
ON THERMAL TRANSPORT AND ITS RELATIONSHIP WITH BOND-STIFFNESS IN
MATERIALS FOR THERMOELECTRIC APPLICATIONS

By

Mario R. Calderon Cueva

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Materials Science and Engineering – Doctor of Philosophy

2022



ABSTRACT

The lattice thermal conductivity, κL, is a fundamental physical property which characterizes the

heat transport due to the solid’s lattice vibrations (phonons). This intrinsic property is of great

importance for the performance of a wide variety of devices, such as thermal barrier coating,

electronics, optoelectronic, and thermoelectrics. In thermoelectrics, i.e., materials that convert

heat to electricity or vice versa, having low κL is critical for efficient thermal-to-electrical energy

conversion. The heat transport by phonons which, in turn control the phonon group velocities and

scattering rates, are related to the solid’s bond stiffness and anharmonicity. To study these effects,

a combination of high-pressure synchrotron X-ray diffraction (HP-XRD) and high-temperature

resonant ultrasound spectroscopy (HT-RUS) was used to quantify both local and average bond

stiffness and anharmonic effects.

High-pressure experiments were carried out to investigate the stability and bond stiffness of

AM2X2 Zintl phases. For this purpose, single- and poly-crystals of several compounds, including

Mg3Bi2, Mg3Sb2, CaMg2Bi2, and YbMg2Bi2, were synthesized. These samples were hydrostati-

cally compressed inside diamond anvil cells for in-situ synchrotron radiation X-ray diffraction. As

a result, the compressibility of the unit cell, lattice parameters, and individual bonds were obtained.

It is shown that the octahedral A cation sites on all compositions are more compressible than the

tetrahedral M cation sites. Furthermore, the influence of ionic radii on the compressibility was

investigated. Additionally, reversible high-pressure phase transitions were discovered, and the

high-pressure structures were solved, which are shown to be monoclinic, with space group C2/m.

In the second part of this thesis, HT-RUS was used to investigate the average bond stiffness (e.g.,

as quantified by the elastic constants) as a function of temperature and composition in the (GeSe)1-x-

(AgBiSe2)x (x=0, 0.1, 0.2, 0.3, 0.4) system. The crystal structure progressively transitions from

an orthorhombic Pnma, to a rhombohedral R3m, to a cubic Fm3̄m arrangement, with marked

consequences on the lattice thermal conductivity. With temperature, all the compositions eventually

evolve to the rock-salt phase. From the HT-RUS experiments, it was determined that the cubic

structure shows, on average, stiffer bonds compared to the other symmetries (rhombohedral and



orthorhombic) present in this material system, which ultimately increases κL. In contrast, using

scattering rate estimations, it is shown that an increase in alloying leads to a suppression of κL,

mainly due to alloy scattering. From these observations, it is demonstrated how κL is suppressed by

the combined influence of the softening of elastic constants and an increase in the scattering rate.
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CHAPTER 1

BACKGROUND AND INTRODUCTION

1.1 Fundamentals of Thermoelectrics

It is imperative to find efficient energy conversion strategies to limit the increase of global energy

use and, incidentally, decrease the greenhouse emissions [1, 2]. One strategy, for example, to tackle

this impending issue, is to recover waste energy. Even in the most recent US energy flow chart, as

shown in Figure 1.1, the quantity of waste energy (labeled as rejected energy) amounts to more than

67% of the total energy consumed.

Figure 1.1: US consumption and use of energy in the year 2021, in units of quad (1 quad = 1015

BTU ≈ 1.1 × 1018 J). Figure from [3].

Since the majority of the rejected energy, more than 70%, is waste heat [4], it is of major

importance to implement strategies to recover thermal energy. For this purpose, thermoelectric

devices are great candidates to harvest that rejected heat and convert it into electricity. The

thermoelectric effect, first discovered by T. J. Seebeck in the early 1820s [5], is a two-way process:

either the generation of an electric current upon application of a temperature gradient in the material

(known as the Seebeck effect), or the production of a temperature gradient inside the solid when

subjected to an electric current (the Peltier effect). The latter effect, named after the observations

by J. C. A. Peltier in 1834 [6], was demonstrated by H. F. E. Lenz to have a heating or cooling

effect depending on the direction of the applied current [7]. The Seebeck effect, expressed by

the Seebeck coefficient (S), can be quantified in terms of the induced voltage (V) in response
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to an applied temperature gradient (∆T). Mathematically, this coefficient is S = V/∆T, which is

commonly expressed in units of µV/K. Similarly, the Peltier coefficient (Π) is defined as the

induced temperature change (due to the heat transferred) in response to an electric current applied

to the material, as Π = Q/I, where Q and I are the induced heat and the current at the junction,

respectively. These observations led W. Thomson (Lord Kelvin) to explain the thermodynamic

relation governing the Seebeck and Peltier effect [8], namely: Π = ST. Additionally, Thomson

observed a third effect, now known as the Thomson effect, which is the heating or cooling of the

material which is simultaneously subjected to a temperature gradient and an electric current. This

effect is described in terms of the Thomson coefficient τ as: τ = S dS/dT.

Technologically, the electric generation from heat is achieved by a thermoelectric generator

(TEG), schematically shown in Figure 1.2. It consists of one p- and one n-type thermoelectric

bulk materials (known as legs in light blue) connected to metal conductors (in dark blue) to the

heat source and the heat sink. The term p-type refers to a thermoelectric material whose majority

electrical carriers are electron holes (electron deficiency), or simply holes. Conversely, n-type

thermoelectrics have electrons as their majority carriers. In a TEG, when a temperature gradient is

applied, the holes in a p-type leg travel from the hot to the cold side, and the electrons travel from

the hot to the cold end. A real thermoelectric device consists of many alternating p- and n-type legs

electrically connected in series and thermally connected in parallel.

For an idealized device, i.e., when the thermoelectric properties are constant, the maximum

conversion efficiency of heat to power (ηmax)is given by:

ηmax =
TH −TC

TH

√
1+ZT−1√

1+ZT+
TC
TH

(1.1)

where TH, TC, and ZT are the hot-side temperature, the cold-side temperature, and the device’s

thermoelectric figure of merit (ZT) averaged, respectively. Note that the first term in Equation 1.1 is

the Carnot efficiency–the maximum efficiency of a heat engine that operates between temperatures

TH and TC. The thermoelectric performance of the device, ZT, which includes electrical and thermal
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conductor
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Figure 1.2: Schematic of a thermoelectric device.

contact resistances, is given by:

ZT =
S2

RK
T (1.2)

where S is the Seebeck coefficient, R the electrical resistance, K the thermal conductance and T the

absolute temperature. To increase the device’s thermoelectric efficiency (ZT), the major challenge

currently [9] is to improve the material figure of merit zT . The metric to assess such performance is

the material thermoelectric figure of merit zT expressed by:

zT =
σS2

κ
T (1.3)

where σ , κ , S, and T are the electrical conductivity, the thermal conductivity, the Seebeck coefficient,

and the temperature, respectively. The thermal conductivity can be separated into the lattice (κL)

and electronic (κe) contributions as: κ = κL +κe. From Equation 1.3, it is clear that a high Seebeck

coefficient (S), high electrical conductivity (σ ), and a low thermal conductivity (κ), are desired for

thermoelectric applications. The figure of merit, zT , of some of commonly used thermoelectric

materials are depicted in Figure 1.3.

It is not easy to achieve all these requirements, since these materials properties are highly

correlated. The present research will focus on the κL and its relation to crystal structure, and
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(a) n-type thermoelectrics. (b) p-type thermoelectrics.

Figure 1.3: Thermoelectric figure of merit of a) n-type and b) p-type materials. Adapted from
[10].

therefore, bonding properties.

1.2 Factors That Impact Thermal Conductivity

As previously mentioned, κL is dictated by the material’s lattice dynamics, i.e., phonons.

Phonons exist in a range of frequency, from 0 to the Debye frequency, ωD, and the allowed

frequencies and momentum are quantified by dispersion relations. Mathematically, the phonon

thermal conductivity (κL) can be expressed as:

κL =
1
3

CVv2
τ (1.4)

where CV is the heat capacity, v is the phonon velocity, and τ is the phonon relaxation time.

The phonon velocity, namely its group velocity (vg), is determined by the local energy gradient

(Eqj = h̄ωqj) with respect to the phonon momentum with the dispersion relation:

vqj = h̄
∂ωqj

∂q
(1.5)

where ω is the angular frequency, h̄ is the reduced Planck constant (h/2π) and q is the momentum.

Equation 1.5 highlights the dependence of the vg on the phonon branch (j). Traditionally, due to the

difficulty of experimentally obtaining vg, it is commonly approximated to the (low-frequency) wave

propagation speed inside the material, i.e., the speed of sound, vs. By using this approximation, it

is possible to use the following relation, which is ubiquitous in the present study: vs ∝
√
(E/ρ).

This is a crucial equation which shows the dependence of the speed of sound as a function of E (the
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appropriate elastic modulus) and ρ (its density). The elastic moduli and its relation with κL will be

discussed in detail in the following section.

1.2.1 Elasticity

Elasticity is the reversible deformation below a certain threshold—known as the elastic limit— of

the material as a response to stress. This intrinsic property is expressed in terms of its stiffness

tensor C, with components Cij (in matrix notation) [11]. The number of components needed to fully

describe the elastic tensor is dependent on the symmetry of the crystal (ranging from 3 for cubic to

21 for triclinic symmetries [12]). For polycrystalline, bulk materials, there are only two independent

constants, namely C11 and C44. This so-called isotropic approximation is valid when the sample

dimensions are much bigger than the size of their grains, and when the crystallographic orientations

of such grains are random [13]. Experimentally, C11 and C44 can be obtained by measuring the

elastic wave propagation inside the solid, i.e., by measuring the speed of sound (vs), as mentioned

in the previous section. vs is the average speed of sound, and is composed of longitudinal (vl) and

transverse (vt) components. In the case of a longitudinal wave, the oscillating mass particles of

the medium move in the same direction as the wave itself. In contrast, the transverse wave has a

direction of propagation perpendicular to the displacement of the particles. The longitudinal and

transverse components of the speed of sound are related to vs by:

vs =

(
1
3

[
1
v3

l
+

2
v3

t

])−1
3

(1.6)

For convenience, we will utilize the more familiar engineering moduli, the bulk modulus (B)

and the shear modulus (G), instead of the matrix components C11 and C44. Using the isotropic

approximation, i.e., with C11 = B+ 4
3G and C44 = G, vl and vt are:

vl =

√
B+ 4

3G
ρ

(1.7a)

vt =

√
G
ρ

(1.7b)

where ρ is the density of the solid.
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In order to relate the previous equations to microscopic quantities, we introduce the mass-and-

spring model. In this model, the crystal is treated as a linear chain of spheres of mass (m) connected

by spring constants (K). The solution of the equation of motion for that model introduces the

angular frequency, ω , expressed as:

ω =

√
K
m

(1.8)

Although this model has to be modified for the case of polyatomic crystal lattices, the inverse

proportionality of ω to the root of the (average) mass holds true. It is worth mentioning that

ω ∝
√

K is applicable to the 3D, polyatomic case.

From Equation 1.8, it becomes evident that a soft bond (low K) leads to lower ω , and thus to

lower vg, which ultimately leads to a low κL in Eq. 1.4. In addition, every crystallographically

unique bond present in the material has a unique stiffness. For example, in Mg3Bi2 and Mg3Sb2

there are 3 unique types of bonds. This means that, in order to fully describe K, it is necessary

to establish individual bond strength. Experimentally, the average elastic modulus can be readily

determined using polycrystalline samples via resonant ultrasound spectroscopy or sound velocity

measurements [14]; however, the characterization of individual bond strengths require single crystals

and more involved experiments. In this work, we take advantage of high-pressure X-ray diffraction

to accomplish this.

1.2.2 Anharmonicity and Phonon Scattering

To continue the discussion of the lattice dynamics of the material, let us consider a small displace-

ment R applied to the material. As a consequence of this displacement, the solid’s response can be

described in terms of a Taylor series expansion of its potential energy U(R) in terms of the atomic

displacement from its equilibrium position R0 as:

U(R) = U(0)+A2 (R−R0)
2 +A3 (R−R0)

3 + . . . (1.9)

where A2 and A3 are the magnitudes of its harmonic and first anharmonic terms, respectively. The

anharmonicity of the system is quantified by the ratio A3/A2, or A4/A2 if the A3 term vanishes due
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to the crystal symmetry. If we take the second derivative of Eq. 1.9 with respect to displacement,

the modulus of elasticity (E) —known as the force constant— of the material is obtained:

E =
1

R0
∇U
∣∣∣∣
R=R0

(1.10)

This can be thought of as the linear response to the force that the system exerts to bring the atoms

back to their equilibrium position after a small atomic displacement. If we take the harmonic term

only, the modulus of elasticity, E, would be constant. However, E becomes smaller with increasing

potential energy (U), atomic displacement (R), and temperature. Furthermore, from Eq. 1.10 and

1.9, it becomes evident why A3/A2 is a measure of anharmonicity.

To continue the analysis of Equation 1.4, we consider now the relaxation time, τ . This is a

measure of phonon scattering in the material. It is composed of a number of terms, where the

Umklapp contribution (τL) is the most important for high temperature applications. Umklapp

scattering refers to the interaction between two or more phonons that creates phonons that travel

in the opposite direction of the heat flow [15]. The inclusion of the third-order term (the first

anharmonic contribution) in Equation 1.9 gives rise to Umklapp scattering. This means that if a

compound is highly anharmonic, its κL may be suppressed considerably. For our study, since we

are interested in the heat transport well above the Debye temperature, it is often safe to approximate

the total relaxation time (τTot) as the relaxation time due to Umklapp scattering (τU). Although

there are many forms to express the Umklapp-dominated relaxation time, the following equation is

used due to its universality [16, 17]:

τU ∝
Mv3

V1/3ω2γ2T
(1.11)

where M, V, ω , T, and γ are the average mass, the unit cell volume, the angular frequency, and

the Grüneisen parameter, respectively. It is worth mentioning that τU has a strong temperature

dependence while the other scattering mechanisms do not. The Grüneisen parameter can be

expressed as the change in pressure as a function of internal energy at constant volume. Thus, γ is a

measure of the change in ω as a function of the unit cell volume as shown in Equation 1.12:

γi(q) =−∂ lnω(q)i
∂ lnV

(1.12)
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Based on this last relation, γ accounts for the variation of lattice dynamics as a function of tempera-

ture, since V increases as a function of the temperature in most solids. Experimentally, γi can be

measured using the linewidth of the phonon dispersion from inelastic neutron scattering (INS) or

inelastic X-ray scattering (IXS) measurements on single-crystals [18].

For the present study, due to the experimental complexity of a direct measurement of τu, the

Grüneisen parameter (γ) is used to account for the bonding anharmonicity in the system. This

approach, based on τU ∝ γ−2 (from Eq. 1.11), utilizes the rate at which the elastic constants

vary with temperature, and thermal expansion of the solids. Specifically, there are three methods

(averaged over all modes) to calculate the Grüneisen parameter. The first method takes into account

the Poisson’s ratio, µ , and the corresponding equation is:

γµ =
3
2

1+µ

2−3µ
(1.13)

The second method, known as the Ledbetter method [19] which for, high-temperature applications,

is mathematically expressed as:
∂K
∂T

=
3kB
Va

γL (γL +1) (1.14)

where K, T, kB, and Va are any elastic modulus, temperature, Boltzmann constant, and volume per

atom, respectively. The third method, the most used one to estimate the Grüneisen parameter, is

based on the volumetric thermal expansion coefficient (αV), the bulk modulus (B), the heat capacity

at constant volume CV, and the solid’s density rho, which uses the equation:

γα =
αVB
CVρ

(1.15)

Although the three different methods to calculate the Grüneisen parameter may give different results,

they are useful to draw general conclusions on the trends of the selected materials of this study. The

next sections will introduce the materials studied in the present work

1.3 Introduction to AM2X2 Zintl Phases and
(GeSe)1-x-(AgBiSe2)x Thermoelectrics

The present work will focus on two different classes of materials, namely AM2X2 (where A

= Ca, Mg, Yb, M = Mg, and X = Bi, Sb) and the (GeSe)1-x-(AgBiSe2)x system. Both classes
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bridge the gap between three-dimensional (3D) and layered crystal structures, and the in-plane vs.

out-of-plane bond strength can be controlled by tuning the composition.

1.3.1 AM2X2 Zintl Phases

In recent years, one of the most studied thermoelectric materials for its impressive zT is the Zintl

phase Mg3Pn2 (Pn=Sb, Bi) [20–22]. Although these compounds were discovered in the 1930s [23],

their popularity has dramatically increased in the past decade, in part due to their abnormally low

κL. In the present study, we will focus on the lattice dynamics and the crystal structure of binary

and ternary Zintl phases for thermoelectric applications. Specifically, the present study focuses on

the compounds CaMg2Bi2, YbMg2Bi2, Mg3Sb2, and Mg3Bi2 to understand the effect of replacing

the Mg atom with Ca or Yb in the cation site.

Formally, Zintl compounds are composed of an alkali element (group 1 in the periodic table)

or alkaline-earth (group 2) and a main-group element with high electronegativity. The latter can

be either a metal, a semi-metal, or a semiconductor of small bandgap. In general terms, a Zintl

phase has closed electronic shells, due to the complete electronic transfer between the group 1 or

group 2 and the electronegative elements. This electronic balance is achieved by the formation of

covalent bonds or lone pairs of electrons among the electronegative elements [24]. Usually, Zintl

phases exhibit semiconducting or poor electric conductivity behavior, high melting points, and

higher brittleness than other intermetallic compounds. [25].

Zintl phases that crystallize in the CaAl2Si2 structure type (with space group P3̄m1) are widely

studied in the field of thermoelectrics. These compounds, often referred as 122s, consist of

alternating layers of electropositive (A2+) elements and [M2X2]
2− slabs, as depicted in Figure 1.4.

In the aforementioned figure, the cation (A, in yellow) is a rare-earth or alkaline-earth element, a

transition metal or a group-13 element (M, in orange) and an element from groups 14 or 15 (X, in

blue).

Particularly, compounds in the form AM2Pn2 (where A = Ca, Mg, Eu, Yb; M = Mg, Zn; Pn= Bi,

Sb) for their high figure of merit (zT ≥ 1) [26–30]. Of particular interest are compounds that have

9



Mg in the cation and the metal site, for their remarkably high thermoelectric performance (zT >

1.5 at 724 K [31–33]) are compounds. In the search for tellurium-free compounds, these 122s have

attracted great attention in recent years because they challenge the decades-long reign of Bi2Te3 in

the low-to-mid temperature range [34, 35].

Figure 1.4: AM2X2 crystal structure.

In contrast, the binary Mg3Pn2 (Pn= Sb, Bi) Zintl compounds appear to contradict the origin

of a low κL. For instance, at 50◦C, κL in Mg3Sb2 is ∼ 1.4 W/mK, comparable to that of Bi2Te3

[36] despite their substantial density difference (ρMg3Bi2 = 3.94 g/cm3 vs. ρBi2Te3 = 7.47 g/cm3).

Additionally, as previously discussed, although the structure of Mg3Pn2 is significantly less complex

than other Zintl compounds, such as A14MPn11 and A9M4Pn9 [37–40], they exhibit low intrinsic κL.

Moreover, the ternary (AMg2Pn2) compounds have higher κL compared to their binary counterparts

(Mg3Pn2). Since the origin of low κL cannot be elucidated by density and structural complexity for

binary AMg2Pn2, we turn to the bonding environment and its effects on intrinsic thermal transport.

The other source of low κL stems from low vg, which is usually present in compounds that

have a complex chemistry, high density, and soft bonds [41, 42]. In Bi2Te3, a well-studied layered

thermoelectric, κL is ∼ 0.6 W/mK in the direction of its van der Waals bonds. For this same

material, κL rises to ∼ 1.5 W/mK perpendicular to the direction of the van der Waals bonds [43].

The discrepancy of κL in Bi2Te3 lies in the bond strength: soft interlayer van der Waals bonds vs.

stronger, mainly covalent, interlayer bonds between Bi-Te [44]. Another example of Zintl phases

that exhibit intrinsic low κL are the A14MPn11 compounds (A=Ca, Ba, Yb; M=Al, Mn; Pn=Sb, Bi).

Specifically, Yb14MnPn11 shows remarkably low κL (∼ 0.6 W/mK) due to its complex structure

and the presence of heavy elements [45–47]. The unit cell of Yb14MnPn11 exhibits a combination
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linear chains of Pn atoms, MPn4 tetrahedra, and isolated Pn atoms [45].

Recently, it has been confirmed that the origin of the anomalously low κL in Mg3Sb2 and

Mg3Bi2 arises from soft phonon transverse modes in the acoustic branches as well as anharmonic

effects in the optical and some acoustic phonon branches [48–50]. Although these findings show

unequivocal proof of the presence of anharmonicity and isotropic compressibility in the binary

Mg3Bi2 and Mg3Sb2 compounds as a possible origin of the low κL, an experimental validation

of these predictions was missing. This study presents a direct observation of the origin of the soft

phonon modes rooted in the chemical bonding environment. With the aid of high-pressure X-ray

diffraction (XRD), we present experimental evidence of the influence of bond-strength in binary

Mg3Pn2 as the origin of the intrinsically low κL.

1.3.2 The (GeSe)1-x-(AgBiSe2)x System

Inherently low κL is observed in compounds where the phonon scattering rate (τ−1) is large and

the phonon group velocity (vg) is low. A large τ is associated with lattice instabilities because that

meta-stable bonding environments increase the interaction of phonons (three-phonon mechanisms in

the phase-space) and result in strong anharmonicity and, therefore, low κL. One important example

of lattice instabilities is SnSe, a layered orthorhombic structure (Pnma) below 810 K. The unit cell

of SnSe is composed of two Sn-Se bilayers along the a-direction and soft interlayer bonds. These

interlayer bonds have been identified as the source of the bonding network instability of the Se

atoms that dramatically suppresses κL [51].

SnSe is a member of the so-called semiconducting IV-VI chalcogenides, i.e., compounds that

contain the elements: Ge, Sn, or Pb (group IV) and S, Se, or Te (group VI), which are of great

importance in thermoelectrics for their high performance [52–54, 54, 55]. Among these IV-VI

materials, (Sn,Pb)Te, as well as Pb(S,Se), crystallize in the cubic Fm3̄m (rock-salt) structure-type

[56] at room temperature, while (Ge,Sn)Se are orthorhombic (Pnma) at ambient conditions. On

the other hand, GeTe, is rhombohedral at 300 K and experiences a spontaneous phase transition

to Fm3̄m above 625 K [57]. Interestingly, GeSe also transforms to the rock-salt structure, but at a
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higher temperature, namely at ≈ 925 K[58, 59].

Most of the high-performing thermoelectrics contain Te [60–62], a scarce element throughout

Earth’s crust [63]. One remarkable example of such high-zT, tellurium-based compounds are the

so-called TAGS, i.e., GeTe-AgBiTe2 alloys. As shown in Fig. 1.3a, these p-type compounds show

exceptional zT in the temperature range between 600 K and 800 K (known as the mid-temperature

range in thermoelectrics). Although TAGS have been extensively studied for over 50 years [64–68],

the need for high-efficiency, n-type, Te-free materials is still pending. Over the past decade, SnSe

has emerged as a promising candidate to the task, with single-crystalline samples that exhibit zT

of 2.6 at 923 K [69], which has been attributed to its intrinsically low κL [70]. Motivated by this

high thermoelectric performance, a more recent study predicted a theoretical zT in GeSe that would

exceed that of SnSe [71]. Using Density Functional Theory (DFT), researchers claimed that the

optimization in the carrier concentration in GeSe would yield record values of zT at 800 K. However,

the experiments revealed a zT value of only 0.2 at 700 K, where the low carrier concentration

was identified as the reason for such low thermoelectric performance [72]. To overcome this

issue, recent studies have shown promising results by alloying GeSe with AgBiSe2, where the

thermoelectric properties improve considerably [73]. One of the most interesting features of the

(GeSe)1-x-(AgBiSe2)x system is it that exhibits four crystal structures at room temperature as a

function of alloying. As mentioned before, GeSe is orthorhombic (Pnma). By gradually adding

AgBiSe2, this structure evolves into a rhombohedral symmetry (space group R3m) above 10%

alloying, and becomes cubic (space group Fm3̄m) above 30% alloying [74]. Interestingly, the

rhombohedral and orthorhombic structures morph into the rock-salt structure with temperature. The

other end member of the system, AgBiSe2, is trigonal (P3̄m1), and transforms into a rhombohedral

symmetry (R3̄m at 390 K and to the rock-salt structure at 560 K [75].

Previous studies on this material system have shown that by only adding 10% of AgBiSe2 to

GeSe, κL reduces from ∼ 1.8 W/mK to ∼ 0.5 W/mK at room temperature [74, 76]. Furthermore,

these values remain similar for x = 0.2, 0.3, 0.4, and 1.0 compositions [77, 77]. To date, the influence

of crystal structure and alloying on κL has not been fully explained. Due to the variety of structures

12



in a relatively small temperature and composition range, the (GeSe)1-x-(AgBiSe2)x system provides

a unique opportunity to study the interplay between crystal structure and chemistry (composition

alloying), and how this relation determines the thermal transport properties of the system.

1.4 Goals of the Present Work

As previously discussed, the bonding environment can profoundly affect the intrinsic thermal

transport properties in promising thermoelectric materials. Although Zintl phases and the (GeSe)1-x

-(AgBiSe2)x system have been extensively studied, the link between bond strength, crystal structure,

and lattice thermal conductivity in each of them is missing. Therefore, the focus of the present

research is to study the interplay between the chemical bonds and thermal transport in these materials.

Herein, we have used in-situ high-pressure synchrotron X-ray diffraction to investigate the stiffness

and stability of AM2X2 compounds to better understand the interplay between structural features

and lattice thermal conductivity. The structure-property relationship of the (GeSe)1-x-(AgBiSe2)x

system was studied by a combination of high-temperature X-ray diffraction and high-temperature

resonant ultrasound spectroscopy. The experiments conducted in the present research, show the

effect of the crystal structure and alloying on the elastic properties of this material system. By

conducting these experiments, we were able to investigate the phonon transport in the material, by

characterizing the bond stiffness and scattering rates as decoupled factors on the lattice dynamics.

The results of this research contribute to the understanding of the mechanisms that control κL in

the (GeSe)1-x-(AgBiSe2)x alloys, arising from bond strength and from different phonon scattering

mechanisms.

13



CHAPTER 2

EXPERIMENTAL DETAILS

2.1 Materials Synthesis

2.1.1 Synthesis of AM2Pn2 (A=Ca, Mg, Yb, Pn= Sb, Bi) Zintl phases

The present study required the synthesis of single crystals and polycrystalline samples of AMg2Pn2

compounds; the effect on κL was then analyzed by substituting Mg for another element in the cation

site (A atom). For this purpose, the compositions Mg3Sb2, Mg3Bi2, CaMg2Bi2, and YbMg2Bi2,

were chosen. Experimentally, the purpose of synthesizing high-quality single crystals is to analyze

individual bond strengths. For this reason, all the aforementioned AMg2Pn2 compounds were

synthesized as single and poly crystals.

2.1.1.1 Synthesis of Polycrystalline Samples

For the synthesis of polycrystalline samples, the spark plasma sintering (SPS) method was employed

using the Dr. Sinter SPS-211LX at MSU. For this purpose, stoichiometric amounts of the corre-

sponding elements were weighed inside the Argon-filled glovebox. The elements and three 10-mm

steel balls were then loaded in a stainless-steel jar and ball-milled for one hour in a high-energy

SPEX mill. The resulting powder was then placed in graphite dies and subjected to 31 MPa of

pressure; the target temperature was reached in 5 minutes and maintained for 10 minutes. The

target sintering temperatures for Mg3Sb2, Mg3Bi2, CaMg2Bi2, and YbMg2Bi2 are 850 ◦C, 700 ◦C,

650 ◦C, and 600 ◦C, respectively. The SPS synthesis parameters for Mg3Sb2 and Mg3Bi2 were

chosen from Refs. [78]. For the CaMg2Bi2 and YbMg2Bi2, the maximum temperatures for the

SPS process were calculated as 80% of the melting temperatures reported in Ref. [27]. Then, the

pressure was released and the sintering chamber allowed to cool down to approximately 40 ◦C.

The phase purity of the samples was then confirmed via powder X-ray diffraction (PXRD) using a

Rigaku Smartlab X-ray diffraction system with Cu-Kα radiation at MSU as exemplified in Figure

2.1.
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Figure 2.1: PXRD pattern of CaMg2Sb2 from SPS. The obtained samples contained less that 5%
secondary phase (Bi).

2.1.1.2 AM2Pn2 Single-Crystal Growth

Single crystals were synthesized using two methods, the self-flux growth method and the Bridgman

method [79].

AM2Pn2 Bridgman Growth In the Bridgman method, single crystals of the desired phase are

obtained via slow, directional solidification from the melt. Experimentally, this is realized by

slowly moving the vacuum-sealed quartz ampule (va ∼ 3mm/h) that contains the elements from

the furnace region which is above TM to the bottom of the furnace, where the temperature is below

TM. The experimental setup, shown in Figure 2.2, consists of a vertical tubular furnace kept at a

temperature (TF) above the melting temperature (TM) of the desired phase. For all experiments

reported here, TF = 200 ◦C+TM. Although TF is kept constant, a temperature gradient is created

by thermally insulating the top of the furnace while keeping the bottom part open to air. At the

beginning of the experiment, the alumina (Al2O3) crucible with the elements is kept at the top of

the furnace for 12 hours to ensure that the melt is homogeneous. The crystal starts to solidify at the

tip of the tapered crucible and, if the crystallization speed is smaller than va, the crystal will grow

as one grain.
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Figure 2.2: Mg3Sb2 clusters of crystals grown via CVT adhered to inner wall of Al2O2 crucible.

Self-Flux Growths The self-flux growth, also known as the molten-metal flux, is a single-crystal

growth technique for intermetallic compounds that takes advantage of improved diffusion of atoms

in the liquid solvent (known as the flux) and a reduced synthesis temperature of the desired phase

[80]. To illustrate the working principle of this synthesis technique, let us consider the following

phase diagram of Mg3Sb2 (Figure 2.3), modified from [81, 82]:

The aforementioned phase diagram shows that Mg3Sb2 solidifies at 1227◦C, which would be

the necessary temperature to obtain such phase if the starting ratio of Mg:Sb was 3:2. The desired

trigonal phase, α−Mg3Sb2, crystallizes at around 930 ◦C, above which the β−Mg3Sb2 phase

exists (as a body-centered cubic unit cell [83]). If, for instance, the starting stoichiometry of Mg:Sb

was 3:7, Mg3Sb2 would start to crystallize at approx. 690◦C. Evidently, the choice of the starting

stoichiometric amounts of the two elements in question demonstrate technological advantages for

the synthesis of the desired phase, such as reduction of almost 50% of the temperature of the furnace.

At the same time, the phase diagram demonstrates that, at the ratio of Mg:Sb = 3:7, between 580◦C

and 690◦C, solid α−Mg3Sb2 coexists with the liquid phase (L). If the sample is further allowed to

cool, i.e., below 580◦C, the sample will exist as a solid solution of Sb and α−Mg3Sb2. For this

reason, the solvent (or flux) has to be separated from the α−Mg3Sb2 crystals. This is achieved

by chemical or mechanical means. For the present work, mechanical separation of the flux was
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Figure 2.3: Phase diagram for the Mg-Sb system. Dashed blue lines denote the α− and β−phases
of Mg3Sb2. Solid blue lines show special temperatures of the system. L represents the area where
a liquid is thermodynamically stable.

performed, which, experimentally, is achieved by centrifugation at the temperature range where the

liquid and the desired phase coexist. The experimental details for all samples synthesized via the

self-flux method are shown in Figure 2.4:

For the purpose of centrifugation, an alumina Canfield crucible set was used (Fig. 2.4a, which

consists of two cups coaxially aligned by a disc with small holes [84]. At the beginning of the

growth, the bottom crucible of the set (labeled as growth crucible in Fig. 2.4b), contains the elements

while the top crucible (the catch crucible) is empty. The space between the Canfield set and the

ampule is filled with quartz wool to keep the crucible assembly in place during centrifugation. The

quartz container is then vacuum-sealed and placed in the furnace and heated to around 100◦C above

the melting temperature of the initial stoichiometry of the elements. At that point, the furnace

temperature is slowly brought down to a temperature where the desired phase and the liquid are

present (Tmix Tmix). The temperature is kept constant at Tmix for several days to promote the
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(a) Canfield crucible set. (b) Components inside ampule.

(c) Effect of centrifugation on sample position inside
Canfield set.

Figure 2.4: Flux growth schematic.

growth of single crystals. After that period, the ampule is quickly removed from the furnace and

placed in the centrifuge, where it is centrifuged at ∼ 2400 rpm for two minutes. The process of

centrifugation at Tmix results in the mechanical separation of the flux from the single crystals, as

depicted in 2.4c. At Tmix, the growth crucible contains single crystals with liquid flux and the catch

crucible is empty. During centrifuging, the liquid flows through the holed disc (the sieve). After

this decanting step, the ampule is allowed to cool to room temperature and single crystals are found

on the growth crucible contains crystals only, while the other crucible has flux in solid form.

Mg3Pn2 Crystal Growth Mg3Sb2 single crystals were grown as a byproduct of a directional

solidification method (modified Bridgman technique) using a Sb flux. The starting composition was

3:4.5 of Mg:Sb. Tapered (bottom) and cylindrical (top) alumina crucibles were used as containers

for the starting material. The single crystals that adhered to the top crucible, as shown in Figure

2.5, were broken under liquid nitrogen. It is believed that the crystals formed via chemical vapor
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transport (CVT). Wee-faceted specimens of around 50 µm (Figure 2.6) in their longest dimensions

Figure 2.5: Mg3Sb2 clusters of crystals grown via CVT adhered to inner wall of Al2O2 crucible.

were selected under a microscope. The samples that were removed from the crucible at room

temperature showed indications of plastic deformation in the XRD patterns, i.e., streaking of the

diffraction spots. For this reason, the crucibles containing the samples were kept in liquid nitrogen

for at least 5 minutes before being gently tapped to separate the single crystals for XRD scans.

AM2Pn2 Crystal Growth On the other hand, single crystals of the ternary compositions, namely

CaMg2Bi2 and YbMg2Bi2, were grown using the self-flux method in Al2O3 with starting com-

positions of CaMg4Bi6 and YbMg4Bi6. The initial mass for both compounds was 5 g. For the

CaMg2Bi2 compound, the oven was heated to 900◦C, cooled to 800◦C in one hour, and then cooled

to 650◦C in a 40-hour period. After a 24-hour period at 650◦C, the ampules were centrifuged to

remove the flux. For YbMg2Bi2, the furnace was set to 900◦C, cooled to 850◦C in 1 hour, cooled

a ) b)

Figure 2.6: Optical-microscopy image of Mg3Sb2 (a) and Mg3Bi2 (b) single crystals grown via
chemical vapor transport.
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a ) b)

Figure 2.7: Optical-microscopy images of a) CaMg2Bi2 and b) YbMg2Bi2 single crystals grown
via the self-flux method. Note clear facets and clean surfaces of samples.

to 750◦C in 10 hours, and then cooled to 650◦C in 36 hours. The furnace was held at 650◦C for 72

hours before the ampules were extracted and centrifuged. The slight modification of the temperature

program for the YbMg2Bi2 compound was done to replicate the procedure reported in [85]. It is

worth noting that both compositions yielded large crystals, approximately 1 mm in their longest

direction as shown in Figure 2.7. Unlike binary Zintl phases, the CaMg2Bi2 and YbMg2Bi2 crystals

do not need to be broken under liquid nitrogen. The ternary compounds are relatively brittle, and

breaking them into smaller pieces at room temperature does not cause them to deform plastically.

The XRD patterns of the ternary AMg2Pn2 do not show streaking of the diffraction spots.

2.1.2 Synthesis of (GeSe)1-x-(AgBiSe2)x

For the (GeSe)1-x-(AgBiSe2)x system, Ge, Ag, Bi, and Se were weighted inside an Ar-filled

glovebox to prepare precursor ingots of GeSe (x=0) and AgBiSe2 (x=100). Then, the elements were

placed in quartz ampules and sealed under running vacuum (at less than 10−4 Torr). After sealing,

the GeSe (AgBiSe2) compound was heated in a box furnace to 800◦C (900◦C) and slowly cooled to

ambient temperature. At that point, the resulting ingots were ground to fine powders using a mortar

and pestle. Thereafter, stoichiometric amounts for the desired compositions, i.e., for x=0, 0.1, 0.2,

0.3, 0.4 were mixed. The powder was then consolidated into solid, dense disks using the Spark
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Plasma Sintering (SPS) technique, using the same apparatus for the synthesis of the 122 Zintls

compounds.

2.2 Characterization

2.2.1 Resonant Ultrasound Spectroscopy

Resonant ultrasound spectroscopy (RUS) is a non-destructive, reliable, and highly precise technique

to measure the elastic constants in a material [86–88]. Unlike other ultrasonic tools, such as

pulse echo, RUS is capable of determining the whole elastic tensor (using single-crystals) in one

measurement [89]. Another important feature of RUS is that only a very small sample is needed

[90]. Although the samples can be small, they have to be regular-shaped, e.g., parallelepipeds,

spheres, or cylinders. A significant deviation from the regular shape, as well as other imperfections

need to be avoided since they will create perturbations in the peak positions [91]. When significant

geometrical defects are present in the sample, such as cracks, voids, or chipped edges, the peak

positions of the pattern will be altered. These imperfections may result in significant errors at

ambient and, to a greater extend, at high temperature.

The principle of operation of this technique is the identification of the resonance frequencies,

i.e., the normal modes of the compound, as a response to external vibrations applied to the sample.

These resonance frequencies, the resonance peaks, are a function of the density, geometry, and

elastic constant of the sample. Experimentally, the external vibrations are applied to the sample

by a piezoelectric transducer (the emitter, in Fig. 2.8b) and collected by another transducer (the

receiver). The emitter sweeps acoustic frequencies (usually in the range of 10 to 400 kHz) which

are picked up by the receiver to generate the pattern shown in Fig. 2.8a.

The first step to obtain the elastic constants is to create a model of the expected resonance

peaks. This model is created by generating a pattern of the peak positions using the geometry and

experimental density of the sample, and with a first guess of the elastic constants C11 and C44.

This model is iteratively refined by adjusting C11 and C44 until the positions of resonances in the

observed pattern match with the positions predicted peaks [92, 93].
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(a) RUS pattern at room temperature, inset
corresponds to frequency change with tem-
perature.

(b) Basic components of RT AND HT RUS
stage.

Figure 2.8: Resonant ultrasound spectroscopy (RUS) a) pattern, where peaks are indicative of
resonant frequencies of the material. These peaks are marked by blue triangles. In this RUS setup
(b), a sample (gray disk) is balanced between a piezoelectric transducer that emits a frequencies
in a spectrum (typically between 10-400 kHz), and a piezoelectric transducer that picks up the
signal.

In the present study, RUS was used to determine the elastic moduli of the (GeSe)1-x-(AgBiSe2)x

system at room temperature (RT) and at high temperature (HT). For RT and HT measurements,

thin disks (approx. 4 mm in height, 10 mm in diameter) of polycrystalline samples of (GeSe)1-x

-(AgBiSe2)x (x=0, 0.1, 0.2, 0.3, 0.4) were prepared. RT measurements were carried out using a

portable stage from Alamo Creek Engineering (ACE) as shown in Fig. 2.9[94]. This design allows

light contact between the transducers and the sample to allow free oscillations of the sample. The

HT-experiments were conducted using also a two-point contact stage (designed by ACE), in a

resistive heating furnace under flowing Ar. In this set-up, longer alumina buffer rods are adhered to

the transducers, as shown in Fig 2.8b. These buffer rods extend from the sample to the outside of

the heated chamber. Data was collected from ambient temperature to 400◦C in steps of 10◦C for

each sample.

Both the RT and HT stages were connected to the electronics system that amplifies the signal

and returns two components of the sinusoidal signal (in-phase and quadrature). The peak positions

for each RUS pattern were identified using the complex Lorentzian function fit of the LabVIEWTM-
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Figure 2.9: 3D printed, hinged-arm stage, by Alamo Creek Engineering RT-RUS stage. Perspec-
tive view (left) and front view, with sample balanced between transducers (left). Figure from
[94].

based ResonanceSpectrometer Software [95–97]. The elastic moduli were calculated using the

Cyl.exe software[14].

2.2.2 X-ray Diffraction Experiments

X-ray diffraction (XRD) is a widely-used, powerful tool in materials science used to characterize

the structural features of the crystalline materials. It uses the equation: nλ = 2dsinθ (Bragg’s Law),

where n is a positive integer, λ is the wavelength, θ the diffraction angle, and d the interatomic

plane distance, to determine lattice parameters, phases, structures, thermal expansion, among other

crystallographic features [98].

For the present study, three types of X-ray diffraction were used: single-crystal X-ray diffraction

(SC-XRD), poly-crystal X-ray diffraction (PXRD) (both instruments at MSU) and synchrotron

radiation X-ray diffraction (SXRD) at Argonne National Laboratory.

2.2.2.1 Ambient Temperature SC-XRD

Single-crystal X-ray diffraction has additional capabilities compared to PXRD. As a characterization

technique, it can provide information about single-crystallinity (e.g., twinning), atomic positions,

accurate atomic site and occupancy, and bond lengths [99]. SC-XRD experiments were carried out

in the Chemistry Department at MSU, using a Rigaku XtaLAB Synergy diffractometer, using a Mo

Kα (λ = 0.7107Å) and a Cu Kα source (wavelength λ=1.5406Å). As shown in Fig. 2.11, small
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samples of approx. 50 µm in their longest direction were mounted on nylon loops, and screened for

composition, single-crystallinity, and ambient-pressure lattice parameters.

An example of a high-quality single crystal that meets the aforementioned criteria is shown

in Figure 2.10, i.e., the diffraction spots show no evidence of twinning nor plastic deformation.

[0kl] [h0l] [hk0]

Figure 2.10: Precession images of Mg3Sb2.

Figure 2.11: Face-indexing (black lines) of YbMg2Bi2 single crystal. The crystal is on top of the
nylon loop, highlighted by solid white lines.

The data analysis was performed in Crysalis Pro [100], and the individual atomic positions were

subsequently refined in SHELXT [101] and OLEX2 [102].

2.2.2.2 Ambient- and High-Temperature PXRD

In the present study, polycrystalline samples, either in the form of consolidated pucks or powders,

were investigated at room-temperature (RT) and high-temperature (HT). For RT and HT diffraction

experiments, a Rigaku SmartLab Diffractometer, with a Cu Kα was employed (see 2.12.
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The HT stage of the Rigaku Smartlab Diffractometer, as shown in Fig. 2.12, was used to

investigate the (GeSe)1-x-(AgBiSe2)x system in a temperature range from 25◦C to 300◦C. These

experiments served to obtain the volumetric thermal expansion coefficients (αV), the lattice parame-

ter vs. temperature, and to pinpoint the phase transition temperatures. For these HT experiments,

samples were ground into fine powders with a mortar and pestle, and were placed on the platinum

sample tray. The accuracy of the temperature readings on the sample was ensured by placing the

thermocouple in close contact with the Pt tray, shown in the inset in Figure 2.12. XRD patterns were

collected every 10-20◦C, with a temperature increase/decrease rate of 10◦C per minute. The sample

temperature homogeneity was ensured by waiting 10 minutes between the target temperature was

reached and the XRD pattern was acquired. For all PXRD experiments, the Rietveld refinement

Figure 2.12: Rigaku SmartLab Diffractometer with high-temperature stage and Pt sample tray
(inset).

method was implemented, using the PDXL[103] and GSASII [104] suites.

2.2.3 High-pressure research

High pressure research is of great importance for the fundamental understanding of materials prop-

erties, for it allows to modify bonding environments and electronic orbitals by reducing interatomic

distances. Unlike temperature, pressure allows precise physical and chemical measurements through

significant volume changes without the introduction of disorder, phase separation, melting, etc

[105, 106]. Additionally, pressure, as a fundamental thermodynamic property, enables the formation
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of structures that do not occur at ambient conditions through the variation of energy stability in the

compound. [107, 108].

2.2.3.1 Diamond Anvil Cells

The main categories in high pressure research are static or dynamic compression techniques. The

dynamic compression is generated by shock waves and can reach pressures above several thousand

GPa [109]. In the static pressure category, two main devices are used: the large anvil cell (LAC)

and the diamond anvil cell (DAC). LACs, first developed by P. W. Bridgman in the beginning

of the 20th century [110, 111], can reach pressures up to ≈ 90 GPa and accommodate samples

of around 10-100 cm3 [107]. DACs, developed in the 1950s [112, 113] can reach pressures of

almost two orders of magnitude larger than that of LACs, albeit with smaller samples, in a range

from 10−9 to 10−6 cm3 [107]. Currently, DACs are the most used devices for high-pressure

studies [114], for a diversity of reasons, such as from the compactness of the device, versatility of

in-situ measurements, rapid development of the spectroscopic techniques it relies on, among others.

Many in-situ techniques have been implemented in conjunction with DACs, such as Brillouin,

Raman, Mössbauer, fluorescence, optical reflectance/absorption [115–119]. In the present study,

high-pressure X-ray diffraction (HP-XRD) of single crystals and polycrystalline samples will be

discussed.

One of the main advantages to use DACs in HP-XRD experiments is diamond’s high transmit-

tance in the X-ray frequency range, as well as in a considerable portion from the infrared to the

ultraviolet frequency electromagnetic spectrum [105].

A typical DAC is shown in Figure 2.13, which displays the basic components of the devices

used for the present work. In the DAC shown in the aforementioned figure, a sample and a ruby

are placed between two diamonds. The volume between the two diamonds is filled with a pressure

medium, typically a noble gas, and sealed with a gasket (usually made of rhenium). By manually

rotating the screws, a linear force is applied on the diamond table face, i.e. the side that is in contact

with the backing plate. This force, results in a greatly amplified pressure on the other side of the
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Figure 2.13: Components of a DAC.

diamond, i.e., on the culet. Because of the pressure medium, the linear force on the culet results in

hydrostatic pressure applied on the sample. The choice of culet size depends on the desired pressure

to be applied on the sample. Since the materials investigated here are probed in pressures up to

approx. 30 GPa, diamond culets were chosen in diameter range from 300-800 µm, which are below

the reported failure pressure of diamonds [120]. For single crystal experiments, conical support

anvils are used to maximize the aperture and capture wide-angle diffraction spots [121].

2.2.3.2 Synchrotron-Radiation XRD

For the synchrotron XRD experiments, 300 µm diamond anvil culets and rhenium gaskets were

pre-indented to ∼ 50 µm in thickness. Using an electrical discharge machine (EDM) at MSU, holes

of ∼ 120 µm were drilled in the rhenium gaskets. Next, the single-crystalline samples were placed

and centered on the culet in the diamond anvil cell (DAC) as illustrated in Figure 2.14.

We conducted in-situ XRD-experiments at the Advanced Photon Source (APS) in Argonne

National Laboratory, Sector 13 (GeoSoilEnviroCARS), beamline 13-BM-C. At APS, before our

experiments, the DAC chamber was filled with neon to create an environment in which the sample

experiences a hydrostatic pressure. This process is known as gas-loading. The DAC containing the

Mg3Sb2 single crystal was exposed to a X-ray beam with wavelength of 0.4340 Å. The pressure

was measured by the fluorescence of the ruby in the DAC [122]. This technique is based on the peak

shift of the lines (sharp R-lines) in the ruby luminescence spectrum (electromagnetic radiation from
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the transition of an electron from an excited to the ground state) [123]. The detector collects the

intensity of the luminescence emitted from a ruby (α −Al2O3 : Cr3+ when irradiated with a laser

beam). The emitted radiation by the ruby is collected at a detector and this luminescence spectrum

is fitted in real time by the T-rax software [124]. This technique is widely used in high-pressure

research due to the precise calibration of the ruby peak positions as a function of pressure as well as

for the limited available space inside a DAC. The DAC was subjected to a ϕ scan per each detector

Figure 2.14: Mg3Sb2 single crystal inside diamond anvil cell for high-pressure synchrotron XRD.

position, namely δ = 0 ν = 0, δ = 20 ν = 0, and δ = 0 ν = 5. The configuration is illustrated in

Figure 2.15. For high-pressure experiments, the presence of the DAC restricts the total available ϕ

X-ray in

μ

x

y z
𝜂

𝝌

𝜑

DAC
X-ray out

𝜈

𝛿

Figure 2.15: Main components of beamline for high-pressure XRD experiments at Sector 13-
BM-C.

from approximately 55◦ to 135◦. This reduced available physical space for diffraction translates

into a limited reciprocal space. This imposes the need to have multiple detector positions for each

ϕ-scan.
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We collected XRD scans from 1 to 10 GPa in steps of approximately 2 GPa between each point.

We refined the unit cell and integrated the reflections in the software APEX [125] and then created

CIF files of the structure solutions in the OLEX software [126].

2.2.3.3 Data Analysis

Single crystal structures data were analyzed using Bruker APEX and Rigaku CrysalisPro. Structures

were refined in OLEX, using the Least Squares Method (L.S) within the SHELXL routine. The

detailed procedure is presented next, and further information can be found in Ref. [127].

Unit Cell Determination First, the diffraction spots were gathered by selecting the left-hand-side

tab Evaluate → Determine Unit Cell and adjusting the Min. Intensity/sigma(I) to an appropriate

value (usually between 3-5 for the experiments of this study), such that the diffraction spots arising

from the sample only are harvested. By tuning said value, the diamond diffraction peaks (large

and irregular spots) as well as the DAC and gasket diffraction rings are excluded. To identify the

desired diffraction spots, the tab View Reciprocal Lattice was selected. Then, the 3D diffraction

space was rotated such that the diffraction spots are aligned in a series of equidistant planes, as

shown in Fig. 2.16a. At that point, the Lattice Overlay Tool is selected (on the right-hand side) to

mark diffraction spots from the sample–the ones that lie on the lattice lines–and the rest of stray

diffraction spots, as shown in Fig. 2.16b. At this point, the image is rotated, to exclude additional

diffraction spots that lie on the plane along one orientation, but are revealed not to belong to the

sample (see Fig. 2.16c). After this step, the unit cell parameters and Bravais lattice are determined

by selecting the tab Determine Unit Cell, and clicking on Index, followed by Bravais, and finally,

Refine. The results of a good unit cell solution are displayed in Fig. 2.16d.

Data Reduction Once satisfactory unit cell parameters are determined, the data need to be

integrated. This step is necessary to obtain a highly precise orientation matrix and a reflection

profile, which, in turn, determine the hkl components (and uncertainties) of each reflection [128].

The data integration in the APEX3 Suite is shown in Figure 2.17. The first part of this process

consists of clicking on the Integrate Images Tab (left side of Fig. 2.17a) and input an appropriate
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(a) Diffraction spots after harvest. (b) Selection of relevant diffraction spots using lattice
overlay: Green spots correspond to sample, white
spots from DAC/diamonds, gasket, etc.

(c) Diffraction sphere is rotated to exclude stray
diffraction spots from other orientations.

(d) Statistics of unit cell solution.

Figure 2.16: Example of unit cell determination procedure in the Bruker APEX3 Suite from
high-pressure single-crystal XRD experiments.

resolution limit (as displayed on the right side of the same figure). For the experiments of this

study, a resolution limit of approx. 0.7 Å yielded the best results. Once the integration is done, it

is important to verify the data integration statistics results, shown in Fig. 2.17b. Particularly, it is

crucial to check that the average correlation coefficient (top left panel) is high (i.e., close to 1), and

that spot shape profile (bottom left panel) has a circular shape, centered around x, y, and z.

Once the integration step is complete, the data needs to be scaled. This process serves to

determine the background, to further improve the unit cell parameters, and to minimize systematic

errors of the apparatus and the sample’s centering [128]. In the APEX3 Suite, the data scaling is

done by selecting the Scale tab, and using the .raw files generated in the integration step. If known,

it is advisable to select the known Laue and point groups for the scaling process, as shown in Fig.

2.18a. Then, the value in the Number of Refinement Cycles box is increased to 500, as shown in

Fig. 2.18b, and, for the YbMg2Bi2 composition in this study, to select the Absorption Type as
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(a) Parameter setup for data integration.

(b) Data integration statistics.

Figure 2.17: Data integration example in the Bruker APEX3 Suite for high-pressure single-crystal
XRD experiments.
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Strong Absorber. Additionally, if the results are not satisfactory, the Mean I/σ Threshold field can

be increased–usually a value of 3.0 would suffice.

(a) Parameter setup for data scaling, including Laue and point group selection.

(b) Selection of settings for data scaling, including absorption type, number of cycles, and
resolution threshold, using the parameters determined in a).

Figure 2.18: Data scaling procedure example in the Bruker APEX3 Suite for high-pressure
single-crystal XRD experiments.

After performing the scaling, the results can be visually assessed by examining the shape of the

curves of Figure 2.19a. There, the left y-axis (error, denoted as R[%]) should smoothly decrease

and stabilize as a function of increasing cycle number (the x-axis). In contrast, the Mean Weight

(right y-axis) should steadily increase and stabilize as a function of cycle number. It is worth noting

that the ideal value is 1 and 0 for the Mean Weight and the R[%], respectively. The final statistics
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of the data scaling are displayed in Fig. 2.19b. For the experiments reported here, the number of

reflections per run are between 100 and 300.

(a) Convergence curves for the data mean weight (dark blue curve, right y-axis) and error
percentage (light blue curve, left y-axis) as a function of cycle number.

(b) Data scaling statistics separated by batch number (i.e., data run), including number of
reflections, scale factors, and error percentage.

Figure 2.19: Data scaling results example in the Bruker APEX3 Suite for high-pressure single-
crystal XRD experiments.

Space Group Determination Once the data has been integrated and scaled, in other words, the

data has been reduced, the file that contains all reflections (known as the hkl-file) and the data

collection parameter file (p4p-file) are used to determine the space group. For this purpose, the

.hkl and .p4p files are used as input, as shown in Fig. 2.20a. In this step, the radiation wavelength

of the experiments and the sample’s composition need also to be completed. The process of the
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determination of the space group starts by selecting first the centering. In this example, as shown in

Fig. 2.20b, the data points to a P-centered unit cell.

(a) Input and output files relevant to space group determination.

(b) Lattice type determination.

Figure 2.20: Space group determination setup example in the Bruker APEX3 Suite for high-
pressure single-crystal XRD experiments.

Next, the Bravais lattice and the space group need to be selected, as displayed in Fig. 2.21a.

Note that the likeliness of a space group is evaluated by the CFOM (the combined figure of merit),

among other parameters. Usually, the lower the CFOM value, the better. After the selection of the

space group has been done, the statistics for the dataset are displayed (see Fig. 2.21b), including the

overall weighted error (R(int)), uncertainty (R(sigma)), and the statistics based on the resolution

ranges, in Å.
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(a) Space group (bottom) and Bravais lattice (top) selection.

(b) Reflection statistics as a function of resolution (in Å).

Figure 2.21: Space group determination procedure in the Bruker APEX3 Suite for high-pressure
single-crystal XRD experiments.
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At this point, the instruction file (ins-file), as well as a .prp file (which contains the details of

what was done during the XPREP routine [129]) are generated, as exemplified in Figure 2.22a. The

.ins and .hkl are then used in OLEX for the final data refinement and to generate a cif file (see Fig.

2.22b).

(a) Instruction file generation.

(b) Structure refinement example results in the OLEX2 Software, showing the statistics
of the data on the right-hand side.

Figure 2.22: Structure refinement example in the Bruker APEX3 Suite and OLEX2 Software for
high-pressure single-crystal XRD experiments.

The process described in this section was performed for each data point for every single-crystal

XRD experiment of the present study.
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CHAPTER 3

COMPRESSIBILITY AND HIGH-PRESSURE STRUCTURE OF Mg3Bi2 AND Mg3Sb2

3.1 Abstract

Alloys between Mg3Sb2 and Mg3Bi2 have recently been shown to be exceptional thermoelectric

materials due in part to their anomalously low thermal conductivity. In the present study, in-situ

high-pressure synchrotron X-ray diffraction was used to investigate the structure and bonding in

Mg3Sb2 and Mg3Bi2 at pressures up to 50 GPa. Our results confirm prior predictions of isotropic

in-plane and out-of-plane compressibility, but reveal large disparities between the bond strength of

the two distinct Mg sites. Using single crystal diffraction, we show that the octahedral Mg-Sb bonds

are significantly more compressible than the tetrahedral Mg-Sb bonds in Mg3Sb2, which lends

support to prior arguments that the weaker octahedral Mg bonds are responsible for the anomalous

thermal properties of Mg3Sb2 and Mg3Bi2. Further, we report the discovery of a displacive and

reversible phase transition in both Mg3Sb2 and Mg3Bi2 above 7.8 GPa and 4.0 GPa, respectively.

The transition to the high-pressure structure involves a highly anisotropic volume collapse, in

which the out-of-plane axis compresses significantly more than the in-plane axes. Single crystal

diffraction at high pressure was used to solve the monoclinic high-pressure structure (C2/m), which

is a distorted variant of the ambient-pressure structure containing four unique Mg coordination

environments.

3.2 Introduction

The compound Mg3Sb2 was discovered by Edward Zintl in 1933 before falling into almost

complete obscurity for more than 70 years [23]. In the past five years, however, alloys between

Mg3Sb2 and Mg3Bi2 have emerged as exceptional room temperature thermoelectric materials,

threatening to overthrow the decades-long reign of Bi2Te3 [20–22, 49, 130, 131]. Mg3Sb2 and

Mg3Bi2 are binary members of the CaAl2Si2 structure type (P3̄m1) shown in Figure 3.8a, making

them part of a broader family of AM2X2 Zintl compounds that are traditionally considered to be

layered materials [132–134]. Many compounds in this family are well-described as consisting

of covalent [M2X2]
2− slabs with the ionically-bonded interlayer A2+ cations providing charge
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neutrality [135]. However, this picture is not suitable in the case of Mg3Sb2 and Mg3Bi2; in

these binary compounds, Mg resides in both the octahedrally-coordinated Mg1 site (i.e., the cation

site) and the tetrahedrally-coordinated Mg2 site (typically occupied by a more electronegative

post-transition metal) [136]. First principles chemical bonding analysis has suggested that the

Mg1-Sb and Mg2-Sb bonds in Mg3Sb2 are quite similar with respect to the degree of charge transfer

from Mg to Sb [137]. This prediction of quasi-isotropic bonding in Mg3Sb2 was accompanied by

first principles calculations of nearly isotropic compressibility in the in-plane (a-b plane) and out-of-

plane (c-axis) directions under pressure [137]. An improved understanding of chemical bonding is

particularly germane to Mg3Sb2 and Mg3Bi2, since the low thermal conductivity of these materials

is thought to arise from soft and anharmonic bonding between the octahedrally-coordinated Mg1

atoms and pnictogen species [48].

In the present study, we investigate these questions experimentally using in-situ diffraction

of Mg3Sb2 and Mg3Bi2 at pressures up to ∼50 GPa. The application of high pressure allows

investigation of bonding environments without varying chemical composition or introducing the

complications associated with high temperature (i.e., large entropy, phase separation, thermal

excitations, etc.) [105, 138]. In particular, the compressibility of individual bonds can be directly

measured, shedding light on structural instabilities that can lead to desirable phonon behavior.

Despite intense interest in these compounds in recent years, no experimental high-pressure investi-

gation exists to date. In fact, there have been only a handful of high-pressure studies of compounds

in the CaAl2Si2 structure type, [139–143] despite their long history and potential technological

importance. Here we report on the discovery of a previously unrecognized high-pressure phase

transition in Mg3Pn2 (Pn = Sb, Bi) using in-situ high-pressure synchrotron X-ray diffraction com-

bined with first principles calculations. Through high-pressure single-crystal X-ray diffraction, we

extract the pressure-dependent volume change of the polyhedra of the ambient structure and solve

the structure of the high-pressure phase, revealing large disparities between the bond strength of the

two distinct Mg sites.
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3.3 Experimental

3.3.1 Synthesis

Polycrystalline Mg3Sb2 and Mg3Bi2 samples were synthesized by direct ball-milling of the elements

followed by spark plasma sintering. Stoichiometric quantities of Mg (granules, Alfa Aesar 99.8%),

Bi (shot, 99.99% RotoMetal), and Sb (shot, 99.99% Alfa Aesar) were cut into small pieces in an

argon-filled glove box, loaded into stainless steel vials with two 10 mm diameter stainless balls, and

milled under argon for one hour using a SPEX mill. The powder was then loaded into graphite dies

and sintered at 31 MPa using a Dr. Sinter SPS-211LX. The Mg3Sb2 and Mg3Bi2 powders were

heated to 850 ◦C and 650 ◦C in 5 minutes, and then holding at the target temperature for 10 minutes.

The pressure was removed immediately when cooling started. The samples were ground into fine

powders, the phase purity of which was confirmed using a Rigaku Smartlab X-ray diffraction system

with Cu Kα radiation. Based on relative peak intensities, Mg3Sb2 and Mg3Bi2 powders contain

less than 1% of Sb, and less than 3% of Bi as impurity phases, respectively.

Small Mg3Sb2 single crystals (∼100 µm) grown via chemical vapor transport were also used in

this study. These were obtained as a byproduct of an attempt to grow larger Mg3Sb2 crystals from a

flux. Elemental Mg (granules, Alfa Aesar 99.8%) and Sb (shots, 99.99% Alfa Aesar) were mixed in

a molar ratio of 2:3 Mg:Sb, loaded into an Al2O3 crucible with a second Al2O3 crucible on top

serving as a cap. These were sealed in a quartz ampule under vacuum (∼ 10−3 Torr). The ampule

was heated to 800◦C in a tube furnace during an 8-hour period, and then moved upwards through

the furnace at a rate of 1.8 mm h−1. Upon inspection, small Mg3Sb2 single crystals were found to

be deposited on the top crucible, as shown in Figure 3.1. Selected crystals, not bigger than ∼100

µm in their longest dimension, were broken under liquid N, and screened by single-crystal XRD

using a Bruker AXS Diffractometer at ambient pressure.

3.3.2 High-pressure X-ray diffraction

In-situ high-pressure X-ray diffraction experiments were conducted at the Advanced Photon Source

(APS), beamlines 13-BM-C (GSECARS) and 16-BM-D (HPCAT) at Argonne National Laboratory.
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Figure 3.1: Optical microscopy of as-grown mass of Mg3Sb2 crystals, deposited on an Al2O3
crucible.

The distance and orientation of the detector was calibrated using a CeO2 standard. The beam size

was 12 µm (horizontal) × 18 µm (vertical) FWHM at GSECARS and 4 µm × 4 µm FWHM

at HPCAT. The detector was an online Pilatus 1M at GSECARS and a Mar345 image plate at

HPCAT. Diamond anvils with culets of diameter 300 and 800 µm were used, with rhenium gaskets

from H-Cross pre-indented to thicknesses of ∼45µm (see Figure 3.2c). To form the sample

chamber, the gaskets were drilled using the laser micro-machining system at HPCAT [144]. The

polycrystalline samples were ground into powder and then pressed into flakes before loading into

the DACs. A ∼40×40 µm Mg3Sb2 single crystal was screened for crystallinity at APS before

loading into a diamond anvil cell (DAC), as shown in Figure 3.2d). Ruby was placed next to

each sample for pressure readings. Neon was loaded as the hydrostatic pressure medium using

the COMPRES/GSECARS gas loading system for all samples. For powder measurements, a gas

membrane setup was used to remotely increase or decrease pressure as needed and the pressure

was read via the in-situ ruby fluorescence system before and after each data collection [145]. All

experiments were carried out at ambient temperature. Further experimental details specific to

beamline 13-BM-C can be found in ref. [146].

Raw single-crystal and powder diffraction patterns were pre-processed in Bruker APEX3
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software suite [125] and Dioptas [147], respectively. The high-pressure structure was solved with

the OLEX2 software [126] using the high-pressure Mg3Sb2 single-crystal data. The crystallographic

details can be found in Tables 3.1 and 3.2. Powder data Rietveld refinement was performed using

the PDXL2 software [148]. Equation of state fits were performed in the EosFit7 software [149].

Vesta was used for structural visualization and crystallographic analysis [150].

3.3.3 Density Functional Theory (DFT) Simulations

Density Functional Theory (DFT) simulations were performed using the Vienna Ab initio Simulation

Package (VASP) [151],[152],[153]. We used the generalized gradient approximation (GGA) of

Perdew-Burke-Ernzerhof modified for solid (PBEsol)[154], [155] for the exchange-correlation

functional. The plane-wave energy cut-off was set to 400 eV. The conventional cells of the ambient-

pressure (AP) structure (5 atoms) were fully relaxed. The high-pressure (HP) structures (20 atoms)

were determined by fixing volume and relaxing the lattice parameters and the ionic positions. For the

AP structure under pressure, we applied isotropic compression and relaxed the structure with fixing

volume. The energy convergence criterion for the self-consistency loop was 10-8 eV and the lattice

parameters and atomic positions were optimized until the forces on all atoms were smaller than 10-3

eV Å-1. The electronic k-points were 8×8×5 (AP) and 4×8×6 (HP). Phonon calculations were

performed using Phonopy[156] with 4×4×2 and 1×4×2 supercells of the AP and HP structures,

respectively (both containing 160 atoms), and using electronic k-point meshes of 4×3×3 and

3×3×3, respectively. The charge density difference was evaluated as ∆ρ = ρMg3Sb2 −ρMg −ρSb

where ρMg3Sb2 , ρMg, and ρSb are the charge density of the full unit cell or the cell with only Mg

or Sb atoms. The electronic k-points for density calculations were 22×22×12 and 6×22×12,

respectively.

3.3.4 Error Propagation Calculation

The average polyhedral volumes were read from the software Vesta at each pressure point. To

determine the uncertainty for these average values, the maximum and minimum possible volumes
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were calculated using the equations for regular tetrahedra and octahedra:

Vt =
a3

6
√

2
(3.1)

and

Vo =

√
2a3

3
(3.2)

respectively, where a represents the length of the edge. The maximum volume of the tetrahedra

(Vtmax) was calculated using

Vtmax =
(atmax +uV )

3

6
√

2
(3.3)

where atmax is the maximum edge value in each polyhedron and ua is the uncertainty for a. Similarly,

the minimum value of the tetrahedral volume (Vtmin) was computed with:

Vtmin =
(atmin −uV )

3

6
√

2
(3.4)

for each pressure point. In the same fashion, the maximum (Vomax) and minimum ((Vomin) octahe-

dron volumes are:

Vomax =

√
2(aomax +uV )

3

3
(3.5)

Vomin =

√
2(aomin −uV )

3

3
(3.6)

3.4 Results and Discussion

3.4.1 High-Pressure Structure of Mg3Pn2 (Pn = Sb, Bi)

High-pressure powder diffraction experiments were performed to investigate the response of the

Mg3Pn2 (Pn=Sb,Bi) structure to pressure. As shown in Figure 3.2 a - b), peaks consistent with the

ambient P3̄m1 structure persist to ∼7.8 GPa for Mg3Sb2 and ∼4.0 GPa for Mg3Bi2. Above these

pressures, new peaks are observed, along with intensity changes of the original peaks, suggesting

a phase transition. To determine whether or not the phase transition is reversible, we performed

a decompression experiment on Mg3Bi2. The ambient-pressure P3̄m1 structure was completely

recovered when the pressure was reduced (see Figure 3.3), indicating the non-quenchability of
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Figure 3.2: Powder diffraction patterns of a) Mg3Sb2 and b) Mg3Bi2 at ambient temperature
reveal the emergence of new peaks belonging to a high-pressure phase above 7.8 and 4.0 GPa
respectively. Peak bars in blue correspond to the trigonal ambient and newly-discovered high-
pressure phase. The X-ray wavelength for Mg3Sb2 and Mg3Bi2 is 0.4133 Åand 0.4340 Å,
respectively. c) Mg3Sb2 single crystal and ruby viewed inside diamond anvil cell after gas
loading. d) Precession image of Mg3Sb2 single-crystal at 7.8 GPa.
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Figure 3.3: The reversibility of the phase transition was confirmed by decompressing the powder
Mg3Bi2 sample. All of the original P3̄m1 peaks re-emerged below 4.0 GPa.

the high-pressure phase and confirming that the new peaks at high-pressure are not a result of

decomposition.

To solve the high-pressure structure and to obtain atomic positions as a function of pressure, we

turned to single crystal diffraction, using the Mg3Sb2 crystal shown in Figure 3.2c). Single-crystal

diffraction patterns collected at pressures below and above the phase transition show a crystal-to-

crystal transformation, with no signs of specimen fracture (Fig. 3.2d). The structure evolution of

Mg3Sb2 with pressure can be further observed in the precession images shown in Figure 3.4.

A structure solution for Mg3Sb2 at 7.8 GPa was reached in the monoclinic C2/m space group

(see Tables 3.1 and 3.2 for detailed crystallographic data from the single crystal experiments). The

same C2/m structure solution provides a satisfactory fit for Mg3Sb2 and Mg3Bi2 powder data at

high pressure (as shown in Figures 3.5 and 3.6), suggesting that both phases undergo the same

high-pressure phase transition. Below, however, we will focus our discussion of structure to the

Sb-analogue.
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(a)

(b)

(c)

Figure 3.4: Precession images of Mg3Sb2 single crystal (same sample from Figure 3.2b)). P3̄m1
Mg3Sb2 a) before gas loading and b) after gas loading (at 0.23 GPa). c) C2/m Mg3Sb2 after gas
loading (at 7.7GPa). Blue peaks correspond to diamond peaks from the DAC.

3.4.2 Crystallographic Details from Mg3Sb2 Experiments

The high-pressure (HP) monoclinic structure of Mg3Sb2, shown in Figure 3.8b, is a highly distorted

variant of the ambient-pressure (AP) trigonal CaAl2Si2 structure type (Figure 3.8a).
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Table 3.1: Crystallographic data for the P3̄m1 Mg3Sb2 structure at different pressures from single
crystal XRD experiments. AP refers to ambient pressure data, i.e. outside of the diamond anvil
cell.

Pressure (GPa) AP 0.24 0.99 3.21 4.88

Space group, Z P3̄m1, 1 P3̄m1, 1 P3̄m1, 1 P3̄m1, 1 P3̄m1, 1
a (Å) 4.5636(11) 4.5578(4) 4.532(5) 4.4808(3) 4.4420(19)
b (Å) 4.5636(11) 4.5578(4) 4.532(5) 4.4808(3) 4.4420(19)
c (Å) 7.228(2) 7.201(6) 7.149(18) 7.066(3) 7.001(6)

Volume (Å3) 130.37(7) 129.56(10) 127.2(4) 122.87(5) 119.63(15)
Meas.

reflections; Rint

947; 4.65 484; 4.25 585; 4.39 303; 2.62 318; 4.89

No. of indep.
reflections;

101 55 99 60 48

R1; ωR2 (all
intensities)

1.52; 3.23 8.99; 35.8 12.4; 66.4 9.24; 33.1 8.26; 28.6

GooF 1.18 0.61 4.03 1.63 1.51

Table 3.2: Crystallographic data for the C2/m Mg3Sb2 structure at different pressures obtained
by single crystal XRD experiments.

Pressure (GPa) 7.74 10.16

Space group, Z C2/m, 4 C2/m, 4
a (Å) 15.118(7) 14.976(7)
b (Å) 4.2228(7) 4.1904(6)
c (Å) 7.7014(12) 7.6335(10)
β (◦) 117.56(2) 117.611(19)

Volume (Å3) 435.9(2) 424.5(2)
Measured reflections; Rint 912; 3.64 593; 4.06

No. of independent reflections; 353 183
R1; ωR2 (all intensities) 12.7; 56.5 14.01; 22.22

GooF 1.93 2.09

The tetrahedrally coordinated (Mg2)2Sb2 slab in AP-Mg3Sb2 (shown in blue/cyan) transforms

at high pressure into a layer with alternating tetrahedral and square pyramidal coordination environ-

ments. In this respect, HP-Mg3Sb2 has structural similarities to previously reported HP-CaMn2Bi2

(space group P21/m)[143], which exhibits a very similar Mn2Bi2 slab at pressures above 2 GPa.

However, HP-Mg3Sb2 shows key differences with HP-CaMn2Bi2 with respect to the octahedral

Mg1 layer shown in red; in HP-Mg3Sb2, every other octahedron distorts to form a square-planar

environment, accompanied by the breaking of two opposing Mg(1)-Sb bonds. This bond breaking
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Table 3.3: Lattice parameters and uncertainties of the P3̄m1 Mg3Sb2 phase from powder XRD
refinements using PDXL2. The lattice parameters, and peak shape parameters are refined. P1 and
P2 are pressure readings before and after the measurement of each pattern. The deviation of the
average value between P1 and P2 is used as the pressure uncertainty for the Birch–Murnaghan
equation of state fit.

P1 (GPa) P2 (GPa) a (Å) c (Å) V (Å3)

0.58 0.58 4.5376(17) 7.195(3) 128.29(8)
0.64 0.64 4.5337(17) 7.185(3) 127.90(8)
0.73 0.75 4.5304(16) 7.180(3) 127.62(8)
0.91 0.88 4.5269(18) 7.170(3) 127.25(9)
1.26 1.26 4.513(2) 7.146(3) 126.02(9)
1.94 1.94 4.4919(18) 7.107(3) 124.19(9)
3.06 3.06 4.464(2) 7.055(3) 121.73(10)
3.38 3.38 4.452(2) 7.038(3) 120.78(9)
3.90 3.90 4.4403(16) 7.016(4) 119.80(9)
4.36 4.36 4.4274(15) 6.997(3) 117.53(9)
4.81 4.90 4.4122(18) 6.971(3) 117.53(9)
5.48 5.57 4.3986(19) 6.954(16) 116.51(13)
6.70 6.70 4.3792(17) 6.913(4) 114.81(9)

Table 3.4: Lattice parameters and uncertainties of the C2/m Mg3Sb2 phase from powder XRD
refinements using PDXL2. The lattice parameters, peak shape parameters, z and x are refined.
The deviation of the average value between P1 and P2 (pressures measured before and after
sample exposure) is used as the pressure uncertainty for the Birch–Murnaghan equation of state
fit.

P1 (GPa) P2 (GPa) a (Å) b (Å) c (Å) V (Å3) beta (deg)

8.43 8.60 15.062(11) 4.201(3) 7.599(3) 425.8(4) 117.67(2)
9.08 9.11 15.012(15) 4.187(4) 7.595(4) 423.0(6) 117.62(3)

10.25 10.44 14.910(16) 4.169(4) 7.549(3) 415.7(6) 117.63(4)
13.33 13.53 14.693(19) 4.144(5) 7.479(4) 403.4(7) 117.65(5)
15.02 15.29 14.638(16) 4.126(4) 7.420(3) 396.4(6) 117.79(4)
17.48 17.65 14.495(16) 4.094(4) 7.348(4) 385.8(6) 117.78(4)
18.56 18.70 14.450(18) 4.085(5) 7.322(4) 382.2(7) 117.84(4)

allows the remaining Mg1 atoms to achieve a near ideal octahedral environment. In contrast, the

Ca-centered octahedra in the HP-CaMn2Bi2 structure do not undergo bond breaking. Instead,

they simply distort such that one of the Ca-Bi bonds in each octahedra is elongated (as shown in

Figure 3.7).

Density functional theory calculations confirm that the monoclinic C2/m structure of Mg3Sb2
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Table 3.5: Lattice parameters and uncertainties of the P3̄m1 Mg3Bi2 phase from powder XRD
refinements using PDXL2. The lattice parameters, and peak shape parameters are refined. The
deviation of the average value between P1 and P2 (pressures measured before and after sample
exposure) is used as the pressure uncertainty for the Birch–Murnaghan equation of state fit.

P1 (GPa) P2 (GPa) a (Å) c (Å) V (Å3)

1.49 1.49 4.6005(12) 7.293(8) 133.67(16)
2.48 2.55 4.5672(11) 7.236(7) 130.73(13)
2.92 3.00 4.5559(11) 7.217(7) 129.74(13)
3.52 3.59 4.5365(11) 7.185(7) 128.06(13)

Table 3.6: Lattice parameters and uncertainties of the C2/m Mg3Bi2 phase from powder XRD
refinements using PDXL2. The lattice parameters, peak shape parameters, z and x are refined.
The deviation of the average value between P1 and P2 is used as the pressure uncertainty for the
Birch–Murnaghan equation of state fit.

P1 (GPa) P2 (GPa) a (Å) b (Å) c (Å) V (Å3) beta (deg)

4.51 4.6 15.618(19) 4.329(3) 7.907(3) 475.4(7) 117.20(6)
5.21 5.25 15.548(15) 4.327(2) 7.8773(19) 471.0(5) 117.27(4)
5.80 5.91 15.481(13) 4.315(2) 7.850(2) 466.2(5) 117.24 (4)
6.56 6.68 15.426(14) 4.310(2) 7.831(2) 462.9(5) 117.26(4)
7.10 7.26 15.388(15) 4.292(3) 7.801(2) 457.7(5) 117.34(4)
8.00 8.00 15.320(14) 4.281(2) 7.7722(19) 452.7(5) 117.36(4)
8.60 8.60 15.284(14) 4.276(2) 7.7573(19) 450.1(5) 117.39(4)
9.30 9.3 15.233(13) 4.269(2) 7.7368(18) 446.6(5) 117.40(4)

10.02 10.02 15.181(14) 4.260(2) 7.7143(18) 442.8(5) 117.42(4)

is indeed more stable than the trigonal P3̄m1 structure at higher pressures. The calculated energy-

volume curves shown in Figure 3.9 for the ambient and high-pressure phases of Mg3Sb2 indicate a

critical volume per formula unit of 116 Å3, which corresponds to a pressure of approximately 5.6

GPa. Above this pressure, the monoclinic structure is more stable. This prediction agrees reasonably

well with our experimental transition pressure, which was found to be approximately 7.8 GPa for

Mg3Sb2 powder. In addition, we calculated the energy of Mg3Sb2 with the P21/m space group,

and found that it was significantly higher than that of either P3̄m1 or C2/m, which supports the

current findings.
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Figure 3.5: The Rietveld refinement for the C2/m phase of powder Mg3Sb2 at 8.4 GPa. The
cif file for the refinement is from single crystal analysis. The lattice parameters, peak shape
parameters, preferred orientation of (3 1 -3), and z are refined.

3.4.3 Compressibility of Mg3Sb2 and Mg3Bi2

The pressure response of the ambient- and high-pressure structures of Mg3Sb2 and Mg3Bi2 can

be used to provide a deeper understanding of the chemical bonding, and in turn thermal transport.

The pressure dependence of the unit cell volume for Mg3Bi2 and Mg3Sb2 is shown in Figure

3.10. The Mg3Sb2 single crystal data collected as a function of pressure (shown as the asterisk

symbols in Figure 3.10) agree well with the powder data (circle symbols). The unit cell volume

obtained from the powder data decreases abruptly above approximately 7.8 GPa and 4.0 GPa for

Mg3Sb2 and Mg3Bi2 respectively. Note that the data collected at 7.8 GPa, which can be seen in

Figure 3.2, is not included here, as the lattice parameters could not be accurately refined, possibly

because the phase transition was already in progress. The bulk modulus, Ko, at P=0 GPa of the

ambient- and high-pressure phase of each compound was fit using the powder diffraction data
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Figure 3.6: The Rietveld refinement of the C2/m phase of powder Mg3Bi2 at 4.5 GPa. The cif
file is obtained by manually adjusting the atoms of the cif file for Mg3Sb2 to Mg3Bi2. The lattice
parameters, peak shape parameters, z and x are refined.

Figure 3.7: Octahedra in a) Mg3Sb2 and CaMg2Bi2 at ambient pressure P3̄m1 structure, b) in
the P21/m structure of CaMg2Bi2 at high pressure, and in c) C2/m structure of Mg3Sb2 at high
pressure. The red octahedra are either Mg or Ca-centered, and the blue spheres represent Sb or Bi
atoms, respectively.

with the 2nd-order Birch-Murnaghan equation of state. Note that the 2nd-order and 3rd-order

Birch-Murnaghan equation of state give equally good fits to the data, but the 2nd-order equation
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Figure 3.8: Comparison of the a) ambient (P3̄m1) and b) high-pressure (C2/m) structure of
Mg3Sb2. c) Depiction of the four Mg coordination environments in the high-pressure structure.
The tetrahedral and octahedral layers of the ambient pressure structure are shown in cyan and red,
respectively. These layers, though highly distorted, can still be recognized in the high-pressure
structure. The black box in both images illustrates the distortion of the original trigonal unit cell.

Figure 3.9: Energy-volume relation for Mg3Sb2 calculated by DFT. The solid curve corresponds
to the high-pressure structure (C2/m), and the dashed line corresponds to the ambient structure
(P3̄m1). The curves indicate a critical transition at approximately 5.6 GPa, which is slightly lower
than experiment. Note that the unit cell volume is per formula unit (1/4 of the high-pressure unit
cell).

gives more reasonable Kp parameters (see Figure 3.11). The fits are displayed as the solid curves.

In the case of the high-pressure phases, the zero-pressure volume, Vo, was treated as a fitting

parameter. The uncertainties of the pressure and lattice parameters is shown in Tables 3.3-3.6 and

the parameters of the 2nd-order and 3rd order Birch-Murnaghan fit can be found in Table 3.7. The

zero-pressure bulk modulus of AP- and HP-Mg3Sb2 is 38 GPa and 46 GPa, respectively, while

the zero-pressure bulk modulus of AP- and HP-Mg3Bi2 is 37 GPa and 49 GPa respectively. The
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Figure 3.10: The pressure dependence of the volume per formula unit for Mg3Sb2 and Mg3Bi2
from powder (circles) or single crystal (asterisks) samples. The zero-pressure bulk modulus, Ko,
of both the ambient- and high-pressure phases were obtained from a 2nd-order Birch-Murnaghan
equation of state fit, represented by the solid lines.

HP structures of both compounds are slightly stiffer than the AP structures, similar to the behavior

reported for CaMn2Bi2 [143]. The zero-pressure bulk moduli of AP-Mg3Sb2 and AP-Mg3Bi2

obtained in this study is comparable to the results of resonant ultrasound spectroscopy (36 GPa and

38 GPa, respectively) [48] and DFT (42 GPa and 37 GPa, respectively) [157].

The question of whether or not Mg3Pn2 (Pn = Sb, Bi) are layered structures has been under

debate [50]. Anisotropic compressibility is a key feature of layered structures, in particular those

characterized by weak interlayer van der Waals bonding. In such materials, the out-of-plane axis is

significantly more compressible than the in-plane axis [158–160]. In contrast, the in-plane (Mg2-Pn)

and out-of-plane (Mg1-Pn) bonding in Mg3Pn2 has been shown to be chemically similar, in the

sense that both bonds can be described as primary ionic bonds. A prior computational study of the

pressure dependence of AP-Mg3Sb2 by Zhang et al. [137] predicted nearly isotropic compressibility

of the a- and c-axes. As shown in Figure 3.12a, our experimental powder diffraction data (circle and

square symbols) is consistent with Zhang’s predictions (dashed lines) up to 8 GPa. Further, powder

data for Mg3Bi2 up to 4 GPa (3.12b) reveals that the a-axis and c-axis of AP-Mg3Bi2 compress at

nearly identical rates, suggesting its compressibility is even more isotropic than AP-Mg3Sb2. The
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Figure 3.11: A Comparison of the 2nd and 3rd-order Birch-Murnaghan EOS fits in a) AP-Mg3Sb2,
b) HP-Mg3Sb2, c) AP-Mg3Bi2, and d) HP-Mg3Bi2.

compressibility along each direction, defined as Ko(a) and Ko(c) here, were fitted with the 2nd-order

Birch-Murnaghan equation using a3 and c3 vs. pressure. For AP-Mg3Sb2, Ko(a) and Ko(c) are

43 GPa and 38 GPa respectively, and for AP-Mg3Bi2, Ko(a) and Ko(c) are 40 GPa and 37 GPa,

respectively. The exact values and uncertainties of each data point in Figure 3.12 can be found in

the Tables 3.3-3.6.

It is important to emphasize that the nearly-isotropic in-plane and out-of-plane compressibility
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Table 3.7: The parameters from the 2nd-order Birch–Murnaghan EOS fit for Mg3Sb2 and
Mg3Bi2 corresponding to Figure 3.10. The V0 for the P3̄m1 structures were obtained via
Rietveld refinement of the corresponding room temperature XRD pattern. For the C2/m phase,
V0 is unknown, so it was treated as an open fitting parameter in the Birch–Murnaghan EOS fit.

AP - Mg3Sb2 C2/m Mg3Sb2 AP - Mg3Bi2 C2/m Mg3Bi2

V0 (Å3) 130.44 122.5 138.79 128.7
K0 (GPa) 38.4 45.7 36.9 48.9
Kp (GPa) 4 4 4 4

Table 3.8: The parameters from the 3rd-order Birch–Murnaghan EOS fit for Mg3Sb2 and Mg3Bi2.
The V0 for AP phases are obtained via Rietveld refinement of the corresponding room temperature
XRD pattern. For C2/m phase, V0 is unknown, so it was treated as a fitting parameter in the
Birch–Murnaghan EOS fit.

AP - Mg3Sb2 HP - Mg3Sb2 AP - Mg3Bi2 HP - Mg3Bi2

V0 (Å3) 130.44 119 138.79 130
K0 (GPa) 33.4 72 36.6 40
Kp (GPa) 7.1 2.2 4.8 6

in ambient-pressure P3̄m1 Mg3Pn2 (Pn=Sb, Bi) does not mean that the octahedral Mg(1)-Pn bonds

are equal in strength to the tetrahedral Mg(2)-Pn bonds. Previous ab-initio calculations of the partial

phonon density of states of Mg3Sb2 predict significantly lower frequency phonon modes associated

with the octahedral Mg(1) compared with the tetrahedrally-bonded Mg(2), indicating that the former

has weaker bonding [48]. To test that prediction, we used the single crystal data collected in the

present study to investigate bond length as a function of pressure (see Figures 3.14, 3.15 and 3.16),

revealing that the octahedral bonds compress more rapidly than the tetrahedral bonds. The values

of the polyhedral volume and its corresponding pressures are summarized in Table 3.9. As shown

in Figure 3.13, the total volume of the octahedral Mg1 environment decreases more rapidly than

the tetrahedral Mg2 volume. Here we show polyhedral volume instead of individual bond length

to minimize the influence of significant uncertainty in the Mg2 z position. The As a result, the

following values are obtained: This is the first direct experimental evidence that the Mg(1)-Pn bonds

are softer than the Mg(2)-Pn bonds. We note that the octahedral Mg1-Sb bonds are significantly

longer than the tetrahedral Mg2-Sb bonds, which likely explain much of the disparity in their

compressibility. The relatively weak octahedral Mg(1)-Pn bonds help to explain the anomalously
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Figure 3.12: a) - b) A comparison of the unit cell of the P3̄m1 (ambient) and C2/m (high-pressure)
structures. The blue and grey lines are used to outline the ambient-pressure cell in both structure
types, while the cyan lines represent the interatomic distance, x, which is equal to a and b in the
P3̄m1 symmetry. Here, we define a’=b’ and c’, and a’ and g’ to represent the primitive unit cell
after it has lost its trigonal symmetry. Note that these parameters do not correspond to the true a,
b, and c axes of the monoclinic C2/m unit cell. c) - d) A comparison of the lattice constants and
interatomic distance, x, of powder Mg3Sb2 and Mg3Bi2, normalized to their respective values at
P = 0 GPa. The dashed lines in panel c) show the results of a prior computational study by Zhang
et. al.[137].

weak shear modulus and soft transverse phonon modes reported in Mg3Pn2 compounds. These

instabilities are in turn responsible for the low thermal conductivity and excellent thermoelectric

performance of Mg3Pn2 compounds [48].

When the AP-Mg3Pn2 structure (P3̄m1) transforms to the HP-Mg3Pn2 structure (C2/m), the
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Table 3.9: Summary of uncertainties for polyhedral volume calculation for Mg3Sb2 below phase
transition pressure.

Pressure (GPa) Octahedron volume (Å3) Tetrahedron volume (Å3)

0 39.71 ± 0.48 11.80 ± 0.23
0.24 39.21 ± 0.75 11.79 ± 0.22
0.99 38.89 ± 0.44 11.47 ± 0.13
3.25 36.69 ± 0.71 11.30 ± 0.21
4.94 35.40 ± 0.73 11.08 ± 0.22

volume collapse is highly anisotropic with respect to the relative compression of the a- and c-axes.

Figure 3.12a-b) illustrates the relationship between trigonal P3̄m1 and monoclinic C2/m unit cells,

with the sub-cell corresponding to the original trigonal unit cell represented inside of the larger

monoclinic cell. At pressures above the phase transition, we have employed a re-defined set of

axes (a’, b’, c’, and angles α’ and γ’) to represent the ambient-pressure sub-cell after it has lost

its trigonal symmetry. Note that these parameters do not correspond to the principle axes of the

monoclinic C2/m unit cell. We have also defined the distance, x and x′ within the sub-cell. The

distance x is equivalent to the length of the a = b axis, so long as γ=120◦.

As can be seen in Figure 3.12c-d), the c-axes (grey square symbols) of Mg3Sb2 and Mg3Bi2

exhibit a sudden collapse at the phase transition pressure, while the a = b axes (blue circle/triangle

symbols) remain largely unaffected and show no discontinuity. The drastic collapse of the out-of-

plane c-axis can be attributed to the distortion of the half of the [Mg-Sb6] octahedra to a square

planar coordination environment (see Figure 3.8a-c). In the high-pressure C2/m structure, the c’

direction is tilted slightly relative to the a’-b’ plane (i.e., α=90◦ becomes α’∼92.5◦). Meanwhile,

the in-plane angle γ=120◦ increases to γ’∼ 122.5 ◦ at the phase transition, leading to the sudden

collapse of the distance defined by x′ to (cyan circle symbols).

3.4.4 Bond-Length Change as a Function of Pressure

We define the octahedral bond (Mg1-Sb) as d1, the vertical tetrahedral bond as d2, and the three-fold

tetrahedral bond as d3. This is depicted in Figure 3.14:

Using the naming convention in Figure 3.14, we have plotted the individual bond lengths as a
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Figure 3.13: Pressure dependence of tetrahedral and octahedral volumes obtained from Mg3Sb2
single crystal data at pressures below the phase transition. Dashed lines correspond to DFT
simulations from the present study. Uncertainties are based on error propagation calculations,
described in Section 3.3.4. .

Figure 3.14: The trigonal unit cell of Mg3Sb2 (P3̄m1) contains three unique bonds: the octahe-
dral Mg1-Sb bond (d1), the vertical Mg2-Sb tetrahedral bond as (d2), and the 3-fold Mg2-Sb
tetrahedral bond (d3).

function of pressure, as shown in Figure 3.15 below. In this figure, we included the most reliable

pressure points from our refinements in OLEX and corroborated the accuracy of the obtained bond

lengths with DFT calculations; we excluded the pressure points at 0.23 GPa and 0.98 GPa due to

the large uncertainty in the z-position of Mg2.

We included Figure 3.16 that shows the average tetrahedral bond length, (d2+3*d3)/4, which

allowed us to include the two pressure points with higher uncertainties in the Mg2 positions (those

at P= 0.23 GPa and 0.98 GPa).
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Figure 3.15: Pressure dependence of individual bond lengths in trigonal (P3̄m1) Mg3Sb2 obtained
from refinements of single crystal data, compared with DFT predictions.

.

Figure 3.16: Pressure dependence of octahedral bond length and the average tetrahedral bond
lengths in trigonal (P3̄m1) Mg3Sb2 obtained from refinements of single crystal data, compared
with DFT predictions.

.
Note that there is a clear difference in bond lengths throughout the pressure range. This explains, in

part, the reason why the octahedral volume is more compressible than the tetrahedral volume, as

shown in Figure 3.13.
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3.5 Conclusions

The present work resulted in the discovery of a new high-pressure phase above 7.8 GPa and 4

GPa for Mg3Sb2 and Mg3Bi2 respectively, and confirmed the reversibility of the phase transition

in the case of Mg3Bi2. The transition to the high-pressure structure was shown to involve a

highly anisotropic collapse of the lattice parameters. Single crystal diffraction at high pressure

was used to solve the monoclinic high-pressure structure (C2/m), which is a distorted variant

of the ambient-pressure structure containing four unique Mg coordination environments. The

high-pressure structure of Mg3Sb2 and Mg3Bi2 has some similarities with the previously reported

HP-CaMn2Bi2, but differs in symmetry and the coordination of the cation layer. Although the

ambient-pressure structures of Mg3Sb2 and Mg3Bi2 exhibit isotropic compressibility, analysis of

the single crystal data shows that the octahedral Mg-Pn bonds are more compressible than the

tetrahedral Mg-Pn bonds, a conclusion that was supported by DFT calculations as a function of

pressure. The results obtained here serve as a means for a deeper understanding of chemical bonding

and thermal properties of this class of thermoelectric materials.
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CHAPTER 4

COMPRESSIBILITY AND HIGH-PRESSURE STRUCTURE OF CaMg2Bi2 AND
YbMg2Bi2

4.1 Abstract

AM2X2 compounds (A are rare-earth or alkaline-earth elements, M transition metals or group-13

elements, and X group-14 or group-15 elements) in the CaAl2Si2 structure type have recently

attracted major attention in a wide variety of solid state research, where these materials have been

identified as excellent candidates in quantum topological and thermoelectric applications. Previous

research has revealed high-pressure phase transitions in Mg3Sb2, Mg3Bi2, CaMn2Bi2, SrAl2Si2,

among others. In the present work, the structure of CaMg2Bi2 and YbMg2Bi2 as a function of

pressure was investigated. For this purpose, crystals of CaMg2Bi2 and YbMg2Bi2 were grown

via the molten metal flux technique. Single crystal synchrotron X-ray diffraction was carried out

on these samples at pressures up to 20 GPa for both compounds. In the trigonal phase, prior to

the phase transition, both compounds show similar volume and lattice parameter compressibilities.

Furthermore, both compounds show that their respective octahedrally-coordinated substructures

compress at a higher rate than the tetrahedra. Additionally, a phase transformation of CaMg2Bi2

and YbMg2Bi2 was observed above 11.4 and 11.3 GPa, respectivley. The high-pressure phase was

solved, which is demonstrated to be a distorted variant of the CaAl2Si2, with space group C2/m.

This monoclinic phase shows an intriguing alteration of its coordination environment, in which the

tetrahedra in the trigonal phase evolve into square pyramids at high pressures.

4.2 Introduction

At ambient pressure (AP), the CaMg2Bi2 and YbMg2Bi2 compounds crystallize in the CaAl2Si2

structure type, in the trigonal system with space group P3m1, as depicted in Figure 4.1. The

CaAl2Si2 structure prototype consists of two-dimensional layers of [Al2Si2]2-, in which Al is

tetrahedrahelly coordinated by four Si atoms to form AlSi4 substructures. These tetrahedra share

three edges with neighboring tetrahedra. The bilayers of [Al2Si2]2- are separated by the divalent

cations, i.e., trigonal layers of cations (Ca2+) that are octahedrally coordinated by six Si atoms. The
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regular octahedra possess one unique bond (d1) only. In contrast, the tetrahedra have two distinct

bonds, one apical bond (d2) and three basal bonds (d3).

In recent years, compounds in the AM2X2 stoichiometry that crystallize in the CaAl2Si2

structure type have been extensively studied, for their thermoelectric performance [161–164],

quantum topological states [165, 166], and magnetic properties [167, 168]. Compounds in the

AM2X2 stoichiometry that form the CaAl2Si2 structure type are highly tunable, for each A, M, and

X sites can accommodate a wide range of elements [169]. The inherent tunability of this structure

has caused a great amount of research efforts to explore the stability limits of this structure as well

as the transport properties. One key aspect of transport properties in the field of thermoelectrics is

the lattice thermal conductivity, specifically the heat conduction inside the material due to its lattice

vibrations. A family of thermoelectric materials that crystallize in the CaAl2Si2 and that stand

out for their energy conversion efficiency are ternary pnictide materials in the AM2Pn2 subgroup

(where A is an alkaline-earth element or a lanthanide, and the Pn is occupied by either Bi or Sb). In

this regard, antimonide-based ternary Zintl phases (A=Ca, Eu, Yb), possess a thermoelectric figure

of merit at 750 K of 0.5 ≲ zT ≲ 1.0 [162, 170]. However, their Bi-based analogs have received

considerably less attention [85].

The promising thermoelectric performance of Pn-based AM2X2 compounds has been attributed,

partially, to their intrinsic low lattice thermal conductivity κL. For thermoelectric materials at

temperatures well above the Debye temperature, heat transport is primarily dominated by Umklapp

processes, via the relation κL ∝ v2 [41], where v is the velocity of collective lattice vibrations

(phonons). To gauge the phonon transport in a solid, it is useful to approximate the phonon velocity,

v, as the low-frequency wave (i.e., acoustic phonons) propagation speed, i.e. the speed of sound,

vs. At this point, it is useful to represent the solid as a mass-and-spring system, in which the

atoms of mass M are interconnected by springs (chemical bonds) of stiffness constant, k. Using

this representation, the speed of sound is vs ∼
√

k/M [171]. From these relations, it becomes

evident that intrinsic low κL arises from the low vs, which, in turn is favored by soft bonds (low k)

and/or high mass M. The stiffness of the bonds can be investigated by characterizing the solid’s
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(a)

d1

d2
d3

(b)

Figure 4.1: The trigonal structure of AMg2Bi2 (A=Ca, Yb), space group P3̄m1 at ambient pressure.
a) Unit cell has unique bonds d1, d2, and d3. b) Polyhedra in the AMg2Pn2 structure. A atoms in
center of octahedra (red), Mg atoms inside tetrahedra.

compressibility, through the application of pressure. This fundamental state variable allows to

access the elastic behavior of the material without the introduction of disorder [105, 172].

Previous high-pressure studies on the AM2X2 compounds that crystallize in the CaAl2Si2 struc-

ture type have shown different phase transitions, with compounds SrAl2Si2 [140, 142] and SrMn2P2

[139] morphing into the tetragonal (I4/mmm) crystal structure, CaMn2Bi2 [143] transforming to the

monoclinic (P21/m), and MgMg2(Sb,Bi)2 [173] evolving also to a monoclinic phase with space

group C2/m. However, a systematic study of the bonding nature in such compounds, that ultimately

control the stability of this structure type under high pressure, is still pending. For this reason, the

focus of the present work is the examination of the influence of the cation on the elastic properties

on AMg2Bi2 (A = Ca, Yb) compounds. By studying elements that have similar ionic radii and

highly distinct masses on the cation site, the bonding properties and stability of this family of

thermoelectric compounds is herein presented.

4.3 Experimental Details

For both the synthesis of single- and poly-crystals, the following high-purity elements were

used: Ca (dendritic pieces, 99.9%, Sigma-Aldrich), Mg (granules, Alfa Aesar 99.8%), Sb (shot,

Alfa Aesar, 99.999%), Bi (shot, 99.99%, RotoMetal), and Yb (pieces, Sigma-Aldrich, 99.9%).

Polycrystalline samples of CaMg2Bi2 and YbMg2Bi2 were synthesized by mixing stoichiometric
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amounts of their corresponding elements followed by spark plasma sintering (SPS). For poly- and

single-crystals, the elements were cut into small pieces and loaded into steel vials together with

small stainless-steel spheres inside an Argon-filled glovebox. The airtight vials were then placed

into a SPEX mill and ball-milled for 60 minutes.

4.3.1 Polycrystalline Synthesis

After ball-milling, the vials were returned to the glovebox and the fine powder was loaded into

graphite dies for SPSing using a Dr. Sinter SPS-211LX. The sintering procedure for both compounds

was the same, where the powders were subjected to a pressure of 31 MPa, heated to 700◦C at

a rate of 68◦C /min, and held at that temperature for 10 minutes. The target SPS temperature

was selected to be 80% of the melting temperatures reported in Ref. [27], while the pressure and

wait time were empirically determined to yield the desired phase. After that period, the pressure

was immediately released and the samples were allowed to reach ambient temperature naturally.

The resulting consolidated disks were ground to fine powders and checked for phase purity using

X-ray diffraction (XRD) using a Rigaku SmartLab Diffractometer with a Cu Kα source. The XRD

experiments revealed that the impurity content was less than 3% for both compounds.

4.3.2 Single-Crystal Synthesis

Single crystals of CaMg2Bi2 and YbMg2Bi2 were grown via the self-flux method, with a starting

composition of AMg2Bi2 (A=Ca, Bi). After the ball-milling process, which was identical to

the polycrystalline samples, the powders were then loaded into Canfield Al2O3 crucibles and

subsequently sealed in quartz ampules under vacuum (< 10−4 Torr). The quartz ampules were then

placed in a box furnace, where the furnace temperature was brought 900◦C in 8 hr, then to 850◦C

in 1 hr, and cooled to 650◦C in 40 hours. After soaking for 48 hours at 650◦C, the ampules were

centrifuged to remove the liquid flux from the desired crystallized samples. As a result, large crystal

(approx. 5 mm in their longest dimension) were obtained. These samples were then easily cut into

smaller pieces with surgical blades, which yielded smaller samples that showed plate-like geometry.

The samples that exhibited faceted morphology, and approx. 50 µm in their longest dimension,
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were selected and screened for crystallinity and phase purity using a Rigaku XtaLAB Synergy S

Diffractometer at the Chemistry Department at Michigan State University.

4.3.3 High-pressure X-ray diffraction

All diffraction experiments were conducted at the Advanced Photon Source (APS) in Argonne

National Lab, using diamond anvil cells (DACs) to create hydrostatic pressure environments applied

to the samples.

The diamond anvils used for powder diffraction experiments had pairs of flat, 800 µm-culets.

A precompressed powder of the desired composition was loaded into a 410-µm hole within a

pre-indented steel gasket. The gasket hole was drilled using an electron discharge machine (EDM)

with a discharge energy of 2 µJ and a peak power of 0.4 W. A methanol-ethanol (4:1) mixture served

as a pressure transmitting medium, and a 10-µm ruby ball was used as the pressure indicator. The

diamond anvils (custom CVD, conical Boehler-Almax design, with stainless steel (Vascomax®),

and with an effective aperture of 80◦ X-ray diffraction angle) used for single crystal diffraction

experiments had pairs of flat 300 µm culets. As shown in Fig. 4.2, pre-screened single crystals of

the desired compositions were loaded into a 150-µm hole within a pre-indented Re gasket. The

gasket hole was drilled using an electron discharge machine (EDM) with a discharge energy of

0.2 µJ and a peak power of 0.1 W. Ne gas or a methanol-ethanol (4:1) mixture was used as the

pressure transmitting medium, and a 10-µm ruby ball was used as the pressure indicator. Ne gas

was loaded at GSECARS (Sector 13) at the Advanced Photon Source, Argonne National Laboratory.

Single-crystal X-ray diffraction (SC-XRD) experiments were carried out in beamline 13-BM-C.

The diffraction patterns were collected with a Dectris Pilatus3 1M Pixel Array Detector.

The diffraction data for CaMg2Bi2 and YbMg2Bi2 was collected by APEX3 [125], integrated

using SAINT [174] code and corrected for absorption with the SADABS method [175]. The

structure was solved by the SHELXS routine [176]. For both compositions, the structures were

refined in the OLEX2 Suite [126], by the full-matrix least-square methods of SHELXL.

After the crystallographic refinements, the equations of state (EoS) for the two compounds were
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Figure 4.2: Samples inside DACs after gas-loading.

calculated using the graphical user interface (GUI) EoSFit7 [149]. In said software, the volume

and the lattice parameter compressibilities were calculated using a second-order Birch-Murnagham

(BM) EoS [177, 178], where the volume at zero pressure was modeled as an additional fitting

parameter.

4.3.4 Volume calculation of polyhedra and error estimations

The volumes of the octahedra and tetrahedra were calculated by treating them as regular polyhedra,

using an average of the two distinct Bi-Bi bond distances as the edge length of the octahedron

(loct) and of the tetrahedron (ltet). The octahedron (Voct) and tetrahedron (Vtet) volumes are then

calculated as:

Voct =

√
2l3

oct
3

(4.1)

and

Vtet =
l3
tet

6
√

2
(4.2)

respectively. To calculate the uncertainty in the polyhedral volume, an error propagation scheme

was calculated that starts with the uncertainty in the bond lengths as is explained next. For the

octahedron volume, the longer Bi-Bi bond length (loctI) and the corresponding uncertainty of such
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bond (uoctI) was used to determine the maximum octahedral volume Voctmaxas:

Voctmax =

√
2
(
loctI +uoctI

)3
3

(4.3)

Similarly, the minimum octahedron volume Voctmax is calculated using the shorter Bi-Bi bond

length (loctII) and its associated uncertainty (uoctII):

Voctmin =

√
2
(
loctII −uoctII

)3
3

(4.4)

Likewise, the maximum tetrahedron volume (Vtetmax) is calculated as a regular polyhedron via the

longer Bi-Bi bond ((ltetI) and its uncertainty (utetI), as a modification of equation 4.1. It becomes:

Vtetmax =

(
ltetI −utetI

)3
6
√

2
(4.5)

Conversely, the minimum tetrahedron volume (Vtetmin) is based on the smaller Bi-Bi bond that

spans the polyhedron (ltetII = loctI) and its corresponding uncertainty (utetII = uoctI), which is then:

Vtetmin =

(
ltetII −utetII

)3
6
√

2
=

(
loctI −uoctI

)3
6
√

2
(4.6)

which, again, is a modification of equation 4.2.

Now, in order to calculate the total polyhedral volume error (eVol, the symmetric mean absolute

percentage error is obtained with the following general relation:

eV =
1
n

n

∑
i=1

∣∣∣∣∣ Vavg −Vi

2
(
Vavg +Vi

)∣∣∣∣∣ (4.7)

where Vavg is the average volume and Vi the extreme volumes, i.e., either Vmax or Vmin. Then,

using equation4.7 the octahedral
(

eVoct

)
and tetrahedral volume

(
eVtet

)
errors become:

eVoct =
1
2

[∣∣∣∣ Voct −Voctmax
2(Voct +Voctmax)

∣∣∣∣+
∣∣∣∣∣ Voct −Voctmin
2
(
Voct +Voctmin

)∣∣∣∣∣
]

(4.8)

and

eVtet =
1
2

[∣∣∣∣ Vtet −Vtetmax
2(Vtet +Vtetmax)

∣∣∣∣+
∣∣∣∣∣ Vtet −Vtetmin
2
(
Vtet +Vtetmin

)∣∣∣∣∣
]
, (4.9)

respectively.
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Figure 4.3: Powder XRD for a) CaMg2Bi2 and b) YbMg2Bi2 as a function of pressure show
evidence of phase transition between 9.6 and 11.4 GPa and between 8.7 and 11.3 GPa, respectively.
The trigonal phase (P3̄m1) is shown in black, and the high pressure monoclinic (C2/m) phase is
shown in red.

4.4 Results and Discussion

The powder XRD patterns on polycrystalline samples were initially collected for CaMg2Bi2

and YbMg2Bi2 as a function of pressure up to 18 GPa and 17.5 GPa, respectively. Figure 4.3 shows

the patterns at selected pressures. In both samples, the trigonal phase is shown in black. Additional

peaks begin to appear in the diffraction patterns of CaMg2Bi2 and YbMg2Bi2 above 11.4 and 11.3

GPa, respectively. The trigonal phase was recovered upon pressure release, suggesting that the

phase transition is fully reversible.

The Rietveld analysis was initially attempted using two reported high-pressure structures of

similar compounds, namely C2/m -Mg3Sb2 [173] and P21/m-CaMn2Bi2 [143]. However, these

solutions did not provide an acceptable fit. For that reason, single-crystal XRD experiments were

conducted for both compositions, which showed that CaMg2Bi2 and YbMg2Bi2 crystallize in

the monoclinic crystal system, space group C2/m. In the following sections, an analysis of the

compressibility of the trigonal phase is presented using the high-pressure single crystal diffraction

data, followed by a description of the high-pressure structure.
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4.4.1 Compressibility of the Trigonal Phase

The average bond stiffness, k, can be expressed in terms of the appropriate elastic constant, where

the bulk modulus, B, is an ideal choice, for it strongly depends on crystal structure and composition

[179]. This thermodynamic quantity, defined as the material’s resistance to compression on all

surfaces, is mathematically expressed as B=−V dP
dV . B is then calculated by fitting the pressure-

volume data to the Birch-Murnaghan equation of state [177, 178, 180]:

P(V) =
3B
2

(V0
V

)7
3
−
(

V0
V

)5
3

 (4.10)

where P is the applied pressure, V the deformed unit cell volume, and V0 the reference unit cell

volume. It is worth mentioning that in Eq. 4.10, B corresponds to the bulk modulus at ambient

pressure, and is treated as constant below the phase transition pressure range. This pressure-volume

relation is experimentally achieved by hydrostatically compressing the sample in a diamond anvil

cell (DAC) and measuring its volume change via in-situ X-ray diffraction. The BM fits serve to

evaluate the bond stiffness of the solid, which can in turn help explain trends in lattice thermal

conductivity.

For the compressibility analysis discussed in the following sections, the relevant experimental

data for the BM fits (obtained from the single-crystal experiments) below the phase transition

pressure for both compounds is summarized in Tables 4.1 and 4.2. The experimental volume-

Table 4.1: Crystallographic data for the trigonal CaMg2Bi2 structure at different pressures from
single crystal XRD experiments.

Pressure (GPa) AP 3.02 4.89 7.39 10.16

Space Group; Z P3̄m1; 1 P3̄m1; 1 P3̄m1; 1 P3̄m1; 1 P3̄m1; 1
a (Å) 4.71886(17) 4.6483(19) 4.6223(15) 4.549(2) 4.472(2)
b (Å) 4.71886(17) 4.6483(19) 4.6223(15) 4.549(2) 4.472(2)
c (Å) 7.6412(3) 7.486(4) 7.431(3) 7.283(4) 7.135(4)
Volume (Å3) 147.356(10) 140.09(11) 137.49(8) 130.54(10) 123.57(11)
Meas. Reflections; Rint 313; 12.98 109; 5.78 121; 5.96 144; 7.76 131; 5.18
No. of indep. reflections 28 56 71 119 80
R1; wR2 (all intensities) 10.88; 23.57 12.29; 33.32 17.38; 44.00 12.59; 30.12 14.99; 48.20
GooF 1.4147 1.8207 1.4868 1.5871 2.7204
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Table 4.2: Crystallographic data for the trigonal YbMg2Bi2 structure at different pressures from
single crystal XRD experiments.

Pressure (GPa) AP 3.36 5.21 7.06 10.03

Space Group; Z P3̄m1; 1 P3̄m1; 1 P3̄m1; 1 P3̄m1; 1 P3̄m1; 1
a (Å) 4.7149(4) 4.6502(11) 4.6034(4) 4.5624(6) 4.5058(8)
b (Å) 4.7149(4) 4.6502(11) 4.6034(4) 4.5624(6) 4.5058(8)
c (Å) 7.6063(7) 7.474(3) 7.3782(7) 7.2937(10) 7.1702(13)
Volume (Å3) 146.43(2) 139.98(7) 135.406(19) 131.48(3) 126.07(4)
Meas. Reflections; Rint 152; 6.66 65; 2.42 126; 3.18 123; 2.80 126; 3.08
No. of indep. reflections 1096 161 347 324 315
R1; wR2 (all intensities) 2.99; 7.05 3.83; 11.58 4.94; 27.52 5.71; 18.17 7.09; 20.31
GooF 1.106 1.369 1.422 1.228 1.286
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Figure 4.4: Single-crystal experimental data points for a) the unit cell volume b) and normalized
lattice parameters as a function of pressure in CaMg2Bi2 (magenta) and YbMg2Bi2 (green). Note
that the zero-pressure volumes and lattice constants are fitting parameters. Dashed lines represent
2nd order Birch-Murnaghan fits.

pressure and the 2nd order BM fits for unit cell volume of both compounds are displayed in Figure

4.4. The initial volume as well as their compressibility are comparable. As shown in Table 4.3, the

2nd order BM fits yielded a bulk modulus (B) for CaMg2Bi2 and YbMg2Bi2 have nearly identical

bulk moduli, which is perhaps unsurprising given the similar ionic radii of Ca and Yb.

The fact that there is no distinguishable difference between the two compounds for their unit cell

compressibility, motivated the study of possible differences in their lattice parameter compressibility.
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Figure 4.4b shows the lattice parameters as a function of pressure, from which a linear bulk modulus

is extracted, for the two independent lattice parameters (a and c) using a modified 2nd order BM

equation, given by Eq. 4.10. The trigonal system of the compounds discussed in the present

study allow the linear bulk modulus, M, to be calculated as M=−ldP
dl , where l is the length of the

crystallographic axes (either a or c for the present work), and calculated by fitting the values of M

in the linearized BM-equation of state (see Eq. 4.10:

P(a) =
3M
2

(a3
0

a3

)7
3
−

(
a3

0
a3

)5
3

 (4.11)

where the volume has been replaced by the cube of the lattice parameter a [181]. The normalized

lattice constant a and c vs. pressure are expressed as a/a0 and c/c0, respectively, where the sub-

index 0 denotes the value at ambient pressure. Both a0 and c0 are treated as fitting parameters. The

aforementioned plot results clearly show that c compresses faster than a for both compounds, while

visually there is not enough evidence to discern the difference between CaMg2Bi2 and YbMg2Bi2

for either the a or c lattice parameter.

In order to quantitatively accounts for these differences, the linear bulk modulus (M) of the two

independent lattice parameters was calculated, using once more the 2nd order BM equation. The

results of the linear bulk modulus (see Table 4.3) for CaMg2Bi2 and YbMg2Bi2 in the a- (Ma) and

c-directions (Mc) are displayed in Figure 4.5. This plot shows the spatial dependence of the linear

bulk moduli for bulk compounds.

From Figure 4.5, it is evident that Ma is larger than Mc for both compounds, i.e., the crystallo-

graphic a-b plane is less compressible than the c-direction. To understand the origin of such behavior,

it is necessary to identify how the individual bond stiffness inside the material, as discussed in the

following section.

Until now, the bulk modulus has been discussed as an average elastic property of the solid.

However, often times it is necessary to understand individual bond strengths of the solid. One of

these cases are Mg3X2 -based compounds, the high-performing thermoelectric compounds in the

mid-temperature range [22, 131, 182, 183], which have been shown to possess the soft octahedral
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Figure 4.5: Linear bulk modulus M comparison between a) CaMg2Bi2 and b) YbMg2Bi2.

bonds and stiffer tetrahedral bonds. These soft bonds in Mg3X2 have been demonstrated to yield

ultralow κL [173, 184]. For this reason, the concept of bulk modulus has to be expanded into a

linear bulk modulus, M, and a polyhedral bulk modulus [185] (either tetrahedral, Ktet, or octahedral,

Koct, in the present study). The former gives information about the equivalent bond stiffness along

crystallographic directions, while the latter is a gauge of individual bond strength in the solid. In the

case of the specific bond strength, the octahedral bulk modulus, Koct, is calculated by a modification

of Eq. 4.10:

P(Voct) =
3Koct

2

(V0oct
Voct

)7
3
−
(V0oct

V

)5
3
 (4.12)

where Voct is the deformed octahedron volume in the structure below the phase transition, and

V0oct the octahedral reference volume. Similarly, the tetrahedral bulk modulus,Ktet, is obtained by

Eq. 4.12. For both the octahedral and tetrahedral bulk moduli, the initial volumes were treated as

fitting parameters. The polyhedral bond strength as well as the linear bond strength are determined

by the symmetry and the crystal structure of the system, which is why these properties of CaMg2Bi2

and YbMg2Bi2 will be discussed next.

The individual bond stiffness was characterized via polyhedral compressibility for the present

study below their phase transitions. As shown in Fig. 4.1b, there are two distinct polyhedral
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Figure 4.6: Normalized polyhedral volume vs. pressure below the phase transition for a)
CaMg2Bi2 and b) YbMg2Bi2.

environments, i.e., a tetrahedrally-coordinated Mg atom (cyan) and an octahedrally-coordinated

(red) A (A=Ca, Bi) atom. The results for the CaMg2Bi2 and the YbMg2Bi2 are presented in Figure

4.6a and b, respectively. To account for uncertainties in the results, error bars are shown using

an error propagation method discussed in detail in the Supporting Information Section 4.3.4. The

dashed lines represent 2nd order BM fits of a polyhedral bulk modulus for the tetrahedra (Ktet) and

for the octahedra (Koct). All the previously discussed moduli for both compounds in the trigonal

phase are summarized in Table 4.3.

Table 4.3: Summary of the calculated moduli for the trigonal CaMg2Bi2 and YbMg2Bi2 com-
pounds. Bulk modulus (B), linear moduli in a- and c-directions (M), and polyhedral moduli are
included (Ktet, Koct) are included.

CaMg2Bi2 YbMg2Bi2
Moduli (GPa)

Bulk modulus, B 37 ± 3 37.6 ± 0.4
Linear modulus along a, Ma 148.4 ± 7 129.0 ± 3
Linear modulus along c, Mc 89.7 ± 5 87.8 ± 0.8
Tetrahedron modulus, Ktet 48 ± 1 42.4 ± 0.25
Octahedron modulus, Koct 27.3 ± 0.15 30.4 ± 0.1

The experimental data clearly demonstrate that, for both compositions, the octahedral volume

compresses faster than the tetrahedral. In other words, this means that for CaMg2Bi2 and YbMg2Bi2
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the tetrahedron bulk modulus, Ktet, is considerably larger than the octahedron bulk Koct. Quantita-

tively, Ktet of CaMg2Bi2 is approx. 75% larger than Koct; for YbMg2Bi2, this difference is around

40%.

The quality of the single-crystal diffraction data of the YbMg2Bi2 compound allowed to take one

further step in the polyhedral compressibility, i.e., to analyze individual bond compressibility, which

are here expressed as bond moduli (Kdi, where i = 1, 2, or 3). The data points for the measured

individual bond compressibilities, as well as the 2nd-order BM fits (dashed lines) are presented

in Fig. 4.7. There, the normalized bond lengths versus pressure of the individual octahedral (d1),

tetrahedral apical (d2), and tetrahedral basal (d3) bonds are depicted. Again, the uncertainties were

calculated using the propagation error method presented in the SI Section 4.3.4.
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Figure 4.7: Normalized bond length vs. pressure below the phase transition for YbMg2Bi2 for
the octahedral (d1), tetrahedral apical (d2), and tetrahedral basal (d3) bonds. Uncertainties in d1
are quite small compared to the other two.

As expected, the fitted curves clearly show a faster compression with pressure of the octahedral

bond d1 with respect to the other bonds. Additionally, the tetrahedron apical bond (d2) is stiffer than

the basal (d3) bonds in the same coordination. The calculated values are summarized in Table 4.4.

The bulk modulus of the solid is not only determined by the individual bond strengths, but by

two other key factors: its polyhedral linkages and how these are spatially distributed [186]. It can

be seen in Fig. 4.8a, that AM2X2 has fully-linked, edge-sharing polyhedra in three dimensions,

which constitute highly rigid linkages [187]. At the same time, these compounds exhibit some
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Table 4.4: Individual bond moduli (in GPa) for YbMg2Bi2 in the trigonal phase. Bonds d1, d2,
and d3 correspond to the octahedral, apical tetrahedral, and basal tetrahedral, respectively.

Linear modulus of bond (GPa) YbMg2Bi2
Modulus of bond d1, Kd1 96 ±1.5
Modulus of bond d2, Kd2 168 ±15
Modulus of bond d3, Kd3 119 ±2.5

anisotropy in compressibility between the a-b plane and the c-direction, due to the difference

between their linear bulk moduli Ma and Mc. The smaller compressibility of the c-direction was

shown to arise partially from stiff Mg-Bi tetrahedral bonds, while the softer A-Bi bonds yield

a larger compressibility in the a-b plane. Therefore, this behavior is attributed to the combined

effect of a) the rigid linkage between the edge-sharing octahedra with other octahedra, b) the more

compressible tetrahedral edge-shared linkages with other tetrahedra. As a result, in both compounds,

the bulk modulus lies between that of the tetrahedral modulus, i.e., that of the least compressible

polyhedron, and the octahedral modulus. Mathematically, this is: Ktet < B < Koct.

4.4.2 High-Pressure Crystal Structure

As previously mentioned, a high-pressure structural transformation for both compounds was first

observed in the powder samples above 11.4 and above 11.3 GPa in CaMg2Bi2 and YbMg2Bi2,

respectively. The single crystal data confirmed these phase transition pressures. The high-pressure

structure, which is the same for both compounds, was determined to be monoclinic, with space

group C2/m and Z = 2. The crystallographic data is summarized in Table 4.5.

As shown in Figure 4.8, the trigonal structure (P3̄m1) experiences a displacive phase transfor-

mation to form a monoclinic (C2/m) at high pressure.

Interestingly, this displacive transformation is accompanied by a coordination change from

the ambient-pressure tetrahedra to a square pyramid, schematically depicted in Fig. 4.9a and

c. Additionally, the octahedral environment does not experience a change in its coordination

environment.

Similar compounds at high pressure, namely MgMg2Pn2 (Pn = Sb, Bi) and CaMn2Bi2, also
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Table 4.5: Crystallographic data for the monoclinic phase of CaMg2Bi2 and YbMg2Bi2.

CaMg2Bi2 YbMg2Bi2
Pressure (GPa) 12.82 11.61
Space Group; Z C2/m; 2 C2/m; 2
a (Å) 7.65(3) 7.558(7)
b (Å) 4.333(3) 4.489(6)
c (Å) 7.082(10) 7.081(6)
β (◦) 94.36(4) 91.82(7)
Volume (Å3) 234.2(9) 240.1(4)
Meas. Reflections; Rint 70; 1.54 128; 3.90
No. of indep. Reflections 69 290
R1; wR2 (all intensities) 9.60; 26.20 18.31; 50.16
GooF 1.525 2.043

(a) (b)

Figure 4.8: Ambient-pressure (P3̄m1) a) and high-pressure (C2/m) b) structures for CaMg2Bi2
and YbMg2Bi2.

experience a displacive phase transformation to a monoclinic symmetry. In the case of MgMg2Pn2,

a monoclinic symmetry (Z=4, C2/m) was reported above 7.8 and 4.0 GPa for MgMg2Sb2 and

MgMg2Sb2, respectively [173]. This trigonal-to-monoclinic transformation is accompanied by

octahedral bond-breaking, as depicted by the red polyhedra in Fig. 4.10a. This is a more dramatic

distortion with respect to the phase transition of CaMg2Bi2 and YbMg2Bi2. In contrast, the phase

change of CaMn2Bi2 at above 2 GPa (Z=2, P21/m)[143], appears to be a much less distorted variant,

where neither the octahedral bonds break, nor the tetrahedral coordination changes. Upon the

phase transformation, only a elongation of the Ca-Bi bonds and increased distortion of the Ca@Bi6

octahedra is observed.
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(a)
(b)

(c) (d)

Figure 4.9: Polyhedral comparison: Tetrahedron at a) ambient pressure evolves to c) square
pyramid at high pressure; Octahedron maintains coordination from b) ambient pressure to d) high
pressure.

(a) (b)

Figure 4.10: Structure comparison of a) MgMg2Pn2 (Pn = Sb, Bi), space group C2/m, and b)
CaMn2Bi2 space group P21/m, at high pressure.

4.5 Conclusions

The higher compressibility of CaMg2Bi2 and YbMg2Bi2 in the c-direction arises from the soft

tetrahedral bonds, while the a-direction compressibility is smaller due to stiffer octahedral bonds.

The AM2X2 compounds studied here have 3D, edge-sharing octahedra as well as tetrahedra. For

this reason, to understand the bulk modulus of them, it is necessary to study it as a combined effect

of different bond strengths and edge-sharing 3D polyhedra. Additionally, a high-pressure structure

(monoclinic, C2/m) was discovered above 11.4 GPa and 11.3 GPa for CaMg2Bi2 and YbMg2Bi2,
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respectively. This displacive, reversible phase transition is characterized by a change in the Mg-Bi

coordination environment from tetrahedral to square pyramidal coordination. The study of the

elastic properties and phase stability of these compounds serve as a basis for understanding the

interplay between the bonding nature and thermal transport of this class of thermoelectric materials.
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CHAPTER 5

INFLUENCE OF CRYSTAL STRUCTURE AND COMPOSITION ON THERMAL
CONDUCTIVITY OF GeSe-AgBiSe2 ALLOYS

5.1 Abstract

Recently, alloys of IV-VI and I-V-VI2 semiconductors (with IV=Ge,Sn; VI=Se,Te; I=Ag;

V=Bi,Sb) have been the object of intense investigations in thermoelectrics. Indeed, they possess

very low thermal conductivity attributed to a spontaneous formation of nanostructures, lone-pair

anharmonicity, and ferroelectric instabilities. An interesting case is that of GeSe-AgBiSe2 alloys. In

fact, within a narrow alloying region (0-40% of AgBiSe2), the room-temperature crystal structure

progressively transitions from an orthorhombic Pnma, to a rhombohedral R3m, to a cubic Fm-3m

arrangement, with marked consequences on the lattice thermal conductivity. At high temperatures,

the cubic rock salt phase is the thermodynamically stable phase across the compositional range. . In

this work, we investigate the elastic behavior of the (GeSe)1-x-(AgBiSe2)x system to shed light on

the respective contributions of chemistry and crystal structure to thermal transport. Within the same

structure, alloying progressively reduces the lattice thermal conductivity due to point-defect phonon

scattering. An anomalous increase is instead noticed upon temperature with the transition from

the rhombohedral to the cubic phase, and is correlated with a significant increase in elastic moduli.

This is connected with a reduction in the average bond length, possibly related to an increase in the

ionic character, leading to a stiffening of the lattice. The improved understanding of the intrinsic

properties of this system can guide the design of chalcogenide thermoelectric materials with tailored

thermal properties.

5.2 Introduction

One potential route to counter the environmental impact of ever-increasing worldwide energy

consumption is to recover energy from waste heat using thermoelectric devices. Thermoelectric

materials are capable of transforming a temperature gradient to electricity or vice versa, and their

energy conversion efficiency is expressed as the dimensionless thermoelectric figure of merit

zT = S2σκ−1T with S, σ , κ , T, as the Seebeck coefficient, the electrical conductivity, the thermal
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conductivity, and the absolute temperature, respectively. In this last equation, κ , can be expressed

by the contributions of the lattice thermal conductivity, κL, and the electronic thermal conductivity,

κe, as κ = κL + κe. From these two equations, it becomes evident that the suppression of κ is

needed to maximize zT, without detrimental effects on the electronic properties. For this reason,

it is imperative to study the heat transport from the collective lattice vibrations (phonons), and

therefore, isolate the effect of lattice dynamics on κL. It is well known [10, 188] that the frequency-

dependence of heat-carrying phonons can be exploited to achieve low thermal conductivity by

means of phonon scattering by defect [189–192] and micro- and nano-structural manipulation

[193–195] of the material. However, the intrinsic role of composition and crystal structure on κL is

elusive, due to the complex mechanisms that determine the solid’s chemical bonds and unit cell

[41, 196]. Nevertheless, the understanding of the fundamental principles of the chemistry and

structure represents a powerful tool towards chemical design of high-preforming thermoelectrics.

For this purpose, the present study focuses on the relation between structure/composition and its

effect on the intrinsic low lattice thermal conductivity in the (GeSe)1-x-(AgBiSe2)x system.

Chalcogenide-based IV-VI compounds, particularly PbTe [197, 198], GeTe [199, 200], and

SnSe [69, 201] show excellent thermoelectric efficiency (zT∼2) in the mid-temperature range

(275◦C to 500◦C). For instance, Bi-doped single crystals of SnSe have achieved a zT value of 2.2

at 460◦C [202], while polycrystalline GeTe doped with Bi achieved a zT ∼ 1.9 at 723 K [203]

through vacancy manipulation in the Ge atom site. Nevertheless, the majority of them exhibit

p-type behavior, which, for TE device compatibility, imposes the need of an n-type, high-efficiency

IV-VI thermoelectric material. Although recent theoretical studies proposed GeSe as a highly

efficient (zT>2) n-type material upon optimization of the carrier density [71], several experimental

results show a p-type behavior and low zT (< 0.2) [72, 74]. The need to improve the thermoelectric

performance of GeSe by tuning the carrier concentration, has led researchers to try different dopants,

such as Na [204], Ag/Bi/Pb [72], and by alloying it with AgSbTe2. More recently, GeSe was

alloyed with AgBiSe2 [74]—trigonal P3̄m1 at ambient temperature [205]—, where the authors

found that this system is particularly interesting, for it crystallizes in three different lattice systems:
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orthorhombic, rhombohedral, and cubic within an alloying range of 0% to 40% of AgBiSe2 (shown

in Figure 5.1). That study demonstrated that GeSe crystallizes in the orthorhombic structure (Pnma),

while above 10% AgBiSe2 alloying, the unit cell is rhombohedral (R3m), and becomes cubic

(Fm3̄m) above 40% alloying. The formation of the cubic structure appears to be driven by entropy,

since the orthorhombic and rhombohedral structures transform into the cubic unit cell at high

temperatures. A crucial result of that study, as well a more recent one [76], was the observation of

ultralow lattice thermal conductivity of the (GeSe)1-x-(AgBiSe2)x system, especially for the alloys

that exhibit rhombohedral symmetry. The remarkably low κL in the (GeSe)1-x-(AgBiSe2)x system

is responsible for the its high thermoelectric performance.

The (GeSe)1-x-(AgBiSe2)x system is intriguing because, in a narrow composition and tempera-

ture range, it exhibits three important crystal structures for thermoelectrics. The study of this system

provides a platform for understanding and decoupling the effect of composition and crystal structure

on the lattice thermal conductivity, κL. In this work, an in-depth analysis of the thermal properties of

the (GeSe)1-x-(AgBiSe2)x system is presented, using a combination of elasticity measurements with

resonant ultrasound spectroscopy, high-temperature X-ray diffraction, to reveal the fine relationship

connecting crystal structure and composition to speed of sound, phonon scattering and ultimately

κL. These results contribute to the understanding of the parameters that govern each aspect of

the lattice thermal conductivity, and guide the chemical design of high-performing thermoelectric

materials with ultralow κL.

5.3 Experimental methods

5.3.1 Sample Synthesis

Stoichiometric amounts of Ag, Bi, Ge, and Se were weighted in an Ar filled glovebox (O2 and H2O

level below 1 ppm) to obtain the five different compositions of (GeSe)1-x-(AgBiSe2)x with x=0,

0.1, 0.2, 0.3, and 0.4. These were sealed in quartz ampules under running vacuum (∼ 10−4 Torr)

and heated in a box furnace to 400◦C over 12 hours. The ampules were soaked at said temperature

for 4 hours, then brought to 900◦C in 7 hours, kept at 900◦C for 10 hours and finally cooled down
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(a) (b)
Pnma R3m Fm3m

(c)

Figure 5.1: a) Phase diagram for the (GeSe)1-x-(AgBiSe2)x system from x=0 to x=0.4 In a), ■
and correspond to XRD and DSC experiments, respectively, performed for this study; □ is an
experimental XRD value from Ref. [58]. b) depicts the three ambient-temperature structures from
x=0 to x=0.4: orthorhombic Pnma, rhombohedral R3m, and cubic Fm3̄m. c) shows the different
coordination environments and bond lengths for the three structures at room temperature.

to room temperature in 18 hours. Then, the ingots were crushed in the glovebox using a mortar and

pestle. For each composition, approximately 5 g of powder were loaded into cylindrical graphite

dies of 10 mm of inner diameter, and consolidated into solid pucks via the spark plasma sintering

(SPS) technique, using a Dr. Sinter LAB 211Lx (Fuji Electronic Industrial Co.) under vacuum. For

all compositions the same SPS pressure (50 MPa) and temperature profile was used: heating to

500◦C in 24 min., held at that temperature for 20 min., after which the pressure was decreased to 3

MPa. Then, the sample was allowed to cool to room temperature inside the SPS in 25 min. These

synthesis parameters were optimized using Refs. [74, 76]. The obtained SPS samples were 10 mm

in diameter and 3-5 mm in height.

5.3.2 Structural Characterization

The phase purity of the crushed ingots and of the SPS samples was checked with room temperature

X-ray diffraction (XRD), using a Rigaku SmartLab, with a Cu Kα radiation source (λ = 1.5406 Å).

A Rietveld refinement of XRD data was performed with the software GSAS-II for crystallographic
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information and with the software TOPAS 6 Academic [206] for microstructural details [207].

For high-temperature XRD (HT-XRD) experiments, pristine samples, i.e. samples that were not

previously used for any experiment, of GSAB20 and GSAB40 compositions were crushed into

fine powders using a mortar and pestle and then loaded onto a Rigaku HT1500 high-temperature

stage. XRD patterns were collected in the temperature range 30◦C to 330◦C during both the heating

and cooling cycles. A rate of 10◦C /min was used, allowing the sample temperature to stabilize

before each collection for 6 min., during which a height alignment was performed. For the heating

cycle, diffraction patterns were collected every 20◦C from 30 to 150◦C, every 10◦C from 150 to

230◦C, and again every 20◦C from 230 to 330◦C. These steps were chosen such as to intensify the

collection during the phase transition. For the cooling cycle, diffraction patterns were collected in

steps of 30◦C from 330 to 30◦C.

5.3.3 Thermal Analyses

Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) have been

performed with a Netzsch 449C STA apparatus. Around 10 mg of samples in the form of fine

powders were loaded in Al crucibles and measured in the temperature range 30-400°C, with a ramp

rate of 5 K/min and under a 20 ml/min flow of Ar. The measurement was repeated twice to see the

reversibility of processes. The complete data can be found in the Appendix, Section 6.3 .

5.3.4 Resonant Ultrasound Spectroscopy

The temperature-dependent elastic moduli and speed of sound were obtained via resonant ultrasound

spectroscopy (RUS) experiments, performed with an ambient- and high-temperature RUS stages

(Alamo Creek Engineering, New Mexico, USA). Samples were polished to obtain cylinders of 10

mm diameter and approximately 3 mm in height, and balanced between two transducers inside a

furnace under flowing Ar. RUS spectra were recorded from 30◦C to 400◦C in intervals of 10◦C and

with a frequency range of 50-400 kHz. Sufficient time was allowed between temperature steps for

the sample to thermally stabilize. The RUS patterns were acquired via the open-source, LabView™

ResonanceSpectrometer Software [96]. Subsequently, the resonant peak positions were determined
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within the same software, using a Lorenztian fit. Finally, the elastic moduli were determined by

fitting the experimental data in the Cyl.exe program [14].

5.3.5 Thermal and Electronic Properties

The total thermal conductivity (κ) was calculated as κ = CPρD, where CP, ρ , and D are the specific

heat capacity at constant pressure, the geometric density, and the thermal diffusivity, respectively.

For the thermal diffusivity experiments, the SPS pellets were cut into approximately 1 mm thick

disks with 10 mm in diameter. The thermal diffusivity (D) values were recorded in heating and

cooling every 10◦C in a temperature interval of 30◦C to 400◦C using a Laser Flash Apparatus

(Netzsch LFA 467). These results are summarized in Fig. 5.2.

Figure 5.2: Thermal diffusivity results for all compositions in the heating (solid circles) and
cooling (hollow circles) cycles.

The total thermal conductivity κ was then obtained using the relation:

κ = DρCp (5.1)

where D, ρ , and Cp are the thermal diffusivity, the geometric density, and the specific heat capacity

at constant pressure, respectively. The CP was treated as temperature-independent and calculated

using the Dulong-Petit approximation. The obtained values for CP and ρ are summarized in Table

5.1. The Seebeck coefficient was measured in an uni-axial four-probe arrangement using the slope

83



Table 5.1: Dulong-Petit heat capacity (CP) and geometric density (ρ) for the synthesized samples
in the (GeSe)1-x-(AgBiSe2)x system.

Composition CP

[
J

g·K

]
ρ

[
g

cm3

]
(GeSe)1-x-(AgBiSe2)x

x=0 0.330 5.53
x=0.1 0.310 5.90
x=0.2 0.295 5.98
x=0.3 0.285 6.31
x=0.4 0.277 6.87

method [208], with 60-minute sinusoidal temperature oscillations with maximum temperature

difference of 5 K. Measurements were performed in the temperature range 50-275°C, with a step of

50 K and a heating rate of 120 K/min. The electrical resistivity and Hall effect were measured in

Van der Pauw configuration in the temperature range 30-400°C, with a heating rate of 1.5 K/min

and a current of 100 mA.

5.4 Results and Discussion

5.4.1 Crystal Structure Evolution

Room temperature XRD (Figure 5.3) confirmed that all the samples in the (GeSe)1-x-(AgBiSe2)x

series are single phase and reached the target literature phases [74]. A Rietveld refinement of

XRD data was performed to confirm the structural arrangement and to obtain crystallographic and

microstructural parameters for the samples, which can be found in Table 5.2.

The XRD experiments on the (GeSe)1-x-(AgBiSe2)x system of the present study confirmed the

reported data. The x = 0 sample displays an orthorhombic structure (space group Pnma, Figure

5.1b, as extensively reported for pure GeSe [209–212]. The literature data at 10% (x=0.1)[76] and

20% (x=0.2)[73] alloying, was also confirmed to be, instead, rhombohedral (R3m, Figure5.1b).

The orthorhombic structure of GeSe can be considered to have highly distorted octahedra of Ge

atoms coordinated by six Se atoms. Such environment, as shown in Figure 5.1c displays four

bond lengths. Such configuration becomes a less distorted octahedron in the rhombohedral phase,

where only two distinct bonds are present. These two bonds, eventually evolve into one unique
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bond length for the cubic symmetry. The other end-member of the present research, i.e., at 40%

alloying, displays a rock-salt cubic structure (space group Fm3̄m, Figure5.1b, as described in

previous studies [74]. Interestingly, the Rietveld refinement of the XRD data collected for the x=0.3

sample, points to a coexistence of the R3m and Fm3̄m phases. This can indicate that the composition

is at the phase boundary. The increase in alloying within the rhombohedral system (see Table 5.2)

is accompanied by a slight increase in lattice parameters. This is expected due to the larger ionic

radii of Ag and Bi with respect to Ge. The observed evolution towards higher-symmetry structural

arrangements with the incorporation of AgBiSe2 has been attributed to the increase in entropy

associated with alloying [74]. Coherently, with increasing temperature all the compositions are

reported to eventually transition to a Fm3̄m cubic structure, as happens for both the end members of

GeSe [58, 73] and AgBiSe2 [77]. With the aid of DSC, the phase transition temperature for each

Table 5.2: Lattice parameters for the three crystal structures of (GeSe)1-x-(AgBiSe2)x
(x = 0, 0.1, 0.2, 0.3, 0.4), where the abbreviations ortho and rhombo correspond to orthorhom-
bic and rhombohedral, respectively.

Composition
Lattice
System

Space
Group a (Å) b (Å) c (Å)

Angles (◦)
α , β , γ

V (Å3)

GSAB0 Ortho Pnma 10.92084 3.87080 4.40750 90, 90, 90 186.3155
GSAB10 Rhombo R3m 3.97261 3.9726 10.1368 90, 90, 120 138.5426
GSAB20 Rhombo R3m 4.01373 4.01373 10.0847 90, 90, 120 140.6986
GSAB30 Rhombo R3m 4.03480 4.03480 10.1143 90, 90, 120 142.5970
GSAB30 Cubic Fm3̄m 5.74910 5.74910 5.74910 90, 90, 90 190.0201
GSAB40 Cubic Fm3̄m 5.75991 5.75991 5.75991 90, 90, 90 191.0940

composition was determined, as this is expected to depend on the alloying fraction. Results from

XRD and thermal analyses are arranged in the phase diagram reported in Figure 5.1a, where the

symbols ■ and depict XRD and DSC values, respectively, from experiments performed for this

study; is from Ref. [58]. The reported literature value of 925 K for the phase transition of GeSe

from orthorhombic to cubic is included ( □ symbol in Fig. 5.1a) [58], whereas the liquidus line was

linearly extrapolated from the reported melting temperatures of the GeSe [58] and AgBiSe2 [213]

end members. Additionally, the AgBiSe2 phase transformation temperatures were taken from [205].
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Figure 5.3: XRD patterns of the (GeSe)1-x-(AgBiSe2)x system at room temperature.

5.4.2 Transport Properties

The thermoelectric transport properties for (x = 0, 0.1, 0.2, 0.3, and 0.4) in the (GeSe)1-x-(AgBiSe2)x

system are presented in Figure 5.4, including a) Seebeck coefficient S, electrical conductivity σ ,

total thermal conductivity κ , and thermoelectric figure of merit zT. Note that the goal of this study

was to study the thermal properties, not to optimize performance. As expected, all of the samples

studied exhibit low zT values

Pristine GeSe shows quite high Seebeck coefficient and low electrical conductivity. Values are

in accordance with other literature reports ([72, 74]) and are indicative of an intrinsic semiconductor

behavior with low carrier concentration (in the order of 1014 cm−3 at RT, see Appendix, Section 6.3).

The p-type nature in GeSe has been attributed to the low formation energy of Ge vacancies [214].

The carrier density increases in the alloyed samples (to RT values in the order of 1018 −1019 cm−3,

see data in Appendix, Section 6.3), as also noticeable from the comparatively higher σ and lower

absolute values of Seebeck coefficient. The increasing trend of σ with temperature points to a

classical semiconducting behavior. Interestingly, the electronic character passes from p- (x=0.1
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Figure 5.4: Thermoelectric characterization for the samples within the studied (GeSe)1-x-
(AgBiSe2)x series, including thermal conductivity κ , electrical conductivity σ , Seebeck co-
efficient S and thermoelectric figure of merit zT. Filled and empty markers represents heating
and cooling data, respectively.

and 0.2 samples) to n-type (x=0.3 and 0.4) with the progressive incorporation of AgBiSe2. Cubic

(GeSe)1-x-(AgBiSe2)x with with x = 0.3-0.5 alloying has been reported in the literature to display

n-type conduction [74]. This was attributed to the partial substitution of Ge with Bi, acting as a

donor defect (Bi3+ in place of Ge2+), and leading to a larger density of states at the conduction band

minimum owing to Bi p-orbitals.

5.4.3 Lattice Thermal Conductivity

The lattice component of thermal conductivity, κL, (Figure 5.5) was calculated as κL = κ -κE,

where κE is the electronic component. This was estimated with the Wiedemann-Franz Law as κE

= LσT, where L is the Lorenz number, calculated according to ref. [215] (data in the Appendix,

6.3), and T is the absolute temperature. κE shows a negligible contribution for all the compositions.

The κL of pristine GeSe shows a T-1.4 behavior, indicative of a temperature trend dominated by
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Figure 5.5: Lattice thermal conductivity of (GeSe)1-x-(AgBiSe2)x. Only GeSe shows Umklapp-
dominated κL. Within the R3m-phase at low temperature, alloying effect shows high κL suppres-
sion (from x=0.1 to x=0.2), followed by small drop (x=0.2 to x=0.3). The x=0.4 (Fm3̄m) sample
at room temperature breaks this trend.

phonon-phonon scattering, or Umklapp, processes. For samples of compositions of x=0.1, 0.2,

and 0.3, the first evident feature is the step increase in κL (visible also in κ) at approximately 525

K, 425 K, and 380 K. This seems to be more pronounced for lower the AgBiSe2 content. These

discontinuities are believed to be the hallmark of the phase transition from the rhombohedral to the

cubic arrangement. The alloyed compositions exhibit generally flatter trends than GeSe, pointing to

other mechanism as main phonon scattering source. For the three rhombohedral samples (x=0.1, 0.2,

0.3) below their phase transition temperatures, the progressive incorporation of Ag and Bi on Ge

sites suppresses κL in the (GeSe)1-x-(AgBiSe2)x system. The decay in the near room temperature

κL is rapid from the x=0.1 to x=0.2 composition, followed by a much smaller drop from the x=0.2 to

the x=0.3 sample. Interestingly, this downwards trend seems to be broken with the cubic polymorph

(x=0.4), showing room temperature κL slightly higher than for x=0.2. At temperatures above the

phase transition to the cubic arrangement, all the alloyed samples "recover" the trend of suppressed

κL with increasing alloying. These observations point to a possible predominant role of structural

and bonding features, and will be discussed in detail in the next sections.

Another interesting feature is that, above 450-500 K, the x = 0.2, 0.3, and 0.4 samples show
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an increasing trend of κL with temperature. This can be due to non negligible bipolar effects.

Thus, the plotted κL is likely a sum of the real κL and the bipolar contribution, κB. The bipolar

effect is due to the thermal excitation of carriers of different type in a material. This is observed

in those circumstances when more than one electronic band contributes to transport: for small

bandgap Eg semiconductors at high temperature (kBT ∼ Eg, with kB the Boltzmann constant), or

for intrinsic, undoped, semiconductors with minimal difference in carrier density between majority

and minority carriers. The bipolar effect is normally observed in the Seebeck coefficient as a decline

from the linear trend with temperature, due to the compensating effects of different carrier types.

Nevertheless, it can also be observed in κ : at high temperature carrier of opposite sign tend to form

at the hotter side of the sample with the absorption of heat, and recombine at the colder end with

heat release, overall causing an apparent increase of thermal conductivity. The presence of bipolar

effects is also supported by the curved shaped of the Seebeck coefficient (Figure 5.4a) and from the

high temperature rise of the Hall carrier concentration (explained in the Appendix, in Section 6.3).

In order to study the behavior of κL in the (GeSe)1-x-(AgBiSe2)x system, the influence of lattice

softening and phonon scattering effects need to be decoupled. Both of these are a function of

composition and structure type. Using the Debye model on the kinetic theory of gases, the lattice

contribution to the heat transport inside the material can be approximated via the following relation:

κL =
1
3

Cvv2
τ (5.2)

where Cv is the heat capacity at constant volume, v the phonon velocity, and τ the phonon relaxation

time. The phonon velocity in Eq. 5.2 is approximated to the low frequency phonon velocity, i.e., to

the speed of sound vs, and treated as frequency-independent. Furthermore, the approximation of the

phonon velocity to the speed of sound, allows to relate the elastic properties of the bulk material

with the relation:

vs ∝

√
K
ρ

(5.3)

with K and ρ as the appropriate elastic constant and the solid’s density, respectively. This last

equation gives crucial information about the bonding features of the bulk material in relation to its
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phonon transport. By investigating the bond stiffness of the solid, the influence of the structure on κL

is isolated from its composition. Using resonant ultrasound spectroscopy (RUS), high-temperature

X-ray diffraction, and transport measurements, the underlying mechanisms that determine κL in the

(GeSe)1-x-(AgBiSe2)x system are hereby elucidated.

5.4.4 Speed of Sound and Bonding Evolution

5.4.4.1 Elastic Moduli

In order to measure the speed of sound for the different compositions and gain insights on their

bonding behavior, resonant ultrasound spectroscopy (RUS) measurements were performed. RUS is

a laboratory technique to measure the elastic properties of a solid based on its mechanical response,

i.e. the resonance peaks arising from vibrational excitations [14]. It is a bench-top, non-destructive

technique, and consists of two piezoelectric transducers, where one acts as frequency emitter

(constant amplitude, varying frequency), and the other as detector. The recorded resonance peaks

depend on the shape of the sample and on the materials’ elastic moduli. The latter are then used to

calculate bulk mechanical properties, as well as the longitudinal (vl), transverse (vt), and average

(vs) speed of sound inside the material, where these three are related via the following relation:

vs =

(
1
3

[
1
v3

l
+

2
v3

t

])−1
3
. (5.4)

Using the experimental data from RUS experiments, i.e., C11 and C44, the constitutive relation

for elastic constants of isotropic material were obtained. This means, using the elastic tensor

elements in the isotropic approximation C11, C44, and C12 (as C12=C11 - 2C44), the shear modulus

(G), the bulk modulus (B), the Young’s modulus (Y), and the Poisson ratio (µ) were calculated.

The following equations were used: Y = 9 G B/(3 B+G), G = C44, B = C12 + 2/3 C44, and µ =

Y/(2G)−1. The results are shown in Figure 5.6 —additional calculated moduli can be found in

the Appendix, Section 6.3.

The observed trends in the elastic moduli (Figures 5.6a and b) resemble κL behavior, in which

the phase transition from rhombohedral to cubic exhibits a significant increase, where the stiffening
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Figure 5.6: Temperature dependence of a) Young’s modulus, b) shear modulus, c) speed of
sound, and d) speed of sound. Note the dramatic stiffening after the phase transition to the
cubic structure for samples the x=0.1, x=0.2, and x=0.3 compositions. Additionally, there is a
substantial softening with increasing Ag/Bi substitution.

is more pronounced the lower the alloying is. Moreover, within the same crystal structure, an

increase in alloying leads to a softening. Furthermore, this trend holds true for the speed of sound

(vs), as shown in Figure 5.6c. Interestingly, the same behavior as for the elastic constants is observed,

despite the inclusion of density for the speed of sound calculation (where the relation vs ∝
√

K/ρ

is evoked). As the elastic properties are deeply rooted in the bonding nature of the solid, the bond

evolution as a function of temperature was investigated via HT-XRD and discussed in the following

sections.

5.4.4.2 High-Temperature X-ray Diffraction and Bond Length Considerations

Room-temperature experiments in the (GeSe)1-x-(AgBiSe2)x system were conducted on all samples

(x=0, 0.1, 0.2, 0.3, 0.4), while HT-XRD patterns were collected on the (x=0.2 and x=0.4) samples .
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The results are summarized in Figure 5.7.
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Figure 5.7: XRD patterns with increasing temperature for a) (GeSe)0.8-(AgBiSe2)0.2 and b)
(GeSe)0.6-(AgBiSe2)0.4. Note phase transition for the 20% alloying sample from rhombohedral
(in black) to cubic (red) above 457 K. Peak at 2θ = 38◦ (denoted by *) corresponds to instrument
contamination. c) Unit cell volume vs. temperature for all compositions. Samples x=0.2 and
x=0.4 have high-temperature data, while the others have ambient-temperature data only. Note
that the trend follows as expected, i.e., more alloying increases the unit cell volume. e) Lattice
parameter ratio evolution with temperature for the sample with 20% alloying of AgBiSe2.

As demonstrated in Figure 5.7a, the high-temperature experiment on the x=0.2 composition

revealed a phase transition from the rhombohedral to the cubic structure at appox. 457 K, which

is consistent with the reported literature value [74]. For the x=0.4 sample, as shown in Figure

5.7b, no phase transition up to 563 K. The Rietveld refinements on the (GeSe)1-x-(AgBiSe2)x unit
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cell volume (Figure 5.7c), shows, as expected, an increase of the unit cell volume with increasing

alloying of AgBiSe2. Furthermore, the rhombohedral phase in the x=0.2 composition, shows a

shallower slope when compared to the one of the cubic phase of both the x=0.2 and the x=0.4

compositions—additional crystallographic information is reported in the Appendix, Section 6.3.

In order to accurately track down the evolution of the x=0.2 sample from the rhombohedral to

the cubic phase, Figure 5.7e shows the c/a ratio vs. T. When c/a = 2
√

3/2, the cubic symmetry

forms—details of the calculation are included in the Appendix, Section 6.3. Moreover, the relatively

larger size of the rhombohedral with respect to the cubic unit cell is both evidenced by the shrinkage

after the phase transition, and in the room-temperature unit cell volume trend with respect to

composition—the x=0.4 composition appears to defy this trend. This same behavior has been also

observed in other similar compounds, for instance SnTe, [216], GeTe [217], SnTe-GeTe alloys

[218], among others [219]. Furthermore, Figure 5.7c shows that at room temperature, the unit cell

volume increases as a function of alloying. These XRD experiments allow to understand the trends

observed in the elastic properties of this system, for the material’s bonding nature is closely related

to its elastic behavior. It now becomes clear that in the (GeSe)1-x-(AgBiSe2)x system, a larger

unit cell volume (achieved with increasing alloying) yields a suppression of its elastic constants.

Furthermore, the cubic unit cell possesses a smaller volume and, consequently, higher values in its

elastic constants. The lattice softening (stiffening) is a consequence of weaker (stronger) bonds, as

they become longer (shorter). The trend of bond lengths is presented in Table 5.3.

Table 5.3: Bond lengths at room temperatures in the (GeSe)1-x-(AgBiSe2)x system, obtained
from Rietveld refinements.

d1 (Å) d2 (Å) d3 / d4 (Å)

x=0 2.5365 2.57591 3.29862 /3.41082
x=0.1 2.69376 3.02101 n/a
x=0.2 2.71023 3.03254 n/a
x=0.3 2.7201 3.0398 n/a
x=0.4 2.88043 n/a n/a
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5.4.5 Contributions to phonon relaxation time

The scattering rate, τ−1, i.e. the average number of phonon scattering events per unit time, was

estimated using the measured κL and vs as a function of temperature using Equation 5.2, where

CV was approximated by the Dulong-Petit limit and the experimental values of vs as the phonon

velocities. The results are shown in Figure 5.8, where the calculations were limited to the temperature

range in which the bipolar contribution does not play an important role. Additionally, the slight

discrepancies of the phase transition temperatures between the RUS and the LFA measurements, as

well as the inherit anomalous scattering rate around the phase transition temperatures, may give false

results of the scattering rate in the (GeSe)1-x-(AgBiSe2)x system. For this reason, the data points in

the vicinity of the phase transition temperatures (labeled by hollow circles) are not considered from

the following discussion.

Figure 5.8: Scattering rate τ−1 of the (GeSe)1-x-(AgBiSe2)x system. Hollow circles denote the
scattering rate anomaly characteristic of the phase transition region. There is a clear increase
in scattering rate after the rhombohedral-to-cubic phase transition, i.e., for the compositions of
x=0.1, 0.2, and 0.3.

The phonon scattering rate in a material is modeled as a summation of contributions from

different scattering mechanisms, and expressed as τ−1 = ∑i τ
−1
i [220, 221]. In order to include the

most relevant terms only, this last equation is reduced to τ = τ
−1
GB + τ

−1
U + τ

−1
AS where the τU, τGB,

and τAS are the phonon relaxation times due to Umklapp, grain boundaries, and alloy scattering,

respectively. From the Rietveld refinements performed on all samples , there are no significant
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differences of the average grain size among all compositions. For this reason, the grain boundary

scattering rate difference is considered to be similar for all compositions. The following discussion

will, therefore, focus on the Umklapp, τU, and alloy τAS scattering mechanisms.

5.4.5.1 Phonon-Phonon Scattering

Umklapp scattering is a three (or more) phonon process, in which two phonons of wave vectors k1

and k2 interact to create third one with wave vector k3 (of allowed value), such that k3 ̸= k1 +k2.

Umklapp scattering is an important mechanism that results in thermal resistance [222], and is

often dominant at temperatures above the Debye temperature, θD [188]. Umklapp processes are

closely related to the anharmonic bonding features of the material and, therefore with the Grüneisen

parameter, γ , [223]. The Umklapp scattering rate, τ
−1
U , is usually approximated by the equation

[17, 224]:

τU ∝
M̄v3

s

V 1/3ω2γ2T
(5.5)

with M̄ as the compound’s average atomic mass, and ω the phonon frequency. The only unknown

of this last equation is the Grüneisen parameter, which will be calculated in the following section to

estimate the effect of crystal structure and/or composition on the anharmonicity of the (GeSe)1-x-

(AgBiSe2)x system.

To determine the anharmonicity of the different systems, γ was calculated via three methods,

representing thermodynamic averages. The first method, based on the Poisson’s ratio (µ), was used

to estimate the Grüneisen parameter (γµ ) as:

γµ =
3+3µ

4−6µ
(5.6)

where µ was calculated from RUS experiments. The second method, known as γL after Ledbetter,

Yuen, and coworkers [19, 225], relates the change of the elastic properties with respect to temperature

as follows:
∂K
∂T

=−3kB
Va

γL(γL +1) (5.7)

where kB, Va, and T are the Boltzmann constant, volume per atom, and temperature, respectively.

K can be any elastic modulus, and for the present study, the shear modulus G (obtained from the
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RUS experiments) was used. Equation 5.7 is used for the current research, since the temperature

range of the experiments is well above the material’s Debye temperature, θD. For the (GeSe)1-x-

(AgBiSe2)x system, the Debye temperature was calculated for all compositions (x=0, ..., x=0.4)

with the equation:

θD =
h̄

kB

(
6π2

Va

)1/3

vD (5.8)

where h̄ is the reduced Planck constant, and vD the Debye velocity in an elastic isotropic medium,

and calculated as: v−3
D = 1/3(v−3

L +2v−3
T ) [226]. Two different slopes, sufficiently far from the

phase transition, were used for the x=0.1, 0.2, and 0.3 samples in order to assess the change in γ

with different structural arrangements.

The third, and most commonly employed, estimate of Grüneisen parameter is based on the

volumetric coefficient of thermal expansion, αV, and was obtained using the following relation:

γα =
αVB
CVρ

(5.9)

where B and ρ are the bulk modulus, and density, respectively. B was determined from RUS

experiments and CV was calculated with the Dulong-Petit approximation. The values for ρ and αV

were determined by the HT-XRD scans.

Method 1, i.e., the calculation of γµ , were performed on all samples from x=0 to x=0.4 in the

(GeSe)1-x-(AgBiSe2)x system, while method 2 and 3 (γL and γα were calculated for the x=0, x=0.2,

and x=0.4 compositions only, since they require experimental values of αV. The coefficients of

thermal expansion were obtained from the HT-XRD scans of the present study, while αV for the

pure GeSe composition was used from Ref. [58]. The results are presented in Figure 5.9.

Although the values γµ for all compositions (left panel of Figure 5.9) show little variation

among them, the anharmonicity of the system appears to increase with more alloying. This trend

becomes evident when the samples with rhombohedral symmetry, i.e., x=0.1, x=0.2, and x=0.3,

transform to the cubic structure. Additionally, the results from γα seem to support the hypothesis

that a cubic structure (one with higher symmetry than the rhombohedral or orthorhombic) appears

to exhibit higher anharmonic behavior. This is further evidenced by the increase in γα when the
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Figure 5.9: Grüneisen parameter as a function of temperature in (GeSe)1-x-(AgBiSe2)x (from x=0
to x=0.4), calculated with the Poisson ratio (left) and temperature dependence of the Grüneisen
parameter, γ , for the (GeSe)1-x-(AgBiSe2)x system for the x=0.2 (left) and the x=0.4 (right)
compositions. The three curves were obtained via the Ledbetter method (γL), the thermal
expansion coefficient (γα ), and the Poisson ratio (γµ ). The shear modulus was chosen for the
Ledbetter method. Note substantial increase of γL and γα after the phase transition for the sample
with 20% alloying.

x=0.2 composition undergoes the phase transformation from the rhombohedral to the cubic structure.

However, the estimate based on the softening rate, γL, does not support this conclusion, showing

almost no change between rhombohedral and cubic phases.
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5.4.5.2 Alloy Scattering

From Equation 5.5), it is possible to see that the Umklapp-dominated κL will show a T−1 de-

pendence. In the case of pure GeSe, as shown in Figure 5.5, κL ∼ T−1.4, which indicates that

Umklapp scattering is the determining contribution to κL. For all others, there is clearly no T−1

proportionality, which indicates a substantial contribution from alloy scattering.

As shown in Figure 5.5, the progressive addition of AgBiSe2 to GeSe suppresses the near

room temperature κL. This phenomenon can be regarded as point-defect or alloy scattering, and is

controlled by the mass and radius contrast between the intrinsic (Ge) and alloyed (Ag/Bi) species.

This scattering mechanism is rooted in the variations of a crystal’s kinetic and potential energy

upon alloying. One of the most commonly used models for alloy scattering is the Klemens Model

[190, 227–229]. This accounts for the effect of variation in mass and ionic radius through the

parameter Γ, calculated as:

Γ = ΓM + εΓR =
⟨∆M2⟩
⟨M⟩2 + ε

⟨∆R2⟩
⟨R⟩2 (5.10)

where the squared mass
(
⟨∆M⟩

)
and ionic radius

(
⟨∆R⟩

)
variances are divided by the system’s

average mass
(
⟨M⟩

)
and ionic radius

(
⟨R⟩
)

squared—detailed calculations can be found in the

Appendix, Section 6.3; ε serves as a scaling parameter to fit the experimental data to include

lattice strain effects. This scattering parameter Γ is then used in the disorder parameter u, which is

expressed as:

u2 =

(
6π5V 2

)1
3

2kBvs
κPΓ (5.11)

where Va, kB, vs, and κP, are the volume per atom, the Boltzmann constant, the speed of sound, and

the lattice thermal conductivity, respectively; Va, vs, and κP are composition-dependent calculation

parameters, obtained for the different compositions through a linear extrapolation of experimental

properties of the end members, i.e. GeSe (values from experiments of this study) and AgBiSe2

(from Ref.[205]). Finally, κL is calculated using the equation:

κL =
arctanu

u
κP (5.12)
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Using equations 5.10,5.11, and 5.12, the expected effect of alloy scattering on the lattice thermal

conductivity κL for the (GeSe)1-x-(AgBiSe2)x system is calculated and displayed in Figure 5.10.

The room temperature experimental data of κL are plotted in black circles. For the compositions

from x=0 through x=0.4, the data come from the present study (see Figure 5.5) while the end

member data point of κL for x=1 (AgBiSe2) is from ref.[205].

0.0 0.2 0.4 0.6 0.8 1.0
x in (GeSe)1 x(AgBiSe2)x

0.5

1.0

1.5

2.0

2.5

L
[W m

K
]

Experimental data
Klemens model as is
Extrapolated value for R3m GeSe
Klemens model with R3m GeSe

Figure 5.10: Klemens model fit (blue line) and experimental values (black dots) for x=0, 0.1, 0.2,
0.3, 0.4, and x=1 (AgBiSe2) from ref. [205].

It is evident that the current model (black line) underestimates the κL for all the alloyed

compositions, in particular for those in a cubic arrangement. This points to a possible effect of

the crystal structure, normally not accounted for in the model. Indeed, the Klemens model was

developed for systems that form a complete solid solution, keeping the same crystal structure

throughout the compositions. The (GeSe)1-x-(AgBiSe2)x system, instead, possesses 4 different

structural arrangements (orthorhombic Pnma for GeSe, rhombohedral R3m for x ≳ 0.05 up to

x ∼ 0.25, cubic Fm3̄m for x ≳ 0.30, and P3̄m1 for AgBiSe2 at room temperature). In order to

account for the observed discrepancy between experimental and expected κL, the data point at

0% alloying (GeSe) was adjusted (blue circle) until the model matched the R3m compositions.

This is to be regarded as an hypothetical κL for GeSe, if it were arranged in a R3m symmetry.

The newly calculated Klemens model (blue curve) would represent the expected κL trend upon

alloying, if all the compositions preserved the R3m structure. This model demonstrates that the
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κL of the cubic systems, i.e., for the 30% and 40% alloying compositions, is larger than predicted

by the R3m Klemens model, while that of experimental Pnma GeSe is significantly lower. In the

complex superposition of effects influencing κL in this system, the observed discrepancies can

help elucidate the structural contribution to κL, independent of alloy scattering mechanisms. The

observed trend can be correlated with the progressive loss in lattice distortion passing from the

Pnma, to the R3m, to the Fm3̄m structure. For what concerns phonon scattering mechanisms, it has

been herein demonstrated that Umklapp processes in the (GeSe)1-x-(AgBiSe2)x system seem not

to be greatly affected by composition, nor by crystal structure. Indeed, γ shows small variations

among all samples and before/after phase transitions (see Figure 5.9). A large effect is instead

attributed to alloy scattering, which is modeled by a structure-independent κL, implemented via

the Klemens model. Therefore, the observed variation in τ is to be attributed for the most part to

composition, and originates from alloy scattering.

5.5 Conclusions

In conclusion, by using a combination of resonant ultrasound spectroscopy and high-temperature

XRD experiments, the influence of crystal structure and composition on the lattice thermal of the

(GeSe)1-x-(AgBiSe2)x system. Elasticity measurements show that the temperature-induced phase

transformation from the rhombohedral to the cubic symmetry is accompanied by a lattice stiffening.

Interestingly, the increasing of alloying should be accompanied by a volume expansion due to the

presence of the larger atoms Ag and Bi. However, the rhombohedral-to-cubic transformation results

in a volume contraction, and therefore, higher κL. The present study highlights the decoupled

role of alloy scattering and structural features towards a fundamental understanding of thermal

conductivity in this important class of thermoelectrics.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The focus of the present work was the elastic characterization of two classes of materials relevant

to thermoelectrics, namely AM2X2 Zintl phases and the (GeSe)1-x-(AgBiSe2)x alloys. Using a

combination of high-pressure synchrotron X-ray diffraction and high-temperature resonant ultra-

sound spectroscopy, the bonding nature for the two classes of materials were investigated. For this

purpose, a series of poly- and single- crystals using spark plasma sintering and self-flux growth

techniques. In this regard, a novel technique for single-crystal synthesis was developed, that is

based on the directional single crystal growth method, and driven by chemical vapor. The results

for the corresponding results for each system will be briefly summarized in the next sections.

6.1 Elastic Properties of Mg3Sb2, Mg3Bi2, CaMg2Bi2, and
YbMg2Bi2 at High Pressure

The present study has shown the compressibility behavior and stability of 122 Zintl phases.

The four compounds investigated here, Mg3Pn2 (Pn = Sb, Bi) and AMg2Bi2 (A = Ca, Yb) were

characterized in terms of their compressibilities of unit cells, lattice parameters, and individual

bonds. By studying these materials under high-pressure, their bond evolution was investigated,

which shows a clear discrepancy between the octahedral (more compressible) and tetrahedral (less

compressible) bonds for all compounds, regardless of the cation size. Additionally, by studying

the individual bond evolution with increasing pressure, the change of bonding environments as a

function of pressure shed light onto the bond strength as well as the ambient-pressure phase stability

of these compounds. This evolution of bonding with pressure was evident in the bond-breaking of

octahedra, as well as the tetrahedra-to-pyramid transformation in the Mg3Pn2 compositions. For

the other two compounds, there is no observation of octahedral bonds that break, however, the

tetrahedra do evolve into the same pyramidal coordination. In addition, the high-pressure structures

for all compounds were solved and identified as monoclinic, with space group C2/m.
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6.2 Lattice Thermal Conductivity in the (GeSe)1-x-(AgBiSe2)x System

The lattice thermal conductivity, κL, of the (GeSe)1-x-(AgBiSe2)x system was studied in the

composition range from x=0.1 through x=0.4. Using high-temperature resonance ultrasound spec-

troscopy and high-temperature X-ray diffraction, the elastic behavior and the scattering mechanisms

present in these alloys were characterized. From these experiments, it was shown that the compo-

sitions that have a rhombohedral (R3m) at room temperature (x=0.1, x=0.2, x=0.3 — the sample

with 30% alloying shows presence of the rhombohedral and cubic symmetries), undergo a phase

transition to the cubic (Fm3̄m) structure at high temperatures, which is accompanied by a unit cell

volume reduction. The cubic structure at room (x=0.4) was found to possess stiffer bonds than the

rhombohedral and orthorhombic symmetries. Additionally, the increase in alloying was observed to

suppress κL due to a decrease in the phonon relaxation time due to an increase in alloy scattering

rates.

6.3 Future Work

The literature lattice thermal conductivity values, κL, of the Mg3Pn2 (Pn = Sb, Bi) are lower

than those of AMg2Bi2 (A = Ca, Yb). However, the results presented here show little difference

between the compressiblities among all of them. One possible explanation is that κL is strongly

dependent on the shear modulus of the compound which, unfortunately, cannot be probed by the

hydrostatic-pressure experiments of this research. For this reason, one possible route would be the

investigation of these materials via in-situ static shear strain, e.g., inside a rotational diamond anvil

cell (RDAC).

Another area of research that is opened by this study is the study of the effect of the bonding

between the anion and the cation within the materials studied here. For this purpose, the compounds

CaMg2Sb2 and YbMg2Sb2 would need to be studied. By adding these two compounds, the current

research could potentially reveal the bond strength and stability as a function of the cation-anion

interactions.

In this study, the (GeSe)1-x-(AgBiSe2)x system was investigated from compositions ranging

from pure GeSe to x=0.4. Interestingly, at room temperature, the other end member of the (GeSe)1-x
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-(AgBiSe2)x system, i.e., AgBiSe2, is trigonal with space group P3̄m1. Furthermore, this trigonal

phase becomes rhombohedral (R3̄m) and eventually cubic (Fm3̄m) at ∼ 460 K, and ∼ 580 K,

respectively. All the phases present in the (GeSe)1-x-(AgBiSe2)x system, in such a small temperature

range, make it intriguing and offer the platform to study the phase diagram and its relation with

κL for compositions above x=0.4, to complete the overview of the phase space. This information

could potentially offer complete the picture of the whole composition range of this system, and

offer insights into the influence of composition, structure, and alloy scattering for the design and

manipulation of high-performance thermoelectrics with intrinsically low κL.
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APPENDIX A: MASS AND RADIUS VARIANCE CALCULATIONS FOR THE
KLEMENS MODEL OF THE (GeSe)1-x-(AgBiSe2)x ALLOY

The Γ parameter, that accounts for mass and radius variances of the system as a consequence
of alloying, is calculated by dividing the system’s mass variance by the average mass, as shown
in equation 5.10. The detailed procedure to calculate Γ is presented in the following section. The
average mass of each site s of the structure is given by:

Ms = ∑
i

fs,iMs,i (A1)

where fs,i is the site fraction of species i in site s and Ms,i the mass of atomic species i in site s.
Then, the average mass of the material

(
⟨M⟩

)
is calculated by taking the stoichiometric amount of

each site s (as) as follows:

⟨M⟩= ∑s asMs

∑s as
(A2)

There are two distinct sites in the (GeSe)1-x-(AgBiSe2)x system, site 1 which can be occupied by
either Ge, Ag, or Bi, and site 2 which is only populated by Se atoms. The average mass of site 1
(M1) results in:

M1 =
(1− x)MGe + xMAg + xMBi

(1+ x)
(A3)

where MGe, MAg, and MBi are the molar masses of Ge, Ag, and Bi, respectively. The average mass
of site 2 (M2) is the mass of Se (MSe). Therefore, the average mass in the GSAB system becomes:

⟨M⟩= M1 +MSe
2

(A4)

Analogous to equation A1, the mass variance
(

∆M2
s

)
of site s is:

∆M2
s = ∑

i
fs,i(Ms,i −Ms)

2 (A5)

which yields a mass variance of the site 1
(

∆M2
1

)
for the (GeSe)1-x-(AgBiSe2)x system:

∆M2
1 =

(1− x)(MGe −M1)
2 + x(MAg −M1)

2 + x(MBi −M1)
2

(1+ x)
(A6)

Similar to equation A2, the total mass variance
(
⟨∆M2⟩

)
for any given system is:

⟨∆M2⟩= ∑s as∆M2
s

∑s as
(A7)

which is used to obtain the total average mass variance of the (GeSe)1-x-(AgBiSe2)x system. Again,
since there is no mass variance of site 2, Equations A5 and A7 yield:

⟨∆M2⟩=
∆M2

1
2

(A8)
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APPENDIX B: ELECTRONIC CHARACTERIZATION OF THE (GeSe)1-x-(AgBiSe2)x
SYSTEM

The electronic part of thermal conductivity κE has been calculated with the Wiedemann-Franz
law, as κE = LσT , where L is the Lorenz number, estimated from the Seebeck coefficient S (in µV
K−1) as L = (1.5+ exp

{
− |S|

116

}
)10−8WΩK−2 [230]
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Figure B1: Electronic properties.
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APPENDIX C: DIFFERENTIAL SCANNING CALORIMETRY AND
THERMOGRAVIMETRIC ANALYSIS OF (GeSe)1-x-(AgBiSe2)x

Figure C1 shows the differential scanning calorimetry (DSC) and thermogravimetric analysis
(TGA) data collected for the different alloyed compositions. From the TGA signal, no significant
mass evolution can be noticed for any of the samples. The rhombohedral R3m to cubic Fm-3m phase
transition can be observed as a reversible endothermic peak for the GSAB10 and GSAB20 samples.
From the onset of the peak, we retrieve the critical temperature of the transition TC, reported in
Table C1. Values are in reasonable agreement with the critical temperatures observed in the thermal
diffusivity, and somewhat in the elastic constant measurements.

Although the GSAB30 sample presented a clear transition signal in the thermal diffusivity and
resonant ultrasound spectroscopy measurements, no apparent peak is visible in the DSC curve.

For the GSAB0, GSAB30 and GSAB40 samples, some non-identified irreversible peaks can be
noticed in the heating ramp. For GSAB0, the temperature coincides with the melting point of Se
and might be connected with some Se impurities. For GSAB30 and GSAB40, XRD indicates a
minor fraction of AgBiSe2 secondary phases. As this is known to undergo two consecutive phase
transitions at and (to be please completed), we tentatively attribute these peaks to possible transitions
from AgBiSe2 impurities.
Table C1: Estimation of semiconducting bandgap Eg from the Seebeck coefficient data for the
(GeSe)1-x-(AgBiSe2)x system (x = 0, 0.1, 0.2, 0.3, 0.4). The crystal structure to be considered
for the estimation is based on the expected arrangement that a particular composition would
assume at the temperature used for the calculation.

DSC LFA RUS

GSAB10 490K 510K 560K
GSAB20 430K 420K 470K
GSAB30 410 390K 410K

123



300 400 500 600
T (K)

0.075

0.050

0.025

0.000

0.025

0.050

0.075

H
ea

tF
lo

w
[m

W
m

g
]

exo

GSAB0 - cycle 1

Heating
Cooling

96

97

98

99

100

101

102

103

104

M
as

s 
lo

ss
 (%

)

(a) GSAB0, cycle 1.

300 400 500 600
T (K)

0.075

0.050

0.025

0.000

0.025

0.050

0.075

H
ea

tF
lo

w
[m

W
m

g
]

exo

GSAB0 - cycle 2

Heating
Cooling

96

97

98

99

100

101

102

103

104

M
as

s 
lo

ss
 (%

)

(b) GSAB0, cycle 2.

300 400 500 600
T (K)

0.06

0.04

0.02

0.00

0.02

0.04

0.06

H
ea

tF
lo

w
[m

W
m

g
]

exo TC

GSAB10

Heating
Cooling

96

97

98

99

100

101

102

103

104

M
as

s 
lo

ss
 (%

)

(c) GSAB10.

300 400 500 600
T (K)

0.06

0.04

0.02

0.00

0.02

0.04

0.06
H

ea
tF

lo
w

[m
W

m
g

]

exo TC

GSAB20

Heating
Cooling

96

97

98

99

100

101

102

103

104

M
as

s 
lo

ss
 (%

)

(d) GSAB20.

300 400 500 600
T (K)

0.06

0.04

0.02

0.00

0.02

0.04

0.06

H
ea

tF
lo

w
[m

W
m

g
]

exo

GSAB30

Heating
Cooling

96

97

98

99

100

101

102

103

104

M
as

s 
lo

ss
 (%

)

(e) GSAB30.

300 400 500 600
T (K)

0.075

0.050

0.025

0.000

0.025

0.050

0.075

H
ea

tF
lo

w
[m

W
m

g
]

exo

GSAB40

Heating
Cooling

96

97

98

99

100

101

102

103

104

M
as

s 
lo

ss
 (%

)

(f) GSAB40.

Figure C1: Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA)
for the GSAB system.
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APPENDIX D: CRYSTALLOGRAPHIC DETAILS FOR (GeSe)1-x-(AgBiSe2)x

Table D1: Lattice parameters for the two crystal structures of GSAB20 as a function of tempera-
ture.

Temperature
(◦C)

Lattice
System

Space
Group a (Å) c (Å)

Angles (◦)
α , β , γ

V (Å3)

30 Rhombo R3m 4.01747 10.10506 90, 90, 120 141.246
59 Rhombo R3m 4.01924 10.10628 90, 90, 120 141.387
76 Rhombo R3m 4.02213 10.09697 90, 90, 120 141.46
98 Rhombo R3m 4.02553 10.09001 90, 90, 120 141.602
118 Rhombo R3m 4.02918 10.07722 90, 90, 120 141.679
120 Rhombo R3m 4.03426 10.05707 90, 90, 120 141.752
157 Rhombo R3m 4.04012 10.03225 90, 90, 120 141.814
163 Rhombo R3m 4.04921 10.00513 90, 90, 120 142.067
174 Rhombo/cubic R3m/Fm3m 4.0511 9.99569 90, 90, 120 142.066
174 Rhombo/cubic R3m/Fm3m 5.74068 5.74068 90, 90, 120 189.187
194 Cubic Fm3m 5.74159 5.74159 90, 90, 120 189.277
204 Cubic Fm3m 5.74264 5.74264 90, 90, 120 189.381
212 Cubic Fm3m 5.74343 5.74343 90, 90, 120 189.458
220 Cubic Fm3m 5.74512 5.74512 90, 90, 120 189.625
231 Cubic Fm3m 5.74634 5.74634 90, 90, 120 189.747
241 Cubic Fm3m 5.74758 5.74758 90, 90, 120 189.87
251 Cubic Fm3m 5.74901 5.74901 90, 90, 120 190.011
270 Cubic Fm3m 5.75135 5.75135 90, 90, 120 190.244
290 Cubic Fm3m 5.75404 5.75404 90, 90, 138 190.511
310 Cubic Fm3m 5.75696 5.75696 90, 90, 120 190.801
330 Cubic Fm3m 5.75982 5.75982 90, 90, 120 191.085
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APPENDIX E: LATTICE PARAMETER CONVERSION FROM RHOMBOHEDRAL
R3M TO CUBIC FM3M

Note that hexagonal axes are used.

• Rhombohedral volume: VR

• Cubic volume: VC

• Lattice parameters a and c in rhombohedral structure: aR, cR

• Lattice parameter a in cubic structure: aC

The rhombohedral volume is given by:

VR =

√
3

2
a2

RcR (E1)

and the cubic unit cell volume is
VC = a3

C (E2)

When the following equation applies,

cR
aR

=
2
√

3√
2

(E3)

the rhombohedral structure transforms to cubic. Then, it follows that the cubic lattice parameter aC
can be transformed to an equivalent rhombohedral cell by:

aC = aR
√

2 (E4)

and cR is obtained using E3
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APPENDIX F: ELASTIC MODULI OF THE (GeSe)1-x-(AgBiSe2)x SYSTEM
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(b) Shear Modulus.
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(c) Elastic constant C11.
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(d) Elastic constant C44.
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Figure F1: Elastic properties of the GSAB system.
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