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ABSTRACT

Graphs are one of the most natural representations of many real-world data, such as social networks,

chemical molecules, and transportation networks. Graph neural networks (GNNs) are deep neural

networks (DNNs) that are specially designed for graphs and have aroused great research interest.

Recently, GNNs have been theoretically and empirically proven to be effective in learning graph

representations and have been widely applied in many scenarios, such as recommendation and drug

discovery. Despite its great success in numerous graph-related tasks, GNNs still face a tremendous

challenge in terms of out-of-distribution generalization. Specifically, it has been observed that

significant performance gaps for GNNs exist between the training graph set and the test graph set

in some graph-related tasks. In addition, graph samples can be very diverse, even though coming

from the same dataset. They can be different from each other in not only node attributes but graph

structures, which makes the out-of-distribution generalization problem in GNNs more challenging

and complex than that in traditional deep learning-based methods. Apart from the out-of-distribution

generalization problem, GNNs also come across other kinds of challenges when applied in different

application scenarios, such as data sparsity and knowledge transfer in the recommendation task.

In this dissertation, we aim at alleviating the out-of-distribution generalization problem in GNNs.

In particular, two novel frameworks are proposed to improve GNN’s out-of-distribution generalization

ability from two perspectives, i.e., a novel training perspective, and an advanced learning perspective.

Meanwhile, we design a novel GNN-based method to solve the data sparsity challenge in the

recommendation application. In addition, we propose an adaptive pre-training framework based on

the new GNN-based recommendation method and thus increase the abilities of GNNs in terms of

generalization and knowledge transfer in the real-world application of recommendations.
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CHAPTER 1

INTRODUCTION

Graphs are a kind of common data format, which can naturally denote many real-world data, including

biological molecules [9, 39, 126], social networks [19, 122] and transportation networks [111].

There are numerous real-world applications that can be formalized as tasks over graphs. For example,

recommendations [108, 25] can be viewed as the link prediction task over user-item bipartite graphs.

The property prediction of proteins [9] can be regarded as graph classification tasks over protein

graphs. To address these graph tasks, it is important to learn good representations for nodes and

graphs. Deep Neural Networks (DNNs) have shown great capacity in representation learning, and

have achieved tremendous success in many applications, such as natural language processing [15] and

computer vision [33]. Graph Neural Networks (GNNs) are a successful generalization of DNNs over

graphs, which have been empirically and theoretically proven to be powerful in graph representation

learning. GNNs usually consist of information aggregation among nodes and feature transformation

to refine node representations, and graph pooling to summarize a graph representation. In graph

tasks, GNNs are typically trained from training samples, and then applied to make predictions

among test samples, following the common paradigm adopted in DNNs. One important condition

where this paradigm works effectively is that the training samples and the test samples come from

the same distribution. However, this condition usually can not be satisfied in real scenarios. Graph

data can be especially diverse since samples in graph data can be various in not only the node

attributes but also the graph structures. For example, graph samples from one dataset can be very

different in terms of graph size, and node samples from one graph can differ from each other

greatly in regard to degrees [103]. Such gaps between training samples and test samples can bring

significant performance degradation of GNN models. In this dissertation, we mainly focus on

solving this challenge in GNNs for graph tasks. Specifically, we tackle this problem from two

perspectives, i.e., a training perspective and a learning perspective. In addition, we also focus on

addressing the challenges in applying GNNs in real-world recommendation scenarios. In particular,

we propose a novel localized GNN-based recommendation method to overcome the data sparsity
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issue. Furthermore, we propose an adaptive pre-training framework based on the new GNN-based

recommendation method and thus increase the abilities of GNNs in terms of generalization and

knowledge transfer in the real-world application of recommendation.

1.1 Dissertation Contributions

The major contributions of this dissertation are summarized as follows.

• Numerous recent works have observed that there exist significant performance gaps of GNNs

between the training phase and the test phase. We seek to alleviate this problem by designing

a novel training paradigm for GNNs. Specifically, instead of training GNNs from the training

graph samples and then utilizing the GNNs to directly make predictions for test samples, we

propose to further carefully train the GNNs in the test time. We introduce the first test-time

training framework for GNNs (GT3) to enhance the model out-of-distribution generalization

capacity for the graph classification task. In particular, we design a novel test-time training

strategy with a two-level self-supervised learning task to adjust the GNN model for each test

graph sample. Also, an effective adaptation constraint is proposed to prevent undesirable

excessive feature distortion. Extensive experiments are conducted to validate the effectiveness

of the proposed method, and we also provide a theoretical analysis to demonstrate the benefits

of test-time training for GNNs.

• The out-of-distribution generalization challenge in GNNs has attracted emerging research

interest. We seek to explore and analyze this challenge from the perspective of graph data

diversity. We investigate the data diversity in terms of graph structure and their influence on

GNNs performance. The investigation inspires us to develop a novel customized graph neural

network framework, i.e., Customized-GNN, which can generate a sample-specific model for

this graph based on its structure, rather than a unified GNN model for graphs with diverse

structures. In addition, the proposed Customized-GNN is very general and flexible that can be

applied to numerous existing GNN models. Comprehensive experiments on numerous graph

datasets from various domains have verified the effectiveness of the proposed framework.
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• GNNs have been widely applied in recommendation tasks and have achieved tremendous

success. However, it has been observed that most GNN-based recommendation methods

suffer greatly from the data sparsity issue, and unfortunately, this issue is quite common in

real-world recommendation scenarios. To solve this limitation, we study a novel perspective

to build a GNN-based recommendation method, Localized Graph Collaborative Filtering

(LGCF). Specifically, instead of learning embeddings for each user and item, we aim at

learning some recommendation-related patterns in the localized graph induced by the target

user and item. Extensive experiments on various datasets validate the effectiveness of LGCF,

especially in sparse scenarios. Furthermore, empirical results demonstrate that LGCF provides

complementary information to the embedding-based recommendation model. Thus, it can be

utilized to further boost recommendation performance in other scenarios.

• Data sparsity is one of the most common problems in many real-world applications, such

as machine translation, image classification, and recommendation. Pre-training techniques

have been proven effective to address data sparsity issues in the domains of natural language

processing and computer vision by knowledge transfer. However, it is not trivial to design

an effective pre-training framework for the GNN-based method in recommendation tasks.

To solve the challenges that different recommendation scenarios not sharing the same users

and items and that use-item interaction graphs possessing diverse properties, we design an

adaptive GNN pre-training framework (ADAPT) based on LGCF for recommendations, which

is capable of capturing the common knowledge among different user-item bipartite graphs

and preserving the uniqueness of each graph. The proposed framework does not require

transferring user/item embeddings and is able to capture both the common knowledge across

different graphs and the uniqueness of each graph simultaneously. Extensive experimental

results have demonstrated the effectiveness and superiority of ADAPT.
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1.2 Dissertation Structure

The remainder of this dissertation is organized as follows. In Chapter 2, we aim at enhancing the

model out-of-distribution generalization capacity for the graph classification task based on a novel

training paradigm by introducing the test-time training framework for GNNs. In Chapter 3, we

focus on bridging the graph classification gap between the training graphs and test graphs from

a new learning perspective by developing a customized graph neural network framework, which

can generate a sample-specific model for a test graph based on its structure. In these two chapters,

we aim at alleviating the out-of-distribution generalization problem in GNNs from two different

perspectives, i.e., the training perspective and the learning perspective. Though from various

perspectives, these proposed frameworks are very flexible and can be applied in many existing GNN

methods. In Chapter 4, we propose a novel GNN-based recommendation method to solve the data

sparsity issue, which is designed to learn useful recommendation information from a localized

graph, rather than to learn effective embeddings for all the users and items. In Chapter 5, we further

propose an adaptive pre-training framework based on the proposed GNN-based recommendation

method, which enables effective knowledge transfer among different recommendation scenarios. In

these two chapters, we aim at addressing the practical challenges of applying GNNs in real-world

recommendation tasks. In particular, we focus on improving the performance of the GNN-based

recommendation methods in data sparsity scenarios and further increase the abilities of GNNs in

terms of generalization and knowledge transfer in the real-world application of recommendation.

Finally, we conclude the dissertation and discuss further promising research directions in Chapter 6.
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CHAPTER 2

TEST-TIME TRAINING FOR GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have made tremendous progress in the graph classification task.

However, a performance gap between the training set and the test set has often been noticed. To

bridge the gap, in this chapter we introduce the first test-time training framework for GNNs to

enhance the model generalization capacity for the graph classification task. In particular, we design

a novel test-time training strategy with self-supervised learning to adjust the GNN model for each

test graph sample. Experiments on the benchmark datasets have demonstrated the effectiveness of

the proposed framework, especially when there are distribution shifts between the training set and

the test set. We have also conducted exploratory studies and theoretical analysis to gain a deeper

understanding of the rationality of the design of the proposed graph test time training framework

(GT3).

2.1 Introduction

Many real-world data can be naturally represented as graphs, such as social networks [19, 122]

and molecules [9, 39, 126]. Graph neural networks (GNNs) [7, 62, 68], a successful generalization

of deep neural networks (DNNs) over the graph domain, typically refine node representations via

information aggregation among nodes and feature transformation that can be summarized as the graph

representation via graph pooling operation. GNNs have been empirically and theoretically proven

to be effective in graph representation learning, and have achieved revolutionary progress in various

graph-related tasks, including node classification [52, 62, 106], graph classification [120, 69, 126]

and link prediction [51]. Graph classification is one of the most important tasks on graphs,

which aims to predict some properties of graphs. There are lots of real-world scenarios for graph

classification, such as predicting molecular property to help drug discovery [17], forecasting the

movie type based on the actor/actress connection graphs [35] and predicting the collaboration topic

and research interests of an academic collaboration graph [52].

In the graph classification task, we typically train a graph neural network from the training graph

5



Table 2.1: Graph classification results for ogbg-molhiv (Results from the paper [39]).

Method ROC-AUC(%)
Training Validation Test

GCN 88.65±1.01 83.73±0.78 74.18±1.22
GIN 93.89±2.96 84.1±1.05 75.2±1.30

samples and then utilize the trained model to make predictions for the test graph samples. This

training strategy works effectively when the training samples and the test samples come from the

same distribution. However, this assumption may not hold in many real scenarios. Often, there

could exist gaps between the distributions of the training data and the test data, and the model

performance will degrade significantly due to such gaps [101, 75]. For example, as reported by the

OBG paper [39] (as shown in Table 2.1), there exist significant gaps between the performance of

both the GCN [52] model and the GIN [120] model in the training set and the test set in predicting

whether HIV virus replication is inhibited by a molecular. Besides, in the graph domain, graph

samples can be very diverse in terms of their graph structures. As demonstrated in Figure 2.1, two

graph samples from the same dataset can be very different from each other in terms of structural

properties. This also brings in new challenges for the distribution shift problem in graphs. Although

recognized by existing works [39, 18], this problem has rarely been explored for GNNs.

Recently, test-time training [63, 101], a newly-proposed paradigm, has been successfully

proposed to address the distribution shift issue for images [6, 101]. Specifically, it adapts the

model trained on the training set via solving a self-supervised learning task, such as image rotation,

Figure 2.1: Two graph samples from D&D dataset [74], which present very different structure
properties.
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specifically for every single image at the test time. This paradigm has great potential to solve the

distribution graph problem for GNNs since it not only aims at improving the model generalization

but also can be designed to specifically adapt a GNN model for each single graph sample with

unique structure information.

However, it is challenging to design a test-time training framework for graph neural networks

over graph data. First, what self-supervised learning task to design for test-time training in graph

data? Graph data usually consists of not only node attribute information but also abundant structure

information. Thus, it is important to blend these two kinds of graph information into the design

of the self-supervised learning task. Second, how to mitigate the potential severe feature space

distortion during the test time? The representation space can be severely tortured in some directions

that are undesirable for the main task in the test-time training [63] since the model is adapted solely

based on one sample and a self-supervised learning task. This problem can be much more severer

for graph data, as graph samples can vary greatly from each other in both the node attributes and the

graph structures. Third, as the first work to design a test-time training framework for GNNs, it is

desired to understand the rationality of test-time training over GNNs.

In order to solve these challenges, we propose Graph Test-Time Training with Constraint

(GT3), a test-time training framework with model adaptation constraints and carefully designed

self-supervised learning tasks, especially for graph neural networks. Our key contributions are

summarized as follows:

• To the best of our knowledge, this work is the first to design a test-time training framework for

the graph neural networks for graph classification tasks.

• We propose to use a two-level self-supervised learning task in the test-time training framework

for GNNs, consisting of both the local (node-node level) contrast learning and global (node-

graph level) contrast learning, which can fully exploit the attribute and structure information

of each graph.

• We have designed an effective adaptation constraint in the test-time training process for
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GNNs, which can help prevent excessive feature space distortion and increase the framework’s

robustness and performance.

• We have conducted exploratory studies and theoretical analysis to understand the rationality

of the design of the proposed framework.

2.2 Preliminary

In this section, we will introduce the key notations used in this paper by defining the graph

classification problem and reviewing the general structure of Graph Neural Networks (GNNs).

2.2.1 Graph Classification

Graph classification is one of the most common graph-level tasks. It aims at predicting some

properties of graphs. There is a wide range of applications for graph classification, such as predicting

the molecule properties to assist drug discovery [17] and forecasting whether a protein function as

enzymes [126]. Suppose that there is a training set G = {⌧1,⌧2, . . . ,⌧=}, consisting of = graphs.

For each graph, ⌧8 2 G, its structure information, node attribute information and label information

can be denoted as ⌧8 = (A8,X8, H8), where A8 is the graph adjacency matrix, X8 represents the node

attributes and H8 is the label. The goal of graph classification is to learn a classification model

5 = (·; )) based on G which can be used to predict the label of a new graph ⌧0.

2.2.2 Graph Neural Networks

Graph neural networks (GNNs) have successfully extended deep neural networks to graph domains

and have been widely applied to numerous graph tasks, including node classification [52, 106],

graph classification [126, 120] and link prediction [51]. Generally, graph neural networks consist of

several layers, and typically each GNN layer refines node representation by feature transforming,

propagating, and aggregating node representation across the graph. According to [24], the node

representation update process of node E in the ;-th GNN layer of an !-layer GNN can be formulated

as follows:

a;
E
= �⌧⌧'⇢⌧�)⇢; (h(;�1)

D
, D 2 NE), ; 2 [!] (2.1)
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h;
E
= ⇠$"⌫�#⇢; (h(;�1)

E
, a;
E
), ; 2 [!], (2.2)

where �⌧⌧'⇢⌧�)⇢ is the aggregation function aggregating information from neighborhood

nodes D 2 NE , and ⇠$"⌫�#⇢ is the combination function updating the node representation in

the ;-th layer based on the aggregated information 0;
E

and the node representation of E from the

previous layer (; � 1). For simplicity, we summarize the node representation update process in the

;-th GNN layer, consisting of Eqs 2.1 and 2.2, as follows:

H; = ⌧## (A,H(;�1); );), ; 2 [!], (2.3)

where A is the adjacency matrix, H; denotes node representations of all the nodes in the ;-th GNN

layer, and ); indicates the learnable parameters in the ;-th layer. Note that H0 is the input node

attributes X.

For graph classification, an overall graph representation is summarized from the !-th GNN layer

based on the node representations by a readout function, which will be utilized by the prediction

layer to predict the label of the graph:

h⌧ = '⇢�⇡$*) (H!

), (2.4)

2.3 The Proposed Test-time Training Framework for GNNs

In this section, we introduce the proposed framework of Graph Test-Time Training with Constraint

(GT3) and detail its key components. We first discuss the overall process, then detail the two-level

SSL task and finally describe the adaptation constraint to mitigate the potential issue of feature

distortion in GT3.

2.3.1 An Overview

Suppose that the graph neural network for the graph classification task consists of ! GNN layers,

and the learnable parameters in the ;-th layer are denoted as ); . The overall model parameters

can be denoted as )<08= = ()1, )2, . . . , )! , %<), where %< is the parameters in the prediction layer.

In this work, we mainly focus on the graph classification task, which is named as the main task
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in the test-time training framework. Given the training graph set G = (⌧1,⌧2, . . . ,⌧=) and its

corresponding graph label setY = (H1, H2, . . . , H=). The main task is to solve the following empirical

risk minimization problem:

min
)<08=

1
=

=’
8=1

L< (A8,X8, H8; )<08=),⌧8 2 G, (2.5)

where L< (·) denotes the loss function for the main task.

In addition to the main task, self-supervised learning (SSL) tasks also play a vital role in the

test-time training framework. As informed by [63], the SSL tasks should be as much information as

possible. Also, the more correlated the SSL task and the main task are, the more likely the test-time

training will benefit the main task. Given the great success of contrastive learning, methods have

been achieved as auxiliary tasks in graph-related tasks, in this work, we carefully design a two-level

graph contrastive learning task as the SSL task (details in Section 2.3.2). For simplicity, the loss

for any self-supervised learning task is denoted as LB (·). With the main task and the SSL task, an

overall of the proposed framework GT3 is shown in Figure 2.2. It consists of three key processes:

(1) the training process (Figure 2.2(a)); (2) the test-time training process (Figure 2.2(b)) and (3) the

inference process (Figure 2.2(c)).
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Figure 2.2: An Overview of the Proposed Framework GT3.
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The Training Process. Given the training graphs G, the training process is to train the model

parameters with the main task and the SSL task. The key challenge is how to integrate the main

task and the SSL task. To tackle this challenge, we conduct an empirical study where we train

two GNN models separately by the main task and the SSL task, and we found that these two

GNN models will extract similar features by their first few layers. More details can be found

at Section 2.5.2. This empirical finding paves us a way to integrate the main task and the SSL

task: we allow them to share the parameters in the first few layers as shown in Figure 2.2(a). We

denote the shared model parameters as )4 = ()1, )2, . . . , ) ), where  2 {1, 2, . . . , !}. The shared

component is named shared graph feature extractor in this work. The model parameters that

are specially for the main task are denoted as )< = () +1, . . . , )! , X<), described as the graph

classification head. Correspondingly, the SSL task has its own self-supervised learning head,

denoted as )B = ()
0

 +1, . . . , )
0

!
, %B), where %B is the prediction layer for the SSL task. To summarize,

the model parameters for the main task can be denoted as )<08= = ()4, )<), the model parameters

for the SSL task can be represented as )B4; 5 = ()4, )B), and these for the whole framework can

be denoted as )>E4A0;; = ()4, )<, )B). In the training process, we train the whole framework by

minimizing a weighted combination loss of L< (·) and LB (·) as follows:

min
)4,)<,)B

1
=

#’
8=1

L< (A8,X8, H8; )4, )<)+

WLB (A8,X8, H8; )4, )B),⌧8 2 G, (2.6)

where W is a hyper-parameter balancing the main task and the self-supervised task in the training

process.

The Test-time Training Process. Given a test graph ⌧C , the test-time training process will

fine-tune the model via the SSL task as illustrated in Figure 2.2(b). Specifically, given a test graph

sample ⌧C = (AC ,XC), the shared graph feature extractor and the self-supervised learning head are

fine-tuned by minimizing the SSL task loss as follows:

min
)4,)B

LB (AC ,XC ; )4, )B), (2.7)
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Suppose that )⇤
>E4A0;;

= ()⇤
4
, )⇤
<
, )⇤

B
) is the optimal parameters from minimizing the overall loss of

Eq 2.6 from the training process. In the test process, given a specific test graph sample ⌧C , the

proposed framework further updates )⇤
4

and )⇤
B

to )⇤
0

4
and )⇤

0

B
by minimizing the SSL loss of Eq 2.7

over the test graph sample ⌧C .

The Inference Process. The inference process is to predict the label of the test graph ⌧C based on

the finetuned model by the test-time training as demonstrated in Figure 2.2(c). In particular, the

label of ⌧C is predicted via the GNN model 5 (·; )⇤0
4
, )⇤
<
) as:

ĤC = 5 (XC ,AC ; )⇤
0

4
, )⇤
<
). (2.8)

2.3.2 Self-supervised Learning Task for GT3

An appropriate and informative SSL task is the key to the success of test-time training [63].

However, it is challenging to design an appropriate SSL task for test-time training for GNNs. First,

graph data is intrinsically different from images, some common properties such as rotation invariance
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do not exist in graph data, thus most SSL tasks commonly adopted by existing test-time training

are invalid in graph data. Second, most existing SSL tasks for graph classification are intra-graph

contrastive learning based on the difference among diverse graph samples [99, 31]. These are not

applicable for the test-time training where we aim at specifically adapting the model for every single

graph during the test time. Third, graph data usually consists of not only node attribute information

but abundant and unique structure information. It is important to fully leverage these two kinds of

graph information into the design of the SSL task since an informative SSL task is one of the keys to

the success of test-time training.

Motivated by the success of contrastive learning in graph domains, we propose to use a two-level

SSL task from both local and global perspectives for GT3, which fully exploits the graph information

from both the node-node level and node-graph level. The proposed self-supervised learning task is

based on graph characteristics, instead of the properties in Euclidean data. In addition, the proposed

SSL task is not built up based on the differences among distinct graphs, thus it can be naturally

applied to a single graph. We empirically validate that the global (node-graph level) contrastive

learning task and the local (node-node level) contrastive learning task in the proposed two-level SSL

task is necessary for GT3 since they are complementary to each other across datasets. More details

about this empirical study can be found in Section 2.5.2. Next, we will detail the global contrastive

learning task and the local contrastive learning task.

2.3.2.1 Global Contrastive Learning

Global contrastive learning aims at helping node representation capture global information of the

whole graph. Overall, global contrastive learning is based on maximizing the mutual information

between the local node representation and the global graph representation. Specifically, as shown in

Figure 2.3, given an input graph sample ⌧, different views can be generated via various types of

data augmentations. For global contrastive learning, two views are adopted: one is the raw view

+84F0, where no changes are made on the original graph; the other one is augmented view +84F1,

where node attributes are randomly shuffled among all the nodes in a graph. With these two graph

views, we can get two corresponding node representations Z0 and Z1 via a shared GNN model.
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After that, a global graph representation g0 can be summarized from the node representation matrix

Z0 from the raw view +84F0 via a multiplayer perceptron (MLP). In our work, a single-liner layer

model is adopted as the MLP.

Following [107], the positive samples in the global contrastive learning consist of node-graph

representation pairs, where both the node representation and graph representation come from the

raw view +84F0. The negative samples consist of node-graph representation pairs where node

representations come from +84F1 and graph representation comes from +84F0. A discriminator

D is employed to compute the probability score for each pair, and the score should be higher for

the positive pair and lower for the negative pair. In our work, we set D(ZB8
, g0) = ZB8

⇤ g0, where

Zs8 denotes the representation of node 8 from +84FB. The objective function for global contrastive

learning is summarized as follows:

L6 = �
1

2#
(

#’
8=1

(;>6D(Z08, g0) + ;>6(1 �D(Z18, g0))), (2.9)

where # denotes the number of nodes in the input graph.

2.3.2.2 Local Contrastive Learning

In global contrastive learning, the model aims at capturing the global information of the whole

graph into the node representations. In other words, the model attempts to learn an invariant graph

representation from a global level and blend it into the node representations. However, graph data

consists of nodes with various attributes and distinct structural roles. To fully exploit the structure

information of a graph, in addition to the invariant graph representation from a global level, it is also

important to learn invariant node representations from a local level. To achieve this, we propose

local contrastive learning, which is based on distinguishing different nodes from different augmented

views of a graph.

As shown in Figure 2.3, given an input graph ⌧, we can generate two views of the graph via

data augmentation. Since the local contrastive learning is to distinguish whether two nodes from

different views are the same node of the input graph, the adopted data augmentation should not
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make large changes on the input graph. To meet this requirement, we adopt two adaptive graph data

mechanisms – adaptive edge dropping and adaptive node attribute masking. Specifically, the edges

are dropped based on the edge importance in the graph. The more important an edge is, the less

likely it would be dropped. Likewise, the node attributes are masked based on the importance of

each dimension of node attributes. The more important the attribute dimension is, the less likely it

would be masked out. Intuitively, the higher degree a node holds, the more important role it plays in

the whole graph. Therefore, in this work, the importance of both the edges and node attributes are

computed based on the node degree. In particular, the importance score of an edge is computed as

the average degree of its connected nodes and the importance score of an attribute is the average of

the products of its norm over all nodes and the degree of the corresponding node in the whole graph.

After the described data augmentation, two views of an input graph are generated and serve as

the input of the shared GNN model. The outputs are two node representation matrices Z2 and Z3

corresponding to two views. Note that the basic goal of local contrastive learning is to distinguish

whether two nodes from augmented views are the same node in the input graph. Therefore, (Z28,Z38),

(8 2 {1, . . . , #}) denotes a positive pair, where # is the number of nodes. (Z28,Z3 9 ) and (Z28,Z2 9 )

(8, 9 2 {1, . . . , #} and 8 < 9) denote an intra-view negative pair and an inter-view negative pair,

respectively. Inspired by InfoNCE [79, 141], the objective for a positive node pair (Z28,Z38) is

defined as follow:

l2 (Z28,Z38) = ;>6
⌘(Z28,Z38)

⌘(Z28,Z38) +
Õ
9<8 ⌘(Z28,Z3 9 ) +

Õ
9<8 ⌘(Z28,Z2 9 )

, (2.10)

where ⌘(Z28,Z3 9 ) = 4
2>B(6(Z28),6(Z3 9 ))/g, 2>B() denotes the cosine similarity function, g is a

temperature parameter and 6() is a two-layer perceptron (MLP) to further enhance the model

expression power. The node representations refined by this MLP are denoted as Z0

2 and Z0

3,

respectively.

Apart from the contrastive objective described above, a decorrelation regularizer has also been

added to the overall objective function of the local contrastive learning, in order to encourage

different representation dimensions to capture distinct information. The decorrelation regularizer is
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applied over the refined node representations Z0

2 and Z0

3 as follows:

l3 (Z
0

2) =
���Z0

2
)Z0

2 � �
���2

�

. (2.11)

The overall objective loss function of local contrastive learning is denoted as follows:

L; = �
1

2#

#’
8=1

(l2 (Z28,Z38) + l2 (Z38,Z28)) �
V

2
(l3 (Z

0

2) + l3 (Z
0

3)), (2.12)

where V is the balance parameter.

2.3.2.3 The Overall Objective Function

The overall objective loss function for the SSL task for GT3 is a weighted combination of the

global contrastive learning loss and the local contrastive loss as follows:

LB = L6 + UL; , (2.13)

where U is the parameter balancing the local contrastive learning and the global contrastive learning.

By minimizing the SSL loss defined in Eq 2.13, the model not only captures the global graph

information but also learns the invariant and key node representations.

2.3.3 Adaptation Constraint

Directly applying test-time training could lead to severe representation distortion, since the model

could overfit to the SSL task for a specific test sample [63], which harms the model performance for

the main task. This problem may be riskier for test-time training for graph data since graph samples

can vary from each other in not only node attributes but also graph structures. To mitigate this issue,

we propose to add an adaptation constraint into the objective function during the test-time training

process. The core idea is to put a constraint over the embedding spaces outputted by the shared

graph feature extractor between the training graph samples and the test graph sample. In such a

way, there is an additional constraint for the embedding of the test graph sample to be close to the

embedding distribution of training graph samples which is generated with the guidance of the main

task, in addition to just fitting the SSL task.

The shared graph feature extractor consists of the first  GNN layers. Let us denote the node

embeddings outputted by the shared graph feature extractor for the training graphs {⌧1,⌧2, . . . ,⌧=}
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Figure 2.4: The Adaptation Constraint in the Test-time Training Process.

in the training process as {H 

1 ,H
 

2 , . . . ,H
 

=
}. Once the training process completes, we first get

graph embeddings via a read-out function h 
8

= '⇢�⇡$*) (H 

8
), and then summarize two

statistics of these graph embeddings: the empirical mean ` = 1
=

Õ
=

8
h 
8

and the covariance matrix

⌃ = 1
=�1 (H

 
)H 

� (I)H 
)
)
(I)H 

)), where H = {h 1
)

, . . . , h 
=

)

}. During the test-time training

process, given an input test graph ⌧C , we also summarize embedding statistics of ⌧C and its

augmented views and denote them as `C and ⌃C . The adaptation constraint is to force the embedding

statistics of the test graph sample to be close to these of training graph samples, which can be

formally defined as:

L2 = k` � `C k
2
2 + k⌃ � ⌃C k2

�
. (2.14)

2.4 Theoretical Analysis

In this section, we explore the rationality of test-time training for GNNs from a theoretical perspective.

The goal is to demonstrate that the test-time training framework can be beneficial for GNNs in

the graph classification task. Next, we first describe some basic notions, and then develop two
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supportive theorems to achieve the goal.

For a graph classification task, suppose that there are ⇠ classes and we use a !-layer simplified

graph convolution (SGC) [115] with the sum-pooling layer to learn graph representation, i.e.,

g = 5GNN(A,X; )) = pool(A!XW1)W2 = 1TALX) , (2.15)

where A and X are the input graph adjacency matrix and node attributes, 1 is a vector with

all elements as 1, and ) = W1W2 denotes the model parameters. Note that we use SGC for

this theoretical analysis since SGC has a similar filtering pattern as GCN but its architecture is

simpler. Then, the B> 5 C<0G function is applied over the graph representation g to get the prediction

probability p2:

p2 =
4

g2Õ
⇠

8=14
g8
, (2.16)

where
Õ
⇠

2=1 p2 = 1. The cross-entropy loss is adopted as the optimization objective for the SGC

model, i.e.,

L(A,X, H; )) = �

⇠’
2=1

1H=2 log(p2), (2.17)

where H is the graph ground-truth label.

Theorem 1. Let L(A,X, H; )) be defined based on Eqs 2.15 and 2.16, 2.17, i.e., the cross-entropy

loss for softmax classification for a !-layer SGC with sum-pooling for a graph A,X, H. It is convex

and V-smooth in ) , and kr)L(A,X, H; ))k  ⌧
0 for all ) , where ⌧ 0 is a positive constant.

Proof Sketch. We demonstrate that the cross-entropy loss for softmax classification is convex and

V-smooth by proving its Hessian Matrix is positive semi-definite and the eigenvalues of the Hessian

Metrix are smaller than a positive constant. As 5GNN defined in Eq 2.15 is a linear transformation

mapping function, thus it will not change these properties, which completes the proof of Theorem 1.

Proof details can be found in Appendix A.1.1 .

Theorem 2. Let L< (G, H; )) denote a supervised task loss on a instance G, H with parameters

), and LB (G; )) denotes a self-supervised task loss on a instance G also with parameters ).

Assume that for all G, H, L< (G, H; )) is differentiable, convex and V-smooth in ), and both
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kr)L< (G, H; ))k, kr)LB (G; ))k  ⌧ for all ) , where⌧ is a positive constant. With a fixed learning

rate [ = n

V⌧
2 , for every G, H such that

hr)L< (G, H; )),r)LB (G; ))i > n , (2.18)

we have

L< (G, H; )) > L< (G, H; ) (G)), (2.19)

where ) (G) = ) � [r)LB (G; )).

The detailed proof is provided in Appendix A.1.2. Theorem 2 suggests that if the objective

function of the main task is differentiable, convex and V-smooth, there exists a SSL task meeting

some requirements and the test-time training via this SSL task can make the main task loss decrease.

Remark. From Theorem 1, we know that the objective loss function for the SGC model for graph

classification is differentiable, convex and V-smooth. Combined with Theorem 2, we can conclude

that test-time training can be beneficial for the GNN performance on graph classification.

2.5 Experiments

In this section, we validate the effectiveness and explore the rationality of the proposed GT3 via

empirical studies. In the following subsections, the experimental settings are first introduced. Then,

we conduct a layer-wise feature space exploration of GNN models trained for different tasks to

further validate the rationality of the design of GT3. Next, the classification performance comparison

of the proposed GT3 and baseline methods is discussed. Finally, we perform an ablation study and

hyper-parameter sensitivity exploration.

2.5.1 Experimental Settings

In this study, we implement the proposed GT3 on two well-known GNN models: the Graph

Convolutional Network (GCN) [52] and the Graph Isomorphism Network (GIN) [120]. Empirically,

we implement four-layer GCN models and three-layer GIN models with max-pooling. The layer

normalization is adopted in the implementations. The hyper-parameters are selected based on the

validation set from the ranges listed as follows:
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• Hidden Embedding Dimension: 32,64,128

• Batch Size: 8,16,32,64

• Learning Rate: [1e-5, 5e-3]

• Dropout Rate: 0.0,0.1,0.2,0.3,0.4,0.5

For the balance hyper-parameters U, V, and W in the SSL task, we determine their values

based on the joint training of the SSL task and the main task on the validation set. As for

performance evaluation, we conduct experiments on data splits generated by 3 random seeds and

model initialization of 2 random seeds on DD, ENZYMES, and PROTEINS, and report the average

and variance values of classification accuracy. For ogbg-molhiv, we do an empirical study on

the fixed official data split with model initialization of 2 random seeds and report the average

performance in terms of ROC-AUC. We conduct experiments on four common graph datasets as

follows:

• DD [74]: a dataset consists of protein structures of two categories, where each node denotes

an amino aid.

• ENZYMES [74]: it consists of enzymes of six categories, where each enzyme is represented

as its tertiary structure.

• PROTEINS [74]: a dataset contains protein structures of two categories, where each node

denotes a secondary structure element.

• ogbg-molhiv [39]: it includes molecules of two categories (carrying HIV virus or not), where

each node is an atom.

In order to simulate the scenario where the test set distribution is different from the training

set, graph samples from DD, ENZYMES, and PROTEINS are split into two groups based on their

graph size (number of nodes). Next, we randomly select 80% of the graphs from the small group

as the training set and the other 20% of the graphs as the validation set. The test set consists of
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(a) ENZYMES. (b) PROTEINS.

Figure 2.5: CKA Values of Representation from Different Layers for Various Tasks. Note that "M"
denotes the graph classification task; "C" indicates the proposed GT3 SSL task; "G" is the global
contrastive learning task, and "L" is the local contrastive learning task.

graphs randomly chosen from the larger group and the number of test graphs is the same as that of

the validation set. For the ogbg-molhiv, we adopt the official scaffold splitting, which also aims

at separating graphs with different structures into different sets. For simplicity, these data splits

described above are denoted as OOD data split. To validate the reasonability of the OOD data

split, we examine the training, validation, and test performance of GCN, and the results are shown

in Table 2.2. Note that the performance in ogbg-molhiv is copied from [39]. From the table, we

indeed observe a big performance gap.

Table 2.2: Graph Classification Performance Gap of GCN on Training Set, Validation Set, and Test
Set based on OOD Data Split. Note that the performance metric for ogbg-molhiv is ROC-AUC(%)
and that for others is Accuracy(%).

Dataset Graph Classification Performance
Training Validation Test

DD 92.8±7.13 73.82 ±3.36 49.43 ±15.30
ENZYMES 87.43±12.34 65.22 ±3.76 37.43 ±5.03
PROTEINS 77.5±2.07 77.78 ±1.93 68.46 ±7.17
ogbg-molhiv 88.65±1.01 83.73±0.78 74.18±1.22

2.5.2 Layer-wise Representation Exploration

Test-time training framework is designed to share the first few layers of Convolutional Neural

Networks (CNNs) in the existent work. This design is very natural since it is well received that the
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first few layers of CNNs capture similar basic patterns even when they are trained for different tasks.

However, it is unclear how GNNs work among different tasks. To answer this question, we explore

the representation similarity of GNNs trained for different tasks. To be specific, we train four GCN

models with exactly the same architectures on ENZYMES and PROTEIN for four different tasks:

the graph classification task defined in Eq 2.5, the proposed GT3 SSL task with loss described

in Eq 2.13, the SSL tasks with the local contrastive loss (Eq 2.12) and the global contrastive loss

(Eq 2.9). Then we leverage Centered Kernel Alignment (CKA) [54] as a similarity index to evaluate

the representation similarity of different GCN models layer by layer.

(a) DD. (b) ENZYMES.

(c) PROTEINS. (d) ogbg-molhiv.

Figure 2.6: Performance Comparison of GCN and GIN on Four Datasets based on OOD Data
Split. Note that the performance metric for ogbg-molhiv is ROC-AUC(%) and that for others is
Accuracy(%).

The similarity results are demonstrated in Figure 2.5, where “M" denotes the graph classification
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task, “C" indicates the proposed GT3 SSL task, “G" is the global contrastive learning task and “L"

is the local contrastive learning task. "M-C" represents the representation pair of "M" and "C" to be

compared. The representation pair for other tasks are denoted similarly. We can make the following

observations. First, the representations for different tasks tend to be more similar to each other in the

lower layer. Second, the representation similarity for the same task pair may be different in different

datasets. The representations of the graph classification task and the global contrastive learning

task are more similar to each other compared to that of the graph classification task and the local

contrastive learning task in ENZYMES, while the observation is the opposite in PROTEINS. Third,

the representation similarity between local contrastive learning and global contrastive learning is

relatively lower, which reveals that they may learn knowledge that is complementary to each other.

These observations motivate us (1) to share the first few layers of GNNs in test-time training; and

(2) to develop the two-level SSL task for GT3, which is capable of capturing graph information

from both the local and global levels.

2.5.3 Performance Comparison

In this subsection, we compare the graph classification performance of GCN and GIN in three

mechanisms: (1) RAW model is trained only by the main task, (2) JOINT model is jointly trained

by the main task and the proposed two-level SSL task, and (3) GT3 model is learned by test-time

training. The comparison results are shown in Figure 2.6. Note that the performance of RAW in

ogbg-molhiv is copied from [39]. From the figure, we can observe that the joint training of the

proposed two-level SSL task and the main task can slightly improve the model performance in

some cases. However, the proposed GT3 is able to consistently perform better than both RAW

and JOINT, which demonstrates the effectiveness of the proposed GT3. To further demonstrate

the performance improvement from GT3, we summarize the relative performance improvement

of GT3 over RAW. The results are shown in Table 2.3 where the performance improvement can

be up to 43.3%. In addition to the performance comparison on the OOD data split, we have also

conducted a performance comparison on a random data split, where we randomly split the dataset

into 80%/10%/10% for the training/validation/test sets, respectively. The results demonstrate that
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Table 2.3: Relative Performance Improvement of GT3 over RAW.

Models Datasets
DD ENZYMES PROTEINS ogbg-molhiv

GCN +43.3% +7.81% +5.25% +3.13%
GIN +6.09% +13.67% +1.63% +5.21%

GT3 can also improve the classification performance in most cases, and more results can be found

in Appendix A.2.

2.5.4 Ablation Study

In this subsection, we conduct an ablation study to understand the impact of key model

components on the performance of the proposed GT3 including the SSL task and the adaptation

constraint. This ablation study is conducted on DD, ENZYMES, and PROTEINS with the GCN

model. Specifically, we study the effect of the adaptation constraint, global contrastive learning, and

local contrastive learning by respectively eliminating each of them from GT3. These three variants

of GT3 are denoted as GT3-w/o-constraint, GT3-w/o-global, and GT3-w/o-local. The performance

is shown in Figure 2.7(a). We observe that the removal of each component will degrade the model’s

performance. This demonstrates the necessity of all three components.

(a) The Ablation Study of GT3. (b) The Effect of Different Shared Layers.

Figure 2.7: (a)The Ablation Study of GT3 and (b) The Effect of Different Shared Layers.
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2.5.5 The Effect of Shared Layers

We have also explored the effect of the number of shared layers on the performance of GPT3. To

be specific, we vary the number of shared layers of the GCN model in GT3 as {0, 1, 2, 4}. Note that

the model where the number of shared layers is zero denotes the model trained only by the main task.

The graph classification performance on DD, ENZYMES, and PROTEINS is shown in Figure 2.7(b).

From the figure, we can observe that most of the GT3 implementations with different shared layers

can improve the classification performance over their baseline counterparts, while an appropriate

choice of shared layers can boost the model performance significantly on some datasets such as DD.

2.6 Related Work

Test-Time Training. Test-time training with self-supervision is proposed in [101], which aims

at improving the model generalization under distribution shift via solving a self-supervised task

for test samples. This framework has empirically demonstrated its effectiveness in bridging the

performance gap between the training set and test set in the image domain [6, 21, 101]. There are

also works combining the test-time training and meta-learning learning [6], and attempting to apply

test-time training in reinforcement learning [28]. Apart from these applied researches, a recent work

tries to explore when test-time training thrives from a theoretical perspective [63].

Graph Neural Networks. Graph Neural Network is a successful generalization of Deep Neural

Network over graph data. It has been empirically and theoretically proven to be very powerful

in graph representation learning [120], and has been widely used in various applications, such as

recommendation [35, 19], social network analysis [102] and natural language processing [43, 11].

GNNs typically refine node representations by feature aggregation and transformation. Most existent

GNN models can be summarized into a message-passing framework consisting of message passing

and feature update [24]. There is also another perspective unifying many GNN models as methods

to solve a graph signal denoising problem [67]. Overall, GNN is an active research field and there

are a lot of works focusing on improving the performance, robustness, and scalability of the GNN

models [12, 46, 62].

26



2.7 Limitations

To the best of our knowledge, GT3 is the first test-time training framework specially designed for

GNNs. While we have carefully designed each component of GT3, there still exist some limitations

in the proposed framework at its current stage. First, it is very challenging to determine when to

stop the model adaptation process during the test time. In other words, how to select the optimal

model during the test-time training process is very hard, since there is no validation set. Although

we have tried some heuristic methods to define the stopping criterion for model adaptation during

the test-time training process, none of them work effectively on all the test samples from different

datasets. After the empirical study, we end up with a simple stopping criterion, that is, to cease

the model adaptation process after a fixed number of training steps. However, this criterion is very

crude and may fail to find an optimal model for some test samples, especially when the test samples

are very diverse. Second, although we have theoretically illustrated that the test-time training

framework can be beneficial for GNNs on the graph classification task, we have not provided a

principled method with theoretical guarantees, to develop self-supervised learning tasks that can

benefit different main tasks in the graph test-time training framework. In other words, for different

graph-related tasks, we need to design new self-supervised learning tasks for the test-time training

based on intuitions and some preliminary study.

2.8 Conclusion

In this work, we design a test-time training framework for GNNs (GT3) for the graph classification

tasks, with the aim to bridge the performance gap between the training set and the test set when

there is a data distribution shift. As the first work to combine test-time training and GNNs, we

empirically explore the rationality of the test-time training framework over GNNs via a layer-wise

representation comparison of GNNs for different tasks. In addition, we validate that the GNN

performance on graph classification can be benefited from test-time training from a theoretical

perspective. Furthermore, we demonstrate the effectiveness of the proposed GT3 on extensive

experiments and understand the impact of the model components via ablation study. As future work,

it is worth studying test-time training for GNNs for other tasks on graphs such as node classification.
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Also, it is interesting to explore how to automatically determine the number of shared layers and

choose appropriate SSL tasks for various main tasks on different datasets.
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CHAPTER 3

CUSTOMIZED GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have greatly advanced the task of graph classification. Typically, we

first build a unified GNN model with graphs in a given training set and then use this unified model to

predict labels of all the unseen graphs in the test set. However, graphs in the same dataset often have

dramatically distinct structures, which indicates that a unified model may be sub-optimal given an

individual graph. In this chapter, different from the training perspective proposed in Chapter 2, we

propose to develop customized graph neural networks for graph classification from a novel learning

perspective. Specifically, we propose a novel customized graph neural network framework, i.e.,

Customized-GNN. Given a graph sample, Customized-GNN can generate a sample-specific model

for this graph based on its structure. Meanwhile, the proposed framework is very general that can be

applied to numerous existing graph neural network models. Comprehensive experiments on various

graph classification benchmarks demonstrate the effectiveness of the proposed framework.

3.1 Introduction

Graphs are natural representations for many real-world data such as social networks [27, 52, 122],

biological networks [9, 95] and chemical molecules [24, 91]. A crucial step to perform downstream

tasks on graph data is to learn better representations. Deep neural networks have demonstrated

great capabilities in representation learning for Euclidean data and thus have advanced numerous

fields including speech recognition [77], computer vision [33], and natural language processing [15].

However, they cannot be directly applied to graph-structured data since graphs have complex

topological structures. Recently, graph neural networks (GNNs) have generalized deep neural

networks to graph data. GNNs typically update node representations by transforming, propagating,

and aggregating node features across the graph. They have boosted the performance of many

graph-related tasks such as node classification [52, 27], link prediction [22, 105, 134], and graph

classification [69, 58, 23, 126].

Graph classification is one of the most important and prevalent graph-related tasks [18], and in
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(a) Node size distribution. (b) A graph with 31 nodes.

(c) A graph with 302 nodes. (d) Classification accuracy.

Figure 3.1: An illustrative example of varied structural information and its impact on the performance
of graph neural network-based graph classification. (a) demonstrates the distribution of graph size
(i.e., the number of nodes) for protein graphs in the D&D dataset, where the graph size varies
dramatically from 30 to 5, 748. ; (b) and (c) show two graphs sampled from the D&D dataset, which
present very different structural properties; (d) shows classification performance of three models
trained on training sets with various graph sizes.

this work, we aim to advance graph neural networks for the graph classification task. There are

numerous real-world applications for graph classification. For example, proteins can be denoted as

graphs [16], and the task to infer whether a protein functions as an enzyme or not can be regarded as

a graph classification task; and it can also be applied to forecast Alzheimer’s disease progression

in which individual brains are represented as graphs [97]. Unlike data samples in classification

tasks in other domains such as computer vision [89] and natural language processing [55], graph

samples in the graph classification task are described not only by the input (node) features but
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their graph structures. Both the input node features and the graph structures play crucial roles

in the graph classification tasks [126, 69, 23]. In reality, graphs in the same data set can present

significantly different structural properties. Figure 3.1(a) demonstrates the distribution of graph size

(i.e., the number of nodes) for protein graphs in the D&D dataset [16], where the graph size varies

dramatically from 30 to 5, 748. We further illustrate two graphs sampled from the D&D dataset in

Figures 3.1(b) and 3.1(c), respectively. These two graphs present very different structural properties

such as the number of nodes, graph shapes, and diameters.

The above investigations indicate that graphs in the same data set could have dramatically

distinct structural properties. It naturally raises the question – whether we should treat these graphs

differently? To investigate this question, we take the graph size as the representative structure

property and demonstrate how it affects the graph classification performance. Specifically, we divide

graphs from D&D into two groups based on their graph size – one for graphs with a small number

of nodes and the other for graphs with a large number of nodes. Then, we split each group into a

training set and a test set. Next, we train three GNN models 1 based on three training sets – the small

one, the large one, and the overall (a combination of the small and large one), separately. Then,

we test their performance on the two test sets. The results are shown in Figure 3.1(d). In the test

set with small/large graph sizes, the model trained on the training set with the same graph size can

significantly outperform the other two models. Investigations and consistent observations on more

settings can be found in Section 3.2.

These investigations suggest that a unified model is not optimal for graphs with diverse structure

properties and efforts are desired to consider the structure-property difference among graphs. Hence,

in this paper, we aim to learn “customized models” for graphs with different structural properties. A

natural way is to divide the dataset into different splits according to structure properties and train a

model for each split. However, we face enormous challenges to achieve this goal in practice. First,

there are potentially several structure properties (graph size, density, etc.) affecting the performance,

and we have no explicit knowledge about how the graphs should be split according to these properties.
1The GNN model for graph classification uses GCN [52] as the filtering operation and max-pooling as the pooling

operation.

31



Second, dividing the dataset leads to small training sets for the splits, which may not be sufficient to

train satisfactory models. To address these challenges, we propose a novel graph neural network

framework, Customized-GNN, for graph classification. The Customized-GNN framework is trained

on all graphs in the given training set (without splitting) and is able to produce customized GNN

models for each individual graph. Specifically, we design an adaptor, which is able to smoothly

adjust a general GNN model to a specific one according to the structural properties of a given

graph. The general GNN model and the adaptor are learned during the training stage simultaneously

utilizing all graphs.

Our major contributions are listed as follows: 1) We empirically observed that graphs in a given

dataset could have dramatically distinct structural properties. Furthermore, it is not optimal to

train a unified model for graphs with various structure properties for a graph classification task;

2) We propose a framework, Customized-GNN, which is able to generate a customized GNN

model for each graph sample based on its structural properties. The proposed framework is general

and can be directly applied to many existing graph neural network models; 3) We designed and

conducted comprehensive experiments on numerous graph datasets from various domains to verify

the effectiveness of the proposed framework.

3.2 Preliminary Data Analysis

In Figure 3.1, we have demonstrated that graphs in D&D have varied properties, which affected

the performance of GNNs for graph classification. In this section, we aim to further investigate

this phenomenon by answering the following two questions – (1) can the observations on D&D

be extended to other datasets? and (2) whether incorporating these properties into the models can

facilitate the performance?

We choose four representative graph datasets from different domains for this study including

D&D [16], ENZ [95], PROT [9] and RE-BI [122]. We checked the properties such as node

size and edge size. Similar to D&D, graphs in all datasets present very diverse properties. More

details about these datasets can be found in Appendix B.1. Following the same setting as D&D, we

divide each data into two groups according to the node size, i.e., large training and test (denoted as
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“L-training" and “L-test") and small training and test (indicated as “S-training" and “S-test"). The

results are demonstrated in Table 3.1. From the table, we make consistent observations with these in

D&D – models trained on one property group (e.g., L-training) cannot perform well on the other

property group (e.g., S-test).

Table 3.1: Graph classification accuracy on different node-size sets.

Accuracy (%) DD ENZ PROT RE-BI
S-test L-test S-test L-test S-test L-test S-test L-test

S-training 66.2 55.7 45.0 20.0 76.5 51.4 88.6 46.6
L-training 47.2 77.8 27.0 39.0 45.6 78.6 29.3 83.1

To answer the second question, we divide D&D into several subsets based on the node size and

then divide each subset into a sub-training set (80%) and a sub-test set (20%). We train models

on different sub-training sets separately and then test their performance on all the sub-test sets.

Specifically, we have trained four models on four different training sets from D&D, which are

training 1, training 2, training 3 containing graph samples with node sizes from different ranges,

and training which is the combination of training 1, 2 and 3. Then, we test four models on four test

sets, i.e., test 1, test 2, test 3 and test which is the combination of test 1, 2 and 3. Statistics about

these training sets are summarized in Table 3.2.

The performance of four models on the test sets is illustrated in Table 3.2. We note that the

model trained on a specific training set performs much better on the corresponding test set that

shares the same node size range than the other test sets. This suggests the potential to incorporate the

structure properties into the model training. In addition, though training 1, training 2, and training

3 have much fewer training samples, the models trained on specific training sets can achieve better

performance on the corresponding test sets compared to these trained from the entire training set (or

training). This indicates that a unified graph neural network that is trained from the entire training

set is not optimal for graphs with various structure properties in the test set.

Discussion. Via the preliminary data analysis, we have established: (1) graphs in real-world

data present distinct structure properties that tend to impact the graph classification performance

of GNNs; and (2) incorporating the difference has the potential to boost the graph classification
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Table 3.2: The classification accuracy of the models trained from four training sets in the D&D
dataset and Statistics for four training sets.

Training set Node size range #Graphs Accuracy(%)
test 1 test 2 test 3 test

training 1 [0,200] 369 76.1 41.2 26.7 50.9
training 2 [200,400] 392 43.5 75.3 82.2 62.4
training 3 [400,2000] 180 23.9 75.3 88.9 56.8
training [0,2000] 941 64.1 61.9 75.6 66.2
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Figure 3.2: An overview of the proposed customized graph neural networks. Given a set of graph
samples, the adaptor networks take their structure properties as input and generate corresponding
adaptor parameters, which are used to adapt a shared GNN model (this could be any GNN model
that works for the graph classification task) to a model specific for each graph sample. Each adapted
model incorporates the structure information of a graph, and thus, is customized for this graph
sample to make label predictions. With the predicted label and the ground truth label, we can
calculate the overall loss, which is used to guide the optimization of the adaptor networks and the
shared GNN model.

performance. These observations lay the foundations of the model design in the next section.

3.3 The Proposed Framework

In this section, we introduce the proposed framework Customized-GNN that has been designed for

graphs with inherently distinct structure properties.
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3.3.1 The Overall Design

As mentioned in earlier sections, graphs in real-world data inherently present distinct structural

properties. Thus, we are desired to build distinct GNN models for them. To achieve this goal, we

face tremendous challenges. First, we have no explicit knowledge about how the graph structure

properties will influence graph neural network models. Second, if we separately train different

models for graphs with different structure properties, we have to split the training sets for each

model; as a consequence, the training data for each model could be very limited. For example, in

the extreme case where each graph has unique graph structural properties, we only have one training

sample for the corresponding model. Third, even if we can well train distinct GNN models for

different graphs, during the test stage, for an unlabelled graph with unseen structural properties, it

is hard to decide which trained model we should adopt to make the prediction. In this work, we

propose a customized graph neural network framework, i.e., Customized-GNN, which can tackle

the aforementioned challenges simultaneously.

An overview of the architecture of Customized-GNN is demonstrated in Figure 3.2. The basic

idea of Customized-GNN is – it generates customized adaptor parameters for each graph sample

68 via an adaptor network with the graph structure properties as input. These generated adaptor

parameters are used to adapt a shared GNN model denoted as ⌧## (this could be any GNN model

that works for the graph classification task) to a model specific for the graph sample 68. The adapted

model ⌧##8 incorporates the structure information of graph 68, and thus, is customized for the

graph sample 68.

With the proposed Customized-GNN framework, the first challenge is handled, since the

influence is implicitly modeled by the adaptor networks, which can customize the shared GNN

model to a graph sample-specific one. Furthermore, Customized-GNN can be trained on the entire

training set without splitting it according to the graphs’ structure properties. This not only solves

the second challenge but also ensures that the trained model can preserve common knowledge from

the entire training set. The third challenge is also automatically addressed by the Customized-GNN

framework. Given an unseen graph 6 9 , the Customized-GNN framework first takes its graph
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structure information as input and generates adaptor parameters. Then, these generated adaptor

parameters can be used to customize the general GNN model to a customized one ⌧##9 to predict

the label of 6 9 .

Next, we introduce details about the adaptor network, the process of adapting a shared model to

a specific one for a given graph, and the time complexity analysis of the proposed framework.

3.3.2 The Adaptor Network

The goal of the adaptor network is to generate the adaptor parameters for a given graph. From the

preliminary data analysis, we have the intuition that the customized GNN model for a specific graph

sample should be correlated to its structural properties. However, there is no explicit knowledge

about how these structural properties influence graph neural network models. To model this implicit

mapping function, we propose to utilize a powerful neural network to generate the model adaptor

parameters from the observed structure information of a given sample.

In addition, graph neural networks often consist of several subsequent filtering and pooling

layers, which can be viewed as different GNN blocks. For example,  GNN blocks are shown

in Figure 3.3. The graph structure properties of a given sample may have different influences on

different GNN blocks. Hence, for each GNN block, we introduce one adaptor network to generate

adaptor parameters for each block.

Specifically, we first extract a vector s8 to denote the structure information of a given graph 68.

We will discuss more details about s8 in the experiment section. As shown in Figure 3.3, the adaptor

networks take the structure information s8 as input and generate the adaptation parameters for each

block. In the case where there are  blocks in the graph neural network, we have  independent

adaptor networks corresponding to the  blocks. Note that these adaptor networks share the same

input s8 while their outputs are different. Specifically, the adaptor network for the 9-th block can be

expressed as follows:

58 9 = ⌘ 9 (s8;⌦ 9 ), 9 = 1, . . . , , (3.1)

where ⌦ 9 denotes the parameters of the 9-th adaptor network and 58 9 denotes its output, which will

be used to adapt the 9-th learning block. The adaptor network ⌘ 9 can be modeled using any function.
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Figure 3.3: An overview of the GNN adaptation process. Given a specific graph sample 68, the
adaptor networks consisting of  blocks take its graph structure properties B8 as input, and generate
corresponding adaptor parameters to adapt each shared GNN block to get a customized GNN for 68.
This customized GNN is then used to make a prediction for 68.

In this work, we utilize feed-forward neural networks due to their strong capability. According to

the universal approximation theorem [38], a feed-forward neural the network can approximate any

nonlinear functions. For convenience, we summarize the process of the  adaptor networks with B8

as input below:

�8 = � (s8;⌦�), (3.2)

where �8 contains the generated adaptation parameters of all the GNN blocks for graph 68 and ⌦�

denotes the parameters of the  adaptor networks.

3.3.3 The Adapted Graph Neural Network

Any existing graph neural network model can be adapted by the Customized-GNN framework to

generate sample-specific models based on the structure information. Therefore, we first generally

introduce the GNN model for graph classification and describe how to adapt it given a specific

sample. Then, we illustrate how to adapt specific GNN models.

3.3.3.1 A General Adapted Framework

A typical GNN framework for graph classification contains two types of layers, i.e., the filtering

layer and the pooling layer. The filtering layer takes the graph structure and node representations as

input and generates refined node representations as output. The pooling layer takes graph structure
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and node representations as input to produce a coarsened graph with a new graph and new node

representations. A general GNN framework for graph classification contains  ? pooling layers,

each of which follows  5 stacking filtering layers. Hence, there are  =  ? ⇤  5 learning blocks in

the GNN framework. A graph-level representation can be obtained from these layers that can be

further utilized to perform the prediction. Given a graph sample 6 9 , we need to adapt each of the  

layers according to its adaptor parameters generated from the adaptor network. Via this process, we

can generate a GNN model ⌧##9 specific to 6 9 .

Without loss of generality, when introducing a filtering layer or a pooling layer, we use an

adjacency matrix A 2 R=⇥= and node representations X 2 R=⇥3 to denote the input of these layers

where = is the number of nodes and 3 is the dimension of node features. Then, the operation of a

filtering layer can be described as follows:

X=4F = 5 (A,X; \ 5 ) (3.3)

where \ 5 denotes the parameters in the filtering layer and X=4F 2 R=⇥3=4F denotes the refined

node representations with dimension 3=4F generated by the filtering layer. Assuming q 5 is the

corresponding adaptor parameter for this filtering layer, we adapt the model parameter \ 5 of this

filtering layer as follows:

\
<

5
= \ 5 ⇧ q 5 , (3.4)

where \<
5

is the adapted model parameter that has the same dimension as the original model

parameter \ 5 ; and ⇧ is the adaptation operator. The adaption operator can have various designs,

which can be determined according to the specific GNN model. We will provide the details of the

adaptation operator when we introduce concrete examples in the following subsections. Then, with

the adapted model parameters, we can define the adapted filtering layer as follows:

X=4F = 5 (A,X; \ 5 ⇧ q 5 ). (3.5)

On the other hand, the process of a pooling layer can be described as follows:

A=4F,X=4F = ?(A,X; \?), (3.6)
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where \? denotes the parameters of the pooling layer, A=4F 2 R==4F⇥==4F with ==4F < = is the

adjacency matrix for the newly generated coarsened graph and X=4F 2 R==4F⇥3=4F is the learned

node representations for the coarsened graph. Similarly, we adapt the model parameters of the

pooling layer as follows:

\
<

?
= \? ⇧ q?, (3.7)

which leads to the following adapted pooling layer:

A=4F,X=4F = ?(A,X; \? ⇧ q?), (3.8)

where q? is the adaptation parameters generated by the adaptor network for this pooling layer.

For convenience, we summarize a general GNN model as ⌧## (·|⇥⌧## ), where ⇥⌧## is the

parameters in all GNN blocks(i.e., \ 5 , \? in all filtering and pooling layers). Then, for a graph

sample 68, we can adapt the GNN model ⌧## (·|⇥⌧## ) to a customized model for 68 denoted as

⌧## (·|⇥⌧##⌃�8). Note that, as shown in Eq. (3.2), �8 contains adaptation parameters of all GNN

blocks for a graph sample 68. The adaptation operations in all GNN blocks (including filtering and

pooling layers) are summarized in ⇥⌧##⌃�8. There are numerous GNN models designed for graph

classification [22, 88, 69, 128]. The proposed framework can be applied to the majority of these

models, i.e., these models all can serve as the ⌧## (·|⇥⌧## ) model mentioned above. In this work,

we focus on three representative GNN models including GCN [52], DiffPool [126], and gPool [22].

We would like to leave the investigations of other GNN models as one future work. Next, we will

give details on how to adapt GCN and DiffPool since gPool follows a similar adaptation process.

3.3.3.2 Adapted GCN: Customized-GCN

Graph Convolutional Network (GCN) [52] is originally proposed for the semi-supervised node

classification task. The filtering layer in GCN is defined as follows:

X=4F = 5 (A,X; \ 5 ) = f(D̃�
1
2 ÃD̃�

1
2 XW), (3.9)

where Ã = A + I represents the adjacency matrix with self-loops, D̃ =
Õ
9
Ã8 9 is the diagonal degree

matrix of Ã and W 2 R3⇥3=4F denotes the trainable weight matrix in filtering layer and f(·) is a
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nonlinear activation function. With the adaptation parameter q 5 for this corresponding filtering

layer, the adapted filtering layer can be represented as follows:

X=4F = 5 (A,X; \ 5 ⇧ q 5 ) = f(D̃�
1
2 ÃD̃�

1
2 X(W ⇧ q 5 )). (3.10)

Specifically, we adopt FiLM [81] as the adaption operator. In this case, the dimension of the adaptor

parameter is 23, i.e., q 5 2 R23 . We split q 5 into two parts W 5 2 R3 and V 5 2 R3 and then the

adaptation operation can be expressed as follows:

W ⇧ q 5 = (W � 1A (W 5 , 3=4F)) + 1A (V 5 , 3=4F), (3.11)

where 1A (a, :) is a broadcasting function that repeats : times for the vector a; hence, 1A (W 5 , 3=4F) 2

R3⇥3=4F and 1A (V 5 , 3=4F) 2 R3⇥3=4F have the same shape as W and � denotes the element-wise

multiplication between two matrices.

To utilize GCN for graph classification, we introduce a node-wise max pooling layer to generate

graph representation from the node representations as follows:

x⌧ = ?(A,X; \?) = <0G(X), (3.12)

where x⌧ 2 R1⇥3=4F denotes the graph-level representation and <0G() takes the maximum over all

the nodes. Note that the max-pooling operation does not involve learnable parameters and thus no

adaptation is needed for it. We refer to an adapted GCN framework as Customized-GCN.

3.3.3.3 Adapted diffpool: Customized-DiffPool

DiffPool is a hierarchical graph-level representation learning method for graph classification [126].

The filtering layer in DiffPool is the same as Eq. (3.9) and its corresponding adapted version is

shown in Eq. (3.10). Its pooling layer is defined as follows:

S = B> 5 C<0G( 50 (A,X; \ 50)), (3.13)

X=4F = S)Z, (3.14)

A=4F = S)AS, (3.15)
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where 50 is a filtering layer embedded in the pooling layer, S 2 R=⇥==4F is a soft-assignment matrix,

which softly assigns each node into a supernode to generate a coarsened graph. Specifically, the

structure and the node representations for the coarsened graph are generated by Eq. (3.15) and

Eq. (3.14) respectively, where Z 2 R=⇥3=4F is the output of the filtering layers. To adapt the pooling

layer, we only need to adapt Eq. (3.13), which follows the same way as introduced in Eq. (3.10) as it

is also a filtering layer. We refer to the adapted diffpool model as Customized-DiffPool.

3.3.4 Training and Test via the Customized Framework

Given a graph sample 68 with the adjacency matrix A8, and the feature matrix X8, the Customized-

GNN framework performs the classification task as follows:

H̃8 = ⌧## (G8,X8;⇥GNN⌃� (s8;⌦�)). (3.16)

During the training, we are given a set G = {68, H8} of # graphs as training samples, where each

graph 68 is associated with a ground truth label H8. Then, the objective function of Customized-GNN

can be represented as follows:

min
⌦� ,)GNN

#’
8=1

L(H8,⌧## (G8,X8;⇥GNN⌃� (s8;⌦�))), (3.17)

where # is the number of training samples and L is a loss function. In this work, we use

Cross-Entropy as the loss function and adopt ADAM [50] to optimize the objective.

During the test phase, the label of a given sample 6✓ can be inferred using (3.16). Specifically,

the graph structure information s✓ of the sample is first utilized as the input of the adaptor network

� (·;⌦) to identify its distribution information, which is then utilized to adapt the shared model

parameter ⇥⌧## to generate a sample-specific model ⌧##✓. This sample-specific model finally

performs the classification for this sample.

3.3.5 Time Complexity Analysis

In this subsection, we analyze the additional time required to calculate the adaptation parameters

and perform the adaptation. Specifically, we use the FiLM adaptation operator, as an example of the

adaptor network. For convenience, the dimension of the output node features in all layers is assumed
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to be the same 3. The dimension of the output of the adaptation network q 5 is 23. Furthermore,

we assume that the input of the adaptation network, i.e., the graph property information s8 is with

dimension B. Then, the time complexity to generate the adaptation parameters for a single block

using Eq. (3.1) is $ (23 · B) = $ (3 · B). Furthermore, the time required to adapt the parameters

for a single block with Eq. (3.11) is $ (3
2
). Hence, for graph neural networks with  learning

blocks, the time complexity to calculate the adaptation parameters and perform the adaptation for

all learning blocks is $ ( · 3 · B +  · 3
2
). Note that, the time complexity of a single filtering

operation in Eq. (3.9) is $ (< · 3 + = · 3
2
) where < denotes the number of edges while = is the

number of nodes. Therefore, the total time complexity for  learning blocks without adaptation

is $ ( · < · 3 +  · = · 3
2
). Furthermore, B is typically small (much smaller than <); hence, the

additional time complexity introduced by the adaptation operation is rather small.

3.4 Experiments

In this section, we conducted comprehensive experiments to verify the effectiveness of the proposed

Customized-GNN framework. We first describe the experimental settings. Then, we evaluate

the performance of the framework by comparing the original GCN, DiffPool, and gPool with the

adapted GCN, DiffPool, gPool models by the Customized-GNN framework. Next, we analyze the

importance of different components in the adaptor operator. Finally, we conduct case studies to

further facilitate our understanding of the proposed method.

3.4.1 Experimental Settings

We carried out graph classification tasks on seven datasets. More details about these datasets

can be found in Appendix B.1. Next, we describe the baselines. In Section 3.3, we apply the

proposed framework to adapt three graph neural networks models: a basic graph convolutional

network (GCN) [52], and two SOTA graph classification models DiffPool [126] and gPool [22],

respectively. The corresponding adapted versions are Customized-GCN, Customized-DiffPool, and

Customized-gPool, respectively. Our evaluation purpose is if the proposed framework can boost

the performance of existing models by adapting them to their corresponding customized versions.
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Thus, (1) to validate the effectiveness of the proposed model, we compare Customized-GCN,

Customized-DiffPool, Customized-gPool with GCN, DiffPool, and gPool; and (2) we have not

chosen models in [88, 69, 128] as baselines here but the proposed framework can be directly applied

to adapt them as well. Note that in this work, we construct a set of simple structural features s8

of 68 such as the number of nodes, the number of edges, and the graph density; however, it is

flexible to include other complex features by the proposed framework. Furthermore, we create

baselines to directly concatenate the graph structure properties s8 to the output graph embedding of

the GCN, DiffPool, and gPool model. Correspondingly, we call these three methods as Concat-GCN,

Concat-Diff, and Concat-gPool. In addition, we develop baseline methods, Multi-GCN, Multi-Diff,

and Multi-gPool. They learn multiple graph convolutional networks for graph samples with different

structural information. More details of these baselines can be found in Appendix B.2.

3.4.2 Graph Classification Performance Comparison

In this subsection, we first perform the comparison following the traditional setting. To further

demonstrate the advantage of the proposed frameworks, we show their adaptability when the

properties of test graphs are different from these of training graphs. Following the setting in [126],

for each graph dataset, we randomly shuffle the dataset and then split 90% of the data as the training

set and the remaining 10% as a test set. We train all the models on the training set and evaluate their

performance on the test set with accuracy as the measure. We repeat this process with different

data shuffling and initialization seeds for 4 times and report the average performance and standard

variance. In terms of the implementation details, the GCN/Customized-GCN model consists of 3

filtering layers and a single max-poling layer; the hidden dimension of each filtering layer is 20, and

ReLU [76] activation is applied after each filtering layer. For DiffPool/Customized-DiffPool and

gPool/Customized-gPool, we set  ? = 2,  5 = 3 and the dimension of hidden filtering layer 20.

We adopt fully-connected networks to implement the adaptor networks in the Customized-GNN

frameworks. Its input dimension is the same as the dimension of the graph’s structural information.

The results are shown in Table 3.3. We notice that the Concat- and the Multi-versions of the GNN

models can, in some cases, achieve comparable or even better performance than their corresponding
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Table 3.3: Comparisons of graph classification performance in terms of accuracy.

Accuracy (%) Datasets
COLLAB ENZ PROT DD RE-BI RE-5K NCI109

GCN 67.9±1.4 50.4±3.0 77.0±2.3 79.3±5.3 82.6±4.9 50.7±1.3 74.9±2.7
Concat-GCN 68.4±1.4 52.5±5.1 78.4±1.9 77.6±3.2 80.7±3.5 50.7±1.0 75.6±1.2
Multi-GCN-2 68.3±1.4 47.0±1.8 79.5±1.3 77.1±2.4 80.6±3.5 50.3±1.9 74.2±1.9
Multi-GCN-3 67.0±1.4 44.6±5.4 79.9±2.2 76.7±3.5 77.5±7.3 48.5±2.1 75.8 ±1.5

Customized-GCN 71.3±1.0 55.4±4.6 78.8±3.2 79.6±3.9 91.5±1.6 53.3±1.3 76.7±1.1
DiffPool 70.6±1.2 57.9±2.5 78.6±2.5 81.5±4.1 89.6±1.1 56.2±1.1 77.5±0.7

Concat-Diff 70.7±0.7 60.0±1.7 77.7±2.5 81.3±2.9 91.1±1.7 54.9±1.4 78.0±0.5
Multi-Diff-2 70.7±0.6 56.3±1.3 80.0±1.2 79.3±2.9 89.9±2.5 53.7±0.6 76.8±0.7
Multi-Diff-3 70.8±1.1 52.5±0.8 80.9±1.7 80.6±2.3 88.8±0.7 53.4±2.4 78.5±1.2

Customized-DiffPool 73.6±0.5 57.9±7.2 78.6±2.9 80.6±2.6 95.1±1.6 55.8±1.1 78.2±0.9
gPool 69.4±2.2 53.8±3.2 77.3±3.0 78.9±5.5 88.9±1.6 51.3±0.6 77.1±1.2

Concat-gPool 69.7±0.5 57.1±1.8 79.1±2.2 78.0±2.6 88.5±1.3 50.9±2.2 76.3±0.7
Multi-gPool-2 69.0±1.9 50.8±5.1 79.7±1.0 79.5±2.7 84.0±3.2 49.3±2.3 73.5±2.1
Multi-gPool-3 68.9±1.6 46.2±3.2 80.6±0.8 80.0±3.6 83.1±4.5 48.9±1.8 75.2±1.9

Customized-gPool 72.3±1.0 62.9±3.6 80.6±1.6 80.0±3.1 91.1±0.7 53.3±1.4 76.5±1.9

original versions. This indicates that utilizing the graph structure properties has the potential to

help improve the model performance. However, the performance of these variants is not so stable

across different datasets, which means that these simple methods are not suitable for all datasets.

For example, the Concat- versions may work well on datasets where the label is directly related

to the graph structure properties but fail on those datasets where graph structure properties have a

more implicit impact on the labels. On the other hand, the performance of the Multi-version of the

GNN models is heavily dependent on how the data is split into different groups. It is not practical

to find good splits manually. Furthermore, simply training different models for different graphs

can lead to unsatisfactory performance because less training data is available for each model. In

contrast, our proposed Customized models learn sample-wise adaptation, which automatically finds

suitable models for different data samples according to their graph structure properties. Compared

with the original GCN, DiffPool, and gPool, the corresponding Customized models achieve better

performance in most of the datasets. This demonstrates that the sample-wise adaptation performed

by the Customized-GNN framework can boost the performance of GNN frameworks.

Adaptability Study. To further show the adaptability of the proposed framework to new graphs

with different structures, we order graphs according to their node sizes in non-decreasing order.
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Table 3.4: Adaptability study (Note here Cust-X denotes Customized-X).

Accuracy(%) Methods
Cust-GCN GCN Cust-DiffPool DiffPool Cust-gPool gPool

ENZ 22.2 20.5 25.6 22.2 35.0 24.8
RE-BI 70.2 50.4 78.6 52.7 80.0 59.9

Then, we use the first 80% of the data as a training set and the remaining 20% as a test set. The

purpose of this setting is to simulate the case where the structures of graphs in the test set are

different from those in the training set. We only show the results on the ENZ and RE-BI datasets in

Table 3.4, since observations from other datasets are consistent. We note that (1) GCN, DiffPool,

and gPool cannot work properly in this setting; and (2) the customized frameworks perform much

better under this setting. These results demonstrate the ability of the learned Customized-GNNs to

adapt GNNs to graphs with new properties.

3.4.3 Ablation Study

In this subsection, we investigate the effectiveness of different components in the adaptor operator

in Eq. (3.11) used in our model. Specifically, we want to investigate whether W 5 and V 5 play important

roles in the adaptor operator by defining the variants of Customized-GCN – Customized-GCNW:

It is a variant of the adaptor operator with only element-wise multiplication operation where

instead of Eq. (3.11), the adaptation process is now expressed as W ⇧ q 5 = (W � 1A (W 5 , 3=4F));

and Customized-GCNV: It is a variant of the adaptor operator with only element-wise addition

operation where instead of Eq. (3.11), the adaptation process is now: W ⇧ q 5 = W + 1A (V 5 , 3=4F).

Following the previous experimental setting, we compared Customized-GCN with its variants.

The results are presented in Table 3.5. We observe that both Customized-GCNW and Customized-

GCNV can outperform the original GCN model. It indicates that both terms with W and V are effective

for the adaptation and utilizing either one of them can already adapt the original model in a reasonable

manner. We also note that the Customized-GCN model outperforms both Customized-GCNW and

Customized-GCNV on most of the datasets. It demonstrates that the adaption effects of the term

with W and V are complementary to each other and combining them together can further enhance the

performance.
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Table 3.5: Ablation study.

Accuracy (%) Datasets
COLLAB ENZ PROT DD RE-BI RE-5K NCI109

GCN 69.9 51.8 76.6 77.2 81.9 50.4 75.7
Customized-GCNW 70.8 52.3 77.6 78.1 85.2 51.7 76.0
Customized-GCNV 71.2 54.0 77.9 78.0 88.8 51.9 77.1
Customized-GCN 73.2 55.9 77.9 79.3 90.4 52.9 77.1

3.4.4 Case Study

(a) Embeddings with node size. (b) Embeddings with edge size.

(c) Embeddings with density. (d) Sample demonstration.

Figure 3.4: Case Study. (a) depicts the model embeddings and (b) demonstrates model embeddings
for graphs that are mistakenly classified by GCN, but correctly classified by Customized GCN,
and (c) and (d) illustrate the embeddings for graphs extracted by GCN and Customized-GCN,
respectively.

To further illustrate the effectiveness of the proposed framework, we conducted case studies

on D&D. First, we visualize the distribution of embeddings of sample-specific model parameters
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(a) GCN. (b) Customized-GCN.

Figure 3.5: Embedding Visualization.

for different graph samples with various node sizes, edge sizes, and densities. Specifically, we

take the parameters of the first filtering layer of each sample-specific Customized-GCN framework

and then utilize t-sne [70] to project these parameters to 3-dimensional embeddings. We visualize

these 3-d embeddings in the form of scatter plot as shown in Figure 3.4(a), 3.4(b) and 3.4(c).

Note that in these figures, the red triangle denotes the embedding of the parameters (i.e. W) of the

original GCN model (the one before adaptation). For each point in these figures, we use color to

represent the scale of values in terms of node size (or edge size, density). Specifically, a deeper

red color indicates a larger value, while a deeper blue color indicates a smaller value. We make

some observations from Figure 3.4(a), 3.4(b) and 3.4(c). First, the proposed Customized-GCN

framework indeed generates distinct models for different graph samples that are different from the

original model. Second, the points with similar colors stay closely with each other, which means

that graphs with similar structural information share similar models. In addition, in Figure 3.4(d),

we illustrate the sample-specific model parameters for seven samples with a different number of

nodes. They are misclassified by the original GCN model but correctly classified by the proposed

Customized-GCN framework. It is obvious that Customized-GCN has generated seven different

GCN models for these graph samples, each of which can successfully predict the label for the

corresponding sample. We further visualize the graph embeddings before the classification layer,
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extracted by the model GCN and Customized-GCN. These embeddings from the two models are

then projected to a 2-dimensional space via PCA and shown in Figure 3.5(a) and 3.5(b), respectively.

We observe that the embeddings from different categories are better separated by Customized-GCN.

This demonstrates that, compared to the original GCN, the proposed framework can get more distinct

embeddings, and thus can achieve better classification performance.

3.5 Related Work

Graph Neural Networks have recently drawn great interest due to its strong representation capacity

in graph-structured data in many real-world applications. Generally, graph neural networks can be

divided into two categories: the spectral approaches and the non-spectral approaches. The spectral

methods aim at defining the parameterized filters based on graph spectral theory by using graph

Fourier transform and graph Laplacian [10, 13, 59, 52], and the non-spectral methods aim at defining

parameterized filters based on nodes’ spatial relations by aggregating information from neighboring

nodes directly [27, 106].

Graph neural networks have advanced a wide variety of tasks including node classification [52, 27],

link prediction [94, 134, 22] and graph classification [126, 69]. In the task of graph classification,

one of the most important step is to get a good graph-level representation. A straight-forward way is

to directly summarize the graph representation by globally combining the node representations [17].

Recently, there are some works investigating learning hierarchical graph representations by leveraging

deterministic graph clustering algorithms [13, 20]. There also exist end-to-end models aiming at

learning hierarchical graph representations, such as DiffPool [126]. MuchGNN [138] proposed to

learn a set of graph channels at each layer to shrink the graph hierarchically. Furthermore, some

methods [22, 57, 133] propose principles to select the most important : nodes to form a coarsened

graph in each network layer. EigenPooling [69] is based on graph Fourier transform and is able

to capture the local structural information. In [128], conditional random fields (CRF) are used to

design the pooling operation.
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3.6 Limitations

In this section, we discuss the limitations of the proposed framework. The proposed customized

framework could suffer from scalability issue. The model size of the adaptor networks increases

with the model size of the shared GNN, and the model size of the whole proposed framework would

be rather large when the GNN model is large. This scalability issue has not become an obstacle

for most existing GNN models, since the depth of these GNN models is often small currently.

However, with the development of advanced research on GNNs, more and more complex GNN

models have been designed, such as the GNN-based transformers, which makes the scalability issue

of the customized GNN increasingly important.

3.7 Conclusion

In this paper, we propose a general graph neural network framework, Customized-GNN, to deal

with graphs that have various graph structure properties. Comprehensive experiments demonstrated

that the Customized-GNN framework can effectively adapt both flat and hierarchical GNNs to

enhance their performance. Future research directions include better modeling the adaptor networks,

considering more complex properties, and adapting more existing graph neural networks models.
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CHAPTER 4

LOCALIZED GRAPH COLLABORATIVE FILTERING

User-item interactions in recommendations can be naturally denoted as a user-item bipartite graph.

Given the success of graph neural networks (GNNs) in graph representation learning, GNN-based

Collaborative Filtering (CF) methods have been proposed to advance recommender systems. These

methods often make recommendations based on the learned user and item embeddings. However,

we found that they do not perform well with sparse user-item graphs which are quite common in

real-world recommendations. Therefore, in this chapter, we introduce a novel perspective to build

GNN-based CF methods for recommendations which leads to the proposed framework of Localized

Graph Collaborative Filtering (LGCF). One key advantage of LGCF is that it does not need to

learn embeddings for each user and item, which is challenging in sparse scenarios. Alternatively,

LGCF aims at encoding useful CF information into a localized graph and making recommendations

based on such graph. Extensive experiments on various datasets validate the effectiveness of LGCF,

especially in sparse scenarios. Furthermore, empirical results demonstrate that LGCF provides

complementary information to the embedding-based CF model which can be utilized to boost

recommendation performance.

4.1 Introduction

The rapid development of information technology has facilitated an explosion of information,

and it has accentuated the challenge of information overload. Recommender systems aim to

mitigate the information overload problem by suggesting a small set of items for users to meet

their personalized interests. They have been widely adopted by various online services such as

e-commerce and social media [78]. The key to building a personalized recommender system lies

in modeling users’ preference on items based on their historical interactions (e.g., ratings and

clicks), known as collaborative filtering (CF) [98]. In recommendation systems, the user-item

interactions can naturally form a bipartite graph and GNNs have shown great potential to further

improve the CF performance [110, 35]. GNNs are capable of capturing the CF signals encoded in
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the graph topology. Specifically, high-order user-item interactions can be explicitly captured by

the stacked GNN layers, which contributes to learning expressive representations. For example,

Neural Graph Collaborative Filtering (NGCF) [110] stacks several embedding propagation layers to

explicitly encode the high-order connectivity in the user-item graph into the embedding process.

LightGCN [35] simplifies the design for GNNs for recommendation by only including neighborhood

aggregation while eliminating other operations such as feature transformation.

The key advantage of GNN-based CF methods is to learn both the embeddings and a GNN model

by explicitly capturing the structural information in the user-item interaction graph. However, we

empirically found that the improvement may no longer exist when the bipartite graph is very sparse.

In Figure 4.1, we illustrate how the sparsity of the user-item bipartite graph affects the performance

of representative CF models including MF, NGCF, and LightGCN. Specifically, we adjust the

sparsity of the user-item graphs from two different commodity categories in the Tianchi dataset [2]

by randomly removing edges from the original graph while not disrupting the graph connectivity.

We use G 2 {1, 2, 3, 4, 5} (i.e., the x-axis) to denote the sparsity of a bipartite graph where the larger

G is, the sparser the graph is. As shown in Figure 4.1, the performance of all the methods drops

when the graph sparsity increases, in which GNN-based methods (NGCF and LightGCN) yield

more dramatic performance reduction compared with MF. The inferior performance of GNN-based

methods under the sparse setting could be attributed to the difficulty to learn high-quality user/item

embeddings from limited user-item interactions. However, the user-item interaction graphs are often

sparse in real-world recommendation scenarios [3]. Thus, in this paper, we study how to alleviate

the challenge of sparsity while enjoying the merits of high-order topological connectivity. Note

that in this work, we focus on addressing the recommendation tasks solely based on the historical

interactions following the previous works [110, 35]. Our motivation lies in learning CF signals from

local structures of the user-item interaction graph, and the proposed model is called Localized Graph

Collaborative Filtering (LGCF). Particularly, given a user and an item, LGCF makes predictions

about their interaction based on their local structural context in the bipartite graph, rather than the

user and item embeddings. Further comparisons and discussions between the traditional GNN-based
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(a) Tianchi-2798696. (b) Tianchi-4527720.

Figure 4.1: The Performance of MF, NGCF, and LightGCN vs. the Graph Sparsity on Two Tianchi
datasets.

CF methods and the proposed LGCF can be found in Appendix C.1.

To achieve the goal of LGCF, we face two main challenges: (1) how to construct the localized

graph given two target nodes, and (2) how to capture the important CF information from the localized

graph. To solve these two challenges, LGCF first samples a set of nodes for two target nodes from

their neighborhoods and then generates a localized graph with this node set and their edges. Next,

LGCF adopts a GNN model to extract a graph representation for each localized graph. To better

capture the graph topological information, LGCF generates a label for each node according to their

topological importance in the localized graph and takes the set of node labels as input attributes.

Finally, LGCF makes predictions about the target user and item based on their corresponding

localized graph representation.

The contributions of this paper are summarized as follows: (1) We study a new perspective to build

GNN-based CF models for recommendations. Specifically, we aim at learning the recommendation-

related patterns in the localized graphs induced from the input bipartite graph, instead of learning

user and item embeddings; (2) We propose Localized Graph Collaborative Filtering (LGCF)

which utilizes a GNN model and minimum distances-based node labeling function to generate

graph representation for each user-item pair. In this way, we can encode the localized graph

topological information and high-order connectivity into the graph representation simultaneously;
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Figure 4.2: An Overview of the Proposed Framework LGCF.

(3) We validate the effectiveness of LGCF on numerous real-world datasets. Especially, LGCF

can achieve significantly better performance than representative GNN-based CF methods when

user-item bipartite graphs are sparse.

4.2 Problem Statement

A CF-based recommendation dataset can be formulated as a bipartite graph ⌧ = (U, I,E), in

which U = {D1, D2, ..., D=} denotes a set of = users, I = {81, 82, ..., 8<} is the set of < items, and

E = {e0, e1, ..., el} (e.g., 4 9 = (D4 9 , 84 9 )) indicates the edge set describing the historical interactions

between users and items. Following previous works [110, 35], we assume that users and items

have no content information. Given a candidate pair (D 9 , 8: ) consisting of a target user D 9 and a

potential item 8: , we need to calculate a preference score B 9 ,: to indicate how likely this potential

item should be recommended to the target user. To solve this problem, we aim at learning a desirable

score mapping function B2>A4(), which generates a preference score B 9 : = B2>A4(D 9 , 8: |E) to make

recommendations based on the historical interactions E.

4.3 The Proposed Framework

In this section, we first give an overall description of the proposed framework, then detail its key

modules, next introduce the optimization objective and finally discuss integration strategies with

existing GNN-based CF methods. Note that compared to existing GNN-based recommendation

methods, the mode size of LGCF is much smaller and is independent of the number of users and

items. More details about the mode size analysis can be found in Appendix C.2.

The goal of LGCF is to learn CF-related knowledge for each user-item pair from its local
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structures in an interaction bipartite graph. To achieve this goal, it provides solutions to tackle

two aforementioned obstacles – a local structure extraction to construct the localized graph for the

user-item pair and a powerful model to capture the CF-related patterns from the localized graph. An

overview of LGCF is illustrated in Figure 4.2. Specifically, given the input bipartite graph, LGCF

first constructs the localized graphs centered with the target user and the target item. To preserve

edges with rich CF information in the localized graph, we develop a localized graph construction

method to efficiently generate the localized graphs. After that, LGCF labels the nodes within

the localized graphs according to the topological positions relative to the target nodes. Then a

GNN-based graph representation learning module will embed the high-order connectivity along

with the node positional annotations simultaneously. Through this process, LGCF eliminates

the traditional embedding-based strategy and effectively captures the critical CF-related patterns.

Finally, the scoring function module calculates the preference score based on the learned graph

representation. To sum up, there are three key modules in this framework: (1) the localized graph

construction module that extracts a localized graph covering most edges related to a given user-item

pair; (2) the localized graph representation learning module that learns recommendation related

representations from the localized graph; and (3) the scoring function module that computes a

preference score based on the learned graph representation. Next, we will detail each module.

4.3.1 Localized Graph Construction

The localized graph construction module is designed to extract the localized graph covering

the most important edges (i.e., collaborative filtering information) for a given user-item pair. We

need to extract a localized graph for each user-item pair in the training process and the inference

process, thus we aim to include the most representative edges for each pair with the consideration of

scalability. To achieve these goals, we propose a localized graph construction as shown in Figure 4.3.

This framework can be divided into three steps: (1) step 1 -random walk: we first take advantage

of a random walk with restart (RWR) [104] method to sample neighboring nodes for the user node

and the item node. By using RWR, we can sample neighboring nodes which are different hops

away from the center node. As a consequence, we can get a representative localized graph that

54



u1

u2

u3

i1

i2

i3

i4

i5

u1

i1

i2

i3u2

i3

i5

u2

u3

u1 u2 u3

i1 i2 i3 i5

u1

u2

u3

i1

i2

i3

i5

(u1, i5) (tu, ti) Vut SGui

Random
Walk

Trace
Union

Graph
Extraction

Figure 4.3: An Illustration of Localized Graph Extraction.

captures abundant context information. Meanwhile, RWR is a sampling method in essence, thus it

can naturally improve the scalability of the proposed LGCF. Specifically, given a user-item bipartite

graph ⌧ and a user-item pair (D, 8), we perform a random walk on ⌧ from the user node D and the

item node 8, respectively. Starting from the original node, each walk travels to one of the connected

nodes iteratively with a uniform probability. In addition, there is a pre-defined probability for

each walk to return to the starting node at each step. In this way, more neighboring nodes can

be included in the walk. Via RWR, we can get two traces CD and C8 for the user node D and the

item node 8, respectively. Each trace then can be denoted as a node subset, i.e., +D and +8. (2)

step 2 - trace union: Next, we merge +D and +8 into a union node subset +D8. (3) step 3 - graph

extraction: With this union node subset +D8, we can extract a localized graph from the original

user-item graph. Specifically, all the nodes in +D8 and all the edges among these nodes are extracted

from the original graph to build a localized graph, which is denoted as (⌧D8. To conclude, (⌧D8

consists of neighboring nodes of different hops away from D and 8 and thus preserves important

collaborative filtering information for the given user-item pair (D, 8).

4.3.2 Localized Graph Representation Learning

This module aims at learning an overall representation of each user-item pair based on its

extracted localized graph. We expect to encode the CF information and also the high-order

connectivity related to a user-item pair into this representation. Therefore, we propose to use a
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graph neural network model since it can naturally capture the structural information and explicitly

encode the high-order connectivity into the representation. Also, to further encode the topological

information, we adopt a node labeling method to generate a positional label for each node based on

its distance towards the user-item pair [129] where the node labels are considered as the input graph

node attributes. Next, we will introduce the node labeling method and the adopted GNN model.

4.3.2.1 The Node Labeling Method

Following the common setting from the previous works [35, 110], we do not assume that node

attributes are available for LGCF. Instead, we generate a label for each node to indicate its unique

role in the localized graph. Specifically, there are three expectations for the generated label. First, it

is important to distinguish the target user and item from other nodes through the generated node

labels, as the model should be aware of the target user-item pair. Second, contextual nodes excluding

the target user and item, play different roles in the recommendation prediction considering their

different relative position towards the target user and item. Thus, we need to distinguish these nodes

via the generated node labels based on their positions; Finally, for the consistency of node labels, the

closer the node is to both the target user and target item, the more similar its label should be to that

of the target ones. Therefore, we propose to use a node labeling method based on its distance to

the user-item pair via Double-Radius Node Labeling (DRNL) [129] to generate a label for each

node and take the generated node labels as the input node attribute for the GNN model. The key

motivations of DRNL are to distinguish the target user node and the item node from other nodes

while preserving their relatively positional relations. Specifically, we first assign label 1 to the target

user node and the target item node to distinguish them from other nodes. Next, we assign labels to

other nodes based on their minimum distances toward two target nodes on the extracted localized

graph. Intuitively the closer the user or item node is to the target nodes, the more similar its label

should be to that of the target nodes. For a specific node G on the graph, we evaluate its distance

toward the target user and the target item by summing up its minimum distances to these two nodes.

Since we set the label of the target user and the target item as 1, we will also assign these nearby

nodes labels with small values. In particular, given nodes G and H, if the distance between G and the
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target nodes is smaller than that of H, the label value of G is supposed to be smaller than that of H. If

the distances are the same, the node with a smaller minimum distance to the target user or the target

item should have a label with a smaller value. DRNL adopts a hashing function 5; () satisfying the

criteria described above to compute node labels. The node labeling function 5; (G) for each node G is

summarized as follows:

5; (G) =

8>>>><
>>>>:

1, x=u or x=i,

1 + min(3D, 38) + (3/2)2
, otherwise,

(4.1)

where D and 8 denote the target user node and item node, respectively. 3D (38) represents the

minimum distance between nodes G and D (8). 3 = (3D + 38) is the sum of minimum distances which

should be odd due to the nature of the bipartite graphs.

4.3.2.2 The GNN Model

For each user-item pair(D, 8), we have extracted its localized graph (⌧D8, and it can be denoted as

(⌧D8 = {AD8,XD8}, where AD8 is the adjacency matrix of (⌧D8, and XD8 is the input node attributes

generated by above node labeling method. It is natural to take advantage of a GNN model to learn an

overall representation for each pair based on its localized graph (⌧D8, since GNNs have shown great

potential in capturing complex patterns on graphs [120]. There are typically two key operations in a

GNN model – the graph filtering operation to refine node representations and the graph pooling

operation to abstract the graph-level representation from the node representations. In this work, we

adopt graph convolutional filtering [52] as the graph filtering operation. Its process can be described

as follows:

X;+1 = f(D̃�
1
2 ÃD̃�

1
2 X;W), (4.2)

where X; denotes the node representations in the ;-th GNN layer, W is the transformation matrix to

be learned, Ã = AD8 + I represents the adjacency matrix with self-loops, D̃ =
Õ
9
Ã 9 9 is the diagonal

degree matrix of Ã and f() is the activation function. The node labels are set to be the input node

representations X0. The graph pooling operation adopted by LGCF is sum pooling, which sums up

representations all over the nodes for the graph-level representation. Its process can be denoted as
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follows:

xD8 = ?>>; (X!) = BD<(X!), (4.3)

where xD8 denotes the graph representation for the user-item pair (D, 8) and X! is the node

representations outputted by the last layer. The overall process of the GNN model can be

summarized as:

xD8 = ⌧## (AD8,X0; )⌧## ), (4.4)

where )⌧## denotes the parameters to be learned in the GNN model. It is straightforward to

extend LGCF with other graph filtering operations [120, 106] and graph pooling operations [69, 22],

and we will leave such investigation as one future work.

4.3.3 The Scoring Function

The scoring function aims at giving a score for a user-item pair (D, 8) based on its corresponding

localized graph representation xD8. The higher the score is, the more likely the item should be

recommended to the user. We use a single-layer linear neural network to model the scoring function

in LGCF, which can be described as follows:

BD8 = B2>A4(xD8) = f(x)D8 ⇤ w), (4.5)

where w is the transformation vector to be learned and f is the sigmoid function.

4.3.4 Model Optimization

In this work, we adopt the pairwise Bayesian Personalized Ranking (BPR) loss to train the

framework. BPR loss is one of the most popular objective functions in recommendation tasks.

It takes the relative order of the positive node pairs and negative node pairs where the positive

node pairs are existent user-item node pairs observed in graphs, while the negative node pairs are

58



non-existent user-item node pairs generated by negative sampling. Specifically, BPR assumes that

the prediction scores of the positive node pairs should be larger than these of the corresponding

negative ones. The objective function of our model is as follows:

min
⇥⌧## ,w

’
(D,8,8

0
)2O

� lnf(BD8 � BD80 ), (4.6)

where O = {(D, 8, 8
0

) | (D, 8) 2 ⇢ , (D, 8
0

) 2 ⇢
�
} denotes the training data for the graph ⌧, ⇢ is the set

of the existent interactions between users and items in ⌧ and ⇢� indicates the set of the non-existent

interactions. In this work, we adopt ADAM [50] to optimize the objective.

4.3.5 Integration with Embedding-based CF Methods

LGCF aims at capturing the collaborative filtering information from a localized perspective by

encoding the localized CF information into a subgraph-level representation, while embedding-based

GNN methods such as NGCF and LightGCN are to learn a set of user and item embeddings

in the latent space based on all the user-item interactions. Therefore, LGCF provides a new

perspective to building GNN-based recommendations. As a consequence, LGCF is likely to provide

complementary information to existing GNN-based methods and integrating it with existing methods

has the potential to boost the recommendation performance. In this subsection, we discuss strategies

to combine LGCF with existing GNN-based methods. In particular, we propose two strategies, i.e.,

LGCF-emb and LGCF-ens. Before we detail these strategies, we first denote the refined user D and

item 8 embedding generated by embedding-based GNN methods as hD and h8, and the representation

outputted by LGCG for a user-item pair (D, 8) as xD8. In this work, we focus on how to integrate

LGCF with LightGCN given the competitive performance of LightGCN.

4.3.5.1 LGCF-emb

In LGCF-emb, we propose to directly concatenate the embeddings generated by LGCF and

LightGCN, and then the scoring function takes the concatenated embedding as input to generate

a score. Finally, the LGCF model and the LightGCN model are jointly trained by optimizing the

objective function in Eq. 4.6. The concatenation process is summarized as follows:

hD8 = (hD ⇤ h8) | |xD8, (4.7)

59



where ⇤ denotes element-wise multiplication and | | represents the concatenation operation.

4.3.5.2 LGCF-ens

In LGCF-ens, we propose to combine LGCF and LightGCN in an ensemble way. Specifically,

we conduct a weighted combination of the scores generated by LGCF and LightGCN. In addition,

instead of joint training, we train LGCF and LightGCN, separately. The final score for a user-item

pair (D, 8) can be computed as follows:

BD8 = B2>A4(xD8) + _ · (hT
D
h8), (4.8)

where B2>A4() denotes the scoring function in Eq 4.5 and_ can be either a predefined hyper-parameter

or learnable parameter.

4.4 Experiment

In this section, we conduct extensive experiments on various real-world datasets to validate the

effectiveness of the proposed LGCF. Via experiments, we aim to answer the following questions:

Q1: How does LGCF perform compared with the state-of-the-art CF models on the sparse

setting?

Q2: How does LGCF perform compared with the state-of-the-art CF models on the normal

setting?

Q3: Can LGCF be complementary to the embedding-based GNN CF models?

Q4: How does the sparsity of data affect the performance of LGCF and other CF models? In

the following subsections, we will first introduce experimental settings, next design experiments to

answer the above questions and we further probe to understand the working of LGCF.

4.4.1 Experimental Settings

In our experiments, we have tested the proposed framework on twelve datasets, which are from

three different real-world recommendation scenarios: Tianchi[2], Amazon[71], and MovieLens[30].

Specifically, we construct seven datasets corresponding to seven-item categories from Tianchi and

denote each of them as Tianchi-�⇡, where �⇡ indicates the item category, two datasets from two

item categories from Amazon, and two datasets from two item categories from MovieLens. More
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Table 4.1: Densities of the Sparse User-item Bipartite Graphs. Here “Density" is computed
specifically for the interaction graph as ⇡4=B8CH = #⇢364B ÷ (#*B4AB ⇥ #�C4<B).

Tianchi Amazon MovieLens
685988 2798696 4527720 174490 61626 810632 3937919 Beauty Gift War Romance

density 0.0019 0.0106 0.0074 0.0036 0.0014 0.0019 0.0064 0.0121 0.0071 0.0113 0.0027

details about these datasets can be found in Appendix C.3. Note that it is common to extract a

user-item interaction dataset based on the item category from a large recommendation dataset for

evaluations that have been widely adopted by existing works [71, 110, 35].

We mainly compare the proposed method with LightGCN [35] and NGCF [110], which have

empirically outperformed most recent CF-based models including NeuMF [36], PinSage [125] and

HOP-Rec [123]. In addition, we also compare LGCF with one of the most classic factorization-based

recommendation models – MF [53]. We use HR and NDCG as evaluation metrics in our experiments.

More details about the baselines and evaluation details can be found in Appendix C.4.

4.4.2 Performance in Sparse Scenarios

The major motivation of LGCF is to improve the recommendation performance when there are a

few user-item interactions or user-item interactions are sparse. Therefore, we start the evaluation by

comparing the proposed method with baselines under the sparse setting, which correspondingly

answers Q1. Specifically, to obtain a sparse training user-item interaction bipartite graph, we

randomly select as many interactions as possible in the validation set or the test set while ensuring

no isolated nodes in the training set and no cold-start nodes in the validation set and the test set.

After this process, the densities of the resulting sparse graphs are summarized in Table 4.1. The

performance comparison on these sparse datasets is demonstrated in Table 4.2. We make the

following observations: 1) The performance of LightGCN is worse than NGCF on most datasets.

These results suggest that only neighborhood aggregation may not help to embed refinement in

sparse scenarios; 2) LGCF outperforms other baselines on the sparse datasets significantly, which

supports that capturing local structures is more effective than learning user and item embeddings in

sparse scenarios. Meanwhile, this validates the effectiveness of LGCF in capturing CF information

from local structures on sparse user-item bipartite graphs. More details about how the sparsity
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Table 4.2: Performance Comparison under the Sparse Setting.

HR(%) Tianchi Amazon MovieLens
685988 2798696 4527720 174490 61626 810632 3937919 Beauty Gift War Romance

MF 28.4±2.3 19.8±4.9 25.4±3.1 27.0±1.7 15.6±1.2 25.2±1.9 38.7±5.2 64.3±7.4 12.7±0.3 55.8±3.0 57.7±1.0
NGCF 36.7±3.0 25.6±4.2 32.7±3.3 37.2±4.2 17.8±2.2 36.0 ±2.3 47.5±3.0 83.1±0.7 14.4±0.3 63.5±1.1 71.0±0.2

LightGCN 29.4±2.1 22.1±3.9 25.9± 3.6 25.9±3.6 18.8±1.8 28.2±1.4 24.4±1.7 39.1±6.6 14.5±0.3 32.4±2.0 36.0±1.0
LGCF 65.3±0.4 39.7±0.6 60.2±1.0 66.2±0.5 41.6±3.0 60.7±0.2 61.6±0.2 88.0±0.4 32.4±2.0 81.1±0.5 82.7± 1.2

Table 4.3: Performance Comparison under the Normal Settings.

HR(%) Tianchi Amazon MovieLens
685988 2798696 4527720 174490 61626 810632 3937919 Beauty Gift War Romance

MF 57.3±3.0 22.0±3.0 43.9±4.1 41.6±3.3 22.3±4.6 70.7± 1.6 38.7±5.3 93.7±1.4 44.2±4.1 72.0±1.7 77.7±0.5
NGCF 69.6±1.8 29.7±3.7 56.0±2.1 55.2±3.0 37.1±3.7 53.6±2.9 47.5±3.0 93.5±1.1 46.4±2.4 75.5±0.5 82.6±0.2

LightGCN 76.2±1.2 32.4±2.9 62.7±1.7 60.3±1.1 44.0±3.5 74.1±0.6 55.6±3.6 94.4±1.1 51.4±0.3 80.9±1.0 85.3±0.2
LGCF 76.9±1.2 49.3±2.5 59.3±1.7 63.4±3.5 46.9±5.6 71.2±2.3 55.7±1.6 91.5±2.5 36.9±6.1 65.5±12.9 77.3±5.6

LGCF-emb 72.1±7.1 46.3±3.1 54.1±5.9 62.4±3.7 50.0±3.0 71.0±3.1 57.8±3.0 92.6±2.0 36.6±8.3 64.7±7.6 81.5±2.8
LGCF-ens 76.8±1.1 44.8±4.1 62.7±3.3 67.3 ±2.1 54.5±2.4 74.9±1.0 61.7±2.1 94.7±0.7 52.8±1.0 87.5±0.4 88.5±0.4

impacts performance and why LGCF can improve the performance will be provided in the following

subsections.

4.4.3 Performance in Normal Scenarios

In the last subsection, we empirically demonstrated the superior of LGCF over the baseline

methods in sparse scenarios. In this section, we further study how LGCF performs in normal

settings where we ensure we have sufficient training data. To achieve the goal, we randomly select

90% of user-item interactions as the training set and then divide the remaining interactions into

the validation set and the test set equally. Since LGCF makes recommendations from a different

perspective from LGCF and LightGCN, we also investigate if LGCF is complementary to them.

These experiments aim to answer Q2 and Q3. The results are summarized in Table 4.3. It can be

observed: 1) LGCF can often perform reasonably by achieving comparable performance with the

baseline methods on most datasets; 2) LGCF-ens has shown significant performance improvement

over both LGCF and LightGCN on most datasets. This demonstrates that LGCF indeed provides

complementary information to embedding-based CF methods. Thus, there is great potential to

integrate these methods for the recommendation task; 3) LGCF-emb does not perform well on some

datasets. It directly concatenates embeddings from LGCF and LightGCN. However, the embeddings

from LGCF and LightGCN could be not aligned. Among the integration methods, LGCF-ens

achieves consistent and better performance compared to LGCF-emb.
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4.4.4 The Impact of Sparsity

In this subsection, we further explore Q4: how the sparsity of the training user-item bipartite

graph affects the performance of different models. Specifically, we first randomly select 10%

user-item interactions and split them equally into the validation set and the test set. We constrain

there are no cold-start users and items in the validation set and the test set. We take the remaining

90% interactions as the full training set and denote its sparsity as 1. Next, we divide the full training

set into two sets: the necessary set and the additional set. The necessary set consists of the minimum

interactions to ensure all the users and items are connected with at least one neighbor and the

additional set includes the remaining interactions. We randomly select 20%, 40%, 60%, and 80%

of interactions from the additional set and exclude them from the full training set to increase the

sparsity of the training user-item bipartite graphs. Here we denote the sparsity of these training

graphs as 2, 3, 4, 5, respectively. The performance of LGCF, LGCF-enz, and the baseline methods

are shown in Figure 4.4. (We have similar observations on most of the datasets, and we select four of

them to report due to the space limitation) We can observe that the performance of all the methods

tends to decrease with the increase of graph sparsity. However, the performance drop of LightGCN

and NGCF is relatively more significant than that of the proposed LGCF. LightGCN and LGCF

typically perform comparably on the least sparse cases, and then the performance gap tends to

increase with the graph sparsity raises. In addition, LGCF-enz is more robust to the sparsity change

compared to LightGCN, which demonstrates that the integration of LGCF can help LightGCN

reduce sensitivity towards graph sparsity.

4.4.5 Further Probing

In this subsection, we explore to further understand how LGCF works. As mentioned before,

LGCF provides a new perspective to building GNN-based CF methods. Experimental results in

Table 4.2 have demonstrated that LGCF is complementary to LightGCN. Thus, we first examine how

LGCF is complementary to LightGCN for different types of user-item pairs. Moreover, localized

graphs play a crucial role in LGCF. Therefore, we investigate if localized graphs for positive and

negative pairs are distinguishable via case studies.
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(a) Tianchi-2798696. (b) Tianchi-4527720.

(c) Tianchi-174490. (d) Tianchi-61626.

Figure 4.4: The Performance of Different Methods vs. the Graph Sparsity on Four Tianchi Datasets.

4.4.5.1 How is LGCF complementary to LightGCN

To explore what kind of user-item pairs can benefit from integrating LGCF and LightGCN, we

divide the test set in normal scenarios into different groups based on the average degree of the user

and the item for a user-item pair. Specifically, we first sort all the user-item pairs in the test set in

ascending order according to their average degree, and divide the sorted pairs into 5 groups. We

then train models on the same training set and test them on these groups. The performance of

LightGCN, LGCF and LGCF-ens is shown in Figure 4.5. More results on different datasets can

be found in Appendix C.5. We first note that the performance of all methods tends to increase

when the degree increases. In most cases, for all degree groups, LGCF-ens (or integrating LGCF
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(a) Tianchi-61626. (b) MovieLens-War.

Figure 4.5: Performance Analysis with Degree.

and LightGCN) can boost the recommendation performance. This improvement is relatively more

significant for groups with small degrees. These results suggest that LGCF provides complementary

information to LightGCN for all degree groups, especially for these groups with small degrees. This

property has significance in practice since how to make recommendations for user-item pairs with

limited interactions is still a challenging problem in real-world recommender systems. In addition,

this property makes the proposed method potentially computation-efficient for large-scale datasets,

since we can first filter items that are less likely to be preferred by a given user based on embeddings

and then leverage LGCF to rank the remaining items.

4.4.5.2 Localized Graphs

The key to the success of LGCF is that the extracted localized graphs for positive and negative

pairs are distinguishable. In other words, they have distinct structures. Thus, we visualize the

extracted localized graphs for two positive user-item pairs and their corresponding negative pairs in

Figure 4.6. These two pairs are correctly predicted by LGCF, while wrongly predicted by LightGCN.

For the figure, we observe that the localized graphs for positive pairs are substantially different from

these of negative pairs, and thus LGCF can distinguish them and make correct predictions. These

case studies not only validate the feasibility of using localized graphs for recommendations but also

further demonstrate that recommendations via localized graphs are complementary to these via
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(a) positive pair(249, 511). (b) negative pair(249, 508).

(c) positive pair(87, 459). (d) negative pair(87, 592).

Figure 4.6: Case Studies on Localized Graphs.

embeddings.

4.5 Related work

Collaborative Filtering (CF) is one of the most popular techniques for recommendation [5]. Its

core idea is to make predictions of a user’s preference by analyzing its historical interests. There

are basically two types of CF methods: memory-based CF methods and model-based models.

Memory-based CF methods aim at making predictions by memorizing similar users’ (or items’)

historical interactions [37]. Model-based CF methods [53] aim at predicting by inferring from an
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underlying model. With the rapid development of deep neural networks (DNNs), there are more

and more works exploring incorporating DNN techniques into model-based CF methods [36, 121].

As DNN successfully generalizes to graphs, graph neural networks (GNNs) have drawn great

attention. User-item interactions in recommendations can be naturally denoted as a bipartite graph.

Thus, more and more works study how to utilize GNN techniques in model-based CF methods

including HOP-Rec [123], PinSage [125], NGCF [110] and LightGCN [35]. Specifically, HOP-

Rec [123] includes multi-hop connections into the MF method. PinSage [125] is developed based

on GraphSage [27], and it can be directly applied to industry-level recommendations. NGCF [110]

proposes to explicitly encode high-order connectivity into representation via graph filtering operation.

LightGCN [35] simplifies the design of GNN especially for the recommendation task by eliminating

feature transformation and activation function.

4.6 Conclusion

In this paper, we propose a GNN-based CF model LGCF from a novel perspective for recommenda-

tions. It aims at encoding the collaborative filtering information into a localized graph representation.

Different from existing embedding-based CF models, LGCF does not require learning embeddings

for each user and item. Instead, it focuses on learning the recommendation-related patterns from

the localized graph for each specific user-item pair. Extensive experiments have been conducted to

demonstrate the effectiveness of LGCF in recommendation tasks. In the future, we will explore

other graph filter and pooling operations to learn the localized graph representations. In addition,

some advanced techniques such as the attention mechanisms can be applied to further incorporate

different types of GNN-based CF models.
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CHAPTER 5

AN ADAPTIVE GRAPH PRE-TRAINING FRAMEWORK FOR
LOCALIZED COLLABORATIVE FILTERING

Graph neural networks (GNNs) have been widely applied in recommendation tasks and have

achieved very appealing performance. However, most GNN-based recommendation methods suffer

from the problem of data sparsity in practice. Meanwhile, pre-training techniques have achieved

great success in mitigating data sparsity in various domains such as natural language processing

(NLP) and computer vision (CV). Thus, graph pre-training has great potential to alleviate data

sparsity in GNN-based recommendations. However, pre-training GNNs for recommendations face

unique challenges. For example, user-item interaction graphs in different recommendation tasks

have distinct sets of users and items, and they often present different properties. Therefore, the

successful mechanisms commonly used in NLP and CV to transfer knowledge from pre-training

tasks to downstream tasks such as sharing learned embeddings or feature extractors are not directly

applicable to existing GNN-based recommendations models. In this chapter, we aim to effectively

pre-training GNNs for the recommendations task. To tackle the aforementioned challenges, we

delicately design an adaptive graph pre-training framework (ADAPT) for the localized collaborative

filtering method proposed in Chapter 4. It does not require transferring user/item embeddings

and is able to capture both the common knowledge across different graphs and the uniqueness of

each graph simultaneously. Extensive experimental results have demonstrated the effectiveness and

superiority of ADAPT.

5.1 Introduction

Recommendation is one of the most ubiquitous and successful applications of artificial intelligence

in our daily life. It has been widely adopted in various online services such as target advertising

and online shopping. Basically, recommendation systems aim to predict a user’s preference based

on his/her historical interactions with different items and further recommend to the user some

items that he/she may have potential interest in [3]. Many existing solutions for recommendations

follow the paradigm of first learning a set of latent factors (i.e., embeddings for users and items)
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and then building an interaction function to make recommendation decisions based on the learned

embeddings. Matrix factorization (MF) is a representative method of such techniques. It aims

to learn user and item embeddings directly from the user-item interaction matrix and then make

predictions via inner product over the user and item embeddings. In recent years, we have witnessed

increasing efforts incorporating deep neural networks to advance these techniques via refining the

user and item embeddings [36] and modeling interaction functions [108, 25].

The interactions among users and items in a recommendation task can be naturally denoted as a

user-item bipartite graph. From this perspective, the key for a recommendation task is to learn the

node representations from the user-item bipartite graph. Graph neural networks (GNNs), which

generalize deep neural networks (DNNs) to graph data, have been theoretically and empirically

proved to be very powerful in representation learning for graph data [119, 135]. Therefore, there

is increasing attention on adopting GNNs in addressing recommendation tasks. GNNs are able

to inherently capture important high-order user-item connectivity in a given user-item interaction

bipartite graph, as a consequence, they can boost the recommendation performance. For example,

NGCF [110] proposed to propagate embeddings over user-item graphs based on the message-passing

framework of GNNs and achieved significant performance improvement. LightGCN [35] further

refined the design of GNNs for recommendation tasks by eliminating the feature transformation and

non-linear activation and achieved state-of-the-art performance. Despite achieving great success in

recommendation tasks, we empirically found that current GNN-based recommendation methods

suffer from a common and practical problem: data scarcity1. In other words, when the user-item

interaction graphs are sparse, the performance of most existing GNN-based recommendations

tends to drop substantially. Unfortunately, historical user-item interactions in the real-world

recommendations are often scarce [3]. The challenge of data scarce is also universal in other

domains such as NLP [85] and CV [32, 44], where pre-training techniques have been proposed

to alleviate this problem. Typically, a model is first pre-trained on a large dataset with abundant

label information (either self-supervised label or supervised label), and then finetuned over the
1More details about how the data sparsity affects the performance of existing GNN-based recommendation methods

can be found at Section 5.3.
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downstream datasets with limited label information. Pre-training has been demonstrated to be

effective in alleviating the data scarcity issue of the downstream task by transferring knowledge

from the pre-training data. Thus, it is natural to ask: can we also leverage pre-training techniques to

facilitate GNN-based recommendation models?

Adopting pre-training for existing GNN-based recommendations faces unique challenges. The

great success of pre-training in NLP and CV relies on the effective mechanisms that enable knowledge

sharing or transferring from the pre-trained tasks to the downstream tasks. In NLP, the vocabulary

of words or tokens is shared; therefore, both context-independent embeddings (e.g., word2vec [72])

and context-sensitive embeddings (e.g., GPT [86] and BERT [15] from pre-training tasks can be

transferred. In CV, low-/mid-level features (such as edges, and textures) given by the pre-trained

model can be leveraged by the fine-tuned tasks. However, user and item embeddings denote the

major parameters of existing GNN-based recommendation models. Moreover, in recommendations,

different interaction graphs often do not have the same sets of users and items. Therefore, these

uniquenesses determine that the effective mechanisms from NLP and CV do not apply to existing

GNN-based recommendations. In addition, a large amount of data is essential for the effectiveness

of pre-training [132] in NLP and CV. For instance, the state-of-the-art pre-trained model in CV

is typically pre-trained on tens of millions of images [14], and the pre-training dataset for NLP

often consists of more than 1000M words [15]. Therefore, it is desirable to take advantage of many

interaction graphs for pre-training. However, achieving this goal is challenging given that different

graphs have distinct properties such as the number of items (or users) and graph density. As a

consequence, dedicated efforts are required to tackle these unique challenges.

In this work, we propose an Adaptive graph Pre-training framework for localized collaborative

filTering (ADAPT) [113] that provides effective solutions to address the aforementioned challenges.

It consists of two key components: a meta-localized GNN (or meta-LGNN) model and the GNN

adaptor. The meta-LGNN model provides a new perspective to build GNN-based recommendations,

where it is trained to make recommendation predictions based on the neighboring structures of

the target user and item, instead of learning a set of user and item embeddings and an interaction
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function. The rationality of this design is: the key collaborative filtering information of a given

target user and target item can be encoded by their neighboring structure, which consists of their

historical interactions. With meta-LGNN, there is no need to transfer user or item embeddings

across different graphs.

To leverage multiple pre-training graphs with distinct properties, we design the GNN adaptor as

a strategy to capture their differences. Specifically, given a recommendation task, the GNN adaptor

can adapt the meta-LGNN model to a customized GNN model by considering the properties of its

corresponding interaction graph. We conduct extensive experiments on various datasets, and the

empirical results demonstrate the effectiveness and superiority of the proposed framework.

The remainder of the paper is structured as follows. In Section 5.2, we describe the proposed

framework in detail, including the problem definition, framework overview, the basic model, and

two key processes. We introduce the experiments to validate the effectiveness in Section 5.3,

including experimental settings, preliminary study, performance comparison, ablation study and

further probing. In Section 5.4, we then review some important related works. We conclude the

paper with discussions on future works in Section 5.5.

5.2 The Proposed Framework

In this section, we first formally define the GNN pre-training problem for GNN-based recommenda-

tions. Then we describe an overview of the proposed ADAPT. Next, we introduce the GNN-based

recommendation method for localized collaborative filtering as the basis of the proposed framework.

Finally, we detail the pre-training process and the fine-tuning process.

5.2.1 The GNN Pre-Training Problem on Recommendations

We first briefly describe the problem studied in this paper. It is common that user-item interaction

graphs are sparse in the real-world recommendations [3]. It is undoubtedly very challenging to

perform GNN-based recommendations on a sparse user-item interaction graph. Meanwhile, there

exist a large amount of user-item bipartite graphs from other recommendation tasks, which contain

abundant information and knowledge. A natural idea to mitigate the data sparsity problem is to
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transfer useful information from existing graphs to facilitate the recommendation task on the target

sparse graph. Recent years have witnessed the great success of the pre-training techniques to

transfer knowledge from a large amount of data to help solve the target task in NLP and CV [86, 15].

Therefore, in this paper, we mainly focus on leveraging the pre-training strategy to address the data

sparsity challenge in GNN-based recommendations.

Next, we formally define the pre-training problem for GNN-based recommendations. We denote

the user-item interaction data in a recommendation task as a user-item bipartite graph ⌧ = (*, �, ⇢),

where * = {D1, D2, · · · , D |* | } represents the user set, � = {81, 82, · · · , 8 |� | } is the item set, and

⇢ ⇢ * ⇥ � indicates interactions between users and items. Each element 4 9 : in ⇢ suggests that

there exists an interaction between the user D 9 and the item 8: . We assume that there are # graphs

for pre-training that are denoted {⌧1,⌧2, · · · ,⌧# }. We further use ⌧C = (*C , �C , ⇢C) to denote the

target graph for the downstream recommendation task.

Generally, a GNN model consists of ! layers, where the key component in each layer ; is a

graph convolution with parameter ) ;
2>=E

. Thus, we can denote the parameters for a GNN model as

⇥⌧## = {)1
2>=E

, · · · , )!
2>=E

}. With above definitions, the goal of the pre-training task is to train a

model from graphs {⌧1,⌧2, · · · ,⌧# } that can help build a GNN model G(·;⇥⌧##C ) for ⌧C from

the downstream recommendation task.

5.2.2 An Overall Design of ADAPT

An overview of ADAPT is demonstrated in the top subgraph of Figure 5.1. It consists of two

key components – a meta-LGNN model and a GNN adaptor. One key challenge of pre-training

GNNs for recommendations is that user-item interaction graphs in different recommendation tasks

have distinct user/item sets; as a result, it is hard to directly transfer user/item embeddings across

different recommendation graphs like pre-trained word embeddings in NLP. To solve this challenge,

we propose to use the meta-LGNN model based on a new collaborative filtering method [112]. It

provides a new perspective for GNN-based recommendations, where the recommendation prediction

is made based on the local structure surrounding a user and an item, rather than their embeddings,

via a GNN model. Therefore, it does not need to learn embeddings of users and items, which is
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Figure 5.1: The top subgraph shows an overview of the proposed framework ADAPT. There are
two key components in ADAPT – a meta-LGNN model and a GNN adaptor. The GNN adaptor is
designed to adapt the meta-LGNN model to a customized GNN model for the interaction graph of
a given recommendation task by considering its distinct properties. With these two components,
ADAPT first trains a GNN adaptor and a meta-LGNN model simultaneously in the pre-training phase.
Then, given the target graph from the downstream recommendation task in the fine-tuning phase, we
generate a customized GNN model based on the properties of the target graph via the GNN adaptor
and the meta-LGNN model. The bottom subgraph illustrates the adaptation process. Given a specific
graph ⌧<, the GNN adaptor takes its graph property vector p< as input, and outputs customized
adapting parameters �< for ⌧<. Suppose that the meta-LGNN model consists of ! GNN layers,
we can denote its parameter as ⇥<4C0�!⌧## = {)1

2>=E
, · · · , )!

2>=E
}, where ) ;

2>=E
2 R3

;�1
⇥3

; and 3;
denotes the dimension of node embeddings outputted by the ;-th GNN layer. The GNN adaptor will
generate ! adapting parameters corresponding to these GNN layers for ⌧<, which can be denoted
as �< = {51

<
, · · · , 5!

<
}, where 5;

<
2 R23;�1

3
; . For the graph convolution in the ;-th GNN layer of

the customized GNN model for graph ⌧<, its parameters 5;
<

are adapted via 5;
<

on ) ;
2>=E

. Note that
the adaptation processes of the pre-training and fine-tuning processes are the same.

naturally more flexible for pre-training, compared to most existing GNN-based recommendation

methods. The success behind pre-training is that there exists common knowledge that can be

transferred from the pre-training data to the downstream task. On the one hand, there are similar

patterns of user-item local structures in different recommendation graphs, which are captured by
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the proposed meta-LGNN model. However, there could exist different patterns for these graphs

since different graphs can present distinct properties. Therefore, ADAPT provides the GNN adaptor

that can adapt the meta-LGNN model to a customized GNN model for the interaction graph of

a given recommendation task by considering its distinct properties. With these two components,

ADAPT first trains a GNN adaptor and a meta-LGNN model simultaneously in the pre-training

phase. Then, given the target graph from the downstream recommendation task in the fine-tuning

phase, we generate a customized GNN model based on the properties of the target graph via the

GNN adaptor and the meta-LGNN model. In the following subsections, we first introduce the

proposed GNN recommendation method for localized collaborative filtering in ADAPT. Next, we

describe the pre-training process and the fine-tuning process of ADAPT in detail.

5.2.3 GNN-based Recommendation Method for Localized Collaborative Filtering

Graph Neural Network (GNN) models have been demonstrated effective and superior in

facilitating recommendation tasks [123, 110, 35]. Most existing GNN-based recommendation

methods aim at learning a set of user and item embeddings via a GNN model. Given that user-item

interaction graphs from different recommendation tasks have distinct user/item sets, these GNN-

based recommendation methods are impractical to be pre-trained, since user/item embeddings can

not be transferred across different graphs. To take advantage of the power of both GNN methods and

the pre-training techniques, we propose to adopt a new GNN-based localized collaborative filtering,

(i.e., meta-LGNN) to build the basic recommendation model in our pre-training framework, which

does not require learning user/item embeddings and makes predictions based on local structures

extracted from the interaction graphs. Next, we will first briefly introduce the most common existing

GNN-based recommendation method, and then illustrate the meta-LGNN.

We use H = {hD1 , · · · , hD |* |
, h81 , · · · , h8 |� | } to denote the user and item embeddings the model

aims to learn. ⇥⌧## = {)1
2>=E

, · · · , )!
2>=E

} represents the parameters to be learned for a !-layer

GNN model, where ) ;
2>=E

denotes the parameters for the graph convolution in layer ;. Generally, for

a user D in a given user item bipartite graph, the graph convolution first aggregates item embeddings

from its neighborhood, and then updates the target user embedding based on its original embeddings
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Figure 5.2: The proposed GNN recommendation method based on localized collaborative filtering.
Given a target user D and a target item 8 , we first extract a local graph at these two target nodes from
the user-item interaction graph, of which the structure is denoted as A

BD1(D,8) . Next, we generate a
positional attribute for each node based on their minimum distances towards the target nodes, and
these node attributes are denoted as X

BD1(D,8) . Then, we can leverage a GNN model to get the graph
representation for this attributed graph. Finally, we can compute a recommendation score BD8 based
on the local graph representation via a scoring function to make the final prediction for the given
user and item pair.

and the aggregated embeddings. The update process of item embeddings works similarly as that for

a user node. We formalize the user node embedding update process via the graph convolution in the

;-th layer of GNN for illustration as follows:

h;
D
= 52>=E (h;�1

?
, h;�1

D
; ) ;

2>=E
),8? 2 N(D), (5.1)

where 52>=E represents the graph convolution operation and8? 2 N(D) denotes any item ? belonging

to the one-hop neighborhood of user D. Note that h0
D
= hD and h0

8
= h8. The refined user embedding

h!
D

and the item embedding h!
8

outputted by the final layer of the GNN model are used to represent

each user and item in a bipartite graph, and then typically we use the inner product over the user

embedding h!
D

and item embedding h!
8

to make the recommendation prediction. Overall, these

GNN-based recommendation methods aim at learning the user/item embeddings H and the GNN

model parameters ⇥⌧## simultaneously. Since interaction graphs from different recommendation

tasks have distinct sets of users and items, apparently it is not feasible to transfer the learned

embeddings, i.e., H.

In this paper, in order to ease pre-training for GNN-based recommendations, we build the

meta-LGNN model based on a new collaborative filtering method [112]. The intuition is that the

key collaborative filtering information for recommendation is encoded in the historical interactions.
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Given a specific user and item pair, their key collaborative information is also encoded in their

historical interactions. Thus it is reasonable to make a recommendation prediction based on the

local structure consisting of their historical interactions. The framework of meta-LGNN is shown in

Figure 5.2. For a target user and item pair, we first extract a local graph at these two target nodes

from the user-item interaction graph. Next, we generate a positional attribute for each node based

on their minimum distances toward the target nodes. Then, we can leverage a GNN model to get the

graph representation for this attributed graph. Finally, we can compute a recommendation score

based on the local graph representation via a scoring function to make the final prediction for the

given user and item pair.

Given a target user D and a target item 8 in a user-item interaction graph ⌧, we perform two

random walks [80] starting from these two nodes on ⌧, separately. Note that the random walk

strategy we adopt in our work is with the restarting mechanism, and thus this process can be regarded

as a neighbor sampling process, where we can get two sampled neighboring node sets ND and N8 for

D and 8, respectively. Next, we merge these two node sets to get an overall node set #(D,8) = ND [N8,

and finally, we can get a local graph ⌧
BD1(D,8) based on the set #(D,8) to reveal the local structure

around the given pair (D, 8). Note that the reason why we only sample some neighboring nodes is

to ensure the scalability of our model on large graphs. Apart from graph structure A
BD1(D,8) , we

also need its node attributes X
BD1(D,8) , so that we can use a GNN model G(·;⇥) to get a meaningful

representation for ⌧
BD1(D,8) . For the model transferability, we propose to use the Double-Radius

Node Labeling (DRNL) [129] to generate a set of positional attributes for each user or item in a

graph, rather than using the existent node attributes, which are very likely to miss or be different

across various recommendation tasks. The setting without no node attributes is also commonly

adopted by previous related works [53, 110, 35], and it is straightforward for the proposed ADAPT

framework to incorporate node attributes if they are available. DRNL labels each node based on

its minimum distances towards the target user D and the target item 8 on the local graph ⌧
BD1(D,8) .

Given a user/item node C, its positional attribute GC can be calculated as:

GC = 1 + min(3D, 38) + (3/2)2 (5.2)
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where 3D denotes the minimum distance between D and C, and 38 denotes the minimum distance

between 8 and C. 3 = (3D + 38) is the sum of two minimum distances. Note that we denote GD = 1

and G8 = 1, so that we can distinguish the target user and item from other nodes. Now we have

the graph structure and the node positional attributes of ⌧
BD1(D,8) , thus, we can use a GNN model

G(·;⇥) to encode it into a meaningful representation. The node embedding update process in each

GNN layer also follows Eq. 5.1. we use H!

BD1(D,8)
2 R=⇥3 to denote the user-item embedding matrix

outputted by the final GNN layer, where ! is the number of GNN layers, = is the number of users

and items in ⌧
BD1(D,8) and 3 denotes the embedding dimension. Then, the GNN model leverages a

pooling operation to get the graph representation for ⌧
BD1(D,8) as follows:

h(D,8) = ?>>; (ABD1(D,8) ,H!

BD1(D,8)
). (5.3)

Note that the positional attributes are used as the input node features, i.e., H0
BD1(D,8)

= X
BD1(D,8) , which

means that there is no need to learn the user/item embeddings. Finally, a score function is applied to

compute a score for the user-item pair (D, 8) to make a prediction. Overall, meta-LGNN aims at only

learning the GNN model parameters ⇥⌧## while eliminating the user/item embeddings H.

5.2.4 The ADAPT Pre-training

In this subsection, we will introduce the overall pre-training process of the proposed ADAPT. In

this pre-training phase, one key challenge is how to learn the common transferable knowledge across

multiple interaction graphs and capture their differences simultaneously. To solve this challenge, we

equip ADAPT with a GNN adaptor. The basic idea of model adaptation is to adapt the meta-LGNN

model to a customized GNN model specially for each recommendation graph based on its graph

properties. In other words, we aim at customizing similar GNN models for recommendation

graphs sharing similar graph properties. One key factor for the rationality of the designed model

is that the graph properties of a recommendation graph are related with the collaborative filtering

patterns. Thus, it is important to choose appropriate graph properties that can indicate collaborative

filtering information. Intuitively, recommendation graphs holding similar structure properties are

more likely to have analogical recommendation patterns. For examples, large online-shopping
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platforms may share more similar collaborative filtering patterns with each other than that with

small online-shopping platforms. Recommendation domains where the purchasing behaviors are

frequent may have different recommendation patterns with that where the users are inactive. More

details about the design of graph properties can be found in Section 5.2.4.1.

In the pre-training process, both the GNN adaptor and the meta-LGNN model are optimized

simultaneously. Next, we will detail the GNN adaptor component, the adaption process and the

pre-training process.

5.2.4.1 The GNN Adaptor

The goal of the GNN adaptor is to generate customized adapting parameters to adapt the meta-

LGNN model for a given graph. Given a specific graph⌧<, the GNN adaptor takes its graph property

vector p< as input, and outputs customized adapting parameters �< for ⌧<. It is expected that the

chosen graph properties are able to indicate important collaborative filtering information. To achieve

this goal, we carefully select numerous graph structure properties. Intuitively, the collaborative

filtering pattern is likely to be related to the recommendation graph size, i.e., the number of users and

items in this recommendation graph. Also, the ratio between the number of users and that of items,

and the frequency of the user-item interactions are important for recommendation patterns. Thus,

we include the number of nodes, the number of edges, the user-item ratio, and the graph density in

the graph properties. In addition, we also include the degree assortativity coefficient, which may

indicate whether active users prefer popular items or niche items in a specific recommendation

domain. Likewise, the robins-alexander clustering coefficient, the number of connected components,

and the global efficiency have been included to indicate the interaction pattern of a recommendation

graph. To conclude, to fully exploit the interaction pattern in a recommendation graph, we utilize

eight normalized graph structural properties including the number of nodes, the number of edges,

the user-item ratio, the graph density, the degree assortativity coefficient, robins-alexander clustering

coefficient, the number of connected components and the global efficiency as the graph property

input of the GNN adaptor. Note that there are also other alternatives we can explore to serve as the

input of the GNN adaptor, such as the graph representation extracted by some graph embedding
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methods or unsupervised graph learning methods, which can also capture some important graph

information. However, these alternatives may introduce additional model complexity and computing

overhead. Thus, we prefer to use the eight graph properties introduced above, which are intuitive and

empirically effective. As discussed before, suppose that the meta-LGNN model consists of ! GNN

layers, we can denote its parameter as ⇥<4C0�!⌧## = {)1
2>=E

, · · · , )!
2>=E

}, where ) ;
2>=E

2 R3
;�1

⇥3
;

and 3; denotes the dimension of node embeddings outputted by ;-th GNN layer. The GNN adaptor

will generate ! adapting parameters corresponding to these GNN layers for ⌧<, which can be

denoted as �< = {51
<
, · · · , 5!

<
}, where 5;

<
2 R23;�1

3
; . The GNN adaptor can be modeled using

any function of p<. Specifically, for the graph convolution in the ;-th GNN layer for ⌧< , the GNN

adaptor generates its corresponding adapting parameters as follows:

5;
<
= 030(p<;8;

), (5.4)

where 8; denotes the parameters of the GNN adaptor function 030() corresponding to the graph

convolution in the ;-th GNN layer. In our work, we implement 030() as a feed-forward neural

network. Overall, we can summarize the adapting parameters generation process for ⌧< as follows:

�< = �⇡�(p<;⌦), (5.5)

where �⇡�() consists of all adaptor functions for different GNN layers and ⌦ = {81
, · · · ,8!

}

represents the parameters for all the GNN adaptors.

5.2.4.2 The Adaptation Process

In our work, the meta-LGNN model can be arbitrary GNN models including GCN [52],

GIN [120] and etc [126, 69, 22]. The meta-LGNN model can be directly applied to a given user-item

interaction graph.

However, as aforementioned, there exist both similarities and differences among the user-item

interaction graphs in different recommendation tasks. Thus to preserve similarities and differences

simultaneously, we do not directly apply the same meta-LGNN model to all the recommendation

graphs in the pre-training process. Instead, we utilize the GNN adaptor to generate a customized

GNN model for each recommendation graph based on the meta-LGNN model and its graph
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properties. The adaptation process is illustrated in the bottom subgraph of Figure 5.1. Specifically,

for the graph convolution in the ;-th GNN layer of the customized GNN model for graph ⌧<, its

parameters are adapted as follows:

) ;
2>=E<

= ) ;
2>=E

⇧ 5;
<
, (5.6)

where ⇧ denotes an adaptation operation. In the proposed model, we adopt FiLM [81] as the

adaptation operation. Specifically, we split the adapting parameters 5;
<
2 R23;�1

3
; into two parts

and reshape them as $;
<
2 R3

;�1
⇥3

; and #;
<
2 R3

;�1
⇥3

; . Then, we can formalize the adapting process

of ) ;
2>=E

for ⌧< as follows:

) ;
2>=E<

= ) ;
2>=E

� $;
<
+ #;

<
, (5.7)

where � denotes the element-wise multiplication between two matrices. By applying the adaptation

operation on ! GNN layers of the meta-LGNN model, we can get the customized GNN model

G(·;⇥⌧##<) for ⌧<, where ⇥⌧##< = {)1
2>=E<

, · · · , )!
2>=E<

}. The overall adaptation for ⌧8 can be

summarised as:

⇥⌧##< = ⇥<4C0�!⌧##⌃�< . (5.8)

Then, we utilize the customized GNN model to generate graph embedding for the local graph

⌧
BD1(D,8) extracted from ⌧< for any user-item pair (D, 8) as follows:

hD,8 = ?>>; (ABD1D,8 ,G(ABD1D,8 ,XBD1D,8 ;⇥⌧##<)),

8(D, 8) 2 ⇢< (5.9)

5.2.4.3 The Pre-training Process

In the pre-training phase, suppose that there are# user-item interaction graphs {⌧1,⌧2, · · · ,⌧# }

from different recommendation tasks. For any graph ⌧<, we can generate a customized GNN model

G(;⇥⌧##<) based on the meta-LGNN model and graph properties p< via the GNN adaptor. For
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any user-item pair (D, 8) 2 ⇢<, we utilize G(;⇥⌧##<) to compute a graph representation hD,8 for its

corresponding local graph ⌧BD1D,8 , and then we use a scoring function to compute a recommendation

score for (D, 8) based on hD,8 :

B(D,8) = B2>A4(h(D,8); %) = f(h(D,8) · %), (5.10)

where % is the linear transformation weights to be learned in the scoring function. We adopt the

pairwise BPR loss [90] in ADAPT. The BPR loss is one of the most popular objective functions in

recommendation tasks, which measures the relative order of the positive node pairs and negative

node pairs. The positive node pairs are user-item interactions observed in graphs, while the negative

node pairs are non-existent user-item interactions generated by negative sampling. Specifically,

BPR assumes that the recommendation score of the positive node pairs should be higher than the

corresponding negative ones. The objective function L?A4 of our model in the pre-training phase is

formulated as follows:

min
⌦,⇥<4C0�!⌧## ,%

’
(D,8,8

0
)2O

� lnf(B(D,8) � B(D,80 )), (5.11)

where O =
–
<

{(D, 8, 8
0

) | (D, 8) 2 ⇢<, (D, 8
0

) 2 ⇢
�
<
} denotes the pre-training data for the graph set

{⌧1,⌧2, · · · ,⌧# }. ⇢< represents the existent interaction set between users and items in ⌧<

and ⇢�
<

is the non-existent interaction set. The overall pre-training process is summarized in

Algorithm 1. Given a set of interaction graphs used for pre-training {⌧1,⌧2, · · · ,⌧# } , batch size

1 and the amount of interactions sampled for pre-training #B0<?;4B, we first randomly initialize

the meta-LGNN model, the GNN adaptor and the scoring function. Next, in each training epoch

(from line 3 to line 12), a random graph ⌧< is sampled from {⌧1,⌧2, · · · ,⌧# } and the GNN

adaptor generates its corresponding adaptation parameters �< based on its structure properties p<,

and then the customized GNN model G(;⇥⌧##<) is generated especially for ⌧<. Furthermore,

we randomly sample 1 user-item interactions from the pre-training graph ⌧< and generate their

negative counterparts, and then the meta-LGNN model, the GNN adaptor and the scoring function

are updated via minimizing the BPR loss on these samples. The training process will continue until

the objective function is converged.
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Algorithm 1 The Pre-training Process of ADAPT
Input:

A set of interaction graphs from different recommendation tasks: {⌧1,⌧2, · · · ,⌧# };
Batch size 1;
Sample amount #B0<?;4B (Note that #B0<?;4B <

Õ
<
|⇢< |.)

Output:
The meta-LGNN model G(;⇥<4C0�!⌧## );
the GNN adaptor �⇡�(;⌦);
The scoring function B2>A4(; %)

1: Initialize ⇥<4C0�!⌧## , ⌦ and % randomly;
2: while not converged do
3: for batch=1,..,#B0<?;4B

1
do

4: Sample a graph ⌧< from {⌧1,⌧2, · · · ,⌧# };
5: Compute �< = �⇡�(p<;⌦);
6: Compute ⇥⌧##< = ⇥<4C0�!⌧##⌃�<;
7: Sample 1 user-item interactions (D, 8) 2 ⇢<;
8: Sample 1 negative interactions (D, 80) 8 ⇢<;
9: Compute ;>BB =

Õ
� lnf(B2>A4(D,8) � B2>A4(D,80 ))

10: Compute 6A03 = 102:F0A3 (;>BB)
11: Update( ⇥<4C0�!⌧## ,⌦, %; 6A03)
12: end for
13: end while

5.2.5 The ADAPT Fine-tuning

In the fine-tuning phase, we also adopt the BPR loss. However, in this phase, we aim at

optimizing the parameters of the customized GNN model. The formulation is listed below:

min
⇥⌧##C

’
(D,8,8

0
)2⇢

0

C

� lnf( Ĥ (D,8) � Ĥ (D,80 )), (5.12)

where ⇢ 0

C
= {(D, 8, 8

0

) | (D, 8) 2 ⇢C , (D, 8
0

) 2 ⇢
�
C
} denotes the training data for the target graph ⌧C . ⇢C

represents the set of existent interactions between users and items in ⌧C and ⇢�
C

is the non-existent

interaction set generated manually.

With the GNN adaptor and the meta-LGNN model from the pre-training phase, we can conduct

model fine-tuning especially for a target recommendation graph ⌧C . We design two fine-tuning

strategies and illustrate them in Figure 5.3.

• The first fine-tuning strategy is named as direct fine-tuning. As shown in the top subfigure of
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Figure 5.3: The fine-tuning strategies. We design two fine-tuning strategies – direct fine-tuning
and joint fine-tuning, which are denoted as ADAPT-D and ADAPT-J, separately. In ADAPT-D, we
generate the customized GNN model ⇥⌧##C based on the input graph via the GNN adaptor and the
meta-LGNN, and we fine-tune the customized GNN model ⇥⌧##C ; In ADAPT-J, we fine-tune both
the meta-LGNN model ⇥<4C0�!⌧## and the GNN adaptor ⌦.

Figure 5.3, given a target downstream graph ⌧C , we first compute the customized adapting

parameters �C = �⇡�(?C ;⌦) based on its property vector ?C via the GNN adaptor �⇡�(;⌦),

then generate the customized GNN model ⇥⌧##C = ⇥<4C0�!⌧##⌃�C . Finally, we fine-tune

⇥⌧##C by optimizing the objective function described in Eq. 5.12. We denote ADAPT with

this fine-tuning strategy as ADAPT-D.

• The second fine-tuning strategy is named as joint fine-tuning. As shown in the bottom subfigure

of Figure 5.3, given a target downstream graph ⌧C , we fine-tune both the meta-LGNN model

⇥<4C0�!⌧## and the GNN adaptor ⌦ on ⌧C . This fine-tuning strategy is inspired by test-time

training [100], which is proposed to fine-tune the model for a test sample in the test process

so that the model can be better adapted for the test data. We use ADAPT-J to indicate ADAPT

with the joint fine-tuning strategy.
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5.2.6 Time Complexity Analysis

In the subsection, we analyze the additional time complexity introduced by the GNN adaptor in

the ADAPT framework. For convenience, we assume the dimension of the output features from

each meta-LGNN layer as 3. Correspondingly, the dimension of output features from each GNN

adaptor layer is 23. The graph property vector p< of a given specific graph ⌧< is assumed to

be ?-dimensional. Then, the time cost of generating the adaptation parameters in each ADAPT

layer is $ (3 · ?) and the time complexity of the adaptation process is $ (3
2
). Thus, for the

ADAPT framework consisting of ! layers, the overall time complexity caused by adaptation is

$ (! · ? · 3 + ! · 3
2
). The time complexity of the filtering operation in each layer of the meta-LGNN

model is$ (#4 · 3 + #= · 3
2
), where #4 and #= denote the number of edges and the number of nodes

of the input graph, respectively. Hence, the overall time complexity of the meta-LGNN model is

$ (! · #4 · 3 + ! · #= · 3
2
). Typically, ? is significantly smaller than #4. Therefore, the additional

time complexity introduced by the GNN adaptor in the ADAPT framework is comparatively low.

5.3 Experiments

In this section, we conduct extensive experiments to validate the effectiveness of the proposed

ADAPT. We first introduce the experimental settings. Then we illustrate how the sparsity of the

recommendation graphs affects the performance of existent GNN-based recommendation methods.

Next, we evaluate the performance of ADAPT and representative baselines on various real-world

datasets. We conduct the ablation study to understand the importance of the GNN adaptor. Finally,

we investigate the impact of graph sparsity and the number of pre-training graphs on the performance

of ADAPT.

5.3.1 Experimental Settings

In this work, we conduct experiments on datasets from two real-world applications: Tianchi [2]

and MovieLens [1]. Specifically, we construct numerous user-item interaction graphs from different

recommendation scenarios based on the item category from these two applications. For each

application, we select some interaction graphs as pre-training graphs and some of them as the target
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(a) 60 pre-training graphs from Tianchi.

(b) 6 pre-training graphs from MovieLens.

Figure 5.4: Properties of pre-training graphs. Note that each circle represents a graph and its size
denotes the density of the graph.

downstream graphs. The statistics of the pre-training graphs are demonstrated in Figure 5.4 and

these of the downstream graphs are summarized in Table 5.1. As shown in Figure 5.4, we select 60

interaction graphs from Tianchi and 6 interaction graphs from MovieLens for pre-training, and these

graphs show very diverse properties. We have also summarized the graph property statistics of the
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Table 5.1: Statistics of the downstream graphs from Tianchi and MovieLens. Note that we do not
include all the graph properties in this table, since some properties vary with the graph data split
method.

Dataset #Users #Items #user-item ratio #Edges

Tianchi-174490 2,267 285 7.954385965 3,826
Tianchi-61626 2,305 764 3.017015707 3,270

Tianchi-3937919 1,846 158 11.683544304 2,980
Tianchi-2798696 2,579 94 27.436170213 2,988
MovieLens-War 2,970 89 33.370786517 4,240

60 pre-training graphs from Tianchi in Appendix D.1. We briefly introduce the Tianchi dataset and

the MovieLens dataset as follows:

• Tianchi: It is a user behavior dataset from Alibaba (one of the biggest online shopping

platforms in China), which consists of millions of user-item interactions, such as clicking,

liking, and purchasing. Each interaction record includes user ID, item ID, behavior type,

item category ID, and interaction timestamp. In our work, we use Tianchi-�⇡ to denote the

user-item interaction graph whose items belong to the category �⇡.

• MovieLens: This is a movie rating dataset from MovieLens (a popular movie recommendation

website), which consists of user rating records for thousands of movies from different categories.

Each rating record includes user ID, movie ID, rating, and movie category. In our work, we

use MovieLens-- to denote the user-movie interaction graph whose movies come from the

category - .

We mainly compare the proposed method with baseline methods from two groups. The first group

includes GNN-based recommendation methods and a classic CF method. Particularly, we select

NGCF and LightGCN since they are two of the most representative GNN-based recommendation

methods, and LightGCN is one of the state-of-the-art models. MF is chosen because it is one of the

most classic and popular recommendation methods. The second group includes existing pre-training

methods for GNNs. Though there are a few pre-training methods for GNNs [40, 41, 84], the majority

of them are not designed specifically to recommendations. Thus, we adapt a recent method GCC for
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recommendations as the representative baseline since it only relies on the topological information

and can be pre-trained on multiple graphs as the proposed ADAPT does. We have not chosen

the pre-training strategies proposed in [40] because there are no node attributes or graph labels

in our scenarios. Similarly, GPT-GNN [41] has not been included because it also requires node

attributes and cannot be applied across multiple graphs. The details of these baselines are presented

in Appendix D.2. Note that since we do not focus on the cold-start problem, we do not include the

pre-training work in [29] as one baseline.

For the downstream recommendation tasks, we divide the corresponding user-item interactions

into three sets: the training set, the validation set, and the test set. Note that each of the validation

sets and the test set has 5 percent of the total samples. To avoid the cold-start problem, we constrain

that all the users and items in the validation set and the test set should exist in the training set. In the

fine-tuning phase, we use the validation set to select the best model and then report its performance in

the test set. For each user-item interaction in the validation or the test set, we generate 49 non-existent

user-item interactions for the user. In the model evaluation, we first compute a recommendation

score for each interaction, and then we rank these scores. We calculate the Hit Rate (HR) of the

model prediction based on if the score of the real user-item interaction is in the top 5 among all the

50 user-item interactions. For each experiment, we average and report the model performance with

5 seeds in terms of HR. More implementation details can be found in Appendix D.3

5.3.2 Preliminary Study

In this subsection, we study how the performance of two representative GNN-based recom-

mendation methods, i.e., NGCF and LightGCN, is affected by the sparsity of interaction graphs.

Specifically, we increase the sparsity of interaction graphs by randomly removing parts of the

training edges while fixing the test edges. The results are shown in Figure 5.5 where G 2 {1, 2, 3, 4}

(i.e., the x-axis) is used to denote the graph sparsity and a larger G indicates a sparser graph. Both

LightGCN and NGCF show a significant decreasing trend in terms of recommendation performance

with the increase of graph sparsity. This empirically demonstrates that GNN-based recommendation

methods suffer from data sparsity. This motivates us to take advantage of pre-training techniques to
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(a) Tianchi-61626. (b) Tianchi-174490.

Figure 5.5: The performance of NGCF and LightGCN vs. the graph sparsity on two Tianchi datasets
(The reported performance is measured with HR in %).

alleviate this problem.

5.3.3 Performance Comparison

We compare the proposed ADAPT and baselines described aforementioned on five datasets,

including four item categories from Tianchi and one movie category from MovieLens. The

recommendation methods are divided into two groups: 1) the training from scratch group consists

of MF, NGCF, and LightGCN, which are directly trained from scratch on the target downstream

graphs; and 2) the pre-training & fine-tuning group consists of GCC and the proposed ADAPT with

two fine-tuning strategies, i.e., ADAPT-D and ADPAT-J. To ease the comparison, we also show

the best performance of methods from these two groups and compute the performance gain of the

pre-training & fine-tuning group over the training from scratch group. Note that in order to simulate

the data scarcity scenarios in real-world recommendation applications, after the validation set and

the test set are determined, we randomly remove some interactions from the remaining interactions

under the constraint of introducing no isolated users or items. Specifically, we tailor two training

sets: One retains 60 percent of the remaining interactions, and the other one consists of 40 percent

of interactions. The comparison results on these two scenarios are shown in Table 5.2 and Table 5.3,

respectively. To compare the proposed ADAPT framework with more graph pre-training methods,
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Table 5.2: The recommendation performance comparison with 60% as training (The reported
performance is measured with HR in %).

Datasets Training from Scratch Pre-training & Fine-tuning Performance
GainMF NGCF LightGCN Best GCC ADAPT-D ADAPT-J Best

Tianchi-174490 33.51±3.71 46.39±3.07 47.22±3.08 47.22±3.08 37.17±15.6 60.94±1.46 58.64±2.85 60.94±1.46 +29.05%
Tianchi-61626 17.30±3.14 28.34±5.52 34.11±3.52 34.11±3.52 33.37±3.4 50.06±3.18 49.81±3.16 50.06±3.18 +46.77%
Tianchi-3937919 21.75±3.95 26.71±4.59 40.2±3.31 40.2±3.31 35.57±12.12 57.72±2.31 59.6±1.97 59.6±1.97 +48.25%
Tianchi-2798696 30.81±5.22 35.97±2.71 28.99±3.86 35.97±2.71 45.1±3.4 47.38±2.15 46.84±0.28 47.38±2.15 +31.72%

MovieLens-War 62.94±4.25 63.41±3.06 62.94±4.07 63.41±3.06 64.93±5.13 73.93±1.18 75.99±0.72 75.99±0.72 +19.84%

Table 5.3: The recommendation performance comparison with 40% as training (The reported
performance is measured with HR in %).

Datasets Training from Scratch Pre-training & Fine-tuning Performance
GainMF NGCF LightGCN Best GCC ADAPT-D ADAPT-J Best

Tianchi-174490 30.73±4.35 42.36±2.96 37.64±3.24 42.36±2.96 33.40±1.36 57.70±2.49 60.07±3.2 60.07±3.20 +41.82%
Tianchi-61626 16.32±3.21 23.50±4.89 28.83±4.48 28.83±4.48 32.27±2.32 49.94±3.75 52.39±1.27 52.39±1.27 +81.70%
Tianchi-3937919 20.60±3.84 25.57±3.62 35.44±1.70 35.44±1.70 34.9±17.0 49.13±8.98 58.79±3.37 58.79±3.37 +65.9%
Tianchi-2798696 28.86±4.12 33.29±1.98 27.11±4.89 33.29±1.98 46.17±2.53 48.66±2.86 46.58±2.10 48.66±2.86 +46.16%

MovieLens-War 61.14±4.52 64.17±2.50 56.78±4.86 64.17±2.50 50.76±13.65 71.85±1.76 71.47±1.18 71.85±1.76 +11.97%

we have also pre-trained the Meta-LGNN models following the InfoGraph and MVGRL methods,

and compare their performance on the Tianchi downstream datasets in Table 5.4. We can make the

following observations:

• NGCF and LightGCN often perform better than MF. This observation is consistent with

previous observations in [110, 35].

• The proposed ADAPT frameworks achieve great performance improvement over the recom-

mendation models trained from scratch on the target downstream data. This demonstrates the

effectiveness of ADAPT in alleviating the data scarcity problem in recommendation tasks.

• ADAPT achieves significantly better performance than GCC, InfoGraph, and MVGRL.

Compared to these pre-training methods, ADAPT is designed specifically to the pre-training

task for recommendations with the recommendation BPR objective and the adaptor to capture

the differences among pre-training graphs. More investigations on the importance of the

adaptor will be discussed in the following subsection.
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Table 5.4: The recommendation performance comparison with graph pre-training methods on
Tianchi datasets (The reported performance is measured with HR in %).

Dataset GCC InfoGraph MVGRL ADAPT

40%

Tianchi-174490 33.40±1.36 33.3±19.45 47.8±13.7 60.07±3.20
Tianchi-61626 32.27±2.32 34.97±10.2 22.45±4.44 52.39±1.27

Tianchi-3937919 34.9±17.0 32.21+21.8 46.8±11.5 58.79±3.37
Tianchi-2798696 46.17±2.53 31.95±8.28 43.4±1.55 48.66±2.86

60%

Tianchi-174490 37.17±15.6 32.56±22.5 53.7±18.1 60.94±1.46
Tianchi-61626 33.37±3.4 31.90±11.9 35.54±6.84 50.06±3.18

Tianchi-3937919 35.57±12.12 32.6±25.6 48.59±7.19 59.6±1.97
Tianchi-2798696 45.1±3.4 31.1±12.36 47.0±2.14 47.38±2.15

Table 5.5: Ablation study of the GNN adaptor (The reported performance is measured with HR in
%).

Datasets
Pre-training & Fine-tuning Training from Scratch

60 pre-training graphs 1 pre-training graph ADAPT-w/o-adaptor-scratchADAPT-best ADAPT-w/o-adaptor ADAPT-w/o-adaptor

Tianchi-174490 60.07±3.2 32.25±9.43 43.04±14.56 53.92±10.58
Tianchi-61626 52.39±1.27 44.78±9.83 43.81±6.36 49.57±3.98
Tianchi-3937919 58.79±3.37 38.12±7.29 48.59±7.89 58.25±5.89
Tianchi-2798696 48.66±2.86 47.36±1.46 45.64±1.50 47.25±2.15

Average 54.98 40.63 45.27 52.24

• Both the direct fine-tuning strategy and the joint fine-tuning strategy are effective. The joint

fine-tuning strategy is empirically shown to be more effective than the direct fine-tuning

strategy in most cases. This observation could indicate that fine-tuning the adaptor in the test

time has the potential to benefit the performance of the downstream recommendation task.

This observation is consistent with that in [100].

• The performance gain of ADAPT from the best baseline performance is more significant

under the 40% than 60%. This observation suggests that pre-training is a promising solution

to tackle the data sparsity problem in recommendations.

5.3.4 Ablation Study

We conduct an ablation study to investigate the effectiveness of the GNN adaptor. The results

are shown in Table 5.5. We use ADAPT-w/o-adaptor to denote the ADAPT framework without
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the GNN adaptor. We pre-train two model instances of ADAPT-w/o-adaptor with 60 pre-training

graphs and 1 pre-training graph, respectively. We use ADAPT-w/o-adaptor-scratch to indicate that

ADAPT-w/o-adaptor is trained from scratch with only the downstream graph. ADAPT-best denotes

the ADAPT framework with any fine-tuning strategy that can achieve better performance. We can

make the following observations:

• The overall performance of ADAPT-best is significantly better than that of the ADAPT-w/o-

adaptor and ADAPT-w/o-adaptor-scratch. This validates (1) the effectiveness of the GNN

adaptor for pre-training and (2) the importance of pre-training.

• The ADAPT-w/o-adaptor instance pre-trained on 60 pre-training graphs performs even worse

than the instance pre-trained on a single pre-training graph. This shows that it is necessary

to capture the differences among multiple pre-training graphs, and the GNN adaptor in the

proposed ADAPT can capture these differences in the pre-training process.

• Both the ADAPT-w/o-adaptor instances cannot beat ADAPT-w/o-adaptor-scratch. This

indicates that pre-training is not always helpful. It can even introduce performance degradation

if not carefully designed.

To further demonstrate the importance of pre-training, we check if ADAPT can transfer knowledge

from the pre-training graphs to the downstream recommendation task. To achieve this goal, we

directly use the models generated from the pre-training without fine-tuning. In particular, we

compare the performance of three different variants of the proposed GNN recommendation method

for localized collaborative filtering. They include a randomly-initialized model, the meta-LGNN

model from the pre-training phase, and the customized-GNN model generated by the meta-LGNN

model and the GNN adaptor, especially for the target dataset. The results are demonstrated in

Table 5.6. Overall, the meta-LGNN model performs better than the randomly-initialized model,

and the performance of the customized-GNN model is significantly better than that of the other

two variants. These observations demonstrate that the meta-LGNN model learns some useful

knowledge from the pre-training process, and the GNN adaptor effectively adapts the meta-LGNN
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Table 5.6: Performance comparison of three different variants of the proposed GNN recommendation
method for localized collaborative filtering (The reported performance is measured with HR in %).

Datasets random-ini meta-LGNN customized-GNN

Tianchi-174490 16.44 13.09 28.17
Tianchi-61626 12.64 16.20 26.99
Tianchi-3937919 16.11 12.89 30.33
Tianchi-2798696 11.68 19.33 17.59

Average 14.22 15.38 25.77

model to the customized one. The customized-GNN model performs remarkably better than the

randomly-initialized model. This provides direct evidence that ADAPT successfully transfers

knowledge from pre-training graphs to the downstream recommendation task.

5.3.5 Further Probing

In this subsection, we further probe the proposed framework by exploring the following two

problems: 1) how does the sparsity of the target downstream graph affect the ADAPT performance?

and 2) how does the number of pre-training graphs influence the ADAPT performance?

5.3.5.1 Sparsity Analysis

(a) Tianchi-174490. (b) Tianchi-61626. (c) MovieLens-War.

Figure 5.6: The performance of the proposed ADAPT with varied sparsity of the target downstream
graph. Note that the x-axis is used to denote the graph sparsity. The larger the sparsity is, the sparser
the target downstream graph is.

In Figure 5.6, we show how the performance of ADAPT and two GNN-based recommendation

methods, NGCF and LightGCN, changes with the change of graph sparsity. Specifically, we

gradually increase the graph sparsity by randomly removing some interactions from the training

set under the constraint of introducing no isolated users or items, and meanwhile, the test set
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and validation set remain unchanged. It is observed that the proposed ADAPT performs much

more stable with the increase of the graph sparsity, compared to NGCF and LightGCN. This

observation further demonstrates the appealing of pre-training to mitigate the data sparsity problem

in recommendations.

5.3.5.2 The Number of Graphs for Pre-training

(a) Tianchi-174490. (b) Tianchi-61626.

(c) Tianchi-393719. (d) Tianchi-2798696.

Figure 5.7: Performance variants of the proposed ADAPT in terms of the number of pre-training
graphs.

In order to explore the influence of the number of pre-training graphs on the model performance,

we pre-train four ADAPT models on one single graph, 6 graphs, 60 graphs and 300 graphs,

respectively. Then we fine-tune these models on four target downstream graphs. Note that for the
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ADAPT model pre-trained on multiple graphs, we report its best performance among two fine-tuning

strategies. For the ADAPT model pre-trained on one single graph, it is not applicable to pre-train

the GNN adaptor, thus we report its performance without the GNN adaptor. As shown in Figure 5.7,

the model performance first increases when the number of pre-training graphs increases and then it

decreases consistently on all the datasets when the number of graphs is 300. This demonstrates

that it is potentially beneficial to increase the number of pre-training graphs for the downstream

performance. However, too many pre-training graphs may introduce noise that could hurt the

downstream performance.

5.3.5.3 Investigation of Node Attributes Alternative

Following the commonly adopted scenarios [53, 110, 35] and also for the feasibility and

transferability of the proposed ADAPT, we don’t assume that there exists the same set of node

attributes across different recommendation graphs. Instead, we propose to use Double-Radius Node

Labeling (DRNL) [129] to generate a set of positional attributes, which are able to encode structural

information, to serve as node attributes. The proposed ADAPT is very flexible with the input node

attributes. If there do exist the same set of node attributes across different graphs, we can easily

incorporate these raw node attributes by either concatenating them with the positional attributes or

directly using them as input node attributes. To further investigate other alternatives for the input

node attributes, we have also attempted to use the DeepWalk [82] embedding of each node as the

input node attributes, and have compared its performance with the DRNL method on Tianchi dataset

in Table 5.7. We can observe that the DeepWalk node attributes perform worse than the DRNL

node attributes in most cases, but it beats its counterpart in one case. This shows that DRNL is a

good attributes generation method for the proposed ADAPT given its effectiveness and simplicity,

and there may exist potential to improve the model performance by further investigating other node

attributes alternatives.

5.3.5.4 Visualization of Customized Models

To further explore the model adaptation, we visualize the customized models for the four

downstream Tianchi datasets. Specifically, we extract the parameters of the first GNN layer of the
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Table 5.7: Performances comparison of ADAPT with DRNL node labeling method and DeepWalk
node labeling methods on Tianchi datasets with 40% as training.

Tianchi-174490 Tianchi-61626 Tianchi-3937919 Tianchi-2798696

ADAPT-DRNL 60.07±3.20 52.39±1.27 58.79±3.37 48.66±2.86
ADAPT-DeepWalk 44.16±5.27 26.99±5.7 36.7±8.49 55.03±4.65

four customized models and then use t-sne [70] to project them to a 3-dimensional space. These

3-dimensional embeddings are then visualized in Figure 5.8, from which we can observe that the

GNN adaptor indeed generates different customized models for different recommendation graphs.

In addition, for graphs with similar graph properties, their corresponding customized models are

more similar than those that are relatively different.

(a) gnn layer 1 weight. (b) gnn layer 1 bias.

Figure 5.8: Visualization of customized models for different downstream graphs on Tianchi dataset.

5.3.5.5 Test on a larger dataset

We further test the proposed ADAPT on a relatively larger downstream dataset graph compared

to the other downstream graphs. This dataset is from the romance category of MovieLens, which

consists of 20407 users, 376 items, and 30496 edges. We compare the model performances with

60% edges as the training set. The result is shown in Table 5.8, where the proposed ADAPT method

also achieves the best performance.
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Table 5.8: Performance comparison on MovieLens-Romance dataset (with 20407 users, 376 items
and 30496 edges) with 60% as training (The reported performance is measured by HR in %).

MF NGCF LightGCN GCC ADAPT-D ADAPT-J

72.19±1.44 76.6±2.64 78.54±1.19 71.63±4.29 79.01±1.1 76.8±5.05

5.4 Related Work

Our work is related to graph neural networks, pre-training for graph neural networks, recom-

mendation models based on graph neural network, inductive recommendation and cross-domain

recommendation. Next, we briefly review representative methods from each category.

5.4.1 Graph Neural Networks

In recent years, increasing attention and efforts have been devoted into graph neural networks,

which successfully extend deep neural networks to graph data. Graph neural networks are theoretically

and empirically demonstrated to be very powerful in graph representation learning [52, 27], and

have achieved great success in various applications from different domains, such as natural language

processing [124, 43, 11], computer vision [83, 114] and recommendation [123, 125, 110, 96, 35,

117, 47, 137]. There are mainly two groups of graph neural networks: the spectral-based methods

and the spatial-based methods. In [93], the first graph neural network is proposed from the spatial

perspective to solve both graph and node level tasks, which aggregates information from neighboring

nodes for each node in every layer. Subsequently, Bruna et al. [10] propose to generalize the

convolution operation to the graph domain based on graph Laplacian theory from the spectral

perspective. Following this work, Defferrard et al [13] propose ChebNet, which uses chebyshev

polynomials to modulate the graph Fourier coefficients for different graph signals. Next, Kipf and

Welling [52] further simplify ChebNet via some assumptions and propose graph convolutional

networks (GCNs). It is remarkable that despite developed from the spectral perspective, GCNs

can also be well illustrated in a spatial way. From then on, multiple spatial-based graph neural

networks have been proposed. A comprehensive overview about GNNs can be found in recent

surveys [119, 135] and books [68]. In addition, there emerge some work trying to further explore

the rationale behind GNNs, such as Ma et al [67] propose that most existent GNNs can be unified
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as graph signal denoising. In addition to the aforementioned work mainly focusing on graph

convolution operation, there are also numerous works targeting at graph pooling operation, which

summarizes graph representation from node representations and plays an essential role in graph

representation learning. There are simple pooling methods, such as directly averaging all the node

representations as the graph representation [17] or adding a virtual node that connects to all the

nodes in the graph and then taking its node representation as the graph representation [60]. An

increasing number of hierarchical pooling methods have been proposed to learn graph representation

hierarchically, which are believed to be able to better capture the graph structure information.

Specifically, DiffPool [126] is proposed to learn a differentiable soft cluster assignment for each node

at every GNN layer. Inspired by encoder-decoder model, graph U-Net [22] is designed to consist

of graph pooling (gPool) and graph unpooling (gUnpool) operations, where gPool can adaptively

select important nodes based on the importance scores computed on a learnable projection vector.

Furthermore, RepPool [58] proposes a learnable way to better integrate non-selected nodes, which

can better preserve the information of both the important nodes and normal nodes .In addition,

EigenPooling [69] is designed from the perspective of graph Fourier transform and it can leverage

both the node features and the local structures.

5.4.2 Pre-training for Graph Neural Networks

Inspired by the great success of pre-training techniques in multiple domains such as computer

vision and natural language processing [72, 86, 15, 14, 32, 44, 45], many researchers have also

started to explore how to a apply pre-training appropriately in GNN models [40, 84, 41, 65, 29].

Hu et al. [40] propose a pre-training strategy based on self-supervised learning, which focuses on

pre-training a GNN model at both the node level and graph level, so that the pre-trained model can

learn effective node representations and graph representations simultaneously. Qiu et al. propose

GCC [84], a GNN pre-trainng framework based on contrastive learning, which aims at capturing

transferable topological knowledge across multiple graphs.

GPT-GNN [41] is a GNN pre-training framework built on generative model. It aims at capturing

both the structure information and the semantic information via generating node attributes and edges
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alternatively. In addition, some work focus on bridging the gap between GNN pre-training and GNN

fine-tuning. For example, L2P-GNN [65] is proposed to mimic fine-tuning during the pre-training

process via a dual-adaption mechanism at both the node level and graph level. Besides, there also

emerges GNN pre-training work specially for alleviating the cold-start problem in recommendation

tasks [29], where researchers propose to use embedding reconstruction as the pre-training task, so

that the cold-start user/item can get a good representation from the reconstruction knowledge.

5.4.3 Graph Neural Networks for Recommendation Systems

Recommendation tasks are to predict a user’s preference based on its historical interactions

with various items. Historical user-item interactions can be directly denoted as a bipartite graph,

and thus it is very natural to apply graph neural networks to recommendation tasks. In fact, there

exist numerous works focusing on exploring GNNs for recommendation systems and many of

them have achieved promising performance [125, 110, 35, 19, 109]. PinSage [125] is designed

especially for recommendation tasks based on GraphSage, and can be directly applied to a web-scale

recommendation tasks. For each user or item node, it utilizes a random-walk based sampling

method to sample some neighboring nodes for information aggregation. NGCF [110] is designed to

explicitly capture high-order connectivity in user-item interaction graphs via embedding propagation.

Later on, He et al. propose LightGCN [35], which simplifies the design of GNNs especially for

recommendation tasks via eliminating feature transformation and non-linear activation function, and

has achieved significant performance improvement. Furthermore, Wu et al. [116] explore to improve

the performance of GNN models for recommendations by incorporating self-supervised learning

techniques. This work can be supplementary to most supervised GNN models for recommendations,

which aim at improving user and item representations via self-discrimination. These GNN-based

recommendation methods only relying on the user-item interaction graphs. There are also works

focusing on utilizing GNNs to deal with side information, such as social networks and knowledge

graphs, to facilitate recommendation performance. For examples, GraphRec [19] is proposed to

use two graph attention networks to learn user embeddings and item embeddings, and the user

embedding is learned from both the social graph and interaction graph. KGAT [109] is proposed to
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integrate the user-item interaction graph and the knowledge graph into one unified graph by viewing

the user-item interaction as one type of the relations, and to use attentive embedding propagation

layers to refine embeddings over this unified graph.

5.4.4 Inductive Recommendation and Cross-Domain Recommendation

Inductive recommendations focus on recommendation tasks in inductive scenarios, where there

are emerging users or items that do not appear in the training process. Most methods [53, 36, 110, 35]

that leverage one-hot identification representation as input to learn user/item embeddings that

typically cannot be applied in inductive scenarios. Some item-based methods [92, 48] aim at making

predictions based on similarities between the new items and a fixed item set, which can recommend

existent items to new users. Recently, there are also a few models proposed especially for inductive

recommendation where there are both new users and items. IGCN [118] is one of such methods.

It initiates the embeddings of the new users and items by leveraging the embeddings of some

pre-defined core items/users and global item/user representation. CF-GCN [87] learns embeddings

of the new users and items via fusing embeddings of existent users/items of different layers. Most

of these methods aim at learning representations for new items/users via their interactions with

items/users seen in the training phase. The aforementioned inductive scenario is quite different from

the pre-training scenario we discuss about at this work. The inductive scenario aims at handling new

items/users in an existent recommendation graph, while the proposed pre-training scenario targets

at transferring common knowledge among different recommendation graphs. Furthermore, the

methods [92, 48, 118, 87] for the inductive scenario are not applicable in the proposed pre-training

scenario, since it requires interactions between new items/users between the core items/users seen in

the training phase, but there is no such common core items/users among different recommendation

graphs in the proposed pre-training scenario.

Cross-domain recommendation is also proposed to alleviate the data scarcity problem in

recommendation in sparser domains via transferring knowledge from richer domains. There are

different scenarios in cross-domain recommendation [140], among which single-target scenario is

most similar with the proposed pre-training scenario, where richer data from source domains are
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leveraged to help recommendation in a target domain with sparser data. In this scenario, it is assumed

that there are common users or items among source domains and the target domain [131, 139, 61],

or there exist attributes of the same modality among these domains, such as user ratings [8] and

semantic properties [56, 130]. Typical techniques adopted in cross-domain recommendation include

transfer learning [73, 136, 34], domain adaptation [49, 127], multi-task learning [4, 64] and so

on. Although sharing similar goals, cross-domain recommendation and the proposed pre-training

recommendation are quite different. In the proposed pre-training recommendation scenario, there

are no common users or items among different domains. Also, no user/item attributes of the same

modality are provided. Therefore, most cross-domain recommendation methods are not applicable

to the studied scenario.

5.5 Conclusion

In this paper, we propose an adaptive graph pre-training framework for localized collaborative

filtering, ADAPT, which can effectively help alleviate the data scarcity challenge in recommendation

tasks. There are two key components in the proposed ADAPT: the meta-LGNN and the GNN

adaptor. Specifically, the meta-LGNN is a novel GNN-based recommendation method from a

new perspective of local structure. It aims at encoding the collaborative filtering information into

the graph representation for the neighboring structure of a given user-item pair, and it does not

require learning user/item embeddings. Thus it is more flexible for pre-training compared to existing

GNN-based recommendation methods. The GNN adaptor is the key to allowing the effectiveness

of taking advantage of multiple graphs for pre-training. It can capture the difference for each

graph, and adapt the meta-LGNN model to the customized GNN model accordingly. Overall, the

proposed ADAPT is able to transfer common knowledge from the pre-training graphs for the target

downstream recommendation graph and to capture their uniqueness in the meanwhile. Extensive

experiments have validated the effectiveness and superiority of the proposed ADAPT in GNN

pre-training for recommendations.

There are a few directions we can further explore in the future. First, the current implementation

of the meta-LGN is based on GCN, which is a vanilla model in graph representation learning. The
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performance of the meta-LGN could be further improved by replacing the GCN model with other

advanced GNN models such as GIN. Second, the node labeling method currently adopted by the

meta-LGN treats user and item nodes equally. In further exploration, we may consider distinguishing

the user and item nodes in the node labeling method. Third, the designs of the adaptor model and

adaptation operation are also flexible, and there are some alternative models and operations that

can further be explored on the proposed framework. Last but not least, instead of pre-training the

proposed framework on numerous independent user-item interaction graphs, we may consider how

to leverage some available shared user or item nodes among these graphs.
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CHAPTER 6

CONCLUSION

Graph Neural Networks have been proven effective in graph representation learning, and have

achieved revolutionary achievements in many graph-related tasks, including graph classification,

node classification, and link prediction. GNNs have aroused great research interests and many

novel GNN models have been designed and applied in various applications. While significant

progress has been made in regard to GNNs, their out-of-distribution generalization problem has

not been effectively solved and this hinders their effective applications in real-world scenarios.

In this dissertation, we focus on the out-of-distribution generalization in GNNs and propose to

improve their out-of-distribution generalization ability from two perspectives, i.e., a novel training

perspective and an advanced learning perspective. In addition, we aim at addressing the data sparsity

challenge in applying GNNs in the recommendation tasks and improving the abilities of GNNs in

terms of generalization and knowledge transfer in the real-world application of recommendations.

In this chapter, we summarize our proposed methods and discuss some promising future research

directions.

6.1 Summary

To bridge the performance gap of GNNs between the training set and the test set, we propose

to design a novel training paradigm, the test-time training paradigm, for GNNs. In other words,

the GNN models are further trained for the test graph samples in the test time. Specifically, we

propose the first test-time training framework for GNNs (GT3) to improve the out-of-distribution

generalization ability of GNNs in the graph classification task. A two-level self-supervised learning

task is carefully designed to adjust the GNN model for each test graph sample. Also, we propose an

additional adaptation constraint to prevent undesirable excessive feature distortion during test-time

training. Extensive experiments have been conducted to validate the effectiveness of the proposed

GT3, and we also provide a theoretical analysis to demonstrate the benefits of test-time training for

GNNs.
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Apart from the training perspective, we also propose Customized-GNN, which aims at improving

GNNs’ out-of-distribution generalization ability from a novel learning perspective. Specifically, we

first explore the graph data diversity in terms of graph structure and then investigate the influence of

the data diversity on GNNs’ performance. Inspired by the investigation, we propose to consider

the diverse graph structure properties in GNNs’ training process. Specifically, the proposed

Customized-GNN can generate a sample-specific GNN for each graph sample based on its graph

structure. The effectiveness of Customized-GNN is validated via comprehensive experiments. In

addition, the proposed framework is very general and flexible and thus can be applied to numerous

existing GNN models.

In addition to improving the GNNs’ out-of-distribution generalization ability via two general

frameworks, we also focus on addressing the challenges of applying GNNs in the real-world

application of recommendations. More specifically, we aim at improving the abilities of GNNs

in terms of generalization and knowledge transfer in the recommendation scenario. To achieve

this goal, we first propose a novel GNN-based recommendation method, LGCF, which is able to

learn the recommendation knowledge from the localized graph induced from a target user and item.

Unlike most other GNN-based recommendation methods, LGCF does not require learning effective

embeddings for each user and item. Thus, it is essentially more friendly in the recommendation

scenarios of data sparsity, and more importantly, it paves a way to transfer recommendation

knowledge among different recommendation scenarios. Next, based on LGCF, we further design

an adaptive pre-training framework, ADAPT, which is able to transfer common collaborative

filtering knowledge among different user-item graphs and preserve the uniqueness of each graph

simultaneously.

6.2 Future Directions

Although GNNs have achieved promising progress in numerous graph-related tasks, the out-of-

distribution generalization of GNNs is a vital problem that calls for more dedication and exploration

from different perspectives. We discuss some possible future research directions as follows:
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• Generalization challenges brought by node diversity: The two methods we designed in this

dissertation mainly focus on the graph-level tasks where the training graph samples and the test

graph samples are diverse in terms of the graph structure. The scenario where the distributions

of node attributes vary between the training set and test set has not been considered yet.

However, this scenario is also quite common in real-world applications. For example, in

social networks, different social platforms may collect different demographic information

from their users. Thus, to further solve the out-of-distribution generalization problem of

GNNs in real-world applications, it is necessary to take the distribution difference of node

attributes into consideration, instead of only considering the graph structure diversity. Also,

it is observed that some node properties such as degree and local subgraph surrounding the

target node play important roles in node-level tasks [103, 42]. Therefore, it is also promising

to take node property diversity into consideration to further improve the out-of-distribution

generalization ability of GNNs.

• Generalization challenges in different applications: There exist various unique challenges

and diverse domain knowledge for GNNs in different applications. In this dissertation, we

focus on improving the GNNs’ performance and out-of-distribution generalization ability for

the recommendation task. However, there are many other applications, such as molecular

prediction and single-cell analysis. In order to fulfill GNNs’ potential in these applications,

we need to target at their unique challenges and consider their domain knowledge to further

improve the out-of-distribution generalization ability of GNNs in various applications.
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APPENDIX A

TEST-TIME TRAINING FOR GRAPH NEURAL NETWORKS

A.1 Theorem Proof

A.1.1 Proof of Theorem 1

Denote L(H; g) = �
Õ
⇠

2=1 1H=2 log( 4
g2Õ⇠

8=14
g8
), and from Eq 2.15, we have

g = 5GNN(A,X; )) = 1TALX) . (A.1)
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The Hessian Matrix of Eq A.2, we have

H8 9 =

8>>>><
>>>>:
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where p8 is defined in Eq 2.16.
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According to Cauchy-Schwarz Inequality, we have
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According to the definition of p8 in Eq 2.16, we have

⇠’
8=1

p8 = 1. (A.7)

Therefore,

a)Ha � 0. (A.8)

Thus, we have proved that the Hessian Matrix of the function defined in Eq A.2, i.e., H, is

positive semi-definite (PSD). This is equivalent to prove that L(H; g) is convex in g (property 1).

For 8b 2 R⇠ and kbk = 1, we have
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According to Cauchy-Schwarz Inequality, we can arrive at
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Since kbk = 1 and
Õ
⇠

8=1 p8 = 1, we have

b)Hb  2. (A.11)

We have thus proved that the eigenvalues of the Hessian Matrix H are smaller than 2. This is

equivalent to prove that L(H; g) is V-smooth in g (property 2).

By computing the first-order gradient of L(H; g) over z, we have

rgL(A,X, H; g) =

8>>>><
>>>>:
�1 + p8 i=c

p8 i < c.
(A.12)
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Then, we can derive its !2 norm

krgL(H; g)k =
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We have thus proved that the !2 norm of the first-order gradient of L(H; g) over z is bounded by

the positive constant (property 3).

So far, we have proved that for all g, H, L(H; g) is convex and V-smooth in g, and both

krgL(H; g)k  ⌧ for all g, where ⌧ is a positive constant. According to Eq A.1, 5GNN is a linear

transformation mapping function and won’t change these three properties. Therefore, the proof of

Theorem 1 is completed.

A.1.2 Proof of Theorem 2

We follow [101] to prove Theorem 2. For any [, by V-smoothness, we have

L< (G, H; ) (G)) = L< (G, H; ) (G) � [r)LB (G; )))
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Denote

[
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then we have
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By the assumptions on the !2 norm of the first-order gradients for the main task and the SSL

task and the assumption on their inner product, we have
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Denote [ = n
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2 , based on the assumptions, we have 0 < [  [
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Since [

[
⇤ > 0, we have

L< (G, H; )) � L< (G, H; ) (G)) > 0. (A.19)

A.2 Performance Comparison on Random Data Split

(a) DD. (b) ENZYMES. (c) PROTEINS.

Figure A.1: Performance Comparison of GCN and GIN on Three Datasets on the Random Data
Split. Note that the performance metric for ogbg-molhiv is ROC-AUC(%) and that for others is
Accuracy(%).

In addition to the performance comparison on the OOD data split, we have also conducted

a performance comparison on a random data split, where we randomly split the dataset into
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80%/10%/10% for the training/validation/test sets, respectively. The results are shown in Figure A.1.

From it, we can observe that GT3 can also improve the classification performance in most cases,

which demonstrates the effectiveness of the proposed GT3 in multiple scenarios.
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APPENDIX B

CUSTOMIZED GRAPH NEURAL NETWORKS

B.1 Datasets

Some key statistics of seven datasets used in our experiments are shown in Table B.1, and more

details of them are introduced as follows:

• COLLAB [122] is a dataset of scientific collaboration networks, which describes collaboration

pattern of researchers from three different research fields.

• ENZ [95] is a dataset of protein tertiary structures of six classes of enzymes.

• PROT [9] is a dataset of protein structures, where each graph represents a protein and each

node represents a secondary structure element (SSE) in the protein.

• D&D [16] is a dataset of protein structures. Each protein is represented as a graph, where

each node in a graph represents an amino aid and each edge between two nodes denotes that

they are less than 6 Ångstroms apart.

• RE-BI and RE-5K [122] are two datasets of online discussion threads crawled from different

subreddits in Reddit, where each node represents an user and each edge between two users

represents their interaction.

Table B.1: The statistics of seven datasets. #Graphs denotes the number of graphs. #Class is the
number of graph classes.Node size indicates range, average and standard deviation of the number of
nodes among the graphs.Edge size represents range, average and standard deviation of the number
of edges among the graphs.

Dataset #Graphs #Class Node size Edge size
range mean std range mean std

COLLAB 5000 3 [32,492] 74.5 62.3 [60,40120] 2457.8 6439.0
ENZ 600 6 [2,125] 32.6 14.9 [1,149] 62.14 25.5

PROT 1113 2 [4,620] 39.1 45.7 [5,1049] 72.82 84.6
DD 1178 2 [30,5748] 284.3 272.0 [63,14267] 715.65 693.9

RE-BI 2000 2 [6,3,782] 429.6 554.0 [4,4071] 497.8 623.0
RE-5K 4999 5 [22,3648] 508.5 452.6 [21,4783] 594.9 566.8
NCI109 4127 2 [4,111] 29.6 13.6 [3,119] 32.1 15.0
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Figure B.1: The framework of Multi-GCN with 3 clusters. we group training samples into 3 clusters
and train a GCN model for each cluster. Given a test sample 68, we measure the distance between
this sample and the centroids of the three clusters and utilize the corresponding model of the closest
cluster to perform the prediction for this sample.

• NCI109 [95] is a dataset of chemical compounds screened for activity against non-small

cell lung cancer and ovarian cancer cell lines, which are provided by Natinal Cancer Institue

(NCI).

B.2 Baselines

In the experiment section, we apply the proposed framework to two graph neural networks:

a basic graph convolutional network (GCN) [52] and two SOTA graph classification models

DiffPool [126] and gPool [22], respectively. The corresponding adapted versions are Customized-

GCN, Customized-DiffPool, and Customized-gPool, respectively. Besides, we also develop baseline

methods, Concat-GCN, Concat-Diff, Concat-gPool, Multi-GCN, Multi-Diff, and Multi-gPool. More

details of the baseline methods are as follows:

• GCN [52] is originally proposed for semi-supervised node classification. It consists of a stack

of GCN layers, where a new representation of each node is computed via transforming and
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aggregating node representations of its neighboring nodes. Finally, a graph representation is

generated from node representations in the last GCN layer via a global max-pooling layer and

then used for graph classification.

• Diffpool [126] is a recently proposed method which has achieved state-of-the-art performance

on the graph classification task. It proposes a differentiable graph pooling approach to

hierarchically generate a graph-level representation by coarsening the input graph level by

level.

• gpool [22] is a newly proposed pooling method that has achieved state-of-the-art performance

on the graph classification task. It develops a U-Net-like architecture for graph data, consisting

of graph pooling operation and unpooling operation based on node importance value.

• Concat-GCN (or Concat-Diff, Concat-gpool ) is the baseline method that directly concate-

nates the graph structure properties s8 to the output graph embedding of the GCN, DiffPool,

and gPool model.

• Multi-GCN (or Multi-Diff, Multi-gpool) consists of several GCN (or Diffpool, gpool) models

trained from different subsets of the training dataset. As shown in Figure B.1, we first cluster

data samples from the training set into different training subsets via the K-means method

based on the graph structural information. Note that in this work, the structural information s8

of 68 includes the number of nodes, the number of edges, and the graph density. Then we

train different models from different training subsets. During the test phase, given a test graph

sample, we first compute the euclidean distance between its graph structural properties and

the centroids of different training subsets. Then, we choose the model trained on the closest

training subset to do label prediction for this graph sample. In this experiment, we set the

number of clusters to 2 and 3, and denote the corresponding frameworks as Multi-GCN-2 (or

Multi-Diff-2, Multi-gpool-2 ) and Multi-GCN-3 (or Multi-Diff-3, Multi-gpool-3). Note that

we can also ensemble models trained on all training subsets; however, we empirically find that

this strategy does not work.
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APPENDIX C

LOCALIZED GRAPH COLLABORATIVE FILTERING

C.1 Further comparison and discussion over two pipelines of GNN-based CF
models

The inferior performance of GNN-based methods with sparse interactions may be due to the following

two reasons. Firstly, as shown in Figure C.1(a), GNN-based CF methods learn a unique embedding

vector 4 for each user/item from all the historical interactions, which depicts the characteristics

of user/item from a global view. The quality of learned embeddings is essential for the desirable

recommendations. The user-item interactions denote the supervision information LightGCN and

NGCF leverage to learn these user and item representations. Such supervision information in the

sparse user-item bipartite graph is not sufficient to learn user and item embeddings of high quality,

leading to undesirable recommendation performance. Secondly, the stacked GNN layers contribute

to leveraging the high-order information by aggregating neighbors’ representations as shown in the

middle part of Figure C.1(a). However, given limited interactions, the noises in the learned inferior

embeddings may accumulate or even reinforce themselves in this stacked aggregation procedure,

which could further degrade the performance [66].

However, the user-item interaction graphs are often sparse in real-world recommendation

scenarios [3]. Thus, in this paper, we study how to alleviate the challenge of sparsity while

enjoying the merits of high-order topological connectivity. Note that in this work, we focus on

addressing the recommendation tasks solely based on the historical interactions following the

previous works [110, 35]. Our motivation lies in learning CF signals from local structures of

the user-item interaction graph, and the proposed model is called Localized Graph Collaborative

Filtering (LGCF). Particularly, given a user and an item, LGCF makes predictions about their

interaction based on their local structural context in the bipartite graph, rather than the user and item

embeddings. Traditional user and item embeddings are eliminated as LGCF only needs to describe

the position of a node relative to the target user and item nodes in the localized graph, which is

denoted as red rectangles in Figure C.1(b). Without these intractable user and item embeddings,
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(b) Pipeline of the Localized Graph-based CF Model.

Figure C.1: GNN-based CF Methods vs. the Proposed Localized Graph-based CF Model.

LGCF can significantly reduce the number of trainable parameters and thus adapt to the sparse

scenario. In addition, the critical CF information is also apparently preserved in the localized graph.

The key CF information, i.e., the historical interactions between users and items, are denoted as

edges. Therefore, a localized structure covering most edges related to a user-item pair should be

able to provide sufficient information to make predictions for this user-item pair. In other words,

recommendation-related patterns can be encoded by the localized structures for user-item pairs

which motivate LGCF to make recommendations by extracting these patterns. The range of localized

structures can be flexibly adjusted to incorporate proper high-order information. In fact, LGCF

provides a new perspective to build GNN-based CF models for recommendations where we do not

learn a general representation for each user or item but we target on learning a good model to extract

the recommendation-related patterns encoded by localized structures of a user-item pair.
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Table C.1: Model Size Analysis.

Model Size Model Size
MF (= + <)30 NGCF (= + <)30 + 2!32

LightGCN (= + <)30 LGCF !3
2
+ 3!

C.2 Mode Size Analysis

In this subsection, we discuss and compare the model sizes of the proposed LGCF and existing

representative CF methods. In this analysis, we assume that: 1) there are ! layers in the GNN model

for the GNN-based CF methods, and all layers have the same dimension 3; 2) the dimension of

user/item embedding for the embedding-based CF methods is 30, and 3) there are = users and <

items in the input user-item bipartite graph. For MF, it only needs to learn user/item embeddings.

Thus, its model size is the embedding size, i.e., (= + <)30. For NGCF, it needs to learn both the

user/item embeddings and a GNN model, and thus its model size is the sum of the embedding size

and the GNN model size. Note that there are two GNN models in NGCF. One is for user embedding

propagation and the other is for item embedding propagation. The weight matrix size in the ;-th

layer is 32, thus the GNN model size in total is 2!32. For LightGCN, it simplifies the GNN model

by eliminating feature transformation, therefore its model size is the same as MF. For the proposed

LGCF, it does not need to learn embeddings for users and items, thus, its model size is only the sum

of a GNN model size and a scoring function size. Note that we adopt a single-layer linear layer for

the scoring function, so its model size is 3! , where 3! denotes the output dimension of the GNN

model and also the input dimension of the scoring function. The model sizes of LGCF, MF, NGCF

and LightGCN are summarized in Table C.1. As shown in the table, the model sizes of baselines are

all proportional to the graph size (= +<), which indicates that the models would be very large when

the input graph is large. However, the model size of LGCF is independent of the graph size.

C.3 Datasets

We conduct extensive experiments on recommendation datasets from three scenarios. The details of

them are introduced as the follows:

• Tianchi: This is a user behavior dataset provided by Alibaba for recommendations. There are
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millions of user-item interactions recorded in this dataset including clicking, purchasing and

so on. Each interaction consists of a user ID, an item ID, an item category ID, a behavior type

and a timestamp. Note that in our experiments, if there exists a behavior between a user and an

item, we consider it as an interaction between them. Specifically, we extract seven user-item

interaction datasets from different item categories and denote each of them as Tianchi-�⇡,

where �⇡ indicates the item category. It is common to extract a user-item interaction dataset

based on the item category from a large recommendation dataset that has been widely adopted

by existing works [71, 110, 35]

• Amazon: This is a product review dataset from Amazon, which includes reviews (ratings or

texts), product information (e.g., descriptions, category and so on), and user-item interactions

(i.e., viewing or purchasing). We select user-item interactions to construct two datasets for

items from two categories in Amazon, i.e., Amazon-beauty and Amazon-Gift.

• MovieLens: This dataset describes 5-star ratings from MovieLens, a movie recommendation

service. Each rating record consists of a user ID, a movie ID, a rating score and the category

of the movie. In our experiments, we consider each rate as one interaction, regardless of its

score.

Specifically, we construct seven datasets corresponding to seven-item categories from Tianchi and

denote each of them as Tianchi-ID, where ID indicates the item category, two datasets from two

item categories from Amazon, and two datasets from two item categories from MovieLens. The

statistics of the datasets are summarized in Table C.2.

C.4 Baselines and Evaluation Metrics

In the experimental parts, we compare the proposed LGCF with MF [53], NGCF [110] and

LightGCN [35]. More details of the baseline methods are as follows:

• MF: MF aims at directly learning the latent user and item embeddings via minimizing

Bayesian Personalized Ranking (BPR) loss. The recommendation prediction is made based
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Table C.2: The Statistics of the Datasets from Tianchi, Amazon and MovieLens, respectively.

Dataset #Users #Items #Edges
Tianchi-685988 4,151 539 7,492
Tianchi-2798696 2,579 94 2,988
Tianchi-4527720 1,853 137 2,860
Tianchi-174490 2,267 285 3,826
Tianchi-61626 2,305 764 3,270
Tianchi-810632 5,057 555 9,402
Tianchi-3937919 1,846 158 2,980
Amazon-Beauty 991 85 4,092

Amazon-Gift 458 148 2,966
MovieLens-War 2,970 89 4,240

MovieLens-Romance 20,407 376 33,884

on the inner product of the user embedding and the item embedding.

• NGCF: NGCF explicitly encodes the multi-hop connectivity into the embedding learning

process. It refines the user and item embeddings via propagation layers, and then makes

recommendation predictions based on the refined user embedding and the refined item

embedding.

• LightGCN: LightGCN is a GNN-based CF method that is customized for recommendations.

Specifically, it only includes neighborhood aggregation in GNNs for collaborative filtering,

while discarding other components such as feature transformation.

We randomly split the interactions in a dataset into three sets: the training set, the validation

set and the test set. To avoid the cold-start setting, we further constrain that all users and items

in the validation set and the test set should exist in the training set. More details about the data

split will be introduced later. For each user-item interaction in the validation set or the test set,

we generate 49 non-existent user-item interactions which share the same user with this user-item

interaction. In other words, for the user in a user-item interaction, there are 50 candidate user-item

pairs, where only one is positive and the others are negative. During the model evaluation, we

compute recommendation scores for 50 candidate user-item pairs for each user-item pair. Then,

we rank these scores and calculate the Hit Rate (HR) of the positive pair in the top 5 among 50

candidates and its Normalized Discounted Cumulative Gain (NDCG). Finally, we average HR and
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NDCG for all user-item interactions in the validation set or the test set. Specially, we evaluate

every model on each dataset with 10 seeds and then report the average performance. In this work,

we only report the HR performance since NDCG performance is similar and consistent with HR

performance.

C.5 How is LGCF complementary to LightGCN

To explore what kind of user-item pairs can benefit from integrating LGCF and LightGCN, we

divide the test set in normal scenarios into different groups based on the average degree of the user

and the item for a user-item pair. Specifically, we first sort all the user-item pairs in the test set in

ascending order according to their average degree and divide the sorted pairs into 5 groups. We then

train models on the same training set and test them on these groups. The performance of LightGCN,

LGCF, and LGCF-ens on six different datasets is shown in Figure C.2. It can be observed that the

performance of all methods tends to increase when the degree increases. In most cases, for all

degree groups, LGCF-ens (or integrating LGCF and LightGCN) can boost the recommendation

performance.
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(a) Tianchi-61626. (b) Tianchi-810632.

(c) Tianchi-3937919. (d) Amazon-Gift.

(e) MovieLens-War. (f) MovieLens-Romance.

Figure C.2: Performance Analysis with Degree.
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APPENDIX D

AN ADAPTIVE GRAPH PRE-TRAINING FRAMEWORK FOR LOCALIZED
COLLABORATIVE FILTERING

D.1 Datasets

We have summarized the graph property statistics of the 60 pre-training graphs in Table D.1.

D.2 Baselines

The details of these baselines are presented as follows:

• NGCF: NGCF [110] proposes to encode high-order connectivity among user-item interaction

graphs into user/item embeddings. Specifically, it designs propagation layers to aggregate

information from connected nodes. The recommendation prediction is made based on the

refined user and item embeddings.

• LightGCN: LightGCN [35] is one of the state-of-the-art GNN-based recommendation

methods. It tailors GNN particularly for recommendation tasks. Specifically, it eliminates

feature transformation and nonlinear activation, and only includes neighborhood aggregation

in GNNs for collaborative filtering.

• MF: MF [53] is one of the most classic and popular recommendation methods. It learns a

set of latent user and item embeddings directly from user-item interactions, and then makes

recommendation predictions based on the inner product of the user embedding and the item

embedding.

• GCC: GCC [84] is a self-supervised pre-training framework for GNNs. GCC designs a

subgraph instance discrimination task as the pre-training task and it utilizes contrastive

learning to empower GNNs to learn transferable structural representations across multiple

graphs. Note that GCC is not specially designed for recommendation tasks. To apply GCC

into the recommendation scenarios, we first pre-train a GCN model via the GCC framework on
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Table D.1: Graph property statistics of the 60 pre-training graphs from Tianchi.

graph id the number
of nodes

the number
of edges the user-item ratio the graph density

the degree
assortativity
coefficient

robins-alexander
clustering coefficient

the number of
connected

components
the global efficiency

1 1066 1426 2.405750799 0.006050346 -0.137080382 0.07622926 58 0.155483363
2 583 961 5.477777778 0.021658778 -0.324017825 0.088734101 15 0.25966763
3 869 1311 4.570512821 0.0117866 -0.229564535 0.075031464 29 0.255150568
4 976 1483 5.731034483 0.012307565 -0.395316067 0.0805384 42 0.21907052
5 825 996 1.272727273 0.005938965 -0.221096689 0.081102362 67 0.116534298
6 547 723 3.240310078 0.013408256 -0.240459448 0.044851669 14 0.204873494
7 442 871 3.20952381 0.02461495 -0.438782979 0.134212489 8 0.28049023
8 879 1606 4.598726115 0.014168005 -0.28871791 0.108867024 17 0.261053578
9 688 1068 3.845070423 0.013774957 -0.391439392 0.08856928 15 0.252946534
10 820 1046 6.192982456 0.012996372 -0.401747324 0.072571549 24 0.189789498

11 1613 2441 7.489473684 0.009028369 -0.364616349 0.060301114 28 0.246112989
12 1828 4100 4.69470405 0.008475505 -0.263666513 0.115984126 21 0.259046914
13 2178 3621 11.88757396 0.010665025 -0.468666839 0.117659122 10 0.233061438
14 2182 3784 7.693227092 0.007807197 -0.246347149 0.070869752 33 0.241451953
15 1455 2201 3.575471698 0.006087409 -0.203866274 0.115162664 49 0.165451187
16 3112 4364 9.103896104 0.005053078 -0.271381784 0.045556577 45 0.237112946
17 1791 2589 10.05555556 0.009810609 -0.423324113 0.062591444 15 0.247061121
18 1632 2319 7.201005025 0.008132077 -0.292355843 0.08403141 45 0.19445713
19 2133 2901 1.83643617 0.00279342 -0.173274517 0.060554047 122 0.133096639
20 2191 3995 7.834677419 0.008290721 -0.378478248 0.091360009 17 0.257314823

21 2986 4045 9.514084507 0.005271265 -0.334648858 0.018636375 16 0.349629458
22 1102 2003 5.482352941 0.01264201 -0.391299794 0.088862343 11 0.249883801
23 1667 2660 10.34013605 0.011904762 -0.262163651 0.057379615 8 0.282671889
24 1264 1858 6.479289941 0.010040258 -0.401666782 0.056050426 17 0.231782658
25 1224 2145 3.25 0.007957176 -0.236265509 0.071828792 38 0.212799377
26 1105 1858 4.846560847 0.010732192 -0.278355787 0.081693911 15 0.247897105
27 1631 3520 18.65060241 0.027396407 -0.528782764 0.140792463 6 0.284775151
28 1344 1786 6.466666667 0.008524246 -0.295103378 0.267301969 31 0.196343865
29 2400 3008 7.391608392 0.004975157 -0.249780826 0.076222519 64 0.140260529
30 2231 3660 5.639880952 0.00574821 -0.360584068 0.076936354 61 0.208970493

31 2432 4992 11.28282828 0.011285641 -0.358731221 0.099939883 24 0.276760795
32 4669 7776 4.182019978 0.002290449 -0.272368625 0.052135774 82 0.203264965
33 4144 5838 5.6304 0.00265439 -0.231825096 0.073917706 161 0.161605432
34 4224 6530 5.148471616 0.002687332 -0.180418703 0.046033635 112 0.188019456
35 4461 7107 7.764243615 0.003533065 -0.20104595 0.050613051 70 0.219329989
36 4380 6090 8.106029106 0.003247274 -0.239028273 0.062308213 117 0.20649004
37 3745 7738 3.734513274 0.00331163 -0.245603955 0.063679839 75 0.235388263
38 2168 4729 3.6825054 0.005990512 -0.238712029 0.061400362 26 0.235880829
39 4123 5174 21.90555556 0.007289994 -0.27692024 0.059894654 40 0.219759568
40 2930 4631 2.123667377 0.002478464 -0.159829692 0.03445955 130 0.164731802

41 4082 6653 3.38453276 0.002267877 -0.249515119 0.047776691 116 0.177176302
42 2406 4571 2.51754386 0.003880806 -0.245047333 0.046862868 63 0.19723984
43 2659 7717 5.581683168 0.008470725 -0.306202709 0.074841219 10 0.27057376
44 4892 7366 7.814414414 0.003060196 -0.184142643 0.040597988 30 0.251175191
45 3372 6459 5.386363636 0.00430132 -0.307159357 0.047727729 32 0.236428669
46 2413 5228 3.339928058 0.005063477 -0.311985584 0.065333207 46 0.208494542
47 3130 5607 5.804347826 0.004565217 -0.288644888 0.050126535 54 0.220249111
48 3921 5942 1.584706658 0.001629343 -0.181370456 0.026907729 161 0.160805618
49 2654 4640 2.005662514 0.002967145 -0.202301709 0.070429402 73 0.183938794
50 3379 5260 4.287949922 0.003004238 -0.271414349 0.05995576 142 0.182738023

51 5401 9717 6.060130719 0.002739853 -0.27968436 0.044058991 117 0.197594675
52 5364 9430 15.05988024 0.005613028 -0.248281597 0.056374776 29 0.276165783
53 6849 10503 3.97747093 0.001394664 -0.132708191 0.058927812 195 0.16746493
54 6479 10583 10.90992647 0.003277851 -0.253056336 0.049755793 76 0.229149938
55 5865 8956 5.495016611 0.001998801 -0.251292838 0.060734676 167 0.174011088
56 12284 19924 5.478902954 0.001011594 -0.259199682 0.038720139 332 0.16613786
57 8056 18171 8.154545455 0.002877489 -0.282159789 0.060062896 49 0.250108737
58 7927 17428 17.05694761 0.005301725 -0.366123756 0.102245138 22 0.280886077
59 6970 19142 4.813177648 0.002766413 -0.290319073 0.046690635 72 0.237782573
60 7131 14532 7.869402985 0.002856745 -0.210269642 0.063454378 101 0.226749207
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the pre-training graphs. Then we build a scoring function model specific to recommendations

in the fine-tuning phase. The fine-tuning objective function is the same as ADAPT.

• InfoGraph: InfoGraph [99] is an unsupervised graph learning method based on contrastive

learning. It trains the GNNs via maximizing the mutual information between the local-level

representation and graph-level representation. To apply InfoGraph into the proposed scenario,

we pre-train a GCN model via InfoGraph on the pre-training graphs, and then fine-tune the

GCN model and train a recommendation scoring function model on the downstream graph.

• MVGRL: MVGRL [31] is also an unsupervised graph learning method based on contrastive

learning. It contrasts the node-level representation and a graph-level representation from a

graph diffusion view and a regular view. To apply MVGRL into the proposed scenario, we first

pre-train a GCN model following MVGRL on the pre-training graphs, and then do fine-tuning

on the downstream graph and also train a recommendation scoring function model.

D.3 Implementation Details

In our work, we implement the meta-LGNN model as a 3-layer graph convolutional networks and

the scoring function as a linear transformation layer. For the input of the GNN adaptor, we compute

eight graph properties via the networkX package [26], including the number of nodes, the number

of edges, the user-item ratio, the graph density, the degree assortativity coefficient, robins-alexander

clustering coefficient, the number of connected components and the global efficiency. Note that it is

straightforward to include more graph properties. We use the Adam [50] optimizer. The batch size

is set to 256. The learning rate is chosen from [0.0005, 0.001], and the dropout rate is chosen from

[0.0, 0.1, 0.2, 0.3].
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