped curve. In the current 

study, this seemed like to be the case for production practice, but in comprehension practice, the 

CV rather decreased before it started to increase. This observation, however, did not generalize 

to the participant-level observations as there were high individual differences in how the CV 

changed for individual participants. For some, the CV decreased rather smoothly, but for others, 
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it had a period of increase before decreasing. In some cases, there was some increase in the CV 

but it never experienced any decrease. Hence, the group-level observations in Figure 3.8 and 3.9 

(i.e., blue lines) are very likely to be an artifact of data averaging. Nonetheless, at the sample 

level, the participants showed a decrease in the CV as a function of practice even though the 

decrease was minimal. 

The decrease in the CV serves an index of proceduralization (or automatization, as 

discussed in Segalowitz & Segalowitz, 1993) if and only if the CV positively correlates with the 

corresponding mean RT. At Block 33, the correlation between the CV and mean RT was r = .18 

[-.05, .41] for comprehension practice and r = .56 [.36, .71] for production practice. As far as the 

CV is concerned, this meant that proceduralization only took place for production skills. 

However, this was at odds with the results on RT, in which the participants’ speed of 

performance was found to have reached an asymptote for both comprehension and production 

skills (see Figure 3.3, 3.4, 3.6, and 3.7). In Chapter 4, I discuss the validity and reliability of 

using the CV as an index of proceduralization based on these contrasting results. 
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Figure 3.8. The coefficient of variability as a function of comprehension practice blocks. 
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Figure 3.9. The coefficient of variability as a function of production practice blocks. 
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3.1.2 Cognitive Individual Differences 

Figure 3.10 shows the correlation matrix of cognitive individual difference variables. 

Declarative memory measures (CVMT and LLAMA-B) and psychomotor ability measures 

(ASRT1 and CRT) correlated positively within their respective ability dimension (r = .41 

[.19, .60] for CVMT and LLAMA-B and r = .61 [.44, .74] for ASRT1 and CRT), showing the 

convergent validity of CVMT and LLAMA-B to operationalize the participant’s declarative 

memory capacity on the one hand and of ASRT1 and CRT to operationalize one’s psychomotor 

ability on the other. However, ASRT15 and SL did not seem to relate to each other, which was 

unexpected from a theoretical standpoint but still consistent with the results of previous research 

on the convergent validity of procedural memory tasks (e.g., Buffington et al., 2021; Godfroid & 

Kim, 2021). In particular, SL positively correlated with LLAMA-B (r = .24 [.00, .46]), which 

may indicate that SL may tap into declarative memory rather than procedural memory capacity. 

Because the measures of declarative memory and psychomotor ability showed the 

evidence of convergent validity, I reduced their dimensions (i.e., four measures into two ability 

dimensions) through exploratory factor analysis. I used fa( ) function in the R-package psych 

(Version 2.1.9: Revelle, 2022) to model two latent factors based on CVMT, LLAMA-B, ASRT1, 

and 2CRT. I estimated a set of factor loadings that provided minimum residuals given the four 

indicator variables and two latent factors. I rotated the factor matrix using the oblimin method to 

allow for the correlation between the factors. Table 3.2 summarizes the results. 
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Figure 3.10. The correlation matrix of cognitive individual difference variables. 

 
 
Table 3.2. Results of the exploratory factor analysis. 

 Factor loading   
 1 2 ℎ# KMO 

CVMT -0.17 0.51 .32 .62 
LLAMA-B 0.04 0.79 .62 .53 
ASRT1 0.89 0.07 .77 .52 
2CRT 0.69 -0.15 .54 .55 
Variance 
explained 

.33 .23   

Note. Factor correlation: r = - .199. 
 
 

As predicted, the four measures clustered into expected groups. Factor 1 was highly 

loaded by ASRT1 (𝜆 = 0.89) and 2CRT (𝜆 = 0.69) (compared to CVMT: 𝜆 = -0.17 and LLAMA-

B: 𝜆 = 0.04) and hence was labeled as the psychomotor ability, and Factor 2 was consistent with 
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CVMT (𝜆 = 0.51) and LLAMA-B (𝜆 = 0.79) (compared to ASRT1: 𝜆 = 0.07 and SL: 𝜆 = -0.15) 

and hence interpreted as the declarative memory capacity. I extracted participants’ scores on the 

two latent variables by retrieving the corresponding factor scores. Together, Factor 1 and 2 

explained 56% of the total variance among the indicator variables. This meant that there was still 

44% of variance that could be explained by other indicators that were not measured and/or 

sampling error within each indicator variable. This fact is also conveyed in relatively low values 

of the Kaiser-Meyer-Olkin statistic of sampling adequacy (overall KMO = .55) (which quantifies 

the amount of common variance among indicator variables). However, the Bartlett’s test of 

sphericity showed that the correlation matrix of the four indicators was significantly different 

from its identity matrix (i.e., a matrix with no correlations) (𝜒#(6) = 48.21, p < .001), showing 

that although the indicators may not share a large amount of variance, there was certainly 

redundancy that could be combined. 

Table 3.3 summarizes the descriptive statistics of the cognitive individual difference 

variables including the factor scores on the declarative memory capacity and psychomotor 

ability. There were three observations. First, the participants’ scores on CVMT were 

comparatively lower than those of participants in previous L2 research (e.g., Morgan-Short et al., 

2014: M = 2.11 and Faretta-Stutenberg & Morgan-Short, 2018: M = 1.75–2.09; Walker et al., 

2020: M = 1.80), which suggested that at the sample level, the participants in the current study 

may have had weaker declarative memory capacity than that of L2 learners often recruited for 

laboratory research in SLA. The same observation held true for LLAMA-B (e.g., Hamrick, 2015: 

M = .52; Saito et al., 2022: M = .64; Suzuki, 2021: M = .68). Second, the mean score on ASRT15, 

that is, the mean difference between RT on the pattern and random trials in Block 15, was -2.54 

milliseconds, with its 95% CI covering both negative and positive values almost equally. This 
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suggested that at the group-level, the participants may not have learned the second-order 

conditional rule underlying the training stimuli. This result may question the validity of the 

current ASRT task as a measure to operationalize the participant’s procedural memory capacity. 

Nonetheless, this number was very similar to what has been reported in previous SLA research 

(e.g., Buffington et al., 2021: M = 2.99; Faretta-Stutenberg & Morgan-Short, 2018: M = 1.26–

2.53; Godfroid & Kim, 2021; M = -1.15 ms), and this line of research still shows the positive 

relationship between L2 learning and the procedural learning ability that ASRT is assumed to tap 

into. Lastly, the mean accuracy rate on SL was .62 [.26, .97], showing that although the 

participants as a group showed a learning effect on the task, there were still individual 

differences in how well they learned the adjacent and non-adjacent dependencies based on the 

training exposure to exemplar stimuli. This figure is similar to that of Romberg and Saffran 

(2013, Experiment 1) (M = .64) from which the current SL task was adopted. Note that the mean 

of declarative memory capacity and psychomotor ability was 0 with the standard deviation of 1 

because factor scores are standardized variables often computed in the form of z-scores. 

 
Table 3.3. Descriptive statistics of cognitive individual difference variables. 
 Mean SD Min Max 95% CI 
CVMT 1.52 0.50 0.30 2.80 0.53, 2.52 
LLAMA-B 0.49 0.21 0.10 0.90 0.08, 0.89 
ASRT15 -2.54 17.91 -59.76 43.73 -38.00, 32.92 
SL 0.62 0.18 0.36 1.00 0.26, 0.97 
ASRT1 450.13 70.05 305.08 699.11 311.43, 588.81 
CRT 436.29 53.18 342.98 576.98 330.99, 541.57 
Declarative 0.00 1.00 -2.15 2.95 -1.98, 1.98 
Psychomotor 0.00 1.00 -1.76 2.05 -1.98, 1.98 

 

3.2 The Number of Skill Acquisition Stages 

In this section, I present the results of the HMM analysis used to identify the number of 

learning stages the participants were likely to have gone through while learning how to 
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comprehend and produce the target language. I discuss the results on comprehension practice 

first and then move onto those on production practice. In the regression analysis that follows, I 

assumed the number of stages identified by the HMM analysis (see Section 3.3). 

3.2.1 Comprehension 

Table 3.4 summarizes the results of the model comparison among one-, two-, and three-

state HMM models applied to the RT data from comprehension practice. The table presents the 

log-likelihood of the models given the current dataset (log	(𝐿()), the value of AICc, the 

difference between AICc of a model and that of the best-fitting model (∆((AICc)), Akaike weight 

(𝑤((AICc)), as well as the equivalent statistics based on BIC. As far as the log-likelihoods were 

concerned, the three-state model was most consistent with the data. The three-state model also 

showed the lowest value of AICc and BIC, and the corresponding model weight indicated that it 

was far more likely to be consistent with the data than the other models (𝑤((AICc) = .999 vs. ≈

0; 𝑤((BIC) = .998 vs. ≈ 0 and .001). At minimum, the three-state model was 998 times more 

likely to be true than the one- or two-state models. 

 
Table 3.4. Results of the HMM model comparison for comprehension practice. 
  Model comparison  
 log	(𝐿() AICc( ∆((AICc) 𝑤((AICc) BIC( ∆((BIC) 𝑤((BIC) 
1-state -13881.46 27768.92 1699.09 ≈ 0 27790.07 1670.90 ≈ 0 
2-state -13043.39 26096.79 26.96 ≈ 0 26132.03 12.86 .001 
3-state -13027.91 26069.83 0 .999 26119.17 0 .998 
  Power-function parameters  
 I 𝛽E,-,/0 𝛽E,-,/# 𝛽E,-,/& 𝛼   
1-state 0.07 7.17 – – -0.23   
2-state 0.67 6.19 3.78 – -0.20   
3-state 0.00 6.48 4.71 3.49 -0.12   

 

Table 3.4 additionally contains the best-fitting parameters of a power function given the 

number of learning stages. The power function provides predicted values of RT at each trial of 
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practice in a learning given stage. For the three-state model, the fact that the intercept was 

estimated to be zero meant that each slope parameter corresponded to the mean of RT at the first 

trial of each stage: hence, the model-based average RT of the first trial in Stage 1 was 6.48 

seconds, in Stage 2 was 4.71 seconds, and in Stage 3 was 3.49 seconds. Note that in descriptive 

statistics, the participants’ mean RT at the first and the last trial of practuce was 7.15 seconds 

(SD = 3.06, 95% CI [6.40, 7.90]) and was 2.15 seconds (SD = 0.78, 95% CI [1.96, 2.35]), 

respectively. Hence, if there had been only one learning stage, that is, if the speedup had only 

been due to within-stage speedup due to some quantitative change in skill performance, the RT 

would have only decreased to 3.98 seconds (7.15 ∗ 131!$.0# = RT@;H-10 ∗ bin"). This shows that 

the remaining 1.83 seconds (3.98 − 2.15) had to be due to between-stage speedup, possibly by 

shifting the underlying mechanism of skill performance to a more efficient process. 

Next, Figure 3.11 displays the probability of stage occupancy across the practice trials. 

The probability is based on the proportion of the number of the participants residing in a given 

stage. Hence, although I will interpret the probability as the probability of the entire group 

residing in Stage 1, 2, and 3, it alternatively shows the proportion of the number of the 

participants within the sample that occupied a given learning stage.  

It was clear that all participants started from Stage 1 (which was a constraint of the HMM 

model), but they eventually moved to Stage 2 and Stage 3 as a function of practice. Stage 2 

became the majority state for the participants (i.e., the probability larger than .50; or more than 

50% of the participants) at Trial 38, and this was Trial 288 for Stage 3. To investigate the 

relationship between the participants’ cognitive individual differences and how fast they moved 

through learning stages, I calculated the number of trials the participants required to reach Stage 

2 and Stage 3 and regressed the variable on the four indices of cognitive individual differences 



 118 

(declarative memory capacity, ASRT15, SL, and psychomotor ability, all standardized). I used a 

Poisson model (with the logarithm link function) because the number of trials was a count 

variable that only took positive values. Note that I also included trials to reach Stage 2 as a 

covariate when modeling trials to reach Stage 3. The models were Bayesian models with 

parameters estimated through four MCMC chains each with 5,000 iterations (minus 1,000 

warmup trials). Table 3.5 summarizes the results. 

All independent variables predicted the number of trials toward Stage 2 and Stage 3. 

First, declarative memory capacity was negatively associated with the number of trials to reach 

Stage 2 and Stage 3, indicating that those participants who had higher declarative memory 

capacity required fewer trials to transition to Stage 2 and to Stage 3. This was also true for 

psychomotor ability, but the relationship was statistically inverse because the scale of 

psychomotor ability was based on the speed of performance (or RT), meaning that those 

participants who had higher psychomotor ability required fewer practice trials to move to Stage 2 

and to Stage 3. Lastly, while ASRT15 and SL were positively associated with the number of trials 

to reach Stage 2, but there was an inverse relationship when it came to trials to reach Stage 3. 

When interpreted with the assumption that “a treatment [or learning] variable interacts with an 

ID [i.e., individual difference] variable because the treatment variable requires a mental process 

that is facilitated/hampered by the value of the ID variable” (DeKeyser, 2012, p. 190), it was 

declarative memory (and psychomotor ability) that facilitated the faster transition from Stage 1 

to Stage 2, whereas those participants who relied more on procedural memory tended to take 

longer time to move to Stage 2. However, this relationship was reversed for procedural memory 

in relation to the transition from Stage 2 to Stage 3 such that those participants with higher 

procedural memory capacity required fewer trials to transition to Stage 3. 
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Figure 3.11. Probability of state occupancy in comprehension practice. 

 
Table 3.5. Summary of Poisson regression model for trials to reach Stage 2 and Stage 3. 
 Stage 2 
 b SEb 95% CrI 𝑅l 
Intercept 3.976 0.018 3.942  4.011 1.000 
Declarative -0.272 0.018 -0.308 -0.236 1.000 
ASRT15 0.084 0.015 0.055 0.112 1.000 
SL 0.136 0.018 0.101 0.170 1.000 
Psychomotor 0.255 0.016 0.222 0.286 1.000 
 Stage 3 
 b SEb 95% CrI 𝑅l 
Intercept 5.496 0.010 5.476 5.516 1.000 
TrialsStage2 0.004 0.000 0.003 0.004 1.000 
Declarative -0.158 0.008 -0.173 -0.143 1.000 
ASRT15 -0.081 0.006 -0.094 -0.069 1.000 
SL -0.053 0.008 -0.068 -0.038 1.000 
Psychomotor 0.151 0.007 0.137 0.164 1.001 
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3.2.2 Production 

Table 3.6 summarizes the results of the model comparison among one-, two-, and three-

state HMM models applied to the RT data from production practice. In contrast to 

comprehension practice, the two-state model was most consistent with the data and at minimum 

498.5 times more likely to be true than the other models. The best-fitting parameters for the two-

state power function showed that the mean RT of the first trial in Stage 1 was 17.49 seconds and 

in Stage 2 was 11.46 seconds. In the descriptive statistics, the mean RT at the first and the last 

trial of practice was 19.43 seconds (SD = 6.58, 95% CI [17.75, 21.12]) and 6.84 seconds (SD = 

2.62, 95% CI [6.17, 7.51]), respectively. If there had only been a single state, the mean RT 

would have only decreased to 10.85 seconds (19.43 ∗ 88!$.0#). Hence, the remaining 4.01 

seconds must be due to a speedup between stages. Note that the slope for Stage 3 in the three-

state model was estimated to be extremely small (𝛽E,-,/& = 0.38 seconds), which indicated that 

imposing three slopes was likely more than what the dataset could have handled and hence 

unnecessary. 

 
Table 3.6. Results of the HMM model comparison for production practice. 
  Model comparison  
 log	(𝐿() AICc( ∆((AICc) 𝑤((AICc) BIC( ∆((BIC) 𝑤((BIC) 
1-state -15224.14 30454.28 3252.15 ≈ 0 30473.92 3238.94 ≈ 0 
2-state -13596.06 27202.13 0 .997 27234.98 0 .999 
3-state -13600.20 27214.42 12.29 .002 27260.40 25.42 ≈ 0 
  Power-function parameters  
 I 𝛽E,-,/0 𝛽E,-,/# 𝛽E,-,/& 𝛼   
1-state 0.51 17.34 – – -0.22   
2-state 0.00 17.49 11.46 – -0.13   
3-state 0.00 17.24 10.92 0.38 -0.13   

 

Figure 3.12 summarizes the probability of stage occupancy across the production practice 

trials. As with comprehension practice, all participants in production practice began from Stage 
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1, but they eventually transitioned to Stage 2, which became the majority state for the 

participants at Trial 103. Table 3.7 summarizes the results of regressing the number of trials to 

reach Stage 2 on the four indices of cognitive individual differences. As with comprehension 

practice, the participants’ declarative memory capacity was negatively associated with the 

number of trials to reach Stage 2 in production practice, which meant that those participants with 

higher declarative memory capacity required fewer practice trials to move to Stage 2. In contrast, 

ASRT15 and SL were positively associated with the number of trials to reach Stage 2, showing 

that those participants who had higher procedural memory capacity or those who relied more on 

procedural memory to perform the task tended to take longer time to reach Stage 2. Psychomotor 

ability, on the other hand, seemed to play a facilitative role such that those with higher 

psychomotor ability (with lower values on the variable) required fewer trials to move to Stage 2. 

 

 
Figure 3.12. Probability of state occupancy in production practice. 
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Table 3.7. Summary of Poisson regression model for trials to reach Stage 2. 
 Stage 2 
 b SEb 95% CrI 𝑅l 
Intercept 4.910 0.012 4.886 4.934 1.000 
Declarative -0.429 0.012 -0.452 -0.406 1.000 
ASRT15 0.170 0.010 0.151 0.190 1.000 
SL 0.306 0.010 0.285 0.326 1.000 
Psychomotor 0.604 0.010 0.585 0.624 1.000 

 

In summary, the HMM analysis revealed that the acquisition of comprehension skills in 

Mini-Nihongo can be best encapsulated as a three-stage process, whereas that of production 

skills took place in two stages. The analysis of the relationship between cognitive individual 

differences and the number of trials to reach Stage 2 and Stage 3 indicated that for both 

comprehension and production practice, having higher declarative memory capacity and 

psychomotor ability was associated with fewer trials to reach Stage 2, and for comprehension 

practice, those participants with higher procedural memory capacity required fewer trials to 

reach Stage 3. Assuming that cognitive individual differences imply the learning process 

facilitated or hampered by the cognitive ability (DeKeyser, 2012), declarative memory facilitated 

the faster transition to Stage 2 for both comprehension and production practice, and procedural 

memory facilitated the faster transition to Stage 3 for comprehension practice. An important 

question is what kinds of cognitive processes are involved in each of these stages of learning? 

3.3 The Nature of Skill Acquisition Stages 

In this section, I report the results of the regression analysis to address the second 

research question of the study: the nature of the skill acquisition stages identified by the hidden 

Markov modeling (HMM) analysis. Based on the findings of the HMM analysis, I assumed that 

the participants underwent three learning stages to acquire comprehension skills while their 

learning of production skills was presupposed to have taken place in two stages. In the remainder 
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of this chapter, I thus present the results of the regression analysis based on such conditional 

assumption (i.e., comprehension skills were acquired in three stages and production skills in two 

stages). I will first present the results of the analysis on the three dependent variables from 

comprehension practice, in the order of accuracy, CV, and RT, and then move onto those from 

production practice. 

Because the stage occupancy (i.e., which stage the participants resided in) was dummy-

coded in the models, the regression coefficients for two-way interaction terms such as the two-

way interaction between Stage 2 (dummy-coded) and declarative memory only shows the 

average difference between the slope of declarative memory in Stage 1 and that in Stage 2. It 

does not indicate whether one’s declarative memory positively or negatively predicted the 

dependent variables in Stage 2. This is different from Stage 1, where the main effect directly 

reveals the role of declarative memory in Stage 1. To interpret the model parameters in the 

context of the research question in this study, I examined the effects of cognitive individual 

differences by plotting model-based predictions of the relationship between the dependent 

variables and the cognitive variables in each stage. I then calculated the posterior probability of 

whether the relationship is different from zero: Pr(𝑏 > or < 0). Henceforth, I will abbreviate the 

posterior probability to Pr in text. This probability encodes how likely the effect of a given 

variable is present given the current dataset and the model. I used the conditional_effects 

function in the brms package to draw model-based expected values of the dependent variables by 

simulating predicted data points from the corresponding posterior predictive distribution. Note 

that a posterior distribution refers to a distribution of model parameters such as regression 

coefficients, whereas a posterior predictive distribution is a distribution of future (predicted) data 

based on the model parameters. Due to the numerosity of parameters estimated by the current 
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GLMMs, I only present estimates of the fixed effects parameters. Appendix B provides full 

numerical details of the results in a tabular format. 

3.3.1 Comprehension 

3.3.1.1 Accuracy 

Posterior estimates from the binomial model of accuracy in comprehension practice are 

summarized in Figure 3.13. The dots in the figure display the point estimate of the model 

parameters, and the error bars represent the 95% credible intervals. Additionally, I have 

displayed the posterior probability of a given regression coefficient being larger or smaller than 

0. The posterior probability corresponds to the color of the dots and error bars; when 

Pr(𝑏 > or < 0) → 1, the color becomes red, and when Pr(𝑏 > or < 0) → .50, it approaches to 

blue. The first observation is that transitioning from Stage 1 to Stage 2 (b = -0.055, 95% CrI [-

0.295, 0.173], Pr[b < 0] = .675) and to Stage 3 (b = -0.051, 95% CrI [-0.372, 0.262], Pr[b < 0] 

= .618) did not relate to any increase in the participant’s accuracy of performance, which 

suggested that it was not accuracy which had to be improved to transition to Stage 2 and Stage 3. 

However, individual differences in the participants’ declarative memory capacity positively 

predicted accuracy in Stage 1 (Declarative: b = 0.438, 95% CrI [0.168, 0.706], Pr[b > 0] = .999), 

whereas other cognitive measures such as ASRT15, SL, and psychomotor ability did not seem to 

affect accuracy in Stage 1 (ASRT15: b = 0.050, 95% CrI [-0.225, 0.326], Pr[b < 0] = .636; SL: b 

= -0.055, 95% CrI [-0.323, 0.214], Pr[b < 0] = .655; Psychomotor: b = -0.065, 95% CrI [-0.324, 

0.197], Pr[b < 0] = .690). One standard deviation increase in declarative memory capacity was 

associated with 1.4% increase in accuracy (logit[3.124 + 0.438] − logit[3.124]). 
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Figure 3.13. Posterior estimates of the fixed effects parameters in binomial GLMM for accuracy 

in comprehension practice. 
 

In Stage 2 and Stage 3, the effect of declarative memory seemed to weaken in 

comparison to Stage 1, with the posterior probability larger than .90 (Stage 2:Declarative: b = -

0.156, 95% CrI [-0.377, 0.066], Pr[b < 0] = .920; Stage 3:Declarative: b = -0.204, 95% CrI [-

0.482, 0.076], Pr[b < 0] = .925). However, this result by itself does not show whether one’s 

declarative memory was still facilitative of promoting accuracy in Stage 2 and Stage 3. Figure 

3.14 presents the model-based predictions of accuracy in relation to the cognitive individual 

difference variables. It was clear that the effect of declarative memory was larger in Stage 1, but 

its influence was still maintained in Stage 2 (Pr[b > .0] = .995) and Stage 3 (Pr[b > .0] = .974). 

On the assumption that cognitive individual differences may show the learning process that is 
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enabled by the underlying cognitive ability (DeKeyser, 2012), this shows that declarative 

memory is facilitative of improving accuracy throughout the process of acquiring comprehension 

skills, but its effect is more prominent in Stage 1 than in Stage 2 and 3. No other cognitive 

variables reliably predicted the participants’ accuracy in comprehension practice: ASRT15 (Stage 

1: Pr[b > 0] = .636; Stage 2: Pr[b < 0] = .765; Stage 3: Pr[b < 0] = .803), SL (Stage 1: Pr[b < 0] 

= .655; Stage 2: Pr[b < 0] = .540; Stage 3: Pr[b > 0] = .785), and psychomotor ability (Stage 1: 

Pr[b < 0] = .690; Stage 2: Pr[b > 0] = .687; Stage 3: Pr[b > 0] = .715).
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Figure 3.14. Posterior predictions of the relationship between comprehension accuracy and the cognitive variables.
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3.3.1.2 CV 

Figure 3.15 shows the posterior estimates from the normal GLMM of the CV in 

comprehension practice. Unlike accuracy, the CV decreased as the participants transitioned from 

Stage 1 to Stage 2 (b = -0.009, 95% CrI [-0.023, 0.004], Pr[b < 0] = .909) and from Stage 2 to 

Stage 3 (b = -0.039, 95% CrI [-0.057, -0.020], Pr[b < 0] ≈ 1.000). Hence, the stability of 

processing (which the CV operationalizes) may be one aspect of skill performance the 

participants needed to develop to transition to Stage 2 and 3. Interestingly, the decrease in the 

CV was estimated to be larger in Stage 3 than in Stage 2, which was unexpected because its 

decrease should be most noticeable in Stage 2, according to the learning mechanism posed by 

ACT-R. This result may in part be due to the fact that there was extreme variability in how the 

CV of individual participants changed as a function of practice and that for some participants, 

there was some initial increase in the CV before it began to decrease (as observed in Hui, 2020). 

Hence, it is naïve to think that the participants’ CV simply decreased (i.e., their processing 

became more stable) when transitioning to Stage 2 and 3. 
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Figure 3.15. Posterior estimates of the fixed effects parameters in normal GLMM for CV in 

comprehension practice. 
 

Figure 3.16 shows the model-based predictions of the CV in relation to the cognitive 

individual difference variables. The only reliable predictor was one’s declarative memory ability 

in Stage 2 (Pr[b < 0] = .954) and Stage 3 (Pr[b < 0] = .940) and SL in Stage 3 (Pr[b < 0] = .932), 

suggesting that those participants with higher declarative memory capacity or statistical learning 

ability tended to show lower values of the CV. Although no other variables were reliably 

predictive of the CV, one variable that may predict the change in the CV was psychomotor 

ability in Stage 1 (Pr[b > 0] = .839) and 2 (Pr[b < 0] = .882), but again, the standard error around 

the estimate seemed large, and hence no definitive conclusion can be made. 
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Figure 3.16. Posterior predictions of the relationship between the CV in comprehension and the cognitive variables.
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3.3.1.3 RT 

Figure 3.17 displays the posterior estimates from the normal GLMM of RT in 

comprehension practice. Interestingly many variables seemed to play a role in predicting the 

participant’s RT at each stage of skill acquisition. First, transitioning to Stage 2 (b = -0.039, 95% 

CrI [-0.060, -0.018], Pr[b < 0] = .999) and to Stage 3 (b = -0.114, 95% CrI [-0.143, -0.085], Pr[b 

< 0] ≈ 1.000) was associated with faster RT. In Stage 1, declarative memory capacity negatively 

predicted RT (b = -0.072, 95% CrI [-0.109, -0.035], Pr[b < 0] ≈ 1.000), indicating that those 

participants who had better-functioning declarative memory tended to perform faster than those 

with lower declarative memory capacity. The same relationship was found for ASRT15 (b = -

0.048, 95% CrI [-0.084, -0.011], Pr[b < 0] ≈ 1.000), showing that those participants with higher 

procedural memory capacity tended perform faster in Stage 1. Psychomotor ability also showed a 

facilitative relationship with RT in Stage 1 (b = 0.121, 95% CrI [0.083, 0.161], Pr[b > 0] ≈ 

1.000) as the participants with higher psychomotor ability (i.e., with lower values) were 

associated with short RT.  
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Figure 3.17. Posterior estimates of the fixed effects parameters in normal GLMM for RT in 

comprehension practice. 
 
 

Figure 3.18 graphically displays the model-based predictions of RT in relation to the 

cognitive individual difference variables. Declarative memory remained facilitative of promoting 

RT in Stage 2 (Pr[b < 0] = .999) and Stage 3 (Pr[b < 0] = .987), but the two-way interaction of 

declarative memory with Stage 2 and Stage 3 (see Figure 3.17) showed that its effect was more 

prominent in Stage 1 than in Stage 2 (b = 0.021, 95% CrI [0.000, 0.042], Pr[b > 0] = .974) and in 

Stage 3 (b = 0.036, 95% CrI [0.008, 0.064], Pr[b > 0] = .995). The pairwise comparison of the 

regression slopes further showed that the effect was larger in Stage 2 than in Stage 3 (Pr[b > 0] 

= .994). Hence, the participants relied on declarative memory to improve the speed of 
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performance throughout the entire process of skill acquisition in comprehension practice, but its 

effect gradually weakened from Stage 1 through Stage 2 to Stage 3.  

Similarly, ASRT15 was facilitative of promoting RT, with its effect only evident in Stage 

1 (Pr[b < 0] = .994) and Stage 2 (Pr[b < 0] = .997) but not in Stage 3 (Pr[b > 0] = .507). The 

interaction between ASRT15 and Stage 2 showed that declarative memory was equally influential 

in Stage 1 and Stage 2 (b = 0.003, 95% CrI [-0.018, 0.024], Pr[b > 0] ≈ 0.617), showing that the 

participants relied on procedural memory to improve the speed of performance in comprehension 

practice, but the effect dissipated in Stage 3. The same relationship was also observed for 

psychomotor ability (Stage 1: Pr[b > 0] ≈ 1.000; Stage 2: Pr[b > 0] ≈ 1.000), but the effect was 

larger in Stage 1 than in Stage 2 (b = -0.055, 95% CrI [-0.077, -0.035], Pr[b < 0] ≈ 1.000). 
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Figure 3.18. Posterior predictions of the relationship between comprehension RT and the cognitive variables. 
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3.3.2 Production 

3.3.2.1 Accuracy 

Posterior estimates from the zero-one inflated beta model of accuracy in production 

practice are summarized in Figure 3.19. Transitioning to Stage 2 (b = 0.034, 95% CrI [-0.007, 

0.075], Pr[b > 0] = .946) was associated with higher accuracy rates, showing that for production 

practice, high accuracy may be characteristic of the transition to Stage 2. In Stage 1, the 

participant’s declarative memory capacity was associated with their accuracy of performance in 

production practice (b = 0.156, 95% CrI [0.089, 0.219], Pr[b > 0] ≈ 1.000). However, the effect 

became feeble in Stage 2, as expressed by the two-way interaction between declarative memory 

and Stage 2 (b = -0.119, 95% CrI [-0.157, -0.081], Pr[b < 0] ≈ 1.000). Figure 3.20 shows the 

relationship between accuracy in production practice and the cognitive individual difference 

variables that was predicted by the model. It was clear that declarative memory promoted 

accuracy in Stage 1 (Pr[b > 0] ≈ 1.000), but its effect became weaker in Stage 2 (Pr[b > 0] 

= .895) even though it was still in the expected direction. 

No other variables reliably predicted the accuracy of performance in production practice: 

ASRT15 (Stage 1: Pr[b > 0] = .518; Stage 2: Pr[b > 0] = .845), SL (Stage 1: Pr[b < 0] = .644; 

Stage 2: Pr[b < 0] = .635), and psychomotor ability (Stage 1: Pr[b < 0] = .547; Stage 2: Pr[b < 0] 

= .690). It was noteworthy, however, that procedural memory seemed to predict accuracy in 

Stage 2, but this result is provisional due the uncertainty over the estimate.  
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Figure 3.19. Posterior estimates of the fixed effects parameters in zero-one inflated beta GLMM 

for accuracy in production practice. 
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Figure 3.20. Posterior predictions of the relationship between production accuracy and the cognitive variables. 
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3.3.2.2 CV 

Figure 3.21 shows the posterior estimates from the normal GLMM of the CV in 

production practice. Transitioning to Stage 2 (b = -0.009, 95% CrI [-0.022, 0.003], Pr[b < 0] 

= .925) was associated with smaller values of the CV, indicating that processing stability 

(operationalized by the CV) may be one aspect of skill performance that must be improved to 

transition to Stage 2. ASRT15 and psychomotor ability were similarly related to the CV in Stage 

1 such that those participants who had higher procedural memory capacity or psychomotor 

ability tended to perform more stably in terms of the speed of performance (ASRT15: b = -0.010, 

95% CrI [-0.023, 0.002], Pr[b < 0] = .943; Psychomotor: b = 0.014, 95% CrI [0.002, 0.027], Pr[b 

> 0] = .986). Figure 3.22 shows the model-based predictions of the relationship between the CV 

and the cognitive individual difference variables. In Stage 2, the only predictor that seemed to be 

associated with the CV was psychomotor ability such that when with higher psychomotor ability, 

the participants were associated with smaller values of the CV (Pr[b > 0] = .927). No other 

predictors were firmly related to the CV: declarative memory (Stage 1: Pr[b < 0] = .757; Stage 2: 

Pr[b < 0] = .638), ASRT15 (Stage 2: Pr[b < 0] = .735), and SL (Stage 1: Pr[b > 0] = .605; Stage 

2: Pr[b > 0] = .686). 
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Figure 3.21. Posterior estimates of the fixed effects parameters in normal GLMM for CV in 
production practice. 
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Figure 3.22. Posterior predictions of the relationship between the CV in production and the cognitive variables. 



 141 

3.3.2.3 RT 

Figure 3.23 displays the posterior estimates from the normal GLMM of RT in production 

practice. All predictor variables in the model were predictive of RT throughout the process of 

skill acquisition. In Stage 1, declarative memory capacity, ASRT15, and psychomotor ability 

played a facilitative role in predicting RT such that those participants with higher-functioning 

declarative memory capacity (b = -0.099, 95% CrI [-0.135, -0.062], Pr[b < 0] ≈ 1.000), 

procedural memory capacity (ASRT15: b = -0.069, 95% CrI [-0.109, -0.030], Pr[b < 0] = .999), 

or psychomotor ability (b = 0.154, 95% CrI [0.114, 0.193], Pr[b > 0] ≈ 1.000) tended to perform 

the skill faster than those participants with lower capacity on the ability. On the other hand, SL 

was negatively associated with RT, indicating that those with higher procedural memory 

capacity tended to perform more slowly in Stage 1 (ASRT15: b = 0.069, 95% CrI [0.030, 0.107], 

Pr[b > 0] = .999; SL: b = 0.057, 95% CrI [0.018, 0.095], Pr[b > 0] = .997).  

Figure 3.24 displays the model-based predictions of the relationship between RT and the 

cognitive individual differences in each learning stage. Declarative memory remained facilitative 

of promoting RT (Pr[b < 0] = .999), but the two-way interaction between declarative memory 

and Stage 2 showed that the effect was larger in Stage 1 than in Stage 2 (b = 0.032, 95% CrI 

[0.019, 0.045], Pr[b > 0] ≈ 1.000). Similarly, psychomotor ability maintained its influence on the 

participants’ RT in Stage 2 (Pr[b > 0] ≈ 1.000), but its effect was more prominent in Stage 1 (b = 

-0.063, 95% CrI [-0.078, -0.049], Pr[b < 0] ≈ 1.000). This larger role of one’s cognitive ability in 

Stage 1 also applied to ASRT15 (b = 0.052, 95% CrI [0.039, 0.064], Pr[b > 0] ≈ 1.000), but the 

effect weakened to the point that procedural memory was not influential anymore. 
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Figure 3.23. Posterior estimates of the fixed effects parameters in normal GLMM for RT in 

production practice. 
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Figure 3.24. Posterior predictions of the relationship between production RT and the cognitive variables. 
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3.4 Summary of Results 

Table 3.8 summarizes the relationship between cognitive individual difference variables 

and learning in each stage of skill acquisition found in this study. Based on the results from the 

HMM analysis, the regression analysis assumed three learning stages for comprehension skills, 

whereas production skills were assumed to have involved two stages. The table displays (a) the 

posterior probability of a given effect being present (** for Pr. ≥ .95 and * for .90 ≤ Pr. < .95) 

and (b) whether the effect is larger in one stage than in the other stage (using the inequality sign).  

Overall, declarative memory showed the strongest tie with the acquisition of L2 skills in 

Mini-Nihongo. For comprehension practice, those participants with higher declarative memory 

capacity tended to perform more accurately and quickly, but the relationship gradually weakened 

as the participants transitioned from Stage 1 to Stage 2 and Stage 3, especially for RT. 

Declarative memory also played a facilitative role in promoting processing stability in Stage 2 

and 3 of comprehension practice (and SL but to a much less extent). ASRT15, on the other hand, 

did not bear any relationship with the CV, but it played a facilitative role in promoting speedup 

(RT decrease) in Stage 1 and 2. In contrast to declarative memory, however, ASRT15 remained 

equally influential in Stage 1 and 2. Psychomotor ability positively predicted the participants’ RT 

in Stage 1 and Stage 2 such that those participants with higher-functioning psychomotor ability 

showed faster RT in Stage 1 and 2. For production practice, declarative memory similarly 

predicted accuracy and RT with a more prominent role in Stage 1. One interesting difference for 

production practice was that ASRT15 was predictive of the CV in Stage 1 such that those 

participants with higher procedural memory capacity tended to show more stability while 

performing the task in Stage 1. In Chapter 4, I discuss the findings in Table 3.8 in terms of the 

existing models of skill acquisition.  
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Table 3.8. Key takeaways from the results of the regression analysis. 
 Comprehension 
 Accuracy CV RT 
 Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 

Declarative ** ** **  ** * ** >** >** 
ASRT15       ** **  

SL      *    
Psychomotor       ** >**  

 Production 
 Accuracy CV RT 
 Stage 1 Stage 2 – Stage 1 Stage 2 – Stage 1 Stage 2 – 

Declarative **  –   – ** >** – 
ASRT15   – *  – **  – 

SL   –   – **! *! – 
Psychomotor   – ** * – * >** – 

Note. ** for Pr. ≥ .95 and * for .90 ≤ Pr. < .95. The inequality signs (>) shows that the relationship was stronger in one stage than the 
other with the posterior probability larger than .95. The exclamation signs (!) indicates that the relationship was in the opposite 
direction from the predicted direction; For instance, for declarative memory, ASRT15, and psychomotor ability, the effects were 
facilitative. 
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CHAPTER 4: DISCUSSION 

In this chapter, I discuss the results of the current study in relation to the existing 

cognitive models of skill acquisition reviewed in Section 1.3. I first discuss the evidence found in 

the study for the parallelism between (cognitive) skill acquisition and L2 learning to support the 

widely upheld view in SLA that L2 learning can be considered another type of skill acquisition. 

Then, I will lay out the results in terms of the number and the nature of skill acquisition stages 

identified in the study. By discussing these two aspects of the process of L2 skill acquisition, I 

address the two research questions that guided the study (see Section 2.1).  

4.1 Evidence for L2 Skill Acquisition 

The power-law of practice and skill specificity are two well-attested empirical 

phenomena in skill acquisition research (Section 1.1). Consistent with the power-law of practice, 

the participants in this study decreased their RT as a power function of practice blocks for both 

comprehension (Figure 3.6) and production practice (Figure 3.7). I found that a regression of the 

logarithm of RT on the logarithm of practice blocks produced an almost perfect linear line for 

both comprehension (R2 = .97) and production skills (R2 = .96). Additionally, the power function 

was more consistent with the data than an exponential function (R2 = .79 and .81 for 

comprehension and production skills, respectively), which was in contrast to the existing 

criticism of the power-law of practice (e.g., Haider & Frensch, 2002; Heathcote et al., 2020). 

These critics have objected that a power function does not apply well to unaggregated data and 

that an exponential function usually provides a better fit to unaggregated data than a power 

function. In my study, however, a power function was still a better approximation of the data 

than an exponential function even in the trial-level analysis (see Figure 3.5), although the fit of 

the power function did become substantially worse when it was applied to the unaggregated data. 
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The results of the study thus lend support to the power-law of practice in general but are 

consistent with the view that applying a power function to aggregated data (averaged across 

participants and/or items) may mask important patterns in how individual learners actually 

improve their skill. 

There is no doubt that the power-law of practice is based on an idealization of how 

individual learners develop the knowledge of performing a skill. In L2 learning, R. Ellis (2015) 

provided an exemplary discussion on the role of idealization in formulating a theoretical model 

of L2 learning that is postulated to be generalizable across individual learners. In my study, it 

was clear that individual learners exhibited significant variability in how they improved the 

speed of performance (see Figure 3.3 and 3.4) and that their developmental paths did not 

necessarily follow a power function. An important question is “whether such an idealization 

[here, applied to how learners improve the speed of skill performance] is unwarranted and 

therefore should be abandoned or whether, in combination with a specification of the constraints 

and limits (i.e., de-idealization), it can continue to represent actual behavior” (R. Ellis, 2005, p. 

204, my addition). Given the robust nature of the power-law of practice across a wide range of 

skills and task domains (Newell & Rosenbloom, 1981), abandoning it seems like throwing out a 

baby with the bathwater. The participants decreased their RT as a power function of practice 

even at the trial level, though not precisely, as shown in a close examination of Figure 3.3 and 

3.4. Then, it seems logical to conclude that as long as one identifies how and why individuals 

may deviate from a power function, which are the “constraints” and “limits” in Ellis’s words, the 

power-law of practice could provide an informative model of how individual learners actually 

improve their performance through practice.  
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In skill acquisition research, some researchers have shown that the accuracy of 

performance (Anderson, 1995) and the standard deviation of RT (Logan, 1988, 1992, 2002) also 

follow the power-law of practice. In the current study, the power function applied fairly well to 

the standard deviation of RT (R2 = .88 and .79 for comprehension and production skills), but it 

did not apply to the accuracy data (R2 = .36 and .32). The poor fit of the power function to 

accuracy is likely because the participants were already highly accurate from the first block of 

practice (M = .91 and .93). However, the fact the standard deviation decreased following a power 

function suggests that the variance in RT decreased proportionately to the rate of the RT 

decrease (because they followed the same form of decrease). In this light, it comes as little 

surprise that the decrease in coefficient of variability (CV) of RT was minimal (M = 0.37 to 0.33 

for comprehension; M = 0.22 to 0.20 for production) because RT and the standard deviation 

simply decreased to the same extent. 

One unresolved issue in SLA is the question of how the CV changes as a result of 

practice. Segalowitz and Segalowitz (1993) originally posited that the decrease in the CV (in 

some meaningful way) can be used as an indication of higher processing stability and by 

extension, a higher degree of automaticity. Contrary to the previous assumption of a linear 

decrease in the CV following practice, Solovyeva and DeKeyser (2018) made the first 

observation that the CV could initially increase before it decreases as an index of automaticity. 

This was later confirmed in an experiment by Hui (2020), who showed that the change in the CV 

could follow an inverted U-shape over the course of development. In the current study, this 

patten of change (characterized by an initial increase followed by a decrease in the CV) only held 

true for the acquisition of production skills (Figure 3.9), but in comprehension practice, the CV 

first seemed to decrease and then increase. However, what was more striking was the extreme 
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variability in how the CV changed for individual participants. Hence, the developmental pattern 

observed in the participant-averaged data (i.e., the blue line in Figure 3.8 and 3.9) may actually 

be due to an artifact of data averaging (This also seems to be the case for Hui, 2020; see Figure 2 

in p. 343, where the group-level change in the CV followed an inverted U-shape, but there was 

extreme variability in how the CV change for individual learners). In the case of RT, individual 

curves resembled the group-level pattern (see Figure 3.3 and Figure 3.4), but for the CV, 

individual patterns looked nothing like their participant-averaged curve. This implies that when 

the variability in performance (CV) is concerned, one cannot make a generalized claim about 

how individual learners learn by simply looking at the group-level developmental patterns. 

In Figure 3.3 and 3.4, most participants seemed to have reached an asymptote in terms of 

the speed (or RT) of performance. In skill acquisition research, this is generally taken as 

evidence of automaticity. However, if Segalowitz and Segalowitz (1993) were correct in that the 

evidence of automaticity must come from a simultaneous decrease in (a) RT and (b) the CV and 

(c) a positive correlation between RT and the CV (see Section 1.2.2), the results of my study 

suggest that the participants did not reach automaticity, as the CV barely decreased for the entire 

sample in both comprehension (0.37 [.35, .39] to 0.33 [0.31, 0.35]) and production practice (0.22 

[0.20, 0.24] to 0.20 [.18, .23]), and the RT and CV positively correlated for production skills (r 

= .56 [.36, .71]) but not for comprehension skills (r = .18 [-.05, .41]). This is clearly at odds with 

the evidence of automaticity from the RT data (i.e., the asymptomatic performance by the 

participants), which begs the question as to which side of the evidence, RT or the CV, should be 

given more weight. Given that the power-law of practice has been widely replicated across many 

skill domains (Newell & Rosenbloom, 1981), it seems dubious to conclude that the participants 

did not achieve automaticity even long after they reached the point at which they could not 
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improve the speed anymore. Hence, I would argue that processing stability is needed to achieve 

automaticity (in addition to the high speed of performance; see Segalowitz & Segalowitz, 1993), 

but empirically demonstrating such a phenomenon is highly challenging, at least using the CV. 

At the group level, evidence for the CV reduction is conflicting at best (but see below for 

potential moderator variables), and at the level of individual learners, variability looms large, 

suggesting that even the decrease observed in the group-level analysis may be an artifact of data 

averaging. To conclude, it is safe to state that the CV still needs further validation work as an 

index of processing stability (and automaticity, by extension). Additionally, future studies must 

be conducted in research settings where one can observe how the CV incrementally changes for 

individual participants so that the researcher can identify the exact function of the change. 

Below, I have provided further discussions on the use of the CV in L2 skill acquisition research 

(see Section 4.2.2). 

4.2 Identifying the Skill Acquisition Stages in L2 Learning 

I utilized the hidden Markov modeling (HMM) analysis to identify the number of 

learning stages that the participants likely would have gone through while learning and 

practicing how to comprehend and produce the target language. For comprehension practice, the 

analysis showed that the three-state model was most consistent with the data, while the two-state 

model provided the best summary of the data from production practice. As far as the number of 

stages is concerned, the results suggest that the learning mechanism of ACT-R (Anderson, 2007; 

Anderson et al., 2004, 2019; Anderson & Fincham, 1994; Anderson & Lebiere, 1998) is most 

explanatory for the acquisition of comprehension skills. However, the same results also suggest 

that the acquisition of production skills is more consistent with the learning mechanism posed by 

the CMPL theory (Bajic & Rickard, 2011; Rickard, 1997, 1999, 2004). Note that further in the 
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discussion, I will exclude the Race model because the one-stage model was found categorically 

incompatible with the current dataset (see Table 3.4 and 3.6). However, the CMPL theory is an 

extension of the Race model, so the primary learning mechanism of the Race model (i.e., 

instance-based learning of previous performance episodes) is represented in the CMPL theory. 

Of course, the number of learning stages is distinct from the learning mechanisms that 

may underlie them. Just because the number of learning stages matched a given model of skill 

acquisition does not necessarily mean that the result validates the specific learning mechanism in 

that model. To gain more insight into the learning mechanisms, I conducted a regression analysis 

to identify which cognitive individual difference variables predicted learning at each stage 

identified by the HMM analysis. The underlying assumption was that if a cognitive variable 

correlated with a learning outcome in a given learning stage, the specific cognitive ability was 

responsible for learning at the specific stage. Although not explicitly stated, this type of 

interpretation abounds in SLA (see DeKeyser, 2012 for a review), and the previous research on 

individual differences in L2 skill acquisition (e.g., Li, 2017; Maie, 2021; Pili-Moss et al., 2021; 

Y. Suzuki, 2018) rested on the same premise to make an inference about the underlying learning 

mechanism. 

4.2.1 Accuracy 

For the accuracy of performance, the only reliable predictor was one’s declarative 

memory capacity. Participants with higher declarative memory scores also obtained higher 

accuracy scores. This finding held true throughout the process of skill acquisition for 

comprehension practice, but declarative memory had the largest impact in Stage 1. For 

production practice, the effect was restricted to Stage 1. Returning to the cognitive models of 

skill acquisition, both the CMPL theory and ACT-R expect that general-purpose learning 

mechanisms (including declarative memory) are driving the initial stage of skill acquisition, 
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which, in this study, corresponded to Stage 1 for comprehension and production practice. 

However, the two models offer different accounts of (a) the continuing role of declarative 

memory in all three stages of comprehension practice and (b) the specific effect of declarative 

memory in Stage 1 of production practice. Because the CMPL theory posits instance-based 

learning as the primary mechanism, it naturally expects declarative memory to be dominant 

throughout the process of skill acquisition. On the other hand, ACT-R expects proceduralization 

to take place between Stage 1 and  Stage 2 (and to be completed following the transition to Stage 

3), but ACT-R additionally allows for a complementary mechanism of declarative strengthening, 

which improves the accuracy and the speed of retrieving declarative knowledge (see Section 

1.3). Although skill performance gradually comes to rely predominantly on procedural memory 

in later stages of learning, ACT-R does not exclude the use of declarative memory in those 

stages in case the task-specific production rules may lead to performance errors (Anderson, 

1982, 1983b). Hence, both the CMPL theory and ACT-R account for the continuous (but 

gradually decreasing) impact of declarative memory on the participants’ skill performance. The 

models, however, assign different weights to the role of declarative memory in Stage 2 and 3. In 

contrast, the specific effect of declarative memory in Stage 1 for production practice can be 

explained only by the learning mechanism of ACT-R (i.e., the transition from declarative to 

procedural memory) because the CMPL theory predicts declarative memory to be the primary 

mechanism in all stages of learning. 

4.2.2 Coefficient of Variability 

Among the three dependent variables analyzed in the current study, the CV was least 

susceptible to the effect of cognitive individual differences (see Figure 3.14 and 3.17). First, 

declarative memory reliably predicted the CV in Stage 2 and 3 for comprehension practice. 
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Those participants with higher declarative memory capacity performed more stably when 

comprehending Mini-Nihongo. In production practice, ASRT15 and psychomotor ability played a 

facilitative role in promoting processing stability in Stage 1 (and also in Stage 2 for psychomotor 

ability). While the finding on declarative memory in comprehension practice is consistent with 

both the CMPL theory (i.e., instance-based learning) and ACT-R (i.e., declarative strengthening), 

the finding on procedural memory in production practice is only consistent with the latter model 

(i.e., proceduralization). In part, the superiority of ACT-R over the CMPL theory owes to the 

flexibility of the cognitive mechanisms espoused by ACT-R, allowing for the complementary 

role of declarative memory in later stages of skill acquisition. Nevertheless, the major avenue to 

improving one’s skill performance in ACT-R is by developing skill-specific production rules 

through knowledge compilation; hence, it is unclear why procedural memory did not show any 

more substantial link with the CV. As discussed below, this may be due to the validity and 

reliability of the CV as a measure of proceduralization (or automatization) and ASRT15/SL as a 

measure of one’s procedural memory capacity. 

First, the CV requires further validation work to pin down what exactly its changes may 

signify. In my study, the CV was defined as an index of processing (or performance) stability 

and hence as an indication that proceduralization has taken place (as opposed to the original 

definition by Segalowitz & Segalowitz, 1993; see Section 1.2.2). Conceptually, it makes sense to 

justify the use of the CV because its mathematical underpinning maps directly onto the concept 

of processing stability: the CV quantifies the variability in one’s speed of performance corrected 

for the average speed for the person (see Segalowitz & Segalowitz, 1993). However, adopting 

the CV in empirical studies has proved highly challenging. While some SLA studies have shown 

that practice can lead to reductions in the CV (Hulstijn et al., 2009 for vocabulary; Lim & 
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Godfroid, 2015; Segalowitz et al., 1998; Pili-Moss et al., 2020), others have obtained null results, 

showing that the participants did not achieve automaticity (Hulstijn et al., 2009 for grammar; 

Hui, 2020; Maie, 2021). Partly, the disparity in results could be explained by methodological 

differences, including the target of learning (e.g., vocabulary vs. grammar), the 

operationalization of practice (e.g., between-subjects: participants of different proficiency levels; 

within-subjects: observing the same participants repeatedly), and the granularity with which the 

effect of practice was documented (e.g., pretest-posttest vs. the number of practice trials/blocks). 

Among the existing studies, my study and Pili-Moss et al. (2020) were the most similar in design 

(i.e., grammar, within-subjects, and 1,440 practice trials), yet the results of the present study do 

not coincide with those of Pili-Moss et al. If, as DeKeyser (1997, p. 216) discussed, 

proceduralization can take place in the early phases of L2 practice, it is all the more puzzling 

why some studies (including the current study) failed to find evidence of proceduralization in the 

CV. One potential route to tackling the issue may be to synthesize the data from the existing 

studies using a meta-analytic approach and investigate how conceptual and methodological 

variables moderate the development of the CV. 

Second, the results on the CV could also be attributed to the uncertainty over the validity 

and reliability of measuring one’s procedural memory ability. The assessment of procedural 

memory ability has been the subject of heated discussions in recent SLA research (e.g., 

Buffington et al., 2021; Buffington & Morgan-Short, 2019; Perruchet, 2021). This is a timely 

and important endeavor given the prominent role of procedural memory as one of the primary 

cognitive mechanisms in major theoretical approaches in SLA. These approaches include the 

skill acquisition theory (DeKeyser, 2020; Lyster & Sato, 2013; Y. Suzuki, 2022) and the D/P 

model (Hamrick et al., 2018; Ullman, 2004, 2016, 2020). A recent study by Buffington et al. 
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(2021) showed that three procedural memory tasks frequently used in L2 research (i.e., the 

alternating serial reaction task, Tower of London task, and weather prediction task) failed to 

show convergent validity. Similarly, Godfroid and Kim (2021) found that their four procedural 

memory measures, including ASRT and SL that were equivalent to the tasks in my study, did not 

correlate and converge to the same latent variable. Godfroid and Kim found that the participants’ 

scores from ASRT was the only significant predictor of the latent variable of implicit knowledge. 

In my study, ASRT15 was the only (facilitative) predictor of the CV in Stage 1, which is 

consistent with Godfroid and Kim, but this association was only present for production practice. 

One caveat of the ASRT scores in both the current study and the previous research is that the 

average scores often revolve around 0; that is, the mean difference between the pattern and 

random trials tends to be close to 0 (e.g., Buffington et al., 2021: M = 2.99 ms; Godfroid & Kim, 

2021; M = -1.15 ms; the current study: M = -2.54 ms). Perruchet (2021) pointed out that such a 

trend in the data indicates that there was no learning effect at the group level, and he questioned 

the validity of using the ASRT scores (under this condition) to operationalize the participants’ 

procedural memory ability. Hence, it is wise to be cautious when one interprets the results on the 

CV in the current study. 

4.2.3 Reaction Time 

In contrast to the CV, the participants’ reaction time (RT) was most susceptible to the 

effect of cognitive individual differences (Figure 3.18 and 3.24). This finding was unexpected 

given the close relationship between RT and the CV (i.e., RT is part of the equation to compute 

the CV), and hence I expected some extent of overlap in the results. Instead, the current results 

indicated that that RT and the CV tapped into different aspects of the process of L2 skill 

acquisition. Declarative memory was predictive of RT in all stages of learning for both 
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comprehension and production practice, but its impact was most influential in Stage 1. This 

result converges with that on accuracy in that they both signal the dominant role of declarative 

memory in Stage 1. ASRT15, on the other hand, proved equally important for Stage 1 and 2, at 

least for comprehension practice. The fact that ASRT15 was predictive of RT only in Stage 1 for 

production practice may be because Stage 1 of production practice carries the characteristics of 

both Stage 1 and 2 of comprehension practice (see below, Section 4.2.4). As with accuracy of 

performance, it is evident that procedural memory begins to support the acquisition of L2 skills 

in Mini-Nihongo. This is clear evidence for the declarative-procedural transition conceptualized 

in ACT-R. Interestingly, SL also seemed to bear a similar relationship with RT in production 

practice, but it was in an unexpected direction. Those participants with higher scores on SL 

actually tended to perform the task more slowly. It is unclear why SL showed the inverse 

relationship with RT. While SL correlated positively with declarative memory scores (r = .21 

[-.03, .43], it correlated negatively with psychomotor ability scores (r = -.25 [-.47, -.01]) and did 

not show any relationship with ASRT15 (r = -.01 [.-.25, .23]). My initial hypothesis was that SL 

unexpectedly tapped into one’s declarative memory rather than procedural memory, but this does 

not explain why declarative memory consistently played a facilitative role in promoting the 

speed of performance, whereas, for SL, the effect was in the reverse direction. As discussed in 

the previous section, this surprising finding may owe to the uncertainty over the measurement of 

procedural memory capacity. 

4.2.4 Synthesis of the Findings 

The analysis of the role of cognitive individual differences in L2 skill acquisition carried 

several implications for the underlying learning mechanism that may be at work in each stage of 

skill acquisition. The clearest evidence came by for the predominant role of declarative memory 
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in the first stage of learning (Stage 1). Although the results were less clear for the CV, 

declarative memory potently promoted one’s accuracy and speed of performance (RT) in all 

stages of learning with an exception that it was only predictive of accuracy in Stage 1 for 

production practice, which only ACT-R could explain. 

The second most consistent evidence was on the emerging role of procedural memory in 

Stage 2. ASRT15 predicted the speed of performance in Stage 1 and 2 for comprehension 

practice, but unlike for accuracy, it remained equally influential in both stages. For production 

practice, ASRT15 promoted the speed and the stability of performance in Stage 1 (only) such that 

those participants with higher procedural memory capacity were associated with lower values of 

RT and the CV. Again, these results map nicely onto the learning mechanism in ACT-R, 

especially onto the mechanism of proceduralization. Hence, the results of the study are very 

much in line with the three-stage model of skill acquisition. Then, the question must be asked as 

to why the two-stage model was found most consistent with the data for production practice. 

Currently, there are three possible explanations. These three possibilities must be interpreted in 

light of the fact that (a) declarative memory was only predictive of production accuracy in Stage 

1, while the same was true for Stage 1, 2, and 3 of comprehension practice, (b) ASRT15 

promoted RT only in Stage 1, while the same was true for Stage 1 and 2 for comprehension 

practice, and (c) ASRT15 predicted the CV only in Stage 1 of production practice, which was not 

observed for comprehension practice but is expected (by ACT-R) to take place in the second 

stage of learning. As far as the nature of the stages was concerned, Stage 1 of production practice 

thus carried the same characteristics as both Stage 1 and 2 of comprehension practice. Hence, it 

is logical to speculate that those two stages observed in comprehension practice may have been 

conflated in a single stage in production practice. 
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The first possibility is that aggregating adjacent practice trials into bins may have 

conflated Stage 1 and 2 in a single stage. In the HMM analysis, I grouped every six trials into a 

single bin (for production practice) so that the probability of each participant residing in a given 

state becomes scalable. As claimed by DeKeyser (1997), it is the transition from the first to the 

second stage that can be completed within a relatively brief period of time. A close examination 

of Figure 3.11 (see p. 121) suggests, however, that this data wrangling was unlikely to have 

affected the estimation of the number of stages because if the participants on average required 37 

trials to transition to Stage 2 in comprehension practice, they must have required more trials for 

production practice, which was more complex in terms of both cognitive and task demands. 

Hence, simply aggregating six trials into a bin could not have masked the transition that would 

have taken place after several dozens of practice trials. 

The second possibility, which may be more credible, is that the maze task for production 

practice was not suited to observe three stages of learning. In the task, the participants produced 

a sentence in Mini-Nihongo by making a single word-level decision 11 times (see Section 2.2.4 

and Figure 2.5). Although I expected the task to tap into the participants’ productive knowledge 

of morphosyntactic structures, cognitive processes involved in the task may have been restricted 

to those that were specific to lexical processing. In other words, while sentence production in 

general involves the processing and integration of lexical items and syntactic frames (e.g., Bock, 

1987; Garrett, 1980; Levelt, 1989), the maze task in the study may have tapped only into 

cognitive processing at the lexical level. As a point of comparison, Maie (2021) found that skill 

acquisition in L2 vocabulary learning (i.e., retrieving the knowledge of form-meaning mappings) 

is most likely to consist of two phases with the first stage controlled by declarative memory and 

the second stage by procedural memory. This study offers a good point of comparison for the 
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current study because it utilized a word-picture matching task in which participants chose a word 

out of two options that best matched the meaning of a picture prompt. Since the participants in 

the current study similarly chose a word out of two options based on a picture prompt, the maze 

task in this study may be considered an extension of the word-picture matching task in Maie 

(2021). While the current study not only dealt with learning of vocabulary items but also the 

acquisition of morphosyntactic structures (which is different from Maie, 2021), the maze task 

used to examine the learning necessitated the participants to make a decision at the word level 

(or at the morpheme level when the decision pertained to grammar). Hence, it is true that the 

participants constructed a sentence by making 11 word-level decisions, which involved 

vocabulary and grammar, but cognitive processing involved in those decisions may have been 

specific to lexical items or morphemes. Hence, one conclusion is that the HMM analysis indeed 

excavated how the participants acquired production skills, but the maze task adopted in the study 

only allowed them to develop the skills at the lexical (or morphemic) level of processing. 

Assuming that production skills were indeed acquired in two stages (though only at the 

level of lexical processing), which existing model is most consistent with the results of the 

regression analysis? The results summarized in Table 3.8 provide good evidence that the 

declarative-procedural transition not only took place in comprehension practice but also in 

production practice. This learning process can only be explained by the learning mechanism of 

ACT-R. If this is true, what does it mean that production practice was missing what it seemed to 

be the intermediary stage (Stage 2) in comprehension practice? In an attempt to explain the best-

fitting two-state HMM for L2 vocabulary skill acquisition, Maie (2021) pointed out that making 

a decision on lexical items is cognitively simpler and hence less attentionally demanding than 

doing the same on rule-based grammar rules, which could require (far) fewer practice trials for 
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proceduralization to complete and hence directly send the learners to the last stage of skill 

acquisition. Although the maze task used in the current study tested the participants’ knowledge 

of both vocabulary and grammar, the decision made to produce a response was always specific to 

the lexical (or morphemic) level of processing. In this light, it is possible to project the results of 

Maie (2021) onto those of the current study. 

The last possibility of finding two stages for production practice, which is as credible as 

the second option, is that summing eleven (word-level) responses to calculate the sentence-level 

RT in production practice may have concealed the incremental changes in the participant’s skill 

performance. In comprehension practice, each trial was based on a single response, each of 

which reflected the entirety of sentence processing from the beginning to the end. In contrast, a 

single trial in production practice consisted of eleven responses, and each of these responses 

required a decision on different aspects of Mini-Nihongo (i.e., four nouns, four verbs, two 

numerical classifiers, and three case-markers). It is possible that by mixing responses of different 

kinds to form a trial-level data point, I may have masked the subtlety contained in the data. 

Nevertheless, the comprehension and production tasks dealt with the same set of sentences, so it 

is logically sound to expect that the data in production practice (computed by summing eleven 

responses) should encode the same (or at least comparable) information as those in 

comprehension practice. Based on the current results, this assumption seems to be false, and it 

seems that the sum of parts does not necessarily equal the whole of sentence processing. 

To conclude this chapter, the results of the present study lend support to the influential 

three-stage model of L2 skill acquisition (DeKeyser, 2020; Lyster & Sato, 2013; Y. Suzuki, 

2022), but the evidence is restricted to comprehension practice. However, this does not mean that 

the acquisition of production skills takes places in a different number of stages. Rather, the 
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finding for production practice is confounded by the specific design of the task used to gauge the 

participants’ production skills. One interesting corollary of conceptualizing L2 skill acquisition 

in terms of ACT-R is that the results of the current study can be compared with those of previous 

studies. For instance, DeKeyser (1997) claimed that in his study, participants were likely to have 

gone through proceduralization as early as by the first 16 trials for comprehension practice. In 

the current study, the participants transitioned from Stage 1 to Stage 2 at Trial 38 and from Stage 

2 to Stage 3 at Trial 288. This meant that on average, proceduralization required 37 trials to 

initiate and additional 251 trials to complete (287 trials in total). DeKeyser (1997) only inferred 

the timing of proceduralization by examining the deviation of RT data from the power-law of 

practice, which was based on the assumption that performance based on procedural memory (or 

skill-specific production rules) follows a power function whereas performance based on 

declarative knowledge largely does not (see Anderson 1982, 1983b). In contrast, I identified the 

stage transitions using a HMM analysis and followed up with the individual difference analysis 

to identify the nature of the learning stages. Hence, the current study may present more objective 

and reliable estimates of the timing of the stage transitions. 
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CHAPTER 5: CONCLUSION AND LIMITATIONS 

This study had several conceptual and methodological limitations that need to be 

considered when interpreting the results. First, this study was experimental in nature, and hence 

the findings should not be blindly extrapolated to L2 learning in classroom contexts. In 

particular, the automaticity of comprehension and production skills shown in the study is specific 

to the experimental tasks adopted, and hence the observed developmental paths may not 

generalize to other linguistic tasks. Additionally, the findings on the declarative-procedural 

transition are likely specific to the adult and educated sample of participants recruited in this 

study, who were explicitly taught the vocabulary and grammar of the language before engaging 

in comprehension and production practice. When one deals with a younger population of L2 

leaners and/or a context in which learners are exposed to the language through communicative 

use, the learning mechanism proposed in ACT-R may not necessarily be the best to account for 

the learning process (as observed by DeKeyser, 1997).  

Second, it is unclear to what extent the results on the CV and procedural memory 

(ASRT15 and SL) may be reliable and hence speak to the nature of L2 skill acquisition identified 

by the regression analysis. As discussed in Section 4.2.2, the construct of the CV and the 

assessment of procedural memory ability require further research to investigate the validity and 

reliability of the measurement. The findings presented here must be interpreted with a caveat that 

future research may find different results when one chooses to adopt a different 

operationalization of processing stability or a different assessment of procedural memory 

capacity. 

Third, this study only examined cognitive individual difference variables pertaining to 

three dimensions of cognitive ability that were projected by Ackerman (1988, 1992). Future 
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research of L2 skill acquisition can sample other dimensions of cognitive abilities to extend the 

findings of the current study. One candidate may be to examine the role of short-term or working 

memory capacity. The mechanism of knowledge compilation in ACT-R consists of two sub-

processes, composition and proceduralization. In the current study, I only focused on the process 

of proceduralization, but composition is also an integral process to knowledge compilation. 

When a skill involves a complex procedure and hence must be carried out by multiple production 

rules, the process of composition collapses the productions into a single large production before 

proceduralization restructures the macro-production to the form that is specific to the skill (see 

Section 1.3.1). In order for composition to take place, learners must practice applying the 

productions while holding the relevant declarative information in working memory (Anderson, 

1982). The prediction is that the more declarative information one can maintain in working 

memory, the larger number of production rules the process of composition can unify. Hence, 

when the target skill is complex, those with higher working memory capacity should experience 

the faster (or more efficient) rate of proceduralization. In the regression analysis, this effect may 

surface as a three-way interaction of practice trials, working memory, and procedural memory. 

Fourth, the estimation method used for the HMM analysis was limited in that when 

applied to a high number of practice trials such as the one in the current study (i.e., 524 trials), 

the algorithm encountered an issue of scalability. This is the reason why I had to aggregate every 

four or six practice trials into a bin. In future, a more flexible scaling method (e.g., the Naïve 

Bayes algorithm) needs to be implemented so that the trial-level data can be directly analyzed.  

Fifth, the experimental tasks used in the study only allowed me to investigate the 

acquisition of vocabulary and grammar rules of Mini-Nihongo as an integrated whole. One 

interesting avenue for future research is to investigate how L2 knowledge of vocabulary and 
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grammar develops independently and interactively through practice. A recent study by 

Monaghan, Ruiz, and Rebuschat (2021) is a good example of devising an experiment such that 

they can separate the simultaneous acquisition of vocabulary and grammar skills. In addition, 

there are only few studies in L2 skill acquisition research that investigated the acquisition of 

skills other than vocabulary and morphosyntax (cf. Li, 2017; Li & DeKeyser, 2017). When it 

comes to longitudinal research that documents the effect of practice across a large number of 

trials (e.g., Cornillie et al., 2017; DeKeyser, 1997; Ferman et al., 2009; Pili-Moss et al., 2020), 

there is no study that has investigated the acquisition of L2 skills other than morphosyntax. 

Hence, longitudinal research of L2 skill acquisition that focus on linguistic targets other than 

morphosyntax is an avenue for future research. 

Lastly, while ACT-R was most consistent with the findings of the current study, there 

were many details in the results that defied an explanation. In part, this is due to the nature of 

psychological research where one cannot expect all results to be in line with the researcher’s 

predictions. However, some of the unexpected results in this study are likely attributed to the fact 

that the level at which I analyzed the theoretical models of skill acquisition was not appropriate 

to capture the development of automaticity specific to the context of the current study (i.e., the 

target structures selected as the learning material, the tasks used to elicit skill performance, etc.). 

This is most notably evident in the finding that the two-stage model was found most consistent 

with production practice because the experimental task used to elicit production data was only 

able to tap into cognitive processing at the lexical level. 

Most accounts of L2 skill acquisition to date (DeKeyser, 2020; Lyster & Sato, 2013; 

Suzuki, 2022) describe the process of L2 skill acquisition by importing the mechanism of 

learning from the existing cognitive models (e.g., declarative/procedural memory, 
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proceduralization, and restructuring). As discussed in Section 1.5, L2 learning is often more 

complex in scope than typical skill acquisition studied in cognitive psychology (e.g., arithmetic 

tasks, associative memory tasks) because successful performance in L2 requires the coordination 

of multiple levels of linguistic knowledge (e.g., phonology, vocabulary, morphosyntax, and 

pragmatics). A cautionary tale from the results on production practice is that depending on 

linguistic targets (e.g., vocabulary vs. morphosyntax), learners may experience different numbers 

of learning stages and different types of learning mechanisms. While the existing cognitive 

models of skill acquisition (including the three-stage model) have been invaluable as a guiding 

framework of what skill acquisition make look like in L2 learning, a skill acquisition theory 

specific to the process of L2 learning may be necessary to further advance our understanding of 

the process of L2 skill acquisition. In particular, detailed theorization is necessary as to what 

kinds of cognitive process may be involved in a specific linguistic task learners require to 

perform for L2 learning. In cognitive psychology, researchers often analyze the process of skill 

acquisition not only at the level of learning mechanisms (e.g., declarative-transition-procedural) 

but also at the level of exact cognitive processes entailed by the experimental task at hand. As a 

case in point, Tenison, Fincham, and Anderson (2016) investigated how transitioning through 

stages of learning across trials leads to discrete changes in cognitive processing within a trial. In 

the context of the Pyramid problem (e.g., 8$3 → 8 + 7 + 6 = 21), the researchers demonstrated 

that as learners move through the three phases of learning (i.e., the cognitive, associative, and 

autonomous stage), the time they spent to carry out each step of cognitive processing (i.e., 

encoding-solving-responding) effectively changed. By applying the HMM analysis to fMRI data, 

Tenison et al. showed that in the cognitive stage, the learners took the longest time solving each 

problem, but as they moved to the associative stage, this solving time reduced to almost zero. In 
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the autonomous stage, the learners even reduced the time to encode a problem because the skill 

of solving the Pyramid problem became almost like a reflex at that point. 

Since the cognitive revolution in language science (Chomsky, 1959), linguistics has 

witnessed a countless number of theoretical models of how a language (including L2) can be 

processed, comprehended, and produced. L2 skill acquisition research thus has a fertile ground to 

base its own theorical models, and developing a model as detailed as the one exemplified by 

Tenison et al. (2016) is certainly not impossible. In addition, recent developments in ACT-R 

(Anderson, 2007; Anderson et al., 2004, 2019) not only offer a model of skill acquisition at the 

mechanism level but also at the level of specific cognitive processes that may be executed when 

performing a cognitive task. Hence, the newer versions of ACT-R can also be a starting point. 

Such an endeavor is surely difficult and likely more arduous than doing so in cognitive 

psychology, but only through such an effort can we do justice to the complexity of L2 learning. 

To conclude, this dissertation study was the first in SLA to test and validate the three-

stage model of L2 skill acquisition derived from cognitive psychological research. By combining 

the HMM analysis with the regression analysis, I identified the number and the nature of skill 

acquisition stages in L2 learning. Overall, the findings of the study lend support to the three-

stage model of L2 skill acquisition, but its proposed mechanisms may have to be revised to suit 

to the specific cognitive processes involved in L2 learning. Furthermore, when applying the skill 

acquisition theory (or variants thereof) to L2 learning, one may have to analyze the theory not 

only at the mechanism level (e.g., declarative and procedural memory) but also at the level of 

cognitive processes that are specific to language tasks at hand. L2 learning thus may require a 

skill acquisition theory specific to its learning process.  
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APPENDIX A: DESCRIPTIVE STATISTICS OF THE ANALYZED VARIABLES 

Table S1. The accuracy rate per practice block (comprehension practice) (n = 65). 
 1 2 3 4 5 6 7 8 9 10 11 
Mean .91 .96 .95 .94 .95 .95 .95 .97 .94 .94 .93 
SD .12 .06 .06 .07 .06 .07 .09 .05 .06 .07 .09 
Min .50 .73 .81 .62 .75 62 .38 .81 .75 .67 .59 
Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 12 13 14 15 16 17 18 19 20 21 22 
Mean .95 .95 .95 .95 .94 .95 .96 .96 .96 .97 .97 
SD .07 .07 .06 .07 .08 .08 .06 .06 .06 .05 .04 
Min .69 .75 .75 .59 .62 .62 .80 .69 .75 .75 .81 
Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 23 24 25 26 27 28 29 30 31 32 33 
Mean .97 .97 .96 .94 .95 .96 .94 .95 .96 .95 .96 
SD .05 .05 .05 .07 .07 .06 .09 .06 .08 .06 .08 
Min .81 .75 .62 .67 .62 .75 .56 .75 .56 .81 .50 
Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table S2. The accuracy rate per practice block (production practice) (n = 60). 
 1 2 3 4 5 6 7 8 9 10 11 
Mean .93 .95 .96 .95 .95 .95 .95 .95 .95 .96 .96 
SD .10 .07 .06 .08 .08 .07 .08 .06 .06 .06 .05 
Min .55 .67 .71 61 .67 .62 .59 .64 .64 .69 .67 
Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 12 13 14 15 16 17 18 19 20 21 22 
Mean .96 .96 .95 .95 .95 .96 .97 .96 .96 .96 .96 
SD .05 .05 .06 .05 .05 .05 .03 .04 03 .04 .04 
Min .69 .65 .58 .67 .65 .62 .83 74 .85 .73 .75 
Max 1.00 1.00 1.00 1.00 1.00 1.00 .99 1.00 1.00 .99 .99 
 23 24 25 26 27 28 29 30 31 32 33 
Mean .96 .95 .95 .96 .96 .96 .96 .95 .95 .95 .95 
SD .04 .05 .04 .03 .04 .05 .04 .05 .05 .05 .04 
Min .75 .66 69 .82 .80 .71 .71 .69 .65 .65 .77 
Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table S3. RT per practice block (Comprehension practice) (n = 65). 
 1 2 3 4 5 6 7 8 9 10 11 
Mean 5.99 4.82 4.30 4.12 3.95 3.68 3.43 3.50 3.34 2.98 2.91 
SD 1.34 1.24 0.94 0.87 0.85 0.76 0.69 0.72 0.69 0.49 0.56 
Min 3.28 2.77 2.51 2.58 2.59 2.48 2.18 2.13 2.16 2.06 2.01 
Max 8.81 7.71 6.15 6.46 6.10 5.61 5.06 5.57 4.93 4.26 4.40 
 12 13 14 15 16 17 18 19 20 21 22 
Mean 2.85 2.90 2.79 2.77 2.73 2.78 2.86 2.80 2.72 2.77 2.71 
SD 0.53 0.60 0.62 0.51 0.52 0.52 0.61 0.71 0.60 0.65 0.60 
Min 1.88 1.85 2.00 1.96 1.72 1.81 1.82 1.66 1.84 1.74 1.75 
Max 4.27 4.33 4.01 3.94 4.07 4.23 4.14 4.70 4.20 4.16 4.26 
 23 24 25 26 27 28 29 30 31 32 33 
Mean 2.65 2.66 2.58 2.35 2.41 2.33 2.31 2.41 2.36 2.35 2.33 
SD 0.56 0.62 0.53 0.48 0.47 0.43 0.48 0.49 0.50 0.43 0.48 
Min 1.69 1.59 1.76 1.57 1.56 1.70 1.59 1.45 1.57 1.59 1.40 
Max 4.10 4.39 4.18 3.86 3.67 3.76 3.74 3.51 3.61 3.68 3.97 

Note. The numbers are in seconds. 
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Table S4. RT per practice block (Production practice) (n = 60). 
 1 2 3 4 5 6 7 8 9 10 11 
Mean 16.58 12.41 11.48 10.84 10.47 10.29 9.77 9.77 9.43 8.87 9.23 
SD 4.89 3.69 2.81 2.72 2.66 2.81 2.67 2.43 2.41 2.51 2.79 
Min 9.55 7.66 7.38 7.65 6.47 6.44 6.11 6.24 6.52 5.80 5.69 
Max 30.12 23.23 18.42 18.8 16.54 16.10 16.80 15.93 15.96 14.43 16.48 
 12 13 14 15 16 17 18 19 20 21 22 
Mean 9.06 8.96 8.51 8.57 8.51 8.20 7.48 7.81 7.77 7.84 7.86 
SD 2.58 2.29 2.13 2.69 2.41 2.09 1.91 1.87 1.81 2.09 2.01 
Min 5.51 5.71 5.63 5.54 5.07 5.46 5.06 5.35 5.30 5.30 5.36 
Max 14.43 13.59 13.75 15.06 15.72 14.15 13.00 13.12 12.43 13.88 13.43 
 23 24 25 26 27 28 29 30 31 32 33 
Mean 7.69 7.64 7.65 6.84 7.14 6.90 6.89 7.01 7.28 7.01 7.05 
SD 2.19 1.93 2.12 1.65 1.83 1.69 1.53 1.65 1.92 1.99 2.26 
Min 4.68 4.65 4.68 4.88 4.73 4.60 4.62 4.66 4.65 4.52 4.25 
Max 14.82 11.60 14.18 11.11 11.73 11.44 10.23 11.53 12.44 12.48 14.63 

Note. The numbers are in seconds. 
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Table S5. CV per practice block (Comprehension practice) (n = 65). 
 1 2 3 4 5 6 7 8 9 10 11 
Mean 0.37 0.36 0.34 0.36 0.35 0.36 0.34 0.36 0.35 0.33 0.32 
SD 0.08 0.09 0.08 0.07 0.08 0.08 0.08 0.09 0.09 0.07 0.09 
Min 0.22 0.19 0.18 0.22 0.18 0.22 0.11 0.16 0.16 0.16 0.14 
Max 0.54 0.65 0.47 0.51 0.57 0.52 0.54 0.58 0.59 0.47 0.52 
 12 13 14 15 16 17 18 19 20 21 22 
Mean 0.32 0.33 0.33 0.33 0.33 0.34 0.35 0.35 0.35 0.35 0.35 
SD 0.07 0.09 0.08 0.07 0.08 0.08 0.10 0.09 0.10 0.09 0.10 
Min 0.14 0.11 0.13 0.15 0.14 0.14 0.17 0.14 0.14 0.17 0.12 
Max 0.59 0.57 0.50 0.53 0.54 0.53 0.68 0.58 0.58 0.56 0.67 
 23 24 25 26 27 28 29 30 31 32 33 
Mean 0.35 0.35 0.34 0.32 0.33 0.32 0.32 0.34 0.33 0.34 0.33 
SD 0.09 0.10 0.09 0.11 0.10 0.09 0.10 0.10 0.09 0.09 0.09 
Min 0.17 0.16 0.16 0.11 0.18 0.16 0.12 0.14 0.15 0.17 0.08 
Max 0.62 0.62 0.65 0.84 0.55 0.57 0.53 0.60 0.59 0.65 0.54 

Note. The numbers are in seconds. 
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Table S6. CV per practice block (Production practice) (n = 60). 
 1 2 3 4 5 6 7 8 9 10 11 
Mean 0.22 0.2 0.21 0.23 0.21 0.23 0.22 0.23 0.22 0.18 0.22 
SD 0.06 0.06 0.08 0.08 0.07 0.07 0.08 0.09 0.07 0.06 0.10 
Min 0.09 0.09 0.09 0.08 0.08 0.09 0.08 0.09 0.07 0.07 0.06 
Max 0.35 0.35 0.46 0.43 0.47 0.42 0.44 0.51 0.39 0.30 0.58 
 12 13 14 15 16 17 18 19 20 21 22 
Mean 0.22 0.23 0.21 0.22 0.21 0.21 017 0.20 0.20 0.21 0.22 
SD 0.09 0.09 0.08 0.09 0.09 0.07 0.06 0.09 0.08 0.09 0.09 
Min 0.09 0.07 0.09 0.09 0.07 0.09 0.08 0.07 0.07 0.06 0.09 
Max 0.49 0.51 0.44 0.48 0.48 0.41 0.33 0.58 0.43 0.44 0.48 
 23 24 25 26 27 28 29 30 31 32 33 
Mean 0.20 0.21 0.22 0.20 0.19 0.19 0.19 0.22 0.22 0.21 0.20 
SD 0.08 0.09 0.10 0.08 0.07 0.07 0.07 0.08 0.09 0.09 0.09 
Min 0.08 0.06 0.09 0.07 0.07 0.07 0.08 0.08 0.08 0.02 0.09 
Max 0.40 0.49 0.57 0.41 0.36 0.36 0.33 0.54 0.51 0.45 0.49 

Note. The numbers are in seconds. 
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Figure S1. Aggregated SD data at the block level for comprehension practice. 

Note. The black dots and line show the means over the participants and colored lines display the 
individual means. 
 
 

 
Figure S2. Aggregated SD data at the block level for production practice. 

Note. The black dots and line show the means over the participants and colored lines display the 
individual means. 
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APPENDIX B: RESULTS OF THE REGRESSION ANALYSIS 

Table S7. Binomial model (accuracy, comprehension). 
 Fixed Effects 
 Estimate SEb 95% CrI Prob. 𝑅l 
Intercept 3.124 0.144 0.144, 2.851 ≈1.000 1.000 
Trial 0.001 0.000 0.000, 0.001 .988 1.000 
Stage 2 -0.055 0.120 -0.295, 0.173 .675 1.000 
Stage 3 -0.051 0.161 -0.372, 0.262 .618 1.000 
Declarative 0.438 0.137 0.168, 0.706 .999 1.000 
ASRT15 0.050 0.141 -0.225, 0.326 .636 1.000 
SL -0.055 0.136 -0.323, 0.214 .655 1.000 
Psychomotor -0.065 0.133 -0.324, 0.197 .690 1.000 
Stage 2: Declarative -0.156 0.112 -0.377, 0.066 .920 1.000 
Stage 3: Declarative -0.204 0.142 -0.482, 0.076 .925 1.000 
Stage 2: ASRT15 -0.131 0.111 -0.352, 0.085 .890 1.000 
Stage 3: ASRT15 -0.159 0.150 -0.450, 0.144 .857 1.001 
Stage 2: SL 0.044 0.108 -0.170, 0.255 .659 1.000 
Stage 3: SL 0.152 0.143 -0.125, 0.431 .858 1.000 
Stage 2: Psychomotor 0.120 0.098 -0.068, 0.314 .891 1.000 
Stage 3: Psychomotor 0.144 0.149 -0.145, 0.436 .835 1.000 
 Random Effects 
 Estimate SESD 95% CrI Prob. 𝑅l 
𝜎"&'()*+, 0.782 0.099 0.606, 0.991 ≈1.000 1.000 
𝜎X&'()*+, 0.002 0.000 0.001, 0.002 ≈1.000 1.000 
cor(𝜎"&'()*+,, 𝜎X&'()*+,) -.410 .160 -.676 -.060 .986 1.000 
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Table S8. Normal GLMM (CV, comprehension). 
 Fixed Effects 
 Estimate SEb 95% CrI Prob. 𝑅l  
Intercept 0.360 0.007 0.347, 0.373 ≈1.000 1.000 
Block 0.000 0.000 -0.001, 0.001 .519 1.000 
Stage 2 -0.009 0.007 -0.023, 0.004 .909 1.000 
Stage 3 -0.039 0.009 -0.057, -0.020 ≈1.000 1.000 
Declarative -0.003 0.007 -0.017, 0.011 .671 1.000 
ASRT15 -0.000 0.007 -0.014, 0.014 .516 1.000 
SL -0.002 0.007 -0.016, 0.012 .627 1.001 
Psychomotor 0.007 0.007 -0.007, 0.021 .839 1.000 
Stage 2: Declarative -0.005 0.007 -0.018, 0.009 .754 1.000 
Stage 3: Declarative -0.007 0.009 -0.023, 0.010 .777 1.000 
Stage 2: ASRT15 0.000 0.007 -0.014, 0.014 .515 1.000 
Stage 3: ASRT15 0.005 0.009 -0.012, 0.022 .715 1.000 
Stage 2: SL -0.003 0.007 -0.017, 0.010 .683 1.001 
Stage 3: SL -0.007 0.009 -0.024, 0.009 .796 1.001 
Stage 2: Psychomotor -0.001 0.007 -0.015, 0.013 .555 1.000 
Stage 3: Psychomotor -0.009 0.009 -0.027, 0.010 .827 1.001 
 Random Effects 
 Estimate SESD 95% CrI Prob. 𝑅l  
𝜎"&'()*+, 0.028 0.005 0.018, 0.039 ≈1.000 1.001 
𝜎X&'()*+, 0.002 0.000 0.001, 0.002 ≈1.000 1.001 
cor(𝜎"&'()*+,, 𝜎X&'()*+,) -.363 .194 -.667, .087 .943 1.002 
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Table S9. Normal GLMM (RT, comprehension). 
 Fixed Effects 
 Estimate SEb 95% CrI Prob. 𝑅l 
Intercept 2.123 0.036 2.052, 2.195 ≈1.000 1.001 
Trial (log) -0.201 0.007 -0.215, -0.188 ≈1.000 1.001 
Stage 2 -0.039 0.011 -0.060, -0.018 .999 1.000 
Stage 3 -0.114 0.015 -0.143, -0.085 ≈1.000 1.001 
Declarative -0.072 0.019 -0.109, -0.035 ≈1.000 1.002 
ASRT15 -0.048 0.019 -0.084, -0.011 .994 1.001 
SL 0.001 0.019 -0.035, 0.038 .504 1.001 
Psychomotor 0.121 0.020 0.083, 0.161 ≈1.000 1.003 
Stage 2: Declarative 0.021 0.011 0.000, 0.042 .974 1.000 
Stage 3: Declarative 0.036 0.014 0.008, 0.064 .995 1.000 
Stage 2: ASRT15 0.003 0.011 -0.018, 0.024 .616 1.000 
Stage 3: ASRT15 0.048 0.015 0.019, 0.078 .999 1.000 
Stage 2: SL 0.003 0.011 -0.018, 0.024 .617 1.000 
Stage 3: SL -0.009 0.014 -0.037, 0.019 .734 1.001 
Stage 2: Psychomotor -0.055 0.011 -0.077, -0.035 ≈1.000 1.002 
Stage 3: Psychomotor -0.101 0.016 -0.133, -0.070 ≈1.000 1.001 
 Random Effects 
 Estimate SESD 95% CrI Prob. 𝑅l 
𝜎"&'()*+, 0.281 0.028 0.233, 0.341 ≈1.000 1.002 
𝜎X&'()*+, 0.048 0.005 0.039, 0.058 ≈1.000 1.002 
cor(𝜎"&'()*+,, 𝜎X&'()*+,) -.913 .023 -.950, -.861 ≈1.000 1.002 
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Table S10. Zero-one inflated beta (production, accuracy). 
 Fixed Effects 
 Estimate SEb 95% CrI Prob. 𝑅l 
Intercept 1.927 0.033 1.862, 1.994 ≈1.000 1.003 
Stage 2 0.034 0.021 -0.007, 0.075 .946 1.000 
Declarative 0.156 0.033 0.089, 0.219 ≈1.000 1.001 
ASRT15 -0.001 0.031 -0.063, 0.059 .518 1.005 
SL -0.012 0.032 -0.073, 0.049 .644 1.001 
Psychomotor -0.004 0.032 -0.068, 0.058 .547 1.002 
Stage 2: Declarative -0.119 0.019 -0.157, -0.081 ≈1.000 1.001 
Stage 2: ASRT15 0.032 0.019 -0.005, 0.068 .955 1.002 
Stage 2: SL 0.002 0.017 -0.031, 0.035 .538 1.000 
Stage 2: 
Psychomotor 

-0.012 0.018 -0.046, 0.025 .747 1.001 

 Random Effects 
 Estimate SESD 95% CrI Prob. 𝑅l 
𝜎"&'()*+, 0.204 0.021 0.168, 0.249  ≈1.000 1.002 
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Table S11. Normal GLMM (CV, production). 
 Fixed Effects 
 Estimate SEb 95% CrI Prob. 𝑅l 
Intercept 0.220 0.007 0.207, 0.234 ≈1.000 1.000 
Block -0.000 0.000 -0.001, 0.000 .735 1.000 
Stage 2 -0.009 0.007 -0.022, 0.003 .925 1.000 
Declarative -0.005 0.006 -0.017, 0.008 .757 1.000 
ASRT15 -0.010 0.006 -0.023, 0.002 .943 1.000 
SL 0.002 0.006 -0.011, 0.014 .605 1.001 
Psychomotor 0.014 0.006 0.002, 0.027 .986 1.001 
Stage 2: Declarative 0.002 0.006 -0.009, 0.014 .653 1.000 
Stage 2: ASRT15 0.006 0.006 -0.006, 0.019 .842 1.000 
Stage 2: SL 0.001 0.006 -0.010, 0.013 .587 1.000 
Stage 2: Psychomotor -0.004 0.007 -0.018, 0.009 .743 1.000 
 Random Effects 
 Estimate SESD 95% CrI Prob. 𝑅l 
𝜎"&'()*+, 0.039 0.005 0.029, 0.050 ≈1.000 1.000 
𝜎X&'()*+, 0.002 0.000 0.001, 0.002 ≈1.000 1.001 
cor(𝜎"&'()*+,, 𝜎X&'()*+,) -.392 .153 -.650, -.052 .987 1.001 
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Table S12. Normal GLMM (RT, production). 
 Fixed Effects 
 Estimate SEb 95% CrI Prob. 𝑅l 
Intercept 3.078 0.037 3.006, 3.157 ≈1.000 1.002 
Trial (log) -0.183 0.007 -0.198, -0.169 ≈1.000 1.004 
Stage 2 -0.052 0.007 -0.066, -0.038 ≈1.000 1.000 
Declarative -0.099 0.019 -0.135, -0.062 ≈1.000 1.001 
ASRT15 -0.069 0.020 -0.109, 0.-0.030 .999 1.001 
SL 0.056 0.020 0.017, 0.095 .996 1.001 
Psychomotor 0.154 0.020 0.114, 0.193 ≈1.000 1.001 
Stage 2: Declarative 0.032 0.006 0.019, 0.045 ≈1.000 1.000 
Stage 2: ASRT15 0.052 0.006 0.039, 0.064 ≈1.000 1.000 
Stage 2: SL -0.030 0.006 -0.042, -0.017 ≈1.000 1.000 
Stage 2: Psychomotor -0.063 0.007 -0.078, -0.049 ≈1.000 1.000 
 Random Effects 
 Estimate SESD 95% CrI Prob. 𝑅l 
𝜎"&'()*+, 0.293 0.028 0.243, 0.355 ≈1.000 1.002 
𝜎X&'()*+, 0.054 0.005 0.044, 0.064 ≈1.000 1.003 
cor(𝜎"&'()*+,, 𝜎X&'()*+,) -.877 .033 -.929, -.801 ≈1.000 1.002 

 


