
 
 
 
 
 
 

NARROWING THE UNCERTAINTY ASSOCIATED WITH PATHOGEN PERSISTENCE IN 
SURFACE WATERS FOR APPLICATIONS IN QUANTITATIVE MICROBIAL RISK 

ASSESSMENT 
 
 
 
 
 

By 
 
 

Kara Jane Dean 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A DISSERTATION 
 
 

Submitted to 
Michigan State University 

in partial fulfillment of the requirements 
for the degree of 

 
Biosystems Engineering – Doctor of Philosophy 

Environmental Science and Policy – Doctor of Philosophy 
 

2022 
 

 

 



ABSTRACT 

Surface waters are used for recreation, irrigation water, and as source water for drinking 

water treatment plants. These uses can be associated with human health risks when fecal 

contamination from point and non-point sources introduces pathogens into surface waters 

capable of causing waterborne disease. The quality of surface waters is typically monitored with 

indicator organisms, and it has commonly been assumed in literature, quantitative microbial risk 

assessments (QMRA), and surface water management decision-making that indicator and 

pathogen persistence are similar, and that indicators and pathogens decay at a constant rate in the 

environment.  

 To address these assumptions, this dissertation presents i) a systematic literature review 

that collated, compared, and analyzed the available persistence data for indicators and pathogens 

in surface waters; ii) a meta-analysis that fit exponential decay and alternative models to the 

database of over 600 experiments, identified a model that best fit the data most frequently, and 

statistically evaluated the relationships between frequently documented water quality factors and 

observed persistence dynamics; iii) a general model developed with Bayesian hierarchical 

modeling that quantifies the uncertainty between indicator and pathogen persistence; and iv) a 

QMRA case study that evaluates the impact of persistence knowledge for decision-making 

pertaining to a recreational waterbody impacted by a sewage spill event.  

 The systematic literature review (Chapter 2) found that the 61 selected studies 

predominantly evaluated FIB, freshwater matrices, and culture-based methods of detection. 

Comparing the methods and results across the studies qualitatively suggested potential 

interactions between sunlight, water type, and method of detection, and between predation, water 

type, and temperature. Within the subsequent meta-analysis (Chapter 3), the Juneja and Marks 2 

(JM2) model, based on the logistic probability distribution, provided the best fit to the data most 



frequently. First-order decay kinetics provided the best fit to less than 20% of the analyzed data. 

Random forest methods identified temperature, water type, and predation as the most important 

factors influencing persistence, and the protozoa target type differed the most from FIB.  

A general model was developed using the comprehensive database of persistence 

experiments, the JM2 model, temperature, predation, and water type data, and Bayesian 

hierarchical modeling techniques (Chapter 4). A varying-intercept model with target-specific 

intercepts and population-level coefficients for temperature, predation, and water type was the 

optimal evaluated model form. The general model indicated that protozoa persistence more 

commonly has initial periods of minimal decay and virus decay typically tapers off the most 

quickly over time. Median uncertainty factors quantified with the general model ranged from 1 

to 3.4 for bacteria, bacteriophage, virus, and protozoa persistence behaviors compared to FIB. 

The application of the uncertainty factors was demonstrated within a QMRA case study in which 

the JM2 model was fit to culturable enterococci (cENT), enterohemorrhagic Escherichia coli 

(EHEC), and adenovirus (HAV) data to characterize the persistence of the targets after the 

containment of a sewage spill (Chapter 5). Applying temperature-specific uncertainty factors to 

the cENT data ensured the risk of illness associated with EHEC and HAV ingestion fell below 

the Recreational Water Quality Criteria limit of 36 in 1,000 swimmers.  

The work presented herein indicates that broadly applying first-order decay kinetics to 

persistence data may lead to erroneous decision making in the fields of water management and 

protection, and that a general model for persistence can add value to the indicator-pathogen 

paradigm.  
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement 

Pathogens are disease-causing microorganisms that can pose human health risks when 

present in the environment. Pathogen contamination is the most commonly reported cause of 

water pollution in the United States (EPA, 2012), and is one of the leading causes of stream and 

river impairments (EPA, 2017). It has been estimated that 7.15 million waterborne illnesses 

occur in the U.S. annually, and that these illnesses can incur approximately $3.33 billion in direct 

healthcare costs (Collier et al., 2021). Exposure to waterborne pathogens can occur through 

ingestion, inhalation, and dermal contact pathways, and otitis externa, norovirus infection, 

giardiasis, cryptosporidiosis, and campylobacteriosis are the top five waterborne diseases 

acquired domestically (Collier et al., 2021).  

When considering surface water-related exposures, ingestion is typically the primary 

pathway of concern as surface waters can be used for recreation, as source water for drinking 

water treatment plants, and for irrigation in agriculture. The ingestion of pathogen-contaminated 

water is most frequently associated with gastrointestinal illness, and it is estimated that globally 

diarrheal diseases are one of the main causes of child mortality (Prüss-Ustün et al., 2016; WHO, 

2019). Fecal-oral pathogens associated with inadequate drinking water (unprotected wells, 

springs, or surface waters) are responsible for approximately 35% of diarrhea-related deaths 

(Prüss-Ustün et al., 2016; 2019). Thus, it is highly important that decision makers be well-

informed about the sources of pathogen contamination, possible risks associated with exposure, 

and available options for mitigation.  

Risks associated with pathogens in surface and drinking waters can be characterized and 

predicted with quantitative microbial risk assessments (QMRA) (WHO, 2017). QMRA provides 
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a framework for identifying and characterizing risks associated with pathogens in environmental 

matrices and is a valuable tool for informing water treatment and management (Haas et al., 

2014). QMRA consists of five key components: i) Hazard Identification, ii) Dose Response 

Assessment, iii) Exposure Assessment, iv) Risk Characterization, and v) Risk Management. The 

exposure and dose response assessment components of a QMRA involve modeling: the modeling 

of an exposure pathway to determine possible exposure doses and the modeling of the 

relationship between exposure doses and probabilities of adverse outcomes. The exact inputs into 

these models are often not known, and the uncertainty and variability associated with each 

parameter are commonly represented with probability distributions. Including uncertainty in the 

parameterization of exposure and dose response assessments facilitates the output of risk 

distributions which can be used to explore risk management opportunities and inform decision 

makers (Haas et al., 2014).  

Narrowing the uncertainty associated with persistence in exposure assessments may yield 

more accurate risk characterizations for pathogens of concern in surface waters. The sources of 

uncertainty associated with pathogen persistence in surface waters include the use of indicator 

organisms and a reliance on the application of first-order decay kinetic models. In terms of 

model form uncertainty, there has been substantial evidence of biphasic decay patterns in natural 

and bench-scale experiments (Medema et al. 1997; Easton et al., 1999; Easton et al. 2005; Park 

et al., 2016; Mitchell & Akram, 2017). The log-linear model traditionally applied to decay data 

assumes a constant rate of decay and does not account for tailing or shoulder behaviors that have 

been observed in the literature (de Brauwere et al., 2014; Pachepsky et al., 2006; Crane & 

Moore, 1986). The application of a more accurate model form capable of capturing the observed 

behaviors may reduce the uncertainty associated with pathogen populations present at the point 
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of exposure. As pathogen contamination is a common cause of impairments capable of causing a 

significant number of illnesses and associated healthcare costs, improving the characterization of 

surface-water related risks is an important next step towards further protecting human health.   

1.2 Relevant Background 

1.2.1 Legislative Context  

Pathogens can be introduced to surface waters via nonpoint and point source pollution. 

Surface waters are protected from pollution in the U.S. under the Clean Water Act (CWA) of 

1972 by considering pollution “articles of commerce”. In its original form, the CWA focused on 

point source pollution by providing federal assistance for the construction of municipal sewage 

treatment plants and putting regulatory requirements on industrial and municipal discharges (33 

U.S.C § § 1251 et seq.). Some of the key programs addressing point source pollution include the 

requirement for states to set water quality standards, the use of the National Pollutant Discharge 

Elimination System (NPDES) and the calculation of Total Maximum Daily Loads (TMDLs). In 

brief, the CWA requires that states set water quality standards for their navigable surface waters. 

There are three components to a standard: a designated use, water quality criteria, and anti-

degradation. In terms of human exposure to pathogens in surface waters, some of the designated 

uses of concern include primary contact (immersion via swimming), source of drinking water, 

and agriculture uses. Based on the designated use for the surface water, water quality criteria are 

selected, and water quality monitoring is conducted to ensure the water body is meeting the 

state’s standards. If the standards are not met, the water is listed as impaired and a TMDL is 

developed. A TMDL is the total amount of pollutant that a waterbody can receive, and it helps 

inform the permits given through the NPDES to dischargers in the watershed. The permits 

distinguish between lawful and unlawful discharges through the requirement of certain types of 
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technology or the specification of effluent limitations. Monitoring is done to confirm compliance 

and evaluate the status of the water body as impaired.  

The 1987 amendment to the CWA established Section 319 which focused on protections 

against nonpoint source pollution. Section 319 requires states to develop and implement 

Nonpoint Source Pollution Management programs and provides federal funding for nonpoint 

source pollution projects (33 U.S.C §§ 1251 et seq.). A state’s management program has to 

identify best management practices to reduce the introduction of contamination, present a plan 

for implementing the identified measures or practices, and budget the use of federal and state 

funds. Section 319 also funds the National Monitoring Program (NMP) which provides 

additional funds for intense monitoring and evaluation of a subset of state watershed projects 

(Lombardo et al., 2000). If pathogen contamination has been identified as a source of impairment 

for a watershed, monitoring of indicator levels could be a part of the management plan.  

The Safe Drinking Water Act (SDWA) of 1974 aims to protect the public from manmade 

and natural contaminants in drinking water. The SDWA has requirements for the treatment of 

surface waters that serve as sources for drinking water within the series of Surface Water 

Treatment Rules (42 U.S.C. § 300f et seq.). For systems that do not provide filtration for 

Cryptosporidium spp. or Giardia lamblia, there are various additional requirements to verify 

source water quality. The Long Term 2 Enhanced SWTR also requires that raw source water be 

monitored for Cryptosporidium or E. coli based on system size and treatment levels. The SDWA, 

however, primarily gives authority for the protection and improvement of drinking water. The 

protection or improvement of surface waters predominantly relies on local volunteer efforts or 

the regulatory programs under the CWA described previously (42 U.S.C. § 300f et seq.; EPA, 

2014).   
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1.2.2 Surface Water Monitoring Practices 

The water quality monitoring mandated by the CWA and SDWA, and any voluntary 

monitoring of beaches and waters conducted by local authorities, rely on the use of indicator 

organisms. Indicator organisms are nonpathogenic species that provide evidence for the presence 

or absence of other pathogenic organisms capable of surviving the given conditions. The 

presence, absence, or population density of indicators is assumed to be related to the risk of 

illness for water users (Benham et al., 2006). An ideal organism should be easily detectable, 

specific to a source of pollution, present in concentrations that correlate well with pathogens, 

and have similar fate and transport characteristics to pathogens (NRC, 2004). It is often not 

feasible to monitor for pathogens specifically in surface waters, due to time, technology, and cost 

limitations.  

Total coliforms, fecal coliforms, Escherichia coli and enterococci are fecal indicator 

bacteria (FIB) that have been frequently used to monitor surface waters. The EPA’s Recreational 

Water Quality Criteria recommend the use of enterococci for marine or freshwaters and E. coli 

for freshwaters, as both have been shown to perform well as indicators for illness in sewage-

contaminated waters (EPA, 2012). The use of indicators in state water quality standards is 

demonstrated in Table 1.1 with a brief summary of Michigan’s water quality standards that 

pertain to microorganisms. 

Table 1.1: Michigan Water Quality Standards (EGLE, 2006) 
Water Monitored Specification Value Sample Requirements 

Recreational Waters 

Full Body Contact 

130 E. coli/100mL 

30-day geometric mean 
(five or more sampling 
events, three samples or 
more per event) 

300 E. coli/100 mL 
1-day geometric mean 
(single sampling event, 
three or more samples) 

Partial Body Contact 1000 E. coli/100 mL 
1-day geometric mean 
(single sampling event, 
three or more samples) 
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Table 1.1 (cont’d) 

Wastewater 
Discharge 

Discharge Containing 
Treated or Untreated 
Human Sewage 

200 fecal coliform/100 
mL 

30-day geometric mean (5 
or more samples) 

400 fecal coliform/100 
mL 

7-day geometric mean (3 or 
more samples taken during 
single discharge event) 

  The reliance on indicators has been noted as a potential source of uncertainty and error in 

the monitoring of surface waters (Harwood et al., 2005; Korajkic et al., 2018). Differences in 

shedding rates and fate and transport behaviors in secondary habitats have been noted as 

obstacles in the indicator-pathogen paradigm (Korajkic et al., 2018). For example, protozoa have 

been shown to survive longer in the environment than FIB, making FIB a possibly unreliable 

indicator for important human health-related targets like Cryptosporidium and Giardia (Craun et 

al., 1997). FIB and viruses have also been observed to response differently to water treatment 

and environmental degradation processes, and as such the EPA is currently developing 

coliphage-based water quality criteria to improve protections against viral pathogens (EPA, 

2015). Qualitative and quantitative differences between indicator and pathogen persistence 

behaviors are important considerations for the advancement of surface water monitoring 

protocols.   

1.2.3 Persistence Modeling 

The reliance on first-order decay kinetics is another source of uncertainty pertaining to 

the assessment, prediction, and management of pathogen contamination in surface waters. The 

fate of indicators and pathogens has typically been assumed to occur at a constant, linear rate (de 

Brauwere et al., 2014; Pachepsky et al., 2006; Crane & Moore, 1986). The exponential, or log-

linear, model has been commonly applied to microorganism persistence data because it has a 

single parameter that is simple to estimate (Crane & Moore, 1986). Bench scale and in-situ 

experiments available in the literature, however, challenge the assumption of first-order decay 
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(Easton et al., 1999; Benham et al., 2006; Pachpesky et al., 2006; Blaustien et al., 2013; Park et 

al., 2016). Two stages of first-order decay (biphasic decay), initial periods of minimal decay, and 

decay rates tapering off with time are common dynamics observed for targets of interest in 

water-related matrices through experimentation and meta-analyses within the Global Water 

Pathogens Project (Easton et al., 1999; Hellweger et al., 2009; Brouwer et al., 2017; Mitchell & 

Akram, 2017). Possible drivers of these non-linear behaviors may be related to population 

heterogeneity, responses to population density (Brouwer et al., 2017; Easton et al., 2005), or the 

complex conditions and stressors found in environmental matrices.  

 The application of first-order decay has been used to model the persistence of targets in 

surface waters over time, predict metrics of interest such as the time for a 1-log reduction (T90), 

and generate dependent variables for analyses of the conditions influencing decay (Ahmed et al., 

2019; Avery et al., 2008; Espinosa et al., 2008; Korajkic et al., 2013, 2014, 2019; Levin-Edens et 

al., 2011; Liang et al., 2017; Tiwari et al., 2019; Wanjugi et al., 2016; Boehm et al., 2018). As 

previous analyses of water-related matrices (Mitchell & Akram, 2017; Dean et al., 2020) have 

indicated that non-linear model forms may be better able to describe target persistence, it is 

possible that the application of first-order decay kinetics in prior studies has i) introduced 

uncertainty into the characterization of indicator and pathogen persistence for quantitative 

microbial risk assessments and surface water decision making applications, and ii) limited our 

interpretation of the experimental factors influencing persistence.  

 A suite of 17 models with two and three parameters, predominantly from food science 

and medicine, have been fit to a variety of persistence data encompassing enteric markers, 

viruses, and other pathogens on fomites, in sewage, and in other water matrices (Mitchell & 

Akram, 2017; Dean et al., 2020; Enger et al., 2018; Brooks et al., 2015; Tamrakar et al., 2016). 
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The exponential-damped, Juneja and Marks 1, Juneja and Marks 2, and double exponential 

models were found to best fit the data most frequently in previous studies and were selected as 

possible candidates for a model form better able to describe the persistence of indicators and 

pathogens in surface waters than the exponential model (Dean et al., 2020; Mitchell & Akram, 

2017; Tamrakar et al., 2016; Enger et al., 2018). Reducing the model uncertainty associated with 

pathogen persistence is an important goal as it will improve the prediction of persistence values 

of interest for surface waters and progress our understanding of the water quality factors 

affecting persistence. Furthermore, the identification of an optimal model form for persistence 

may facilitate the development of a general model for characterizing and predicting the 

persistence of indicators and pathogens in varied surface water conditions in lieu of site or target-

specific monitoring data. Quantifying the uncertainty between indicator and pathogen persistence 

within this general model form will add knowledge to the indicator-pathogen paradigm, 

improving indicator-reliant decision-making and policymaking.  

1.3 Research Objectives 

 The goal of this work was to reduce the uncertainty associated with persistence modeling 

in exposure assessments within the QMRA framework to better inform decision makers involved 

in the management and treatment of surface waters. To achieve this goal, four objectives were 

pursued:  

1. Develop a comprehensive database of experiments that reflects the current i) quantity of 

data available for pathogen and indicator organism persistence modeling, and ii) state of 

knowledge with regards to the environmental and water quality factors that influence 

persistence behaviors. 
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2. Systematically evaluate the available data in order to identify a model (or models) best 

able to describe the persistence of pathogens and indicators in surface waters.  

3. Elucidate the most important factors influencing persistence behaviors through rigorous 

analysis of the data and models to produce a generalizable model.  

4. Demonstrate the importance of reducing persistence modeling uncertainty for the 

characterization of risks associated with surface water exposures in order to highlight the 

relevance of this work for water management.  

 These four objectives were addressed in the form of four separate manuscripts entitled 

“Identifying water quality and environmental factors that influence indicator and pathogen decay 

in natural surface waters” (Dean & Mitchell, 2022a), “A meta-analysis addressing the 

implications of model uncertainty in understanding the persistence of indicators and pathogens in 

natural surface waters” (Dean & Mitchell, 2022b), “Testing a general model for pathogen 

persistence in surface waters”, and “Applying persistence knowledge within a QMRA case study 

of a sewage spill event”, that are Chapters 2, 3, 4, and 5 herein. 
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CHAPTER 2: IDENTIFYING WATER QUALITY AND ENVIRONMENTAL FACTORS 
THAT INFLUENCE INDICATOR AND PATHOGEN DECAY IN NATURAL SURFACE 
WATERS 

This chapter has been published in Water Research and is reprinted with permission from Water 
Research 2022, 211, 1, 118051. Copyright 2022 Elsevier Ltd. 

2.1 Introduction  

Indicator and pathogen decay in surface waters has typically been assumed to follow 

first-order decay kinetics (de Brauwere et al., 2014; Pachepsky et al., 2006; Crane & Moore, 

1986). The simplicity of models such as the exponential or log-linear model and the ease of their 

application continue to motivate the use of first-order decay kinetics for modeling pathogen fate 

(Crane & Moore, 1986). However, there is significant evidence in the literature that challenges 

the assumption of first-order decay (Easton et al., 1999; Benham et al., 2006; Pachpesky et al., 

2006; Blaustien et al., 2013; Park et al., 2016). Biphasic decay, in which there are two stages of 

decay described by two different first-order rates, has been observed for a variety of targets 

(Easton et al., 1999; Hellweger et al., 2009; Brouwer et al., 2017), and the fitting of alternative 

model forms in previous analyses within the Global Water Pathogens Project suggest models that 

capture shouldering and tailing decay dynamics better describe target persistence in various 

water matrices (Mitchell & Akram, 2017). Assumptions of first order decay kinetics can lead to 

potential underestimations of residual pathogens.  

Deviations from classic linear decay have been hypothesized to be due to population 

heterogeneity, resistant states, viable but not culturable states, and possibly quorum sensing 

effects (Brouwer et al., 2017; Easton et al., 2005). Additionally, there are a wide range of 

environmental, water quality, and species-related factors that influence a target’s persistence in a 

matrix of concern. It is possible that the application of first-order decay kinetics for data analysis 

in prior studies, has limited our interpretation of the experimental factors influencing persistence. 
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This is perhaps reflected in distributions of optimized first-order decay rates that have been 

shown to be highly variable, spanning orders of magnitude within pathogen groups (Boehm et 

al., 2018).  

Simplifications in pathogen fate modeling can possibly lead to erroneous decision 

making in the fields of water management and protection, and as such, reducing model 

uncertainty by applying a more appropriate model form to indicator and pathogen decay is an 

important goal. As natural surface waters are impacted by a number of natural stressors that 

impact decay, it is hypothesized that two- or three-parameter persistence models will be more 

representative of indicator and pathogen persistence in surface waters in general than traditional 

first-order kinetics. Reducing this uncertainty may yield more accurate decay-metrics that can be 

used to further explore the relationships between indicator and pathogen persistence and typical 

natural stressors, such as temperature, sunlight, predation, or water composition.  

To facilitate the future testing of these hypotheses, this review aims to evaluate the 

quantity and quality of indicator and pathogen persistence experiments in surface waters 

available in the literature that could be used to explore the implications of first-order decay 

kinetic assumptions. This is the qualitative summary of the identified literature and serves to 

summarize the current state of the knowledge of the water quality and environmental factors 

affecting indicator and pathogen persistence in surface waters. The relevant methods, modeling 

techniques, and results from each study described herein will aid future researchers in 

experimental design and data analysis. This compilation of experiments and methodologies will 

facilitate the identification of potential interactions that can be further explored to reduce 

uncertainties associated with pathogen behavior in natural water matrices.  
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2.2 Selection Criteria  

For a study to be included in this review, the researchers needed to sample natural surface 

waters or conduct the experiments in situ. The primary objective of this review was the 

identification of experiments with data for persistence modeling, and as such, the experiments 

found in the literature needed to document target concentrations or log-reductions values for at 

least four time points to be selected, as a minimum of four time points would facilitate the fitting 

of alternative persistence models with more than one parameter. Additionally, the following 

factors were documented from each study in this review: target type (FIB, bacteriophages, 

bacteria, viruses, protozoa), water type (fresh, marine, brackish), temperature, sunlight 

(presence/absence), predation (presence/absence), and method of detection (culture-

based/molecular-based). If a light source was not mentioned in the study, it was assumed the 

experiments were conducted in the dark. If the sampled surface water was filtered or autoclaved 

in any way, the dataset was identified as predation absent. Studies that included experiments with 

targets not of focus in this review (MST markers, animal/fish pathogens) were not extracted and 

included in the review. This literature review describes the results of each study qualitatively; in 

some cases, not all of the experiments included in a study had enough documented timepoints to 

facilitate the fitting of models other than those representing first-order decay. Although all the 

experiments are described qualitatively herein, Table 2.1 only reflects the characteristics of the 

experiments that have the aforementioned criteria that could be leveraged in future analyses of 

alternative persistence modeling methods.  
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2.3 Results  

The systematic literature review was conducted following PRISMA guidelines using the 

methods outlined in Appendix A. Sixty-one studies of the 3,949 identified (Fig A.2.1) were 

included in this review and are summarized in Table 2.1 based on the factors of concern relevant 

to the experiments within each study that included the necessary detail for modeling. 

Experiments were categorized by water type (fresh, marine, brackish), sunlight 

(presence/absence), predation (presence/absence), and method of detection (culture-

based/molecular-based). The following qualitative summaries are divided into target groups: 

FIB, bacteria, viruses, bacteriophages, and protozoa.  

2.3.1 Fecal Indicator Bacteria  

The majority of the identified literature focused on the persistence or decay of fecal 

indicator bacteria (FIB) targets, most commonly Escherichia coli and Enterococcus spp. Of the 

39 studies that addressed FIB persistence, 24 assessed FIB persistence independently and 15 

compared FIB persistence to that of a pathogen of concern, as shown in Table 2.1. The majority 

of the identified studies focused on freshwater (27/39) and the inclusion of a light source was a 

common experimental factor; some or all of the experiments were exposed to light in 26 of the 

39 studies. Predation was a less commonly studied manipulated factor and the methods used in 

the 39 studies were predominantly culture-based.   

2.3.1.1 Water Type  

Water type did not consistently affect decay in the identified literature. Ahmed et al. 

(2019) explored the relationship between the decay of qPCR-based targets for E. coli and 

Enterococcus spp. in fresh and marine mesocosms and although FIB decay was faster in water 

than sediment, differences in FIB decay between water types were not noted. Turbidity and 
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temperature were found to be significantly and positively associated with FIB decay. Sunlight 

and pH did not have statistically significant correlations. The conclusions about water type 

echoed those of a previous study that used culture-based methods (Ahmed et al., 2014), in which 

nonfiltered marine and fresh water were inoculated with raw sewage and the T90s of E. coli and 

enterococci in the two water types were not significantly different.   

Water type was a significant factor in two studies employing outdoor mesocosms 

(Korajkic et al., 2013; Korajkic et al., 2019). In general, Korajkic et al. (2013) observed 

significantly more decay when indigenous microbiota were present in the mesocosms, and 

greater decay in marine water experiments than freshwater experiments regardless of indigenous 

microbiota presence. Water type accounted for 40.1% of the variation in E. coli decay, the 

presence/absence of indigenous microbiota accounted for 49.2% of the variation in decay, and 

interactions between the two factors (water type and predation) accounted for 9.74% of the 

variation (Korajkic et al., 2013). Korajkic et al. (2019) monitored both molecular and culturable 

targets for FIB originating from cattle manure in mesocosms while manipulating water type, 

sunlight, and predation. Korajkic et al. (2019) concluded that water type was the most influential 

factor affecting decay, with most targets decaying faster in marine water than fresh. Additionally, 

there were clear differences between culture and qPCR target decay patterns in freshwater but 

not in marine (Korajkic et al. 2019). Fujioka et al. (1982) studied fecal coliform and fecal 

streptococci survival in fresh and marine water and also observed greater persistence in 

freshwater than marine.   

Jeanneau et al. (2012) observed target-specific water type differences in microcosms that 

simulated contamination from a wastewater input. The first log-reduction (T90) of E. coli was 

3.4 times lower than in marine water than freshwater, while the T90s for enterococci in the two 
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water types were not significantly different (Jeanneau et al., 2012). Water type also had 

conflicting effects in a study conducted by Liang et al. (2017). Although increasing sunlight 

intensity resulted in increasing decay rates, the effects of salinity on decay were less obvious; 

increased salinity was associated with increased decay in E. coli and decreased decay of 

enterococci (Liang et al., 2017). Target-specific salinity effects were also observed in a study by 

Okabe & Shimazu (2007), in which increasing salinity increased the decay of total coliforms in 

non-filtered river water, but not fecal coliforms (Okabe & Shimazu, 2007).   

2.3.1.2 Sunlight  

Sunlight was a commonly evaluated environmental factor in both bench-scale and in situ 

experiments. Korajkic et al. (2014) evaluated how biotic interactions and sunlight influenced FIB 

persistence in an in situ mesocosm located near a recreational beach. The culturable FIB decayed 

the fastest- there was a strong correlation between the MST markers and the molecular FIB 

targets, but not the culturable. The effect of sunlight was more pronounced during the initial 

stages of decay, and over the course of time biotic interactions had a greater influence on decay 

than sunlight. Both sunlight and predation significantly impacted culturable enterococci, but only 

sunlight was an influential factor in the decay of culturable E. coli (Korajkic et al., 2014). 

Sunlight was also found to be a primary driver for the inactivation of culturable bacterial 

indicators in pond water experiments conducted by Greaves et al. (2021) and for the freshwater 

experiments conducted by Bailey et al. (2018). Temperature and mixing speed, however, were 

not found to significantly impact FIB decay (Bailey et al., 2018).  

Sunlight did not have a pronounced effect on the relative decay of MST markers and E. 

coli in freshwater microcosms where sunlight, temperature, predation and sediment were 

manipulated, but the high turbidity value of the source water (~102 NTU) and the strength of the 
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artificial light source were noted as potential causes (Dick et al., 2010). Gutierrez-Cacciabue et 

al. (2015) studied the effects of both turbidity and sunlight on FIB decay in experiments using 

culture and qPCR methods. E. coli and E. faecalis were inoculated into the environmental water 

with turbidity values of >900 NTU or <3 NTU. There was quite a bit of variability depending on 

the experiment conditions, but in general sunlight presence caused faster decay, as did the 

presence of solid particles in the water. The persistence of E. faecalis DNA was greater than that 

of the culturable cells (Gutierrez-Cacciabue et al., 2015). Sunlight was only found to 

significantly affect the decay rates of enterococci as measured with culture-based methods (as 

opposed to molecular-based) in the light and dark seawater microcosms constructed by Walters, 

Yamahara, & Boehm (2009), and the effects of sunlight were found to be target-dependent in the 

study conducted by Walters & Fields (2009). In mesocosms exploring the decay of MST markers 

and human and cattle-associated FIB, light influenced the rate of survival more so for 

enterococci than E. coli (Walters & Fields, 2009).  

In two of the studies that focused on estuarine water only, sunlight was a significant 

factor affecting FIB decay (Bordalo, Onrassami, & Dechsakulwatana, 2002; Chandran & Hatha, 

2005). Bordalo et al. (2002) noted that the effect of sunlight was more prevalent in higher 

salinity experiments, suggesting a possible sunlight-water type interaction. Chandran & Hatha 

(2005) observed significant inactivation of E. coli and S. typhimurium in estuarine water due to 

predation and sunlight but deemed sunlight the most important inactivating factor (Chandran & 

Hatha, 2005).   

The effects of sunlight on FIB decay in marine water was more frequently studied than 

estuarine water. Yukselen et al. (2003) evaluated the effects of temperature and solar radiation on 

coliform bacteria die-off rates and concluded that sunlight exposure was the most significant 
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factor affecting decay, and the effect of increasing temperatures was more pronounced in the 

dark. Mattioli et al. (2017) looked at FIB persistence at different water depths in marine water 

using molecular and culture-based methods. Both enterococci and E. coli decayed faster at 

shallower depths, where more photoinactivation could occur, although there were some seasonal 

differences in decay. Noble et al. (2004) addressed the inactivation of various indicators in 

seawater; temperature and sunlight significantly affected decay, but there were no significant 

interactions with nutrients, TSS, or initial concentrations. Maracinni et al. (2016) explored the 

inactivation of enterococci and E. coli at different depths (5, 18 and 99 cm) in all three water 

types- fresh, brackish, and marine. Decay rates were faster in high light conditions than in low 

light conditions, suggesting endogenous photoinactivation is a major pathway for bacterial decay 

(Maracinni et al., 2016).   

2.3.1.3 Predation  

The effects of predation were also commonly assessed in the studies identified in the 

literature. In the experiments already discussed, predation was associated with significant 

inactivation of E. coli in fresh, marine, and estuarine waters (Dick et al., 2010; Korajkic et al., 

2013; Chandra & Hatha, 2005) and culturable enterococci in freshwater (Korajkic et al., 2014). 

Chandran et al. (2011) completed microcosm studies with E. coli, S. paratyphi, and V. 

parahaemolyticus in freshwater and sediments. The decay of E. coli in sterile water was slower 

than that in nonfiltered water, highlighting a significant effect from the presence of biological 

factors. Wanjugi, Fox, and Harwood (2016) used E. coli to explore interactions between 

predation, nutrient levels, and competition on target survival in river water microcosms set-up in 

an open greenhouse. Overall, predation and competition had negative effects on survival, while 
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nutrient addition increased survival. Specifically, predation accounted for the greatest amount of 

decay variation (40%), followed by nutrients (25%) and competition (15%).   

Solecki et a al. (2011) compared FIB persistence to the persistence of various microbial 

and chemical pig manure markers in dark fresh and marine microcosms and the observed 

biphasic decay was hypothesized to be due to predation, as the waters used were unfiltered. Both 

generic and pathogenic E. coli were studied in agricultural surface water microcosms constructed 

by Topalcengiz & Danyluk (2019) and the most rapid decay was observed in the non-sterile 

waters. Medema, Bahar, & Schets (1997) investigated the persistence of E. coli, Clostridium 

perfringens, and enterococci in autoclaved and natural river water microcosms that were 

maintained in the dark. Die-off of E. coli and enterococci were faster in the natural river water at 

both tested temperatures, with possible multiplication of both FIB observed in the autoclaved 

water maintained at 15°C (Medema et al., 1997).   

Ahmed et al. (2021) explored the persistence of various targets, including FIB with 

culture-based techniques. The mesocosms were constructed with water sampled from two lakes, 

either filtered or left natural, and kept at 15°C or 25°C for the experiments. There was not a 

pronounced effect from predation, however this was hypothesized to be likely due to the sewage 

inoculum which could have introduced predators to the filtered water experiments. For the E. 

coli trials, decay was significantly faster at 25°C than 15°C in three of the four microcosms 

(Ahmed et al., 2021).    

2.3.1.4 Other Factors  

Although the majority of the studies identified focused on water type, sunlight or 

predation as the influencing factors, a few of the studies assessed site-specific FIB decay 

(Irankhah et al., 2016), or modified variables such as temperature, mixing speeds, initial FIB 
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loads, and sediment or vegetation inclusion. Increasing temperatures were associated with 

increased decay of E. coli in chlorinated and untreated lake water (Lund, 1996), fresh water 

(Terzieva & McFeters, 1991; Easton et al., 2005; Nasser et al., 2003), brackish water and marine 

water (Nasser et al., 2003). Mixing speed of fresh surface water samples did not significantly 

affect the decay of indigenous microbiota (Bailey et al., 2018), and the initial seed concentration 

of E. coli was shown to affect decay rates in fresh and brackish water studies (Beckinghausen et 

al., 2014; Gronewold et al., 2011). When comparing the decay of human and bovine E. coli in 

freshwater microcosms, Liang et al. (2012) concluded that human E. coli decayed faster than 

bovine. Zhang, He and Yan (2015) monitored the decay of FIB in seawater and beach sand 

microcosms. Enterococci and C. perfringens decayed more slowly in beach sand than water, but 

E. coli decayed similarly in water and sand matrices. Mezrioui et al. (1995) looked at E. coli and 

S. typhimurium decay in brackish water and sewage mixtures, mimicking slow or rapid marine 

stress. Survival was greater when predators were removed in the fall and summer experiments, 

but not in the winter experiments (Mezrioui et al., 1995).  

Four of the identified studies addressed the influence of vegetation or natural aquatic 

plant life on the persistence of FIB. Submerged aquatic vegetation indirectly facilitated the 

persistence of enterococci in freshwater microcosms (Badgley et al., 2010), algae presence in 

freshwater microcosms led to greater persistence under UV conditions of E. coli and Salmonella 

enterica serovar Typhimurium (Beckinghausen et al., 2014) and the presence of wrack was 

associated with increased levels of FIB in water and sediments (Imamura et al., 2010). Tiwari, 

Kauppinen, & Pitkanen (2019) compared decay of indicators and Vibrio spp. in a brackish beach 

mesocosm with and without the presence of an aquatic plant, Myriophyllum sibiricum. The 
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molecular Enterococcus spp. markers decayed more slowly than the culturable enterococci, and 

biphasic decay was observed for both culturable and molecular targets in water.   

2.3.1.5 Summary  

In summary, some studies noted differential decay of FIB based on water type: greater 

decay of FIB was observed in marine waters for fecal coliforms, streptococci, and E. coli 

(Fujioka et al., 1982; Korajkic et al., 2013; Korajkic et al., 2019; Liang et al., 2017; Jeanneau et 

al., 2012). The literature also suggests the possibility of interactions between water type and 

sunlight presence and water type and method; one study found that the effects of sunlight were 

more prevalent in higher salinity waters (Bordalo et al., 2002) and another identified differences 

in decay rates between molecular and culture-based targets only in freshwater matrices (Korajkic 

et al., 2019). The majority of the studies found that sunlight significantly accelerated decay 

(Bailey et al. 2018; Bordalo et al., 2002; Chandran & Hatha, 2005; Fujioka et al., 1982; Korajkic 

et al., 2014; Gutierrez-Cacciabue et al., 2013; Greaves et al., 2021; Liang et al., 2017; Maracinni 

et al., 2016; Mattioli et al., 2017; Noble et al., 2004; Yukselen et al., 2004), however there were a 

few studies that determined it was not a significant factor or found its impact to be variable 

(Ahmed et al., 2019; Dick et al., 2010; Korajkic et al., 2019; Walters & Fields 2009; Walters et 

al., 2009). This was hypothesized to be due to the water having a high turbidity or a potential 

shading issue (Dick et al., 2010; Korajkic et al., 2019).   

In general, increasing temperature was correlated with increasing decay (Ahmed et al., 

2019; Lund et al., 1996; Easton et al., 2005; Nasser et al., 2003; Noble et al., 2004; Terzieva & 

McFeters, 1991; Yukselen et al., 2003; Medema et al., 1997), however a few studies did not 

observe this typical pattern (Bailey et al., 2018; Okabe & Shimanzu, 2007). Predation was also 

commonly found to be a significant factor affecting decay (Chandran & Hatha, 2005; Chandran 
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et al., 2011; Dick et al., 2010; Korajkic et al., 2013; Topalcengiz & Danyluk, 2019; Wanjugi et 

al., 2016; Medema et al., 1997), but in some cases the effects of predation were unclear or FIB-

dependent (Korajkic et al., 2019; Korajkic et al., 2014).  When molecular-based methods were 

used, they were typically associated with slower decay (Gutierrez-Cacciabue et al., 2015; 

Irankhah et al., 2016; Korajkic et al., 2019; Walters et al., 2009), but Korajkic et al. (2019) only 

found this to be the case in freshwater matrices. Turbidity was a significant water quality 

parameter affecting decay (Ahmed et al., 2019; Gutierrez-Cacciabue et al., 2015) and more 

generally, the presence of vegetation or algae in the water was also associated with greater 

persistence (Badgley et al., 2010; Beckinghausen et al., 2014; Imamura et al., 2010).   

2.3.2 Bacteria  

Pathogenic bacteria were the next target type most commonly studied in the identified 

literature. Twenty studies focused on the persistence of bacteria, with targets such as pathogenic 

E. coli strains, Salmonella spp., Vibrio spp., Listeria spp., Campylobacter spp., Staphylococcus 

spp., and Yersinia enterocolitica. Freshwater was the water type studied most frequently (15/20) 

and the majority of the studies conducted experiments in the dark (12/20). Varying predation 

status was slightly more variable across the studies and the method type was the least variable 

documented factor; 18 of the 20 identified studies quantified the pathogenic bacteria 

concentrations with culture-based methods.  

2.3.2.1 Water Type  

The two studies that compared bacteria decay in different water types observed some 

potential differences (Boehm et al., 2012; Levin-Edens et al., 2011). Levin-Edens et al. (2011) 

evaluated the persistence of methicillin-resistant Staphylococcus aureus in sterilized marine and 

freshwater and both temperature and salinity were found to significantly influence decay. Decay 
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rates were higher at the higher temperature and in freshwater. Boehm et al. (2012) addressed the 

inactivation of Salmonella serovars in filter-sterilized fresh and marine water matrices, with 

sunlight as a stressor. Exponential decay was observed for the serovars studied in seawater under 

light conditions, but little to no decay was observed for the serovars studied in seawater under 

dark conditions. A similar effect from sunlight was observed in freshwater, however, the 

freshwater experiments exposed to sunlight exhibited a clear shoulder effect not observed in the 

marine water. The shoulder period was only 1-1.5 hour in length, and the observed T90s were 

less than 1 day in length, indicating that the potential sunlight-water type interaction may not 

greatly impact decay observations (Boehm et al. 2012).   

2.3.2.2 Sunlight  

 Beckinghausen et al. (2014) also observed rapid decay for Salmonella. S. typhimurium 

had T90 values of 1 day or less in freshwater microcosms exposed to natural sunlight regardless 

of initial seed concentration, and results indicated that the pathogen persists longer than the 

studied indicator. As highlighted in section 2.3.1.4, the presence of algae in the microcosm, the 

main factor studied by Beckinghausen et al. (2014), led to greater persistence for both E. coli and 

S. typhimurium. The T90s for S. typhimurium in raw estuarine water maintained in the dark at 20 

and 30°C were less than 2 days and less than 1 day, respectively (Chandran & Hatha, 2005). The 

presence of biological factors (raw water) was deemed an important influence on persistence; 

however sunlight caused the greatest inactivation in the experiments overall (Chandran & Hatha, 

2005).  

Rodriguez & Araujo (2011) specifically looked at Campylobacter persistence in river 

water microcosms in situ and in the laboratory. Temperature and sunlight were found to 

significantly affect decay in the in-situ experiments, but pH, oxygen concentration and water 
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conductivity did not. Silvester et al. (2021) explored the survival kinetics of five Vibrio species 

in a study that looked at the effect of biotic factors, protozoan grazing, temperature, salinity, 

sunlight, and chemical composition in estuarine water. The researchers observed better survival 

in sediment versus water, and the biological factors, chemical composition, and sunlight 

increased the removal of the Vibrio species.   

2.3.2.3 Predation   

Avery et al. (2008) evaluated E. coli O157:H7 persistence in a variety of water sources 

including lake and river waters. Sampled waters were autoclaved or non-autoclaved, inoculated 

with E. coli O157:H7, and kept at 10°C. The authors concluded that sterilization was 

significantly correlated with decay (Avery et al., 2008).  Topalcengiz & Danyluk (2019) 

examined the fate of generic and pathogenic E. coli in agricultural surface water microcosms and 

the bacteria decreased most rapidly in non-sterile waters. Wang & Doyle (1998) sampled water 

from a filtered and autoclaved municipal source, a reservoir and two recreational lakes, 

inoculated E. coli O157:H7, and monitored decay at 8, 15 and 25°C in the dark. For all water 

types, survival was greatest at 8°C and the greatest survival was observed in the filtered and 

autoclaved municipal water (Wang & Doyle, 1998).   

The effects of predation on other pathogens, such as S. paratyphi and V. 

parahaemolyticus, were observed in a study by Chandran et al. (2011). The T90s for the 

pathogens were more rapid in the nonsterile waters, illustrating the effect of predation or other 

biological factors (Chandran et al., 2011). Silvester et al. (2021) also observed higher mortality 

rates of Vibrio spp. in raw sediments and waters compared to autoclaved sediments and waters. 

The experiments conducted by Lund et al. (1996) used untreated and autoclaved lake water that 

was kept at 4°C or 10°C in the dark. Survival was better at 4°C, and Y. enterolitica survived 
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better at lower temperatures than C. jejuni. Y. enterolitica also survived much longer in 

autoclaved water than untreated water. There was possibly some seasonal variation in the effects 

of predation as observed by Mezrioui et al. (1995), as the survival of S. typhimurium was greater 

when predation was absent in the fall and summer experiments, not in the winter.   

Predation did not play a key role in the only study identified in this review that used 

molecular-based methods to quantify bacteria persistence. In addition to FIB and MST markers, 

Ahmed et al. (2021) explored Campylobacter spp. persistence with freshwater mesocosms 

exposed to artificial sunlight conditions. Campylobacter spp. decayed linearly, at faster rates at 

25°C than at 15°C; and at similar rates between filtered and nonfiltered experiments, suggesting 

predation did not significantly impact decay. As noted in the FIB section, although the water was 

filtered for the predation ‘absent’ experiments, the sewage inoculum still had the potential to 

introduce predators, potentially masking the effect of predation in this study. Although it is hard 

to make any inferences given the limited number of studies, the use of the sewage inoculum, and 

the different targets between the studies (Campylobacter spp. vs E. coli, S. paratyphi, Vibrio spp. 

and Y. enterolitica), predation not significantly affecting decay in Ahmed et al. (2021) in the 

context of this review suggests a potential interaction between predation and the method of 

detection (culture vs. molecular-based) for pathogenic bacteria.   

2.3.2.4 Other  

Ibrahim et al. (2019) studied E. coli O157:H7, S. Typhimurium, human adenovirus 

serotype 2, and murine norovirus 1 survival while stored in sterilized river water microcosms 

stored at -20°, 4°, 24°C and 37°C in the dark. The highest T90 values for the bacterial pathogens 

were observed in the 4°C trials. Higher temperatures were associated with faster decay of 

Listeria monocytogenes in river water sampled near the outfall of a meat industry plant 
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(Budzinksa et al., 2012), E. coli O157:H7 in sampled creek water (Easton et al., 2005), and E. 

coli, C. jejuni, and Y. enterocolitica in sampled stream water (Terzieva & McFeters, 1991). C. 

jejuni, however, was less affected by temperature, and Y. enterocolitica had the greatest survival 

at both temperatures (Terzieva & McFeters, 1991).   

Some of the identified studies addressed the persistence of a bacterial target without 

manipulating any water or environmental factor directly, and others studied alternative water 

quality factors- changing salinities, aquatic plant presence or turbidity. El Mejri et al. (2012) 

studied the survival of environmental and laboratory-adapted strains of Salmonella enterica 

serovar Typhimurium in marine water and the authors calculated an average T90 of 25-30 hours 

for all the strains. Notably, total cell count data suggested the bacteria were entering a viable but 

not culturable state (El Mejri et al., 2012). In brackish beach mesocosms, Vibrio spp. genetic 

markers exhibited biphasic decay, and there were positive correlations between the culturable 

Enterococcus targets and V. cholerae molecular targets only for the first few days of the 

experiment, suggesting a limitation in current monitoring practices (Tiwari et al., 2019). Except 

for Vibrio rRNA, the decay of the bacterial targets was greater in water than sediment and 

vegetation (Tiwari et al., 2019). Turbidity-related factors were significant in a study conducted 

by Czajkowska et al. (2005). E. coli serotype O157:H7 was inoculated into freshwater sampled 

from several different Polish lakes and rivers and maintained at 4 or 24°C. The researchers 

conducted experiments using water, “muddy” water, and bottom shore sediments. The bacteria 

survived slightly longer in muddy water experiments, and the survival times were shorter for the 

experiments maintained at 24°C. The authors did not detect a significant effect from the varying 

chemical oxygen demand or pH levels (Czajkowska et al., 2005).  
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2.3.2.5 Summary  

Looking at the selected literature as a whole for pathogenic bacteria, some expected 

relationships were consistently observed. In general, decay is higher at higher temperatures as 

expected (Levin-Edens et al., 2011; Rodriguez & Araujo, 2011; Wang & Doyle, 1998; 

Budzinska et al., 2012; Ahmed et al., 2021; Lund et al., 1996; Czajkowska et al., 2005; Terzieva 

& McFeters, 1991; Easton et al., 2005). The presence of a light source consistently accelerates 

decay (Beckinhausen et al., 2014; Chandran & Hatha, 2005; Rodriguez et al., 2011; Silvester et 

al., 2021), however one study identified some potential differences between the effect of sunlight 

in fresh and marine waters (Boehm et al., 2012). Predation was found to significantly increase 

decay in a variety of targets including pathogenic E. coli strains, Salmonella spp., Vibrio spp., 

and Y. enterolitica (Avery et al., 2008; Chandran et al., 2011; Lund et al., 1996; Silvester et al., 

2021; Topalcengiz & Danyluk, 2019; Wang & Doyle, 1998). The effects of predation were less 

obvious in a study by Mezriouia et al. (1995) in which S. typhimurium survival was only greater 

in sterile waters during autumn and summer seasons, and predation was not found to influence 

the decay of Campylobacter spp. at all in a freshwater mesocosm study (Ahmed et al., 2021). 

Although it was evaluated directly (and indirectly) less in the pathogenic bacteria literature than 

the FIB literature, turbidity seems to again be a factor potentially influencing decay (Czajkowska 

et al., 2005). Other water quality factors such as pH, dissolved oxygen, and water conductivity, 

were not found to significantly affect the inactivation of pathogenic bacterial targets (Rodriguez 

& Araujo, 2011; Czajkowska et al., 2005).   

2.3.3 Bacteriophages  

Eight of the studies identified in the literature review assessed the persistence of 

bacteriophages in surface water matrices. Six of the studies used freshwater, marine water was 
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studied in two studies, and one study used brackish water. Sunlight was absent from most of the 

experiments, and predation was predominantly present. All eight studies used culture-based 

methods to quantify the bacteriophage concentrations over time.   

Booncharoen et al. (2018) evaluated the persistence of human sewage-specific 

enterococcal bacteriophage persistence from the Myoviridae (A2), Podoviridae (S1) and 

Siphoviridae (A1, S4) families in highly and lowly populated fresh and marine water sources in 

Thailand. The highest decay rates of A1, A2, and S4 were in the highly polluted seawater matrix; 

the highest decay rate of S1 was in the highly polluted freshwater matrix. All bacteriophages 

exhibited slower decay in filtered samples and in lower pollution waters, suggesting predation 

does play an important role in bacteriophage persistence.  Additional experiments at 5°C 

indicated that temperature significantly affects bacteriophage decay. The effects of salinity on 

decay varied with the pollution level of the water (Booncharoen et al., 2018). Marine water was 

only tested by one additional study, in which the marine bacteriophage H6 was inoculated into 

unfiltered marine water and maintained at 22°C (Olive et al., 2020). Minimal decay was 

observed over the 16-day experiments, suggesting that the existence of predators in the water 

affected the bacteriophage decay minimally (Olive et al., 2020).   

Somatic coliphages from the Myroviridae and Siphoviridae family were also evaluated in 

another study identified in this review (Lee & Sobsey, 2011). Lee and Sobsey (2011) conducted 

experiments using reagent water and natural surface waters sampled from a freshwater body. 

Experiments were conducted at 4°C and 25°C. The analysis suggested that water type (reagent vs 

fresh), temperature, and incubation time were strong predictors of inactivation. For most of the 

coliphages, decay was slower at 4°C (Lee & Sobsey, 2011). Greaves et al. (2021) included a 

somatic coliphage in their large-scale freshwater mesocosm experiments. The mesocosms were 
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either exposed to sunlight or left covered, and somatic coliphage was detectable for two days in 

the uncovered experiments and five days in the covered experiments, indicating that sunlight 

significantly affects decay. Notably, the viral indicators in this study were more resistant to UV 

inactivation than the bacterial indicators studied (Greaves et al., 2021).   

Long & Sobsey (2004) addressed the persistence of F+RNA and F+DNA coliphages in 

freshwater microcosms. Water was sampled from a surface drinking water source, spiked with an 

individual phage to a target concentration, and maintained at 4°C or 20°C in the dark. The 

authors noted tailing in the survival curves and for all coliphages, decay was slower at the lower 

temperature. The differences between the temperatures were statistically significant for the 

F+DNA coliphages and the Group II and Group IV F+RNA coliphages (Long & Sobsey, 2004). 

Ravva & Sarreal (2016) evaluated the persistence of F-specific RNA coliphages in the presence 

and absence of bacterial host in fresh surface waters. The experiments were kept in the dark and 

maintained at temperatures that simulated summer (25°C) or winter (10°C) conditions. The 

addition of the host resulted in greater phage persistence, with phages in the absence of host 

disappearing relatively rapidly. Temperature significantly affected persistence, as greater 

survival was observed at 10°C as compared to 25°C, and there were significant differences 

between environmental and prototype isolate survival. The chemical composition of the waters 

did not appear to affect decay; although QB was assayed in waters with higher suspended solids 

than the other strains, it decayed similarly (Ravva & Sarreal, 2016).   

QB may not be representative of coliphage-suspended solids interactions as a whole, 

however, as it was an exception in a study conducted by Yang & Griffiths (2013) using river 

water experiments. The study manipulated temperatures, pH values, and some samples were 

autoclaved and filtered. Except for QB, all the other F+RNA phages persisted for longer in the 
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heat-treated water (predation absent) and were less stable when suspended solids were removed. 

The researchers concluded that temperature and pH were major factors that affected the phage 

survival (Yang & Griffiths, 2013). Tiwari, Kauppinen, and Pitkanen (2019) detected MS2 with 

culture-based methods in their study of decay patterns in brackish beach mesocosms. MS2 

decayed log-linearly and had higher decay in the mesocosms without vegetation. MS2 counts 

was strongly correlated with culturable enterococci for the first 6-8 days (Tiwari et al., 2019).  

2.3.3.1 Summary  

Overall, the studies identified in the literature provided limited insight into the factors 

potentially affecting decay. Temperature was the most frequently addressed factor, and it was 

consistently determined to significantly affect bacteriophage decay (Booncharoen et al., 2018; 

Greaves et al., 2021; Lee & Sobsey, 2011; Long & Sobsey, 2004; Ravva et al., 2016; Yang et al., 

2013). Sunlight was shown to significantly increase decay rates of bacteriophages, but 

bacteriophages may be more resistant to UV inactivation than FIB (Greaves et al., 2021). 

Predation significantly impacts bacteriophage decay, although the impact may be sub-type 

dependent (Booncharoen et al., 2018; Yang et al., 2013), and this review did not select any 

studies that suggested significant differences between bacteriophage decay rates in different 

water types (Booncharoen et al., 2018). As only culture-based methods were used in the 

described studies, no conclusions could be drawn about method-related decay differences. 

However, as opposed to the conclusions drawn in the FIB and Bacteria Other Factors sections 

(2.3.1.4 and 2.3.2.4), the bacteriophage literature suggests that pH does significantly affect decay 

(Yang & Griffiths, 2013).   
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2.3.4 Viruses  

There were 11 studies identified in the literature review that studied the persistence of 

viruses. Nine of the 11 studies used freshwater, six used marine water and only one used 

brackish water. The presence or absence of sunlight was fairly variable, with three studies 

exposing all experiments to sunlight, four studies keeping all experiments in the dark, and four 

studies manipulating the presence of sunlight. Predation was predominantly present in the 

experiments assessing virus persistence and the virus target group had the greatest variety of 

method type; four of the eleven studies used molecular-based methods.   

Adenovirus was the virus-type most frequently studied in the identified literature. Ahmed 

et al. (2014) assessed adenovirus persistence and the T90s in fresh and marine waters were 13 

and 9.4 days, respectively. Liang et al. (2017) assessed the effects of salinity and sunlight on 

adenovirus and their results contradicted those of Ahmed et al. (2014), in that increasing salinity 

was associated with greater adenovirus persistence. Increasing sunlight intensity increased 

adenovirus decay rates, and results suggested that the viral targets in this study were more 

susceptible to sunlight than their bacterial counterparts. Regardless of salinity or sunlight, intact 

cells decayed faster than total DNA (Liang et al., 2017).   

Human adenovirus was also studied in freshwater mesocosms that manipulated predation 

status and temperatures (Ahmed et al., 2021). In one set of the experiments, the decay rates were 

similar between predation treatments, with higher decay rates observed at 25°C compared to 

15°C. In the other set of experiments, the effects of the increased temperature were only 

prominent in the filtered treatments (Ahmed et al., 2021). The effect of temperature on virus 

persistence was also evaluated in a study using dark, sterilized river water microcosms stored at -

20°C, 4°C, 24°C or 37°C (Ibrahim et al., 2019). Adenovirus had the slowest decay in -20°C with 
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a T90 of almost 200 days and the fastest decay at 37°C with a T90 of 27 hours. Norovirus was 

not affected by increasing temperatures in the typical manner with decay rates from fastest decay 

occurring in the 24°C trials and the slowest decay occurring in the 4°C (Ibrahim et al., 2019).  

Carratalà et al. (2013) evaluated the persistence of adenoviruses in a range of water 

matrices, but the experiments conducted in seawater were the only ones that met the natural 

surface water criteria for the review. Human adenovirus type 2 was inoculated into the seawater 

reactors and dark conditions were tested at 7°C, 20°C and 37°C, and experiments were 

conducted with UVB and UVA light sources (both classified as sunlight present). For the dark 

experiments, no significant inactivation was observed at 7°C or 20°C, but higher inactivation 

was observed at 37°C. The authors concluded that biotic factors may be more relevant to virus 

inactivation than indirect photo-inactivation by UVA radiation, especially at higher temperatures 

(Carratalà et al., 2013).    

Olive et al. (2020) investigated the microbial control of echovirus 11, adenovirus 2, and 

the bacteriophage H6 decay in different water types. Echovirus 11 was incubated in sterilized 

and non-sterilized lake water maintained at room temperature, and echovirus 11, adenovirus 2, 

and the bacteriophage H6 were inoculated into the eukaryotic fraction isolated from lake and 

ocean water. The eukaryotic fraction and bacteria fraction waters discussed in this study were 

merely classified as “predation present” for this review. The authors concluded that the microbial 

virus control was temperature dependent, with more obvious reductions at 22°C as compared to 

16°C, dependent on the virus (Olive et al., 2020).   

Bergstein et al. (1996) evaluated the persistence of poliovirus with in situ experiments in 

a freshwater lake located at different depths with variable light exposure, and during different 

seasons (winter/summer). Very little poliovirus decay was observed during the winter 
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experiments, regardless of light presence. In the summer experiment, light exposure resulted in a 

1-log reduction within ~4 days, compared to minimal observed decay in the dark. Nasser et al. 

(2003) assessed the persistence of coxsackie A9 virus in fresh, marine, and brackish waters and 

virus persistence was found to be temperature-dependent, with faster decay observed at 30°C 

than 15°C. Die-off of coxsackie A9 virus at 15°C and 30°C was greatest in marine water (Nasser 

et al., 2003).   

The survival of Rhesus rotavirus and human astrovirus was characterized in both 

groundwater and contaminated surface water in a study conducted by Espinosa et al. (2008). 

Only the surface water experiments met the “natural” waters criteria outlined in the Appendix. 

Results indicated that virus infectivity persisted longer in groundwater than surface water, and 

that rotavirus persistence was more stable than astrovirus. Good correlation between virus 

infectivity and genomic material detection was noted (Espinosa et al., 2008). The decay of 

enteroviruses using molecular-based methods was assessed in light and dark seawater 

microcosms in a study conducted by Walters, Yamahara, & Boehm (2009). The infectious 

enterovirus remained detectable longer in the dark microcosms than the light. No difference in 

genome decay rates was observed between the two treatments, suggesting a potential method-

sunlight interaction for virus targets (Walters et al., 2009). de Oliveira et al. (2021) assessed the 

viability of SARS-CoV-2 in filtered and nonfiltered river water experiments kept at 4°C and 

24°C. Nonfiltered and higher temperature river water experiments were associated with faster 

decay (de Oliveira et al., 2021).   

2.3.4.1 Summary  

Overall, the results of the studies that manipulated water type suggest that the decay of 

viruses may be faster in marine waters than in fresh (Ahmed et al., 2014; Nasser et al., 2003; 
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Walters et al., 2009), although Liang et al. (2017) observed greater persistence with increasing 

salinities. In general, sunlight increased viral decay (Carratalà et al., 2013; Bergstein et al., 1997; 

Liang et al., 2017), but there was no difference between genome decay rates in a study conducted 

by Walters et al. (2009). Similarly to the bacteriophage literature, the studies identified herein 

suggest that the relationship between virus persistence and predation may be complicated. de 

Oliveira et al. (2021) observed clear differences between SARS-CoV-2 persistence when 

predation was present versus absent, but the effects of predation on adenovirus persistence were 

unclear (Ahmed et al., 2021). Olive et al. (2020) concluded that the microbial control of virus 

populations may be temperature-dependent, as the differences between the predation status was 

less obvious at lower temperatures. The effects of temperature seem to be relatively consistent 

with the rest of the aforementioned targets, with the exception of norovirus. Most studies found 

that decay increased with increasing temperatures (Ahmed et al., 2014; Ahmed et al., 2021; 

Carratalà et al., 2013; Nasser et al., 2003; de Oliviera et al., 2021), however norovirus in one 

study had the highest decay rate at the second highest temperature (24°C) (Ibrahim et al., 2019).   

2.3.5 Protozoa  

Protozoa were the least frequently studied target in the literature identified in this review. 

Only four studies assessed the persistence of protozoa, and as such, there was minimal water 

quality and environmental factor variation to facilitate comparisons.   

Multiple water matrices (fresh, brackish, and marine) were used by Nasser et al. (2003) to 

test the persistence of Cryptosporidium at two different temperatures (15 or 30°C). The 

persistence of Cryptosporidium was not influenced by temperature in any of the water types. In 

general, little to no decay was observed for Cryptosporidium across all the experiments, and it 

was concluded that E. coli was not a suitable indicator for Cryptosporidium. Robertson et al. 
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(2006) studied Cryptosporidium oocyst and Giardia cyst persistence in a freshwater river. The 

river water temperature throughout the experiment fluctuated from 1.1°C to 7.3°C. River water 

was also sampled for a control experiment maintained in the refrigerator (4°C). Cryptosporidium 

oocysts were detected as viable up until ~20 weeks, and Giardia cysts were detected until about 1 

month. Comparisons between control and river environments suggest that temperature changes, 

and other physical, chemical and biological factors do not significantly impact the decay of the 

studied parasites (Robertson et al., 2006).    

Medema et al. (1997) evaluated the persistence of Cryptosporidium parvum in autoclaved 

and natural river water microcosms that were maintained in the dark. The effects of predation 

were only evident at 15°C, but not at 5°C. Die-off of C. parvum was faster at the higher 

temperature (Medema et al. 1997). The freshwater mesocosms constructed by Ahmed et al. 

(2021) also evaluated the persistence of C. parvum. C. parvum genome decay was best described 

by a biphasic model, and a greater reduction was observed at 25°C than 15°C for all trials. Vital 

dye assays were used to assess C. parvum viability, and the relationship with temperature and 

filtration status was found to be variable.   

2.3.5.1 Summary  

The four studies addressing protozoa persistence described herein suggest that 

Cryptosporidium is relatively resistant to the factors that have been shown to increase decay rates 

of the other target types as expected. Two of the studies found no increase in decay rate with 

increased temperatures, and decay was similar between the sunlight present and absent studies 

conducted by Robertson et al. (2006). The study conducted by Medema et al. (1997) suggests 

that C. parvum may be affected by predation at some temperatures, again suggesting interactions 

between predation and temperature may be significantly affecting the decay of pathogens in 
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surface waters. However, the other study assessing predation suggested there was minimal 

impact from predation presence (Ahmed et al., 2021).   

2.4 Discussion  

2.4.1 Observed Decay Kinetics  

The majority of the studies identified in this review used first-order kinetics to describe 

the observed decay. A number of the studies described herein, however, observed biphasic decay 

patterns (Ahmed et al., 2019; Dick et al., 2010; Solecki et al., 2011; Zhang et al., 2015; Mattioli 

et al., 2017; Tiwari et al., 2019; Carratalà et al., 2013; de Oliviera et al., 2021; Easton et al., 

2005; Medema et al., 1997). Some of these studies noted biphasic decay but only fit log-linear 

models, while others fit alternative model forms. Of the 61 studies included in this review, less 

than 20% analyzed their data with biphasic or nonlinear model forms in addition to the 

traditionally assumed first-order decay kinetic profiles (Ahmed et al., 2019; Ahmed et al., 2021; 

Bailey et al., 2019; Carratalà et al., 2013; de Oliviera et al., 2021; Jeanneau et al., 2021; Lee & 

Sobsey, 2011; Mattioli et al., 2017; Solecki et al., 2011; Zhang et al., 2015). The most frequently 

applied model form in these studies was the so termed “biphasic decay model”, represented by 

Equations 1 and 2, where C(t) is the concentration at time t, C0 is the concentration at time 0, t’ is 

the time point where the second phase of decay begins, and k1 and k2 are the first-order decay 

constants for the two phases (Zhang et al., 2015; Ahmed et al., 2019; Ahmed et al., 2021). The 

biphasic decay model provided a good fit to cultured FIB in marine water (Zhang et al., 2015), 

molecular targets for FIB in fresh and marine water (Ahmed et al., 2019), and C. parvum 

molecular targets in freshwater (Ahmed et al., 2021).  

Ln( 𝐶𝐶𝑡𝑡
𝐶𝐶0

) = −𝑘𝑘1𝑡𝑡, 𝑡𝑡 ≤ 𝑡𝑡′                                             Eq. 1 

Ln( 𝐶𝐶𝑡𝑡
𝐶𝐶0

) = −𝑘𝑘1𝑡𝑡 − 𝑘𝑘2(𝑡𝑡 − 𝑡𝑡′), 𝑡𝑡 > 𝑡𝑡′                                    Eq. 2 



 

41 
 

Solecki et al. (2011) also observed biphasic decay in their FIB experiments, however, the 

model applied to the data slightly differed from Equations 1-2. As shown in Equation 3, the two 

first-order decay rates were applied to different proportions of the initial population of C0, 

designated with the parameter, f. The observed biphasic decay was hypothesized to be due to 

rapid die-off until a carrying capacity is reached, or the microorganisms using quorum sensing to 

regulate their numbers (Solecki et al., 2011). The same model was applied to the decay of FIB 

(Jeanneau et al., 2012), somatic coliphages (Lee & Sobsey, 2011) and adenovirus (Carratalà et 

al., 2013), albeit with f defined as a mixing parameter (designated as ω) in the study of 

adenovirus inactivation.  

𝐶𝐶(𝑡𝑡) = 𝐶𝐶0 × (𝑓𝑓 × 𝑒𝑒−𝑘𝑘1𝑡𝑡 + (1 − 𝑓𝑓) × 𝑒𝑒−𝑘𝑘2𝑡𝑡)                                Eq. 3 

Mattioli et al. (2017) fit the shoulder log-linear model to FIB persistence experiments and 

found that the shoulder log-linear model provided the best fit to enterococci molecular data. 

Instead of a second decay rate, as is the case for Equations 1-3, the shoulder log-linear model’s 

second parameter, S, represents the shoulder or lag time where there is minimal inactivation (Eq. 

4). The other studies that applied nonlinear model forms, such as the exponential biphasic, 

Weibull, and Gompertz models, found that the nonlinear models provided better fits to virus 

inactivation data under all tested conditions (de Oliviera et al., 2011), and bacteriophage 

inactivation data from the experiments evaluating the effect of their highest tested temperature 

(25°C vs 4°C) (Lee & Sobsey, 2011).    

𝐶𝐶(𝑡𝑡) = 𝐶𝐶0𝑒𝑒−𝑘𝑘𝑘𝑘 �
𝑒𝑒−𝑘𝑘𝑘𝑘

1+�𝑒𝑒𝑘𝑘𝑘𝑘−1�𝑒𝑒−𝑘𝑘𝑘𝑘
�                                            Eq. 4 

Of the few studies discussed herein that analyzed the fit of both nonlinear and linear 

models to persistence data, the nonlinear models were found to provide a good fit to FIB, 

bacteriophage, virus, and protozoa data from experiments representing different water types, 
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temperatures, and methods of detection. Biphasic decay has also been described in other 

persistence studies regarding matrices with conditions that did not meet the requirements of the 

review herein (Easton et al., 1999; Park et al., 2016). These studies and the results of previous 

modeling studies (Mitchell & Akram, 2017; Dean et al., 2020) suggest that two or three-

parameter models are better able to capture the dynamics of decay than the traditionally assumed 

first-order kinetics. One of the aims of this review was to determine the quantity of available 

pathogen and indicator persistence data for surface waters that could be explored in analyses that 

expand past the assumption of first-order decay kinetics. This review differed from some of the 

previous systematic literature reviews in that the studies had to include raw data that met the 

requirements for model fitting (more than three time points), as opposed to previous reviews that 

aimed to extract reported first-order decay rates (Boehm et al., 2018; Boehm et al., 2019). The 61 

studies described herein represent over 600 experiments available in the literature for this 

purpose.  

2.4.2 Environment and Water Quality Factor Interactions  

In addition to quantifying the available data in the literature for persistence modeling 

purposes, this review also aimed to assess the current state of the knowledge regarding the water 

quality and environmental factors that impact indicator and pathogen decay in surface waters. 

Previous factor analyses have used dependent variables derived from the assumed first-order 

decay kinetics (Boehm et al., 2018; Boehm et al., 2019). It is possible that the reduction in model 

uncertainty through the application of more accurate persistence models will also facilitate factor 

analyses capable of elucidating the finer relationships between environment and water quality 

factors affecting target persistence. Previous analyses that fit alternative persistence models to a 



 

43 
 

large database of experiments did not complete an adjoining factor analysis (Mitchell & Akram, 

2017).   

The studies discussed herein analyzed the effect of water quality and environmental 

variables with a variety of methods. Correlation coefficients and analyses (Ahmed et al., 2019; 

Tiwari et al., 2019; Korajkic et al., 2014; Espinosa et al., 2008), two-way and three-way 

ANOVAs (Korajkic et al., 2013; Korajkic et al., 2019; Wanjugi et al., 2016; Avery et al., 2008), 

multiple linear regression (Liang et al., 2017; Levin-Edens et al., 2011), and generalized linear 

mixed models (Wanjugi et al., 2016) were some of the methods implemented.  

As illustrated in Figure 2.1, the factors most frequently addressed by the studies 

identified in this literature review were temperature, sunlight, and predation. Temperature 

consistently was associated with decay for FIB, pathogenic bacteria, bacteriophages, and viruses, 

but increasing temperatures had little effect on protozoan decay in the identified literature 

(Robertson et al., 2006; Nasser et al., 2003). The presence of artificial or natural sunlight was 

frequently one of the main drivers of inactivation for the studied target types (except for 

protozoa), however FIB may be more susceptible to UV inactivation than viral indicators 

(Greaves et al., 2021). The FIB and pathogenic bacteria literature suggest that there may be 

possible interactions between sunlight and water type (Boehm et al., 2012; Bordalo et al., 2002) 

as well as sunlight and method of detection (culture vs. molecular-based) (Walters et al., 2009; 

Korajkic et al., 2019). It is important to note however, that other factors such as turbidity, UV 

wavelength, or water depth that were not consistently documented may be impacting the 

interpretation of the effects of sunlight presence on target persistence. The presence of predation 

typically was found to increase decay for FIB, pathogenic bacteria, viruses, and bacteriophages, 

but the effects of predation were in some cases unclear (Korajkic et al., 2019; Ahmed et al., 
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2021) and possible water type-predation interactions for FIB (Korajkic et al., 2013) and 

temperature-predation interactions for viral and protozoan targets were observed (Olive et al., 

2020; Medema et al., 1997).    

Fewer studies identified in the literature addressed the effects of water type and method 

of detection for the targets of concern. Decay differed by water type for some FIB with 

increasing salinities generally associated with faster decay (Fujioka et al., 1982; Korajkic et al., 

2013; Liang et al., 2017; Jeanneau et al., 2012). Marine water was also associated with faster 

decay of viral targets (Ahmed et al., 2014; Nasser et al., 2003; Walters et al., 2009), which 

differs from conclusions in a previous review (Boehm et al., 2019). The FIB literature also 

suggested potential water type-method of detection interactions, as differences in FIB decay 

between culture-based and molecular-based methods were identified in the freshwater 

experiments but not the marine water (Korajkic et al., 2019). One study of pathogenic bacteria 

suggested decay may be faster in freshwater than marine (Levin-Edens et al., 2011), and the 

studies identified in this review did not have enough data to draw any conclusions about the 

effects of water type on decay. Turbidity was found to influence decay in the FIB and pathogenic 

bacteria literature, and pH was a potential factor of significance in the bacteriophage literature.   

Notably, the majority of the studies focused on FIB and pathogenic bacteria and the 

factors affecting their persistence. Additional research manipulating water quality factors as they 

influence virus, bacteriophage, and protozoa decay are needed to better understand those 

relationships. The majority (75%) of the identified studies addressed persistence in freshwater 

matrices, and only 38% and 11% addressed persistence in marine and brackish matrices, 

respectively. In general, there was a lack of data for molecular-based methods. The lack of data 

on water type comparisons and persistence measured with molecular-based methods were 
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research gaps noted in a previous review (Boehm et al., 2018). It is important to note, however, 

that the qualitative synthesis of the studies discussed in this review reflect the water quality and 

environmental conditions assessed in experiments with shared in the peer-reviewed literature that 

also documented target concentrations for more than three independent time points.   

2.5 Conclusions  

This systematic review identified 61 studies that addressed the persistence of indicators 

or pathogens in natural surface water matrices, and these studies represent over 600 experiments 

in the literature that provided quantitative data to further explore persistence models that 

challenge traditional first-order decay kinetic assumptions. Strong relationships between 

sunlight, predation, temperature and persistence were consistently discussed for the majority of 

the target types. The effects of water type, method of detection, turbidity and pH were less 

consistent across target types and should be further explored in future analyses. This review 

highlighted several potential interactions between the water quality and experimental factors that 

could further complicate the relationships between factor and decay. Future experiments can be 

designed to test these potential interactions more thoroughly, and this review provides the 

foundation for the intentional inclusion of interaction terms in factor analyses, as opposed to 

exploratory analyses with forward or backwards selection, which is needed in the experimental 

design phase for such work. The methods frequently used to study persistence in surface waters 

(microcosms, mesocosms), models used to describe decay, and the techniques used to study 

factor relationships (correlation analyses, ANOVAs, regressions) were reviewed herein to aid 

future researchers in the endeavor to better understand pathogen threats and human health risks 

in surface waters.   
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Table 2.1: Studies Identified in the Literature Review and Relevant Characteristics 

Source  Target(s)  Water 
Type  Predation  Sunlight  Method  Experimental 

Design*  

Ahmed et al. 
2014  FIB, Virus  Fresh, 

Marine  Present  Present  
Culture-

based, Molecular-
based  

Outdoor Microcosms  

Ahmed et al. 
2019  FIB  Fresh, 

Marine  Present  Present  Molecular-based  Outdoor Mesocosms  

Ahmed et al. 
2021  

FIB, Bacteria, 
Virus, Protozoa  Fresh  Present/ 

Absent  Present  Culture-based, 
Molecular-based  

Laboratory 
Microcosms  

Avery et al. 2008  Bacteria  Fresh  Present/Absent  Absent  Culture-based  Laboratory 
Microcosms  

Badgley et al. 
2010  FIB  Fresh  Present  Present  Culture-based  Outdoor Mesocosms  

Bailey et al. 2019  FIB  Fresh  Present  Absent  Culture-based  Laboratory 
Experiments  

Beckinghausen et 
al. 2014   FIB, Bacteria  Fresh  Absent  Present/ 

Absent  Culture-based  Laboratory 
Microcosms  

Bergstein et al. 
1997   Virus  Fresh  Absent  Present/ 

Absent  Culture-based  In-situ Experiments  

Boehm et al. 
2012  Bacteria  Fresh, 

Marine  Absent  Present/ 
Absent  Culture-based  Laboratory 

Experiments  

Booncharoen et 
al. 2018  Bacteriophage  Fresh, 

Marine  
Present/ 
Absent  Absent  Culture-based  Laboratory 

Microcosms  

Bordalo et al. 
2002  FIB  Brackish  Present  Present/ 

Absent  Culture-based  Laboratory/Outdoor 
Microcosms  

Budzinzka et al. 
2012  Bacteria  Fresh  Present  Absent  Culture-based  Laboratory 

Experiments  

Carratala et 
al.2013  Virus  Marine  Present  Present/ 

Absent  Culture-based  Laboratory 
Experiments  

Chandran & 
Hatha 2005  FIB, Bacteria  Brackish  Present/ 

Absent  Present/Absent  Culture-based  Laboratory/Outdoor 
Experiments  

Chandran et al. 
2011  FIB, Bacteria  Fresh  Present/ 

Absent  Absent  Culture-based  Laboratory 
Microcosms  

Czajkowska et al. 
2005  Bacteria  Fresh  Present  Absent  Culture-based  Laboratory 

Experiments  

de Oliviera et al. 
2021  Virus  Fresh  Present/ 

Absent  Absent  Culture-based  Laboratory 
Experiments  

Dick et al. 2010  FIB  Fresh  Present/ 
Absent  

Present/ 
Absent  Culture-based  Laboratory 

Microcosms  
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Table 2.1 (cont’d) 

Easton et al. 
2005  FIB, Bacteria  Fresh  Present  Present  Culture-based  Laboratory 

Experiments   

El Mejri et al. 
2012  Bacteria  Marine  Absent  Absent  Culture-based  Laboratory 

Microcosms  

Espinosa et al. 
2008  Virus  Fresh  Present  Present  Culture-based, 

Molecular-based  
Laboratory 

Microcosms  

Fujioka et al. 
1982  FIB  Fresh, 

Marine  Present  Present/ 
Absent  Culture-based  Laboratory/ Outdoor 

Experiments  

Greaves et al. 
2021  

FIB, 
Bacteriophage  Fresh  Present  Absent  Culture-based  Outdoor Mesocosms  

Gronewald et al. 
2011  FIB  Brackish  Present  Absent  Culture-based  Laboratory 

Experiments  

Gutierrez-
Cacciabue et al. 
2016  

FIB  Fresh  Present  Present/ 
Absent  

Culture-based, 
Molecular-based  Outdoor Microcosms  

Ibrahim et al. 
2019  Bacteria, Virus  Fresh  Absent  Absent  Culture-based  Laboratory 

Experiments  

Imamura et al. 
2011  FIB  Marine  Present  Absent  Culture-based  Laboratory 

Microcosms  

Irankhah et al. 
2016  FIB  Marine  Present  Present  Culture-based  Laboratory 

Microcosms  

Jeanneau et al. 
2012  FIB  Fresh, 

Marine  Present  Absent  Culture-based  Laboratory 
Microcosms  

Korajkic et al. 
2013  FIB  Fresh, 

Marine  
Present/ 
Absent   Present  Culture-based  Outdoor Mesocosms  

Korajkic et al. 
2014  FIB  Fresh  Present/ 

Absent  
Present/ 
Absent  

Culture-
based, Molecular-

based  
Outdoor Mesocosms  

Korajkic et al. 
2019  FIB  Fresh, 

Marine  Present/Absent  Present/ 
Absent  

Culture-
based, Molecular-

based  
Outdoor Mesocosms  

Lee & Sobsey 
2011  Bacteriophage  Fresh  Present  Absent  Culture-based  Laboratory 

Experiments  

Levin-Edens et al. 
2011  Bacteria  Fresh, 

Marine  Absent  Absent  Culture-based  Laboratory 
Microcosms  

Liang et al. 2012  FIB  Fresh  Present  Present  Culture-based  Outdoor Microcosms  

Liang et al. 2017  FIB, Virus  Fresh, 
Marine  Present  Present/ 

Absent  Molecular-based  Laboratory 
Microcosms  

Long & Sobsey 
2004  Bacteriophages  Fresh  Present  Absent  Culture-based  Laboratory 

Microcosms  
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Table 2.1 (cont’d) 

Lund et al. 1996  FIB, Bacteria  Fresh  Present/ 
Absent  Absent  Culture-based  Laboratory 

Experiments  

Maracinni et al. 
2016  FIB  

Fresh, 
Marine, 

Brackish  
Present  Present  Culture-based  In-situ Experiments  

Mattioli et al. 
2017  FIB  Marine  Present  Present  Culture-based, 

Molecular-based  In-situ Microcosms  

Medema et al. 
1997  FIB, Protozoa  Fresh  Present/ 

Absent  Absent  Culture-based  Laboratory 
Microcosms  

Mezriouia et al. 
1995  FIB and Bacteria  Brackish  Present/ 

Absent  Absent  Culture-based  Laboratory 
Microcosms  

Nasser et al. 
2003  

FIB, Virus, 
Protozoa  

Fresh, 
Marine, 

Brackish  
Present  Absent  Culture-based  Laboratory 

Experiments  

Noble et al. 2004  FIB, 
Bacteriophage  Marine  Present  Present/ 

Absent  Culture-based  Laboratory/Outdoor 
Experiments  

Okabe et al. 2007  FIB  Fresh, 
Marine  Present  Absent  Culture-based  Laboratory 

Experiments  

Olive et al. 2020  Bacteriophage, 
Virus  

Fresh, 
Marine  

Present/ 
Absent  Absent  Culture-based  Laboratory 

Experiments  

Ravva et al. 2016  Bacteriophage, 
FIB  Fresh  Present  Absent  Culture-based  Laboratory 

Experiments  

Robertson et al. 
2006  Protozoa  Fresh  Present  Present/ 

Absent  Culture-based  Laboratory/In-situ 
Experiments  

Rodriguez et al. 
2012  Bacteria  Fresh  Present  Present/ 

Absent  Culture-based  
Laboratory 

Microcosms/ In-situ 
Experiments  

Silvester et al. 
2021  Bacteria  Brackish  Present/ 

Absent  
Present/ 
Absent  Culture-based  Laboratory 

Microcosms  

Solecki et al. 
2011  FIB  Fresh, 

Marine  Present  Absent  Culture-based  Laboratory 
Microcosms  

Terzieva & 
McFeters 1991  FIB, Bacteria  Fresh  Present  Absent  Culture-based  Laboratory 

Experiments  

Tiwari et al. 
2019  

FIB, Bacteria, 
Bacteriophage  Brackish  Present  Present  Culture-based, 

Molecular-based  
Laboratory 

Mesocosms  

Topalcengiz & 
Danyluk 2019  FIB, Bacteria  Fresh  Present/ 

Absent  Absent  Culture-based  Laboratory 
Experiments  

Walters et al. 
2009  FIB, Virus  Marine  Present  Present/ 

Absent  
Culture-based, 

Molecular-based  Outdoor Microcosms  

Walters & Fields 
2009  FIB  Fresh  Present  Present/ 

Absent  Culture-based  Outdoor Microcosms  
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Table 2.1 (cont’d) 

Wang & Doyle 
1998  Bacteria  Fresh  Present/ 

Absent  Absent  Culture-based  Laboratory 
Experiments  

Wanjugi et al. 
2016  FIB  Fresh  Present/ 

Absent  Present  Culture-based  Outdoor Microcosms  

Yang & Griffiths 
2013  Bacteriophages  Fresh  Present  Absent  Culture-based  Laboratory 

Experiments  

Yukselen et al. 
2003  FIB  Marine  Present  Present/ 

Absent  Culture-based  Laboratory/ Outdoor 
Experiments  

Zhang et al. 2015  FIB  Marine  Present  Absent  Culture-based  Laboratory 
Microcosms  

*If the researchers of each study did not use the terms microcosms or mesocosms in their methods, the experimental 
design is designated as experiments herein.  
   

  
Figure 2.1: Number of studies identified in the review that made conclusions about a factor’s 
influence on target persistence based on three tiers of impact: 1) Yes- the study identified a 

significant impact from the variable, 2) Variable- the impact of the factor on persistence was not 
consistent, or varied based on other factors, and 3) None- the factor was addressed in the study 

but no significant impact was identified. 
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APPENDIX 

Web of Science was used during the first two weeks of July 2020 with the following 

keyword combinations: (survival OR persistence OR decay) AND (indicators OR pathogens OR 

pathogenic bacteria OR pathogenic viruses OR sewage OR sewage-associated) AND (surface 

waters OR environmental waters). Note, the term “NOT” was used to exclude the sources from 

prior searches. The titles and abstracts were scanned for each source, and if the study seemed 

relevant to the aforementioned criteria, it was selected for further evaluation. The review was 

updated using the same methodology in the last week of June 2021 to ensure the inclusion of any 

recently published relevant studies. In addition to the 20 resources carried over from prior 

analyses within the Global Water Pathogens Project, 3,929 sources were identified through the 

database searching. Two hundred and twenty-six unique resources were scanned for relevancy 

based off title and abstract, and 115 studies were eligible for further assessment. After assessing 

suitability of data and the inclusion of necessary details, 61 total studies were selected for 

inclusion in this review and the following analysis. An illustration of the PRISM Literature 

Review Process for this study is shown in Figure A2.1.  
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Figure A2.1: PRISMA 2009 Flow Diagram to Illustrate the Systematic Literature Review 
Process (Moher et al., 2009) 
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CHAPTER 3: META-ANALYSIS ADDRESSING THE IMPLICATIONS OF MODEL 
UNCERTAINTY IN UNDERSTANDING THE PERSISTENCE OF INDICATORS AND 
PATHOGENS IN NATURAL SURFACE WATERS  

This chapter has been published in Environmental Science & Technology and is reprinted with 
permission from Environ. Sci. Technol. 2022, 56, 17, 12106–12115. Copyright 2022 American 
Chemical Society. 

3.1 Introduction 

Persistence modeling in the context of microbial surface water contamination has 

predominantly relied on first order decay kinetic assumptions (Crane & Moore, 1986; de 

Brauwere et al., 2014; Pachepsky et al., 2006). Relying on general indicator organism first-order 

decay rates instead of persistence models capturing site-specific or pathogen-specific decay 

behaviors may cause misleading predictions about pathogen loads and associated risks, which is 

of particular concern for water bodies that maintain water quality with assumed natural 

attenuation. Despite its consistent use and application, the simplicity of applying first-order 

decay kinetics has long been challenged in the literature (Benham et al., 2006; Blaustein et al., 

2013; Easton et al., 1999; Gonzalez, 1995; Pachepsky et al., 2006; Park et al., 2016). Biphasic 

decay, or two-stage decay kinetics, has been frequently observed in natural and bench-scale 

experiments (Easton et al., 1999, 2005; Medema et al., 1997; Mitchell & Akram, 2017; Park et 

al., 2016), for both culture-based and molecular-based fecal indicator bacteria (FIB)  targets 

(Korajkic et al., 2014). Approaches for addressing  the observed nonlinear decay patterns have 

included fitting a log-linear model to two portions of the data, yielding two first-order decay 

rates, or fitting a delayed Chick Watson model (Easton et al., 2005; Green et al., 2011; 

Sivaganesan et al., 2003). Some researchers have also explored the application of alternative 

persistence model forms. For example, Gonzalez et al. (1995) fit the log-linear, Gompertz, and 

logistic models to survival data of enteric bacteria in fresh and marine waters and found that the 
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nonlinear models provided a significantly better fit to the data and supplied added information 

about the lag times, decay rates, and asymptotes of the survival curves (Gonzalez, 1995).  

More recently, a suite of two and three parameter models identified primarily in the food 

microbiology literature have been used to fit survival datasets of bacteria, viruses, indicators, and 

MST markers in a variety of water matrices (Y. Brooks et al., 2015; Dean et al., 2020; Mitchell 

& Akram, 2017). Some of the models found to best fit the data most frequently in these previous 

studies include the exponential damped, the Juneja and Marks 1, the Juneja and Marks 2, and the 

double exponential models (Dean et al., 2020; Mitchell & Akram, 2017). These four models 

have two or three-parameters and the model forms can capture two-stage decay kinetics, initial 

periods of minimal decay (shoulders), and decay rates that taper off over time (tails). Of these 

four alternative model forms, the Juneja and Marks 1 (jm1) and Juneja and Marks 2 (jm2) 

models are considered to be more mechanistically motivated and have most frequently been 

identified as the best fitting models to multiple datasets addressing the persistence of indicators, 

viruses, and bacteria in water matrices and fomites in previous works (Dean et al., 2020; Enger et 

al., 2018; Mitchell & Akram, 2017; Tamrakar et al., 2017). 

As surface waters encompass a range of water types with varying water quality 

conditions and environmental stressors, it was posited that the persistence behaviors of 

pathogens and indicator organisms in surface waters would be more dynamic than the 

traditionally assumed first-order decay. Based on previous analyses of indicator and pathogen 

persistence in various water matrices, it was more specifically hypothesized that a two-parameter 

model, particularly jm1 or jm2, would provide a better fit than the conventional exponential 

model (Dean et al., 2020; Mitchell & Akram, 2017). It was further hypothesized that the 

identification and use of an improved model form to describe pathogen and indicator persistence 
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behaviors will yield more accurate predictions of persistence values of interest, and exploratory 

factor analyses using these values will lead to novel insights about the factors affecting 

persistence in natural surface waters. 

To test these hypotheses, a previously published systematic literature review was used to 

generate a database of natural surface water persistence experiments(Dean & Mitchell, 2022b) to 

facilitate the fitting of alternative persistence models and the exploration of factor-persistence 

relationships. Although meta-analyses assessing the persistence of multiple targets in surface 

waters have been completed before (Boehm et al., 2018, 2019; Mitchell & Akram, 2017), this 

meta-analysis is unique because it is (i) the most comprehensive to date providing a larger 

weight of evidence for the findings; (ii) supported by novel quantitative analysis including the 

fitting of alternative persistence models to each mined dataset to address both data and model 

uncertainty; and (iii) able to refine relationships and elucidate interactions between indicator and 

pathogen persistence and the natural environmental conditions present in surface waters through 

rigorous data analytic techniques. The insights garnered by this analysis can inform quantitative 

microbial risk assessments (QMRAs), which are used to establish acceptable levels of 

waterborne pathogens and set water monitoring protocols (Haas et al., 2014), and suggest 

enhancements to future experimental designs that aim to explore pathogen decay dynamics.  

3.2 Methods 

3.2.1 Data Mining 

Data for this study were extracted from 61 studies previously identified in a systematic 

literature review that evaluated the state of the science with regards to the persistence of FIB, 

bacteria, viruses, bacteriophages, or protozoa over time in natural surface waters(Dean & 

Mitchell, 2022b). The five target groups were selected to help highlight potential differences in 
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persistence behaviors for targets used as indicator organisms (FIB and bacteriophages) and 

targets capable of causing waterborne disease (bacteria, viruses, and protozoa). Water type, 

sunlight presence, predation presence, method of detection, and water temperature were 

documented for each experiment, in addition to any other relevant water quality factors(Dean & 

Mitchell, 2022b). Each experiment needed to include four or more time points and the associated 

concentrations to be included in the meta-analysis. Available data were then extracted from the 

studies or data shown graphically were digitized using the open access Web Plot Digitizer tool 

(https://automeris.io/WebPlotDigitizer/). Concentration data were transformed into log reduction 

values (log10(Nt/No)) to facilitate the fitting of the persistence models shown in Table 3.1 and for 

ease of interpretation.  

3.2.2 Persistence Model Fitting 

 Each dataset was first assessed for a general negative trend by fitting a basic linear model 

to each dataset with the log-reduction values as the dependent variable, time as the independent 

variable, and a set intercept of zero. If the slope of the linear model was not a statistically 

significant (p<0.05) negative value, the dataset was not included in the analysis. A selection of 

models (Table 3.1) previously determined to be well-suited to fit persistence data were fit to the 

datasets with Maximum Likelihood Estimation methods in R using the basic optim function(R 

Core Team, 2020). For each of the models shown in Table 3.1, Nt is the concentration at time t 

and N0 is the concentration at time zero. Both sides of each equation have been log10-transformed 

to facilitate the plotting of log reduction values over time. Briefly, the exponential model (ep), 

also referred to as the log-linear model or Chick-Watson model, assumes a constant rate of decay 

(k1) over time, as observed in first-order chemical reactions (Chick, 1908; Watson, 1908). The 

exponential damped model (epd), also referred to as the exponentially damped polynomial 
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model, reduces to the exponential when k2 is zero and returns to the initial level (log 

reduction=0) when both k1 and k2 are positive (McKellar & Lue, 2004; Whiting, & Buchanan, 

Robert, L., 2001). Although this model lends itself to capturing a tailing effect and has been one 

of the best fitting models in our previous work (Dean et al., 2020; Mitchell & Akram, 2017; 

Tamrakar et al., 2017), the U-shape tendency has the potential to limit its applicability to 

microbial persistence data (Enger et al., 2018). The jm1 model, more commonly known as the 

multi-hit target theory model, is a two-parameter model that reduces to the exponential when 

k2=1. It was originally derived in the field of radiation biology, and its premise is that the death 

of an organism occurs from the inactivation of multiple critical sites on the cell (Atwood & 

Norman, 1949; Juneja & Marks, 2001; Little, 1968; Nomiya, 2013). This behavior is reflected in 

the commonly seen “shoulders”, where it is hypothesized that some damage is absorbed by the 

cell before death occurs (Little, 1968). The jm2 function has been used to model Salmonella and 

Listeria monocytogenes survival in response to various treatments (Carlier et al., 1996; Juneja et 

al., 2003; Juneja & Marks, 2003). The sigmoidal function of jm2 is based on the logistic 

probability distribution and k1 and k2 can be considered as dispersal and location (k2>0) 

parameters, respectively (Juneja & Marks, 2003). Finally, the double exponential model (dep) 

was proposed by Shull et al. (1963) and analyzed by Abraham et al. (1990) by applying the 

model to Bacillus stearothermophilus spore inactivation data. The model is based on the premise 

that when a population of spores is first exposed to heat, there is a population of activated spores 

and inactivated spores. The k3 parameter, as shown in Table 3.1, is a constant that depends on the 

two inactivation rates (k1 and k2) and on the ratio of dormant spores in the test solution. The dep 

model is the only three-parameter model included in this analysis, as it is the three-parameter 
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model that has most frequently served as a best fitting model in some prior literature (Enger et 

al., 2018; Mitchell & Akram, 2017).  

Table 3.1: Persistence Models Selected for the Meta-Analysis 

Model Equation Reference 
Exponential (ep) log10 �

𝑁𝑁𝑡𝑡
𝑁𝑁𝑜𝑜
� = log10(𝑒𝑒−𝑘𝑘1𝑡𝑡) (Chick, 1908; 

Watson, 1908) 
Exponential 
Damped (epd) log10 �

𝑁𝑁𝑡𝑡
𝑁𝑁𝑜𝑜
� = log10(𝑒𝑒−𝑘𝑘1𝑡𝑡𝑒𝑒−𝑘𝑘2𝑡𝑡) (McKellar & Lue, 

2004; Whiting, & 
Buchanan, Robert, 
L., 2001) 

Juneja and Marks 1 
(jm1) log10 �

𝑁𝑁𝑡𝑡
𝑁𝑁𝑜𝑜
� = log10( 1 − (1 − 𝑒𝑒−𝑘𝑘1𝑡𝑡)𝑘𝑘2) (Atwood & 

Norman, 1949; 
Nomiya, 2013) 

Juneja and Marks 2 
(jm2) log10 �

𝑁𝑁𝑡𝑡
𝑁𝑁𝑜𝑜
� = log10(

1
1 + 𝑒𝑒𝑘𝑘1+𝑘𝑘2 ln 𝑡𝑡

) (Carlier et al., 
1996; Juneja & 
Marks, 2003) 

Double Exponential 
(dep) log10 �

𝑁𝑁𝑡𝑡
𝑁𝑁𝑜𝑜
� = log10(𝑘𝑘3𝑒𝑒−𝑘𝑘1𝑡𝑡 + (1 − 𝑘𝑘3)𝑒𝑒−𝑘𝑘2𝑡𝑡) (Abraham et al., 

1990; Shull et al., 
1963) 

 

Models were removed from the analysis if the fitting routine found unstable parameter 

estimates, if the model failed to converge, or if the resulting model was U-shaped (i.e., predicted 

a sustained increase in concentrations after substantial decay). For each model a Bayesian 

Information Criterion (BIC) value, adjusted R2 value and normalized root mean square error 

(nRMSE) value were calculated. The BIC value was calculated with Equation 1, where nll is the 

negative log-likelihood value, k is the number of parameters in the model, and n is the number of 

datapoints. BIC values for each model were used for model comparison; a lower BIC value 

indicates a better fitting model, and BIC values within 2 of one another indicate two models of 

equal fit (Dziak et al., 2020; Haas et al., 2014).  

BIC = 2𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑘𝑘log (𝑛𝑛)                                                  Eq. 1 
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Adjusted R2 and nRMSE values were calculated as indicators of goodness of fit. The R2 

value (Equation 2) was calculated with the log-reduction values predicted by the model (𝐿𝐿𝐿𝐿𝑃𝑃), 

the observed log-reductions (𝐿𝐿𝐿𝐿𝑂𝑂), and the mean observed log-reduction (𝐿𝐿𝐿𝐿����𝑂𝑂). As four of the 

five persistence models were nonlinear, an adjusted R2 value was calculated as shown in 

Equation 3, with the consideration of the number of datapoints in the experiment, n, and the 

number of parameters in the model, p. For a normalized RMSE value, the range of observed log-

reductions for each dataset was used to normalize the RMSE value as shown in Equation 4. 

There is not a standard threshold where a model is considered a good fit versus a bad fit with 

these metrics, and suitable thresholds tend to vary by discipline and data type. A sensitivity 

analysis was conducted to assess the impact of nRMSE and Adjusted R2 threshold selection on 

the identification of the number of models providing good and best fits to the datasets (Appendix 

A). As the nRMSE values can be expressed in meaningful units, and the sensitivity analysis 

suggested it was sufficiently stringent, an nRMSE value of less than or equal to 10% was 

selected as the threshold for goodness of fit in this study.  

𝑅𝑅2 = 1 − ∑(𝐿𝐿𝐿𝐿𝑃𝑃−𝐿𝐿𝐿𝐿𝑂𝑂)2

∑(𝐿𝐿𝐿𝐿𝑂𝑂−𝐿𝐿𝐿𝐿����𝑂𝑂)2
                                                       Eq. 2 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅2 = 1 − (1−𝑅𝑅2)(𝑛𝑛−1)
(𝑛𝑛−𝑝𝑝−1)

                                                       Eq. 3 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
�∑(𝐿𝐿𝐿𝐿𝑃𝑃−𝐿𝐿𝐿𝐿𝑂𝑂)2

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿𝐿𝐿𝑂𝑂)−𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿𝑅𝑅𝑂𝑂)

                                                 Eq. 4 

3.2.3 Model-Relevant Persistence Values 

 By comparing BIC values, each dataset was determined to have one or more best fitting 

models. If the model(s) provided adequate fits to the data, they were used to calculate T90 and 

T99 values. T90 and T99 values are defined as the amount of time it takes to observe a 90% and 
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99% reduction, respectively, from the initial concentration. If the dataset had more than one 

model that provided a good fit to the data, model averaged T90 and T99 values were calculated 

with the method highlighted in previous work (Dean et al., 2020; Haas et al., 2014). Briefly, a 

T90 and T99 were predicted with each best fitting model, and then the model’s BIC value was 

used to calculate a weighted average T90 and T99. The calculated T90s and T99s for each 

dataset were treated as the dependent variable in the exploratory factor analysis techniques 

(Section 3.2.4) used to explore the relationships between factors and decay. To ensure the 

dependent variables were truly reflective of the model’s fit to the data, model averaged T90 and 

T99 values were only calculated when a 1 or 2-log reduction was observed within the 

experimental data, and at least one model provided a good fit to the dataset. If a 1 or 2-log 

reduction was observed within the experimental data but none of the tested models provided a 

good fit, the dataset was used to test the analytic techniques when applicable. Basic interpolation 

was used to determine the observed T90 and T99 for these datasets, henceforth referred as the 

“testing” data.  

3.2.4 Factor Analysis Methods 

There were six core factors documented for each dataset that was extracted or digitized 

from the literature review (Dean & Mitchell, 2022b): target type (FIB, bacteria, virus, 

bacteriophage, or protozoa), water type (fresh, marine, or brackish), sunlight (present/absent), 

predation (present/absent), method of detection (culture-based/molecular-based), and 

temperature. Other factors evaluated by the original study were also documented and three 

additional factors were frequently highlighted: pH, turbidity, and dissolved oxygen. The largest 

dataset for the exploratory factor analysis included the main core factors but additional datasets 

that included pH, turbidity, or dissolved oxygen were also assessed on a smaller scale.  
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Kruskal-Wallis tests, Pairwise-Wilcox tests and Spearman correlation coefficients were 

used to assess the basic trends between the factors and persistence values. Spearman correlation 

coefficients were calculated for the continuous and binary factors, and Kruskal-Wallis and 

Pairwise-Wilcox tests were calculated for the binary and categorical factors. For the factor 

analyses, the binary and multi-level categorical factors (sunlight, predation, water type, target 

type) were dummy-coded. The base condition was represented by FIB, freshwater, culture-based 

methods of detection, and the absence of sunlight or predation. The dependent variable in each 

method was the model averaged T90 or T99 values. As highlighted in the systematic review of 

the literature(Dean & Mitchell, 2022b), a variety of methods have been used to assess the effect 

of experimental factors on target persistence, including correlation coefficients, ANOVAs, 

multiple linear regression, and generalized linear mixed models (Ahmed et al., 2019; Avery et 

al., 2008; Espinosa et al., 2008; Korajkic et al., 2013, 2014, 2019; Levin-Edens et al., 2011; 

Liang et al., 2017; Tiwari et al., 2019; Wanjugi et al., 2016). In this analysis, these analytic 

methods were explored and expanded upon, as the magnitude of the dataset allowed for the 

comparison of technique efficacy. Regression trees, random forests, multiple linear regression, 

and quantile regressions were fit to the data herein. Each method requires different underlying 

assumptions about the data (Appendix B, and the validity of those assumptions was evaluated by 

comparing the performance and predictive power of each method. 

To accomplish this, the data was divided into training and testing datasets as described in 

Section 3.2.3. The regression trees, linear models, quantile regressions, and random forests were 

fit to the training data. RMSE values calculated from the predicted and observed persistence 

values in the training data were used to evaluate each method’s performance. Then the optimized 

linear models, quantile regressions, regression trees, and random forests were used to predict the 
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testing data persistence values as a form of method validation, and the RMSE values calculated 

using these predicted and observed values were used to consider the method’s predictive power. 

Details for the methods used to analyze the data with regression trees, linear models, and 

quantile regressions are included in Appendix B. Consistently, random forests performed the best 

on the training data and had the greatest predictive power. As such the results of the random 

forests are discussed in detail herein.  

Random forests are an expansion past regression trees, that fit hundreds of trees to 

bootstrapped training samples (Brieman, 2001; Hastie et al., 2017). During the tree-growing 

process, a number of input variables (m) are randomly selected for splitting. Using the 

randomForest package and the caret package for tuning m, the datasets were explored with the 

random forest method (Kuhn, n.d.; Liaw & Wiener, 2002). Variable importance in a random 

forest is calculated as the mean increase in the mean square error when a variable of concern is 

permuted from the process (Hastie et al., 2017). H-statistics, which calculate the fraction of 

variance not explained by the sum of partial dependencies of the independent variables, were 

used to evaluate the contribution of interactions to prediction variance using the iml package 

(Friedman & Popescu, 2008; Molnar et al., 2018). 

3.3 Results 

3.3.1 Persistence Modeling  

There were 678 datasets extracted or digitized from the 61 studies identified in the 

previously published systematic literature review (Dean & Mitchell, 2022b), but only  629 

datasets had at least four time points and a significant negative trend. The five persistence 

models in Table 3.1 were fit to each dataset and models were removed if the parameters during 

the fitting process were unstable, if the final optimized model was U-shaped, or if there were any 
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convergence errors (Table C3.1). The dep model was the most prone to unstable parameter 

estimates and convergence errors, and the epd model was the most likely to be removed because 

of a final U-shaped model form. At least one model provided a good fit (nRMSE ≤ 0.10) to 498 

of the 629 datasets, with jm2 providing a good fit the most often (71%) to the 629 datasets, 

followed by jm1 (66%), epd (60%), ep (38%), and dep (23%). The best fitting model for each 

dataset was determined with BIC values. Of the 498 datasets, there was a single best fitting 

model for 293 datasets with the remaining 205 datasets having multiple best fitting models as 

shown in Table 3.2. In total, jm2 was one of (or the only) best fitting model for 52% of the 498 

datasets, followed by epd (44%), jm1 (39%), ep (19%), and dep (12%). It should be noted that 

though the ep model provided the best fit to 93 datasets, it was the single best fitting model for 

only seven datasets.  

Table 3.2: Best Fitting Model Frequency as Determined by BIC Values 

Model Number of Datasets with 
a Best Fit (n=498) 

Number of Datasets with 
One Best Fitting Model 

(n=295) 

Number of Datasets with 
Multiple Best Fitting 

Models (n=203) 

ep 93 7 86 
epd 218 91 127 
jm1 193 48 145 
jm2 261 133 128 
dep 58 14 44 

For the factor analysis, model averaged T90 and T99s were calculated for the datasets in 

which at least one model provided a good fit to the data, and either a 1 log-reduction and 2 log-

reduction was observed in the experiment, respectively. Out of the 629 datasets, a 1-log 

reduction was observed in only 568 datasets, and at least one model provided a good fit to 458 of 

the datasets. A 2-log reduction was observed in 427 of the 629 datasets, and at least one model 

provided a good fit to 353 of the datasets. Thus, 458 and 353 datasets were used to train the 
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methods for the T90 and T99 factor analyses, respectively, and 110 and 74 datasets were used to 

test the methods for the T90 and T99 analyses, respectively.  

3.3.1.1 First-Order Kinetic Comparison  

It was hypothesized in this analysis that the persistence values calculated with the best 

fitting persistence models identified herein, would yield a greater understanding of the 

relationships between factors and persistence than analyses that have previously relied upon first-

order decay rates. To allow for a direct comparison, the exponential model (Table 3.1) was fit to 

each of the core factors datasets (nT90=458, nT99=353) and used to calculate T90 and T99 values. 

The distribution of exponential-predicted T99s was not significantly different (p=0.07) from the 

distribution of the T99s predicted with the best fitting models for each dataset (Figure 3.1), as 

evaluated with a Kruskal-Wallis test. Although the distributions of T99s did not significantly 

differ, the exponential model did predict a higher maximum T99 value for the training datasets, 

and the exponential-predicted T99 distribution overall had higher central tendency values and 

more variance. When analyzing the data by target type (Tables D3.1-D3.2), the exponential 

model predicted higher central tendency and maximum values for the bacteria, bacteriophage, 

virus, and protozoa T99s than the model-averaging approach. The exponential model also 

predicted higher T90 values for the bacteria, virus, and bacteriophage targets than the model 

averaging approach, although the T90 distributions did not significantly differ (p=0.34) (Table 

D3.2).  
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Figure 3.1: Distribution of the log-transformed exponential and model-averaged predicted T99 
values for all targets and factors (n=353) combined; dashed line is the median for the model-

averaged T99s, and the solid line is the median for the exponential T99s 

3.3.2 Factor Analysis 

 For the core factors and T99 values, the 353 datasets used to train the factor analysis 

methods represented each factor as follows: target type of FIB (n=136)/Bacteria (n=120)/Virus 

(n=64)/Bacteriophage (n=25)/Protozoa (n=8), sunlight presence (n=106)/absence (n=247), 

predation presence (n=274)/absence (n=79), water type of fresh (n=246)/marine (n=76)/brackish 

(n=31) and culture-based (n=314)/molecular-based (n=39) methods of detection. The breakdown 

of the T90 dataset was similar (Table D3.1). Figure 3.2 shows the distributions of the log-

transformed T99 values for each factor grouping. The number of datasets for the T99 factor 

analyses with pH, turbidity, and dissolved oxygen were 216, 148, and 71, respectively.  
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Figure 3.2: Violin plots demonstrating the distribution of log-transformed T99 values for a) 
targets, b) sunlight, c) predation, d) water type, and e) method of detection (scaled with count 

and annotated with number of datasets for each factor level) 

3.3.2.1 Correlations 

The datasets were first explored with various correlation measures. All the continuous 

and binary core factors were significantly correlated with the persistence values, as shown in 

Table 3.3. Increasing temperatures, the presence of sunlight, and the presence of predation were 

associated with lower persistence values, and molecular-based methods were associated with 

higher persistence values. Kruskal Wallis tests of the binary and categorical factors indicated that 

there were significant (p<0.05) differences between the levels of sunlight, predation, target type, 

water type and method of detection for the dependent variables. Per the Pairwise Wilcoxon tests, 
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the differences between water types were driven by the differences between fresh and marine 

waters and fresh and brackish waters. For the T99s, there were significant differences (p<0.05) 

between protozoa and all target types, a trend also observed for the T90s, and FIB and 

bacteriophages. The pairwise Wilcoxon tests for the T90 data also suggested significant 

differences between FIB and both bacteria and bacteriophages.   

When pH was included as a factor, temperature, predation, method of detection, and pH 

were significantly correlated with the persistence values. Sunlight did not have a significant 

correlation. When turbidity was assessed, temperature, predation, method of detection, and 

turbidity were significantly correlated with the persistence values. For the datasets that included 

dissolved oxygen, temperature, predation, and method of detection were significantly associated 

with both the T90 and T99 values. 

Table 3.3: Spearman Rank Correlation Coefficients 
Factors Assessed n Factor  T90 n Factor T99 
Core factors 458 Temperature  -0.32 355 Temperature -0.22 

  Sunlight -0.11  Sunlight -0.17 

  Predation -0.22  Predation -0.19 

  Method 0.10  Method 0.14 
pH  255 Temperature  -0.28 215 Temperature -0.22 

  Sunlight 0.05  Sunlight 0.02 

  Predation -0.25  Predation -0.22 

  Method 0.21  Method 0.28 

  pH -0.23  pH -0.32 
Turbidity 180 Temperature  -0.32 148 Temperature -0.21 

  Sunlight -0.04  Sunlight -0.11 

  Predation -0.27  Predation -0.27 

  Method 0.34  Method 0.39 

  Turbidity 0.15  Turbidity 0.18 
DO 92 Temperature  -0.31 71 Temperature -0.24 

  Sunlight -0.07  Sunlight 0.09 

  Predation -0.45  Predation -0.41 

  Method 0.37  Method 0.56 

  DO -0.01  DO 0.02 
    *Bolded coefficients indicate a significance of p <0.05 
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3.3.2.2 Method Evaluation 

As described in Section 3.2.4 (Factor Analysis Methods), there were a variety of methods 

implemented to explore the relationship between the documented factors and the modeled 

persistence metrics. The results were evaluated with RMSE values to assess method performance 

and predictive power. The results of each method for the T99 core factor datasets are shown in 

Table 3.4 and the results of each method for the T90 core factor datasets are shown in Table 

D3.3. The random forest method has the lowest RMSE values for each persistence value (T90 

and T99) and for each data type (training and testing). Thus, the random forest method was the 

best suited to identify and describe the relationships between the various factor and persistence 

values. Notably, random forests allow for nonlinear relationships between independent and 

dependent variables and can also account for interactions between independent variables. As 

random forests are best suited for this data, this suggests there are nonlinear relationships and 

interactions occurring between the variables studied in this analysis.  

Table 3.4: Evaluation of Factor Analysis Methods with Core Factor Data for T99 Values 

Method 
RMSE Values 

Performance (nT99=353) Predictive Power (nT99=74) 
Regression Trees 11.8 16.7 
Random Forest 11.4 15.4 
Linear Models 13.8 17.0 
Quantile Regressions* 13.4 17.5 

    *Performance and predictive power RMSE values for the median quantile only 

3.3.2.3 Random Forests  

Figure 3.3 shows the variable importance from the random forests fit to the T99 core 

factor training data. Temperature was the most important factor affecting the persistence values, 

and the differentiation of protozoa from the other target types was the second most important 

variable. As the baseline conditions for these analyses were FIB, the elevated importance of 
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protozoa indicates that the T99s for protozoa differed the most from FIB compared to the other 

targets. This was visually evident in Figure 3.2 with there being less datasets for protozoa, and 

those datasets being associated with higher, less variable T99 values compared to the other 

targets. Marine water, method of detection and predation were the next highest ranked variables 

of importance for the T99 random forest. Predation was the second most important variable for 

the T90 values (Figure D3.1), followed by bacteriophages, brackish water, and marine water. 

 

Figure 3.3: Variable importance for the T99 random forest analysis with the core factors (target 
type, sunlight, predation, water type, and method of detection) ranked by %MSE (percent change 

in mean square error when the factor is not included in the analysis) 

For the T99 values, the partial dependence plots (Figure D3.2) indicated higher values 

typically associated with non-FIB target types and molecular-based methods. The increase in 

T99 was the most pronounced for the protozoa target type. Lower T99s were associated with 

increasing temperatures, predation presence, and marine waters instead of fresh. Sunlight 

presence was associated with decreasing T99s but not T90s (Figure D3.3). The literature review 
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suggested possible interactions between sunlight and water type, sunlight and method, water type 

and predation, temperature and predation, and water type and method(Dean & Mitchell, 2022b). 

H-statistics for general interactions (Table D3.4) indicated that temperature and predation are the 

factors that interact the most with other factors in relation to both T90s and T99s. For the T99 

random forest, the two-way H-statistics indicated that temperature is predominantly interacting 

with predation, and that predation is interacting with sunlight (27%), the bacteria targets (23%), 

and temperature (25%).  The partial dependence plots for predation and temperature suggest that 

for both T90s and T99s, the effects of predation may be more pronounced at the lowest 

temperatures evaluated, however the effect is more obvious for the T90s than the T99s.  

The other interactions noted in the literature review of sunlight and water type, predation 

and water type, and water type and method of detection were not noted in the partial dependence 

plots (Dean & Mitchell, 2022b). There was however a visible interaction between sunlight and 

method of detection in the T99 random forest; the presence of sunlight clearly reduced the 

average T99 for culture-based methods, but no significant change was observed for the average 

T99 for molecular-based detection methods. In addition to the interactions suggested in the 

literature review (Dean & Mitchell, 2022b), the partial dependence plots suggested a possible 

sunlight and predation interaction; sunlight resulted in a greater reduction in the persistence 

values when predation was absent. This interaction was more obvious for the T90s than the 

T99s. Notably, there were fewer general interactions between the documented factors in the T99 

random forest than in the T90 random forest (Table D3.4). This suggests that there are additional 

water quality and environmental factors affecting persistence at later time points that may not be 

captured in this analysis. 



 

77 
 

Although the random forests had the best performance and predictive power, the random 

forests fit to the core factors only described about 18% of the variance in the T99 data. When the 

random forests included pH, turbidity, and dissolved oxygen, a higher percentage of the variance 

was explained. For the T99 values, the random forest with pH, turbidity and dissolved oxygen 

explained 30%, 32%, and 40% of the variance, respectively (Tables D3.5-D3.6). Figure D3.4 

shows the variable importance for each random forest. pH was the most important variable, 

turbidity was the third most important variable, and dissolved oxygen was one of the least 

important variables affecting T99 values in their respective random forests. 

3.3.2.4 Impact of Model Selection on Factor Analyses  

Random forests were fit to the exponential-predicted T90 and T99s to identify any 

variation in the factor analyses. When the exponential-predicted T90s and T99s were used as the 

dependent variables, the documented factors explained similar amounts of the observed variance 

(24-41%), as when the model-averaged values were used (18-36%). As shown in Figure D3.1 

and D.3.5, temperature and predation were some of the most important variables affecting early 

persistence behaviors regardless of dependent variable treatment, and the protozoa T99s differed 

the most from FIB (Figure 3.4). H-statistics identified temperature and predation as the factors 

most involved in interactions with other factors in the random forest fit to the T90 values (Table 

D3.7) similarly to the model-averaged random forest (Table D3.4).  
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Figure 3.4: Variable importance for the exponential-predicted T99 random forest analysis with 
the core factors (target type, sunlight, predation, water type, and method of detection) ranked by 

%MSE (percent change in mean square error when the factor is not included in the analysis) 

3.4 Discussion 

 The analyses presented herein consider model uncertainty in addition to data uncertainty 

within waterborne pathogen persistence studies utilizing a total of five candidate persistence 

models fit to each dataset mined from the literature review process. In the context of this study, 

model uncertainty was holistically evaluated with respect to goodness of fit, model selection, and 

applicability beyond the observable data in each study. Previous reviews and meta-analyses have 

represented each persistence dataset with a first-order decay rate (Boehm et al., 2018, 2019; L. E. 

Brooks & Field, 2016), whereas this analysis evaluated the fit of one-parameter (first-order), 

two-parameter, and three-parameter persistence models and then used the best fitting models to 

calculate persistence values (T90 or T99) as dependent variables of interest. In this analysis, 498 

of the tested 629 datasets were well-described by at least one of the tested models. Consequently, 
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first order decay kinetics provided the best fit to only 93 of those 498 datasets. The exponential 

model was the sole best fitting model to only 1% of these datasets, indicating that for most of the 

persistence data studied herein, the other evaluated model forms could provide an equally good 

or improved fit to the data observed in each study. The jm2 model, based on the logistic 

probability distribution, was the best fitting model most often. The two-parameters in the jm2 

model facilitate a sigmoidal shape, which can capture both shouldering and tailing behaviors so 

it may likely provide better estimates outside the range of observed data. This work further 

supports previous studies, in which the jm1 and jm2 models frequently have been found to 

describe natural decay dynamics more accurately than the ep model (Dean et al., 2020; Mitchell 

& Akram, 2017).  

 Despite it not providing the best fit to the majority of the datasets, there was no 

statistically significant difference between the distributions of predicted persistence values when 

the ep model was used compared to the best fitting models for the persistence values selected 

(T90 and T99). In general, the ep model predicted higher maximum and central tendency values 

for most of the target types (Figure 3.1). This suggests that although the jm2 model may provide 

a better fit to the data more frequently than the ep, the assumption of first-order decay is still 

useful for more immediate log-reduction values of interest (i.e., within the 1 or 2 log-reductions 

observed in most studies). However, it was evident that the reduction in model uncertainty 

becomes more pronounced as log-reduction values increase past the 2-log reduction point (Dean 

& Mitchell, 2022a).  

It was hypothesized that a persistence value based on a more accurate persistence profile 

would facilitate more in-depth factor analyses. Previous meta-analyses and factor analyses have 

analyzed the factor-persistence relationships with correlation coefficients, ANOVAs, multiple 
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linear regression, generalized linear mixed models, and Bayesian hierarchical linear models 

(Ahmed et al., 2019; Avery et al., 2008; Boehm et al., 2019; L. E. Brooks & Field, 2016; Dean & 

Mitchell, 2022b; Espinosa et al., 2008; Korajkic et al., 2013, 2014, 2019; Levin-Edens et al., 

2011; Liang et al., 2017; Tiwari et al., 2019; Wanjugi et al., 2016). After testing several methods 

(Appendix B) this study identified random forests as the method able to provide the most insight 

into factor-persistence relationships for the analyzed data. Random forests can account for 

nonlinear relationships between independent and dependent variable, and the results of the 

analyses presented herein suggest that there are nonlinear factor-persistence relationships for 

temperature and possibly turbidity, dissolved oxygen, and pH.  

Previous global models identified sunlight, temperature, and various target dummy 

variables as significant factors (Boehm et al., 2018). The random forests fit in this analysis 

identified temperature, predation, method of detection, and marine water as some of the most 

important variables influencing T99 values. The literature review preceding this analysis 

suggested relevant interactions between temperature and predation (Dean & Mitchell, 2022b); 

the interaction was confirmed for both persistence values, with the effects of predation being 

more pronounced in the lowest evaluated temperature ranges. The way predation was classified 

in the preceding literature review (Dean & Mitchell, 2022b) (as the presence or absence of 

indigenous microbiota) encompasses the effects of both predation and competition. As 

microorganisms typically persist for longer at lower temperatures, it is possible that the 

significant interaction between temperature and predation is due to a greater number of 

populations available to prey on other microorganisms or compete for nutrients in the lower end 

of the evaluated temperature range. There were also possible interactions identified between 

sunlight and predation, and sunlight and method. The interaction between sunlight and method is 



 

81 
 

further supported by a previous meta-analysis in which the effect of light was only found to 

significantly affect culturable indicators (Brooks & Field, 2016). These interactions could be 

responsible for sunlight having a lower level of importance in these analyses compared to 

previous meta-analyses (Boehm et al., 2018). Furthermore, the effects of sunlight were reduced 

to a binary presence/absence status in this analysis, which greatly simplifies the complexities of 

photoinactivation compared to metrics that consider factors such as sunlight intensity and water 

absorbance (Boehm et al., 2018; Maraccini et al., 2016; Mattioli et al., 2017). The protozoa 

target group was found to differ the most from the FIB group, a result that is not unexpected 

given that the review of the literature suggested that temperature, sunlight, and other stressors 

had minimal effect of protozoa decay (Dean & Mitchell, 2022b) and that previous studies have 

highlighted the lack of concurrence between indicator and pathogen data (Craun et al., 1997; 

Harwood et al., 2005).  

The inclusion of turbidity in the analyses reduced the importance of water type, 

suggesting turbidity may affect persistence more than the general presence or absence of salinity. 

When turbidity and pH were included in the analyses, method of detection was the second most 

important variable affecting the T99s. The literature review identified potential interactions 

between water type and method of detection (Dean & Mitchell, 2022b). Although this analysis 

did not clearly confirm the presence of interactions between method of detection and water type 

(fresh or marine or brackish), the results of the random forest analyses that included pH and 

turbidity may suggest that the interactions observed in the literature for method of detection and 

water type may have been the result of more specific water quality characteristics such as pH and 

turbidity rather than salinity. Notably, there were experiments evaluated in the systematic 

literature review that suggested turbidity and sunlight interactions, with elevated turbidity or 
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shading minimizing the inactivation effects of sunlight(Dean & Mitchell, 2022b). The random 

forest analyses, however, did not suggest a significant interaction between the two factors, and as 

such turbidity does not seem to be a driving force for sunlight being of lower importance than the 

other documented factors in the analyses presented herein.   

Although it was hypothesized that the alternative persistence models fit in this analysis 

would provide a more accurate dependent variable for factor analysis methods, and that this 

would elucidate the finer relationships between persistence and water quality and environmental 

factors, the effects were subtle though the finding still significant given that this hypothesis had 

previously not been rigorously tested. The predominant relationships between the factors and 

persistence metrics and the identified interactions were similar between the model-averaged and 

exponential-predicted T90 and T99 values. The random forests fit to exponential-predicted 

persistence values assigned a higher importance to sunlight compared to other factors than the 

forests fit to the model-averaged datasets. Previous meta-analyses identified sunlight as one of 

the most important factors affecting decay (Boehm et al., 2018, 2019), and the results of this 

analysis suggest that some of the elevated importance may be due to dependent variable selection 

in addition to the aforementioned interactions and simplifications. As the effect of reduced model 

uncertainty is more evident at log-reduction values greater than two, it is possible that the effect 

of model selection would influence factor analyses with dependent variables more reflective of 

later time points of decay.   

There were limitations to the analyses presented herein. Frequently, datasets were 

digitized from plots of experimental data and although the digitized datasets were visually 

compared to each original plot, there is still the potential for there to be slight differences 

between the concentrations used in this analysis and the true concentrations documented from 



 

83 
 

each study. As the models in this analysis are fit to log-reduction values, the effects of slight 

differences between the actual and digitized concentrations are not expected to have greatly 

influenced the analysis. Despite being the method best suited to describe the datasets, the random 

forests explained only 18-36% of the observed variance in the persistence values dependent on 

the core factors, suggesting there are persistence dynamics not captured by the factors 

documented by this or any previous analysis. The simplifications in factor designation are likely 

a large contributor to this unexplained variance. Indicators and pathogens were separated into 

broad groupings (FIB, bacteria, bacteriophages, viruses, protozoa) to attempt to maximize 

sample sizes and aid in the detection of interaction terms. Even within the FIB category, the 

literature review preceding this analysis frequently documented differences between E. coli or 

enterococci persistence behavior (Dean & Mitchell, 2022b; Jeanneau et al., 2012; Korajkic et al., 

2014; Walters & Field, 2009). Additionally, the protozoa target group was composed of less than 

ten observations, and as such, relationships between the factors and protozoa could not be 

adequately explored.  

It has also been noted by previous studies that the selection of the factors impacting more 

general water quality metrics, such as standard exceedance or FIB concentration, can be 

extremely site-specific (de Brauwere et al., 2014; Francy et al., 2013). The design of this study 

resulted in any site-specific characteristics being summarized with a single factor with only three 

levels (fresh, brackish, and marine water types). It is possible that site-specific water quality and 

environmental factors are responsible for the unexplained variance. This is supported by the 

importance of pH and turbidity in their respective random forests. Generalized decay rates based 

on indicator behavior are typically relied upon, as site-specific and pathogen-specific decay 

parameters are not typically known. This assumption, however, could lead to misleading 
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predictions about decay, which may be especially important in water bodies that depend on 

natural attenuation for maintaining water quality. Based on gaps noted in this study and in 

previous analyses (Boehm et al., 2018), future studies aimed at evaluating mechanisms of decay 

should document more specific sunlight-related metrics, such as sunlight intensity or water 

absorbance, and site-specific water quality factors to attempt to generate more accurate 

descriptive and predictive models. 

The meta-analysis presented herein confirmed that two-parameter persistence models 

more frequently describe the natural persistence profiles observed for indicators and pathogens in 

surface waters than the traditionally applied first-order decay kinetics. The two-parameter model 

based on the logistic probability distribution, jm2, was identified as the model best equipped to 

fit a variety of persistence datasets and conditions. Although the assumption of first-order decay 

may be adequate for the prediction of the time required for one or two-log reductions, the effect 

of model selection on reduced uncertainty becomes more pronounced with higher log-reduction 

values of interest. This study also highlighted the potential nonlinear relationships between 

common water quality factors (temperature, pH, turbidity and dissolved oxygen) and persistence 

values as well as significant interactions between the documented factors, both of which can be 

incorporated into future predictive models. Although temperature has frequently been 

highlighted as a key factor affecting persistence, the inclusion of predation in this analysis and 

the identification of it as important is novel compared to other meta-analyses (Boehm et al., 

2018, 2019; Brooks & Field, 2016).  These analyses further suggest that it could be advantageous 

for future researchers to document pH and turbidities for water bodies of concern, as they appear 

to interact with other relevant factors to influence persistence. This study improves our 

understanding of indicator and pathogen persistence, and the data presented herein provides 
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valuable information for future QMRAs which can be used to inform water management and 

monitoring decisions. 
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APPENDIX A: GOODNESS OF FIT METRIC SENSITIVITY ASSESSMENT 

A sensitivity assessment was conducted to evaluate the influence of different metric (nRMSE vs Adjusted R2) and threshold 
(increment changes of 5%) selections on the determination of the number of datasets that had a model provide a good fit to the data, 
and the subsequent number of times each model type was the best fit to the data (as determined by BIC values). nRMSE values from 
0.30 to 0.05 (less stringent to more stringent), and Adjusted R2 values of 0.70 to 0.95 (less stringent to more stringent) were tested, and 
the results are shown in Tables A3.1 and A3.2. As expected, the more stringent thresholds resulted in less datasets being determined to 
have a good fitting model, as shown in Table A3.1. The differences in datasets selected was the greatest for the shift from an nRMSE 
0.10 to 0.05 and an Adjusted R2 of 0.90 to 0.95, with more than 100 datasets being excluded. The other increments of 0.05 for both 
metrics were associated with smaller changes in the number of datasets, and thus the thresholds of an nRMSE <= 0.10 and Adjusted 
R2 of 0.90 were further considered for application with the data analyzed in this study. The nRMSE metric was the final selected 
metric for use because of it has a more data-relevant and interpretable meaning (difference in predicted to observed log-reduction 
values divided by the total range of observed log-reduction values). Notably, regardless of metric or threshold selection, the 
percentage of each good fitting model providing the best fit to the data remained relatively constant (Table A3.2) with the following 
rank: jm2 (45-58%), epd (42-44%), jm1 (35-41%), ep (12-24%) and dep (9-13%).  

Table A3.1: Sensitivity Assessment of the Selected Goodness of Fit Thresholds; Impact on Models Identified as a Good Fit (GF) 

Metric Threshold Number of 
Datasets with a GF 

Number of Datasets with a Good Fitting Model Percentage out of Total (n=629) 
ep epd jm1 jm2 dep %ep %epd %jm1 %jm2 %dep 

nRMSE 

≤0.05 304 55 200 186 190 56 0.18 0.66 0.61 0.62 0.18 
≤0.10 498 242 379 418 448 143 0.49 0.76 0.84 0.9 0.29 
≤0.15 575 394 452 523 548 193 0.69 0.79 0.91 0.95 0.34 
≤0.20 603 504 478 584 588 222 0.84 0.79 0.97 0.98 0.37 
≤0.25 617 563 488 600 600 243 0.91 0.79 0.97 0.97 0.39 
≤0.30 621 590 489 607 605 244 0.95 0.79 0.98 0.97 0.39 

Adjusted 
R2 

≥0.95 354 114 236 227 253 62 0.32 0.67 0.64 0.71 0.18 
≥0.90 460 222 340 365 384 110 0.48 0.74 0.79 0.83 0.24 
≥0.85 512 288 386 431 459 133 0.56 0.75 0.84 0.9 0.26 
≥0.80 541 353 412 474 500 152 0.65 0.76 0.88 0.92 0.28 
≥0.75 559 398 432 504 526 166 0.71 0.77 0.9 0.94 0.3 
≥0.70 579 445 450 537 548 180 0.77 0.78 0.93 0.95 0.31 
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Table A3.2: Sensitivity Assessment of the Selected Goodness of Fit Thresholds on the Models Identified as Providing the Best Fit to 
the Data 

Metric Threshold Number of 
Datasets with a GF 

Number of Datasets with a Best Fitting Model  Percentage out of Number with a GF 
ep epd jm1 jm2 dep %ep %epd %jm1 %jm2 %dep 

nRMSE 

≤0.05 304 35 129 105 136 26 0.12 0.42 0.35 0.45 0.09 
≤0.10 498 93 218 193 261 58 0.19 0.44 0.39 0.52 0.12 
≤0.15 575 124 248 225 323 67 0.22 0.43 0.39 0.56 0.12 
≤0.20 603 140 263 246 348 74 0.23 0.44 0.41 0.58 0.12 
≤0.25 617 149 265 254 357 79 0.24 0.43 0.41 0.58 0.13 
≤0.30 621 151 265 256 359 79 0.24 0.43 0.41 0.58 0.13 

Adjusted 
R2 

≥0.95 354 47 153 123 168 30 0.13 0.43 0.35 0.47 0.08 
≥0.90 460 80 201 170 242 48 0.17 0.44 0.37 0.53 0.1 
≥0.85 512 94 220 189 277 55 0.18 0.43 0.37 0.54 0.11 
≥0.80 541 103 228 200 299 61 0.19 0.42 0.37 0.55 0.11 
≥0.75 559 116 239 213 311 62 0.21 0.43 0.38 0.56 0.11 
≥0.70 579 128 250 227 327 65 0.22 0.43 0.39 0.56 0.11 
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APPENDIX B: FACTOR ANALYSIS METHODS 

1. Regression Trees: Basic regression trees were used to further assess the factor-
persistence relationships following the Classification and Regression Tree (CART) 
algorithm (Breiman, Freidman, Olshen and Stone 1984; Therneau & Atkinson, 2019). 
The regression tree methodology gives an indication of some of the more important 
variables influencing persistence and predicts an average response based on those 
determined criteria using mean values and assuming linear relationships. Regression 
trees can be useful for identifying important variables in an analysis, however they 
are prone to over fitting the training data and thus have poor predictive power (Hastie, 
Tibshirani, & Friedman, 2017). 

2. Linear Models: The use of multiple linear regressions for the evaluation of 
experimental factors is noted in the literature (Liang et al., 2017; Levin-Edens et al., 
2011) and recent meta-analyses used multiple linear regression to explore the effect 
of water quality and environmental factors on first-order decay rates of targets in 
natural surface waters (Boehm et al., 2018; Boehm et al., 2019). To apply the 
multiple linear regression methodology in this analysis, it was necessary to log-
transform the dependent variable. A monotonic modification to the log-
transformation was used for datasets that included a predicted T90 value of zero. As 
shown in Equation S1, the minimum model-averaged T90 value that was greater than 
zero was halved and added to each model-averaged T90 value before being log-
transformed.   

𝑇𝑇90𝐿𝐿𝐿𝐿 = ln(𝑇𝑇90𝑀𝑀𝑀𝑀 + min (𝑇𝑇90𝑀𝑀𝑀𝑀)
2

)                                       Eq. S1 

Basic linear models were fit to the data using the lm() function in R, following the 
basic format shown in Equation S2, where f(X) is the distribution of T90 or T99 
values, Xi is the value for factor i, Bi is the coefficient for factor i, and B0 is the 
intercept value (R Core Team, 2020; Hastie, Tibshirani, & Friedman, 2017). Linear 
models were also fit that incorporated interactions noted in the systematic literature 
review (Dean & Mitchell, 2021): sunlight and water type, sunlight and method, water 
type and predation, temperature and predation, and water type and method.  

𝑓𝑓(𝑋𝑋) = 𝛽𝛽0 + ∑ 𝑋𝑋𝑖𝑖𝛽𝛽𝑖𝑖𝑛𝑛
𝑖𝑖=1                                                 Eq. S2 

3. Quantile Regressions: Regression trees, random forests, and linear models rely on 
mean values within the data. The distribution of model averaged T90 and T99 values 
had a very high variance, indicating that median values may be more appropriate for 
identifying factor-persistence relationships within this data. To facilitate this, quantile 
regressions were also fit to the data with the quantreg package. The quantile 
regressions utilized the same formula as the linear regressions (Equation 5). Unlike 
linear regressions, quantile regressions evaluate the effect of independent variables on 
the quantiles of the dependent variable and do not make any assumptions about the 
distributions of the data (Das, Krzywinski, & Altman, 2019). When the data was 
available, three quantiles, the 0.10, median, and 0.90, were fit to each dataset.  
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APPENDIX C: MODEL FITTING DETAILS 

 

Table C3.1: Models Removed During the Fitting Process 

Reason for Removal Number of Models (Percent of n=629) 
ep epd jm1 jm2 dep 

Unstable Parameters 0 (0%) 4 (1%) 12 (2%) 22 (3%) 202 (32%) 
U-Shaped Model Form 0 (0%) 135 (21%) 0 (0%) 0 (0%) 37 (6%) 
Convergence Error 0 (0%) 2 (1%) 4 (1%) 0 (0%) 151 (24%) 
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APPENDIX D: ADDITIONAL FACTOR ANALYSIS DETAILS AND RESULTS 

Table D3.1: Descriptive Characteristics for the Model-Averaged T90s/T99s (Days) 

Factor & Levels 
T90 (T99) in Days 

N Mean Median Variance Min Max 

Total 458 (353) 7.9 (10.4) 3.0 (5.2) 189.3 (193.7) 0 (0.01) 116.0 (88.9) 
Target Type 

FIB 201 (136) 5.2 (7.5) 2.6 (3.9) 84.5 (83.9) 0.01 (0.02) 75.7 (54.8) 
Bacteria 139 (120) 9.5 (10.8) 3.9 (5.8) 295.6 (249.3) 0 (0.01) 116.0 (83.1) 

Bacteriophage 77 (64) 9.6 (12.7) 3.8 (6.0) 158.7 (223.7) 0.01 (0.03) 80.0 (69.3) 
Virus 32 (25) 9.6 (5.4) 2.5 (5.4) 276.7 (406.4) 0.2 (0.5) 88.2 (88.9) 

Protozoa 9 (8) 23.2 (24.2) 16.9 (24.6) 496.6 (7.5) 11.2 (19.7) 82 (27.7) 
Sunlight 

Present 127 (106) 6.1 (8.4) 2.7 (3.4) 67.3 (140.3) 0.01 (0.03) 45.5 (88.9) 
Absent 331 (247) 8.6 (11.2) 3.2 (5.9) 234.8 (215.0) 0 (0.01) 116.0 (83.1) 

Predation 
Present 351 (274) 6.1 (9.3) 2.7 (4.6) 89.4 (163. 1) 0 (0.01) 82.0 (88.9) 
Absent 107 (79) 13.7 (14.0) 5.2 (7.0) 476.9 (286.0) 0 (0.01) 116.0 (83.1) 

Water Type 
Fresh 297 (246) 10.1 (12.4) 4.0 (6.1) 266.9 (247.2) 0 (0.01) 116.0 (88.9) 

Marine 101 (76) 4.1 (5.2) 2.5 (3.6) 17.9 (25.9) 0.01 (0.03) 20.8 (26.8) 
Brackish 60 (31) 3.4 (6.7) 2.2 (3.6) 26.3 (74.9) 0.5 (1.0) 36.6 (43.6) 

Method of Detection 
Culture-Based 410 (314) 7.9 (10.0) 2.9 (4.9) 206.6 (205.3) 0 (0.1) 116.0 (88.9) 

Molecular-Based 48 (39) 8.2 (13.4) 6.3 (17.0) 43.1 (93.2) 0.2 (0.8) 21.3 (27.7) 
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Table D3.2: Descriptive Characteristics for the Exponential Predicted T90s/T99s (Days) 

Factor & Levels 
T90 (T99) in Days 

N Mean Median Variance Min Max 

Total 458 (353) 7.9 (11.2)  3.5 (6.6) 200.2 (202.5) 0.02 (0.03) 140.4 (96.8) 
Target Type 

FIB 201 (136) 4.8 (7.0) 2.4 (3.7) 77.3 (61.8) 0.02 (0.04) 85.3 (51.9) 
Bacteria 139 (120) 9.6 (12.7) 4.5 (8.4) 331.1 (245.3) 0.02 (0.03) 140.4 (89.9) 

Bacteriophage 77 (64) 10.0 (14.0) 4.5 (8.1) 151.9 (269.1)  0.5 (1.0) 80.2 (76.8) 
Virus 32 (25) 11.2 (14.1) 4.7 (6.5) 324.3 (470.1) 0.2 (0.3) 91.7 (96.8) 

Protozoa 9 (8) 20.9 (26.6) 13.2 (26.2) 527.0 (35.7) 9.4 (18.8) 81.7 (35.7) 
Sunlight 

Present 127 (106) 4.8 (8.0) 1.9 (3.4) 39.5 (147.3) 0.02 (0.03) 48.4 (96.8) 
Absent 331 (247) 9.1 (12.5) 4.1 (8.1) 257.1 (220.8) 0.3 (0.7) 140.4 (89.9) 

Predation 
Present 351 (274) 6.1 (10.2) 3.0 (5.9) 85.4 (169.0) 0.02 (0.04) 81.7 (96.8) 

Absent 107 (79) 13.8 (14.6) 5.7 (8.7) 535.1 (306.3) 0.02 (0.03) 
140. 4 
(89.9) 

Water Type 
Fresh 297 (246) 10.2 (13.4) 4.3 (8.1) 286.0 (262.1) 0.03 (0.1) 140.4 (96.8) 

Marine 101 (76) 4.3 (6.4) 2.6 (3.7) 20.2 (34.6) 0.02 (0.03) 21.4 (24.2) 
Brackish 60 (31) 2.4 (5.2) 2.0 (3.7) 2.0 (13.8) 0.9 (1.9) 8.8 (17.5) 

Method of Detection 
Culture-Based 410 (314) 7.9 (10.7) 3.3 (6.2) 220.3 (214.0) 0.02 (0.03) 140.4 (96.8) 

Molecular-Based 48 (39) 8.0 (14.6) 8.0 (17.0) 29.4 (98.9) 0.5 (1.1) 20.5 (35.7) 
 

Table D3.3: Evaluation of Factor Analysis Methods with Core Factor Data for Model-Averaged 
T90 Values 

Method 
RMSE Values 

Performance (nT90=458) Predictive Power (nT90=110) 
Regression Trees 10.2 15.7 
Random Forest 8.3 14.6 
Linear Models 13.0 18.8 
Quantile Regressions* 12.7 18.7 

    *Performance and predictive power RMSE values for the median quantile only 
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Figure D3.1: Variable importance for the random forest fit to the T90 core factor training dataset 
ranked by %MSE (percent change in mean square error when a factor is not included in the 

analysis) 
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Figure D3.2: Partial dependence plots for the T99 random forest illustrating the effect of 
changing factor status or values on the average T99 value 
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Figure D3.3: Partial dependence plots for the T90 random forest illustrating the effect of 
changing factor status or values on the average T90 value 
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Table D3.4: H-Statistics for Core Factor Random Forests fit the Model-Averaged Predicted T90s 
and T99s 

General Interactions* 

Factor 
T90 T99 

Average Lower Bound Upper Bound Average Lower Bound Upper Bound 
Temperature 0.67 0.64 0.69 0.29 0.28 0.30 
Sunlight 0.16 0.15 0.18 0.22 0.21 0.23 
Predation 0.64 0.61 0.66 0.23 0.22 0.24 
Marine Water 0.18 0.16 0.20 0.16 0.14 0.18 
Brackish Water 0.13 0.12 0.15 0.11 0.10 0.13 
Bacteria 0.22 0.20 0.23 0.14 0.13 0.15 
Virus 0.12 0.10 0.14 0.15 0.13 0.18 
Bacteriophage 0.25 0.22 0.27 0.12 0.12 0.13 
Protozoa 0.08 0.06 0.10 0.06 0.05 0.08 
Method 0.11 0.10 0.13 0.19 0.17 0.21 

Specific Two-Way Interactions with Temperature* 

Factor 
T90 T99 

Average Lower Bound 
Upper 
Bound Average 

Lower 
Bound 

Upper 
Bound 

Sunlight 0.12 0.11 0.14 0.14 0.13 0.15 
Predation 0.89 0.83 0.96 0.24 0.24 0.25 
Marine Water 0.10 0.09 0.11 0.07 0.07 0.08 
Brackish Water 0.16 0.14 0.17 0.15 0.13 0.16 
Bacteria 0.17 0.16 0.18 0.11 0.10 0.11 
Virus 0.07 0.07 0.08 0.07 0.06 0.08 
Bacteriophage 0.12 0.11 0.13 0.09 0.09 0.1 
Protozoa 0.05 0.04 0.07 0.01 0.01 0.01 
Method 0.05 0.04 0.05 0.07 0.06 0.07 

Specific Two-Way Interactions with Predation* 

Factor 
T90 T99 

Average Lower Bound Upper Bound Average Lower Bound Upper Bound 
Temperature 0.84 0.78 0.90 0.25 0.24 0.26 
Sunlight 0.16 0.15 0.17 0.27 0.25 0.28 
Marine Water 0.05 0.05 0.05 0.05 0.04 0.05 
Brackish Water 0.04 0.04 0.05 0.12 0.10 0.13 
Bacteria 0.07 0.07 0.07 0.23 0.23 0.24 
Virus 0.02 0.01 0.02 0.02 0.02 0.03 
Bacteriophage 0.07 0.06 0.07 0.15 0.15 0.15 
Protozoa 0.07 0.06 0.09 0.04 0.03 0.05 
Method 0.07 0.07 0.07 0.07 0.07 0.07 

*H-statistics averaged over 100 iterations 
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Figure D3.4: Random forest variable importance for datasets with the core factors and a/b) pH, 
c/d) Turbidity, or e/f) Dissolved Oxygen for a/c/e) T90 values and b/d/f) T99 values. 
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Table D3.5: T90 Random Forest Variable Importance for Datasets Including pH, Turbidity, and 
Dissolved Oxygen 

T90 w/ pH T90 w/ Turbidity T90 w/ Dissolved Oxygen 
Variable %IncMSE Variable %IncMSE Variable %IncMSE 

Temperature 25.5 Temperature 25.4 Temperature 25.9 
Method 16.0 Method 13.5 Method 17.6 
pH 15.2 Predation 13.4 Bacteria 17.0 
Predation 14.8 Protozoa 11.8 Protozoa 8.3 
Marine Water 13.4 Turbidity 10.8 Virus 6.2 
Protozoa 10.9 Bacteria 7.8 Predation 5.2 
Bacteria 9.7 Bacteriophage 6.3 Sunlight 5.1 
Bacteriophage 7.9 Marine Water 3.2 Marine Water 4.0 
Sunlight 5.9 Brackish Water 2.9 Brackish Water 1.4 
Virus 5.0 Sunlight 1.3 Bacteriophage -0.1 
Brackish Water 3.2 Virus -0.4 DO -0.6 

      
Performance 
(n=255) 6.6 

Performance 
(n=180) 7.6 Performance (n=92) 5.3 

Predictive Power 
(n=51) 22.7 

Predictive 
Power (n=43) 17.4 Predictive Power (n=30) 13.9 

Variance Explained 57% 
Variance 
Explained 59% Variance Explained 79% 

 

Table D3.6: T99 Random Forest Variable Importance for Datasets Including pH, Turbidity, and 
Dissolved Oxygen 

T99 w/ pH T99 w/ Turbidity T99 w/ Dissolved Oxygen 
Variable %IncMSE Variable %IncMSE Variable %IncMSE 

pH 23.0 Temperature 24.6 Method 16.0 
Method 18.3 Method 23.1 Protozoa 12.6 
Temperature 15.0 Turbidity 20.2 Bacteria 11.1 
Protozoa 11.7 Protozoa 12.8 Sunlight 10.2 
Bacteria 8.5 Sunlight 9.1 Virus 7.8 
Marine Water 8.4 Bacteriophage 7.3 Temperature 7.5 
Sunlight 6.8 Predation 6.7 Bacteriophage 7.2 
Virus 6.7 Bacteria 5.9 Predation 6.4 
Predation 5.9 Marine Water 4.6 DO 4.1 
Bacteriophage 3.8 Brackish Water 2.3 Brackish Water 4.0 
Brackish Water -2.4 Virus 1.8 Marine Water 3.7 

      

Performance (n=216) 9.9 
Performance 
(n=148) 7.9 Performance (n=71) 7.2 

Predictive Power 
(n=39) 18.5 

Predictive Power 
(n=35) 15.8 

Predictive Power 
(n=25) 19.7 

Variance Explained 30% 
Variance 
Explained 32% Variance Explained 40% 
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Figure D3.5: Variable importance for the random forest fit to the exponential-predicted T90s and 
core factor training dataset ranked by %MSE (percent change in mean square error when a factor 

is not included in the analysis)  
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Table D3.7: H-Statistics for Core Factor Random Forests fit the First-Order Decay Kinetics 
Predicted T90s and T99s 

General Interactions* 

Factor 
T90 T99 

Average Lower Bound Upper Bound Average Lower Bound Upper Bound 
Temperature 0.61 0.59 0.64 0.56 0.54 0.57 
Sunlight 0.16 0.14 0.18 0.32 0.29 0.34 
Predation 0.60 0.57 0.62 0.4 0.38 0.42 
Marine Water 0.16 0.14 0.18 0.18 0.17 0.2 
Brackish Water 0.09 0.08 0.11 0.11 0.1 0.12 
Bacteria 0.19 0.17 0.20 0.31 0.29 0.32 
Virus 0.12 0.10 0.14 0.18 0.16 0.21 
Bacteriophage 0.24 0.22 0.27 0.26 0.24 0.29 
Protozoa 0.08 0.05 0.10 0.05 0.04 0.05 
Method 0.10 0.08 0.11 0.21 0.19 0.23 

Specific Two-Way Interactions with Temperature* 

Factor 
T90 T99 

Average Lower Bound Upper Bound Average Lower Bound Upper Bound 
Sunlight 0.07 0.06 0.07 0.29 0.26 0.31 
Predation 0.77 0.72 0.82 0.45 0.44 0.46 
Marine Water 0.05 0.05 0.06 0.17 0.15 0.18 
Brackish Water 0.04 0.04 0.05 0.08 0.07 0.08 
Bacteria 0.19 0.18 0.2 0.37 0.35 0.10 
Virus 0.07 0.07 0.08 0.15 0.13 0.09 
Bacteriophage 0.16 0.15 0.17 0.27 0.26 0.09 
Protozoa 0.06 0.04 0.08 0.03 0.03 0.02 
Method 0.05 0.04 0.05 0.13 0.12 0.08 

Specific Two-Way Interactions with Predation* 

Factor 
T90 T99 

Average Lower Bound Upper Bound Average Lower Bound Upper Bound 
Temperature 0.81 0.76 0.86 0.46 0.45 0.47 
Sunlight 0.18 0.17 0.19 0.27 0.26 0.29 
Marine Water 0.07 0.07 0.07 0.08 0.07 0.08 
Brackish Water 0.04 0.03 0.04 0.04 0.04 0.05 
Bacteria 0.05 0.05 0.05 0.32 0.32 0.33 
Virus 0.03 0.02 0.03 0.03 0.03 0.03 
Bacteriophage 0.06 0.06 0.07 0.14 0.14 0.14 
Protozoa 0.06 0.05 0.08 0.02 0.02 0.03 
Method 0.04 0.04 0.04 0.06 0.06 0.06 

*H-statistics averaged over 100 iterations 
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CHAPTER 4: TESTING A GENERAL MODEL FOR PATHOGEN PERSISTENCE IN 
SURFACE WATERS 

4.1 Introduction  

The conventionally used first-order decay model has a single parameter (k) that describes 

the constant rate of decay over time. Recent work has indicated that the two-parameter model, 

Juneja and Marks (JM2), is better able to describe the persistence of pathogens and indicators in 

surface waters (Dean & Mitchell, 2022a) than first order decay kinetics. With JM2 providing a 

better fit to the majority of persistence data for microbial targets in surface waters in the peer-

reviewed literature, it can be inferred that: i) microbial targets do not typically decay at a 

constant rate in the environment; and ii) there are common nonlinear decay dynamics across 

pathogen and indicator species. The k1 and k2 parameters of the JM2 model (Eq. 1) dictate non-

linear shape of the curve for log-reductions, 𝑙𝑙𝑙𝑙𝑙𝑙10 �𝑁𝑁𝑁𝑁
𝑁𝑁0
�, over time, t. If k2 is less than 1, the 

curve is convex in shape and the fastest rate of decay occurs immediately with decay tapering off 

over time. If k2 is greater than 1, there is a point of inflection where the curve shifts from 

concave to convex; the concave portion of the curve represents a period of minimal or no 

measurable decay (a shoulder), and the fastest rate of decay occurs at the point of inflection. It is 

evident from prior analyses (Dean & Mitchell, 2022a) that the ability for the JM2 model to 

account for more dynamic behaviors is an improvement upon assumptions of constant decay, 

however the frequency and magnitude of tapering rates and shoulders across target groups has 

yet to be explored.  

log10( 𝑁𝑁𝑡𝑡
𝑁𝑁0

) = log10( 1
1+𝑒𝑒𝑘𝑘1+𝑘𝑘2 ln(𝑡𝑡))                                          Eq. 1 

It was hypothesized in this study that the persistence behaviors of indicators and 

pathogens are inter-related and that differences between target groups can be quantified using the 
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JM2 model form, Bayesian hierarchical modeling methods, and a comprehensive dataset 

representing the state of the science mined from the peer-reviewed literature. Quantifying the 

differences between target group persistence is an important goal, as it is well established that the 

reliance on the indicator-pathogen paradigm for surface water management is a prominent source 

of uncertainty (Harwood et al., 2005; Korajkic et al., 2018). The use of the JM2 model has 

narrowed the uncertainty associated with both pathogen-specific and setting-specific persistence 

modeling (Dean & Mitchell, 2022a). Therefore, a logical next step was to determine how much 

knowledge the model may add to predictions of pathogen persistence in surface waters more 

broadly. A similar approach was used in Oishi et al. (2020) to develop a universal inactivation 

model for pathogens in stored excreta, however the dependent variable was log-reduction values, 

whereas this study uses the parameters of the JM2 model to facilitate the evaluation of the 

occurrence of persistence behaviors such as shoulders and tapering rates.  

These efforts led to the development of a novel general model that estimates the typical 

persistence behaviors of indicators and pathogens in highly varied surface water conditions. 

Although a general model is not expected to replace the need for pathogen and site-specific 

persistence data and models, the general model construction leveraged the knowledge of over 

400 persistence experiments to provide general information for the consideration of time within 

surface water decision making processes relying on only indicator or minimal monitoring data. 

This work assesses the feasibility of a general model for pathogen and indicator persistence in 

surface waters and uses the general model to make inferences about typical persistence behaviors 

and the differences between fecal indicator bacteria (FIB), bacteriophages, bacteria, viruses, and 

protozoa more broadly.  
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4.2 Methods  

4.2.1 Model Components 

A previously completed systematic literature review (Dean and Mitchell, 2022b) 

identified persistence datasets in the literature for common indicator organisms (FIB and 

bacteriophages) and pathogens of interest (bacteria, viruses, and protozoa). A meta-analysis of 

the mined datasets found that the JM2 model provided a good fit to 458 datasets in which at least 

one-log reduction was observed (Dean & Mitchell, 2022a). Of note, the 458 datasets are 

composed of 201 fecal indicator bacteria (FIB), 139 pathogenic bacteria, 77 bacteriophage, 32 

virus, and 9 protozoa datasets, and the persistence experiments were conducted in freshwater, 

brackish water, and marine water, at temperatures ranging from 4°C to 37°C, in the presence and 

absence of sunlight, in the presence and absence of predation, and targets were enumerated with 

molecular-based and culture-based methods. A factorial analysis to better understand the 

influence of these factors on the observed decay parameters was reported in Dean & Mitchell, 

2022b.   

The water quality factors driving persistence behaviors were identified as temperature, 

predation, and water type (Dean & Mitchell, 2022a). Thus, the independent variables included 

within the general model are temperature (continuous), predation (binary), and water type 

(binary). Water type in this analysis is presented as a binary variable with a “0” status 

representing freshwater conditions and a “1” status representing not freshwater conditions, as the 

prior meta-analysis identified significant differences between fresh and brackish waters and fresh 

and marine waters, but not between brackish and marine waters. The estimates of the JM2 

parameters for each of the 458 datasets by Likelihood Estimation (MLE) were used as the 

dependent variable for the general model developed herein. Kruskal-Wallis tests and Spearman 
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correlation coefficients were completed to evaluate the effect of the independent variables on 

each individual JM2 parameter directly. Factors that significantly influenced (p<0.05) the 

parameter values were selected as independent variables in the generalizable model.   

4.2.2 Model Form 

 The general model was developed in Rstan (Stan Development Team, 2021). Under the 

Bayesian framework, the best fitting (MLE) parameters from each dataset are assumed to be 

derived from a common probability distribution (a hyperdistribution) describing the plausible 

range of values for each parameter. The hyperdistributions for k1 and k2 each contain 

hyperparameters. As k1 is an unbounded continuous variable, a normal distribution is the 

simplest assumption for its hyperdistribution as shown in Equation 2, with hyperparameters μk1, 

the mean k1 parameter, and σk1, the standard deviation of the k1 parameter. The k2 parameter is a 

positive real number, and thus can be log-transformed and also described with a normal 

distribution as shown in Equation 3.  

𝑘𝑘1ℎ~ 𝑁𝑁(𝜇𝜇𝑘𝑘1,𝜎𝜎𝑘𝑘1)                                                         Eq. 2 

log (𝑘𝑘2ℎ)~ 𝑁𝑁(𝜇𝜇log (𝑘𝑘2),𝜎𝜎log (𝑘𝑘2))                                                Eq. 3 

 The general model takes the form of a varying-intercept linear model (Figure 4.1), with 

the intercepts being grouped by target type as described in Equation 4-5 where the parameters for 

each dataset, i, are determined by an intercept for each target type j (αj) and regression 

coefficients (βk) for each independent variable k observed in the data xi.  

𝜇𝜇𝑘𝑘1 = 𝛼𝛼1𝑗𝑗 + 𝛽𝛽1𝑘𝑘𝑥𝑥𝑖𝑖                                                       Eq. 4 

𝜇𝜇log (𝑘𝑘2) = 𝛼𝛼2𝑗𝑗 + 𝛽𝛽2𝑘𝑘𝑥𝑥𝑖𝑖                                                   Eq. 5 
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The target type specific intercepts are drawn from normal distributions of the population 

intercepts described by mean values of 𝛼𝛼1and 𝛼𝛼2 and standard deviations of 𝜎𝜎𝛼𝛼1and 𝜎𝜎𝛼𝛼2 as 

shown in Equations 6-7.  

𝛼𝛼1𝑗𝑗~ 𝑁𝑁(𝛼𝛼1,𝜎𝜎𝛼𝛼1)                                                         Eq. 6 

𝛼𝛼2𝑗𝑗~ 𝑁𝑁(𝛼𝛼2,𝜎𝜎𝛼𝛼2)                                                         Eq. 7 

The two model parameters of the JM2 model have been shown to be correlated but still 

possible to estimate independently (Dean & Mitchell, 2022c). Thus, the model described by 

Equations 2-7 assume that k1 and k2 are not correlated. Several steps were taken to test the impact 

of the aforementioned model assumptions prior to the selection of a final model form: (1) Other 

plausible probability distribution types in addition to the normal distribution, for the 

hyperdistributions of k1 and k2 were tested in the event of poor characterization by the normal 

distributions; (2) A varying-intercept and varying-slope model grouped by target was evaluated 

along with a non-linear transformation of the temperature variable in-line with known 

relationships (Dean & Mitchell, 2022a; Dean & Mitchell, 2022b).   

The structure of the multilevel hierarchical model described is shown in Figure 4.1, 

where y1 to yn describe the individual datasets (n=458), and each dataset’s best fitting parameters 

are k1-y1, k2-y1, to k1-yn, k2-yn. In a basic linear regression, the MLE parameters for each dataset 

(Dean & Mitchell, 2022b) were predicted with intercept values drawn from target type-level 

distributions (mean values of αk1-FIB, αk2-FIB, etc.) that are inter-related via hyperdistributions for 

each parameter, governed by the hyperparameters μk1, σk1, μk2, σk2. The basic linear regressions 

for the MLE parameters for each dataset also include population-level coefficients for 

temperature, predation, and water type variables (βTemperature, βPredation, βWater Type).   
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Figure 4.1: Structure of the hierarchical model framework   

4.2.3 Priors 

 In prior, published literature, the JM2 model was fit to pathogen and indicator persistence 

data in groundwater (Dean et al., 2020) and other various water matrices (Kline et al., 2022; 

Mitchell & Akram, 2017). Therefore, the range of best fitting k1 and k2 parameter values for each 

of these datasets (Appendix A) were used to construct weakly informative priors for the 

population-level intercepts of each parameter - shown in Equations 8-9. The weakly informative 

priors for the hyperdistribution scale and sigma parameters are shown in Equations 10-11. 

Uninformative priors were selected for the regression coefficient values, and the population 

intercept standard deviation values as shown in Equations 12-14  
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𝛼𝛼1~ 𝑁𝑁(0,8)                                                           Eq. 8 

𝛼𝛼2~ 𝑁𝑁(0.5,2)                                                       Eq. 9 

𝜎𝜎𝑘𝑘1~ 𝛾𝛾(1,0.5)                                                       Eq. 10 

𝜎𝜎log (𝑘𝑘2)~ 𝛾𝛾(5,2)                                                         Eq. 11   

𝜎𝜎𝛼𝛼1~ 𝛾𝛾(5,1)                                                         Eq. 12 

𝜎𝜎𝛼𝛼2~ 𝛾𝛾(5,5)                                                         Eq. 13    

𝛽𝛽𝑘𝑘~ 𝑁𝑁(0,2)                                                          Eq. 14                

The influence of the weakly informative prior distributions on the posterior distributions 

were explored with a sensitivity analysis. The initial priors (Equations 9-12) were considered the 

base condition. Three alternative priors were selected including an informative prior 

(𝛼𝛼1~ 𝑁𝑁(0,4),𝛼𝛼2~ 𝑁𝑁(0.5,1),𝜎𝜎𝑘𝑘1~ 𝛾𝛾(1,1),𝜎𝜎log (𝑘𝑘2)~ 𝛾𝛾(5,4)), another weakly informative prior 

(𝛼𝛼1~ 𝑁𝑁(0,16),𝛼𝛼2~ 𝑁𝑁(0.5,4),𝜎𝜎𝑘𝑘1~ 𝛾𝛾(1,0.25),𝜎𝜎log (𝑘𝑘2)~ 𝛾𝛾(5,1)), and an uninformative prior 

(𝛼𝛼1~ 𝑁𝑁(0,25),𝛼𝛼2~ 𝑁𝑁(0.5,10),𝜎𝜎log (𝑘𝑘1)~ 𝛾𝛾(1,0.1),𝜎𝜎log (𝑘𝑘2)~ 𝛾𝛾(5,0.5)). The hierarchical model 

was run in Rstan with the four priors and changes in the percent bias of selected metrics (median, 

2.5%, 97.5%) from the base prior condition were calculated and compared.  

4.2.4 Model Fitting and Evaluation 

Rstan was run with two chains, 3000 iterations, and a 1000 iteration burn-in. 

Convergence was evaluated with Rhat values (< 1.1) and the effective sample size for each 

parameter (N_eff/N > 0.001). Graphical posterior predictive checking was used to compare 

observed data to simulated data and to evaluate the appropriateness of the selected distributions. 

Kolmogorov-Smirnoff tests were completed to compare the distributions of observed and 
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simulated data. Root mean square error (RMSE) values were calculated for the observed k1 and 

k2 parameters and the simulated median k1 and k2 parameters. RMSE values were also calculated 

for the T90 values predicted with the observed and simulated median parameter estimates.  

Alternative model forms were tested to evaluate the impact of various assumptions on the 

performance of the general model (Section 4.2.2). Leave-one-out cross validation with the loo() 

package was completed to compare the various models fit to the same data. The performance of 

the final selected model forms was further evaluated by comparing each model’s predictive 

power on a testing dataset. The testing data was composed of 106 datasets extracted from the 

literature in which a 1-log reduction was observed but the JM2 model did not provide a good fit 

to the data (Dean and Mitchell 2022a; Dean and Mitchell, 2022b). The testing data did not have 

k1 and k2 parameters for direct evaluation of the model, and thus T90s general fit of the model to 

the unseen testing data was evaluated visually to identify any clear misrepresentations of the 

data.  

4.2.5 Uncertainty Factor Quantification 

The median parameter estimates for each target group were used to calculate uncertainty 

factors for value of interest for surface water managers and decision makers. The two-parameters 

of the JM2 model (k1 and k2) are modified rate and shape parameters from the log-logistic 

probability distribution, which in certain forms can be used to describe more mechanistic 

features of the persistence profile. The JM2 function and k1 and k2 can be used to describe two of 

the commonly observed decay dynamics: the rate of tapering of the decay rate (tailing in the 

curve), and the length of time where initially minimal to no decay is observed (a shoulder 

period). As JM2 is based on the log-logistic probability distribution, the underlying assumption 

is that the rate of decay is tapering off at a constant rate when considering a log-timescale. The 
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rate of tapering (rt) can thus be described with Equation 1 where change in ∆t represents the 

change in time in days between datapoints.  

𝑟𝑟𝑡𝑡 = log10([∆𝑡𝑡]𝑘𝑘2)
ln(∆𝑡𝑡)

                                                        Eq. 14 

In the original derivation of the equation (Carlier et al., 1996), specified that if k2 was 

greater than 1, there was a point of inflection in the function where the concave curve shifted to a 

convex shape and the tapering of the decay rate began. If k2 was equal to or less than 1, there was 

no point of inflection, and the curve was convex in shape only. With these known constructs, the 

point of inflection can be considered a surrogate for the length of a shoulder period, S, in the 

persistence profile as shown in Equation 15.  

   𝑆𝑆 = ��
𝑘𝑘2−1
𝑒𝑒𝑘𝑘1

�
1
𝑘𝑘2�

, 𝑘𝑘2 > 1
0, 𝑘𝑘2 ≤ 1

                                               Eq. 15 

Uncertainty factors were calculated for the rate of tapering, the length of the shoulder, 

and the time for 1-log (T90) and 2-log (T99) reductions to occur using the median parameter 

values for each target group.  

4.3 Results 

4.3.1 Model Comparison and Selection  

Kruskal-Wallis tests for the categorical independent variables (predation, water type); 

grouping factor (target type); and the dependent variables (k1 and k2) indicated that the k1 

parameter was significantly influenced by predation, water type and target type (p<0.05). The k2 

parameter was only significantly influenced by water type and target type (p<0.05). Temperature 

significantly influences k1 (p<0.05) but not k2, as determined by Spearman correlation 

coefficients. In the linear regressions considered the base model form for estimating k1 and k2, k1 
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was dependent upon three variables (temperature, predation, and water type), and k2 was 

dependent upon one variable (water type).  

 The initial selection of the normal hyperdistribution for the k1 and log(k2) parameter 

resulted in a poor fit to the parameter k1 data. This was visually evident with posterior predictive 

checks (Figure 4.2a) and Kolmogorov-Smirnov tests which indicated that it was highly unlikely 

that the observed k1 data and the simulated k1 values with the normal hyperdistribution were 

drawn from the same distribution (p<<0.05). As evident in Figure 4.2b, the normal 

hyperdistribution was found to well-describe the log-transformed k2 parameters, with an average 

Kolmogorov-Smirnov test p-value of 0.33 for the 4000 replicates of the k2 data.  

 

Figure 4.2: Comparison of the observed (y) and predicted (yrep) density of the a) normally 
distributed k1 parameters, and b) normally distributed log(k2) parameters 
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As shown in Figure 4.2, the distribution of simulated k1 values under the normal 

hyperdistribution was more symmetric and wider than that of the observed data. Thus, the 

hyperdistribution of the k1 parameter was next assumed to be a double exponential (Laplace) 

distribution. The double exponential distribution is a continuous distribution with heavier tails 

than the normal distribution, and it is described with location (μ) and scale (σ) parameters. The 

expected value of the distribution is 𝜇𝜇 and the variance is 2σ2 (Gelman et al., 2014). The weakly 

informative priors and the range of priors tested in the sensitivity analysis described in Section 

4.2.3 for the k1 hyperdistribution are for the double exponential location parameter μk1 (Eq. 8) 

and the scale parameter σk1 (Eq. 10).  

Figure 4.3a compares the simulated k1 values under the double exponential 

hyperdistribution to the observed values. Visually, the double exponential distribution was more 

representative of the observed k1 values, with the frequency of the values between -20 and 10 

being more accurately represented than when normally distributed (Figure 4.2a). The posterior 

distribution for k1 however, still did not capture the increase in frequency of values from -25 to -

20 that is evident in the observed data, and a higher occurrence of values from 10 to 20 is being 

predicted than what was observed. The Kolmogorov-Smirnov test indicated that the double 

exponential model was an improvement from the normal, but that it was still unlikely that the 

observed and simulated k1 values were drawn from the same distribution (p=0.03). An evaluation 

of selected test statistics (median, 2.5% estimate, 97.5% estimate) indicated that the distribution 

differences were being driven by the upper and lower range of simulated k1 values, as the 

simulated median k1 values were well-estimated (p>0.05).  
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Figure 4.3: Comparison of the observed (y) and predicted (yrep) density of the a) double 
exponentially distributed k1 parameters, and b) normally distributed log(k2) parameters 

As the median k1 parameters were well-represented with double exponential 

hyperdistribution, the base model form assumed the hyperdistribution of k1 was double 

exponentially distributed and the hyperdistribution for the log-transformed k2 was normally 

distributed. The optimized population and target-level intercepts and coefficients for the base 

model are shown in Table 4.1. The k1 population-level intercept values were found to be 

normally distributed with a µ of approximately -9.8 and a σ of 3.6. Figure 4.4 illustrates the 

distributions of each target types k1 intercept value, and the targets with the least amount of data 

(viruses, protozoa) were associated with the greatest range in intercept values. As shown in Table 

4.1, temperature and predation were found to significantly impact the estimate k1 parameters, 

whereas the coefficient for water type was not found to significantly differ from zero. The log-

transformed k2 population-level intercept values were normally distributed with a µ of 1.5 and a 
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σ of 0.4. The central tendencies of the normally distributed log-transformed k2 intercepts were 

found to be similar across target types, ranging from 1.2 (viruses) to 1.6 (bacteria, 

bacteriophages). The coefficient for water type in the log(k2) varying-intercept model did not 

significantly differ from zero (Table 4.1).  

Table 4.1: Summary Values of Posterior Distribution (N(µ, σ)) for Population and Target 
Group Parameter Values  

Parameter µ σ 95% Confidence 
Interval (0.025, 0.975) 

α1Population -9.8 1.99 (-13.61, -5.57) 
α1FIB -8.7 1.19 (-10.98, -6.44) 
α1Bacteria -9.4 1.18 (-11.73, -7.14) 
α1Bacteriophage -10.9 1.27 (-13.37, -8.37) 
α1Virus -8.2 1.55 (-11.31, -5.22) 
α1Protozoa -13.9 1.90 (-17.64, -10.06) 
α1σ 3.6 1.47 (1.49, 7.11) 
α2Population 1.5 0.22 (0.98, 1.88) 
α2FIB 1.5 0.05 (1.37, 1.58) 
α2Bacteria 1.6 0.06 (1.45, 1.67) 
α2Bacteriophage 1.6 0.07 (1.43, 1.7) 
α2Virus 1.2 0.11 (0.99, 1.41) 
α2Protozoa 1.5 0.18 (1.13, 1.84) 
α2σ 0.4 0.22 (0.14, 0.99) 
β1temp 0.2 0.04 (0.14, 0.31) 
β1pred 2.4 0.76 (0.88, 3.88) 
β1water 1.1 0.68 (-0.26, 2.46) 
β2water -0.1 0.06 (-0.24, 0.01) 
σk1 5.7 0.27 (5.17, 6.24) 
σk2 0.6 0.02 (0.58, 0.66) 
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Figure 4.4: Population and target-type distributions of intercept values for a) k1 and b) log(k2) 

 The application of the median parameter estimates for the population and target-level k1 

and k2 estimates resulted in the median JM2 models shown in Figure 4.5 for a range of 

temperatures and the most relevant environmental conditions: freshwater and predation present. 

Note that the coefficients for water type were not significantly different from zero, and thus the 

median models for freshwater can be considered representative of all water types. As expected, 

more rapid decay is predicted for the highest temperature conditions (Figure 4.5c) compared to 

the lowest temperature (Figure 4.5a). The median model estimates predict the greatest 
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persistence of viruses and protozoa over time and shows FIB persistence conservatively 

estimating the persistence of pathogenic bacteria. The bacteriophage JM2 model predicts greater 

persistence than the FIB, but still does not capture the persistence of viruses or protozoa over 

time.  

 

Figure 4.5: Median JM2 models for the most common conditions (freshwater, predation present) 
for temperatures of a) 4°C, b) 20°C, and 37°C 

Alternative model forms (a. varying slope and varying intercept, b. varying intercept with 

non-linear transformation of temperature) were also evaluated. Leave-one-out cross validation 

determined that the base model (Eq. 4-5) provided the best fit to the data, and thus the base 
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model form presented thus far (Table 4.1, Figures 4.3-4.4) is considered the final model form. A 

sensitivity analysis of the priors used in the final model form did not indicate strong bias 

(average tendence for the simulated values to over or underestimate the base value) within the 

posterior distributions as the result of weakly informative priors that were selected. Changing the 

priors from informative to uninformative distributions resulted in at most a 3.2% change in the 

percent bias of the median estimate of k1 and a 1.2% change in the percent bias of the 95% 

confidence interval for k1. The change in percent bias for the median and 95% confidence 

interval estimates of the log-transformed k2 were all less than 0.5%. Table A4.1 in Appendix A 

summarizes the changes in percent bias, and Figures A4.3-A4.4 visually demonstrates the 

minimal change in the resulting posterior distributions.  

4.3.2 Performance 

The final model form was used to predict median, 2.5% and 97.5% estimates of T90 

values for each of the training datasets, and the results are shown in Table 4.2. The median 

observed T90 fell within the 95% confidence interval of the predicted T90 values for 17 of the 

18 tested conditions. The median observed bacteriophage T90 in non-freshwater conditions with 

predation absent had a median T90 greater than the upper bound of the predicted 95% 

confidence interval. In general, the upper bound of the observed T90 values was poorly 

approximated by the model for most conditions. This mischaracterization of the upper estimates 

of the observed T90 values resulted in high RMSE values for the training data predicted T90s, as 

shown in Figure 4.6.  

 
 
 
 
 
 



 

122 
 

Table 4.2: Training Dataset Observed and Predicted T90 Values with the General Model Form 

Target Conditions 
Observed T90s 

(Days) 
Predicted T90s 

(Days) 

Temperature Predation Water Type Median 
2.5%-
97.5% Median 

2.5%-
97.5% 

FIB 4-25 Absent Fresh 5 2-82 3-10 2-18 
                
  4-30 Present Fresh 3 0-14 2-6 1-10 
                

  21 Absent 
Brackish/ 
Marine 5 5 4 2-7 

                

  10-31.2 Present 
Brackish/ 
Marine 2 0-6 1-4 1-7 

                
Bacteria 4-37 Absent Fresh 4 0-112 2-9 1-17 
                
  4-37 Present Fresh 4 0-26 1-6 1-10 
                

  9.5-35 Absent 
Brackish/ 
Marine 3 0-14 2-7 1-13 

                

  9.5-30 Present 
Brackish/ 
Marine 2 1-3 1-4 1-7 

                
Bacteriophage 30 Absent Fresh 6 5-30 4-4 2-7 
                
  4-30 Present Fresh 4 1-35 2-8 1-15 
                

  30 Absent 
Brackish/ 
Marine 14 7-20 3-3 2-7 

                

  5-30 Present 
Brackish/ 
Marine 3 1-6 2-7 1-16 

                
Virus 4-37 Absent Fresh 9 2-75 2-16 1-57 
                
  4-30 Present Fresh 8 0-31 1-8 1-26 
                

  22 Absent 
Brackish/ 
Marine 2 2 4 1-14 

                

  7-37 Present 
Brackish/ 
Marine 1 0-4 1-6 0-19 

                
Protozoa 15-25 Absent Freshwater 16 11-20 10-17 4-104 
                
  4-25 Present Freshwater 15 10-72 6-18 2-108 
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Figure 4.6: Comparison of the observed training T90s to the T90 values predicted with the 
median parameter estimates of the general model form; red line indicates ideal 1:1 ratio 

The predictive power of the final model form was evaluated by fitting the general model 

to a testing dataset composed of 106 surface water persistence experiments. Table B4.1 

compares the observed T90 values to the predicted T90 values, and the comparison is shown 

visually in Figure 4.7. In-line with the performance on the training data, the general model fails 
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to capture the upper estimates of the T90 values for each target, however the median T90 values 

were estimated within the 95% confidence interval of the model for 10/14 conditions (Table 

B4.1).  

 

Figure 4.7: Comparison of the observed T90s in the testing data to the T90 values estimated with 
the median general model parameters; red line is ideal 1:1 ratio 
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4.3.3 Target Persistence Behaviors and Uncertainty Factors 

 The k1 and log(k2) intercept estimates for FIB were approximately -8.7 and 1.5, 

respectively. The viral targets had the largest k1 intercept (-8.2), followed by FIB (-8.7), bacteria 

(-9.4), bacteriophages (-10.9), and protozoa (-13.9). The bacteria and bacteriophage targets each 

had the largest intercept value for the log(k2) parameters (1.6), followed by FIB and protozoa 

(1.5), and then viruses (1.2). The median, 2.5%, and 97.5% parameter estimates were used to 

calculate estimates of the rate of tapering (Eq. 14), the length of a shoulder period (Eq. 15), T90s, 

and T99s for the most relevant environmental conditions (freshwater, predation present) at three 

temperatures (4°C, 20°C, 37°C).  

 Table 4.3 summarizes the ratio of bacteria, bacteriophage, virus, and protozoa estimates 

to FIB estimates for the different metrics of interest. The bacterial shoulders, T90s, and T99s 

minimally differ from the FIB estimates, however the bacteriophage, virus and protozoa metrics 

are on average 1.5-3.5x the length of the FIB estimates. Regardless of temperature, the protozoa 

targets have the longest median shoulders (3-15 days) and the rate of decay tapers off the most 

quickly for viruses (Figure 4.5). When the bacteriophage data are treated as the baseline, the 

virus and protozoa metrics are 1-3x the length of the bacteriophage estimates.  

Table 4.3: Uncertainty Factors for Metrics of Interest 

Temperature Target Ratio to FIB Length (95% CI) 
Shoulder T90 T99 T99.9 T99.99 

4°C 

FIB - - - - - 
Bacteria 1.0 (1,1) 1.0 (1,1) 1.0 (1,1) 0.9 (1,1) 0.9 (1,1) 
Bacteriophage 1.4 (1,2) 1.4 (1,2) 1.3 (1,2) 1.3 (1,2) 1.2 (1,1) 
Virus 1.2 (1,3) 1.5 (1,4) 1.7 (1,5) 2.0 (1,7) 2.4 (1,9) 
Protozoa 3.3 (1,15) 3.4 (1,18) 3.4 (1,22) 3.4 (1,26) 3.4 (1,30) 

20°C 

FIB - - - - - 
Bacteria 1.1 (1,1) 1.1 (1,1) 1 (1,1) 1 (1,1) 0.9 (1,1) 
Bacteriophage 1.6 (1,2) 1.5 (1,2) 1.4 (1,2) 1.4 (1,2) 1.3 (1,2) 
Virus 0.9 (1,2) 1.1 (1,2) 1.3 (1,3) 1.6 (1,4) 1.9 (1,6) 
Protozoa 3.3 (2,11) 3.3 (2,14) 3.3 (1,16) 3.3 (1,20) 3.4 (1,23) 
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Table 4.3 (cont’d) 

37°C 

FIB - - - - - 
Bacteria 1.2 (1,2) 1.2 (1,1) 1.1 (1,1) 1.1 (1,1) 1 (1,1) 
Bacteriophage 1.7 (2,3) 1.6 (1,2) 1.5 (1,2) 1.5 (1,2) 1.4 (1,2) 
Virus 0.7 (1,1) 0.8 (1,2) 1.0 (1,2) 1.2 (1,3) 1.4 (1,4) 
Protozoa 3.3 (2,12) 3.3 (2,10) 3.3 (2,14) 3.3 (2,15) 3.4 (1,17) 

4.4 Discussion  

The analysis presented herein: (1) identified plausible distributional forms for 

hyperdistributions of the JM2 model’s k1 and k2 decay parameters; (2) evaluated the feasibility of 

a generalized model for indicator and pathogen persistence in surface waters; and (3) quantified 

the uncertainty between the persistence behaviors (shoulders) and commonly used decay metrics 

(T90s, T99s) for indicators and pathogens. A double exponential distribution and normal 

distribution were identified as the most appropriate distributions for the hyperdistributions of k1 

and log(k2), respectively. The double exponential distribution has heavier tails than the normal 

distribution and is able to accommodate a narrower, symmetric distribution than the normal 

distribution (Gelman et al., 2014). Although there is a large range of observed of k1 values in 

previous studies (Figure A4.1), and in the data analyzed herein, there is a greater probability 

density associated with a smaller range of central values than is predicted with the normal 

distribution. The double exponential model was selected herein, however Kolmogorov-Smirnov 

tests and the evaluation of selected metrics suggested that the upper and lower bound estimates 

of the k1 parameter were poorly approximated. Visually, the k1 parameter data are almost 

bimodal in nature (Figure 4.3), something that should be explored in future work as there may be 

a driver of this behavior that can be used to improve the accuracy of the form of the 

hyperdistribution. 

LOO methodology selected the varying-intercept linear regression as the optimal model 

form for the general persistence model. This suggests that the base distributions of parameter 

estimates are dictated by the target of interest (target-type intercepts), however the water quality 



 

127 
 

factors have the same magnitude of effect on each target type (population-level coefficients). The 

general model was used to predict T90 values of each dataset, and the 95% confidence interval 

of the model captured the median observed T90 for most conditions, the exception being the 

median T90 for bacteriophages in predation absent, non-freshwater conditions. As most in-situ 

conditions will consider predation present, the 95% confidence intervals of the general model 

herein are considered to accurately represent median persistence behavior for the indicator and 

pathogen groups of interest. The general model’s 95% confidence intervals, however, do not 

capture the upper and lower bounds of the observed T90s, leading to high RMSE values for the 

training and testing data. The high RMSE values are not unexpected, as a general model is 

expected to provide general persistence behaviors and patterns but is not expected to attain the 

accuracy of pathogen and location-specific models previously fit for each dataset (Dean & 

Mitchell, 2022a). As the general model consistently under-predicts the upper bounds of the 

observed T90s, only the median data was used for uncertainty factor quantification.  

The median parameter estimates for the general model were used to quantify uncertainty 

between the indicator and pathogen groups. As the model only characterizes median persistence 

behaviors, it is important to acknowledge that the uncertainty factors are representative of 

average population behaviors only. On average, the T90s and T99s of bacteria and FIB can be 

considered similar, as evident in Figure 4.5. Both FIB and bacteria persistence were associated 

with the shortest shoulders of the evaluated targets, with the median length of a shoulder in the 

persistence curve ranging from 1-5 days for waters of 4°C-37°C.  The T90s and T99s of 

bacteriophages, viruses, and protozoa were approximately 1.5-3.5x the length of the FIB T90s 

and T99s. This difference is most evident at the lowest temperature range, where the average FIB 

T90 and T99 were 6 and 10 days, respectively, compared to 19 and 33 days for protozoa. There 
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is a clear shoulder presence in the protozoa persistence profile (Figure 4.5) which is partially 

driving this difference. Notably, the median JM2 model for bacteriophage persistence is shown 

to be a more conservative indicator of the virus persistence data in terms of T90s, T99s, and the 

length of a shoulder in the persistence curve (Table 4.3). However, it is evident in Figure 4.5 that 

the virus persistence data delineates from the bacteriophage persistence past the 2-log reduction 

point at 4°C and the 4-log reduction point at 37°C. The use of coliphages as an indicator is under 

consideration by the Environmental Protection Agency (EPA, 2015), and with regards to 

persistence behaviors, this study suggests that bacteriophages are a more conservative estimator 

of virus persistence than FIB, but there are still significant differences in behavior past the 2-to-

4-log reduction time-point depending on water temperature.  

The primary findings for surface water managers from this analysis are i) indicators and 

pathogens persist longer at colder temperatures, ii) the difference between indicator and 

pathogen persistence is more pronounced at colder temperatures, and iii) the decay of viruses and 

protozoa may be more than 3x slower than that of commonly monitored FIB. The uncertainty 

factors generated herein provide managers with additional data to incorporate into decision-

making processes when considering elevated levels of FIB. This information is more powerful in 

cases when decision makers also have knowledge of the likely sources of pathogen 

contamination, as bacteria persistence behaviors delineate from FIB less than other pathogenic 

targets. The incorporation of these uncertainty factors with site-specific microbial source 

tracking data in the future will facilitate optimal decision-making for the use of impacted surface 

waters.  

This study demonstrates the feasibility of developing a general model for characterizing 

pathogen persistence in surface waters in lieu of site-specific persistence data. Fitting a pathogen 
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and site-specific persistence model is preferred, when possible, to ensure the most accurate 

prediction of persistence over time for surface water quality modeling and risk assessment 

populations. The hierarchical model form evaluated herein, can also be used to improve the 

fitting of the JM2 model to future datasets, as the described distributions can be used to select 

more informative priors and ensure maximum utility of limited data.  
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APPENDIX A: PRIOR DISTRIBUTION SELECTION AND SENSITIVITY ANALYSIS 

 

Figure A4.1: Distribution of Optimized k1 Parameter Values (n=55) from Previous Persistence 
Modeling Efforts (Dean et al., 2020; Kline et al., 2022; Mitchell & Akram, 2017) 
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Figure A4.2: Distribution of Optimized log(k2) Parameter Values from Previous Persistence 

Modeling Efforts (Dean et al., 2020; Kline et al., 2022; Mitchell & Akram, 2017) 

 

Table A4.1: Summary Statistics for MLE Estimates of JM2 Parameters from Previous Analyses 
(Dean et al., 2020; Kline et al., 2022; Mitchell & Akram, 2017) 

 Minimum Median Mean Maximum Standard Deviation 
k1 -33.3 -1.6 -3.2 9.8 6.8 
log(k2) -0.82 0.86 0.88 2.48 0.67 
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Table A4.2: Change in Percent Bias from Baseline Prior Conditions with the Use of More and 
Less Informative Priors 

Prior Test Statistic Change in Percent Bias (%) 
k1 log(k2) 

Base  

Median 

NA NA 
Narrower -3.2 0 
Wider 0 0.1 
Uninformed -0.4 0 
Base  

2.5 Percentile 

NA NA 
Narrower -0.8 0.2 
Wider 0.2 -0.1 
Uninformed 0.4 -0.1 
Base  

97.5 Percentile 

NA NA 
Narrower -1 -0.1 
Wider 0.4 0.1 
Uninformed 1.2 0 

 

 
Figure A4.3: Visual comparison of simulated posterior distributions for k1 with baseline weakly 
informative priors (grey), informative priors (red), broader weakly informative priors (blue), and 

uninformative priors (green) 
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Figure A4.4: Visual comparison of simulated posterior distributions for log-transformed k2 with 
baseline weakly informative priors (grey), informative priors (red), broader weakly informative 

priors (blue), and uninformative priors (green) 
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APPENDIX B: EVALUATION OF PREDICTIVE POWER 

Table B4.1: Testing Dataset Observed and Predicted T90 Values with the General Model Form 

Target Conditions 
Observed T90s 

(Days) 
Predicted T90s 

(Days) 

Temperature Predation Water 
Type Median 2.5%-

97.5% Median 2.5%-
97.5% 

FIB 14.1-21 Absent Fresh 0 0-3 4-6 2-11 
                
  13-30 Present Fresh 4 0-33 2-4 1-6 
                

  21 Absent 
Brackish/ 
Marine 2 2 4 2-7 

                

  15.6-30 Present 
Brackish/ 
Marine 2 0-7 1-3 1-5 

                
Bacteria 13-37 Absent Fresh 20 0-47 2-6 1-11 

                
  4-30 Present Fresh 6 0-10 2-6 1-10 
                

  13-35 Absent 
Brackish/ 
Marine 17 2-34 2-6 1-11 

                

  22.7 Present 
Brackish/ 
Marine 2 2 2 1-4 

                

Bacteriophage  
4-25 Present Fresh 7 1-101 3-8 2-15 

              

 
5 Present 

Brackish/ 
Marine 26 26 7 4-16 

              
Virus 4-25 Absent Fresh 4 1-111 4-16 2-57 

                
  22-24 Present Fresh 1 0-37 2-2 1-7 
                

  10-26 Present 
Brackish/ 
Marine 2 1-12 1-5 0-15 

                
Protozoa 4.2 Present Fresh 74 74 17 6-107 
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CHAPTER 5: APPLYING PERSISTENCE KNOWLEDGE WITHIN A QMRA CASE 
STUDY OF A SEWAGE SPILL EVENT 

5.1 Introduction 

Pathogen-contaminated surface waters can pose a risk to human health when the waters are 

used for recreation, as source water for drinking water, or for irrigation purposes. Quantitative 

microbial risk assessments (QMRAs) are used to characterize the health risks associated with 

microbial contaminants in environmental matrices. QMRAs for fecal contamination in surface 

waters have commonly assumed minimal decay occurs after the point of introduction to 

conservatively estimate risk (Ahmed et al., 2018; Soller et al., 2010) or they have applied first 

order decay mechanics to calculate the change in concentrations over time (Boehm et al., 2018; 

U.S. EPA, 2010). The former assumptions can limit the information available for decision 

makers to understand the impact of relying on natural attenuation after a contamination event or 

the detection of elevated fecal contamination. As highlighted in previous work (Dean & 

Mitchell, 2022a; Dean & Mitchell, 2022b), the latter assumption is likely introducing model 

uncertainty into the risk assessment, as the persistence of indicators and pathogens are more 

dynamic than the constant rate of decay assumed with first-order kinetics.  

 The ingestion of contaminated surface water during a recreation event is the most direct 

exposure pathway. Accordingly, this QMRA case study will focus on recreational water 

ingestion exposure scenarios related to a sewage spill event in the Northeastern United States in 

2019. The event resulted in the release of 100,000 gallons of untreated sewage into the 

environment, predominantly impacting an adjacent retention pond. The spill was contained 

quickly, and monitoring for levels of fecal indicator bacteria (FIB), MST markers, and pathogens 

of concern was conducted in the retention pond, stormwater channel, and an impacted tidal 

stream for 40 days after the containment. Water monitoring officials were informed that the 
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retention pond is commonly used for recreation within the area, and public health officials were 

involved to assist in communicating risks to the area post-spill.  

A QMRA case study of the impacted retention pond is presented herein to (i) demonstrate the 

importance of characterizing persistence within surface water QMRAs; (ii) illustrate an 

application of the uncertainty factors developed to make inferences about pathogen specific 

decay in surface water; and (iii) benchmark the predictive power of the general persistence 

model from Chapter 4. 

5.2 Methods 

5.2.1 Persistence Data Analysis 

 Water samples taken from the retention pond were taken on days 0, 1, 2, 3, 4, 5, 6, 7, 9, 

11, 12, 15, 22, 33, and 38 after the containment of the spill event following pre-established 

methods (Worley-Morse et al., 2019). Culturable enterococci (cENT) numbers were quantified in 

MPN/mL. Molecular assays were used to quantify concentrations of enterococci (mENT), 

HF183, enterohemorrhagic E. coli (EHEC), Pseudomonas aeruginosa, crAssphage, pepper mild 

mottle virus (PMMoV), and human adenovirus (HAV) 41, 42 in gene copies/100mL. As this 

case study is focused on the utility of the indicator-pathogen paradigm for surface water decision 

making, only the traditional FIB (cENT, mENT) and the hazards of concern (EHEC, HAV) are 

analyzed herein. Observations below the limit of detection were assigned the value of the limit of 

detection as the observed concentration – a conservative simplifying assumption. The 

concentrations of each target were transformed into log-reduction values, and the datasets were 

assessed for a negative trend by fitting a simple linear regression with a forced intercept of zero.  

 The recreational water quality criteria (RWQC) for cENT associated with a risk of 

gastrointestinal illness of 36/1,000 swimmers are a geometric mean of 35 CFU/100mL and a 
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standard threshold value of 130 CFU/100mL (U.S. EPA, 2012). Decision makers associated with 

the spill event evaluated cENT until concentrations fell below 130 CFU/100 mL. The Juneja and 

Marks 2 (JM2) model was fit to the cENT, EHEC, and HAV datasets using maximum likelihood 

estimation as in prior works (Dean and Mitchell, 2022b; Dean et al., 2020; Mitchell and Akram, 

2017). The JM2 model form is shown in Eq. 1, where the log-reduction from the initial 

concentration, 𝑙𝑙𝑙𝑙𝑙𝑙10 �𝑁𝑁𝑁𝑁
𝑁𝑁0
�, can be estimated with model parameters (k1 and k2) and time (t).  

𝑙𝑙𝑙𝑙𝑙𝑙10 �𝑁𝑁𝑁𝑁
𝑁𝑁0
� = 𝑙𝑙𝑙𝑙𝑙𝑙10( 1

1+𝑒𝑒𝑘𝑘1+𝑘𝑘2 ln(𝑡𝑡))                                        Eq. 1 

The best fitting JM2 model for cENT was used to calculate the time required for 

concentrations to fall below 130 CFU/100 mL and 35 CFU/100 mL, and the best fitting JM2 

models for EHEC and HAV were used to estimate the concentration of pathogens present when 

cENT returns to the aforementioned values.  

5.2.2 QMRA Considerations and Design 

 The impacted retention pond is known to be used for recreation by nearby community 

members, and thus a recreational water QMRA was completed to evaluate: i) how the risk of 

illness changes over time after the spill event, and ii) the uncertainty associated with relying on 

traditional indicator data to assess water quality. The impacted retention pond was assumed to be 

used for full-body recreation, and thus the risk of illness associated with accidentally ingesting 

water while swimming was evaluated. The concentrations documented in the sampling efforts 

were the concentrations considered in the QMRA. A probabilistic QMRA was conducted using 

well established methods (Haas et al 2014). Considerations within each step of the paradigm are 

outlined in the following sections. 
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5.2.2.1 Hazard Identification 

Only E. coli 0157:H7 (EHEC) and HAV were considered within the risk assessment, as 

they are both waterborne pathogens commonly associated with the oral exposure route. EHEC 

refers to the group of Shiga toxin-producing E. coli or Verocytotoxin-producing E. coli (CDC, 

2014). The most identified EHEC in the United States is E. coli 0157:H7, and common 

symptoms of infection include diarrhea and vomiting. Although EHEC infections can occur in 

any population, children and elderly populations are more likely to develop serious illness, such 

as hemolytic uremic syndrome, a life-threatening complication that may lead to kidney failure 

(CDC, 2014). The primary source of EHEC are the intestinal tracts of animals, and fecal 

contamination can be introduced to surface waters from a range of sources. Human adenoviruses 

(HAV) are common in the environment and are associated with a wide range of illnesses 

including gastroenteritis, the common cold, and pneumonia (CDC, 2019). HAV serotypes 40 and 

41 are a major cause of gastroenteritis worldwide and are associated with long persistence in the 

environment due to their non-enveloped capsid (WHO, 2017).  

5.2.2.2 Exposure Assessment  

The exposure pathway evaluated was the ingestion of pathogen-contaminated 

recreational water while swimming immediately after containment and after several days of 

decay, as shown in Figure 5.1. Molecular methods were used to quantify the concentrations of 

EHEC and HAV in the retention pond. The location that the primer sets target are found once in 

the genome in the assays used, thus it was assumed that 1 gene copy corresponded to one CFU 

and virion for EHEC and HAV, respectively. However, the concentrations may be overestimated 

and considered conservative since all virions or bacteria detected may not be infectious. The 

initial concentrations of EHEC and HAV (Cint) in the retention pond were 30,700 CFU/100mL 
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and 34,700 PFU/100 mL, respectively, based on the monitoring data. The change in 

concentration over time for EHEC and HAV were modeled with JM2 models fit to the sampling 

data (Section 5.2.1) and the number of days required for cENT to fall below 130 CFU/100 mL 

and 35 CFU/100 mL were used to calculate concentrations of EHEC and HAV at those 

respective time points (Ct).  

 

Figure 5.1: Exposure pathway for QMRA case study of sewage spill-impacted recreational 
waterbody 

A study by Schets et al. (2011) determined that women, men, and children ingest an 

average of 18, 27, and 37 mL of water while swimming, respectively. Schets et al. (2011) also 

concluded that the variability in ingestion rates could be described by a gamma distribution. The 

parameters of the gamma distribution for each population are shown in Table 5.1. As shown in 

Equation 2, the concentrations of the pathogens, C (CFU/100 mL or PFU/100 mL), and the 

ingestion rates, IR (mL), for women, men, and children were used to calculate exposure doses, d 

(CFU or PFU), with Equation 2.  

𝑑𝑑 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖
100

× 𝐼𝐼𝐼𝐼                                                          Eq. 2 
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5.2.2.3 Dose Response Assessment 

An optimal model to describe the relationship between exposure dose and probability of 

response for EHEC has been contested in the literature (Teunis et al., 2004; Haas et al., 2000) 

and hence not a straightforward selection. The recommended model on the QMRA Wiki 

(qmrawiki.org) evaluated the infection endpoint in pigs after oral exposure to doses varying from 

170 CFU to 40,000 CFU of E. coli 0157:H7 (Cornick & Helgerson, 2004). The exponential 

model provided the best fit to the data with a median k parameter estimate of 2.18E-04 (Weir et 

al., 2003; Cornick & Helgerson, 2004), where k represents the probability that an organism 

survives the host defenses to initiate an infection (Equation 3).  

𝑃𝑃(𝑑𝑑) = 1 − 𝑒𝑒−𝑘𝑘𝑘𝑘                                                         Eq. 3 

 An assessment conducted by Powell et al. (2000) to develop a dose-response model for 

EHEC evaluated the illness endpoint in humans after oral exposure to Shigella dysenteriae 

strains and enteropathogenic E. coli (EPEC). The exact beta-Poisson model, shown in Equation 

4, provided the best fit to each study’s data, and the authors considered the S. dysenteriae beta-

Poisson model (α=0.16 β=9.17) as the upper bound of the dose-response relationship for EHEC, 

and the beta-Poisson model for EPEC (α=0.22, β=3,112,348) as the lower bound. The most 

likely parameter estimates for EHEC were estimated to be an α of 0.22 and β of 8,722 (Powell et 

al., 2004). As shown in Equation 4, the exact beta-Poisson model assumes heterogeneity in the 

ability of an organism to survive and initiate an infection in the host. The heterogeneity follows a 

beta distribution with parameters α and β. The exact beta-Poisson model is calculated with a 

hypergeometric function using the gsl package in R. 

𝑃𝑃(𝑑𝑑) = 1 − ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦_1𝐹𝐹1(𝛼𝛼,𝛼𝛼 + 𝛽𝛽,−𝑑𝑑)                                          Eq. 4 
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An epidemiological investigation of an outbreak in Japan determined that 25% of 

exposed children and 16% of exposed adults were infected after the ingestion of 31 CFU and 35 

CFU, respectively (Teunis et al., 2004). The observed outbreak responses were more closely 

approximated with the exact beta-Poisson model fit to the Shigella data in Powell et al. (2000), 

as opposed to the EPEC or Shigella/EPEC exact beta-Poisson models (Powell et al., 2000). In a 

review of data from eight EHEC outbreaks, Teunis et al. (2008) used hierarchical methods to 

account for the heterogeneity in exposure. The best fitting parameter estimates for α and β were 

0.37 and 39.7, respectively, and the model form is shown in red in Figure 5.2. Previous EHEC 

risk assessments have conservatively used the Shigella dose response model (Powell et al., 2000; 

Westrell et al., 2004; Strachan et al., 2001; Ryan et al., 2014), or the EHEC dose response model 

fit to the outbreak data (U.S. EPA, 2010). As the beta-Poisson dose response model for the 

infection endpoint (Teunis et al., 2008) is based on EHEC data specifically and has been deemed 

a conservative selection in prior risk assessments (U.S. EPA, 2010) it was the model selected 

herein. As illness is the endpoint of interest within this case study, a morbidity rate ranging from 

20%-40% was used to calculate risk of illness from EHEC ingestion based on previous outbreak 

data (U.S. EPA, 2010; Teunis et al., 2004; Bielaszewska et al., 1997). Point estimates for the 

selected α and β parameters are shown in Table 5.1.  
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Figure 5.2: Comparison of dose-response models for EHEC available in the literature and 

outbreak response data; Resources: exponential model in black for EHEC from Wiki (2003), 
exact beta-Poisson models for Shigella in green, EPEC in blue, and Shigella/EPEC in purple 
from Powell et al. (2000), exact beta-Poisson in red for EHEC from Teunis et al. (2008), and 

outbreak responses in red from Teunis et al. (2004)  

Only one study identified in the literature fit a dose response model for an oral exposure 

route to HAV. Teunis et al. (2016) used a hierarchical framework to fit HAV dose response 

models for ingestion, inhalation, intranasal, and intraocular routes, considering variation in 

infectivity and uncertainty due to limited data. The studies evaluated the infection response in 

human hosts, and the beta-Poisson model provided the best fit to the data. Point estimates for α 
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and β are shown in Table 5.1. Teunis et al. (2016) used similar methodology to calculate 

conditional illness parameters, such that the morbidity rate is dependent on the dose and can be 

calculated with Equation 5, where ƞ and r are the parameters for the gamma distribution 

describing the length of the infection period. The impact of assuming illness is conditional on 

dose is illustrated in Figure 5.3. Point estimates for ƞ and r are shown in Table 5.1.  

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖|𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐 |𝑟𝑟,𝑛𝑛) = 1 − (1 + 𝑐𝑐𝑐𝑐
ƞ

)−𝑟𝑟                                          Eq. 5 

 
Figure 5.3: Illustration of the HAV dose response model developed for the oral exposure route 

and the dose-dependent morbidity rate from Teunis et al. (2016)  
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 The risk assessment was simulated in a Monte Carlo analysis with 10,000 runs and a set 

seed of 123. Risk of illness was calculated at several timepoints after the spill, including (1) the 

initial time point (no decay); (2) the time required for cENT to decay to the water quality criteria 

standard threshold value (130 CFU/100 mL) and the geometric mean value (35 CFU/100 mL); 

and (3) the time required for cENT to decay to the water quality criteria values including the 

uncertainty factors evaluated in Chapter 4.   

Table 5.1: Parameters and Distribution Types for QMRA Case Study 

Parameter Value Units Distribution Source 
Initial 

Concentration 
(Cint) 

cENT 2.61E+05 MPN/100mL 

Point Estimates This study EHEC 3.07E+04 
gene 
copies/100mL 

HAV 3.47E+05 
gene 
copies/100mL 

Persistence 
Models 

cENT JM2, k1=0.35, k2=2.13 NA 
Point Estimates This study EHEC JM2, k1=1.05, k2=1.42 

HAV JM2, k1=-7.30, k2=4.50 
Ingestion Rates 

Women 18 
mL Gamma(r=0.51, 𝜆𝜆 

=35) 
Schets et 
al. 2010 Men 27 

Gamma(r=0.45, 𝜆𝜆 
=60) 

Children 37 
Gamma(r=0.64, 
𝜆𝜆=58) 

Dose Response 
Model 

EHEC  
Beta-Poisson, α=0.37, 

β=39.1 

NA 

Point Estimates 
Teunis et 
al., 2008 

HAV Beta-Poisson, α= 5.11, 
β=2.80 

Illness parameters, ƞ=6.53 
and r=0.41 Point Estimates 

Teunis et 
al., 2016 

Morbidity Rate EHEC 
30 % 

Uniform(min=20%, 
max=40%) 

U.S. EPA, 
2010 

5.2.3 General Model Application 

In addition to the application of the uncertainty factors, the general model developed in 

Chapter 4 was also applied to the sampling data to analyze the utility of a general model on 

inferences for persistence of targets in a contamination event. Targeted sampling efforts for 

several specific pathogens over time is labor and resource intense so application of a general 
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model to describe persistence based on pathogen target type (bacteria, virus, etc.) may be a 

feasible way to reduce uncertainty in risk assessment and decisions. 

5.3 Results 

5.3.1 Indicator and Pathogen Persistence 

The best fitting parameter estimates for the JM2 models fit to cENT, mENT, EHEC and 

HAV are in Table 5.1 and the persistence curves for each of the four targets are shown in Figure 

5.4. The decay of cENT and mENT was similar to EHEC for the first log-reduction (T90), but 

the T90 for HAV was greater than that of the other targets. The decay of EHEC over time 

tapered off most quickly as shown in Figure 5.4, and cENT and mENT became conservative 

estimators of HAV persistence past the 3.5 log-reduction time point. As expected from the 

general model (Chapter 4), HAV had a predominant shoulder in the decay curve. However, in 

contrast to the general model, the pathogenic bacteria (EHEC) persistence significantly differed 

from the indicator data past the 2 log-reductions time point.  
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Figure 5.4: JM2 models depicting the persistence of cENT, mENT, EHEC and HAV in the 
retention pond 

 The initial concentration of cENT was 261,000 MPN/100 mL. Therefore, a 3.9 log-

reduction was required to meet the geometric mean (GM) criteria of 35 CFU/100 mL and a 3.3 

log-reduction was required to meet the standard threshold value (STV) of 130 CFU/100 mL. 

Using the JM2 model fit to the cENT data (Table 5.1), it was estimated that the 3.3 and 3.9 log-

reduction would be achieved after 30 and 58 days, respectively. Using their respective JM2 

models, the concentrations of EHEC after 30 and 58 days were estimated to be 83 CFU/100 mL 

and 33 CFU/100 mL, and the concentrations of HAV after 30 and 58 days were estimated to be 

11 PFU/100 mL and 0.60 PFU/100 mL.  
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5.3.2 Uncertainty Factors for Pathogen Persistence 

The development of the general model (Chapter 4) indicated that in 20°C surface water 

the average decay of bacteria may be 1-1.1x slower than the average decay of FIB and the 

average decay of viruses may be 1-1.9x slower. Thus, the risk of illness for EHEC was also 

evaluated at 33 days (73 CFU/100 mL) and 64 days (29 CFU/100 mL) and the risk of illness for 

HAV was evaluated at 57 days (0.62 PFU/100 mL) and 110 days (0.03 PFU/100 mL).  

5.3.3 Risk of Illness from Swimming 

 The risk of illness for EHEC and adenovirus were evaluated for women, men, and 

children assumed to be swimming in the retention pond at the aforementioned timepoints. 

Children had the greatest risk of illness for each time point, as they were estimated to ingest the 

most water while swimming. The median risk of illness for EHEC for the three populations was 

28-31% immediately after the spill event compared to median risks of 92-94% for HAV. For an 

acceptable risk of 36 illnesses in 1,000 people (3.6%), the STV is 130 CFU/100 mL for cENT, 

and this concentration was predicted to occur 30 days after the spill was contained. The EHEC 

median risk of illness ranged from 2-5% after 30 days, and the HAV median risk ranged from 2-

9% for the evaluated populations. Applying the bacteria and virus uncertainty factors from 

Chapter 4 reduced the median risk of EHEC illness to 2-4% and the median risk of HAV illness 

to 0.01-0.06%.  

Table 5.2: Estimated Risk of Illness for EHEC and HAV for a Swimming Exposure 
Time (Days) Population EHEC Risk of Illness HAV Risk of Illness 

Median [2.50%, 97.50%] Median [2.50%, 97.50%] 
Initial (T=0) Women 0.28 [0.02, 0.50] 0.92 [0.25, 0.97] 

Men 0.29 [0.01, 0.51] 0.93 [0.19, 0.97] 
Children 0.31 [0.09, 0.52] 0.94 [0.61, 0.98] 

FIB Levels Decay to 
STV Criteria Level 
(T=30) 

Women 0.02 [5.49E-05, 0.14] 0.02 [2.01E-07, 0.31] 
Men 0.03 [3.96E-05, 0.18] 0.04 [1.03E-07, 0.40] 
Children 0.05 [4.70E-04, 0.20] 0.09 [1.42E-05, 0.43] 
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Table 5.2 (cont’d) 
FIB Levels Decay to 
STV Criteria with UF* 
(TEHEC=33, THAV=57) 

Women 0.02 [4.79E-05, 0.13] 9.07E-05 [6.21E-10, 0.01] 
Men 0.02 [3.46E-05, 0.17] 1.90E-04 [3.18E-10, 0.02] 
Children 0.04 [4.11E-04, 0.19] 4.43E-08 [6.40E-04, 0.03] 

FIB Levels Decay to 
GM Criteria (T=58) 

Women 0.01 [2.18E-05, 0.08] 8.50E-05 [5.82E-10, 0.01] 
Men 0.01 [1.57E-05, 0.11] 1.78E-04 [2.98E-10, 0.02] 
Children 0.02 [1.87E-04, 0.12] 6.01E-04 [4.15E-08, 0.03] 

FIB Levels Decay to 
GM Criteria with UF* 
(TEHEC=64, THAV=110) 

Women 0.01 [1.90E-05, 0.07] 2.68E-07 [1.80E-12, 3.50E-05] 
Men 0.01 [1.37E-05, 0.10] 5.66E-07 [9.21E-13, 9.43E-05] 
Children 0.02 [1.63E-04, 0.11] 1.96E-06 [1.28E-10, 1.24E-04] 

*UF: Uncertainty Factor 

The distributions of risk associated with the STV criteria level are illustrated in Figures 

5.5 and 5.6.  The initial risk of illness for HAV ingestion is greater than the risk of illness for 

EHEC ingestion immediately after the spill, and although HAV decayed more quickly than 

EHEC, with more than 3.5 log-reductions observed at 30 days compared to approximately 2.5 

log-reductions for EHEC, the risk of illness after 30 days was still higher for HAV ingestion than 

EHEC. Applying the FIB-bacteria uncertainty factor of 1.1 still resulted in median risks greater 

than the acceptable 3.6% for EHEC ingestion for children. When the FIB-virus uncertainty factor 

of 1.9 was applied, the risk associated with HAV ingestion was two orders of magnitude lower 

than the acceptable level for all populations. Although the preceding meta-analysis and general 

model identified minimal differences between FIB and bacteria, the 30-day timepoint was 

associated with a 3.3 log-reduction of cENT and only a 2.5 log-reduction of EHEC. An 

uncertainty factor of 1.1 lessened this gap to only 0.7 log-reductions, still resulting in median 

risks above the acceptable level for some of the populations of concern (Figure 5.5). 
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Figure 5.5: Box plots of risk of illness for EHEC in recreational waters immediately after the 
spill (T=0), when FIB levels decay to the water quality criteria STV levels (T=30 days), and 

when considering the FIB-bacteria uncertainty factor of 1.1 (T=33 days) 
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Figure 5.6: Box plots of risk of illness for HAV in recreational waters immediately after the spill 
(T=0), when FIB levels decay to the water quality criteria STV levels (T=30 days), and when 

considering the FIB-virus uncertainty factor of 1.9 (T=57 days) 

cENT decayed to the GM criteria value in freshwater (35 CFU/100mL) 58 days after the 

spill was contained. The median risk of illness for EHEC 58 days after the spill ranged from 1%-

2% for the three populations, and the median risk of illness for adenovirus ranged from <0.01% 

to 0.06%. When the FIB-bacteria and FIB-virus uncertainty factors were applied to the estimated 

persistence of cENT, the median risk of illness remained at 1%-2% for EHEC and fell below 1 in 
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100,000 for adenovirus. Figures 5.7 and 5.8 illustrate the change in risk associated with the time 

required for cENT to reach the established RWQC GM values (U.S. EPA, 2012). Applying the 

FIB-virus uncertainty factor resulted in increased confidence that the HAV risk of illness were 

below the acceptable level, with the upper quantiles of the distribution of risk ranging from 

0.004-0.01% (Figure 5.8).  

 

Figure 5.7: Box plots of risk of illness for EHEC in recreational waters immediately after the 
spill (T=0), when FIB levels decay to the water quality criteria GM levels (T=58 days) 

associated with a risk of 36/1000 (dashed red line), and when considering the FIB-bacteria 
uncertainty factor of 1.1 (T=64 days) 
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Figure 5.8: Box plots of risk of illness for HAV in recreational waters immediately after the spill 
(T=0), when FIB levels decay to the water quality criteria GM levels (T=58 days) associated 

with a risk of 36/1000 (dashed red line), and when considering the FIB-virus uncertainty factor 
of 1.9 (T=110 days) 

5.3.4 Application of the General Model 

 The general models developed for the persistence of FIB, bacteria, and viruses (Chapter 

4) were compared to the cENT, EHEC, and HAV sampling data from the spill event. As shown 

in Figure 5.9, the majority of the observed log-reductions of cENT, EHEC, and HAV fell within 

the 95% confidence bounds of the general models. The EHEC observations excluded from the 

general model for pathogenic bacteria were below the limit of detection (BLOD). Figure 5.9 

indicates that in lieu of additional sampling data, the upper bound of the general models would 
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have provided relatively conservative estimates for the persistence of the targets of interest over 

time.  

Figure 5.9: Comparison of the a) FIB, b) bacteria, and c) virus general model performance on the 
sampling data for a) cENT, b) EHEC, and c) HAV 

5.4 Discussion 

A QMRA case study was completed for a sewage spill event affecting a retention pond 

known to be used for recreation. Concentrations of cENT, EHEC, and HAV were monitored for 

40 days after the containment of the spill, and the JM2 model was fit to the persistence data for 

each target. Using the best fitting JM2 models and the uncertainty factors developed in Chapter 

4, the risk of illness for EHEC and HAV ingestion while swimming was characterized 

immediately after the spill, when cENT levels returned to recreational water quality criteria 

values, and when the uncertainty factors were applied to the cENT data. Children had the highest 

risk of illness for all scenarios, as they were expected to ingest the most water while swimming 

(Schets et al., 2011). HAV was associated with the highest risk of illness immediately after the 
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spill, however the risk of illness associated with EHEC ingestion was higher than HAV after 58 

days. HAV decayed more quickly than EHEC, achieving 4.8 log-reductions within 58 days 

compared to only 3 log-reductions for EHEC. The difference in risk between the pathogens at 

later time-points may also have been driven by HAV’s dose dependent morbidity rate; the 

concentration of HAV immediately after the spill was associated with a morbidity rate of 93%, 

whereas the concentration after 30 days was associated with a morbidity rate of less than 1% 

(Teunis et al., 2016).  

In the context of the assessed sewage spill, the sampling efforts were critical for 

evaluating the changing water quality of the retention pond to protect potential water users. The 

QMRA case study completed in this analysis suggests that the time required for cENT to decay 

to the STV (30 days) was not sufficient for the risk of illness from EHEC or HAV ingestion to be 

below 36 in 1,000 for children swimming. The time required for cENT to decay to the GM (58 

days), however, was associated with median risks below 3.6%. This is not unexpected, as the 

EPA recommends that the GM and STV be considered together as the criteria magnitude.  

The general model developed in Chapter 4 indicated that pathogenic bacteria in 20°C 

freshwater may be 1-1.1x slower than FIB, and that virus decay may be up to 1-1.9x slower than 

FIB. When these uncertainty factors were applied to the time required for cENT to return to GM 

and STV criteria levels, the 95% confidence interval of risk of illness from HAV ingestion was 

below 3.6% for both time points. Applying the uncertainty factor of 1.1 to the time required for 

cENT to return to the GM criteria, ensured the median risks for EHEC ingestion were below 

3.6%, however the upper quantiles of risk were still as high as 11%. These results reinforce the 

need to dually consider GM and STV when monitoring water quality and demonstrate the ability 

of the uncertainty factors developed in Chapter 4 to add value to classically documented 
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indicator data, by providing more accurate estimates of the time required for the risk of illness 

associated with EHEC and HAV to fall below 3.6%.  

The importance of characterizing persistence within a QMRA is evident in Figures 5.5-

5.8, however, pathogen and site-specific persistence data are not always available for 

contamination events that may warrant risk assessments. To address this gap, the general models 

for indicator and pathogen persistence developed in Chapter 4, were compared to the sampling 

data from the spill event analyzed herein. As shown in Figure 5.9, the general models for FIB, 

bacteria, and virus persistence in surface waters with average temperatures of 20°C capture the 

trend of most of the sampling data for cENT, EHEC, and HAV. The first observation below 130 

CFU/100 mL occurred on day 22 and the upper bound of the FIB general model predicted a 

return to 130 CFU/ 100 mL on day 22 (Figure 5.8a).  

There were limitations to the QMRA case study developed herein. The dose response 

model for oral exposure to EHEC selection has varied in previous risk assessments (U.S. EPA, 

2010; Westrell et al., 2004; Strachan et al., 2001; Ryan et al., 2014). This case study selected the 

beta-Poisson model fit to data from eight outbreaks that was found to more closely match the 

dose response model developed for S. dysenteriae than other EHEC or EPEC models (Teunis et 

al., 2008; Powell et al., 2000). The selection of dose response model, however, has a significant 

impact on the interpretation of results (Figure A5.1), as a less conservative model choice such as 

the mixed Shigella and EPEC model analyzed in Powell et al. (2000) indicates risks below 3.6% 

for time points 30 days and above. The HAV dose response model is also a source of uncertainty 

in this case study, as there is only one model available in the literature based on minimal 

observational data (Teunis et al., 2016). The uncertainty associated with the conditional 

morbidity rate (Teunis et al., 2016) should also be explored in future works, as the morbidity rate 
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may have different dependencies on dose for different populations of concern such as children or 

the elderly. There was not sufficient data available in the literature to represent the dose response 

parameters with appropriate probability distributions, and the parameter pairs for each beta-

Poisson model should be acquired in the future to improve the characterization of risks within 

this case study, as the heterogeneity in host response will impact the presented results as evident 

in Figure A5.1. Ingestion rates and the EHEC morbidity rate were the only parameters that 

accounted for uncertainty and variability with the Monte Carlo simulations. The initial 

concentrations of the FIB and pathogens are another source of uncertainty within the risk 

assessment, as the data gathered in the sampling efforts were considered point estimates within 

the case study. The concentrations of EHEC and HAV are also likely over-estimated as 1 gene 

copy was assumed to be the equivalent of 1 CFU or PFU, in line with the methods implemented 

for quantification. Future full risk assessments should use probability distributions to capture the 

uncertainty associated with this conversion.   

Despite these limitations, this case study highlights the importance of considering 

persistence within surface water QMRAs to provide time-relevant information to surface water 

decision makers. For example, this case study determined that it would take more than 60 days 

for the water quality to return to acceptable levels for recreational uses. This information allows 

a water manager to consider the value of potentially applying other mitigation strategies to 

reduce this time. This case study also demonstrated the ways the uncertainty factors and general 

models developed in Chapter 4 can be used to improve the utility of the indicator-pathogen 

paradigm. Applying the uncertainty factor for bacteria and viruses ensured sufficient time for the 

median risks of illness to fall below 3.6%. Finally, in lieu of sampling data for the retention pond 

after the initial contamination event, the use of the general models developed in Chapter 4 can 
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help optimize the use of resources for future contamination events; the upper bound of the 

general model predicted that the concentration of cENT would return to 130 CFU/100 mL on 

day 22, and the resources used to sample on days 2-21 could have been conserved.  
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APPENDIX 

 

Figure A5.1: The difference in risk of illness estimates over time for EHEC when a) the less 
conservative Shigella and EPEC dose response model is used in the QMRA compared (Powell et 
al., 2000); or b) the more conservative EHEC dose response model developed with outbreak data 

(Teunis et al., 2008) 
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CHAPTER 6: CONCLUSIONS 

This dissertation has presented: (i) a comprehensive database of persistence experiments 

for indicators and pathogens in surface waters; (ii) statistically verified relationships between 

water quality and environmental factors driving persistence; (iii) identified a model form (Juneja 

and Marks 2) best able to describe target persistence in surface waters; and (iv) quantified the 

uncertainty between indicators and pathogen persistence in highly varied surface water 

conditions by evaluating the feasibility of a novel general model. The utility of these results for 

surface water management and policymaking were further demonstrated in a quantitative 

microbial risk assessment (QMRA) case study for a sewage spill-impacted waterbody.  

In Chapter 2 it was concluded that most available persistence data focuses on fecal 

indicator bacteria (FIB), freshwater matrices, and culture-based methods of detection. Additional 

studies are needed that evaluate the persistence of virus and protozoa targets, brackish waters, 

and molecular-based methods of detection. Interactions between sunlight, water type, and 

method of detection, as well as predation, temperature, and water type, were identified 

qualitatively and could be further explored in future experimentation. An unexpected finding 

from Chapter 2 pertained to data availability; most of the datasets were not readily available in 

the literature or supplementary materials and needed to be digitized which may have introduced 

data uncertainty. Comprehensive open and shared databases of funded water pathogen research 

like those established in other fields could alleviate this source of uncertainty. Chapter 3 

identified the Juneja and Marks 2 model as the model form best able to describe indicator and 

pathogen persistence in surface waters. The best fitting persistence models for over 400 datasets 

were used to predict dependent variables of interest for series of factor analyses. Random forests 

methods had the greatest performance and predictive power, highlighting the existence of 
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nonlinear relationships between factors such as temperature, turbidity, and pH. The random 

forests also identified significant interactions between temperature and predation as well as 

sunlight and method of detection. Temperature, water type, and method of detection were 

identified as the most important variables influencing the evaluated persistence metrics.  

Chapter 4 tested the feasibility of a general model for persistence and identified a 

varying-intercept regression with target-level intercepts and population-level coefficients for 

temperature, water type, and predation as the optimal evaluated model form. Although pathogen-

specific and site-specific persistence models are expected to be more accurate and are preferred, 

the general model provides information about the average persistence of FIB, bacteriophages, 

bacteria, viruses, and protozoa in various surface water conditions in lieu of site-specific data. 

The general model can be used by surface water managers in the future to make inferences about 

pathogen persistence when relying on indicator data and can be used to maximize resource 

efficiency; monitoring materials could be conserved during periods of expected minimal 

inactivation or alternative mitigation strategies could be pursued to minimize the time the water 

does not meet surface water quality criteria. Potential applications of the general model were 

demonstrated in Chapter 5, as the application of bacteria and virus uncertainty factors ensured 

the risk of illness from enterohemorrhagic E. coli (EHEC) and adenovirus (HAV) ingestion fell 

below the Recreational Water Quality Criteria’s 36 illnesses in 1,000 swimmers for the predicted 

time points (U.S. EPA, 2012).  

In the U.S. alone, it is estimated that waterborne illnesses incur $3.33 billion in direct 

healthcare costs annually (Collier et al., 2021), and the most recent assessments indicate that 

pathogens are a leading cause of impairments for the nation’s rivers, streams, coastal waters, 

bays and estuaries (U.S. EPA, 2017). Globally, diarrheal diseases have been reported to be 
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responsible for 57 million disability adjusted life years (DALYs), and 57% of those diseases are 

attributable to the environment (Prüss-Ustün et al., 2016). The work completed within this 

dissertation i) reduces the uncertainty associated with how pathogen and indicator persistence is 

modeled and predicted in surface waters; ii) adds knowledge to the indicator-pathogen paradigm 

with the calculation of uncertainty factors for fecal indicator bacteria, bacteriophages, pathogenic 

bacteria, viruses, and protozoa, and iii) facilitates more accurate estimates of indicator and 

pathogen persistence to help advance the regulation of our waters to better protect human health. 

The results presented herein emphasize the importance of considering persistence within surface 

water decision-making and quantitative microbial risk assessments, as a sole reliance on 

indicator data may lead to erroneous assessments of water quality and risk. Results from this 

work will inform decision makers advancing water, sanitation, hygiene, water reuse applications, 

and agricultural practices globally.  
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CHAPTER 7: FUTURE WORK 

There are several opportunities for the work presented in this dissertation to be expanded 

upon in future works. The systematic literature review (Chapter 2) identified several obstacles to 

the mining of data from the literature for analysis. As such, the sharing of the rich database of 

experiments and persistence models generated in this work (Chapter 3) is a priority for future 

work. The MLE estimates and confidence intervals for nearly 500 datasets will be shared on a 

freely available community portal (www.qmrawiki.org) to allow for their application in a variety 

of disciplines impacted by this work, including engineering, water treatment, wastewater 

treatment, microbiology, and risk assessment. 

The general model for persistence developed herein (Chapter 4) although novel in nature, 

has opportunities for improvement. The current model form accurately estimates median values 

of the training and testing dataset T90s, however consistently underestimates the upper bounds of 

the observed T90s. To improve upon this performance, the inclusion of untested predictors such 

as turbidity, pH, or other site-specific characteristics within the general model form should be 

explored. Additionally, the current general model form was constructed with limited data for 

viruses and protozoa targets. The Bayesian hierarchical methodology minimizes this limitation 

by allowing the virus and protozoa datasets to gain knowledge from the fecal indicator bacteria, 

bacteria, and bacteriophage datasets, however as new data becomes available, the general model 

should continue to be adapted. This may be particularly relevant for protozoan targets as the 

systematic literature review suggested that protozoa were minimally affected by the water quality 

factors influencing other targets; the selection of population-level coefficients for temperature, 

predation, and water type either suggests that this is not the case, or that there was not enough 

protozoa data included in the general model to identify this deviation.  

http://www.qmrawiki.org/
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Another natural progression of this work is to assess the ability of the Bayesian 

hierarchical model to improve the fitting of the Juneja and Marks 2 (JM2) model to future 

datasets. As the hierarchical model incorporates the knowledge of prior datasets, it is expected 

that the uncertainty associated with parameter and model estimates will be reduced when 

comparing Bayesian fitting to maximum likelihood estimation (MLE) methods. Some 

preliminary data for this hypothesis is shown in Figure 7.1, where the parameter and model 

standard deviations from fitting the JM2 with Bayesian and MLE methods were compared for 

the culturable enterococci (cENT), enterohemorrhagic Escherichia coli (EHEC) and adenovirus 

(HAV) data from the case study in Chapter 5. Although this example dataset is limited in size, 

the standard deviations are more often lower with the Bayesian fitting than the MLE.   

 

Figure 7.1: Range of parameter and model standard deviations using Bayesian or MLE methods 
to fit JM2 to cENT, EHEC, and HAV data (Chapter 5) 
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Finally, microbial source tracking (MST) is another tool that can be used to improve the 

indicator-pathogen paradigm for surface water decision making. Future works should evaluate 

the performance of JM2 on MST markers persistence data and a similar analysis evaluating 

factor-persistence relationships for MST markers could provide critical insights to inform the 

selection of MST markers for various monitoring efforts. Coupling the results of this dissertation 

with future MST marker analyses will facilitate the creation of decision support tools that 

incorporate site-specific considerations and pathogen concerns into the construction of 

monitoring protocols and practices.   
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