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ABSTRACT

Global agricultural production is threatened by several diseases caused by fungal pathogens. Recently

increased e�orts to characterize genomic diversity in fungal pathogens and the availability of large-scale

ecological datasets o�er new opportunities for understanding pathogen adaptation. The twin lenses of

population genomics and adaptive evolution are powerful frameworks to interpret this data because of

characteristics of fungal pathogens in agroecosystems that allow for their rapid evolution. The environ-

ment, biotic and abiotic, is a major driver for the evolution of plant pathogens and greatly in�uences

disease outcomes.Macrophomina phaseolina causes charcoal rot in many important economic and sub-

sistence crops worldwide. Charcoal rot signi�cantly reduces yield and seed quality of soybean and dry

bean and has been recognized as a warm climate-driven disease of increasing concern for crop production

under global climate change. Therefore, this dissertation investigated the genetic structure and adaptive

potential ofM. phaseolina to understand how this pathogen responds to hosts, fungicides, and climate

and how to best manage and predict charcoal rot disease.

To this end, I �rst characterized the genetic diversity and genotype-environment associations inM.

phaseolina �lling in fundamental knowledge of population structure and shedding light on climate adap-

tation. Population genomic analyses of ��M. phaseolina isolates from soybean and dry bean across the

continental US, Puerto Rico, and Colombia revealed geographic structure and diversi�cation associated

to climate. Phylogenomic and clustering approaches di�erentiated isolates into twomain clades of theUS

andColombian-PuertoRican origins and �ve divergent genetic clusters within these clades. I identi�ed a

predominantly clonal structure in theUS and a semi-clonal structure inColombia andPuertoRico. Lim-

ited genetic di�erentiation between isolates of soybean and dry bean origins was observed. Estimations of

the independent contributions of neutral population structure, space, and climate to genetic variation,

revealed that climate signi�cantly contributes to genetic variation between genetic clusters. Genotype-

environment associations implicated several genomic regions inM. phaseolina adaptation to climate and

the loci signi�cantly associatedwithmultivariate climate were found near to genes related to fungal stress

responses.

Information on the e�cacy of newer fungicides chemistries for charcoal rot management is lack-



ing. Therefore, I characterized the in-vitro fungicide sensitivity ofM. phaseolina to three major chemi-

cal classes of single-site fungicides, succinate dehydrogenase inhibitors (SDHI; boscalid) dicarboximides

(iprodione) and demethylation inhibitors (DMI; prothioconazole). This study found no isolates in the

US, Colombia or Puerto Rico that were insensitive to any of the fungicides tested. Isolates were most

sensitive to prothioconazole indicating its potential use for charcoal rot management. Next, mutations

in the fungicides target protein genes were investigated. No mutations that associated to levels of sen-

sitivity to boscalid, iprodione and prothioconazole were found among our isolate collection. Finally, a

preliminary ecoclimatic suitability model was developed and used to project the climatic suitability of

M. phaseolina at a global scale. Importantly, this model predicted areas of high climatic suitability which

may be at increased risk of disease.

Results from this dissertationwork inform and improve charcoal rotmanagement strategies through

better understanding ofM.phaseolina genetic structure and adaptive potential, in-vitro e�cacy of single-

site fungicides and potential disease outcomes under a changing climate. Additionally, this research is

expected to contribute to applied issues surrounding plant disease risk prediction, andmore broadly pre-

dicting short-term evolution ofM. phaseolina across climates. Ultimately, this researchwill lead to better

understanding of disease outcomes andmore e�cientmanagement of plant pathogens considering adap-

tive responses under a changing climate.
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CHAPTER �

AN EVOLUTIONARY GENOMICS PERSPECTIVE OF ADAPTATION IN PLANT
PATHOGENS
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Natural selection is a powerful force for the evolution of living organisms. From humans tomicroor-

ganisms, adaptations that overcome challenges in the environment are fundamental for the success of

populations in diverse environments. Unraveling the genetic basis underlying adaptive phenotypes has

for years fascinated scientists and hence has been the focus of many studies. In host-pathogen systems,

adaptation is driven mainly by selection pressures imposed by their interaction itself and by the abiotic

environment. Most notably, in agroecosytems, such abiotic environmental pressures are related to cli-

mate and pesticides use (Stukenbrock et al., ����). Other evolutionary forces also play an important role

in the adaptation of organisms, among themmigration is often considered because it can signi�cantly af-

fect adaptation processes. In this chapter, I discuss the implications of each of these factors on pathogen

adaptation to plant host and the abiotic environment in agricultural ecosystems and the methodological

approaches to study local adaptation. This introductory chapter provides an overview of the population

genetics and community ecology concepts that constitute a foundation for the analysis and experiments

in this thesis. Additionally, it provides a perspective on the use of genomic data in suitability models of

plant pathogens under a changing climate.

�.� Adaptation in host-pathogen systems

Adaptation is considered a central topic of ecological genetics. Adaptation can be de�ned as the evolu-

tionary process bywhich a population becomes better able to live and reproduce in its habitat (Dobzhan-

sky, ����). Likewise, an adaptive trait has been de�ned as “a phenotypic trait that has evolved to help an

organismdealwith something in its environment” (Conner et al., ����). Adaptation is caused exclusively

by natural selection; however, the remaining evolutionary forces, mutation, genetic drift and migration

can either accelerate or slow down the development of adaptations (Conner et al., ����). Ecological fac-

tors, biotic and abiotic, are important drivers of natural selection. These selection drivers vary in the space

and such ecological heterogeneity results in populations adapted to the local biotic and abiotic conditions

(Kawecki and Ebert, ����). This led me to the concept of local adaptation. In a strict sense, a popula-

tion is locally adapted when it has a higher relative �tness in their local environment (habitat) relative

to any other population introduced to that site (Kawecki and Ebert, ����). However, local adaptation

can be indicated by genetic and phenotypic variation along ecological gradients or contrasting habitats
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(Savolainen et al., ����). For example, there is genetically-based variation in growth rates in response to

temperature and latitudinal gradients in fungi, including pathogens (Ellison et al., ����; Lendenmann et

al., ����).

�.�.� Coevolution in the host-pathogen system

Plants andpathogens, as biological systems, evolve in response to adaptation in the respective partner. Co-

evolutionary interactions, and especially antagonistic ones, impose strong selection on both partners. In

this sense, pathogens can act as drivers of natural selection on their hosts, while hosts also impose strong

selection on the pathogens by defensive mechanisms (Kawecki and Ebert, ����; Croll and Mcdonald,

����). However, inherent characteristics of pathogens such as large e�ective population sizes, high mu-

tation rates and short generation times, provide pathogens with strategic advantages to evolve faster than

their hosts (Croll andMcdonald, ����). Thus, pathogens are hypothesized to have some advantages in the

co-evolutionary race and it is widely accepted that pathogen populations become locally adapted to the

local pool of host genotypes (Croll andMcdonald, ����). In agricultural ecosystems, particularly in crop

– fungal pathogens interactions, twomain considerations will be discussed, the speci�c characteristics of

fungi and those of agricultural ecosystems that makes them a unique system to study local adaptation.

Key fungal characteristics, such as high reproductive potential and extraordinary capacity to disperse

and survive, makes fungal pathogens ubiquitous organisms and particularly competent when adapting

to new environments (Croll and Mcdonald, ����). Global agricultural production is threatened by sev-

eral diseases caused by fungal pathogens representing themost important cause of crop yield losses, along

with diseases caused by oomycetes (Fisher et al., ����). The crop genetic homogeneity present at the �eld

level contribute to the devastating e�ects seen in agricultural ecosystems, mainly by favoring local adapta-

tion processes in pathogens. Additionally, agro-ecosystems are managed in quite similar ways even when

separated in space and time. For example, because of similarity in practices such as fertilization, irriga-

tion, tillage and pesticide applications, combinedwith the planting of genetically uniformmonocultures,

some crop �elds show remarkably similar environments on all continents, di�ering mainly according to

the local climate.
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�.�.� Host specialization in plant pathogens

Plant pathogenic fungi in agricultural ecosystems, are considered to be adapted to the local host geno-

types, thus they constitute excellent models for identifying the genetic basis of local adaptation (Croll

and Mcdonald, ����). This adaptation is largely explained by gene for gene interactions (Jones and

Dangl, ����). Several genes have been identi�ed in di�erent fungal pathogens involved in virulence and

pathogenicity on their hosts. These pathogens include host-specialized fungi attacking important crops,

such as rice, wheat, barley, rye and maize (e.g. Pyricularia oryzae, Zymoseptoria tritici, Parastagonospora

nodorum, Puccinia spp., Blumeria spp.,Ustilago spp.) (Croll andMcdonald, ����).

The gene-for-gene hypothesis�rst proposed by Flor (Flor, ����) designates that avirulence genes in the

pathogen arematched by resistance genes in the host. The direct or indirect interaction between the gene

products triggers host defense responses that can prevent or reduce the growth of pathogens. Therefore,

pathogens on a resistant host are under strong selection and tend to undergomutation or deletion in the

avirulence gene to evolve higher virulence on the host. Due to this highly speci�c interaction between

avirulence and resistance gene products, avirulence genes are expected to play an important role in local

adaptation processes in agricultural ecosystems (Croll andMcdonald, ����). Similarly, to the adaptation

processes driven by pathogen on their hosts, management practices including the use of resistant host

germplasm, a�ects adaptation processes in pathogens. These practices result in the worldwide distribu-

tion of genetically similar or identical crops, thus, selection operating on the local pathogen population

can lead to occurrence of the same virulence mutations independently even in the absence of gene �ow

among the corresponding pathogen populations (Conner et al., ����; Croll andMcdonald, ����).

�.�.�.� Host jumps

In plant pathology, a host jump is broadly de�ned as the process by which a pathogen infects a new previ-

ously una�ected host species. In some cases, this process is considered a host jump when the new host is

genetically distant (i.e., taxonomically distant, from another class or order) from the original host. In con-

trast to host shifts, in which the new host is closely related to the old host (Stukenbrock andMcDonald,

����). Common scenarios that favor host jumps in agroecosystems include wild plant species growing

nearby �eld crops, the introduction of new crops into natural ecosystems and the worldwide movement
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of infected plant material (Stukenbrock andMcDonald, ����).

Apathogenhost jumpcanbe exempli�edbyPyricularia species onwheat andwild grasses. Thewheat

blast pathogenP. graminis-tritici likely emerged from thePyricularia population infecting thewild grass

Urochloa or other Brazilian grasses approximately �� years ago (Grünwald et al., ����). Multiple host

jumps occurred in the Irish potato famine pathogen Phytophthora infestans and related species, between

plant hosts belonging to four di�erent families (Ra�aele et al., ����). These were favored because these

pathogens originated in centralMexico (Goss et al., ����) which is considered a center of diversity for the

genus Solanum (Stukenbrock andMcDonald, ����)(Grünwald et al., ����).

Comparative genomics approaches can detect genomic signatures of a host jump (Grünwald et al.,

����), which are often considered signatures of e�ector evolution (Dong et al., ����). After a host jump,

the pathogen is expected to adapt to the new host, leading to host specialization (Ra�aele et al., ����) and

often to the emergence of a new pathogen species (Dong et al., ����). Accordingly, a recent host jump

may be detected by comparing the genomes of pathogens from host species that represent new and old

hosts. The genomes will be very similar except for speci�c changes in the genomic region that enabled the

infection of the new host. These are rapidly evolving genomic regions, repeat-rich and usually containing

a lot of e�ector genes. Thus, some e�ector genes may be lost because they are not useful anymore in the

new host while other e�ector genes will accumulate mutations that will improve or expand the e�ector

action in the new host (Dong et al., ����). Such gene loss has been seen after a host jump, in the fungus

Melanopsichium pennsylvanicum (Sharma et al., ����). Greater rate of copy number variation of e�ector

genes hasbeenobserved amongP. infestans and related species. Signatures of adaptive evolution identi�ed

as having dN/dS ratios >� (indicative of positive selection)were detected in e�ector genes ofPhytophthora

clade �c species (Ra�aele et al., ����; Dong et al., ����).

Importantly, host jumps were proposed as a crucial mechanism for macroevolutionary persistence of

host-specialized �lamentous pathogens byRa�aele andKamoun (����), who described the “jumpor die”

model in which the survival of a pathogen over long evolutionary timescales depends on the frequency

of host jumps. Under this model, host jumps serve as accelerators of e�ector adaptation and lead to

pathogen diversi�cation. Therefore, pathogens with more adaptable genomes, such as those with two-
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speed genomes, aremore likely to survive as hosts become fully resistant or extinct (Ra�aele andKamoun,

����).

�.�.� E�ect of haploid vs diploid genome on populations

Ploidy, the number of chromosome sets in an organisms, greatly in�uences di�erent evolutionary aspects

of populations such as the ability of organisms to mask deleterious mutations, the accumulation of dele-

terious mutations and the rates of adaptation (Gerstein and Otto, ����). In general, diploid organisms

have another layer of genetic variation compared to haploid organisms. Particularly, heterozygosity al-

lows the occurrence of modes of gene actions, which is how genotype a�ects the phenotype. Additivity

and dominance are di�erent modes of gene actions that in�uence �tness, for example in complete domi-

nance a dominant allele can mask the e�ect of the recessive allele in a heterozygous organism (Conner et

al., ����). Similarly, overdominance (heterozygote advantage) occurs when the heterozygous genotype

has higher �tness than both homozygous genotypes. This may change how an organism responds to its

environment and under a given condition may, at least, temporarily increase �tness of diploid heterozy-

gous organisms (Gerstein and Otto, ����). Thus, overdominance maintains genetic variation in natural

populations, and so in this way heterozygosity prevents the accumulation of deleterious mutation in the

genome (Conner et al., ����).

The long-term impact of deleterious mutations on the mean �tness of a population depends almost

entirely on the genome-wide deleterious mutation rate and not on the selective disadvantage of the mu-

tations (Gerstein andOtto, ����; Haldane, ����). Haploids will have the lowestmutation rate (and lower

mutation load). This is because the equilibriummean�tness of a population is reduced by approximately

cU (the “mutation load”), where c is the ploidy level and U is the mutation rate per haploid genome.

Therefore, haploids will have higher �tness than diploids, despite that deleterious mutations are masked

to some degree in diploids (Gerstein and Otto, ����).

The e�ect of ploidy in the rates of adaptation of populations have been investigated using experimen-

tal evolution in Saccharomyces cerevisiae (Otto and Gerstein, ����; Gerstein and Otto, ����; Gerstein et

al., ����; Sharp et al., ����). Adaptation of an organism to a novel environment depends on the rate in

which bene�cial mutations are acquired and spread through the population (Todd et al., ����). The
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rate of adaptation is a�ected by the rate of appearance and �xation of bene�cial mutations, the �tness

e�ect of these mutations, the dominance of mutant alleles, and e�ective population sizes (Gerstein and

Otto, ����; Todd et al., ����). This is still an area of ongoing investigation, but in general experiments

have showed that large asexual haploid populations of S. cerevisiaewere able to adapt faster than diploids.

However, in small populations, haploids and diploids adapted at approximately the same speed, and the

advantage of haploidy disappeared (Gerstein and Otto, ����).

In a recent mutation-accumulation experiment conducted by (Sharp et al., ����) using S. cerevisiae,

revealed that haploids were more prone to single-nucleotide mutations (SNMs) and mitochondrial mu-

tations, whereas in diploids larger structural changes were more common (Sharp et al., ����).

�.�.� E�ect of sexual vs asexual reproduction on populations

Sexual reproduction is known to greatly a�ect the population structure of organisms and it is a determi-

nant in the evolution of organisms. Plant pathogens, especially fungi with clonal andmixed reproductive

systems and highly dynamic genomes constitute remarkable organisms to study the e�ect of sexual repro-

duction on di�erent evolutionary aspects. This has led some to consider fungal plant pathogens asmodel

organisms in evolutionary biology, and even as proposed models for investigating cancer cell evolution

(Möller and Stukenbrock, ����). Sexual reproduction is crucial to eukaryotic evolution mainly because

it can increase genetic diversity and eliminate deleterious mutations (Ni et al., ����). Recombination be-

tween loci can occur during meiosis, which creates new combinations of alleles at these loci (Conner et

al., ����). These allele combinations may advantageous under certain ecological conditions, thus allow-

ing rapid adaptability to new environments. Rapid �xation of advantageous mutations, is also enabled

by sexual reproduction by increasing the e�cacy of natural selection (Möller and Stukenbrock, ����).

On the contrary, long-termadvantages of clonal reproduction include themaintenance of co-adapted

allele combinations in the population, and that �t genotypes can be rapidly propagated (Möller and

Stukenbrock, ����). A short-term advantage of clonal reproduction is the ability to rapidly propagate

while expending less energy (Ni et al., ����) which may play an important role in the development of

epidemics. However, clonal populations are sometimes considered “evolutionary impaired” because of

their inability to recombine advantageous mutations that may occur independently (Möller and Stuken-
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brock, ����). Moreover, deleterious mutations may accumulate in the genome of clonal organisms in an

irreversible manner, a process termed “Muller’s ratchet”.

Another factor to consider is that asexual species usually have a lower e�ective population size (Ne)

than sexually reproducing species, as o�spring are fundamentally copies of their parents. Thus, the e�ect

of genetic drift is relatively greater compared to populations with large Ne (Möller and Stukenbrock,

����). Therefore, the smaller theNe the stronger the selectionhas to be to counteract the e�ects of genetic

drift (Conner et al., ����), which may weaken local adaptation processes.

Yet, many clonal species and many fungal pathogens considered to reproduce asexually are common

and successful. Approximately one �fth of described fungi are thought to be asexual and clonal (Taylor

et al., ����). A possible explanation for the success of asexual fungi is the “two-speed genome” model

proposed for fungi and oomycetes. In this model, genomes have a bipartite architecture with e�ectors

genes being associated with compartments enriched in repetitive sequences and transposable elements

(Dong et al., ����), this suggest that highmutation rates in these genome compartments support adaptive

evolution by e�ector innovation (Möller and Stukenbrock, ����). Other explanations to consider are the

occurrence of cryptic sex and recombination as unisexual mating, in which meiotic basidiospores are

produced from the fusion of mitotically produced nuclei; and parasexual reproduction, in which there

is exchange of genetic material between fused hyphae or cells without meiosis.

Notably, asexual reproduction has evolved independently many times from sexually reproducing an-

cestors in ascomycete fungi (Taylor et al., ����). This has led to speculate that clonal population structures

in some pathogens, such as inVerticilliumdahliae, have arisen at least partially because selection imposed

by agroecosystems (Milgroom et al., ����).

�.�.� The abiotic environment as a driver of natural selection

�.�.�.� Climate adaptation

Climate�uctuation andparticularly temperature are important abiotic factors leading to local adaptation

on fungal plant pathogens (Savolainen et al., ����; Croll andMcdonald, ����). Models of climate change

for the coming decades predict increases in global temperature, atmospheric CO�, ozone and changes in

humidity, rainfall and severe weather (Fisher et al., ����). This is expected to increase the environmental
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heterogeneity that already is present across di�erent agricultural systems in di�erent regions of theworld.

This environmental heterogeneity, acts on genetically di�erent organisms within a population, initially

by causing �tness di�erences among phenotypically di�erent populations and over time mutation and

recombination generate populations adapted to the local environment (Fisher et al., ����; Savolainen et

al., ����).

Thermal adaptation has been researched in several fungal species, including the model fungi Neu-

rospora crassa (Ellison et al., ����) and the powdery mildew pathosystems Plantago lanceolata–

Podosphaera plantaginis (Laine, ����). Temperature had a profound impact on the trajectory of evolu-

tion of N. crassa as well as in the co-evolution in the powdery mildew system. In the powdery mildew

pathosystem, host and fungal populations were sampled across a natural thermal gradient, and a local

vs. foreign experiment was conducted. Host cross-inoculations were conducted using sympatric and

allopatric (i.e., local vs. foreign) pathogen populations at three temperatures (i.e., home vs. away environ-

ments) using detached leaves in a common garden laboratory environment. Local adaptation patterns

di�ered according to temperature. Pathogen populations from the coolest environment had signi�cantly

higher�tness on the sympatric host at the coolest tested temperature, but had lower�tness than allopatric

pathogen populations at higher temperatures (Laine, ����; Croll andMcdonald, ����).

�.�.� Migration e�ects on pathogen adaptation

The outcome of whether populations become adapted or not depend on the balance between selection

and migration i.e., the levels of gene �ow among populations and the strength of selection (Savolainen

et al., ����; Croll andMcdonald, ����). Local adaptation can be hindered for certain conditions, for ex-

ample by migration rates and recolonization of populations by foreign genotypes. In the context of local

adaptation, a high �tness in the local environment also implies a lower �tness in a foreign environment

(Savolainen et al., ����), and thus local adaptation occurs only if the e�ect of migration does not over-

whelm the e�ect of local selection. Local adaptation may be disfavored by both high and low migration

rates. Generally high migration rates overwhelm locally adapted genotypes leading to maladaptation,

and low migration rates disfavor local adaptation mainly due to the limited genetic variation that the

local population harbor, leaving limited input for selection to act on. Moreover, the unevenness in mi-
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gration rates of the pathogen vs. the host also impact local adaptation processes. Pathogens are expected

to become more rapidly locally adapted if they have higher migration rates than their hosts (Croll and

Mcdonald, ����).

�.�.� Fungicide resistance evolution in plant pathogens

Fungicides play a key role in crop protection. Modern fungicides function primarily by disrupting partic-

ular molecular processes and targeting speci�c proteins, and therefore are often referred to as ‘single-site’

fungicides (Brent andHollomon, ����). In contrast, older multi-site fungicides act as general inhibitors

a�ecting many cellular targets (Brent and Hollomon, ����). The continued use of fungicides may even-

tually lead to the appearance of resistant pathogen populations. This phenomenon is called ‘acquired

resistance’ (Brent and Hollomon, ����).

Fungal pathogens with rapid reproductive rates and large population sizes are particularly prone to

develop fungicide resistance (Lucas et al., ����). Although several resistance mechanisms are known, the

most common one is an alteration of the target site of the fungicide. In single-site fungicides, a single

genemutation can disrupt the target site function and confer resistance or reduced sensitivity (Brent and

Hollomon, ����). In situations in which resistance develops, it can be seen as a qualitative or a quantita-

tive change. In quantitative resistance, the pathogen population shifts gradually towards resistance over

time (Brent and Hollomon, ����). While in qualitative resistance, a bimodal distribution with sensitive

and resistant subpopulations is expected. In both cases, there is positive selection for resistant individuals,

ultimately leading to resistance in the population if management strategies to limit pathogen exposure

are not implemented (Lucas et al., ����).

�.�.� Using genomic data to detect population structure and adaptation in plant pathogens

Population structure can be de�ned as a systematic di�erence in allele frequencies between subpopula-

tions in a population due to di�erent ancestry (Turchin et al., ����). Population di�erentiation occurs

when subpopulations are not completely interbreeding and any of the evolutionary forces (mutation, se-

lection, drift, migration) change the allele frequencies within the subpopulation. In other words, when

individuals within subpopulations are more closely related than individuals between subpopulations.

Approaches to detect population structure include clustering methods. In clustering methods, in-

��



dividuals are assigned to populations often by estimating ancestry coe�cients or using dimensionality-

reduction approaches. Commonly used dimensionality-reduction approaches are principal component

analysis (PCA) and discriminant analysis of principal components (DAPC). PCA is a form of multivari-

ate analysis, which involves looking atmultiple independent variables simultaneously to understand their

contributions to the dependent variable (Abdi and Williams, ����). PCA is used in identifying popula-

tion structure to infer the possible number of populations (clusters) without prior knowledge, thus it can

be useful to �nd hidden population structure. PCA is commonly used to convert genetic data into a re-

duced number of non-correlated variables, called principal components, which summarize the variation

between samples closely related individuals can be seen as clusters. DAPC is particularly useful in organ-

isms with clonal reproduction, such as many fungi. DAPC di�ers from PCA approaches, in which it

does require a priori de�ned populations andmaximizes the variance between populations, by partition-

ing the total variance into between-population and within-population components (Thibaut Jombart,

Sébastien Devillard).

Model-based clustering approaches use a broad set of algorithms to characterize population struc-

ture. Commonly, these algorithms di�er in the demographic model adopted, the statistical framework

(frequentist or Bayesian), in whether selection is included in themodel, among other aspects. Theirmain

advantages are that they may be applied to a wide range of data sets and systems and that most of these

methods do not need a priori delineation of populations. The main disadvantage is that they often rely

onmodel assumptions. If the assumedmodel does not re�ect the true model, these approaches may lead

to false positives or to the incorrect identi�cation of clusters. New approaches have been developed to

overcome some of these limitations, such as models that incorporate a spatial component (Bradburd et

al., ����), and PCA-based models (Josephs et al., ����).

Genetic variation is the input for selection to act and drive adaptation processes. Genomic divergence

can be inferred frompolymorphisms and �xed di�erences within and between species. Approaches to in-

fer adaptation processes, rely either on population genetic analyses including reverse ecology approaches,

quantitative trait mapping or association studies. Each of these approaches has strengths and limitations

and a combination of di�erent strategies would be more informative about adaptive natural selection
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than using just one of them. Local adaptation critically depends on selectable genetic variation within

local populations. Furthermore, the probability for local adaptation to evolve depends on the genetic

architecture of a trait. Phenotypic traits governed by a simple genetic architecture are likely to be more

rapidly selected than complex traits (Croll and Mcdonald, ����). Similarly, loci with large e�ects should

be favored to contribute to local adaptation as selection actsmore rapidly on loci of large e�ects than small

e�ects (Croll andMcdonald, ����). Strategies to identify loci involved in local adaptation are discussed.

�.�.�.� Quantitative trait loci mapping

The outcome of host–pathogen interactions is thought to be governed largely by gene-for-gene inter-

actions. However, recent studies showed that virulence can be governed also by quantitative trait loci

(QTL) and that many abiotic factors contribute to the outcome of the interaction (Lendenmann et al.,

����; Croll andMcdonald, ����; Lendenmann et al., ����b; Lendenmann et al., ����a).

Quantitative trait loci mapping is based on the joint analysis of phenotype and genotype. QTL anal-

ysis uses a progeny of crosses between a pair of parental lines (pedigree) segregating for a speci�c trait,

to �nd association between genotypes and phenotypes. QTLmapping is a powerful approach, however

present some limitations. To uncover more variation many crosses and a large sample size are needed.

QTL approaches can be time consuming since the progeny needs to be genotyped and phenotyped. Fur-

thermore, extended linkage disequilibrium (LD) is often observed in the progeny, hindering the accurate

location of theQTL.AQTL approachwas used to investigate thermal adaptation in the fungal pathogen

Zymoseptoria tritici (Lendenmann et al., ����b). They identi�ed fourQTL associated with temperature

sensitivity, containing six candidate genes including a PBS�, encoding amitogen-activated protein kinase

associated with low temperature tolerance in Saccharomyces cerevisiae. This study demonstrate a QTL

approach can be successfully used in fungi, however, the need of progeny implies that QTLmapping can

be applied only to sexual fungi.

�.�.�.� Association mapping approaches

Association mapping studies are also based on phenotype- genotype associations. However, in contrast

to QTLmapping, diverse panels of organisms can be used instead of using progeny populations derived

form a parental cross. Advantages of association mapping approaches include that the LD is expected
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to be lower than in pedigree-based studies, and multiple di�erent traits can be studied simultaneously.

Thus, QTLs can be found in a more accurate way. However, the use of a diversity panel implies the

need of correction for population structure. The rates of false positives and false negatives is high and

mixed models and correction for multiple hypothesis testing are needed to distinguish real associations

from spurious ones. In general, for association mapping studies associations are not necessarily causal

and further validation is needed.

�.�.�.� Genotype–environment associations and redundancy analysis

Genotype–environment association (GEA) methods can be used to identify adaptive loci by correlating

genetic data and environmental variables (Lasky et al., ����; Forester et al., ����). Multivariatemethods in

GEA have recently gained attention because their applications to the analysis of large genomic datasets.

Themultivariate nature of these methods allows the simultaneous analysis of thousands of loci (Forester

et al., ����). One of the most common multivariate approaches used in GEA is redundancy analysis

(RDA). RDA is a constrained ordinationmethod that have been used for years in community ecology to

examine community composition in relation to environmental variables (Legendre and Legendre, ����;

Forester et al., ����). In GEA approaches, RDA can be used to disentangle the e�ects of climatic factors

in shaping genetic variation, by modeling sets of molecular markers (e.g. SNPs) as responses to a func-

tion of combinations of environmental predictors. RDA has been found to perform better than univari-

ate methods in identifying weak, multilocus selection suggestive of polygenic adaptation (Forester et al.,

����). Partial RDAmodels, in which the e�ects of covariables can be removed, have been used to account

for underlying population structure in the identi�cation of loci associated with environmental factors in

plant and animal systems (Lasky et al., ����; Forester et al., ����; Xuereb et al., ����; Gibson andMoyle,

����; Capblancq and Forester, ����)

�.�.�.� Population genetics and reverse ecology

Local adaptation has been investigated using population genetics with both forward and reverse ecology

approaches. Population genetic analyses are based on FST (Wright �xation index) and linkage disequi-

librium (LD) methods to detect candidate loci for local adaptation in the absence of phenotypic traits.

These methods can detect outlier loci with an excessive amount of genetic di�erentiation among pop-
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ulations (i.e., FST outlier analyses; De Mita et al. ����). The basis is that local selection will exacerbate

genetic di�erentiation at loci under selection compared to the genomic background. Reverse ecology (Li

et al., ����), is coined because the analogy with reverse genetics and implies that prior knowledge about

an ecological trait is not necessary, instead �rst �nding the genetic targets of selection and going back to

identify the phenotypic di�erences or the adaptive phenotype. Reverse ecology is especially important

to investigate organisms, such as microbes, which are challenging to identify adaptive phenotypes. This

will preclude the utilization of associating studies such Genome Wide Association Studies. Moreover,

another challenge is exempli�ed in fungi, speci�cally, asexual fungi in which the development of popu-

lations to study a speci�c trait is not possible. Thus, approaches such as QTL analysis are not feasible.

Reverse ecology may help overcome these challenges by investigating patterns of genetic diversity within

andbetweenpopulations. Ellison et al., (����) implemented a reverse ecology approach to investigate tem-

perature adaptation in the model fungus N. crassa by using three di�erent population genetics metrics

(FST , Tajima’s D, andDxy). They identi�ed regions of genomic divergence, which are those showing low

within-population polymorphism and high between-population divergence, and genes associated with

response to cold temperature within those regions. However, among the three metrics used, Ellison et al.

found that out of a total of �� regions showing signi�cant signatures of positive selection, only two were

identi�ed by all three metrics. This suggests a high proportion of false positives. In fact, it is known that

FST outliers can be seen for reasons other than local adaptation such as deleterious alleles, species-wide

selective sweeps and cryptic hybrid zones. Other aspect to consider is that regions identi�ed using reverse

ecology constitute just candidate loci of local adaptation, and further functional analysis needs to be done

to conclusively identify causal genes.

�.� Macrophomina phaseolina the causal agent of charcoal rot

Macrophomina phaseolina is a seed- and soil-borne fungal pathogen infectingmore than ��� host species

(Batista, Lopes and Alves, ����). M. phaseolina is haploid, reproduces asexually, and overwinters in soil

and crop residue as microsclerotia. Microsclerotia are melanized structures that serve as the primary in-

oculum to initiate infection in subsequent seasons (Gupta, Sharma andRamteke, ����; Islam et al., ����).

Pycnidia have been observed on host plant tissues(Knox-Davies, ����; Dhingra and Sinclair, ����; Mihail
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and Taylor, ����; Ma et al., ����; Gupta et al., ����). Although conidial suspensions have been used to

experimentally inoculate soybean plants, suggesting pycnidiamay provide inoculum for secondary infec-

tion in the �eld, their epidemiological signi�cance has yet to be fully de�ned (Ma et al., ����; Gupta et

al., ����). Depending on environmental conditions,M. phaseolina survives as microsclerotia in soil for

up to �� years (Short et al. ����; Baird et al. ����), and for up to � years as microsclerotia in symptomatic

seeds or as mycelium in asymptomatic seeds (Hartman et al. ����).

One of the �rst descriptions ofM. phaseolina was made in ���� by Halsted causing disease on sweet

potato and the funguswas namedRhizoctonia bataticola (Halsted, ����). Later this funguswas described

by Tassi (����) who named the fungus asMacrophomina phaseolina as it is retained today. In ����, Ashby

proposed the nameMacrophomina phaseoli (Maubl.). Ashby associated the microsclerotia and conidial

stage by observing the structures on seedlings of multiple crops. The nameMacrophomina phaseoli was

changed toMacrophomina phaseolina (Tassi) G. Goidanich, by Goidanich in ����. By ����, there was

controversy among researchers over the use of the name, but generaMacrophomina andMacrophoma

were used to refer to the pycnidial stage andRhizoctonia to the sclerotial state.

In ����, Von Arx introduced the name Tiarosporella phaseolina (Tassi) van der Aa and reduced the

genusMacrophomina to a synonym of TiarosporellaHöhn. However, this has largely been ignored by

the plant pathological and mycological community (Crous et al., ����). In ����, Crous et al., in a com-

prehensive phylogenetic study of ��� members of the family Botryosphaeriacea using ribosomal DNA

sequences, separated the genera Macrophomina and Tiarosporella, retaining the genus Macrophomina

and the name Macrophomina phaseolina. The type species of M. phaseolina was originally described

from Phaseolus spp. collected in Italy (Sarr et al., ����).

Soybean is one of the most economically important crops worldwide, contributing with more than

half of the world’s total oilseed production (Boerma et al., ����; Wilson, ����). Seed oil and protein

content makes soybean a valuable source not only for food and feed utilization but also for the indus-

trial production of biofuels (Boerma et al., ����). Many diseases threaten global soybean production,

including charcoal rot, caused byM. phaseolina. Charcoal rot severely a�ects soybean yield under high

temperatures and drought conditions (Mengistu et al., ����). Tropical and subtropical areas, including

��



the southern US, have been the most a�ected. However, charcoal rot disease in soybean is now a consis-

tent threat to soybean production in southern and northern US regions (Bradley et al., ����). Although

it is not clear which factors may be driving outbreaks in these regions, climatic changing conditions and

resistance overcoming due to pathogen genetic divergence may be involved in the broadening of the ge-

ographical range of charcoal rot disease. To date, complete resistance to charcoal rot in soybean is not

known and cultural practices and fungicide seed treatments do not provide consistent control to char-

coal rot in soybean (Paris et al., ����; Mengistu et al., ����; Gillen et al., ����). The con�uence of these

factors, makes imperative to investigate the genetic basis for adaptation inM. phaseolina.

�.� Conclusions and dissertation overview

Approaches to study patterns of genetic diversity and adaptation in plant pathogens, as well as theirmain

limitations, were discussed. One of those limitations is the di�culty to distinguish between natural se-

lection and demographic processes. Thus, it is important to carefully consider the experimental design

and approaches in light of the biology and epidemiology of the organism under study. Fungal pathogens

can reach very high population sizes in a single plant and clonal reproduction and mixed reproduction

systems are commonly observed. Furthermore, complex population dynamics and genome architecture

are hallmarks of many fungal plant pathogens.

Most computational tools used in population genetics are based on models developed for sexual or-

ganisms (Kamvar et al., ����). Populations that reproduce clonally may violate some of the assumptions

underlying the population genetic theory. Moreover, themost widely usedmodel is theHardy-Weinberg

model which assumes diploid, sexual organisms, besides no selection, no mutation, no migration, no

drift and randommating between sexes (Hahn, ����).

An important assumption that is violated in clonal organisms is the random association between alle-

les at di�erent loci. In several approaches, this assumption allows the prediction of genotype frequencies

from the allele frequencies at each locus (Milgroom, ����). In clonal organisms associations among alle-

les at several loci are nonrandom and the entire genome may be e�ectively linked (Anderson and Kohn,

����). Therefore, with clonal organisms the of use clone-corrected unlinked data is appropriate to avoid

bias in diversity estimations due to duplicated genotypes (Kamvar et al., ����; Milgroom, ����).

��



Although, approaches based on genetic diversity metrics are often employed to identify signatures

of adaptation in plant pathogens, population genomics and ordination techniques such as redundancy

analysis have the potential to accommodate the intrinsic characteristics of fungal pathogens andbegindis-

entangling the e�ects of selection of those of other evolutionary forces. Suchmethodological approaches

in conjunction with population genomics analyses, constitute powerful tools to identify patterns of ge-

nomic diversity and adaptive potential of fungal pathogens.

The focus of this dissertation is to improve our understanding of M. phaseolina population struc-

ture, adaptation to host and climate and its application to local management practices through using the

frameworks and tools of population genomics and community ecology. Additional objectives of this re-

search are to characterize the sensitivity ofM. phaseolina to fungicides currently used in crop production

and provide a preliminary climatic suitability model for the monitoring and prediction of disease risk.
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CHAPTER �

POPULATION GENOMIC ANALYSIS REVEALS GEOGRAPHIC STRUCTURE AND
CLIMATIC DIVERSIFICATION FORMACROPHOMINA PHASEOLINA ISOLATED

FROM SOYBEAN ANDDRY BEAN ACROSS THE US, PUERTO RICO, AND COLOMBIA
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�.� Abstract

Macrophomina phaseolina causes the important disease charcoal rot, which signi�cantly reduces yield

and seed quality of soybean and dry bean. Although charcoal rot has been recognized as a warm climate-

driven disease of increasing concern under global climate change, knowledge regarding population ge-

netics and climatic variables contributing to the genetic diversity ofM. phaseolina remains limited. This

study conducted genome sequencing for �� M. phaseolina isolates from soybean and dry bean across

the continental US, Puerto Rico, and Colombia. Inference on the population structure revealed that

the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic dif-

ferentiation regionally. Almost all isolates from the US grouped in a clade with a predominantly clonal

genetic structure, while most Puerto Rican and Colombian isolates from dry bean were assigned to a

separate cluster with higher genetic diversity. Consistently, climate signi�cantly contributed to genomic

variation at a continental level with temperature seasonality and precipitation of warmest quarter having

the greatest impact. The loci signi�cantly associated with multivariate climate were found closely to the

genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity

and a heat-shock protein, whichmaymediate climatic adaptation forM. phaseolina. On the other hand,

limited genome-wide di�erentiation among populations by hosts was observed. These �ndings highlight

the importance of population genetics and identify candidate genes ofM. phaseolina that can be used to

elucidate the molecular mechanisms that underly climatic adaptation to the changing climate.

�.� Introduction

Delineating pathogen populations and identifying the factors shaping the patterns of genetic diversity

within and among populations allow for inferences about their biology and evolutionary potential. Plant

pathogens are often genetically structured in di�erent agricultural landscapes as a result of geographic and

environmental di�erences (Gladieux et al., ����; McDonald and Stukenbrock, ����). Among di�erent

environments, agroecosystems provide remarkable conditions for rapid adaptation of plant-pathogenic

fungi. The abiotic and biotic factors such as genetic crop uniformity of monocultures, the prevalent

occurrence of human-mediated migration (Wing�eld et al., ����; Crous et al., ����), and intrinsic char-

acteristics of fungi such as their mode of reproduction (McDonald and Stukenbrock, ����) are known
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to be strong drivers of genomic divergence and adaptation in plant pathogenic fungi (Stukenbrock et al.,

����; Savolainen, Lascoux andMerilä, ����; Croll andMcdonald, ����). However, characterizing how se-

lective pressures of abiotic and biotic factors contribute to population genetics of plant-pathogenic fungi

remains challenging.

Macrophomina phaseolina is a seed- and soil-borne fungal pathogen that infects more than ��� host

species (Batista, Lopes and Alves, ����), and causes damping o� and charcoal rot in many important

economic and subsistence crops worldwide, including soybean (Glycine max) and dry bean (Phaseolus

vulgaris) (Dhingra andSinclair, ����). Duringhost infection,M.phaseolina invades the xylempreventing

water uptake, causing wilting and premature plant death with senesced leaves remaining attached to the

petioles (Mengistu et al., ����; Romero Luna et al., ����). These symptoms can develop rapidly causing

extensive yield loss and grain or seed quality reduction (Smith and Carvil, ����). Charcoal rot of soybean

ranked �th out of �� pests and pathogens causing global yield losses higher than �% (Savary et al., ����),

with the potential for yield reductions within individual �elds of up to ��% (Wrather et al., ����). In the

US, charcoal rot ranked among the top sevenmost destructive diseases with economic losses totaling ���

billion dollars from ���� to ���� (Allen et al., ����). Disease is favored byhot anddry conditions (Dhingra

and Sinclair, ����), with colonization in the soybean and dry bean tap root and lower stem being greatest

under high temperatures (��ºC – ��ºC) and low precipitation (Dhingra and Sinclair, ����; Meyer and

Sinclair, ����; Kendig, Rupe and Scott, ����; Mengistu, Arelli, et al., ����; Mengistu, Smith, et al., ����;

Reznikov et al., ����).

Macrophomina phaseolina is haploid, reproduces asexually, and overwinters in soil and crop residue

as abundant, melanized microsclerotia that serve as the primary inoculum to initiate infection in subse-

quent seasons (Gupta, Sharma andRamteke, ����; Islam et al., ����). Pycnidia are occasionally produced

on soybean and other host plants, however, their epidemiological signi�cance has yet to be fully de�ned

(Knox-Davies, ����; Dhingra and Sinclair, ����; Mihail and Taylor, ����; Ma et al., ����; Gupta et al.,

����). Depending on environmental conditions,M. phaseolinamay survive as microsclerotia in soil for

up to �� years (Short et al. ����; Baird et al. ����), and for up to � years as microsclerotia in symptomatic

seeds or as mycelium in asymptomatic seeds (Hartman et al. ����). To date, no clonal lineages or patho-
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types have been identi�ed forM. phaseolina, despite reports of within-species variation in morphology

and pathogenicity (Dhingra and Sinclair, ����, ����; Sexton, Hughes and Wise, ����). Population ge-

netic studies based on microsatellite markers of isolates representing di�erent geographic regions and

hosts across the US have found moderate to high genetic diversity and mixed evidence of population

structure by host or geography. Although considerable e�orts have been focused on ascertaining host

specialization, it is generally concluded that there is no strong evidence of this speci�city, in which iso-

lates from one plant species can often cause disease in other plant species (G Su et al., ����; Zveibil et

al., ����; Romero Luna et al., ����). Nevertheless, genetic similarity of isolates according to host and US

regions and some degree of host preference have been noted (G. Su et al., ����; Jana, Sharma and Singh,

����; Baird et al., ����; Saleh et al., ����; Arias et al., ����). Notably, a group ofM. phaseolina isolates

obtained from strawberry in California were found to form a species-speci�c cluster, exhibiting strong

host preference for strawberry over other hosts around California (Koike et al., ����; A. K. Burkhardt et

al., ����).

Studying population genetics using statistical methods that leverage genomic, geographic and en-

vironmental data can account for continuous and discrete genetic variation and provide insights into

the genetic basis underlying environmental adaptation (Hoban et al., ����; Bontrager and Angert, ����;

Bradburd, Coop and Ralph, ����b). These approaches may be used to identify environmental factors

driving selection and provide an understanding of how andwhy pathogen populations vary across space.

Population genomics and genotype-environment associations have been applied in numerous studies to

resolve the basis of rapid adaptation and identify candidate adaptive loci associated with environmental

variation (Lasky et al., ����; Forester et al., ����; Xuereb et al., ����; Gibson andMoyle, ����; Capblancq

and Forester, ����). However, characterizing population structure and unravelling the e�ects of contin-

uous or discrete processes on the genetic di�erentiation remains challenging for many plant-pathogenic

fungi.

A major challenge arises because continuous geographic di�erentiation (e.g. isolation by distance or

climatic variation along a gradient) can be confounded with discrete processes such as admixture and

long-distancemigration (human-mediatedmigration) which are commonly observed in plant pathogens
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(Wing�eld et al., ����; Crous et al., ����; Tabima et al., ����; LeBlanc, Cubeta and Crouch, ����). In ad-

dition, collinearity between spatial and environmental variables makes it di�cult to elucidate to what ex-

tent geographic and environmental di�erencesmay be contributing to genetic di�erentiation. To address

these issues, multivariate statistical methods, speci�cally redundancy analysis (RDA), have been increas-

ingly used to disentangle the e�ects of environmental factors in shaping genetic variation. RDA is a type

of constrained ordination in which a set of SNPs aremodeled as responses in a function of combinations

of environmental predictors. Because of its ability to evaluate many loci simultaneously, RDA has been

found to be superior to traditional mixed-models associations methods in identifying weak, multilocus

selection (Forester et al., ����), suggestive of polygenic adaptation. Furthermore, partial RDAmodels, in

which covariables can be included, has been used to account for underlying population structure in the

identi�cation of loci associated with environmental factors for climate adaptation in a variety of systems

including plant and animal species (Lasky et al., ����; Forester et al., ����; Xuereb et al., ����; Gibson and

Moyle, ����; Capblancq and Forester, ����).

Climate�uctuation and temperature in particular, are important abiotic factors leading to local adap-

tation of plant-associated fungi (Savolainen et al., ����; Croll and Mcdonald, ����), especially in species

occupying spatially and climatically heterogeneous environments (Ellison et al., ����; Branco et al., ����,

����; Fitzpatrick and Keller, ����). M. phaseolina is recognized for its di�erent ecological roles as an en-

dophyte, saprotroph, and latent or opportunistic pathogenwith broad geographic distribution (Dhingra

and Sinclair, ����; Slippers and Wing�eld, ����; Slippers and Boissin, ����; Parsa et al., ����; Crous et

al., ����). Worldwide diseases caused byM. phaseolina have re-emerged in recent decades, with outbreaks

occurring mostly in tropical and subtropical regions but in temperate regions as well (Leyva-Mir et al.,

����; Casano et al., ����; Koehler and Shew, ����; Meena et al., ����; Nishad et al., ����; Tančić Živanov

et al., ����; Wang et al., ����). In the US, charcoal rot of soybean has been primarily an issue in south-

ern states. However, more recently charcoal rot has been reported in northern states such as Wisconsin,

New York, Minnesota, and Michigan (Bradley et al., ����; Brown, ����; Cummings and Bergstrom,

����; Elaraby, ����; Hughes, ����; Yang and Navi, ����). Although many factors may in�uence disease

incidence, greater disease and yield losses have been observed in years with high temperature and low soil
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moisture (Bradley and Allen, ����; Allen et al., ����). When comparing isolates from the northern and

southernUS states, a recent study concluded thatM. phaseolina isolates were regionally adapted (Sexton,

Hughes andWise, ����). Investigations in the context of species within Botryosphaeriaceae suggest that

geographical distribution and host a�nity dynamics inM. phaseolina are strongly in�uenced by climate

due to its broad host range and ecologically diverse roles (Slippers and Wing�eld, ����; Batista, Lopes

and Alves, ����). These factors, together with future extreme rainfall and temperature predicted in the

climatic change models (IPCC, ����), make it critical to better understand the genetic structure and cli-

matic factors as potential selection agents ofM. phaseolina.

The broad geographic distribution and population dynamics ofM. phaseolina suggest that popula-

tions in the continental US, Puerto Rico and Colombia might have been in�uenced by a complex envi-

ronmental and agricultural landscape andmay be structured and di�erentially adapted at a continental or

regional level. However, understanding of the population structure ofM. phaseolina has remained lim-

ited. In the present study, the �rst aim was to better understand the genetic structure inM. phaseolina

populations isolated from soybean anddrybean across theUS, PuertoRico andColombia using genome-

wide single nucleotide polymorphisms (SNPs). Speci�cally, the contribution of discrete vs. continuous

genetic di�erentiation was assessed and the hypotheses tested wereM. phaseolina populations di�erenti-

ated (i) between geography and (ii) between host within the US, using conventional and spatially explicit

population structure analyses. The second aimwas to investigatewhether climatic variables contribute to

patterns of adaptive genetic variation inM. phaseolina. Using RDA, the hypotheses tested were (i) spe-

ci�c climatic variables contribute to genetic variation, (ii) climatic variables independently contribute

to patterns of genetic variation when accounting for underlying spatial and population structure, and

(iii) loci in strong association with multivariate climate can be identi�ed and have roles in driving local

adaptation to climate.

�.� Results

�.�.� Whole-genome sequencing for ��M. phaseolina isolates

Whole-genome sequences were generated for �� M. phaseolina isolates collected across the US, Puerto

Rico, and Colombia, including �� soybean isolates, �� dry bean isolates, two strawberry isolates, and one
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Ethiopianmustard isolate (Fig �.�; Supplementary Table A.�). Sequence coverage varied across individual

isolates from �X to ��X, across ��% of theM. phaseolina reference genome (JGIMycocosm,MPI-SDFR-

AT-���� v�.�). A total of �.�million SNPs were identi�ed across all isolates, and amean read depth (DP)

of ��Xwas obtained for all SNPs after�ltering. Most SNPshad amappingquality (MQ) value equal to��

(��%) and SNPs withMQ values < ��were removed. The distribution of missing data across the isolates

and across the variants was even, with most individuals representing similar missing data (� – �.���%),

and all variants containing missing data were removed. The �nal data set contained ��,��� high-quality

biallelic SNPs in all isolates, and the data set was retained for all analyses.

Figure �.�Geographic location of the ��Macrophomina phaseolina isolates overlaid on temperature and
precipitation variables. (A) Isolate collection sites overlaid on temperature seasonality (standard devia-
tion; ºC). Temperature seasonality contributed the most to explaining patterns of spatial genetic varia-
tion using redundancy analysis (RDA). (B) Isolates overlain on precipitationwarmest quarter (mm). US,
Puerto Rico and Colombia are outlined in black.

�.�.� Phylogenomics di�erentiated �� isolates into two main clades of the US and Colombian-
Puerto Rican origins

To infer the genetic similarity inM. phaseolina isolates across the continental US, Colombia and Puerto

Rico, a maximum-likelihood (ML) phylogenetic tree based on the ��,��� SNPs was constructed. Five

genetic clusters were identi�ed across the US (n=�), Colombia and Puerto Rico (n=�). Furthermore,

a pattern of hierarchical structure di�erentiating the US and Colombian-Puerto Rican isolates was ob-

served. TheML tree provided strong support (���% bootstrap) for twomain clades, hereafter referred to
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as US and COLPR, and �ve well-supported clades within the main clades (Fig. �.�A). The US isolates

M��-�� and M��-�� from California, and TN��� from Louisiana clustered in the COLPR clade, while

the Colombian isolates Mph-��, Mph-��, and Mph-�� in the US clade (Fig. �.�A). Other than these six

isolates, all isolates from the US were placed in the US clade, and all isolates from Colombia and Puerto

Rico were grouped in the COLPR clade.

There were three subclades (US�A,US�B andUS�) within theUS clade and two subclades (COLPR�

andCOLPR�) within theCOLPRclade. The PCAclustered isolates in �ve distinct groups in agreement

with phylogenetic analysis, with little evidence of within group di�erentiation (Fig. �.�B). The �rst PC

explains most of the variance (��.�%) and separates out isolates in the US clade from the isolates in the

COLPR clade, while the second PC explains ��.�% of the variance dividing isolates into the �ve groups

in the phylogenetic analysis (Fig. �.�B). An exception was isolateMP���, which in the PCAwas grouped

in US�B instead of US�A. Since the phylogenetic and PCA clustering revealed essentially the same hier-

archical groupings, they were named genetic clusters US�A, US�B, US�, COLPR� and COLPR�.

US�A isolates represented the predominant group in the US, with most isolates collected in the East

North Central and Central regions in the states of Michigan (��), followed by Wisconsin (��), Indiana

(�), Tennessee (�) and Kentucky (�). Cluster US�B was represented by isolates from Mississippi (�) and

SouthCarolina (�). US� isolates represented the second largest group in theUS andweremostly collected

in the West North Central [Minnesota (�), South Dakota (�)] and South [Texas (�) and Georgia (�)]

regions. Also, within this cluster were isolates fromWisconsin (�), Michigan (�), and Kentucky (�). On

the other hand, theCOLPR� cluster groupedmost isolates fromColombia (��) andPuertoRico (�) while

COLPR� grouped isolates fromColombia (�), one isolate from Puerto Rico, and three isolates from the

US.No evidence of population structure by stateswas found,which indicated that states donot represent

genetic groups andM. phaseolina is genetically structured at a broader subcontinental regional extent.

A ML phylogeny rooted with the M. phaseolina reference genome was reconstructed using the set

of high-quality SNPs. TheM. phaseolina reference genome was considered as a suitable outgroup based

on its European and Arabidopsis thaliana origin. The phylogenetic reconstruction with the reference

genome as a root revealed the COLPR� clade as an outgroup to all other clades, while the US clades were
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Figure �.� Population structure of Macrophomina phaseolina in the US, Colombia and Puerto Rico
reveals �ve genetic clusters in a pattern of hierarchical structure. (A) Maximum-likelihood phylogeny
reconstructed using ��,��� high-quality SNPs. Bootstrap support values over �� are shown at nodes.
Bootstrapping converged after ��� replicates. Colored tips represent the genetic cluster for each isolate
as de�ned by principal components analysis. The two main clades, US and COLPR, are highlighted
by rectangular shading. The country of collection for each isolate is denoted by colored squares at the
right bar. (B) Scatterplot from a principal component analysis based on the two �rst PCs (the eigenvec-
tors of the SNP dataset) for all isolates. Points are colored by membership in the �ve genetic clusters.
Isolate names include states/municipalities codes: CA: California, CAU: Cauca, GA: Georgia, IN: Indi-
ana, ISA: Isabela, JD: JuanaDiaz, KY: Kentucky, LA: Louisiana,MAG:Magdalena,MI:Michigan,MN:
Minnesota,MS:Mississippi, SC: SouthCarolina, SD: SouthDakota, TN:Tennessee, TOL:Tolima, TX:
Texas, VAC: Valle del Cauca, WI: Wisconsin. Country codes: US: United States, COL: Colombia and
PR: Puerto Rico.

reconstructed as terminal clades (Supplementary Fig. A.�). The topology of the rooted ML phylogeny

indicated the COLPR clades as more diverse than the major US terminal clades (US�A and US�). This

higher diversity in COLPR clades was indicated by longer average branch length than in the US clades,

representing a higher average number of substitutions per site. Di�erences in diversity can also be inferred

from the PCAclustering. In PC space, �� isolates inUS�Aand �� isolates inUS� genetic clusters clustered

e�ectively on top of each other, while isolates in US�B, COLPR� andCOLPR�, although projected near
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each other, clustered distinctively more dispersed (Fig. �.�B). The placement of COLPR genetic clusters

and their higher diversity as compared to US genetic clusters indicates them as potential sources to the

US clusters.

To test the relatedness of M. phaseolina isolates from soybean and dry bean in US, the host infor-

mation was mapped to the ML tree (Supplementary Fig. A.�A). Generally, isolates that shared a com-

mon host did not cluster within genetic clusters in the US. Isolates collected from soybean and dry bean

grouped together in the two larger US genetic clusters (US�A and US�; Supplementary Fig. A.�A). This

lack of structure was further supported in a PCA showing overlapping ellipses representing ��% of the

isolates from each of the hosts (Supplementary Fig. A.�).

�.�.� Spatial population structure de�nes discrete population structure inM. phaseolina be-
tween the US and Colombia-Puerto Rico and continuous substructure between genetic
clusters within US and COLPR clades

To infer the number of distinct genetic groups in M. phaseolina while accounting for continuous ge-

ographic di�erentiation, spatial analysis of population structure was conducted using a Bayesian (con-

Struct) and a model-free matrix factorization (TESS�) framework. Spatial analysis of population struc-

ture incorporates geographic distance in the estimation of ancestry coe�cients (the proportion of indi-

vidual isolate’s genome originating from the ancestral genetic group, K). The genetic structure of the ��

isolates was explained better by a spatialmodel of admixture between discrete genetic groups, where isola-

tion by distance was accounted for rather than the non-spatial model. This was indicated by the increase

in predictive accuracy in the conStruct spatial models for all tested values of K (referred hereafter as layers

in conStruct framework; Supplementary Fig. A.�B). This suggests that isolation by distance or climatic

gradients likely play a role in shaping patterns of genetic variation in the sampled isolates.

Spatial population structure description using TESS� returned the greatest decrease in root mean-

squared errors at K=� (�.���, from �.��� at K=� to �.��� at K=�; Fig. �.�D) and detected the US and

COLPR clades. At K=�, TESS� spatial estimation strongly assigned ��% of isolates to a single ancestral

population (ancestry proportion Q > �.�; Fig. �.�A). All isolates in the US clade, except for the three

isolates collected in Colombia, were identi�ed as being derived from a single ancestral population (repre-

sented by blue; Fig. �A, bottom). Likewise, all COLPR isolates are estimated to have a majority compo-
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nent of ancestry from a single source population (represented by orange; Fig. �.�A, bottom) including

the three isolates collected in the US (M��-�� and M��-�� from California, and TN��� from Louisiana).

The three isolates collected in Colombia grouping in the US clade (Mph-��, Mph-�� andMph-��) were

identi�ed as admixed (i.e., to have ancestry from more than one population instead of drawing ancestry

mostly [Q > �.�] from a single ancestral population) between the two ancestral groups (Fig. �.�A, bot-

tom) as well as the two isolates (IN��-�-� from Indiana andMph-�� from Colombia) placed outside the

supported clusters in theML tree and PCA. At K=�, further substructure was detected that generally re-

�ect the genetic clusters within the US andCOLPR clades; except that an ancestral population for US�B

isolates was not inferred (Fig. �.�B). The decrease in root mean-squared errors at K=� (�.��; from �.�� at

K=� to �.�� at K=�; Fig. �.�D) was the second largest value after that at K =�, re�ecting the hierarchical

structure observed in previous analyses. However, although isolates in each genetic cluster (except US�B)

were inferred as drawing themost ancestry from their own ancestral population, only ��% of isolates had

an ancestry proportion (Q) > �.�� to a single ancestral population (Fig. �.�B, bottom), demonstrating

weaker assignments than those at K = �.

Consistently, the results from conStruct spatial model with K =� returned the greatest increase in

predictive accuracy and primarily partitioned the isolates in twomain groups mostly in line with US and

COLPR clades (Supplementary Fig. A.�A). Based on cross-validation results, the predictive accuracy

increased with increasing values of K (Supplementary Fig. A.�B), however additional layers beyond K

= � contribute little to total covariance (Supplementary Fig. A.�C). Therefore, supporting two discrete

ancestral populations while population substructure can be explained by continuous genetic di�eren-

tiation. Taken together conStruct and TESS� results supported two discrete genetic groups for the US

and COLPR main clades and suggested that most isolates within US and COLPR clades can be better

described to have ancestry mainly from each single ancestral population. It may therefore be reason-

able that the evolutionary processes leading to divergence between genetic clusters within the US (US�A,

US�B,US�) andCOLPR (COLPR�COLPR�) clades were associated to isolation by distance or climatic

di�erences rather than di�erent discrete ancestry.
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Figure �.� Spatial population structure de�nes discrete population structure inM. phaseolina between
the US and Colombia-Puerto Rico and continuous substructure between genetic clusters. (A) Isolate
membership to ancestral populations identi�ed with TESS� using K = � and (B) K = �. Top: Isolate
collection sites overlaid on individual membership, each color representing a population. Each point
represents an isolate, points are colored by their assignment to genetic clusters as identi�ed in principal
component analysis to show agreement between the methods. Bottom: Ancestry proportions (Q) of all
isolates. Isolates identi�ed as admixed (Mph-��, Mph-��, Mph-��, Mph�� and IN���-�) are labeled and
indicated with dots. (C) Scatterplot from a principal component analysis for all isolates (from Fig. �).
(D) Values of the TESS� cross-validation criterion (root mean-squared errors, RMSE) as a function of
the number of ancestral populations (K = � to K= �).

�.�.� Genetic diversity and di�erentiation between the US and COLPR clades and genetic
clusters ofM. phaseolina

To examine genome-wide diversity of M. phaseolina within and among clades and genetic clusters, we

estimated gene diversity (He) andmedian pairwise genetic distance for each of the clades and genetic clus-

ters. Pairwise genetic distance showed that COLPR isolates had greater genetic distances among isolates

than those in the US clade, with a gene diversity (He) signi�cantly higher in the COLPR clade (�.���)

than the US clade (�.���; Table �.�) (Hs.test, P = �.���). Among clusters, the COLPR� cluster has

the highest genetic diversity, considering both gene diversity and pairwise genetic distance, followed by

COLPR�, US�B, US�, and the US�A cluster has the lowest values (Table �.�). The higher genetic distance

among isolates in the US�B cluster as compared to other US clusters, likely re�ects that the cluster is only

represented by �ve isolates of which twowere collected inMississippi, two inColombia and one in South

��



Carolina.

Table �.� Summary statistics for genetic diversity ofMacrophomina phaseolina clades and genetic clusters.
N is number of isolates (sample size); MLG is number of observed multilocus genotypes; eMLG is the
number of expectedMLG at a sample size of �� for clades and � for genetic clusters based on rarefaction.
MLL is number of observed multilocus lineages by population using a bitwise cuto� distance of �.����;
CF is clonal fraction (� - (MLL/N).Clone corrected values are shownand indicatedby asterisks for indices
of genotypic diversity: Shannon-Wiener Index (H*), Stoddart and Taylor’s Index (G*), Simpson’s index
(lambda*) and evenness (E�*).

Clade, Genetic
Cluster N Gene

diversity (He)
Median pairwise
genetic distance MLG eMLG MLL eMLL CF H* G* lambda* E�*

US �� �.��� �.��� �� ��.�� �� ��.� �.�� �.�� �.�� � �.���
US�A �� �.���� �.����� �� �.�� � �.�� �.�� �.��� �.�� �.��� �.���
US�B � �.��� �.�� � � � � �.� �.��� �.�� �.�� �.���
US� �� �.��� �.����� �� � � �.�� �.�� �.� �.�� �.��� �.��

COLPR �� �.��� �.��� �� �� �� �� �.� �.�� ��.� �.��� �.���
COLPR� �� �.��� �.��� �� � � �.�� �.� �.��� �.�� �.��� �.���
COLPR� � �.��� �.��� � � � �.�� �.�� �.��� �.�� �.��� �.���

Note: Summary statistics were calculated using the clone-corrected data at ��MLGs.

To evaluate genotypic diversity both in terms of genotypic richness (the number of observed geno-

types) and evenness of distribution of genotypes, the number ofmultilocus genotypes (MLG)was calcu-

lated for each clade and genetic cluster. AMLGwas de�ned as a unique combination of SNPs. Given the

large number of ��,��� SNPs and genotyping error rate fromNGSdata, it is unlikely that a true clonewill

be represented by anMLG.Thus, to better represent clones, closely related genotypeswere collapsed into

multilocus lineages (MLLs) based on a Prevosti’s genetic distance threshold of �.���� (� SNPs). Of the

�� isolates, �� had unique genotypes (MLGs) corresponding to ��MLLs (Table �.�). eMLG and eMLL

are the number of expected MLGs and MLLs based on rarefaction at the lowest common sample size

between clades and genetic clusters and were used to allow comparisons across them given their unequal

sample sizes. Genotypic richness was highest in the COLPR clade (�� eMLLs) as compared to the US

clade (��.� eMLLs). Among genetic clusters, the COLPR� cluster had the highest number of eMLLs,

followed by US�, US�B, COLPR� and US�A. This indicates genotypic richness is highest in COLPR�

and lowest in the US�A genetic cluster, in which more than ��% of the isolates were clonal (Table �, CF).

Although, lower genotypic richness is inferred in COLPR� and US�B as compared to the gene diversity

pattern, this may be due to their low sample size. Evenness and the corrected Shannon-Wiener’s index,
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Stoddart and Taylor’s index and Simpson’s Index, were all highest in the COLPR clade than in the US

clade and followed the same pattern among genetic clusters as with genotypic richness (Table �.�). Finally,

there were no sharedMLGs or MLLs among genetic clusters.

Similarly, between countries, signi�cantly higher gene diversity in Colombia (�.���) compared with

the US (�.���) (Hs.test, P = �.���). Gene diversity in Puerto Rico (�.���) was intermediate and not sig-

ni�cantly di�erent from the US (Hs.test, P = �.���) or Colombia (Hs.test, P = �.���). Pairwise genetic

distances, corrected genotypic diversity indices and evenness calculated for each country follow the same

pattern of gene diversity (Supplementary Table A.�). To infer migration among countries by tracking

genotype �ow, MLLs shared among countries were identi�ed. In total three MLLs were shared among

countries. The MLL with one isolate from Colombia (Mph-�) and one from Puerto Rico (UPR-Mph-

JD�) clustering in COLPR�, the MLL with one isolate from Puerto Rico (UPR-Mph-ISA�) and one

from Louisiana (TN���) clustering in COLPR�, and the MLL with one isolate from Colombia (Mph-

��) and �� isolates from US clustering in US�A (Supplementary Fig. A.�). In addition, all populations

clustering approaches indicated that Colombian isolatesMph-�� andMph-�� are themost closely related

to the US isolates clustered in US�B, and Californian isolates M��-�� and M��-�� are the most closely re-

lated to Colombian isolates clustering in COLPR�. The rootedML tree indicated isolateMph-�� (from

Colombia) as an outgroup to US clusters and discriminatory analysis of principal components (DAPC)

clustered this isolate along with IN��-�-� (from Indiana) with US�B isolates (Supplementary Fig. A.�).

Overall, migration between Colombia, Puerto Rico and US is a likely scenario. To test the hypothe-

sis that genetic clusters of M. phaseolina are di�erentiated, we used hierarchical analysis of molecular

variance (AMOVA) andNei’s GST (an FST -analogous genetic di�erentiationmeasure applicable to hap-

loids). Populations were signi�cantly di�erentiated among clades, genetic clusters, as well as within ge-

netic clusters (P < �.���; SupplementaryTable A.�). AMOVA revealed thatmost of the total genetic vari-

ance was partitioned among US and COLPR clades (��%) and among genetic clusters (��%), and only

��% within genetic clusters. Consistently, very high genetic di�erentiation was found between US and

COLPR clades (GST = �.��) and among genetic clusters (GST = �.�� – �.��; Table �.�). The COLPR�

(GST = �.��-�.��) and US�B (GST = �.��-�.��) clusters had the lowest GST when compared with any
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other cluster. Di�erentiationwas lowest betweenCOLPR�–COLPR� (GST= �.��) clusters, andUS�A

–US�B (GST=�.��) and highest betweenCOLPR�–US�A(GST=�.��), COLPR�–US� (GST=�.��)

and US�A –US� (GST = �.��).

Table �.� Population di�erentiation usingNei’s GST pairwise genetic dissimilarity between genetic clus-
ters identi�ed inMacrophomina phaseolina.

Genetic Cluster US�A US�B US� COLPR� COLPR�

US�B �.��
US� �.�� �.��
COLPR� �.�� �.�� �.��
COLPR� �.�� �.�� �.�� �.��

All other pairwise comparisons had similar intermediate levels of genetic di�erentiation when com-

pared to any other genetic cluster (GST = �.��-�.��). The high values of GST in all pairwise compar-

isons suggest very high di�erentiation and little migration between genetic clusters. However, US�A –

US�GST estimation, which is notably high, was limited in power due to the low levels of gene diversity

(Hexp) within these genetic clusters. Across the ��,��� loci, there were only �� and ��� polymorphic loci

withinUS�A andUS� clusters, respectively. Thus, low gene diversity (Hexp) inUS�A andUS� subpopu-

lations likely resulted in overestimation of GST in pairwise comparisons of US�A andUS�with all other

clusters.

�.�.� M. phaseolina is predominantly clonal in the US and semi-clonal to mostly-clonal in
Colombia and Puerto Rico

The predominantly star-like topology with little reticulation, in the Neighbor-Net network analysis, is

consistentwith a clonally reproducing population (Fig. �.�A).The standardized index of association (IA)

(Brown et al. ����) was used to estimate the degree of clonality for each of theM. phaseolinamain pop-

ulations (US and COLPR clades). The observed IA distributions for each population were compared to

IA distributions for simulated populations with no linkage, ��%, ��%, ��% and ���% linkage. A predom-

inantly clonal mode of reproduction was inferred in the US and COLPR populations ofM. phaseolina.

The simulated distributions and the di�erent populations were signi�cantly di�erent from each other

(analysis of variance ANOVA df = �, F = �����, P < �.���). The distribution of the standardized IA for
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the US population fell within the ��% to ���% range of the linkage simulation (Fig �.�B). This indicates

a mostly clonal mode of reproduction with little potential for recombination. The distribution of the

standardized IA for the COLPR population fell within the �� to ��% range of the linkage simulation, in-

dicating semi-clonal to mostly clonal reproduction in COLPR clades (Fig. �.�B). To further investigate

the extent to which populations reproduce clonally, the linkage disequilibrium (LD) decay, as measured

by the squared correlation coe�cient (r�) was calculated across pairs of loci for each of the clades. LD

extends across a much larger distance in the US clade than in the COLPR clade, decaying over the �rst

thousand base pairs, while in the COLPR clade LD decayed over the �rst hundreds of bases. LD half-

decay distance, calculated as the average physical distance over which r� decays to half of its initial value

was ���� bp for US clade and ��� bp for COLPR clade (Fig. �.�C). This indicates a high level of

linkage occurs over larger regions of the genome in the US clade versus the COLPR clade. Importantly,

although this may provide evidence for less clonal reproduction and higher recombination rates in the

COLPR population, interpretation of standardized IA and LD decay as associated with the frequency of

recombination should be done with caution. It is possible that higher LD values did not re�ect greater

recombination; instead, it may be a�ected by lower sample size in COLPR and lower diversity in the US

clade.

�.�.� Climate contributes to SNP variation betweenM. phaseolina genetic clusters

To test the hypothesis that climate variation contributes to genetic variation across M. phaseolina ge-

netic clusters a redundancy analysis (RDA) was employed. Four climatic variables were identi�ed as sig-

ni�cantly predictive of genetic variation using the simple RDA model with forward variable selection.

Temperature seasonality (TSsd) was the strongest predictor, explaining ��% of the variation, followed

by precipitation of warmest quarter (Pwq), precipitation seasonality (PScv) and mean temperature of

warmest quarter (mTwq) (Table �). Importantly, the climatic variables included in the RDAmodel were

selected by their biological signi�cance and to avoid collinearity with other climatic variables and thus

represent a subset of the variables possibly contributing to climate variation. The correlation of these

variables with the �rst twoRDA axes suggests their di�erential contribution to SNP variation among ge-

netic clusters (Fig. �.�). Spatial structure, represented as distance-based Moran’s eigenvectors maps (db-
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Figure �.�Macrophomina phaseolina population structure is potentially driven by clonal expansions and
rapid divergence. (A) A reticulating phylogenetic network. Neighbor Net method was used to depict
con�icting phylogenetic signal. (B) Estimates of linkage disequilibrium for Macrophomina phaseolina
clades based on observed and simulated distributions of the standardized index of association (IA). Each
boxplot represents the observed distribution of IA for one of the clades ofM. phaseolina, compared with
the distribution of IA values for simulated populations with no linkage and ��, ��, ��, and ���% linkage.
The letters above each boxplot represent groupings based on Tukey’s HSD test . (C) Linkage disequi-
librium (LD) decay for predicted populations ofM. phaseolina, as measured by the squared correlation
coe�cient (r�) for all pairs of SNPs calculated over �� bp windows shown for each population. The dot-
ted black lines give the r� decay to half its initial value (r� = �.�� and �.�� in US and COLPR clades,
respectively) and the vertical lines indicate the LD half- decay distance for each clade.

MEM), was used to identify climatic variables that are structured in space and to account for the e�ect

of space in variance partitioning of total genomic variation. A total of three spatial variables were identi-

�ed (dbMEM�-�; Supplementary Fig. A.�). Notably, when accounting for spatial structure (dbMEM�-�

variables), only Pwq, mTwq and precipitation of driest quarter (Pdq) were signi�cant and accounted for

�% of SNP variation across isolates as determinedwith forward selection (Table �), indicating collinearity
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between TSsd, PScv and space (i.e., spatially structured TSsd and PScv variation). To identify the spatial

variables signi�cantly contributing to genomic variation forward selection was used. Of the three spatial

variables, only dbMEM�was signi�cant explaining�%of the genomic variation anddescribedbroad-scale

spatial structure (Supplementary Fig. A.�)

Figure �.� Genotype-environment association analyses support the contribution of climate variables to
patterns of divergence among Macrophomina phaseolina populations across the US, Colombia, and
Puerto Rico. Biplot of all isolates scores for the �rst two RDA axes using (A) Simple RDA (uncondi-
tioned) and (B) Partial RDA (conditioned on neutral population structure). Points are colored to show
agreement with genetic clusters identi�ed in the PCA (inset). Top and right axes (blue) indicate the cor-
relation of each climate variable with RDA axes � and �, respectively.

Table �.�Climatic variables signi�cantly contributing to SNPvariation as determined by forward variable
selection with simple RDA (redundancy analysis) and partial RDA conditioned on space.

Simple RDA (unconditioned) Partial RDA (conditioned on space)

Variable R� Cum R� Cum R�adj F-value p-value Variable Cum R�adj AIC F-value p-value
TSsd �.�� �.�� �.�� ��.�� �.���*** Pwq �.�� ���.�� �.�� �.���**
Pwq �.�� �.�� �.�� �.�� �.���*** mTwq �.�� ���.�� �.�� �.���**
PScv �.�� �.�� �.�� �.�� �.���*** Pdq �.�� ���.�� �.�� �.���**
mTwq �.�� �.�� �.�� �.�� �.���**
***p �.���, **p �.��

Partial redundancy analysis (pRDA) was used to estimate the partial contribution of each set of ex-

planatory variables (e.g., climate) while removing the e�ect of the remaining variable sets (e.g. neutral
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population structure and space). Variance partitioning with pRDA revealed that climate (TSsd, Pwq,

PScv and mTwq identi�ed by forward selection), neutral population structure (isolate PC scores for the

�rst three axes of a PCA using intergenic SNPs) and space (dbMEM� variable identi�ed by forward se-

lection) together signi�cantly explained ��% of the total SNP variance. Nearly half of this variance was

uniquely attributable to neutral genetic structure (��%), climate (�%), or space (�%), while the other half

of the SNP variation was explained jointly between the three sets of variables (Table �.�). The e�ect of

climate alone was highly signi�cant and explained �% of the total genetic variance after removing the

e�ects of neutral population structure and space (Table �.�). These results support the hypothesis that

climate signi�cantly contributes to genetic variation and importantly, suggests that migration, drift, and

potentially additional demographic and spatially structured processes (e.g isolation by distance), repre-

sented by neutral population structure, play a major role in shaping genomic variation inM. phaseolina.

Moreover, the large fraction of variation common to climate, population structure and space, emphasizes

the importance of accounting for confounded e�ects in genotype-environment associations, particularly

when inferring causal associations.

Table �.� Contribution of climate, neutral population structure and space to SNP variation as deter-
mined by variance paritioning with partial RDA (redundancy analysis).

Partial RDA model Inertia
(variance) R� p-value Proportion of

explainable variance
Proportion of
total variance

Full model: G ⇠clim. + sp. + struct. ���.� �.��� �.���*** �.�� �.��
Pure climate: G ⇠clim. | (sp. + struct.) ��.� �.��� �.���*** �.�� �.��
Pure structure: G ⇠struct. | (clim. + sp.) ���.� �.��� �.���*** �.�� �.��
Pure space: G ⇠sp. | (clim. + struct.) �.� �.��� �.���*** �.�� �.��
Confounded climate/structure/space ���.� �.�� �.��
Total unexplained ���.� �.��
Total inertia ����.� �.��
***p �.���
Note: Climate variables are temperature seasonality (TSsd), precipitation of warmest quarter (Pwq),
precipitation seasonality (PScv) and mean temperature of warmest quarter (mTwq) as identifed with
forward selection.

�.�.� Genotype-environment associations identify candidate SNPs for climatic adaptation

To identify loci that are potentially involved in local adaptation to climatic conditions, SNPs strongly

associatedwith climatic variableswere identi�edusingRDAwith andwithout accounting for population
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structure. Neutral population structurewas used as it uniquely contributed themost to genetic variation.

The RDA models, whether accounting for population structure (partial RDA) or not (simple RDA),

were globally signi�cant (p < �.���) and the �rst threeRDA axes explainedmost of the genomic variation

associated with climate.

The candidate adaptive loci were identi�ed based on extreme SNPs loadings, ±� or ±� SD from the

mean, on each of the �rst three axes (Forester et al., ����). In the partial RDA models, in which the ef-

fects of population structure were removed, �� unlinked SNPs (when using the LD-�ltered set and ±�

SD from the mean; Supplementary Table A.�) and �� SNPs (using all SNPs and ±� SD from the mean;

Supplementary Table A.�) strongly associated with climatic variables were identi�ed along the �rst three

RDA axes. Of these SNPs, �� and �� (outliers in Fig. �.�) were identi�ed in the �rst RDA axis when

using the LD-�ltered set or all SNPs, respectively, and �� (��%) in both partial models. The strongest

associations include SNPs with predicted e�ects in themembrane-associated ������-ankyrin, the ������-

Ksh� and the ������-protoporphyrinogen oxidase proteins. Structural modeling of the ������-ankyrin

protein revealed that ��� residues (��% of the sequence) was modelled with ���% homology con�dence

to the transient receptor potential (TRP) NOMPC (No mechanoreceptor potential C) mechanotrans-

duction channel protein inDrosophilamelanogaster (chainC, highest scoring template; PDB ID: �VKQ;

data not shown). Other SNPs with top associations are located within or in physical proximity to genes

related to transmembrane transport, glycoside hydrolase activity, DNA binding and the gene encoding

the �����-heat shock protein (Table �.�; Supplementary Table A.�).

Because population structure could not be fully disentangled from climate, as revealed in variance

partitioning, the candidate loci obtained with population structure correction represent a conservative

set subjected to a reduction in the detection of SNPs truly associated with climate. In the simple RDA

model, without correcting for population structure, �� candidate unlinked SNPswere identi�ed (Supple-

mentary Table A.�). Only two SNPs were identi�ed by both partial RDA and simple RDAmodels using

unlinked SNPs (Supplementary Fig. A.�). This is in line with the high level of collinearity observed be-

tween genetic, space and climate (Table �.�), andhighlights the importance of accounting for confounded

e�ects when identifying candidate loci under selection with genotype-environment associations.
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Figure �.� Manhattan plot of partial RDA scores. Values of squared SNP loadings for the �rst RDA
axis conditioning on neutral population structure. (A) Fifteen outlier SNPs identi�ed using using ��,���
unlinked SNPs and±� SD from themean and (B) Twenty-�ve using all ��,��� SNPs and±� SD from the
mean.

Table �.�Candidate SNPs and gene models along the �rst RDA axis, after accounting for neutral popu-
lation structure using the LD-�ltered set of ��,��� SNPs.

SNP position RDA�
loading

Climate
variable Correlation SNP

category
Distance from
locus (bp)

Mycocosm gene
location

Mycocosm
protein ID InterPro/KOG Desc KOG Class/Putative function

sca�old_��:������ -�.��� TSsd �.�� Intergenic ���� sca�old_��:������-������ ������ Ankyrin repeat Cell wall/membrane/envelope biogenesis

sca�old_��:������ -�.��� TSsd �.�� Intergenic ���� sca�old_��:������-������ ������ Ksh�(Protein kish) Involved in the early part of the secretory
pathway

sca�old_�:������� �.��� TSsd �.�� Missense � sca�old_�:�������-������� ������ Protoporphyrinogen
oxidase

Coenzyme transport and metabolism/Heme
biosynthesis

sca�old_�:������� -�.��� TSsd �.�� Intergenic ���� sca�old_�:�������-������� ������ None Unknown
sca�old_�:������� -�.��� TSsd �.�� Intergenic ��� sca�old_�:�������-������� ������ None Unknown

sca�old_��:������ -�.��� TSsd �.�� Intergenic ��� sca�old_��:������-������ ����� Transcription factor
domain, fungi

DNA binding/Zinc ion binding (Zn(II)�Cys�
transcription factor-related)

sca�old_�:������� -�.��� TSsd �.�� Synonymous � sca�old_�:�������-������� ����� GXWXG domain Unknown/Putative transcription
factor Cmr� homolog

sca�old_��:����� -�.��� TSsd �.�� Synonymous � sca�old_��:�����-����� ������ AMP-dependent
synthetase/ligase Lipid transport and metabolism

sca�old_��:������ -�.��� TSsd �.�� Intergenic ���� sca�old_��:������-������ ������ DUF���� family Unknown

sca�old_��:������ -�.��� TSsd �.�� Intergenic ���� sca�old_��:������-������ ������ Glycoside hydrolase,
family � Carbohydrate transport and metabolism

sca�old_�:����� �.��� TSsd �.�� Intergenic ���� sca�old_�:�����-����� ������ Allergen V�/Tpx-�-related,
conserved site Unknown

sca�old_�:������� �.��� TSsd �.�� Intergenic ����� sca�old_�:�������-������� ������ Ribonuclease T�-like RNA processing and modi�cation
sca�old_�:������� �.��� TSsd �.�� Intergenic ��� sca�old_�:�������-������� ������ Thioesterase superfamily Unknown

sca�old_��:������ �.��� mTwq �.�� Synonymous � sca�old_��:������-������ ������ Cytochrome P���, E-class,
group I Lipid transport and metabolism

sca�old_��:������ �.��� mTwq �.�� Intergenic ���� sca�old_��:������-������ ������ Flavin-containing
monooxygenase

Secondary metabolites biosynthesis,
transport and catabolism

�.� Discussion

In this study, we describe the population structure ofM. phaseolina in the continental US, Puerto Rico

andColombia collected from soybean anddry bean�elds and the contributions of climatic factors to pat-

terns of genomic diversity among populations. We found that �ve distinct genetic clusters ofM. phase-

olina evolved across theUS, Colombia and PuertoRico and evidence suggestsmigration between genetic

clusters and countries. To date, population genetic studies inM. phaseolina have performed their anal-

yses at the resolution of microsatellites molecular markers and have provided important information on

genetic diversity, host and geographic associations in the US (Baird et al., ����; Arias et al., ����; Koike et
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al., ����). However, no population-level genomic studies have been conducted to investigate population

structure in this widespread pathogen. Here, to our knowledge, we present the �rst population genomics

study to investigate population dynamics and the role of climate in shaping patterns of genomic varia-

tion inM. phaseolina at a continental and regional scale. This study uses population genomics data to

identify multiple strongly di�erentiated genetic lineages in the US and demonstrated novel population

structure in Colombia and Puerto Rico, which previously remained unstudied. Furthermore, our re-

sults highlight the importance of within-species genetic variation in understanding pathogens adaptive

response to a changing climate and o�ers new insight with respect to the functional roles of genomic

regions potentially underlying adaptation to climate. Notably, this research provides a practical frame-

work for genotype–environment associations studies inM. phaseolina and other plant pathogens with

complex evolutionary and demographic histories.

The in�uence of the lownumber of loci on limiting inferences aboutM.phaseolinapopulation struc-

ture is emphasized by recent studies that usedmicrosatellites markers (Baird et al., ����; Arias et al., ����).

These studies identi�ed genetic groups in the US; however, the genetic groups did not represent lin-

eages (i.e., genetic groups and supported phylogenetic clades). Using population genomics, we provided

strong evidence for �ve distinct genetic clusters ofM. phaseolina and revealed that genomic variation in

this globally distributed pathogen was consistent with a population hierarchically structured at a broad

subcontinental regional extent. Two genetically di�erentiatedM. phaseolina populations at the US and

Colombian-Puerto Rican geographical level (US and COLPR clades) and �ve distinct genetic clusters

representing �ner population structure within each of these clades were identi�ed. These genetic clus-

ters, except for US�B, represent strongly supported phylogenetic clades and monophyletic groups, and

likely represent di�erent evolutionary lineages ofM. phaseolina. This distinction is important because

the identi�cation of lineages allows the inference of ecological and evolutionary processes in a population-

speci�c manner and underscores the potential for local adaptation inM. phaseolina populations.

Our results provide support for regional clustering within the US and a lack of strong grouping at a

state level, also observed in previous studies based on microsatellite data (Baird et al., ����; Arias et al.,

����). The US�A cluster, found in the East North Central and Central region, expands previous studies
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con�rming that isolates collected from soybean in these regions represent a largely homogeneous popu-

lation (Arias et al., ����). This is supported by low gene diversity and pairwise genetic distances found in

the US�A genetic cluster in agreement with low diversity detected withmicrosatellite markers in soybean

isolates collected mostly in Tennessee and Missouri (Arias et al., ����) and midwestern states (group III;

Baird et al., ����). TheUS� genetic cluster found inWestNorthCentral and SouthUS regions grouping

isolates fromMinnesota, South Dakota, Texas, and Georgia is partially consistent with Baird et al. study.

Isolates from these states along with isolates from North Dakota represent the majority of a subcluster

of group I in Baird et al. Like in the US clusters, grouping at broad geographic regions was observed in

COLPR� and COLPR� clusters. Both COLPR� and COLPR� clusters grouped isolates from locations

across Colombia and Puerto Rico. In COLPR�, isolates from California and Louisiana grouped closely

to isolates from Colombia and Puerto Rico. Although the small sample size from these states (only two

isolates collected from strawberry in California and one isolate from soybean in Louisiana) demands that

this grouping be reassessed once more isolates are included from these states and hosts in future studies.

The clustering of isolates from widespread geographic regions observed in COLPR�, as well as in US�A

and US�B clusters, suggests a role for migration in structuringM. phaseolina populations. These results

better align our understanding of M. phaseolina population structure with a metapopulation model,

that predicts regional persistence of populations while local populations are unstable and connected by

some level of migration (Hanski, ����; Milgroom, ����). The metapopulation dynamics view expands

the interpretation of pastM. phaseolina population structure studies while providing a conceptual basis

for the design of future studies.

The presence of multiple distinct genetic clusters in the US and higher genetic diversity in COLPR

clusters led us to inquire about whether Colombia and Puerto Rico may serve as potential source pop-

ulations for US populations. In the rooted ML phylogeny, the reconstruction of COLPR clusters as

outgroups to US clusters support this hypothesis. Furthermore, across all analyses we found indications

that US�Bmay serve as a sink population for Colombia and Puerto Rico populations. The US�B genetic

cluster grouped isolates from Mississippi and South Carolina along with two Colombian isolates and

was themost genetically diverse of theUS clusters. Further, US�Bwas positioned centrally in PCA space,
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basal toUS�A cluster in the rootedMLphylogeny andwas less di�erentiated, alongwithCOLPR�, from

all other clusters based on GST values. Finally, in DAPC analysis, US�B isolates clustered with IN��-�-�

andMph-�� isolates, which are reconstructed intermediate betweenUS andCOLPRclades in the rooted

ML phylogeny and as admixed in spatial population structure analyses. Although, the high diversity in

US�B may be re�ective of the grouping of comparatively few isolates from di�erent geographic regions

in this cluster. However, when all data are considered, it suggests the US�B cluster geographic region as a

potential route of introduction of isolates fromColombia or Puerto Rico to the US. More isolates from

the US and other countries would need to be included in future studies to test this hypothesis.

The discrete population structure observed between US and COLPR clades, provides compelling

evidence for isolates in each clade drawing ancestry from di�erent ancestral populations. A plausible ex-

planation, supportedbyour results, for this di�erent ancestrywouldbe ademographic event such as a rare

long-distance migration (e.g. introduction event) from the COLPR clusters, leading to a recent bottle-

neck in the US populations. The high probability assignments observed inUS clusters may be consistent

with the expected strong recent genetic drift in bottlenecked populations (Lawson, vanDorp and Falush,

����). In this scenario, we speculate that the diversity in US clusters represent a subset of the diversity of

the COLPR genotypes found in Colombia and Puerto Rico. At the �ner genetic cluster population

structure, isolation by distance provided a potential explanation for the continuous genetic di�erentia-

tion in spatial population structure analyses. Although, isolation by distance patternsmay be observed as

part of a variety of underlying biological processes and demographic scenarios (Sexton, Hangartner and

Ho�mann, ����; Milgroom, ����), it is possible that these patterns re�ect a scenario of restricted disper-

sal in the context of divergence following clonal expansions in the US genetic clusters. For example, both

US�A and US� genetic clusters are found in Michigan, Wisconsin, and Kentucky, supporting dispersal

of isolates among these states. However, high population di�erentiation indicated by high GST values

between genetic clusters, suggest substantial restriction to gene �ow. Given the soilborne nature ofM.

phaseolina and limited natural dispersal ability but high potential for anthropogenic mediated dispersal,

restricted events of dispersal associated to seed, plant material or farm equipment at limited distances rel-

ative to the geographic range of the genetic clusters, seems a likely occurrence (Baird et al., ����). Similar
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isolation by distance patterns has been observed in other soilborne fungal and oomycete pathogens with

restricted long-distance dispersal (Grünwald and Hoheisel, ����; Milgroom et al., ����).

Diversity was found to be further reduced in US�A genetic cluster as compared to all other clusters.

Lowdiversity andhighdi�erentiation are signatures of genetic drift but also selection. If reduceddiversity

in the US�A genetic cluster was consistent with a clonal expansion following a bottleneck, the divergence

and marked low diversity could re�ect both genetic drift and selection. Genetic drift is expected to have

substantial e�ects on pathogen populations, because migrations resulting in founder e�ects and reduced

population sizes associated with pathogens survival in soil (Milgroom, ����). Additionally, we speculate

that climatic conditions, particularly strong �uctuations in temperature in the northern US, could im-

pose strong selection onM.phaseolina populations in this region. Overall, we believe the genomic signals

of discrete and continuous structure that di�erentiateM. phaseolina populations could be re�ective of

a complex demographic and evolutionary history. Therefore, alternative demographic scenarios, includ-

ing one of multiple independent introductions, should be considered in future studies ideally applying

demographic modelling with a broad geographic and temporal distribution of isolates.

Across all analyses we found support for Colombia and Puerto Rico as potential sources for USM.

phaseolina populations. Genetic diversity between countries also supported this hypothesis. Whereas

Colombian isolates were signi�cantly more diverse than US isolates, diversity in Puerto Rico was inter-

mediate and not signi�cantly di�erent from US or Colombia. These �ndings may be consistent with

the idea of Middle or South America as putative centers of origin forM. phaseolina and with its intro-

duction to North America as part of historical crop migrations. For example, common bean Middle

American origin, domestication centers in Middle America and South America (Bitocchi et al., ����)

and later movement to the US via the Caribbean, Central and Eastern US (Kelly, ����), makes likely an

explanation forM. phaseolina introduction to the US in bean seeds. Pathogen geographic origins have

been associated with the centers of diversity of their major crop host. Nonetheless, pathogen origin asso-

ciated with their hosts’ wild relatives, have been also observed in some plant pathogens. For example, a P.

infestans genetically diverse and sexually reproducing populationwas found in centralMexico consistent

with this pathogen’s origin in a secondary center of potato (Solanum tuberosum) diversity and potentially
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involved in a host jump from native Solanum species (Goss et al., ����). GivenM. phaseolina host gener-

alist nature, a strict host-pathogen coevolution scenario is not expected (Slippers and Wing�eld, ����),

obscuring inferences about its center of origin. In Kansas, isolates collected from wild tallgrass prairie

were found more diverse than isolates from maize, soybean and sorghum crops (Saleh et al., ����). This

�nding may indicateM. phaseolina presence in the US precedes to the introduction of agriculture or it

may be explained by connectivity dynamics between natural and agricultural ecosystems contributing to

patterns of diversity inM. phaseolina populations from these ecosystems (Saleh et al., ����). Thus, the

origin and evolutionary history ofM. phaseolina is likely more ancient and complex than could be tested

with the isolates included in this study, and future studies may bene�t from considering the potential

involvement of host adaptation from wild hosts.

Genotype trackingprovided compelling evidence formigration among theUS,Colombia, andPuerto

Rico. TheMLL consisting of the Colombian isolate Mph-�� and several isolates from the US clustering

inUS�A, alongwith the high clonality found in this cluster and the signi�cantly high diversity in Colom-

bia, makes a Colombian source likely. Similarly, the MLL shared between Colombia and Puerto Rico

and the MLL between Puerto Rico and Louisiana support migration between countries. Alternatively,

the same MLLs could have been introduced independently to US, Puerto Rico, and Colombia, poten-

tially from an ancestral and more diverse population not included in this study. Although this scenario

seems less likely, it remains a possibility. Given that besides historical crop migrations, migration as part

of international seed exchange is a likely occurrence inM. phaseolina, as in other seedborne species and

latent pathogens of the Botryosphaeriaceae family (Sakalidis et al., ����; Crous et al., ����), we believe that

M. phaseolina has been spread at least intercontinentally, possibly globally, through seed. However, time,

frequency, and directionality of migration between US, Colombia, and Puerto Rico, and the potential

for multiple introductions would need to be examined in future studies.

Although various population genetic studies inM. phaseolina have found patterns of host associa-

tions (Jana, Sharma and Singh, ����; Baird et al., ����; Arias et al., ����; Koike et al., ����; Reznikov et

al., ����; A. Burkhardt et al., ����), our results did not �nd that genetic variation is associated with host

in the two major US clusters. Soybean and dry bean isolates grouped together in US�A and US� clus-
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ters. Given that most previous studies support some degree of host preference, and genomic evidence for

genes uniquely present in theM. phaseolina strawberry genotype further support host preference (A. K.

Burkhardt et al., ����), we suspect that our sampling schemewas not enough to capture clear associations

to plant host. A clear limitation in our study was that the host origin was confounded with geographic

origin, except forMichigan where isolates were sampled from both soybean and dry bean. The grouping

independently of host might also re�ect crop rotation and equipment practices implemented in �elds.

Additionally, it may re�ect that the sampled hosts are both legumes. Genetic similarity has been found to

be greater among isolates collected from the same host than from hosts in di�erent families (G. Su et al.,

����; Saleh et al., ����). These results do, nonetheless, have important practical implications for soybean

breeding resistance to charcoal rot. In the US�A cluster, the high genetic similarity of isolates collected

from soybean and dry bean, may indicate that the use of one or few isolates collected from these crops

throughout East North Central and Central US regions may su�ce for resistance screening of soybean

breeding material. An important limitation to this assumption is that we use a single reference genome

approach to characterize genetic diversity and thus accessory genes and other structural variation poten-

tially involved in pathogenesis are not considered (Bertazzoni et al., ����).

Importantly, the dry bean diversity in research plots from which Colombian and Puerto Rican iso-

lates were collected is a factor likely contributing to their higher genetic diversity as compared to US iso-

lates. In research plots, multiple lines are continually evaluated as part of breeding programs, in contrast

to commercial �elds in which a single or few varieties are used. This coupled with climatic conditions in

Colombia and PuertoRico that favor year-round inoculumpresence in crop residue represent important

considerations when interpreting isolate genetic diversity in relation to host origin.

The population structure results suggest thatM.phaseolinapopulations lay in-between the clonality-

recombination spectrum (Smith et al., ����). Furthermore, our results suggest that this may occur in a

population-speci�c manner. On one side of the spectrum, we foundM. phaseolina to have a markedly

clonal population structure (Milgroom, ����). First, most of the intraspeci�c genetic variation in M.

phaseolina is explained by di�erences between clades and genetic clusters, while low genetic variation was

observed within genetic clusters. Second, the occurrence of nearly identical genotypes (i.e., MLLs) from
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widespread geographic locations found in M. phaseolina is in line with a markedly clonal population

structure (Milgroom, ����). On the other end of the spectrum genotypic diversity, network analyses and

measures of linkage among loci provided support for recombination within some of the genetic clusters.

High levels of genotypic diversity is one of the characteristics re�ective of recombination in fungal popu-

lations (Milgroom, ����). The higher genotypic diversity (eMLLs) in US�B, US�, and COLPR clusters,

may be consistent with the occurrence of recombination in these clusters. Network analyses account

for recombination by allowing to infer homoplasy caused by recombination. The boxes between isolates

within genetic clusters in the network and the PHI test supporting recombination within all clusters ex-

cept for US�A, strengthen this hypothesis. The index of association, IA, revealed an overall high degree

of linkage among SNPmarkers, in line with a pathogen that reproduces clonally. However, the observed

IA values in the COLPR clade and LD decaying faster in COLPR than in US populations, support the

potential occurrence of recombination among isolates within COLPR clusters. Although the problem

of smaller sample size in COLPR clusters should be at least partially accounted for by using simulations

in IA analysis and clone-corrected data in LD-decay analysis, particularly half-decay LD values should be

interpreted with caution and examined in future studies to determine the extent of recombination inM.

phaseolina populations.

These results are consistent with the population structure model that lays in between the “strictly

clonal” and “epidemic” structure proposed by Maynard Smith et al., in which frequent recombination

does not occur between isolates in separate branches of an evolutionary tree but it occurs between iso-

lates within a given branch (Smith et al., ����). These models have been used to describe the population

structure of plant pathogens with mixed modes of reproduction or inferred recombination (Grünwald

andHoheisel, ����; Milgroom et al., ����; Milgroom, ����; Milgroom et al., ����). While little is known

about the occurrence of recombination in M. phaseolina, recent studies have started to shed light on

potential recombination mechanisms involving parasexuality (Pereira et al., ����) and horizontal gene

transfer mediated by giant mobile genetic elements (Gluck-Thaler et al., ����). Whether other poten-

tial recombination mechanisms occur, and the frequency of recombination inM. phaseolina remains an

important and exciting area of study.
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Partial RDA revealed that nearly half of the SNP variance is confounded between neutral genetic

structure, climate, and space. This means that this fraction of the variance cannot be statistically associ-

ated to a direct e�ect of any single set of variables. Importantly, the e�ects of population structure and

space often cannot be independently disentangled from spatially structured process (e.g IBD) or spatially

structured environmental variables (Lasky et al., ����). This study, while highlighting the challenges in

assessing genotype-environmental associations, provided an assessment of the fraction of confounded

variance and allowed us to start disentangling the e�ects of climate, spatial, and population structure

on genomic variation inM. phaseolina populations. The genotype-environment association analyses us-

ing partial RDA support our hypothesis that local climatic di�erences contribute to patterns of adaptive

divergence amongM. phaseolina populations across the US, Colombia, and Puerto Rico. Seasonal varia-

tion in temperature and precipitation of warmest quarter, were the primary climatic variables associated

with variation of candidate adaptive loci without and after accounting for neutral genetic population

structure, respectively. We found SNPs within or in physical proximity to genes with functional annota-

tions related to transmembrane transport, glycoside hydrolase activity andDNAbinding. In fungi, genes

involved in these activities are known to be important in responses to environmental stressors including

temperature, water availability, and oxidative stress (Aguilera, Randez-Gil and Prieto, ����; Gasch, ����;

Branco et al., ����). Similarly, among the candidates, we found the ������-protoporphyrinogen oxidase

protein, involved in hemebiosynthesis and the putative small heat shock protein �����-Hsp��. Hemehas

been shown to regulate several mechanisms during cold-shock in Saccharomyces cerevisiae (Abramova et

al., ����) while Hsp�� proteins have been found involved in fungal thermal stress response to both heat

and cold (Wu et al., ����; Wang et al., ����).

The SNP with the highest correlation with temperature seasonality was located upstream to the

������-ankyrin repeat protein (Table �). We found that M. phaseolina ������-ankyrin protein is a pre-

dicted homologous to theTRPNOMPCmechanotransduction channel inDrosophilamelanogaster (Jin

et al., ����). Ankyrin family proteins linkmembrane proteins, including ion channels, tomicrotubules of

the cytoskeleton by binding of its ankyrin repeat domain. The ankyrin proteins in theNOMPC channel

link a displacement of the cytoskeleton to the channel opening, translating external stimuli into intra-
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cellular signals (Jin et al., ����). Moreover, the TRP� (transient receptor potential �) ion channel from

the alga Chlamydomonas reinhardtii, which shares structural homology to the TRPNOMPC channel,

was found to act as thermal sensor, with ankyrin proteins mediating the channel opening in response to

increased temperature (McGoldrick et al., ����). Although there is no structural or functional charac-

terization of theM. phaseolina ������-ankyrin protein, it represents a promising candidate to investigate

a potential temperature-related mechanism for environmental stimuli transduction. These �ndings are

consistent with the established roles of proteins in environmental stress responses both speci�c to fungi

and conserved across the tree of life. Although our results cannot con�rm whether SNPs are the causal

mechanism, the candidate genes could be used in future functional studies. Additionally, common gar-

den experiments could provide support for local adaptation to climate inM. phaseolina.

Overall, our observations point to a scenario in whichM. phaseolina, as other plant pathogens with

clonal population structures, is structured in a subcontinental regional stable manner in the face of in-

stability at local scales in line with themetapopulation dynamics perspective. These results are consistent

with a scenario of evolution after migration driven by divergence following clonal expansions. The pres-

ence ofMLLs across countries underscores the potential for a large in�uence of anthropogenicmigration

introducing M. phaseolina to new environments. The association of genetic divergence with climatic

variables and putatively adaptive functions of the genes with SNPs strongly associated that would hypo-

thetically bene�tM. phaseolina in speci�c environments, is consistent with potential selection imposed

by speci�c climatic variables. Future studies will be needed to identify the degree to which distinct ge-

netic groups re�ect their adaptation to host and climate. Such analyseswill bene�t froma global sampling

collected from diverse hosts in conjunction with multiple reference genomes sequenced with long-read

technologies thatwill allow further characterization of the role of genomic variation, including structural

variation, inM. phaseolina adaptation to host and the climatic environment.

This knowledge expands the impact that spatial population genomics and genotype-environment as-

sociations can have on our ability to characterize adaptive potential in plant pathogens by identifying

candidate genes and presents a preliminary and complementary approach to the forward-genetics and

phenotypic characterization approaches. The ability to identify candidate genes at a population speci�c
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level in a clonal pathogen presents an opportunity to evaluate candidate genes in a population speci�c

manner, which represents a powerful approach specially in clonal pathogens inwhich unusually high lev-

els of linkage prevent the application of genome scanmethods. Additionally, theRDAapproach could be

applied using candidate adaptive genetic markers to predict pathogens’ “adaptive landscape” represent-

ing its adaptive variation for any environment across a geographic range (Capblancq and Forester, ����).

As climate and agricultural challenges become more demanding, the characterization of pathogen adap-

tation capabilities enabled by population genomics should become increasingly utilized for plant disease

risk prediction models specially under adverse future climate scenarios.

�.� Materials and methods

�.�.� Isolate collection and DNA preparation

A total of ��M. phaseolina isolates were obtained from culture collections, as well as roots or lower stems

of soybean and dry bean plants in production �elds (Supplementary Table A.�). There were �� isolates

collected from soybean across a latitudinal range in �� states, including �� isolates from a previous study

(Sexton,Hughes andWise, ����). Forty isolates were collected fromdry bean grown inMichigan, Puerto

Rico andColombia. Isolates fromMichiganwere collected from ���� to ���� (Jacobs et al., ����). Isolates

from Puerto Rico and Colombia were collected from research plots at the University of Puerto Rico

and at the International Center for Tropical Agriculture (CIAT). Two strawberry isolates collected from

California and one isolate from Ethiopian mustard (Brassica carinata) were included as host outgroups.

Cultures were routinely grown on potato dextrose agar (PDA; Acumedia, Lansing, MI) medium.

For genomic DNA extraction, four �-mm plugs taken from the edge of the culture were used to in-

oculate ��mL of potato dextrose broth amended with chloramphenicol (��mg/L). The broth was incu-

bated for � to � d at room temperature. Mycelia were harvested, lyophilized for �� h and ground using

a FastPrep FP��� homogenizer (BIO ��� Savant Instruments, Hobrook, NY). Genomic DNA was ex-

tracted from the lyophilized tissue using a modi�ed SDS-based method; brie�y, ��mg of groundmycelia

were mixed in lysis bu�er (�% SDS (w/v); ���mM Tris-HCl, pH �.�; ��mM EDTA, pH �.�) followed

by phenol/chloroform DNA extraction. The identity of all isolates was con�rmed by multigene DNA

analysis of the Internal Transcribed Spacer regions for the nuclear rDNAoperon (ITS), part of theTrans-
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lation Elongation Factor (TEF-�) gene region, and part of the actin (ACT) gene region according to (Sarr

et al., ����). Maximum likelihood analysis of the combined sequence alignment placed all the isolates

tested in theM. phaseolina cluster. A full heuristic search using the �rst tenmost parsimonious trees and

the Neighbor-joining tree as starting trees with ��� random sequence additions was performed in PAUP

v�.�b�� (Swo�ord ����), to �nd the maximum likelihood tree (Supplementary Fig. A.�).

�.�.� Whole genome sequencing and variant calling

Genomic libraries were constructed and each of the isolates were whole-genome sequenced to ��X cover-

age using a ��� base-pair paired-end strategy on the Illumina HiSeq ���� platform at theMichigan State

University Research Technology Support Facility Genomics Core (East Lansing,MI). The libraries were

prepared using the Illumina TruSeq Nano DNA Library Preparation Kit HT. The resulting sequences

were quality assessed using FastQC (Andrews et al., ����) and cleaned using Cutadapt v�.�� (Martin,

����), with the following parameters: -f fastq, -q ��,��, –trim-n, -m ��, -n �, -a AGATCGGAAGAGCA-

CACGTCTGAACTCCAGTCAC, -A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTA-

GATCTCGGTGGTCGCCGTATCATT. After initial quality �ltering, the remaining sequences were

aligned to theM. phaseolina reference genome (JGI Mycocosm, MPI-SDFR-AT-���� v�.�) using bwa-

mem (HengLi, ����). The isolate used for theM.phaseolina reference genomewas collected fromnatural

Arabidopsis thaliana populations in France (Mesny et al., ����). The mapping statistics, genome align-

ment rate and genome coverage were assessed with SAMtools �agstat (Li et al., ����). Alignments were

sorted and indexed using SAMtools (Li et al., ����). Aftermapping, duplicate readswere identi�ed using

MarkDuplicates and removed during the variant calling step.

Single nucleotide polymorphisms (SNPs) of all �� isolates were predicted using the GenomeAnalysis

Toolkit (GATK) v�.� (McKenna et al., ����). Initially, SNPswere called individually withGATK’sHap-

lotypeCaller. GVCF �les were combined, and common SNPs jointly identi�ed using CombineGVCFs

and GenotypeGVCFs programs. The later using the -new-qual parameter. The combined vcf �le was

quality �ltered using vcfR v�.��.� package (Knaus andGrünwald, ����) in R v�.�.� (RCore Team ����).

To be included in the high-quality set, SNPs were �ltered to remove SNPs with a minimum read depth

(DP) of <�x and greater that the ��th percentile of each sample DP distribution and exclude SNPs with
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minimum threshold mapping quality (MQ < ��) and minimum allele frequency (MAF < �.��) which

corresponds to the allele presence in at least two isolates. Only variantswithnomissing datawere retained,

which corresponds to positions with �missing data for all the sequenced isolates. The �nal high-quality

dataset was used in all subsequent analysis. The �nal vcf was annotated using SnpE� v�.�c (Cingolani,

Platts, et al., ����) and a vcf containing only SNPs in intergenic regions was created using SnpSift v�.�c

(Cingolani, Patel, et al., ����).

�.�.� Phylogenomics and population genetic structure

The population structure was inferred according to the results from both model-based and model-free

clustering methods and phylogenetic inference. The phylogenetic tree was inferred from the full set of

high-quality SNPs among the ��M. phaseolina isolates in RAxML-NG v�.�� (Kozlov et al., ����). The

RAxML analysis was performed using the “-all” option which conducted ��maximum likelihood infer-

ences on the original SNP alignment, standard bootstrappingwith automatic determination of the num-

ber of replicates (Felsenstein’s bootstrap, FBP; MRE-based bootstopping test) and the subsequent max-

imum likelihood search. The General-Time-Reversible (GTR) model of nucleotide substitution with

GAMMAmodel of rate heterogeneity and correction for ascertainment bias (GTR+G+ASC_LEWIS)

was used. The best-scoring ML tree was used for optimizing all model and branch length parameters

and model evaluation. A model-free dimensionality-reduction approach, principal component analysis

(PCA), and discriminatory analysis of principal components (DAPC) were also conducted on the full

set of SNPs using adegenet package (Jombart, ����; Jombart andAhmed, ����) inR �.�.� (RCore Team

����). To infer population dynamics and reconstruct a rootedM. phaseolina phylogeny, theM. phase-

olina (JGI Mycocosm, MPI-SDFR-AT-���� v�.�) reference genome was used as outgroup taxon. Maxi-

mum likelihood analysis was run in RAxML-NG v�.�� using the “-all” option with automatic bootstrap

replicates and the GTR+G+ASC_LEWIS substitution model.

�.�.� Spatial genetic structure

Bayesian clustering of allele frequencies was implemented in conStruct (Bradburd, Coop and Ralph,

����). To assess whether population structure was well described by modelling isolates as admixtures be-

tweenmultiple discrete genetic groups or by both discrete and continuous genetic structure, spatial anal-
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ysis of population structure was conducted using conStruct (Bradburd, Coop and Ralph, ����). Spatial

analysis in conStruct accounts for isolationbydistance by allowing genetic di�erentiation to increasewith

geographic distance within discrete genetic groups (layers, K). The data was analyzed treating individual

isolates as the unit of analysis, using the spatial models setting K between � and � with ����� iterations,

and compared these models using cross-validation with �� replicates. For cross-validation, ��% of loci

were used to �t the model and the remaining loci for model evaluation. A geographically constrained

least-squares method as implemented in TESS� (Caye et al., ����), was used to estimate ancestry coe�-

cients and create interpolation maps based on the coe�cients. TESS� uses a spatially explicit algorithm

that can be considered model-free. The algorithm was run using the function “tess�” with K between �

and � and �� replicates.

�.�.� Population genetic and genotypic diversity

For each clade and genetic cluster, gene diversity (Nei, ����) was calculated using the Hs function in the

adegenet package (Jombart, ����; Jombart and Ahmed, ����). The median estimates of pairwise genetic

distance and genotypic diversity indices were calculated within each clade and genetic cluster using the R

package poppr v�.�.� (Kamvar et al. ����). Genotypic diversity was assessed by calculating the number

of multilocus genotypes (MLGs). A MLG was de�ned as a unique combination of the ��,��� SNPs.

MLGs were collapsed into larger groups called multilocus lineages using the average neighbor algorithm

and a Prevosti’s distance threshold of �.���� (bitwise.dist function; Kamvar et al., ����). Rarefaction

was used to correct for uneven sample sizes using the R package vegan v�.�-� (Oksanen et al., ����) and

obtain the number of expectedMLGs andMLLs (eMLG and eMLL) at the lowest common sample size

(i.e., �� for clades and � for genetic clusters). Genotypic diversity indices, Shannon-Wiener Index (H*),

Stoddart and Taylor’s Index (G*), Simpson’s index (lambda*) and evenness (E�*) (Grünwald et al., ����),

were calculated using the R package poppr v�.�.� (diversity_ci function; Kamvar et al., ����) based on

the number of MLLs in each clade and genetic cluster and correcting for unequal sample sizes based on

rarefaction. The function mlg.crosspop in poppr was used to detect the presence of MLGs occurring

across populations. Migration was inferred by tracking MLGs across genetic clusters, referred here as

genotype �ow (McDonald and Linde, ����).
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�.�.� Population di�erentiation between genetic clusters and countries

The FST analog, GST (Nei ����, ����) was calculated from clone-corrected data using vcfR (Knaus and

Grunwald ����) to infer di�erentiation among genetic clusters. To describe the population dynamics

between the US, Puerto Rico and Colombia, the degree of genetic di�erentiation acrossM. phaseolina

samples was measured hierarchically by genetic clusters within clades. Analysis of molecular variance

(AMOVA) based on the quasi-Euclidean distance matrix was conducted in poppr v�.�.� (Kamvar et al.

����). AMOVA estimates the number of di�erences summed over loci based on amatrix of distances be-

tween individuals and covariance components are used to calculate �xation indices for each hierarchical

level, among clades, among genetic clusters andwithin genetic clusters. Signi�cant di�erences of �xation

indices were determined by �,��� random permutations (Grunwald and Hoheisel ����).

�.�.� Recombination and clonality

To account for potential intraspeci�c recombination amongM. phaseolina isolates, a phylogenetic net-

work was built using the Neighbor-Net algorithm as implemented in SplitsTree� v�.��.�. The extent of

clonality was tested by calculating the proportion of signi�cant linkage between pairs of loci, by comput-

ing the standardized index of association (IA, Brown et al. ����) for each of the main populations (US

and COLPR) using poppr v�.�.� (Kamvar et al. ����). Linkage disequilibrium is expected in asexual or

inbreeding populations and IA values close to zero are expected for outcrossing populations (Burt et al.,

����). The observed IA distributions for each population were compared to �ve simulated recombined

distributions (�%, ��%, ��%, ��% and ���% linkage) generated among ��, ��� loci and �� samples (corre-

sponding to the median population size of the two clusters). The observed and simulated IA values were

tested for normality using the Shapiro-Wilk’s normality test and an analysis of variance (ANOVA) was

conducted to test for signi�cant di�erences among the distributions. Pairwise comparisons between the

IA simulated distributions and for each population were tested for di�erence with Tukey’s HSD test in

R. The extent of clonality was correlated to clonal (���%), mostly clonal (��%), semiclonal (��%, ��%)

or sexual (�%) modes of reproduction. Linkage disequilibrium (LD) decay rate was estimated using the

physical distance over which LD decays to half its initial value, as measured by the squared correlation

coe�cient (r�). The linkage disequilibrium decay was calculated for each clade using the correlation co-
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e�cient (r�) in TASSEL v� (Bradbury et al., ����) within a window of �� sites among SNPs using the

clone-corrected dataset (��MLGs). The mean r� values, representing the correlation between alleles at

two loci within �� bp of physical distance, were then plotted in R �.�.� (R Core Team ����).

�.�.� Climatic data

For each isolate, the �� standard bioclimatic variables available at the WorldClim� database (Fick Hij-

mans, ����) were obtained using ‘getData’ function from raster R package (Hijmans, ����). All variables

are the average for the years ���� to ���� and were obtained at a spatial resolution of �.�min ( ��.� km�).

We used data at a resolution of �.�min ( ��.� km�), because it corresponds with our sampling design (sin-

gle isolate samples rather than populations) being at a �eld or county scale. Coarser resolutions could

combine multiple sampling locations into a single spatial grid and �ner resolutions (��-s or <��-s), while

this may be important for structuring patterns of genetic variation within populations, these data are

less suitable for our sampling design and focus on regional to continental-wide patterns. We reduced the

number of climatic variables from �� to �ve to account for collinearity among them (|r| > �.�) and to

represent our hypothesis about the most important factors potentially driving selection. Diseases caused

byM. phaseolina are more prevalent during hot and dry conditions, therefore temperature and precip-

itation variables were included. The selected climatic variables were: BIO�� = Precipitation of Warmest

Quarter, BIO�� = Precipitation Seasonality (Coe�cient of Variation), BIO�� = Precipitation of Driest

Quarter, BIO�� = Mean Temperature of Warmest Quarter and BIO� = Temperature Seasonality (stan-

dard deviation *���). Each bioclimatic variable was scaled, centered, and evaluated for inclusion using

forward selection with ��,��� permutations using adespatial R package (Dray et al., ����).

To account for underlying spatial structure (autocorrelation) and reduce spurious GEA, distance-

basedMoran’s eigenvector maps (dbMEM) were generated using sample coordinates in the quickMEM

R function (Borcard, Gillet, Legendre, ����). The dbMEMs are a matrix of axes that capture spatial pat-

terns frommultiple angles rather than just a latitudinal or longitudinal vector. Only signi�cant dbMEM

axes were selected using forward selection with �,��� permutations. A simple RDA model and partial

RDA model conditioning on space, using only signi�cant dbMEMs, were used to identify the climatic

variables signi�cantly contributing to genomic variation and those structured in space.
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�.�.� Variance partitioning and outlier loci identi�cation

To identify potentially adaptive loci, associations between genetic data (loci) and climatic variables hy-

pothesized to drive selection were evaluated using a multivariate method, redundancy analysis (RDA, as

implemented by Forester et al., ����). RDA simultaneously tests multiple loci that covary in response to

climatic variables. Partial RDAmodels were used for variance partitioning and outlier loci identi�cation

while correcting for neutral genetic population structure. Variance partitioning analysis was performed

with linkage-disequilibrium (LD)-�ltered (r� > �.�) dataset of ��,��� SNPs. The independent contribu-

tion of each set of explanatory variables: climate, neutral population structure or space, was assessed

while removing the e�ect of the remaining variable sets using partial RDA. In outlier loci identi�cation,

using a partial RDA is recommended to reduce the number of false-positive detections particularly in sce-

narios of multilocus adaptation when selective agents are unknown (Forester et al., ����). On the other

hand, partial RDA can lead to high false-negative detections when variance is confounded between cli-

matic variables and neutral population structure (Capblancq and Forester, ����). Candidate adaptive

loci were identi�ed using simple and partial RDA models to examine the extent of this issue. A partial

RDA model conditioning on neutral population genetic structure was used for candidate outlier SNPs

detection. Outlier loci were identi�ed in the three signi�cant constrained axes as the SNPs having load-

ings ±� or ±� SD from the mean score of each constrained axis using both the LD-�ltered set of ��,���

SNPs and the full set of ��,��� SNPs, respectively (Forester et al., ����; Lasky et al., ����). A simple RDA

model, without correcting for population structure, using the LD-�ltered set of ��,��� SNPs and out-

lier loci were identi�ed in the three signi�cant constrained axes as the SNPs having loadings ±� SD from

the mean score. Gene annotations for the signi�cant candidate SNPs were used to investigate putative

adaptive functions, using the annotated vcf.
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Table A.� Macrophomina phaseolina isolates used in this study. Isolates were collected across the US,
Puerto Rico, and Colombia from soybean, dry bean, strawberry, and Ethiopian mustard.

Isolate ID Longitude Latitude Region Country State /
Department Host Municipality Genetic

Cluster
Collection

Year Source

CR_Red_� -��.��� ��.��� East North Central US MN Soybean Lamberton, MN US� DeanMalvick - UMN
CR_Red_�B -��.��� ��.��� East North Central US MN Soybean Lamberton, MN US� DeanMalvick - UMN
CR_Red_� -��.��� ��.��� East North Central US MN Soybean Lamberton, MN US� DeanMalvick - UMN
Dm�� -��.�� ��.��� East North Central US WI Soybean Markesan, WI US�A T. Hughes. Obtained from KierstenWise
Et�� -��.��� ��.��� East North Central US WI Soybean E. Troy, WI US�A T. Hughes. Obtained from KierstenWise
Et�� -��.��� ��.��� East North Central US WI Soybean E. Troy, WI US�A T. Hughes. Obtained from KierstenWise
Et�� -��.��� ��.��� East North Central US WI Soybean E. Troy, WI US� T. Hughes. Obtained from KierstenWise
Et�� -��.��� ��.��� East North Central US WI Soybean E. Troy, WI US�A T. Hughes. Obtained from KierstenWise
Et� -��.��� ��.��� East North Central US WI Soybean E. Troy, WI US�A T. Hughes. Obtained from KierstenWise
IN��_� -��.��� ��.��� Central US IN Soybean Benton, IN US�A Purdue Plant Diag. Lab. Obtained from KierstenWise
IN��_�_� -��.��� ��.��� Central US IN Soybean Lagrange, IN US�A Purdue Plant Diag. Lab. Obtained from KierstenWise
IN��_�_� -��.�� ��.��� Central US IN Soybean Vermillion, IN NA Purdue Plant Diag. Lab. Obtained from KierstenWise
IN��_�_� -��.�� ��.��� Central US IN Soybean Vermillion, IN US�A Purdue Plant Diag. Lab. Obtained from KierstenWise
IN��_PO_� -��.��� ��.��� Central US IN Soybean Posey, IN US�A Purdue Plant Diag. Lab. Obtained from KierstenWise
M��_�� -���.��� ��.��� West US CA Strawberry Santa Barbara, CA COLPR� ���� FrankMartin
M��_�� -���.��� ��.��� West US CA Strawberry Monterey, CA COLPR� ���� FrankMartin
M��_� -��.��� ��.��� East North Central US MI Dry bean Kawkawlin, MI US�A ���� M. Chilvers
MISO���_� -��.��� ��.��� East North Central US MI Soybean Lyons, MI US�A ���� M. Chilvers
MISO���_� -��.��� ��.��� East North Central US MI Soybean Lyons, MI US�A ���� M. Chilvers
MISO���_� -��.��� ��.��� East North Central US MI Soybean Lyons, MI US�A ���� M. Chilvers
MISO���_� -��.��� ��.��� East North Central US MI Soybean Lyons, MI US�A ���� M. Chilvers
MISO���_� -��.��� ��.��� East North Central US MI Soybean Lyons, MI US�A ���� M. Chilvers
MISO���_� -��.��� ��.��� East North Central US MI Soybean Lyons, MI US�A ���� M. Chilvers
MISO���_� -��.��� ��.��� East North Central US MI Soybean Lyons, MI US�A ���� M. Chilvers
MI_SF_��_�� -��.�� ��.��� East North Central US MI Soybean Westphalia, MI US�A ���� M. Chilvers
MI_SF_�_�� -��.��� ��.��� East North Central US MI Soybean Galien, MI US�A ���� M. Chilvers
MI_SF_�_�� -��.��� ��.��� East North Central US MI Soybean Allegan County, MI US�A ���� M. Chilvers
MI_SF_�_� -��.�� ��.��� East North Central US MI Soybean Westphalia, MI US�A ���� M. Chilvers
MP��� -��.�� ��.��� Central US KY Soybean Unknown US� R. Baird. Obtained from KierstenWise
MP��� -��.�� ��.��� Central US TN Soybean Unknown US�A R. Baird. Obtained from KierstenWise
MP��� -��.��� ��.��� South US TX Soybean Unknown US� R. Baird. Obtained from KierstenWise
MP��� -��.� ��.��� Southeast US GA Soybean Unknown US� R. Baird. Obtained from KierstenWise
MP��� -��.� ��.��� Southeast US GA Soybean Unknown US� R. Baird. Obtained from KierstenWise
MP��� -��.��� ��.��� Southeast US SC Soybean Unknown US�B R. Baird. Obtained from KierstenWise
M_��_�� -��.��� ��.��� East North Central US MI Dry bean Merrill, MI US�A ���� M. Chilvers
M_��_�� -��.��� ��.��� East North Central US MI Dry bean Merrill, MI US�A ���� M. Chilvers
M_��_�� -��.��� ��.�� East North Central US MI Dry bean Bad Axe, MI US�A ���� M. Chilvers
M_��_�� -��.��� ��.�� East North Central US MI Dry bean Bad Axe, MI US�A ���� M. Chilvers
M_��_�� -��.��� ��.�� East North Central US MI Dry bean Bad Axe, MI US�A ���� M. Chilvers
M_��_� -��.��� ��.��� East North Central US MI Dry bean Wheeler, MI US�A ���� M. Chilvers
M_��_� -��.��� ��.��� East North Central US MI Dry bean Merrill, MI US�A ���� M. Chilvers
M_��_� -��.��� ��.��� East North Central US MI Dry bean Merrill, MI US�A ���� M. Chilvers
M_��_� -��.��� ��.��� East North Central US MI Dry bean Merrill, MI US� ���� M. Chilvers
M_��_� -��.��� ��.��� East North Central US MI Dry bean Merrill, MI US�A ���� M. Chilvers
M_��_� -��.��� ��.��� East North Central US MI Dry bean Merrill, MI US�A ���� M. Chilvers
M_��_� -��.��� ��.��� East North Central US MI Dry bean Merrill, MI US�A ���� M. Chilvers
M_��_� -��.��� ��.��� East North Central US MI Dry bean Merrill, MI US�A ���� M. Chilvers
M_��_� -��.��� ��.��� East North Central US MI Dry bean Merrill, MI US�A ���� M. Chilvers
Md�� -��.��� ��.��� East North Central US WI Soybean Muscoda, WI US�A T. Hughes. Obtained from KierstenWise
Md� -��.��� ��.��� East North Central US WI Soybean Muscoda, WI US�A T. Hughes. Obtained from KierstenWise
Md� -��.��� ��.��� East North Central US WI Soybean Muscoda, WI US�A T. Hughes. Obtained from KierstenWise
Md� -��.��� ��.��� East North Central US WI Soybean Muscoda, WI US�A T. Hughes. Obtained from KierstenWise
Md� -��.��� ��.��� East North Central US WI Soybean Muscoda, WI US�A T. Hughes. Obtained from KierstenWise
MpSDSU -��.��� ��.��� West North Central US SD Ethiopian mustard Brookings County, SD US� Febina Mathew - SD state U
Mph_�� -��.��� �.��� Colombia COL VAC Dry bean Buga, VAC COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL VAC Dry bean Buga, VAC US�B ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL VAC Dry bean Buga, VAC US�B ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL CAU Dry bean Santander de Quilichao, CAU COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL VAC Dry bean Palmira, VAC COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL VAC Dry bean Palmira, VAC COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL VAC Dry bean Palmira, VAC COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL VAC Dry bean Palmira, VAC COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL VAC Dry bean Palmira, VAC COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL VAC Dry bean Palmira, VAC NA ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL CAU Dry bean Santander de Quilichao, CAU COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL CAU Dry bean Santander de Quilichao, CAU COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL CAU Dry bean Santander de Quilichao, CAU COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL CAU Dry bean Santander de Quilichao, CAU US�A ���� Gloria Mosquera - CIAT
Mph_�� -��.��� �.��� Colombia COL TOL Dry bean Armero, TOL COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� ��.��� Colombia COL MAG Dry bean Corpoica, MAG COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� ��.��� Colombia COL MAG Dry bean Corpoica, MAG COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� ��.��� Colombia COL MAG Dry bean Corpoica, MAG COLPR� ���� Gloria Mosquera - CIAT
Mph_�� -��.��� ��.��� Colombia COL MAG Dry bean Corpoica, MAG COLPR� ���� Gloria Mosquera - CIAT
Mph_� -��.��� �.��� Colombia COL CAU Dry bean Santander de Quilichao, CAU COLPR� ���� Gloria Mosquera - CIAT
SAG�_� -��.��� ��.��� East North Central US MI Soybean Saginaw County, MI US�A ���� M. Chilvers
TN��� -��.�� ��.��� Central US TN Soybean Unknown US�A A.Mengistu. Obtained from KierstenWise
TN��� -��.��� ��.��� South US MS Soybean Unknown US�B A.Mengistu. Obtained from KierstenWise
TN��� -��.��� ��.��� Central US TN Soybean Jackson, TN US�A A.Mengistu. Obtained from KierstenWise
TN��� -��.�� ��.��� Central US KY Soybean Unknown US�A A.Mengistu. Obtained from KierstenWise
TN��� -��.��� ��.��� South US MS Soybean Stoneville, Mississippi US�B A.Mengistu. Obtained from KierstenWise
TN� -��.��� ��.��� Central US TN Soybean Jackson, Tennessee US�A A.Mengistu. Obtained from KierstenWise
TN��� -��.��� ��.��� South US LA Soybean Unknown COLPR� A.Mengistu. Obtained from KierstenWise
TN��� -��.��� ��.��� South US TX Soybean Unknown US� A.Mengistu. Obtained from KierstenWise
TN� -��.��� ��.��� Central US TN Soybean Ames, TN US�A A.Mengistu. Obtained from KierstenWise
UPR_Mph_ISA� -��.��� ��.��� Puerto Rico PR ISA Dry bean Isabela, PR COLPR� Consuelo Estevez De Jensen - UPR
UPR_Mph_ISA� -��.��� ��.��� Puerto Rico PR ISA Dry bean Isabela, PR COLPR� Consuelo Estevez De Jensen - UPR
UPR_Mph_JD� -��.��� ��.��� Puerto Rico PR JD Dry bean Juana Diaz, PR COLPR� Consuelo Estevez De Jensen - UPR
UPR_Mph_JD� -��.��� ��.��� Puerto Rico PR JD Dry bean Juana Diaz, PR COLPR� Consuelo Estevez De Jensen - UPR
UPR_Mph_JD� -��.��� ��.��� Puerto Rico PR JD Dry bean Juana Diaz, PR COLPR� Consuelo Estevez De Jensen - UPR
W��_� -��.��� ��.��� East North Central US MI Soybean Hamilton, MI US� ���� M. Chilvers
W�� -��.��� ��.��� East North Central US MI Soybean Pewamo, MI US�A ���� M. Chilvers
W�� -��.��� ��.��� East North Central US MI Soybean Hamilton, MI US� ���� M. Chilvers
W�_� -��.��� ��.��� East North Central US MI Soybean Hamilton, MI US� ���� M. Chilvers
W_MISO�_�_� -��.� ��.� East North Central US MI Soybean Hamilton, MI US�A ���� M. Chilvers
W_MISO�_�_�� -��.� ��.� East North Central US MI Soybean Berlin, MI US�A ���� M. Chilvers

��



Table A.�Hierarchical analysis of molecular variance (AMOVA), partitioning total genetic variance into
the following components: between clades, between genetic clusters and within genetic clusters. Clone
corrected values are shown. Most of the variance was associated with di�erences between clades and
between genetic clusters.

Source of variation Variation (%) p-value Phi

Between clades (US and COLPR) ��.�� �.��� �.��
Between genetic clusters (US-�A, US-�B, US-�), (COLPR-�, COLPR-�) within clade ��.�� �.��� �.��
Within genetic clusters ��.�� �.��� �.��
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Table A.� Summary statistics for genetic diversity ofMacrophomina phaseolina by country. N is num-
ber of isolates (sample size); MLG is number of observed multilocus genotypes; eMLG is the number
of expected MLG at a sample size of � based on rarefaction. MLL is number of observed multilocus lin-
eages by population using a bitwise cuto� distance of �.����; CF is clonal fraction (� - (MLL/N). Clone
corrected values are shown and indicated by asterisks for indices of genotypic diversity: Shannon-Wiener
Index (H*), Stoddart and Taylor’s Index (G*), Simpson’s index (lambda*) and evenness (E�*).

Country N Gene
diversity (He)

Median pairwise
genetic distance MLG eMLG MLL eMLL CF H* G* lambda* E�*

US �� �.��� �.��� �� �.�� �� �.�� �.� �.�� �.�� �.�� �.���
Colombia �� �.��� �.��� �� � �� �.�� �.� �.�� �.� �.��� �.���
Puerto Rico � �.��� �.��� � � � � �.� �.�� �.�� �.�� �.���
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TableA.�Top �� candidate SNPs along the �rst threeRDAaxes, after accounting for neutral population
structure using the LD-�ltered set of ��,��� SNPs.
RDA
axis SNP position RDA

loading
Climate
variable Correlation SnpE� SNP category SnpE�

predicted e�ect SnpE� annotation locus SnpE� distance
from locus (bp)

� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_�_������� �.��� TSsd �.�� missense_variant MODERATE CDS_sca�old_�_�������_������� �
� sca�old_�_������� -�.��� TSsd �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_�_�������_������� ����
� sca�old_�_������� -�.��� TSsd �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_�_�������_������� ���
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_������_������ ���
� sca�old_�_������� -�.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_�_�������_������� �
� sca�old_��_����� -�.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_�����_����� �
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_�_����� �.��� TSsd �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_�_�����_����� ����
� sca�old_�_������� �.��� TSsd �.�� intergenic_region MODIFIER CDS_sca�old_�_�������_�������-START_CODON_sca�old_�_�������_������� �
� sca�old_�_������� �.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_�������_������� ���
� sca�old_��_������ �.��� mTwq �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ �.��� mTwq �.�� downstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_�_������� -�.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_�_�������_������� �
� sca�old_��_���� -�.��� TSsd �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_����_���� ���
� sca�old_��_����� �.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_�����_����� �
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� PScv �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_��_���� -�.��� PScv �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_����_���� ����
� sca�old_�_������ �.��� PScv �.�� upstream_gene_variant MODIFIER CDS_sca�old_�_������_������ ����
� sca�old_��_����� -�.��� PScv �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_�����_����� ���
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_�_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_������_������ ����
� sca�old_��_������ �.��� TSsd �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_������_������ ���
� sca�old_�_������� �.��� PScv �.�� missense_variant MODERATE CDS_sca�old_�_�������_������� �
� sca�old_��_������ -�.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_�_������� -�.��� PScv �.�� upstream_gene_variant MODIFIER CDS_sca�old_�_�������_������� ����
� sca�old_��_������ -�.��� mTwq �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� PScv �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_�_������� �.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_�_�������_������� �
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_������_������ ����
� sca�old_��_������ �.��� PScv �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_������_������ ���
� sca�old_��_������ �.��� TSsd �.�� downstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_�_������� �.��� PScv �.�� upstream_gene_variant MODIFIER CDS_sca�old_�_�������_������� ����
� sca�old_��_������ �.��� TSsd �.�� missense_variant MODERATE CDS_sca�old_��_������_������ �
� sca�old_�_������� �.��� TSsd �.�� upstream_gene_variant MODIFIER CDS_sca�old_�_�������_������� ����
� sca�old_��_������ �.��� Pwq �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ �.��� TSsd �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_�_������� -�.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_�_�������_������� �
� sca�old_�_������� -�.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_�_�������_������� �
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Table A.�Top �� candidate SNPs along the �rst three RDA axes, after accounting for neutral population
structure using the the full set of ��,��� SNPs.
RDA
axis SNP position RDA

loading
Climate
variable Correlation SnpE� SNP

category
SnpE�

predicted e�ect SnpE� annotation locus SnpE� distance
from locus (bp)

� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������� -�.��� TSsd �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_�������_������� ����
� sca�old_��_������ -�.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_�_������� -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_�������_������� ����
� sca�old_�_������� -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_�������_������� ����
� sca�old_�_������� -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_�������_������� ����
� sca�old_�_������� -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_�������_������� ����
� sca�old_�_������� -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_�������_������� ����
� sca�old_�_������� -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_�������_������� ����
� sca�old_�_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_������_������ ����
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_��_������ �.��� TSsd �.�� missense_variant MODERATE CDS_sca�old_��_������_������ �
� sca�old_���_����� �.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_���_�����_����� �
� sca�old_���_����� �.��� TSsd �.�� upstream_gene_variant MODIFIER CDS_sca�old_���_�����_����� ����
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ �.��� TSsd �.�� missense_variant MODERATE CDS_sca�old_��_������_������ �
� sca�old_�_������� �.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_�������_������� ����
� sca�old_�_������� -�.��� TSsd �.�� downstream_gene_variant MODIFIER START_CODON_sca�old_�_�������_������� ����
� sca�old_��_������ �.��� TSsd �.�� missense_variant MODERATE CDS_sca�old_��_������_������ �
� sca�old_�_������� -�.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_�_�������_������� �
� sca�old_�_������� -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_�������_������� ����
� sca�old_�_������� -�.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_�_�������_������� �
� sca�old_��_������ �.��� mTwq �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_���� -�.��� TSsd �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_����_���� ���
� sca�old_��_����� -�.��� TSsd �.�� downstream_gene_variant MODIFIER CDS_sca�old_��_�����_����� ����
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� PScv �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_��_���� -�.��� PScv �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_����_���� ����
� sca�old_��_������ �.��� PScv �.�� synonymous_variant LOW CDS_sca�old_��_������_������
� sca�old_��_������ -�.��� TSsd �.�� downstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_�_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_������_������ ����
� sca�old_��_������ �.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� PScv �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� PScv �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_����� -�.��� PScv �.�� synonymous_variant LOW CDS_sca�old_��_�����_����� �
� sca�old_�_������ �.��� PScv �.�� upstream_gene_variant MODIFIER CDS_sca�old_�_������_������ ����
� sca�old_��_����� -�.��� PScv �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_�����_����� ���
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� PScv �.�� missense_variant MODERATE CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� PScv �.�� missense_variant MODERATE CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_�_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_������_������ ����
� sca�old_��_������ �.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_�_������� �.��� PScv �.�� missense_variant MODERATE CDS_sca�old_�_�������_������� �
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_�_������ �.��� TSsd �.�� missense_variant MODERATE CDS_sca�old_�_������_������ �
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_�_������� -�.��� PScv �.�� upstream_gene_variant MODIFIER CDS_sca�old_�_�������_������� ����
� sca�old_�_������� �.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_�_�������_������� �
� sca�old_��_������� �.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_�������_������� �
� sca�old_��_������� �.��� TSsd �.�� downstream_gene_variant MODIFIER CDS_sca�old_��_�������_������� ����
� sca�old_��_������ �.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ �.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_������_������ ���
� sca�old_��_������ -�.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� TSsd �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_������_������ ���
� sca�old_��_������ �.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ �.��� mTwq �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������� -�.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_�������_������� ����
� sca�old_��_������ �.��� mTwq �.�� downstream_gene_variant MODIFIER START_CODON_sca�old_��_������_������ ����
� sca�old_��_������ �.��� mTwq �.�� downstream_gene_variant MODIFIER START_CODON_sca�old_��_������_������ ����
� sca�old_��_����� �.��� mTwq �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_�����_����� ����
� sca�old_��_������ -�.��� mTwq �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� mTwq �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_��_������ �.��� mTwq �.�� missense_variant MODERATE CDS_sca�old_��_������_������ �
� sca�old_��_������ �.��� mTwq �.�� downstream_gene_variant MODIFIER START_CODON_sca�old_��_������_������ ����
� sca�old_�_������� -�.��� mTwq �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_�������_������� ����
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Table A.�Candidate SNPs and gene models along the �rst RDA axis, after accounting for neutral pop-
ulation structure using the full set of ��,��� SNPs.

SNP position RDA�
loading

Climate
variable Correlation SNP

category
Distance from
locus (bp) Mycocosm gene location Mycocosm

protein ID InterPro/KOG Desc

sca�old_��:������ -�.��� TSsd �.�� Intergenic ���� sca�old_��:������-������ ������ Ankyrin repeat
sca�old_��:������ -�.��� TSsd �.�� Intergenic ���� sca�old_��:������-������ ������ Uncharacterized conserved protein
sca�old_��:������� -�.��� TSsd �.�� Intergenic �� sca�old_��:�������-������� ������ Glycoside hydrolase, family �
sca�old_��:������ -�.��� TSsd �.�� Synonymous � sca�old_��:������-������ ������ None
sca�old_�:������� -�.��� TSsd �.�� Intergenic ���� sca�old_�:�������-������� ������ None
sca�old_�:������� -�.��� TSsd �.�� Intergenic ���� sca�old_�:�������-������� ������ None
sca�old_�:������� -�.��� TSsd �.�� Intergenic ���� sca�old_�:�������-������� ������ None
sca�old_�:������� -�.��� TSsd �.�� Intergenic ���� sca�old_�:�������-������� ������ None
sca�old_�:������� -�.��� TSsd �.�� Intergenic ���� sca�old_�:�������-������� ������ None
sca�old_�:������� -�.��� TSsd �.�� Intergenic ���� sca�old_�:�������-������� ������ None
sca�old_�:������ -�.��� TSsd �.�� Intergenic ��� sca�old_�:������-������ ������ None
sca�old_��:������ -�.��� TSsd �.�� Intergenic �� sca�old_��:������-������ ������ Flavin-containing monooxygenase
sca�old_��:������ �.��� TSsd �.�� Missense � sca�old_��:������-������ ������ Glycoside hydrolase, family �
sca�old_���:����� �.��� TSsd �.�� Synonymous � sca�old_���:�����-����� ������ None
sca�old_���:����� �.��� TSsd �.�� Intergenic ���� sca�old_���:�����-����� ����� Mg�+ transporter protein, CorA-like
sca�old_��:������ -�.��� TSsd �.�� Intergenic ���� sca�old_��:������-������ ������ Glycoside hydrolase, family ��
sca�old_��:������ -�.��� TSsd �.�� Synonymous � sca�old_��:������-������ ������ None
sca�old_��:������ �.��� TSsd �.�� Missense � sca�old_��:������-������ ������ Glycoside hydrolase, family �
sca�old_�:������� �.��� TSsd �.�� Intergenic �� sca�old_�:�������-������� ����� Alpha crystallin/Hsp�� domain
sca�old_�:������� -�.��� TSsd �.�� Intergenic ��� sca�old_�:�������-������� ������ None
sca�old_��:������ �.��� TSsd �.�� Missense � sca�old_��:������-������ ������ Glycoside hydrolase, family �
sca�old_�:������� -�.��� TSsd �.�� Synonymous � sca�old_�:�������-������� ������ None
sca�old_�:������� -�.��� TSsd �.�� Intergenic ���� sca�old_�:�������-������� ������ Protein kinase-like domain
sca�old_�:������� -�.��� TSsd �.�� Synonymous � sca�old_�:�������-������� ������ None
sca�old_��:������ �.��� mTwq �.�� Synonymous � sca�old_��:������-������ ������ Cytochrome P���, E-class, group I
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Table A.� Top �� candidate SNPs along the �rst three RDA axes, without accounting for neutral popu-
lation structure using the LD-�ltered set of ��,��� SNPs.
RDA
axis SNP position RDA

loading
Climate
variable Correlation SnpE� SNP category SnpE�

predicted e�ect SnpE� annotation locus SnpE� distance
from locus (bp)

� sca�old_��_������ �.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_�_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER CDS_sca�old_�_������_������ ����
� sca�old_��_����� -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_�����_����� ����
� sca�old_��_������ �.��� mTwq �.�� downstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_�_������� �.��� PScv �.�� downstream_gene_variant MODIFIER START_CODON_sca�old_�_�������_������� ����
� sca�old_��_������ -�.��� mTwq �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� PScv �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_�_������� -�.��� PScv �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_�_�������_������� ����
� sca�old_��_������ -�.��� mTwq �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_�_������ -�.��� mTwq �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_������_������ ����
� sca�old_�_������� -�.��� mTwq �.�� upstream_gene_variant MODIFIER CDS_sca�old_�_�������_������� ����
� sca�old_��_������ -�.��� PScv �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� PScv �.�� intergenic_region MODIFIER CDS_sca�old_��_�����_�����-START_CODON_sca�old_��_������_������ �
� sca�old_��_������ -�.��� mTwq �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� PScv �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_�_������ -�.��� PScv �.�� missense_variant MODERATE CDS_sca�old_�_������_������ �
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_�_������ �.��� mTwq �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_�_������_������ ���
� sca�old_��_������ �.��� mTwq �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_������_������ ���
� sca�old_��_������ �.��� mTwq �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ �.��� mTwq �.�� missense_variant MODERATE CDS_sca�old_��_������_������ �
� sca�old_��_������ �.��� mTwq �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_������_������ ����
� sca�old_�_������ �.��� mTwq �.�� synonymous_variant LOW CDS_sca�old_�_������_������ �
� sca�old_��_������ �.��� mTwq �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_��_������ �.��� mTwq �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ �.��� mTwq �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_����� �.��� mTwq �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_�����_����� ���
� sca�old_��_������ �.��� mTwq �.�� missense_variant MODERATE CDS_sca�old_��_������_������ �
� sca�old_��_������ �.��� mTwq �.�� missense_variant MODERATE CDS_sca�old_��_������_������ �
� sca�old_��_������� �.��� mTwq �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_�������_������� ����
� sca�old_��_������ -�.��� mTwq �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ �.��� mTwq �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_����� -�.��� mTwq �.�� splice_region_variant&synonymous_variant LOW CDS_sca�old_��_�����_����� �
� sca�old_��_������ �.��� mTwq �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_�_������ �.��� TSsd �.�� synonymous_variant LOW CDS_sca�old_�_������_������ �
� sca�old_��_������ �.��� TSsd �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
� sca�old_��_������ �.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ �.��� mTwq �.�� upstream_gene_variant MODIFIER START_CODON_sca�old_��_������_������ ���
� sca�old_�_������ �.��� mTwq �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_�_������_������ ����
� sca�old_��_����� �.��� TSsd �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_�����_����� ����
� sca�old_�_������ �.��� TSsd �.�� missense_variant MODERATE CDS_sca�old_�_������_������ �
� sca�old_�_����� �.��� mTwq �.�� synonymous_variant LOW CDS_sca�old_�_�����_����� �
� sca�old_�_������ �.��� mTwq �.�� synonymous_variant LOW CDS_sca�old_�_������_������ �
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� sca�old_��_������ �.��� mTwq �.�� upstream_gene_variant MODIFIER CDS_sca�old_��_������_������ ����
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� sca�old_��_������ -�.��� mTwq �.�� synonymous_variant LOW CDS_sca�old_��_������_������ �
� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
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� sca�old_��_������ -�.��� PScv �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ �.��� mTwq �.�� missense_variant MODERATE CDS_sca�old_��_������_������ �
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� sca�old_��_����� �.��� mTwq �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_�����_����� ����
� sca�old_��_������ -�.��� mTwq �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� mTwq �.�� upstream_gene_variant MODIFIER STOP_CODON_sca�old_��_������_������ ����
� sca�old_��_������ -�.��� mTwq �.�� missense_variant MODERATE CDS_sca�old_��_������_������ �
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Figure A.� (A) Rooted phylogeny reconstructed using theM. phaseolina reference genome as outgroup.
Maximum-likelihood phylogeny reconstructed using ��,��� high-quality SNPs. Bootstrap support val-
ues over �� are shown at nodes. Bootstrapping converged after ��� replicates. Colored tips represent
the genetic cluster for each isolate as de�ned by principal components analysis. Individual isolate names
include ANSI/ISO codes for US states, and Colombia and Puerto Rico municipalities: CA: California,
CAU: Cauca, GA: Georgia, IN: Indiana, ISA: Isabela, JD: Juana Diaz, KY: Kentucky, LA: Louisiana,
MAG: Magdalena, MI: Michigan, MN: Minnesota, MS: Mississippi, SC: South Carolina, SD: South
Dakota, TN: Tennessee, TOL: Tolima, TX: Texas, VAC: Valle del Cauca, WI: Wisconsin. ISO country
codes: US:United States, COL:Colombia andPR: PuertoRico. (B)Discriminatory analysis of principal
components. Each bar and color indicates the posterior probability membership value per isolate to one
of the �ve genetic clusters.
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Figure A.� Principal component analysis (PCA) showing isolate host origin. Scatterplot from a princi-
pal component analysis based on the two �rst PCs (the eigenvectors of the ��,��� SNPs) for all isolates.
Points are colored by host from which isolates were collected. Overlapping ellipses representing ��% of
the isolates from each of the hosts.
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Figure A.� Spatial population structure using conStruct. (A) Maps of admixture proportions estimated
forM. phaseolina across the US, Puerto Rico and Colombia using the spatial conStruct model for K =
� to K = �. Pies show mean admixture results for individual isolates within their diameter. (B) Cross-
validation predictive accuracy values as a function of the number of layers (K = �-�) for the spatial and
nonspatial conStruct models. (C) Layer contributions for K = � through �.
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Figure A.�MLLs shared among countries. MLL �: one isolate from Colombia (Mph-�) and one from
PuertoRico (UPR-Mph-JD�) clustering inCOLPR�,MLL ��: one isolate fromPuertoRico (UPR-Mph-
ISA�) and one fromLouisiana (TN���) clustering inCOLPR�, andMLL ��: one isolate fromColombia
(Mph-��) and �� isolates from US clustering in US�A . The two MLLs for isolates IN���-� and Mph��
are not shown.
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Figure A.� Spatial structure variables identi�ed using distance-based Moran’s eigenvector maps (db-
MEMs �-�). The variable dbMEM � identi�ed as signi�cant using forward-variable selection described
broad spatial structure. Color and size of the points correspond to the sign (+ or -) andmagnitude of the
dbMEM variables, respectively.
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Figure A.�Venn diagram showing the overlap between outlier loci identi�ed by both partial RDA (con-
strained on neutral population structure) and full RDA (unconstrained) models using unlinked SNPs
(LD-�ltered set of ��,��� SNPs).
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Figure A.�Maximum-likelihood phylogeny reconstructed using concatenated sequences of the Internal
Transcribed Spacer regions for thenuclear rDNAoperon (ITS), part of theTranslationElongationFactor
(TEF-�) gene region, and part of the actin (ACT) gene region.
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CHAPTER �

SENSITIVITY TO SINGLE-SITE FUNGICIDES INMACROPHOMINA PHASEOLINA
POPULATIONS FROM SOYBEAN AND DRY BEAN
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�.� Abstract

Charcoal rot, caused byMacrophomina phaseolina, is a soil- and seedborne disease that a�ects soybean

and dry bean production worldwide. Strategies for e�ectively managing charcoal rot are limited, and

management has primarily focused on varietal resistance and cultural practices. Fungicide e�cacy studies

conducted in past years have focused on older active ingredients and information on the sensitivity of

M. phaseolina to newer classes of single-site fungicides is lacking. Although not speci�cally targeting

M. phaseolina, single-site fungicides are used in soybean and dry bean production as seed treatments,

soil applications, and foliar sprays. The in-vitro sensitivity of �� M. phaseolina isolates collected from

soybean and dry bean in the United States, Puerto Rico and Colombia was assessed for three classes of

single-site fungicideswidely used in soybean anddrybeanproduction. The relativemycelial growthofM.

phaseolina isolates challenged against boscalid (SDHI), iprodione (dicarboximide) and prothioconazole

(DMI) was used to determine the e�ective concentration to inhibit mycelial growth by ��% (EC��). All

�� isolates were sensitive to boscalid, iprodione and prothioconazole. Mean EC�� values for boscalid,

iprodione, and prothioconazole were �.��, �.�� and �.�� �g ml�� respectively. The full-length nucleotide

sequences of fungicide target genes were assembled to investigate mutations in all isolates. Mutations

found in target genes did not associate with levels ofM. phaseolina fungicide sensitivity.

�.� Introduction

Soil-borne fungal pathogens are a major threat to crops and food security and fungicides are key com-

ponents of e�ective disease management to prevent yield loss and ensure high-quality crop production.

Since the ����’s fungicide use has increased, partly with the advent of broad-spectrum systemic single-

site fungicides such as dicarboximides, sterol biosynthesis inhibitors including demethylation inhibitors

(DMIs; azoles), and succinate dehydrogenase inhibitors (SDHIs) (Russell, ����). Changes in cultural

practices such as reduced or no-tillage systems, which add complexity to disease dynamics by favoring

pathogen inoculum in crop residue, have further contributed to the increased use of fungicides (Oerke,

����; Morton and Staub, ����). Only a few years after the commercial use of fungicides, acquired re-

sistance became a signi�cant threat to their e�cacy (Kuck and Russell, ����; Leadbeater et al., ����).

Therefore, globally, as well as in the US, monitoring for development of resistance is an important com-

��



ponent for the implementation of e�ective disease management strategies (Brent and Hollomon, ����).

Charcoal rot disease, caused by the soil- and seed-borne pathogen Macrophomina phaseolina, has

been recognized as a threat of increasing importance to soybean (Glycine max) and dry bean (Phaseolus

vulgaris) production in theUS andworldwide (Dhingra and Sinclair, ����;Wrather et al., ����; Reznikov

et al., ����; Jacobs et al., ����; Savary et al., ����; Bradley et al., ����). In the �eld, charcoal rot typically

develops at reproductive stages of soybean and dry bean. However, infectionmay occur at emergence and

early in the growing season causing up to ���% incidence of seedling infection � to � weeks after plant-

ing causing seedling blight (Hartman et al., ����a; Hartman et al., ����b). Seedling disease is most often

reported in tropical regions, however in temperate regions damage to soybean seedlings is also observed,

particularly under high temperature and low soil moisture conditions (Meyer and Sinclair, ����; Hart-

man et al., ����a). Infection begins, most commonly, with microsclerotia present in soil or plant residue.

Microsclerotia germination followed by appressoria development allows host penetration through the

root epidermis with subsequent invasion of root and stem tissue. Alternatively, colonization can occur

from infected seed. EventuallyM. phaseolina colonizes the vascular system leading to wilting, necrosis,

and plant death (Hartman et al., ����a). M. phaseolina reproduction in infected plants produces abun-

dant microsclerotia which, following plant death and crop harvest, can survive in crop residue and in

soil for years (Dhingra and Sinclair, ����). Although M. phaseolina can be a devastating pathogen, it

can also colonize plants asymptomatically, and it is recognized as an endophyte and latent pathogen in

many plant species (Dhingra and Sinclair, ����; Slippers andWing�eld, ����; Slippers and Boissin, ����;

Parsa et al., ����; Crous et al., ����). Management of charcoal rot in soybean and dry bean relies mostly

on host genetic resistance which is limited in both crops and cultural control measures, which may be

challenging to implement (Pastor-Corrales et al., ����; Hartman et al., ����a; Coser et al., ����; Romero

Luna et al., ����; Ambachew et al., ����). Chemical-control strategies are aimed at reducingmicrosclero-

tia in soil and limiting host colonization (Romero Luna et al., ����). Fungicide seed treatments and soil

applications can provide protection by delaying colonization and reducing fungal growth within root,

stem and vascular tissue (Bradley, ����). Seed treatments with benomyl (benzimidazole) and carboxin

(�rst generation succinate dehydrogenase inhibitor) showed some e�ectiveness in reducing incidence of
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charcoal rot in dry bean seedlings under greenhouse conditions (Abawi and Pastor-Corrales, ����). Sim-

ilarly, soybean seed treated with thiophanate methyl + pyraclostrobin protected plant emergence in �eld

inoculation experiments (Reznikov et al., ����). Recent studies evaluated the in-vitro sensitivity ofM.

phaseolina to di�erent fungicide classes using a single isolate (Tonin et al., ����; Chaudhary et al., ����).

However, current chemical-control strategies for charcoal rot do not provide consistent e�ective control

and information on the e�ectiveness of newer fungicides chemistries using a collection ofM. phaseolina

isolates is lacking (Reznikov et al., ����; Romero Luna et al., ����; Roth et al., ����).

In soybean and dry bean, management strategies commonly include the use of single-site fungicides

as seed treatments and foliar applications (Hartman et al., ����b; Lehner et al., ����; Bandara et al.,

����; Karavidas et al., ����). Most single-site fungicides target mitochondrial respiration function, the

cytoskeleton or ergosterol biosynthesis. The demethylation inhibitors (DMIs) are the most important

group of fungicides currently used in crop protection, leading the world fungicide market (Leadbeater

et al., ����). DMIs inhibit the C��-demethylation step of ergosterol biosynthesis interfering with mem-

brane integrity. The succinate dehydrogenase inhibitors (SDHIs) fungicides target the succinate dehydro-

genase (mitochondrial complex II in the electron transfer chain), thereby inhibiting fungal respiration.

Dicarboximides cause cell death through interference with osmotic signal transduction pathway via in-

appropriate activation of the osmosensing class III histidine kinase (Motoyama et al., ����; Yamaguchi

and Fujimura, ����)(Fungicide Resistance Action Committee, FRAC: www.frac.info).

DMIs, SDHIs and dicarboximides are considered either medium or medium to high risk for the de-

velopment of fungicide resistance (FRAC: www.frac.info) and shifts in fungicide sensitivity have been

reported in important crops for these three classes (Brent and Hollomon, ����; Hartman et al., ����b;

Leadbeater et al., ����). The most common mechanisms of resistance to DMIs, SDHIs and dicarbox-

imides are changes in the amino acids of the target proteins. Single point mutations in Sdh succinate

dehydrogenase (Sang and Lee, ����), os� histidine kinase, and cyp�� C��-demethylase genes are known

to confer reduced sensitivity to boscalid, iprodione and prothioconazole, respectively, in several fungal

pathogens (FRAC: www.frac.info). In addition, cyp�� genes overexpression (Schnabel and Jones, ����;

Nikou et al., ����; Wei et al., ����) and promoter insertions have been associated with DMI-reduced
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sensitivity of phytopathogenic fungi.

Single-site systemic fungicides are highly e�ective, meaning that most individuals are either killed or

inhibited resulting in selection for any resistant individuals (Lucas et al., ����). Factors such as fungi-

cide distribution in the plant tissues and dilution to non-lethal doses may lead to the development of

resistance not only in the target pathogen but in other fungal pathogens or the plant-associated fungal

community (Brent and Hollomon, ����; Chamberlain et al., ����). Additionally, large-scale homoge-

neous agricultural systems which often have low crop genetic diversity and can sustain large and rapidly

reproducing pathogen populations constitute conducive environments for the evolution of resistance

(Brent and Hollomon, ����).

Selection for resistance can occur in any environment containing fungicides. The risk of fungicide

resistance depends mainly on the fungicide mode of action and speci�city (e.g. multisite vs. single-site),

the biological characteristics of the fungi, such as reproductionmode and rate of reproduction, and agro-

nomic factors related to appropriate fungicide use (Leadbeater et al., ����). In addition, pathogen demo-

graphic history, for example greater inoculum load leading to increases of e�ective population sizes, and

the existence of �tness trade-o�s may also play an important role in the development of fungicide resis-

tance (McDonald and Stukenbrock, ����; Hawkins and Fraaije, ����). Although evolution of resistance

to fungicides has been characterized for many fungal pathogens, there are few studies that assessed the

fungicide sensitivity and potential mechanisms of resistance inM. phaseolina.

Overall, we consider it likely thatM. phaseolina is commonly exposed to fungicides used in soybean

anddrybeanproduction and that conditions associatedwith theuse of fungicides toprotect crops against

economically important fungal pathogens could favor the development of fungicide resistance in M.

phaseolina populations either as direct or o�-target e�ect. We therefore hypothesize that selection for re-

sistancemayoccur in the internal tissues of plants or seeds treatedwith fungicides aswell as in crop residue

and soil containing fungicide residue. Additionally, we hypothesize that populations in tropical and sub-

tropical regions in which environmental conditions could allow for year-round pathogen multiplication

and therefore sustain large populations, may be at higher risk of developing resistance. The objectives

of this study were i) to investigate boscalid, iprodione and prothioconazole in-vitro sensitivity of ��M.
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phaseolina isolates collected from soybean and dry bean from theUS,Colombia, and PuertoRico, and ii)

identifymutations in the Sdh, os� and cyp�� target genes ofM. phaseolina isolates and examine their asso-

ciation with levels ofM. phaseolina in-vitro fungicide sensitivity. For this, we conductedmycelial growth

assays and investigated fungicide target genes fromM. phaseolina whole-genome sequences. This study

provides information for e�ective use of active ingredients in current commercial fungicide formulations

and aid in the designing of e�ective disease management strategies.

�.� Results

�.�.� EC�� determination for ��M. phaseolina isolates

The EC�� values of ��M. phaseolina isolates were determined based on mycelial growth on Petri plates

amended with di�erent concentrations of boscalid, iprodione and prothioconazole (Table �.�). Isolate

mean EC�� values were not di�erent across experiments, with con�dence intervals that overlapped zero,

for boscalid (Bos�—Bos�: -�.��� �g ml��; ��% CI -�.���— �.���) and iprodione (Ipro�—Ipro�: �.���

�g ml��; ��% CI -�.���— �.���) (Table A.�). For prothioconazole, although the CI did not overlap zero

(Pro�—Pro�: -�.��� �g ml��; ��%CI -�.���— -�.���), mean EC�� di�erence was less than �.�� �g ml��,

as for boscalid and iprodione (Table A.�). Overall, mean EC�� di�erences indicate that the EC�� values

were consistent across experiments for all fungicides (Figure A.�). The EC�� values for boscalid ranged

from �.�� to �.�� �g ml�� with mean �.�� �g ml��, though only two isolates (CR-Red-�B and MP���)

had an EC�� more than � �g ml�� (Table �.�). For iprodione, the EC�� of isolates ranged from �.�� to

�.�� �g ml��with mean �.�� �g ml�� (Table �.�). Isolates were most sensitive to prothioconazole with

EC�� values ranging from �.�� to �.�� �g ml��, with mean of �.�� �g ml�� (Table �.� and �.�). These

results indicate thatM. phaseolina isolates evaluated were sensitive to the three fungicides tested. Isolate

sensitivity di�ered across the three fungicides. Isolates were most sensitive to prothioconazole, followed

by boscalid and least sensitive to iprodione (Figure �.�). Mean EC�� di�erences were �.�� �g ml�� (��%

CI �.��— �.��) and -�.�� �gml�� (��%CI -�.��—-�.��) for iprodione and prothioconazole as compared

to boscalid, respectively, and -�.�� �g ml�� (��% CI -�.��— -�.��) for prothioconazole as compared to

iprodione (Table A.�).

��



Table �.� Mean EC�� (e�ective concentration to reduce growth by ��%) estimates for �� M. phaseolina
isolates determined frommycelial growth assays in Petri plates amended with di�erent concentrations of
fungicides boscalid, iprodione or prothioconazole.

Isolate Boscalid Iprodione Prothioconazole

EC��
Standard
Error EC��

Standard
Error EC��

Standard
Error

CR_Red_� �.��� �.��� �.��� �.��� �.��� �.���
CR_Red_�B �.��� �.��� �.��� �.��� �.��� �.���
CR_Red_� �.��� �.��� �.��� �.��� �.��� �.���
Dm�� �.��� �.��� �.��� �.��� �.��� �.���
Et�� �.��� �.��� �.��� �.��� �.��� �.���
Et�� �.��� �.��� �.��� �.��� �.��� �.���
Et�� �.��� �.��� �.��� �.��� �.��� �.���
IN��_�_� �.��� �.��� �.��� �.��� �.��� �.���
IN��_�_� �.��� �.��� �.��� �.��� �.��� �.���
IN��_�_� �.��� �.��� �.��� �.��� �.��� �.���
IN��_PO_� �.��� �.��� �.��� �.��� �.��� �.���
Md� �.��� �.��� �.��� �.��� �.��� �.���
Md� �.��� �.��� �.��� �.��� �.��� �.���
MI-SF �-�� �.��� �.��� �.��� �.��� �.��� �.���
MI-SF ��-�� �.��� �.��� �.��� �.��� �.��� �.���
MI-SF �-�� �.��� �.��� �.��� �.��� �.��� �.���
MI-SF �-� �.��� �.��� �.��� �.��� �.��� �.���
MISO���-� �.��� �.��� �.��� �.��� �.��� �.���
MISO���-� �.��� �.��� �.��� �.��� �.��� �.���
MISO���-� �.��� �.��� �.��� �.��� �.��� �.���
MP��� �.��� �.��� �.��� �.��� �.��� �.���
MP��� �.��� �.��� �.��� �.��� �.��� �.���
MP��� �.��� �.��� �.��� �.��� �.��� �.���
SAG�-� �.��� �.��� �.��� �.��� �.��� �.���
TN��� �.��� �.��� �.��� �.��� �.��� �.���
TN��� �.��� �.��� �.��� �.��� �.��� �.���
TN� �.��� �.��� �.��� �.��� �.��� �.���
TN� �.��� �.��� �.��� �.��� �.��� �.���
TN��� �.��� �.��� �.��� �.��� �.��� �.���
TN��� �.��� �.��� �.��� �.��� �.��� �.���
W-MISO� �-� �.��� �.��� �.��� �.��� �.��� �.���
W-MISO� �-�� �.��� �.��� _ _ �.��� �.���
W�� �.��� �.��� �.��� �.��� �.��� �.���
W�� �.��� �.��� �.��� �.��� �.��� �.���
W�-� �.��� �.��� �.��� �.��� �.��� �.���
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�.�.� Isolate screening and EC�� prediction using single concentrations

Single concentrations of boscalid � �g ml��, iprodione � �g ml��, or prothioconazole �.� �g ml�� were

used to screen the remaining ��M. phaseolina isolates. EC��(P)values for each isolate were predicted af-

ter linear regression models based on RMG at the single concentration (Figure A.�). For all fungicides,

EC��(P)values were within the range of the EC�� values estimated for the set of ��M. phaseolina isolates

initially tested (Table �.� and A.�). None of the �� isolates were found to have EC��(P)values above the

threshold to be categorized as less sensitive (�.��, �.��, and �.�� �g ml�� for boscalid, iprodione and pro-

thioconazole, respectively) (Figure �.�). Consistent with the EC�� estimations for the initial set, isolates

were most sensitive to prothioconazole and least sensitive to iprodione (Figure A.�).

Table �.�Mean and range EC�� (e�ective concentration to reduce growth by ��%) estimates and predic-
tions for di�erent sets of M. phaseolina isolates determined from mycelial growth assays in Petri plates
amended with multiple or single concentrations of boscalid, iprodione or prothioconazole.

Set EC�� type Boscalid Iprodione Prothioconazole

Mean
EC��

EC�� range
Mean
EC��

EC�� range
Mean
EC��

EC�� range

min max min max min max

Multiple concentrations
�� isolatesa EC�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���

Single concentration
�� isolatesb EC��(P) �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���

Combined and validation
sets �� isolatesc EC�� and EC��(P) �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���

aEC�� Estimates for �� M. phaseolina isolates determined from mycelial growth assays in Petri plates
amended with di�erent concentrations of boscalid, iprodione or prothioconazole. bEC��(P) predictions
for ��M. phaseolina isolates determined frommycelial growth assays in Petri plates amended with single
concentrations of boscalid � �g ml��, iprodione � �g ml��, or prothioconazole �.� �g ml��. cCombined
EC�� and EC��(P) values for ��M. phaseolina isolates. This combined data set consists of multiple con-
centration, single concentration and validation data points, including two additional isolates from the
validation set.

Validation of linear regression models for EC��(P)prediction was conducted by estimating EC�� val-

ues and correlating themwith predicted EC��(P)values in a validation set of �� isolates (Table A.�). These

validation isolates were selected to represent the range of EC�� /EC��(P)values previously determined

and included two isolates not tested in any of the previous assays. A signi�cant positive linear relation-

ship was observed between estimated EC�� and predicted EC��(P)values for all fungicides (Pearson’s R =
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�.��, �.�� and �.�� for boscalid, iprodione and prothioconazole, respectively; P < �.����) (Figure A.�).

�.�.� Combined EC�� and EC��(P)for ��M. phaseolina isolates

EC�� and EC��(P)values were combined to analyze the in-vitro fungicide sensitivity of the ��M. phase-

olina isolates, including data points and isolates from the validation set. The combinedEC�� andEC��(P)

distribution for the �� isolates ranged from �.�� to �.�� �g ml�� with a mean EC�� of �.�� �g ml�� for

boscalid. For iprodione, EC�� values ranged from �.�� to �.�� �gml�� with amean value of �.�� �gml��.

For prothioconazole, EC�� ranged from �.�� to �.��, with mean of �.�� �g ml�� (Figure �.�). Isolates

weremost sensitive to prothioconazole, followed by boscalid and least sensitive to iprodione, as indicated

bymean EC�� di�erences between fungicides for the �� isolates (Figure �.�, Table �.�). While no resistant

isolates were identi�ed, isolates with EC��/EC��(P)values above three standard deviations from themean

(�.��, �.��, and �.�� �g ml�� for boscalid, iprodione and prothioconazole, respectively) were categorized

as less sensitive (Figure �.�, Table A.�). Less sensitive isolates were CR-Red�B andMpSDSU to boscalid;

MP��� to iprodione; andMP��� andMP��� to prothioconazole (Table A.�).

Table �.�Mean EC��/EC��(P) di�erences for ��M. phaseolina isolates across fungicides: boscalid, ipro-
dione and prothioconazole.

Pairwise fungicide comparison Mean EC�� di�erence ��%CIa

low high

Iprodione minus Boscalid �.��� �.��� �.���
Prothioconazole minus Boscalid -�.��� -�.��� -�.���
Prothioconazole minus Iprodione -�.��� -�.��� -�.���

a��% con�dence intervals adjusting for asymmetrical resampling distributions using bias-corrected
and accelerated bootstrap (BCa bootstrap).

To examine whether isolates di�er in their sensitivity to each fungicide by host or genetic related-

ness, EC��/EC��(P)values were examined by isolate soybean or dry bean origin and genetic cluster (as

determined in chapter �). No di�erences in sensitivity were found between soybean and dry bean isolates

for any of the three fungicides (Figure A.�). Isolates collected from strawberry (M��-�� and M��-��) and

Ethiopian mustard (MpSDSU) were not included in this analysis because of the low number of isolates

from each of these hosts. When analyzed by genetic cluster, isolates in the US�A, US�B and COLPR� ge-
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netic clusterwere found tobe, on average,more sensitive to the three fungicides, as comparedwith isolates

in US� and COLPR� genetic clusters (Figure S�, Table A.�). Although, higher mean EC�� values were

obtained for isolates in the US� and COLPR� genetic groups, mean EC�� di�erences between genetic

clusters were all < �.�, �.� and �.�� �g ml�� for boscalid, iprodione and prothioconazole, respectively

(Table A.�). All isolates were found to be sensitive to boscalid, iprodione and prothioconazole indicating

their potential use forM. phaseolinamanagement. Though in-vitro assays provide an initial assessment,

in-vivo and �eld e�cacy testing is necessary to determine whether they provide protection under �eld

conditions.

�.�.� Mutations in fungicide target genes and associations to isolate sensitivity

The predicted sequences of SdhB, cyp��, and os� genes of the �� M. phaseolina isolates were obtained

to examine whether mutations were associated with fungicide sensitivity. Species sequence alignment

of the translated SdhB, cyp��, and os� genes sequences revealed high amino acid identity among all ��

isolates and with the reference sequences. Conservation of the SdhB iron-sulfur subunit was detected

across all isolates. The cyp��B sequence was ��� amino acids with the heme-binding domain detected at

codons ���-��� including the heme coordinating cysteine at codon ���. The predicted cyp��A sequence

was ��� amino acids long. Amino acid sequence alignments of the �� M. phaseolina isolates detected

cyp��B mutations in four isolates collected from dry bean in Colombia and two isolates collected from

soybean in the US (Table �.�). Similarly, mutations in cyp��A sequence were detected in �� isolates col-

lected from dry bean in Colombia or Puerto Rico (Table �.�). SdhB mutations were identi�ed in three

dry bean isolates from Colombia and one isolate from Puerto Rico. None of the mutations were found

to be associated with reduced fungicide sensitivity. Structural modeling of the target proteins localized

all mutations outside of the binding pocket and with low probability of a�ecting binding a�nity of the

fungicide molecules.

�.� Discussion

This study provides information on the in-vitro e�cacy againstM. phaseolina of three single-site fungi-

cides widely used in crop production worldwide. A total of ��M. phaseolina isolates collected mainly

from soybean and dry bean across theUS,Colombia andPuertoRicowere characterized for their in-vitro
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Table �.�Mutations in fungicide target genes found inM. phaseolina isolates. Host and geographic ori-
gins of isolates are shown.

Gene Mutation Isolate Origin

cyp��B V��I Mph�� Dry bean Colombia
V��I Mph�� Dry bean Colombia
V��I Mph�� Dry bean Colombia
I��T MP��� Dry bean Colombia
H���Y IN���-� Soybean North
H���Y MP��� Soybean South

cyp��A V���F Mph��, Mph�� Dry bean Colombia

D���Y
Mph��, Mph��, Mph��, Mph��, Mph��,
Mph��, Mph��, Mph�, UPR_ISA�,
UPR_JD�, UPR_JD�, UPR_JD�

Dry bean Colombia
Dry bean Puerto Rico

sdhB A��T Mph��, Mph��, Mph�� Dry bean Colombia
V���L UPR_ISA� Dry bean Puerto Rico

sensitivity to boscalid (SDHI), iprodione (Dicarboximide) and prothioconazole (DMI). This represents

the largest assessment ofM. phaseolina variation in fungicide sensitivity in these countries. Prior stud-

ies characterizing the in-vitro sensitivity ofM. phaseolina to di�erent classes of fungicides have focused

on older active ingredients or have used a limited number of isolates (Tonin et al., ����; Chaudhary et

al., ����). We demonstrated that M. phaseolina isolates from soybean and dry bean were sensitive to

boscalid, iprodione and prothioconazole active ingredients when tested in mycelial growth assays. While

isolate variability in EC�� values to these fungicides was present, no isolate was insensitive to any of the

tested fungicides. Notably, we found signi�cant di�erences inM.phaseolina sensitivity to the three fungi-

cides tested. Prothioconazole was themost e�cacious active ingredient in reducing fungal growth (mean

EC��/EC��(P)= �.�� �g ml��), as compared to boscalid (mean EC��/EC��(P)= �.�� �g ml��) and ipro-

dione (mean EC��/EC��(P)= �.�� �g ml��). In a study ofM. phaseolina in Brazil, iprodione inhibited

mycelial growth of a soybean isolate (EC�� = �.�� �g ml��) (Tonin et al., ����). To our knowledge, similar

in-vitro studies reportingEC�� results of boscalid, iprodioneorprothioconazole havenotbeen conducted

for a collection ofM. phaseolina isolates.

Our study found no resistant isolates acrossM. phaseolina genetic clusters in the US (US�A, US�B

andUS�), Colombia and Puerto Rico (COLPR� and COLPR�). Variation between genetic clusters was
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Figure �.� EC�� distribution of ��M. phaseolina isolates collected from soybean and dry bean. Less sen-
sitive isolates were designated as the ones with an EC�� value higher than three standard deviations from
the mean.

observed with a general trend of least sensitivity in US� and COLPR� clusters as compared to US�A,

US�B and COLPR� cluster across fungicides. We hypothesized thatM. phaseolina isolates may develop

fungicide resistance in the context of soybean and dry bean production. Furthermore, we hypothesized

thatColombian andPuertoRican isolatesmay have higher risk of developing fungicide resistance as com-

pared to US isolates. The reason for this was that environmental conditions in tropical locations, such as

Colombia andPuertoRico, allow for year-roundpermanence ofM.phaseolina, and therefore, the poten-

tial maintenance of large pathogen populations in soil and crop residue. Additionally, the higher genetic

diversity found in M. phaseolina Colombian-Puerto Rican genetic clusters (COLPR� and COLPR�),

as compared to US clusters (US�A, US�B and US�) (Ortiz et al., under review) led us to consider these

populations may be at greater risk of developing resistance. However, our results did not support this

hypothesis. Instead, we found isolates in all genetic clusters were sensitive to the three fungicides tested
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Figure �.�Mean EC�� di�erences of ��M. phaseolina isolates across fungicides: (A) Boscalid-Iprodione
(B) Boscalid-Prothioconazole (C) Iprodione-Prothioconazole pairwise comparisons. Isolates were most
sensitive to prothioconazole, followed by boscalid and least sensitive to iprodione.

and most isolates from Colombia and Puerto Rico (grouped in COLPR� genetic cluster) had similar

sensitivities to those in other genetic clusters. This suggests that low selection pressure and/or low in-

trinsicM. phaseolina risk for fungicide resistance development. Generally, a single fungicide application

is conducted during the growing season in dry bean and soybean, in commercial �elds (Hartman et al.,

����b) as well as in experimental plots fromwhere the Colombian and Puerto Rican isolates in this study

were collected (GloriaMosquera andConsueloEstevez, personal communication). In addition, although

population sizes may be high, e�ective population sizes may remain low due to the mostly clonal nature

ofM. phaseolina.

Resistance to SDHIs, DMIs or Dicarboximide has not been reported in M. phaseolina (Sang and

Lee, ����). Overall, this study indicates that M. phaseolina has a low risk of developing resistance. A

limitation of this study is that isolates fromColombia and PuertoRicowere collected only fromdry bean

experimental plots. A previous study conducted in a dry bean producing region in Colombia reported

that fungicides were applied several times during the growing season (Velasquez et al., ����). Future

studies involving isolates collected from commercial �elds in Colombia and Puerto Rico would provide

a broader assessment ofM. phaseolina fungicide sensitivity in these countries.

Information regarding mutations inM. phaseolina Sdh, cyp�� and os� genes is lacking. In this study

we report the predicted cyp, sdhB and os� sequences for ��M. phaseolina isolates. Three paralogs of cyp��

gene (cyp��A, cyp��B and cyp��C) have been identi�ed in fungi and although their involvement in DMI

sensitivity is well known for several fungal phytopathogens (Schnabel and Jones, ����; Mohd-Assaad et
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Figure �.� Predicted EC��(P) distribution of ��M. phaseolina isolates tested in mycelial growth assays in
half-strength PDA plates amended with �mgml�� of boscalid, �mgml�� of iprodione, or �.�mgml�� of
prothioconazole.

al., ����; Zhang et al., ����; Lestrade et al., ����; Wei et al., ����), the occurrence of cyp��A and cyp��C

paralogs is unknown inM. phaseolina. The cyp��A and cyp��B paralogs sequences were present in the ��

M.phaseolina isolates tested in this study. cyp��A it is thought to play amajor role in reduced sensitivity to

DMIs, mainly as a functionally redundantmechanism for ergosterol productionwhen fungi are exposed

with DMI fungicides (Fan et al., ����; Liu et al., ����).

A total of �� isolates showedmutations occurring in the cyp�� genes and four isolates in the SdhBgene.

The cyp��A D���Y mutation was the most frequently identi�ed mutation present in twelve isolates of

our collection. Interestingly, these isolates were all collected from dry bean in Colombia or Puerto Rico.

None of these point mutations were found to be correlated with lower levels of sensitivity. Reduced

sensitivity with high resistance factors (strength of resistance) is often observed with mutations located

��



Figure �.� Combined EC�� and EC��(P) distribution of ��M. phaseolina isolates. This combined data
set consists of multiple concentration, single concentration and validation data points, including two
additional isolates from the validation set. Less sensitive isolates were designated as the ones with an
EC�� or EC��(P) value higher than three standard deviations from themean indicated by the dashed line.

in putative azole molecules recognition sites (e.g V���A, Y���F, Y���F, Y���F, A���G, I���V) whereas

mutations in highly conserved regions of the cyp�� protein close to the heme binding site such as those at

codons ���-��� have been correlated with lower resistance factors (Cools et al., ����; Mullins et al., ����;

Mehl et al., ����). The cyp��B H���Y mutation was identi�ed in two isolates collected from soybean in

the US. In Cryptococcus gattii, the cyp��N���Dmutation conferred azole resistance (Gast et al., ����).

Molecular modelling of speci�c mutations in residues proximal to the binding pocket showed to have

di�erential impact on cyp�� protein function depending on whether a single mutation was present or

in combination with others. The protein function was impacted mainly by alterations in the binding

pocket volume. Furthermore, the e�ect of these mutations on DMI sensitivity was di�erent for certain

azole molecules (Cools et al., ����; Mullins et al., ����).
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Figure �.�Mean EC�� /EC��(P) di�erences of ��M. phaseolina isolates across fungicides: (A) Boscalid-
Iprodione (B) Boscalid-Prothioconazole (C) Iprodione-Prothioconazole pairwise comparisons. Isolates
were most sensitive to prothioconazole, followed by boscalid and least sensitive to iprodione.

It has been hypothesized that seed treatmentsmay be useful in protecting soybean plants fromdisease

caused by seedborneM. phaseolina (Hartman et al., ����a; Hartman et al., ����b). However, informa-

tion regarding the e�cacy of active ingredients currently used in commercial fungicide formulations in

soybean and dry bean is lacking (Romero Luna et al., ����). Although in-vivo and �eld studies would be

necessary, our results indicate that formulationswith prothioconazole, boscalid or iprodione,may reduce

seedling infection originating from infected seeds or inoculum in the soil. In cotton, seed treatmentswith

a commercial formulation of boscalid + pyraclostrobin (Signum) showed e�cacy in preventing seedling

infection byM. phaseolina in �eld experiments (Cohen et al., ����). However, this protective e�ect was

observed only for �� days while roots were exposed to the fungicide in soil (Cohen et al., ����).

Our data on the in-vitro e�cacy of prothioconazole suggest that commercial formulations with this

active ingredient may be of particular interest for future in-vivo e�cacy testing in soybean and dry bean.

Currently, fungicides labeled to control charcoal rot in di�erent crops are available, although limited

(http://www.cdms.net). For instance, a formulation of prothioconazole + �uopyram (Propulse) is la-

beled for charcoal rot management in soybean. Prothioconazole (Proline) has been shown to suppress

plant colonization byM. phaseolina and improve yield under �eld conditions when used in tolerant soy-

bean varieties in inoculated plots as compared to non-inoculated plots (USB report, ����). Future stud-

ies can be aimed at testing prothioconazole e�cacy in preventing seedling colonization and charcoal rot

disease development as part of integrated management programs incorporating host genetic resistance
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and cultural practices. Furthermore, studies investigating novel e�ective fungicides and monitoring the

potential development of resistance to single-site fungicides inM. phaseolina populations would be ben-

e�cial to charcoal rot management e�orts.

�.� Materials and methods

�.�.� Macrophomina phaseolina isolates and whole-genome sequencing

A total of ��M. phaseolina isolates collected mostly from soybean and dry bean, for which population

genomics analysis was conducted, were also used for fungicide sensitivity analysis (Ortiz et al., under re-

view). Species identity of these isolates was con�rmed as described previously by sequencing the Internal

Transcribed Spacer regions for the nuclear rDNA operon (ITS), part of the Translation Elongation Fac-

tor (TEF-�α) gene region, and part of the actin (ACT) gene region (Sarr et al., ����) (Ortiz et al., under

review). Brie�y, this isolate collection included �� isolates collected from soybean across the US and ��

isolates collected from dry bean in Michigan, Puerto Rico and Colombia, two isolates from strawberry

collected in California and one isolate collected from Ethiopia mustard in the US.

Whole genome sequencing and SNP calling was conducted as described in Ortiz et al., under review.

GenomicDNAwas extracted from lyophilizedmycelia using amodi�ed SDS-basedmethod; as described

previously (Ortiz et al., under review). Brie�y, hyphal tip cultures grown on potato dextrose agar (PDA)

medium were used to produce mycelia on potato dextrose broth. Libraries were prepared using the Illu-

mina TruSeq Nano DNA Library Preparation Kit HT and whole-genome sequencing to ��X coverage

using a ��� base-pair paired-end strategy on the Illumina HiSeq ���� platform at the Michigan State

University Research Technology Support Facility Genomics Core (East Lansing, MI) was conducted.

Quality assessment and �ltering were conducted using FastQC (Andrews et al., ����) and Cutadapt

v �.�� (Martin, ����). Sequences were aligned to the M. phaseolina reference genome (JGI Mycocosm,

MPI-SDFR-AT-���� v�.�) using bwa-mem (Heng Li, ����). Single nucleotide polymorphisms (SNPs)

of all isolates were predicted using the Genome Analysis Toolkit (GATK) v�.� (McKenna et al., ����)

pipeline (Ortiz et al., under review). The resulting vcf �le was quality �ltered using vcfR v�.��.� package

(Knaus and Grünwald, ����) in R v�.�.� (R Core Team ����) (Ortiz et al., under review).
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�.�.� Fungicides

Commercial fungicide formulations of the SDHI boscalid (��% A.I., Endura, BASF corporation, Re-

search Triangle Park, NC), Dicarboximide iprodione (Chipco ��GT �SC, Bayer, Germany) and DMI

prothioconazole (Proline ��� SC, Bayer CropScience, Research Triangle Park, NC) were used. Addi-

tional information about these fungicides is presented in Table. Aqueous stock solutions of these fungi-

cides were prepared at ���� �g ml�� of each respective active ingredient. Serial dilutions from the stock

solutions were used to produce �nal concentrations in half-strength PDA media of boscalid (�.�, �, ��,

��� and ��� �g ml��), iprodione (�.�, �, �.�, � and �� �g ml��) and prothioconazole (�.��, �.�, �.�, � and ��

�g ml��), except for boscalid highest concentration (��� �g ml��) for which �.��� g of Endura, per liter

of media was used. These concentrations were selected based on preliminary experiments which directed

the appropriate fungicide concentrations for �tting a dose-response curve.

�.�.� Determination of EC�� values using mycelial growth inhibition assays

The sensitivity of �� randomly selectedM. phaseolina isolates to boscalid, iprodione and prothioconazole

was determined based on EC�� (e�ective concentration to reduce growth by ��%) estimates. EC�� values

for each isolate was determined using mycelial growth inhibition assays on fungicide-amended medium.

Before each experiment isolates were recovered from -��ºC and grown on potato dextrose agar (PDA;

Acumedia, Lansing, MI) in the dark at ��ºC for �� h. Then a mycelial plug from the margin was trans-

ferred into a new Petri plate containing PDA and incubated in the dark at ��ºC for �� h. A single �-mm

agar plug taken from the edge of the ��-h old culture was placedmycelial side down on the center of non-

amended half-strength PDA plates and plates amended with boscalid, iprodione or prothioconazole at

concentrations mentioned above. The plates were incubated in the dark at ��ºC for �� h.

The diameter of each colonywasmeasured in two perpendicular directions with a digital caliper (Ab-

solute Digimatic Caliper, model CD-�” AX, Mitutoyo Corp., Sakado �-Chome, Japan). Two separate

experiments and two replicates (Petri plates) per each experiment were performed for each isolate and

fungicide concentration. Isolates with data from at least two replicates were included in all subsequent

analyses. Percent relative mycelial growth (RMG) at each concentration was calculated as the percentage

of inhibition relative to the control without fungicides ((average colony diameter on fungicide amended

���



plates / average colony diameter on non-amended plates) X ���).

Absolute EC�� values were calculated using a four parameter log logistic (LL�) dose response model

as implemented inR (RCore Team, ����) in the ‘drc’ package (Ritz et al., ����), and following guidelines

and work�ow provided by (Noel et al., ����). The LL�model was used as it was the best �tting model

for most isolates as determined by AIC criteria. Less sensitive isolates were designated based on the fre-

quency distribution of the EC�� values as the ones with an EC�� higher than three standard deviations

from the mean (EC�� values > �.��, �.��, and �.���g ml�� for boscalid, iprodione and prothioconazole,

respectively). To investigate variability across experiments, isolate mean EC�� di�erences between ex-

periments were estimated using DABEST (‘data analysis with bootstrap-coupled estimation’) (Ho et al.,

����). Isolate mean EC�� di�erences between experiments were all less than �.�� �g ml�� for all fungi-

cides, therefore experiments were combined in subsequent analyses.

�.�.� Selection of single screening fungicide concentration and linear regression models

To screen the remaining isolates in a reduced resource-intensive manner, single screening concentrations

were determined for boscalid, iprodione and prothioconazole using the EC�� results of ��M. phaseolina

isolates. A linear regression analysis between RMG and log-transformed EC�� values of each isolate was

performed for the �ve tested concentrations for each fungicide. The fungicide concentration at which

the linear regression model returned the highest correlation coe�cient (Pearson’s R) and proportion

of explained variance (R�) values was selected as the screening concentration for each fungicide. These

screening concentrations were found to be � �g ml�� for boscalid and iprodione, and �.� �g ml�� for pro-

thioconazole. While for prothioconazole, �.� �g ml��and �.� �g ml�� concentrations both had similarly

high R and R� values (Pearson’s R=�.�, R�=�.� ), at �.� �g ml�� most isolates had an RMG below ��%

indicating it may di�erentiate better less sensitive isolates than �.� �g ml��.

�.�.� Sensitivities and EC��(P) prediction using single screening fungicide concentrations

Sensitivities of each of the remaining �� isolates were estimated based on RMG on half-strength PDA

plates amendedwithboscalid at ��gml��, iprodione at ��gml��, or prothioconazole at�.��gml��. Media

preparation, inoculation andmycelial growthmeasurementswere conductedusing themethods for EC��

estimation described above. Two separate experiments and two replicates (Petri plates) per experiment

���



were performed for each isolate and fungicide. The linear regression model equations of boscalid (� �g

ml��), iprodione (� �g ml��), or prothioconazole (�.� �g ml��) (Figure A.�) were then used to predict an

EC�� value, hereafter EC��(P) , for each isolate, using the function ‘predict’ in R (R Core Team, ����).

�.�.� Validation of linear regression models used to predict EC��(P) values

A validation set of �� isolates (Table A.�) was used to assess the performance of linear regression models

in predicting EC��(P) values using a new data set. These validation isolates were selected from those for

which anEC�� or EC��(P) was previously estimated in themultiple and single concentration experiments

and to represent the range of these values. Additionally, two isolates not tested in any of the previous

experiments were included. For these validation isolates, EC�� values were determined using the �ve

fungicide concentrations in mycelial growth inhibition assays as described above. Then, the RMG at the

screening concentration for each isolate (boscalid [� �g ml��], iprodione [� �g ml��], or prothioconazole

[�.� �gml��]) was used to predict an EC��(P) value using the linear regressionmodels previously selected.

A simple linear regression analysis was used to determine the relationship between estimated EC�� and

predicted EC��(P) values for the �� validation isolates.

�.�.� Sensitivities of ��M. phaseolina isolates using the combined EC�� /EC��(P) values

All previous data sets, this is the EC�� values for the initial �� isolates, the EC��(P) values for the �� isolates

in the single concentration experiments and the EC�� values for the validation isolates were combined

to report the fungicide sensitivity of the ��M. phaseolina isolates. The combined distribution of EC��

/EC��(P) values was used to categorize “less sensitive” isolates. Isolates were designated as less sensitive as

the ones with an EC�� or and EC��(P) value higher than three standard deviations from the mean (EC��

or EC��(P) values > �.��, �.��, and�.���gml�� for boscalid, iprodione, andprothioconazole, respectively).

�.�.� Sequence and target gene mutation analysis

To explore if the sensitivity ofM. phaseolina to boscalid (SDHI), iprodione (Dicarboximide) and pro-

thioconazole (DMI) was associated with mutations in their target genes, the complete SdhB, cyp��, and

os� genes of the ��M. phaseolina isolates were analyzed. Genome-guided de novo assembly of each iso-

late was done in Trinity (Grabherr et al., ����) using whole-genome sequencing Illumina reads with the

M. phaseolina (JGI Mycocosm, MPI-SDFR-AT-���� v�.�) as reference genome. Although Trinity was

���



developed for RNA-seq data, it was used to take advantage of the genome-guided option for de-novo

transcript assembly, because it employs a de Bruijn graph approach (used by several whole-genome as-

sembly programs) and can identify transcripts resulting from paralogous genes (Grabherr et al., ����).

Published sequences of the target genes SdhB, cyp��, and os� (Shk�) (Duan et al., ����) of Fusar-

ium graminearum, Botrytis cinerea, Diplodia corticola and Sclerotinia sclerotiorum were used as query

sequences to identify the orthologous sequences in theM. phaseolina reference genome using the pro-

gram BLAST. The reference sequence of each target gene was used to retrieve the sequences from the

assemblies of the �� isolates, using a home-made script (https://github.com/vivianaortizl/). The amino

acid sequences were aligned and analyzed using Geneious software.

�.�.� Statistical analysis

All data analysis was conducted in R (RCore Team, ����). Linear regressionmodeling andmodel evalu-

ationwere donewith ‘lm’ and ‘AICctab’ functions (‘bbmle’ package). Isolates with data from at least two

replicates were included for analysis. E�ect sizes and con�dence intervals were estimated using DABEST

(Ho et al., ����). Bootstrap con�dence intervals were estimated adjusting for asymmetrical resampling

distributions using bias-corrected and acceleratedbootstrap (BCabootstrap)(Efron andTibshirani, ����)

as implemented in ‘dabestr’ R package (Ho et al., ����).
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Table A.�Mean EC�� di�erences and ��% con�dence intervals for ��M. phaseolina isolates across exper-
iments for boscalid, iprodione and prothicoconazole. Two separate experiments and two replicates per
experiment were performed for each isolate and fungicide.

Experiment � Experiment � Mean EC�� di�erence ��%CIa

low high

Bos� Bos� -�.��� -�.��� �.���
Ipro� Ipro� �.��� -�.��� �.���
Pro� Pro� -�.��� -�.��� -�.���

a��% CI adjusting for asymmetrical resampling distributions using bias-corrected and accelerated
bootstrap (BCa bootstrap). Experiments are Bos� and Bos� for boscalid, Ipro� and Ipro� for iprodione
and Pro� and Pro� for prothioconazole.
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Table A.�Mean EC�� di�erences for ��M. phaseolina isolates across fungicides: boscalid, iprodione and
prothicoconazole.

Pairwise fungicide comparison Mean EC�� di�erence ��%CIa

low high

Iprodione minus Boscalid �.��� �.��� �.���
Prothioconazole minus Boscalid -�.��� -�.��� -�.���
Prothioconazole minus Iprodione -�.��� -�.��� -�.���

a��% con�dence intervals adjusting for asymmetrical resampling distributions using bias-corrected
and accelerated bootstrap (BCa bootstrap).
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Table A.� Predicted EC��(P) (e�ective concentration to reduce growth by ��%) for ��M. phaseolina iso-
lates determined from mycelial growth assays in Petri plates amended with � mg ml�� of boscalid, � mg
ml�� of iprodione, or �.�mgml�� of prothioconazole.

Isolate Boscalid Iprodione Prothioconazole

EC��(P) ��%CIa EC��(P) ��%CIa EC��(P) ��%CIa

low high low high low high

Et�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
Et� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
IN��_� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
M_��_� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
M_��_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
M_��_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
M_��_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
M_��_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
M_��_� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
M_��_� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
M_��_� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
M_��_� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
M_��_� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
M_��_� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
M��-�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.�
M��-�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
M��_� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Md�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
Md� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Md� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
MISO���-� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
MISO���-� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
MISO���-� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
MISO���-� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
MP��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
MP��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
MP��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
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Table A.� (cont’d)
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
Mph_� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.�
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
Mph_�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
MpSDSU �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
TN��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
TN��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
TN��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
TN��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
UPR-ISA� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
UPR-ISA� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
UPR-JD� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
UPR-JD� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����
UPR-JD� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.����

EC��(P) and ��%con�dence intervals were back-transformed. a��%con�dence intervals adjusting for
asymmetrical resampling distributions using bias-corrected and accelerated bootstrap (BCa bootstrap).
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Table A.�Mean EC�� (e�ective concentration to reduce growth by ��%) estimates and EC��(P) predic-
tions for a validation set of ��M.phaseolina isolates determined frommycelial growth assays in Petri plates
amended with boscalid, iprodione or prothioconazole.

�*Isolate Boscalid Iprodione Prothioconazole

�*EC�� ± SEa EC��(P) (��%CI)b �*EC�� ± SEa �*EC��(P)b EC��(P) ��%CIb �*EC�� ± SEa �*EC��(P)b EC��(P) ��%CIb

low high low high low high

Et�� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.���
M_��_� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.���
MISO���-� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.���
MISO���-� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.���
MISO���-� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.���
MP��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.���
MP��� _ �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.���
Mph_�� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.���
Mph_�� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.���
Mph_�� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.���
W��-� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.���
W�� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.���
W�-� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.��� �.��� ± �.��� �.��� �.��� �.���
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Table A.�Mean EC��/EC��(P) (e�ective concentration to reduce growth by ��%) values for ��M. phase-
olina isolates determined from mycelial growth assays in Petri plates amended with boscalid, iprodione,
or prothioconazole.

Isolate Boscalid Iprodione Prothioconazole

Mean
EC��/EC��(P)

Mean
EC��/EC��(P)

Mean
EC��/EC��(P)

CR_Red_� �.��� �.��� �.���
CR_Red_�B �.��� �.��� �.���
CR_Red_� �.��� �.��� �.���
Dm�� �.��� �.��� �.���
Et�� �.��� �.��� �.���
Et�� �.��� �.��� �.���
Et�� �.��� �.��� �.���
Et�� �.��� �.��� �.���
Et� �.��� �.��� �.���
IN��_� �.��� �.��� �.���
IN��_�_� �.��� �.��� �.���
IN��_�_� �.��� �.��� �.���
IN��_�_� �.��� �.��� �.���
IN��_PO_� �.��� �.��� �.���
M_��_� �.��� �.��� �.���
M_��_�� �.��� �.��� �.���
M_��_�� �.��� �.��� �.���
M_��_�� �.��� �.��� �.���
M_��_�� �.��� �.��� �.���
M_��_� �.��� �.��� �.���
M_��_� �.��� �.��� �.���
M_��_� �.��� �.��� �.���
M_��_� �.��� �.��� �.���
M_��_� �.��� �.��� �.���
M_��_� �.��� �.��� �.���
M��-�� �.��� �.��� �.���
M��-�� �.��� �.��� �.���
M��_� �.��� �.��� �.���
Md�� �.��� �.��� �.���
Md� �.��� �.��� �.���
Md� �.��� �.��� �.���
Md� �.��� �.��� �.���
Md� �.��� �.��� �.���
MI-SF �-�� �.��� �.��� �.���
MI-SF ��-�� �.��� �.��� �.���
MI-SF �-�� �.��� �.��� �.���
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Table A.� (cont’d)
MI-SF �-� �.��� �.��� �.���
MISO���-� �.��� �.��� �.���
MISO���-� �.��� �.��� �.���
MISO���-� �.��� �.��� �.���
MISO���-� �.��� �.��� �.���
MISO���-� �.��� �.��� �.���
MISO���-� �.��� �.��� �.���
MISO���-� �.��� �.��� �.���
MP��� �.��� �.��� �.���
MP��� �.��� �.��� �.���
MP��� �.��� �.��� �.���
MP��� �.��� �.��� �.���
MP��� �.��� �.��� �.���
MP��� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
Mph_�� �.��� �.��� �.���
MpSDSU �.��� �.��� �.���
SAG�-� �.��� �.��� �.���
TN��� �.��� �.��� �.���
TN��� �.��� �.��� �.���
TN��� �.��� �.��� �.���
TN��� �.��� �.��� �.���
TN��� �.��� �.��� �.���
TN��� �.��� �.��� �.���
TN� �.��� �.��� �.���
TN� �.��� �.��� �.���
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Table A.� (cont’d)
TN��� �.��� �.��� �.���
TN��� �.��� �.��� �.���
UPR-Mph-ISA� �.��� �.��� �.���
UPR-Mph-ISA� �.��� �.��� �.���
UPR-Mph-JD� �.��� �.��� �.���
UPR-Mph-JD� �.��� �.��� �.���
UPR-Mph-JD� �.��� �.��� �.���
W-MISO� �-� �.��� �.��� �.���
W-MISO� �-�� �.��� _ �.���
W��-� �.��� �.��� �.���
W�� �.��� �.��� �.���
W�� �.��� �.��� �.���
W�-� �.��� �.��� �.���
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Table A.�Mean EC��/EC��(P) di�erences for ��M. phaseolina isolates across genetic clusters. Genetic
cluster US�Awas used a reference group for comparisons.

Reference Test Boscalid Iprodione Prothioconazole

Mean EC�� di�erencea ��%CIa Mean EC�� di�erence ��%CIa Mean EC�� di�erence ��%CIa

low high low high low high

US�A US�B �.��� -�.��� �.��� �.��� -�.��� �.��� -�.��� -�.��� -�.���
US�A US� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
US�A COLPR� �.��� �.��� �.��� �.��� �.��� �.��� -�.��� -�.��� -�.���
US�A COLPR� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
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Figure A.�Mean di�erences of ��M. phaseolina isolates across experiments. Two separate experiments
and two replicates per experiment were performed for each isolate and fungicide. Experiments are Bos�
and Bos� for boscalid, Ipro� and Ipro� for iprodione and Pro� and Pro� for prothioconazole. Isolates
with data from at least two replicates were included.
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Figure A.� Linear regressionmodels and correlation analyses of relative mycelial growth and EC�� values
of ��M. phaseolina isolates. Log Absolute EC�� values were used. The line shows the linear regression
with ��% con�dence interval shaded. Selected concentrations were � �g ml�� for boscalid and iprodione
and �.� �g ml�� for prothioconazole.
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Figure A.�Mean EC��(P) di�erences of ��M. phaseolina isolates across fungicides. Iprodione and proth-
ioconazole as compared to boscalid. Isolates weremost sensitive to prothioconazole, followed by boscalid
and least sensitive to iprodione.
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Figure A.� Correlation of mean EC�� (e�ective concentration to reduce growth by ��%) estimates and
EC��(P) predictions for a validation set of �� M. phaseolina isolates determined from mycelial growth
assays in Petri plates amended with multiple concentrations boscalid, iprodione or prothioconazole.
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Figure A.� Mean EC�� /EC��(P) di�erences of M. phaseolina isolates by host. Only isolates collected
from soybean or dry bean are shown.
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FigureA.�MeanEC�� /EC��(P) di�erences of��M.phaseolina isolates by genetic cluster. IsolateTN���
not shown, since there is no information of genetic cluster membership.
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CHAPTER �

ECOCLIMATIC SUITABILITY AND ADAPTIVE GENOMICS INMACROPHOMINA
PHASEOLINA, THE CHARCOAL ROT

PATHOGEN
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�.� Abstract

Globally, charcoal rot caused by the fungal pathogenMacrophomina phaseolina is listed among the top

diseases threatening agricultural production. The environment has a profound in�uence on plant dis-

eases, however the e�ect of accelerated climate change on disease development is uncertain and host-

pathogen system speci�c. We studied the distribution and genomic adaptive potential ofM. phaseolina,

a major fungal plant pathogen, in relation to climate. We retrieved worldwide occurrences ofM. phase-

olina to develop an explanatory species distribution model using climatically relevant variables. Georef-

erenced occurrences in the global biodiversity information facility (GBIF) database and information of

M. phaseolina isolates collected in the US, Colombia and Puerto Rico reported in a previous study were

used. Occurrence data and climatic variables were used to identify within species worldwide suitability

patterns inM. phaseolina. Candidate adaptive loci associated with climatic variation were used to calcu-

late an adaptive index and infer the distribution of adaptive genetic variation inM. phaseolina. A global

species distribution bioclimatic model forM. phaseolina identi�ed areas of high climatic suitability for

its occurrence that is consistent with all current records. Notable areas of high suitability were projected

in the southern US, north-eastern Argentina, eastern Australia, and southern Europe, where outbreaks

were recently reported.

�.� Introduction

Changes in climate are already a�ecting disease incidence in agricultural systems (Altizer et al., ����; Váry

et al., ����; Velásquez et al., ����). Very often these e�ects depend on the patterns of climate change and

the host-pathogen system. For example, pathogen distribution and crop disease severity are driven to a

large extent by particular changing patterns in temperature, rainfall events and humidity (Altizer et al.,

����; Sparks et al., ����; Velásquez et al., ����; Yonow et al., ����; Dudney et al., ����). Furthermore,

responses to changing climate are intricately tied to organisms potential adaptive mechanisms and intra-

speci�c variation in those mechanisms (local adaptation), which in turn are in�uenced by factors such

as gene �ow, and phenotypic plasticity (Savolainen et al., ����; Savolainen et al., ����; Croll and Mc-

donald, ����; Waldvogel et al., ����). Thus, both environmental and evolutionary potential should be

investigated and considered when modeling the distribution of species.
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Models of climate change for the coming decades predict increases in global temperature, rainfall

and severe weather (Fisher et al., ����). This is expected to increase the climatic variation that already

is present across di�erent agricultural systems and regions of the world. To predict how pathogens geo-

graphic distributionwill be alteredunder future climate changes it is necessary tounderstandhowthe cur-

rent pathogen distribution depend on climatic factors (Shaw and Osborne, ����). However, the speci�c

environmental factors that contribute to the current distributions and disease occurrences have not been

characterized and species distributionmodels (SDMs) have not been developed formost plant pathogens

(Ireland and Kriticos, ����).

Charcoal rot, caused by the widespread pathogenMacrophomina phaseolina, is listed among the top

�� diseases causing soybean yield losses in the US as well as globally (Allen et al., ����; Savary et al., ����;

Bradley et al., ����). Diseases caused by M. phaseolina are favored by high temperatures and drought

episodes and these conditions are known to play a key role in triggering epidemics (Dhingra and Sinclair,

����; Meyer and Sinclair, ����; Kendig et al., ����; Yang andNavi, ����; Mengistu et al., ����a;Mengistu

et al., ����b; Reznikov et al., ����). In the past few years, a surge in �rst reports of diseases caused by

M. phaseolina in a variety of crops and countries have been observed, including hemp in southern Spain

(Casano et al., ����), tomato from Pakistan (Hyder et al., ����), stevia in North Carolina (Koehler and

Shew, ����), sugarcane in China (Wang et al., ����), zebra plant in Serbia (Tančić Živanov et al., ����),

catnip in India (Nishad et al., ����), grapevine in the US (Nouri et al., ����), strawberry in Italy (Gerin

et al., ����), Malabar spinach in India (Meena et al., ����) among others. Interest in the interaction of

climate-charcoal rot have been rising and the associations between charcoal rot and climate have been

examined through review studies (Batista et al., ����; Cohen et al., ����). However, predicting the e�ects

of climate changeonM.phaseolinadistribution remains limited andmodels havenotbeenused topredict

the climate suitability of this pathogen.

Species distributionmodelling is an important tool in ecology and biogeography to investigate species

ranges and factors contributing to their distribution (Sutherland, ����; Elith and Leathwick, ����; Ju-

roszek and Von Tiedemann, ����). SDMs have been used to predict the distributions of plant pathogens

as determined by climate (Burgess et al., ����; Yonow et al., ����) and to assess the risk of disease (Sparks
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et al., ����) and epidemics (Paini et al., ����). In addition to environmental conditions, evolutionary pro-

cesses, including those within-species, are crucial in species response to climate (Jay et al., ����). There-

fore, genomic data is increasingly considered in SDMs being of special interest adaptive genetic variation

(Waldvogel et al., ����). Adaptive genetic variation can provide insights into climate adaptation mecha-

nisms and the potential of rapid local adaptation to occur in the future under climate change. Neverthe-

less, SDM approaches often encounter challenges incorporating evolutionary information (Waldvogel et

al., ����).

Recent developments in genotype-environment associationsusing redundancy analysis allow insights

into patterns of adaptive variation and can be used for the identi�cation of candidate adaptive genomic

loci and adaptive indices in widespread non-model species (Steane et al., ����; Capblancq and Forester,

����). These tools have the potential to estimate adaptive indices associated with climatic variation in

fungal species in a landscape genomics framework. Indeed, candidate adaptive loci were previously iden-

ti�ed inM. phaseolina (Ortiz et al., under review) which can be used to calculate adaptive indices in this

pathogen. Adaptive indices provide a measure of the adaptive genetic similarity on the landscape as a

function of climatic variables values at each location across the landscape (Steane et al., ����; Capblancq

and Forester, ����). This study investigated the e�ect of climatic variables in shaping the distribution

ofM. phaseolina on a global scale, incorporating evolutionary projections. The objectives of this study

were to describe the climatic suitability and calculate an adaptive genetic-based index ofM. phaseolina

on a global scale. We speci�cally developed an explanatory global distribution bioclimatic model by as-

sociating recorded locations ofM. phaseolinawith climatic variables and projected an adaptive genomic

index across theM. phaseolina distribution.

�.� Results

�.�.� Climatic suitability model

A correlative bioclimatic model based on M. phaseolina occurrence data and �ve climatic variables re-

lated to temperature and precipitation was developed using BIOCLIM. Themodel captured areas of cli-

matic suitability forM. phaseolina occurrences in every continent, which is consistentwith this pathogen

records (Batista et al., ����). The model mean AUC obtained via cross-validation with presence/pseudo-
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absence data was �.�� (Supplementary Figure A.�). A high AUC indicates that locations with high pre-

dicted suitability scores tend to be locations of known presence (i.e., true positive rate). While an AUC

score of �.� correspond to random predictions. We found useful discriminatory ability of suitable vs.

unsuitable areas with our model considering the number of records included in this study and that for

presence-background data models the maximum possible AUC is less than � (Phillips et al., ����). The

model projected high suitability for localities with low precipitation of driest quarter (BIO��) and pre-

cipitation of warmest quarter (BIO��), and high mean temperature of warmest quarter (BIO��) (Figure

A.�). These predictions correspond to an expected distribution of higher M. phaseolina suitability at

warm and dry regions. In the US, predicted suitable regions were concentrated across locations in south-

ern states, including Texas, Oklahoma, Kansas, Arkansas, andMissouri. The highest suitability values in

the US were projected in a region of Arizona (southwest US). Although, generally lower than for south-

ern regions, regions of high suitability were projected as well in locations in the East and West North

Central regions (Figure �.�).

InColombia, regions of intermediate suitability were predictedmainly in the extreme north and east-

ernplains ofColombia (Caribbean andOrinoquia regions, respectively). Similar, intermediate suitability

values were predicted in Puerto Rico and other islands of the Caribbean. A trend of highly suitable val-

ues was observed in southern Europe particularly along coastal regions of Spain, France and Italy, and

localities of eastern Europe. Notably, the model predicted a large region of high suitability in the north-

east of Argentina, referred as the Plata Plain region, with highest values in areas near Buenos Aires and

La Pampa provinces. Reports ofM. phaseolina occurrence and disease outbreaks in soybean, canola and

strawberry has been recently observed in northern provinces of Argentina (Gaetán et al., ����; Baino et

al., ����; Viejobueno et al., ����; Reznikov et al., ����). Likewise, a high suitability is observed in regions

of eastern Australia and south-eastern South Africa for which increased charcoal rot incidence has been

reported (Hutton et al., ����; Jordaan et al., ����a) (Figure �.�).

�.�.� Spatial autocorrelation

Precipitation of warmest quarter (BIO��) and precipitation of driest quarter (BIO��) are aggregatedwith

similar precipitation values occurring within approximately ���� km showing a maximum correlation

���



Figure �.� BIOCLIM global climatic suitability model forMacrophomina phaseolina. BIOCLIM algo-
rithmandpresence-backgrounddata recordswere used. A suitability value of � (green) indicates a location
with high suitability and a value of � is given for locations predicted as unsuitable. Climatic variables used
as predictors in the model were BIO�� = Precipitation of Warmest Quarter, BIO�� = Precipitation Sea-
sonality (Coe�cient of Variation), BIO��=Precipitation ofDriestQuarter, BIO��=MeanTemperature
of Warmest Quarter and BIO� = Temperature Seasonality (standard deviation *���).

(r > �.�) (Supplementary �gure A.�). The correlation decreases rapidly at distances greater than approx-

imately ���� km between points. At distances ���� km, for most distance classes, the correlation is neg-

ative. Most climatic variables show a similar pattern of aggregation at points within ���� km of each

other, decreasing near to zero rapidly and shifting to negative correlations at greater distances. An ex-

ception is BIO��, mean temperature of warmest quarter, which showed peaks of positive correlation at

greater distances (Supplementary �gure A.�).

Based on these results, we can reject the null hypothesis that geographic and climatic distances are
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uncorrelated with p = �.��� for BIO��, BIO�� and BIO�. No signi�cant correlationwas found for BIO��

(p=�.���) and for BIO�� (p=�.���). The observed correlations for BIO��, BIO�� and BIO�were r=�.��,

�.��, �.�� respectively indicate that points that are closer to each other have more similar climatic values

than points that are far from each other.

�.� Discussion

In this study, we developed a correlative BIOCLIMmodel forM. phaseolina to project the climate suit-

ability of M. phaseolina and identify localities at risk of charcoal rot and other diseases caused by this

pathogen at a global scale. Previous studies have reported the currentM. phaseolina global distribution

and its association to climate at a continental or biome resolution (Batista et al., ����). This model con-

stitutes the �rst attempt to predict the distribution ofM. phaseolina at a resolution of approximately ��

km. Importantly, by using global records we provide an examination of temperature and precipitation

variables that are predicted to be highly suitable for the occurrence ofM. phaseolina.

The current distribution and disease dynamics of M. phaseolina are heavily in�uenced by climatic

factors such as high temperature and low soil water availability (Sexton et al., ����; Batista et al., ����;

Marquez et al., ����; Cohen et al., ����). Themodelwas consistentwith charcoal rot reports in areaswith

high mean temperature of warmest quarter (BIO��) and low precipitation of driest quarter (BIO��) and

precipitation of warmest quarter (BIO��) around the world. In the US, areas projected as most suitable

are in states with reported highest soybean yield losses due to charcoal rot (Allen et al., ����; Bradley et

al., ����). Although, these reports are highest in the warmest and southernmost states, charcoal rot is a

consistent threat to soybean grown in the northern US regions as well (Bradley et al., ����; Roth et al.,

����). Our results ofM. phaseolina potential distribution indicated by areas of intermediate suitability

along the east north central and west north central regions suggest potential for further expansion of

charcoal rot occurrences to these regions in the US.

Globally, our results projected the north-eastern region of Argentina as one of the largest areas with

high suitability. The provinces of Buenos Aires, Tucuman and other northern provinces, have already

reported charcoal rot epidemics in soybean, strawberry and canola (Gaetán et al., ����; Baino et al., ����;

Viejobueno et al., ����; Reznikov et al., ����). Likewise, the model projected areas in the Eastern Cape
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and Free State provinces of South Africa as intermediate to highly suitable. Charcoal rot in soybean and

sun�ower has been reported a�ecting �elds in Free state province, one of themajor producing regions for

these crops in South Africa (Jordaan et al., ����b). In Australia, themodel is congruent with charcoal rot

reports on olives, strawberry and other �eld and horticultural crops grown in eastern regions (Sergeeva et

al., ����; Hutton et al., ����; Poudel et al., ����). These observations suggest that our model can predict

suitability ofM.phaseolina in regions forwhichdata pointswerenot includedbutwith reportedpresence

or disease caused by this pathogen. Thus, we suggest this model may be used as an indicator for the

potential risk of disease development. Similar models have used climatic suitability as proxy for disease

caused by fungal and oomycete pathogens (Burgess et al., ����; Hernández-Lambraño et al., ����; Yonow

et al., ����).

Accurate predictions on the e�ects of climate on species occurrences face several challenges (Phillips

et al., ����; Franklin, ����). For presence-background models, one of such challenges is that the accu-

racy of predictions is highly dependent on methods for background data selection (Phillips et al., ����;

Hijmans et al., ����). Model performance as assessed byAUC in presence-backgroundmodels tend to in-

crease with larger spatial extents fromwhich background points are sampled. To address this, we sampled

background points within a radius of ��� km from the presence records (VanDerWal et al., ����). This,

although appropriate for our data, contributed to the relatively low observed AUC value (Phillips et al.,

����). In addition, presence-only and presence-background models using environment-only data have

been identi�ed as least accurate as compared to true-absence models in which additional factors related

to the biology or epidemiology of organisms are accounted for to environment (Phillips et al., ����).

Thus, a limitation of our model is the relatively low number of records used to build the model, as com-

pared to climatic suitability models developed at a global scale for other pathogens (Burgess et al., ����;

Hernández-Lambraño et al., ����; Yonow et al., ����) and the use of climatic only data.

To address the lack of biological data in our model and to provide an estimation of the e�ects of

evolutionary processes into M. phaseolina distribution we used a complementary approach to model

within-species evolutionary factors by estimating an adaptive index. This index was estimated using pre-

viously identi�ed candidate loci for climate adaptation in data set of �� M. phaseolina collected across
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the US, Colombia, and Puerto Rico (Ortiz et al., under review). This data set encompasses isolates col-

lected across a wide range of climates, making it suited for studying within-species adaptation to climate.

The adaptive index estimated for the data set of ��M. phaseolina isolates suggest that even in locations

where similar temperatures are observed, isolatesmay di�erentially responddepending on the presence of

adaptive loci. Climatic gradients have now been reported in plant species (Steane et al., ����; Capblancq

and Forester, ����), however this the �rst time it has been used to predict the adaptive landscape in a

plant pathogen. In summary, we provided a �rst species distributionmodel that serve as a basis for future

more comprehensive predictive SDMs. Ourmodel will also be useful for local adaptation that constitute

the �rst step towards assessing the adaptive response of this fungal pathogen under climate change. Fur-

ther improvements of the model will involve including larger data sets and the use of semi-mechanistic

models (e.g., MAXENT) that allow the incorporation of biological parameters (Phillips et al., ����), for

example growth rates at di�erent temperatures in fungal plant pathogens. Given the increasing impact

ofM. phaseolina on agroecosystems globally, the modelling of its distribution o�ers an important pre-

liminary tool formonitoring and development ofmanagement strategies incorporating eco-evolutionary

projections. Further, regional distribution models would provide a better assessment of charcoal rot risk

in di�erent crops. From a practical standpoint, of particular interest are crops and locations for which

disease assessments data over time is available such as is the case for charcoal rot of soybean in the US

(Bradley et al., ����). A major need remains forM. phaseolina and other plant pathogens to examine the

incorporation of disease risk assessments into management strategies.

�.� Materials and methods

�.�.� Study area and distribution data

Distribution data was obtained from two sources, records ofM. phaseolina occurrences retrieved from

the global biodiversity information facility (GBIF) database (GBIF.org) and a dataset on a collection of

isolates throughout the US, Puerto Rico, and Colombia for which genomic data is available (Ortiz et al.,

under review). A total of ��� records for “Macrophomina phaseolina” were obtained from GBIF using

R v�.�.� (R Core Team ����). After �ltering for missing data and cleaning for potential georeferenti-

ation mistakes, ��� records were maintained. For additional �� records without longitude and latitude
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information, coordinates based on location description were retrieved using the ‘geocode’ function as

implemented in R v�.�.� (R Core Team ����). The longitude and latitude information of a collection

of �� isolates ofM. phaseolina isolates as well as genomic data and adaptive candidate loci available from

a previous population genomics study were used (Ortiz et al., under review). In brief, these isolates were

collected mainly from soybean and dry bean in the US, Colombia and Puerto Rico from commercial

�elds and experimental stations. The entire data set covered occurrence records originating from plant

tissues or soil in every continent, but Antarctica (Figure �.�), consistent with the current reported distri-

bution ofM. phaseolina (Batista et al., ����).

Figure �.�Geographic locations ofMacrophomina phaseolina records included in the BIOCLIMmodel.
Records obtained from the global biodiversity information facility (GBIF) are shown in orange circles.
Isolate collection sites of �� M. phaseolina isolates collected in the US, Puerto Rico and Colombia are
depicted in black.
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�.�.� Distribution model

Five bioclimatic variables previously selected from the �� standard bioclimatic variables (WorldClim v�)

as described previously were used (Ortiz et al., under review). In summary, the bioclimatic variables are

the average for the years ���� to ���� and were obtained at a resolution of �.�min ( ��.� km�) which cor-

respondwith that of the data for the isolate collection, recorded at a �eld tomunicipality scale. This set of

climatic variables was selected based on ecological relevance and after removing correlated variables (|r| >

�.�). The selected variables were: BIO�� = Precipitation ofWarmest Quarter, BIO�� = Precipitation Sea-

sonality (Coe�cient of Variation), BIO��=Precipitation ofDriestQuarter, BIO��=MeanTemperature

of Warmest Quarter and BIO� = Temperature Seasonality (standard deviation *���).

The species distributionmodel (SDM)was built using BIOCLIMas implemented in ‘dismo’Rpack-

age (Hijmans et al., ����). We used BIOCLIM algorithmwith presence-background data. The algorithm

creates percentile distributions for the climatic data values at the locations of species occurrence (“training

sites”). The values for each climatic variable are compared to the percentile distribution of the training

sites providing a measure of similarity between locations. Since one-tailed percentile distributions are

used (��th percentile is treated as equivalent to ��th percentile), the closer to the ��th percentile (the me-

dian), the more suitable a location is. Here, we used the ‘dismo’ implementation in which the suitability

values are scaled, thus resulting in values between � and �. The value of � is given for a location that

would have the median values of the training data for all the variables considered, while � will be given

for cells with climatic values outside of the range of the training data for at least one of the variables. The

�nal BIOCLIMmodel was �tted with all presence records from the GBIF cleaned dataset and �� records

from the previously publishedM. phaseolina isolate collection using the �ve selected climatic variables as

predictors.

Sinceweused apresence-background species distributionmodeling approach,we selectedbackground

data for model parameterization (Hijmans and Elith, ����). Background localities were generated at ran-

dom within a radius of ��� km from the presence records (VanDerWal et al., ����). The models were

assessed and compared according to their discrimination capacity of suitable versus unsuitable areas for

M. phaseolina using the area under the receiver operator curve (AUC) in the ‘dismo’ implementation.
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Two additional classi�cation assessment indices were used (Fielding Bell, ����): sensitivity (true posi-

tive rate i.e., the proportion of correctly classi�ed presences) and speci�city (true negative rate, i.e., the

proportion of correctly classi�ed absences). We divided the presence data in training and testing sets via

cross-validation with k-fold (k=�) data partitioning. The background data was only used for model test-

ing and was not partitioned. The mean AUC of the �ve cross-validation runs was reported as well as the

maximum of the sum of the sensitivity (true positive rate) and speci�city (true negative rate) (Hijmans et

al., ����).

�.�.� Spatial autocorrelation

Spatial autocorrelation was tested using BIOCLIM in ‘dismo’ R package (Hijmans et al., ����). A subset

of �� records out of the �� isolate collection records for which the resolution was at least to the munici-

pality level. Similarly, the GBIF records with exact longitude and latitude coordinates as recorded in the

GBIF dataset were used (i.e., records that georeferenced using geocode were excluded) for spatial auto-

correlation analysis. The associated climatic data values for the �ve variables for each record, as it was

retrieved for the SDM analysis, was used. A geographic distance matrix was computed using longitude

and latitude coordinates as well as distancematrices for each of the �ve environmental predictors. Correl-

ograms for each of the climatic variables were performed using �� distance classes with ���� km distance

increments. A Mantel test was run for each of the environmental predictors between the geographic

distance matrix and the environmental distance matrix for each climatic predictor to test for signi�cant

autocorrelation at each distance class.
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Figure A.�Model performance AUC values for the BIOCLIMmodel. Area under the receiver operator
curve (AUC) values for each of �ve cross-validations runs illustrating discrimination capacity of suitable
versus unsuitable areas forM. phaseolina.
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Figure A.� Suitability values predicted for temperature and precipitation variables values found across
locations of the complete data set ofM. phaseolina occurrences. Predicted values are suitability values. A
suitability value of � indicates a climatic value with predicted high suitability and a value of � is given for
climatic values predicted as unsuitable. Climatic variables are BIO�� = Precipitation of Warmest Quar-
ter, BIO��=Precipitation Seasonality (Coe�cient ofVariation), BIO��=PrecipitationofDriestQuarter,
BIO�� =Mean Temperature ofWarmest Quarter and BIO� = Temperature Seasonality (standard devia-
tion *���).
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Figure A.� Mantel’s correlograms of climatic variables used in the BIOCLIM model. Correlation be-
tween climatic and geopgraphic distances. Geographic distance classes are de�ned by ���� km incre-
ments. Climatic variables are BIO�� = Precipitation of Warmest Quarter, BIO�� = Precipitation Season-
ality (Coe�cient of Variation), BIO�� = Precipitation of Driest Quarter, BIO�� =Mean Temperature of
Warmest Quarter and BIO� = Temperature Seasonality (standard deviation *���).
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Charcoal rot and diseases caused byMacrophomina phaseolina are a threat to agricultural production

a�ecting many important economic and subsistence crops worldwide. Importantly, one of increasing

concern under climate change. This research focused on understanding the genetic diversity and evolu-

tionary potential ofM. phaseolina, to inform and provide tools for improved charcoal rot management

strategies.

Populations ofM. phaseolina in the continental US, Puerto Rico and Colombia collected from soy-

bean and dry bean �elds were found to be structured in a hierarchical manner with subcontinental re-

gional stability and instability at local scales consistent with a metapopulation dynamics perspective.

These results are in linewith a scenario of evolution aftermigration driven by divergence following clonal

expansions. Additionally, this research identi�ed the potential for anthropogenic in�uence in the move-

ment ofM. phaseolina to locations around the world. Climate was found to signi�cantly contribute to

genetic divergence in this pathogen and identi�ed candidate genomic regions for adaptation. Putatively

adaptive functions associated to these regions may bene�tM. phaseolina in speci�c environments. This

knowledge expands the impact that population genomics and genotype-environment associations can

have on our ability to characterize adaptive potential in plant pathogens.

E�ective chemical-control means are lacking for the management of charcoal rot. Therefore, the ef-

�cacy of active ingredients currently used in commercial fungicide formulations in crop production was

investigated. Our results on the in-vitro e�cacy of boscalid, iprodione and prothioconazole indicate that

formulations with these active ingredients, may reduceM. phaseolina seedling infection originating from

infected seeds or inoculum in the soil. Particularly, our results on the in-vitro e�cacy of prothioconazole

suggest that commercial formulationswith this active ingredientmay be of particular interest for charcoal

rot management. Information regarding mutations in fungicide target genes was lacking forM. phase-

olina. None of the pointmutations found in our isolate collectionwere correlatedwith levels of fungicide

sensitivity. Finally, in this studywedeveloped a bioclimaticmodel forM.phaseolina to project the climate

suitability ofM. phaseolina at a global scale and identify localities at risk of charcoal rot and other dis-

eases caused by this pathogen. The model projected high suitability for localities with low precipitation

of driest quarter and precipitation of warmest quarter, and high mean temperature of warmest quarter.
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Notably, areas of high suitability were projected in the southern US, north-eastern Argentina, eastern

Australia, and southern Europe. These predictions correspond to an expected distribution of higherM.

phaseolina suitability at warm and dry regions and with increased disease reports in these regions.

�.�.� Future directions

Future studies investigating the adaptive potential ofM. phaseolinawill be needed to identify the degree

to which global populations re�ect their adaptation to host and climate. Such studies will bene�t from

comprehensive samplings schemes including diverse hosts and climates. In addition, long-read sequenc-

ing technologies will allow further characterization of the role of genomic variation, including structural

variation, inM. phaseolina adaptation to host and the climatic environment.

Our data on the in-vitro e�cacy of prothioconazole suggest that commercial formulations with this

active ingredient may be of particular interest for future in-vivo e�cacy testing in soybean and dry bean.

Data on the in-vivo e�cacy of prothioconazole in preventing seedling colonization and charcoal rot dis-

ease development is needed in order to determine its e�ectiveness in charcoal rot control. Additional

charcoal rot management e�orts should be directed at identifying novel e�ective fungicides and moni-

toring the potential development of resistance to fungicides use in modern crop production.

Given the increasing impact of M. phaseolina on agroecosystems globally, the modelling of its dis-

tribution constitutes an important tool for the monitoring and development of management strategies.

More comprehensive predictive species distributionmodels, including ensemble models, should provide

a better understanding of the adaptive response of this fungal pathogen under climate change. Further

improvements of the model presented in this research, will involve the use of larger data sets and semi-

mechanistic models. Similarly, regional distribution models would provide a better assessment of char-

coal rot risk for major crop production regions. A major need remains to incorporate disease risk assess-

ments and eco-evolutionary projections into charcoal rot management strategies. The characterization

of adaptation in plant pathogens enabled by population genomics should become increasingly utilized

for plant disease risk prediction models especially under climate change.
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