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ABSTRACT 

Over the past several decades, more frequent and intense extreme heat events have been an 

increasing threat to human health and economic performance. These extreme heat events result in 

more fatalities than all other types of extreme weather events, as well as a series of clinical 

syndromes and chronic diseases, which may expose those with underlying health problems to 

higher mortality risks. At the same time, extreme heat increases wildfire risks. In recent decades, 

the United States (U.S.) has experienced upward trends in total acreages burned by wildfires and 

the average size of wildfires. These trends are expected to grow with the changing climate and as 

more households move to the wildland-urban interface (WUI). Wildfires can lead to direct injuries 

and fatalities as well as direct damage to properties and infrastructures. Also, wildfires can lead to 

environmental changes in many ecosystems. The burning of biomass and soil-based organic matter 

can generate a large amount of haze and smoke composed primarily of fine particulate matter 

(PM2.5), which is another threat in and of itself but also because it exacerbates the impacts of 

extreme heat, influences economic development patterns, and interferes with the enjoyment of 

environmental goods and services directly or indirectly.   

  Based on the evidence of the inter-relatedness of heat and air pollution and the health risks 

of heat and air pollution, the first chapter provides nationally representative, robust, and precise 

estimates of the joint impacts of heat and PM2.5 on mortality in the U.S. The chapter employs a 

county-year balanced panel dataset covering 2,992 U.S. counties from 2001 through 2011 and 

applies a Fixed-effect Poisson model. I correct the endogeneity of PM2.5 by applying the control 

function approach and exploring transboundary externalities of all-source and wildfire-caused 

PM2.5. I find that the heat index and PM2.5 are positively and significantly associated with all 

mortalities. PM2.5 is a positive confounder of heat and vice versa. Failure to consider the 

endogeneity of PM2.5 leads to a substantial underestimation of PM2.5 risk. The overestimation bias 

caused by ignoring the potential confounding effect between heat and PM2.5 is magnified once the 

endogeneity of PM2.5 is further addressed. My evaluation also offers evidence of the spillover 

effects of both PM2.5 and wildfires. 

Wildfires affect human health directly and indirectly via the environmental (dis)amenities 

induced by wildfires. The second chapter employs the same dataset and further explores the 

mechanisms by which wildfires affect human health by examining the extent of the direct and 

indirect health impacts by applying a mediation analysis. In particular, it focuses on the air 



 

pollution (PM2.5) channel. It finds that complementary mediations exist for all-cause, respiratory 

system disease, and circulatory system disease mortality, and the indirect impacts of wildfires 

through PM2.5 account for 58%, 47%, and 21% of the total effects of wildfires, respectively. I do 

not find evidence of a mediation effect through PM2.5 for suicide, but the result suggests a potential 

delayed direct impact of wildfires on suicide. In addition, the analysis suggests that the spillover 

effect of wildfires is substantially larger than the local wildfire effect. Although most previous 

studies assume that wildfires are exogenous, this study finds that failing to consider the causes of 

wildfires will lead to upwardly biased estimates of health impacts. 

The last chapter conducts a non-market valuation of the impact of wildfires and wildfire-

induced PM2.5 on the housing market by applying a hedonic price model and mediation analysis 

approach. This study also explores the potential reasons why more people choose to move in or 

near the wildland-urban interface (WUI). In particular, I examine the degree to which people may 

underestimate wildfire risks and the tradeoff between the enjoyment of natural resources and 

increased wildfire risks. I employ a nationwide repeat-sale dataset between 2010 and 2018, which 

covers 3,945,340 transaction records of 1,886,684 houses. I find that wildfires, especially distant 

wildfires, have a statistically significant detrimental impact on house prices via emitting PM2.5. 

There are also significant price disparities between houses located upwind and downwind locations 

of the wildfires, which may be explained by the substitution effect, externality, and the existence 

of other channels other than air pollution by which wildfires affect house prices. Moreover, the 

longer the property's adjacent areas remain free of wildfires, and the farther the nearest recent 

wildfire, the higher the property's sale price. While I find that households place a higher value on 

homes in locations with more greenery, they are also aware of the dangers of living near a 

wildland-urban interface.  

 

  



iv 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my parents and grandparents.  

Thank you for always being there for me. 

 

  



v 

 

ACKNOWLEDGEMENTS  

Foremost, I would like to express my deepest appreciation to my advisor and chair of my 

committee, Professor Mark Skidmore, for all the invaluable advice, continuous support, and 

encouragement through all the stages of writing my dissertation. I also would like to thank the rest 

of my committee: Professor Scott Loveridge, Professor Frank Lupi, and Professor Ajin Lee, who 

generously provide insightful comments and suggestions. My sincere thanks also go to Professor 

Felica Wu for offering the research assistant opportunities and guiding my work on exciting 

research projects.  

My completion of this dissertation could not have been accomplished without the support and 

help from my friends at MSU: Yanan Jia, Ziwei Ye, Yixuan Gao, Pin Lu, and Xuche Gong. I am 

also grateful to my old friends in China: Qingping Xiong, Yao Xiong, Huijing Luo, Ning Zou, and 

Zhihong Chen for always accompanying me over the last five years. My appreciation should also 

go to the faculties and staff at MSU who inspired me and offered kind help throughout my Ph.D. 

studies. 

Last but not the least, I wish to thank my family for always being with me and supporting me 

throughout my life.

  



vi 

 

TABLE OF CONTENTS 

CHAPTER 1: THE IMPACTS OF HEAT AND AIR POLLUTION ON MORTALITY IN    

THE UNITED STATES ................................................................................................................. 1 
REFERENCES .......................................................................................................................... 41 
APPENDIX ............................................................................................................................... 48 

CHAPTER 2: THE IMPACTS OF WILDFIRES AND WILDFIRE-INDUCED AIR 

POLLUTION ON MORTALITY IN THE UNITED STATES ................................................... 56 
REFERENCES .......................................................................................................................... 99 
APPENDIX ............................................................................................................................. 105 

CHAPTER 3: THE IMPACTS OF WILDFIRES AND WILDFIRE-INDUCED AIR 

POLLUTION ON HOUSE PRICES IN THE UNITED STATES ............................................. 116 
REFERENCES ........................................................................................................................ 161 
APPENDIX A: HOUSE DATA PROCESSING AND SAMPLE DISTRIBUTION ............. 166 
APPENDIX B: INSTRUMENTAL VARIABLE CONSTRUCTION ................................... 169 
APPENDIX C: ADDITIONAL ESTIMATION RESULTS ................................................... 170 

 

  



1 
 

CHAPTER 1: THE IMPACTS OF HEAT AND AIR POLLUTION ON MORTALITY IN 

THE UNITED STATES 

1. Introduction 

In recent decades, the United States (U.S.) has experienced more frequent and intense extreme 

heat events. There were statistically significant increases in heat wave frequency and season length 

for most of the 50 largest U.S. cities over the 1961 to 2018 period (U.S. Global Change Research 

Program Indicator Platform (USGCRP), n.d.). Importantly, exposure to extreme heat events is 

associated with higher health risks. Extreme heat results in a large number of direct fatalities, with 

an annual average of 131 direct deaths in the U.S. over the last twenty years (Lim and Skidmore, 

2020). Heat can also trigger a series of clinical syndromes and diseases (such as cardiovascular 

and respiratory diseases) that can lead to premature mortality (Rainham and Smoyer-Tomic, 2003; 

Kovats and Hajat, 2008; Anderson and Bell, 2009; Knowlton et al., 2009; Lin et al., 2009). 

However, the mortality risks caused by heat are not clearly reflected in death records because the 

fatalities are attributed to different diseases but do not indicate that extreme heat may have induced 

mortality.   

Air pollution, especially fine particulate matter (PM2.5), is another important factor that can 

result in severe health problems. While ambient PM2.5 concentrations and extreme PM2.5 days have 

seen overall declining trends in the U.S. as a result of the Environmental Protection Agency's 

(EPA) stringent air quality regulations (Zhang et al., 2017; U.S. EPA, 2020), PM2.5 emitted by 

some specific sources, such as wildfire-caused PM2.5, is a growing threat to human health. 

Respiratory and cardiovascular complications are two of the main detrimental effects exasperated 

by PM2.5.  

There is also a potential inter-relatedness between heat and air pollution. Air pollutants, 

including Particulate Matter (PM), Ozone (O3), and Greenhouse Gases (GHGs) can lead to 

temperature change. Meanwhile, the temperature may affect air quality by influencing emission 

generation, inventories, and dispersion patterns (De Sario et al., 2013; Zhang et al., 2017).  Due to 

the evidence of adverse health outcomes caused by heat and air pollution and the association 

between them, it is necessary to simultaneously consider the health impacts of heat and air 

pollution.  

Although heat-related and air pollution-related health risks have been widely studied, 

particularly in epidemiology and economics, literature searches uncovered no study investigating 
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the joint impact of heat and air pollution with consideration of the endogeneity problem of air 

pollution using a U.S. national-wide county-year panel dataset. Therefore, this paper aims to 

provide more representative, robust, and precise estimates of the joint mortality impacts of heat 

and air pollution in the U.S. by combining the advantages of the existing studies from different 

fields.  

This study employs a nationwide county-year balanced panel dataset covering 2,992 U.S. 

counties in the 48 U.S. contiguous states and Washington, D.C. from 2001 through 2011 1 , 

representing about 98.5% of the U.S. population. I use the heat index and PM2.5 to measure heat 

and air pollution, respectively, based on the literature and data availability. I focus on three 

important adverse health outcomes of heat and air pollution: all-cause mortality and two cause-

specific mortality (mortality caused by respiratory system diseases and mortality caused by 

circulatory system diseases). The evaluation starts from baseline models in which I estimate the 

separate impacts of heat and air pollution using the Fixed-effect Poisson estimation model. I then 

estimate the confounding and interaction effects to show the necessity of considering confounders. 

Next, to further address the endogeneity concern of air pollution, I apply the control function 

approach using the imported all-source air pollution and air pollution emitted by lightning-caused 

wildfires from distant counties as instrumental variables (IVs), which also provides evidence of 

cross-boundary spillover effects from air pollution and wildfires. Finally, I examine the robustness 

using different sets of IVs, model specifications, and samples.  

As a prelude to the complete analysis, I find that both the heat index and PM2.5 have significant 

positive impacts on all mortality categories in all the model settings I explore. The evaluation 

confirms that it is necessary to jointly consider the health impacts of heat and air pollution together 

because PM2.5 (heat index) is a positive confounder of heat index (PM2.5). Failing to consider the 

confounding effect of heat and air pollution leads to overestimated heat-related and air pollution-

related risks. I also present new evidence that this overestimation bias is more significant after 

addressing the endogeneity of air pollution. In addition, I show that ignoring the endogeneity of 

PM2.5 will underestimate the health risk of air pollution. Last, there are significant spillover effects 

of air pollution and wildfires. 

 
 
1 I focus on the period between 2001 and 2011 because of the data availability. The heat index data is only available 

before 2011. 
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I contribute to the literature in the following ways. First, this study offers a more representative 

assessment of the joint effect of heat and PM2.5 on all-cause and cause-specific mortality across 

space and over time. The data cover about 98.5% population in the U.S. over 11 years. Moreover, 

panel data has advantages such as controlling for unobserved time-constant factors and nationwide 

trends compared with the time-series data. Second, the empirical analysis demonstrates the 

necessity of simultaneously considering heat and air pollution. This study further documents 

overestimation bias resulting from the omission of the confounding effects between heat and air 

pollution after considering the endogeneity of PM2.5. Third, the instrumental variable strategy takes 

account of the spatial dependence of PM2.5 and the contribution of wildfires on PM2.5, as well as 

incorporates exogenous sources including wind direction, geographic distance, and the lightning 

phenomenon. This instrumental variable strategy provides new evidence of cross-boundary 

spillover effects of air pollution and wildfires. Last, instead of using the traditional method to 

measure extreme heat weather, I use the heat index, which combines temperature and humidity, to 

better capture people’s physical experience of heat. 

The rest of this essay is organized as follows. In the next section, I review the literature and 

construct the conceptual framework. In section three, the details of the data and methodology are 

described. In section four, I present and discuss the results. The last section concludes the paper. 

2. Conceptual Framework 

2.1 Extreme Heat 

According to the U.S. Global Change Research Program Indicator Platform, a heat wave is 

defined as “a period of abnormally hot weather lasting days to weeks and is an indicator that 

describes trends in multi-day extreme heat events in cities across the United States” (USGCRP, 

n.d.). One problem with this definition is how “hot” weather should be measured. When studying 

the impacts of weather, one problem is to what extent weather conditions affect the human body. 

However, there is no standard formula to quantify this effect. De Freitas et al. (2017) categorized 

and classified 162 human thermal bioclimatic indices that considered a variety of atmosphere-

related variables, rationales, underlying body-atmosphere heat exchange theories, and designs for 

application. “Heat Index” or “Apparent Temperature (AT)”, which reflects thermal discomfort, is 

one of the indicators widely used to measure heat wave intensity. By the definition of the U.S. 

National Oceanic and Atmospheric Administration (NOAA) National Weather Service, the heat 

index measures “how hot it really feels when relative humidity is factored in with the actual air 
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temperature”2. The concept of apparent temperature was first put forward for windy and cold 

situations (temperatures < 0°C) by Steadman in 1971 and then was extended in his following 

papers for warm and humid situations (temperatures > 25°C) in 1979 and the universal scale in 

1984 (Steadman, 1984).  

The North America Land Data Assimilation System (NLDAS) data on Centers for Disease 

Control and Prevention (CDC) WONDER provides the daily air temperatures and heat index data 

from 1979 through 20113, in which the heat index is calculated based on Steadman’s 1979 work. 

After simplification, only the ambient dry bulb temperature (°F) and relative humidity (integer 

percentage) were included in the heat index equation4. The air temperature is a straightforward 

measurement of “hot”; however, adjusting for humidity is crucial since the high level of humidity 

influences the sweating process of the human body and thus influences the cooling off of the body 

face (Barreca, 2012; USGCRP, n.d.). The combination of temperature and humidity can influence 

the heat balance of human organisms (Heal and Park, 2016). Therefore, another consistent 

definition of the heat wave is “a period of two or more consecutive days where the daily minimum 

apparent temperature (actual temperature adjusted for humidity) in a particular city exceeds the 

85th percentile of historical July and August temperatures (1981–2010) for that city” (USGCRP, 

n.d.). The maps of the distributions of the heat index and temperature across U.S. regions in Lim 

and Skidmore (2020) also show that the temperature alone does not fully explain the risks of heat, 

but humid regions have relatively higher heat index values than dryer hot regions5. The NOAA's 

National Weather Service provides a heat index chart, which presents the relationship between the 

temperature and relative humidity and the heat index. When there is a higher level of temperature 

and relative humidity, the value of the heat index is higher, which means that there is a higher level 

of heat stress on the human body.  

Extreme heat can lead to clinical syndromes including heat stroke, heat exhaustion, heat 

 
 
2 U.S. National Oceanic and Atmospheric Administration (NOAA) National Weather Service. Retrieved from 

https://www.weather.gov/safety/heat-index on November 22, 2019. 
3 The heat index defined by NOAA and heat index data provided by NLDAS are not available for temperature below 

80°F (27°C).  
4 North America Land Data Assimilation System (NLDAS) Daily Air Temperatures and Heat Index, 1979 – 2011, 

on CDC WONDER. Retrieved from https://wonder.cdc.gov/wonder/help/Climate/ta_htindx.PDF on November 22, 

2019. 
5 This chart is available at https://www.wrh.noaa.gov/psr/general/safety/heat/heatindex.png.  
 

https://www.weather.gov/safety/heat-index
https://wonder.cdc.gov/wonder/help/Climate/ta_htindx.PDF
https://www.wrh.noaa.gov/psr/general/safety/heat/heatindex.png
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cramps, and heat syncope (fainting), and exacerbate health issues including cardiovascular and 

respiratory diseases, thus increasing hospitalizations, emergency department (ED) visits, and 

mortality (Rainham and Smoyer-Tomic, 2003; Kovats and Hajat, 2008; Anderson and Bell, 2009; 

Knowlton et al., 2009; Lin et al., 2009; Karlsson and Ziebarth, 2018).  In the U.S., extreme heat 

events result in more fatalities than all other extreme weather events (Luber and McGeehin, 2008; 

Lim and Skidmore, 2020). Extreme heat events not only result in direct fatalities (Lim and 

Skidmore, 2020) but also induce all-cause mortality (Deschênes and Greenstone, 2011; Yu et al., 

2019) and mortality caused by cardiovascular diseases (Basu and Ostro, 2008; Anderson and Bell, 

2009; D’Ippoliti et al., 2010; Deschênes and Greenstone, 2011; Yu et al. 2019). The impacts of 

excessive heat on deaths caused by respiratory diseases are mixed. Basu and Ostro (2008) did not 

find a significant association between respiratory mortality (as a primary or a secondary cause of 

death) and high ambient temperature, while Anderson and Bell (2009) found that respiratory 

disease fatalities are associated with heat waves, but the estimates were unclear. However, clear 

evidence of the significant impact of extreme heat on respiratory mortality has been found by 

D’Ippoliti et al. (2010) and Huang et al. (2010). Deschênes and Greenstone (2011) and Yu et al. 

(2019) found a U-shaped temperature-mortality relationship using the county-year panel data of 

the U.S. and China, respectively. Barreca (2012) considered the impacts of temperature and 

humidity simultaneously and found that both the temperature-mortality and humidity-mortality 

relationships are U-shaped using monthly county-level data of the U.S. 

The relative magnitudes of heat effects on respiratory and cardiovascular mortalities are not 

clear. D’Ippoliti et al. (2010) found that heat had a greater effect on respiratory mortality than on 

cardiovascular mortality, a result that is consistent with other studies in Italy and the Netherlands. 

However, other studies obtained higher estimates for cardiovascular mortality (rate) than 

respiratory mortality (rate) (Anderson and Bell, 2009; Deschênes and Moretti, 2009). Finally, 

Huang et al. (2010) did not find a significant difference between the rate ratios (RRs) of 

cardiovascular and respiratory mortality during a heat-wave period. Within the context of these 

mixed findings, the present study sheds light on the relative impacts of heat waves on 

cardiovascular and respiratory mortality. 

Extreme heat events pose a significant health threat to people, especially vulnerable groups 

such as the elderly, the very young, economically disadvantaged groups, the socially isolated, 

people who are bedridden or are on certain medications, people with inadequate English language 
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skills or lacking access to media, residents in high-crime areas, and people living in mobile homes 

or rental homes (McGeehin and Mirabelli, 2001; Deschênes and Moretti, 2007; Anderson and Bell, 

2009; Huang et al., 2010; Gabriel and Endlicher, 2011; Deschênes and Greenstone, 2011; 

Chindapol, 2017; Yu et al., 2019; Lim and Skidmore, 2020). The disparities in mortality during 

heat waves are found based on gender, ethnicity, and race (McGeehin and Mirabelli, 2001; 

D’Ippoliti et al., 2010; Madrigano et al., 2015), and there is substantial geographical heterogeneity 

among cities and between the urban areas and the rural or suburban areas (McGeehin and 

Mirabelli, 2001; Kovats and Hajat, 2008; U.S. EPA, 2008; Deschênes and Moretti, 2009; 

Buyantuyev and Wu, 2010; D’Ippoliti et al., 2010; Gabriel and Endlicher, 2011; Deschênes and 

Greenstone, 2011). Other living situations, such as the central air conditioning and other indicators 

of house quality, and geographic regions are also important in the relationship between weather 

(such as temperature) and mortality (McGeehin and Mirabelli, 2001; Ren et al., 2008; Anderson 

and Bell, 2009).  

2.2 Air Pollution 

Particulate Matter (PM) is a complex mixture of anthropogenic, biogenic, and natural 

materials, suspended as aerosol particles (mainly consisting of sulfate, nitrate, ammonium, organic 

carbon, elemental carbon, sea salt, and dust) in the atmosphere, which can be emitted by both 

anthropogenic and natural sources, such as combustion, evaporation, agricultural activities, and 

natural processes (Dawson et al., 2014; U.S. EPA, 2019). The health and welfare effects of PM 

are usually linked with the size of the particles including PM2.5, PM10-2.5, PM10, and UFPs (U.S. 

EPA, 2019). PM2.5 and PM10 are two particulate matters widely discussed in previous papers. The 

fine particulate matter (PM2.5) is particulate matter with a nominal mean aerodynamic diameter 

generally less than or equal to 2.5 μm and PM10 is comprised of both fine and coarse fractions with 

a nominal mean aerodynamic diameter less than or equal to 10 μm (U.S. EPA, 2019). In this paper, 

I focus on PM2.5. 

From 1990 to 2014, the direct emissions of PM2.5 remained relatively unchanged but the 

ambient concentrations of PM2.5 experienced a declining trend across much of the U.S. in recent 

years (U.S. EPA, 2020), and the number of extreme PM2.5 days generally decreased from 2000 to 

2009 with some fluctuations (Zhang et al., 2017). However, air pollution is still a major threat to 

human health. Previous studies have documented the adverse impacts of PM exposure on 

morbidity (such as cardiovascular and respiratory diseases) and premature mortality (Dawson et 
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al., 2014; Khawand, 2015; Zhang et al., 2017; U.S. EPA, 2019). Khawand (2015) found that the 

additional premature deaths associated with the increased level of PM2.5 primarily come from 

deaths caused by cardiovascular and respiratory diseases for individuals over age 65.  

The U.S. EPA Integrated Science Assessment (ISA) for Particulate Matter Report (2019) 

concluded that short-term and long-term exposure to PM2.5 is causally related to cardiovascular 

effects, whereas the causal relationships of respiratory effects were only likely to exist. The 

evidence for morbidity provides biological plausibility for cause-specific mortality (such as 

mortality caused by cardiovascular and respiratory diseases) and ultimately total mortality (U.S. 

EPA, 2019). Moreover, the impacts of PM2.5 short-term exposure on respiratory mortality has a 

bigger magnitude and confidence interval than that on cardiovascular mortality, while PM2.5-

related cardiovascular mortality has a more solid biological plausibility according to the evidence 

of morbidity assessment than PM2.5-related respiratory mortality (U.S. EPA, 2020).  

The factors that contribute to the heterogeneity of air pollution-related mortality risk estimates 

include age, gender, race, pre-existing health condition, genetic factors, medication use, smoking 

status, socioeconomic status (such as educational attainment, income, and occupation), healthcare 

availability, residential location, diet, etc. (Katsouyanni et al., 2001; Pope et al., 2006; Hoek et al., 

2013; Khawand, 2015; Lavaine, 2015; US EPA, 2019). In addition, risk preference can make a 

difference. For example, risk-averse people may reduce the risks of air pollution by installing air 

filtration at home, moving to rural or suburban areas, etc. These averting behaviors can partially 

offset the adverse impacts of air pollution. The evidence of increased health risk of PM2.5 has been 

found in children, nonwhite populations, people with the pre-existing disease (cardiovascular 

disease, respiratory disease, and obesity), people with specific genetic variants in genes in the 

glutathione transferase pathway, people of low socioeconomic status (SES), and people who 

smoke or were former smokers (U.S. EPA, 2019).  

2.3 Relationship between Extreme Heat and Air Pollution  

Evidence suggests that the frequencies of heat waves and extremely high temperatures are 

increasing in the United States (Wuebbles et al., 2017). Many scientists think that one reason for 

the increase in extreme heat events is human activity (Stott et al., 2016; Wuebbles et al., 2017; 

Hayhoe et al., 2018) such as excess emissions of Greenhouse Gases (GHGs), Ozone and 

Particulate Matter (PM). The GHGs can trap heat radiating from Earth toward space in the 

atmosphere and make our planet warmer. Atmospheric PM can influence climate through the 
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absorption and scattering of incoming solar radiation, alterations in terrestrial radiation, effects on 

the hydrological cycle, and changes in cloud properties (U.S. EPA, 2019; U.S. EPA, 2020). The 

impact of PM on the temperature is complex since the composition of PM is complex. The 

scattering PM (such as sulfate and nitrate) can cool the surface below, whereas the absorbing PM 

may warm or cool the underlying surface depending on the factors such as the altitude of the PM 

layer relative to cloud cover and the albedo of the surface (U.S. EPA, 2020). For example, certain 

forms of PM such as black carbon (BC), brown carbon (BrC), or dust can absorb incoming sunlight 

(Chen et al., 2006; U.S. EPA, 2020). On the other hand, absorbing PM such as organic carbon 

(OC) and elemental carbon (EC) can diminish the surface albedo of snow and ice and lead to 

regional and even global warming (Xu et al., 2006; U.S. EPA, 2020). 

Temperature variation also leads to variation in air pollution such as ozone and particulate 

matter (PM), although the association between temperature and PM is complex and less clear than 

that between temperature and ozone. Heat waves (temperature) have effects on air quality by 

influencing emission generation, inventories, and dispersion patterns (De Sario et al., 2013; Zhang 

et al., 2017). Zhang et al. (2017) found that the PM2.5 extreme days were highly positively 

correlated with daily maximum temperature and minimum relative humidity. That is, based on the 

research discussed above, if the warming trend continues, PM2.5 extreme days would be more likely 

to occur.  

The impact of temperature on PM is unclear and complicated. The possible reasons mentioned 

in previous studies include the diversity of PM components6 and compensating effects7 (Jacob and 

Winner, 2009; Tai et al., 2010; Dawson et al., 2014). However, there is still evidence that shows a 

significant positive association between PM and temperature. For example, one of the important 

sources of PM is wildfire, which is associated with warmer temperatures and frequency of drought 

(or precipitation) (Dawson et al., 2014; U.S. EPA, 2020). More frequent wildfires can significantly 

increase PM concentration (Jacob and Winner, 2009; Dawson et al., 2014). According to the 

National Emissions Inventory (NEI), wildfire smoke results in 10% ~ 20% of primary PM 

emissions in the U.S. per year (U.S. EPA, 2020). Khawand (2015) and Burke et al. (2021) 

 
 
6 The dependence of different PM2.5 components on meteorological variables can be complex (Tai et al., 2010). 
7 “The changes in the most relevant meteorological factors for PM such as temperature, precipitation, and mixing 

will often have competing impacts and these impacts and interactions are difficult to diagnose by focusing on 

longer-term monthly, seasonal, and annual averages or by grouping various regions or PM species together” 

(Dawson et al., 2014). 
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simulated or assessed the air pollution emitted by wildfires, indicating that they contribute roughly 

15% and up to 25% of PM2.5 in the U.S., respectively. In contrast, Hernandez et al. (2017) found 

that temperature had a negative correlation with PM10 over a diurnal timescale in New Zealand 

and that the relative humidity generally had a positive correlation with PM10 up to a threshold value 

of 75% relative humidity. 

The associations among extreme heat, wildfires, air pollution, and human health are illustrated 

in Figure 1. 1. 

 

Figure 1. 1 Association among Extreme Heat, Wildfires, Air Pollution, and Human Health 

 

 

2.4 Confounding and Interaction Effects between Heat and Air Pollution 

Based on the atmospheric evidence of a potential association between heat and air pollution 

and the epidemiologic evidence of heat-related and PM-related risks on health, it is important for 

us to explore the potential confounding effects and interaction effects (effect modification) 

between heat and air pollution. Ignoring confounding effects can lead to a biased estimation of 

causal association, and positive (negative) confounding can lead to an overestimate 

(underestimate) of the effect of interest (Hajian Tilaki, 2012). The terms, interaction effect and 

effect modification, are often used interchangeably in practice, but their definitions are different 

(VanderWeele, 2009; Knol et al., 2012). The effect modification is defined as the causal effect of 

one exposure varying across strata of a second exposure, whereas the interaction effect is defined 

as the causal effects of two exposures together (VanderWeele, 2009; Knol et al., 2012). In 
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epidemiological studies, the modification effect is more commonly used. In contrast to the 

confounding effect, failure to consider the modification effect will not result in a distortion of 

overall effects (Hajian Tilaki, 2012). 

Rainham and Smoyer-Tomic (2003) considered the confounding effect of air pollution when 

studying the heat-mortality effect, arguing that failing to consider the confounding effect of air 

pollution may slightly overestimate heat-related mortality risk (for all the groups examined except 

females). Analitis et al. (2014) also found the attenuation of the association between heat waves 

and mortality if including air pollutants in the model. On the other hand, previous studies also 

controlled for the potential confounding effect of meteorological variables (such as temperature 

and relative humidity) when studying the air pollution-related mortality effect (Katsouyanni et al. 

2001; U.S. EPA, 2019; U.S. EPA, 2020). Omitting potential confounders was found to lead to 

overestimates or underestimates of the magnitude of the PM2.5 effect (U.S. EPA, 2020). The U.S. 

EPA ISA concluded that there were consistent positive associations between short-term PM2.5 

exposures and total mortality as well as the cardiovascular-related emergency department (ED) 

visits, hospital admissions, and mortality and asthma and chronic obstructive pulmonary disease 

(COPD) ED visits and hospital admissions across studies that use different approaches to control 

for the potential confounding effects of weather (e.g., temperature) (U.S. EPA, 2019; U.S. EPA, 

2020). 

The interaction effect (or modification effect) is widely discussed in studies of air pollution, 

meteorology, and public health. The modification effect is commonly discussed and is supported 

by seasonal and geographic differences observed previously (Katsouyanni et al., 2001). 

Meteorological variables (such as temperature and relative humidity) are regarded as potential 

effect modifiers when estimating the impact of air pollution on mortality (Katsouyanni et al., 2001; 

D’Ippoliti et al., 2010). The temperature was found to be one of the best modifiers and played a 

much more important role than humidity, and the estimated effects of air pollution are larger in 

warmer arid countries (Katsouyanni et al., 2001). There is some evidence that the impacts of PM2.5 

on mortality may be modified by temperature, but studies conducted within the U.S. have not 

provided evidence of the modification effect of temperature, and whether temperature can modify 

the PM2.5-mortality relationship is still unclear (U.S. EPA, 2019). There is inconsistent evidence 

of whether temperature modifies the associations between short-term exposure to PM2.5 and 

respiratory mortality as well as the associations between short-term exposure to PM2.5 and 



11 
 

cardiovascular morbidity or mortality (U.S. EPA, 2019). Shaposhnikov et al. (2014) found that the 

interaction effects of high temperature and air pollution from wildfires in Russia added 

substantially to deaths. Analitis et al. (2014) also found that the impact of heat waves on mortality 

was larger when the level of ozone and PM10 were higher using the European data. 

2.5 Assessments of the Impact of Heat and Air Pollution on Mortality 

Although heat-related and air pollution-related health risks have been widely studied, 

particularly in epidemiology and economics, researchers in different fields explored this topic 

using different data structures, variables of interest, and analytical models. Many epidemiological 

studies analyze heat-related or air pollution-related health problems by employing daily time-series 

data on a specific area or focusing on a specific event (Deschênes, 2014; Chen et al., 2017; Yu et 

al., 2019; Yang et al., 2021). However, studies using daily time-series data on a specific area are 

sensitive to the sample population and cannot be generalized across different spatial contexts. 

Studies on particular events are sensitive to the selection of study periods and cannot be 

generalized across different temporal contexts. Recent economic studies employ panel datasets 

with monthly or annual observations covering larger geographical areas and longer timeframes, 

controlling for fixed effects to mitigate endogeneity problems (Deschênes and Greenstone, 2011; 

Barreca, 2012; Yu et al., 2019). Karlsson and Ziebarth (2018) found a larger heat-mortality 

association when using economic models relative to epidemiological models, and they attribute 

the difference to the control of county-fixed effects that partial out the unobserved time-constant 

heterogeneity. 

The variables of interest and analytical methodologies are also different across fields. 

Economic studies typically use the mortality rate as the outcome variable and apply parametric 

OLS modeling with temporal and spatial fixed effects, whereas epidemiological studies typically 

use mortality counts as the outcome variable and apply log-linear Poisson models with seasonal 

effects as smooth spline functions (Karlsson and Ziebarth, 2018; Yu et al., 2019). Further, most 

discussions of the confounding and interaction effects between heat and air pollution exposures 

are included in these studies. Although many studies on air pollution control for the weather, few 

studies on the effects of weather consider the role of air pollution (Rainham and Smoyer-Tomic, 

2003). Furthermore, epidemiological studies seldom consider the endogeneity and spillover effects 

of air pollution. Economic studies often take advantage of panel data structures and apply empirical 

strategies to mitigate endogeneity problems but may omit the important confounding effect 
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between heat and air pollution, particularly in heat-risk studies. Also, although the transboundary 

externality of air pollution has been widely studied in developing countries, exploration of this 

issue in the context of the U.S. is limited.  

3. Data and Methods  

The evaluation begins with baseline models in which I estimate the separate impacts of 

heat and air pollution using the Fixed-effect Poisson estimation model. I then estimate the 

confounding and interaction effects to show the necessity of considering confounders. To further 

address the endogeneity concern of air pollution, I apply the control function approach using the 

imported all-source air pollution and air pollution emitted by lightning-caused wildfires from 

distant counties as instrumental variables, which provides evidence of cross-boundary spillover 

effects from air pollution and wildfires. Finally, I examine the robustness of the results using 

different sets of IVs, model specifications, and samples. Below, I introduce the data and present 

more detailed discussions of the models used in each step. 

3.1 Baseline Models 

I first estimate the separate impacts of heat and air pollution. For the dependent variable, I 

focus on all-cause deaths, deaths caused by respiratory system disease (International Classification 

of Diseases, Revision 10 (ICD-10) code: J00-J98), and deaths caused by circulatory system disease 

(ICD-10 code: I00- I99). County-level data for annual mortality are collected from the Center for 

Disease Control and Prevention (CDC) WONDER online database. Since the outcome variables 

are measured as the number of annual deaths in each county, the priority is to employ count data 

models. Based on the distributions of death data, which have characteristics of non-negativity, 

discreteness, and left skewness, I employ a conditional Fixed-effect Poisson quasi-maximum 

likelihood model. This model is robust to arbitrary misspecified distribution and any serial 

correlation if the conditional mean is correctly specified (Wooldridge, 2010; Cameron and Trivedi, 

2013). The regression equations for heat and air pollution impacts are shown below.  

 

𝐸(𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡|𝐻𝐼𝑖𝑡, 𝑋𝑖𝑡 , 𝐶𝑖 , 𝑇𝑡) = 𝐶𝑖 ∙ exp(𝛼𝐵𝐻𝐼𝑖𝑡 + 𝜶 ∙ 𝑿𝒊𝒕 +  𝑇𝑡 )  (1) 

𝐸(𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡|𝑃𝑀𝑖𝑡 , 𝑋𝑖𝑡 , 𝐶𝑖 , 𝑇𝑡)     = 𝐶𝑖 ∙ exp(𝛽𝐵𝑃𝑀𝑖𝑡 + 𝜷 ∙ 𝑿𝒊𝒕 +  𝑇𝑡 )   (2) 

 

The heat index incorporates temperature and humidity, which can better characterize the 

physiological experience of heat on the human body (Kovats and Hajat, 2008; Lim and Skidmore, 
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2020). Therefore, this paper uses the average of the daily maximum heat index, 𝐻𝐼𝑖𝑡, to measure 

heat for the baseline analysis. The county-level data for the heat index are available at the CDC 

WONDER online database and are initially from the North America Land Data Assimilation 

System (NLDAS)8. Figure 1. 2 provides the distribution of the average daily maximum heat index 

at the county level across the U.S. from 2001 to 2011. The heat indices are generally higher in 

southern areas and present some geographical variation among counties located at similar latitudes. 

To examine robustness, I use the number of days with a daily maximum air temperature of 90˚F 

or more (𝑇𝑒𝑚𝑝90𝑖𝑡) and the average daily precipitation (𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡) to substitute for the heat index. 

The temperature and precipitation data are also obtained from the CDC WONDER system and are 

initially from the NLDAS. 

 

Figure 1. 2 Average Daily Maximum Heat Index (F) (2001-2011) 

 
Source: Authors’ illustration9. Data: NLDAS Daily Heat Index, CDC WONDER. 

 

PM is one of the six major pollutants identified by the U.S. EPA. According to the U.S. EPA 

ISA for Particulate Matter Report (2019), among the various size fractions of PM (such as PM10-

2.5), the causal relationships between health effects and PM2.5 are relatively more likely to exist. 

As a result, based on the literature and data availability, I use the average level of PM2.5 (𝑃𝑀𝑖𝑡) to 

 
 
8 The heat index defined by NOAA and heat index data provided by NLDAS are not available for temperature below 

80°F (27°C).  
9 All the maps in this dissertation uses 2010 U.S. Cartographic Boundary File downloaded from the U.S. Census Bureau 

(https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html). The comparison of the 

TIGER/Line Shapefile and Cartographic Boundary File can be found at the U.S. Census Bureau. 

https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
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measure air pollution. The annual ground-level PM2.5 data are from the Atmospheric Composition 

Analysis Group (ACAG)10. County-level mean PM2.5 data are obtained by calculating the zonal 

statistics using ArcGIS Pro. Figure 1. 3 presents the distribution of the average PM2.5 in the U.S. 

from 2001 to 2011. Generally, the distribution is consistent with the U.S. EPA ISA report (2019, 

2020) that the eastern areas of the country suffer a higher but more uniform level of PM2.5 than 

western areas, whereas California has a significantly higher level of PM2.5 than surrounding 

states11. The ISA concluded that using different methods to estimate PM2.5 exposures did not affect 

the robustness of the positive associations between long-term PM2.5 exposures and mortality in 

recent analyses (U.S. EPA, 2020). 

 

Figure 1. 3 Distribution of Average Ground-level PM2.5 (µg/m³) (2001-2011) 

 
Source: Authors’ illustration. Data: North American Regional Estimates for Surface PM2.5 

(V4.NA.03), ACAG. 

 

The covariates 𝑋𝑖𝑡 include demographic characteristics (population size, percentage of people 

over 64, percentage of people under 20, and the white population percentage), urbanization 

 
 
10 Surface PM2.5 dataset (North American Regional Estimates (V4.NA.03)) from Atmospheric Composition Analysis 

Group. Downloaded from https://sites.wustl.edu/acag/datasets/surface-pm2-5/#V4.NA.02.MAPLE on August 18, 

2020. The shapefile of U.S. counties was downloaded from 

https://www2.census.gov/geo/tiger/TIGER2010/COUNTY/2010/.  
11 One possible explanation for the significantly higher level of air pollutants in the eastern areas is that there are higher levels of 

pollen in the wetter (greener) eastern half of the U.S. In addition, the pollen can also be a health threat. However, because the 

pollen has a larger size than PM2.5 and it is not a part of PM2.5. I do not consider the effect of pollen in this dissertation. Please 

find the reference from https://airquality.climate.ncsu.edu/2021/04/14/pm2-5-and-pollen/.  

https://sites.wustl.edu/acag/datasets/surface-pm2-5/#V4.NA.02.MAPLE
https://www2.census.gov/geo/tiger/TIGER2010/COUNTY/2010/
https://airquality.climate.ncsu.edu/2021/04/14/pm2-5-and-pollen/
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(percentage of urban population12), economic development (real per capita GDP), and health 

status/behaviors (obesity rates for men and women and smoking prevalence)13. In alternative 

specifications, I introduce the percentage of urban areas and urban population density to measure 

the degree of urbanization and use the real income per capita14 and the poverty rate to measure 

economic development. Demographic variables are from the CDC WONDER database and the 

U.S. Census Bureau (CB). The data used to generate urbanization variables are from the U.S. CB. 

Economic data are collected from the U.S. Bureau of Economic Analysis (BEA) and the U.S. 

Census Bureau's Small Area Income and Poverty Estimates (SAIPE) program. Health 

status/behaviors data are collected from the Institute for Health Metrics and Evaluation (IHME). I 

also include county-fixed effects and time-fixed effects, which control for the unobservable time-

constant county-specific heterogeneity and the time-varying but county-constant factors such as 

nationwide shocks that may have occurred in a given year, respectively. Table 1. 1 provides 

variable definitions and data sources, and Table 1. 2 presents the summary statistics. 

 

Table 1. 1 List of Variables in the Empirical Analysis 

Dependent Variables Source 

Health 

Outcomes 

All-cause Deaths 𝐷𝑒𝑎𝑡ℎ𝐴𝑙𝑙𝑖𝑡
 CDC WONDER 

Deaths Caused by Respiratory System 

Diseases 
𝐷𝑒𝑎𝑡ℎ𝑅𝑖𝑡

 CDC WONDER 

Deaths Caused by Circulatory System Diseases 𝐷𝑒𝑎𝑡ℎ𝐶𝑖𝑡
 CDC WONDER 

Explanatory/Control Variables Source 

Meteorology  

Average Daily Maximum Heat Index (F) 𝐻𝐼𝑖𝑡 CDC WONDER 

Number of Days with Daily Max Air 

Temperature ≥90F 
𝑇𝑒𝑚𝑝90𝑖𝑡 CDC WONDER 

Average Daily Precipitation (mm) 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡 CDC WONDER 

Air 

Pollution 

Average Ground-level Particulate Matter 

(PM2.5) (µg/m³) 
𝑃𝑀𝑖𝑡 ACAG 

 
 
12 Yearly data of urban population density, the percentage of urban population, and the percentage of urban areas 

over the period 1999 to 2010 are obtained by interpolation and extrapolation using the U.S. census data and 

shapefiles of U.S. urbanized areas and counties for years 2000 and 2010. The shapefiles were downloaded from 

https://www.census.gov/geographies/mapping-files/2000/geo/carto-boundary-file.html and 

https://www2.census.gov/geo/tiger/TIGER2010/.  
13 Although I do not have the data about the potential averting behaviors, people’s risk preferences should be 

correlated with other socioeconomic factors, health status, and other health-related behaviors. 
14 Real per capita income (logarithm) that is adjusted using the Bureau of Labor Statistics (BLS) Consumer Price 

Index retroactive series using current methods (R-CPI-U-RS) and using 1977 as the base year. 

https://www.census.gov/geographies/mapping-files/2000/geo/carto-boundary-file.html
https://www2.census.gov/geo/tiger/TIGER2010/
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Table 1. 1 (cont’d) 

Demographi

cs 

Population Size (in 10 thousand) 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑡 
CDC 

WONDER 

Percentage of the Young (under 20) (%) 𝑈𝑛𝑑𝑒𝑟20𝑖𝑡 U.S. CB 

Percentage of the Elderly (over 64) (%) 𝑂𝑣𝑒𝑟64𝑖𝑡 U.S. CB 

Percentage of the white population (%) 𝑊ℎ𝑖𝑡𝑒𝑖𝑡 U.S. CB 

Urbanization 

Percentage of Urban Population (%)  𝑈𝑟𝑏𝑎𝑛𝑃𝑜𝑝𝑢𝑖𝑡 U.S. CB 

Percentage of Urban areas (%) 𝑈𝑟𝑏𝑎𝑛𝐴𝑟𝑒𝑎𝑖𝑡 U.S. CB 

Urban Population Density (per 1000 square 

meters) 
𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡 U.S. CB 

Economics 

Real Per Capita GDP (chained 2012 dollars) 

(logarithm) 
𝐺𝐷𝑃𝑖𝑡 U.S. BEA 

Real Per Capita Income (dollars, based 

year:1977) (logarithm) 
𝐼𝑛𝑐𝑜𝑚𝑒𝑖𝑡 

U.S. BEA, 

U.S. BLS 

Poverty Rate (%) 𝑃𝑜𝑣𝑒𝑟𝑡𝑦𝑖𝑡 U.S. CB 

Health  

Prevalence of Obesity (Female) (%) 𝑂𝑏𝑒𝑠𝑖𝑡𝑦𝐹𝑖𝑡
 IHME 

Prevalence of Obesity (Male) (%) 𝑂𝑏𝑒𝑠𝑖𝑡𝑦𝑀𝑖𝑡
 IHME 

Prevalence of People Who Currently Smoke (%) 𝑆𝑚𝑜𝑘𝑖𝑛𝑔𝑖𝑡 IHME 

Time FE Year Indicator Variables 𝑇𝑡 - 

County FE County Indicator Variables 𝐶𝑖 - 

Instrumental Variables Source 

Instruments 

PM2.5 from Distant Counties (µg/m³) 𝐷𝑖𝑠𝑡𝑃𝑀 𝑖𝑡 
ACAG, U.S. 

CB, NASA 

PM2.5 Attributed to Lightning-caused Wildfires 

from Distant Counties (µg/m³) 
𝐷𝑖𝑠𝑡𝑃𝑀𝐹𝑖𝑟𝑒𝑠𝑖𝑡

 
ACAG, FPA 

FOD, U.S. 

CB, NASA 

 

Table 1. 2 Summary Statistics 

Variables 
Mean 

(2001~2011) 

Std. Dev. 

(2001~2011) 

Mean 

(2001) 

Mean 

(2011) 

All-cause Deaths 807.25 2183.75 798.12 830.10 

Deaths Caused by Respiratory System 

Diseases 
77.78 197.42 75.96 82.12 

Deaths Caused by Circulatory System 

Diseases 
278.87 800.31 306.41 258.81 

Average Daily Maximum Heat Index (F) 90.14 3.71 89.64 92.24 

Number of Days with Daily Max Air 

Temperature ≥90F 
39.80 40.47 28.60 62.30 

Average Daily Precipitation (mm) 2.76 1.05 2.55 2.77 
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Table 1. 2 (cont’d) 

Average Ground-level Particulate Matter 

(PM2.5) (µg/m³) 
8.72 2.65 9.25 7.95 

Population Size  98184.63 311435.60 93784.86 102522.50 

Percentage of the Young (under 20) (%) 26.99 3.29 28.15 25.89 

Percentage of the Elderly (over 64) (%) 15.27 4.04 14.81 16.10 

Percentage of the white population (%) 86.47 15.74 87.19 85.74 

Percentage of Urban Population (%) 42.19 30.70 41.52 42.79 

Percentage of Urban areas (%) 6.55 15.72 6.36 6.72 

Urban Population Density (per 1000 

square meters) 
0.54 0.64 0.55 0.54 

Real Per Capita GDP (chained 2012 

dollars)  
37956.90 26308.69 34676.84 40234.21 

Real Per Capita Income (dollars) (based 

year:1977)  
10150.38 2548.81 9623.59 10930.87 

Poverty Rate (%) 15.16 6.09 13.73 17.36 

Prevalence of Obesity (Female) (%) 35.74 5.83 31.40 39.13 

Prevalence of Obesity (Male) (%) 33.41 4.33 28.81 37.17 

Prevalence of People Who Currently 

Smoke (%) 
25.86 4.06 27.03 24.41 

PM2.5 from Distant Counties (µg/m³) 7.56 4.66 7.66 7.17 

PM2.5 Attributed to Lightning-caused 

Wildfires from Distant Counties (µg/m³) 
0.0005 0.0016 0.0003 0.0009 

Number of Observations 32912 32912 2992 2992 

 

3.2 Confounding and Interaction Effects Models 

Because heat and air pollution are associated, and both contribute to the risks of mortality, it 

is necessary to consider the potential confounding of heat and air pollution to mitigate the bias of 

the estimators. Thus, I modify the baseline model by including air pollution (heat) as a confounder. 

To explore the variation of heat (air pollution) risk to people exposed to different levels of air 

pollution (heat), I modify the model by adding an interaction term for heat and air pollution. The 

regression equations of confounding and interaction effect models are: 

 

𝐸(𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡|𝐻𝐼𝑖𝑡, 𝑃𝑀𝑖𝑡 , 𝑿𝒊𝒕, 𝐶𝑖 , 𝑇𝑡) = 𝐶𝑖 ∙ exp(𝛾ℎ𝐻𝐼𝑖𝑡 + 𝛾𝑝𝑃𝑀𝑖𝑡 + 𝜸 ∙ 𝑿𝒊𝒕 +  𝑇𝑡 )  (3) 

𝐸(𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡|𝐻𝐼𝑖𝑡, 𝑃𝑀𝑖𝑡 , 𝑿𝒊𝒕, 𝐶𝑖 , 𝑇𝑡) = 𝐶𝑖 ∙ exp(𝛿ℎ𝐻𝐼𝑖𝑡 + 𝛿𝑝𝑃𝑀𝑖𝑡 + 𝛿ℎ𝑝𝐻𝐼𝑖𝑡 ∙ 𝑃𝑀𝑖𝑡 + 𝜹 ∙ 𝑿𝒊𝒕 +

 𝑇𝑡 )  (4)  
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By comparing the confounding effect and baseline models, I can determine whether the bias 

of estimated heat-related (or PM-related) health risk resulting from the omission of potential 

confounders exists. 

3.3 Endogeneity of Air Pollution 

When investigating the adverse impacts of PM2.5, one of the main concerns is that PM2.5 may 

still be correlated with unobserved factors in the error term even when I include a series of control 

variables as discussed above and the county and year-fixed effects. For instance, local 

governments, which enact stringent environmental policies to regulate air pollution, are more 

likely to provide better access to medical care. Further, the sectoral composition of a local economy 

may not be fully reflected in economic measures such as GDP. A larger industrial sector is 

associated with greater emissions of air pollutants, whereas a higher share in the service sector 

may result in a lower level of air pollutants. Failing to address the endogeneity problem can lead 

to biased estimates. Therefore, I use the Control Function (CF) approach to address this concern; 

however, at least one excluded exogenous variable is required (Wooldridge, 2010, 2015).  

Previous economic papers put forward a variety of instrumental variables (IVs) to address the 

endogeneity concern of air pollution. One strategy is to construct measures of imported air 

pollution from distant areas as instrumental variables, considering the wind pattern and geographic 

distance as primary factors influencing the cross-boundary transportation of air pollutants (Bayer 

et al., 2009, Luechinger, 2010; Khawand, 2015; Zheng et al., 2014; Barwick et al., 2018; Yang 

and Zhang, 2018; Williams and Phaneuf, 2019; Zheng et al., 2019; Chen et al., 2021). Following 

a similar logic, Tan-Soo (2018) constructed wind- and distance-based fire hotspots as an 

instrument for air pollution in a study from Indonesia. In the present paper, I further combine and 

extend these methods and construct the wind-driven, distance-weighted imported all-source PM2.5, 

and PM2.5 attributed to lightning-caused wildfires as instrumental variables, which are defined as 

follows: 

 

𝐷𝑖𝑠𝑡𝑃𝑀𝑖𝑡 = ∑ 𝑃𝑀𝑗𝑡 ∗ 𝐼(𝑊𝐷𝑗𝑡 =  𝐺𝐷𝑗𝑖) ∗
1

𝑑𝑖𝑗
𝑝

𝑖≠𝑗

, 𝑑𝑖𝑗
𝑝

≥ 100𝑘𝑚      (5) 

𝑃𝑀𝑖𝑡 = 𝜃𝑙𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠𝑙𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔𝑖𝑡
+ 𝐶𝑖 +  𝑇𝑡 + 𝑢𝑖𝑡   (6) 

𝐷𝑖𝑠𝑡𝑃𝑀𝐹𝑖𝑟𝑒𝑖𝑡
= ∑ 𝑃𝑀𝑗𝑡̂ ∗ 𝐼(𝑊𝐷𝑗𝑡 =  𝐺𝐷𝑗𝑖) ∗

1

𝑑𝑖𝑗
𝑓

𝑖≠𝑗

,    30𝑘𝑚 ≤ 𝑑𝑖𝑗
𝑓

≤ 100𝑘𝑚      (7) 
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𝑊𝐷𝑗𝑡  represents the dominant wind direction(s) in county j at year t, defined as the most 

frequent wind direction(s) within 12 months in county j at year t. 𝐺𝐷𝑗𝑖 is the geographic direction 

of the vector from county j to county i. Both 𝑊𝐷𝑗𝑡 and 𝐺𝐷𝑗𝑖 have four categories and are defined 

by the quadrants, in which the dominant wind direction vector and the vector from county j to 

county i fall. 𝑃𝑀𝑗𝑡̂  denotes the predicted PM2.5 attributed to lightning-caused wildfires. 

𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠𝑙𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔𝑖𝑡
 denotes the number of occurrences of lightning-caused wildfires with 10 ~ 

999 burned acres.  

The PM2.5 data are also from the ACAG. The wildfire data are obtained from the Fire Program 

Analysis fire-occurrence database (FPA FOD)15. To generate the distance weighting matrix, I use 

the 2010 TIGER/Line Shapefiles of U.S. counties from the Census Bureau to obtain the distances 

among counties. To take account of the wind direction effects on air pollution transportation, I 

collect monthly zonal and meridional wind speed data from Phase 2 of the North American Land 

Data Assimilation System (NLDAS-2) available from the website of the National Aeronautics and 

Space Administration (NASA). The county-level monthly mean wind speeds are calculated using 

ArcGIS Pro.  

I consider two types of weights for each equation: wind direction and geographic distance. 

For the imported all-source PM2.5 in county i at year t, 𝐷𝑖𝑠𝑡𝑃𝑀𝑖𝑡, I consider the annual mean PM2.5 

imported from upwind counties that locate at least 100 km away from county i, and the PM2.5 is 

weighted by the reciprocal of geographic distance (km), as presented by equation 5. The farther 

the county is located, the smaller the spillover effect that distant PM2.5 has on local PM2.5. For the 

distant PM2.5 attributed to lightning-caused wildfires in county i at year t, 𝐷𝑖𝑠𝑡𝑃𝑀𝐹𝑖𝑟𝑒𝑖𝑡
, I consider 

lightning-caused wildfires with 10 ~ 999 burned acres in upwind counties that are located between 

 
 
15 The wildfire data are obtained from the Fire Program Analysis fire-occurrence database (FPA FOD) (Short, 2017). 

This database includes 1,880,465 wildfire events from 1992 to 2015. After excluding the observations for Puerto 

Rico, Alaska, and Hawaii, I have 1,835,646 observations in total. Since some of the county information (643,450 out 

of 1,835,646 events) are missing in the database, I map the longitude and latitude of wildfire into the 2010 

TIGER/Line Shapefiles of the county from the Census Bureau to obtain the missing county information, and I obtain 

additional 643,446 county FIPS codes. There are four wildfire events without county information, and thus I drop 

these four events. Comparing the county FIPS codes in the database to the generated county FIPS codes from 

shapefile, there are 44,287 county-year fire events where data are unmatched; the overall unmatched rate is 3.71%. 

Considering that wildfires may occur near the boundary, I treat these 44,287 wildfires as occurring in both counties. 

Because most of the dates on which the wildfires were declared contained (or controlled) are missing and I use 

annual wildfire information, I rely on the discovery date of wildfires. Next, I generate the occurrences of wildfires 

with different sizes and by different causes, and wildfire acres for each county. I assume that there is no wildfire 

event if there is no record for a specific county and specific year. 
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30 km and 100 km away from county i. I first predict the PM2.5 attributed to lightning-caused 

wildfires for each county by regressing the local PM2.5 on the occurrences of lightning-caused 

wildfires and the year and county fixed effects, as presented in equation 6. The lightning-caused 

wildfires can be regarded as an exogenous source of local PM2.5. I then use a similar approach to 

construct the imported PM2.5 due to distant lightning-caused wildfires, as presented by Equation 7. 

Figure 1. 4 shows the construction of instrumental variables with examples. 

 

Figure 1. 4 Examples of Instrumental Variables Construction 

 
Note: For county i, the imported all-source PM2.5 is from the counties located outside the circle 

with a radius of 100km, such as counties 4, 5, and 6. For example, the vector from county 5 to 

county i falls in quadrant II and the dominant wind direction of county 5 in year t falls in quadrant 

II as well, so I assign the weight of wind direction equal to one (i.e., 𝐼(𝑊𝐷5𝑡 =  𝐺𝐷5𝑖) = 1). The 

impact of imported all-source PM2.5 from county 5 is weighted by the reciprocal of the distance 

between county 5 and county i. The imported PM2.5 attributed to lightning-caused wildfires for 

county i is from counties within a circle of 100km but outside the circle of 30km, such as county 

2 and county 3. For county 3, both the vector from county 3 to county i and the dominant wind 

direction of county 3 fall in quadrant I (i.e., 𝐼(𝑊𝐷3𝑡 =  𝐺𝐷3𝑖) = 1). The imported PM2.5 attributed 

to lightning-caused wildfires from county 3 is weighted by the reciprocal of the distance between 

county 3 and county i.  

 

The maps in Figure 1. 5 and Figure 1. 6 show the spatial distributions of the average DistPM 

and DistPM_Fire from 2001 to 2011. The all-source PM2.5 is imported from counties located 100 

km away and the PM2.5 attributed to lightning-caused wildfires (10 ~999 acres) is from counties 
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located in a range of 30 ~ 100 km away. These two figures highlight the counties with more all-

source PM2.5 and PM2.5 attributed to lightning-caused wildfires from distant counties over the 

2001-2011 period. Influenced by the wind direction, the distribution of distant PM2.5 shows some 

differences with the local PM2.5, but in general, eastern areas suffered more imported all-source 

air pollution. The transboundary externalities of PM2.5 attributed to lightning-caused wildfires are 

more significant in the western and southern areas, perhaps because of higher temperatures and 

more droughts.  

 

Figure 1. 5 Distribution of Average Distant PM2.5 (µg/m³) (2001-2011)

 
 

Next, I discuss the validity of instrumental variables (IVs). The valid IVs should satisfy two 

conditions: relevance and exogeneity. First, the concentration level of PM2.5 in distant counties 

should be associated with the local concentration level of PM2.5. Previous studies have found 

evidence of the significant transboundary air pollution spillover effects, and these spillover effects 

are mainly driven by wind and associated with distance (Bayer et al., 2009; Banzhaf and Chupp, 

2010; Luechinger, 2010; Khawand, 2015; Zheng et al., 2014; Barwick et al., 2018; Yang and 

Zhang, 2018; Chen and Ye, 2019; Williams and Phaneuf, 2019; Zheng et al., 2019; Chen et al., 

2021). I also consider the impact of lightning-caused wildfires on air pollution since wildfires are 

an important source of PM (Khawand, 2015; U.S. EPA, 2020; Burke et al., 2021). Moreover, 

previous findings show that smoke from smaller-size wildfires can also travel a long distance as 

large-size wildfires (Miller et al., 2017). Because distant wildfires should affect the air quality in 

distant counties and air pollutants in distant counties can be transported across counties, I also 
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expect a significant positive association between air pollution attributed to distant wildfires and 

local air pollution. Through the first-stage regression of the control function approach, I can test 

the strength of instrumental variables. In section 3.2, I present that the instrumental variables are 

strongly associated with the local level of PM2.5. 

 

Figure 1. 6 Distribution of Average PM2.5 (µg/m³) Attributed to Distant Lightning-

caused Wildfires (2001-2011) 

 

 

Previous studies also applied wildfire-related IVs. Khawand (2015) simulated PM2.5 resulting 

from large-size wildfires and used it as the instrumental variable to estimate the PM2.5-related 

health impacts and found that wildfires contribute at least 15% of ambient ground-level PM2.5. 

Tan-Soo (2018) constructed wind- and distance-based forest fire hotspots instrument for PM2.5. 

Based on Khawand (2015) and Tan-Soo (2018), I restrict wildfires to be those caused by an 

exogenous source, lightning, make use of externalities of PM2.5 attributed to wildfires with 

relatively smaller size in counties at a closer distance (30 ~ 100 km), and consider the concern of 

the health effects of other pollutants (other than PM2.5) emitted by wildfires. To evaluate 

robustness, PM2.5 attributed to distant lightning-caused wildfires of 0.26 ~ 299 burned acres 

(measured using the number of occurrences) and PM2.5 attributed to distant all-size lightning-

caused wildfires (measured using the total burned acres) are also constructed. In addition, 

following a logic similar to Tan-Soo (2018), I construct the distant lightning-caused wildfires to 

substitute the predicted PM2.5. The distant lightning-caused wildfires are defined below: 
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𝐷𝑖𝑠𝑡𝐹𝑖𝑟𝑒𝑠𝑖𝑡 = ∑ ∑ 𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠𝑗𝑚𝑡 ∗ 𝐼 (𝑐𝑜𝑠𝜃𝑖𝑗𝑚𝑡 > 0) ∗
1

𝑑𝑖𝑗
𝑓

𝑖≠𝑗

12

𝑚=1

, 30𝑘𝑚 ≤ 𝑑𝑖𝑗
𝑓

≤ 100𝑘𝑚    

 

Examples of the construction of DistFire can be found in Figure 1. 7. 𝜃𝑖𝑗𝑚𝑡  is the angle 

between the vector from county j to i and the vector of wind direction in county j in month m year 

t. Since the impact of wildfires on air pollution may be temporary, I consider the occurrences and 

wind direction in each month and sum up the weighted occurrences to generate the annual 

weighted occurrences of wildfires.  

 

Figure 1. 7 Examples of Instrumental Variables Construction (DistFire) 

 
 

Second, the instrumental variables should not directly influence the outcome variables. To 

minimize the likelihood that PM2.5 in nearby counties is correlated with the variables influencing 

the health outcomes in a focal county, I created two buffer zones. For the first buffer zone, 

following the previous studies that typically considered imported air pollution from counties at a 

long distance as IVs to ensure the exogeneity condition, I set the radius of the first buffer zone to 

100 km and only include the distant all-source PM2.5 from counties located outside this buffer 

zone. Given that I do not make use of the source of PM2.5 from counties within 100 km and because 

PM2.5 attributed to lightning-caused wildfires can be regarded as an exogenous source, I consider 
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the PM2.5 attributed to lightning-caused wildfires that occurred within the first buffer zone. 

However, there is still a small possibility that lightning-caused wildfires may lead to accidental 

deaths. Therefore, I create the second buffer zone, which has a radius of 30 km. I further exclude 

counties within 30 km, given that I focus on wildfires with less than 1000 acres (about 4.05 𝑘𝑚2). 

That is, I use the PM2.5 attributed to lightning-caused wildfires that occurred within the first buffer 

zone but outside the second buffer zone as the second IV. Note that most direct fire fatalities (not 

restricted to wildfires), about 50%-80%, are caused by smoke inhalation and not burns (Holstege, 

2019; NFPA, n.d.). Also, according to the NOAA’s NCEI Storm Events Database, the average 

direct injuries and direct fatalities caused by wildfires are about 87 and 8, respectively, per year 

among the 6,331 wildfires recorded from 1999 to 2017, and the deaths caused by wildfire smoke 

inhalation are also attributed to direct fatalities in this dataset. 

There may also be a concern that other air pollutants emitted by wildfires can be transported 

by wind to the focal county and affect local health outcomes. Three pollutants (particulate matter, 

ozone, and carbon monoxide) may pose health threats during wildfire events (Stone et al., 2019). 

First, PM10-2.5 (PM10 is comprised of PM2.5 and PM10-2.5) is not a major concern. Particles from 

wildfire smoke tend to be very small (with a size range near the wavelength of visible light (0.4-

0.7 μm)), and about 90% of total particle masses consist of PM2.5 (Stone et al., 2019), so the PM2.5 

this paper focused on is a major threat to public health (Stone et al., 2019). Second, carbon 

monoxide dilutes rapidly, so it is rarely a concern unless people are in very close proximity to 

wildfires (Stone et al., 2019). Therefore, it is improbable that carbon monoxide travels to the focal 

county and influences local health. Third, ozone is not directly emitted from a wildfire, but forms 

in the plume as wildfire smoke moves downwind (Stone et al., 2019), so ozone can be another 

channel through which distant wildfires influence local health. We, therefore, address this problem 

by constructing the predicted PM2.5 emitted by distant lightning-caused wildfires.  

In addition, exogenously determined wind direction and geographic distance further increase 

confidence in the exogeneity of the instrumental variables. Moreover, I consider different radius 

sizes of the first buffer zone to examine robustness. The radius of the first buffer zone is set to be 

80 and 150 km, and then the counties included to construct the two IVs change correspondingly. 

To increase confidence in these instrumental variables, I follow the methodology described in 

Wooldridge (2010) and conduct the overidentification test, which is also applied by Wrenn et al. 

(2017). Section 3.2 presents the overidentification test results, which indicate that I cannot reject 
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the hypothesis that the instrumental variables are exogenous. 

Then, I use the control function approach to address the endogeneity problem. In the first 

stage, I use the fixed-effect model and regress the endogenous variable, air pollution, on 

instrumental variables, all the other exogenous variables contained in the previous models, and 

county and time-fixed effects to break the correlation of air pollution and unobservables affecting 

the dependent variables (Wooldridge, 2010). The first-stage regression equation for the 

confounding and interaction effect models is16: 

 

𝑃𝑀𝑖𝑡 = 𝜃0 + 𝜃ℎ𝐻𝐼𝑖𝑡 + 𝜽𝑰𝑽𝑰𝑽𝒊𝒕 + 𝜽 ∙ 𝑿𝒊𝒕 + 𝐶𝑖 +  𝑇𝑡 + 𝜀𝑖𝑡   (8) 

 

The fixed effect residuals (𝜀𝑖𝑡̂) of the first-stage regression can be regarded as the “control” 

for the endogeneity of air pollution (Wooldridge, 2015). I then add 𝜀𝑖𝑡̂ into equations 3 and 4 as 

the second-stage regressions17: 

 

𝐸(𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡|𝐻𝐼𝑖𝑡, 𝑃𝑀𝑖𝑡 , 𝑿𝒊𝒕, 𝐶𝑖 , 𝑇𝑡) = 𝐶𝑖 ∙ exp(𝛾ℎ𝐻𝐼𝑖𝑡 + 𝛾𝑝𝑃𝑀𝑖𝑡 + 𝛾𝑟𝜀𝑖𝑡̂  + 𝜸 ∙ 𝑿𝒊𝒕 + 𝑇𝑡 )  (9)  

𝐸(𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡|𝐻𝐼𝑖𝑡, 𝑃𝑀𝑖𝑡 , 𝑿𝒊𝒕, 𝐶𝑖 , 𝑇𝑡) = 𝐶𝑖 ∙ exp(𝛿ℎ𝐻𝐼𝑖𝑡 + 𝛿𝑝𝑃𝑀𝑖𝑡 + 𝛿ℎ𝑝𝐻𝐼𝑖𝑡 ∙ 𝑃𝑀𝑖𝑡 + 𝛿𝑟𝜀𝑖𝑡̂ +

𝜹 ∙ 𝑿𝒊𝒕 + 𝑇𝑡 )  (10)  

 

Because the residuals depend on the estimates of parameters in the first-stage regression, the 

variance matrix estimators for parameters in the second-stage regression need to be adjusted to 

account for this dependence (Wooldridge, 2010). A block-bootstrap procedure (500 repetitions) 

draws from the entire FIPS code with replacement to correct the standard errors (Wooldridge, 

2010; Schlenker and Walker, 2016). I examine the endogeneity of air pollution by testing whether 

the coefficient of residuals equals zero.  

Following the method described in Wooldridge (2010) and applied by Wrenn et al. (2017), I 

add one of two IVs to the right-hand side of the second stage regression equation (i.e., Equations 

9 and 10), and then perform a significance test for this IV. The test result is invariant to which 

subset of IVs I add. This paper includes distant PM2.5 in the second stage regression, as shown in 

 
 
16 To estimate the separate impact of air pollution in the baseline model, 𝐻𝑒𝑎𝑡𝑖𝑡 in equation 9 is excluded. 
17 Similarly, for the separate impact of air pollution in the baseline model, 𝐻𝑒𝑎𝑡𝑖𝑡 in equation 10 is excluded. 
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Equations 11 and 12. As before, I use the block-bootstrap procedure (500 repetitions) to correct 

the standard errors. 

 

𝐸(𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡|𝐻𝐼𝑖𝑡, 𝑃𝑀𝑖𝑡 , 𝑿𝒊𝒕, 𝐶𝑖 , 𝑇𝑡) = 𝐶𝑖 ∙ exp(𝛾ℎ
′ 𝐻𝐼𝑖𝑡 + 𝛾𝑝

′𝑃𝑀𝑖𝑡 + 𝛾𝐼𝑉
′ 𝐷𝑖𝑠𝑡𝑃𝑀𝑖𝑡 + 𝛾𝑟′𝜀𝑖𝑡̂  +

𝜸′ ∙ 𝑿𝒊𝒕 + 𝑇𝑡 )  (11)  

𝐸(𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡|𝐻𝐼𝑖𝑡, 𝑃𝑀𝑖𝑡 , 𝑿𝒊𝒕, 𝐶𝑖 , 𝑇𝑡) = 𝐶𝑖 ∙ exp(𝛿ℎ′𝐻𝐼𝑖𝑡 + 𝛿𝑝′𝑃𝑀𝑖𝑡 + 𝛿ℎ𝑝′𝐻𝐼𝑖𝑡 ∙ 𝑃𝑀𝑖𝑡 +

𝛿𝐼𝑉′𝐷𝑖𝑠𝑡𝑃𝑀𝑖𝑡 + 𝛿𝑟′𝜀𝑖𝑡̂ + 𝜹′ ∙ 𝑿𝒊𝒕 +  𝑇𝑡 )  (12)  

 

The empirical strategy I use to address endogeneity also enables us to examine the 

transboundary spillover effect of air pollution on local health outcomes. If distant PM2.5 

significantly influences local PM2.5 and local PM2.5 is significantly associated with health 

outcomes, then it is reasonable for us to test for the existence of spillover effects. Local PM2.5 is a 

mediator through which distant PM2.5 and wildfires indirectly influence local health outcomes. To 

test for the existence of the spillover effect, I again use the block-bootstrap approach to test the 

product of the coefficients of distant PM2.5 (all-source and from lightning-caused wildfires) in the 

first stage regression and the coefficient on PM2.5 in the second stage regression (i.e., testing 𝜽𝑰𝑽 ∗

𝛾𝑝 for the confounding effect model). 

4. Results 

The estimation results for heat-related and PM-related fatalities using baseline models, 

confounding/interaction effect models, and control function approach are shown in Table 1. 3. 

The complete estimation results can be found in Table 1. 7, Table 1. 8, and Table 1. 9 of 

Appendix. Based on these estimates, I calculate the additional deaths due to a one standard 

deviation (SD) increase in the heat index and PM2.5, which are presented in Table 1. 4. Table 1. 5 

presents the estimation results for the spillover effects and the estimated extra deaths due to PM2.5 

and wildfires from distant counties. Finally, I conduct a series of robustness checks.  

4.1 Baseline Models and Confounding/Interaction Effect Models 

Columns (1) and (2) in Table 1. 3 show the impacts of the heat index and PM2.5 on mortality 

in the baseline models, respectively. The heat index has a statistically significant and positive 

relationship with all three mortality categories with a 1% level of significance. The impacts of 

PM2.5 are also statistically significant on mortality for all categories, but with lower 5% and 10% 
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levels of significance on the deaths caused by respiratory system diseases and circulatory system 

diseases, respectively. 

After controlling the PM2.5/heat index as a confounder, the magnitudes of the estimates for the 

heat index/PM2.5 become slightly smaller (column (4) of Table 1. 3). These results are generally 

consistent with the evidence in the existing literature18 that failing to consider the confounding 

effect results in biased estimates, and PM2.5 (heat index) is a positive confounder of the heat index 

(PM2.5). However, the impacts of PM2.5 are less significant, and the impact on deaths caused by 

circulatory system diseases is no longer significant.  

All the interaction terms have negative signs, but they are only statistically significant on all-

cause deaths and deaths caused by respiratory system diseases, as shown in column (6), which 

means that exposure to more severe extreme heat (or higher concentration levels of PM2.5) results 

in reduced risk from PM2.5 (or heat index). A possible explanation is the role of avoidance behavior 

or adaptation; during periods of extreme heat (or with a higher concentration of pollution), people 

may tend to stay indoors and thus have reduced exposure to particulate matter (or heat).  

Overall, the results are consistent with previous literature. Positive and significant associations 

are observed between heat and mortality and between PM2.5 and mortality (except that the impacts 

of PM2.5 are insignificant in the confounding and interaction effect models for deaths in the 

circulatory system disease category). Moreover, the results confirm that the confounding effects 

cannot be ignored. 

4.2 Endogeneity of Air Pollution  

While the estimates in the baseline and confounding/interaction models are useful, previous 

research suggests the possibility of an existing endogeneity problem of PM2.5. Next, I present the 

estimates using a control function approach to address endogeneity. First, I present evidence of the 

validity of the IVs. From the first-stage regression results, presented in Table 1. 10 of the 

Appendix, I find that the distant all-source PM2.5 and distant PM2.5 attributed to lightning-caused 

 
 
18 Previous studies found that air pollution is a positive confounder of heat; failing to consider the confounding 

effect of air pollution may overestimate heat-related mortality risk (Rainham and Smoyer-Tomic, 2003; Analitis et 

al., 2014). On the other hand, previous studies of pollution-related mortality also controlled for the potential 

confounding effect of meteorological variables such as temperature and humidity (Katsouyanni et al. 2001; U.S. 

EPA, 2019b; U.S. EPA, 2020). Although omitting potential confounders was found to lead to either an overestimate 

or underestimate of the PM2.5 effect, the adverse impacts of short-term PM2.5 exposure on total mortality and some 

cardiovascular-related and respiratory-related health outcomes are generally consistent across studies that control for 

the potential weather-related confounding effects (e.g., temperature) (U.S. EPA, 2019b; U.S. EPA, 2020). 
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wildfires have positive and statistically significant associations with local concentrations of PM2.5 

at a 1% significance level in all the model settings. The F-statistics of these two IVs for baseline, 

confounding effect, and interaction effect models are greater than 400, which indicates that the 

IVs are strong predictors of the endogenous variable, local PM2.5. Through overidentification tests, 

I also find that all the 𝜒2-statistics are not statistically significant, as shown in Table 1. 3, which 

means that I cannot reject the hypothesis that the IVs are exogenous.  

Second, I tested the endogeneity of PM2.5. According to the second-stage regression results in 

columns (3), (5), and (7) of Table 1. 3, all the residuals obtained from the first-stage regressions 

are negative and statistically significant with at least a 5% significance level, which indicates that 

the unobserved factors that are correlated with PM2.5 significantly contribute to reducing the 

mortality of all categories. We, therefore, reject the hypothesis that PM2.5 is exogenous in all the 

models. This finding also confirms that the endogeneity problem of PM2.5 cannot be ignored when 

studying the adverse health impacts of PM2.5. 

After addressing the endogeneity issue, I find that the overestimation bias of heat-related risks, 

which is caused by the ignorance of the confounder PM2.5, increases slightly compared to models 

that fail to consider endogeneity, as shown in columns (1), (4), and (5) of Table 1. 3. The PM2.5 

effects are now statistically significant with at least a 5% significance level in all the three models, 

and the magnitudes increase substantially, as demonstrated by comparisons of columns (2) and 

(3), columns (4) and (5), and columns (6) and (7). In addition, the overestimation bias of PM-

related risk due to omitting the confounding effect of heat index increases as well, as shown by 

comparing columns (2) and (4) and columns (3) and (5). The interaction terms of heat and PM2.5 

are only significant in the model of respiratory system disease deaths. 

Overall, the IVs have strong associations with the endogenous variable, PM2.5, and I find 

statistically significant evidence of the endogeneity of PM2.5. After addressing the endogeneity of 

PM2.5, the positive association between the heat index and mortality is still consistent, and the 

positive association between PM2.5 and mortality is more significant. Ignoring the endogeneity can 

lead to a substantial underestimate of the impact of PM2.5 on mortality. The results further confirm 

that PM2.5 (heat index) is a positive confounder of heat (PM2.5) and the necessity of considering 

the joint impact of heat and air pollution. I also find that the overestimation bias caused by ignoring 

the potential confounder is smaller when failing to consider the endogeneity of air pollution. 

Therefore, the confounding effect model considering the endogeneity of PM2.5 is the preferred 
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model setting. If the average daily maximum heat index increases by one unit (F), then the all-

cause deaths, deaths caused by respiratory system diseases, and deaths caused by circulatory 

system diseases will increase by 0.16%, 0.57%, and 0.23%, respectively. Meanwhile, a one-unit 

increase (µg/m³) of the ground-level PM2.5 is associated with 2.11%, 2.55%, and 1.09% addition 

fatalities on average. 

Finally, given that the data covers about 98.5% of the U.S. population, the results can be 

concluded to represent the population of the whole country. The average of the all-cause deaths, 

respiratory system disease deaths, and circulatory system disease deaths per year in the U.S. from 

1999 to 2019 are around 2,543,934, 247,023, and 850,241, respectively19. Based on these data and 

the estimates of heat and air pollution impacts, I calculate the percentage changes of deaths and 

the extra additional deaths due to a one SD increase in the heat index and PM2.5, as presented in 

Table 1. 4. Based on the results with consideration of the endogeneity of PM2.5, I find that a one 

SD increase in the heat index and PM2.5 results in a substantial number of additional deaths, and 

the bias due to ignorance of confounders is significant. In the confounding effect models, a one 

SD increase (≈2.71) in the heat index results in 15,136, 5,279, and 7,287 more fatalities from all-

cause, respiratory system diseases, and circulatory system diseases, respectively. A one SD 

increase in PM2.5 (≈2.65) will result in 146,302, 17,269, and 24,921 additional fatalities, 

respectively. The overestimation biases of heat risks are 2,850, 188, and 637 for the above three 

mortality categories. The overestimation biases of PM2.5 fatalities are even larger at 7,123, 2,535, 

and 3,715, respectively. 

Moreover, the literature is unclear about the relative magnitude of heat effects on respiratory 

and cardiovascular mortalities (Anderson and Bell, 2009; Deschênes and Moretti, 2009; D’Ippoliti 

et al., 2010; Huang et al., 2010). In this study, the results indicate that the magnitude of the heat-

related and PM2.5-related deaths (in terms of the percentage change) is greater for respiratory 

system disease deaths than circulatory system disease deaths.  

4.3 Spillover Effect of Air Pollution 

As discussed in Section 2.3, the empirical strategy enables us to examine the transboundary 

spillover effects of PM2.5 and wildfires. The distant all-source PM2.5 and PM2.5 attributed to the 

 
 
19 The data is collected from CDC WONDER online database. Retrieved from 

https://wonder.cdc.gov/controller/datarequest/D76 on February 11, 2021. 

https://wonder.cdc.gov/controller/datarequest/D76
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lightning-caused wildfires indirectly influence health outcomes in the focal county by influencing 

local PM2.5. The results of the spillover effect are presented in Table 1. 5, where I focus on the 

preferred model setting, the confounding effect model addressing the endogeneity issue. Similarly, 

I calculate the percentage changes in deaths and the extra deaths due to a one SD increase of distant 

all-source PM2.5 and distant PM2.5 attributed to the lightning-caused wildfires. First, the spillover 

effects are statistically significant with at least a 5% significance level. Second, the magnitudes of 

spillover effects are substantial. A one SD increase of distant all-cause PM2.5 (≈4.66) is associated 

with 23,811, 2,779, and 3,971 additional all-cause deaths, deaths caused by respiratory system 

disease, and deaths caused by circulatory system disease, respectively. Note that I still have not 

included the PM2.5 imported from the nearby counties within 100 km. Although I only consider 

PM2.5 attributed to the lightning-caused wildfires with 10 ~ 999 burned acres and within nearby 

30 ~ 100 km, the additional deaths caused by a one SD increase of distant PM2.5 attributed to 

lightning-caused wildfires (≈0.0016) are substantial as well, which are 4,019, 472, and 697, 

respectively. 

4.4 Additional Results 

In this section, I briefly summarize the estimation results of the control variables. In all the 

specifications, the percentage of the elderly and the young are positively and statistically 

significantly correlated with all categories of mortality at a 1% significance level. According to 

U.S. Census Bureau data, the population of those aged 65 and above has been expanding at an 

accelerated rate in the United States from 2000 to 2019, while the number of people under the age 

of 20 has been growing at a slower rate. Therefore, the aging trend will be a growing public health 

challenge in the coming decades. In addition, the proportion of white people in a given population 

is often found to be negatively associated with all-cause deaths and deaths due to circulatory 

system diseases. 

Increasing urbanization is positively associated with all mortality categories at a 1% 

significance level. Local economic development also plays a vital role in reducing fatalities. The 

logarithm of real per capita GDP is negatively and significantly associated with all-cause deaths 

and circulatory system disease deaths, especially after addressing endogeneity. People’s health 

status matters as well. A higher obesity rate is associated with higher mortality, especially for men. 

The obesity rate among men has a positive and significant association with all three mortality 

categories. In contrast, the obesity rate of the female group is only significantly associated with 



31 
 

all-cause deaths and deaths caused by respiratory system diseases. Surprisingly, I do not find a 

significant association between smoking prevalence and mortality. 

4.5 Robustness Evaluation 

In this section, I conduct a series of robustness checks. First, I use different spatial ranges of 

instrumental variables. In the original analysis, I chose the counties at least 100 km away from the 

focal county to construct the distant all-source PM2.5 and counties within a range of 30-100 km 

away to construct the distant PM2.5 attributed to the lightning-caused wildfires. This section 

examines the 80 km and 150 km for distant all-source PM2.5 and the ranges of 30-80 km and 30-

150 km for distant PM2.5 attributed to lightning-caused wildfires, respectively. The further the 

distant sources of PM2.5, the more likely it is for the exogeneity condition to hold, but the weaker 

the association between local and distant PM2.5. From the first stage results in Table 1. 5 of the 

Appendix, I report that the magnitudes of coefficients for distant all-source PM2.5 decrease as the 

radius of the first buffer zone increases. Meanwhile, as the radius of the first buffer zone increases, 

the range of the second buffer zone increases, which means that farther lightning-caused wildfires 

are included, and the magnitudes of the impacts of distant PM2.5 that are attributed to the lightning-

caused wildfires on the local PM2.5 become smaller. However, regardless of which spatial range I 

choose, the F-statistics for these two IVs are greater than 350, which means that the IVs are strong 

predictors of local PM2.5. As shown in Table 1. 6, the 𝜒2-statistics of the overestimation tests are 

not significant in all settings, which means that I cannot reject the hypothesis that the IVs 

constructed using different spatial ranges are exogenous. Further, I find that the estimation results 

using IVs of different spatial distances change slightly.  

Second, I also examine robustness using lightning-caused wildfires of different sizes. In the 

original analysis, I choose the occurrences of lightning-caused wildfires with 10 ~ 999 acres. This 

section also considers the burning acres of all lightning-caused wildfires and the occurrences of 

the lightning-caused wildfires with 0.26~299 acres. From the first stage results in Table 1. 6 of the 

Appendix, when larger distant wildfires are included, the impacts on the local PM2.5 (columns 1 

and 2) increase. The joint tests of IVs are statistically significant, and the F-statistics are over 400 

for all the specifications. In addition, the IVs using different sizes of wildfires pass the 

overidentification test. Overall, the results are robust, and there are only slight variations in the 

coefficient estimates. 

Third, I substitute the distant PM2.5 attributed to the lightning-caused wildfires with the 
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occurrences of lightning-caused wildfires in distant counties as the second IV (see Table 1. 13 and 

Table 1. 14 of Appendix). Overall, there are larger variations among the estimates compared with 

the estimates using distant PM2.5 attributed to lightning-caused wildfires. Also, the 

overidentification test fails when considering all lightning-caused fire acres in the model of all-

cause mortality. Therefore, the concern that the distant lightning-caused wildfire may influence 

local health outcomes by emitting other pollutants is reasonable; thus, the distant PM2.5 attributed 

to the lightning-caused wildfires is the preferred IV. 

Fourth, the estimates for heat and PM2.5 are robust to a variety of alternative specifications: 1) 

use of the number of days with a daily maximum air temperature (≥90F) and average daily 

precipitation to substitute heat index20; 2) use of a different economic variable (real per capita 

income or poverty rate); 3) use of a different variable representing urbanization (percentage of 

urban area or urban population density) in the preferred model setting. These estimation results are 

available upon request. 

Lastly, I exclude Georgia, New Jersey, and California samples. The mortality data in these 

states have some unusually high death counts for "Other ill-defined and unspecified causes of 

mortality" for some years within the study period, which may influence the death counts caused 

by respiratory system and circulatory system diseases, according to the data notes in the CDC 

WONDER system. Although there are some variations in the magnitudes, the overall results are 

robust when excluding these states. These estimation results are also available upon request. 

  

 
 
20 I find positive and significant effects PM2.5 (with 1% significance level) and precipitation (with at least 10% 

significance level) on all the three categories of mortality, but the number of hot days (≥90F) is only significant on 

deaths caused by respiratory system diseases (with at 1% significance level). 
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Table 1. 3 Estimation Results 

 Heat Air Pollution Confounding Interaction 

 
FE 

Poisson 

FE 

Poisson 
CF 

FE 

Poisson 
CF 

FE 

Poisson 
CF 

 (1) (2) (3) (4) (5) (6) (7) 

 Dependent Variable: All-cause Deaths 

HI 0.0019***   0.0017*** 0.0016*** 0.0038*** 0.0033** 

 (4.14)   (3.65) (3.28) (2.79) (2.38) 

PM   0.0055*** 0.0221*** 0.0054*** 0.0211*** 0.0254** 0.0366*** 

   (6.32) (5.59) (6.23) (5.40) (2.32) (3.16) 

HI*PM       -0.0002* -0.0002 

       (-1.87) (-1.51) 

Residuals   -0.0174***  -0.0164***  -0.0160*** 

   (-4.73)  (-4.54)  (-4.47) 

𝜒2 statistics 

overidentificatio

n test 

  0.35  0.17  0.09 

  [0.5546]  [0.6843]  [0.7634] 

 Dependent Variable: Respiratory System Disease Deaths 

HI 0.0059***   0.0058*** 0.0057*** 0.0155*** 0.0148*** 

 (5.81)   (5.74) (5.28) (6.18) (5.98) 

PM   0.0032** 0.0291*** 0.0028* 0.0255*** 0.0963*** 0.1118*** 

   (2.06) (3.83) (1.80) (3.49) (4.43) (5.04) 

HI*PM       -0.0011*** -0.0010*** 

       (-4.35) (-4.11) 

Residuals   -0.0269***  -0.0237***  -0.0213*** 

   (-3.58)  (-3.24)  (-2.92) 

𝜒2 statistics for 

overidentificatio

n test 

  0.80  0.28  0.04 

  [0.3718]  [0.5965]  [0.8349] 

 Dependent Variable: Circulatory System Disease Deaths 

HI 0.0025***   0.0024*** 0.0023*** 0.0045*** 0.0041*** 

 (3.86)   (3.78) (3.61) (2.73) (2.58) 

PM   0.0016* 0.0125*** 0.0014 0.0109** 0.0209 0.0276** 

   (1.75) (2.83) (1.56) (2.53) (1.59) (2.03) 

HI*PM       -0.0002 -0.0002 

       (-1.52) (-1.35) 

Residuals   -0.0114***  -0.0099**  -0.0095** 

   (-2.62)  (-2.34)  (-2.24) 

𝜒2-statistics for 

overidentificatio

n test 

  0.68  1.03  1.23 

  [0.4094]  [0.3112]  [0.2683] 
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Table 1.3 (cont’d) 

F-statistics for 

instruments 

  452.3070  457.8425  457.8425 

  [0.0000]  [0.0000]  [0.0000] 

Obs. 32912 32912 32912 32912 32912 32912 32912 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) p-values of test 

statistics in squared brackets. (4) Standard errors of regressions in columns 3, 5, and 7 are obtained 

from the block-bootstrap (500 repetitions) procedure (drawing the entire FIPS code with 

replacement). (5) Time-fixed effects and county-fixed effects are included in all model 

specifications. 
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Table 1. 4 Increases in Deaths Due to A One SD Increase of Heat Index and PM2.5 

Deaths 

Average 

Deaths 

(1999~2019) 

A one SD (≈3.71) increases in 

HI 

A one SD (≈2.65) increases in 

PM2.5 

Coefficient ∆Pct. ∆Deaths Coefficient ∆Pct. ∆Deaths 

Baseline models 

All-cause 2,543,934 0.0019*** 0.707% 17,986 0.0221*** 6.031% 153,425 

Respiratory 

System  
247,023 0.0059*** 2.213% 5,467 0.0291*** 8.017% 19,804 

Circulatory 

System  
850,241 0.0025*** 0.932% 7,924 0.0125*** 3.368% 28,636 

Confounding effect models 

All-cause 2,543,934 0.0016*** 0.595% 15,136 0.0211*** 5.751% 146,302 

Respiratory 

System  
247,023 0.0057*** 2.137% 5,279 0.0255*** 6.991% 17,269 

Circulatory 

System  
850,241 0.0023*** 0.857% 7,287 0.0109** 2.931% 24,921 

Overestimation bias due to omitting confounder (HI or PM2.5) 

All-cause 2,543,934 0.0003 0.112% 2,850 0.0010 0.280% 7,123 

Respiratory 

System  
247,023 0.0002 0.076% 188 0.0036 1.026% 2,535 

Circulatory 

System  
850,241 0.0002 0.075% 637 0.0016 0.437% 3,715 

Note:  (1) * p < 0.1, ** p < 0.05, *** p < 0.01 

(2) All the models, except the baseline models for heat, consider the endogeneity of PM2.5. 
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Table 1. 5 Spillover Effects Due to A One SD Increase of Distant PM2.5 and Wildfires 

Deaths 

Average 

Deaths 

(1999~2019) 

A one SD (≈4.66) increases in 

DistPM 

A one SD (≈0.0016) increases in 

DistPM_Fire 

Coefficient1 ∆Pct. ∆ Deaths Coefficient2 ∆Pct. ∆Deaths 

All-cause 2,543,934 0.0020*** 0.936% 23,811 0.9838*** 0.158% 4,019 

Respiratory 

System  
247,023 0.0024*** 1.125% 2,779 1.1915*** 0.191% 472 

Circulatory 

System  
850,241 0.0010** 0.467% 3,971 0.5101** 0.082% 697 

 Note: (1) * p < 0.1, ** p < 0.05, *** p < 0.01 

(2) Coefficient1 is the product of the coefficient of DistPM_Fire in the first stage and the 

coefficient of PM2.5 in the second stage, and the standard errors are obtained from the block-

bootstrap (500 repetitions) procedure (drawing entire FIPS code with replacement). 

(3) Coefficient2 is the product of the coefficient of DistPM in the first stage and the coefficient of 

PM2.5 in the second stage, and the standard errors are obtained from the block-bootstrap (500 

repetitions) procedure (drawing entire FIPS code with replacement).
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Table 1. 6 Estimation Results – Robustness Check 

 

Main Analysis  Robustness Check 

DistPM(≥100km) 

DistPM_Fire 

(30~100km, 10 ~ 999 

acres) 

 DistPM_Fire (≥100 acres)  
DistPM (≥100km) & DistPM_Fire 

(30~100km) 

 

DistPM(≥80km) 

DistPM_Fire(30~80

km) 

DistPM(≥150km) 

DistPM_Fire(30~150

km) 

 
DistPM_Fire 

(0.26~299 acres) 

DistPM_Fire (All 

lightning-caused fire 

acres) 

 Dependent Variable: All-cause Deaths 

HI 0.0016***  0.0016*** 0.0016***  0.0016*** 0.0016*** 

 (3.28)  (3.28) (3.30)  (3.27) (3.22) 

PM 0.0211***  0.0208*** 0.0211***  0.0211*** 0.0223*** 

 (5.40)  (5.49) (5.17)  (5.13) (5.49) 

Residuals -0.0164***  -0.0161*** -0.0163***  -0.0164*** -0.0176*** 

 (-4.54)  (-4.62) (-4.28)  (-4.33) (-4.70) 

𝜒2-

statistics  

0.17  0.08 0.61  0.47 0.19 

[0.6843]  [0.7799] [0.4330]  [0.4931] [0.6663] 

 Dependent Variable: Respiratory System Disease Deaths 

HI 0.0057***  0.0057*** 0.0057***  0.0057*** 0.0056*** 

 (5.28)  (5.28) (5.28)  (5.28) (5.23) 

PM 0.0255***  0.0250*** 0.0267***  0.0249*** 0.0291*** 

 (3.49)  (3.49) (3.45)  (3.27) (3.73) 

Residuals -0.0237***  -0.0232*** -0.0248***  -0.0230*** -0.0273*** 

 (-3.24)  (-3.25) (-3.21)  (-3.04) (-3.54) 

𝜒2-

statistics  

0.28  0.09 0.95  0.99 0.93 

[0.5965]  [0.7692] [0.3303]  [0.3207] [0.3346] 
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Table 1.6 (cont’d) 

 Dependent Variable: Circulatory System Disease Deaths 

HI 0.0023***  0.0024*** 0.0023***  0.0023*** 0.0023*** 

 (3.61)  (3.61) (3.60)  (3.62) (3.61) 

PM 0.0109**  0.0103** 0.0120**  0.0104** 0.0106** 

 (2.53)  (2.48) (2.55)  (2.20) (2.35) 

Residuals -0.0099**  -0.0093** -0.0110**  -0.0093** -0.0096** 

 (-2.34)  (-2.27) (-2.36)  (-2.05) (-2.15) 

𝜒2-

statistics  

1.03  1.00 0.65  1.48 1.11 

[0.3112]  [0.3171] [0.4201]  [0.2238] [0.2920] 

F-

statistics 

for IVs 

457.8425  496.5736 386.0210  455.1311 441.9121 

[0.0000]  [0.0000] [0.0000]  [0.0000] [0.0000] 

Obs. 32912  32912 32912  32912 32912 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) p-values of test statistics in squared brackets. (4) Standard 

errors are obtained from the block-bootstrap (500 repetitions) procedure (drawing the entire FIPS code with replacement). (5) Time-

fixed effects and county-fixed effects are included for all the model specifications. (6) The 𝜒2-statistics of overidentification tests are 

based on Wooldridge (2010), and the instrumental variable for distant PM2.5 attributed to lightning-caused wildfires is excluded.
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5. Conclusion 

With anticipated more frequent extreme heat events in the U.S., people are exposed to more 

severe heat-related health consequences. Although the ambient concentrations of PM2.5 exhibited 

a declining trend across most of the U.S., the wildfire-induced PM2.5 became a new challenge, and 

PM2.5, as an important confounder of heat, is still a significant health threat. Furthermore, air 

pollution (all-source and that emitted from wildfires) can be carried by the wind across boundaries 

and then influence distant areas. Although some papers examined the transboundary spillover 

effects of air pollution in developing countries, this issue has not been fully explored in the U.S. 

Building on the existing studies, I employ a nationwide panel dataset of the U.S. to explore the 

joint impacts of heat and PM2.5 on the all-cause and cause-specific mortality with considerations 

of the endogeneity problem and spillover effects of PM2.5.  

Consistent with previous literature, this paper confirms that extreme heat and PM2.5 are 

significantly and positively associated with all-cause deaths, deaths caused by respiratory system 

diseases, and deaths caused by circulatory system diseases. Failure to consider the confounding 

effect between heat and air pollution results in overestimates of the health impacts of heat and 

PM2.5. In addition, this overestimation bias is magnified after addressing the endogeneity problem. 

Further, ignoring the endogeneity of PM2.5 leads to a substantial underestimation of the magnitude 

of PM2.5-related risk. Lastly, the instrumental variable strategy considers the externalities of PM2.5 

and wildfires, which offers new evidence of the existence of transboundary spillover effects of 

PM2.5 and lightning-caused wildfires. With a growing trend of extreme heat events and wildfires, 

wildfire-induced air pollution is an important environmental disamenity, especially for the western 

areas in the U.S. This paper increases the understanding of the transboundary spillover effect of 

wildfire-induced air pollution. Overall, the evaluation confirms and builds on previous analyses, 

offering refined nationwide estimates of the impact of heat and air pollution on mortality. 

Further, combing the estimates of the additional fatalities caused by extreme heat and PM2.5, 

and the estimate of the "value of a statistical life (VSL)” for the United States, I calculate the 

economic cost of these two environmental problems. The estimates of the "value of a statistical 

life” can be used to measure the willingness to pay to achieve the risk reduction of 1.0 premature 

death (Freeman III et al., 2014). Currently, the U.S. EPA recommends using the central estimate 

of $7.4 million (2006 dollars) “in all benefits analyses that seek to quantify mortality risk reduction 

benefits regardless of the age, income, or other population characteristics of the affected 



40 
 

population” 21. Lim and Skidmore (2021) estimate that one additional heat island mitigation (HIM) 

measure lowers the heat index values by 0.261 F in locations that adopted HIM. Based on this 

finding, if the U.S. government adopted one additional HIM in all urban locations across the 

country, there would be a reduction in costs of more than $9 billion annually (for reductions in all-

cause mortality). In addition, if the government reduced ground-level fine particulate matter by 

one standard deviation (≈2.65 µg/m³) on average, then the related cost of all-cause mortality in the 

U.S. will decrease by more than $1 trillion per year.   

Due to data limitations, I only have annual mortality data and thus use the annual 

measurements of heat and air pollution. In future work, it may be useful to employ the daily, 

weekly, or monthly data to better capture how short and medium-term variations of heat and air 

pollution influence health. Another concern is the potential endogeneity problem of the heat index. 

To clarify, heat may influence people’s migration decisions. That is, heat may be associated with 

the unobserved demographic characteristics embedded in the error term. This issue may generate 

bias in the estimates. The potential endogeneity of the heat index variable and the selection of 

associated valid instrumental variables is an important topic for future research. Further, the 

association between meteorological variables and different air pollutants is complex and still under 

discussion in the epidemiologic and meteorologic fields. Given the expectation of increased 

frequency of extreme weather events and continued air pollution challenges globally, future work 

on these topics is worthy of further exploration.  

 
 
21 Mortality Risk Valuation. Retrieved from https://www.epa.gov/environmental-economics/mortality-risk-valuation 

on November 13, 2022. 

https://www.epa.gov/environmental-economics/mortality-risk-valuation
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APPENDIX 

Table 1. 7 Estimation Results for All-cause Deaths 

 

Dependent variable: All-cause Deaths 

Heat Air Pollution Confounding Interaction 

FE  FE  CF FE  CF FE CF 

(1) (2) (3) (4) (5) (6) (7) 

HI 0.0019***   0.0017*** 0.0016*** 0.0038*** 0.0033** 

 (4.14)   (3.65) (3.28) (2.79) (2.38) 

PM   0.0055*** 0.0221*** 0.0054*** 0.0211*** 0.0254** 0.0366*** 

   (6.32) (5.59) (6.23) (5.40) (2.32) (3.16) 

HI*PM      -0.0002* -0.0002 

      (-1.87) (-1.51) 

Population  0.0023*** 0.0021*** 0.0021*** 0.0021*** 0.0021*** 0.0021*** 0.0021*** 

 (4.29) (4.08) (2.98) (4.12) (3.02) (4.08) (3.00) 

% Under20  0.0267*** 0.0276*** 0.0285*** 0.0267*** 0.0276*** 0.0267*** 0.0275*** 

 (7.69) (8.23) (8.75) (7.69) (8.20) (7.67) (8.16) 

% Over64  0.0494*** 0.0494*** 0.0516*** 0.0493*** 0.0513*** 0.0495*** 0.0514*** 

 (15.13) (15.41) (17.10) (15.29) (16.93) (15.42) (16.97) 

% White  -0.0039* -0.0041* -0.0043** -0.0042** -0.0045** -0.0043** -0.0045** 

 (-1.85) (-1.94) (-2.14) (-2.01) (-2.20) (-2.04) (-2.22) 

Urban population  0.0111*** 0.0110*** 0.0111*** 0.0110*** 0.0110*** 0.0110*** 0.0110*** 

 (15.24) (15.35) (15.46) (15.36) (15.47) (15.38) (15.47) 

ln(GDP) -0.0286* -0.0286* -0.0365** -0.0287* -0.0360** -0.0286* -0.0358** 

 (-1.75) (-1.76) (-2.24) (-1.76) (-2.21) (-1.75) (-2.18) 

Obesity rate (F)  0.0008 0.0008 0.0016* 0.0008 0.0015* 0.0007 0.0015 

 (0.87) (0.91) (1.80) (0.87) (1.71) (0.81) (1.63) 

Obesity rate (M)  0.0059*** 0.0055*** 0.0052*** 0.0055*** 0.0052*** 0.0054*** 0.0051*** 

 (6.39) (6.13) (5.55) (6.10) (5.54) (6.00) (5.48) 

Smoking prevalence  0.0022** 0.0018* 0.0010 0.0016 0.0009 0.0016 0.0008 

 (2.13) (1.81) (0.97) (1.64) (0.87) (1.60) (0.85) 

Residuals   -0.0174***  -0.0164***  -0.0160*** 

   (-4.73)  (-4.54)  (-4.47) 

F-statistics for    452.3070  457.8425  457.8425 

instruments   [0.0000]  [0.0000]  [0.0000] 

𝜒2 statistics for 

overidentification test 

  0.35  0.17  0.09 

  [0.5546]  [0.6843]  [0.7634] 

Obs. 32912 32912 32912 32912 32912 32912 32912 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) p-values of test 

statistics in squared brackets. (4) Standard errors of regressions in columns 3, 5, and 7 are obtained 

from the block-bootstrap (500 repetitions) procedure (drawing the entire FIPS code with 

replacement). (5) Time-fixed effects and county-fixed effects are included for all the model 

specifications. 
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Table 1. 8 Estimation Results for Respiratory System Disease Deaths 

 

Dependent variable: Respiratory System Disease Deaths 

Heat Air Pollution Confounding Interaction 

FE  FE  CF FE  CF FE CF 

(1) (2) (3) (4) (5) (6) (7) 

HI 0.0059***   0.0058*** 0.0057*** 0.0155*** 0.0148*** 

 (5.81)   (5.74) (5.28) (6.18) (5.98) 

PM   0.0032** 0.0291*** 0.0028* 0.0255*** 0.0963*** 0.1118*** 

   (2.06) (3.83) (1.80) (3.49) (4.43) (5.04) 

HI*PM       -0.0011*** -0.0010*** 

       (-4.35) (-4.11) 

Population  0.0006 0.0004 0.0004 0.0005 0.0005 0.0005 0.0004 

 (0.85) (0.60) (0.54) (0.76) (0.69) (0.66) (0.61) 

% Under20  0.0352*** 0.0384*** 0.0397*** 0.0352*** 0.0364*** 0.0350*** 0.0361*** 

 (7.87) (8.77) (9.08) (7.87) (8.13) (7.83) (8.07) 

% Over64  0.0511*** 0.0515*** 0.0548*** 0.0511*** 0.0540*** 0.0519*** 0.0545*** 

 (11.80) (11.88) (12.94) (11.80) (12.85) (11.96) (12.90) 

% White  0.0042 0.0045* 0.0041 0.0040 0.0036 0.0037 0.0034 

 (1.54) (1.65) (1.54) (1.46) (1.36) (1.35) (1.26) 

Urban population  0.0103*** 0.0104*** 0.0104*** 0.0103*** 0.0103*** 0.0102*** 0.0103*** 

 (9.29) (9.29) (9.15) (9.31) (9.17) (9.33) (9.15) 

ln(GDP) -0.0192 -0.0192 -0.0315 -0.0195 -0.0303 -0.0191 -0.0288 

 (-0.82) (-0.80) (-1.33) (-0.83) (-1.31) (-0.82) (-1.24) 

Obesity rate (F)  0.0041*** 0.0042*** 0.0055*** 0.0041*** 0.0052*** 0.0039*** 0.0049*** 

 (2.86) (2.93) (3.64) (2.85) (3.47) (2.72) (3.28) 

Obesity rate (M)  0.0065*** 0.0063*** 0.0058*** 0.0063*** 0.0058*** 0.0059*** 0.0055*** 

 (4.23) (4.15) (3.74) (4.15) (3.78) (3.87) (3.55) 

Smoking prevalence  0.0031* 0.0033* 0.0020 0.0028 0.0017 0.0026 0.0016 

 (1.74) (1.93) (1.16) (1.62) (0.96) (1.51) (0.93) 

Residuals   -0.0269***  -0.0237***  -0.0213*** 

   (-3.58)  (-3.24)  (-2.92) 

F-statistics for    452.3070  457.8425  457.8425 

instruments   [0.0000]  [0.0000]  [0.0000] 

𝜒2 statistics for 

overidentification test 

  0.80  0.28  0.04 

  [0.3718]  [0.5965]  [0.8349] 

Obs. 32912 32912 32912 32912 32912 32912 32912 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) p-values of test 

statistics in squared brackets. (4) Standard errors of regressions in columns 3, 5, and 7 are obtained 

from the block-bootstrap (500 repetitions) procedure (drawing the entire FIPS code with 

replacement). (5) Time-fixed effects and county-fixed effects are included for all the model 

specifications. 
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Table 1. 9 Estimation Results for Circulatory System Disease Deaths 

 

Dependent variable: Circulatory System Disease Deaths 

Heat Air Pollution Confounding Interaction 

FE  FE  CF FE  CF FE CF 

(1) (2) (3) (4) (5) (6) (7) 

HI 0.0025***   0.0024*** 0.0023*** 0.0045*** 0.0041*** 

 (3.86)   (3.78) (3.61) (2.73) (2.58) 

PM   0.0016* 0.0125*** 0.0014 0.0109** 0.0209 0.0276** 

   (1.75) (2.83) (1.56) (2.53) (1.59) (2.03) 

HI*PM       -0.0002 -0.0002 

       (-1.52) (-1.35) 

Population  0.0020*** 0.0019*** 0.0019*** 0.0020*** 0.0019*** 0.0019*** 0.0019*** 

 (3.71) (3.62) (2.82) (3.66) (2.87) (3.63) (2.86) 

% Under20  0.0173*** 0.0186*** 0.0191*** 0.0173*** 0.0178*** 0.0173*** 0.0178*** 

 (5.37) (5.95) (6.37) (5.34) (5.75) (5.31) (5.69) 

% Over64  0.0469*** 0.0470*** 0.0484*** 0.0469*** 0.0481*** 0.0470*** 0.0482*** 

 (15.40) (15.51) (16.08) (15.35) (15.93) (15.47) (16.00) 

% White  -0.0040** -0.0039* -0.0041** -0.0041** -0.0043** -0.0042** -0.0043** 

 (-1.96) (-1.91) (-2.00) (-2.00) (-2.07) (-2.03) (-2.09) 

Urban population  0.0101*** 0.0101*** 0.0101*** 0.0101*** 0.0101*** 0.0101*** 0.0101*** 

 (12.40) (12.42) (12.70) (12.38) (12.66) (12.39) (12.66) 

ln(GDP) -0.0274* -0.0274* -0.0326** -0.0273* -0.0318** -0.0272* -0.0315** 

 (-1.73) (-1.73) (-2.05) (-1.72) (-2.01) (-1.71) (-1.98) 

Obesity rate (F)  -0.0009 -0.0009 -0.0004 -0.0010 -0.0005 -0.0010 -0.0006 

 (-0.89) (-0.87) (-0.38) (-0.90) (-0.47) (-0.93) (-0.53) 

Obesity rate (M)  0.0039*** 0.0038*** 0.0036*** 0.0038*** 0.0036*** 0.0037*** 0.0035*** 

 (3.25) (3.22) (2.81) (3.19) (2.82) (3.13) (2.77) 

Smoking prevalence  -0.0002 -0.0001 -0.0006 -0.0003 -0.0008 -0.0004 -0.0008 

 (-0.14) (-0.08) (-0.51) (-0.27) (-0.64) (-0.30) (-0.65) 

Residuals   -0.0114***  -0.0099**  -0.0095** 

   (-2.62)  (-2.34)  (-2.24) 

F-statistics for    452.3070  457.8425  457.8425 

instruments   [0.0000]  [0.0000]  [0.0000] 

𝜒2 statistics for 

overidentification test 

  0.68  1.03  1.23 

  [0.4094]  [0.3112]  [0.2683] 

Obs. 32912 32912 32912 32912 32912 32912 32912 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) p-values of test 

statistics in squared brackets. (4) Standard errors of regressions in columns 3, 5, and 7 are obtained 

from the block-bootstrap (500 repetitions) procedure (drawing the entire FIPS code with 

replacement). (5) Time-fixed effects and county-fixed effects are included for all the model 

specifications. 
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Table 1. 10 First-stage Results - Main Analysis 

 (1) (2) (3) 

 PM25 PM25 PM25 

Distant PM (d≥100km) 0.0942*** 0.0944*** 0.0944*** 

 (29.65) (29.79) (29.79) 

Distant Fire 

(30km≤d≤100km,  

≥100 acres) 

46.6177*** 46.6609*** 46.6609*** 

(10.16) (10.18) (10.18) 

HI  -0.0030 -0.0030 

  (-0.69) (-0.69) 

Population  -0.0004 -0.0004 -0.0004 

 (-0.08) (-0.08) (-0.08) 

% Under20  -0.0610*** -0.0599*** -0.0599*** 

 (-5.18) (-5.01) (-5.01) 

% Over64  -0.1281*** -0.1279*** -0.1279*** 

 (-9.64) (-9.63) (-9.63) 

% White  0.0079 0.0082 0.0082 

 (0.83) (0.86) (0.86) 

Urban population  -0.0060** -0.0060** -0.0060** 

 (-2.35) (-2.36) (-2.36) 

ln(GDP) 0.5895*** 0.5873*** 0.5873*** 

 (10.38) (10.30) (10.30) 

Obesity rate (F)  -0.0438*** -0.0438*** -0.0438*** 

 (-8.39) (-8.37) (-8.37) 

Obesity rate (M)  0.0241*** 0.0241*** 0.0241*** 

 (3.97) (3.98) (3.98) 

Smoking prevalence  0.0401*** 0.0404*** 0.0404*** 

 (6.21) (6.25) (6.25) 

F-statistics for instruments 452.3070 457.8425 457.8425 

 [0.0000] [0.0000] [0.0000] 

Obs. 32912 32912 32912 

adj. R2 0.511 0.511 0.511 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) p-values of test 

statistics in squared brackets. (4) All the standard errors are clustered by county. (5) Time-fixed 

effects and county-fixed effects are included for all the model specifications. 

  



52 
 

Table 1. 11 First-stage Results - Different Radiuses (Distant Fire ≥100 acres) 

 (1) (2) (3) 

 

Distant PM (d≥80km) 

& DistPM_Fire 

(30km≤d<80km) 

Distant PM (d≥100km) 

& DistPM_Fire 

(30km≤d<100km) 

Distant PM (d≥150km) 

& DistPM_Fire 

(30km≤d<150km) 

Distant PM 0.0973*** 0.0944*** 0.0878*** 

 (31.24) (29.79) (26.90) 

DistPM_Fire 51.8487*** 46.6609*** 36.7249*** 

 (8.59) (10.18) (12.32) 

HI -0.0032 -0.0030 -0.0027 

 (-0.73) (-0.69) (-0.61) 

Population  -0.0005 -0.0004 0.0001 

 (-0.09) (-0.08) (0.03) 

% Under20  -0.0590*** -0.0599*** -0.0609*** 

 (-4.95) (-5.01) (-5.06) 

% Over64  -0.1275*** -0.1279*** -0.1282*** 

 (-9.63) (-9.63) (-9.59) 

% White  0.0082 0.0082 0.0086 

 (0.88) (0.86) (0.90) 

Urban 

population  
-0.0061** -0.0060** -0.0059** 

 (-2.40) (-2.36) (-2.31) 

ln(GDP) 0.5841*** 0.5873*** 0.5898*** 

 (10.27) (10.30) (10.26) 

Obesity rate 

(F)  
-0.0435*** -0.0438*** -0.0444*** 

 (-8.36) (-8.37) (-8.43) 

Obesity rate 

(M)  
0.0243*** 0.0241*** 0.0237*** 

 (4.04) (3.98) (3.87) 

Smoking 

prevalence  
0.0402*** 0.0404*** 0.0413*** 

 (6.24) (6.25) (6.35) 

F-statistics for  496.5736 457.8425 386.0210 

instruments [0.0000] [0.0000] [0.0000] 

Obs. 32912 32912 32912 

adj. R2 0.512 0.511 0.509 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) p-values of test 

statistics in squared brackets. (4) All the standard errors are clustered by county. (5) Time-fixed 

effects and county-fixed effects are included for all the model specifications. 
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Table 1. 12 First-stage Results - Different Fire Sizes 

(DistPM(d≥100km) & DistPM_Fire (30km≤d≤100km)) 

Dependent variable: 

PM2.5 

(1) (2) (3) 

0.26~299 acres ≥100 acres 
All lightning-

caused fire acres 

Distant PM 0.0936*** 0.0944*** 0.0932*** 

 (29.67) (29.79) (29.68) 

DistPM_Fire 40.3039*** 46.6609*** 56.4596*** 

 (8.43) (10.18) (4.85) 

HI -0.0028 -0.0030 -0.0021 

 (-0.64) (-0.69) (-0.47) 

Population  -0.0005 -0.0004 -0.0001 

 (-0.10) (-0.08) (-0.03) 

% Under20  -0.0593*** -0.0599*** -0.0587*** 

 (-4.95) (-5.01) (-4.91) 

% Over64  -0.1285*** -0.1279*** -0.1291*** 

 (-9.61) (-9.63) (-9.70) 

% White  0.0081 0.0082 0.0097 

 (0.85) (0.86) (1.03) 

Urban population  -0.0064** -0.0060** -0.0065** 

 (-2.47) (-2.36) (-2.51) 

ln(GDP) 0.5862*** 0.5873*** 0.5788*** 

 (10.29) (10.30) (10.21) 

Obesity rate (F)  -0.0437*** -0.0438*** -0.0431*** 

 (-8.34) (-8.37) (-8.25) 

Obesity rate (M)  0.0242*** 0.0241*** 0.0252*** 

 (3.98) (3.98) (4.14) 

Smoking prevalence  0.0411*** 0.0404*** 0.0416*** 

 (6.34) (6.25) (6.42) 

F-statistics for 

instruments 
455.1311 457.8425 441.9121 

 [0.0000] [0.0000] [0.0000] 

Obs. 32912 32912 32912 

adj. R2 0.510 0.511 0.510 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) p-values of test 

statistics in squared brackets. (4) All the standard errors are clustered by county. (5) Time-fixed 

effects and county-fixed effects are included for all the model specifications. 
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Table 1. 13 Robustness Check – Distant PM and Distant Wildfires as IVs 
 Main Analysis  Robustness Check 

 

DistPM 

(≥100km) & 

DistPM_Fire 

(30~100km, 10 ~ 999 

acres) 

 DistPM (≥100km) & DistFire (30~100km) 

 

DistFire 

(0.26~299 

acres) 

DistFire  

(10 ~ 999 

acres) 

DistFire (All 

lightning-caused 

fire acres) 

Dependent Variable: All-cause Deaths 

HI 0.0016***  0.0016*** 0.0017*** 0.0016*** 

 (3.28)  (3.26) (3.33) (3.36) 

PM 0.0211***  0.0213*** 0.0198*** 0.0174*** 

 (5.40)  (5.41) (5.43) (4.07) 

Residuals -0.0164***  -0.0167*** -0.0152*** -0.0126*** 

 (-4.54)  (-4.57) (-4.47) (-3.19) 

𝜒2-statistics 
0.17  0.07 0.91 7.64 

[0.6843]  [0.7924] [0.3406] [0.0057] 

Dependent Variable: Respiratory System Disease Deaths 

HI 0.0057***  0.0057*** 0.0057*** 0.0056*** 

 (5.28)  (5.30) (5.31) (5.26) 

PM 0.0255***  0.0236*** 0.0243*** 0.0259*** 

 (3.49)  (3.38) (3.80) (3.73) 

Residuals -0.0237***  -0.0217*** -0.0226*** -0.0242*** 

 (-3.24)  (-3.15) (-3.53) (-3.49) 

𝜒2-statistics  
0.28  1.35 0.56 0.11 

[0.5965]  [0.2447] [0.4534] [0.7431] 

Dependent Variable: Circulatory System Disease Deaths 

HI 0.0023***  0.0023*** 0.0024*** 0.0024*** 

 (3.61)  (3.60) (3.64) (3.69) 

PM 0.0109**  0.0118*** 0.0097** 0.0073 

 (2.53)  (2.58) (2.35) (1.50) 

Residuals -0.0099**  -0.0109** -0.0087** -0.0061 

 (-2.34)  (-2.48) (-2.19) (-1.31) 

𝜒2-statistics  
1.03  2.33 0.15 0.33 

[0.3112]  [0.1272] [0.6943] [0.5639] 

F-statistics 

for IVs 

457.8425  471.1886 477.8983 446.3813 

[0.0000]  [0.0000] [0.0000] [0.0000] 

Obs. 32912  32912 32912 32912 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) p-values of test 

statistics in squared brackets. (4) Standard errors are obtained from the block-bootstrap (500 

repetitions) procedure (drawing the entire FIPS code with replacement). (5) Time-fixed effects 

and county-fixed effects are included for all the model specifications. (6) The 𝜒2-statistics of 

overidentification tests are based on Wooldridge (2010), and the instrumental variable for distant 

PM2.5 attributed to lightning-caused wildfires is excluded. 
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Table 1. 14 First-stage Results - Distant PM and Distant Wildfires as IVs 

(DistPM(d≥100km) & DistFire (30km≤d≤100km)) 

Dependent variable: 

PM2.5 

(1) (2) (3) 

0.26~299 acres ≥100 acres 
All lightning-

caused fire acres 

Distant PM 0.0953*** 0.0964*** 0.0939*** 

 (29.87) (29.98) (29.69) 

DistFire 0.3272*** 1.1811*** 0.0005*** 

 (12.06) (14.11) (7.93) 

HI -0.0037 -0.0037 -0.0022 

 (-0.86) (-0.85) (-0.52) 

Population  -0.0008 -0.0006 -0.0005 

 (-0.15) (-0.12) (-0.10) 

% Under20  -0.0597*** -0.0606*** -0.0584*** 

 (-4.98) (-5.08) (-4.90) 

% Over64  -0.1284*** -0.1274*** -0.1277*** 

 (-9.65) (-9.67) (-9.61) 

% White  0.0067 0.0069 0.0087 

 (0.71) (0.73) (0.92) 

Urban population  -0.0065** -0.0059** -0.0062** 

 (-2.52) (-2.34) (-2.42) 

ln(GDP) 0.5834*** 0.5894*** 0.5798*** 

 (10.26) (10.39) (10.24) 

Obesity rate (F)  -0.0439*** -0.0435*** -0.0426*** 

 (-8.38) (-8.34) (-8.17) 

Obesity rate (M)  0.0237*** 0.0237*** 0.0251*** 

 (3.91) (3.94) (4.15) 

Smoking prevalence  0.0402*** 0.0398*** 0.0420*** 

 (6.22) (6.18) (6.51) 

F-statistics for  471.1886 477.8983 446.3813 

instruments [0.0000] [0.0000] [0.0000] 

Obs. 32912 32912 32912 

adj. R2 0.513 0.515 0.516 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) p-values of test 

statistics in squared brackets. (4) All the standard errors are clustered by county. (5) Time-fixed 

effects and county-fixed effects are included for all the model specifications.
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CHAPTER 2: THE IMPACTS OF WILDFIRES AND WILDFIRE-INDUCED AIR 

POLLUTION ON MORTALITY IN THE UNITED STATES 

1. Introduction  

Over the past several decades, the total acreage damaged by wildfires and the average size 

of wildfires in the United States (U.S.) have trended upward. According to the United States 

National Interagency Fire Center (U.S. NIFC), the average numbers of wildfire events and acres 

damaged between 1985 and 2018 are about 74,201 events and 5,330,465 acres, respectively, and 

the corresponding total fire suppression costs exceeded $3 billion in 2018. Moreover, there are 

nearly 50 million homes currently located in the wildland-urban interface (WUI) in the U.S., and 

this number increased by about one million every three years (Burke et al., 2021). This trend is 

expected to continue. Though some papers examined wildfire impacts in the field of ecology, 

epidemiology, and economics, relatively few studies investigate how wildfires influence human 

health, directly and indirectly. Clarifying the mechanisms by which wildfires influence human 

health and examining the extent of the direct and indirect health impacts provides additional 

scientific evidence to help policymakers efficiently allocate the resources to reduce wildfire risk. 

This paper aims to investigate how and to what extent wildfires affect mortality directly 

and indirectly. The analysis is based on the U.S. nationwide county-year panel dataset, which 

includes variables on wildfires, air pollution, and mortality and a series of variables on 

meteorology, economics, demographics, urbanization, and health status and behaviors. I apply the 

mediation analysis approach to explore the channels through which wildfires affect all-cause 

mortality, mortality caused by physical health problems (respiratory system diseases and 

circulatory system diseases), and mortality caused by mental health problems (suicide) and 

estimate the total, direct, and indirect impacts of wildfires. In particular, I focus on the air pollution 

channel. To address the potential endogeneity of air pollution, I construct two instrumental 

variables: wind-based and distance-weighted imported all-source air pollution and air pollution 

emitted from lightning-caused wildfires. Further, I quantify the spillover effects of wildfires and 

examine whether the causes of wildfires influence the estimation of wildfire-related health 

impacts. 

As a prelude to the complete set of findings, I find a significant positive association 

between local wildfire events and PM2.5 concentration level. As wildfire size increases, the adverse 

effect of wildfire on air quality increases. Meanwhile, wildfire occurrences are significantly and 
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positively associated with all categories of mortality. I apply the mediation analysis to distinguish 

the direct22 and indirect impacts of wildfire on mortality through air pollutant emissions. I find 

significant positive effects of wildfire-induced PM2.5 on all-cause mortality, mortality caused by 

respiratory system diseases, and mortality caused by circulatory system diseases. In contrast, the 

indirect impact of wildfires through PM2.5 on suicide is not significant. I conclude a 

complementary mediation for these three models based on Zhao et al. (2010), Wen and Ye (2014), 

and the present research.  However, there should be channels other than PM2.5 through which 

wildfires indirectly affect mortality. The indirect impacts of wildfires through PM2.5 account for 

about 58.12%, 46.98%, and 21.46% of the total effects of wildfires on all-cause mortality, 

mortality caused by respiratory system diseases, and mortality caused circulatory system diseases, 

respectively. Under the assumption that there is only one possible channel of air pollution through 

which wildfires influence suicide, the occurrences of wildfires with at least 100 acres are directly 

associated with a higher risk of suicide. In addition, I find that the direct impact of wildfires on 

suicide can be delayed and should be monitored in the long run. Overall, for the mortality resulting 

from suicide, there is no mediation effect through PM2.5. Further, the spillover effect of wildfires 

is significant and positive, which is even substantially larger than the local wildfire effect. Last, 

although most previous studies assume wildfires as exogenous, most of the wildfires are associated 

with or the result of human activities. This study finds that failing to consider the causes of 

wildfires will lead to upwardly biased estimates of health impacts. 

I contribute to the literature and provide the policy implications in the following ways. 

First, this paper offers a more comprehensive picture of the adverse health impacts of wildfires. 

Existing research mainly focuses on either the wildfire events per se or the wildfire-induced 

effects, among which wildfire-induced air pollution is the most widely studied. In this paper, I 

explore how and to what extent wildfires affect mortality both directly and indirectly and provide 

evidence of potential indirect health impacts of wildfires through channels other than air pollution. 

Second, the literature on the risks of suicide induced by wildfires and wildfire-caused disamenities 

is still limited. This study clarifies the sources of increased suicide risks from wildfires, which can 

help government officials provide post-disaster psychological support. Third, this paper delivers 

 
 
22 Since I only focus on the channel of air pollution, it is possible that the direct impact here should include the 

mixed direct impact and indirect impacts through channels other than air pollution.  
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precise estimates of wildfires' direct and indirect impacts through PM2.5 on physical and mental 

health on a national scale. Previous literature typically focuses on specific areas or wildfire events 

or uses imprecise measures of wildfire smoke (such as dummy variables). The panel dataset used 

in this paper covers 2,992 U.S. counties from 2001 through 201123, representing about 98.5% of 

the U.S. population. Fourth, I examine the necessity of distinguishing between human-caused and 

nature-caused wildfires24. Current research often treated wildfires as exogenously determined. 

However, most wildfires are caused by human activities. According to the Fire Program Analysis 

fire-occurrence database (FPA FOD) (Short, 2017), about 15.1% of wildfire events were caused 

by lightning over the 1992 to 2015 period across the contiguous U.S. This study references whether 

it is necessary to distinguish between wildfire causes. 

The rest of this paper is organized as follows. In the next section, I review the most relevant 

literature. Section three provides details on the data and methodology. Section four presents and 

discusses the empirical results, and the last section concludes. 

2. Literature Review 

2.1 Wildfires and Wildfires-induced Disamenities/Amenities 

 In recent decades, the annual fire acres and the total fire suppression costs exhibit an 

upward trend, although the frequency of wildfires is relatively stable, as shown in Figure 2. 1, 

based on wildfire statistics provided by NIFC. The upward trend is expected to continue due to 

more frequent and intensive extreme weather conditions such as extreme heat and drought.  Figure 

2. 2 presents the distribution of average wildfire acres across the contiguous U.S. from 2001 to 

2011, based on the Fire Program Analysis fire-occurrence database (Short, 2017). The data show 

that wildfires are heterogeneously distributed, with the western U.S. experiencing greater wildfire 

risk than the eastern regions. This observation is also consistent with the higher frequency of 

droughts in the western region.  

 

 

 

 
 
23 I focus on the period between 2001 and 2011 because of the data availability. The heat index data is only available 

before 2011. 
24 In the Fire Program Analysis fire-occurrence database (FPA FOD) (Short, 2017), the causes of wildfires include 

lightning, equipment use, smoking, campfire, debris burning, railroad, arson, children, miscellaneous, fireworks, 

powerline, structure, and missing/undefined. 
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Figure 2. 1 Wildfires Trends in the United States from 1985 to 2019 

 
Sources: Authors’ illustration. Data: National Interagency Fire Center, External Affairs 

Office25. 

 

As a natural disturbance that occurs in most terrestrial ecosystems, wildfires influence the 

air, soil, water, fauna, flora, fuels, recreation opportunities, cultural resources, and archeology 

(Sandberg et al., 2002; Neary et al., 2005; Venn and Calkin, 2011; Doerr and Santín, 2016). Among 

these non-market forest goods and services, wildfire smoke is a major threat to human health. The 

burning of biomass and soil-based organic matter can generate a large amount of haze and smoke, 

which have complex components such as greenhouse gases, photochemically reactive compounds, 

sulfur dioxide (SO2), particulate matter (PM), and liquids (Neary et al., 2005; Viswanathan et al., 

2006; Urbanski et al., 2008). Although the smoke components are complex, the primary pollutant 

is particulate matter (Sandberg et al., 2002; Stone et al., 2019). PM10, particles with aerodynamic 

diameters generally less than or equal to 10 μm, are comprised of fine particles (PM2.5), particles 

with aerodynamic diameters generally less than or equal to 2.5 μm, and coarse fractions (PM10-2.5), 

particles with aerodynamic diameters generally greater than 2.5 μm and less than or equal to 10 

μm (U.S. EPA, 2020). Particles from wildfire smoke tend to be very small (with a size range near 

 
 
25 Retrieved from https://www.nifc.gov/fireInfo/fireInfo_documents/SuppCosts.pdf on October 18, 2020. Provided 

by: Individual Federal Land Management Agencies. Fire totals include all private, state and federal lands in the 

United States for the year. Costs are provided for the FY. 
 

https://www.nifc.gov/fireInfo/fireInfo_documents/SuppCosts.pdf
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the wavelength of visible light (0.4-0.7 μm)), and about 90% of total particle masses consist of 

PM2.5 (Stone et al., 2019)26. PM2.5 can therefore be used as the primary measurement of wildfire 

smoke. Wildfire is an important PM source (Dawson et al., 2014; U.S. EPA, 2020). The U.S. EPA 

(2020) concluded that wildfires contribute to 10% ~ 20% of primary PM emissions in the U.S. 

annually. Other studies, such as Khawand (2015) and Burke et al. (2021), simulated or estimated 

the air pollution emitted from wildfires, finding that wildfires contribute roughly 15% to 25% of 

PM2.5 in the U.S., respectively. In contrast to the upward trend in wildfires, over the same period, 

the U.S. has experienced an overall declining trend in ambient concentrations of PM2.5 (1990-

2014) and the number of extreme PM2.5 days (2000-2009) (H. Zhang et al., 2017; U.S. EPA, 2020). 

On the one hand, these downward trends reflect the effectiveness of EPA’s stringent air quality 

regulations in recent decades (H. Zhang et al., 2017; U.S. EPA, 2020). On the other hand, it also 

indicates the growing relative importance of wildfires on PM2.5 and the importance of wildfire 

management and education.  

 

Figure 2. 2 Distribution of Wildfires in the United States from 2001 to 2011 

 
Source: Authors’ illustration. Data: Fire Program Analysis fire-occurrence database (FPA 

FOD). 

 

Wildfires do not always lead to environmental disamenities. It can positively or negatively 

influence the soil, water, fauna, flora, fuels, recreation opportunities, cultural resources, and 

 
 
26 Sandberg et al. (2002) summarized that 90% of all smoke particles are PM10, and 90% of PM10 is PM2.5. 
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archeology (Venn and Calkin, 2011). On the downside, the change of soil structure caused by fire 

can reduce soil productivity, increase the vulnerability of postfire runoff and erosion, lead to 

postfire floods, degrade water quality, etc. However, wildfires also increase the availability of 

nutrients for plant growth in the short term, reduce the potential for epidemic insect and disease 

infestations, provide more novelty of the burnt landscape, and reduce the risk of future wildfires, 

etc. (Neary et al., 2005; Venn and Calkin, 2011). 

2.2 Direct Health Impacts of Wildfires 

 The most direct health impacts from wildfires are the direct injuries and fatalities caused 

by wildfires. According to the National Oceanic and Atmospheric Administration's (NOAA’s) 

National Centers for Environmental Information (NCEI) Storm Events Database, 6,331 wildfire 

events between 1999 and 2017 resulted in about 87 and 8 direct injuries and fatalities on average 

per year, respectively27. However, these data do not capture suicide fatalities, which may not be 

observed directly or in the short term after wildfires.  

Most studies on the health impacts of wildfires focus on the indirect wildfire impacts, and 

even fewer studies explore the potential direct impacts of wildfire on mental health and suicide. 

Wildfires are classified as natural disasters by the U.S. EPA. Mental health risks associated with 

wildfires are less discussed than with other disasters such as earthquakes, floods, and tsunamis. 

Traumatic events can generate psychiatric pathology among those who experience such shocks 

(Caamano-Isorna et al., 2011). For example, property damages, injuries, and fatalities caused by 

wildfires can result in feelings of helplessness; children, the elderly, women, and single parents 

are particularly vulnerable (DeWolfe, 2000; Caamano-Isorna et al., 2011; Kõlves et al., 2013). 

Other vulnerability factors include pre-existing factors (such as cultural and socioeconomic 

background, and physical and psychological factors), natural disaster-related factors (such as type 

of event, the magnitude of the event, the threat to the life, and the extent of loss), and post-disaster 

factors (such as social support, coping skills, and secondary stressors) (DeWolfe, 2000; Kõlves et 

al., 2013). Previous studies found an association between wildfires and mental health issues, such 

as insomnia, post-traumatic stress disorder (PTSD), anxiety, depression, and risks of suicide 

 
 
27 Storm Events Database provided by National Oceanic and Atmospheric Administration's (NOAA’s) National 

Centers for Environmental Information (NCEI) is available at https://www.ncdc.noaa.gov/stormevents/ftp.jsp.    

The definitions and examples of direct injuries, indirect injuries, direct fatalities, and indirect fatalities caused by 

wildfires can be found at https://www.nws.noaa.gov/directives/sym/pd01016005curr.pdf.  

https://www.ncdc.noaa.gov/stormevents/ftp.jsp
https://www.nws.noaa.gov/directives/sym/pd01016005curr.pdf
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(McDermott et al., 2005; Caamano-Isorna et al., 2011; Papadatou et al., 2012; Psarros et al., 2017; 

Brown et al., 2019). In addition, a delayed increase in suicidal behaviors was found after a 

“honeymoon phase”28. Thus, potential suicidal behavior should be monitored several years after 

the disaster (Kõlves et al., 2013). 

2.3 Indirect Health Impacts of Wildfires 

Wildfires produce various non-market forest goods and services so wildfires can affect 

human health through multiple channels. Based on the NOAA’s NCEI Storm Events Database, 

there are about 19 and 2 indirect injuries and deaths caused by wildfires per year on average, 

respectively, among the 6,331 wildfire events recorded from 1999 to 2017. One example of 

indirect fatalities/injuries included in this database is “all vehicular accidents caused by reduced 

visibility due to smoke”. However, these statistics do not track the chronic disease's morbidity and 

mortality and suicides induced by wildfire-caused disamenities. Also, the amenities produced by 

wildfires, such as providing more recreational opportunities and reducing future carbon emissions, 

may provide health benefits.  

Wildfire smoke is the focus of this present research among the range of wildfire-caused 

disamenities and potential amenities. Wildfire smoke poses a threat to human health, and PM is 

the principal pollutant of concern from wildfire smoke (Stone et al., 2019). The health effects of 

PM are linked to the size of the particles. Large particles with aerodynamic diameters greater than 

10 micrometers can irritate the eyes, nose, and throat but do not usually reach the lungs (Stone et 

al., 2019). In contrast, small particles, PM10, PM10-2.5, and PM2.5, can be inhaled into the lungs and 

thus affect the lungs, heart, and blood vessels. PM2.5 is the most significant risk among these small 

particles since PM2.5 can reach deep into the lungs and may even enter the bloodstream (Stone et 

al., 2019). Previous studies documented the adverse impacts of PM on morbidity and premature 

mortality (Dominici et al., 2006; Brook et al., 2010; Hoek et al., 2013; Dawson et al., 2014; 

Khawand, 2015; H. Zhang et al., 2017; U.S. EPA, 2019). Besides, the U.S. EPA Integrated Science 

Assessment (ISA) for Particulate Matter Report (2019) concluded that causal relationships 

between exposure to PM2.5 and respiratory effects are likely to exist. This evidence of morbidity 

 
 
28 There are six phases that people may experience before, during, and after the natural disasters: the pre-disaster 

phase, the impact phase, the heroism (rescue) phase, the honeymoon (remedy) phase, the disillusionment phase, and 

the reorganization (reconstruction and recovery) phase (Pasnau and Fawzy, 1989; DeWolfe, 2000; Kõlves et al., 

2012). 
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provides biological plausibility for cause-specific mortality (such as mortality caused by 

respiratory and cardiovascular diseases) and ultimately total mortality (U.S. EPA, 2019).  

Many recent papers explored the health impacts of PM2.5 attributed to wildfires. Previous 

research found a strong association between wildfire smoke and respiratory morbidity and 

mortality, but the effects on cardiovascular morbidity showed mixed results (Liu et al., 2017; 

Dittrich and McCallum, 2020). Also, the wildfires-specific PM2.5 was more toxic than equal doses 

from other sources (or ambient PM2.5) and was associated with a higher respiratory effect than 

non-wildfire PM2.5 (Kochi et al., 2010; Dittrich and McCallum, 2020; Aguilera et al., 2021).  

Not only can wildfires trigger mental health problems, but wildfire-induced PM2.5 may also 

lead to mental health symptoms and an increased risk of suicide. However, many current papers 

focus on all-source PM2.5 rather than wildfire-specific PM2.5. Compared to the physical impacts of 

PM2.5, the literature on the psychological effects is limited and further research is still required. 

However, emerging evidence still shows associations between PM and adverse mental health 

outcomes (such as anxiety, depression, bipolar disorder, psychosis, and suicide) (Bakian et 

al.,2015; Lin et al., 2016; X. Zhang et al., 2017; Gładka et al., 2018; Lu et al., 2018; Braithwaite 

et al., 2019). Previous studies found that PM is associated with mental health symptoms such as 

depression and psychosis by influencing the nervous system and thus increasing the risks of suicide 

(Gładka et al., 2018; Braithwaite et al., 2019). People may perceive higher health risks from 

wildfire-specific air pollution than air pollution from urban air pollution sources (Kochi et al., 

2010). Further, people who experience wildfires are likely to suffer higher levels of stress due to 

this perception. The risks of suicide were heterogeneous between females and males and among 

people with different education levels (Lin et al., 2016). 

In addition to suicide, air pollution may increase crime and other antisocial behavior (Lu 

et al., 2018; Burkhardt et al., 2019; Burkhardt et al., 2020), thus increasing all-cause mortality. 

Potential pathways are that the air pollutants can induce anxiety, generate a sense of anonymity, 

diminish moral appropriateness, and spur impulsive aggressive behavior (Lu et al., 2018; 

Burkhardt et al., 2019).  

2.4 Existing Studies on Wildfire Smoke and Health Impacts of Wildfires 

One of the challenges of studies on wildfire-induced air pollution is distinguishing air 

pollution from wildfire and non-wildfire sources. Many previous studies focused on a specific 

wildfire event within a particular region. These studies explored the health impacts of wildfire 
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smoke by linking variations in air pollutants or air quality and health outcomes. Two typically 

applied methods are the time-series and historical control methods (Kochi et al., 2010). The 

historical control method compares the aggregate adverse health outcomes between the study and 

control periods but is not ideal for detecting relatively small health impacts (Kochi et al., 2010). 

In contrast, time-series analysis does not have sufficient statistical power since the wildfire event 

may not last for a long enough period (Kochi et al., 2010). Also, it fails to consider the 

transboundary effects and long-run effects of wildfire smoke. Since these studies focus on specific 

wildfire events, the variation in air quality and health outcomes in the particular areas were only 

observed before, during, and after the event. However, wildfire-induced air pollutants can be 

carried by wind and influence a broader spatial scale. Further, the direct impact of wildfires on 

suicide risks may be delayed (Kõlves et al., 2013), and the U.S. EPA also confirmed the adverse 

health impacts of long-term exposure to PM2.5 (U.S. EPA, 2019).  

Air pollution data used in previous research are typically from a local/nearby monitoring 

station. Recent studies used satellite-based data or statistical and geographical techniques to 

measure the ambient PM2.5 and wildfire smoke across broader spatial scales. Many papers used 

satellite-based smoke exposure data from the NOAA Hazard Mapping System (HMS). However, 

it measures the wildfire smoke with an indicator variable (thin, medium, or thick) and does not 

precisely measure air pollutant levels. As a result, it cannot be used to estimate the precise health 

impact of wildfire smoke corresponding to a specific air pollution exposure. Despite this, previous 

studies made good use of this dataset and derived various wildfire smoke measurements. Jones 

(2018) linked the smoke plume data with the county location and used the frequency of smoke 

days as the primary measurement for wildfire smoke. Miller et al. (2017) used a dummy variable 

to indicate whether a given day in the areas defined by zip code was covered by smoke. By further 

combing wildfire occurrence data from major wildland management agencies and the air pollution 

data from the EPA, Miller et al. (2017) found that wind patterns influenced the spread of wildfire 

smoke, and that smoke exposure was significant and transient. Also, similar to large-size wildfires, 

smoke from smaller-size wildfires can travel long distances (Miller et al., 2017).  

One approach to estimate wildfire-caused smoke is using chemical transport models 

(CTMs) such as GEOS-Chem. This method is typically used in studies of a single wildfire event, 

and it is computationally demanding and requires surmounting several major uncertainties in the 

pathway between source and receptor (Burke et al., 2021; Aguilera et al., 2021). Liu et al. (2017) 
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applied the GEOS-Chem model to estimate the daily PM2.5 attributable to wildfires in 561 western 

U.S. counties and found a significant association between short-term high wildfire-specific PM2.5 

and respiratory admissions. Instead of CTMs, some papers apply statistical approaches and the 

HMS data to estimate wildfire-specific smoke. These approaches do not require heavy 

computational effort and offer the advantage of modeling daily wildfire-specific PM2.5 with a fine 

resolution over a long study period and extensive area (Aguilera et al., 2021). Aguilera et al. (2020) 

employed four approaches to isolate the health impacts of wildfire-specific PM2.5 and found that 

the estimates of the wildfire-specific PM2.5 impact on respiratory admissions are similar though 

varying in amplitude. Burke et al. (2021) considered both fire and smoke information in HMS and 

constructed a statistical model to predict PM2.5 across the nation with and without wildfire smoke; 

the difference between the two predictions is the PM2.5 attributed to smoke.  

This paper aims to study both the direct wildfire effects and the indirect effects of wildfire 

through PM2.5, so I apply a mediation analysis approach, as presented in Section 3.2. I offer the 

following hypotheses based on the literature discussed above. 

Hypothesis 1: Wildfires can indirectly increase the mortality caused by chronic diseases such as 

respiratory and circulatory system diseases through emitting wildfire smoke. 

Hypothesis 2: Wildfires can directly increase suicide risks, and there may be a delayed impact.  

3. Data and Method 

This section introduces the data and method employed in this paper. As a general overview, 

I model fatalities as a function of several factors, including wildfire and wildfire smoke, 

meteorology, economics, demographics, urbanization, and health status and behaviors. The data I 

use in the evaluation are described next. 

3.1 Data 

Table 2. 1 provides the definitions and data sources of the variables used in empirical 

analysis, and the summary statistics are presented in Table 2. 2. I focus on all-cause deaths, 

physical health outcomes (deaths caused by respiratory system disease (International 

Classification of Diseases, Revision 10 (ICD-10) code: J00-J98), deaths caused by circulatory 

system disease (ICD-10 code: I00- I99)), and mental health outcome (deaths caused by suicide). 

County-level data for annual mortality in the United States are from the Center for Disease Control 

and Prevention (CDC) WONDER online database. 

The wildfire data are from the Fire Program Analysis fire-occurrence database (FPA FOD) 
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(Short, 2017). This database includes 1,880,465 wildfire events from 1992 to 2015. After 

excluding the observations for Puerto Rico, Alaska, and Hawaii, I have 1,835,646 observations in 

total29. I then generate wildfire occurrences and acres for each county by different sizes and causes. 

I assume that there is no wildfire event if there is no record for a specific county and specific year.  

PM2.5 is the principal pollutant of health concern from wildfire smoke; about 90% of total 

wildfire smoke particle mass emitted from wildfires consists of PM2.5 (Stone et al., 2019). In this 

paper, I use the annual concentration estimates of ground-level PM2.5 data collected from the 

Atmospheric Composition Analysis Group (ACAG)30 as the primary measurement of wildfire 

smoke31. Figure 2. 3 presents the distribution of the average PM2.5 in the United States from 2001 

to 2011. Generally, this map is consistent with the U.S. EPA ISA report (2019, 2020) that the 

eastern areas suffered a higher but more uniform level of PM2.5 than western areas, whereas 

California has a significantly higher level of PM2.5 than surrounding western states.  

I also include control variables on meteorology, economic and demographic factors, 

urbanization, and health status and behaviors. For the meteorological variables, I control for the 

average daily maximum heat index, average daily precipitation, and average daily sunlight. 

Meteorological variables are associated with and may also contribute to various health problems. 

The heat index, precipitation, and sunlight data are obtained from the CDC WONDER system and 

are initially from the North America Land Data Assimilation System (NLDAS)32. The heat index 

measures “how hot it really feels when relative humidity is factored in with the actual air 

 
 
29 Since some of the county information (643,450 out of 1,835,646 events) are missing in the database, I map the 

longitude and latitude of wildfire into the 2010 TIGER/Line Shapefiles of the county from the Census Bureau to 

obtain the missing county information, and I obtain additional 643,446 county FIPS codes. There are still four 

wildfire events without county information, and thus I drop these four events. Comparing the county FIPS codes in 

the database to the generated county FIPS codes from shapefile, there are 44,287 county information unmatched, 

and the overall unmatched rate is about 3.71%, which is very low. Considering that the wildfires may occur near the 

boundary, I treat these 44,287 wildfires as occurring in both counties. Because most of the dates on which the 

wildfires were declared contained (or controlled) are missing and I use annual wildfire information, I rely on the 

discovery date of wildfires. 
30 Surface PM2.5 dataset (North American Regional Estimates (V4.NA.03)) from Atmospheric Composition 

Analysis Group. Downloaded from https://sites.wustl.edu/acag/datasets/surface-pm2-5/#V4.NA.02.MAPLE on 

August 18, 2020. The shapefile of U.S. counties was downloaded from 

https://www2.census.gov/geo/tiger/TIGER2010/COUNTY/2010/.  
31 The county-level mean PM2.5 data is obtained by calculating the zonal statistics using ArcGIS Pro. 
32 The heat index defined by NOAA and heat index data provided by NLDAS are not available for temperature 

below 80°F (27°C).  

https://sites.wustl.edu/acag/datasets/surface-pm2-5/#V4.NA.02.MAPLE
https://www2.census.gov/geo/tiger/TIGER2010/COUNTY/2010/
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temperature”33. The heat index obtained from the CDC WONDER system is calculated based on 

Steadman (1979). After simplification, only the ambient dry bulb temperature and relative 

humidity were included in the heat index equation34.  

 

Figure 2. 3 Average Ground-level Particulate Matter (𝐏𝐌𝟐.𝟓) (µg/m³) (2001-2011) 

Source: Authors’ illustration. Data: North American Regional Estimates for Surface PM2.5 

(V4.NA.03), ACAG. 

 

Real per capita GDP (logarithm of chained 2012 dollars) measures local economic 

development, and the data are collected from the U.S. Bureau of Economic Analysis (BEA). 

Demographic variables include population size (in 10,000s), percentage of people under the age 

of 20, percentage of people over the age of 64, and percentage of people who are white, all of 

which are from the CDC WONDER database and the U.S. Census Bureau (CB). The percentage 

of the urban population measures urbanization and the data used are collected from the U.S. CB 

35. Health status and risky behaviors may also influence fatalities, especially fatalities induced by 

 
 
33 Heat Index. The U.S. National Oceanic and Atmospheric Administration National Weather Service (NOAA 

NWS). Retrieved from https://www.weather.gov/safety/heat-index on March 28, 2021. 
34 North America Land Data Assimilation System (NLDAS) Daily Air Temperatures and Heat Index, 1979 – 2011, 

on CDC WONDER. Retrieved from https://wonder.cdc.gov/wonder/help/Climate/ta_htindx.PDF on November 22, 

2019. 
35 Yearly data of the percentage of urban population over the period 1999 to 2010 are obtained by interpolation and 

extrapolation using the U.S. census data and shapefiles of U.S. urbanized areas and counties for years 2000 and 

2010. The shapefiles were downloaded from https://www.census.gov/geographies/mapping-files/2000/geo/carto-

boundary-file.html and https://www2.census.gov/geo/tiger/TIGER2010/. 
 

https://www.weather.gov/safety/heat-index
https://wonder.cdc.gov/wonder/help/Climate/ta_htindx.PDF/
https://www.census.gov/geographies/mapping-files/2000/geo/carto-boundary-file.html
https://www.census.gov/geographies/mapping-files/2000/geo/carto-boundary-file.html
https://www2.census.gov/geo/tiger/TIGER2010/
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diseases. Therefore, I control for female and male obesity prevalence and the prevalence of people 

who smoke, which are collected from the Institute for Health Metrics and Evaluation (IHME). 

To address the endogeneity of air pollution, I construct the imported all-source PM2.5 and 

the PM2.5 caused by lightning-caused wildfires from distant counties as instrumental variables. 

These variables are created using exogenous sources: wind direction, geographic distance, and 

lightning phenomenon. The construction approach and discussion of their validity are presented in 

Section 3.2.2. To obtain the distances among counties, I use the 2010 TIGER/Line Shapefiles of 

U.S. counties from the Census Bureau and generate the distance weighting matrix. To incorporate 

the wind direction effects on the transport of air pollution, I collect the monthly zonal and 

meridional wind speeds data from Phase 2 of the North American Land Data Assimilation System 

(NLDAS-2) on the website of the National Aeronautics and Space Administration (NASA). The 

county-level monthly zonal and meridional wind speeds are calculated using ArcGIS Pro.  

I obtained a balanced panel dataset of 11 years spanning 2001 to 2011, covering 2,992 

counties in the 48 U.S. contiguous states and Washington, DC. This dataset covers about 98.5% 

of the U.S. population. I also include county-fixed effects and time-fixed effects, which control for 

the unobservable time-constant county-specific heterogeneity and the time-varying but county-

constant factors such as nationwide shocks that may have occurred in a given year, respectively.  

 

Table 2. 1 List of Variables in the Empirical Analysis 

Dependent Variables Source 

Health 

Outcomes 

All-cause Deaths 𝐷𝑒𝑎𝑡ℎ𝐴𝑙𝑙𝑖𝑡
 

CDC 

WONDER 

Deaths Caused by Respiratory System 

Diseases 
𝐷𝑒𝑎𝑡ℎ𝑅𝑖𝑡

 
CDC 

WONDER 

Deaths Caused by Circulatory System 

Diseases 
𝐷𝑒𝑎𝑡ℎ𝐶𝑖𝑡

 
CDC 

WONDER 

Deaths Caused by Suicide 𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡
 

CDC 

WONDER 

Explanatory/Control Variables Source 

Wildfires 

Annual Total Wildfire Occurrences 𝐹𝑖𝑟𝑒𝑂𝑐𝑐𝑖𝑡
 FPA FOD 

Annual Total Wildfire Acres 𝐹𝑖𝑟𝑒𝐴𝑐𝑟𝑒𝑠𝑖𝑡
 FPA FOD 

Annual Total Wildfire Occurrences Caused 

by Lightning  
𝐹𝑖𝑟𝑒𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔𝑂𝑐𝑐𝑖𝑡

 FPA FOD 

Annual Total Wildfire Acres Caused by 

Lightning  
𝐹𝑖𝑟𝑒𝑙𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔𝐴𝑐𝑟𝑒𝑖𝑡

 FPA FOD 

Air Pollution 
Average Ground-level Particulate Matter 

(µg/m³) 
𝑃𝑀𝑖𝑡 ACAG 
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Table 2. 1 (cont’d) 

Meteorology  

Average Daily Maximum Heat Index (F) 𝐻𝐼𝑖𝑡 
CDC 

WONDER 

Average Daily Precipitation (mm) 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡 
CDC 

WONDER 

Average Daily Sunlight (KJ/m²) (in 

thousands) 
𝑆𝑢𝑛𝑙𝑖𝑔ℎ𝑡𝑖𝑡 

CDC 

WONDER 

Economics 

Real Per Capita GDP (chained 2012 

dollars) (logarithm) 
𝐺𝐷𝑃𝑖𝑡 U.S. BEA 

Real Per Capita Income (dollars, based 

year:1977) (logarithm) 
𝐼𝑛𝑐𝑜𝑚𝑒𝑖𝑡 

U.S. BEA, 

U.S. BLS 

Poverty Rate (%) 𝑃𝑜𝑣𝑒𝑟𝑡𝑦𝑖𝑡 U.S. CB 

Demographics 

Population Size (in 10 thousand) 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑡 
CDC 

WONDER 

Percentage of the Young (under 20) (%) 𝑈𝑛𝑑𝑒𝑟20𝑖𝑡 U.S. CB 

Percentage of the Elderly (over 64) (%) 𝑂𝑣𝑒𝑟64𝑖𝑡 U.S. CB 

Percentage of the White (%) 𝑊ℎ𝑖𝑡𝑒𝑖𝑡 U.S. CB 

Urbanization 

Percentage of Urban Population (%)  𝑈𝑟𝑏𝑎𝑛𝑃𝑜𝑝𝑢𝑖𝑡 U.S. CB 

Percentage of Urban areas (%) 𝑈𝑟𝑏𝑎𝑛𝐴𝑟𝑒𝑎𝑖𝑡 U.S. CB 

Urban Population Density (per 1000 square 

meters) 
𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡 U.S. CB 

Health  

Prevalence of Obesity (Female) (%) 𝑂𝑏𝑒𝑠𝑖𝑡𝑦𝐹𝑖𝑡
 IHME 

Prevalence of Obesity (Male) (%) 𝑂𝑏𝑒𝑠𝑖𝑡𝑦𝑀𝑖𝑡
 IHME 

Prevalence of People Who Currently 

Smoke  (%) 
𝑆𝑚𝑜𝑘𝑖𝑛𝑔𝑖𝑡 IHME 

Time FE Year Indicator Variables 𝑇𝑡 - 

County FE County Indicator Variables 𝐶𝑖 - 

Instrumental Variables Source 

Instruments 

PM2.5 from Distant Counties (µg/m³) 𝐷𝑖𝑠𝑡𝑃𝑀 𝑖𝑡 
ACAG, U.S. 

CB, NASA 

PM2.5 Attributed to Lightning-caused 

Wildfires from Distant Counties (µg/m³) 
𝐷𝑖𝑠𝑡𝑃𝑀_𝐹𝑖𝑟𝑒𝑖𝑡  

ACAG, FPA 

FOD, U.S. 

CB, NASA 

 

Table 2. 2 Summary Statistics 

Variables 
Mean 

(2001~2011) 

Std. Dev. 

(2001~2011) 

Mean 

(2001) 

Mean 

(2011) 

All-cause Deaths 807.25 2183.75 798.12 830.10 

Deaths Caused by Respiratory System 

Diseases 
77.78 197.42 75.96 82.12 

Deaths Caused by Circulatory System 

Diseases 
278.87 800.31 306.41 258.81 

Deaths Caused by Suicide 11.25 29.81 10.03 12.96 

Annual Total Wildfire Occurrences 27.70 53.04 28.87 29.48 

Annual Wildfire Occurrences (≥100 acres) 0.84 2.56 0.75 1.19 
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Table 2. 2 (cont’d) 

Annual Total Wildfire Acres 1738.59 15376.82 1238.13 2808.87 

Annual Total Wildfire Occurrences Caused 

by Lightning  
4.04 18.15 4.63 4.10 

Annual Total Wildfire Acres Caused by 

Lightning  
875.92 12370.81 721.97 1074.30 

Average Ground-level Particulate Matter 

(PM2.5) (µg/m³) 
8.72 2.65 9.25 7.95 

Average Daily Maximum Heat Index (F) 90.14 3.71 89.64 92.24 

Average Daily Sunlight (KJ/m²) 16235.11 1584.03 16094.85 16606.98 

Average Daily Precipitation (mm) 2.76 1.05 2.55 2.77 

Real Per Capita GDP (chained 2012 dollars)  37956.90 26308.69 34676.84 40234.21 

Population Size 98184.63 311435.60 93784.86 102522.50 

Percentage of the Young (under 20) (%) 26.99 3.29 28.15 25.89 

Percentage of the Elderly (over 64) (%) 15.27 4.04 14.81 16.10 

Percentage of the White (%) 86.47 15.74 87.19 85.74 

Percentage of Urban Population (%)  42.19 30.70 41.52 42.79 

Prevalence of Obesity (Female) (%) 35.74 5.83 31.40 39.13 

Prevalence of Obesity (Male) (%) 33.41 4.33 28.81 37.17 

Prevalence of People Who Currently Smoke 

(%) 
25.86 4.06 27.03 24.41 

Number of Observations 32912 32912 2992 2992 

 

3.2 Method 

3.2.1 Direct and Indirect Impacts of Local Wildfires 

More recent papers applied a mediation analysis approach to conduct mechanism/channel 

studies (Alan et al., 2018; Pace et al., 2022; Shi, 2022). In this present paper, I also apply this 

approach to study how wildfires affect human health. Wildfires can, directly and indirectly, affect 

health through air pollution and other environmental considerations. Thus, these wildfire-caused 

environmental factors can be regarded as the mediating variables or mechanisms through which 

wildfires affect health outcomes. The relationship is shown in Figure 2. 4 and is represented by 

equations (1), (2), and (3). The direct impact of wildfires, 𝑐′, and the total indirect/mediation 

impact of wildfires, 𝑎𝑏, sum to yield the total effect of wildfires on health, 𝑐. Since there may be 

more than one mediating variable, the total mediation effect equals the sum of each path's 

mediation effects. The total effect equals the sum of the mediation effect and the direct effect. 

Since I only discuss the channel of air pollution in this paper, if the mediation effects of other 
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channels exist, then 𝑐′ should also include the indirect effects of other channels.  

 

𝑌 = 𝑐𝑇 + 𝑒1   (1) 

𝑀 = 𝑎𝑇 + 𝑒2   (2) 

𝑌 = 𝑐′𝑇 + 𝑏𝑀 + 𝑒3   (3) 

 

Figure 2. 4 Mediation Analysis 

 

 

 The most well-known and widely used way to conduct mediation analysis is the causal step 

approach as outlined in the classic paper of Baron and Kenny (1986), which requires the following 

three criteria for the establishment of mediation: (1) 𝑐 must be statistically significantly different 

from zero; (2) 𝑎  must be statistically significantly different from zero; and (3) 𝑏  must be 

statistically significantly different from zero and 𝑐′ is no longer statistically significant from zero. 

This approach has found to have the following problems: (1) the inferences about the indirect 

effects is based on the outcomes of hypothesis tests on 𝑎 and 𝑏, rather than the estimate of the 

indirect effect 𝑎𝑏, and the separate test of 𝑎 and 𝑏 are of the low power; (2) this approach involves 

several null hypothesis tests but only one inferential test of the indirect effect is needed; (3) whether 
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or not the mediation effect exists is just a qualitative claim, which is not based on a quantification 

of the indirect effect and does not carry information on uncertainty that can be reflected by a 

confidence interval; (4) the total effect, 𝑐, does not need to be statistically significantly different 

from zero because of the potential suppression (inconsistent mediation or competitive mediation), 

the lower power of the test of total effects, and the existence of subpopulations in which the total 

effects have different signs, etc. (MacKinnon et al., 2000; Zhao et al., 2010; Wen and Ye, 2014; 

Hayes, 2018).  

Recent studies further developed this approach and put forward some new procedures and 

tests for the mediation analysis (MacKinnon et al., 2000; Zhao et al., 2010; Imai et al., 2011; Wen 

and Ye, 2014). One important recommendation is that the establishment of the mediation effect 

should rely on the significance of the indirect effect, 𝑎𝑏, only, instead of the separate test of a and 

b, the indirect effect is examined directly by the testing 𝐻0: 𝑎𝑏 = 0 (Zhao et al., 2010). Many 

approaches have been put forward, including the Sobel test, bootstrap, the Monte Carlo, and the 

distribution of the product approaches36. The bootstrap approach is more widely recommended 

(Zhao et al., 2010; Wen and Ye, 2014; Hayes, 2018). Several bootstrap methods are typically used: 

The percentile bootstrap, bias-corrected bootstrap, and bias-corrected and accelerated bootstrap. 

Although the bias-corrected bootstrap and bias-corrected and accelerated bootstrap are better than 

the percentile bootstrap in principle, these approaches have an elevated risk of Type I error under 

certain conditions (Wen and Ye, 2014; Hayes, 2018).  

Another important development is the identification of the causal mediation effect. According 

to Imai et al (2011), “sequential ignorability” assumptions are needed to identify the causal 

mediation relationship, which can be written as equations (4) and (5). First, given a series of control 

variables, wildfire occurrence is independent of health outcomes and air pollution. Second, given 

 
 
36 One approach recommended by Baron and Kenny (1986) is the Sobel test, which is called the normal theory 

approach. However, the problems are that this method assumes a normal sampling distribution of 𝑎𝑏 and that this 

method has lower power and generates less accurate confidence intervals than other methods (Zhao et al., 2010; 

Hayes, 2018). Other methods to test indirect effects include bootstrap, the Monte Carlo, and the distribution of the 

product approaches. Compared to the Sobel test, the bootstrap method does not assume the sampling distribution of 

ab and has higher power than the normal theory approach (Hayes, 2018). The Monte Carlo approach relies on the 

fact that the distribution of 𝑎𝑏 is not normal, but the sampling distributions of 𝑎 and 𝑏 tend to be nearly normal 

(Hayes, 2018). In contrast, the distribution of the product approach relies on a mathematical approximation of the 

sampling distribution of the product (Hayes, 2018). Further, note that the bootstrap and Monte Carlo approaches are 

simulation-based and generate asymmetric confidence intervals that are preferred when the sampling distribution of 

the estimators is asymmetric (the sampling distribution of ab is usually asymmetric) (Hayes, 2018). 



  

73 
 

a series of control variables and wildfire occurrence, air pollution is independent of health 

outcomes.  

 

{𝑌𝑖(𝑚, 𝑡), 𝑀𝑖(𝑡)}⍊𝑇𝑖|𝑋𝑖 = 𝑥    (4) 

𝑌𝑖(𝑚, 𝑡)⍊𝑀𝑖(𝑡)|𝑇𝑖 = 𝑡, 𝑋𝑖 = 𝑥    (5) 

 

Following the procedures presented in equations 1, 2, and 3, I first estimate the total impacts 

of wildfires. Since the outcome variables are the number of annual deaths in each county, priority 

is the count data models. The distributions of death data have characteristics of non-negativity, 

discreteness, and left skewness, so I employ a conditional Fixed-effect Poisson quasi-maximum 

likelihood model. This model is robust to an arbitrary misspecified distribution and any serial 

correlation so long as the conditional mean is correctly specified (Cameron and Trivedi, 2013; 

Wooldridge, 2010). The regression equation for the total impact of wildfires is shown in equation 

(6).  

 

𝐸(𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡|𝐹𝑖𝑟𝑒𝑖𝑡 , 𝑋𝑖𝑡 , 𝐶𝑖 , 𝑇𝑡) = 𝐶𝑖 ∙ exp(𝛼𝑇𝐹𝑖𝑟𝑒𝑖𝑡 + 𝜶 ∙ 𝑿𝒊𝒕 + 𝑇𝑡 )  (6) 

 

I use the number of annual wildfire occurrences (at least 100 acres) as the primary 

measurement of wildfires for the baseline analysis. The covariates, 𝑿𝒊𝒕, include variables on the 

meteorology, economics, demographics, degree of urbanization, health status/behaviors, and the 

percentage of lightning-caused wildfires, as introduced in Section 3.1. I include the percentage of 

lightning-caused wildfires because most wildfires are caused by human activities, which may be 

correlated with health outcomes. County fixed effects, 𝐶𝑖, and year fixed effects, 𝑇𝑡, are included 

as well. 

If equations (5) and (6) hold, I can then estimate the average causal mediation effect 

through equations (7) and (8). I test whether local wildfires significantly influence local air quality 

in the next step, as shown in equation (7). Similarly, I use the number of annual wildfire 

occurrences (at least 100 acres) as the primary measurement of wildfires as the baseline analysis. 

The number of annual wildfire occurrences with other fire sizes and the annual wildfire acres are 

used as alternative substitutes for robustness checks. The covariates, 𝑬𝒊𝒕, include all the control 

variables in equation (6) but the health status and behavior variables. As previously noted, county-
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fixed effects, 𝐶𝑖, and the time-fixed effects, 𝑇𝑡, are included. 

 

𝑃𝑀𝑖𝑡 = 𝛾0 + 𝛾1𝐹𝑖𝑟𝑒𝑖𝑡 + 𝜸 ∙ 𝑬𝒊𝒕 + 𝑇𝑡 + 𝐶𝑖 + 𝑢𝑖𝑡   (7)       

 

I include PM2.5 in equation (6) in the last step, as shown in equation (8). Then I can use the 

percentile bootstrap to test the indirect effect, 𝛾1 ∗ 𝛽𝑃, directly. Since I use the Fixed-effect Poisson 

model, 𝛾1 ∗ 𝛽𝑃 is an approximation of indirect impact. The formula for the indirect effect of one 

additional wildfire event (at least 100 acres) on fatalities is (𝑒𝑥𝑝 (𝛾1 ∗ 𝛽𝑃) − 1) ∗ 100%, which 

can be approximated by 𝛾1 ∗ 𝛽𝑃.  

 

𝐸(𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡|𝐹𝑖𝑟𝑒𝑖𝑡 , 𝑃𝑀𝑖𝑡 , 𝑿𝑖𝑡 , 𝐶𝑖 , 𝑇𝑡) = 𝐶𝑖 ∙ exp(𝛽𝐷𝐹𝑖𝑟𝑒𝑖𝑡 + 𝛽𝑃𝑃𝑀𝑖𝑡 + 𝜷 ∙ 𝑿𝒊𝒕 +  𝑇𝑡 )  (8) 

  

Given that previous studies show a delayed effect of wildfires on suicide, I also explore the 

longer-term effect of wildfires by adding extra 1-year lags of wildfires and the percentage of 

lightning-caused wildfires. 

3.2.2 Addressing Endogeneity of PM2.5 

 However, the second assumption, i.e., equation (5) may not hold, because PM2.5 may still 

be correlated with unobserved factors in the error term even when I have added a series of control 

variables above along with the county and year fixed effects. For instance, an efficient government 

may enact more stringent environmental policies to control air pollution and provide better access 

to medical care. In addition, the sectoral composition of an economy may not be fully captured by 

GDP. For example, a higher share of economic activity in the industrial sector can lead to larger 

emissions of air pollutants. Another potential unobservable can stem from avoidance behaviors. 

People concerned about detrimental local air quality may choose to move to other counties. These 

omitted demographic characteristics may be associated with local health outcomes as well.  

To address this problem, Imai et al. (2011) suggested applying an instrumental variable 

approach. Because I use a Fixed-effect Poisson model in equation (8), I then apply the Control 

Function (CF) approach to address this concern. At least one excluded exogenous variable is 

required (Wooldridge, 2010, 2015). Previous literature explored a variety of instrumental variables 

for air pollution. In this paper, I follow the instrumental variable construction method adopted in 

previous papers such as Bayer et al. (2009), Zheng et al. (2014), Tan-Soo (2018), Barwick et al. 
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(2018), Yang and Zhang (2018), and Chen et al. (2021). I construct the wind-driven distance-

weighted imported all-source PM2.5 and PM2.5 attributed to the lightning-caused wildfires as 

instrumental variables. These two instrumental variables are defined as follows: 

 

𝐷𝑖𝑠𝑡𝑃𝑀𝑖𝑡 = ∑ 𝑃𝑀𝑗𝑡 ∗ 𝐼(𝑊𝐷𝑗𝑡 =  𝐺𝐷𝑗𝑖) ∗
1

𝑑𝑖𝑗
𝑝

𝑖≠𝑗

, 𝑑𝑖𝑗
𝑝

≥ 100𝑘𝑚      (9) 

𝑃𝑀𝑖𝑡 = 𝜋𝑙𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠_𝑙𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔𝑖𝑡 + 𝐶𝑖 +  𝑇𝑡 + 𝑢𝑖𝑡   (10) 

𝐷𝑖𝑠𝑡𝑃𝑀_𝐹𝑖𝑟𝑒𝑖𝑡 = ∑ 𝑃𝑀𝑗𝑡̂ ∗ 𝐼(𝑊𝐷𝑗𝑡 =  𝐺𝐷𝑗𝑖) ∗
1

𝑑𝑖𝑗
𝑓

𝑖≠𝑗

,    30𝑘𝑚 ≤ 𝑑𝑖𝑗
𝑓

≤ 100𝑘𝑚      (11) 

 

𝑊𝐷𝑗𝑡 represents the dominant wind direction(s) in county j at year t, which is defined as 

the most frequent wind direction(s) within 12 months in county j at year t. 𝐺𝐷𝑗𝑖 is the geographic 

direction of the vector from county j to county i. Both 𝑊𝐷𝑗𝑡 and 𝐺𝐷𝑗𝑖 have four categories and are 

defined by the quadrants, in which the dominant wind direction vector and the vector from county 

j to county i fall. 𝑃𝑀𝑗𝑡̂  denotes the predicted PM2.5 attributed to lightning-caused wildfires. 

𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠_𝑙𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔𝑖𝑡 denotes the number of occurrences of lightning-caused wildfires with 10 

~ 999 burned acres. For each equation, I consider two types of weights, which are based on wind 

direction and geographic distance. For the imported all-source PM2.5 in county i at year t, 

𝐷𝑖𝑠𝑡𝑃𝑀𝑖𝑡, I consider the annual mean PM2.5 imported from upwind counties located at least 100 

km away from county i. The PM2.5 is weighted by the reciprocal of geographic distance (km), as 

presented by equation (9). The farther the county locates, the smaller the spillover effect of distant 

PM2.5 has on local PM2.5. For the distant PM2.5 attributed to lightning-caused wildfires in county i 

at year t, 𝐷𝑖𝑠𝑡𝑃𝑀_𝐹𝑖𝑟𝑒𝑖𝑡, I consider the lightning-caused wildfires with 10 ~ 999 burned acres in 

upwind counties located between 30 km and 100 km away from county i. I first predict the PM2.5 

attributed to lightning-caused wildfires for each county by regressing the local PM2.5 on the 

occurrences of lightning-caused wildfires and the year and county-fixed effects. The lightning-

caused wildfires can be regarded as an exogenous source of local PM2.5, as presented in equation 

(10). Then, I use a similar approach to construct the imported PM2.5 due to distant lightning-caused 

wildfires, as presented by equation (11). 

To evaluate the robustness, PM2.5 attributed to distant lightning-caused wildfires with 0.26 

~ 299 burned acres and PM2.5 attributed to distant all-size lightning-caused wildfires are also 
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constructed 37 . Moreover, I consider different radius sizes of the buffer zones to check the 

robustness. The radius of the first buffer zone is 80 and 150 km, while the range of the second 

buffer zone is 30-80 km and 30-150 km, respectively. 

 

Figure 2. 5 Examples of Instrumental Variables Construction 

 
Note: For county i, the imported all-source PM2.5 is from the counties located outside the circle 

with a radius of 100 km, such as county 4, county 5, and county 6. For example, the vector from 

county 5 to county i falls in quadrant II and the dominant wind direction of county 5 in year t falls 

in quadrant II as well, so I assign the weight of wind direction to be one (i.e., I(𝑊𝐷5𝑡 =  𝐺𝐷5𝑖) =
1). The impact of imported all-source PM2.5 from county 5 is weighted by the reciprocal of the 

distance between county 5 and county i. The imported PM2.5 attributed to lightning-caused 

wildfires for county i is from counties within a circle of 100km but outside the circle of 30km such 

as county 2 and county 3. For county 3, both the vector from county 3 to county i and the dominant 

wind direction of county 3 fall in quadrant I (i.e., I(𝑊𝐷3𝑡 =  𝐺𝐷3𝑖) = 1). The imported PM2.5 

attributed to lightning-caused wildfires from county 3 is weighted by the reciprocal of the distance 

between county 3 and county i. 

 

 
 
37 The distant lightning-caused wildfires with 0.26 ~ 299 burned acres (0.001~ 1.210 km2) is measured using the 

number of occurrences and the distant all-size lightning-caused wildfires is measured using the total burned acres. In 

addition, the number of lightning-caused wildfire events with fire acres greater than 30*30 km2 (about 222,395 

acres) from 2001 to 2011 in the dataset is only 27 (there are 134,481 lightning-caused wildfire events in total). 
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Figure 2. 6 Distribution of Average Distant PM2.5 (µg/m³) (2001-2011) 

 
 

Figure 2. 7 Distribution of Average PM2.5 (µg/m³) Attributed to Distant Lightning-caused 

Wildfires (2001-2011) 

 
 

Figure 2. 5 shows examples to illustrate the construction of instrumental variables. Figure 

2. 6 and Figure 2. 7 show the spatial distributions of the average DistPM and DistPM_Fire from 

2001 to 2011. The all-source PM2.5 is imported from counties that locate 100 km away and the 

PM2.5 attributed to lightning-caused wildfires (10 ~ 999 acres) is imported from counties located 

in a range of 30 ~ 100 km away. These two figures highlight the counties that suffered the more 

all-source PM2.5 and PM2.5 attributed to lightning-caused wildfires from distant counties over the 

2001-2011 period. Influenced by the wind direction, the distribution of distant PM2.5 shows some 
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differences with the local PM2.5, but in general, eastern areas suffered more imported all-source 

air pollution. The transboundary externalities of wildfire-caused PM2.5 are more significant in the 

western and southern areas. It is also consistent with the higher temperature and more droughts in 

the west U.S. However, considering that Florida experienced a significantly higher level of PM2.5 

resulting from lightning-caused wildfires than other states, we also conducted a robustness 

examination excluding Florida.   

Next, I discuss the validity of these instrumental variables. The valid IVs should satisfy 

two conditions: relevance and exogeneity. First, PM2.5 in other counties should be associated with 

PM2.5 in the focal county. Previous studies have found evidence of the significant transboundary 

spillover effect of air pollution, and this spillover effect is mainly driven by the wind and associated 

with distance (Bayer et al., 2009; Banzhaf and Chupp, 2010; Luechinger, 2010; Khawand, 2015; 

Zheng et al., 2014; Barwick et al., 2018; Yang and Zhang, 2018; Chen and Ye, 2019; Williams 

and Phaneuf, 2019; Zheng et al., 2019; Chen et al., 2021). I also consider the impact of lightning-

caused wildfires on air pollution since wildfire is an important PM source (Khawand, 2015; U.S. 

EPA, 2020). Moreover, the previous finding shows that similar to large-sized wildfires, smoke 

from smaller-sized wildfires can also travel long distances (Miller et al., 2017). Because distant 

wildfires should affect the air quality in distant counties and distant air pollutants can be carried 

by the wind across counties, I expect a significant positive association between air pollution 

attributed to distant wildfires and local air pollution. The F-statistics of instrumental variables 

obtained in the first-stage regression of the control function approach (as presented in Section 4) 

indicate that these two instrumental variables are strong predictors of PM2.5. 

Second, the instrumental variables should not directly influence the outcome variables. To 

minimize the likelihood that nearby PM2.5 is correlated with the variables influencing the health 

outcomes in the focal county, I create two buffer zones and exclude counties outside the buffer 

zones. Based on previous studies, I set the radius of the buffer zone to be 100 km for the distant 

all-source PM2.5. Given that I do not use any information on counties located near 100 km, I create 

the second instrumental variable, which considers the transboundary externalities of PM2.5 

attributed to lightning-caused wildfires at the second buffer zone. The second buffer zone is 30 km 

away from the focal counties but within the first buffer zone of 100 km. The lightning-caused 

wildfires are an exogenous natural cause, so the PM2.5 emitted by these wildfire events is very 

unlikely to be associated with local characteristics that influence local health outcomes. However, 
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there is still a small possibility that lightning-caused wildfires may lead to accidental deaths. 

Therefore, I exclude the counties within 30km, given that I focus on wildfires with less than 1000 

acres (about 4.05 km2). In addition, most direct fire fatalities (not restricted to wildfires), about 

50%-80%, are caused by smoke inhalation and not burns (Holstege, 2019; NFPA, n.d.). According 

to the NOAA’s NCEI Storm Events Database, as discussed above, the number of direct injuries 

and fatalities from wildfires is relatively small. The fatalities caused by wildfire smoke inhalation 

are also attributed to direct fatalities in this dataset.  

Previous studies also applied wildfire-related IVs. Khawand (2015) simulated PM2.5 

resulting from large-size wildfires and used it as the instrumental variable to estimate the PM2.5-

related health impacts and found that wildfires contribute to at least 15% of ambient ground-level 

PM2.5. Tan-Soo (2017) constructed a wind- and distance-based forest fire hotspots instrument for 

PM2.5. Based on their works, I restrict wildfires to be those caused by the exogenous source, 

lightning. Also, I address the concern that other pollutants (other than PM2.5) emitted by wildfires 

may also be carried by wind and affect local health outcomes. Three pollutants (particulate matter, 

ozone, and carbon monoxide) are major concerns during wildfire smoke events (Stone et al., 2019).  

First, PM2.5 is the primary threat to public health38 (Stone et al., 2019). Second, carbon monoxide 

dilutes rapidly, so it is rarely a concern unless people are in very close proximity to the wildfires 

(Stone et al., 2019). Thus, carbon monoxide is unlikely to travel to the focal county and influence 

local health. Third, ozone is not emitted from a wildfire, but forms in the plume as wildfire smoke 

moves downwind (Stone et al., 2019). Thus, ozone can be another channel through which distant 

wildfires influence local health. Therefore, I consider the contribution of wildfires on PM2.5 and 

address the concern of other air pollutants by using the predicted PM2.5 emitted by distant 

lightning-caused wildfires.  

In addition to excluding the nearby counties and using the exogenous natural cause, 

lightning, other factors used to construct instrumental variables are the exogenous wind direction 

and geographic distance. These factors further ensure the exogeneity of the instrumental variables. 

To further increase confidence in these instrumental variables, following the methodology 

described in Wooldridge (2010), I conduct an overidentification test, which is also applied by 

 
 
38 Particles from wildfire smoke tend to be very small (with a size range near the wavelength of visible light (0.4-0.7 

μm)), and about 90% of total particle masses consist of PM2.5 (U.S. EPA, 2019a), so PM10−2.5 (PM10 is comprised 

of PM2.5 and PM10−2.5) is not a major concern. 
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Wrenn et al. (2017). Section 4 presents the overidentification test results, which indicate that I 

cannot reject the hypothesis that the instrumental variables are exogenous. 

I, therefore, use the instrumental variables and employ the control function approach. In 

the first stage, I use the fixed-effect model and regress the endogenous variable, air pollution, on 

distant PM2.5, distant lightning-caused wildfires, all the other exogenous variables contained in the 

previous models, and county and time-fixed effects. This regression can break the correlation 

between the endogenous variable and unobservable factors affecting the dependent variables 

(Wooldridge, 2010). The first-stage regression equation is: 

 

𝑃𝑀𝑖𝑡 = 𝜃0 + 𝜃𝑓𝐹𝑖𝑟𝑒𝑖𝑡 + 𝜽𝑰𝑽𝑰𝑽𝒊𝒕 + 𝜽 ∙ 𝑿𝒊𝒕 + 𝐶𝑖 + 𝑇𝑡 + 𝜀𝑖𝑡   (12) 

 

The fixed effect residuals (𝜀𝑖𝑡̂) of the first-stage regression can be regarded as the “control” for the 

endogeneity of air pollution (Wooldridge, 2015). I then add 𝜀𝑖𝑡̂ into equation (6) as the second-

stage regressions: 

 

𝐸(𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡|𝐹𝑖𝑟𝑒𝑖𝑡 , 𝑃𝑀𝑖𝑡 , 𝑿𝑖𝑡 , 𝐶𝑖 , 𝑇𝑡)

= 𝐶𝑖 ∙ exp(𝛽𝐷′𝐹𝑖𝑟𝑒𝑖𝑡 + 𝛽𝑃′𝑃𝑀𝑖𝑡 + 𝛽𝑟𝜀𝑖𝑡̂  + 𝜷′ ∙ 𝑿𝒊𝒕 + 𝑇𝑡 )  (13) 

 

Since the residuals depend on the estimates of parameters in the first-stage regression, the 

variance matrix estimators for parameters in the second-stage regression need to be adjusted to 

account for this dependence (Wooldridge, 2010). A block-bootstrap procedure (500 repetitions) 

draws from the entire FIPS code with replacement to correct the standard errors (Wooldridge, 

2010; Schlenker and Walker, 2016). I examine the endogeneity of air pollution by testing whether 

the coefficient of residuals is equal to zero. Using the two-stage control function approach, the 

indirect effect equals 𝜃𝑓 ∗ 𝛽𝑃′. Again, since I use the Fixed-effect Poisson model, 𝜃𝑓 ∗ 𝛽𝑃′ is just 

the approximation of indirect impact. The formula for the indirect effect of one additional wildfire 

event (at least 100 acres) on fatalities is (𝑒𝑥𝑝 (𝜃𝑓 ∗  𝛽𝑃′) − 1) ∗ 100% , which can be 

approximated by 𝜃𝑓 ∗ 𝛽𝑃′.  

Following the methodology described in Wooldridge (2010) and applied by Wrenn et al. 

(2017), I add one of two IVs to the right-hand side of the second stage regression equation (i.e., 

equations (9) and (10), and then perform a significance test for this IV. The test result is invariant 
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to which subset of IVs I add. I include the distant PM2.5 to the second stage regression, as presented 

in equation (11).  To correct the standard errors, as before, I use the block-bootstrap procedure 

(500 repetitions). 

 

𝐸(𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡|𝐹𝑖𝑟𝑒𝑖𝑡 , 𝑃𝑀𝑖𝑡 , 𝑿𝒊𝒕, 𝐶𝑖 , 𝑇𝑡)

= 𝐶𝑖 ∙ exp(𝜑ℎ𝐹𝑖𝑟𝑒𝑖𝑡 + 𝜑𝑝𝑃𝑀𝑖𝑡 + 𝜑𝐼𝑉𝐷𝑖𝑠𝑡𝑃𝑀𝑖𝑡 + 𝜑𝑟𝜀𝑖𝑡̂  + 𝝋 ∙ 𝑿𝒊𝒕 + 𝑇𝑡 )  (14) 

 

3.2.3 Spillover Effect of Wildfires 

 To study the spillover effects, I need to construct variables representing how many 

wildfires occur in upwind counties. Therefore, by combing the monthly wildfire and wind direction 

data, I calculate the wildfire occurrences or acres in the upwind counties. Since the effect of 

wildfire on local air quality decreases as travel distance increases, I use the reciprocal of 

geographic distance as the decay factor. The upwind wildfires are defined as follows: 

 

𝑈𝑝𝑤𝑖𝑛𝑑𝐹𝑖𝑟𝑒𝑠𝑖𝑡 = ∑ ∑ 𝐹𝑖𝑟𝑒𝑠𝑗𝑚𝑡 ∗ 𝐼 (𝑐𝑜𝑠𝜃𝑖𝑗𝑚𝑡 > 0) ∗
1

𝑑𝑖𝑗
𝑖≠𝑗

12

𝑚=1

   (15). 

 

where 𝑑𝑖𝑗 is the distance between the counties i and j. 𝜃𝑖𝑗𝑚𝑡  is the angle between the vector from 

county j to i and the vector of wind direction in county j in month m year t. I consider two types of 

weights based on wind direction and geographic distance. The upwind wildfires in county i at year 

t, 𝑈𝑝𝑤𝑖𝑛𝑑𝐹𝑖𝑟𝑒𝑠𝑖𝑡, is weighted by the reciprocal of geographic distance (km), 𝑑𝑖𝑗, and I consider 

the wildfire events only when the angle between the vector of monthly wind direction and the 

vector of geographic location (i.e., 𝜃𝑖𝑗𝑚𝑡  ) is less than 90 degrees (i.e., I(𝑐𝑜𝑠𝜃𝑖3𝑚𝑡 > 0) = 1). 

Since the impact of wildfires on air pollution may be temporary, I consider the occurrences and 

wind direction in each month and sum up the weighted occurrences to generate the annual 

weighted occurrences of wildfires. Similarly, wildfires can be measured using the number of 

annual wildfire occurrences with different fire sizes and the annual wildfire acres. I examine how 

the upwind wildfires influence the local PM2.5 first, as shown in Equation (8), and the spillover 

effect of upwind wildfires equals 𝛾1′ ∗ 𝛽𝑃 (𝛾1′ ∗ 𝛽𝑃′ if considering the endogeneity issue).  
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𝑃𝑀𝑖𝑡 = 𝛾0′ + 𝛾1′𝐹𝑖𝑟𝑒𝑖𝑡 + 𝛾2′𝑈𝑝𝑤𝑖𝑛𝑑𝐹𝑖𝑟𝑒𝑠𝑖𝑡 + 𝜸′ ∙ 𝑬𝒊𝒕 + 𝑇𝑡 + 𝐶𝑖 + 𝑢𝑖𝑡   (16)       

 

3.2.4 Distinguishing Wildfire Causes 

 Previous studies usually assume that wildfire is exogenous and do not consider the potential 

endogeneity of wildfire-caused air pollution when studying the health impacts of wildfires and 

wildfire smoke. In the previous section, I control for the percentage of lightning-caused wildfires. 

This section tests whether there are significant differences in the health impacts with and without 

considering the causes of wildfires. The null hypothesis is that the indirect impacts of wildfires 

should not be significantly different with and without including the percentage of lightning-caused 

wildfires. To check the robustness, I include the percentage of the wildfires caused by powerlines 

and railroads among the human-caused wildfires and test whether the indirect impacts will 

significantly differ under these three specifications. 

4. Results 

4.1 Direct and Indirect Impacts of Local Wildfires 

 The baseline results using mediation analysis are presented in Table 2. 3. To examine the 

delayed impact of wildfires on suicide, I add a one-year lag term for wildfires and the percentage 

of lightning-caused wildfires. The estimation results on the all-cause deaths and deaths caused by 

suicide are presented in Table 2. 4. I then estimate the increases in fatalities due to a one standard 

deviation (SD) (≈2.56) increase in wildfires events (≥ 100 acres), as shown in Table 2. 5.  

I first examine the total impact of wildfires on mortality, which is positive and significant 

for all the models, as shown in Panel A of Table 2. 3 (please see Table 2. 9 of the Appendix for 

the complete results). Note that a significant total impact is not necessary to establish the 

(mediation) indirect effect. Given that the data covers about 98.5% population in the U.S., the 

results represent the population of the whole country. The annual average of all-cause deaths, 

deaths caused by respiratory system disease, deaths caused by circulatory system disease, and the 

deaths caused by suicide in the U.S. from 1999 to 2019 are around 2,543,934, 247,023, 850,241, 

and 37,756, respectively. Based on the estimates of total impact, I estimate the additional deaths 

due to a one standard deviation increase in wildfires events, as presented in Table 2. 5. A one 

standard deviation (≈2.56) increases in wildfires (with at least 100 acres) events occur, there will 

be an additional 7,835, 1,077, 3,052, and 97 fatalities in each of the above underlying fatality 

categories. 



  

83 
 

Next, as presented in Panel B of Table 2. 3, I find statistically significant and positive 

associations between wildfires and PM2.5, regardless of what measurements of wildfires are used 

(please see Table 2. 10 of the Appendix for the complete results). As the wildfire size increases, 

the magnitude of wildfire impact increases significantly. Also, note that the percentage of the 

lightning-caused (human-caused) wildfires is positively (negatively) associated with PM2.5, 

especially when I focus on larger-size wildfires. This result suggests that it is necessary to control 

the causes of wildfires because the percentage of lightning-caused (human-caused) wildfires is 

correlated with factors that influence the health outcomes, such as economic activity and local 

government effectiveness.  

 Panel C of Table 2. 3 presents the direct and indirect impacts of wildfires. The complete 

results can be found in Appendix. Since I only focus on the channel of air pollution, the coefficient 

for wildfires includes both direct impacts of wildfires and indirect impacts through other channels 

(if they exist). First, according to the first-stage regression results, the F-statistic is about 438.7 

(see Appendix for complete results), so the instrumental variables are strong predictors of local 

PM2.5. In addition, the overidentification tests show that I cannot reject the null hypothesis that the 

instrumental variables are exogenous. 

Second, I find evidence for the endogeneity of PM2.5 in the models for all-cause deaths, 

deaths caused by respiratory system diseases, and deaths caused by circulatory system diseases 

since the residuals in the above three models are negative and significant. This result also indicates 

that the omitted factors associated with PM2.5 are negatively associated with mortality. Therefore, 

I focus on the results using the control function approach for the three models, as presented in 

columns 2, 4, and 6. For suicide, I focus on the result using the Fixed-effect Poisson regression, as 

presented in column 7.  

Third, this paper distinguishes between the adverse health impact directly from wildfires 

and indirectly from wildfire-induced PM2.5. For all-cause deaths, deaths caused by respiratory 

system diseases, and deaths caused by circulatory system diseases, the mediation (indirect) effects 

of wildfire-induced PM2.5 are statistically significant and positive. After addressing the 

endogeneity problem of PM2.5, the magnitudes of indirect effect increase substantially, whereas 

the magnitudes of coefficients of wildfires decrease. Since it is very unlikely that people who died 

from underlying causes of respiratory and circulatory system diseases are killed in the wildfires at 

the same time, wildfires are expected to have no direct impact on mortality caused by respiratory 
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and circulatory system diseases. Thus, the significant and positive coefficients of wildfires indicate 

that there may be other potential channels through which wildfires influence human health. Based 

on the work of Zhao et al. (2010) and Wen and Ye (2014), I conclude that there is a complementary 

mediation, and there should be other channels through which wildfires influence human health. 

This question will be explored in future research. Similarly, I estimate the additional fatalities due 

to the increases of PM2.5 emitted by a one standard deviation (≈2.56) additional wildfires (with at 

least 100 acres) events. The additional wildfires are indirectly associated with 4,554, 506, and 655 

additional all-cause deaths, deaths caused by respiratory system diseases, and deaths caused by 

circulatory system diseases, respectively. In addition, the indirect impacts of wildfires via PM2.5 

take up about 58.12%, 46.98%, and 21.46%, respectively, of the total impact of wildfires on the 

three categories of mortality. 

For suicide, although the coefficient of wildfires is significant at a 10% significance level 

(column 7, Panel C of Table 2. 3), the indirect impact of wildfire-induced PM2.5 that is tested using 

percentile bootstrap is not significant. Combing the results of the significant total effect of wildfires 

on suicide (column 4, Panel A of Table 2. 3), I conclude that wildfires should directly influence 

the risks of suicide or through wildfire-induced environmental goods other than PM2.5. Further, 

under the assumption that PM2.5 is the only channel and that the total impact of wildfires only 

includes the direct impact and the indirect effect of PM2.5, I also explore the delayed direct effect 

of wildfires and whether the direct effect of wildfires varies with wildfire size. I include the lag 

terms of wildfires and the percentage of lightning-caused wildfires to identify the potential longer-

term impact of wildfires on suicide, as presented in column 2 of Table 2. 4. Wildfires that occurred 

in the previous year have a larger and more significant impact on suicide fatalities, increasing all-

cause deaths. This result is consistent with the literature that suicidal behavior may be delayed after 

natural disasters and should be monitored in the longer term. I then change the size of wildfires. 

Instead of using wildfires with at least 100 acres, I consider the larger-size wildfires, the wildfires 

with at least 10 acres, 300 acres, and 1000 acres. As shown in column 3 of Table 2. 4, when I 

include smaller-size wildfires, the direct impact decreases substantially and becomes insignificant. 

In contrast, if I only focus on larger wildfires, the direct impacts on suicide are larger and more 

significant (see columns 4 and 5 of Table 2. 4). Therefore, wildfire size matters; larger wildfires 

significantly increase the risk of suicide. The complete results regarding suicide are presented in 

Appendix. 
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4.2 Spillover Effects of Wildfires 

 As presented in Table 2. 6, I find that PM2.5 emitted by wildfires (≥ 100 acres) in other 

counties is often transported by wind and influences air quality in the focal county, thus leading to 

higher mortality. According to the results in Panel A, there are statistically significant positive 

impacts of upwind wildfires on local PM2.5 for all the measurements I use for the upwind wildfires. 

Meanwhile, the impacts of local wildfires are still significant and positive, except for the total 

occurrences of wildfires. Since the total occurrences include some extremely small wildfires 

(0~0.25 acres) and these small wildfires’ contributions to PM2.5 are trivial, the total number of 

occurrences is a less preferred measurement. Please see Appendix for complete results on the 

spillover and local effects of wildfires on air pollution.  

The spillover effects are presented in Panel B of Table 2. 6. There are positive and 

significant spillover effects of upwind wildfires for all the mortality categories, except for 

mortality caused by suicide. I then compare the spillover and local effects. I calculate the 

percentage changes of the mortality due to a one standard deviation change in local and upwind 

wildfires, the elasticities evaluated at mean levels of local and upwind wildfires, and the percentage 

change in mortality due to change in local and upwind wildfires from 2001 to 2011. Regardless of 

which method I use, I find consistent and substantially larger impacts of upwind wildfires than 

local wildfires. This result suggests that distant wildfires can pose substantially more significant 

detrimental impacts on human health through PM2.5 emissions and transportation. Therefore, 

wildfire management is essential for local governments as well as broader regional or national 

governments.  

4.3 Robustness Analysis 

 This section conducts a series of robustness checks on the construction of instrumental 

variables and the necessity of considering wildfire causes. First, I use different spatial ranges for 

the instrumental variables. In the baseline analysis, I chose counties at least 100 km away from the 

focal county to construct the distant all-source PM2.5 and counties within a range of 30-100 km 

away to construct the PM2.5 attributed to distant wildfires. In this section, I examine the 80 km and 

150 km for distant PM2.5 and the ranges of 30-80 km and 30-150 km for PM2.5 attributed to distant 

wildfires. The further the distant sources of PM2.5, the more likely it is for the exogeneity condition 

to hold, but the weaker the association between local and distant PM2.5. From the first-stage results 

in Table 2. 12 of the appendix, I find that the t-statistics and the magnitudes of coefficients for 
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distant PM2.5 decrease as the radius of the first buffer zone increases. Meanwhile, as the radius of 

the first buffer zone increases, the range of the second buffer zone increases, which means that 

more lightning-caused wildfires are included. Then, the t-statistics of distant wildfires increase, 

and the impacts on the local PM2.5 decrease. However, regardless of which spatial range I choose, 

the F-statistics for distant PM2.5 and distant wildfires are large at more than 350, and the t-statistics 

for each instrumental variable are greater than 4.5. It means that the IVs are strong predictors of 

local PM2.5. Applying the overidentification tests, I cannot reject the null hypothesis that the IVs 

constructed using different spatial ranges are exogenous. Further, I find that the estimation results 

using IVs of different spatial distances only change slightly.  

 Second, in addition to changing the spatial ranges, I also examine robustness using 

lightning-caused wildfires of different sizes. In the original analysis, I choose the occurrences of 

lightning-caused wildfires with 10 ~ 999 acres. I also consider the burning acres of all lightning-

caused wildfires and the occurrences of the lightning-caused wildfires with 0.26~299 acres. From 

the first-stage results in Table 2. 12 of the appendix, I find that when the more enormous distant 

wildfires are included, the impacts of distant wildfires on local PM2.5 and the t-statistics increase 

(columns 1 and 5). The joint test of distant PM2.5 and distant wildfires are statistically significant, 

and the F-statistics are over 400 for all the specifications. In addition, the IVs using different sizes 

of wildfires pass the overidentification test. Overall, the results are robust, and there are only slight 

variations in the coefficient estimates. 

 Third, given that Florida suffered a significantly higher level of imported PM2.5 caused by 

lightning-caused wildfires, I conducted a robustness examination excluding the samples of Florida. 

Overall, the results are robust for all-cause mortality, mortality caused by respiratory system 

diseases, and mortality caused by circulatory system diseases, and the magnitudes only change 

slightly.  

 Last, I use percentile bootstrap to examine the differences in estimates with and without 

considering wildfire causes. According to Table 2. 8, I find that the magnitudes of indirect impacts 

on all-cause deaths and deaths caused by respiratory system diseases are overestimated if the 

percentage of lightning-caused wildfires is not included (Panels 1 vs. 2). Based on the main 

analysis, I further control the percentage of the wildfires caused by powerlines and railroads among 

the human-caused wildfires. Again, the magnitudes of indirect impacts for the above two mortality 

categories are overestimated (Panels 1 vs. 3). In addition, there are no significant differences 
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between controlling for only one category of wildfire cause (Panel 2) and controlling more than 

one category (Panel 3). This evaluation suggests that it is necessary to consider wildfire causes, 

and it should be sufficient to distinguish between lightning-caused and human-caused wildfires. 
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Table 2. 3 Mediation Analysis Results 

Panel A  Step 1: Total Effect of Wildfires on Mortality 

Dependent variable:  All-cause Respiratory Circulatory Suicide 

Deaths (1)  (2)  (3)  (4)  

Fire Occurrences 0.0012*** - 0.0017*** - 0.0014*** - 0.0010* - 

(≥ 100 acres) (5.39)  (5.55)  (4.24)  (1.80)  

% Lighting-caused  0.00003 - 0.00003 - 0.00006 - -0.00007 - 

Wildfires(≥ 100 acres) (0.80)  (0.57)  (0.96)  (-0.64)  

Panel B Step 2: Effects of Wildfires on Air Pollution 

Dependent variable: 

PM2.5 

Fire acres  

(in 10 thousand) 

Total 

occurrences 

Fires  

(≥ 0.26 acres) 

Fires  

(≥ 10.0 acres) 

Fires  

(≥ 100 acres) 

Fires  

(≥ 300 acres) 

Fires  

(≥ 1000 acres) 

 (1) (2) (3) (4) (5) (6) (7) 

Wildfires 0.0464*** 0.0008*** 0.0024*** 0.0089*** 0.0291*** 0.0505*** 0.0878*** 

 (3.84) (3.22) (7.34) (8.45) (6.15) (5.39) (4.24) 

% Lighting-caused  0.0010*** 0.0004 0.0006 0.0012*** 0.0014*** 0.0017*** 0.0016*** 

Wildfires (3.42) (0.98) (1.35) (3.67) (4.34) (4.33) (3.17) 
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Table 2. 3 (cont’d) 

Panel C Step 3: Direct and Indirect Effects of Wildfires on Mortality 

Dependent variable:  All-cause Respiratory Circulatory Suicide 

Deaths (1) (2) (3) (4) (5) (6) (7) (8) 

 FE CF FE CF FE CF FE CF 

Fire Occurrences 0.0012*** 0.0007*** 0.0017*** 0.0010** 0.0014*** 0.0012*** 0.0010* 0.0004 

(≥ 100 acres) (5.78) (2.59) (5.32) (2.18) (4.32) (2.86) (1.93) (0.50) 

% Lighting-caused  0.00002 -0.000003 0.00002 -0.000007 0.00005 0.00004 -0.00008 -0.00011 

Wildfires(≥ 100 acres) (0.48) (-0.09) (0.42) (-0.12) (0.90) (0.69) (-0.75) (-0.97) 

PM 0.0058*** 0.0226*** 0.0037** 0.0280*** 0.0019** 0.0110** 0.0051 0.0260* 

 (7.18) (5.44) (2.37) (3.66) (2.09) (2.40) (1.53) (1.68) 

Residuals  -0.0176***  -0.0253***  -0.0095**  -0.0217 

  (-4.52)  (-3.29)  (-2.13)  (-1.41) 

Indirect effects (ab) 0.00017*** 0.00068*** 0.00011** 0.00084*** 0.00006** 0.00033** 0.00015 0.00078 

𝛘𝟐 statistics for  - 0.05 - 0.05 - 0.62 - 1.35 

overidentification test - [0.8234] - [0.8223] - [0.4308] - [0.2446] 

Time FE Y Y Y Y Y Y Y Y 

County FE Y Y Y Y Y Y Y Y 

N 32912 32912 32912 32912 32912 32912 32890 32890 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) p-values of test statistics in squared brackets. (4) Standard 

errors of regressions using the control function (CF) approach (columns 2, 4, 6, and 8 in Panel C) are obtained from the block-bootstrap 

(500 repetitions) procedure (drawing the entire FIPS code with replacement).  
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Table 2. 4 Additional Results for Suicide 

Deaths (1) (2) (3) (4) (5) 

 

All-cause  

(Fire≥ 100 

acres) 

Suicide  

(Fire≥ 100 

acres) 

Suicide 

(Fire≥ 10 

acres) 

Suicide 

(Fire≥ 300 

acres) 

Suicide 

(Fire≥ 1000 

acres) 

Fire Occurrences 0.0011*** 0.0008 0.00003 0.0022** 0.0031** 

 (5.42) (1.46) (0.08) (2.52) (2.37) 

L. Fire Occurrences 0.0006*** 0.0014***    

 (3.36) (3.00)    

% Lighting-caused Wildfires 0.00002 -0.0001 -0.0002* -0.0002** -0.0001 

 (0.63) (-0.61) (-1.82) (-1.96) (-1.04) 

L. % Lighting-caused Wildfires 0.00002 0.0001    

 (0.71) (0.80)    

PM 0.0060*** 0.0056* 0.0050 0.0052 0.0050 

 (7.59) (1.68) (1.50) (1.58) (1.50) 

Indirect effects (ab) 0.0002*** 0.0002 0.00004 0.0003 0.0004 

L. Indirect effects (L. ab) 0.00002 0.00002    

Time FE Y Y Y Y Y 

County FE Y Y Y Y Y 

N 32912 32890 32890 32890 32890 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01.  
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Table 2. 5 Increases in Deaths Due to A One SD (≈2.56) Additional Wildfires Event (≥ 100 acres) 

Deaths 
Average Deaths 

(1999~2019) 

Total Effects 
Indirect Effects (Wildfire-induced 

PM2.5) 

% of The Channel of 

PM2.5 

Coefficient ∆Percentage ∆ Deaths Coefficient ∆Percentage ∆Deaths Percentage 

All-cause 2,543,934 0.0012*** 0.308% 7,835 0.0007*** 0.179% 4,554 58.12% 

Respiratory  247,023 0.0017*** 0.436% 1,077 0.0008*** 0.205% 506 46.98% 

Circulatory  850,241 0.0014*** 0.359% 3,052 0.0003** 0.077% 655 21.46% 

Suicide 37,756 0.0010* 0.256% 97 - - - - 

Note: (1) * p < 0.1, ** p < 0.05, *** p < 0.01. (2) Wildfires are measured by the number of wildfire occurrences (at least 100 acres). (3) 

∆Percentage=(exp(coefficient*2.56)-1)*100%. 
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Table 2. 6 Comparisons of Spillover and Local Effects of Wildfires 

Panel A Effects of Wildfires on Air Pollution 

Dependent variable:  

Fire acres 

 (in 10 

thousand) 

Total  

occurrences 

Fires  

(≥ 0.26 

acres) 

Fires  

(≥ 10.0 

acres) 

Fires  

(≥ 100 

acres) 

Fires  

(≥ 300 

acres) 

Fires 

 (≥ 1000 

acres) 

 

PM2.5 (1) (2) (3) (4) (5) (6) (7)  

Local Wildfires 0.0408*** -0.00004 0.0010*** 0.0052*** 0.0164*** 0.0305*** 0.0606***  

 (3.49) (-0.17) (2.99) (4.72) (3.43) (3.21) (2.92)  

Upwind Wildfires 0.5073*** 0.0132*** 0.0169*** 0.0524*** 0.2421*** 0.5142*** 1.0410***  

 (9.00) (21.52) (22.63) (19.85) (21.47) (21.54) (18.56)  
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Table 2. 6 (cont’d) 

Panel B Indirect Effects of Wildfires (≥ 100 acres) on Mortality 

Dependent variable:  All-cause Respiratory Circulatory Suicide 

Deaths (1) (2) (3) (4) (5) (6) (7) (8) 

Indirect effects (ab) FE CF FE CF FE CF FE CF 

Source of PM2.5 (Wildfires) 

Local  0.0001*** 0.0004*** 0.0001** 0.0005** 0.00003* 0.0002** 0.0001 0.0004 

Distant Upwind  0.0014*** 0.0055*** 0.0009** 0.0068*** 0.00047** 0.0027** 0.0012 0.0063* 

 
Percentage changes of deaths due to a one standard deviation of local wildfires and upwind wildfires (≈2.56 & 

0.83, respectively) 

Local  0.026% 0.102% 0.026% 0.128% 0.008% 0.051% 0.026% 0.102% 

Distant Upwind  0.116% 0.457% 0.075% 0.564% 0.039% 0.224% 0.100% 0.523% 

 Elasticities evaluated at the data means (≈0.84 & 1.57, respectively) 

Local  0.008% 0.034% 0.008% 0.042% 0.003% 0.017% 0.008% 0.034% 

Distant Upwind  0.220% 0.864% 0.141% 1.068% 0.074% 0.424% 0.188% 0.989% 

 
Percentage changes of deaths due to changes in mean local and upwind wildfires from 2001 to 2011(≈0.44 & 

1.08, respectively) 

Local  0.004% 0.018% 0.004% 0.022% 0.001% 0.009% 0.004% 0.018% 

Distant Upwind  0.151% 0.594% 0.097% 0.734% 0.051% 0.292% 0.130% 0.680% 

Time FE Y Y Y Y Y Y Y Y 

County FE Y Y Y Y Y Y Y Y 

N 32912 32912 32912 32912 32912 32912 32890 32890 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) Standard errors of regressions using the control function 

(CF) approach (columns 2, 4, 6, and 8 in Panel B) are obtained from the block-bootstrap (500 repetitions) procedure (drawing the entire 

FIPS code with replacement).  
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Table 2. 7 Robustness Check 

 

Main Analysis  Robustness Check 

DistPM (≥100km) 

& 

DistPM_Fire 

(30~100km, 10 ~ 

999 acres) 

 DistPM_Fire (≥100 acres)  
DistPM (≥100km) & DistPM_Fire 

(30~100km) 

 

DistPM (≥80km) 

& 

DistPM_Fire 

(30~80km) 

DistPM (≥150km) 

& 

DistPM_Fire 

(30~150km) 

 

DistPM_Fire (All 

lightning-caused 

fire acres) 

DistPM_Fire  

(0.26~299 acres) 

 Dependent Variable: All-cause Deaths 

Fire Occurrences 0.0007***  0.0008*** 0.0007**  0.0007*** 0.0007** 

(≥ 100 acres) (2.59)  (2.67) (2.46)  (2.67) (2.56) 

PM 0.0226***  0.0221*** 0.0235***  0.0226*** 0.0226*** 

 (5.44)  (5.51) (5.22)  (5.68) (5.35) 

Residuals -0.0176***  -0.0170*** -0.0183***  -0.0175*** -0.0175*** 

 (-4.52)  (-4.58) (-4.34)  (-4.73) (-4.45) 

Indirect effects 

(ab) 
0.0007***  0.0007*** 0.0007***  0.0007*** 0.0007*** 

𝛘𝟐 statistics 

 

0.05  0.04 0.00  0.01 0.04 

[0.8234]  [0.8405] [0.9969]  [0.9078] [0.8457] 

 Dependent Variable: Deaths Caused by Respiratory System Disease  

Fire Occurrences 0.0010**  0.0010** 0.0009*  0.0010** 0.0010** 

(≥ 100 acres) (2.18)  (2.28) (1.95)  (2.15) (2.20) 

PM 0.0280***  0.0269*** 0.0308***  0.0292*** 0.0277*** 

 (3.66)  (3.66) (3.69)  (3.87) (3.60) 

Residuals -0.0253***  -0.0242*** -0.0280***  -0.0265*** -0.0250*** 

 (-3.29)  (-3.28) (-3.34)  (-3.51) (-3.23) 

Indirect effects 

(ab) 
0.0008***  0.0008*** 0.0009***  0.0009*** 0.0009*** 

𝛘𝟐 statistics  

 

0.05  0.09 0.00  0.71 0.04 

[0.8223]  [0.7683] [0.9771]  [0.3978] [0.8393] 
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Table 2. 7 (cont’d) 

 Dependent Variable: Deaths Caused by Circulatory System Disease  

Fire Occurrences 0.0012***  0.0012*** 0.0011***  0.0012*** 0.0012*** 

(≥ 100 acres) (2.86)  (2.92) (2.77)  (2.95) (2.85) 

PM 0.0110**  0.0104** 0.0119**  0.0112*** 0.0108** 

 (2.40)  (2.39) (2.30)  (2.58) (2.31) 

Residuals -0.0095**  -0.0089** -0.0103**  -0.0097** -0.0093** 

 (-2.13)  (-2.10) (-2.06)  (-2.29) (-2.05) 

Indirect effects 

(ab) 
0.0003**  0.0003** 0.0004**  0.0003** 0.0003** 

𝛘𝟐 statistics  0.62  0.48 0.54  0.53 0.77 

 [0.4308]  [0.4882] [0.4606]  [0.4666] [0.3817] 

F-statistics for 

instruments 

438.7  478.2 365.4  435.6 438.4 

[0.0000]  [0.0000] [0.0000]  [0.0000] [0.0000] 

N 32912  32912 32912  32912 32912 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) p-values of test statistics in squared brackets. (4) Standard 

errors are obtained from the block-bootstrap (500 repetitions) procedure (drawing the entire FIPS code with replacement). (5) Time-

fixed effects and county-fixed effects are included for all the model specifications. (6) The χ2 statistics of overidentification tests are 

based on Wooldridge (2010), and the instrumental variable for distant wildfires is excluded. (7) Since the endogeneity problem is not 

found in the model of suicide, the results are not included here.
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Table 2. 8 Distinguish Wildfire Causes 

Dependent  All-cause Respiratory Circulatory Suicide 

variable: Deaths (1) (2) (3) (4) (5) (6) (7) (8) 

 FE CF FE CF FE CF FE CF 

 Panel 1: Not Include % Lighting-caused Wildfires 

Indirect effects  0.00018*** 0.00073*** 0.00012** 0.00090*** 0.00006** 0.00035** 0.00016 0.00083 

 Panel 2: Include % Lighting-caused Wildfires 

Indirect effects 0.00017*** 0.00068*** 0.00011** 0.00084*** 0.00006** 0.00033** 0.00015 0.00078 

 Panel 3: Include % Lighting-caused Wildfires + % Wildfires Caused by Powerline and Railroad 

Indirect effects 0.00017*** 0.00067*** 0.00011** 0.00084*** 0.00006** 0.00033** 0.00015 0.00080 

 Test differences – Panel 1 vs. Panel 2 

Indirect effects 0.00001*** 0.00005*** 0.00001** 0.00006*** 0.00001* 0.00002 0.00001 0.00005 

(z-statistics) (3.42) (3.10) (2.05) (2.64) (1.72) (1.57) (0.98) (1.27) 

% change 5.6% 6.8% 8.3% 6.7% 16.7% 5.7% 12.5% 6.0% 

 Test differences – Panel 1 vs. Panel 3 

Indirect effects 0.00001*** 0.00006*** 0.00001** 0.00006** 0.00001* 0.00002 0.00001 0.00003 

(z-statistics) (3.54) (3.36) (1.98) (2.30) (1.77) (1.50) (0.81) (0.62) 

% change 5.6% 8.2% 8.3% 6.7% 16.7% 5.7% 6.7% 3.6% 

 Test differences – Panel 2 vs. Panel 3 

Indirect effects 0.00000 0.00001* -0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00002 

(z-statistics) (0.61) (1.98) (-0.38) (-0.11) (0.29) (0.60) (-0.64) (-0.90) 

% change 0% 1.4% 0% 0% 0% 0% 0% 2.4% 

Time FE Y Y Y Y Y Y Y Y 

County FE Y Y Y Y Y Y Y Y 

N 32912 32912 32912 32912 32912 32912 32890 32890 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) Standard errors of regressions using the control function 

(CF) approach (columns 2, 4, 6, and 8) are obtained from the block-bootstrap (500 repetitions) procedure (drawing entire FIPS code 

with replacement).
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5. Conclusions 

 With the trend of more frequent extreme weather events, the U.S. is expected to experience 

an increasing number of wildfires. Although many studies have explored the detrimental effects 

of wildfires, the mechanisms through which wildfires influence human health physically and 

psychologically have not been fully explored. Clarifying the mechanisms is useful because 

wildfires occur in many terrestrial ecosystems and induce various environmental changes that 

influence human health. Previous research typically focused on wildfires or wildfire-induced air 

pollution but did not determine the degree to which wildfires or wildfires-induced environmental 

changes cause health impacts. To meet the challenge of increasing wildfire exposure, clarifying 

these channels helps policymakers allocate resources more effectively and enact related policies 

to mitigate adverse direct and indirect wildfire impacts. For direct health impacts, the statistics of 

direct injuries and fatalities do not reflect the mental health impacts of wildfires in the longer run. 

The result indicates that wildfires, especially large-size wildfires, directly increase suicide with a 

delayed impact. Therefore, allocating additional resources for longer-term mental health services 

after large-size wildfires may help to save lives. 

This study also finds that wildfire-induced PM2.5 is positively associated with all-cause 

mortality, mortality caused by circulatory system diseases, and mortality caused by respiratory 

system diseases. Through applying the mediation analysis, I confirm that PM2.5 can be regarded as 

a mediator through which local wildfires influence human health. In addition, compared to local 

wildfires, distant wildfires play a substantially more detrimental role in human health via emitting 

PM2.5. In addition, wildfire-induced PM2.5 plays a significant role in the total adverse impacts of 

wildfires on mental health. I find that the detrimental health impacts of wildfires on suicide may 

only stem from the occurrence of large-size wildfire events and earlier wildfire events. In contrast 

to the evidence of adverse mental health impact of all-source PM2.5 in the literature, I find no 

evidence that wildfire-induced PM2.5 leads to higher suicide risk.  

With the increased fire suppression costs in recent decades, the government faces a tradeoff 

between suppression costs and the costs of larger burned areas. This study provides the 

policymaker with estimates of health losses from wildfires and a reference for future research on 

the cost-benefit analysis of wildfire suppression. In addition, the estimates of direct and indirect 

health impacts help the policymaker set priorities for post-fire management, such as post-fire forest 

restoration, post-fire mental health services, and post-fire air pollution control. According to the 
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ecological evidence, there appear to be multiple channels through which wildfires affect human 

health, such as water pollution and post-fire flooding. The result provides indirect evidence of the 

existence of these other channels and offers a reference for future research. In previous studies, 

wildfires are typically treated as exogenous events, but human activities cause most wildfires. The 

present study considers the cause of wildfires, finding that the risks of wildfire-induced air 

pollution may be overestimated if researchers fail to consider the causes of wildfires. Last, due to 

data limitations, I used annual mortality data, and thus wildfires and wildfire-induced air pollution 

are also measured at the annual level. Future work is needed to explore the short- and medium-

term effects of wildfires by applying daily, weekly, or monthly data. 
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APPENDIX 

Table 2. 9 Total Effect of Wildfires on Mortality 

 (1) (2) (3) （4） 

Deaths All-cause Respiratory Circulatory Suicide 

Fire Occurrences 0.0012*** 0.0017*** 0.0014*** 0.0010* 

(≥ 100 acres) (5.39) (5.55) (4.24) (1.80) 

% Lighting-caused 

Wildfires 

0.00003 0.00003 0.00006 -0.00007 

(≥ 100 acres) (0.80) (0.57) (0.96) (-0.64) 

Heat Index 0.0022*** 0.0066*** 0.0030*** -0.0004 

 (4.89) (6.29) (4.72) (-0.23) 

Sunlight -0.0016 -0.0074** -0.0045* 0.0028 

 (-0.86) (-2.05) (-1.87) (0.37) 

Precipitation -0.0009 -0.0005 -0.0008 0.0013 

 (-0.81) (-0.24) (-0.60) (0.29) 

Population 0.0023*** 0.0007 0.0021*** 0.0020*** 

 (4.40) (1.04) (3.91) (3.14) 

% Under 20 0.0262*** 0.0346*** 0.0167*** 0.0081 

 (7.64) (7.71) (5.34) (1.16) 

% Over 64 0.0493*** 0.0510*** 0.0467*** 0.0219*** 

 (15.12) (11.77) (15.43) (3.42) 

% White -0.0039* 0.0042 -0.0040** -0.0037 

 (-1.90) (1.58) (-2.01) (-1.09) 

GDP -0.0317* -0.0245 -0.0315** 0.0228 

 (-1.95) (-1.05) (-2.00) (0.75) 

% Urban Population 0.0111*** 0.0104*** 0.0101*** 0.0131*** 

 (15.44) (9.39) (12.51) (7.27) 

% Obesity (Female) 0.0008 0.0041*** -0.0010 -0.0026 

 (0.86) (2.87) (-0.98) (-1.17) 

% Obesity (Male) 0.0058*** 0.0064*** 0.0038*** 0.0046* 

 (6.50) (4.17) (3.26) (1.91) 

% Smoking Prevalence 0.0021** 0.0030* -0.0003 -0.0044 

 (2.08) (1.72) (-0.21) (-1.47) 

Time FE Y Y Y Y 

County FE Y Y Y Y 

N 32912 32912 32912 32890 

Note: (1) t statistics in parentheses.  (2) * p < 0.1, ** p < 0.05, *** p < 0.01.  
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Table 2. 10 Effects of Wildfires on Air Pollution 

Dependent variable: 

PM2.5 

(1) (2) (3) (4) (5) (6) (7) 

Fire acres 

(in 10 

thousand) 

Total 

occurrence

s 

Fires 

(≥ 0.26 

acres) 

Fires 

(≥ 10.0 

acres) 

Fires 

(≥ 100 

acres) 

Fires 

(≥ 300 

acres) 

Fires 

(≥ 1000 

acres) 

Wildfires 0.0464*** 0.0008*** 0.0024*** 0.0089*** 0.0291*** 0.0505*** 0.0878*** 

 (3.84) (3.22) (7.34) (8.45) (6.15) (5.39) (4.24) 

% Lighting-caused  0.0010*** 0.0004 0.0006 0.0012*** 0.0014*** 0.0017*** 0.0016*** 

Wildfires (3.42) (0.98) (1.35) (3.67) (4.34) (4.33) (3.17) 

Heat Index -0.0044 -0.0042 -0.0037 -0.0039 -0.0040 -0.0043 -0.0042 

 (-1.01) (-0.95) (-0.86) (-0.90) (-0.91) (-0.98) (-0.96) 

Sunlight 0.2593*** 0.2586*** 0.2484*** 0.2462*** 0.2499*** 0.2548*** 0.2570*** 

 (18.21) (17.46) (16.89) (16.88) (17.26) (17.72) (17.87) 

Precipitation -0.1635*** -0.1597*** -0.1504*** -0.1503*** -0.1556*** -0.1588*** -0.1621*** 

 (-19.86) (-18.66) (-17.94) (-18.00) (-18.83) (-19.38) (-19.85) 

Population -0.0016 -0.0041 -0.0054 -0.0027 -0.0019 -0.0013 -0.0014 

 (-0.34) (-0.80) (-0.97) (-0.56) (-0.39) (-0.26) (-0.29) 

% Under 20 -0.0700*** -0.0704*** -0.0698*** -0.0695*** -0.0690*** -0.0684*** -0.0677*** 

 (-5.62) (-5.60) (-5.60) (-5.62) (-5.59) (-5.54) (-5.47) 

% Over 64 -0.1384*** -0.1377*** -0.1346*** -0.1354*** -0.1344*** -0.1352*** -0.1352*** 

 (-9.77) (-9.66) (-9.48) (-9.59) (-9.52) (-9.60) (-9.59) 

% White 0.0108 0.0097 0.0084 0.0099 0.0104 0.0108 0.0107 

 (1.09) (0.97) (0.84) (1.00) (1.05) (1.09) (1.08) 

GDP 0.6597*** 0.6585*** 0.6534*** 0.6557*** 0.6594*** 0.6640*** 0.6611*** 

 (11.10) (11.08) (11.07) (11.13) (11.16) (11.24) (11.18) 

% Urban Population -0.0055** -0.0053* -0.0048* -0.0048* -0.0051* -0.0051* -0.0054** 

 (-2.03) (-1.93) (-1.77) (-1.77) (-1.88) (-1.89) (-1.96) 

_cons 2.3822** 2.4669** 2.6505** 2.5309** 2.4013** 2.2654* 2.2668* 

 (1.98) (2.04) (2.20) (2.11) (2.00) (1.89) (1.89) 
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Table 2. 10 (cont’d) 

Time FE Y Y Y Y Y Y Y 

County FE Y Y Y Y Y Y Y 

N 32912 32912 32912 32912 32912 32912 32912 

adj. R2 0.516 0.512 0.514 0.515 0.516 0.516 0.517 

 Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) All the standard errors are cluster (county)-robust. 

 

 



  

108 
 

Table 2. 11 Direct and Indirect Effects of Wildfires on Mortality 

Deaths All-cause Respiratory Circulatory Suicide 

 FE CF FE CF FE CF FE CF 

Fire Occurrences 0.0012*** 0.0007*** 0.0017*** 0.0010** 0.0014*** 0.0012*** 0.0010* 0.0004 

(≥ 100 acres) (5.78) (2.59) (5.32) (2.18) (4.32) (2.86) (1.93) (0.50) 

% Lighting-caused 0.00003 -0.000003 0.00003 -0.000007 0.00006 0.00004 -0.00007 -0.00011 

Wildfires (≥ 100 acres) (0.48) (-0.09) (0.42) (-0.12) (0.90) (0.69) (-0.75) (-0.97) 

PM 0.0058*** 0.0226*** 0.0037** 0.0280*** 0.0019** 0.0110** 0.0051 0.0260* 

 (7.18) (5.44) (2.37) (3.66) (2.09) (2.40) (1.53) (1.68) 

Heat Index 0.0021*** 0.0022*** 0.0066*** 0.0067*** 0.0029*** 0.0030*** -0.0004 -0.0003 

 (4.52) (4.33) (6.23) (5.92) (4.65) (4.47) (-0.23) (-0.14) 

Sunlight -0.0037* -0.0080*** -0.0087** -0.0149*** -0.0053** -0.0076*** 0.0010 -0.0044 

 (-1.91) (-3.80) (-2.34) (-3.60) (-2.12) (-2.93) (0.14) (-0.52) 

Precipitation 0.0004 0.0028*** 0.0003 0.0038* -0.0004 0.0009 0.0024 0.0053 

 (0.36) (2.63) (0.14) (1.67) (-0.30) (0.61) (0.54) (1.05) 

Population 0.0022*** 0.0023*** 0.0007 0.0007 0.0020*** 0.0021*** 0.0019*** 0.0019** 

 (4.27) (3.21) (0.94) (0.95) (3.85) (3.08) (3.03) (2.16) 

% Under 20 0.0262*** 0.0272*** 0.0346*** 0.0359*** 0.0167*** 0.0172*** 0.0082 0.0094 

 (7.68) (8.30) (7.71) (8.04) (5.32) (5.80) (1.18) (1.31) 

% Over 64 0.0492*** 0.0513*** 0.0509*** 0.0541*** 0.0467*** 0.0478*** 0.0219*** 0.0246*** 

 (15.29) (17.13) (11.77) (12.80) (15.39) (16.17) (3.43) (3.62) 

% White -0.0042** -0.0044** 0.0040 0.0038 -0.0041** -0.0042** -0.0039 -0.0040 

 (-2.05) (-2.18) (1.49) (1.44) (-2.05) (-2.09) (-1.16) (-1.15) 

GDP -0.0323** -0.0411** -0.0252 -0.0380 -0.0316** -0.0363** 0.0224 0.0114 

 (-2.00) (-2.53) (-1.08) (-1.64) (-2.00) (-2.29) (0.74) (0.39) 

% Urban Population 0.0110*** 0.0111*** 0.0103*** 0.0104*** 0.0101*** 0.0101*** 0.0131*** 0.0131*** 

 (15.57) (15.72) (9.40) (9.26) (12.50) (12.81) (7.27) (7.15) 

% Obesity (Female) 0.0007 0.0015* 0.0041*** 0.0052*** -0.0010 -0.0006 -0.0025 -0.0016 

 (0.84) (1.72) (2.86) (3.50) (-0.99) (-0.63) (-1.14) (-0.68) 

% Obesity (Male) 0.0054*** 0.0051*** 0.0061*** 0.0057*** 0.0037*** 0.0035*** 0.0044* 0.0039 

 (6.24) (5.68) (4.07) (3.69) (3.16) (2.83) (1.83) (1.59) 
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Table 2. 11 (cont’d) 

% Smoking Prevalence 0.0015 0.0008 0.0027 0.0016 -0.0005 -0.0009 -0.0048* -0.0057* 

 (1.57) (0.81) (1.55) (0.92) (-0.37) (-0.69) (-1.67) (-1.88) 

Residuals  -0.0176***  -0.0253***  -0.0095**  -0.0217 

  (-4.52)  (-3.29)  (-2.13)  (-1.41) 

𝛘𝟐 statistics for   0.05  0.05  0.62  1.35 

overidentification test  [0.8234]  [0.8223]  [0.4308]  [0.2446] 

Indirect effects (ab) 0.00017*** 0.00068*** 0.00011** 0.00084*** 0.00006** 0.00033** 0.00015 0.00078 

(95% Conf. Interval) 
(0.00011, 

0.00025) 

(0.00039, 

0.00105) 

(0.00001,   

0.00019) 

(0.00037,   

0.00142) 

(2.75e-06, 

0.00011) 

(0.00005,   

0.00064) 

(-0.00006, 

0.00034) 

(-0.00015, 

0.00179) 

Time FE Y Y Y Y Y Y Y Y 

County FE Y Y Y Y Y Y Y Y 

N 32912 32912 32912 32912 32912 32912 32890 32890 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. (3) Standard errors of regressions in columns (2), (4), and (6) 

are obtained from the block-bootstrap (1000 repetitions) procedure (drawing the entire FIPS code with replacement). (4) p-values of test 

statistics in squared brackets. (5) Indirect effect ab is the product of the impact of wildfires on PM and the impact of PM on fatalities, 

which are estimated by percentile bootstrap test of ab.
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Table 2. 12 The First-stage Regression Results 

 (1) (2) (3) (4) (5) 

Dependent variable: 

PM2.5 

DistPM (≥100km) 

& 

DistPM_Fire 

(30~100km, ≥100 

acres) 

DistPM (≥80km) 

& 

DistPM_Fire 

(30~80km, ≥100 

acres) 

DistPM (≥150km) 

& 

DistPM_Fire 

(30~150km, ≥100 

acres) 

DistPM (≥100km) 

& 

DistPM_Fire 

(30~100km, All 

lightning-caused 

fire acres) 

DistPM (≥100km) 

& 

DistPM_Fire 

(30~100km, 

0.26~299 acres) 

DistPM_Fire 16.8333*** 17.7112*** 12.8862*** 46.5938*** 11.0356*** 

 (5.11) (4.64) (5.80) (4.30) (3.60) 

DistPM 0.0984*** 0.1013*** 0.0920*** 0.0982*** 0.0981*** 

 (29.59) (30.91) (27.00) (29.49) (29.57) 

Fire Occurrences 0.0301*** 0.0304*** 0.0297*** 0.0302*** 0.0309*** 

(≥ 100 acres) (6.37) (6.45) (6.27) (6.45) (6.56) 

Heat Index -0.0162*** -0.0167*** -0.0151*** -0.0160*** -0.0162*** 

 (-3.79) (-3.93) (-3.51) (-3.77) (-3.81) 

Sunlight 0.2514*** 0.2544*** 0.2472*** 0.2561*** 0.2549*** 

 (17.17) (17.43) (16.84) (17.66) (17.40) 

Precipitation -0.1452*** -0.1455*** -0.1459*** -0.1491*** -0.1470*** 

 (-17.77) (-17.80) (-17.82) (-18.32) (-18.01) 

Population -0.0044 -0.0046 -0.0039 -0.0044 -0.0045 

 (-0.86) (-0.89) (-0.76) (-0.86) (-0.87) 

% Under 20 -0.0624*** -0.0617*** -0.0637*** -0.0621*** -0.0622*** 

 (-5.08) (-5.03) (-5.15) (-5.05) (-5.06) 

% Over 64 -0.1262*** -0.1254*** -0.1276*** -0.1264*** -0.1264*** 

 (-9.30) (-9.27) (-9.33) (-9.31) (-9.30) 

% White 0.0009 0.0006 0.0016 0.0011 0.0009 

 (0.09) (0.06) (0.16) (0.12) (0.09) 

GDP 0.6323*** 0.6305*** 0.6349*** 0.6286*** 0.6322*** 

 (10.84) (10.83) (10.83) (10.81) (10.85) 
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Table 2. 12 (cont’d) 

% Urban Population -0.0057** -0.0057** -0.0057** -0.0058** -0.0058** 

 (-2.14) (-2.16) (-2.13) (-2.18) (-2.18) 

% Obesity (Female) -0.0397*** -0.0395*** -0.0402*** -0.0394*** -0.0396*** 

 (-7.36) (-7.34) (-7.40) (-7.30) (-7.33) 

% Obesity (Male) 0.0223*** 0.0224*** 0.0223*** 0.0227*** 0.0224*** 

 (3.63) (3.65) (3.60) (3.68) (3.63) 

% Smoking  0.0353*** 0.0349*** 0.0364*** 0.0352*** 0.0355*** 

Prevalence (5.38) (5.34) (5.52) (5.37) (5.42) 

% Lighting-caused  0.0014*** 0.0015*** 0.0014*** 0.0014*** 0.0015*** 

Wildfires(≥ 100 acres) (4.42) (4.51) (4.28) (4.51) (4.62) 

_cons 3.1791** 3.1507** 3.1913** 3.1012** 3.1268** 

 (2.56) (2.54) (2.56) (2.50) (2.52) 

Time FE Y Y Y Y Y 

County FE Y Y Y Y Y 

F-statistics for 

instruments 

438.6988 478.2270 365.3887 435.6396 438.4049 

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] 

N 32912 32912 32912 32912 32912 

 Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01.  
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Table 2. 13 Additional Results for Suicide 

 (1) (2) (3) (4) (5) 

Deaths 

All-cause 

(Fire≥ 100 

acres) 

Suicide 

(Fire≥ 100 

acres) 

Suicide 

(Fire≥ 30 

acres) 

Suicide 

(Fire≥ 300 

acres) 

Suicide 

(Fire≥ 

1000 

acres) 

Fire Occurrences 0.0011*** 0.0008 0.00003 0.0022** 0.0031** 

(≥ 100 acres) (5.42) (1.46) (0.08) (2.52) (2.37) 

L. Fire Occurrences 0.0006*** 0.0014***    

(≥ 100 acres) (3.36) (3.00)    

% Lighting-caused 

Wildfires 
0. 00002 -0.0001 

-0.0002* 
-0.0002** -0.0001 

(≥ 100 acres) (0.63) (-0.61) (-1.82) (-1.96) (-1.04) 

L. % Lighting-caused 

Wildfires 
0.00002 0.0001    

(≥ 100 acres) (0.71) (0.80)    

PM 0.0060*** 0.0056* 0.0050 0.0052 0.0050 

 (7.59) (1.68) (1.50) (1.58) (1.50) 

Heat Index 0.0020*** -0.0007 -0.0004 -0.0005 -0.0005 

 (4.41) (-0.39) (-0.22) (-0.27) (-0.27) 

Sunlight -0.0034* 0.0019 0.0017 0.0009 0.0009 

 (-1.74) (0.24) (0.22) (0.12) (0.12) 

Precipitation 0.0004 0.0026 0.0018 0.0022 0.0022 

 (0.40) (0.58) (0.41) (0.50) (0.50) 

Population 0.0022*** 0.0018*** 0.0018*** 0.0018*** 0.0019*** 

 (4.24) (3.01) (2.93) (2.94) (3.00) 

% Under 20 0.0260*** 0.0079 0.0086 0.0079 0.0081 

 (7.63) (1.14) (1.22) (1.14) (1.16) 

% Over 64 0.0491*** 0.0218*** 0.0217*** 0.0217*** 0.0216*** 

 (15.26) (3.42) (3.40) (3.42) (3.38) 

% White -0.0042** -0.0040 -0.0039 -0.0040 -0.0039 

 (-2.06) (-1.18) (-1.15) (-1.18) (-1.14) 

GDP -0.0342** 0.0173 0.0247 0.0213 0.0224 

 (-2.12) (0.57) (0.81) (0.70) (0.73) 

% Urban Population 0.0111*** 0.0131*** 0.0130*** 0.0131*** 0.0131*** 

 (15.59) (7.29) (7.25) (7.29) (7.28) 

% Obesity (Female) 0.0007 -0.0025 -0.0025 -0.0025 -0.0025 

 (0.81) (-1.16) (-1.13) (-1.16) (-1.14) 

% Obesity (Male) 0.0054*** 0.0043* 0.0045* 0.0043* 0.0043* 

 (6.28) (1.80) (1.86) (1.82) (1.83) 

% Smoking Prevalence 0.0014 -0.0050* -0.0049* -0.0049* -0.0048* 

 (1.48) (-1.75) (-1.67) (-1.70) (-1.67) 
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Table 2. 13 (cont’d) 

Indirect effects (ab) 0.0002*** 0.0002 0.00004 0.0003 0.0004 

(95% Conf. Interval) 
(0.00012, 

0.00025) 

(-0.00004, 

0.00035) 

(-0.00002, 

0.00010) 

(-0.00008, 

0.00061) 

(-0.00017, 

0.00107) 

L. Indirect effects (L. 

ab) 
0.00002 0.00002    

(95% Conf. Interval) 
(-5.43e-06, 

0 .00006) 

(-7.84e-06, 

0.00007) 
   

Time FE Y Y Y Y Y 

County FE Y Y Y Y Y 

N 32912 32890 32890 32890 32890 

Note:  (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01.  
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Table 2. 14 Spillover and Local Effects of Wildfires on Air Pollution 

Dependent variable: 

PM2.5 

(1) (2) (3) (4) (5) (6) (7) 

Fire acres 

(in 10 

thousand) 

Total 

occurrence

s 

Fires 

(≥ 0.26 

acres) 

Fires 

(≥ 10.0 

acres) 

Fires 

(≥ 100 

acres) 

Fires 

(≥ 300 

acres) 

Fires 

(≥ 1000 

acres) 

Wildfires 0.0408*** -0.00004 0.0010*** 0.0052*** 0.0164*** 0.0305*** 0.0606*** 

 (3.49) (-0.17) (2.99) (4.72) (3.43) (3.21) (2.92) 

% Lighting-caused 

Wildfires 
0.0009*** 0.0003 0.0004 0.0012*** 0.0014*** 0.0016*** 0.0014*** 

 (3.17) (0.58) (1.05) (3.61) (4.42) (4.18) (2.82) 

Upwind Wildfires 0.5073*** 0.0132*** 0.0169*** 0.0524*** 0.2421*** 0.5142*** 1.0410*** 

 (9.00) (21.52) (22.63) (19.85) (21.47) (21.54) (18.56) 

Heat Index -0.0082* -0.0029 -0.0036 -0.0041 -0.0080* -0.0113*** -0.0118*** 

 (-1.90) (-0.67) (-0.85) (-0.95) (-1.85) (-2.64) (-2.73) 

Sunlight 0.2406*** 0.1962*** 0.1908*** 0.1996*** 0.2072*** 0.2293*** 0.2329*** 

 (17.49) (13.09) (12.91) (13.94) (14.94) (16.71) (16.93) 

Precipitation -0.1522*** -0.1280*** -0.1143*** -0.1198*** -0.1249*** -0.1264*** -0.1345*** 

 (-18.17) (-14.51) (-13.29) (-14.02) (-14.75) (-14.95) (-16.16) 

Population -0.0003 -0.0006 -0.0014 0.0009 0.0016 0.0016 0.0007 

 (-0.06) (-0.13) (-0.27) (0.18) (0.34) (0.35) (0.15) 

% Under 20 -0.0689*** -0.0749*** -0.0750*** -0.0771*** -0.0718*** -0.0676*** -0.0645*** 

 (-5.70) (-6.20) (-6.27) (-6.40) (-6.19) (-5.91) (-5.62) 

% Over 64 -0.1275*** -0.1280*** -0.1245*** -0.1253*** -0.1122*** -0.1086*** -0.1098*** 

 (-9.09) (-9.30) (-9.14) (-9.18) (-8.37) (-8.13) (-8.17) 

% White 0.0105 0.0111 0.0096 0.0104 0.0109 0.0112 0.0111 

 (1.09) (1.16) (1.02) (1.09) (1.18) (1.23) (1.21) 

GDP 0.6417*** 0.6157*** 0.6056*** 0.6158*** 0.6025*** 0.6059*** 0.6108*** 

 (10.99) (10.65) (10.59) (10.77) (10.68) (10.78) (10.82) 
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Table 2. 14 (cont’d) 

% Urban Population -0.0044* -0.0036 -0.0031 -0.0034 -0.0030 -0.0029 -0.0033 

 (-1.67) (-1.38) (-1.21) (-1.31) (-1.18) (-1.15) (-1.29) 

_cons 2.8514** 2.8731** 3.2265*** 3.2162*** 3.2237*** 2.9501*** 2.9034*** 

 (2.43) (2.46) (2.80) (2.78) (2.87) (2.64) (2.58) 

Time FE Y Y Y Y Y Y Y 

County FE Y Y Y Y Y Y Y 

N 32912 32912 32912 32912 32912 32912 32912 

adj. R2 0.519 0.518 0.520 0.520 0.524 0.526 0.525 

Note: (1) t statistics in parentheses.  

(2) * p < 0.1, ** p < 0.05, *** p < 0.01 

(3) All the standard errors are cluster (county)-robust.
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CHAPTER 3: THE IMPACTS OF WILDFIRES AND WILDFIRE-INDUCED AIR 

POLLUTION ON HOUSE PRICES IN THE UNITED STATES 

1. Introduction 

Wildfire risk is growing all around the world. In recent decades, the annual total burned 

acres and suppression expenses in the United States (U.S.) present an upward trend. According to 

the U.S. National Interagency Fire Center, there was an average of 73,524 wildland fires and 

5,311,434 burned acres in the U.S. from 1985 to 2019, with annual total suppression costs of over 

$1 billion. In addition to these significant forest damage and suppression expenses, wildfires also 

directly result in property and infrastructure damage, injuries, fatalities, etc. The average total 

property damage caused by wildfires is around $403 million per year39, based on the National 

Oceanic and Atmospheric Administration's (NOAA) National Centers for Environmental 

Information (NCEI) Storm Events Database. In 2018, 36 large-loss fires (those generating at least 

$10 million in property damage) occurred, totaling more than $12.91 billion in direct property 

damage and losses (Badger and Foley, 2019). In addition, from 1902 to 2017, 1,128 people died 

from wildfires (Neary and Leonard, 2019). 

These wildfires-caused economic and health losses are expected to increase in the future 

because more people are living in or near the wildland-urban interface (WUI) and because more 

severe and large-scale wildfires are being caused by increasingly frequent and intense weather 

events, such as extreme heat and droughts. The WUI currently has a population of over 50 million 

people, and it grows by about one million people every three years (Burke et al., 2021). As more 

people reside in or near the wildland-urban interface, human-caused wildfires are more likely to 

occur, and people and homes in or near the WUI are more exposed to flames than in other places 

(Radeloff et al., 2018). Furthermore, only 29.4 percent of the sample houses in this study have 

never experienced wildfires within 80 kilometers in the last five years. Only 10.2 and 38.6 percent 

of the houses in the sample did not experience any wildfires in the nearby 80 and 30 kilometers 

since 1992, respectively. Therefore, why more people are choosing to move in or near the WUI? 

 
 
39 The average total property damages caused by wildfires is calculated based on available estimates of property 

damages provided by the Storm Events Database, which includes 6,331 wildfire events reported from 1999 to 2017. 

The database can be found at the National Oceanic and Atmospheric Administration's National Centers for 

Environmental Information website (https://www.ncdc.noaa.gov/stormevents/ftp.jsp). The definitions and examples 

of property damage caused by wildfires can be found at 

https://www.nws.noaa.gov/directives/sym/pd01016005curr.pdf. 
 

https://www.ncdc.noaa.gov/stormevents/ftp.jsp
https://www.nws.noaa.gov/directives/sym/pd01016005curr.pdf
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In this study, I put forward and verify two possible explanations: one is that people underestimate 

the risks of wildfires because some indirect risks caused by wildfire-induced disamenities are 

ignored; the second is that although people realize the wildfire risks, they are facing a tradeoff 

between enjoyment of natural resources and increased wildfire risks. 

Environmental factors have a significant impact on quality of life, making them key 

considerations when making residential location decisions. Wildfires produce immediate damage 

and losses, which might be regarded as an environmental hazard, lowering purchasers' willingness 

to pay for houses with higher wildfire risks. Previous research has found that after wildfires, 

homebuyers' perceptions of wildfire risks increase, and thus wildfires have a negative effect on 

property prices (Loomis, 2004; Mueller et al., 2009; Stetler et al., 2010; Athukorala et al., 2016; 

Mueller et al., 2018). The distance to the wildfire, the view of the burning area, and the frequency 

of the fire all determine its impact. Living near flames and having a view of burned regions was 

linked to higher wildfire risks and had a strong and lasting negative influence on property prices, 

according to Stetler et al. (2010), but they found no evidence of the impact of unseen burned areas. 

In contrast, analyses by Loomis (2004) showed that even if the forest fire is invisible from 

individual residences in the unburned area, the level of amenities in the neighboring unburned area 

decreased. Athukorala et al. (2016) found a negative relationship between house values and 

distance to a wildfire risk area, probability due to residents' discounted chance of being affected 

by wildfires, adequate property insurance, and self-insured actions, or a trade-off between living 

close to green space and living with higher wildfire risks. Furthermore, when repeated wildfires 

occur, the second fire's property value reduction (about 23%) is found to be greater than the first 

(approximately 10%) (Mueller et al., 2009). The impacts of wildfires on the house price also vary 

significantly across the house price distribution, with the magnitudes of the effects for the 75th 

quantile being much larger than the 25th quantile (Mueller and Loomis, 2014). 

In addition to the immediate negative consequences, wildfires are likely to affect 

homebuyer behavior through their effects on local environmental attributes. As a natural 

disturbance that occurs in most terrestrial ecosystems, wildfires can affect the air, soil, water, 

fauna, flora, fuels, recreation opportunities, cultural resources, and archeology (Sandberg et al., 

2002; Neary et al., 2005; Venn and Calkin, 2011; Doerr and Santín, 2016). Thus, wildfires also 

have an indirect impact on human health and safety, economic development, and people's 

enjoyment of environmental goods and services. Air pollution is one of the most severe 
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environmental consequences of wildfires. The burning of biomass and soil-based organic matter 

can generate a large amount of haze and smoke, which contains complex components including 

greenhouse gases, photochemically reactive compounds, sulfur dioxide (SO2), particulate matter 

(PM), and liquids (Neary et al., 2005; Viswanathan et al., 2006; Urbanski et al., 2008). Despite the 

complexity of smoke's components, particulate matter is the most significant pollutant (Sandberg 

et al., 2002; Stone et al., 2019). Particles from wildfire smoke are typically small (with a size range 

near the wavelength of visible light (0.4~0.7 μm)), and fine particles (PM2.5), which have 

aerodynamic diameters of less than or equal to 2.5 μm (Stone et al., 2019; U.S. EPA, 2020)40, 

make up about 90% of total particle masses.  

Wildfires, meanwhile, account for 10% to 20% of all primary PM emissions in the U.S. 

each year (U.S. EPA, 2020). Khawand (2015) and Burke et al. (2021) simulated or assessed the 

air pollution emitted by wildfires, indicating that they contribute roughly 15% and up to 25% of 

PM2.5 in the U.S., respectively. Furthermore, PM is one of the six primary pollutants defined by 

the US Environmental Protection Agency (EPA). Air pollution can have a variety of negative 

physical and mental health implications, as well as lead to limited visibility and increased danger 

of traffic accidents and crime, all of which can have a negative impact on the real estate market 

(Linden and Rockoff, 2008; Hyslop, 2009; Brook et al., 2010; Lavín et al. 2011; Hoek et al., 2013; 

Dawson et al., 2014; Bakian et al.,2015; Khawand, 2015; Lin et al., 2016; Huang and Lanz, 2017;  

H. Zhang et al., 2017; X. Zhang et al.; 2017; Gładka et al., 2018;  Lu et al., 2018; Braithwaite et 

al., 2019; Burkhardt et al., 2019; Fontenla et al., 2019;  Stone et al., 2019; U.S. EPA, 2019; 

Burkhardt et al., 2020). Moreover, wildfires-specific PM2.5 was more toxic than equal doses from 

other sources (or ambient PM2.5) and was associated with a higher respiratory effect than non-

wildfire PM2.5 (Kochi et al., 2010; Dittrich and McCallum, 2020; Aguilera et al., 2021). Owing to 

the EPA’s stringent air quality regulations in recent decades, the U.S. has experienced a downward 

trend in ambient PM2.5 concentrations (1990-2014) and the number of extreme PM2.5 days (2000-

2009) (H. Zhang et al., 2017; U.S. EPA, 2020). Considering the opposite, increasing trend in 

wildfires, I conclude that wildfires are becoming more relatively important in the control of PM2.5, 

and wildfire management and education should remain a high priority. 

Wildfire is commonly thought of as an environmental nuisance, but in fact, wildfire can 

 
 
40 Sandberg et al. (2002) summarized that 90% of all smoke particles are PM10, and 90% of PM10 is PM2.5. 



  

119 
 

generate both positive and negative effects on the ecosystems, except for air quality (Venn and 

Calkin, 2011). On the downside, wildfire-induced changes in soil structure can result in decreased 

soil production, greater vulnerability to postfire runoff and erosion, postfire floods, and impaired 

water quality, among other things. Wildfires, on the positive side, boost the availability of nutrients 

for plant development in the short term, reduce the likelihood of epidemic insect and disease 

infestations, add to the novelty of the burned environment, and reduce the risk of future wildfires, 

etc. (Neary et al., 2005; Venn and Calkin, 2011). 

These wildfire-caused ecological changes may also affect the real estate market. When a 

family chooses a home, they examine the surroundings, the neighborhood, and the house's features 

to maximize utility. However, while some households may assess the potential wildfire risk 

throughout the decision-making process, they may only see the direct risk of wildfires and ascribe 

the indirect risks to other environmental factors such as air pollution, water pollution, flooding, 

and so on. The primary objective of the present paper is to assess both the direct and indirect effects 

of wildfires on the property market, as indicated by changes in home prices, to acquire a more 

comprehensive understanding of wildfire costs. Also, I explore whether the tradeoff between living 

near nature and wildfire risks exists. 

This research is based on the Hedonic Pricing Method (HPM) and applies the instrumental 

variable method to distinguish between the direct and indirect effects of wildfires on house prices. 

I focus on the most significant potential channel, air pollution (specifically, PM2.5), based on 

ecological evidence that wildfire is a significant producer of particulate matter, and the major 

component of wildfire smoke particles is PM2.5, as well as existing economic evidence of PM's 

effects on the housing market. The property market data is obtained from Zillow's Assessor and 

Real Estate Database (ZTRAX), and I focus on the transactions of repeat-sale homes between 2010 

and 2018. The ZTRAX database is an indispensable resource for conducting this evaluation. This 

database provides us with a wealth of information on property transactions and assessments in the 

U.S. First, I can locate each property using coordinates, and the datasets cover transaction and 

assessment records for the entire country. These features enable us to link each property with all 

wildfire occurrences in the U.S. between 1992 and 2018, PM2.5 levels, and a set of meteorological, 

demographic, and surrounding environment characteristics so that I can more precisely measure 

the impacts of environmental factors on the housing markets nationwide. Second, ZTRAX 

transaction records cover a long period, which provides an opportunity to construct and use a 
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repeat-sale dataset. When I apply the hedonic price method, it is crucial to control for property 

characteristics, However, I am unable to include all the property characteristics because a 

significant portion is missing. Therefore, a repeat-sale approach controls for all the time-invariant 

property characteristics, thus mitigating omitted variable problems. 

To address the potential endogeneity of air pollution, I adopt the instrumental variable 

method. A range of instrumental variables for air pollution has been proposed in previous studies. 

A typical instrumental variable is a policy intervention. Policy interventions, such as the U.S. 

Clean Air Act's (1970) nonattainment status designation and the Chinese River Huai policy, were 

used by Chay and Greenstone (2005) and Huang and Lanz (2017) as sources of exogenous 

variability in air pollution. Another instrumental variable that has been used is the externality 

associated with transboundary air pollution (Bayer et al., 2009, Luechinger, 2010; Khawand, 2015; 

Zheng et al., 2014; Barwick et al., 2018; Yang and Zhang, 2018; Williams and Phaneuf, 2019; 

Zheng et al., 2019; Chen et al., 2021). These researchers constructed distant air pollution as an 

instrumental variable for local air pollution because air pollutants can travel a long distance by 

wind and distant air pollution emissions are unlikely to correlate with local economic activities. In 

a study from Indonesia, Tan-Soo (2018) considered the influence of forest fires on local air quality 

and used a similar source-receptor logic to build wind- and distance-based fire hotspots as an 

instrument for localized PM2.5. Following previous studies, I employ the distant large-scale 

natural-caused wildfires as an instrumental variable. The instrumental variable estimate measures 

the impact of wildfire-caused PM2.5 on house prices. 

 As a prelude to the full set of results, I find that local and distant wildfires result in a house 

price decline through PM2.5 emissions. There are also significant price disparities between houses 

located upwind and downwind from wildfires. Moreover, house prices are positively associated 

with the distance from the nearest wildfire and the number of days since the most recent wildfire. 

I also distinguish between the effects of wildfires and living near green places. Households place 

a higher value on homes in locations with higher vegetation coverage, but they are also aware of 

the risks of living near a wildland-urban interface. 

I contribute to the literature in the following ways. I provide a more comprehensive 

nationwide perspective of wildfire effects on house prices. While existing research has extensively 

studied the wildfire-induced ecological impacts and the economic impacts of wildfires, the 

mechanisms by which wildfires affect well-being have not been fully explored. In addition, while 
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wildfires and wildfire-induced air pollution can have an impact on the housing market, the current 

research tends to focus on one or the other, not fully distinguishing between direct and indirect 

wildfire impacts through air pollution. Further, I control for the correlation between wildfires and 

living near green spaces by including a variable that measures vegetation coverage and the distance 

between the houses and the wildland-urban interface. This study can be used by policymakers to 

better understand the costs of wildfire better and improve decision-making about wildfire 

education, wildfire suppression, post-fire restoration, and air quality management. 

This study uses a national-wide dataset and creates more accurate measurements. Most 

wildfire research focused on one or several specific wildfire events or areas as wildfires are 

typically localized disamenity. Air pollution caused by wildfires, on the other hand, can travel a 

great distance and affect far broader areas than wildfires. As a result, the spillover effects of 

wildfire-induced air pollution are more fully taken into account in this study. I also linked each 

property to each wildfire that occurred in the U.S. contiguous states during the study period to 

better measure wildfire effects, considering the distance and wind patterns. In addition, the 

measurements for air pollution and meteorological variables are accurate to the nearby about 1 km 

and 14 km of each house. 

This study also explores whether wind patterns and wildfire causes affect the estimation of 

wildfire effects. In addition to considering total wildfire occurrences, I also divide wildfires into 

wildfires that occurred in upwind and downwind directions. While a majority of wildfires are 

caused by human activity, current research often treats wildfire incidence as exogenously 

determined. From 1992 to 2018, around 77.5 percent of wildfire incidents in the contiguous U.S. 

were triggered by humans, according to the Fire Program Analysis fire-occurrence database (FPA 

FOD) (Short, 2021)41. In this paper, I control the causes of wildfires by adding the ratio of natural-

caused to all-cause wildfires as well as focusing on natural-caused wildfires. 

The rest of this paper is organized as follows. In the next section, I present the theoretical 

framework. Section three provides details on the data and methodology. Section four presents and 

discusses the empirical results, and the last section concludes. 

 
 
41 Natural causes account for 14.4% of wildfires, and the causes of the remaining wildfires are missing, not specified 

or undetermined.  
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2. Theoretical Framework 

2.1 Hedonic Price Model 

I apply the hedonic price model to estimate the marginal willingness-to-pay (MWTP) for 

wildfires and wildfire-induced PM2.5. A residential house h can be described by a vector of 

characteristics, 𝑄 = (𝑞1, 𝑞2, … , 𝑞𝑛), which may include the house's structural, neighborhood, and 

local environmental attributes (including wildfire events and air quality). The price of a house h 

can be described as  

 

𝑃ℎ  =  𝑃(𝑞1, 𝑞2, … , 𝑞𝑛) (1). 

 

The partial derivative of 𝑃ℎ with respect to the jth characteristic 𝑞𝑗, 𝜕𝑃ℎ/𝜕𝑞𝑗, gives the 

marginal implicit price of the jth characteristic. In a competitive market, the housing market 

equilibrium arises from the interactions of buyers and sellers. The marginal implicit price of the 

jth characteristic equals individuals’ MWTP for the jth characteristic. 

When a wildfire occurs, it can change the community's amenities (such as property and 

infrastructure damages from wildfire), altering buyers' willingness to pay and the market price of 

neighboring properties. For example, the charred landscape left by wildfires may take a long time 

to recover, making life less pleasant and potentially more difficult for residents. In addition, the 

expectation of the consequences of future wildfires is another component of the direct impact of 

wildfires. Households may be able to forecast future wildfires based on present information, thus 

making more informed decisions and thus locating to open areas cleared by flames or locating to 

lower risk areas as dictated by wind direction. 

Wildfires affect many ecosystems, so local environmental characteristics such as air 

quality, water quality, and flood threats may change simultaneously. However, home buyers may 

only consider the direct consequences of wildfires in their decision-making process while 

attributing the wildfire-induced effects to other environmental factors. For example, if both recent 

wildfires (𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠) and air pollution (𝑃𝑀) are important environmental factors that influence 

the households’ decisions and thus the house prices, then: 

 

𝑃ℎ  =  𝑃(𝑞1, 𝑞2, … , 𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠, 𝑃𝑀, 𝑞𝑛) (2). 
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The partial derivative of 𝑃ℎ  with respect to wildfires, 𝜕𝑃ℎ/𝜕𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠, only gives the 

direct impact of recent wildfires on house prices and fails to capture the indirect impact of wildfires 

through air pollution because the indirect impact is incorporated into the impact of air pollution, 

𝜕𝑃ℎ/𝜕𝑃𝑀. As a result, if the assumption that air quality also has an impact on house prices holds, 

just examining the direct impact of wildfires, 𝑃ℎ/𝜕𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠, will lead to a biased estimate when 

investigating the total effect of wildfire occurrence on house prices.  

Assume that air pollution can be written as a function of wildfires, other sources that 

contribute to air pollution (S), and meteorological factors (X) that influence the formation and 

transport of air pollutants, 𝑃𝑀 = 𝑓(𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠, 𝑆, 𝑋), so the indirect impact of wildfires through 

air pollution can be derived as (𝜕𝑃ℎ/𝜕𝑃𝑀) ∗ (𝜕𝑃𝑀/𝜕𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒). Furthermore, note that wildfires 

can affect house prices through a variety of channels, such as water pollution, floods, reduced 

future risks of wildfires, and more recreation opportunities. In this case, if these factors are not 

considered in equation 2, 𝑃ℎ/𝜕𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠  should include the direct impact of wildfires and 

indirect impacts through these channels. If households also consider these factors when purchasing 

a property, the sum of the direct impact, 𝑃ℎ/𝜕𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠, and the indirect impact through air 

pollution (𝜕𝑃ℎ/𝜕𝑃𝑀) ∗ (𝜕𝑃𝑀/𝜕𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒) is just a fraction of the total impact of wildfires. To 

distinguish the direct and indirect impacts of wildfires and explore the existence of air pollution 

and other channels by which wildfires influence house prices, I apply a mediation analysis 

approach. 

Last, I can draw three hypotheses regarding the impacts of wildfires on house prices. Air 

pollution is one of several potential pathways by which wildfire affects house prices, but the overall 

effect is complex. Therefore, the expected sign of 𝜕𝑃ℎ/𝜕𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠  is ambiguous. Second, 

wildfires are a major source of air pollution, which can negatively affect the quality of life in 

nearby areas. As a result, I anticipate that wildfire-caused air pollution will have a negative indirect 

impact on house prices. Third, as the total impact includes both direct and indirect impacts, it is 

also ambiguous. With this background, I propose the following hypotheses: 

Hypothesis 1: The direct impact of wildfires on house prices (or a combination of direct 

and indirect impacts via other routes other than air pollution) is ambiguous. 

Hypothesis 2: The indirect impact of wildfire via degrading air quality on house prices is 

negative. 

Hypothesis 3: The total impact of wildfires on housing prices is ambiguous. 
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2.2 Mediation Analysis 

As discussed above, wildfires can affect house prices directly and indirectly through air 

pollution and other environmental factors. As a result, these wildfire-caused environmental factors 

might be thought of as mediating variables or mechanisms that influence house prices. Figure 3. 

1 depicts the relationship, which is represented by equations 3, 4, and 5. The direct impact of 

wildfires, 𝑐′, and the indirect impact of wildfires, 𝑎𝑏, sum to yield the total effect of wildfires on 

health, 𝑐. Since there may be more than one mediating variable, the total mediation effect equals 

the sum of all the mediation effects of each path, and the total effect equals the sum of the total 

mediation effect and the direct effect. Given that I only discuss the air pollution channel in this 

paper, if the mediation effects of other channels exist, 𝑐′ should include the direct impact and the 

indirect impacts of other channels.  

 

𝑌 = 𝑐𝑇 + 𝑑𝑋1 + 𝑒1   (3) 

𝑀 = 𝑎𝑇 + 𝑑′𝑋2 + 𝑒2   (4) 

𝑌 = 𝑐′𝑇 + 𝑏𝑀 + 𝑑′′𝑋1 + 𝑒3   (5) 

 

The most well-known and widely used method to conduct mediation analysis is the causal 

step approach in the classic paper of Baron and Kenny (1986). However, this approach is found to 

have a series of problems42 (MacKinnon et al., 2000; Zhao et al., 2010; Wen and Ye, 2014; Hayes, 

2018). Recent studies developed a causal step approach and put forward some new procedures and 

tests to improve the mediation analysis (MacKinnon et al., 2000; Zhao et al., 2010; Imai et al., 

2011; Wen and Ye, 2014). One important recommendation is that the establishment of the 

mediation effect should rely on the significance of the indirect effect, 𝑎𝑏, only, instead of the 

separate test of a and b, the indirect effect is examined directly by the testing 𝐻0: 𝑎𝑏 = 0 (Zhao et 

al., 2010). Another important development is the identification of the causal mediation effect. 

 
 
42 (1) the inference about the indirect effect is based on the outcomes of hypothesis tests on 𝑎 and 𝑏, rather than the 

estimate of the indirect effect 𝑎𝑏. The separate test of 𝑎 and 𝑏 are of the low power; (2) this approach involves 

several null hypothesis tests, but only one inferential test of the indirect effect is needed; (3) whether or not the 

mediation effect exists is just a qualitative claim, which is not based on a quantification of the indirect effect and 

does not carry information on the uncertainty that can be reflected by a confidence interval; and (4) the total effect, 

𝑐, does not need to be statistically significantly different from zero because of the potential suppression (inconsistent 

mediation or competitive mediation), the lower power of the test of total effects, and the existence of subpopulations 

in which the total effects have different signs, etc. 
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According to Imai et al (2011), “sequential ignorability” assumptions are needed to identify the 

causal mediation relationship, which can be written as equations (6) and (7). First, given a series 

of control variables, wildfire occurrence is independent of health outcomes and air pollution. 

Second, given a series of control variables and wildfire occurrence, air pollution is independent of 

health outcomes.  

 

{𝑌𝑖(𝑚, 𝑡), 𝑀𝑖(𝑡)}⍊𝑇𝑖|𝑋𝑖 = 𝑥    (6) 

𝑌𝑖(𝑚, 𝑡)⍊𝑀𝑖(𝑡)|𝑇𝑖 = 𝑡, 𝑋𝑖 = 𝑥    (7) 

 

If equations (6) and (7) hold, I can then estimate the average causal mediation effect through 

equations (4) and (5). However, in this study, equation (7) may not hold. To address this problem, 

Imai et al. (2011) suggested applying an instrumental variable approach. I will discuss this method 

in detail later in Section 3.2. 

2.3 Factors influencing the Wildfire Exposures on House Prices 

To measure wildfire effects more comprehensively, I consider the following perspectives: 

time, spatial, meteorological, and wildfire attributes, as shown in Figure 3. 1 (a). These factors 

influence the wildfire effects on both house prices directly and air pollution transportation and thus 

house market indirectly. First, I consider measuring overall wildfire exposure. In the short run, 

wildfires can emit a large amount of smoke, destroy properties, lead to direct injuries and fatalities, 

etc., while the long-run wildfire-caused environmental changes can also affect local amenity levels 

and change people’s purchasing decisions. In addition to the time dimension, wildfire frequency, 

wildfire size (with at least 300 or 100 burned acres), wildfire cause, the distances between the 

house and wildfires, and wind patterns are important factors under consideration to measure 

overall wildfire exposure for each house. The details of constructing the overall wildfire exposure 

are discussed in Section 3.2.1. These factors influence the direct and indirect wildfire effects 

differently. For the direct effects, more frequent, larger-scale wildfires as well as wildfires that 

occurred closer to the property are more likely to lead to direct economic and health losses and 

thus reflect higher wildfire risks. In addition, the stronger the wind, the faster the wildfire expands. 

If houses are in the downwind location, the upwind wildfires are more likely to affect houses 

downwind. The rapid expansion of wildfires can also lead to increased levels of anxiety and thus 

reduce preferences for properties in downwind locations. In addition, wildfires caused by human 
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activity and natural forces may be associated with different environmental attributes, community 

characteristics, etc. For example, lightning-caused wildfires may be accompanied by strong storms 

or drought events, which also influence preferences for living locations. Regarding the indirect 

impacts of wildfire via air pollution, more frequent or larger-scale wildfires can emit larger 

amounts of air pollution and influence property values. When wildfires occur closer to the property 

or upwind, the air pollution caused by wildfires is also more likely to influence property value. If 

the nearby wildland is ignited by lightning and there are strong storms, the indirect effects of 

wildfires via air pollution are expected to be stronger than wildfires caused by human activity 

which are less likely to be associated with wind pattern change. 

In addition to the overall measurement of wildfire activity, extreme cases also make a 

difference in the household’s decision. For example, when compared to a house that was exposed 

to three equal-size wildfires that occurred within 15 km over the last six months, a house that was 

exposed to a wildfire (same size) that occurred within 5 km and within 30 days of the transaction 

date may experience a more pronounced discount, even though these two properties had similar 

overall wildfire risks. Therefore, I also consider extreme factors: the number of days since the most 

recent wildfire and the distance between the house and the nearest wildfire. Therefore, I propose 

the following hypotheses: 

Hypothesis 4-1: As the number of days since the wildfire increases, the effect of wildfire 

on house prices is reduced. 

Hypothesis 4-2: As the distance between wildfire and house increases, the effect of 

wildfire on house prices is reduced. 

Hypothesis 4-3: As wildfire frequency/size increases, the magnitude of the wildfire effect 

increases. 

Hypothesis 4-4: Houses located downwind of wildfires are more likely to be influenced 

by wildfires directly and indirectly through air pollution. 

Hypothesis 4-5: Wildfires caused by human activity and natural forces affect house prices 

heterogeneously. 
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Figure 3. 1 Mediation Analysis 

a. Total Effect of Wildfires on House prices 

 
 

b. Wildfires Affect House Prices through Wildfire-caused Environmental (Dis)amenities 

 

 

3. Data and Methods 

3.1 Data 

3.1.1 Property Data 

This research is based on Zillow's Assessor and Real Estate Database (ZTRAX, version: 5 

April 2021), which contains nationwide housing transaction and assessment records. I create a 

repeat sale dataset from 2010 to 2018 by merging the housing transaction and assessment datasets. 

I chose the years 2010 to 2018 because the nationwide housing market experienced a significant 

change due to the shock of the financial crises between 2007 and 2008, and the wildfire dataset I 

use provides data through 2018. I focus on the properties with repeat sales (properties with at least 

two transactions within the study period) because, on the one hand, many house characteristics are 
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missing, and on the other hand, by using the parcel fixed effects, I can control all the time-constant 

house characteristics rather than control the house attribute variables, and thus mitigate the bias 

caused by omitted variables.  

I discard transactions with missing sale prices and geographic location information and 

keep only deed transfers of single-family residential properties. I further eliminate transactions 

that are labeled as non-length arm's sales and intra-family transfers, as well as residences with 

frequent transactions (please see the appendix for the definition of frequent transactions), to reduce 

the bias created by transactions that do not reflect sales under typical conditions. Furthermore, 

because I use repeat sale data and want to control for parcel fixed effects, I only consider residences 

that have not had any remodeling, new building, or major rehabilitation between the first and last 

transaction dates between 2010 and 2018. Observations that report a construction year following 

the sale year are also dismissed. To minimize data entry errors, I trim the top and bottom 1% of 

the data using total rooms and lot size. I also eliminate the outliers with sale prices less than 

$10,000 and more than $10,000,000, as well as properties with more than 20 rooms and 100,000 

square feet. The sale prices are adjusted using the monthly housing consumer price index from the 

U.S. Bureau of Labor and Statistics. The detailed data processing procedures and the figure of the 

sample distribution across the U.S. are presented in Appendix A.  

3.1.2 Wildfire and Air Pollution Data 

The wildfire data originates from the Fire Program Analysis fire-occurrence database (FPA 

FOD) (Short, 2021). This database includes 2,166,753 wildfire events from 1992 to 2018. After 

excluding the observations for Puerto Rico, Alaska, and Hawaii, I have 2,120,520 observations in 

total. I rely on the wildfire discovery date because most of the dates on which the wildfires were 

declared contained (or controlled) are missing. I assume that there has not been a wildfire if there 

is no record for a given county and specific date. The distributions of all-size wildfires and 

wildfires with at least 300 burned acres at the county level across the contiguous United States are 

shown in Figure 3. 2. The figures show that the wildfire incidences differ across the country, with 

more frequent and intense flames in the western and southern states, which is also consistent with 

the fact that these regions usually experience more extreme heat and drought events. The 

measurements of wildfires are discussed in Section 3.2 in detail. 

I employ fine particulate matter (PM2.5) to measure wildfire-induced air pollution in this 

article. The first reason is that particulate matter, particularly PM2.5, is the primary pollutant of 
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concern from wildfire smoke; PM2.5 accounts for over 90% of the total wildfire smoke particle 

mass released by wildfires (Stone et al., 2019). Second, according to the U.S. EPA Integrated 

Science Assessment (ISA) for Particulate Matter Report (2019), causal relationships between 

health effects and PM2.5 are relatively more likely to exist among the various size fractions of PM, 

which means that the level of PM2.5 is more likely to influence health status and thus influence 

household purchase decisions.  

 

Figure 3. 2 Distributions of Wildfires Occurrences (2010~2018) 

(a) Total Wildfires Occurrences for All Wildfires Size Classes 

 
(b) Total Wildfires Occurrences for Wildfires with At Least 300 Burned Acres 

 
Source: Authors’ illustration. Data: Fire Program Analysis fire-occurrence database (FPA FOD) 

(Short, 2021). 
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The monthly total concentration estimates of ground-level PM2.5 data in the United States 

originate from the Atmospheric Composition Analysis Group (ACAG) 43 . I spatial join each 

property’s coordinate to the shapefiles of monthly PM2.5 and then extract the values of the local 

PM2.5 level. The monthly PM2.5 dataset provided by ACAG is gridded at the finest solution (0.01°× 

0.01°), allowing us to calculate the monthly PM2.5 level for the property's surrounding area (about 

1.11km × 1.11km). I utilize the mean level of PM2.5 at the census tract level for properties for 

which I cannot extract a value from the shapefile directly. If the zonal mean at the census tract 

level is still unavailable, I use the county-level zonal mean of PM2.5
44. Figure 3. 3 shows the 

distributions of mean PM2.5 at the county level across the contiguous United States. Generally, the 

distribution is consistent with the U.S. EPA ISA report (2019, 2020) that the eastern areas of the 

country suffer higher but a more uniform level of PM2.5 than western areas, whereas California has 

a significantly higher level of PM2.5 than the surrounding states.  

 

Figure 3. 3 Average Ground-level Particulate Matter (PM2.5) (µg/m³) (2010-2018) 

 
Source: Authors’ illustration. Data: Atmospheric Composition Analysis Group (ACAG). 

 

3.1.3 Other Data 

I also control for weather, demographics, and surrounding environmental factors. The 

monthly data of precipitation, pressure, humidity, and temperature can be obtained from The 

 
 
43 Surface PM2.5 dataset (North American Regional Estimates (V4.NA.03)) from Atmospheric Composition 

Analysis Group. 
44 About 0.0228% (902/3,948,371) observations that I cannot extract a value from the shapefiles directly. 
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National Aeronautics and Space Administration Phase 2 of the North American Land Data 

Assimilation System45. The monthly local precipitation, pressure, humidity, and temperature are 

extracted from the shapefiles using a similar processing method to PM2.5, and if the values are 

missing46, I utilize the zonal means at the census tract or county level. 

Neighborhood features include vegetation coverage, the distance between the wildland-

urban interface and property, population density, home density, and the ratio of white people. 

Families that live near or in the WUI benefit from living close to the forest, but their houses are 

more vulnerable to wildfires. As a result, households are facing a tradeoff between living near 

nature and higher wildfire risks, which may also explain why more households are living in or near 

the WUI. To examine the existence of the tradeoff, I control for the proportion of vegetation at the 

census block level as well as the distances between each property and the nearest intermix or 

interface WUI to assess the benefits and dangers of living near woods, which, at the same time, 

can help mitigate the endogeneity problem of wildfires. The 1990-2010 wildland-urban interface 

of the contiguous United States geospatial data (2nd Edition) contains statistics on housing and 

population density at the census block level for 2000 and 2010, the ratio of vegetation coverage at 

the census block level for 2001 and 2011, and the WUI areas for 2000 and 2010. ArcGIS is used 

to spatial join the coordinates of properties with the shapefile, extract the values of housing and 

population density and proportion of vegetation, as well as compute the distances between 

residences and the nearest WUI. The race data at the census block group level are obtained from 

IPUMS National Historical Geographic Information System (Manson et al., 2021), which 

originates from the U.S. Census Bureau 2000 and 2010 census data. Next, I apply the interpolation 

and extrapolation methods to get observations between 2010 and 2018. 

To create the wildfire measurements, I also calculate the distances between wildfire 

centroids and properties, as well as extract wind pattern data at wildfire centroids. Distances are 

calculated with ArcGIS. The wind data originates from the NLDAS-2. The wind direction at the 

wildfire centroid is determined by the monthly zonal and meridional wind speeds. Similarly, wind 

speeds are extracted directly from the shapefiles. 

Finally, I obtained a repeat-sale dataset between 2010 and 2018, which covers 48 

 
 
45 The weather shapefiles provided by NASA are at the resolution level of 0.125° × 0.125°, allowing us to calculate 

the monthly weather condition of the surrounding area (about 13.88 km × 13.88 km) of the property. 
46 About 0.0002% (9/3,948,371) observations that I cannot extract a value from the shapefiles directly. 
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contiguous states and Washington, DC, 1,834 counties. There are 3,945,340 transaction records of 

1,886,684 houses47. About 41.33%, 28.66%, 17.20%, and 12.82% of the sample is distributed in 

the South, West, Midwest, and Northeast region, respectively. That is, most of the observations 

are in areas with more frequent wildfire occurrences. In the next section, I introduce the variables 

in more detail. Table 3. 1 presents the definitions of variables used in the analysis. 

 

Table 3. 1 List of Variables in the Empirical Analysis 

Dependent Variables 

House Price Natural logarithm of the adjusted sale price of the house 𝑙𝑛(𝑃ℎ𝑦𝑚) 

Explanatory/Control Variables 

Air Pollution Average ground-level Particulate Matter (PM2.5) (µg/m³)  𝑃𝑀ℎ𝑚𝑦 

Distance to 

Wildfire 

The distance between the property and the nearest wildfire 

(km) 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ℎ𝑦𝑚 

Local 

Wildfires  

The weighted sum of local wildfires  𝐿𝑜𝑐𝑎𝑙ℎ𝑦𝑚 

The weighted sum of local upwind wildfires 𝐿𝑜𝑐𝑎𝑙_𝑈𝑝ℎ𝑚𝑦 

The weighted sum of local downwind wildfires 𝐿𝑜𝑐𝑎𝑙_𝐷𝑜𝑤𝑛ℎ𝑚𝑦 

The number of days since the most recent wildfire (in 

hundred) 
𝐷𝑎𝑦𝑠ℎ𝑦𝑚 

The ratio of local wildfires caused by natural causes 

𝑾𝒉𝒚𝒎 

Meteorology 

Average temperature (F) 

Average precipitation (in hundred) (kg/m2) 

Average specific humidity (kg/kg)  

Average surface pressure (kPa) 

Neighborhood 

Housing density by census block level (housing units / 

km2) 

Population density by census block level (1000 persons / 

km2) 

The ratio of the white people by census block group level 

Wildland vegetation ratio by census block level  

Distance between house and intermix/interface WUI (km) 

Instrumental Variables 

Instruments Distant natural-caused upwind wildfires  𝐷𝑖𝑠𝑡𝐹𝑖𝑟𝑒_𝑈𝑝ℎ𝑚𝑦 

 

 
 
47 Since there are some singleton observations, the estimation uses 3,943,418 transaction records and covers 

1,885,744 properties. 
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3.2 Empirical Methodology 

3.2.1 Direct and Indirect Impacts of Local Wildfires 

In this section, I present the empirical methods used to estimate the impacts of wildfires 

and wildfire-induced air pollution on house prices based on the hedonic price model. Note that I 

only keep those properties that sold at least twice; thus, I employ a repeat sales framework here. I 

first estimate the total impacts of wildfires, as presented in equation (8):  

 

𝑙𝑛(𝑃ℎ𝑦𝑚) = 𝜶𝒇𝑭𝒊𝒓𝒆𝒉𝒚𝒎 + 𝜶𝒘𝑾𝒉𝒚𝒎 + 𝜏𝑐 × 𝜎𝑦 + 𝜂𝑚 + 𝜕ℎ + 𝑢ℎ𝑦𝑚   (8). 

 

𝑙𝑛(𝑃ℎ𝑦𝑚) is the natural logarithm of the adjusted sale price of house h that sold in month 

m year y in county c. As presented in Figure 3. 1, when creating the wildfire measurements, I take 

into account the following factors: wildfire frequency, wildfire size, wildfire causes, wind pattern, 

the timing of wildfire, and the distance between the house and the wildfire. Thus, 𝐹𝑖𝑟𝑒ℎ𝑦𝑚 is a 

vector of local wildfire measurements representing the overall wildfire exposures, including the 

weighted sum of wildfire occurrences, 𝐿𝑜𝑐𝑎𝑙ℎ𝑦𝑚  (I also divide the local wildfires into two 

categories: upwind wildfires, 𝐿𝑜𝑐𝑎𝑙_𝑈𝑝ℎ𝑚𝑦, and downwind wildfires, 𝐿𝑜𝑐𝑎𝑙_𝐷𝑜𝑤𝑛ℎ𝑚𝑦), as well 

as two additional considerations about extreme wildfire exposures including the number of days 

since the most recent wildfire that occurred within 80 kilometers of the house since 1992, 

𝐷𝑎𝑦𝑠ℎ𝑦𝑚, and the distance between the property and the nearest wildfire that happened over 5 

years before the transaction month m, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ℎ𝑦𝑚
48. Figure 3. 4 provides examples to illustrate 

the upwind and downwind wildfires and the upwind and downwind areas. Furthermore, most 

wildfires, unlike other natural disasters such as hurricanes, are sparked by human activity; 

 
 
48 If no wildfires happened in areas within 80 kilometers of the house since 1992, then I assume 𝐷𝑎𝑦𝑠ℎ𝑦𝑚=10,000. 

About 10.2% houses (9.5% observations) are assumed to be 10,000. I choose 1992 as the start year because the 

wildfire information is only available since 1992 in the dataset I use. I choose 80 km because I define the distant 

area as the area that is more than 80/100/120 km away from the house. I also create a variable that consider the 

wildfires occurred in nearby 30 km and 38.6% houses (37.4% observations) never experience wildfires since 1992. 

The estimates are slightly greater than that of the main analysis, which is reasonable, since the more distant wildfires 

should have a smaller impact than nearby wildfires. The results are available upon request.  

For 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ℎ𝑦𝑚, I only consider the recent 5-year wildfires for the distance between the houses and the nearest 

wildfire, because if the wildfire occurred a long time ago is very unlikely to influence current housing market, 

although it may occur very close to the houses. Further, large wildfires may also have reduced the local vegetation 

coverage and thus making reducing future wildfire risks in that area. I also examined the robustness using the recent 

10-year wildfires, but the coefficient is not significant. The results are available upon request. 
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therefore, they may not be wholly exogenous. As a result, I include the ratio of wildfires caused 

by natural causes as an additional control variable.  

 

Figure 3. 4 Examples of Upwind and Downwind Directions 

 
Note: For wildfire 1, house h is located in the downwind areas, and wildfire 1 is an upwind wildfire 

for house h. For wildfire 2, house h is in the upwind direction, and house k is located in the 

downwind area. For house k, wildfire 2 is upwind. House h is more likely to be affected by wildfire 

1 than wildfire 2.  

 

To assess local effects, in the main analysis, I only consider wildfires that have burned at 

least 300 acres49 within 30 kilometers of the property h over t months before the transaction month 

m year y, denoted by 𝐽ℎ𝑡 . The weighted sum of wildfire occurrences, 𝐿𝑜𝑐𝑎𝑙ℎ𝑦𝑚 , is defined in 

equation (9). For each wildfire event (𝑗 ∈ 𝐽ℎ𝑚), its impact is discounted by the distance (km) 

between the house and the wildfire, 𝑑ℎ𝑗. The weighted upwind and downwind wildfire occurrences 

are defined in equations (10) and (11), respectively. If the angle between the wind vector at the 

wildfire centroid and the vector from the wildfire centroid to the property (𝜃ℎ𝑗𝑡) is less than 90 

 
 
49 Wildfires are coded to different sizes based on the number of acres within the final fire perimeter (A=greater than 

0 but less than or equal to 0.25 acres, B=0. 26-9.9 acres, C=10.0-99.9 acres, D=100-299 acres, E=300 to 999 acres, 

F=1,000 to 4999 acres, and G=5,000+ acres). In the main analysis, I focus on wildfires of size E, F, and G.  
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degrees, I consider wildfires to be upwind, and the property is located in a downwind direction. 

Wildfires, on the other hand, burn in the downwind direction of the property. Because homebuyers 

typically make their housing purchase decision before the transaction date, changes in local 

environmental amenity levels should influence their decision-making process before the 

transaction date; I consider the wildfire events that occurred during the 12 months (𝑡 =  12) before 

the transaction month m for the short-term effect. Figure 3. 5 shows examples of constructing 

wildfire measurements. 

 

Figure 3. 5 Wildfire Measurements 

 
Note: (1) To construct local wildfire measurements for house h sold in month m year y, I only 

consider wildfires that occurred within 30 kilometers of the house h over t months before the 

transaction month m year y, such as wildfire 1 and wildfire 2.  

(2) To construct distant wildfire measurements for house h sold in month m year y, I only consider 

wildfires that occurred more than 100 kilometers from house h over t months before the transaction 

month m year y, such as wildfire 4 and wildfire 5. 

(3) If the angle between the wind vector at wildfire centroid and the vector from wildfire j’s 

centroid to house h (such as 𝜃ℎ1𝑡 and 𝜃ℎ5𝑡) is less than 90 degrees, I define wildfires to be upwind. 

Otherwise, if the angle (such as 𝜃ℎ2𝑡 and 𝜃ℎ4𝑡)  is greater than 90 degrees, wildfire j is considered 

to burn downwind. 
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𝐿𝑜𝑐𝑎𝑙ℎ𝑚𝑦 = ∑ ( ∑ 𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒ℎ𝑗𝑡 ∗
1

𝑑ℎ𝑗
𝑗∈𝐽ℎ𝑡(𝑑ℎ𝑗<30 𝑘𝑚)

 )

−1

−𝑡

  (9) 

𝐿𝑜𝑐𝑎𝑙_𝑈𝑝ℎ𝑚𝑦 = ∑( ∑ 𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒ℎ𝑗𝑡 ∗ 𝐼(𝜃ℎ𝑗𝑡 < 90) ∗
1

𝑑ℎ𝑗
𝑗∈𝐽ℎ𝑡(𝑑ℎ𝑗<30 𝑘𝑚)

 )

−1

−𝑡

  (10) 

𝐿𝑜𝑐𝑎𝑙_𝐷𝑜𝑤𝑛ℎ𝑚𝑦 = ∑( ∑ 𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒ℎ𝑗𝑡 ∗ 𝐼(𝜃ℎ𝑗𝑡 ≥ 90) ∗
1

𝑑ℎ𝑗
𝑗∈𝐽ℎ𝑡(𝑑ℎ𝑗<30 𝑘𝑚)

 )

−1

−𝑡

  (11) 

𝑤ℎ𝑒𝑟𝑒  𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒ℎ𝑗𝑡 = {
1, 𝑖𝑓 𝑏𝑢𝑟𝑛𝑡 𝑎𝑐𝑟𝑒𝑠 ≥ 300 
0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑾𝒉𝒚𝒎 denotes a vector of time- and location-variant factors including the ratio of natural-

caused wildfires50 , average temperature, precipitation, humidity, and pressure over the study 

period (𝑡 = 12) of the surrounding area (about 13.88 km × 13.88 km) of the property, housing 

density, population density, and ratio of vegetation by census block level in year y, ratio of white 

people by census block-group level in year y, and distance between house and intermix/interface 

WUI in year y. 𝜏𝑐 × 𝜎𝑦 denotes the county-by-year fixed effects, which control the unobserved 

constant factors in each year of each county. 𝜂𝑚 denotes the month-of-year fixed effects, which 

control the monthly variations over the annual cycle. 𝜕ℎ denotes the property fixed effects. The 

standard errors are clustered at the property level. 

The next step is to test whether local wildfires have a significant impact on local air quality, 

as shown in Equation (12). If wildfires can significantly influence local air pollution levels, I then 

consider whether air pollution, specifically PM2.5, can be regarded as the channel through which 

wildfires influence house prices. 𝑃𝑀ℎ𝑚𝑦  denotes the average PM2.5 level of the house’s 

surrounding area (about 1.11km × 1.11km) for the previous t (=12) months before transaction 

month m year y. I use the weighted sum of wildfire occurrences, 𝐿𝑜𝑐𝑎𝑙ℎ𝑦𝑚  (or 𝐿𝑜𝑐𝑎𝑙_𝑈𝑝ℎ𝑚𝑦 

and/or 𝐿𝑜𝑐𝑎𝑙_𝐷𝑜𝑤𝑛ℎ𝑚𝑦), to measure wildfires. The ratio of nature-caused wildfires is controlled 

as well. The covariates 𝑾𝒉𝒚𝒎 are the same as those in equation (8). County-by-year fixed effects, 

𝜏𝑐 × 𝜎𝑦, month-of-year fixed effects, 𝜂𝑚, and property fixed effects, 𝜕ℎ, are also included. The 

 
 
50 Ratio of natural-caused wildfires =

Weighted sum of wildfire occurrences

Weighted sum of natural− caused wildfire occurrences
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standard errors are clustered at the property level.  

 

𝑃𝑀ℎ𝑚𝑦 = 𝛾0 + 𝛾f𝐿𝑜𝑐𝑎𝑙ℎ𝑚𝑦 + 𝜸𝐖𝑾𝒉𝒎𝒚 + 𝜏𝑐 × 𝜎𝑦 + 𝜂𝑚 + 𝜕ℎ + 𝑒ℎ𝑚𝑦    (12) 

 

Last, I test whether wildfires influence house prices through PM2.5. I add PM2.5 as an 

additional variable in equation (8), as shown in equation (13). If PM2.5 has a significant impact on 

house prices (𝛽𝑝) as well as wildfire exposure (𝜶𝒇 in equation (8) and 𝜷𝒇 in equation (13)), then 

there is clear evidence that wildfires indirectly influence house prices through PM2.5.  

 

𝑙𝑛(𝑃ℎ𝑚𝑦) = 𝜷𝒇𝑭𝒊𝒓𝒆𝒉𝒚𝒎 + 𝛽𝑝𝑃𝑀ℎ𝑦𝑚 + 𝜷𝒘𝑾𝒉𝒎𝒚 + 𝜏𝑐 × 𝜎𝑦 + 𝜂𝑚 + 𝜕ℎ + 𝑣ℎ𝑚𝑦   (13) 

 

3.2.2 Addressing Endogeneity of PM2.5 

When evaluating the impacts of PM2.5 as per equation (13), one concern is that PM2.5 may 

be linked with unobserved factors in the error term (i.e., violate the second assumption of 

“sequential ignorability”), although I control several factors and fixed effects. For example, I 

cannot fully control the sectoral makeup of the economy, crime rate, school district boundaries, 

etc. The variation in these neighborhood attributes may influence consumer choices and home 

prices.  

Another way to test the indirect or mediation effect of wildfires is by making use of the 

exclusion restriction assumption of the instrumental variable (Aguilera et al., 2021). Imai et al. 

(2011) also suggested that the instrumental variable method can be used to address the endogeneity 

issue of the mediator. Therefore, I need to find at least one excluded exogenous variable as the 

instrumental variable (Wooldridge, 2010). Previous studies explored a variety of potential 

instrumental variables for air pollution. For example, Bayer et al. (2009), Zheng et al. (2014), 

Barwick et al. (2018), Yang and Zhang (2018), and Chen et al. (2021) considered the 

transboundary spillover effect of air pollution and used distant air pollutants to create a source of 

local air pollutants. Considering wildfires are an important source of air pollution, especially 

PM2.5, Tan-Soo (2018) constructed a wind- and distance-based forest fire hotspots instrumental 

variable for PM2.5.   

Following these studies, I also create a variable, 𝐷𝑖𝑠𝑡𝑃𝑀𝑐𝑚𝑦 , to measure distant air 

pollution and study the spillover effects of air pollution. 𝐷𝑖𝑠𝑡𝑃𝑀𝑐𝑚𝑦 is defined as equation (14) 
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and the example of the construction of the distant all-source PM2.5 can be found in Appendix B. 

𝐷𝑖𝑠𝑡𝑃𝑀𝑐𝑚𝑦 denotes the average monthly imported PM2.5 from counties (𝑗 ∈ 𝐽(𝑑ℎ𝑗 ≥ 100𝑘𝑚)) 

that are at least 100 kilometers away from county c where the property h is located over the 

previous t month from the transaction month m year y51. Through regression analysis, I find a 

significant positive relationship between distant PM2.5 and local PM2.5 (results are available upon 

request). Figure 3. 6 depicts the spatial distribution of the 𝐷𝑖𝑠𝑡𝑃𝑀𝑐𝑚𝑦 from 2010 to 2018, which 

is the average of 𝐷𝑖𝑠𝑡𝑃𝑀𝑐𝑚𝑦 for house h located in state s. This figure highlights the states that 

suffered more PM2.5 from distant counties over the 2010~2018 period. Influenced by the wind 

direction, the distribution of distant PM2.5 shows some differences with the local PM2.5, but in 

general, the eastern and inland areas suffered more imported all-source air pollution. Given that 

wildfires are one of the major sources of PM2.5 and there is significant evidence of transboundary 

PM2.5 spillover effects, I use distant wildfires as an instrumental variable to address the 

endogeneity problem as well as examine whether air pollution can be regarded as a channel 

through which distant wildfires influence house prices. 

 

𝐷𝑖𝑠𝑡𝑃𝑀𝑐𝑚𝑦 =
1

𝑡
∗ (∑ ∑ 𝑃𝑀𝑗𝑡 ∗ I (𝜃𝑐𝑗𝑡 > 90) ∗

1

𝑑𝑐𝑗
𝑗∈𝐽(𝑑ℎ𝑗≥100𝑘𝑚)

−1

−𝑡

)     (14) 

 

Based on Tan-Soo (2018), I create distant large-scale natural-caused upwind wildfires, 

𝐷𝑖𝑠𝑡𝐹𝑖𝑟𝑒_𝑈𝑝ℎ𝑚𝑦, as an instrumental variable. However, a difference is that I only consider the 

natural-caused wildfires to further increase confidence in the exogeneity of the instrumental 

variable. This instrumental variable is obtained using the equation (15). I also create distant 

downwind large-scale natural-caused wildfires, to examine the robustness, which is defined in 

equation (16). Only natural-caused wildfires that burned at least 1,000 acres and occurred at least 

100 kilometers away from the property during the t-month (t=12) period before the transaction 

month m year y are considered, which are denoted by 𝑆𝑠𝑡. Similarly, the distance and wind weights 

 
 
51 Similarly, I only consider the air pollutants imported from upwind counties. That is, the angle between the vector 

from the centroid of county j to the centroid of county i and the wind direction vector in county j in month m year y, 

𝜃𝑐𝑗𝑡, is less than 90 degrees. Besides, the imported PM2.5 is weighted by the reciprocal of geographic distance (km) 

between county i and j, 𝑑ℎ𝑗, as illustrated by equation (9). The farther the county is located, the smaller the 

transboundary effect of distant PM2.5 is expected on local PM2.5. 
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are taken into consideration. Because of the exclusion restriction assumption of the instrumental 

variable, which requires the instrumental variable not to influence house prices through channels 

other than PM2.5, this method can be used to estimate the indirect effect of wildfires through the 

channel of PM2.5. Aguilera et al. (2021) also used this method to estimate the effects of wildfire-

caused PM2.5 on respiratory admissions in southern California. 

 

Figure 3. 6 Distribution of Average Distant PM2.5 (µg/m³) (2010-2018) 

 

 

𝐷𝑖𝑠𝑡𝐹𝑖𝑟𝑒_𝑈𝑝ℎ𝑚𝑦 = ∑ (∑ 𝑁𝑎𝑡𝑢𝑟𝑎𝑙_𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒ℎ𝑠𝑡 ∗ 𝐼(𝜃ℎ𝑠𝑡 > 90) ∗𝑠∈𝑆𝑠𝑡(𝑑ℎ𝑠≥100 𝑘𝑚)
−1
−𝑡

1

𝑑ℎ𝑠
)   (15)    

𝐷𝑖𝑠𝑡𝐹𝑖𝑟𝑒_𝐷𝑜𝑤𝑛ℎ𝑚𝑦 = ∑ (∑ 𝑁𝑎𝑡𝑢𝑟𝑎𝑙_𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒ℎ𝑠𝑡 ∗ 𝐼(𝜃ℎ𝑠𝑡 ≤ 90) ∗𝑠∈𝑆𝑠𝑡(𝑑ℎ𝑠≥100 𝑘𝑚)
−1
−𝑡

1

𝑑ℎ𝑠
)  (16)   

𝑤ℎ𝑒𝑟𝑒  𝑁𝑎𝑡𝑢𝑟𝑎𝑙_𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒ℎ𝑠𝑡 = {
1, 𝑖𝑓 𝑏𝑢𝑟𝑛𝑡 𝑎𝑐𝑟𝑒𝑠 ≥ 1000 
0,                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    

 

Figure 3. 7 depicts the spatial distribution of the predicted value of PM2.5 variation 

attributed to distant natural-caused upwind wildfires from 2010 to 2018 for house h located in state 

s. This predicted value can be obtained by equation (17). The distribution presents a different 

picture to that of the local PM2.5 and wildfire occurrence. First, because the western and southern 

regions experienced significantly more frequent and intense wildfires than the eastern and northern 
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regions and I apply the distance discount when I create distant natural-caused upwind wildfires, it 

is reasonable to find that the western and southern regions suffer more the PM2.5 attributed to 

distant wildfires. Second, perhaps because the sea wind clears the air pollutants in coastal states as 

compared to inland states, the coastal areas in the west and south suffer less the PM2.5 attributed to 

distant large-scale natural-caused upwind wildfires relative to inland places. 

 

𝑃𝑀ℎ𝑚𝑦 = 𝛾0′ + 𝛾f1′𝐿𝑜𝑐𝑎𝑙_𝑈𝑝ℎ𝑚𝑦 + 𝛾f2′𝐿𝑜𝑐𝑎𝑙_𝐷𝑜𝑤𝑛ℎ𝑚𝑦 + 𝛾d1′𝐷𝑖𝑠𝑡𝐹𝑖𝑟𝑒_𝑈𝑝ℎ𝑚𝑦

+ 𝛾d2′𝐷𝑖𝑠𝑡𝐹𝑖𝑟𝑒_𝐷𝑜𝑤𝑛ℎ𝑚𝑦 + 𝜸𝐖′𝑾𝒉𝒎𝒚 + 𝜏𝑐 × 𝜎𝑦 + 𝜂𝑚 + 𝜕ℎ + 𝜀ℎ𝑚𝑦 (17) 

 

Figure 3. 7 Distribution of Average Predicted Local PM2.5 Due to Distant Natural-caused 

Upwind Wildfires (µg/m³) (2010-2018) 

 

 

I then can apply two-step regression to get the IV estimate, 𝛽𝑝 ′̂, as presented in equations 

(18) and (19), which is the local average treatment effect of PM2.5 on house prices. In the first 

stage, I regress the endogenous variable, 𝑃𝑀ℎ𝑚𝑦, on the instrumental variable (𝐷𝑖𝑠𝑡𝐹𝑖𝑟𝑒_𝑈𝑝ℎ𝑚𝑦) 

and all the other exogenous variables from the previous models as well as county-by-year fixed 

effects, month-of-year fixed effects, and house fixed effects to obtain the predicted local PM2.5. In 

the second stage, I substitute PM2.5 with the predicted value obtained in the first stage. The 

exogenous variation of PM2.5 in the second stage is attributed to the exogenous distant upwind 

natural-caused wildfires. As a result, the IV estimate measures how PM2.5 is attributable to distant 

wildfires on local house prices, i.e., the indirect impact of distant wildfires. If the components of 
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PM2.5 do not have significant changes, then I can assume that the indirect effects of local wildfires 

and distant wildfires are the same. That is, a one-unit increase in PM2.5 attributed to wildfires 

(distant or local) leads to a 𝛽𝑝 ′̂ percentage change in house prices. Combing equation (18), shows 

that if the overall exposure to local upwind (downwind) wildfire increases by one unit, then the 

house prices will increase by a 𝛽𝑝 ′̂  ∗ 𝜃𝑢̂  (𝛽𝑝 ′̂  ∗ 𝜃𝑑̂) percentage point. In addition, if the overall 

exposure to distant upwind wildfire increases by one unit, then the house prices will increase by a 

𝛽𝑝′̂  ∗ 𝜃𝐼𝑉̂ percentage point. 

 

𝑃𝑀ℎ𝑚𝑦 = 𝜃0 + 𝜃𝑢𝐿𝑜𝑐𝑎𝑙_𝑈𝑝𝑖𝑡 + 𝜃𝑑𝐿𝑜𝑐𝑎𝑙_𝐷𝑜𝑤𝑛𝑖𝑡  + 𝜃𝑑𝑎𝑦𝐷𝑎𝑦𝑠𝑖𝑡  + 𝜃𝑑𝑖𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑡  

+ 𝜃𝐼𝑉𝐷𝑖𝑠𝑡𝐹𝑖𝑟𝑒_𝑈𝑝ℎ𝑚𝑦 + 𝜽𝒘 ∙ 𝑾𝒉𝒎𝒚 + 𝜏𝑐 × 𝜎𝑦 + 𝜂𝑚 + 𝜕ℎ + 𝜔ℎ𝑚𝑦    (18) 

𝑙𝑛(𝑃ℎ𝑚𝑦) = 𝛽𝑢′𝐿𝑜𝑐𝑎𝑙_𝑈𝑝𝑖𝑡 +  𝛽𝑑′𝐿𝑜𝑐𝑎𝑙_𝐷𝑜𝑤𝑛𝑖𝑡 + 𝛽𝑑𝑎𝑦′𝐷𝑎𝑦𝑠𝑖𝑡  + 𝛽𝑑𝑖𝑠𝑡′𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑡

+ 𝛽𝑝′𝑃𝑀ℎ𝑦𝑚̂ + 𝜷𝒘′𝑾𝒉𝒎𝒚 + 𝜏𝑐 × 𝜎𝑦 + 𝜂𝑚 + 𝜕ℎ + 𝑣ℎ𝑚𝑦   (19) 

 

Next, I discuss the validity of IV. The valid IV should satisfy two conditions: relevance 

and exogeneity. First, the air quality in other counties should have an impact on local air quality. 

Previous research has found evidence of a significant transboundary spillover effect of air 

pollution, which is mostly driven by wind and is related to distance (Bayer et al., 2009; Banzhaf 

and Chupp, 2010; Luechinger, 2010; Khawand, 2015; Zheng et al., 2014; Barwick et al., 2018; 

Yang and Zhang, 2018; Chen and Ye, 2019; Williams and Phaneuf, 2019; Zheng et al., 2019; Chen 

et al., 2021). Second, distant wildfires can produce a large amount of PM2.5, which can be carried 

by the wind and affect local air quality as well. The t-statistic of the instrumental variable obtained 

in the first-stage regression (as presented in Section 4) also shows that the instrumental variable is 

a strong predictor of local PM2.5.  

Second, the instrumental variable should not directly influence house prices or influence 

house prices through channels other than PM2.5. To reduce the possibility that PM2.5 in surrounding 

counties is correlated with variables affecting property prices in the focal county, I create a 100-

kilometer buffer zone and only focus on counties outside the buffer zones. Other factors used to 

construct instrumental variables include exogenous wind direction, geographic distance, and 

natural-caused wildfires, further ensuring the exogeneity of the instrumental variables. To improve 

confidence in the instrumental variable, robustness examinations are performed. In addition, 
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although 𝐷𝑖𝑠𝑡𝑃𝑀𝑐𝑚𝑦 cannot be used to get the indirect impact of wildfires, I use 𝐷𝑖𝑠𝑡𝐹𝑖𝑟𝑒_𝑈𝑝ℎ𝑚𝑦 

and 𝐷𝑖𝑠𝑡𝑃𝑀𝑐𝑚𝑦 as instrumental variables to conduct the overidentification test. In section 4, I 

present the robustness examinations and overidentification test results, which suggest that I cannot 

reject the hypothesis that the instrumental factors are valid and that the results are robust.  

Moreover, there may also be a concern that other air pollutants emitted by wildfires can be 

carried by wind to the local area and thus affect house prices. Air pollutants may influence people’s 

decisions because they can lead to limited visibility and adverse health outcomes. As I discussed 

in Section 1, wildfire smoke has complex components including greenhouse gases, 

photochemically reactive compounds, sulfur dioxide (SO2), particulate matter (PM), and liquids, 

and PM is the major component of wildfire smoke. These particles tend to be very small (with a 

size range near the wavelength of visible light (0.4-0.7 μm)), and about 90% of total particle masses 

consist of PM2.5 (Stone et al., 2019). Other components are not as visible as PM2.5, and thus are 

less likely to affect purchase decisions. In terms of health concerns, three pollutants (particulate 

matter, ozone, and carbon monoxide) may pose health threats during wildfire events (Stone et al., 

2019). First, PM10-2.5 (PM10 is comprised of PM2.5 and PM10-2.5) is not a major concern, because 

about 90% of total particle masses consist of PM2.5 (Stone et al., 2019). Second, carbon monoxide 

dilutes rapidly, so it is rarely a concern unless people are in very close proximity to wildfires (Stone 

et al., 2019). As a result, it is improbable that carbon monoxide travels to the focal county and 

influences local health. Third, ozone is not directly emitted from a wildfire, but forms in the plume 

as wildfire smoke moves downwind (Stone et al., 2019), so ozone can be another channel through 

which distant wildfires influence local health. However, ozone is not the major component of 

wildfire smoke. While ozone can affect health, it is invisible and thus less likely to be recognized 

by people. Thus, ozone can be another potential channel, for the reasons outlined above I assume 

that the impact of this channel is minor. I will also conduct an empirical study to verify this 

assumption in the future. 

3.2.3 Long-term Effects and Spillover Effect of Wildfires  

In the main analysis, I study the wildfires that occurred in the previous twelve months 

leading up to the transaction month. In this section, longer-run impacts are explored: 3-year and 

5-year periods. Instead of using wildfires over the previous 1-year period, I sum up the weighted 

wildfires over the recent 3 and 5 years. An alternative specification is using wildfires that occurred 

in each year over the previous 3-year or 5-year period. Also, upwind and downwind wildfires are 
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created similarly.  

The instrumental variable strategy enables us to analyze the spillover effects of distant 

wildfires. If I assume that the marginal effect of PM2.5 attributed to distant wildfires and that 

attributed to local wildfires on house prices are the same, then I can compare the indirect impacts 

of local wildfires and spillover effects of distant wildfires by comparing the magnitudes of effects 

of distant and local wildfires on PM2.5, as discussed in Section 3.2.2.  

3.2.4 Robustness Check 

First, in the main analysis, I focus on the wildfires that have burned at least 300 acres. In 

this section, I study the wildfires that have burned at least 100 acres as well. Second, I consider 

alternative ways to construct the instrumental variable. In the main analysis, I define faraway 

wildfires as those located at least 100 kilometers away from a given property. To examine the 

robustness, I utilize various buffer zone radius sizes, including 80 and 120 kilometers. Besides, I 

also consider applying the distant wildfires in both upwind and downwind directions and the 

distant wildfires in the downwind direction as another two sets of instrumental variables.  

Third, previous studies on the effects of wildfires and wildfire smoke typically assume that 

wildfires are exogenous, ignoring the potential endogeneity of wildfire-caused air pollution. I 

control for the ratio of natural-caused wildfires in the previous section. In this section, rather than 

focusing on local all-cause wildfires, for comparison, I examine how natural-caused wildfires that 

can be regarded as totally exogenous affect house prices52.  

4. Results 

First, I present in Table 3. 2 the major findings on how wildfires that occurred within a 

year of the transaction month, directly and indirectly, affect house prices. Second, I discuss the 

long-term consequences of wildfires as well as compare the local wildfire effects and spillover 

effects of distant wildfires, which are presented in Table 3. 3 and Table 3. 4, respectively. Third, 

I estimate the change in house prices on average due to wildfires, as shown in Table 3. 5. Finally, 

I perform a series of robustness tests, as shown in Table 3. 6, Table 3. 7, and Table 3. 8.  

4.1 Main results 

I begin by showing how wildfires affect house prices in general, as presented in Table 3. 

 
 
52 If the natural causes of wildfires cannot influence local house market directly, I can assume that the natural-caused 

wildfires are fully exogeneous, 
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2. The completed estimation results can be found in Table 3. 9, Table 3. 10, and Table 3. 11 of 

Appendix C. In the main analysis, I focus on the wildfires that burned at least 300 acres and 

occurred less than 30 kilometers away from the house during the 1 year before the transaction 

month. As seen in Column 1 of Panel A of Table 3. 2, the total effect of wildfires is not significant, 

which is somewhat unexpected. Thus, I divide wildfires into upwind and downwind wildfires. 

From column 2, I find that upwind wildfires have a significant negative impact, whereas downwind 

wildfires are significantly and positively associated with house prices at a 1% significance level.  

In Panel A, there are another two measurements of wildfires: the number of days since the 

most recent wildfire since 1992 and the distance from the house to the nearest wildfire that 

occurred within the last five years, both of which have positive and significant impacts on house 

prices. These coefficients indicate that the longer the property's adjacent areas stay free of wildfires 

and the farther the nearest recent wildfire is, the higher the property's sale price. The results on the 

distance also confirm the assumption of the distance discount when I create the wildfire 

measurements. Also, since wildfires are more likely to happen in areas with higher vegetation 

coverage and areas in or near the WUI, I control these two factors. Both the vegetation ratio of the 

census block in which the property is located and the distance between the property and WUI is 

significantly and positively associated with house prices at a 1% significance level. This finding 

implies that the households more highly value homes located in the areas with more vegetation 

coverage, but they are also aware of the risks of living near WUI. 

 Second, I investigate how local wildfires influence local PM2.5 levels, as presented in Panel 

B. Here, I show that wildfires, both upwind and downwind, have significantly degraded the local 

air quality. Furthermore, wildfires burning upwind have a larger impact on PM2.5 levels than 

wildfires burning downwind. People who live in places with more vegetation and are closer to the 

WUI, on the other hand, are less affected by air pollution. 

Third, as shown in Panel C, PM2.5 has a negative and significant impact on house prices 

and wildfires negatively influence house prices via PM2.5. After controlling PM2.5, I also find that 

the magnitudes of wildfire effects change. However, due to the potential endogeneity issue of air 

pollution, the estimates of PM2.5 may lead to inconsistent estimates of indirect effects. As a result, 

I use distant upwind large-scale natural-caused wildfires as an instrumental variable. According to 

the first-stage estimation results, the instrumental variable is a strong predictor of local PM2.5. The 

detailed first-stage estimation results can be found in Table 3. 12 of Appendix C. To increase 
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confidence in the IV, I conduct an overidentification test by adding distant PM2.5 as a second IV. 

The Hansen J statistic indicates that I cannot reject that these IVs are valid (The results are 

available upon request). In addition, I find significant evidence of the endogeneity of local PM2.5. 

After addressing endogeneity, the estimates of PM2.5 increase substantially in magnitude, 

although they only measure the effects of PM2.5 attributed to distant wildfires. Also, the 

magnitudes of indirect effects increase substantially. Similarly, the impact of overall exposure to 

wildfires is still insignificant, and there are positive upwind wildfire impacts and negative 

downwind wildfire impacts, both of which are significant at the 1% significance level. In Section 

3.2.2, I discussed that the distant wildfires, i.e., the instrumental variable, should primarily 

influence house prices through PM2.5 and that the effects of other channels are likely minor. 

However, for local wildfires, there may be other channels by which wildfires affect house markets, 

and wildfires influence the market directly. If I assume that local wildfire-caused PM2.5 is the only 

channel via which local wildfires indirectly affect house prices, then the estimates of wildfires 

(all/upwind/downwind wildfires) reflect the direct impact of wildfires on house prices. Otherwise, 

these estimates suggest mixed effects of wildfires' direct and indirect impacts through various 

pathways other than PM2.5.  

For the opposite signs of the upwind and downwind wildfire estimates, particularly the 

positive effects of downwind wildfires, I put forward the following possible explanations. First, 

there could be substitution effects because downwind locations are riskier and are more likely to 

be affected by smoke. As a result, people tend to prefer houses that are less affected by upwind 

wildfires. Second, there is the externality of other air pollutants caused by local wildfires. While I 

focus on the impact of local wildfire-caused PM2.5, wildfire smoke also contains other pollutants. 

These pollutants have an immediate impact on human welfare as well as people’s perceptions of 

wildfire severity. Third, there are still other pathways by which wildfires can indirectly affect 

house prices. According to the literature, wildfires also affect ecosystems, and these effects can be 

good or harmful. As a result, the coefficients of upwind or downwind wildfires might represent 

the direct impact of wildfires or mixed effects that include both direct impact and other indirect 

impacts. Also, note that though the coefficient or marginal effect of downwind wildfires is positive, 

when the distance to the nearest wildfire and the days since the most recent wildfire are taken into 

account, the net effect of downwind wildfires is still negative, which is illustrated in Section 4.2. 
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4.2 Additional Results 

First, I investigate the long-term effects of wildfires. Table 3. 3 presents the long-term 

effects of the total weighted wildfire occurrences during the last three or five years. The completed 

results are shown in Table 3. 13, Table 3. 14, Table 3. 15, and Table 3. 16 of Appendix C. I also 

estimated another specification, using wildfires that occurred in each year over the previous 3-year 

or 5-year period; these results are available upon request. Overall, the longer-term effects of 

upwind and downwind wildfires are similar to the shorter-term effects, but wildfires that occurred 

a long time ago tend to have a smaller impact on house prices than those that occurred more 

recently. Further, in contrast to the short-term impact of local wildfires on air quality, in the long 

term, downwind wildfires have an almost nearly equal negative effect on the air quality as upwind 

wildfires, implying that, in the long run, wildfires that occur nearby, regardless of wind direction, 

will eventually contribute to an increase in local air pollution. Also, after addressing the 

endogeneity problem, the magnitudes of PM2.5 and indirect effects increase substantially.  

Second, I compare the local and spillover effects of distant wildfires, as shown in Table 3. 

4. I find that local upwind wildfires have a substantially greater impact on the local PM2.5 level 

than downwind wildfires. The spillover effects of distant wildfires are substantially greater than 

the indirect effects of local wildfires. Also, comparing the house price changes due to the PM2.5 

caused by a one standard deviation of local and distant wildfires, I find that distant upwind natural-

caused wildfires are associated with an approximate price drop of $573, while the local upwind 

and downwind wildfires are associated with approximate price drops of $25 and $13, respectively. 

Last, I summarize the change in house prices on average due to wildfires with at least 300 

burned acres. Table 3. 5 shows the price difference between a house that has not been affected by 

recent wildfires and a house that has recently been affected by a local wildfire. To estimate the 

overall wildfire effects, I consider the price changes due to the changes in all the wildfire 

measurements (as discussed in Section 3.2). The estimate of each component of wildfire effects 

can be found in Table 3. 17 of Appendix C. In Table 3. 17, I estimate the price changes due to 

one more wildfire occurring 30km, 20km, and 10km away from the house within one year, three 

years, and five years of the transaction month. Overall, the negative impacts of wildfires on house 

prices diminish as time goes by and as the distance increases, and there are significant price 

differentials between the houses that are affected by upwind wildfires and those affected by 

downwind wildfires. Furthermore, I find that the total effect of wildfires (i.e., the impacts of all 
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wildfire measures: weighted upwind and downwind wildfires, indirect effects through PM2.5, the 

number of days since the most recent wildfires, and distance to the nearest wildfire) is negative.  

To give a more straightforward picture, I start with a baseline case that no wildfires have 

occurred within 80 kilometers of a certain House A in the last five years. Next, I consider a scenario 

in which a most recent upwind/downwind wildfire occurred 10/20/30 km away from the same 

house one year ago. To calculate the price differences between the baseline and alternative 

scenarios, I assume that a wildfire occurred within 80 km from House A five years ago for the 

baseline case, so the estimates should be the upper bound of price changes. For example, if the 

most recent wildfire occurred one year ago in an upwind direction and was only 10 kilometers 

away from House A, the sale price of House A will decline by $3,797. Similarly, if the wildfire 

occurred downwind, the sale price would drop by $2,572, which is less than the upwind wildfire 

but still substantial. 

4.3 Robustness Check  

In this section, I examine the robustness of the estimation results by varying the wildfire 

size I focus on and utilizing alternative instrumental variables, as well as consider whether the 

wildfire causes affect the conclusions. 

First, instead of focusing on wildfires that have burned at least 300 acres, I study wildfires 

that have burned at least 100 acres, which occur more frequently, as shown in Table 3. 6. In Panel 

A, the effect of all local wildfires becomes positive and significant, as the positive impact of 

downwind wildfires is larger than the negative effects of upwind wildfires. This finding may 

indicate that, in comparison to the intensity of the wildfire, a high frequency of wildfires is more 

likely to instill people's perceptions of wildfire hazards, affecting families' preferences for upwind 

places. In line with my expectations, wildfires of a smaller magnitude have a smaller impact on air 

quality, but the effects of PM2.5 on house prices are still significant. Thus, the indirect effects of 

wildfire through PM2.5 on house prices are smaller in magnitude compared to PM2.5 induced by 

larger-size wildfires.  

Second, I consider alternative approaches to creating the instrumental variable. I also build 

buffer zones with a radius of 80 and 120 kilometers, in addition to a 100-kilometer radius. The 

results are presented in Table 3. 7. Despite the minor difference in the estimations, the results are 

robust. Again, all the instrumental variables are strong predictors of PM2.5. As the distance 

increases, the prediction power (F-statistics) decreases. In addition, I also consider distant all-cause 
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wildfires and downwind wildfires. Since they fail to pass the overidentification test, I do not 

present them in this paper; however, the complete results are available upon request. 

Last, in the main analysis, I control for the ratio of natural-caused wildfires to account for 

potential omitted human components that may also affect the housing market. In this evaluation, I 

only focus on natural-caused wildfires. As shown in Table 3. 8, the indirect impact of upwind 

wildfires through air pollution is substantially greater than that of downwind wildfires. One 

possible explanation is that natural-caused wildfires are usually accompanied by storms, allowing 

wind patterns to play a more significant role in contaminant transport. This result may imply that 

natural-caused upwind wildfires primarily affect local house prices by releasing air pollutants, 

while natural-caused downwind wildfires are more likely to influence household decisions by 

altering perceptions of future wildfire risks in upwind and downwind areas. Based on these results, 

I further identify the sources of the opposite signs of the effects of the upwind and downwind 

wildfire that were discussed in Section 4.1: wind directions play a crucial role in causing the house 

price differences between upwind and downwind areas.
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Table 3. 2 Direct and Indirect Effects of Wildfires on House Prices 

(Wildfires Over the recent 12 months, 0~30km, ≥ 300 acres) 

Panel A. Total Effects of Wildfires on House Prices 

Dependent variable: ln(Price) (1) (2) 

All wildfires 0.0008  

 (0.17)  

Upwind wildfires  -0.0311*** 

  (-4.55) 

Downwind wildfires  0.0326*** 

  (5.19) 

Days since the most  0.0002*** 0.0002*** 

recent wildfires (4.85) (4.83) 

Distance to the nearest 0.0002*** 0.0002*** 

wildfires (6.63) (6.65) 

Vegetation ratio 0.4576*** 0.4571*** 

 (45.98) (45.94) 

Distance to WUI 0.0068*** 0.0068*** 

 (5.99) (5.98) 

Panel B. Effects of Wildfires on Air Pollution 

Dependent variable: PM2.5 (1) (2) 

All wildfires 0.1602***  

 (13.81)  

Upwind wildfires  0.1847*** 

  (8.33) 

Downwind wildfires  0.1357*** 

  (12.25) 

Vegetation ratio -0.1680*** -0.1676*** 

 (-11.91) (-11.88) 

Distance to WUI -0.0405*** -0.0404*** 

 (-23.25) (-23.24) 
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Table 3. 2 (cont’d) 

Panel C. Indirect Effects of Wildfires on House Prices 

Dependent variable: ln(Price) (1) OLS (2) IV (3) OLS (4) IV 

All wildfires 0.0016 0.0049   

 (0.37) (1.11)   

Upwind wildfires   -0.0301*** -0.0263*** 

   (-4.44) (-3.93) 

Downwind wildfires   0.0333*** 0.0362*** 

   (5.31) (5.71) 

PM -0.0051*** -0.0247*** -0.0050*** -0.0249*** 

 (-8.41) (-5.59) (-8.40) (-5.63) 

Days since the most  0.0002*** 0.0002*** 0.0002*** 0.0002*** 

recent wildfires (4.79) (4.54) (4.77) (4.52) 

Distance to the nearest  0.0002*** 0.0002*** 0.0002*** 0.0002*** 

wildfires (6.77) (7.28) (6.80) (7.31) 

Vegetation ratio 0.4568*** 0.4534*** 0.4563*** 0.4529*** 

 (45.89) (45.41) (45.85) (45.37) 

Distance to WUI 0.0066*** 0.0058*** 0.0066*** 0.0057*** 

 (5.81) (5.04) (5.80) (5.02) 

Kleibergen-Paap rk Wald F 

statistics  
 2.2e+04  2.2e+04 

Endogeneity test  20.221  20.686 

(p-value)  [0.0000]  [0.0000] 

Indirect Impact     

All wildfires -0.08% -0.23%   

Upwind wildfires   -0.09% -0.32% 

Downwind wildfires   -0.07% -0.16% 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 3. 3 Long-term Effects of Wildfires (≥ 300 acres) 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01.  

  

Panel A. Total Effects of Wildfires on House Prices 

Dependent variable: 

ln(Price) 
3 years 5 years 

 (1) (2) 

Upwind wildfires  -0.0290*** -0.0107*** 

 (-6.06) (-2.93) 

Downwind wildfires  0.0204*** 0.0137*** 

 (5.13) (3.83) 

Days since the most 0.0002*** 0.0003*** 

recent wildfires (4.99) (5.32) 

Distance to the nearest 0.0002*** 0.0001*** 

wildfires (5.96) (4.44) 

Panel B. Effects of Wildfires on Air Pollution 

Dependent variable: PM2.5 (1) (2) 

Upwind wildfires  0.1408*** 0.1101*** 

 (13.22) (10.47) 

Downwind wildfires  0.1566*** 0.1191*** 

 (16.45) (12.94) 

Panel C. Indirect Effects of Wildfires on House Prices 

 (1) (2) (3) (4) 

Dependent variable: 

ln(Price) 
OLS IV OLS IV 

Upwind wildfires  -0.0282*** -0.0254*** -0.0100*** -0.0078*** 

 (-5.92) (-5.33) (-2.77) (-2.15) 

Downwind wildfires  0.0213*** 0.0244*** 0.0144*** 0.0168*** 

 (5.32) (5.96) (3.99) (4.52) 

PM -0.0051*** -0.0240*** -0.0051*** -0.0233*** 

 (-8.46) (-5.49) (-8.48) (-5.34) 

Days since the most 0.0002*** 0.0002*** 0.0002*** 0.0002*** 

recent wildfires (4.93) (4.68) (5.25) (4.68) 

Distance to the nearest 0.0002*** 0.0002*** 0.0001*** 0.0002*** 

wildfires (6.11) (6.62) (4.60) (6.62) 

Kleibergen-Paap rk Wald 

F statistics 
 2.2e+04  2.2e+04 

Endogeneity test  19.183  17.886 

(p-value)  [0.0000]  [0.0000] 

Indirect Impact     

Upwind wildfires -0.07% -0.31% -0.06% -0.26% 

Downwind wildfires -0.08% -0.34% -0.06% -0.28% 
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Table 3. 4 Local and Spillover Effects of Wildfires 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01.  

 

 

 

 

 

  

Panel A. Effects of Wildfires on Air Pollution 

Dependent variable: PM2.5 (1) (2) 

Local Wildfires 0.0949***  

(≥ 300 acres) (10.92)  

Local Upwind Wildfires  0.1265*** 

(≥ 300 acres)  (7.93) 

Local Downwind Wildfires  0.0633*** 

(≥ 300 acres)  (6.11) 

Distant Upwind Wildfires 2.3600*** 2.3605*** 

(Natural-caused, ≥ 5000 

acres) 
(147.27) (147.21) 

Panel B. Indirect Effects of Wildfires on House Prices 

Channel of PM2.5 Using IV Estimates  

 (1) (2) 

Local Wildfires -0.24%  

Local Upwind Wildfires   -0.31% 

Local Downwind Wildfires  -0.16% 

Distant Upwind Wildfires -5.88% -5.88% 

Panel C. Comparisons of House Price Changes ($) on Average Due to the Local and 

Spillover Effects 

A One SD Change of Local Wildfires (≈0.066), Local Upwind Wildfires (≈0.042), Local 

Downwind Wildfires (≈0.043), and Distant Upwind Wildfires (≈0.051) 

Mean Adjusted Sale Prices≈$191089.4 

 (1) (2) 

Local Wildfires  -29.80  

Local Upwind Wildfires   -25.28 

Local Downwind Wildfires  -12.95 

Distant Upwind Wildfires -572.69 -572.81 
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Table 3. 5 Total Effects of Wildfires Under Different Scenarios 

Baseline: No wildfire happened less than 80 km away from House A over recent five 

years 

Scenarios: If the most recent wildfire happened upwind/downwind one year ago 

The wildfire happened d km away from 

House A 
d=30km d=20km d=10km 

Price change between baseline and different scenarios (dollars) 

Upwind  -2656.78 -3132.91 -3796.95 

Downwind -2248.49 -2520.47 -2572.06 

Note: (1) I do not consider the spillover effects from distant wildfires. (2) I assume that there is a 

wildfire that happened 80 km away from House A five years ago for the baseline case to calculate 

the price change, so the estimate of the total effect of an upwind or downwind wildfire is just a 

lower bound.
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Table 3. 6 Robustness Check – Different Wildfire Size (≥ 100 acres) 

Panel A. Total Effects of Wildfires on House Prices 

Dependent variable: 

ln(Price) 
(1) (2) 

All wildfires 0.0055**  

 (2.05)  

Upwind wildfires  -0.0111*** 

  (-3.07) 

Downwind wildfires  0.0217*** 

  (4.60) 

Days since the most  -0.0001 -0.0001 

recent wildfires (-1.05) (-1.06) 

Distance to the nearest 0.0001*** 0.0001*** 

wildfires (3.87) (3.88) 

Vegetation ratio 0.4584*** 0.4581*** 

 (46.06) (46.03) 

Distance to WUI 0.0068*** 0.0068*** 

 (5.99) (5.98) 

Panel B. Effects of Wildfires on Air Pollution 

Dependent variable: 

PM2.5 
(1) (2) 

All wildfires 0.0686***  

 (9.90)  

Upwind wildfires  0.0943*** 

  (10.73) 

Downwind wildfires  0.0437*** 

  (4.50) 

Vegetation ratio -0.1677*** -0.1673*** 

 (-11.88) (-11.85) 

Distance to WUI -0.0407*** -0.0406*** 

 (-23.36) (-23.36) 
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Table 3. 6 (cont’d) 

Panel C. Indirect Effects of Wildfires on House Prices 

Dependent variable:  (1) (2) (3) (4) 

ln(Price) OLS IV OLS IV 

All wildfires 0.0059** 0.0072***   

 (2.18) (2.59)   

Upwind wildfires   -0.0107*** -0.0090** 

   (-2.94) (-2.47) 

Downwind wildfires   0.0219*** 0.0228*** 

   (4.62) (4.69) 

PM -0.0050*** -0.0223*** -0.0050*** -0.0223*** 

 (-8.34) (-8.93) (-8.31) (-8.93) 

Days since the most  -0.0001 -0.0001 -0.0001 -0.0001 

recent wildfires (-1.13) (-1.42) (-1.14) (-1.42) 

Distance to the nearest 0.0001*** 0.0001*** 0.0001*** 0.0001*** 

wildfires (3.98) (4.35) (3.99) (4.37) 

Vegetation ratio 0.4575*** 0.4546*** 0.4573*** 0.4543*** 

 (45.97) (45.62) (45.94) (45.60) 

Distance to WUI 0.0066*** 0.0059*** 0.0066*** 0.0059*** 

 (5.80) (5.16) (5.80) (5.15) 

Kleibergen-Paap rk Wald 

F statistics 
 2.2e+04  2.2e+04 

Endogeneity test  18.823  18.855 

(p-value)  [0.0000]  [0.0000] 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01.  
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Table 3. 7 Robustness Check – Different Radius of Buffer Zone 

Dependent Variable: ln(Price) 

Main 

Analysis 
 Robustness Check 

𝒅 = 𝟏𝟎𝟎  𝒌𝒎    𝒅 = 𝟖𝟎 𝒌𝒎      𝒅 = 𝟏𝟐𝟎 𝒌𝒎      

Upwind wildfires (≥ 300 acres) -0.0263***  -0.0271***  -0.0262*** 

 (-3.93)  (-4.04)  (-3.92) 

Downwind wildfires (≥ 300 

acres) 

0.0362*** 
 

0.0356*** 
 

0.0363*** 

 (5.71)  (5.62)  (5.71) 

PM -0.0249***  -0.0207***  -0.0252*** 

 (-5.63)  (-4.91)  (-5.49) 

Days since the most  0.0002***  0.0002***  0.0002*** 

recent wildfires (4.52)  (4.57)  (4.52) 

Distance to the nearest 0.0002***  0.0002***  0.0002*** 

wildfires (7.31)  (7.20)  (7.31) 

Vegetation ratio 0.4529***  0.4536***  0.4528*** 

 (45.37)  (45.45)  (45.35) 

Distance to WUI 0.0057***  0.0059***  0.0057*** 

 (5.02)  (5.17)  (5.00) 

Kleibergen-Paap rk Wald F 

statistics 
2.2e+04  2.3e+04  2.1e+04 

Endogeneity test 20.686  14.175  19.706 

(p-value) [0.0000]  [0.0000]  [0.0000] 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01.   
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Table 3. 8 Direct and Indirect Effects of Wildfires on House Prices 

(Natural-caused wildfires, Over the recent 12 months) 

Panel A. Total Effects of Wildfires on House Prices 

Dependent variable: ln(Price) (1) (2) 

All wildfires (≥ 300 acres) 0.0487***  

 (3.69)  

Upwind wildfires (≥ 300 acres)  -0.0016 

  (-0.07) 

Downwind wildfires (≥ 300 acres)  0.0749*** 

  (4.32) 

Days since the most  0.0002*** 0.0002*** 

recent wildfires (4.18) (4.12) 

Distance to the nearest 0.00005*** 0.00005*** 

wildfires (5.76) (5.74) 

Vegetation ratio 0.4587*** 0.4587*** 

 (46.10) (46.09) 

Distance to WUI 0.0068*** 0.0068*** 

 (6.01) (6.02) 

Panel B. Effects of Wildfires on Air Pollution 

Dependent variable: PM2.5 (1) (2) 

All wildfires (≥ 300 acres) 0.3298***  

 (12.13)  

Upwind wildfires (≥ 300 acres)  0.7961*** 

  (20.06) 

Downwind wildfires (≥ 300 acres)  0.0860*** 

  (3.87) 

Vegetation ratio -0.1700*** -0.1698*** 

 (-12.05) (-12.03) 

Distance to WUI -0.0409*** -0.0409*** 

 (-23.50) (-23.53) 
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Table 3. 8 (cont’d) 

Panel C. Indirect Effects of Wildfires on House Prices 

Dependent variable: ln(Price) (1) (2) (3) (4) 

 OLS IV OLS IV 

All wildfires (≥ 300 acres) 0.0503*** 0.0577***   

 (3.80) (4.27)   

Upwind wildfires (≥ 300 acres)   0.0024 0.0201 

   (0.11) (0.90) 

Downwind wildfires (≥ 300 acres)   0.0754*** 0.0773*** 

   (4.34) (4.41) 

PM -0.0051*** -0.0277*** -0.0051*** -0.0277*** 

 (-8.45) (-6.25) (-8.41) (-6.25) 

Days since the most  0.0002*** 0.0001*** 0.0002*** 0.0001*** 

recent wildfires (3.97) (2.95) (3.91) (2.91) 

Distance to the nearest 0.00005*** 0.0001*** 0.00005*** 0.0001*** 

wildfires (6.00) (6.95) (5.98) (6.93) 

Vegetation ratio 0.4579*** 0.4540*** 0.4579*** 0.4540*** 

 (46.01) (45.48) (46.01) (45.48) 

Distance to WUI 0.0066*** 0.0057*** 0.0066*** 0.0057*** 

 (5.83) (4.95) (5.84) (4.95) 

Kleibergen-Paap rk Wald F 

statistics 

 
2.1e+04 

 2.1e+04 

Endogeneity test  26.712  26.552 

(p-value)  [0.0000]  [0.0000] 

 Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01.   
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5. Conclusions 

 With more frequent and intense wildfires occurring worldwide, understanding how 

wildfires affect the quality of life is more important than ever. Wildfires can cause property and 

infrastructure damage, as well as injuries and fatalities. Wildfires occur in most terrestrial 

ecosystems and are associated with a variety of ecological changes. Wildfire smoke is a major 

environmental hazard, as it can be carried by the wind and transported to distant regions. PM2.5 is 

the most common component of wildfire smoke particles, and it poses health and social risks to 

people. As more people live near or in the WUI, and as increasingly frequent and intense extreme 

weather events are expected to be in the coming decades, wildfire-related losses are expected to 

increase. In this broader context, this paper investigates how wildfires, directly and indirectly, 

affect the pricing of residential homes in the United States as well as verifies that households are 

facing a tradeoff between amenities caused by living near nature and the increasing wildfire risks. 

Clarifying the mechanisms through which wildfires affect house prices can help policymakers 

enact related policies and initiatives, such as wildfire education, post-fire restoration priority, and 

post-fire air pollution control.  

This paper is based on the hedonic pricing model and applies the instrumental variable 

method to explore the total effect of wildfires on house prices and distinguish the indirect effect of 

wildfires-caused PM2.5. I use a national repeat-sale dataset from 2010 to 2018 and match each 

property with each wildfire event since 1992. This enables us to create wildfire measurements that 

account for wildfire frequency and severity, wind pattern, wildfire causes, the distance between 

wildfires and houses, and wildfire timing. Considering that the wildfire risks are extremely high 

near the WUI and in areas with high vegetation coverage and that people place a high value on the 

houses with better views of natural scenery, I control for the distance between the house and WUI 

as well as the neighborhood vegetation coverage. Moreover, I address the endogeneity problem of 

PM2.5, explore the spillover effects and long-term effects of wildfires, and examine whether 

wildfire causes have an impact on the findings. 

 I find that the frequency and severity of the wildfires, the wind patterns, wildfire causes, 

the distances between wildfires and houses, and the timing of wildfires are important factors that 

influence the wildfire effects on house prices. Overall, wildfires have a significant negative impact 

on house prices. There is a significant price differential between houses located in upwind and 

downwind locations of the wildfires. I put forward three possible explanations: the substitution 
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effect, externality, and the existence of other channels (other than air pollution) via which wildfires 

affect house prices. Future research is needed to further examine these three possible explanations. 

Meanwhile, PM2.5 emitted by wildfires, both upwind and downwind, results in a drop in house 

prices. This negative impact is more significant after addressing the endogeneity of PM2.5. 

Although the indirect effect of nearby wildfires via PM2.5 is considerably smaller than that of the 

direct effect of wildfires, the indirect/spillover effects of distant wildfires via PM2.5 are substantial; 

wildfire smoke can travel a long distance and influence a broader area. As a result, local or nearby 

wildfires mainly influence house prices via direct damages to the local amenities, whereas distant 

wildfires have a significant impact on the broader house market via exporting wildfire-caused 

PM2.5. PM2.5 may not be the only pathway that local wildfires affect the property market. Future 

research is needed to further explore other pathways such as water pollution and postfire floods. 

Also, this study distinguishes between the wildfire effects and living near nature. Although people 

prefer houses with more vegetation, they are still concerned about the wildfire risks. When I only 

consider wildfires generated by natural causes, I find that wind plays a more significant role in 

transporting wildfire-caused air pollutants to the downwind areas.  

The results offer policymakers a more comprehensive view of how wildfires affect 

homebuyers’ decisions. Wildfires affect house prices in multiple ways, which many homebuyers 

may be unaware of and thus attribute to other environmental factors. The implementation of 

wildfire prevention, education, and restoration programs may be improved by taking into 

consideration local meteorological factors (such as wind patterns), environmental characteristics 

(such as vegetation coverage and the number of households living near or in WUI), and 

mechanisms by which wildfires influence local environmental amenities such as wildfire-related 

air pollution, water pollution, floods, etc. 
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APPENDIX A: HOUSE DATA PROCESSING AND SAMPLE DISTRIBUTION 

1. Processing procedures for Zillow's Assessor and Real Estate Database (ZTRAX)  

The detailed data cleaning procedures are presented below: 

1) Transaction-Main table: 

i. Drop the transactions with missing sale prices.  

ii. Generate transaction date: use the DocumentDate. If DocumentDate is 

missing, then use SignatureDate. If DocumentDate and SignatureDate are 

missing, then use RecordingDate.  

iii. Keep the most recent record (with the greatest LoadID) for each TransID.  

iv. Keep the transactions that are deed transfers (DataClassStndCode is “D” or 

“H”) 

2) Transaction- PropertyInfo table: 

i. Drop the transactions with missing ImportParcelID.  

ii. Drop the transactions with missing all the geographic location information 

(street addresses and coordinates). 

iii. Keep the most recent record for each TransID and 

PropertySequenceNumber. 

iv. Drop transactions of multiple parcels. 

3) Assessment-Main table: 

i. Keep the most recent record for each ImportPropertyID. 

ii. Keep the single-family residential homes (PropertyLandUseStndCode is 

"RR101").  

4) Assessment-Building table: 

i. Drop RowID of multiple assessment records. 

5) Merge the Main table and PropertyInfo table in the transaction database using FIPS 

and TransId. 

6) Merge the Main table and Building table in the assessment database using FIPS and 

RowID. 

7) Merge the transaction table and assessment table obtained in steps 5 and 6 using 

FIPS and ImportParcelID. 

i. Keep transactions that happened between 2010 and 2018.  
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ii. For the coordinates and street addresses of the properties, use the 

information in the PropertyInfo table of the transaction database. If any 

information is missing, use the information in the Building table of the 

assessment database. 

iii. Drop outliers: 

▪ Drop if SalesPriceAmount is less than 10,000 or SalesPriceAmount 

is greater than 10,000,000. 

▪ Trim the top and bottom 1% of the data using TotalRooms and 

LotSizeSquareFeet (since there are too many missing values, I keep 

the observation with missing values). Drop houses with more than 

20 rooms and houses with lot size greater than 100,000 feet. 

iv. Drop the houses that were sold before the built year. 

v. Drop if a house has inconsistent coordinates. 

vi. Drop the houses flagged as the non-arm’s length transaction 

(SalesPriceAmountStndCode is “NA”). 

vii. Drop the houses flagged as the intra-family transfer 

(IntraFamilyTransferFlag is “Y”). 

viii. Drop the houses with frequent transactions: houses with at least one 

transaction per year on average and houses that have two transactions within 

366 days. 

ix. Drop if the property has any remodeling, new construction, or major 

rehabilitation between the first transaction date and the last transaction date 

between 2010 and 2018. 

x. The sale prices are adjusted using the monthly housing consumer price 

index from the U.S. Bureau of Labor and Statistics. 

xi. I dropped the observations without coordinates.  
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2. Sample Distribution  

Figure 3. 8 Sample Distribution 
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APPENDIX B: INSTRUMENTAL VARIABLE CONSTRUCTION 

Figure 3. 9 Construction of the Distant all-source PM2.5 

 
Note: (1) To construct distant all-source PM2.5 for house h sold in month m year y, I only consider 

the counties in more than 100 kilometers of county i where house h is located, such as county 3 

and county 4. 

(2) If the angle between the wind vector at the county j’s centroid and the vector from the county 

j’s centroid to the county i’s centroid (such as 𝜃𝑖3𝑡) is less than 90 degrees, I consider distant county 

j to be upwind. Otherwise, if the angle (such as 𝜃𝑖4𝑡)  is greater than 90 degrees, county j is in a 

downwind direction. 
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APPENDIX C: ADDITIONAL ESTIMATION RESULTS 

Table 3. 9 Total Effects of Wildfires 

(Over the recent 12 months, 0~30km, ≥ 300 acres) 

Dependent variable: 

ln(Price) 
(1) (2) (3) (4) 

All wildfires 0.0008    

 (0.17)    

Upwind wildfires  -0.0311*** -0.0319***  

  (-4.55) (-4.65)  

Downwind wildfires  0.0326***  0.0333*** 

  (5.19)  (5.31) 

Ratio of natural-caused  -0.0010 -0.0012 0.0000 -0.0022 

Wildfires (-0.50) (-0.60) (0.01) (-1.09) 

Days since the most  0.0002*** 0.0002*** 0.0002*** 0.0002*** 

recent wildfires (4.85) (4.83) (4.87) (4.82) 

Distance to the nearest 0.0002*** 0.0002*** 0.0002*** 0.0002*** 

wildfires (6.63) (6.65) (6.47) (6.81) 

Humidity -8.2037*** -8.2531*** -8.2199*** -8.2376*** 

 (-5.89) (-5.93) (-5.91) (-5.92) 

Temperature 0.0016*** 0.0017*** 0.0017*** 0.0016*** 

 (3.15) (3.18) (3.19) (3.14) 

Pressure 0.0005 0.0007 0.0000 0.0011 

 (0.05) (0.07) (0.00) (0.11) 

Precipitation 0.0077*** 0.0078*** 0.0075*** 0.0080*** 

 (2.72) (2.76) (2.66) (2.82) 

Population density -0.0274*** -0.0274*** -0.0274*** -0.0274*** 

 (-14.99) (-14.99) (-15.00) (-14.98) 

House density -0.0001 -0.0001 -0.0001 -0.0001 

 (-0.14) (-0.13) (-0.14) (-0.14) 

The ratio of white people 0.1661*** 0.1659*** 0.1659*** 0.1661*** 

 (17.20) (17.18) (17.18) (17.20) 

Vegetation ratio 0.4576*** 0.4571*** 0.4574*** 0.4574*** 

 (45.98) (45.94) (45.96) (45.96) 

Distance to WUI 0.0068*** 0.0068*** 0.0067*** 0.0068*** 

 (5.99) (5.98) (5.95) (6.02) 

_cons 11.5829*** 11.5655*** 11.6263*** 11.5242*** 

 (12.26) (12.24) (12.30) (12.19) 

Number of observations 3,943,418 3,943,418 3,943,418 3,943,418 

Number of houses 1,885,744 1,885,744 1,885,744 1,885,744 

Adjusted R2 0.8099 0.8099 0.8099 0.8099 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 3. 10 The Effects of Wildfires on PM2.5  

(Over the recent 12 months, 0~30km, ≥ 300 acres) 

Dependent variable: PM2.5 (1) (2) (3) (4) 

All wildfires 0.1602***    

 (13.81)    

Upwind wildfires  0.1847*** 0.1817***  

  (8.33) (8.29)  

Downwind wildfires  0.1357***  0.1316*** 

  (12.25)  (11.92) 

Ratio of natural-caused  0.0676*** 0.0678*** 0.0729*** 0.0736*** 

Wildfires (28.18) (28.12) (30.79) (31.96) 

Humidity -1.1e+02*** -1.1e+02*** -1.1e+02*** -1.1e+02*** 

 (-67.60) (-67.58) (-67.50) (-67.65) 

Temperature 0.0250*** 0.0250*** 0.0251*** 0.0252*** 

 (40.90) (40.87) (40.94) (41.13) 

Pressure -0.1137*** -0.1138*** -0.1162*** -0.1162*** 

 (-10.69) (-10.70) (-10.93) (-10.92) 

Precipitation -0.2120*** -0.2121*** -0.2133*** -0.2131*** 

 (-71.61) (-71.66) (-72.09) (-72.02) 

Population density 0.0039*** 0.0039*** 0.0039*** 0.0040*** 

 (4.98) (4.98) (4.98) (5.01) 

House density 0.0327*** 0.0327*** 0.0326*** 0.0325*** 

 (12.60) (12.61) (12.58) (12.55) 

The ratio of white people 0.3041*** 0.3043*** 0.3043*** 0.3033*** 

 (20.08) (20.09) (20.09) (20.03) 

Vegetation ratio -0.1680*** -0.1676*** -0.1667*** -0.1691*** 

 (-11.91) (-11.88) (-11.82) (-11.98) 

Distance to WUI -0.0405*** -0.0404*** -0.0406*** -0.0407*** 

 (-23.25) (-23.24) (-23.33) (-23.40) 

_cons 18.8241*** 18.8369*** 19.0750*** 19.0670*** 

 (17.94) (17.95) (18.18) (18.17) 

Number of observations 3,943,418 3,943,418 3,943,418 3,943,418 

Number of houses 1,885,744 1,885,744 1,885,744 1,885,744 

Adjusted R2 0.8099 0.8099 0.8099 0.8099 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. 

 

  



 

172 
 

Table 3. 11 Indirect Effects of Wildfires 

(Over the recent 12 months, 0~30km, ≥ 300 acres) 

Dependent variable: ln(Price) (1) OLS (2) 2SLS (3) OLS (4) 2SLS 

All wildfires 0.0016 0.0049   

 (0.37) (1.11)   

Upwind wildfires   -0.0301*** -0.0263*** 

   (-4.44) (-3.93) 

Downwind wildfires   0.0333*** 0.0362*** 

   (5.31) (5.71) 

PM -0.0051*** -0.0247*** -0.0050*** -0.0249*** 

 (-8.41) (-5.59) (-8.40) (-5.63) 

Ratio of natural-caused  -0.0007 0.0007 -0.0009 0.0005 

Wildfires (-0.33) (0.33) (-0.43) (0.24) 

Days since the most  0.0002*** 0.0002*** 0.0002*** 0.0002*** 

recent wildfires (4.79) (4.54) (4.77) (4.52) 

Distance to the nearest 0.0002*** 0.0002*** 0.0002*** 0.0002*** 

wildfires (6.77) (7.28) (6.80) (7.31) 

Humidity 

-8.7634*** -

10.9352**

* 

-8.8114*** -

11.0073**

* 

 (-6.28) (-7.44) (-6.31) (-7.49) 

Temperature 0.0018*** 0.0023*** 0.0018*** 0.0023*** 

 (3.39) (4.25) (3.42) (4.30) 

Pressure -0.0001 -0.0022 0.0001 -0.0020 

 (-0.01) (-0.23) (0.01) (-0.21) 

Precipitation 0.0066** 0.0024 0.0067** 0.0025 

 (2.33) (0.81) (2.38) (0.83) 

Population density -0.0272*** -0.0266*** -0.0273*** -0.0266*** 

 (-14.91) (-14.57) (-14.92) (-14.58) 

House density -0.0001 0.0000 -0.00005 0.0000 

 (-0.10) (0.05) (-0.10) (0.06) 

The ratio of white people 0.1677*** 0.1737*** 0.1675*** 0.1735*** 

 (17.36) (17.80) (17.34) (17.79) 

Vegetation ratio 0.4568*** 0.4534*** 0.4563*** 0.4529*** 

 (45.89) (45.41) (45.85) (45.37) 

Distance to WUI 0.0066*** 0.0058*** 0.0066*** 0.0057*** 

 (5.81) (5.04) (5.80) (5.02) 

_cons 
11.6747**

* 

 11.6571**

* 

 

 (12.36)  (12.34)  
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Table 3. 11  (cont’d) 

Kleibergen-Paap rk Wald F 

statistics  

 2.2e+04  2.2e+04 

Endogeneity test  20.221  20.686 

(p-value)  [0.0000]  [0.0000] 

Number of observations 3,943,418 3,943,418 3,943,418 3,943,418 

Number of houses 1,885,744 1,885,744 1,885,744 1,885,744 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 3. 12 First-Stage Regression Results 

(Over the recent 12 months, 0~30km, ≥ 300 acres) 

Dependent 

variable: PM2.5 
𝒅 = 𝟖𝟎  𝒌𝒎   𝒅 = 𝟏𝟎𝟎 𝒌𝒎     𝒅 = 𝟏𝟐𝟎 𝒌𝒎      

 (1) (2) (3) (4) (5) (6) 

Distant natural-

caused  
2.4377*** 2.4381*** 2.3600*** 2.3605*** 2.3013*** 2.3018*** 

upwind wildfires (151.21) (151.14) (147.27) (147.21) (143.99) (143.93) 

All wildfires 0.0867***  0.0949***  0.0982***  

 (10.29)  (10.92)  (11.15)  

Upwind wildfires  0.1179***  0.1265***  0.1298*** 

  (7.78)  (7.93)  (7.98) 

Downwind wildfires  0.0555***  0.0633***  0.0665*** 

  (5.38)  (6.11)  (6.42) 

Ratio of natural-

caused  
0.0453*** 0.0455*** 0.0489*** 0.0491*** 0.0502*** 0.0504*** 

Wildfires (19.80) (19.77) (21.26) (21.21) (21.77) (21.72) 

Days since the most  -0.0005*** -0.0005*** -0.0005*** -0.0005*** -0.0005*** -0.0005*** 

recent wildfires (-10.56) (-10.54) (-10.43) (-10.41) (-10.40) (-10.38) 

Distance to the 

nearest 
0.0007*** 0.0007*** 0.0007*** 0.0007*** 0.0007*** 0.0007*** 

wildfires (23.13) (23.09) (23.35) (23.31) (23.44) (23.40) 

Humidity -73.9069*** -73.8518*** -76.2077*** -76.1512*** -78.1186*** -78.0619*** 

 (-44.11) (-44.08) (-45.54) (-45.50) (-46.75) (-46.71) 

Temperature 0.0119*** 0.0119*** 0.0128*** 0.0128*** 0.0136*** 0.0136*** 

 (19.47) (19.44) (20.99) (20.96) (22.31) (22.27) 

Pressure 0.2766*** 0.2765*** 0.2615*** 0.2614*** 0.2505*** 0.2504*** 

 (25.87) (25.86) (24.44) (24.43) (23.39) (23.38) 

Precipitation -0.2488*** -0.2489*** -0.2477*** -0.2479*** -0.2470*** -0.2472*** 

 (-84.80) (-84.83) (-84.34) (-84.38) (-84.04) (-84.08) 

Population density 0.0320*** 0.0320*** 0.0320*** 0.0320*** 0.0320*** 0.0320*** 

 (12.49) (12.50) (12.50) (12.50) (12.47) (12.47) 

House density 0.0041*** 0.0041*** 0.0041*** 0.0041*** 0.0041*** 0.0041*** 

 (5.27) (5.27) (5.24) (5.24) (5.24) (5.24) 

The ratio of white 

people 
0.2973*** 0.2975*** 0.2978*** 0.2980*** 0.2986*** 0.2988*** 

 (19.69) (19.70) (19.72) (19.73) (19.77) (19.78) 

Vegetation ratio -0.1717*** -0.1712*** -0.1716*** -0.1712*** -0.1733*** -0.1728*** 

 (-12.23) (-12.19) (-12.22) (-12.18) (-12.33) (-12.30) 

Distance to WUI -0.0407*** -0.0407*** -0.0404*** -0.0404*** -0.0405*** -0.0404*** 

 (-23.47) (-23.46) (-23.32) (-23.31) (-23.34) (-23.33) 

_cons -19.2655*** -19.2553*** -17.8058*** -17.7963*** -16.7560*** -16.7469*** 

 (-18.26) (-18.25) (-16.87) (-16.86) (-15.86) (-15.85) 
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Table 3. 12 (cont’d) 

F statistics 22863.36 22843.46 21689.23 21671.37 20732.15 20714.58 

Number of 

observations 
3,943,418 3,943,418 3,943,418 3,943,418 3,943,418 3,943,418 

Number of houses 1,885,744 1,885,744 1,885,744 1,885,744 1,885,744 1,885,744 

Adjusted R2 0.9596 0.9596 0.9595 0.9595 0.9594 0.9594 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. 



 

176 
 

Table 3. 13 Total Effects of Wildfires 

(Long-term effects, 0~30km, ≥ 300 acres) 

Dependent variable: ln(Price) 3 years 5 years 

 (1) (2) 

Upwind wildfires -0.0290*** -0.0107*** 

 (-6.06) (-2.93) 

Downwind wildfires 0.0204*** 0.0137*** 

 (5.13) (3.83) 

Ratio of natural-caused  -0.0196*** -0.0377*** 

Wildfires (-10.34) (-18.72) 

Days since the most  0.0002*** 0.0003*** 

recent wildfires (4.99) (5.32) 

Distance to the nearest 0.0002*** 0.0001*** 

wildfires (5.96) (4.44) 

Humidity -8.2864*** -8.1564*** 

 (-5.95) (-5.86) 

Temperature 0.0017*** 0.0016*** 

 (3.20) (3.13) 

Pressure 0.0012 0.0012 

 (0.13) (0.13) 

Precipitation 0.0079*** 0.0082*** 

 (2.80) (2.90) 

Population density -0.0275*** -0.0276*** 

 (-15.04) (-15.07) 

House density -0.0001 -0.0001 

 (-0.13) (-0.13) 

The ratio of white people 0.1664*** 0.1667*** 

 (17.23) (17.27) 

Vegetation ratio 0.4556*** 0.4531*** 

 (45.78) (45.52) 

Distance to WUI 0.0067*** 0.0065*** 

 (5.93) (5.78) 

_cons 11.5123*** 11.5153*** 

 (12.18) (12.19) 

Number of observations 3,943,418 3,943,418 

Number of houses 1,885,744 1,885,744 

Adjusted R2 0.8099 0.8099 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 3. 14 The Effects of Wildfires on PM2.5  

(Long-term effects, 0~30km, ≥ 300 acres) 

Dependent variable: PM2.5 3 years 5 years 

 (1) (2) 

Upwind wildfires 0.1408*** 0.1101*** 

 (13.22) (10.47) 

Downwind wildfires 0.1566*** 0.1191*** 

 (16.45) (12.94) 

Ratio of natural-caused  -0.0300*** -0.0210*** 

Wildfires (-11.76) (-7.49) 

Humidity -1.1e+02*** -1.1e+02*** 

 (-67.53) (-68.05) 

Temperature 0.0253*** 0.0255*** 

 (41.29) (41.69) 

Pressure -0.1214*** -0.1189*** 

 (-11.41) (-11.17) 

Precipitation -0.2162*** -0.2163*** 

 (-73.10) (-73.07) 

Population density 0.0332*** 0.0336*** 

 (12.82) (13.00) 

House density 0.0039*** 0.0038*** 

 (4.89) (4.82) 

The ratio of white people 0.3038*** 0.3008*** 

 (20.08) (19.92) 

Vegetation ratio -0.1732*** -0.1719*** 

 (-12.27) (-12.19) 

Distance to WUI -0.0403*** -0.0411*** 

 (-23.19) (-23.62) 

_cons 19.5735*** 19.3143*** 

 (18.65) (18.40) 

Number of observations 3,943,418 3,943,418 

Number of houses 1,885,744 1,885,744 

Adjusted R2 0.9587 0.9587 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 3. 15 Indirect Effects of Wildfires (Long-term effects, 0~30km, ≥ 300 acres) 

Dependent variable: ln(Price) 3 years 5 years 

 (1) OLS (2) 2SLS (3) OLS (4) 2SLS 

Upwind wildfires -0.0282*** -0.0254*** -0.0100*** -0.0078** 

 (-5.92) (-5.33) (-2.77) (-2.15) 

Downwind wildfires 0.0213*** 0.0244*** 0.0144*** 0.0168*** 

 (5.32) (5.96) (3.99) (4.52) 

PM -0.0051*** -0.0240*** -0.0051*** -0.0233*** 

 (-8.46) (-5.49) (-8.48) (-5.34) 

Ratio of natural-caused  -0.0198*** -0.0203*** -0.0377*** -0.0379*** 

Wildfires (-10.42) (-10.66) (-18.76) (-18.87) 

Days since the most  0.0002*** 0.0002*** 0.0002*** 0.0002*** 

recent wildfires (4.93) (4.68) (5.25) (5.00) 

Distance to the nearest 0.0002*** 0.0002*** 0.0001*** 0.0001*** 

wildfires (6.11) (6.62) (4.60) (5.13) 

Humidity -8.8485*** -10.9395*** -8.7245*** -10.7554*** 

 (-6.34) (-7.45) (-6.25) (-7.32) 

Temperature 0.0018*** 0.0023*** 0.0018*** 0.0022*** 

 (3.45) (4.28) (3.38) (4.19) 

Pressure 0.0006 -0.0016 0.0007 -0.0014 

 (0.07) (-0.16) (0.07) (-0.15) 

Precipitation 0.0068** 0.0027 0.0071** 0.0031 

 (2.40) (0.89) (2.50) (1.03) 

Population density -0.0273*** -0.0267*** -0.0274*** -0.0268*** 

 (-14.96) (-14.63) (-14.99) (-14.66) 

House density -0.0000 0.0000 -0.0000 0.0000 

 (-0.09) (0.06) (-0.09) (0.04) 

The ratio of white people 0.1680*** 0.1737*** 0.1683*** 0.1738*** 

 (17.39) (17.82) (17.43) (17.83) 

Vegetation ratio 0.4547*** 0.4513*** 0.4522*** 0.4490*** 

 (45.69) (45.21) (45.43) (44.97) 

Distance to WUI 0.0065*** 0.0057*** 0.0063*** 0.0056*** 

 (5.74) (5.01) (5.59) (4.86) 

_cons 11.6084***  11.6102***  

 (12.29)  (12.29)  

Kleibergen-Paap rk Wald F 

statistics  

 2.2e+04  2.2e+04 

Endogeneity test  19.183  17.886 

(p-value)  [0.0000]  [0.0000] 

Number of observations 3,943,418 3,943,418 3,943,418 3,943,418 

Number of houses 1,885,744 1,885,744 1,885,744 1,885,744 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 3. 16 First-Stage Regression Results (Long-term effects, 0~30km, ≥ 300 acres) 

Dependent variable: PM2.5 3 years 5 years 

 (1) (2) 

Distant natural-caused 

upwind 

2.3767*** 2.3803*** 

wildfires (148.92) (149.16) 

Upwind wildfires 0.1279*** 0.1099*** 

 (12.77) (10.47) 

Downwind wildfires 0.1420*** 0.1194*** 

 (15.75) (13.02) 

Ratio of natural-caused  -0.0284*** -0.0177*** 

Wildfires (-11.39) (-6.44) 

Days since the most  -0.0005*** -0.0006*** 

recent wildfires (-10.87) (-11.43) 

Distance to the nearest 0.0007*** 0.0008*** 

wildfires (24.66) (25.60) 

Humidity -75.7669*** -76.4071*** 

 (-45.26) (-45.67) 

Temperature 0.0128*** 0.0131*** 

 (21.03) (21.43) 

Pressure 0.2589*** 0.2620*** 

 (24.19) (24.49) 

Precipitation -0.2508*** -0.2510*** 

 (-85.44) (-85.48) 

Population density 0.0326*** 0.0331*** 

 (12.71) (12.91) 

House density 0.0040*** 0.0039*** 

 (5.15) (5.07) 

The ratio of white people 0.2981*** 0.2951*** 

 (19.76) (19.60) 

Vegetation ratio -0.1764*** -0.1753*** 

 (-12.55) (-12.49) 

Distance to WUI -0.0402*** -0.0409*** 

 (-23.19) (-23.59) 

_cons -17.5641*** -17.8826*** 

 (-16.63) (-16.94) 

F statistics 22176.57 22250.16 

Number of observations 3,943,418 3,943,418 

Number of houses 1,885,744 1,885,744 

Adjusted R2 0.9595 0.9595 

Note: (1) t statistics in parentheses. (2) * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 3. 17 Change of House Prices ($) on Average due to Wildfires 

Panel A. The impact of one more wildfire event 

The wildfire happened d km away (1) (2) (3) 

 d=30km d=20km d=10km 

Change of weighted wildfires 1/30 1/20 1/10 

Mean Adjusted Sale Prices≈$ 

191089.4 
   

1. Local wildfire (over recent one year) 

Weighted wildfires  

Upwind wildfire  -167.52 -251.28 -502.57 

Downwind wildfire 230.58 345.87 691.74 

Weighted wildfires through PM2.5 

Upwind wildfire  -20.38 -30.57 -61.15 

Downwind wildfire -10.19 -15.29 -30.57 

2. Local wildfire (over recent three years) 

Weighted wildfires 

Upwind wildfire  -161.79 -242.68 -485.37 

Downwind wildfire 155.42 233.13 466.26 

Weighted wildfires through PM2.5 

Upwind wildfire  -19.75 -29.62 -59.24 

Downwind wildfire -21.66 -32.49 -64.97 

3. Local wildfire (over recent five years) 

Weighted wildfires 

Upwind wildfire  -49.68 -74.52 -149.05 

Downwind wildfire 107.01 160.52 321.03 

Weighted wildfires through PM2.5 

Upwind wildfire  -16.56 -24.84 -49.68 

Downwind wildfire -17.84 -26.75 -53.51 

Panel B. The impact of distance between the nearest wildfire and the house 

Distance increases every d km d=30km d=20km d=10km 

House price change 1146.54 764.36 382.18 

Panel C. The impact of the number of days since the most recent wildfire  

The number of days increases every 

t days 
t=300 days t=200 days t=100 days 

House price change 114.65 76.44 38.22 

Note: (1) The impacts of the distance between the nearest wildfire and house and the number of 

days since the most recent wildfire are obtained from the main analysis (Table 2).  

 

 


