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ABSTRACT

Global agricultural production is threatened by several diseases caused by fungal pathogens. Recently
increased efforts to characterize genomic diversity in fungal pathogens and the availability of large-scale
ecological datasets ofter new opportunities for understanding pathogen adaptation. The twin lenses of
population genomics and adaptive evolution are powerful frameworks to interpret this data because of
characteristics of fungal pathogens in agroecosystems that allow for their rapid evolution. The environ-
ment, biotic and abiotic, is a major driver for the evolution of plant pathogens and greatly influences
disease outcomes. Macrophomina phaseolina causes charcoal rot in many important economic and sub-
sistence crops worldwide. Charcoal rot significantly reduces yield and seed quality of soybean and dry
bean and has been recognized as a warm climate-driven disease of increasing concern for crop production
under global climate change. Therefore, this dissertation investigated the genetic structure and adaptive
potential of M. phaseolina to understand how this pathogen responds to hosts, fungicides, and climate
and how to best manage and predict charcoal rot disease.

To this end, I first characterized the genetic diversity and genotype-environment associations in .
phaseolina filling in fundamental knowledge of population structure and shedding light on climate adap-
tation. Population genomic analyses of 95 M. phaseolina isolates from soybean and dry bean across the
continental US, Puerto Rico, and Colombia revealed geographic structure and diversification associated
to climate. Phylogenomic and clustering approaches differentiated isolates into two main clades of the US
and Colombian-Puerto Rican origins and five divergent genetic clusters within these clades. I identified a
predominantly clonal structure in the US and a semi-clonal structure in Colombia and Puerto Rico. Lim-
ited genetic differentiation between isolates of soybean and dry bean origins was observed. Estimations of
the independent contributions of neutral population structure, space, and climate to genetic variation,
revealed that climate significantly contributes to genetic variation between genetic clusters. Genotype-
environment associations implicated several genomic regions in M. phaseolina adaptation to climate and
the loci significantly associated with multivariate climate were found near to genes related to fungal stress
responses.

Information on the efficacy of newer fungicides chemistries for charcoal rot management is lack-



ing. Therefore, I characterized the zn-vitro fungicide sensitivity of M. phaseolina to three major chemi-
cal classes of single-site fungicides, succinate dehydrogenase inhibitors (SDHI; boscalid) dicarboximides
(iprodione) and demethylation inhibitors (DMI; prothioconazole). This study found no isolates in the
US, Colombia or Puerto Rico that were insensitive to any of the fungicides tested. Isolates were most
sensitive to prothioconazole indicating its potential use for charcoal rot management. Next, mutations
in the fungicides target protein genes were investigated. No mutations that associated to levels of sen-
sitivity to boscalid, iprodione and prothioconazole were found among our isolate collection. Finally, a
preliminary ecoclimatic suitability model was developed and used to project the climatic suitability of
M. phaseolina at a global scale. Importantly, this model predicted areas of high climatic suitability which
may be at increased risk of disease.

Results from this dissertation work inform and improve charcoal rot management strategies through
better understanding of M. phaseolina genetic structure and adaptive potential, 7z-vitro efficacy of single-
site fungicides and potential disease outcomes under a changing climate. Additionally, this research is
expected to contribute to applied issues surrounding plant disease risk prediction, and more broadly pre-
dicting short-term evolution of M. phaseolina across climates. Ultimately, this research will lead to better
understanding of disease outcomes and more efficient management of plant pathogens considering adap-

tive responses under a changing climate.
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CHAPTER 1

AN EVOLUTIONARY GENOMICS PERSPECTIVE OF ADAPTATION IN PLANT
PATHOGENS



Natural selection is a powerful force for the evolution of living organisms. From humans to microor-
ganisms, adaptations that overcome challenges in the environment are fundamental for the success of
populations in diverse environments. Unraveling the genetic basis underlying adaptive phenotypes has
for years fascinated scientists and hence has been the focus of many studies. In host-pathogen systems,
adaptation is driven mainly by selection pressures imposed by their interaction itself and by the abiotic
environment. Most notably, in agroecosytems, such abiotic environmental pressures are related to cli-
mate and pesticides use (Stukenbrock et al., 2011). Other evolutionary forces also play an important role
in the adaptation of organisms, among them migration is often considered because it can significantly af-
fect adaptation processes. In this chapter, I discuss the implications of each of these factors on pathogen
adaptation to plant host and the abiotic environment in agricultural ecosystems and the methodological
approaches to study local adaptation. This introductory chapter provides an overview of the population
genetics and community ecology concepts that constitute a foundation for the analysis and experiments
in this thesis. Additionally, it provides a perspective on the use of genomic data in suitability models of

plant pathogens under a changing climate.

.1 Adaptation in host-pathogen systems

Adaptation is considered a central topic of ecological genetics. Adaptation can be defined as the evolu-
tionary process by which a population becomes better able to live and reproduce in its habitat (Dobzhan-
sky, 1968). Likewise, an adaptive trait has been defined as “a phenotypic trait that has evolved to help an
organism deal with something in its environment” (Conner et al., 2004). Adaptation is caused exclusively
by natural selection; however, the remaining evolutionary forces, mutation, genetic drift and migration
can either accelerate or slow down the development of adaptations (Conner et al., 2004). Ecological fac-
tors, biotic and abiotic, are important drivers of natural selection. These selection drivers vary in the space
and such ecological heterogeneity results in populations adapted to the local biotic and abiotic conditions
(Kawecki and Ebert, 2004). This led me to the concept of local adaptation. In a strict sense, a popula-
tion is locally adapted when it has a higher relative fitness in their local environment (habitat) relative
to any other population introduced to that site (Kawecki and Ebert, 2004). However, local adaptation

can be indicated by genetic and phenotypic variation along ecological gradients or contrasting habitats



(Savolainen et al., 2007). For example, there is genetically-based variation in growth rates in response to
temperature and latitudinal gradients in fungi, including pathogens (Ellison et al., 2011; Lendenmann et
al., 2016).
L1 Coevolution in the host-pathogen system
Plants and pathogens, as biological systems, evolve in response to adaptation in the respective partner. Co-
evolutionary interactions, and especially antagonistic ones, impose strong selection on both partners. In
this sense, pathogens can act as drivers of natural selection on their hosts, while hosts also impose strong
selection on the pathogens by defensive mechanisms (Kawecki and Ebert, 2004; Croll and Mcdonald,
2016). However, inherent characteristics of pathogens such as large effective population sizes, high mu-
tation rates and short generation times, provide pathogens with strategic advantages to evolve faster than
their hosts (Croll and Mcdonald, 2016). Thus, pathogens are hypothesized to have some advantages in the
co-evolutionary race and it is widely accepted that pathogen populations become locally adapted to the
local pool of host genotypes (Croll and Mcdonald, 2016). In agricultural ecosystems, particularly in crop
— fungal pathogens interactions, two main considerations will be discussed, the specific characteristics of
fungi and those of agricultural ecosystems that makes them a unique system to study local adaptation.
Key fungal characteristics, such as high reproductive potential and extraordinary capacity to disperse
and survive, makes fungal pathogens ubiquitous organisms and particularly competent when adapting
to new environments (Croll and Mcdonald, 2016). Global agricultural production is threatened by sev-
eral diseases caused by fungal pathogens representing the most important cause of crop yield losses, along
with diseases caused by oomycetes (Fisher et al., 2012). The crop genetic homogeneity present at the field
level contribute to the devastating effects seen in agricultural ecosystems, mainly by favoring local adapta-
tion processes in pathogens. Additionally, agro-ecosystems are managed in quite similar ways even when
separated in space and time. For example, because of similarity in practices such as fertilization, irriga-
tion, tillage and pesticide applications, combined with the planting of genetically uniform monocultures,
some crop fields show remarkably similar environments on all continents, differing mainly according to

the local climate.



r.1.2 Host specialization in plant pathogens

Plant pathogenic fungi in agricultural ecosystems, are considered to be adapted to the local host geno-
types, thus they constitute excellent models for identifying the genetic basis of local adaptation (Croll
and Mcdonald, 2016). This adaptation is largely explained by gene for gene interactions (Jones and
Dangl, 2006). Several genes have been identified in different fungal pathogens involved in virulence and
pathogenicity on their hosts. These pathogens include host-specialized fungi attacking important crops,
such as rice, wheat, barley, rye and maize (e.g. Pyricularia oryzae, Zymoseptoria tritici, Parastagonospora
nodorum, Puccinia spp., Blumeria spp., Ustilago spp.) (Croll and Mcdonald, 2016).

The gene-for-gene hypothesis first proposed by Flor (Flor, 1971) designates that avirulence genes in the
pathogen are matched by resistance genes in the host. The direct or indirect interaction between the gene
products triggers host defense responses that can prevent or reduce the growth of pathogens. Therefore,
pathogens on a resistant host are under strong selection and tend to undergo mutation or deletion in the
avirulence gene to evolve higher virulence on the host. Due to this highly specific interaction between
avirulence and resistance gene products, avirulence genes are expected to play an important role in local
adaptation processes in agricultural ecosystems (Croll and Mcdonald, 2016). Similarly, to the adaptation
processes driven by pathogen on their hosts, management practices including the use of resistant host
germplasm, affects adaptation processes in pathogens. These practices result in the worldwide distribu-
tion of genetically similar or identical crops, thus, selection operating on the local pathogen population
can lead to occurrence of the same virulence mutations independently even in the absence of gene flow
among the corresponding pathogen populations (Conner et al., 2004; Croll and Mcdonald, 2016).
2.1 Host jumps
In plant pathology, a host jump is broadly defined as the process by which a pathogen infects a new previ-
ously unaftected host species. In some cases, this process is considered a host jump when the new host is
genetically distant (i.e., taxonomically distant, from another class or order) from the original host. In con-
trast to host shifts, in which the new host is closely related to the old host (Stukenbrock and McDonald,
2008). Common scenarios that favor host jumps in agroecosystems include wild plant species growing

nearby field crops, the introduction of new crops into natural ecosystems and the worldwide movement



of infected plant material (Stukenbrock and McDonald, 2008).

A pathogen host jump can be exemplified by Pyricularia species on wheatand wild grasses. The wheat
blast pathogen P. graminis-tritici likely emerged from the Pyricularia population infecting the wild grass
Urochloa or other Brazilian grasses approximately 30 years ago (Grinwald et al., 2016). Multiple host
jumps occurred in the Irish potato famine pathogen Phytophthora infestans and related species, between
plant hosts belonging to four different families (Raffacle et al., 2010). These were favored because these
pathogens originated in central Mexico (Goss et al., 2014) which is considered a center of diversity for the
genus Solanum (Stukenbrock and McDonald, 2008)(Griinwald et al., 2016).

Comparative genomics approaches can detect genomic signatures of a host jump (Griinwald et al.,
2016), which are often considered signatures of effector evolution (Dong et al., 2015). After a host jump,
the pathogen is expected to adapt to the new host, leading to host specialization (Raffacle et al., 2010) and
often to the emergence of a new pathogen species (Dong et al., 2015). Accordingly, a recent host jump
may be detected by comparing the genomes of pathogens from host species that represent new and old
hosts. The genomes will be very similar except for specific changes in the genomic region that enabled the
infection of the new host. These are rapidly evolving genomic regions, repeat-rich and usually containing
alot of effector genes. Thus, some effector genes may be lost because they are not useful anymore in the
new host while other effector genes will accumulate mutations that will improve or expand the effector
action in the new host (Dong et al., 2015). Such gene loss has been seen after a host jump, in the fungus
Melanopsichium pennsylvanicum (Sharma et al., 2014). Greater rate of copy number variation of effector
genes has been observed among P. infestans and related species. Signatures of adaptive evolution identified
as having dN/dS ratios >1 (indicative of positive selection) were detected in eftector genes of Phytophthora
clade 1c species (Raffaele et al., 2010; Dong et al., 2015).

Importantly, host jumps were proposed as a crucial mechanism for macroevolutionary persistence of
host-specialized filamentous pathogens by Raffaele and Kamoun (2012), who described the “jump or die”
model in which the survival of a pathogen over long evolutionary timescales depends on the frequency
of host jumps. Under this model, host jumps serve as accelerators of effector adaptation and lead to

pathogen diversification. Therefore, pathogens with more adaptable genomes, such as those with two-



speed genomes, are more likely to survive as hosts become fully resistant or extinct (Raffacle and Kamoun,
2012).

L3 Effect of haploid vs diploid genome on populations

Ploidy, the number of chromosome sets in an organisms, greatly influences different evolutionary aspects
of populations such as the ability of organisms to mask deleterious mutations, the accumulation of dele-
terious mutations and the rates of adaptation (Gerstein and Otto, 2009). In general, diploid organisms
have another layer of genetic variation compared to haploid organisms. Particularly, heterozygosity al-
lows the occurrence of modes of gene actions, which is how genotype affects the phenotype. Additivity
and dominance are different modes of gene actions that influence fitness, for example in complete domi-
nance a dominant allele can mask the effect of the recessive allele in a heterozygous organism (Conner et
al., 2004). Similarly, overdominance (heterozygote advantage) occurs when the heterozygous genotype
has higher fitness than both homozygous genotypes. This may change how an organism responds to its
environment and under a given condition may, at least, temporarily increase fitness of diploid heterozy-
gous organisms (Gerstein and Otto, 2009). Thus, overdominance maintains genetic variation in natural
populations, and so in this way heterozygosity prevents the accumulation of deleterious mutation in the
genome (Conner et al., 2004).

The long-term impact of deleterious mutations on the mean fitness of a population depends almost
entirely on the genome-wide deleterious mutation rate and not on the selective disadvantage of the mu-
tations (Gerstein and Otto, 2009; Haldane, 1937). Haploids will have the lowest mutation rate (and lower
mutation load). This is because the equilibrium mean fitness of a population is reduced by approximately
cU (the “mutation load”), where c is the ploidy level and U is the mutation rate per haploid genome.
Therefore, haploids will have higher fitness than diploids, despite that deleterious mutations are masked
to some degree in diploids (Gerstein and Otto, 2009).

The effect of ploidy in the rates of adaptation of populations have been investigated using experimen-
tal evolution in Saccharomyces cerevisiae (Otro and Gerstein, 2008; Gerstein and Otto, 2009; Gerstein et
al., 2011; Sharp et al., 2018). Adaptation of an organism to a novel environment depends on the rate in

which beneficial mutations are acquired and spread through the population (Todd et al., 2017). The



rate of adaptation is affected by the rate of appearance and fixation of beneficial mutations, the fitness
effect of these mutations, the dominance of mutant alleles, and effective population sizes (Gerstein and
Otto, 2009; Todd et al., 2017). This is still an area of ongoing investigation, but in general experiments
have showed that large asexual haploid populations of S. cerevisiae were able to adapt faster than diploids.
However, in small populations, haploids and diploids adapted at approximately the same speed, and the
advantage of haploidy disappeared (Gerstein and Otto, 2009).

In a recent mutation-accumulation experiment conducted by (Sharp et al., 2018) using S. cerevisiae,
revealed that haploids were more prone to single-nucleotide mutations (SNMs) and mitochondrial mu-
tations, whereas in diploids larger structural changes were more common (Sharp et al., 2018).

r.1.4 Effect of sexual vs asexual reproduction on populations

Sexual reproduction is known to greatly affect the population structure of organisms and it is a determi-
nantin the evolution of organisms. Plant pathogens, especially fungi with clonal and mixed reproductive
systems and highly dynamic genomes constitute remarkable organisms to study the effect of sexual repro-
duction on different evolutionary aspects. This has led some to consider fungal plant pathogens as model
organisms in evolutionary biology, and even as proposed models for investigating cancer cell evolution
(Moller and Stukenbrock, 2017). Sexual reproduction is crucial to eukaryotic evolution mainly because
it can increase genetic diversity and eliminate deleterious mutations (Ni et al., 2011). Recombination be-
tween loci can occur during meiosis, which creates new combinations of alleles at these loci (Conner et
al., 2004). These allele combinations may advantageous under certain ecological conditions, thus allow-
ing rapid adaptability to new environments. Rapid fixation of advantageous mutations, is also enabled
by sexual reproduction by increasing the efficacy of natural selection (Moller and Stukenbrock, 2017).

On the contrary, long-term advantages of clonal reproduction include the maintenance of co-adapted
allele combinations in the population, and that fit genotypes can be rapidly propagated (Méller and
Stukenbrock, 2017). A short-term advantage of clonal reproduction is the ability to rapidly propagate
while expending less energy (Ni et al., 2011) which may play an important role in the development of
epidemics. However, clonal populations are sometimes considered “evolutionary impaired” because of

their inability to recombine advantageous mutations that may occur independently (Méller and Stuken-



brock, 2017). Moreover, deleterious mutations may accumulate in the genome of clonal organisms in an
irreversible manner, a process termed “Muller’s ratchet”.

Another factor to consider is that asexual species usually have a lower effective population size (Ne)
than sexually reproducing species, as oftspring are fundamentally copies of their parents. Thus, the effect
of genetic drift is relatively greater compared to populations with large Ne (Moller and Stukenbrock,
2017). Therefore, the smaller the Ne the stronger the selection has to be to counteract the effects of genetic
drift (Conner et al., 2004), which may weaken local adaptation processes.

Yet, many clonal species and many fungal pathogens considered to reproduce asexually are common
and successful. Approximately one fifth of described fungi are thought to be asexual and clonal (Taylor
et al., 1999). A possible explanation for the success of asexual fungi is the “two-speed genome” model
proposed for fungi and oomycetes. In this model, genomes have a bipartite architecture with effectors
genes being associated with compartments enriched in repetitive sequences and transposable elements
(Dongetal., 2015), this suggest that high mutation rates in these genome compartments support adaptive
evolution by effector innovation (Méller and Stukenbrock, 2017). Other explanations to consider are the
occurrence of cryptic sex and recombination as unisexual mating, in which meiotic basidiospores are
produced from the fusion of mitotically produced nuclei; and parasexual reproduction, in which there
is exchange of genetic material between fused hyphae or cells without meiosis.

Notably, asexual reproduction has evolved independently many times from sexually reproducing an-
cestors in ascomycete fungi (Taylor et al., 1999). This has led to speculate that clonal population structures
in some pathogens, such asin Verticillium dabliae, have arisen at least partially because selection imposed
by agroecosystems (Milgroom et al., 2014).

1..s The abiotic environment as a driver of natural selection

r.Ls.1 Climate adaptation

Climate fluctuation and particularly temperature are important abiotic factors leading to local adaptation
on fungal plant pathogens (Savolainen et al., 2013; Croll and Mcdonald, 2016). Models of climate change
for the coming decades predict increases in global temperature, atmospheric CO2, ozone and changes in

humidity, rainfall and severe weather (Fisher et al., 2012). This is expected to increase the environmental



heterogeneity that already is present across different agricultural systems in difterent regions of the world.
This environmental heterogeneity, acts on genetically different organisms within a population, initially
by causing fitness differences among phenotypically different populations and over time mutation and
recombination generate populations adapted to the local environment (Fisher et al., 2012; Savolainen et
al., 2013).

Thermal adaptation has been researched in several fungal species, including the model fungi Nex-
rospora crassa (Ellison et al., 2011) and the powdery mildew pathosystems Plantago lanceolata-
Podosphaera plantaginis (Laine, 2007). Temperature had a profound impact on the trajectory of evolu-
tion of N. crassa as well as in the co-evolution in the powdery mildew system. In the powdery mildew
pathosystem, host and fungal populations were sampled across a natural thermal gradient, and a local
vs. foreign experiment was conducted. Host cross-inoculations were conducted using sympatric and
allopatric (i.e., local vs. foreign) pathogen populations at three temperatures (i.e., home vs. away environ-
ments) using detached leaves in a common garden laboratory environment. Local adaptation patterns
differed according to temperature. Pathogen populations from the coolest environment had significantly
higher fitness on the sympatric host at the coolest tested temperature, but had lower fitness than allopatric
pathogen populations at higher temperatures (Laine, 2007; Croll and Mcdonald, 2016).

LL6 Migration effects on pathogen adaptation

The outcome of whether populations become adapted or not depend on the balance between selection
and migration i.e., the levels of gene flow among populations and the strength of selection (Savolainen
et al., 2007; Croll and Mcdonald, 2016). Local adaptation can be hindered for certain conditions, for ex-
ample by migration rates and recolonization of populations by foreign genotypes. In the context of local
adaptation, a high fitness in the local environment also implies a lower fitness in a foreign environment
(Savolainen et al., 2013), and thus local adaptation occurs only if the effect of migration does not over-
whelm the effect of local selection. Local adaptation may be disfavored by both high and low migration
rates. Generally high migration rates overwhelm locally adapted genotypes leading to maladaptation,
and low migration rates disfavor local adaptation mainly due to the limited genetic variation that the

local population harbor, leaving limited input for selection to act on. Moreover, the unevenness in mi-



gration rates of the pathogen vs. the host also impact local adaptation processes. Pathogens are expected
to become more rapidly locally adapted if they have higher migration rates than their hosts (Croll and
Mcdonald, 2016).

r.L7 Fungicide resistance evolution in plant pathogens

Fungicides play a key role in crop protection. Modern fungicides function primarily by disrupting partic-
ular molecular processes and targeting specific proteins, and therefore are often referred to as ‘single-site’
tungicides (Brent and Hollomon, 2007). In contrast, older multi-site fungicides act as general inhibitors
affecting many cellular targets (Brent and Hollomon, 2007). The continued use of fungicides may even-
tually lead to the appearance of resistant pathogen populations. This phenomenon is called ‘acquired
resistance’ (Brent and Hollomon, 2007).

Fungal pathogens with rapid reproductive rates and large population sizes are particularly prone to
develop fungicide resistance (Lucas et al., 2015). Although several resistance mechanisms are known, the
most common one is an alteration of the target site of the fungicide. In single-site fungicides, a single
gene mutation can disrupt the target site function and confer resistance or reduced sensitivity (Brent and
Hollomon, 2007). In situations in which resistance develops, it can be seen as a qualitative or a quantita-
tive change. In quantitative resistance, the pathogen population shifts gradually towards resistance over
time (Brent and Hollomon, 2007). While in qualitative resistance, a bimodal distribution with sensitive
and resistant subpopulations is expected. In both cases, there is positive selection for resistant individuals,
ultimately leading to resistance in the population if management strategies to limit pathogen exposure
are not implemented (Lucas et al., 2015).

r.1.8 Using genomic data to detect population structure and adaptation in plant pathogens
Population structure can be defined as a systematic difference in allele frequencies between subpopula-
tions in a population due to different ancestry (Turchin et al., 2012). Population differentiation occurs
when subpopulations are not completely interbreeding and any of the evolutionary forces (mutation, se-
lection, drift, migration) change the allele frequencies within the subpopulation. In other words, when
individuals within subpopulations are more closely related than individuals between subpopulations.

Approaches to detect population structure include clustering methods. In clustering methods, in-
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dividuals are assigned to populations often by estimating ancestry coefficients or using dimensionality-
reduction approaches. Commonly used dimensionality-reduction approaches are principal component
analysis (PCA) and discriminant analysis of principal components (DAPC). PCA is a form of multivari-
ate analysis, which involves looking at multiple independent variables simultaneously to understand their
contributions to the dependent variable (Abdi and Williams, 2010). PCA is used in identifying popula-
tion structure to infer the possible number of populations (clusters) without prior knowledge, thus it can
be useful to find hidden population structure. PCA is commonly used to convert genetic data into a re-
duced number of non-correlated variables, called principal components, which summarize the variation
between samples closely related individuals can be seen as clusters. DAPC is particularly useful in organ-
isms with clonal reproduction, such as many fungi. DAPC differs from PCA approaches, in which it
does require  priori defined populations and maximizes the variance between populations, by partition-
ing the total variance into between-population and within-population components (Thibaut Jombart,
Sébastien Devillard).

Model-based clustering approaches use a broad set of algorithms to characterize population struc-
ture. Commonly, these algorithms differ in the demographic model adopted, the statistical framework
(frequentist or Bayesian), in whether selection is included in the model, among other aspects. Their main
advantages are that they may be applied to a wide range of data sets and systems and that most of these
methods do not need « priori delineation of populations. The main disadvantage is that they often rely
on model assumptions. If the assumed model does not reflect the true model, these approaches may lead
to false positives or to the incorrect identification of clusters. New approaches have been developed to
overcome some of these limitations, such as models that incorporate a spatial component (Bradburd et
al., 2018), and PCA-based models (Josephs et al., 2019).

Genetic variation is the input for selection to act and drive adaptation processes. Genomic divergence
can be inferred from polymorphisms and fixed difterences within and between species. Approaches to in-
fer adaptation processes, rely either on population genetic analyses including reverse ecology approaches,
quantitative trait mapping or association studies. Each of these approaches has strengths and limitations

and a combination of different strategies would be more informative about adaptive natural selection

II



than using just one of them. Local adaptation critically depends on selectable genetic variation within
local populations. Furthermore, the probability for local adaptation to evolve depends on the genetic
architecture of a trait. Phenotypic traits governed by a simple genetic architecture are likely to be more
rapidly selected than complex traits (Croll and Mcdonald, 2016). Similarly, loci with large effects should
be favored to contribute to local adaptation as selection acts more rapidly onloci of large effects than small
effects (Croll and Mcdonald, 2016). Strategies to identify loci involved in local adaptation are discussed.

8.1 Quantitative trait loci mapping

The outcome of host—pathogen interactions is thought to be governed largely by gene-for-gene inter-
actions. However, recent studies showed that virulence can be governed also by quantitative trait loci
(QTL) and that many abiotic factors contribute to the outcome of the interaction (Lendenmann et al.,
2014; Croll and Mcdonald, 2016; Lendenmann et al., 2016b; Lendenmann et al., 2016a).

Quantitative trait loci mapping is based on the joint analysis of phenotype and genotype. QTL anal-
ysis uses a progeny of crosses between a pair of parental lines (pedigree) segregating for a specific trait,
to find association between genotypes and phenotypes. QTL mapping is a powerful approach, however
present some limitations. To uncover more variation many crosses and a large sample size are needed.
QTL approaches can be time consuming since the progeny needs to be genotyped and phenotyped. Fur-
thermore, extended linkage disequilibrium (LD) is often observed in the progeny, hindering the accurate
location of the QTL. A QTL approach was used to investigate thermal adaptation in the fungal pathogen
Zymoseptoria tritici (Lendenmann et al., 2016b). They identified four QTL associated with temperature
sensitivity, containing six candidate genes including a PBS2, encoding a mitogen-activated protein kinase
associated with low temperature tolerance in Saccharomyces cerevisiae. This study demonstrate a QTL
approach can be successfully used in fungi, however, the need of progeny implies that QTL mapping can
be applied only to sexual fungi.

L1.8.2 Association mapping approaches
Association mapping studies are also based on phenotype- genotype associations. However, in contrast
to QTL mapping, diverse panels of organisms can be used instead of using progeny populations derived

form a parental cross. Advantages of association mapping approaches include that the LD is expected
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to be lower than in pedigree-based studies, and multiple different traits can be studied simultaneously.
Thus, QTLs can be found in a more accurate way. However, the use of a diversity panel implies the
need of correction for population structure. The rates of false positives and false negatives is high and
mixed models and correction for multiple hypothesis testing are needed to distinguish real associations
from spurious ones. In general, for association mapping studies associations are not necessarily causal
and further validation is needed.

L.1.8.3 Genotype—environment associations and redundancy analysis

Genotype—environment association (GEA) methods can be used to identify adaptive loci by correlating
genetic data and environmental variables (Lasky et al., 2015; Forester et al., 2018). Multivariate methods in
GEA have recently gained attention because their applications to the analysis of large genomic datasets.
The multivariate nature of these methods allows the simultaneous analysis of thousands of loci (Forester
et al.,, 2018). One of the most common multivariate approaches used in GEA is redundancy analysis
(RDA). RDA is a constrained ordination method that have been used for years in community ecology to
examine community composition in relation to environmental variables (Legendre and Legendre, 20125
Forester et al., 2018). In GEA approaches, RDA can be used to disentangle the effects of climatic factors
in shaping genetic variation, by modeling sets of molecular markers (e.g. SNPs) as responses to a func-
tion of combinations of environmental predictors. RDA has been found to perform better than univari-
ate methods in identifying weak, multilocus selection suggestive of polygenic adaptation (Forester et al.,
2018). Partial RDA models, in which the effects of covariables can be removed, have been used to account
for underlying population structure in the identification of loci associated with environmental factors in
plant and animal systems (Lasky et al., 2012; Forester et al., 2018; Xuereb et al., 2018; Gibson and Moyle,
2020; Capblancq and Forester, 2021)

1.1.8.4 Population genetics and reverse ecology

Local adaptation has been investigated using population genetics with both forward and reverse ecology
approaches. Population genetic analyses are based on Fg7 (Wright fixation index) and linkage disequi-
librium (LD) methods to detect candidate loci for local adaptation in the absence of phenotypic traits.

These methods can detect outlier loci with an excessive amount of genetic differentiation among pop-
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ulations (i.c., Fg7 outlier analyses; De Mita et al. 2013). The basis is that local selection will exacerbate
genetic differentiation at loci under selection compared to the genomic background. Reverse ecology (Li
et al., 2008), is coined because the analogy with reverse genetics and implies that prior knowledge about
an ecological trait is not necessary, instead first finding the genetic targets of selection and going back to
identify the phenotypic differences or the adaptive phenotype. Reverse ecology is especially important
to investigate organisms, such as microbes, which are challenging to identify adaptive phenotypes. This
will preclude the utilization of associating studies such Genome Wide Association Studies. Moreover,
another challenge is exemplified in fungi, specifically, asexual fungi in which the development of popu-
lations to study a specific trait is not possible. Thus, approaches such as QTL analysis are not feasible.
Reverse ecology may help overcome these challenges by investigating patterns of genetic diversity within
and between populations. Ellison etal., (2011) implemented a reverse ecology approach to investigate tem-
perature adaptation in the model fungus NN. crassa by using three different population genetics metrics
(Fs7, Tajima’s D, and Dy, ). They identified regions of genomic divergence, which are those showing low
within-population polymorphism and high between-population divergence, and genes associated with
response to cold temperature within those regions. However, among the three metrics used, Ellison et al.
found that out of a total of 37 regions showing significant signatures of positive selection, only two were
identified by all three metrics. This suggests a high proportion of false positives. In fact, it is known that
Fs7 outliers can be seen for reasons other than local adaptation such as deleterious alleles, species-wide
selective sweeps and cryptic hybrid zones. Other aspect to consider is that regions identified using reverse
ecology constitute just candidate loci of local adaptation, and further functional analysis needs to be done

to conclusively identify causal genes.

1.2 Macrophomina phaseolina the causal agent of charcoal rot

Macrophomina phaseolina is a seed- and soil-borne fungal pathogen infecting more than 400 host species
(Batista, Lopes and Alves, 2021). M. phaseolina is haploid, reproduces asexually, and overwinters in soil
and crop residue as microsclerotia. Microsclerotia are melanized structures that serve as the primary in-
oculum to initiate infection in subsequent seasons (Gupta, Sharma and Ramteke, 2012; Islam et al., 2012).

Pycnidia have been observed on host plant tissues(Knox-Davies, 1965; Dhingra and Sinclair, 1978; Mihail
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and Taylor, 1995; Ma et al., 2010; Gupta et al., 2012). Although conidial suspensions have been used to
experimentally inoculate soybean plants, suggesting pycnidia may provide inoculum for secondary infec-
tion in the field, their epidemiological significance has yet to be fully defined (Ma et al., 2010; Gupta et
al., 2012). Depending on environmental conditions, M. phaseolina survives as microsclerotia in soil for
up to 15 years (Short et al. 1980; Baird et al. 2003), and for up to 3 years as microsclerotia in symptomatic
seeds or as mycelium in asymptomatic seeds (Hartman et al. 1999).

One of the first descriptions of M. phaseolina was made in 1890 by Halsted causing disease on sweet
potato and the fungus was named Rhbizoctonia bataticola (Halsted, 1890). Later this fungus was described
by Tassi (1901) who named the fungus as Macrophomina phaseolina as it is retained today. In 1927, Ashby
proposed the name Macrophomina phaseoli (Maubl.). Ashby associated the microsclerotia and conidial
stage by observing the structures on seedlings of multiple crops. The name Macrophomina phaseoli was
changed to Macrophomina phaseolina (Tassi) G. Goidanich, by Goidanich in 1947. By 1970, there was
controversy among researchers over the use of the name, but genera Macrophomina and Macrophoma
were used to refer to the pycnidial stage and Rhbizoctonia to the sclerotial state.

In 1981, Von Arx introduced the name T7arosporella phaseolina (Tassi) van der Aa and reduced the
genus Macrophomina to a synonym of Tiarosporella Hohn. However, this has largely been ignored by
the plant pathological and mycological community (Crous et al., 2006). In 2006, Crous et al., in a com-
prehensive phylogenetic study of 113 members of the family Botryosphaeriacea using ribosomal DNA
sequences, separated the genera Macrophomina and Tiarosporella, retaining the genus Macrophomina
and the name Macrophomina phaseolina. The type species of M. phaseolina was originally described
trom Phaseolus spp. collected in Italy (Sarr et al., 2014).

Soybean is one of the most economically important crops worldwide, contributing with more than
half of the world’s total oilseed production (Boerma et al., 2004; Wilson, 2008). Seed oil and protein
content makes soybean a valuable source not only for food and feed utilization but also for the indus-
trial production of biofuels (Boerma et al., 2004). Many diseases threaten global soybean production,
including charcoal rot, caused by M. phaseolina. Charcoal rot severely affects soybean yield under high

temperatures and drought conditions (Mengistu et al., 2011). Tropical and subtropical areas, including
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the southern US, have been the most affected. However, charcoal rot disease in soybean is now a consis-
tent threat to soybean production in southern and northern US regions (Bradley et al., 2021). Although
it is not clear which factors may be driving outbreaks in these regions, climatic changing conditions and
resistance overcoming due to pathogen genetic divergence may be involved in the broadening of the ge-
ographical range of charcoal rot disease. To date, complete resistance to charcoal rot in soybean is not
known and cultural practices and fungicide seed treatments do not provide consistent control to char-
coal rot in soybean (Paris et al., 2006; Mengistu et al., 2011; Gillen et al., 2016). The confluence of these

factors, makes imperative to investigate the genetic basis for adaptation in M. phaseolina.

1.3 Conclusions and dissertation overview

Approaches to study patterns of genetic diversity and adaptation in plant pathogens, as well as their main
limitations, were discussed. One of those limitations is the difficulty to distinguish between natural se-
lection and demographic processes. Thus, it is important to carefully consider the experimental design
and approaches in light of the biology and epidemiology of the organism under study. Fungal pathogens
can reach very high population sizes in a single plant and clonal reproduction and mixed reproduction
systems are commonly observed. Furthermore, complex population dynamics and genome architecture
are hallmarks of many fungal plant pathogens.

Most computational tools used in population genetics are based on models developed for sexual or-
ganisms (Kamvar et al., 2015). Populations that reproduce clonally may violate some of the assumptions
underlying the population genetic theory. Moreover, the most widely used model is the Hardy-Weinberg
model which assumes diploid, sexual organisms, besides no selection, no mutation, no migration, no
drift and random mating between sexes (Hahn, 2019).

An important assumption that is violated in clonal organisms is the random association between alle-
les at different loci. In several approaches, this assumption allows the prediction of genotype frequencies
from the allele frequencies at each locus (Milgroom, 1996). In clonal organisms associations among alle-
les at several loci are nonrandom and the entire genome may be effectively linked (Anderson and Kohn,
1995). Therefore, with clonal organisms the of use clone-corrected unlinked data is appropriate to avoid

bias in diversity estimations due to duplicated genotypes (Kamvar et al., 2015; Milgroom, 2015).
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Although, approaches based on genetic diversity metrics are often employed to identify signatures
of adaptation in plant pathogens, population genomics and ordination techniques such as redundancy
analysis have the potential to accommodate the intrinsic characteristics of fungal pathogens and begin dis-
entangling the effects of selection of those of other evolutionary forces. Such methodological approaches
in conjunction with population genomics analyses, constitute powerful tools to identify patterns of ge-
nomic diversity and adaptive potential of fungal pathogens.

The focus of this dissertation is to improve our understanding of M. phaseolina population struc-
ture, adaptation to host and climate and its application to local management practices through using the
frameworks and tools of population genomics and community ecology. Additional objectives of this re-
search are to characterize the sensitivity of M. phaseolina to fungicides currently used in crop production

and provide a preliminary climatic suitability model for the monitoring and prediction of disease risk.
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CHAPTER 2
POPULATION GENOMIC ANALYSIS REVEALS GEOGRAPHIC STRUCTURE AND

CLIMATIC DIVERSIFICATION FOR MACROPHOMINA PHASEOLINA ISOLATED
FROM SOYBEAN AND DRY BEAN ACROSS THE US, PUERTO RICO, AND COLOMBIA
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2.1 Abstract

Macrophomina phaseolina causes the important disease charcoal rot, which significantly reduces yield
and seed quality of soybean and dry bean. Although charcoal rot has been recognized as a warm climate-
driven disease of increasing concern under global climate change, knowledge regarding population ge-
netics and climatic variables contributing to the genetic diversity of M. phaseolina remains limited. This
study conducted genome sequencing for 95 M. phaseolina isolates from soybean and dry bean across
the continental US, Puerto Rico, and Colombia. Inference on the population structure revealed that
the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic dif-
ferentiation regionally. Almost all isolates from the US grouped in a clade with a predominantly clonal
genetic structure, while most Puerto Rican and Colombian isolates from dry bean were assigned to a
separate cluster with higher genetic diversity. Consistently, climate significantly contributed to genomic
variation at a continental level with temperature seasonality and precipitation of warmest quarter having
the greatest impact. The loci significantly associated with multivariate climate were found closely to the
genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity
and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina. On the other hand,
limited genome-wide differentiation among populations by hosts was observed. These findings highlight
the importance of population genetics and identify candidate genes of M. phaseolina that can be used to

elucidate the molecular mechanisms that underly climatic adaptation to the changing climate.

2.2 Introduction

Delineating pathogen populations and identifying the factors shaping the patterns of genetic diversity
within and among populations allow for inferences about their biology and evolutionary potential. Plant
pathogens are often genetically structured in different agricultural landscapes as a result of geographic and
environmental differences (Gladieux et al., 2014; McDonald and Stukenbrock, 2016). Among different
environments, agroecosystems provide remarkable conditions for rapid adaptation of plant-pathogenic
fungi. The abiotic and biotic factors such as genetic crop uniformity of monocultures, the prevalent
occurrence of human-mediated migration (Wingfield et al., 20155 Crous et al., 2017), and intrinsic char-

acteristics of fungi such as their mode of reproduction (McDonald and Stukenbrock, 2016) are known
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to be strong drivers of genomic divergence and adaptation in plant pathogenic fungi (Stukenbrock et al.,
2011; Savolainen, Lascoux and Merild, 2013; Croll and Mcdonald, 2016). However, characterizing how se-
lective pressures of abiotic and biotic factors contribute to population genetics of plant-pathogenic fungi
remains challenging.

Macrophomina phaseolina is a seed- and soil-borne fungal pathogen that infects more than 400 host
species (Batista, Lopes and Alves, 2021), and causes damping off and charcoal rot in many important
economic and subsistence crops worldwide, including soybean (Glycine max) and dry bean (Phaseolus
vulgaris) (Dhingraand Sinclair, 1978). During host infection, M. phaseolina invades the xylem preventing
water uptake, causing wilting and premature plant death with senesced leaves remaining attached to the
petioles (Mengistu et al., 2007; Romero Luna et al., 2017). These symptoms can develop rapidly causing
extensive yield loss and grain or seed quality reduction (Smith and Carvil, 1997). Charcoal rot of soybean
ranked 7th out of 25 pests and pathogens causing global yield losses higher than 1% (Savary et al., 2019),
with the potential for yield reductions within individual fields of up to 50% (Wrather et al., 2001). In the
US, charcoal rot ranked among the top seven most destructive diseases with economic losses totaling 220
billion dollars from 2010 to 2014 (Allen et al., 2017). Disease is favored by hotand dry conditions (Dhingra
and Sinclair, 1974), with colonization in the soybean and dry bean tap root and lower stem being greatest
under high temperatures (28°C - 35°C) and low precipitation (Dhingra and Sinclair, 1974; Meyer and
Sinclair, 1974; Kendig, Rupe and Scott, 2000; Mengistu, Arelli, et al., 2011; Mengistu, Smith, et al., 2015
Reznikov et al., 2018).

Macrophomina phaseolina is haploid, reproduces asexually, and overwinters in soil and crop residue
as abundant, melanized microsclerotia that serve as the primary inoculum to initiate infection in subse-
quent seasons (Gupta, Sharma and Ramteke, 2012; Islam et al., 2012). Pycnidia are occasionally produced
on soybean and other host plants, however, their epidemiological significance has yet to be fully defined
(Knox-Davies, 1965; Dhingra and Sinclair, 1978; Mihail and Taylor, 1995; Ma et al., 2010; Gupta et al,,
2012). Depending on environmental conditions, M. phaseolina may survive as microsclerotia in soil for
up to 15 years (Short et al. 1980; Baird et al. 2003), and for up to 3 years as microsclerotia in symptomatic

seeds or as mycelium in asymptomatic seeds (Hartman et al. 1999). To date, no clonal lineages or patho-
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types have been identified for M. phaseolina, despite reports of within-species variation in morphology
and pathogenicity (Dhingra and Sinclair, 1973, 1978; Sexton, Hughes and Wise, 2016). Population ge-
netic studies based on microsatellite markers of isolates representing different geographic regions and
hosts across the US have found moderate to high genetic diversity and mixed evidence of population
structure by host or geography. Although considerable efforts have been focused on ascertaining host
specialization, it is generally concluded that there is no strong evidence of this specificity, in which iso-
lates from one plant species can often cause disease in other plant species (G Su et al., 2001; Zveibil et
al., 2012; Romero Luna et al., 2017). Nevertheless, genetic similarity of isolates according to host and US
regions and some degree of host preference have been noted (G. Su et al., 2001; Jana, Sharma and Singh,
200s; Baird et al., 2010; Saleh et al., 2010; Arias et al., 2011). Notably, a group of M. phaseolina isolates
obtained from strawberry in California were found to form a species-specific cluster, exhibiting strong
host preference for strawberry over other hosts around California (Koike et al., 2016; A. K. Burkhardt et
al., 2019).

Studying population genetics using statistical methods that leverage genomic, geographic and en-
vironmental data can account for continuous and discrete genetic variation and provide insights into
the genetic basis underlying environmental adaptation (Hoban et al., 2016; Bontrager and Angert, 2018;
Bradburd, Coop and Ralph, 2018b). These approaches may be used to identify environmental factors
driving selection and provide an understanding of how and why pathogen populations vary across space.
Population genomics and genotype-environment associations have been applied in numerous studies to
resolve the basis of rapid adaptation and identify candidate adaptive loci associated with environmental
variation (Lasky et al., 2012; Forester et al., 2018; Xuereb et al., 2018; Gibson and Moyle, 2020; Capblancq
and Forester, 2021). However, characterizing population structure and unravelling the effects of contin-
uous or discrete processes on the genetic differentiation remains challenging for many plant-pathogenic
fungi.

A major challenge arises because continuous geographic differentiation (e.g. isolation by distance or
climatic variation along a gradient) can be confounded with discrete processes such as admixture and

long-distance migration (human-mediated migration) which are commonly observed in plant pathogens
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(Wingfield et al., 20155 Crous et al., 2017; Tabima et al., 2019; LeBlanc, Cubeta and Crouch, 2021). In ad-
dition, collinearity between spatial and environmental variables makes it difficult to elucidate to what ex-
tent geographic and environmental differences may be contributing to genetic differentiation. To address
these issues, multivariate statistical methods, specifically redundancy analysis (RDA), have been increas-
ingly used to disentangle the effects of environmental factors in shaping genetic variation. RDA is a type
of constrained ordination in which a set of SNPs are modeled as responses in a function of combinations
of environmental predictors. Because of its ability to evaluate many loci simultaneously, RDA has been
found to be superior to traditional mixed-models associations methods in identifying weak, multilocus
selection (Forester et al., 2018), suggestive of polygenic adaptation. Furthermore, partial RDA models, in
which covariables can be included, has been used to account for underlying population structure in the
identification of loci associated with environmental factors for climate adaptation in a variety of systems
including plant and animal species (Lasky et al., 2012; Forester et al., 2018; Xuereb et al., 2018; Gibson and
Moyle, 2020; Capblancq and Forester, 2021).

Climate fluctuation and temperature in particular, are important abiotic factors leading to local adap-
tation of plant-associated fungi (Savolainen et al., 2013; Croll and Mcdonald, 2016), especially in species
occupying spatially and climatically heterogeneous environments (Ellison et al., 2011; Branco et al., 2015,
2016; Fitzpatrick and Keller, 2015). M. phaseolina is recognized for its different ecological roles as an en-
dophyte, saprotroph, and latent or opportunistic pathogen with broad geographic distribution (Dhingra
and Sinclair, 1974; Slippers and Wingfield, 2007; Slippers and Boissin, 2013; Parsa et al., 2016; Crous et
al., 2017). Worldwide diseases caused by M. phaseolina have re-emerged in recent decades, with outbreaks
occurring mostly in tropical and subtropical regions but in temperate regions as well (Leyva-Mir et al.,
2015; Casano et al., 2018; Koehler and Shew, 2018; Meena et al., 2018; Nishad et al., 2018; Tanci¢ Zivanov
et al,, 2018; Wang et al., 2020). In the US, charcoal rot of soybean has been primarily an issue in south-
ern states. However, more recently charcoal rot has been reported in northern states such as Wisconsin,
New York, Minnesota, and Michigan (Bradley et al., 2003; Brown, 2007; Cummings and Bergstrom,
2013; Elaraby, 2003; Hughes, 2009; Yang and Navi, 2005). Although many factors may influence disease

incidence, greater disease and yield losses have been observed in years with high temperature and low soil
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moisture (Bradley and Allen, 2014; Allen et al., 2017). When comparing isolates from the northern and
southern US states, a recent study concluded that M. phaseolina isolates were regionally adapted (Sexton,
Hughes and Wise, 2016). Investigations in the context of species within Botryosphaeriaceae suggest that
geographical distribution and host affinity dynamics in M. phaseolina are strongly influenced by climate
due to its broad host range and ecologically diverse roles (Slippers and Wingfield, 2007; Batista, Lopes
and Alves, 2021). These factors, together with future extreme rainfall and temperature predicted in the
climatic change models (IPCC, 2014), make it critical to better understand the genetic structure and cli-
matic factors as potential selection agents of M. phaseolina.

The broad geographic distribution and population dynamics of M. phaseolina suggest that popula-
tions in the continental US, Puerto Rico and Colombia might have been influenced by a complex envi-
ronmental and agricultural landscape and may be structured and differentially adapted at a continental or
regional level. However, understanding of the population structure of M. phaseolina has remained lim-
ited. In the present study, the first aim was to better understand the genetic structure in M. phaseolina
populationsisolated from soybean and dry bean across the US, Puerto Rico and Colombia using genome-
wide single nucleotide polymorphisms (SNPs). Specifically, the contribution of discrete vs. continuous
genetic differentiation was assessed and the hypotheses tested were M. phaseolina populations differenti-
ated (7) between geography and (77) between host within the US, using conventional and spatially explicit
population structure analyses. The second aim was to investigate whether climatic variables contribute to
patterns of adaptive genetic variation in M. phaseolina. Using RDA, the hypotheses tested were (%) spe-
cific climatic variables contribute to genetic variation, (7Z) climatic variables independently contribute
to patterns of genetic variation when accounting for underlying spatial and population structure, and
(777) loci in strong association with multivariate climate can be identified and have roles in driving local
adaptation to climate.

2.3 Results
2.3.1  Whole-genome sequencing for 95 M. phaseolina isolates
Whole-genome sequences were generated for 95 M. phaseolina isolates collected across the US, Puerto

Rico, and Colombia, including 52 soybean isolates, 40 dry bean isolates, two strawberry isolates, and one
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Ethiopian mustard isolate (Fig 2.1; Supplementary Table A.1). Sequence coverage varied across individual
isolates from sX to 85X, across 93% of the M. phaseolina reference genome (JGI Mycocosm, MPI-SDFR-
AT-0080 v1.0). A total of 2.8 million SNPs were identified across all isolates, and a mean read depth (DP)
of 12X was obtained for all SNPs after filtering. Most SNPs had a mapping quality (MQ) value equal to 60
(94%) and SNPs with MQ values < 60 were removed. The distribution of missing data across the isolates
and across the variants was even, with most individuals representing similar missing data (o — 0.006%),
and all variants containing missing data were removed. The final data set contained 76,981 high-quality

biallelic SNPs in all isolates, and the data set was retained for all analyses.
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Figure 2.1 Geographic location of the 95 Macrophomina phaseolina isolates overlaid on temperature and
precipitation variables. (A) Isolate collection sites overlaid on temperature seasonality (standard devia-
tion; °C). Temperature seasonality contributed the most to explaining patterns of spatial genetic varia-
tion using redundancy analysis (RDA). (B) Isolates overlain on precipitation warmest quarter (mm). US,
Puerto Rico and Colombia are outlined in black.

2.3.2 Phylogenomics differentiated 95 isolates into two main clades of the US and Colombian-
Puerto Rican origins

To infer the genetic similarity in M. phaseolina isolates across the continental US, Colombia and Puerto
Rico, a maximum-likelihood (ML) phylogenetic tree based on the 76,981 SNPs was constructed. Five
genetic clusters were identified across the US (n=3), Colombia and Puerto Rico (n=2). Furthermore,
a pattern of hierarchical structure differentiating the US and Colombian-Puerto Rican isolates was ob-

served. The ML tree provided strong support (100% bootstrap) for two main clades, hereafter referred to

29



as US and COLPR, and five well-supported clades within the main clades (Fig. 2.2A). The US isolates
Mir-12 and M13-26 from California, and TNsor from Louisiana clustered in the COLPR clade, while
the Colombian isolates Mph-22, Mph-23, and Mph-49 in the US clade (Fig. 2.2A). Other than these six
isolates, all isolates from the US were placed in the US clade, and all isolates from Colombia and Puerto
Rico were grouped in the COLPR clade.

There were three subclades (US1A, US1B and US2) within the US clade and two subclades (COLPR1
and COLPR2) within the COLPR clade. The PCA clustered isolates in five distinct groups in agreement
with phylogenetic analysis, with little evidence of within group differentiation (Fig. 2.2B). The first PC
explains most of the variance (50.6%) and separates out isolates in the US clade from the isolates in the
COLPR clade, while the second PC explains 15.5% of the variance dividing isolates into the five groups
in the phylogenetic analysis (Fig. 2.2B). An exception was isolate MP258, which in the PCA was grouped
in US1B instead of USIA. Since the phylogenetic and PCA clustering revealed essentially the same hier-
archical groupings, they were named genetic clusters US1A, USiB, US2, COLPR1 and COLPRa.

USIA isolates represented the predominant group in the US, with most isolates collected in the East
North Central and Central regions in the states of Michigan (29), followed by Wisconsin (11), Indiana
(5), Tennessee (5) and Kentucky (2). Cluster USiB was represented by isolates from Mississippi (2) and
South Carolina (1). US2 isolates represented the second largest group in the US and were mostly collected
in the West North Central [Minnesota (3), South Dakota (1)] and South [Texas (2) and Georgia (2)]
regions. Also, within this cluster were isolates from Wisconsin (1), Michigan (4), and Kentucky (1). On
the other hand, the COLPR1 cluster grouped most isolates from Colombia (1r) and Puerto Rico (4) while
COLPR2 grouped isolates from Colombia (5), one isolate from Puerto Rico, and three isolates from the
US. No evidence of population structure by states was found, which indicated that states do not represent
genetic groups and M. phaseolina is genetically structured at a broader subcontinental regional extent.

A ML phylogeny rooted with the M. phaseolina reference genome was reconstructed using the set
of high-quality SNPs. The M. phaseolina reterence genome was considered as a suitable outgroup based
on its European and Arabidopsis thaliana origin. The phylogenetic reconstruction with the reference

genome as a root revealed the COLPR2 clade as an outgroup to all other clades, while the US clades were
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Figure 2.2 Population structure of Macrophomina phaseolina in the US, Colombia and Puerto Rico
reveals five genetic clusters in a pattern of hierarchical structure. (A) Maximum-likelihood phylogeny
reconstructed using 77,465 high-quality SNPs. Bootstrap support values over 70 are shown at nodes.
Bootstrapping converged after 400 replicates. Colored tips represent the genetic cluster for each isolate
as defined by principal components analysis. The two main clades, US and COLPR, are highlighted
by rectangular shading. The country of collection for each isolate is denoted by colored squares at the
right bar. (B) Scatterplot from a principal component analysis based on the two first PCs (the eigenvec-
tors of the SNP dataset) for all isolates. Points are colored by membership in the five genetic clusters.
Isolate names include states/municipalities codes: CA: California, CAU: Cauca, GA: Georgia, IN: Indi-
ana, ISA: Isabela, JD: Juana Diaz, KY: Kentucky, LA: Louisiana, MAG: Magdalena, MI: Michigan, MN:
Minnesota, MS: Mississippi, SC: South Carolina, SD: South Dakota, TN: Tennessee, TOL: Tolima, TX:
Texas, VAC: Valle del Cauca, WI: Wisconsin. Country codes: US: United States, COL: Colombia and
PR: Puerto Rico.

reconstructed as terminal clades (Supplementary Fig. A.1). The topology of the rooted ML phylogeny
indicated the COLPR clades as more diverse than the major US terminal clades (US1A and US2). This
higher diversity in COLPR clades was indicated by longer average branch length than in the US clades,
representing a higher average number of substitutions per site. Differences in diversity can also be inferred
from the PCA clustering. In PC space, so isolates in US1A and 14 isolates in US2 genetic clusters clustered

effectively on top of each other, while isolates in US1B, COLPR1and COLPR2, although projected near
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each other, clustered distinctively more dispersed (Fig. 2.2B). The placement of COLPR genetic clusters
and their higher diversity as compared to US genetic clusters indicates them as potential sources to the
US clusters.

To test the relatedness of M. phaseolina isolates from soybean and dry bean in US, the host infor-
mation was mapped to the ML tree (Supplementary Fig. A.1A). Generally, isolates that shared a com-
mon host did not cluster within genetic clusters in the US. Isolates collected from soybean and dry bean
grouped together in the two larger US genetic clusters (US1A and USz2; Supplementary Fig. A.1A). This
lack of structure was further supported in a PCA showing overlapping ellipses representing 9s5% of the

isolates from each of the hosts (Supplementary Fig. A.2).

2.3.3 Spatial population structure defines discrete population structure in M. phaseolina be-
tween the US and Colombia-Puerto Rico and continuous substructure between genetic
clusters within US and COLPR clades

To infer the number of distinct genetic groups in M. phaseolina while accounting for continuous ge-
ographic differentiation, spatial analysis of population structure was conducted using a Bayesian (con-
Struct) and a model-free matrix factorization (TESS3) framework. Spatial analysis of population struc-
ture incorporates geographic distance in the estimation of ancestry coefficients (the proportion of indi-
vidual isolate’s genome originating from the ancestral genetic group, K). The genetic structure of the 95
isolates was explained better by a spatial model of admixture between discrete genetic groups, where isola-
tion by distance was accounted for rather than the non-spatial model. This was indicated by the increase
in predictive accuracy in the conStruct spatial models for all tested values of K (referred hereafter as layers
in conStruct framework; Supplementary Fig. A.3B). This suggests that isolation by distance or climatic
gradients likely play a role in shaping patterns of genetic variation in the sampled isolates.

Spatial population structure description using TESS3 returned the greatest decrease in root mean-
squared errors at K=2 (0.087, from 0.318 at K=1 to 0.232 at K=2; Fig. 2.3D) and detected the US and
COLPR clades. At K=2, TESS3 spatial estimation strongly assigned 95% of isolates to a single ancestral
population (ancestry proportion Q > 0.8; Fig. 2.3A). All isolates in the US clade, except for the three
isolates collected in Colombia, were identified as being derived from a single ancestral population (repre-

sented by blue; Fig. 3A, bottom). Likewise, all COLPR isolates are estimated to have a majority compo-
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nent of ancestry from a single source population (represented by orange; Fig. 2.3A, bottom) including
the three isolates collected in the US (M-12 and Mi3-26 from California, and TNsor from Louisiana).
The three isolates collected in Colombia grouping in the US clade (Mph-22, Mph-23 and Mph-49) were
identified as admixed (i.e., to have ancestry from more than one population instead of drawing ancestry
mostly [Q > 0.8] from a single ancestral population) between the two ancestral groups (Fig. 2.3A, bot-
tom) as well as the two isolates (IN12-9-4 from Indiana and Mph-40 from Colombia) placed outside the
supported clusters in the ML tree and PCA. At K=4, further substructure was detected that generally re-
flect the genetic clusters within the US and COLPR clades; except that an ancestral population for US1B
isolates was not inferred (Fig. 2.3B). The decrease in root mean-squared errors at K=4 (0.04; from 0.20 at
K=3 to 0.16 at K=4; Fig. 2.3D) was the second largest value after that at K =2, reflecting the hierarchical
structure observed in previous analyses. However, although isolates in each genetic cluster (except US1B)
were inferred as drawing the most ancestry from their own ancestral population, only 76% of isolates had
an ancestry proportion (Q) > 0.80 to a single ancestral population (Fig. 2.3B, bottom), demonstrating
weaker assignments than those at K = 2.

Consistently, the results from conStruct spatial model with K =2 returned the greatest increase in
predictive accuracy and primarily partitioned the isolates in two main groups mostly in line with US and
COLPR clades (Supplementary Fig. A.3A). Based on cross-validation results, the predictive accuracy
increased with increasing values of K (Supplementary Fig. A.3B), however additional layers beyond K
= 2 contribute little to total covariance (Supplementary Fig. A.3C). Therefore, supporting two discrete
ancestral populations while population substructure can be explained by continuous genetic differen-
tiation. Taken together conStruct and TESS3 results supported two discrete genetic groups for the US
and COLPR main clades and suggested that most isolates within US and COLPR clades can be better
described to have ancestry mainly from each single ancestral population. It may therefore be reason-
able that the evolutionary processes leading to divergence between genetic clusters within the US (US1A,
US1B, US2) and COLPR (COLPR:1 COLPR2) clades were associated to isolation by distance or climatic

differences rather than different discrete ancestry.
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Figure 2.3 Spatial population structure defines discrete population structure in M. phaseolina between
the US and Colombia-Puerto Rico and continuous substructure between genetic clusters. (A) Isolate
membership to ancestral populations identified with TESS3 using K = 2 and (B) K = 4. Top: Isolate
collection sites overlaid on individual membership, each color representing a population. Each point
represents an isolate, points are colored by their assignment to genetic clusters as identified in principal
component analysis to show agreement between the methods. Bottom: Ancestry proportions (Q) of all
isolates. Isolates identified as admixed (Mph-22, Mph-23, Mph-49, Mph4o and IN129-4) are labeled and
indicated with dots. (C) Scatterplot from a principal component analysis for all isolates (from Fig. 2).
(D) Values of the TESS3 cross-validation criterion (root mean-squared errors, RMSE) as a function of
the number of ancestral populations (K =1 to K= 7).

2.3.4 Genetic diversity and differentiation between the US and COLPR clades and genetic
clusters of M. phaseolina

To examine genome-wide diversity of M. phaseolina within and among clades and genetic clusters, we
estimated gene diversity (He) and median pairwise genetic distance for each of the clades and genetic clus-
ters. Pairwise genetic distance showed that COLPR isolates had greater genetic distances among isolates
than those in the US clade, with a gene diversity (He) significantly higher in the COLPR clade (0.236)
than the US clade (0.068; Table 2.1) (Hs.test, P = 0.002). Among clusters, the COLPR2 cluster has
the highest genetic diversity, considering both gene diversity and pairwise genetic distance, followed by
COLPRy, US1B, US2, and the USIA cluster has the lowest values (Table 2.1). The higher genetic distance
among isolates in the US1B cluster as compared to other US clusters, likely reflects that the cluster is only

represented by five isolates of which two were collected in Mississippi, two in Colombia and one in South
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Carolina.

Table 2.1 Summary statistics for genetic diversity of Macrophomina phaseolina clades and genetic clusters.
N is number of isolates (sample size); MLG is number of observed multilocus genotypes; eMLG is the
number of expected MLG at a sample size of 25 for clades and 5 for genetic clusters based on rarefaction.
MLL is number of observed multilocus lineages by population using a bitwise cutoff distance of 0.0001;
CFis clonal fraction (1- (MLL/N). Clone corrected values are shown and indicated by asterisks for indices
of genotypic diversity: Shannon-Wiener Index (H*), Stoddart and Taylor’s Index (G*), Simpson’s index
(lambda*) and evenness (Es*).

Clade, Genetic . G?ne Media'n pf{irwise MLG eMLG MLL eMLL CF H* G* lambda® Eg*
Cluster diversity (He) genetic distance

uUsS 70 0.068 0.089 54 2175 19 10.7 073 199 5.3 8 0.702
USIA 50 0.0001 0.00016 34 4.71 6 287 0.88 0.935 2.48 0.561 0.883
USiB 5 0.054 0.09 5 5 4 4 0.2 L1332 357 0.72 0.922

US2 14 0.001 0.00075 14 5 8 426 043 L4  3.99 0.738 0.95
COLPR 25 0.236 0.332 25 25 15 15 0.4 264 133 0.925 0.942
COLPR1 15 0.084 0.096 15 5 9 4.43 0.4 1456 4.24 0.756 0.962
COLPR2 9 0.151 0.265 9 5 S 3.73  0.44 1242 335 0.688 0.924

Note: Summary statistics were calculated using the clone-corrected data at 79 MLGs.

To evaluate genotypic diversity both in terms of genotypic richness (the number of observed geno-
types) and evenness of distribution of genotypes, the number of multilocus genotypes (MLG) was calcu-
lated for each clade and genetic cluster. A MLG was defined as a unique combination of SNPs. Given the
large number of 76,981 SNPs and genotyping error rate from NGS data, it is unlikely that a true clone will
be represented by an MLG. Thus, to better represent clones, closely related genotypes were collapsed into
multilocus lineages (MLLs) based on a Prevosti’s genetic distance threshold of 0.0001 (8 SNPs). Of the
95 isolates, 79 had unique genotypes (MLGs) corresponding to 34 MLLs (Table 2.1). eMLG and eMLL
are the number of expected MLGs and MLLs based on rarefaction at the lowest common sample size
between clades and genetic clusters and were used to allow comparisons across them given their unequal
sample sizes. Genotypic richness was highest in the COLPR clade (15 eMLLs) as compared to the US
clade (10.7 eMLLs). Among genetic clusters, the COLPR1 cluster had the highest number of eMLLs,
followed by US2, USiB, COLPR2 and USiA. This indicates genotypic richness is highest in COLPR1
and lowest in the USIA genetic cluster, in which more than 80% of the isolates were clonal (Table 1, CF).
Although, lower genotypic richness is inferred in COLPR2 and US1B as compared to the gene diversity

pattern, this may be due to their low sample size. Evenness and the corrected Shannon-Wiener’s index,
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Stoddart and Taylor’s index and Simpson’s Index, were all highest in the COLPR clade than in the US
clade and followed the same pattern among genetic clusters as with genotypic richness (Table 2.1). Finally,
there were no shared MLGs or MLLs among genetic clusters.

Similarly, between countries, significantly higher gene diversity in Colombia (0.263) compared with
the US (o.104) (Hs.test, P = 0.002). Gene diversity in Puerto Rico (0.163) was intermediate and not sig-
nificantly different from the US (Hs.test, P = 0.218) or Colombia (Hs.test, P = 0.396). Pairwise genetic
distances, corrected genotypic diversity indices and evenness calculated for each country follow the same
pattern of gene diversity (Supplementary Table A.3). To infer migration among countries by tracking
genotype flow, MLLs shared among countries were identified. In total three MLLs were shared among
countries. The MLL with one isolate from Colombia (Mph-s) and one from Puerto Rico (UPR-Mph-
JD1) clustering in COLPR1, the MLL with one isolate from Puerto Rico (UPR-Mph-ISA3) and one
from Louisiana (TNsor) clustering in COLPR2, and the MLL with one isolate from Colombia (Mph-
49) and 19 isolates from US clustering in USIA (Supplementary Fig. A.4). In addition, all populations
clustering approaches indicated that Colombian isolates Mph-22 and Mph-23 are the most closely related
to the US isolates clustered in US1B, and Californian isolates M13-26 and Mir-12 are the most closely re-
lated to Colombian isolates clustering in COLPR2. The rooted ML tree indicated isolate Mph-40 (from
Colombia) as an outgroup to US clusters and discriminatory analysis of principal components (DAPC)
clustered this isolate along with IN12-9-4 (from Indiana) with USiB isolates (Supplementary Fig. A.1).
Opverall, migration between Colombia, Puerto Rico and US is a likely scenario. To test the hypothe-
sis that genetic clusters of M. phaseolina are differentiated, we used hierarchical analysis of molecular
variance (AMOVA) and Nei’s GST (an Fg7-analogous genetic differentiation measure applicable to hap-
loids). Populations were significantly differentiated among clades, genetic clusters, as well as within ge-
netic clusters (P < 0.001; Supplementary Table A.2). AMOVA revealed that most of the total genetic vari-
ance was partitioned among US and COLPR clades (47%) and among genetic clusters (42%), and only
1% within genetic clusters. Consistently, very high genetic differentiation was found between US and
COLPR clades (GST = 0.45) and among genetic clusters (GST = 0.50 — 0.99; Table 2.2). The COLPR2
(GST = 0.50-0.69) and US1B (GST = 0.54-0.69) clusters had the lowest GST when compared with any
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other cluster. Differentiation was lowest between COLPR1 - COLPR2 (GST = 0.50) clusters, and US1A
- US1B (GST = 0.54) and highest between COLPR1 - USIA (GST = 0.80), COLPR1 - US2 (GST = 0.81)
and USIA - US2 (GST = 0.99).

Table 2.2 Population differentiation using Nei’s GST pairwise genetic dissimilarity between genetic clus-
ters identified in Macrophomina phaseolina.

Genetic Cluster US1A USiB US2 COLPR:i COLPR:2

USiB 0.54

US2 0.99  0.64

COLPR: 0.80 0.69 0.81
COLPR2 0.68 0.59 0.69 0.50

All other pairwise comparisons had similar intermediate levels of genetic differentiation when com-
pared to any other genetic cluster (GST = 0.63-0.69). The high values of GST in all pairwise compar-
isons suggest very high differentiation and little migration between genetic clusters. However, USIA -
US2 GST estimation, which is notably high, was limited in power due to the low levels of gene diversity
(Hexp) within these genetic clusters. Across the 77,465 loci, there were only 76 and 255 polymorphic loci
within US1A and US2 clusters, respectively. Thus, low gene diversity (Hexp) in US1A and US2 subpopu-
lations likely resulted in overestimation of GST in pairwise comparisons of US1A and US2 with all other

clusters.

2.3.5 M. phaseolina is predominantly clonal in the US and semi-clonal to mostly-clonal in
Colombia and Puerto Rico

The predominantly star-like topology with little reticulation, in the Neighbor-Net network analysis, is
consistent with a clonally reproducing population (Fig. 2.4A). The standardized index of association (L)
(Brown et al. 1980) was used to estimate the degree of clonality for each of the M. phaseolina main pop-
ulations (US and COLPR clades). The observed 14 distributions for each population were compared to
14 distributions for simulated populations with no linkage, 25%, 50%, 75% and 100% linkage. A predom-
inantly clonal mode of reproduction was inferred in the US and COLPR populations of M. phaseolina.
The simulated distributions and the different populations were significantly different from each other

(analysis of variance ANOVA df = 6, F = 25287, P < 0.001). The distribution of the standardized 1 for
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the US population fell within the 75% to 100% range of the linkage simulation (Fig 2.4B). This indicates
a mostly clonal mode of reproduction with little potential for recombination. The distribution of the
standardized 14 for the COLPR population fell within the so to 75% range of the linkage simulation, in-
dicating semi-clonal to mostly clonal reproduction in COLPR clades (Fig. 2.4B). To further investigate
the extent to which populations reproduce clonally, the linkage disequilibrium (LD) decay, as measured
by the squared correlation coeficient (r*) was calculated across pairs of loci for each of the clades. LD
extends across a much larger distance in the US clade than in the COLPR clade, decaying over the first
thousand base pairs, while in the COLPR clade LD decayed over the first hundreds of bases. LD half-
decay distance, calculated as the average physical distance over which r? decays to half of its initial value
was 4000 bp for US clade and 8oo bp for COLPR clade (Fig. 2.4C). This indicates a high level of
linkage occurs over larger regions of the genome in the US clade versus the COLPR clade. Importantly,
although this may provide evidence for less clonal reproduction and higher recombination rates in the
COLPR population, interpretation of standardized I 4 and LD decay as associated with the frequency of
recombination should be done with caution. It is possible that higher LD values did not reflect greater
recombination; instead, it may be affected by lower sample size in COLPR and lower diversity in the US
clade.

2.3.6 Climate contributes to SNP variation between M. phaseolina genetic clusters

To test the hypothesis that climate variation contributes to genetic variation across M. phaseolina ge-
netic clusters a redundancy analysis (RDA) was employed. Four climatic variables were identified as sig-
nificantly predictive of genetic variation using the simple RDA model with forward variable selection.
Temperature seasonality (TSsd) was the strongest predictor, explaining 28% of the variation, followed
by precipitation of warmest quarter (Pwq), precipitation seasonality (PScv) and mean temperature of
warmest quarter (mTwq) (Table 3). Importantly, the climatic variables included in the RDA model were
selected by their biological significance and to avoid collinearity with other climatic variables and thus
represent a subset of the variables possibly contributing to climate variation. The correlation of these
variables with the first two RDA axes suggests their differential contribution to SNP variation among ge-

netic clusters (Fig. 2.5). Spatial structure, represented as distance-based Moran’s eigenvectors maps (db-

38



Anova, p < 2.2e-16 a

Genetic Cluster b #

& 044
© UsiA k] +

o
@ UusiB %

KE [+

@ us2 A

5 g =
© COLPR1 2
© COLPR2 g 02 *

§ e

(1]

el *

-E 0.1

n f

S
—*—
0.0+ T T T T T T T
c US COLPR 0% 25% 50% 75%  100%

linkage linkage linkage linkage linkage

06 08 1.0

LD(r)

00 02 04

0 1000 2000 3000 4000 5000

Distance (bp)

Figure 2.4 Macrophomina phaseolina population structure is potentially driven by clonal expansions and
rapid divergence. (A) A reticulating phylogenetic network. Neighbor Net method was used to depict
conflicting phylogenetic signal. (B) Estimates of linkage disequilibrium for Macrophomina phaseolina
clades based on observed and simulated distributions of the standardized index of association (I4). Each
boxplot represents the observed distribution of 14 for one of the clades of M. phaseolina, compared with
the distribution of 14 values for simulated populations with no linkage and 2s, 50, 75, and 100% linkage.
The letters above each boxplot represent groupings based on Tukey’s HSD test . (C) Linkage disequi-
librium (LD) decay for predicted populations of M. phaseolina, as measured by the squared correlation
coefficient () for all pairs of SNPs calculated over so bp windows shown for each population. The dot-
ted black lines give the r* decay to half its initial value (r* = 0.44 and 0.32 in US and COLPR clades,
respectively) and the vertical lines indicate the LD half- decay distance for each clade.

MEM), was used to identify climatic variables that are structured in space and to account for the effect
of space in variance partitioning of total genomic variation. A total of three spatial variables were identi-
fied (dAbMEMi-3; Supplementary Fig. A.s). Notably, when accounting for spatial structure (dlbMEMi-3
variables), only Pwq, mTwq and precipitation of driest quarter (Pdq) were significant and accounted for

6% of SNP variation across isolates as determined with forward selection (Table 3), indicating collinearity
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between TSsd, PScv and space (i.e., spatially structured TSsd and PScv variation). To identify the spatial
variables significantly contributing to genomic variation forward selection was used. Of the three spatial
variables, only dbMEM3 was significant explaining 4% of the genomic variation and described broad-scale

spatial structure (Supplementary Fig. A.s)
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Figure 2.5 Genotype-environment association analyses support the contribution of climate variables to
patterns of divergence among Macrophomina phaseolina populations across the US, Colombia, and
Puerto Rico. Biplot of all isolates scores for the first two RDA axes using (A) Simple RDA (uncondi-
tioned) and (B) Partial RDA (conditioned on neutral population structure). Points are colored to show
agreement with genetic clusters identified in the PCA (inset). Top and right axes (blue) indicate the cor-
relation of each climate variable with RDA axes 1 and 2, respectively.

Table 2.3 Climatic variables significantly contributing to SNP variation as determined by forward variable
selection with simple RDA (redundancy analysis) and partial RDA conditioned on space.

Simple RDA (unconditioned) Partial RDA (conditioned on space)

Variable R? Cum R? Cum R?adj F-value p-value Variable CumR”adj AIC F-value p-value
TSsd 0.28 0.28 0.27 36.63  o.oor™* Pwq 0.03 638.88 4.96 0.002**
Pwq 0.05 0.33 0.31 6.28 0.001"** mTwq 0.04 637.67 3.06 0.004™*
PScv 0.03 0.36 0.34 4.42 0.001"** Pdq 0.06 636.50 2.98 0.010**

mTwq o.02 0.38 0.36 3.52 0.005™*

***p o.001, **p 0.01

Partial redundancy analysis (pRDA) was used to estimate the partial contribution of each set of ex-

planatory variables (e.g., climate) while removing the effect of the remaining variable sets (e.g. neutral
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population structure and space). Variance partitioning with pRDA revealed that climate (TSsd, Pwq,
PScv and mTwq identified by forward selection), neutral population structure (isolate PC scores for the
first three axes of a PCA using intergenic SNPs) and space (dbMEM3 variable identified by forward se-
lection) together significantly explained 72% of the total SNP variance. Nearly half of this variance was
uniquely attributable to neutral genetic structure (32%), climate (4%), or space (1%), while the other half
of the SNP variation was explained jointly between the three sets of variables (Table 2.4). The effect of
climate alone was highly significant and explained 4% of the total genetic variance after removing the
effects of neutral population structure and space (Table 2.4). These results support the hypothesis that
climate significantly contributes to genetic variation and importantly, suggests that migration, drift, and
potentially additional demographic and spatially structured processes (e.g isolation by distance), repre-
sented by neutral population structure, play a major role in shaping genomic variation in M. phaseolina.
Moreover, the large fraction of variation common to climate, population structure and space, emphasizes
the importance of accounting for confounded effects in genotype-environment associations, particularly

when inferring causal associations.

Table 2.4 Contribution of climate, neutral population structure and space to SNP variation as deter-
mined by variance paritioning with partial RDA (redundancy analysis).

Partial RDA model Inertia 2 povalue Proportion of Proportion of
(variance) explainable variance total variance
Full model: G ~clim. + sp. + struct. 863.8 0.725 o.00r"™* 1.0O 0.72
Pure climate: G ~clim. | (sp. + struct.) 46.2 0.039 0.00r"** 0.05 0.04
Pure structure: G ~struct. | (clim. + sp.) 387.0 0.325 0.001"** 0.45 0.32
Pure space: G ~sp. | (clim. + struct.) 6.3 0.005 0.001"** 0.01 0.01
Confounded climate/structure/space 424.4 0.49 0.36
Total unexplained 327.9 0.28
Total inertia 1917 1.00
**p o.o01

Note: Climate variables are temperature seasonality (TSsd), precipitation of warmest quarter (Pwq),
precipitation seasonality (PScv) and mean temperature of warmest quarter (mTwq) as identifed with
forward selection.

2.3.7 Genotype-environment associations identify candidate SNPs for climatic adaptation

To identify loci that are potentially involved in local adaptation to climatic conditions, SNPs strongly

associated with climatic variables were identified using RDA with and without accounting for population
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structure. Neutral population structure was used as it uniquely contributed the most to genetic variation.
The RDA models, whether accounting for population structure (partial RDA) or not (simple RDA),
were globally significant (p < 0.001) and the first three RDA axes explained most of the genomic variation
associated with climate.

The candidate adaptive loci were identified based on extreme SNPs loadings, +3 or 4 SD from the
mean, on each of the first three axes (Forester et al., 2018). In the partial RDA models, in which the ef-
fects of population structure were removed, 49 unlinked SNPs (when using the LD-filtered set and +3
SD from the mean; Supplementary Table A.4) and 75 SNPs (using all SNPs and +4 SD from the mean;
Supplementary Table A.s) strongly associated with climatic variables were identified along the first three
RDA axes. Of these SNPs, 15 and 25 (outliers in Fig. 2.6) were identified in the first RDA axis when
using the LD-filtered set or all SNDPs, respectively, and 20 (19%) in both partial models. The strongest
associations include SNPs with predicted effects in the membrane-associated 753275-ankyrin, the 681752-
Kshr and the 241776-protoporphyrinogen oxidase proteins. Structural modeling of the 753275-ankyrin
protein revealed that 598 residues (96% of the sequence) was modelled with 100% homology confidence
to the transient receptor potential (TRP) NOMPC (No mechanoreceptor potential C) mechanotrans-
duction channel protein in Drosophila melanogaster (chain C, highest scoring template; PDB ID: sVKQ;
data not shown). Other SNPs with top associations are located within or in physical proximity to genes
related to transmembrane transport, glycoside hydrolase activity, DNA binding and the gene encoding
the 28417-heat shock protein (Table 2.5; Supplementary Table A.6).

Because population structure could not be fully disentangled from climate, as revealed in variance
partitioning, the candidate loci obtained with population structure correction represent a conservative
set subjected to a reduction in the detection of SNPs truly associated with climate. In the simple RDA
model, without correcting for population structure, 91 candidate unlinked SNPs were identified (Supple-
mentary Table A.7). Only two SNPs were identified by both partial RDA and simple RDA models using
unlinked SNPs (Supplementary Fig. A.6). This is in line with the high level of collinearity observed be-
tween genetic, space and climate (Table 2.4), and highlights the importance of accounting for confounded

effects when identifying candidate loci under selection with genotype-environment associations.
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Figure 2.6 Manhattan plot of partial RDA scores. Values of squared SNP loadings for the first RDA
axis conditioning on neutral population structure. (A) Fifteen outlier SNPs identified using using 11,421
unlinked SNPs and £3 SD from the mean and (B) Twenty-five using all 76,981 SNPs and +4 SD from the

mean.

Table 2.5 Candidate SNPs and gene models along the first RDA axis, after accounting for neutral popu-
lation structure using the LD-filtered set of 11,421 SNPs.

DA limat NP Dist: fi M M
SNP position R o ¢ 1A Correlation S istance from yeocosm gene yeocosm InterPro/KOG Desc KOG Class/Putative function
loading  variable category locus (bp) location protein ID

scaffold_13:111451 -0.068  TSsd 0.90 Intergenic 3150 scaffold_13:108068-110230 753275 Ankyrin repeat Cell wall/membrane/envelope biogenesis

. Involved in the earl: f the s
scaffold_44:156076 -0.068  TSsd 0.89 Intergenic 3974 scaffold_44:152589-153500 681752 Kshi(Protein kish) Pl:‘(’;Wv:)’ In the carly part of the secretory

. N N ; Protoporphyrinogen Coenzyme transport and metabolism/Heme
scaffold_3:1825169  0.070 TSsd 0.62 Missense o scaffold_3:1824304-1825956 241776 oxidase biosynchesis
scaffold_3:1762959  -0.065 TSsd 0.62 Intergenic 1106 scaffold_3:1763965-1765572 763945 None Unknown
scaffold_6:1672095  -0.074  TSsd 0.61 Intergenic 755 scaffold_6:1672555-1674150 726065 None Unknown
. N N Transcription factor DNA binding/Zinc ion binding (Zn(II)2Cys6
scaffold_13:484791  -0.064  TSsd 0.59 Intergenic 563 scaffold_13:485238-487511 88264 domain, fungi transeription factor-related)
. . . Unknown/Putative transcription
scaffold_1:2854576  -0.070  TSsd 0.56 Synonymous o scaffold_1:2854139-2855202 36408 GXWXG domain factor Cmrt homolog
AMP-dependent - .

scaffold_s9:25310 -0.066  TSsd 0.51 Synonymous o scaffold_59:24613-27244 365205 synthetase/ligase Lipid transport and metabolism
scaffold_22:420202  -0.063 TSsd 0.50 Intergenic 4892 scaffold_22:414577-415638 787628 DUF1772 family Unknown

N Glycoside hydrolase,
scaffold_48:217304 -0.071 TSsd  ous Intergenic 4970 scaffold_48:2320213431 633816 fmyjl"; ¢ ydrolase Carbohydrate transport and metabolism

. - Allergen Vs/Tpx-1-related,

scaffold_3:91936 0.072 TSsd 039 Intergenic 176 scaffold_3:93112-93948 735628 conserved site Unknown
scaffold_6:1470614  0.066 TSsd 037 Intergenic 14457 scaffold_6:1454967-1456373 382155 Ribonuclease T2-like RNA processing and modification
scaffold_2:1936912  0.071 TSsd 0.35 Intergenic 443 scaffold_2:1936361-1937105 643334 Thioesterase superfamily ~ Unknown

- Cytoch P4so, Eclass, . . .
scaffold_42:203393  0.073 mTwq 0.29 Synonymous o scaffold_42:202488-204519 608404 gr);b(:; Irome 450, Trelass Lipid transport and metabolism

5 Flavin-containing Secondary metabolites biosynthesis.
Y : . . ergeni caffol 1303593-30547 N ’
scaffold_41:309748  0.065 mTwq 0.29 Intergenic 4841 scaffold_41:303593-305479 582790 monooxygenase transport and catabolism

2.4 Discussion

In this study, we describe the population structure of M. phaseolina in the continental US, Puerto Rico
and Colombia collected from soybean and dry bean fields and the contributions of climatic factors to pat-
terns of genomic diversity among populations. We found that five distinct genetic clusters of M. phase-
olina evolved across the US, Colombia and Puerto Rico and evidence suggests migration between genetic
clusters and countries. To date, population genetic studies in M. phaseolina have performed their anal-
yses at the resolution of microsatellites molecular markers and have provided important information on

genetic diversity, host and geographic associations in the US (Baird et al., 20105 Arias et al., 2011; Koike et
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al., 2016). However, no population-level genomic studies have been conducted to investigate population
structure in this widespread pathogen. Here, to our knowledge, we present the first population genomics
study to investigate population dynamics and the role of climate in shaping patterns of genomic varia-
tion in M. phaseolina at a continental and regional scale. This study uses population genomics data to
identify multiple strongly differentiated genetic lineages in the US and demonstrated novel population
structure in Colombia and Puerto Rico, which previously remained unstudied. Furthermore, our re-
sults highlight the importance of within-species genetic variation in understanding pathogens adaptive
response to a changing climate and offers new insight with respect to the functional roles of genomic
regions potentially underlying adaptation to climate. Notably, this research provides a practical frame-
work for genotype—environment associations studies in M. phaseolina and other plant pathogens with
complex evolutionary and demographic histories.

The influence of the low number of loci on limiting inferences about M. phaseolina population struc-
ture is emphasized by recent studies that used microsatellites markers (Baird et al., 2010; Arias et al., 2o11).
These studies identified genetic groups in the US; however, the genetic groups did not represent lin-
eages (i.e., genetic groups and supported phylogenetic clades). Using population genomics, we provided
strong evidence for five distinct genetic clusters of M. phaseolina and revealed that genomic variation in
this globally distributed pathogen was consistent with a population hierarchically structured at a broad
subcontinental regional extent. Two genetically differentiated M. phaseolina populations at the US and
Colombian-Puerto Rican geographical level (US and COLPR clades) and five distinct genetic clusters
representing finer population structure within each of these clades were identified. These genetic clus-
ters, except for US1B, represent strongly supported phylogenetic clades and monophyletic groups, and
likely represent different evolutionary lineages of M. phaseolina. This distinction is important because
the identification of lineages allows the inference of ecological and evolutionary processes in a population-
specific manner and underscores the potential for local adaptation in M. phaseolina populations.

Our results provide support for regional clustering within the US and a lack of strong grouping at a
state level, also observed in previous studies based on microsatellite data (Baird et al., 20105 Arias et al.,

2011). The USIA cluster, found in the East North Central and Central region, expands previous studies
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confirming that isolates collected from soybean in these regions represent a largely homogeneous popu-
lation (Arias et al., 2011). This is supported by low gene diversity and pairwise genetic distances found in
the USIA genetic cluster in agreement with low diversity detected with microsatellite markers in soybean
isolates collected mostly in Tennessee and Missouri (Arias et al., 2011) and midwestern states (group III;
Baird etal., 2010). The US2 genetic cluster found in West North Central and South US regions grouping
isolates from Minnesota, South Dakota, Texas, and Georgia is partially consistent with Baird et al. study.
Isolates from these states along with isolates from North Dakota represent the majority of a subcluster
of group I 'in Baird et al. Like in the US clusters, grouping at broad geographic regions was observed in
COLPR1and COLPR2 clusters. Both COLPR1 and COLPR2 clusters grouped isolates from locations
across Colombia and Puerto Rico. In COLPR2, isolates from California and Louisiana grouped closely
to isolates from Colombia and Puerto Rico. Although the small sample size from these states (only two
isolates collected from strawberry in California and one isolate from soybean in Louisiana) demands that
this grouping be reassessed once more isolates are included from these states and hosts in future studies.
The clustering of isolates from widespread geographic regions observed in COLPR2, as well as in USIA
and US1B clusters, suggests a role for migration in structuring M. phaseolina populations. These results
better align our understanding of M. phaseolina population structure with a metapopulation model,
that predicts regional persistence of populations while local populations are unstable and connected by
some level of migration (Hanski, 1998; Milgroom, 2015). The metapopulation dynamics view expands
the interpretation of past M. phaseolina population structure studies while providing a conceptual basis
for the design of future studies.

The presence of multiple distinct genetic clusters in the US and higher genetic diversity in COLPR
clusters led us to inquire about whether Colombia and Puerto Rico may serve as potential source pop-
ulations for US populations. In the rooted ML phylogeny, the reconstruction of COLPR clusters as
outgroups to US clusters support this hypothesis. Furthermore, across all analyses we found indications
that US1B may serve as a sink population for Colombia and Puerto Rico populations. The US1B genetic
cluster grouped isolates from Mississippi and South Carolina along with two Colombian isolates and

was the most genetically diverse of the US clusters. Further, US1B was positioned centrally in PCA space,
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basal to USIA cluster in the rooted ML phylogeny and was less differentiated, along with COLPR2, from
all other clusters based on GST values. Finally, in DAPC analysis, US1B isolates clustered with IN12-9-4
and Mph-4o isolates, which are reconstructed intermediate between US and COLPR clades in the rooted
ML phylogeny and as admixed in spatial population structure analyses. Although, the high diversity in
US1B may be reflective of the grouping of comparatively few isolates from different geographic regions
in this cluster. However, when all data are considered, it suggests the US1B cluster geographic region as a
potential route of introduction of isolates from Colombia or Puerto Rico to the US. More isolates from
the US and other countries would need to be included in future studies to test this hypothesis.

The discrete population structure observed between US and COLPR clades, provides compelling
evidence for isolates in each clade drawing ancestry from different ancestral populations. A plausible ex-
planation, supported by our results, for this difterent ancestry would be a demographic event such asa rare
long-distance migration (e.g. introduction event) from the COLPR clusters, leading to a recent bottle-
neck in the US populations. The high probability assignments observed in US clusters may be consistent
with the expected strong recent genetic drift in bottlenecked populations (Lawson, van Dorp and Falush,
2018). In this scenario, we speculate that the diversity in US clusters represent a subset of the diversity of
the COLPR genotypes found in Colombia and Puerto Rico. At the finer genetic cluster population
structure, isolation by distance provided a potential explanation for the continuous genetic differentia-
tion in spatial population structure analyses. Although, isolation by distance patterns may be observed as
part of a variety of underlying biological processes and demographic scenarios (Sexton, Hangartner and
Hoftmann, 2014; Milgroom, 2015), it is possible that these patterns reflect a scenario of restricted disper-
sal in the context of divergence following clonal expansions in the US genetic clusters. For example, both
USIA and US2 genetic clusters are found in Michigan, Wisconsin, and Kentucky, supporting dispersal
of isolates among these states. However, high population differentiation indicated by high GST values
between genetic clusters, suggest substantial restriction to gene flow. Given the soilborne nature of A4,
phaseolina and limited natural dispersal ability but high potential for anthropogenic mediated dispersal,
restricted events of dispersal associated to seed, plant material or farm equipment at limited distances rel-

ative to the geographic range of the genetic clusters, seems a likely occurrence (Baird et al., 2010). Similar
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isolation by distance patterns has been observed in other soilborne fungal and oomycete pathogens with
restricted long-distance dispersal (Griinwald and Hoheisel, 2006; Milgroom et al., 2016).

Diversity was found to be further reduced in USIA genetic cluster as compared to all other clusters.
Low diversity and high differentiation are signatures of genetic drift but also selection. If reduced diversity
in the USIA genetic cluster was consistent with a clonal expansion following a bottleneck, the divergence
and marked low diversity could reflect both genetic drift and selection. Genetic drift is expected to have
substantial effects on pathogen populations, because migrations resulting in founder effects and reduced
population sizes associated with pathogens survival in soil (Milgroom, 2015). Additionally, we speculate
that climatic conditions, particularly strong fluctuations in temperature in the northern US, could im-
pose strong selection on M. phaseolina populations in this region. Overall, we believe the genomic signals
of discrete and continuous structure that difterentiate M. phaseolina populations could be reflective of
a complex demographic and evolutionary history. Therefore, alternative demographic scenarios, includ-
ing one of multiple independent introductions, should be considered in future studies ideally applying
demographic modelling with a broad geographic and temporal distribution of isolates.

Across all analyses we found support for Colombia and Puerto Rico as potential sources for US M.
phaseolina populations. Genetic diversity between countries also supported this hypothesis. Whereas
Colombian isolates were significantly more diverse than US isolates, diversity in Puerto Rico was inter-
mediate and not significantly different from US or Colombia. These findings may be consistent with
the idea of Middle or South America as putative centers of origin for M. phaseolina and with its intro-
duction to North America as part of historical crop migrations. For example, common bean Middle
American origin, domestication centers in Middle America and South America (Bitocchi et al., 2017)
and later movement to the US via the Caribbean, Central and Eastern US (Kelly, 2010), makes likely an
explanation for M. phaseolina introduction to the US in bean seeds. Pathogen geographic origins have
been associated with the centers of diversity of their major crop host. Nonetheless, pathogen origin asso-
ciated with their hosts’ wild relatives, have been also observed in some plant pathogens. For example, a .
infestans genetically diverse and sexually reproducing population was found in central Mexico consistent

with this pathogen’s origin in a secondary center of potato (Solanum tuberosum) diversity and potentially
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involved in a host jump from native Solanum species (Goss et al., 2014). Given M. phaseolina host gener-
alist nature, a strict host-pathogen coevolution scenario is not expected (Slippers and Wingfield, 2007),
obscuring inferences about its center of origin. In Kansas, isolates collected from wild tallgrass prairie
were found more diverse than isolates from maize, soybean and sorghum crops (Saleh et al., 2010). This
finding may indicate M. phaseolina presence in the US precedes to the introduction of agriculture or it
may be explained by connectivity dynamics between natural and agricultural ecosystems contributing to
patterns of diversity in M. phaseolina populations from these ecosystems (Saleh et al., 2010). Thus, the
origin and evolutionary history of M. phaseolina is likely more ancient and complex than could be tested
with the isolates included in this study, and future studies may benefit from considering the potential
involvement of host adaptation from wild hosts.

Genotype tracking provided compelling evidence for migration among the US, Colombia, and Puerto
Rico. The MLL consisting of the Colombian isolate Mph-49 and several isolates from the US clustering
in USIA, along with the high clonality found in this cluster and the significantly high diversity in Colom-
bia, makes a Colombian source likely. Similarly, the MLL shared between Colombia and Puerto Rico
and the MLL between Puerto Rico and Louisiana support migration between countries. Alternatively,
the same MLLs could have been introduced independently to US, Puerto Rico, and Colombia, poten-
tially from an ancestral and more diverse population not included in this study. Although this scenario
seems less likely, it remains a possibility. Given that besides historical crop migrations, migration as part
of international seed exchange is a likely occurrence in M. phaseolina, as in other seedborne species and
latent pathogens of the Botryosphaeriaceae family (Sakalidis et al., 2013; Crous et al., 2017), we believe that
M. phaseolina has been spread at least intercontinentally, possibly globally, through seed. However, time,
frequency, and directionality of migration between US, Colombia, and Puerto Rico, and the potential
for multiple introductions would need to be examined in future studies.

Although various population genetic studies in M. phaseolina have found patterns of host associa-
tions (Jana, Sharma and Singh, 200s; Baird et al., 2010; Arias et al., 2011; Koike et al., 2016; Reznikov et
al., 2018; A. Burkhardt et al., 2019), our results did not find that genetic variation is associated with host

in the two major US clusters. Soybean and dry bean isolates grouped together in USIA and US2 clus-
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ters. Given that most previous studies support some degree of host preference, and genomic evidence for
genes uniquely present in the M. phaseolina strawberry genotype further support host preference (A. K.
Burkhardtetal,, 2019), we suspect that our sampling scheme was not enough to capture clear associations
to plant host. A clear limitation in our study was that the host origin was confounded with geographic
origin, except for Michigan where isolates were sampled from both soybean and dry bean. The grouping
independently of host might also reflect crop rotation and equipment practices implemented in fields.
Additionally, it may reflect that the sampled hosts are both legumes. Genetic similarity has been found to
be greater among isolates collected from the same host than from hosts in different families (G. Su et al,,
2001; Saleh et al., 2010). These results do, nonetheless, have important practical implications for soybean
breeding resistance to charcoal rot. In the USIA cluster, the high genetic similarity of isolates collected
from soybean and dry bean, may indicate that the use of one or few isolates collected from these crops
throughout East North Central and Central US regions may suffice for resistance screening of soybean
breeding material. An important limitation to this assumption is that we use a single reference genome
approach to characterize genetic diversity and thus accessory genes and other structural variation poten-
tially involved in pathogenesis are not considered (Bertazzoni et al., 2018).

Importantly, the dry bean diversity in research plots from which Colombian and Puerto Rican iso-
lates were collected is a factor likely contributing to their higher genetic diversity as compared to US iso-
lates. In research plots, multiple lines are continually evaluated as part of breeding programs, in contrast
to commercial fields in which a single or few varieties are used. This coupled with climatic conditions in
Colombia and Puerto Rico that favor year-round inoculum presence in crop residue represent important
considerations when interpreting isolate genetic diversity in relation to host origin.

The population structure results suggest that M. phaseolina populations lay in-between the clonality-
recombination spectrum (Smith et al., 1993). Furthermore, our results suggest that this may occur in a
population-specific manner. On one side of the spectrum, we found M. phaseolina to have a markedly
clonal population structure (Milgroom, 2015). First, most of the intraspecific genetic variation in .
phaseolina is explained by differences between clades and genetic clusters, while low genetic variation was

observed within genetic clusters. Second, the occurrence of nearly identical genotypes (i.e., MLLs) from
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widespread geographic locations found in M. phaseolina is in line with a markedly clonal population
structure (Milgroom, 2015). On the other end of the spectrum genotypic diversity, network analyses and
measures of linkage among loci provided support for recombination within some of the genetic clusters.
High levels of genotypic diversity is one of the characteristics reflective of recombination in fungal popu-
lations (Milgroom, 1996). The higher genotypic diversity (eMLLs) in US1B, US2, and COLPR clusters,
may be consistent with the occurrence of recombination in these clusters. Network analyses account
for recombination by allowing to infer homoplasy caused by recombination. The boxes between isolates
within genetic clusters in the network and the PHI test supporting recombination within all clusters ex-
cept for USIA, strengthen this hypothesis. The index of association, 14, revealed an overall high degree
of linkage among SNP markers, in line with a pathogen that reproduces clonally. However, the observed
14 values in the COLPR clade and LD decaying faster in COLPR than in US populations, support the
potential occurrence of recombination among isolates within COLPR clusters. Although the problem
of smaller sample size in COLPR clusters should be at least partially accounted for by using simulations
in I; analysis and clone-corrected data in LD-decay analysis, particularly half-decay LD values should be
interpreted with caution and examined in future studies to determine the extent of recombination in A1.
phaseolina populations.

These results are consistent with the population structure model that lays in between the “strictly
clonal” and “epidemic” structure proposed by Maynard Smith et al., in which frequent recombination
does not occur between isolates in separate branches of an evolutionary tree but it occurs between iso-
lates within a given branch (Smith et al., 1993). These models have been used to describe the population
structure of plant pathogens with mixed modes of reproduction or inferred recombination (Griinwald
and Hoheisel, 2006; Milgroom et al., 2014; Milgroom, 2015; Milgroom et al., 2016). While little is known
about the occurrence of recombination in M. phaseolina, recent studies have started to shed light on
potential recombination mechanisms involving parasexuality (Pereira et al., 2018) and horizontal gene
transfer mediated by giant mobile genetic elements (Gluck-Thaler et al., 2021). Whether other poten-
tial recombination mechanisms occur, and the frequency of recombination in M. phaseolina remains an

important and exciting area of study.
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Partial RDA revealed that nearly half of the SNP variance is confounded between neutral genetic
structure, climate, and space. This means that this fraction of the variance cannot be statistically associ-
ated to a direct effect of any single set of variables. Importantly, the effects of population structure and
space often cannot be independently disentangled from spatially structured process (e.g IBD) or spatially
structured environmental variables (Lasky et al., 2015). This study, while highlighting the challenges in
assessing genotype-environmental associations, provided an assessment of the fraction of confounded
variance and allowed us to start disentangling the effects of climate, spatial, and population structure
on genomic variation in M. phaseolina populations. The genotype-environment association analyses us-
ing partial RDA support our hypothesis that local climatic differences contribute to patterns of adaptive
divergence among M. phaseolina populations across the US, Colombia, and Puerto Rico. Seasonal varia-
tion in temperature and precipitation of warmest quarter, were the primary climatic variables associated
with variation of candidate adaptive loci without and after accounting for neutral genetic population
structure, respectively. We found SNPs within or in physical proximity to genes with functional annota-
tions related to transmembrane transport, glycoside hydrolase activity and DNA binding. In fungi, genes
involved in these activities are known to be important in responses to environmental stressors including
temperature, water availability, and oxidative stress (Aguilera, Randez-Gil and Prieto, 2007; Gasch, 2007;
Branco et al., 2016). Similarly, among the candidates, we found the 241776-protoporphyrinogen oxidase
protein, involved in heme biosynthesis and the putative small heat shock protein 28417-Hspao. Heme has
been shown to regulate several mechanisms during cold-shock in Saccharomyces cerevisiae (Abramova et
al., 2001) while Hsp2o proteins have been found involved in fungal thermal stress response to both heat
and cold (Wu et al,, 2016; Wang et al., 2021).

The SNP with the highest correlation with temperature seasonality was located upstream to the
753275-ankyrin repeat protein (Table 5). We found that M. phaseolina 753275-ankyrin protein is a pre-
dicted homologous to the TRP NOMPC mechanotransduction channel in Drosophila melanogaster (Jin
etal,, 2017). Ankyrin family proteins link membrane proteins, including ion channels, to microtubules of
the cytoskeleton by binding of its ankyrin repeat domain. The ankyrin proteins in the NOMPC channel

link a displacement of the cytoskeleton to the channel opening, translating external stimuli into intra-
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cellular signals (Jin et al., 2017). Moreover, the TRP1 (transient receptor potential 1) ion channel from
the alga Chlamydomonas reinbardtii, which shares structural homology to the TRP NOMPC channel,
was found to act as thermal sensor, with ankyrin proteins mediating the channel opening in response to
increased temperature (McGoldrick et al., 2019). Although there is no structural or functional charac-
terization of the M. phaseolina 7532;75-ankyrin protein, it represents a promising candidate to investigate
a potential temperature-related mechanism for environmental stimuli transduction. These findings are
consistent with the established roles of proteins in environmental stress responses both specific to fungi
and conserved across the tree of life. Although our results cannot confirm whether SNPs are the causal
mechanism, the candidate genes could be used in future functional studies. Additionally, common gar-
den experiments could provide support for local adaptation to climate in M. phaseolina.

Opverall, our observations point to a scenario in which M. phaseolina, as other plant pathogens with
clonal population structures, is structured in a subcontinental regional stable manner in the face of in-
stability at local scales in line with the metapopulation dynamics perspective. These results are consistent
with a scenario of evolution after migration driven by divergence following clonal expansions. The pres-
ence of MLLs across countries underscores the potential for a large influence of anthropogenic migration
introducing M. phaseolina to new environments. The association of genetic divergence with climatic
variables and putatively adaptive functions of the genes with SNPs strongly associated that would hypo-
thetically benefit M. phaseolina in specific environments, is consistent with potential selection imposed
by specific climatic variables. Future studies will be needed to identify the degree to which distinct ge-
netic groups reflect their adaptation to host and climate. Such analyses will benefit from a global sampling
collected from diverse hosts in conjunction with multiple reference genomes sequenced with long-read
technologies that will allow further characterization of the role of genomic variation, including structural
variation, in M. phaseolina adaptation to host and the climatic environment.

This knowledge expands the impact that spatial population genomics and genotype-environment as-
sociations can have on our ability to characterize adaptive potential in plant pathogens by identifying
candidate genes and presents a preliminary and complementary approach to the forward-genetics and

phenotypic characterization approaches. The ability to identify candidate genes at a population specific
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level in a clonal pathogen presents an opportunity to evaluate candidate genes in a population specific
manner, which represents a powerful approach specially in clonal pathogens in which unusually high lev-
els of linkage prevent the application of genome scan methods. Additionally, the RDA approach could be
applied using candidate adaptive genetic markers to predict pathogens’ “adaptive landscape” represent-
ing its adaptive variation for any environment across a geographic range (Capblancq and Forester, 2021).
As climate and agricultural challenges become more demanding, the characterization of pathogen adap-
tation capabilities enabled by population genomics should become increasingly utilized for plant disease

risk prediction models specially under adverse future climate scenarios.

2.5 Materials and methods

2.5.1 Isolate collection and DNA preparation

A total of 95 M. phaseolina isolates were obtained from culture collections, as well as roots or lower stems
of soybean and dry bean plants in production fields (Supplementary Table A.1). There were 52 isolates
collected from soybean across a latitudinal range in 13 states, including 38 isolates from a previous study
(Sexton, Hughes and Wise, 2016). Forty isolates were collected from dry bean grown in Michigan, Puerto
Rico and Colombia. Isolates from Michigan were collected from 2011 to 2017 (Jacobs et al., 2019). Isolates
from Puerto Rico and Colombia were collected from research plots at the University of Puerto Rico
and at the International Center for Tropical Agriculture (CIAT). Two strawberry isolates collected from
California and one isolate from Ethiopian mustard (Brassica carinata) were included as host outgroups.
Cultures were routinely grown on potato dextrose agar (PDA; Acumedia, Lansing, MI) medium.

For genomic DNA extraction, four s-mm plugs taken from the edge of the culture were used to in-
oculate so mL of potato dextrose broth amended with chloramphenicol (5o mg/L). The broth was incu-
bated for 7 to 9 d at room temperature. Mycelia were harvested, lyophilized for 24 h and ground using
a FastPrep FP120 homogenizer (BIO 101 Savant Instruments, Hobrook, NY). Genomic DNA was ex-
tracted from the lyophilized tissue using a modified SDS-based method; briefly, so mg of ground mycelia
were mixed in lysis bufter (3% SDS (w/v); 100 mM Tris-HCI, pH 8.0; so mM EDTA, pH 8.0) followed
by phenol/chloroform DNA extraction. The identity of all isolates was confirmed by multigene DNA

analysis of the Internal Transcribed Spacer regions for the nuclear IDNA operon (ITS), part of the Trans-
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lation Elongation Factor (TEF-1) gene region, and part of the actin (ACT) gene region according to (Sarr
et al., 2014). Maximum likelihood analysis of the combined sequence alignment placed all the isolates
tested in the M. phaseolina cluster. A full heuristic search using the first ten most parsimonious trees and
the Neighbor-joining tree as starting trees with 100 random sequence additions was performed in PAUP
v4.0b1o (Swofford 2003), to find the maximum likelihood tree (Supplementary Fig. A.7).

2.5.2  Whole genome sequencing and variant calling

Genomic libraries were constructed and each of the isolates were whole-genome sequenced to 23X cover-
age using a 150 base-pair paired-end strategy on the Illumina HiSeq 4000 platform at the Michigan State
University Research Technology Support Facility Genomics Core (East Lansing, MI). The libraries were
prepared using the Illumina TruSeq Nano DNA Library Preparation Kit HT. The resulting sequences
were quality assessed using FastQC (Andrews et al., 2010) and cleaned using Cutadapt vi.16 (Martin,
2011), with the following parameters: -f fastq, -q 20,20, —trim-n, -m 30, -n 3, -a AGATCGGAAGAGCA-
CACGTCTGAACTCCAGTCAC, -A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTA-
GATCTCGGTGGTCGCCGTATCATT. After initial quality filtering, the remaining sequences were
aligned to the M. phaseolina reference genome (JGI Mycocosm, MPI-SDFR-AT-0080 v1.0) using bwa-
mem (Heng Li, 2013). The isolate used for the M. phaseolina reterence genome was collected from natural
Arabidopsis thaliana populations in France (Mesny et al., 2021). The mapping statistics, genome align-
ment rate and genome coverage were assessed with SAMtools flagstat (Li et al., 2009). Alignments were
sorted and indexed using SAMtools (Li et al., 2009). After mapping, duplicate reads were identified using
MarkDuplicates and removed during the variant calling step.

Single nucleotide polymorphisms (SNPs) of all 95 isolates were predicted using the Genome Analysis
Toolkit (GATK) v4.0 (McKenna et al., 2010). Initially, SNPs were called individually with GATK’s Hap-
lotypeCaller. GVCF files were combined, and common SNPs jointly identified using CombineGVCFs
and GenotypeGVCFs programs. The later using the -new-qual parameter. The combined vcf file was
quality filtered using vcfR vi.10.0 package (Knaus and Griinwald, 2017) in R v4.0.0 (R Core Team 2019).
To be included in the high-quality set, SNPs were filtered to remove SNPs with a minimum read depth

(DP) of <4x and greater that the 9sth percentile of each sample DP distribution and exclude SNPs with
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minimum threshold mapping quality (MQ < 60) and minimum allele frequency (MAF < 0.02) which
corresponds to the allele presence in atleast two isolates. Only variants with no missing data were retained,
which corresponds to positions with o missing data for all the sequenced isolates. The final high-quality
dataset was used in all subsequent analysis. The final vcf was annotated using SnpEff vs.oc (Cingolani,
Platts, et al., 2012) and a vcf containing only SNPs in intergenic regions was created using SnpSift vs.oc
(Cingolani, Patel, et al., 2012).

2.5.3 Phylogenomics and population genetic structure

The population structure was inferred according to the results from both model-based and model-free
clustering methods and phylogenetic inference. The phylogenetic tree was inferred from the full set of
high-quality SNPs among the 95 M. phaseolina isolates in RAXML-NG vr.o1 (Kozlov et al., 2019). The
R AxML analysis was performed using the “-all” option which conducted 20 maximum likelihood infer-
ences on the original SNP alignment, standard bootstrapping with automatic determination of the num-
ber of replicates (Felsenstein’s bootstrap, FBP; MR E-based bootstopping test) and the subsequent max-
imum likelihood search. The General-Time-Reversible (GTR) model of nucleotide substitution with
GAMMA model of rate heterogeneity and correction for ascertainment bias (GTR+G+ASC_LEWIS)
was used. The best-scoring ML tree was used for optimizing all model and branch length parameters
and model evaluation. A model-free dimensionality-reduction approach, principal component analysis
(PCA), and discriminatory analysis of principal components (DAPC) were also conducted on the full
set of SNPs using adegenet package (Jombart, 2008; Jombart and Ahmed, 2011) in R 4.0.0 (R Core Team
2019). To infer population dynamics and reconstruct a rooted M. phaseolina phylogeny, the M. phase-
olina (JGI Mycocosm, MPI-SDFR-AT-0080 v1.0) reference genome was used as outgroup taxon. Maxi-
mum likelihood analysis was run in RAxML-NG v1.o1 using the “-all” option with automatic bootstrap
replicates and the GTR+G+ASC_LEWIS substitution model.

2.5.4 Spatial genetic structure

Bayesian clustering of allele frequencies was implemented in conStruct (Bradburd, Coop and Ralph,
2018). To assess whether population structure was well described by modelling isolates as admixtures be-

tween multiple discrete genetic groups or by both discrete and continuous genetic structure, spatial anal-
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ysis of population structure was conducted using conStruct (Bradburd, Coop and Ralph, 2018). Spatial
analysis in conStructaccounts for isolation by distance by allowing genetic differentiation to increase with
geographic distance within discrete genetic groups (layers, K). The data was analyzed treating individual
isolates as the unit of analysis, using the spatial models setting K between 1 and 7 with 20000 iterations,
and compared these models using cross-validation with 1o replicates. For cross-validation, 90% of loci
were used to fit the model and the remaining loci for model evaluation. A geographically constrained
least-squares method as implemented in TESS3 (Caye et al., 2016), was used to estimate ancestry coeffi-
cients and create interpolation maps based on the coefficients. TESS3 uses a spatially explicit algorithm
that can be considered model-free. The algorithm was run using the function “tess3” with K between 1
and 7 and 1o replicates.

2.5.5 Population genetic and genotypic diversity

For each clade and genetic cluster, gene diversity (Nei, 1978) was calculated using the Hs function in the
adegenet package (Jombart, 2008; Jombart and Ahmed, 2011). The median estimates of pairwise genetic
distance and genotypic diversity indices were calculated within each clade and genetic cluster using the R
package poppr v2.9.0 (Kamvar et al. 2014). Genotypic diversity was assessed by calculating the number
of multilocus genotypes (MLGs). A MLG was defined as a unique combination of the 76,981 SNDPs.
MLGs were collapsed into larger groups called multilocus lineages using the average neighbor algorithm
and a Prevosti’s distance threshold of o0.0001 (bitwise.dist function; Kamvar et al., 2015). Rarefaction
was used to correct for uneven sample sizes using the R package vegan v2.5-6 (Oksanen et al., 2019) and
obtain the number of expected MLGs and MLLs (eMLG and eMLL) at the lowest common sample size
(i.e., 25 for clades and 5 for genetic clusters). Genotypic diversity indices, Shannon-Wiener Index (H*),
Stoddart and Taylor’s Index (G*), Simpson’s index (lambda*) and evenness (Es*) (Griinwald et al., 2003),
were calculated using the R package poppr v2.9.0 (diversity_ci function; Kamvar et al., 2014) based on
the number of MLLs in each clade and genetic cluster and correcting for unequal sample sizes based on
rarefaction. The function mlg.crosspop in poppr was used to detect the presence of MLGs occurring
across populations. Migration was inferred by tracking MLGs across genetic clusters, referred here as

genotype flow (McDonald and Linde, 2002).
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2.5.6 Population differentiation between genetic clusters and countries

The Fs7 analog, GST (Nei 1972, 1973) was calculated from clone-corrected data using vefR (Knaus and
Grunwald 2017) to infer differentiation among genetic clusters. To describe the population dynamics
between the US, Puerto Rico and Colombia, the degree of genetic differentiation across M. phaseolina
samples was measured hierarchically by genetic clusters within clades. Analysis of molecular variance
(AMOVA) based on the quasi-Euclidean distance matrix was conducted in poppr v2.9.0 (Kamvar et al.
2014). AMOVA estimates the number of differences summed over loci based on a matrix of distances be-
tween individuals and covariance components are used to calculate fixation indices for each hierarchical
level, among clades, among genetic clusters and within genetic clusters. Significant differences of fixation
indices were determined by 1,000 random permutations (Grunwald and Hoheisel 2006).

2.5.7 Recombination and clonality

To account for potential intraspecific recombination among M. phaseolina isolates, a phylogenetic net-
work was built using the Neighbor-Net algorithm as implemented in SplitsTree4 v4.16.1. The extent of
clonality was tested by calculating the proportion of significant linkage between pairs of loci, by comput-
ing the standardized index of association (I4, Brown et al. 1980) for each of the main populations (US
and COLPR) using poppr v2.9.0 (Kamvar et al. 2014). Linkage disequilibrium is expected in asexual or
inbreeding populations and I 4 values close to zero are expected for outcrossing populations (Burt et al.,
1996). The observed 14 distributions for each population were compared to five simulated recombined
distributions (0%, 25%, 0%, 75% and 100% linkage) generated among 76, 981 loci and 48 samples (corre-
sponding to the median population size of the two clusters). The observed and simulated 14 values were
tested for normality using the Shapiro-Wilk’s normality test and an analysis of variance (ANOVA) was
conducted to test for significant differences among the distributions. Pairwise comparisons between the
14 simulated distributions and for each population were tested for difference with Tukey’s HSD test in
R. The extent of clonality was correlated to clonal (100%), mostly clonal (75%), semiclonal (50%, 25%)
or sexual (0%) modes of reproduction. Linkage disequilibrium (LD) decay rate was estimated using the
physical distance over which LD decays to half its initial value, as measured by the squared correlation

coefficient (r*). The linkage disequilibrium decay was calculated for each clade using the correlation co-
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efficient (r*) in TASSEL vs (Bradbury et al., 2007) within a window of so sites among SNPs using the
clone-corrected dataset (79 MLGs). The mean r* values, representing the correlation between alleles at
two loci within 10 bp of physical distance, were then plotted in R 4.0.0 (R Core Team 2019).

2.5.8 Climatic data

For each isolate, the 19 standard bioclimatic variables available at the WorldClim2 database (Fick Hij-
mans, 2017) were obtained using ‘getData’ function from raster R package (Hijmans, 2022). All variables
are the average for the years 1970 to 2000 and were obtained at a spatial resolution of 2.5 min ( 21.5 kmz2).
We used data at a resolution of 2.5 min ( 21.5 kmz2), because it corresponds with our sampling design (sin-
gle isolate samples rather than populations) being at a field or county scale. Coarser resolutions could
combine multiple sampling locations into a single spatial grid and finer resolutions (30-s or <30-s), while
this may be important for structuring patterns of genetic variation within populations, these data are
less suitable for our sampling design and focus on regional to continental-wide patterns. We reduced the
number of climatic variables from 19 to five to account for collinearity among them (|r| > 0.7) and to
represent our hypothesis about the most important factors potentially driving selection. Diseases caused
by M. phaseolina are more prevalent during hot and dry conditions, therefore temperature and precip-
itation variables were included. The selected climatic variables were: BIO18 = Precipitation of Warmest
Quarter, BIOis = Precipitation Seasonality (Coefficient of Variation), BIOr7 = Precipitation of Driest
Quarter, BIO10o = Mean Temperature of Warmest Quarter and BIO4 = Temperature Seasonality (stan-
dard deviation *100). Each bioclimatic variable was scaled, centered, and evaluated for inclusion using
forward selection with 10,000 permutations using adespatial R package (Dray et al., 2022).

To account for underlying spatial structure (autocorrelation) and reduce spurious GEA, distance-
based Moran’s eigenvector maps (dlbMEM) were generated using sample coordinates in the quickMEM
R function (Borcard, Gillet, Legendre, 2018). The dbMEMs are a matrix of axes that capture spatial pat-
terns from multiple angles rather than just a latitudinal or longitudinal vector. Only significant dbMEM
axes were selected using forward selection with 1,000 permutations. A simple RDA model and partial
RDA model conditioning on space, using only significant dbMEM:s, were used to identify the climatic

variables significantly contributing to genomic variation and those structured in space.
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2.5.9 Variance partitioning and outlier loci identification

To identify potentially adaptive loci, associations between genetic data (loci) and climatic variables hy-
pothesized to drive selection were evaluated using a multivariate method, redundancy analysis (RDA, as
implemented by Forester et al., 2016). RDA simultaneously tests multiple loci that covary in response to
climatic variables. Partial RDA models were used for variance partitioning and outlier loci identification
while correcting for neutral genetic population structure. Variance partitioning analysis was performed
with linkage-disequilibrium (LD)-filtered (r* > 0.9) dataset of 11,421 SNPs. The independent contribu-
tion of each set of explanatory variables: climate, neutral population structure or space, was assessed
while removing the effect of the remaining variable sets using partial RDA. In outlier loci identification,
using a partial RDA is recommended to reduce the number of false-positive detections particularly in sce-
narios of multilocus adaptation when selective agents are unknown (Forester et al., 2018). On the other
hand, partial RDA can lead to high false-negative detections when variance is confounded between cli-
matic variables and neutral population structure (Capblancq and Forester, 2021). Candidate adaptive
loci were identified using simple and partial RDA models to examine the extent of this issue. A partial
RDA model conditioning on neutral population genetic structure was used for candidate outlier SNPs
detection. Outlier loci were identified in the three significant constrained axes as the SNPs having load-
ings +3 or £4 SD from the mean score of each constrained axis using both the LD-filtered set of 11,421
SNPs and the full set of 77,465 SNDPs, respectively (Forester et al., 2018; Lasky et al., 2012). A simple RDA
model, without correcting for population structure, using the LD-filtered set of 11,421 SNPs and out-
lier loci were identified in the three significant constrained axes as the SNPs having loadings +3 SD from
the mean score. Gene annotations for the significant candidate SNPs were used to investigate putative

adaptive functions, using the annotated vcf.
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Table A.x Macrophomina phaseolina isolates used in this study. Isolates were collected across the US,
Puerto Rico, and Colombia from soybean, dry bean, strawberry, and Ethiopian mustard.

Isolate ID Longitude Latitude Region Country De;S)::n/ent Host Municipality g::::: Cogz;::on Source
CR_Red_1 -95.304 44.243 East North Central ~ US MN Soybean Lamberton, MN US2 Dean Malvick - UMN
CR_Red 2B 95304 44243 EastNorth Central  US MN Soybean Lamberton, MN Us2 Dean Malvick - UMN
CR_Red_3 95304 44243 FastNorth Central  US MN Soybean Lamberton, MN Us2 Dean Malvick - UMN
Dmis -88.99 43707 EastNorth Central  US W1 Soybean Markesan, W1 USiA T. Hughes. Obtained from Kiersten Wise
Etiz -88.405 42.785 East North Central ~ US WI Soybean E. Troy, WI USIA T. Hughes. Obtained from Kiersten Wise
Eug -88.405 42785 EastNorth Central  US Wi Soybean E. Troy, WI USIA ‘T. Hughes. Obtained from Kiersten Wise
Euy -88.405 42785 EastNorth Central  US W1 Soybean E. Troy, WI Us2 T. Hughes. Obtained from Kiersten Wise
Eusg -88.405 42.785 East North Central  US WI Soybean E. Troy, WI USIA T. Hughes. Obtained from Kiersten Wise
E8 -88.405 42785 EastNorth Central  US W1 Soybean E. Troy, WI USiA T. Hughes. Obtained from Kiersten Wise
IN2_4 -85.761 41.509 Central uUs IN Soybean Benton, IN USIA Purdue Plant Diag. Lab. Obtained from Kiersten Wise
INi2_8 3 85417 41642 Central Us IN Soybean Lagrange, IN USIA Purdue Plant Diag, Lab. Obrained from Kiersten Wise
INz_g_4 87.48 39850 Central Us IN Soybean Vermillion, IN NA Purdue Plant Diag. Lab. Obtained from Kiersten Wise
IN2_9_6 -87.48 39.851 Central uUs IN Soybean Vermillion, IN USIA Purdue Plant Diag. Lab. Obrtained from Kiersten Wise
INi2_PO 3 87.804 38002 Central Us IN Soybean Posey, IN USIA Purdue Plant Diag. Lab. Obtained from Kiersten Wise
Mu_12 -120.434 34.951 West uUs CA Strawberry Santa Barbara, CA COLPR2 201 Frank Martin
Ms_26 L6 36.674  West Us ca Strawberry Monterey, CA COLPR2 2013 Frank Martin
Mi6_1 -83.963 43.647 East North Central ~ US MI Dry bean Kawkawlin, MT USIA 2016 M. Chilvers
MISO171_t 84.973 42946 EastNorth Central  US MI Soybean Lyons, MI USIA 2017 M. Chilvers
MISO71 2 84.973 42.946  EastNorth Central  US MI Soybean Lyons, MI USiA 2017 M. Chilvers
MISOr171_3 -84.973 42.946 East North Central  US MI Soybean Lyons, MI USIA 2017 M. Chilvers
MISO1_4 84.973 42.946  EastNorth Central  US MI Soybean Lyons, MI USiA 2017 M. Chilvers
MISO171_s -84.973 42.946 East North Central ~ US MI Soybean Lyons, MI USIA 2017 M. Chilvers
MISOw71_7 84.973 42946 EastNorth Central  US MI Soybean Lyons, MI USIA 2017 M. Chilvers
MISOw71_8 84.973 42.946  EastNorth Central  US MI Soybean Lyons, MI USIA 2017 M. Chilvers
MI_SF_10_16 -84.72 42.881 East North Central  US MI Soybean ‘Westphalia, MI USIA 2011 M. Chilvers
MI SF 1 36 86562 41828 EastNorth Central  US MI Soybean Galien, MI USiA 201 M. Chilvers
MI_SF_2_16 -85.836 42.624 East North Central ~ US MI Soybean Allegan County, MI USIA 2011 M. Chilvers
MI_SF 9 8 8472 42881 EastNorth Central  US MI Soybean Westphalia, M1 USIA 2011 M. Chilvers
MPi44 -84.27 37.839 Central us KY Soybean Unknown US2 R. Baird. Obtained from Kiersten Wise
MP220 -86.58 35.517 Central uUs TN Soybean Unknown USIA R. Baird. Obtained from Kiersten Wise
MP2s3 -99.902 31969 South Us X Soybean Unknown Us2 R. Baird. Obtained from Kiersten Wise
MP249 -82.9 32,166 Southeast uUs GA Soybean Unknown US2 R. Baird. Obtained from Kiersten Wise
MP2s0 82.9 32166 Southeast Us GA Soybean Unknown Us2 R. Baird. Obtained from Kiersten Wise
MP2s8 -81.164 33.836 Southeast Us SC Soybean Unknown USIB R. Baird. Obtained from Kiersten Wise
M_i5_to 84339 351 East North Central ~ US MI Dry bean Merrill, MI USIA 2015 M. Chilvers
M_i5_11 -84.339 43511 East North Central ~ US MI Dry bean Merrill, MI USIA 2015 M. Chilvers
M_s_t2 -83.061 $575 East North Central ~ US MI Dry bean Bad Axe, MI USIA 2015 M. Chilvers
M5 83.059 575 East North Central ~ US MI Dry bean Bad Axe, MI USiA 2015 M. Chilvers
M_15_14 -83.061 4375 East North Central ~ US MI Dry bean Bad Axe, MI USIA 2015 M. Chilvers
M_15_1 84,419 43451 East North Central ~ US MI Dry bean Wheeler, MI USIA 2015 M. Chilvers
M_15_2 -84.343 43525 East North Central ~ US MI Dry bean Merrill, MI USIA 2015 M. Chilvers
M_15_3 84343 13525 East North Central ~ US MI Dry bean Merrill, MI USIA 2015 M. Chilvers
Mis 4 84343 43525 EastNorth Central  US MI Dry bean Merrill, MI Us2 2015 M. Chilvers
M_15_s -84.343 43.525 East North Central ~ US MI Dry bean Merrill, MI USIA 2015 M. Chilvers
M_15.6 84342 43525 East North Central ~ US MI Dry bean Merrill, MI USIA 2015 M. Chilvers
M_15_7 -84.342 43525 East North Central ~ US MI Dry bean Merrill, MI USIA 2015 M. Chilvers
M_15_8 84342 43525 East North Central ~ US MI Dry bean Merrill, MI USIA 2015 M. Chilvers
M s o 84339 e East North Central ~ US MI Dry bean Merrill, MI USIA 2015 M. Chilvers
Mdio 90.443 4385 FastNorth Central  US W1 Soybean Muscoda, WI USIA T, Hughes. Obtained from Kiersten Wise
Mds 90.443 43185 East North Central ~ US WI Soybean Muscoda, WI USIA T. Hughes. Obtained from Kiersten Wise
Mds -90.443 4385 East North Central ~ US WI Soybean Muscoda, WI USIA T. Hughes. Obtained from Kiersten Wise
Mdé -90.443 43185 EastNorth Central  US W1 Soybean Muscoda, WI USIA T Hughes. Obtained from Kiersten Wise
Mdy 90.443 43185 EastNorth Central  US W1 Soybean Muscoda, WI USIA T. Hughes. Obtained from Kiersten Wise
MpSDSU -96.801 44.438 West North Central  US SD Ethiopian mustard ~ Brookings County, SD Us2 Febina Mathew - SD state U
Mph_ar 6312 3892 Colombia COL  VAC Dry bean Buga, VAC COLPR2 2010 Gloria Mosquera - CIAT
Mph_22 76.312 3.892 Colombia COoL VAC Dry bean Buga, VAC USiB 2010 Gloria Mosquera - CIAT
Mph_23 26312 3802 Colombia COL  VAC Dry bean Buga, VAC USiB 2010 Gloria Mosquera - CIAT
Mph_24 76.485 o2 Colombia coL CAU Dry bean Santander de Quilichao, CAU  COLPR: 2010 Gloria Mosquera - CIAT
Mph_27 76355 3503 Colombia COL  VAC Dry bean Palmira, VAC COLPR: 2010 Gloria Mosquera - CIAT
Mph_28 76355 2503 Colombia COL  VAC Dry bean Palmira, VAC COLPR2 2010 Gloria Mosquera - CIAT
Mph_ss 76355 3503 Colombia COL  VAC Dry bean Palmira, VAC COLPR2 2010 Gloria Mosquera - CIAT
Mph_3s 6355 2503 Colombia COL  VAC Dry bean Palmira, VAC COLPR: 2010 Gloria Mosquera - CIAT
Mph_39 -76.355 3.503 Colombia COL VAC Dry bean Palmira, VAC COLPR1 2010 Gloria Mosquera - CIAT
Mph_40 76355 3503 Colombia COL  VAC Dry bean Palmira, VAC NA 2010 Gloria Mosquera - CIAT
Mph_4s 6.485 jo12 Colombia coL CAU Dry bean Santander de Quilichao, CAU  COLPR: 2012 Gloria Mosquera - CIAT
Mph_46 -76.485 3.012 Colombia COL CAU Dry bean Santander de Quilichao, CAU COLPR1 2012 Gloria Mosquera - CIAT
Mph_48 76.485 jor2 Colombia coL cAU Dry bean Santander de Quilichao, CAU  COLPR: 2013 Gloria Mosquera - CIAT
Mph_49 -76.485 3.012 Colombia COL CAU Dry bean Santander de Quilichao, CAU  USIA 2013 Gloria Mosquera - CIAT
Mph_so 74.905 4.965 Colombia coL TOL Dry bean Armero, TOL COLPR:1 2013 Gloria Mosquera - CIAT
Mph_s2 4224 10727  Colombia COL  MAG Dry bean Corpoica, MAG COLPR: 2014 Gloria Mosquera - CIAT
Mph_s3 4224 10727 Colombia coL MAG Dry bean Corpoica, MAG COLPR: 2014 Gloria Mosquera - CIAT
Mph_s4 74224 10727  Colombia COL  MAG Dry bean Corpoica, MAG COLPR2 2014 Gloria Mosquera - CIAT
Mph_s6 74224 10.727 Colombia COL MAG Dry bean Corpoica, MAG COLPR2 2014 Gloria Mosquera - CIAT
Mph_s 76.485 son Colombia COL CAU Dry bean Santander de Quilichao, CAU  COLPRr 2002 Gloria Mosquera - CIAT
SAGs_4 84313 43348 EastNorth Central  US MI Soybean Saginaw County, MI USIA 2012 M. Chilvers
TN262 -86.58 35.517 Central uUs TN Soybean Unknown USIA A. Mengistu. Obtained from Kiersten Wise
TN27o 90.932 33424 South Us MS Soybean Unknown USiB A. Mengistu. Obtained from Kiersten Wise
TN279 -88.846 35.622 Central uUs TN Soybean Jackson, TN USIA A. Mengistu. Obtained from Kiersten Wise
TN280 8427 3783 Central us KY Soybean Unknown USIA A. Mengistu. Obrained from Kiersten Wise
TN380 -90.932 33.424 South Us MS Soybean Stoneville, Mississippi USIB A. Mengistu. Obtained from Kiersten Wise
TN4 -88.846 35.622 Central us TN Soybean Jackson, Tennessee USIA A. Mengistu. Obtained from Kiersten Wise
TNsor -91.962. 30.984 South us LA Soybean Unknown COLPR2 A. Mengistu. Obtained from Kiersten Wise
TNsso -99.902 31.969 South uUs TX Soybean Unknown US2 A. Mengistu. Obtained from Kiersten Wise
TNs 89.862 35418 Central Us TN Soybean Ames, TN USiA A. Mengistu. Obtained from Kiersten Wise
UPR_Mph_ISA2  -67.056 18.462 Puerto Rico PR ISA Dry bean Isabela, PR COLPR1 Consuelo Estevez De Jensen - UPR
UPR_Mph_ISA3 -67.056 18.462 Puerto Rico PR ISA Dry bean Isabela, PR COLPR2 Consuelo Estevez De Jensen - UPR
UPR_Mph_JDr  -66.518 8.o19  PuertoRico PR D Dry bean Juana Diaz, PR COLPR: Consuelo Estevez De Jensen - UPR
UPR_Mph_JD2  -66.518 18.019 Puerto Rico PR JD Dry bean Juana Diaz, PR COLPR1 Consuelo Estevez De Jensen - UPR
UPR_Mph_|D3  -66.518 8.o19  PuertoRico PR D Dry bean Juana Diaz, PR COLPR: Consuclo Estevez De Jensen - UPR
Wia_6 -85.999 42.671 East North Central ~ US MI Soybean Hamilton, MI US2 2012 M. Chilvers
W3 84.847 43001 EastNorth Central  US MI Soybean Pewamo, MI USIA 2012 M. Chilvers
Was 85.999 42671 EastNorth Central  US MI Soybean Hamilton, MI Us2 2012 M. Chilvers
Ws3_s -85.999 42.671 East North Central  US MI Soybean Hamilton, MI US2 2012 M. Chilvers
W_MISO2. 3 6 861 27 East North Central ~ US MI Soybean Hamilton, MI USiA 201 M. Chilvers
W_MISO2_4 10 -85.1 42.9 East North Central ~ US MI Soybean Berlin, MI USIA 2012 M. Chilvers
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Table A.2 Hierarchical analysis of molecular variance (AMOVA), partitioning total genetic variance into
the following components: between clades, between genetic clusters and within genetic clusters. Clone

corrected values are shown. Most of the variance was associated with differences between clades and
between genetic clusters.

Source of variation Variation (%) p-value Phi
Between clades (US and COLPR) 46.59 0.001 0.89
Between genetic clusters (US-1A, US-1B, US-2), (COLPR-1, COLPR-2) within clade  42.41 0.001 0.79
Within genetic clusters 10.99 0.00I 0.46
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Table A.3 Summary statistics for genetic diversity of Macrophomina phaseolina by country. N is num-
ber of isolates (sample size); MLG is number of observed multilocus genotypes; eMLG is the number
of expected MLG at a sample size of 5 based on rarefaction. MLL is number of observed multilocus lin-
eages by population using a bitwise cutoff distance of 0.0001; CF is clonal fraction (1 - (MLL/N). Clone
corrected values are shown and indicated by asterisks for indices of genotypic diversity: Shannon-Wiener
Index (H*), Stoddart and Taylor’s Index (G*), Simpson’s index (lambda*) and evenness (Es*).

G Medi ..

Country N o€ CHUANPAIWISE  MIG eMLG MLL eMLL CF H* G* lambda* Es*
diversity (He) genetic distance

uUsS 70 0.104 0.096 54 4.85 21 3.83 0.7 L27 3.54 0.69 0.921

Colombia 20 0.263 0.355 20 S 2 4.54 0.4 147 43 0.758 0.966

Puerto Rico 5 0.163 0.101 5 5 4 4 0.2 133 3.7 0.72 0.922
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Table A.4 Top 49 candidate SNPs along the first three RDA axes, after accounting for neutral population
structure using the LD-filtered set of 11,421 SNPs.

l:gsA SNP position l(f:dDi‘:g s::_:::: Correlation  SnpEff SNP category pre d?:tl:gfefffect SnpEff annotation locus i:opj‘;fo‘:::;;;

1 scaffold_13_11451 -0.068  TSsd 0.90 upstream_gene_variant MODIFIER STOP_CODON._scaffold_13_108299_108301 3150
1 scaffold_44_156076 -0.068  TSsd 0.89 upstream_gene_variant MODIFIER STOP_CODON_scaffold_44_152100_152102 3974
1 scaffold_3_1825169  0.070  TSsd 0.62 missense_variant MODERATE  CDS_scaffold_3_1824442_1825656 o

' scaffold_3_1762050  -0.065  TSsd o062 upstream_gene_variant  MODIFIER START_CODON._scaffold_3_1764065_1764067 1106
1 scaffold_6_1672095 -0.074  TSsd 0.61 upstream_gene_variant MODIFIER START_CODON_scaffold_6_1672850_1672852 755

1 scaffold_13_484791  -0.064  TSsd 0.59 upstream_gene_variant MODIFIER START_CODON _scaffold_13_485354_485356 563

1 scaffold_1_2854576 -0.070  TSsd 0.56 synonymous_variant LOW CDS_scaffold_1_2854387_2854822 o

1 scaffold_s9_25310 -0.066  TSsd o.51 synonymous_variant LOW CDS_scaffold_s9_24795_25349 o

1 scaffold_22_420202 -0.063  TSsd 0.50 upstream_gene_variant MODIFIER CDS_scaffold_22_414871_415310 4892
1 scaffold_48_217394  -0.071 TSsd 0.45 upstream_gene_variant MODIFIER CDS_scaffold_48_212041_212424 4970
1 scaffold_3_91936 0.072 TSsd 0.39 upstream_gene_variant MODIFIER START_CODON_scaffold_3_93112_93114 76
1 scaffold_6_1470614  0.066 TSsd 037 intergenic_region MODIFIER CDS_scaffold_6_1456157_1456265-START_CODON_scaffold_6_1482586_1482588 o

1 scaffold_2_1936912  0.071 TSsd 035 upstream_gene_variant MODIFIER STOP_CODON._scaffold_2_1936467_1936469 443

1 scaffold_42_203393  0.073 mTwq 0.29 synonymous_variant LOW CDS_scaffold_42_203293_204316 o

1 scaffold_41_309748  0.065 mTwq 0.29 downstream_gene_variant MODIFIER CDS_scaffold_41_303593_304907 4841
2 scaffold_1_1608893  -0.061  TSsd 0.80 synonymous_variant LOW CDS_scaffold_1_1608703_1612256 o

2 scaffold_87_2593  -0.086  TSsd o077 upstream_gene_variant  MODIFIER START_CODON_scaffold_87_3569_3571 976
2 scaffold_s8_78470  0.064 TSsd 0.69 synonymous_variant LOW CDS_scaffold_s8_78407_78835 o

2 scaffold_12_462369 -0.063  PScv 0.69 upstream_gene_variant MODIFIER STOP_CODON_scaffold_r2_460099_460101 2268
2 scaffold_25_r25545  -0.063  PScv 0.69 upstream_gene_variant MODIFIER STOP_CODON_scaffold_25_r21760_121762, 3783
2 scaffold_29_158130  -0.063 PScv 0.69 synonymous_variant LOW CDS_scaffold_29_157893_158372 o

2 scaffold_71_166465  -0.063 PScv 0.69 upstream_gene_variant MODIFIER CDS_scaffold_71_159528_161501 4964
2 scaffold_87_1928 -0.063  PScv 0.69 upstream_gene_variant MODIFIER START_CODON_scaffold_87_3569_3571 1641
2 scaffold_2_523738 0.062 DPScv 0.60 upstream_gene_variant MODIFIER CDS_scaffold_2_518495_519535 4203
2 scaffold_21_s2404 -0.062  PScv 0.60 upstream_gene_variant MODIFIER START_CODON_scaffold_21_s3157_53159 753
2 scaffold_28_275982  -0.062  PScv 0.60 upstream_gene_variant MODIFIER STOP_CODON_scaffold_28_272569_272571 3411
2 scaffold_g_6s4713  -0.062  PScy 059 upstream_gene_variant  MODIFIER STOP_CODON_scaffold_o_649861_649863 4850
2 scaffold_19_ss0360  0.061 TSsd 0.58 upstream_gene_variant MODIFIER START_CODON_scaffold_19_ss1212_ss1214 852
2 scaffold_1_3o049711  0.063 PScv 0.54 missense_variant MODERATE  CDS_scaffold_1_3048856_3052181 o

2 scaffold_s4_150712  -0.064  TSsd 0.47 synonymous_variant LOW CDS_scaffold_s4_150535_151353 o

2 scaffold_27_176390 -0.060  TSsd 0.42 synonymous_variant LOW CDS_scaffold_27_175960_176666 o

2 scaffold_23_382823 -0.060  TSsd 0.41 upstream_gene_variant MODIFIER CDS_scaffold_23_375724_378157 4666
2 scaffold_6_1522882  -0.074  PScv 0.38 upstream_gene_variant MODIFIER CDS_scaffold_6_1s17175_1517921 4961
2 scaffold_13_208687  -0.059 mTwq 0.34 synonymous_variant LOW CDS_scaffold_13_208376_209227 o

2 scaffold_1o_615323  -0.064  PScv 0.33 synonymous_variant LOW CDS_scaffold_1o_615173_617203 o

2 scaffold_22_158097  -0.067  PScv 0.33 upstream_gene_variant MODIFIER STOP_CODON_scaffold_22_153686_153688 4409
3 scaffold_1_1378025  o.055 TSsd 0.69 synonymous_variant LOW CDS_scaffold_1_1377723_1378766 o

3 scaffold_10_479849 -0.044  TSsd 0.68 upstream_gene_variant MODIFIER START_CODON_scaffold_10_483512_483514 3663
3 scaffold_23_382747  ©0.045 PScv 0.66 upstream_gene_variant MODIFIER CDS_scaffold_23_375724_378157 4590
3 scaffold_19_ss0409  -0.048  TSsd 0.61 upstream_gene_variant MODIFIER START_CODON _scaffold_19_ss1212_ssra14 803

3 scaffold_22_499377 o0.047 TSsd 0.61 downstream_gene_variant  MODIFIER CDS_scaffold_22_494417_495021 4356
3 scaffold_1_3035852  0.047 PScv 0.48 upstream_gene_variant MODIFIER CDS_scaffold_1_3030823_3031518 4334
3 scaffold_22_439131  0.045 TSsd 0.46 missense_variant MODERATE  CDS_scaffold_22_438958_440858 o

3 scaffold_2_1080524  0.045 TSsd 0.43 upstream_gene_variant MODIFIER CDS_scaffold_2_1075512_1076051 4473
3 scaffold_23_480413  0.046 Pwq 0.42 upstream_gene_variant MODIFIER CDS_scaffold_23_475068_476090 4323
3 scaffold_42_240411  -0.050  TSsd 0.39 synonymous_variant LOW CDS_scaffold_42_240295_240429 o

3 scaffold_29_245703  0.049 TSsd 039 upstream_gene_variant MODIFIER CDS_scaffold_29_240677_241789 3914
3 scaffold_7_1460003 -o.051 TSsd 037 synonymous_variant LOW CDS_scaffold_7_1459542_1460852 o

3 scaffold_7_1459970  -0.046  TSsd 0.30 synonymous_variant LOW CDS_scaffold_7_1459542_1460852 o
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Table A.s Top 75 candidate SNPs along the first three RDA axes, after accounting for neutral population
structure using the the full set of 77,465 SNDs.

RDA .. RDA  Climate . SnpEff SNP SnpEff . SnpEff distance
A SNP position . . Correlation . SnpEff annotation locus

axis loading variable category predicted effect from locus (bp)
1 scaffold_13_t4s1 -0.045 TSsd 0.90 upstream_gene_variant MODIFIER STOP_CODON_scaffold_13_108299_108301 3150
1 scaffold_44_156076 -0.044  TSsd 0.89 upstream_gene_variant MODIFIER STOP_CODON_scaffold_44_152100_152102 3974
1 scaffold_10_1141677 -0.044  TSsd 0.84 upstream_gene_variant MODIFIER CDS_scaffold_10_1136664_1136859 4818
1 scaffold_16_102210  -0.044  TSsd 0.84 synonymous_variant LOW CDS_scaffold_16_101948_102440 o
1 scaffold_4 1410133  -0.044  TSsd 0.84 upstream_gene_variant MODIFIER STOP_CODON_scaffold_4_1407455_1407457 2676
1 scaffold_4 1410339  -0.044  TSsd 0.84 upstream_gene_variant MODIFIER STOP_CODON_scaffold_4_1407455_1407457 2882
1 scaffold_4_1410344 -0.044  TSsd 0.84 upstream_gene_variant MODIFIER STOP_CODON_scaffold_4_1407455_1407457 2887
1 scaffold_4_1410417  -0.044  TSsd 0.84 upstream_gene_variant MODIFIER STOP_CODON_scaffold_4_1407455_1407457 2960
1 scaffold_4_ 1410558  -0.044  TSsd 0.84 upstream_gene_variant MODIFIER STOP_CODON_scaffold_4_1407455_1407457 3101
1 scaffold_4_1410743 -0.044  TSsd 0.84 upstream_gene_variant MODIFIER STOP_CODON_scaffold_4_1407455_1407457 3286
1 scaffold_7_663614  -0.044  TSsd 0.84 upstream_gene_variant MODIFIER STOP_CODON_scaffold_7_661303_661305 2309
1 scaffold_48_217394 -0.045 TSsd 0.45 upstream_gene_variant MODIFIER CDS_scaffold_48_212041_212424 4970
1 scaffold_s8_127959  0.047 TSsd 0.43 missense_variant MODERATE CDS_scaffold_s8_127946_128524 o
1 scaffold_104_79048 o0.047 TSsd 0.40 synonymous_variant LOW CDS_scaffold_104_78954_79095 o
1 scaffold_104_79165  0.047 TSsd 0.40 upstream_gene_variant MODIFIER CDS_scaffold_104_73200_74703 4462
1 scaffold_19_649013 -0.047  TSsd 0.40 upstream_gene_variant MODIFIER STOP_CODON_scaffold_19_645372_645374 3639
1 scaffold_36_272346 -0.047  TSsd 0.40 synonymous_variant LOW CDS_scaffold_36_269772_272918 o
1 scaffold_s8_127971  0.047 TSsd 0.40 missense_variant MODERATE CDS_scaffold_s8_127946_128524 o
1 scaffold_1_2153455  0.046 TSsd 0.38 upstream_gene_variant MODIFIER STOP_CODON_scaffold_1_2149297_2149299 4156
1 scaffold_1_3063445 -0.046  TSsd 0.38 downstream_gene_variant  MODIFIER START_CODON_scaffold_1_3058748_3058750 4695
1 scaffold_s8_128008  0.046 TSsd 0.38 missense_variant MODERATE CDS_scaffold_s8_127946_128524 o
1 scaffold_3_1799971  -0.045 TSsd 0.38 synonymous_variant LOW CDS_scaffold_3_1799677_1800392 o
1 scaffold_3_1801510  -0.045 TSsd 038 upstream_gene_variant MODIFIER STOP_CODON_scaffold_3_1797900_1797902 3608
1 scaffold_3_1801567  -0.045 TSsd 0.38 synonymous_variant LOW CDS_scaffold_3_1801544_1801752 o
1 scaffold_42_203393 0.044 mTwq 0.29 synonymous_variant LOW CDS_scaffold_42_203293_204316 o
2 scaffold_87_2593 -0.049  TSsd 0.77 upstream_gene_variant MODIFIER START_CODON_scaffold_87_3569_3571 976
2 scaffold_s4_28428  -0.045 TSsd 0.73 downstream_gene_variant  MODIFIER CDS_scaffold_s4_23338_23782 4646
2 scaffold_12_462369 -0.046  PScv 0.69 upstream_gene_variant MODIFIER STOP_CODON_scaffold_12_460099_460101 2268
2 scaffold_12_462379 -0.046  PScv 0.69 upstream_gene_variant MODIFIER STOP_CODON_scaffold_12_460099_460101 2278
2 scaffold_25_125545  -0.046  PScv 0.69 upstream_gene_variant MODIFIER STOP_CODON_scaffold_25_121760_121762 3783
2 scaffold_29_158130  -0.046  PScv 0.69 synonymous_variant LOW CDS_scaffold_29_157893_158372 o
2 scaffold_71_166465 -0.046  PScv 0.69 upstream_gene_variant MODIFIER CDS_scaffold_71_159528_161501 4964
2 scaffold_87_1928 -0.046  PScv 0.69 upstream_gene_variant MODIFIER START_CODON_scaffold_87_3569_3571 1641
2 scaffold_27_280895 0.039 PScv 0.69 synonymous_variant LOW CDS_scaffold_27_280296_28132
2 scaffold_29_188s51  -0.041 TSsd 0.67 downstream_gene_variant  MODIFIER CDS_scaffold_29_182261_184761 3750
2 scaffold_g_654682  -0.041 TSsd 0.67 upstream_gene_variant MODIFIER STOP_CODON_scaffold_g_649861_649863 4819
2 scaffold_19_360816  0.041 TSsd 0.67 synonymous_variant LOW CDS_scaffold_19_360656_361318 o
2 scaffold_23_382747 -0.042  PScv 0.66 upstream_gene_variant MODIFIER CDS_scaffold_23_375724_378157 4590
2 scaffold_29_158052  -0.046  PScv 0.65 synonymous_variant LOW CDS_scaffold_29_157893_158372 o
2 scaffold_14_991443  -0.043 PScv 0.64 synonymous_variant LOW CDS_scaffold_14_989727_ 991629 o
2 scaffold_s7_80182 -0.042 PScv 0.62 synonymous_variant LOW CDS_scaffold_s7_8o140_80242 o
2 scaffold_2_523738 0.044 PScv 0.60 upstream_gene_variant MODIFIER CDS_scaffold_2_s18495_519535 4203
2 scaffold_21_s2404  -0.044  PScv 0.60 upstream_gene_variant MODIFIER START_CODON_scaffold_21_s3157_53159 753
2 scaffold_28 275982 -0.044  PScv 0.60 upstream_gene_variant MODIFIER STOP_CODON_scaffold_28_272569_272571 3411
2 scaffold_62_183467 -0.039 PScv 0.59 missense_variant MODERATE CDS_scaffold_62_182889_183615 o
2 scaffold_62_183468 -0.039 PScv 0.59 missense_variant MODERATE CDS_scaffold_62_182889_183615 o
2 scaffold_13_172698  -0.040  PScv 0.59 upstream_gene_variant MODIFIER STOP_CODON_scaffold_13_168216_168218 4480
2 scaffold_g_654713 -0.043 PScv 0.59 upstream_gene_variant MODIFIER STOP_CODON_scaffold_9_649861_649863 4850
2 scaffold_17_614054  0.039 TSsd 0.55 synonymous_variant LOW CDS_scaffold_17_613826_614191 o
2 scaffold_1_304971  0.040 PScv 0.54 missense_variant MODERATE CDS_scaffold_1_3048856_3052181 o
2 scaffold_72_169626 -0.039 PScv 0.54 upstream_gene_variant MODIFIER STOP_CODON_scaffold_72_167171_167173 2453
2 scaffold_2_198659  0.040 TSsd 0.52 missense_variant MODERATE CDS_scaffold_2_198491_198675 o
2 scaffold_23_382823 -0.044  TSsd 0.41 upstream_gene_variant MODIFIER CDS_scaffold_23_375724_378157 4666
2 scaffold_6_1522882  -0.047  PScv 0.38 upstream_gene_variant MODIFIER CDS_scaffold_6_1s17175_1517921 4961
2 scaffold_7_1460003 0.039 TSsd 0.37 synonymous_variant LOW CDS_scaffold_7_1459542_1460852 o
3 scaffold_12_1023368 o0.031 TSsd 0.77 synonymous_variant LOW CDS_scaffold_12_1023214_1024907 o
3 scaffold_12_1057197  0.031 TSsd 0.77 downstream_gene_variant  MODIFIER CDS_scaffold_12_1058753_1059094 1556
3 scaffold_16_140381  0.031 TSsd 0.77 synonymous_variant LOW CDS_scaffold_16_139893_144227 o
3 scaffold_16_140414  0.031 TSsd 0.77 synonymous_variant LOW CDS_scaffold_16_139893_144227 o
3 scaffold_16_421358  -0.031 TSsd 0.77 upstream_gene_variant MODIFIER STOP_CODON_scaffold_16_417163_417165 4193
3 scaffold_16_421368  -0.031 TSsd 0.77 upstream_gene_variant MODIFIER STOP_CODON_scaffold_16_417163_417165 4203
3 scaffold_s8_220314  -0.031 TSsd 0.77 upstream_gene_variant MODIFIER START_CODON_scaffold_s8_220995_220997 681
3 scaffold_67_188980 -0.030 TSsd 0.75 synonymous_variant LOW CDS_scaffold_67_188284_189448 o
3 scaffold_19_s50409  -0.030 TSsd 0.61 upstream_gene_variant MODIFIER START_CODON_scaffold_19_ss1212_s51214 803
3 scaffold_15_782011  0.035 TSsd 0.54 synonymous_variant LOW CDS_scaffold_15_781874_786184 o
3 scaffold_29_196573  0.031 mTwgq 0.44 synonymous_variant LOW CDS_scaffold_29_195969_197925 o
3 scaffold_10_1087855 -0.032 TSsd 0.40 upstream_gene_variant MODIFIER STOP_CODON_scaffold_10_1083679_1083681 4174
3 scaffold_42_225860 o0.031 mTwq 038 downstream_gene_variant  MODIFIER START_CODON_scaffold_42_221936_221938 3922
3 scaffold_42_225871  o.031 mTwq 0.38 downstream_gene_variant  MODIFIER START_CODON_scaffold_42_221936_221938 3933
3 scaffold_70_8oos1  0.031 mTwq 0.38 upstream_gene_variant MODIFIER STOP_CODON_scaffold_70_75255_75257 4794
3 scaffold_s8_219039  -0.032 mTwq 0.37 upstream_gene_variant MODIFIER START_CODON_scaffold_s8_220995_220997 1956
3 scaffold_23_297720 -0.031 mTwgq 0.36 upstream_gene_variant MODIFIER CDS_scaffold_23_292112_293048 4672
3 scaffold_48_217915  0.035 mTwq 0.35 missense_variant MODERATE CDS_scaffold_48_217500_218137 o
3 scaffold_42_225897 0.034 mTwq 0.34 downstream_gene_variant  MODIFIER START_CODON_scaffold_42_221936_221938 3959
3 scaffold_1_1537417  -0.029  mTwq 0.31 upstream_gene_variant MODIFIER STOP_CODON_scaffold_1_1534130_1534132 3285
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Table A.6 Candidate SNPs and gene models along the first RDA axis, after accounting for neutral pop-
ulation structure using the full set of 77,465 SNPs.

SNP position IRDAI Clu'nate Correlation SNP Distance from Mycocosm gene location Myco'c osm InterPro/KOG Desc
oading variable category locus (bp) protein ID

scaffold_13:111451 -0.045 TSsd 0.90 Intergenic 3150 scaffold_13:108068-110230 753275 Ankyrin repeat
scaffold_44:156076 -0.044  TSsd 0.89 Intergenic 3974 scaffold_44:152589-153590 681752 Uncharacterized conserved protein
scaffold_ro:1141677 -0.044  TSsd 0.84 Intergenic 40 scaffold_10:1140297-1141637 698606 Glycoside hydrolase, family 5
scaffold_16:102210  -0.044  TSsd 0.84 Synonymous o scaffold_16:101708-102507 666336 None
scaffold_4:1410133  -0.044  TSsd 0.84 Intergenic 2676 scaffold_4:1407052-1409077 767171 None
scaffold_4:1410339  -0.044  TSsd 0.84 Intergenic 2882 scaffold_4:1407052-1409077 767171 None
scaffold_4:1410344 -0.044  TSsd 0.84 Intergenic 2887 scaffold_4:1407052-1409077 767171 None
scaffold_4:1410417  -0.044  TSsd 0.84 Intergenic 2960 scaffold_4:1407052-1409077 767171 None
scaffold_4:1410558  -0.044  TSsd 0.84 Intergenic 3101 scaffold_4:1407052-1409077 767171 None
scaffold_4:1410743  -0.044  TSsd 0.84 Intergenic 3286 scaffold_4:1407052-1409077 767171 None
scaffold_7:663614  -0.044  TSsd 0.84 Intergenic 116 scaffold_7:660987-663498 726238 None
scaffold_48:217394 -0.045 TSsd 0.45 Intergenic it scaffold_48:215027-217383 714043 Flavin-containing monooxygenase
scaffold_s8:127959  0.047 TSsd 0.43 Missense o scaffold_58:127946-129509 722169 Glycoside hydrolase, family 5
scaffold_104:79048 0.047 TSsd 0.40 Synonymous o scaffold_104:78761-79095 747473 None
scaffold_104:79165  0.047 TSsd 0.40 Intergenic 4462 scaffold_104:71908-75304 59925 Mg2+ transporter protein, CorA-like
scaffold_19:649013 -0.047  TSsd 0.40 Intergenic 3639 scaffold_19:645233-646550 787237 Glycoside hydrolase, family 10
scaffold_36:272346 -0.047  TSsd 0.40 Synonymous o scaffold_36:269703-273261 270878 None
scaffold_s8:127971  0.047 TSsd 0.40 Missense o scaffold_58:127946-129509 722169 Glycoside hydrolase, family 5
scaffold_r:2153455  0.046 TSsd 0.38 Intergenic 79 scaffold_1:2152160-2153376 28417 Alpha crystallin/Hsp2o domain
scaffold_1:3063445 -0.046  TSsd 0.38 Intergenic 377 scaffold_1:3063822-3065544 640605 None
scaffold_s8:128008  0.046 TSsd 0.38 Missense o scaffold_58:127946-129509 722169 Glycoside hydrolase, family 5
scaffold_3:1799971  -0.045  TSsd 0.38 Synonymous o scaffold_3:1799298-1801088 724609 None
scaffold_3:1801510  -0.045 TSsd 0.38 Intergenic 3608 scaffold_3:1797593-1798873 645899 Protein kinase-like domain
scaffold_3:1801567  -0.045 TSsd 0.38 Synonymous o scaffold_3:1801258-1802852 645904 None
scaffold_42:203393  0.044 mTwq 0.29 Synonymous o scaffold_42:202488-204519 608404 Cytochrome P4so, E-class, group I
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Table A.7 Top 91 candidate SNPs along the first three RDA axes, without accounting for neutral popu-
lation structure using the LD-filtered set of 11,421 SNPs.

1:2? SNP position l::i’i:g Sal::;:: Correlation SnpEff SNP category pre d?:tlzifﬁ'ect SnpEff annotation locus Sf:::fo‘::(‘l‘::;
2 scaffold_1o_8s4700 o120  PScv 0.43 upstream_gene_variant MODIFIER STOP_CODON _scaffold_1o_851859_851861 2839
2 scaffold_6_234790 0123  PScv 0.42 upstream_gene_variant MODIFIER CDS_scaffold_6_228561_230947 3843
2 scaffold_71_85900  -0.07  PScv 0.42 upstream_gene_variant MODIFIER STOP_CODON._scaffold_71_83588_83590 2310
2 scaffold_41_309781  o.u8 mTwq 0.4t downstream_gene_variant MODIFIER CDS_scaffold_41_303593_304907 4874
2 scaffold_6_1418421 o131 PScv 038 downstream_gene_variant MODIFIER START_CODON _scaffold_6_r413560_1413562 4859
2 scaffold_24_200868 -o20  mTwq 037 upstream_gene_variant MODIFIER STOP_CODON _scaffold_24_197582_197584 3284
2 scaffold_44_122194 -0.103  PScv 036 synonymous_variant LOW CDS_scaffold_44_121556_123424 o
2 scaffold_2_1026126  -o.101 PScv 031 upstream_gene_variant MODIFIER START_CODON_scaffold_2_1029176_1029178 3050
2 scaffold_16_132289  -o.101 mTwq o030 synonymous_variant Low CDS_scaffold_16_131336_132715 o
2 scaffold_2_218789  -o0.103 mTwq o030 upstream_gene_variant MODIFIER STOP_CODON _scaffold_2_213830_213832 4957
2 scaffold_s_1684103 -omot  mTwq o030 upstream_gene_variant MODIFIER CDS_scaffold_s_1678605_1679687 4506
2 scaffold_to_672972 0102 PScv 0.29 synonymous_variant LOW CDS_scaffold_1o_672926_673100 °
2 scaffold_21_102468  -002  PScv 029 intergenic_region MODIFIER CDS_scaffold_21_89865_90404-START_CODON_scaffold_21_110672_110674 o
2 scaffold_37_363077 -0a00  mTwq o027 upstream_gene_variant MODIFIER CDS_scaffold_37_358101_358247 4830
2 scaffold_44_307914  -o.101 PScv 027 synonymous_variant Low CDS_scaffold_44_307351_308453 o
2 scaffold_6_127167  -omor  PScv 027 missense_variant MODERATE  CDS_scaffold_6_126424_127606 °
2 scaffold_68_135350 0104  PScv 027 upstream_gene_variant MODIFIER CDS_scaffold_68_130352_130591 4768
3 scaffold 2 augss o073  mTwq  oss upstream_gene_variant MODIFIER START_CODON_scaffold_2._212300_212302 845
3 scaffold_21_335553  0.073 mTwq  oss upstream_gene_variant MODIFIER START_CODON _scaffold_21_336487_336489 934
3 scaffold_40_343692  0.073 mTwq 0.55 synonymous_variant LOW CDS_scaffold_40_342943_344721 o
3 scaffold_15_357578  0.079 mTwq  o.s4 missense_variant MODERATE  CDS_scaffold_1s_357405_357970 o
3 scaffold_44_201020 ©0.082  mTwq o4 upstream_gene_variant MODIFIER START_CODON _scaffold_44_204912_204914 3802
3 scaffold_s_221370  0.082  mTwq  o.54 synonymous_variant LOW CDS_scaffold_s_220717_222345 o
3 scaffold_i3_3o1413  0.074  mTwq ot upstream_gene_variant MODIFIER CDS_scaffold_13_385752_386447 4966
3 scaffold_17_178704 o0.074 mTwq o5 synonymous_variant LOow CDS_scaffold_17_178494_179513 o
3 scaffold_28_120398 0.074  mTwq  os1 synonymous_variant Low CDS_scaffold_28_119753_121192 o
3 scaffold_so_15066  0.074  mTwq  os1 upstream_gene_variant MODIFIER START_CODON_scaffold_sg_15635_15637 569
3 scaffold_68_ns3 o077 mTwq ot missense_variant MODERATE  CDS_scaffold_68_i5232_115678 °
3 scaffold_79_109649 ©0.074  mTwq ot missense_variant MODERATE  CDS_scaffold_79_109368_109971 °
3 scaffold_11_1023435  0.085 mTwq  os0 upstream_gene_variant MODIFIER CDS_scaffold_11_1018412_1020023 3412
3 scaffold_15_360852  -0.088 ~mTwq  o.50 upstream_gene_variant MODIFIER STOP_CODON._scaffold_1s_358354_358356 2496
3 scaffold_19_393993  0.097 mTwq 049 upstream_gene_variant MODIFIER STOP_CODON._scaffold_19_389706_389708 4285
3 scaffold_32 22972 -0.094 mTwq  o0.49 splice_region_variant&synonymous_variant LOW CDS_scaffold_32_22972_23031 o
3 scaffold_44_206005 ©0.074 ~ mTwq  0.49 upstream_gene_variant MODIFIER STOP_CODON _scaffold_44_201790_201792. 4303
3 scaffold_2_173644  0.073 TSsd 0.48 synonymous_variant LOW CDS_scaffold_2_173588_173972 o
3 scaffold_24_352185  0.073 TSsd 0.48 upstream_gene_variant MODIFIER CDS_scaffold_24_353944_354392 1759
3 scaffold_13_426280 0.076  TSsd 0.47 upstream_gene_variant MODIFIER STOP_CODON._scaffold_13_424653_424655 1625
3 scaffold_17_627080  0.083 mTwq o047 upstream_gene_variant MODIFIER START_CODON_scaffold_17_627756_627758 676
3 scaffold_3_473402  0.081  mTwq  o0.47 upstream_gene_variant MODIFIER STOP_CODON._scaffold_3_468724_468726 4676
3 scaffold_s8_76097  0.076  TSsd 0.47 upstream_gene_variant MODIFIER STOP_CODON _scaffold_s8_72637_72639 3458
3 scaffold_ 0.076  TSsd 0.47 missense_variant MODERATE  CDS_scaffold_6_171215_172006 o
3 scaffold_- 0.081 mTwq 0.47 synonymous_variant LOW CDS_scaffold_7_57449_58312 o
3 scaffold_ 0.089 mTwq 046 synonymous_variant Low CDS_scaffold_3_707119_707433 o
3 scaffold_6_isions 0089  mTwq  0.46 upstream_gene_variant MODIFIER START_CODON_scaffold_6_1514383_1514385 4269
3 scaffold_62_i34535 0092  mTwq  0.46 upstream_gene_variant MODIFIER CDS_scaffold_62_120094_129597 4938
3 scaffold_12_333794 o0.079  TSsd 0.45 upstream_gene_variant MODIFIER CDS_scaffold_12_328832_329080 4714
3 scaffold_12_460479 ©0.082  TSsd 0.45 synonymous_variant LOwW CDS_scaffold_12_460360_46100 o
3 scaffold_21_49304  0.082  TSsd 0.45 upstream_gene_variant MODIFIER START_CODON_scaffold_21_su44_s146 1840
3 scaffold_27_375204  0.079 PScv 0.45 upstream_gene_variant MODIFIER CDS_scaffold_27_375221_375767 17
3 scaffold_8_83107  o0.082  TSsd 0.45 upstream_gene_variant MODIFIER CDS_scaffold_8_77182_78164 4943
3 scaffold_i3_273316  -0.095  mTwq  o.44 upstream_gene_variant MODIFIER STOP_CODON _scaffold_13_272182_272184 132
3 scaffold_83 38120 0088  mTwq  0.43 missense_variant MODERATE  CDS_scaffold_83_37986_38474 °
3 scaffold_10_721881  0.076 ~ mTwq  o0.42 intergenic_region MODIFIER CDS_scaffold_1o_691175_692352-START_CODON _scaffold_10_728430_728432 o
3 scaffold_16_424888 o0.082  mTwq  o0.42 upstream_gene_variant MODIFIER CDS_scaffold_16_418089_420031 4857
3 scaffold_6_1su026  0.085  Pwq 042 upstream_gene_variant MODIFIER START_CODON _scaffold_6_1514383_1514385 3357
3 scaffold_23_s20048 ©0.077  Pwq 0.41 upstream_gene_variant MODIFIER CDS_scaffold_23_s23035_524309 4739
3 scaffold_43_21479  0.080  Pwq 0.41 downstream_gene_variant MODIFIER CDS_scaffold_43_u17o_n8s41 2038
3 scaffold_19_395821  0.084  Pwq 0.40 missense_variant MODERATE  CDS_scaffold_19_395633_396036 °
3 scaffold_13_425827  0.086  PScv 039 missense_variant MODERATE  CDS_scaffold_13_424653_426254 o
3 scaffold_44_185863  0.078 mTwq 039 synonymous_variant Low CDS_scaffold_44_184999_186216 o
3 scaffold_1_1676668  0.075 mTwq 038 upstream_gene_variant MODIFIER STOP_CODON_scaffold_1_1674628_1674630 2038
3 scaffold_22_s66275  0.084  PScv 038 upstream_gene_variant MODIFIER CDS_scaffold_22_s61257_s61331 4944
3 scaffold_27_oisor  0.081  PScv 038 upstream_gene_variant MODIFIER STOP_CODON _scaffold_27_86727_86729 4772
3 scaffold 29 316632 0.079  Pwq 038 synonymous_variant LOW CDS_scaffold_29_316608_316732 °
3 scaffold_36_251653  0.073 Pwq 038 upstream_gene_variant MODIFIER CDS_scaffold_36_246418_248498 3155
3 scaffold_6_216284  0.076 Pwq 038 upstream_gene_variant MODIFIER CDS_scaffold_6_210883_211943 4341
3 scaffold_o_644508 o0.075  mTwq 038 upstream_gene_variant MODIFIER CDS_scaffold_o_630112_639647 4861
3 scaffold_1s_451673  -0.089  Pwq 037 missense_variant MODERATE  CDS_scaffold_15_451651_451894 °
3 scaffold_27 76942 0.090  PScv 037 upstream_gene_variant MODIFIER CDS_scaffold_27_76991_77398 49
3 scaffold_46_164767 -0.091  Pwq 037 upstream_gene_variant MODIFIER STOP_CODON._scaffold_46_161158_16u60 3607
3 scaffold_71_154094 -0.087 mTwq o037 upstream_gene_variant MODIFIER STOP_CODON._scaffold_71_151995_151997 2097
3 scaffold_42_135653  0.074  mTwq 036 synonymous_variant LOW CDS_scaffold_42_132413_136m1 °
3 scaffold_6_225341  -0106 mTwq 036 missense_variant MODERATE  CDS_scaffold_6_225173_225456 °
3 scaffold_40_256107 -0.087 mTwq 035 synonymous_variant LOW CDS_scaffold_40_255702_256654 o
3 scaffold_13_208687 -0.097 mTwq 034 synonymous_variant LOW CDS_scaffold_13_208376_209227 o
3 scaffold_22_158097  -0.088  PScv 033 upstream_gene_variant MODIFIER STOP_CODON _scaffold_22_153686_153688 4409
3 scaffold_16_1036241  0.077 mTwq o030 upstream_gene_variant MODIFIER CDS_scaffold_16_1030297_1032242 3999
3 scaffold_16_323281  -0.088 ~mTwq 0.8 upstream_gene_variant MODIFIER CDS_scaffold_16_317454_318444 4837
3 scaffold_45_331999  -o.101 mTwq 0.5 synonymous_variant LOW CDS_scaffold_45_331450_332788 o
3 scaffold_21_s08763 -0.094  PScv 0.24 upstream_gene_variant MODIFIER STOP_CODON _scaffold_21_so4420_s04422 4341
3 scaffold_1s_680030 ©0.080  mTwq 0.3 missense_variant MODERATE ~ CDS_scaffold_15_679998_680048 °
3 scaffold_3_445922  -0.089  PScv 0.22 upstream_gene_variant MODIFIER STOP_CODON._scaffold_3_443359_443361 2561
3 scaffold_17_308508 -0.092 mTwq  o.r synonymous_variant Low CDS_scaffold_r7_308336_308921 o
3 scaffold_19_209889 ©0.003 ~ mTwq o1 missense_variant MODERATE  CDS_scaffold_19_209760_210050 °
3 scaffold_4_t78s0  -0.087 mTwq oo upstream_gene_variant MODIFIER STOP_CODON _scaffold_s4_113540_13542 4308
3 scaffold 21 30767 o075  mTwq o020 missense_variant MODERATE  CDS_scaffold_21_39612_39944 °
3 scaffold_3_618207  0.079 ~ mTwq 0.0 synonymous_variant LOowW CDS_scaffold_3_617820_619391 o
3 scaffold_46_77132 0.073 mTwq o020 upstream_gene_variant MODIFIER STOP_CODON _scaffold_46_73351_73353 3779
3 scaffold_to_898402 -0o.00  mTwq o9 upstream_gene_variant MODIFIER STOP_CODON_scaffold_ro_896048_896050 2352
3 scaffold_1s_3s16s4  -0.003 mTwq o9 upstream_gene_variant MODIFIER STOP_CODON_scaffold_rs_348114_34816 3538
3 scaffold_15_372338  -0.094 mTwq o9 missense_variant MODERATE  CDS_scaffold_15_371961_372617 °
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Figure A.1 (A) Rooted phylogeny reconstructed using the M. phaseolina reference genome as outgroup.
Maximum-likelihood phylogeny reconstructed using 77,465 high-quality SNPs. Bootstrap support val-
ues over 7o are shown at nodes. Bootstrapping converged after 6oo replicates. Colored tips represent
the genetic cluster for each isolate as defined by principal components analysis. Individual isolate names
include ANSI/ISO codes for US states, and Colombia and Puerto Rico municipalities: CA: California,
CAU: Cauca, GA: Georgia, IN: Indiana, ISA: Isabela, JD: Juana Diaz, KY: Kentucky, LA: Louisiana,
MAG: Magdalena, MI: Michigan, MN: Minnesota, MS: Mississippi, SC: South Carolina, SD: South
Dakota, TN: Tennessee, TOL: Tolima, TX: Texas, VAC: Valle del Cauca, WI: Wisconsin. ISO country
codes: US: United States, COL: Colombia and PR: Puerto Rico. (B) Discriminatory analysis of principal
components. Each bar and color indicates the posterior probability membership value per isolate to one
of the five genetic clusters.



50 4

Host
o
fc\) © O O Soybean
LLQ, O Dry bean
8 0 @ Strawberry
o ~
Ethiopian mustard
Oo@ -
_50-

O

-200 -100 0 100
PC1 (50.6%)

Figure A.2 Principal component analysis (PCA) showing isolate host origin. Scatterplot from a princi-
pal component analysis based on the two first PCs (the eigenvectors of the 77,465 SNDPs) for all isolates.
Points are colored by host from which isolates were collected. Overlapping ellipses representing 95% of
the isolates from each of the hosts.
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Figure A.3 Spatial population structure using conStruct. (A) Maps of admixture proportions estimated
for M. phaseolina across the US, Puerto Rico and Colombia using the spatial conStruct model for K =
2 to K = 4. Pies show mean admixture results for individual isolates within their diameter. (B) Cross-
validation predictive accuracy values as a function of the number of layers (K = 1-7) for the spatial and
nonspatial conStruct models. (C) Layer contributions for K = 2 through 4.
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Figure A.4 MLLs shared among countries. MLL 7: one isolate from Colombia (Mph-s) and one from
Puerto Rico (UPR-Mph-]JDi) clustering in COLPR1, MLL17: one isolate from Puerto Rico (UPR-Mph-
ISA3) and one from Louisiana (TNsor) clustering in COLPR2, and MLL 59: one isolate from Colombia
(Mph-49) and 19 isolates from US clustering in USIA . The two MLLs for isolates IN129-4 and Mph4o
are not shown.
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Figure A.s Spatial structure variables identified using distance-based Moran’s eigenvector maps (db-
MEMs 1-3). The variable dbMEM 3 identified as significant using forward-variable selection described
broad spatial structure. Color and size of the points correspond to the sign (+ or -) and magnitude of the
dbMEM variables, respectively.
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Figure A.6 Venn diagram showing the overlap between outlier loci identified by both partial RDA (con-
strained on neutral population structure) and full RDA (unconstrained) models using unlinked SNPs
(LD-filtered set of 11,421 SNPs).
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Figure A.7 Maximum-likelihood phylogeny reconstructed using concatenated sequences of the Internal
Transcribed Spacer regions for the nuclear IDNA operon (ITS), part of the Translation Elongation Factor
(TEF-1) gene region, and part of the actin (ACT) gene region.
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CHAPTER 3

SENSITIVITY TO SINGLE-SITE FUNGICIDES IN MACROPHOMINA PHASEOLINA
POPULATIONS FROM SOYBEAN AND DRY BEAN
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3.1 Abstract

Charcoal rot, caused by Macrophomina phaseolina, is a soil- and seedborne disease that affects soybean
and dry bean production worldwide. Strategies for effectively managing charcoal rot are limited, and
management has primarily focused on varietal resistance and cultural practices. Fungicide efficacy studies
conducted in past years have focused on older active ingredients and information on the sensitivity of
M. phaseolina to newer classes of single-site fungicides is lacking. Although not specifically targeting
M. phaseolina, single-site fungicides are used in soybean and dry bean production as seed treatments,
soil applications, and foliar sprays. The in-vitro sensitivity of 92 M. phaseolina isolates collected from
soybean and dry bean in the United States, Puerto Rico and Colombia was assessed for three classes of
single-site fungicides widely used in soybean and dry bean production. The relative mycelial growth of 4.
phaseolina isolates challenged against boscalid (SDHI), iprodione (dicarboximide) and prothioconazole
(DMI) was used to determine the effective concentration to inhibit mycelial growth by s0% (ECsg). All
92 isolates were sensitive to boscalid, iprodione and prothioconazole. Mean ECsg values for boscalid,
iprodione, and prothioconazole were 0.51, 0.86 and 0.14 ug ml™ respectively. The full-length nucleotide
sequences of fungicide target genes were assembled to investigate mutations in all isolates. Mutations

found in target genes did not associate with levels of M. phaseolina fungicide sensitivity.

3.2 Introduction

Soil-borne fungal pathogens are a major threat to crops and food security and fungicides are key com-
ponents of effective disease management to prevent yield loss and ensure high-quality crop production.
Since the 1970’s fungicide use has increased, partly with the advent of broad-spectrum systemic single-
site fungicides such as dicarboximides, sterol biosynthesis inhibitors including demethylation inhibitors
(DMIs; azoles), and succinate dehydrogenase inhibitors (SDHIs) (Russell, 2005). Changes in cultural
practices such as reduced or no-tillage systems, which add complexity to disease dynamics by favoring
pathogen inoculum in crop residue, have further contributed to the increased use of fungicides (Oerke,
2006; Morton and Staub, 2008). Only a few years after the commercial use of fungicides, acquired re-
sistance became a significant threat to their efficacy (Kuck and Russell, 2006; Leadbeater et al., 2019).

Therefore, globally, as well as in the US, monitoring for development of resistance is an important com-
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ponent for the implementation of effective disease management strategies (Brent and Hollomon, 2007).

Charcoal rot disease, caused by the soil- and seed-borne pathogen Macrophomina phaseolina, has
been recognized as a threat of increasing importance to soybean (Glycine max) and dry bean (Phaseolus
vulgaris) production in the US and worldwide (Dhingra and Sinclair, 1978; Wrather etal., 2010; Reznikov
et al,, 2018; Jacobs et al.,, 2019; Savary et al,, 2019; Bradley et al., 2021). In the field, charcoal rot typically
develops at reproductive stages of soybean and dry bean. However, infection may occur at emergence and
early in the growing season causing up to 100% incidence of seedling infection 2 to 3 weeks after plant-
ing causing seedling blight (Hartman et al., 2015a; Hartman et al., 2015b). Seedling disease is most often
reported in tropical regions, however in temperate regions damage to soybean seedlings is also observed,
particularly under high temperature and low soil moisture conditions (Meyer and Sinclair, 1974; Hart-
man et al., 20152). Infection begins, most commonly, with microsclerotia present in soil or plant residue.
Microsclerotia germination followed by appressoria development allows host penetration through the
root epidermis with subsequent invasion of root and stem tissue. Alternatively, colonization can occur
from infected seed. Eventually M. phaseolina colonizes the vascular system leading to wilting, necrosis,
and plant death (Hartman et al., 2015a). M. phaseolina reproduction in infected plants produces abun-
dant microsclerotia which, following plant death and crop harvest, can survive in crop residue and in
soil for years (Dhingra and Sinclair, 1974). Although M. phaseolina can be a devastating pathogen, it
can also colonize plants asymptomatically, and it is recognized as an endophyte and latent pathogen in
many plant species (Dhingra and Sinclair, 1974; Slippers and Wingfield, 2007; Slippers and Boissin, 2013;
Parsa et al., 2016; Crous et al., 2017). Management of charcoal rot in soybean and dry bean relies mostly
on host genetic resistance which is limited in both crops and cultural control measures, which may be
challenging to implement (Pastor-Corrales et al., 1988; Hartman et al., 2015a; Coser et al., 2017; Romero
Luna et al., 2017; Ambachew et al., 2021). Chemical-control strategies are aimed at reducing microsclero-
tia in soil and limiting host colonization (Romero Luna et al., 2017). Fungicide seed treatments and soil
applications can provide protection by delaying colonization and reducing fungal growth within root,
stem and vascular tissue (Bradley, 2008). Seed treatments with benomyl (benzimidazole) and carboxin

(first generation succinate dehydrogenase inhibitor) showed some effectiveness in reducing incidence of
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charcoal rot in dry bean seedlings under greenhouse conditions (Abawi and Pastor-Corrales, 1990). Sim-
ilarly, soybean seed treated with thiophanate methyl + pyraclostrobin protected plant emergence in field
inoculation experiments (Reznikov et al., 2016). Recent studies evaluated the 7z-vitro sensitivity of M.
phaseolina to different fungicide classes using a single isolate (Tonin et al., 2013; Chaudhary et al., 2017).
However, current chemical-control strategies for charcoal rot do not provide consistent effective control
and information on the effectiveness of newer fungicides chemistries using a collection of M. phaseolina
isolates is lacking (Reznikov et al., 2016; Romero Luna et al., 2017; Roth et al., 2021).

In soybean and dry bean, management strategies commonly include the use of single-site fungicides
as seed treatments and foliar applications (Hartman et al., 2015b; Lehner et al., 2017; Bandara et al,,
2020; Karavidas et al., 2022). Most single-site fungicides target mitochondrial respiration function, the
cytoskeleton or ergosterol biosynthesis. The demethylation inhibitors (DMIs) are the most important
group of fungicides currently used in crop protection, leading the world fungicide market (Leadbeater
et al., 2019). DMIs inhibit the C14-demethylation step of ergosterol biosynthesis interfering with mem-
brane integrity. The succinate dehydrogenase inhibitors (SDHIs) fungicides target the succinate dehydro-
genase (mitochondrial complex IT in the electron transfer chain), thereby inhibiting fungal respiration.
Dicarboximides cause cell death through interference with osmotic signal transduction pathway via in-
appropriate activation of the osmosensing class III histidine kinase (Motoyama et al., 200s; Yamaguchi
and Fujimura, 2005)(Fungicide Resistance Action Committee, FRAC: www.frac.info).

DMIs, SDHIs and dicarboximides are considered either medium or medium to high risk for the de-
velopment of fungicide resistance (FRAC: www.frac.info) and shifts in fungicide sensitivity have been
reported in important crops for these three classes (Brent and Hollomon, 2007; Hartman et al., 2015b;
Leadbeater et al., 2019). The most common mechanisms of resistance to DMIs, SDHIs and dicarbox-
imides are changes in the amino acids of the target proteins. Single point mutations in Sdh succinate
dehydrogenase (Sang and Lee, 2020), os1 histidine kinase, and cypst Ci4-demethylase genes are known
to confer reduced sensitivity to boscalid, iprodione and prothioconazole, respectively, in several fungal
pathogens (FRAC: www.frac.info). In addition, cypsr genes overexpression (Schnabel and Jones, 2001;

Nikou et al., 2009; Wei et al., 2020) and promoter insertions have been associated with DMI-reduced
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sensitivity of phytopathogenic fungi.

Single-site systemic fungicides are highly effective, meaning that most individuals are either killed or
inhibited resulting in selection for any resistant individuals (Lucas et al., 2015). Factors such as fungi-
cide distribution in the plant tissues and dilution to non-lethal doses may lead to the development of
resistance not only in the target pathogen but in other fungal pathogens or the plant-associated fungal
community (Brent and Hollomon, 2007; Chamberlain et al., 2021). Additionally, large-scale homoge-
neous agricultural systems which often have low crop genetic diversity and can sustain large and rapidly
reproducing pathogen populations constitute conducive environments for the evolution of resistance
(Brent and Hollomon, 2007).

Selection for resistance can occur in any environment containing fungicides. The risk of fungicide
resistance depends mainly on the fungicide mode of action and specificity (e.g. multisite vs. single-site),
the biological characteristics of the fungi, such as reproduction mode and rate of reproduction, and agro-
nomic factors related to appropriate fungicide use (Leadbeater et al., 2019). In addition, pathogen demo-
graphic history, for example greater inoculum load leading to increases of effective population sizes, and
the existence of fitness trade-offs may also play an important role in the development of fungicide resis-
tance (McDonald and Stukenbrock, 2016; Hawkins and Fraaije, 2018). Although evolution of resistance
to fungicides has been characterized for many fungal pathogens, there are few studies that assessed the
fungicide sensitivity and potential mechanisms of resistance in M. phaseolina.

Opverall, we consider it likely that M. phaseolina is commonly exposed to fungicides used in soybean
and dry bean production and that conditions associated with the use of fungicides to protect crops against
economically important fungal pathogens could favor the development of fungicide resistance in M.
phaseolina populations either as direct or off-target effect. We therefore hypothesize that selection for re-
sistance may occur in the internal tissues of plants or seeds treated with fungicides as well as in crop residue
and soil containing fungicide residue. Additionally, we hypothesize that populations in tropical and sub-
tropical regions in which environmental conditions could allow for year-round pathogen multiplication
and therefore sustain large populations, may be at higher risk of developing resistance. The objectives

of this study were 7) to investigate boscalid, iprodione and prothioconazole 7n-vitro sensitivity of 92 M.
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phaseolina isolates collected from soybean and dry bean from the US, Colombia, and Puerto Rico, and 77)
identify mutations in the Sdh, ost and cypsr target genes of M. phaseolina isolates and examine their asso-
ciation with levels of M. phaseolina in-vitro fungicide sensitivity. For this, we conducted mycelial growth
assays and investigated fungicide target genes from M. phaseolina whole-genome sequences. This study
provides information for effective use of active ingredients in current commercial fungicide formulations

and aid in the designing of effective disease management strategies.

3.3 Results

331 ECs determination for 35 M. phaseolina isolates

The ECs values of 35 M. phaseolina isolates were determined based on mycelial growth on Petri plates
amended with different concentrations of boscalid, iprodione and prothioconazole (Table 3.1). Isolate
mean ECs( values were not different across experiments, with confidence intervals that overlapped zero,
for boscalid (Bost—Bos2: -0.068 ug ml™!; 95% CI -0.478 — 0.104) and iprodione (Ipror—Ipro2: 0.063
#g ml™Y; 95% CI -0.045 — 0.213) (Table A.1). For prothioconazole, although the CI did not overlap zero
(Pror—Pro2: -0.065 ug ml™; 95% CI -0.127 — -0.027), mean ECs difference was less than 0.07 ug ml~,
as for boscalid and iprodione (Table A.1). Overall, mean ECs differences indicate that the ECsg values
were consistent across experiments for all fungicides (Figure A.1r). The ECsg values for boscalid ranged
from o.12 to 2.77 ug ml~! with mean 0.44 ug ml™!, though only two isolates (CR-Red-2B and MP144)
had an ECsp more than 1 g ml™ (Table 3.1). For iprodione, the ECs of isolates ranged from .53 to
1.39 #g ml'with mean 0.83 gg ml™ (Table 3.1). Isolates were most sensitive to prothioconazole with
ECs values ranging from o.0s to 0.64 gg ml™!, with mean of o.15 zg mI™! (Table 3.1 and 3.2). These
results indicate that M. phaseolina isolates evaluated were sensitive to the three fungicides tested. Isolate
sensitivity differed across the three fungicides. Isolates were most sensitive to prothioconazole, followed
by boscalid and least sensitive to iprodione (Figure 3.2). Mean ECs differences were 0.39 g ml™ (95%
Clo.14 — o.s1) and -0.30 ug ml™! (95% CI -0.57 — -0.19) for iprodione and prothioconazole as compared
to boscalid, respectively, and -0.69 ug ml™ (95% CI -0.76 — -0.62) for prothioconazole as compared to

iprodione (Table A.2).
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Table 3.1 Mean ECs (effective concentration to reduce growth by s0%) estimates for 35 M. phaseolina
isolates determined from mycelial growth assays in Petri plates amended with different concentrations of
fungicides boscalid, iprodione or prothioconazole.

Isolate Boscalid Iprodione Prothioconazole
Standard Standard Standard
ECso Error ECso Error ECso Error
CR_Red 1 0.716 0.00I L.162 0.074 0.165 0.012
CR_Red 2B 2.766 1.267 1.106 0.121 0.089 0.006
CR_Red 3 0.663 0.426 0.871 0.089 0.177 0.064
Dmis 0.527 0.216 0.856 0.057 0.146 0.032
Etrz 0.184 0.009 0.780 0.247 0.135 0.037
Etry 0.584 0.133 0.980 0.262 0.154 0.035
Et18 0.480 0.061 0.680 0.005 0.112 0.028
INi2 8 3 0.261 0.027 0.574 0.098 0.094 0.004
IN12_9 4 0.189 0.02§ 0.588 0.018 0.059 0.028
INi2 9 6 0.256 0.038 0.819 0.187 0.136 0.019
IN2_PO _3 0.253 0.058 0.525 0.078 0.197 0.054
Mds 0.124 0.021 0.650 0.093 0.147 0.057
Mdé6 0.203 0.022 0.769 0.110 0.124 0.030
MI-SF 1-36 0.216 0.016 0.712 0.056 0.129 0.024
MI-SF 10-16 0.223 0.014 0.786 0.108 0.108 0.009
MI-SF 2-16 0.197 0.007 0.854 0.047 0.110 0.003
MI-SF 9-8 0.190 0.044 0.993 0.079 0.099 0.007
MISOr71-1 0.186 0.069 0.810 0.142 0.087 0.013
MISOr71-2 0.315 0.079 0.781 0.066 0.091 0.003
MISOr171-3 0.170 0.003 0.663 0.064 0.108 0.0I5
MP1i44 L.I75 0.014 1.394 0.763 0.638 0.142
MP249 0.764 0.233 1.038 0.097 0.156 0.060
MP2538 0.290 0.034 1.027 0.051 0.140 0.050
SAGs-4 0.219 0.028 0.984  0.008 0.146 0.012
TN264 0.275 0.109 0.653 0.051 0.237 0.124
TN270 0.496 0.052 0.767 0.101 0.046 0.008
TN4 0.198 0.021 0.657 0.019 0.051 0.013
TNs 0.190 0.009 0.728 0.010 0.200 0.073
TNso1 0.674 0.237 0.707 0.143 0.136 0.025
TNjss0 0.396 0.04I 1.000 0.213 0.167 0.005
W-MISO23-6 0.409 0.135 0.713 0.087 0.137 0.042
W-MISO2 4-10  0.342 0.053 _ _ 0.151 0.032
W23 0.217 0.033 0.645 0.016 0.133 0.025
Was 0.693 0.159 0.900 0.299 0.150 0.022
W3- 0.475 0.082 1.099 0.204 0.170 0.017
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3.3.2 Isolate screening and ECs prediction using single concentrations

Single concentrations of boscalid 1 ug ml™, iprodione 1 g ml™, or prothioconazole o.5 g ml™! were
used to screen the remaining ss M. phaseolina isolates. ECs(p)values for each isolate were predicted af-
ter linear regression models based on RMG at the single concentration (Figure A.2). For all fungicides,
ECsg(p)values were within the range of the ECs values estimated for the set of 35 M. phaseolina isolates
initially tested (Table 3.2 and A.3). None of the s5 isolates were found to have ECsp)values above the
threshold to be categorized as less sensitive (1.84, 1.41, and 0.43 g ml™ for boscalid, iprodione and pro-
thioconazole, respectively) (Figure 3.3). Consistent with the ECs estimations for the initial set, isolates

were most sensitive to prothioconazole and least sensitive to iprodione (Figure A.3).

Table 3.2 Mean and range ECs (effective concentration to reduce growth by 50%) estimates and predic-
tions for different sets of M. phaseolina isolates determined from mycelial growth assays in Petri plates
amended with multiple or single concentrations of boscalid, iprodione or prothioconazole.

Set ECs type Boscalid Iprodione Prothioconazole
Mean Mean Mean
ECs ECsp range ECs ECsg range ECs ECsp range
min  max min  max min max
Multiple concentrations EC n 2966 Sar o 146 P 8
3 isolates? 50 0.443 024 2.7 0.831  0.525 1394 0.146 0.046 0.63
Singl trati
ne'e COI},C‘:’“ ration ECso(p) 0.404 0037 1.538 0.758 0.566 1.300 0.108 0.066 0.325

55 isolates
Combined and validation

sets o2 isolates” ECspand ECs(p)y 0514 024 2.766 0.863 0.525 1.902 0.143 0.046 0.638

“ECsq Estimates for 35 M. phaseolina isolates determined from mycelial growth assays in Petri plates
amended with different concentrations of boscalid, iprodione or prothioconazole. bECso( p) predictions
for ss M. phaseolina isolates determined from mycelial growth assays in Petri plates amended with single
concentrations of boscalid 1 zg ml™, iprodione 1 zg mI™}, or prothioconazole o.5 ug ml™!. ‘Combined
ECsg and ECs(p) values for 92 M. phaseolina isolates. This combined data set consists of multiple con-
centration, single concentration and validation data points, including two additional isolates from the
validation set.

Validation of linear regression models for ECs(p)prediction was conducted by estimating ECs val-
ues and correlating them with predicted ECs(p)values in a validation set of 13 isolates (Table A.4). These
validation isolates were selected to represent the range of ECso /ECsg(p)values previously determined

and included two isolates not tested in any of the previous assays. A significant positive linear relation-

ship was observed between estimated ECsg and predicted ECsp)values for all fungicides (Pearson’s R =
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0.97, 0.94 and 0.90 for boscalid, iprodione and prothioconazole, respectively; P < o.0o01) (Figure A.4).

3.3.3 Combined ECsy and ECs(p for 92 M. phaseolina isolates

ECso and ECs(p)values were combined to analyze the zn-vitro fungicide sensitivity of the 92 M. phase-
olina isolates, including data points and isolates from the validation set. The combined ECs and ECsp)
distribution for the 92 isolates ranged from o.12 to 2.77 g ml™! with a mean ECsg of o.51 g ml™ for
boscalid. For iprodione, ECs values ranged from 0.53 to 1.90 g ml™ with a mean value of 0.86 g ml~L.
For prothioconazole, ECs ranged from o.05 to 0.64, with mean of 0.14 ug ml~! (Figure 3.4). Isolates
were most sensitive to prothioconazole, followed by boscalid and least sensitive to iprodione, as indicated
by mean ECs differences between fungicides for the 92 isolates (Figure 3.5, Table 3.3). While no resistant
isolates were identified, isolates with ECso/ECs(pyvalues above three standard deviations from the mean
(1.43, 1.52, and 0.33 ug ml™! for boscalid, iprodione and prothioconazole, respectively) were categorized
as less sensitive (Figure 3.4, Table A.s). Less sensitive isolates were CR-Red2B and MpSDSU to boscalid;

MP144 to iprodione; and MP144 and MP223 to prothioconazole (Table A.s).

Table 3.3 Mean ECs/ECsp) differences for 92 M. phaseolina isolates across fungicides: boscalid, ipro-
dione and prothioconazole.

Pairwise fungicide comparison ~ Mean ECs difference 95% Cla
low  high
Iprodione minus Boscalid 0.392 0.289  0.458
Prothioconazole minus Boscalid -0.293 -0.397 -0.239
Prothioconazole minus Iprodione -0.685 -0.732  -0.645

“95% confidence intervals adjusting for asymmetrical resampling distributions using bias-corrected
and accelerated bootstrap (BCa bootstrap).

To examine whether isolates differ in their sensitivity to each fungicide by host or genetic related-
ness, ECso/ECs(p)values were examined by isolate soybean or dry bean origin and genetic cluster (as
determined in chapter 2). No differences in sensitivity were found between soybean and dry bean isolates
for any of the three fungicides (Figure A.s). Isolates collected from strawberry (Mir-12 and M13-26) and
Ethiopian mustard (MpSDSU) were not included in this analysis because of the low number of isolates

from each of these hosts. When analyzed by genetic cluster, isolates in the UStA, USiB and COLPR1 ge-
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netic cluster were found to be, on average, more sensitive to the three fungicides, as compared with isolates
in US2 and COLPR2 genetic clusters (Figure S6, Table A.6). Although, higher mean ECs values were
obtained for isolates in the US2 and COLPR2 genetic groups, mean ECsg differences between genetic
clusters were all < 0.6, 0.4 and 0.07 ug ml™! for boscalid, iprodione and prothioconazole, respectively
(Table A.6). All isolates were found to be sensitive to boscalid, iprodione and prothioconazole indicating
their potential use for M. phaseolina management. Though 7n-vitro assays provide an initial assessment,
in-vivo and field efficacy testing is necessary to determine whether they provide protection under field
conditions.

3.3.4 Mutations in fungicide target genes and associations to isolate sensitivity

The predicted sequences of SdhB, cypst, and os1 genes of the 92 M. phaseolina isolates were obtained
to examine whether mutations were associated with fungicide sensitivity. Species sequence alignment
of the translated SdhB, cypst, and os1 genes sequences revealed high amino acid identity among all 92
isolates and with the reference sequences. Conservation of the SdhB iron-sulfur subunit was detected
across all isolates. The cypsiB sequence was 525 amino acids with the heme-binding domain detected at
codons 460-469 including the heme coordinating cysteine at codon 467. The predicted cypsiA sequence
was 505 amino acids long. Amino acid sequence alignments of the 92 M. phaseolina isolates detected
cypsiB mutations in four isolates collected from dry bean in Colombia and two isolates collected from
soybean in the US (Table 3.4). Similarly, mutations in cypstA sequence were detected in 14 isolates col-
lected from dry bean in Colombia or Puerto Rico (Table 3.4). SdhB mutations were identified in three
dry bean isolates from Colombia and one isolate from Puerto Rico. None of the mutations were found
to be associated with reduced fungicide sensitivity. Structural modeling of the target proteins localized
all mutations outside of the binding pocket and with low probability of affecting binding affinity of the
fungicide molecules.

3.4 Discussion

This study provides information on the 7z-vitro efficacy against M. phaseolina of three single-site fungi-
cides widely used in crop production worldwide. A total of 92 M. phaseolina isolates collected mainly

from soybean and dry bean across the US, Colombia and Puerto Rico were characterized for their 7z-vitro
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Table 3.4 Mutations in fungicide target genes found in M. phaseolina isolates. Host and geographic ori-
gins of isolates are shown.

Gene  Mutation Isolate Origin

cypsiB - V33l Mph24 Dry bean Colombia
V86l Mphat Dry bean Colombia
V86l Mph238 Dry bean Colombia
I96T MP2s8 Dry bean Colombia
H249Y IN129-4 Soybean North
H249Y MP258 Soybean South

cypstA  V427F Mph24, Mph48 Dry bean Colombia

Mph27, Mph38, Mph39, Mph4s, Mphso,

D479Y  Mphs2, Mphs3, Mphs, UPR_ISAz, giy Eeaﬁ 1? Okr)tm 1;11?
UPR_]JD1, UPR_]JD2, UPR_]JD3 y bean Puerto Rico

sdhB A20T Mph24, Mph27, Mph48 Dry bean Colombia
VisoL UPR_ISA2 Dry bean Puerto Rico

sensitivity to boscalid (SDHI), iprodione (Dicarboximide) and prothioconazole (DMI). This represents
the largest assessment of M. phaseolina variation in fungicide sensitivity in these countries. Prior stud-
ies characterizing the 7z-vitro sensitivity of M. phaseolina to difterent classes of fungicides have focused
on older active ingredients or have used a limited number of isolates (Tonin et al., 2013; Chaudhary et
al., 2017). We demonstrated that M. phaseolina isolates from soybean and dry bean were sensitive to
boscalid, iprodione and prothioconazole active ingredients when tested in mycelial growth assays. While
isolate variability in ECs values to these fungicides was present, no isolate was insensitive to any of the
tested fungicides. Notably, we found significant difterences in M. phaseolina sensitivity to the three fungi-
cides tested. Prothioconazole was the most efficacious active ingredient in reducing fungal growth (mean
ECso/ECso(p)= 0.14 g ml™), as compared to boscalid (mean ECso/ECs(p)= 0.51 ug ml™) and ipro-
dione (mean ECs0/ECsg(p)= 0.86 g ml™). In a study of M. phaseolina in Brazil, iprodione inhibited
mycelial growth of a soybean isolate (ECsg = 1.13 #g ml™) (Tonin et al., 2013). To our knowledge, similar
in-vitro studies reporting ECs results of boscalid, iprodione or prothioconazole have not been conducted
for a collection of M. phaseolina isolates.

Our study found no resistant isolates across M. phaseolina genetic clusters in the US (US1A, USiB

and US2), Colombia and Puerto Rico (COLPR1and COLPR2). Variation between genetic clusters was
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Figure 3.1 ECs distribution of 35 M. phaseolina isolates collected from soybean and dry bean. Less sen-
sitive isolates were designated as the ones with an ECsg value higher than three standard deviations from
the mean.

observed with a general trend of least sensitivity in US2 and COLPR2 clusters as compared to USIA,
US1B and COLPRu cluster across fungicides. We hypothesized that M. phaseolina isolates may develop
fungicide resistance in the context of soybean and dry bean production. Furthermore, we hypothesized
that Colombian and Puerto Rican isolates may have higher risk of developing fungicide resistance as com-
pared to US isolates. The reason for this was that environmental conditions in tropical locations, such as
Colombia and Puerto Rico, allow for year-round permanence of M. phaseolina, and therefore, the poten-
tial maintenance of large pathogen populations in soil and crop residue. Additionally, the higher genetic
diversity found in M. phaseolina Colombian-Puerto Rican genetic clusters (COLPR1 and COLPR2),
as compared to US clusters (UStA, USiB and US2) (Ortiz et al., under review) led us to consider these
populations may be at greater risk of developing resistance. However, our results did not support this

hypothesis. Instead, we found isolates in all genetic clusters were sensitive to the three fungicides tested
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Figure 3.2 Mean ECs differences of 35 M. phaseolina isolates across fungicides: (A) Boscalid-Iprodione
(B) Boscalid-Prothioconazole (C) Iprodione-Prothioconazole pairwise comparisons. Isolates were most
sensitive to prothioconazole, followed by boscalid and least sensitive to iprodione.

and most isolates from Colombia and Puerto Rico (grouped in COLPR1 genetic cluster) had similar
sensitivities to those in other genetic clusters. This suggests that low selection pressure and/or low in-
trinsic M. phaseolina risk for fungicide resistance development. Generally, a single fungicide application
is conducted during the growing season in dry bean and soybean, in commercial fields (Hartman et al.,
2015b) as well as in experimental plots from where the Colombian and Puerto Rican isolates in this study
were collected (Gloria Mosquera and Consuelo Estevez, personal communication). In addition, although
population sizes may be high, effective population sizes may remain low due to the mostly clonal nature
of M. phaseolina.

Resistance to SDHIs, DMIs or Dicarboximide has not been reported in M. phaseolina (Sang and
Lee, 2020). Overall, this study indicates that M. phaseolina has a low risk of developing resistance. A
limitation of this study is that isolates from Colombia and Puerto Rico were collected only from dry bean
experimental plots. A previous study conducted in a dry bean producing region in Colombia reported
that fungicides were applied several times during the growing season (Velasquez et al., 1990). Future
studies involving isolates collected from commercial fields in Colombia and Puerto Rico would provide
a broader assessment of M. phaseolina fungicide sensitivity in these countries.

Information regarding mutations in M. phaseolina Sdh, cypst and os1 genes is lacking. In this study
we report the predicted cyp, sdhB and ost sequences for 92 M. phaseolina isolates. Three paralogs of cypst
gene (cypsIA, cypsiB and cypsiC) have been identified in fungi and although their involvement in DMI

sensitivity is well known for several fungal phytopathogens (Schnabel and Jones, 2001; Mohd-Assaad et
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Figure 3.3 Predicted ECs(p) distribution of 55 M. phaseolina isolates tested in mycelial growth assays in
half-strength PDA plates amended with 1 mg ml™ of boscalid, 1 mg ml™! of iprodione, or 0.5 mg ml™! of
prothioconazole.

al., 2016; Zhang et al., 2017; Lestrade et al., 2019; Wei et al., 2020), the occurrence of cypstA and cypsiC
paralogs is unknown in M. phaseolina. The cypsiA and cypsiB paralogs sequences were present in the 92
M. phaseolina isolates tested in this study. cypstA itis thought to play a major role in reduced sensitivity to
DMIs, mainly as a functionally redundant mechanism for ergosterol production when fungi are exposed
with DMI fungicides (Fan et al., 2013; Liu et al., 2022).

A total of 19 isolates showed mutations occurring in the cypst genes and four isolates in the SdhB gene.
The cypsiA D479Y mutation was the most frequently identified mutation present in twelve isolates of
our collection. Interestingly, these isolates were all collected from dry bean in Colombia or Puerto Rico.
None of these point mutations were found to be correlated with lower levels of sensitivity. Reduced

sensitivity with high resistance factors (strength of resistance) is often observed with mutations located
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Figure 3.4 Combined ECsg and ECsq(p) distribution of 92 M. phaseolina isolates. This combined data
set consists of multiple concentration, single concentration and validation data points, including two
additional isolates from the validation set. Less sensitive isolates were designated as the ones with an
ECsg or ECs(p) value higher than three standard deviations from the mean indicated by the dashed line.

in putative azole molecules recognition sites (e.g V136A, Y131F, Y136F, Y137F, A379G, I381V) whereas
mutations in highly conserved regions of the cypst protein close to the heme binding site such as those at
codons 459-461 have been correlated with lower resistance factors (Cools et al., 2010; Mullins et al., 20115
Mehl et al., 2019). The cypsiB H249Y mutation was identified in two isolates collected from soybean in
the US. In Cryptococcus gattii, the cypst N249D mutation conferred azole resistance (Gast et al., 2013).
Molecular modelling of specific mutations in residues proximal to the binding pocket showed to have
differential impact on cypsr protein function depending on whether a single mutation was present or
in combination with others. The protein function was impacted mainly by alterations in the binding
pocket volume. Furthermore, the effect of these mutations on DMI sensitivity was different for certain

azole molecules (Cools et al., 2011; Mullins et al., 2011).
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Figure 3.5 Mean ECs /ECs(p) difterences of 92 M. phaseolina isolates across fungicides: (A) Boscalid-
Iprodione (B) Boscalid-Prothioconazole (C) Iprodione-Prothioconazole pairwise comparisons. Isolates
were most sensitive to prothioconazole, followed by boscalid and least sensitive to iprodione.

It has been hypothesized that seed treatments may be useful in protecting soybean plants from disease
caused by seedborne M. phaseolina (Hartman et al., 2015a; Hartman et al., 2015b). However, informa-
tion regarding the efficacy of active ingredients currently used in commercial fungicide formulations in
soybean and dry bean is lacking (Romero Luna et al., 2017). Although in-vivo and field studies would be
necessary, our results indicate that formulations with prothioconazole, boscalid or iprodione, may reduce
seedling infection originating from infected seeds or inoculum in the soil. In cotton, seed treatments with
a commercial formulation of boscalid + pyraclostrobin (Signum) showed efficacy in preventing seedling
infection by M. phaseolina in field experiments (Cohen et al., 2022). However, this protective effect was
observed only for 12 days while roots were exposed to the fungicide in soil (Cohen et al., 2022).

Our data on the zn-vitro efficacy of prothioconazole suggest that commercial formulations with this
active ingredient may be of particular interest for future in-vivo efficacy testing in soybean and dry bean.
Currently, fungicides labeled to control charcoal rot in different crops are available, although limited
(http://www.cdms.net). For instance, a formulation of prothioconazole + fluopyram (Propulse) is la-
beled for charcoal rot management in soybean. Prothioconazole (Proline) has been shown to suppress
plant colonization by M. phaseolina and improve yield under field conditions when used in tolerant soy-
bean varieties in inoculated plots as compared to non-inoculated plots (USB report, 2019). Future stud-
ies can be aimed at testing prothioconazole efficacy in preventing seedling colonization and charcoal rot

disease development as part of integrated management programs incorporating host genetic resistance
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and cultural practices. Furthermore, studies investigating novel effective fungicides and monitoring the
potential development of resistance to single-site fungicides in M. phaseolina populations would be ben-

eficial to charcoal rot management efforts.

3.5 Materials and methods

3.5.1  Macrophomina phaseolina isolates and whole-genome sequencing

A rotal of 92 M. phaseolina isolates collected mostly from soybean and dry bean, for which population
genomics analysis was conducted, were also used for fungicide sensitivity analysis (Ortiz et al., under re-
view). Species identity of these isolates was confirmed as described previously by sequencing the Internal
Transcribed Spacer regions for the nuclear IDNA operon (ITS), part of the Translation Elongation Fac-
tor (TEF-12) gene region, and part of the actin (ACT) gene region (Sarr et al,, 2014) (Ortiz et al., under
review). Briefly, this isolate collection included s2 isolates collected from soybean across the US and 40
isolates collected from dry bean in Michigan, Puerto Rico and Colombia, two isolates from strawberry
collected in California and one isolate collected from Ethiopia mustard in the US.

Whole genome sequencing and SNP calling was conducted as described in Ortiz et al., under review.
Genomic DNA was extracted from lyophilized mycelia using a modified SDS-based method; as described
previously (Ortiz et al., under review). Briefly, hyphal tip cultures grown on potato dextrose agar (PDA)
medium were used to produce mycelia on potato dextrose broth. Libraries were prepared using the Illu-
mina TruSeq Nano DNA Library Preparation Kit HT and whole-genome sequencing to 23X coverage
using a 150 base-pair paired-end strategy on the Illumina HiSeq 4000 platform at the Michigan State
University Research Technology Support Facility Genomics Core (East Lansing, MI) was conducted.

Quality assessment and filtering were conducted using FastQC (Andrews et al., 2010) and Cutadapt
v 1.16 (Martin, 2011). Sequences were aligned to the M. phaseolina reterence genome (JGI Mycocosm,
MPI-SDFR-AT-0080 v1.0) using bwa-mem (Heng Li, 2013). Single nucleotide polymorphisms (SNPs)
of all isolates were predicted using the Genome Analysis Toolkit (GATK) v4.0 (McKenna et al., 2010)
pipeline (Ortiz et al., under review). The resulting vcf file was quality filtered using vcfR vi.10.0 package

(Knaus and Griinwald, 2017) in R v4.0.0 (R Core Team 2019) (Ortiz et al., under review).
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3.5.2 Fungicides

Commercial fungicide formulations of the SDHI boscalid (70% A.I., Endura, BASF corporation, Re-
search Triangle Park, NC), Dicarboximide iprodione (Chipco 26GT 2SC, Bayer, Germany) and DMI
prothioconazole (Proline 480 SC, Bayer CropScience, Research Triangle Park, NC) were used. Addi-
tional information about these fungicides is presented in Table. Aqueous stock solutions of these fungi-
cides were prepared at 1000 ug ml™" of each respective active ingredient. Serial dilutions from the stock
solutions were used to produce final concentrations in half-strength PDA media of boscalid (0.1, 1, 10,
100 and 500 ug ml™), iprodione (0.1, 1, 2.5, 5 and 10 g mI™!) and prothioconazole (o.o1, 0.1, 0.5, 1and 10
ug ml™), except for boscalid highest concentration (500 g ml™) for which o.715 g of Endura, per liter
of media was used. These concentrations were selected based on preliminary experiments which directed
the appropriate fungicide concentrations for fitting a dose-response curve.

3.5.3 Determination of ECs values using mycelial growth inhibition assays

The sensitivity of 35 randomly selected M. phaseolina isolates to boscalid, iprodione and prothioconazole
was determined based on ECs (effective concentration to reduce growth by s0%) estimates. ECs values
for each isolate was determined using mycelial growth inhibition assays on fungicide-amended medium.
Before each experiment isolates were recovered from -80°C and grown on potato dextrose agar (PDA;
Acumedia, Lansing, MI) in the dark at 35°C for 24 h. Then a mycelial plug from the margin was trans-
ferred into a new Petri plate containing PDA and incubated in the dark at 35°C for 43 h. A single 6-mm
agar plug taken from the edge of the 43-h old culture was placed mycelial side down on the center of non-
amended half-strength PDA plates and plates amended with boscalid, iprodione or prothioconazole at
concentrations mentioned above. The plates were incubated in the dark at 35°C for 43 h.

The diameter of each colony was measured in two perpendicular directions with a digital caliper (Ab-
solute Digimatic Caliper, model CD-6” AX, Mitutoyo Corp., Sakado 1-Chome, Japan). Two separate
experiments and two replicates (Petri plates) per each experiment were performed for each isolate and
fungicide concentration. Isolates with data from at least two replicates were included in all subsequent
analyses. Percent relative mycelial growth (RMG) at each concentration was calculated as the percentage

of inhibition relative to the control without fungicides ((average colony diameter on fungicide amended
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plates / average colony diameter on non-amended plates) X 100).

Absolute ECs values were calculated using a four parameter log logistic (LL4) dose response model
asimplemented in R (R Core Team, 2018) in the ‘drc’ package (Ritz et al., 2016), and following guidelines
and workflow provided by (Noel et al., 2018). The LL4 model was used as it was the best fitting model
for most isolates as determined by AIC criteria. Less sensitive isolates were designated based on the fre-
quency distribution of the ECs( values as the ones with an ECs higher than three standard deviations
from the mean (ECs values > 1.84, 1.41, and 0.43ug ml™! for boscalid, iprodione and prothioconazole,
respectively). To investigate variability across experiments, isolate mean ECs differences between ex-
periments were estimated using DABEST (‘data analysis with bootstrap-coupled estimation’) (Ho et al.,
2019). Isolate mean ECs differences between experiments were all less than 0.07 g ml™ for all fungi-
cides, therefore experiments were combined in subsequent analyses.

3.5.4 Selection of single screening fungicide concentration and linear regression models

To screen the remaining isolates in a reduced resource-intensive manner, single screening concentrations
were determined for boscalid, iprodione and prothioconazole using the ECsy results of 35 M. phaseolina
isolates. A linear regression analysis between RMG and log-transformed ECs values of each isolate was
performed for the five tested concentrations for each fungicide. The fungicide concentration at which
the linear regression model returned the highest correlation coefficient (Pearson’s R) and proportion
of explained variance (R?) values was selected as the screening concentration for each fungicide. These
screening concentrations were found to be 1 zg ml™ for boscalid and iprodione, and o.5 ug ml™ for pro-
thioconazole. While for prothioconazole, o.1 xg ml™ and o.5 g mI™! concentrations both had similarly
high R and R? values (Pearson’s R=0.9, R*=0.8 ), at 0.5 #g ml™! most isolates had an RMG below 50%
indicating it may differentiate better less sensitive isolates than o.1 ug ml~.

3.5.5 Sensitivities and ECs(p) prediction using single screening fungicide concentrations
Sensitivities of each of the remaining 56 isolates were estimated based on RMG on half-strength PDA
plates amended with boscalid at1 g ml, iprodioneat g ml™, or prothioconazoleato.s ug ml™. Media
preparation, inoculation and mycelial growth measurements were conducted using the methods for ECs

estimation described above. Two separate experiments and two replicates (Petri plates) per experiment
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were performed for each isolate and fungicide. The linear regression model equations of boscalid (1 g
ml™), iprodione (1 zg ml™), or prothioconazole (0.5 ug ml™") (Figure A.2) were then used to predict an
ECs value, hereafter ECs(p), for each isolate, using the function ‘predict’ in R (R Core Team, 2018).
3.5.6 Validation of linear regression models used to predict ECs(p) values

A validation set of 13 isolates (Table A.4) was used to assess the performance of linear regression models
in predicting ECs(p) values using a new data set. These validation isolates were selected from those for
which an ECs or ECs(p) was previously estimated in the multiple and single concentration experiments
and to represent the range of these values. Additionally, two isolates not tested in any of the previous
experiments were included. For these validation isolates, ECsg values were determined using the five
fungicide concentrations in mycelial growth inhibition assays as described above. Then, the RMG at the
screening concentration for each isolate (boscalid [1 zg ml™"], iprodione [1 #g ml™!], or prothioconazole
[0.5 g ml™']) was used to predict an ECsg(p) value using the linear regression models previously selected.
A simple linear regression analysis was used to determine the relationship between estimated ECsg and
predicted ECsg(p) values for the 13 validation isolates.

3.5.7 Sensitivities of 92 M. phaseolina isolates using the combined ECs, /ECs(p) values

All previous data sets, this is the ECs values for the initial 35 isolates, the ECs(p) values for the ss isolates
in the single concentration experiments and the ECsg values for the validation isolates were combined
to report the fungicide sensitivity of the 92 M. phaseolina isolates. The combined distribution of ECsg
/ECs(p) values was used to categorize “less sensitive” isolates. Isolates were designated as less sensitive as
the ones with an ECs or and ECs(p) value higher than three standard deviations from the mean (ECs
or ECs(p) values >1.43,1.52,and 0.33 ug ml~! for boscalid, iprodione, and prothioconazole, respectively).
3.5.8 Sequence and target gene mutation analysis

To explore if the sensitivity of M. phaseolina to boscalid (SDHI), iprodione (Dicarboximide) and pro-
thioconazole (DMI) was associated with mutations in their target genes, the complete SdhB, cypsi, and
ost genes of the 92 M. phaseolina isolates were analyzed. Genome-guided de novo assembly of each iso-
late was done in Trinity (Grabherr et al., 2011) using whole-genome sequencing Illumina reads with the

M. phaseolina (JGI Mycocosm, MPI-SDFR-AT-0080 v1.0) as reference genome. Although Trinity was
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developed for RNA-seq data, it was used to take advantage of the genome-guided option for de-novo
transcript assembly, because it employs a de Bruijn graph approach (used by several whole-genome as-
sembly programs) and can identify transcripts resulting from paralogous genes (Grabherr et al., 2011).
Published sequences of the target genes SdhB, cypsi, and os1 (Shkr) (Duan et al., 2013) of Fusar-
tum graminearum, Botrytis cinerea, Diplodia corticola and Sclerotinia sclerotiorum were used as query
sequences to identify the orthologous sequences in the M. phaseolina reference genome using the pro-
gram BLAST. The reference sequence of each target gene was used to retrieve the sequences from the
assemblies of the 92 isolates, using a home-made script (https://github.com/vivianaortizl/). The amino
acid sequences were aligned and analyzed using Geneious software.
3.5.9 Statistical analysis
All data analysis was conducted in R (R Core Team, 2018). Linear regression modeling and model evalu-
ation were done with ‘Im’ and ‘AICctab’ functions (‘bbmle’ package). Isolates with data from at least two
replicates were included for analysis. Effect sizes and confidence intervals were estimated using DABEST
(Ho et al.,, 2019). Bootstrap confidence intervals were estimated adjusting for asymmetrical resampling
distributions using bias-corrected and accelerated bootstrap (BCabootstrap)(Efron and Tibshirani, 1993)

as implemented in ‘dabestr’ R package (Ho et al., 2019).
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Table A.1 Mean ECs differences and 95% confidence intervals for 35 M. phaseolina isolates across exper-
iments for boscalid, iprodione and prothicoconazole. Two separate experiments and two replicates per
experiment were performed for each isolate and fungicide.

Experiment1 Experiment2 Mean ECs difference 95% CI“
low high
Bosr Bos2 -0.068 -0.478  0.104
Iprox Iproz 0.063 -0.045  0.213
Pro1x Pro2 -0.065 -0.127  -0.027

“95% CI adjusting for asymmetrical resampling distributions using bias-corrected and accelerated
bootstrap (BCa bootstrap). Experiments are Bost and Bosz for boscalid, Ipror and Iproz for iprodione
and Pror and Pro2 for prothioconazole.
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Table A.2 Mean ECs differences for 35 M. phaseolina isolates across fungicides: boscalid, iprodione and

prothicoconazole.
Pairwise fungicide comparison ~ Mean ECs difterence 95% CI“
low  high
Iprodione minus Boscalid 0.388 0.144  0.505
Prothioconazole minus Boscalid -0.297 -0.568 -0.194
Prothioconazole minus Iprodione -0.685 -0.759  -0.6I5

“95% confidence intervals adjusting for asymmetrical resampling distributions using bias-corrected
and accelerated bootstrap (BCa bootstrap).
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Table A.3 Predicted ECsp) (effective concentration to reduce growth by 50%) for 55 M. phaseolina iso-
lates determined from mycelial growth assays in Petri plates amended with 1 mg ml ™! of boscalid, 1 mg

ml™ of iprodione, or 0.5 mg ml™" of prothioconazole.

Isolate Boscalid Iprodione Prothioconazole
ECso(p) 95% CI“ ECso(p) 95% CI“ ECso(p) 95% CI“
low  high low  high low  high
Etig 0.297 0.276 0.319 0.663 0.640 0.686 0.079  0.072 0.086
Et8 0.204 0187 0.222 0.675 0.653 0.698 0.082  0.075 0.089
IN2 4 0.253 0.234 0.273 0.673 0.651 0.697 0.083  0.077 0.0903
M 151 0.263  0.244 0.283 0.688 0.666 0.710 0.096  0.090 0.103
M 15 10 0.296 0.276 0.318 0.682  0.660 0.705 0.094 0.087 0.1007
M 15 12 0.331 0.309  0.35§ 0.736 0.714  0.758 0.108 0.I0I  O.II§
M 1513 0.273  0.254 0.294 0.748  0.727 0.770 0.109 0.103 0.1164
M 15 14 0.279  0.260 0.301 0.664 0.642 0.688 0.163 0.I52  0.I741
M 15 3 0.289 0.269 03I 0.696  0.674 0.718 0.13§ 0.127  0.143
M 15 4 0.584 0.536 0.637 0.702  0.681 0.725 0.092  0.086 0.099
M 155 0.324  0.302 0.347 0.642  0.618 0.666 0.124 0.II7  0.1322
M 15 7 0.396  0.368 0.425 0.700  0.678 0.722 0.129 0.122  0.1375
M 15 8 0.341 0.318  0.366 0.693 0.671  0.716 0.102 0.095 0.1088
M 15 9 0.284 0.264 0.305 0.566 0.540 0.593 o.18 O.II  0.125
Mir-12 0.727  0.658 0.803 0.838 0.815 0.863 0.093 0.086 o.I
Miz-26 0.310  0.289 0.333 0.722  0.701 0.744 0.161 0.150 0.I72
Mi6 1 0.284 0.264 0.305 0.667  0.645 0.691 0.114 0.107  0.1209
Mdio 0.284 0.264 0.305 0.681 0.659 0.704 0.102 0.095 0.109
Mds 0.339 0.316 0.364 0.658 0.635 0.681 0.117 0.II0 0.1243
Md7 0.339 0.315  0.363 0.638 0.615  0.663 0.112 0.I0§  O.II9I
MISOr171-4  0.274  0.255 0.295 0.626  0.602 0.651 0.131 0.124 0.1395
MISOr71-5 0.137 0.122  0.I53 0.709  0.687 0.731 0.075  0.069 0.0826
MISOr71-7  0.239 0.221 0.258 0.656 0.633 0.680 0.128 021  0.1361
MISO171-8  0.201 0.271  0.313 0.761  0.739 0.783 0.137 0.129 0.1456
MP220 0.498  0.461 0.539 0.700  0.678 0.723 0.090 0.084 0.0974
MP223 LI72 L.02§5  L341 L.116 .065  L.169 0.325 0.283 0.3731
MP250 0.651 0.594 0.714 0.799  0.777 0.822 0.086  0.079 0.0929
Mph_21 0.755 0.682 0.835 0.944 0.912 0.976 0.094  0.087 0.1009
Mph_22 0.596  0.546 0.650 1.037 0.996 1.080 0.066  0.060 0.0734
Mph_23 0.429  0.399 0.462 1.100 1.052  LISI 0.067 0.060 0.0743
Mph_27 0.177 0.161  0.194 0.852 0.828 0.877 0.155 0.145 0.1658
Mph_zS 0.840 0.753 0.937 0.867 0.841 0.893 0.118 O0.III  0.1253
Mph_35 0.806 0.725 0.896 0.904 0.876 0.933 0.118 O0.III  0.1251
Mph_38 0.248 0.229 0.268 0.735 0.713  0.757 0.089 0.082 0.0958
Mph_39 0.228  0.210 0.247 0.734 0712 0.756 0.086  0.079 0.0931
Mph_40 0.272 0.253 0.293 0.754 0.733 0.776 0.087 0.080 0.0936
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Table A.3 (cont’d)

Mph_4s 0.892  0.796 0.999 1.300 1.223 1381 0.076  0.069 0.0831
Mph_46 0.319 0.297 0.342 0.833 0.809 0.857 0.115 0.108 0.1226
Mph_48 0.386 0.359 0.414 0.909 0.881  0.938 0.089 0.083 0.0961
Mph_49 0.255 0.236 0.275 0.650 0.626 0.674 0.088 0.081 0.095
Mph_5 0.332 0.310  0.357 0.798 0.776  0.821 0.082 0.075 0.089
Mph_so 0.167 0.152  0.184 0.653 0.630 0.677 0.093  0.087 0.100I
Mph_s2 0.454  0.421 0.489 0.737 0.716  0.759 0.093 0.086 o.I
Mph_53 0.299 0.278 0.321 0.757 0.736  0.779 0.086 0.079 0.0928
Mph_s4 0.283 0.263 0.304 0.752 0.731 0.774 0.182 0.169 0.1967
MpSDSU 1.538 1316 1.798 0.893  0.866 0.921 0.081 0.075 0.0886
TN262 0.272 0.253 0.293 0.663 0.640 0.686 0.090 0.084 0.0973
TN279 0.305 0.284 0.328 0.583 0.557 0.610 0.098 0.091  0.1049
TN28o 0.281 0.261  0.302 0.649  0.625 0.673 0.126 018  0.1336
TN380 0.235 0.217  0.255 0.714 0.692 0.736 0.069  0.062 0.0761
UPR-ISA2  0.327 0.305  0.351 0.723  0.702  0.74§ 0.084 0.077 0.091
UPR-ISA3 0.543 0.50I  0.590 0.832  0.809 0.856 0.132 0.125  0.1407
UPR-JD1 0.217 0.199  0.235 0.667  0.644 0.690 0.092  0.085 0.0987
UPR-JD2 0.443 0.411  0.477 0.859  0.834 0.88s 0.105  0.099 0.1124
UPR-JD3 0.388 0362 0.417 0.706  0.685 0.729 0.092  0.085 0.0988

ECso(p) and 95% confidence intervals were back-transformed. “95% confidence intervals adjusting for
asymmetrical resampling distributions using bias-corrected and accelerated bootstrap (BCa bootstrap).
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Table A.4 Mean ECs (effective concentration to reduce growth by 50%) estimates and ECs(p) predic-
tions for a validation set of 13 M. phaseolina isolates determined from mycelial growth assays in Petri plates
amended with boscalid, iprodione or prothioconazole.

3*Isolate Boscalid Iprodione Prothioconazole
2*ECs £ SEa ECso(p) (95% CI)b 2*ECsp £ SEa 2*ECso(p)b  ECso(p) 95% CIb 2*ECsp £ SEa 2*ECso(p)b  ECso(p) 95% CIb
low  high low high low high
Etry 0.789 £ 0.199 0.755 0.682 0.836 1.225 * 0.225 LII7 1.066 LI7I 0.177 £ 0.034 0.083 0.077 0.090
M_15_7 0309+ 0.056 0316 0.294 0.339 r.o12 £ 0.060 0.957 0.924 0.991 0.128 + 0.014 0.131 0.123 0.139
MISO171-5  0.494 £ 0.345 0323 0.301  0.347 0.913 £ 0.052 0.846 0.822 0.870 0.097 * 0.008 0.084 0.078 0.091
MISO171-7 0196 £0.042 0.215 0.197 0.233 0.876 £ 0.142 0.863 0.838 0.889 0.105 + 0.018 0.101 0.094 0.108
MISO171-8  0.257 £0.066 0.221 0.204 0.240 0.752  0.220 0.787 0.765 0.809 0.119 £ 0.045 0.164 0.153 0.175
MPi44 123510357 1475 1266 1719 1.868 + 0.552 1.345 1.261 1.435 0.456 * o.117 0.342 0.296 0.395
MP223 _ 2.402 1978  2.916 1.902 £ 1.229 1.216 L.ISI 1.284 0.367 £ 0.181 0.233 0.210 0.257
MphJ.l 0.506 £0.299 0.483 0.447 0.522 1.803 £ 0.813 1.285 1.210 1364 0.187 £ 0.031 0.128 0.121 0.136
Mph_so 0.220 £ 0.040 0166 051  0.183 0.526 £ 0.058 0.629 0.605 0.654 0.087 + 0.004 0.084 0.077 0.091
Mph_s6 0.194 £ 0.033 0.227 0.209 0.246 L125 £ 0.163 0.977 0.942 L.oI2 0.240 £ 0.134 0.222 0.202 0.244
Wi2-6 0.338 £0.070 0.350 0.326 0.376 0.944 * 0.127 0.902 0.874 0.930 0.136 * 0.012 0.078 0.071 0.085
Was 0.534 £ 0159 0399 0372 0.429 1.375 £ 0.130 1.290 1.214 1.370 o.117 £ 0.024 0.076 0.070 0.084
W3- 0.507 £ 0.108 0.408 o0.380 0.439 1.139 £ 0.193 1.037 0.996 1.080 0.150 * 0.025 0.075 0.068 0.082
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Table A.s Mean ECs/ECsq(p) (effective concentration to reduce growth by 50%) values for 92 M. phase-
olina isolates determined from mycelial growth assays in Petri plates amended with boscalid, iprodione,
or prothioconazole.

Isolate Boscalid Iprodione Prothioconazole

Mean Mean Mean
ECso/ECso(p) ECso/ECso(p) ECso/ECso(p)

CR_Red 1 0.716 1162 0.165
CR_Red 2B 2.766 1.106 0.089
CR_Red 3 0.663 0.871 0.177
Dmi3 0.527 0.856 0.146
Etr 0.184 0.780 0.135
Etig 0.297 0.663 0.079
Etry 0.652 1.06I 0.162
Et8 0.480 0.680 0.112
Et8 0.204 0.675 0.082
IN12_4 0.253 0.673 0.083
IN2 8 3 0.261 0.574 0.094
IN12 9 4 0.189 0.588 0.059
INi2 9 6 0.256 0.819 0.136
INi2 PO _3 0.253 0.525 0.197
M 151 0.263 0.688 0.096
M 15 10 0.296 0.682 0.094
M 15 12 0.331 0.736 0.108
M 15 13 0.273 0.748 0.109
M 15 14 0.279 0.664 0.163
M 15 3 0.289 0.696 0.135
M 15 4 0.584 0.702 0.092
M 15 5 0.324 0.642 0.124
M 15 7 0.352 0.856 0.129
M 15 8 0.341 0.693 0.102
M 15 9 0.284 0.566 o.18
Mir-12 0.727 0.838 0.093
Mi3-26 0.310 0.722 0.161
Mi6 1 0.284 0.667 0.114
Mdio 0.284 0.681 0.102
Mds 0.124 0.650 0.147
Mds 0.339 0.658 0.117
Mdé6 0.203 0.769 0.124
Md7 0.339 0.638 0.112
MI-SF 136 0.216 0.712 0.129
MI-SF 10-16 0.223 0.786 0.108
MI-SF 2-16 0.197 0.854 0.110
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MI-SF 9-8
MISOr71-1
MISO171-2
MISOr71-3
MISO171-4
MISOr71-5
MISOr171-7
MISOr71-8
MPi44
MP220
MP223
MP249
MP2s0
MP258
Mph_21
Mph_22
Mph_23
Mph_27
Mph_28
Mph_3s
Mph_38
Mph_39
Mph_40
Mph_4s
Mph_46
Mph_48
Mph_49
Mph_s
Mph_so
Mph_s2
Mph_s3
Mph_s4
Mph_s6
MpSDSU
SAGs-4
TN262
TN264
TN270
TN279
TN28o
TN380
TN4

TN

Table A.5 (cont'd)

0.190
0.186
0.315
0.170
0.274
0.315
0.217
0.274
1.195
0.498
LI72
0.764
0.651
0.290
0.630
0.596
0.429
0.177
0.840
0.806
0.248
0.228
0.272
0.892
0.319
0.386
0.255
0.332
0.194
0.454
0.299
0.283
0.194
1.538
0.219
0.272
0.275
0.496
0.305
0.281
0.235
0.198
0.190

0.993
o0.810

0.781
0.663
0.626
0.811
0.766
0.756
1.552
0.700
1.509
1.038
0.799
1.027
1.373

1.037
1.I00

0.852
0.867
0.904
0.735
0.734
0.754
1.300
0.833
0.909
0.650
0.798
0.589
0.737
0.757
0.752
L.125
0.893
0.984
0.663
0.653
0.767
0.583
0.649
0.714
0.657
0.728

0.099
0.087

0.091
0.108
0.131
0.086
0.117
0.128
0.577

0.090
0.346
0.156
0.086
0.140
0.140

0.066
0.067
0.155
0.118
0.118
0.089
0.086
0.087
0.076
0.115
0.089
0.088
0.082

0.090
0.093
0.086
0.182
0.240
0.081
0.146

0.090
0.237

0.046
0.098
0.126

0.069
0.051
0.200
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TNsor

TNjsso
UPR-Mph-ISA2
UPR-Mph-ISA3
UPR-Mph-]Dr1
UPR-Mph-]D2
UPR-Mph-]Ds3
W-MISO2 3-6
W-MISO2 4-10
Wi2-6

W23

Was

W3-s

Table A.5 (cont'd)

0.674
0.396
0.327
0.543
0.217
0.443
0.388
0.409
0.342
0.338
0.217
0.640
0.491

0.707
1.000
0.723
0.832
0.667
0.859
0.706

0.713

0.944

0.645
1.058
LII9

0.136
0.167
0.084
0.132
0.092
0.105
0.092
0.137
0.151
0.136
0.133

0.139
0.160
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Table A.6 Mean ECso/ECs(p) differences for 92 M. phaseolina isolates across genetic clusters. Genetic
cluster USIA was used a reference group for comparisons.

Reference Test Boscalid Iprodione Prothioconazole
Mean ECs differencea 95% CI4 Mean ECs difference 95% CI¢ Mean ECs difference 95% CI*
low  high low high low high
USIA USiB 0.080 -0.018  0.188 0.142 -0.002  0.275 -0.040 -0.059  -0.0I5
USIA US2 0.570 0.357  LI2L 0.345 0.238  0.486 0.065 0.018  0.a71
USIA COLPR1 0.072 0.001  0.202 0.087 0.014  0.195 -0.021 -0.033 -0.007
USIA COLPR2 0.289 0.109  0.449 0.189 0.078  0.353 0.031 0.005  0.061
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Figure A.1 Mean difterences of 35 M. phaseolina isolates across experiments. Two separate experiments
and two replicates per experiment were performed for each isolate and fungicide. Experiments are Bost
and Bos2 for boscalid, Ipror and Ipro2 for iprodione and Pror and Pro2 for prothioconazole. Isolates
with data from at least two replicates were included.
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Figure A.2 Linear regression models and correlation analyses of relative mycelial growth and ECsg values
of 35 M. phaseolina isolates. Log Absolute ECs values were used. The line shows the linear regression
with 95% confidence interval shaded. Selected concentrations were 1 pug ml™ for boscalid and iprodione
and o.5 ug ml™! for prothioconazole.
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Figure A.4 Correlation of mean ECs (effective concentration to reduce growth by 50%) estimates and
ECsg(p) predictions for a validation set of 13 M. phaseolina isolates determined from mycelial growth
assays in Petri plates amended with multiple concentrations boscalid, iprodione or prothioconazole.
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CHAPTER 4
ECOCLIMATIC SUITABILITY AND ADAPTIVE GENOMICS IN MACROPHOMINA

PHASEOLINA, THE CHARCOAL ROT
PATHOGEN
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4.1 Abstract

Globally, charcoal rot caused by the fungal pathogen Macrophomina phaseolina is listed among the top
diseases threatening agricultural production. The environment has a profound influence on plant dis-
eases, however the effect of accelerated climate change on disease development is uncertain and host-
pathogen system specific. We studied the distribution and genomic adaptive potential of M. phaseolina,
a major fungal plant pathogen, in relation to climate. We retrieved worldwide occurrences of M. phase-
olina to develop an explanatory species distribution model using climatically relevant variables. Georef-
erenced occurrences in the global biodiversity information facility (GBIF) database and information of
M. phaseolina isolates collected in the US, Colombia and Puerto Rico reported in a previous study were
used. Occurrence data and climatic variables were used to identify within species worldwide suitability
patterns in M. phaseolina. Candidate adaptive loci associated with climatic variation were used to calcu-
late an adaptive index and infer the distribution of adaptive genetic variation in M. phaseolina. A global
species distribution bioclimatic model for M. phaseolina identified areas of high climatic suitability for
its occurrence that is consistent with all current records. Notable areas of high suitability were projected
in the southern US, north-eastern Argentina, eastern Australia, and southern Europe, where outbreaks

were recently reported.

4.2 Introduction

Changes in climate are already affecting disease incidence in agricultural systems (Altizer et al., 2013; Véry
et al., 20155 Veldsquez et al., 2018). Very often these effects depend on the patterns of climate change and
the host-pathogen system. For example, pathogen distribution and crop disease severity are driven to a
large extent by particular changing patterns in temperature, rainfall events and humidity (Altizer et al.,
2013; Sparks et al., 2014; Veldsquez et al., 2018; Yonow et al., 2019; Dudney et al., 2021). Furthermore,
responses to changing climate are intricately tied to organisms potential adaptive mechanisms and intra-
specific variation in those mechanisms (local adaptation), which in turn are influenced by factors such
as gene flow, and phenotypic plasticity (Savolainen et al., 2007; Savolainen et al., 2013; Croll and Mc-
donald, 2016; Waldvogel et al., 2020). Thus, both environmental and evolutionary potential should be

investigated and considered when modeling the distribution of species.

126



Models of climate change for the coming decades predict increases in global temperature, rainfall
and severe weather (Fisher et al., 2012). This is expected to increase the climatic variation that already
is present across different agricultural systems and regions of the world. To predict how pathogens geo-
graphic distribution will be altered under future climate changes it is necessary to understand how the cur-
rent pathogen distribution depend on climatic factors (Shaw and Osborne, 2011). However, the specific
environmental factors that contribute to the current distributions and disease occurrences have not been
characterized and species distribution models (SDMs) have not been developed for most plant pathogens
(Ireland and Kriticos, 2019).

Charcoal rot, caused by the widespread pathogen Macrophomina phaseolina, is listed among the top
10 diseases causing soybean yield losses in the US as well as globally (Allen et al., 2017; Savary et al., 2019;
Bradley et al., 2021). Diseases caused by M. phaseolina are favored by high temperatures and drought
episodes and these conditions are known to play a key role in triggering epidemics (Dhingra and Sinclair,
1974; Meyer and Sinclair, 1974; Kendig et al., 2000; Yang and Navi, 2005; Mengistu et al., 2011a; Mengistu
et al., 20omb; Reznikov et al., 2018). In the past few years, a surge in first reports of diseases caused by
M. phaseolina in a variety of crops and countries have been observed, including hemp in southern Spain
(Casano et al., 2018), tomato from Pakistan (Hyder et al., 2018), stevia in North Carolina (Koehler and
Shew, 2018), sugarcane in China (Wang et al., 2020), zebra plant in Serbia (Tancié Zivanov et al., 2018),
catnip in India (Nishad et al., 2018), grapevine in the US (Nouri et al., 2018), strawberry in Italy (Gerin
et al., 2018), Malabar spinach in India (Meena et al., 2018) among others. Interest in the interaction of
climate-charcoal rot have been rising and the associations between charcoal rot and climate have been
examined through review studies (Batista et al., 2021; Cohen et al., 2022). However, predicting the effects
of climate change on M. phaseolina distribution remains limited and models have not been used to predict
the climate suitability of this pathogen.

Species distribution modelling is an important tool in ecology and biogeography to investigate species
ranges and factors contributing to their distribution (Sutherland, 2006; Elith and Leathwick, 2009; Ju-
roszek and Von Tiedemann, 2013). SDMs have been used to predict the distributions of plant pathogens

as determined by climate (Burgess et al., 2017; Yonow et al., 2019) and to assess the risk of disease (Sparks
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etal., 2014) and epidemics (Paini et al., 2016). In addition to environmental conditions, evolutionary pro-
cesses, including those within-species, are crucial in species response to climate (Jay et al., 2012). There-
fore, genomic data is increasingly considered in SDMs being of special interest adaptive genetic variation
(Waldvogel et al., 2020). Adaptive genetic variation can provide insights into climate adaptation mecha-
nisms and the potential of rapid local adaptation to occur in the future under climate change. Neverthe-
less, SDM approaches often encounter challenges incorporating evolutionary information (Waldvogel et
al., 2020).

Recent developments in genotype-environment associations using redundancy analysis allow insights
into patterns of adaptive variation and can be used for the identification of candidate adaptive genomic
loci and adaptive indices in widespread non-model species (Steane et al., 2014; Capblancq and Forester,
2021). These tools have the potential to estimate adaptive indices associated with climatic variation in
fungal species in a landscape genomics framework. Indeed, candidate adaptive loci were previously iden-
tified in M. phaseolina (Ortiz et al., under review) which can be used to calculate adaptive indices in this
pathogen. Adaptive indices provide a measure of the adaptive genetic similarity on the landscape as a
function of climatic variables values at each location across the landscape (Steane et al., 2014; Capblancq
and Forester, 2021). This study investigated the effect of climatic variables in shaping the distribution
of M. phaseolina on a global scale, incorporating evolutionary projections. The objectives of this study
were to describe the climatic suitability and calculate an adaptive genetic-based index of M. phaseolina
on a global scale. We specifically developed an explanatory global distribution bioclimatic model by as-
sociating recorded locations of M. phaseolina with climatic variables and projected an adaptive genomic
index across the M. phaseolina distribution.

4.3 Results

4.3.1 Climatic suitability model

A correlative bioclimatic model based on M. phaseolina occurrence data and five climatic variables re-
lated to temperature and precipitation was developed using BIOCLIM. The model captured areas of cli-
matic suitability for M. phaseolina occurrences in every continent, which is consistent with this pathogen

records (Batista et al., 2021). The model mean AUC obtained via cross-validation with presence/pseudo-
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absence data was 0.65 (Supplementary Figure A.1). A high AUC indicates that locations with high pre-
dicted suitability scores tend to be locations of known presence (i.c., true positive rate). While an AUC
score of 0.5 correspond to random predictions. We found useful discriminatory ability of suitable vs.
unsuitable areas with our model considering the number of records included in this study and that for
presence-background data models the maximum possible AUC is less than 1 (Phillips et al., 2006). The
model projected high suitability for localities with low precipitation of driest quarter (BIOr7) and pre-
cipitation of warmest quarter (BIO18), and high mean temperature of warmest quarter (BIO10) (Figure
A.2). These predictions correspond to an expected distribution of higher M. phaseolina suitability at
warm and dry regions. In the US, predicted suitable regions were concentrated across locations in south-
ern states, including Texas, Oklahoma, Kansas, Arkansas, and Missouri. The highest suitability values in
the US were projected in a region of Arizona (southwest US). Although, generally lower than for south-
ern regions, regions of high suitability were projected as well in locations in the East and West North
Central regions (Figure 4.1).

In Colombia, regions of intermediate suitability were predicted mainly in the extreme north and east-
ern plains of Colombia (Caribbean and Orinoquia regions, respectively). Similar, intermediate suitability
values were predicted in Puerto Rico and other islands of the Caribbean. A trend of highly suitable val-
ues was observed in southern Europe particularly along coastal regions of Spain, France and Italy, and
localities of eastern Europe. Notably, the model predicted a large region of high suitability in the north-
east of Argentina, referred as the Plata Plain region, with highest values in areas near Buenos Aires and
La Pampa provinces. Reports of M. phaseolina occurrence and disease outbreaks in soybean, canola and
strawberry has been recently observed in northern provinces of Argentina (Gaetdn et al., 2006; Baino et
al., 20115 Viejobueno et al., 2017; Reznikov et al., 2018). Likewise, a high suitability is observed in regions
of eastern Australia and south-eastern South Africa for which increased charcoal rot incidence has been
reported (Hutton et al., 2013; Jordaan et al., 2019a) (Figure 4.1).

4.3.2 Spatial autocorrelation
Precipitation of warmest quarter (BIO18) and precipitation of driest quarter (BIO17) are aggregated with

similar precipitation values occurring within approximately 2000 km showing a maximum correlation
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Figure 4.1 BIOCLIM global climatic suitability model for Macrophomina phaseolina. BIOCLIM algo-
rithm and presence-background data records were used. A suitability value of 1 (green) indicates alocation
with high suitability and a value of o is given for locations predicted as unsuitable. Climatic variables used
as predictors in the model were BIO18 = Precipitation of Warmest Quarter, BIO15 = Precipitation Sea-
sonality (Coefhicient of Variation), BIOr7 = Precipitation of Driest Quarter, BIO10 = Mean Temperature
of Warmest Quarter and BIO4 = Temperature Seasonality (standard deviation *100).

(r > 0.7) (Supplementary figure A.3). The correlation decreases rapidly at distances greater than approx-
imately 2500 km between points. At distances 3000 km, for most distance classes, the correlation is neg-
ative. Most climatic variables show a similar pattern of aggregation at points within 2000 km of each
other, decreasing near to zero rapidly and shifting to negative correlations at greater distances. An ex-
ception is BIO10, mean temperature of warmest quarter, which showed peaks of positive correlation at
greater distances (Supplementary figure A.3).

Based on these results, we can reject the null hypothesis that geographic and climatic distances are
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uncorrelated with p = o.001 for BIO18, BIO17 and BIO4. No significant correlation was found for BIO1s
(p=0.883) and for BIO10 (p=0.605). The observed correlations for BIO18, BIOr7 and BIO4 were r=0.07,
0.10, 0.55 respectively indicate that points that are closer to each other have more similar climatic values
than points that are far from each other.

4.4 Discussion

In this study, we developed a correlative BIOCLIM model for M. phaseolina to project the climate suit-
ability of M. phaseolina and identify localities at risk of charcoal rot and other diseases caused by this
pathogen at a global scale. Previous studies have reported the current M. phaseolina global distribution
and its association to climate at a continental or biome resolution (Batista et al., 2021). This model con-
stitutes the first attempt to predict the distribution of M. phaseolina at a resolution of approximately 20
km. Importantly, by using global records we provide an examination of temperature and precipitation
variables that are predicted to be highly suitable for the occurrence of M. phaseolina.

The current distribution and disease dynamics of M. phaseolina are heavily influenced by climatic
factors such as high temperature and low soil water availability (Sexton et al., 2016; Batista et al., 2025
Marquezetal., 2021; Cohen etal., 2022). The model was consistent with charcoal rot reports in areas with
high mean temperature of warmest quarter (BIO10) and low precipitation of driest quarter (BIOr7) and
precipitation of warmest quarter (BIO18) around the world. In the US, areas projected as most suitable
are in states with reported highest soybean yield losses due to charcoal rot (Allen et al., 2017; Bradley et
al., 2021). Although, these reports are highest in the warmest and southernmost states, charcoal rot is a
consistent threat to soybean grown in the northern US regions as well (Bradley et al., 2021; Roth et al,,
2021). Our results of M. phaseolina potential distribution indicated by areas of intermediate suitability
along the east north central and west north central regions suggest potential for further expansion of
charcoal rot occurrences to these regions in the US.

Globally, our results projected the north-eastern region of Argentina as one of the largest areas with
high suitability. The provinces of Buenos Aires, Tucuman and other northern provinces, have already
reported charcoal rot epidemics in soybean, strawberry and canola (Gaetdn et al., 2006; Baino et al., 2011

Viejobueno et al., 2017; Reznikov et al., 2018). Likewise, the model projected areas in the Eastern Cape
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and Free State provinces of South Africa as intermediate to highly suitable. Charcoal rot in soybean and
sunflower has been reported affecting fields in Free state province, one of the major producing regions for
these crops in South Africa (Jordaan et al., 2019b). In Australia, the model is congruent with charcoal rot
reports on olives, strawberry and other field and horticultural crops grown in eastern regions (Sergeeva et
al., 200s; Hutton et al., 2013; Poudel et al., 2021). These observations suggest that our model can predict
suitability of M. phaseolina in regions for which data points were notincluded but with reported presence
or disease caused by this pathogen. Thus, we suggest this model may be used as an indicator for the
potential risk of disease development. Similar models have used climatic suitability as proxy for disease
caused by fungal and oomycete pathogens (Burgess et al., 2017; Herndndez-Lambrano et al., 2018; Yonow
etal., 2019).

Accurate predictions on the effects of climate on species occurrences face several challenges (Phillips
et al., 2006; Franklin, 2013). For presence-background models, one of such challenges is that the accu-
racy of predictions is highly dependent on methods for background data selection (Phillips et al., 2006;
Hijmans et al., 2017). Model performance as assessed by AUC in presence-background models tend to in-
crease with larger spatial extents from which background points are sampled. To address this, we sampled
background points within a radius of 100 km from the presence records (VanDerWal et al., 2009). This,
although appropriate for our data, contributed to the relatively low observed AUC value (Phillips et al.,
2006). In addition, presence-only and presence-background models using environment-only data have
been identified as least accurate as compared to true-absence models in which additional factors related
to the biology or epidemiology of organisms are accounted for to environment (Phillips et al., 2006).
Thus, a limitation of our model is the relatively low number of records used to build the model, as com-
pared to climatic suitability models developed at a global scale for other pathogens (Burgess et al., 2017;
Herndndez-Lambrano et al., 2018; Yonow et al., 2019) and the use of climatic only data.

To address the lack of biological data in our model and to provide an estimation of the effects of
evolutionary processes into M. phaseolina distribution we used a complementary approach to model
within-species evolutionary factors by estimating an adaptive index. This index was estimated using pre-

viously identified candidate loci for climate adaptation in data set of 95 M. phaseolina collected across
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the US, Colombia, and Puerto Rico (Ortiz et al., under review). This data set encompasses isolates col-
lected across a wide range of climates, making it suited for studying within-species adaptation to climate.
The adaptive index estimated for the data set of 95 M. phaseolina isolates suggest that even in locations
where similar temperatures are observed, isolates may difterentially respond depending on the presence of
adaptive loci. Climatic gradients have now been reported in plant species (Steane et al., 2014; Capblancq
and Forester, 2021), however this the first time it has been used to predict the adaptive landscape in a
plant pathogen. In summary, we provided a first species distribution model that serve as a basis for future
more comprehensive predictive SDMs. Our model will also be useful for local adaptation that constitute
the first step towards assessing the adaptive response of this fungal pathogen under climate change. Fur-
ther improvements of the model will involve including larger data sets and the use of semi-mechanistic
models (e.g., MAXENT) that allow the incorporation of biological parameters (Phillips et al., 2006), for
example growth rates at different temperatures in fungal plant pathogens. Given the increasing impact
of M. phaseolina on agroecosystems globally, the modelling of its distribution offers an important pre-
liminary tool for monitoring and development of management strategies incorporating eco-evolutionary
projections. Further, regional distribution models would provide a better assessment of charcoal rot risk
in different crops. From a practical standpoint, of particular interest are crops and locations for which
disease assessments data over time is available such as is the case for charcoal rot of soybean in the US
(Bradley et al., 2021). A major need remains for M. phaseolina and other plant pathogens to examine the

incorporation of disease risk assessments into management strategies.

4.5 Materials and methods

4.5.1 Study area and distribution data

Distribution data was obtained from two sources, records of M. phaseolina occurrences retrieved from
the global biodiversity information facility (GBIF) database (GBIF.org) and a dataset on a collection of
isolates throughout the US, Puerto Rico, and Colombia for which genomic data is available (Ortiz et al.,
under review). A total of 471 records for “Macrophomina phaseolina” were obtained from GBIF using
R v4.0.0 (R Core Team 2019). After filtering for missing data and cleaning for potential georeferenti-

ation mistakes, 231 records were maintained. For additional 66 records without longitude and latitude
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information, coordinates based on location description were retrieved using the ‘geocode’ function as
implemented in R v4.0.0 (R Core Team 2019). The longitude and latitude information of a collection
of 95 isolates of M. phaseolina isolates as well as genomic data and adaptive candidate loci available from
a previous population genomics study were used (Ortiz et al., under review). In brief, these isolates were
collected mainly from soybean and dry bean in the US, Colombia and Puerto Rico from commercial
fields and experimental stations. The entire data set covered occurrence records originating from plant
tissues or soil in every continent, but Antarctica (Figure 4.2), consistent with the current reported distri-

bution of M. phaseolina (Batista et al., 2021).
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Figure 4.2 Geographic locations of Macrophomina phaseolina records included in the BIOCLIM model.
Records obtained from the global biodiversity information facility (GBIF) are shown in orange circles.
Isolate collection sites of 95 M. phaseolina isolates collected in the US, Puerto Rico and Colombia are

depicted in black.
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4.5.2 Distribution model

Five bioclimatic variables previously selected from the 19 standard bioclimatic variables (WorldClim v2)
as described previously were used (Ortiz et al., under review). In summary, the bioclimatic variables are
the average for the years 1970 to 2000 and were obtained at a resolution of 2.5 min ( 21.5 km?) which cor-
respond with that of the data for the isolate collection, recorded at a field to municipality scale. This set of
climatic variables was selected based on ecological relevance and after removing correlated variables (|r| >
0.7). The selected variables were: BIO18 = Precipitation of Warmest Quarter, BIO1s = Precipitation Sea-
sonality (Coefhicient of Variation), BIOr7 = Precipitation of Driest Quarter, BIO10 = Mean Temperature
of Warmest Quarter and BIO4 = Temperature Seasonality (standard deviation *100).

The species distribution model (SDM) was built using BIOCLIM as implemented in ‘dismo’ R pack-
age (Hijmans et al., 2017). We used BIOCLIM algorithm with presence-background data. The algorithm
creates percentile distributions for the climatic data values at the locations of species occurrence (“training
sites”). The values for each climatic variable are compared to the percentile distribution of the training
sites providing a measure of similarity between locations. Since one-tailed percentile distributions are
used (10” percentile is treated as equivalent to 90" percentile), the closer to the 50 percentile (the me-
dian), the more suitable a location is. Here, we used the ‘dismo’ implementation in which the suitability
values are scaled, thus resulting in values between 0 and 1. The value of 1 is given for a location that
would have the median values of the training data for all the variables considered, while 0 will be given
for cells with climatic values outside of the range of the training data for at least one of the variables. The
final BIOCLIM model was fitted with all presence records from the GBIF cleaned dataset and 95 records
from the previously published M. phaseolina isolate collection using the five selected climatic variables as
predictors.

Since we used a presence-background species distribution modeling approach, we selected background
data for model parameterization (Hijmans and Elith, 2017). Background localities were generated at ran-
dom within a radius of 100 km from the presence records (VanDerWal et al., 2009). The models were
assessed and compared according to their discrimination capacity of suitable versus unsuitable areas for

M. phaseolina using the area under the receiver operator curve (AUC) in the ‘dismo’ implementation.
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Two additional classification assessment indices were used (Fielding Bell, 1997): sensitivity (true posi-
tive rate i.e., the proportion of correctly classified presences) and specificity (true negative rate, i.c., the
proportion of correctly classified absences). We divided the presence data in training and testing sets via
cross-validation with k-fold (k=5) data partitioning. The background data was only used for model test-
ing and was not partitioned. The mean AUC of the five cross-validation runs was reported as well as the
maximum of the sum of the sensitivity (true positive rate) and specificity (true negative rate) (Hijmans et
al., 2017).

4.5.3 Spatial autocorrelation

Spatial autocorrelation was tested using BIOCLIM in ‘dismo’ R package (Hijmans et al., 2017). A subset
of 81 records out of the 95 isolate collection records for which the resolution was at least to the munici-
pality level. Similarly, the GBIF records with exact longitude and latitude coordinates as recorded in the
GBIF dataset were used (i.c., records that georeferenced using geocode were excluded) for spatial auto-
correlation analysis. The associated climatic data values for the five variables for each record, as it was
retrieved for the SDM analysis, was used. A geographic distance matrix was computed using longitude
and latitude coordinates as well as distance matrices for each of the five environmental predictors. Correl-
ograms for each of the climatic variables were performed using 20 distance classes with 1000 km distance
increments. A Mantel test was run for each of the environmental predictors between the geographic
distance matrix and the environmental distance matrix for each climatic predictor to test for significant

autocorrelation at each distance class.
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Figure A.1 Model performance AUC values for the BIOCLIM model. Area under the receiver operator
curve (AUC) values for each of five cross-validations runs illustrating discrimination capacity of suitable
versus unsuitable areas for M. phaseolina.
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Figure A.2 Suitability values predicted for temperature and precipitation variables values found across
locations of the complete data set of M. phaseolina occurrences. Predicted values are suitability values. A
suitability value of 1 indicates a climatic value with predicted high suitability and a value of o is given for
climatic values predicted as unsuitable. Climatic variables are BIO18 = Precipitation of Warmest Quar-
ter, BIO1s = Precipitation Seasonality (Coefficient of Variation), BIO17 = Precipitation of Driest Quarter,
BIO10 = Mean Temperature of Warmest Quarter and BIO4 = Temperature Seasonality (standard devia-
tion *100).
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Figure A.3 Mantel’s correlograms of climatic variables used in the BIOCLIM model. Correlation be-
tween climatic and geopgraphic distances. Geographic distance classes are defined by 1000 km incre-
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Charcoal rot and diseases caused by Macrophomina phaseolina are a threat to agricultural production
affecting many important economic and subsistence crops worldwide. Importantly, one of increasing
concern under climate change. This research focused on understanding the genetic diversity and evolu-
tionary potential of M. phaseolina, to inform and provide tools for improved charcoal rot management
strategies.

Populations of M. phaseolina in the continental US, Puerto Rico and Colombia collected from soy-
bean and dry bean fields were found to be structured in a hierarchical manner with subcontinental re-
gional stability and instability at local scales consistent with a metapopulation dynamics perspective.
These results are in line with a scenario of evolution after migration driven by divergence following clonal
expansions. Additionally, this research identified the potential for anthropogenic influence in the move-
ment of M. phaseolina to locations around the world. Climate was found to significantly contribute to
genetic divergence in this pathogen and identified candidate genomic regions for adaptation. Putatively
adaptive functions associated to these regions may benefit M. phaseolina in specific environments. This
knowledge expands the impact that population genomics and genotype-environment associations can
have on our ability to characterize adaptive potential in plant pathogens.

Effective chemical-control means are lacking for the management of charcoal rot. Therefore, the ef-
ficacy of active ingredients currently used in commercial fungicide formulations in crop production was
investigated. Our results on the 7z-vitro efficacy of boscalid, iprodione and prothioconazole indicate that
formulations with these active ingredients, may reduce M. phaseolina seedling infection originating from
infected seeds or inoculum in the soil. Particularly, our results on the zz-vitro efficacy of prothioconazole
suggest that commercial formulations with this active ingredient may be of particular interest for charcoal
rot management. Information regarding mutations in fungicide target genes was lacking for M. phase-
olina. None of the point mutations found in our isolate collection were correlated with levels of fungicide
sensitivity. Finally, in this study we developed a bioclimatic model for M. phaseolina to project the climate
suitability of M. phaseolina at a global scale and identify localities at risk of charcoal rot and other dis-
eases caused by this pathogen. The model projected high suitability for localities with low precipitation

of driest quarter and precipitation of warmest quarter, and high mean temperature of warmest quarter.



Notably, areas of high suitability were projected in the southern US, north-eastern Argentina, eastern
Australia, and southern Europe. These predictions correspond to an expected distribution of higher A4.

phaseolina suitability at warm and dry regions and with increased disease reports in these regions.

s.0.1 Future directions

Future studies investigating the adaptive potential of . phaseolina will be needed to identify the degree
to which global populations reflect their adaptation to host and climate. Such studies will benefit from
comprehensive samplings schemes including diverse hosts and climates. In addition, long-read sequenc-
ing technologies will allow further characterization of the role of genomic variation, including structural
variation, in M. phaseolina adaptation to host and the climatic environment.

Our data on the zz-vitro efficacy of prothioconazole suggest that commercial formulations with this
active ingredient may be of particular interest for future in-vivo efficacy testing in soybean and dry bean.
Data on the in-vivo efficacy of prothioconazole in preventing seedling colonization and charcoal rot dis-
ease development is needed in order to determine its effectiveness in charcoal rot control. Additional
charcoal rot management efforts should be directed at identifying novel eftective fungicides and moni-
toring the potential development of resistance to fungicides use in modern crop production.

Given the increasing impact of M. phaseolina on agroecosystems globally, the modelling of its dis-
tribution constitutes an important tool for the monitoring and development of management strategies.
More comprehensive predictive species distribution models, including ensemble models, should provide
a better understanding of the adaptive response of this fungal pathogen under climate change. Further
improvements of the model presented in this research, will involve the use of larger data sets and semi-
mechanistic models. Similarly, regional distribution models would provide a better assessment of char-
coal rot risk for major crop production regions. A major need remains to incorporate disease risk assess-
ments and eco-evolutionary projections into charcoal rot management strategies. The characterization
of adaptation in plant pathogens enabled by population genomics should become increasingly utilized

for plant disease risk prediction models especially under climate change.
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