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ABSTRACT
Cellular mechanisms and genetic underpinnings of most complex diseases and traits
are not well understood. Most diseases also vary in their incidence and presentation in
people of different ages and sexes, yet it is still largely unclear how age and sex
influence normal tissue physiology and disease at the molecular level. Additionally,
while we need research organisms to experimentally study many aspects of human
disease etiology, choosing the best genes and conditions in a model organism for such
studies is difficult due to our incomplete knowledge of functional and phenotypic
conservation across species. The goal of my research is to address these challenges
towards gaining a systematic understanding of the genetic etiology of complex diseases
and traits. | have worked towards this goal by developing computational frameworks
capable of leveraging massive amounts of publicly-available genomic data with prior
knowledge using network analysis and machine learning. These approaches have shed
light on the genomic signatures, pathways, and interactions that characterize the
age/sex biases and cross-species analogs of complex diseases and traits. | make all
the code to reproduce these approaches available by github and have provided tools to
make the results searchable by scientists investigating these important biological
factors. Collectively, this research will help build infrastructure for advancing biomedical

research into the era of precision medicine.
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CHAPTER 1: INTRODUCTION

Overview

Recent large-scale studies have documented hundreds of genetic variants and
phenotypes associated with various diseases and complex traits in an effort to gain a
population-level understanding of human health and disease [1-5]. These associations
continue to be cataloged, revealing more chasms in our knowledge of the relationships
between genomic variation, biological pathways, tissue physiology, and trait variation.
This knowledge is critical for improving our ability to diagnose and treat complex
diseases. In addition, a major method of studying particular facets of human disease is
through the use of model organisms, but transferring knowledge gleaned from these
organisms back to human biological insight is often challenging [6]. The goal of this PhD
research is to provide insight into the genomic signatures, pathways, and interactions
that characterize the age/sex biases and cross-species analogs of complex diseases
and traits. This chapter will provide the necessary background and context for these
research goals, followed by the questions and objectives of the study, and concluding
with the significance.

Background

Interest in precision medicine has soared over the past decade [1,7,8]. Precision
medicine strives to approach disease prevention and treatment in a way that takes into
account individual variability in genetic background, environmental factors, and lifestyle
choices with the goal of providing better health outcomes for all individuals. Despite this
increased interest, we still lack a population-level understanding of cellular mechanisms

and genetic underpinnings of most complex diseases and traits. Without a
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comprehensive framework to delineate relationships between genomic variation,
expression signatures, gene interactions and pathways, cellular networks and
physiological function, we lack the tools to bring precision medicine to all areas of
human disease prevention and treatment.

Age and sex are two biological variables that have been tied to variation in the
incidence, presentation, and treatment response of complex traits and diseases [9—11],
yet it is still largely unclear how age and sex influence normal tissue physiology and
disease at the molecular level. This is largely a result of age and sex effects often being
historically ignored in basic and clinical studies [12,13]. Sex has been especially
neglected, due to several factors. A study in the early 1970s established that fluctuating
levels of ovarian hormones could differ by up to fourfold in rodents [14]. Assuming that
these hormonal differences would lead to more difficulty in analyzing data, scientists
largely chose to avoid the issue by choosing to use male animals in their research [15].
This issue was further compounded by the 1977 Food and Drug Administration (FDA)
policy recommending that women of childbearing potential be excluded from Phase |
and Il drug trials. This policy was not reversed until 1993, when the FDA required data
analysis to include gender effect [16]. However, the National Institutes of Health did not
start requiring the use of female animals in preclinical studies until 2014 [12]. That same
year, Prendergast and colleagues released a meta-analysis of almost 300 studies using
mice as research subjects that showed data collected from female mice did not vary any
more than data from males and sometimes even showed less variation, regardless of
the estrous cycle [17]. A follow-up study in 2016 replicated this result in an investigation

of rat studies [18]. These policy changes and studies dispelling the notion that
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hormones are a “female problem” in animal research are steps in the right direction, but
there is still work to be done to overcome years of neglect.

Although age as a biological variable has not suffered as systematic exclusion as sex, it
is still underconsidered in basic studies and clinical trials [13]. For instance, older adults
are vastly underrepresented in clinical drug trials in spite of their overrepresentation in
consumption of prescription drugs [19], and adolescents and young adults (ages 15-39)
are less likely to participate in cancer clinical trials compared to younger children and
older adults [20]. In addition to the problem that age and sex are both historically
understudied biological factors on their own, many studies account for one or the other,
but only accounting for one can yield an incomplete understanding. An example is that
women have a lower incidence of stroke than men before menopause, but afterwards
prevalence of stroke is higher in women [21]. A similar trend is observed for asthma,
where prevalence is higher in boys than girls as children, but more common in women
than men in adulthood [22].

New studies are now beginning to uncover some of the genetic basis that underlies age
and sex differences in treatment response, tissue function, phenotypes, and diseases
[11,23-30], but new data is not enough to uniformly address outstanding questions
about female and male biology across the entire lifespan. We also need to leverage the
hundreds of thousands of existing gene expression profiles that have been generated
over the past 25 years and deposited in public repositories [31-34]. These samples
capture gene expression under thousands of conditions, including different stages of
disease and development. It has already been well established by members in our

group [35-37] and other groups [38,39] that integrating large-scale -omic data,
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particularly transcriptomes, and combining them with the scattered prior knowledge that
we do have, can lead to major breakthroughs in delineating gene function and
interactions in specific biological contexts. It therefore stands to reason that these data
can also be leveraged to provide comprehensive frameworks that will help in gaining
insights into age- and sex-specific molecular pathways in various tissues as well.

The frameworks created by computational methods that can use massive amounts of
transcriptomic data and limited prior knowledge provide valuable tools for hypothesis
generation and studying biological processes, but these hypotheses must be
experimentally tested for validation. Many of these experiments necessary to
understand cellular processes and genetic interactions driving the expression of disease
are impossible to perform in humans, so we must use model organisms to functionally
characterize these interactions in vivo. The ideal in vivo model for studying a particular
facet of human disease should, for the most part, replicate a human phenotype and
share the genetic underpinnings and mechanism of action. However, choosing the best
phenotype in a model organism to study any given human disease or trait is difficult due
to our incomplete knowledge of the relationships between phenotypes, genes, and
conditions across species [40,41].

Research questions

The increased efforts to catalog genomic variants and phenotypes associated with a
wide variety of complex traits and diseases offers an opportunity to use this information
to inform computational models. Members of our group [35,42] and others [43,44] have
recently developed approaches for combining large genomic data collections with

existing functional associations to bridge some of the gaps in our understanding of how
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genetic variants, biological pathways, tissue function, and trait variation are related to
each other. Krishnan et al demonstrated the value of leveraging computational models
and large public transcriptome data for context-specific biology by using the first
tissue-specific gene interaction networks to predict novel candidate genes,
brain-specific pathways, and developmental stages related to autism spectrum disorder
[42]. This study showed that using a tissue-specific gene interaction network for the
tissue most affected by the disorder improves our ability to identify the most relevant
genes and pathways for further inquiry. Some of these predictions have already been
experimentally validated.

If tissue-specificity is able to enhance the insight we are able to derive from
computational models, we should be able to further boost their accuracy by
incorporating other biological contexts such as age and sex, which have proven to be
crucial factors for prevalence and manifestation of disease as well as treatment
response. However, two large obstacles stand in the way of building age- and
sex-specific gene interaction networks to study how these factors influence cellular
processes and the genetic etiology of complex diseases/traits.

The first obstacle is that while Greene, Krishnan, Wong and team were able to integrate
transcriptomic data to build a tissue-specific gene interaction network, they did so using
microarray data, without any RNA-seq data [35]. Since the time this study was
published, the amount of RNA-seq data being deposited in public repositories has
exponentially increased. As of October 2022, the ARCHS4 [45] repository contains over
620,000 human RNA-seq samples. This data is rich with context-specific information

that should not be underused. The outstanding question is how can we best build


https://www.zotero.org/google-docs/?6LfROi
https://www.zotero.org/google-docs/?0jxUXs
https://www.zotero.org/google-docs/?OLuPsj

coexpression networks from heterogeneous RNA-seq data that comes from mostly
small experiments generated by individual labs, with a range of sequencing depths and
qualities, as well as high-quality consortium data? These coexpression networks can
then be integrated into high-fidelity gene interaction networks with machine learning in
the same way Greene, Krishnan, Wong and colleagues built their tissue-specific

networks.
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Figure 1.1. Missing metadata. Proportion of samples (x-axis) from eight major human gene-expression

platforms (y-axis) that lack information about sex or age.

The second obstacle is that ideally we would employ all available transcriptomes for the
most accurate resulting gene interaction network, but the vast majority of both
microarray and RNA-seq samples in public repositories are missing information about
both age and sex (Fig. 1.1). Lee and colleagues have demonstrated that it is possible to

predict tissue of origin from gene expression data [36], and sex is quite easy to predict
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given expression of sex chromosome genes. So, the remaining question is can age or
age group be predicted using only the gene expression values? With the ability to
predict age using only gene expression, we will be able to infer both age and sex for
hundreds of thousands of transcriptomes, rendering all of them available for the study of
age- and sex-specific processes and disease mechanisms. Further, if devised correctly,
our prediction models could be biologically interpretable, i.e. the model will likely yield
the strength and direction of importance of all the genes in the genome for each age
group in each sex. This begs another question, what do these gene signatures tell us
about age- and sex-specific biological contexts? We can use experimentally-validated
genesets from different diseases, complex traits, phenotypes, tissues, and cell types to
investigate this question.

Public repositories are not limited to only human data. There are also well over a million
samples from model organisms covering a range of mutations, phenotypes,
developmental stages, tissues, and experimental conditions [33,45]. These expression
profiles represent a wide variety of biological contexts we have available to study
human physiology and disease etiology. As previously mentioned, the ideal animal
model for studying a specific aspect of human biology should not only display the
desired phenotype but the underlying mechanism should also be as similar as possible.
Although a similar expression pattern does not guarantee the same underlying
mechanism, a model system that can replicate the transcriptomic landscape of a human
sample is the best starting point to study a disease, trait, or treatment response of
interest. So, the question is, can we utilize massive public transcriptomic data to identify

analogous samples, and therefore biological contexts and phenotypes in model species
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that are most pertinent to human traits and diseases? Achieving this goal would give us
the ability to find genetic/experimental conditions that most closely match complex traits
and diseases in humans in molecular mechanisms, improving our ability to translate
functional results in model organisms back to humans. Prominent approaches for
mapping related phenotypes across species rely on semantic similarity [46] of
phenotypic descriptions, or consider the number of shared homologous genes that are
annotated to each phenotype [47]. Semantic similarity methods ignore the genetic
context of the traits and phenotypes completely by depending only on the text
description of the phenotype, while methods that rely on homologous gene overlap fail
in many cases due to our partial knowledge of the genes associated with any given trait
or phenotype. To overcome these limitations, multiple studies have proposed directly
matching samples across species based on their expression profiles [48—-51]. However,
as gene expression programs are shared across tissues, traits, and diseases, these
methods do not place emphasis on context-specific molecular signals. The area of
supervised machine learning (ML) is an enticing framework for tackling this problem.
Specifically, by using not only transcriptomes from a given context (say, disease) but
also transcriptomes from other contexts as a contrast, ML-based methods can
automatically isolate context-specific gene expression signature, which can then be
used to find samples in model organisms where this signature is active, thereby pointing
to mechanistically-equivalent model systems.

Research summary

In Chapter 2, | address the question: how can we best build coexpression networks

from heterogeneous RNA-seq data that comes from mostly small experiments
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generated by individual labs, with a range of sequencing depths and qualities, as well
as high-quality consortium data? In this chapter, | elaborate on the most accurate and
robust methods to build coexpression networks from RNA-seq data. | test multiple
normalization and network transformation techniques and their combinations to make
concrete recommendations of when and how to use these techniques.

In Chapter 3, | address two questions: (1) can age or age range be predicted using only
the gene expression values? And (2) what do these gene signatures tell us about age-
and sex-specific biological contexts? Here, | curate about 30,000 primary human
transcriptomes and use these profiles to train machine learning (ML) models to predict
age group. | also investigate age- and sex-biased gene signatures learned by these ML
models using experimentally-validated genesets for determining enrichment of multiple
biological contexts in different age and sex groups.

In Chapter 4, | address the question: can we utilize massive public transcriptomic data
to identify analogous samples, and therefore biological contexts and phenotypes across
species? In this chapter | describe our efforts to use ML in mapping transcriptomic
landscapes and phenotypes across species to improve functional knowledge transfer.
Significance

First, we address a gap in the literature involving the use of the continuously growing
RNA-seq data in building coexpression networks. This work gives computational
biologists clear directions for how best to integrate transcriptome-based networks into
their framework. Second, to the best of our knowledge, we present the first study to
utilize tens of thousands of publicly-available human gene expression profiles in the

study of how biological processes change along the lifespan in both sexes. This work



will enable the prediction of age and sex labels for public expression profiles that lack
this information, rendering these samples available to study age- and sex-specific
genomics for the first time. Additionally, these age- and sex-labelled transcriptomic
datasets enable computational researchers to make predictions about genes and
pathways in age-, sex- and species-specific contexts, even if those genes and pathways
have never been functionally characterized. Third, our current analyses of
transcriptomes across species highlights key challenges in using ML to associate
samples across species, pointing to both technical/experimental factors as well as
biological conservation that need to be taken into account in future work by us and
others.

Across all these projects, we release code to reproduce our methods and results so
other computational biologists are able to verify our work and build upon and improve
our methods. We will make our age- and sex-specific gene signatures, expression
informations, and enriched biological genesets available for query for researchers
studying these biological variables. In the near future, upon completion of the
cross-species mapping work, we will also provide biomedical researchers with tools that
enable them to search across species for samples with similar expression patterns to a
query transcriptome from any species to aid in choosing suitable experimental settings.
Collectively, completion of these aims will help build the infrastructure for advancing
biomedical research into the era of precision medicine, benefitting the public that helps

fund this work.
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CHAPTER 2: ROBUST NORMALIZATION AND TRANSFORMATION
TECHNIQUES FOR CONSTRUCTING GENE COEXPRESSION
NETWORKS FROM RNA-SEQ DATA

Background

Constructing gene coexpression networks is a powerful and widely-used approach for
analyzing high-throughput gene expression data from microarray and RNA-seq
technologies [1]. Coexpression networks provide a framework for summarizing multiple
transcriptomes of a particular species, tissue, or condition as a graph where each node
is a gene and each edge between a pair of genes represents the similarity of their
patterns of expression. Coexpressed genes are highly likely to be transcriptionally
co-regulated and are often functionally related to each other by virtue of taking part in
the same biological process or physiological trait [2-5]. Many studies have leveraged
these properties to use coexpression networks in several important applications such as
determining co-regulated gene groups [6] and associating genes to functions and
phenotypes [7].

Nevertheless, multiple experimental factors impact the quantification of the expression
of individual genes and the coexpression between pairs of genes, making it necessary
to normalize and transform high-throughput gene expression data before downstream
analysis. For RNA-seq data, examples of factors that affect the number of reads
mapped to a gene include gene length, gene sequence, sample RNA population, and
sequencing depth. Some factors have a greater effect on comparisons of gene counts
within a single sample (‘within-sample’ effects) while others have a greater effect on

comparisons of the same gene’s counts in different samples (‘between-sample’ effects)
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[8]. Many data normalization and transformation techniques have been developed to
explicitly address one or more of these factors. An additional adjustment that can be
considered particularly in coexpression analysis is network transformation, which is
applied after calculating correlation between all gene pairs. Coexpression networks are
noisy and can indiscriminately capture indirect interactions due to being estimated from
noisy, steady-state gene expression data. Hence, previous studies have proposed
methods to modify the raw coexpression network to upweight connections that are more
likely to be real and downweight spurious correlations based on the topology of the
network [9,10]. Together, appropriately normalizing and transforming RNA-seq data
along with adequately transforming the coexpression strengths should yield more
accurate estimates of gene-gene coexpression that best capture functional relationships

between genes.

However, the best practices for normalization when building a coexpression network
from a raw gene-expression dataset have been developed and compared only for data
from microarrays [11,12]. Over the past decade, coexpression network analysis is being
routinely applied to the exponentially increasing amount of data from RNA-seq, even
though the optimal procedure for network building has not been evaluated and honed
for RNA-seq data, particularly in regard to normalization and transformation. Although
many normalization strategies have been developed for RNA-seq data, they have
mostly been benchmarked only in the context of estimating differential gene expression
[13-17]. Very little work has been done so far to comprehensively compare these

strategies for normalization and network transformation (and their combinations) to
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construct the most accurate coexpression networks from RNA-seq data, especially to
ensure their robust application to datasets typically generated by individual research
groups [1].

The most relevant prior work focuses on establishing best practices that reduce the
introduction of artifacts in coexpression networks built from RNA-seq data [18]. This
study includes a sequential comparison of a select number of methods for transcript
assembly, normalization, and network reconstruction. However, the normalization
comparison is based on 10 RNA-seq datasets, leaving considerable room for
improvement. First is to increase the number and diversity of datasets studied. This is
vital for finding robust procedures that work across datasets that can vary considerably
in many respects, including sample size, sample variability, sequencing depth, tissue
type, and other experimental factors. Further, testing on a wide range of datasets is
critical both for the analysis of individual datasets as well as integrative analysis of
hundreds/thousands of datasets. Second, not only do more normalization and network
transformation methods need to be compared but how they might interact in
combinations needs to be studied. Third, the resulting networks need to be evaluated
directly on the accuracy of the coexpression between gene pairs, instead of
performance in a downstream task such as gene function prediction, to ensure maximal
utility of the network regardless of the subsequent biological application. Finally, the
evaluation metric needs to be informative considering the fact that only a small fraction

of all gene pairs in the genome are functionally related.
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In this work, we present the most comprehensive benchmarking of commonly used
within- and between-sample normalization strategies and network transformation
methods for constructing accurate coexpression networks from human RNA-seq data.
We tested every possible combination of methods from different normalization and
network transformation stages. Our primary interest is in identifying robust combinations
of methods that consistently result in coexpression networks that accurately capture
general and tissue-aware gene relationships across a large variety of datasets. This will
allow us to propose general recommendations useful for experimental research groups
analyzing their own RNA-seq data as well as computational researchers seeking to
build many coexpression networks from publicly available data for the purposes of
data/network integration. Towards this aim, we use hundreds of datasets, generated by
a consortium and by individual laboratories, covering multiple experimental factors. We
then test the resulting networks on both tissue-naive and tissue-aware prior knowledge
about gene functional relationships. Based on these extensive analyses, we finally
provide concrete recommendations for normalization and network transformation

choices in RNA-seq coexpression analysis.
Results
Expression data, gold standard, and benchmarking summary

To test various within-sample normalization, between-sample normalization, and
network transformation methods (and their combinations) on a large data collection, we
started with gene count data from the recount2 database [19]. Recount2 contains data

from both the Genotype-Tissue Expression (GTEXx) project [20] and the Sequence Read
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Archive (SRA) [21] repository that have been uniformly quality-controlled, aligned, and
quantified to the number of reads per gene in the genome. Datasets from the GTEXx
project allowed us to assess method performance on large, relatively homogeneous
datasets with high-sequencing depth and quality. The GTEx data was also critical for
investigating the impact of experimental factors such as sample size, which we
performed by doing multiple rounds of random sampling from GTEx datasets. Datasets
from SRA, on the other hand, were representative of heterogeneous, mostly small
experiments (median of 12 samples) that are generated by individual labs, with a range
of sequencing depths and qualities. In total, we used 9,657 GTEx samples and 6,301
SRA samples from a total of 287 datasets (Table 2.1, Appendix: Fig. A2.1; see

Methods), and processed and evaluated these two collections separately.

GTEx SRA
Number of samples 9,657 samples 6,301 samples
Number of datasets 31 datasets 256 datasets
Number of tissues 31 tissues 19 tissues
Median dataset size 197 samples 12 samples
Total 15,958 samples from 37 unique tissues

Table 2.1: Summary of data used in this study. See Figure A2.1 and Methods for more details.

After preprocessing each dataset using lenient filters in order to keep data for as many
genes and samples as possible (see Methods), we compared methods commonly used
in RNA-seq analysis to effectively construct one coexpression network per dataset (i.e.
building 31 GTEx networks and 256 SRA networks). We focused on three key stages of
data processing and network building: a) within-sample normalization: counts per million

(CPM), transcripts per million (TPM), and reads per kilobase per million (RPKM), b)
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between-sample normalization: quantile (QNT), trimmed mean of M-values (TMM),
upper quartile (UQ); in addition, we tested two new variations of TMM and UQ - counts
adjusted with TMM factors (CTF), counts adjusted with upper quartile factors (CUF) —
that directly adjust counts by the size factors but does not correct by library size, and c)
network transformation: weighted topological overlap (WTO) and context likelihood of
relatedness (CLR). To systematically examine these methods and their interactions, we
built 36 different workflows covering all possible combinations of choices (Fig. 2.1). For
clarity, in the rest of the manuscript, we present individual methods in regular font (e.g.
TPM normalization) and italicize workflows (e.g. TPM, which is TPM combined with no
between-sample normalization and no network transformation, or TPM_CLR, which is
TPM paired with just CLR). The Counts workflow uses no within-sample normalization,
between-sample normalization, or network transformation, but is still transformed with

the hyperbolic arcsine function.
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Figure 2.1. Pipeline for benchmarking the optimal workflow for constructing coexpression

networks from RNA-seq data. The main pipeline was executed for the original GTEx and SRA datasets
and a large collection of datasets of different sizes resampled from the GTEx datasets. Three key stages
— within-sample normalization, between-sample normalization, and network transformation — where we
tested method choices are highlighted in different colors. All the other stages were composed of standard
selection, filtering, and data transformation operations. The coexpression networks resulting from all the
workflows were evaluated using two gold-standards that capture generic (tissue-naive) and tissue-aware
gene functional relationships. Finally, all the evaluation results were used to analyze the impact of various
aspects of the workflows, methods, and datasets on the accuracy of coexpression networks.

Abbreviations: CPM (Counts Per Million), RPKM (Reads Per Kilobase Million), TPM (Transcripts Per
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Figure 2.1. (cont’d)
Million), QNT (quantile), TMM (Trimmed Mean of M-values), UQ (Upper Quartile), CTF (Counts adjusted
with TMM Factors), CUF (Counts adjusted with Upper quartile Factors), CLR (Context Likelihood of

Relatedness), WTO (Weighted Topological Overlap).

Since this entire workflow is unsupervised, i.e. not reliant on prior knowledge about
gene relationships, we evaluated the resulting coexpression networks by comparing
them to gold standards of known gene functional relationships. The gold standards were
built using experimentally-verified co-annotations to specific biological process terms in
the Gene Ontology [22]. These comparisons yielded evaluation metrics that summarize
how well the patterns of coexpression captured in the network reflect known gene
functional relationships (see Network Evaluation in Methods and Supplemental Note in
Appendix). Further, gene activities and interactions vary drastically depending on cell
type or tissue. Hence, we also created tissue-aware gold standards to assess whether
the resulting networks were able to recapitulate tissue-aware coexpression in addition to
general “tissue-naive” coexpression. Tissue-aware gold standards were created for as
many tissues as possible by subsetting the naive gold standard using genes known to
be expressed in a particular tissue. While area under the receiver operator curve
(auROC) is frequently used to estimate network accuracy, it does not account for the
fact that only a small fraction of gene pairs (out of the total possible) biologically interact.
In the gold standard, this imbalance is reflected by the number of negatives
(non-interactions) far outnumbering the positives (interactions) [23]. Therefore, we
measured network accuracy using area under the precision recall curve (auPRC), which

emphasizes the accuracy of top-ranked coexpression gene pairs [24].
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In total, for each of the 287 datasets from GTEx and SRA, we built one coexpression
network per dataset using each of the 36 workflows, resulting in 8,610 coexpression
networks. Later on, we created 2,430 additional datasets generated by resampling
GTEXx that, when run through all the workflows, resulted in another 72,900 networks.
Each GTEx network contains 20,418 genes while each SRA network contains 22,084
genes, and all networks are fully connected with edges weighted by their strength of
correlation. Each of these networks were evaluated using the tissue-naive
gold-standard and, whenever applicable, the tissue-aware gold-standard. Finally, we
replicated the analysis of the top-performing workflows using as many matched SRA
datasets as possible from another RNA-Seq repository, refine.bio [25], where read
alignment and expression quantification were done using different methods than

recount2.

Overall performance of workflows

For all 36 workflows, Figure 2.2 shows the overall performance of the networks
resulting from GTEx (left) and SRA (right) recount2 datasets based on evaluation using
the tissue-naive gold standard. Figure A2.2 shows the performance of these networks
based on the tissue-aware gold standards (when available). Overall, networks built from
GTEx datasets are far more accurate than those built from SRA datasets (Fig. 2.2,
A2.2). In each of the four cases —GTEx and SRA networks evaluated using
tissue-naive and tissue-aware gold standards — most of the top-performing workflows
contain CTF or CUF normalization. Further transforming the network with CLR

(CTF_CLR and CUF_CLR) results in top-tier workflows for the GTEx datasets
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regardless of gold standard. However, CLR transformation is only among
top-performing methods for SRA datasets in recovering tissue-aware gene
relationships. Though CTF_CLR and CUF_CLR still perform quite well on the
tissue-naive standard for SRA, there is a clear gap from the top tier. Despite CTF- and
CUF-containing workflows resulting in top performances, workflows that include other
between-sample normalization methods are absent among the top ten workflows for
both GTEx and SRA. Workflows with TMM or UQ seem to be more comparable to

workflows using within-sample normalization methods.
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Figure 2.2. Overall performance of workflows. The plots show the aggregate accuracy of all
coexpression networks resulting from each individual workflow using (a) GTEx and (b) SRA datasets,

evaluated based on the tissue-naive gold standard. The workflows (rows) are described in terms of the
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Figure 2.2. (cont’d)

specific method used in the within-sample normalization (blues), between-sample normalization (greens),
and network transformation (oranges) stages. The performance of each workflow is presented as
boxplots (without outliers) that summarizes the log2(auPRC/prior) of each workflow where auPRC is the
area under the precision recall curve (see Methods). The workflows are ordered by their median
log2(auPRC/prior) for the GTEx data. The numbers inside the SRA boxes indicate rank by median
log2(auPRC/prior) of the workflows for the SRA data. Figure A2.2 contains these plots based on the

tissue-aware gold standard.

The next noteworthy observation is that the top-tier workflows do not include a
within-sample normalization step. Yet, workflows that do include within-sample
normalization methods (CPM, RPKM, TPM) can perform better than many other
workflows depending on other choices made in the pipeline, the best choice often is to
be paired with no other method or CLR alone. For GTEx datasets, CLR seems to
generally result in slightly improved performance, while the WTO transformation almost
exclusively makes up the bottom tier of workflows. For building networks from SRA
datasets, although workflows including WTO do not exclusively end up in the bottom tier
(as is the case with GTEx data), adding WTO to a particular workflow always hurts
performance. The worst workflows for SRA in either standard are quantile normalization

(QNT) paired with CLR or WTO.

Dataset-level performance of workflows
Next, we dissected the aggregated results described above for GTEx and SRA as a
whole by examining the accuracy of these workflows on a per-dataset basis. First, we

compared pairs of workflows to each other and determined the proportion of datasets in
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which one workflow outperformed the other across all GTEx and all SRA datasets (Fig.
2.3, A2.3-2.5, heatmap colors). Second, we performed paired statistical tests to
estimate the significance of the difference between the workflows (Fig. 2.3, A2.3-5,
asterisks on the heatmap). Finally, we scored each workflow based on the number of
other workflows it significantly outperforms (Fig. 2.3, A2.4 barplots). Based on this
analysis, in the ‘GTEx-naive’ setting (i.e. networks from GTEx data evaluated on the
tissue-naive gold standard), we observed that five workflows are all significantly more
accurate than 31 other workflows but not significantly different from one another (paired
Wilcoxon rank-sum test; corrected p-value < 0.01; Fig. 2.3). Within these four
workflows, CTF outperforms CTF_CLR, CUF, and CUF_CLR on 58%, 61%, and 58% of
GTEx networks, respectively. The CTF workflow is also significantly better the most
number of times compared to other workflows in the SRA networks using the naive
standard, although Counts and CUF are only slightly behind CTF (Fig. 2.3, A2.3).
These workflows tie for first place when SRA networks are evaluated on the

tissue-aware gold standards (Appendix: Fig. A2.4, A2.5).

When the GTEx networks are evaluated on tissue-aware standards, there are much
fewer significant differences between workflows overall, with the exception of CTF_CLR,
CUF_CLR, and CLR being significantly greater than 28, 28, and 24 workflows,
respectively (Appendix: Fig. A2.4). Here, CTF_CLR performs better than CUF_CLR on
57% of networks and better than CLR on 76% of networks. Despite having similar
median log,(auPRC/prior) values to CTF_CLR and CUF_CLR (Appendix: Fig. A2.2),

the CUF and CTF workflows only perform significantly better than another workflow a
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handful of times (Appendix: Fig. A2.4). This suggests that including CLR in the workflow
is especially helpful in capturing tissue-aware coexpression in the GTEx networks.

Again, the impact of within-sample normalization varies depending on the choice of the
other methods in the workflow. TPM_CLR is generally the top-performing workflow
among those including within-sample normalization across evaluation cases, though
TPM slightly outperforms TPM_CLR for the SRA networks evaluated on the naive

standard (Fig. 2.3 and A2.3).

a Pairwise comparison of workflows based on GTEx b GTEx ¢ SRA

CPM CLR - 23 - 20
CLR - 23 - 19
- 21 - 2

‘ua - 14 - 22

13 - 21

CPM - 11 - 21

|- | . . . )
..... 1 1 1 1 1 . . - -- N 10 N 27
. . B B .

------ T mm Wl s ~ 12
:

RPKMWTO
CPM ONT [WTO' - 1 -0
[RPKM ONT [WTO - 1 -0

. I [wio] - o
| QNT [WTO' - o -0

: 0

o

-0
6 12 18 24 30 3 0 6 12 18 24 30 36

[ [ Number of times significantly greater than another workflow

o 0.2 0.4 0.6 0.8 1

d Most significant workflows in each dataset collection in each evaluation setting,
along with the number of times each workflow outperformed any other workflow

GTEx SRA
Ti i Ti e Tissue-naive Tissue-aware
CTF 31 CTF_CLR 28 |CTF 34 | CUF 33
'CTF_CLR 31 CUF_CLR | 28 | CUF 33| CTF | 33
'CUF_CLR 31 |CLR | 25 | Counts 33 | Counts | 33
CUF 31 TMM_CLR 11 |CTF_CLR 30 | CTF_CLR 31
CLR 30 TMM 11| CLR 30 CLR 31

Figure 2.3. Dataset-level pairwise comparison of workflow performance. (a) The heatmap shows the

relative performance of a pair of workflows, corresponding to a row and a column, directly compared to
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Figure 2.3. (cont’d)

each other for the GTEx datasets based on the tissue-naive gold standard. The workflows along the rows
are depicted using color swatches similar to Figure 2.2. The color in each cell (row, column) represents
the proportion of datasets for which the workflow along the row has a higher log2(auPRC/prior) than the
workflow along the column. Comparisons that are statistically significant (corrected p < 0.01) based on a
paired Wilcoxon test are marked with an asterisk. Figure A2.3 contains the corresponding heatmap for the
SRA datasets. (b and c) Barplots show the number of times each workflow was significantly greater than
another workflow for GTEx and SRA datasets. Figures A2.4 and A2.5 contain these performance plots
based on the tissue-aware gold standard. (d) The table shows the most significant workflows across
evaluation cases along with the number of times a given workflow outperformed any other workflow for

the GTEx and SRA datasets based on the tissue-naive and tissue-aware gold standards.

The impact of network transformation is similar between GTEx and SRA data, but there
is disagreement in the very top method. With GTEXx, workflows that include CLR tend to
be significant the most number of times, while WTO-containing workflows tend to be the
least. Not a single workflow with WTO significantly outperformed any workflow without it
for GTEx based on the tissue-aware gold standard (Appendix: Fig. A2.4). On the other
hand, CLR workflows perform well on the SRA networks, but do not constitute the
workflows that were significantly greater than another the absolute most number of
times (Appendix: Fig. A2.3 and A2.5). WTO hurts performance in every case even here.
Pairing either CLR or WTO with quantile normalization (QNT) yields particularly poor
performance in the SRA networks. All together, these results suggest that CTF yields
the most accurate coexpression network by a very close margin and CLR can further

improve the network in select cases.
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Impact of individual methods on performance of workflows

Though the previous analyses shed light on the contributions of individual methods, we
wanted to more explicity assess how choosing or not choosing a particular
within-sample normalization, between-sample normalization, or network transformation
affects general performance of any given workflow. To this end, for each method, we
calculated the proportion of times that workflows that include a particular method
performed significantly better than workflows that did not include the method (Fig. 2.4;

see Methods for details).

NO-WI - 0.52 a GTEx

NO-BW - 0.56

NO-NT - 0.58
CLR - 0.76
WTO - I 0.12
0.0 0.2 0.4 0.6 0.8
Proportion of times significantly greater
NO-WI - 0.58 b SRA
CPM - 0.38

RPKM - [ 0.32

TP - [, 041
NO-BW - 0.76

QNT - 0.08
TMM - 0.14
UQ - [— 0.26
CTF - |, 0.79
CUF - | 079

NO-NT - 0.73
CLR - 0.48
WTO - [, 0.32
0.0 0.2 0.4 0.6 0.8

Proportion of times significantly greater

Figure 2.4. Impact of individual methods on performance of workflows. Each bar in the two barplots,
corresponding to a specific method, shows the proportion of times (x-axis) that workflows including that

particular method (y-axis) were significantly better than other workflows. The barplots correspond to
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Figure 2.4. (cont’d)

performance for the (a) GTEx and (b) SRA datasets evaluated on the tissue-naive gold standard. In order
to make the comparison of between-sample normalization methods fair, workflows also including CPM,
RPKM, or TPM were left out because it is not possible to pair them with CTF/TMM/CUF/UQ
normalization. Similarly, CTF/TMM/CUF/UQ methods are not included for “no within-sample

normalization” (NO-WI). Figure A2.6 contains these barplots based on the tissue-aware gold standard.

This analysis clearly shows that, in all four cases (GTEx and SRA, each with
tissue-naive and tissue-aware standards), utilizing any within-sample normalization
method results in worse overall performance than not using it (Fig. 2.4 and A2.6).
Among within-sample normalization methods, TPM usually performs slightly better than
CPM and RPKM. CTF and CUF are the best between-sample normalization methods.
Their performances are exactly equal for GTEx data evaluated on either standard and
for SRA data evaluated on the naive standard; CTF is slightly better than CUF for SRA
data in the tissue-aware standards. However, doing no between-sample normalization
performs quite well too, only narrowly worse than CTF or CUF. It is clear in all four
cases that TMM, UQ, and quantile normalization (QNT) are vastly outperformed.
Network transformation is the group most obviously different between GTEx and SRA
data, with CLR being the clear winner for GTEx, while not doing any network
transformation is significant many more times for SRA regardless of gold standard (Fig.

2.4 and A2.6).

Impact of varying experimental factors on performance of workflows
The reason we included SRA data in this study is that SRA datasets are very

representative of expression datasets typically generated by numerous individual
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laboratories. Accordingly, these datasets vary considerably in terms of multiple factors
including sample size, sample similarity, number of mapped reads, and tissue type.
Though these factors impact the quality of coexpression networks derived from the
individual datasets, it is hard to tease out the effect of each of these factors (controlling
for others) on the accuracies that we observed using different workflows on SRA data.
Therefore, using the large GTEx datasets, we created a collection of SRA-like datasets
to more closely examine the impact of each experimental factor. First, we determined
the nine sample sizes (5, 6, 7, 9, 11, 13, 16, 25, and 40) that are representative of SRA
datasets. Then, from each GTEx tissue dataset with at least 70 samples, we randomly
selected samples to create ten datasets for each sample size (see Methods). We then
applied all 36 workflows to construct coexpression networks from each one of these
datasets. The resulting 72,900 networks were used to investigate the effects of varying
each experimental factor by counting the number of times a given workflow significantly
outperformed any other workflow (Fig. 2.5). In addition to this analysis with these
resampled data, we also examined the effect of sample similarity and number of
mapped reads (see Experimental factor analysis in Methods) directly in the SRA data
by splitting the datasets into five equal size bins based on each of these factors and
determining the number of times a given workflow was significantly better than another

within each bin (Appendix: Fig. A2.7).
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Figure 2.5. Impact of various dataset-related experimental factors on performance of workflows.
Each heatmap shows the number of times (cell color) each workflow (row) outperforms other workflows
as a particular experimental factor pertaining to the input datasets is varied (columns), when the resulting
coexpression networks are evaluated based on the tissue-naive gold standard. The darkest colors
indicate workflows that are significantly better than the most other workflows. In addition, the top 5

workflows in each column are marked with their rank, with ties given minimum rank. The heatmaps on the
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Figure 2.5. (cont’d)

top (a—d) correspond to datasets from GTEx resampling and those on the bottom (e—h) correspond to
SRA datasets. The heatmaps from left to right show workflow performance by sample size (a, e; number
of samples used to make the coexpression network), sample similarity (b, f;, median spearman correlation
of 50% most variable genes between samples), read count diversity by counts (¢, f; standard deviation of
counts sums across samples), and tissue of origin (d, h). Figure A2.7 contains these heatmaps based on

the tissue-aware gold standard.

In the GTEx-resampled data, CTF was significantly better than all other workflows for
sample sizes 5 through 40 when using the naive standard for assessment (Fig. 2.5).
CUF is a close second, performing significantly better than all workflows other than CTF
at sample sizes 7 through 40. Using only Counts (no normalization) is surprisingly
effective, especially at lower sample sizes, while CTF_CLR and CUF_CLR improve
performance with increasing sample size. In fact, when all samples from a given GTEXx
tissue are used (=270 samples), there is no significant difference between CTF, CUF,
CTF_CLR, and CUF_CLR. CLR is the next best workflow after those top four. The only
other workflows that are ever ranked in the top five are CTF_WTO and CUF_WTO, and
that too only at low sample sizes (5-7). Based on the tissue-aware standards,
CTF_CLR is the most effective workflow on all sample sizes except 5, where CTF and
CUF are the top workflows (Appendix: Fig. A2.7). For the highest two sample sizes (25
and 40), CTF_CLR is substantially better than all other workflows. The only workflows
ranked in the top five in sample sizes 5 through 40 are CTF_CLR, CUF_CLR, CLR,
CUF, CTF, and TPM_CLR. CTF and CUF also perform well on the SRA data evaluated

on the naive standard, being the top workflows in all five sample size groups (Fig. 2.5).
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Performance on the tissue-aware standards is slightly more variable, with Counts, CTF,
and CUF being top ranked in lower sample size groups and CLR, CUF _CLR, and
CTF_CLR performing better in the highest sample size group (Appendix: Fig. A2.7).
Again, it is clear that CTF and CUF are superior methods, with CLR improving

performance in select cases.

Sample similarity and read count diversity analyses show similar results to those from
sample size analysis. When evaluating the GTEx-resampled data on the naive
standard, CTF is almost always significantly better than every other workflow across all
groups, while evaluating on the tissue-aware gold standards ranks CTF_CLR as the top
workflow most consistently (Fig. 2.5, Appendix: Fig. A2.7). In both standards, CTF,
CUF, CLR, CTF_CLR, CUF_CLR and Counts are the workflows consistently showing
up in the top five ranks. The SRA networks evaluated on either standard have CTF,
CUF, and Counts showing up in the top three ranks across most groups, with CLR,
CTF_CLR, and CUF_CLR making up most of the other workflows in the top five ranks
(Fig. 2.5, Appendix: Fig. A2.7).

Tissue is the factor that shows the most variability in terms of what makes up the top
workflows, especially when evaluating on tissue-aware gold standards. This is due in
part to the fact that splitting experiments by tissue results in the smallest groups, making
significance more difficult to detect. Nevertheless, the top workflows from the analyses
of other factors still have the best overall performance across all tissues. In the
GTEx-resampled data, CTF is the top-ranked workflow most often based on the naive

gold standard. CUF and Counts are almost always in the top five most significant
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workflows, while CTF_CLR, CUF_CLR, and CLR show up often. When evaluated on
tissue-aware gold standards, CTF, CLR, and CTF_CLR are ranked number one more
frequently than any other workflow, but they are not as consistent as CTF in the naive
standard. CUF and CUF_CLR are the other top-performing workflows, but a handful of
other workflows enter the top five ranks in at least a few tissues. For SRA, only tissues
that had more than fifteen separate experiments were used in the significance analysis
(Appendix: Fig. A2.1). On the naive standard, CUF, CTF, or Counts were always the
most significant workflow in any given tissue and CLR, CTF_CLR, and CUF_CLR were
usually in the top five. A similar if less consistent pattern can be observed from the
tissue-aware evaluations. Taken together, these results suggest that the top-performing
methods are largely robust to common experimental factors that vary from experiment
to experiment. This property is critical because, to be practically beneficial, the best
workflow for constructing coexpression networks should result in accurate coexpression

networks irrespective of variations in these experimental factors.

Impact of varying alignment and counts quantification performance of workflows

So far, our analysis has considered datasets from the recount2 database. This has
allowed us to evaluate the performance of each workflow on a large, diverse set of
datasets which have been uniformly aligned and transformed into gene counts.
However, this begs the question of whether the observed results — especially the top
performance of CTF, CUF, and Counts —would hold when different methods for read
alignment and counts quantitation are used. To determine whether this is the case, we

matched as many of our recount2 SRA datasets as possible to those from refine.bio
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[25], another RNA-seq repository that uses completely different methods for alignment
and quantification. This turned out to be 186 datasets in the naive evaluation and 163 of
those could be evaluated with a tissue-aware standard. Unfortunately, GTEx data is not
available from refine.bio. In this new analysis, we left out the worst performing methods
in each tested category, i.e., RPKM, QNT, and WTO for within-sample normalization,
between-sample normalization, and network transformation, respectively. This leaves us

with 14 workflows to evaluate on the refine.bio datasets.
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Figure 2.6. Overall performance of workflows and pairwise-comparison using refine.bio datasets.
The boxplots show the aggregate accuracy of all coexpression networks resulting from each individual
workflow using SRA datasets in refine.bio, evaluated based on the tissue-naive gold standard. The
performance of each workflow is presented as boxplots (without outliers) that summarizes the
log2(auPRC/prior) of each workflow, where auPRC is the area under the precision recall curve (see
Methods). The workflows are ordered by their median log2(auPRC/prior). The heatmap shows the

relative performance of pairs of workflows (rows and columns) compared to each other for the refine.bio
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Figure 2.6. (cont’d)

SRA datasets based on the tissue-naive gold standard. The color in each cell (row, column) represents
the proportion of datasets for which the workflow along the row has a higher log2(auPRC/prior) than the
workflow along the column. Comparisons that are statistically significant (corrected p < 0.01) based on a
paired Wilcoxon test are marked with an asterisk. Figure A2.8 contains these plots based on the

tissue-aware gold standard.

In the naive evaluation, CTF, CUF, and Counts are once again the top-tier workflows.
However, the CUF workflow significantly outperforms the other two across all datasets
(Fig. 2.6). The second tier consists of CTF_CLR, CUF_CLR, and CLR, though it is not
quite as well separated from the remaining workflows. The tissue-aware evaluation
shows much less separation between CUF, CTF, Counts, CTF _CLR, CUF CLR, and
CLR in terms of overall performance measured by log,(auPRC/prior), but CTF and CUF
significantly outperform more workflows than any other (Appendix: Fig. A2.8). In
summary, we replicated the ranking of coexpression workflows using RNA-seq data

processed with an entirely different pipeline for alignment and quantification.

The general trends presented above are all based on network accuracy measured using
a metric based on the area under the precision-recall curve (log,(auPRC/prior)). These
trends also hold when network accuracy is measured using precision at low recall,
which focuses on maximizing the number of functional gene pairs among the
high-scoring gene pairs instead of focusing on recovering all functional gene pairs. Put
another way, the trends described above hold even when a threshold is applied to the
coexpression network to retain just the high-scoring gene pairs for subsequent analysis.

For the sake of completion, we have also evaluated all networks using the area under
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the ROC curve (auROC). All these results based on three different evaluation metrics
(log,(auPRC/prior),  precision at 20% recall, and auROC) are available as a

consolidated webpage at https://krishnanlab.github.io/RNAseq coexpression that

researchers can explore to easily examine the performance of various workflows based

on the properties of their RNA-seq dataset.

Discussion

Despite the utility and growing popularity of coexpression analysis of RNA-seq data,
relatively little focus has been devoted to identifying the optimal data normalization and
network transformation methods that result in accurate RNA-seqg-based coexpression
networks. Here, we present the most comprehensive analysis of the effects of
commonly-used techniques for RNA-seq data normalizations and network
transformation on gene coexpression network accuracy (Fig. 2.1). We implemented 36
network-building workflows — one for every combination of within-sample normalization,
between-sample normalization, and network transformation methods — and we ran each
workflow on hundreds of RNA-seq datasets from GTEx and SRA. The resulting
coexpression networks were evaluated using both known tissue-naive and tissue-aware
gene functional relationships to ensure that the networks were tested for capturing not
just generic gene interactions but also interactions relevant to the tissue under
consideration (Appendix: Fig. A2.9, Fig. A2.10). The evaluations shed light on several
key aspects of the impact of within-sample normalization, between-sample
normalization, and network transformation methods (and their interplay) on the accuracy

of the resulting coexpression networks.
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Impact of within-sample normalization

Within-sample normalization — commonly executed by converting gene counts to CPM,
RPKM, or TPM - corrects for factors such as library size and gene length. As gene
length biases both gene counts and their downstream analysis [26], it is not very
surprising that TPM usually outperforms CPM, as CPM only corrects for library size and
not gene length. However, the order in which gene-length and library-size correction are
combined appears to be important. For example, studies have shown that RPKM, which
first corrects for library size and then for gene length, is inferior to other methods in
differential expression analysis and is not recommended [13—15]. Some studies have
also noted that using RPKM does not necessarily take away the length bias in gene
expression and can be unduly influenced by relatively few transcripts [13,27]. TPM was
proposed as an improvement over RPKM by first correcting for length and then by
library size. Thus, the resulting expression values more accurately reflect the “relative
molar concentration” of an RNA transcript in the sample [28]. TPM normalization scales
every sample to the same total RNA abundance (i.e. the same total sum of TPM
values). Thus, gene expression across samples becomes more comparable when TPM
normalized than when RPKM normalized. Consistent with these previous studies, we
find that RPKM generally results in lower-performing coexpression networks and that
TPM consistently outperforms CPM and RPKM, and can even occasionally perform
better than the general top-performers CTF and CUF. Finally, since a number of
technical and biological factors affect the size and makeup of the sample library, TPM

has been found to be most effective when comparing samples from the same tissue
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type and experiment [29]. This observation could explain the good performance of TPM
in our work wherein only samples within a dataset are compared and analyzed together

to construct a coexpression network.
Impact of between-sample normalization

Next, our results reinforce the expectation that between-sample normalization (using
techniques such as CTF and CUF) leads to the largest improvement in coexpression
accuracy. These methods are designed to make expression values across samples
more comparable to one another, an aspect critical for coexpression analysis. However,
QNT, a between-sample normalization method that is most commonly used with
microarray data, performs very poorly for RNA-seq data. This is likely because QNT
forces the distribution of samples to be exactly the same, meaning that each gene value
is forced to be a particular quantile value. Consequently, it does not suit situations
where there truly are different numbers of genes that are expressed outside of the
typical ranges across samples [8,30], an effect that is further exacerbated in RNA-seq
data because it has a larger dynamic range than microarray data. Genes with extreme
values would not influence CTF or CUF normalization because they are explicitly
excluded from the calculation of adjustment factors. CTF specifically finds a subset of
genes that are probably not differentially expressed between samples to make gene
values comparable across the entire group, while CUF uses only the upper quartile
gene values to adjust samples. This makes both normalizations robust to a number of
highly or lowly expressed genes. However, large-scale changes in gene expression or

high amounts of asymmetry, e.g. a large difference in the number of genes expressed
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above the typical range versus expressed below the typical range, violate these
assumptions [8]. In our test cases, CTF and CUF performed the best, but it is possible
that violation of their base assumptions may occur in specific disease conditions or
external perturbations, leading to a significant decrease in their performances. The
relatively lower performance of TMM and UQ, which are essentially CTF and CUF with
library size correction, imply that library size correction is not the most helpful
normalization strategy for building coexpression networks based on linear correlation
measures. As noted below, measures such as Pearson correlation automatically include
a standardization of gene expression across samples, which could explain why
additional library size correction may not be needed. This implication is also supported

by the Counts workflow outperforming within-sample normalization workflows.
Impact of network transformation

Network transformation is where there is most disagreement between GTEx and SRA
data. CLR was the best network transformation method for GTEx data, while doing no
transformation of the coexpression values gave the best results for SRA data. The most
pronounced factor that explains this difference is sample size. The median sample size
of SRA datasets is 12, while that of GTEx datasets is 197. Only four GTEx datasets
have less than 70 samples (Appendix: Fig. A2.1). Furthermore, GTEx resampling
analysis showed that CTF_CLR and CUF_CLR improve with increasing sample size on
the naive standard (Fig. 2.5) and to a lesser extent on the tissue-aware standards
(Appendix: Fig. A2.7) since CLR tended to already have better performance in general

on tissue-aware standards than on the naive gold standard. For each gene pair, CLR
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adjusts the edge weight based on its value in relation to the distribution of edge weights
for the individual genes in that pair to all other genes in the network. So, our hypothesis
is that having a larger sample size results in a better estimate of each edge weight as
well as the distribution of edge weights for each gene, which in turn increases CLR’s
accuracy. Supporting this hypothesis, other studies have noted an association between
larger sample size and more accurate coexpression networks [18,27], and subsequent
network transformation with CLR [31]. WTO, on the other hand, performs poorly for
both GTEx and SRA data. WTO adjusts the edge weight between gene pairs based on
whether they share strong connections to the same set of genes in the network.
Therefore, while CLR relies on summary statistics (mean and standard deviation) of
edge distributions to adjust the edge weight between each gene pair, WTO relies on the
actual, likely noisy, coexpression values, which may contribute to its inferior
performance. It is also possible that CLR’s strategy more effectively deals with the
mean-correlation relationship bias, or the observation that highly expressed genes tend
to be more highly coexpressed, by capturing them as summary statistics, without relying
on the fact that each of the correlation estimates are correct [32,33]. This may, in turn,
explain why CLR tends to perform better on tissue-aware gold standards than on our
naive gold standards, since genes that are ubiquitously expressed (and therefore

involved in general, tissue-naive interactions) tend to be more highly expressed [34].

Impact of data transformation
RNA-seq data analyses typically benefit from a data transformation that stabilizes the

variance across mean values, i.e. renders the data more homoskedastic, because, in its

42


https://www.zotero.org/google-docs/?iMtyND
https://www.zotero.org/google-docs/?4EMCE6
https://www.zotero.org/google-docs/?weS2vd
https://www.zotero.org/google-docs/?jZglkt

untransformed form, the expected variance grows with the mean for gene counts [35]. A
standard procedure when working with RNA-seq (or even microarray) data for either
differential expression analysis or coexpression analysis is to log transform gene
counts. Since gene counts for several genes can be zero, the typical manner in which
log transformation is applied to RNA-seq data is to add a pseudocount (of 1, for
example) to every gene’s count (say, ‘X’) before taking the log (i.e. log(x + 1)). However,
adding a constant pseudocount to all genes is disadvantageous because low gene
counts are disproportionately increased compared to high gene counts before log
transformation (e.g., 1 + 1 is a 100% increase for a gene count of 1, but 941 + 1 is
almost a negligible increase). The hyperbolic arcsine (asinh) transformation —log( x +
V(x® + 1) ) — mitigates this effect [36]. The asinh function is defined along the entire real
number line and circumvents the need for predefining a constant pseudocount and
instead calculates a pseudocount for each gene that is proportional to that gene’s
original count. Therefore, it has a compression effect like the natural log function but
much less so for small values of x [37]. Due to this advantage, each of our workflows
uses the asinh transformation. However, since asinh has not been explicitly tested
before (to the best of our knowledge), we analyzed the impact of this transformation on
the coexpression network accuracy. We find that the asinh transformation yields an
improvement in performance over no data transformation for our top ten workflows in
GTEx and SRA datasets (Appendix: Fig. A2.11). It is worth noting that the Counts
workflow performs well despite not incorporating any within- or between-sample

normalization but only an asinh transformation. We speculate that this good
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performance is due to the variance stabilization provided by the asinh transformation
along with the across-sample normalization of gene expression vectors inherent within
the calculation of the Pearson correlation coefficient.

The popular R package for differential expression analysis, DESeq2 [35], offers two
other data transformations for gene counts: variance stabilizing transformation (VST)
[38] and regularized logarithm transformation (rlog) [35]. Both transformations are
similar to the log transformation of adjusted counts along with a pseudocount parameter
that is chosen in a data-driven manner. These transformations consider
between-sample effects like library size and are designed to only be used on counts
data as part of calculating differential gene expression. Nevertheless, these
transformations could in theory be applied to coexpression analysis. Hence, we
compared asinh, VST, and rlog along with their combinations with network
transformation methods and found that asinh is the best transformation for coexpression
analysis in our all evaluations (Appendix: Fig. A2.12-2.15). The VST and rlog may
perform better when supplied with sample group information. Therefore, we do not
recommend the use of either transformation in DESeq2 for large-scale application to
publicly-available RNA-seq datasets for coexpression analysis.

Recommendations for building coexpression networks from RNA-seq data

By constructing coexpression networks for diverse datasets from both GTEx and SRA,
we were able to evaluate workflows on large, homogeneous datasets as well as smaller,
heterogeneous datasets to identify methods that are robust to differing technical and

biological factors. Although there is some variation in performance between GTEx and
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SRA data, and slightly more variation introduced by tissue-aware gold standards, many
trends are consistent across datasets and evaluations. Based on all our results, we
make the following recommendations for building coexpression networks from RNA-seq

data using Pearson or Spearman correlation:

e If gene counts are available, use CTF or CUF to normalize the data. They
consistently give the best performance regardless of various factors. Between the
two, CTF seems to be slightly more consistent in yielding top performance. Even
though no normalization (Counts) leads to good performance in our study, applying
the additional normalization step is prudent to ensure robustness against variabilities

specific to a new dataset.

e If data is only available after within-sample normalization, use TPM for coexpression
analysis. Data in CPM and RPKM units can be easily converted to TPM. TPM
outperforms CPM and RPKM and yields consistently reasonable performance.

e After normalization, perform log transformation (using asinh) and calculate
coexpression using Pearson correlation coefficient.

e If the dataset has greater than 40 samples, use CLR to transform the pairwise gene
correlations. CLR may also help certain cases where the main interest is interactions
that are specific to a given tissue.

e QNT and WTO hurt performance in combination with every other method, in all
cases, and should not be used.

To enable researchers to explore all our analyses in a streamlined manner and find the

results most relevant to their own RNA-seq datasets of interest, we have made them
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available in a rich webpage written with R Markdown. The webpage can be found at

https://krishnanlab.github.io/RNAseq coexpression.

Potential future applications and extensions

Going forward, we can leverage this comprehensive benchmarking framework for
coexpression analysis to answer newer and subtler questions about data quality and
sample composition. For example, many studies have found that removing unwanted
variation, i.e. noise caused by technical rather than biological factors, in the RNA-seq
data has led to improvements in downstream analysis including the calculation of
coexpression networks [39,40]. Such corrections are often done using SVD-based
methods, including removing the first (or the first few) principal components. However,
caution must be taken when using these methods as they may easily remove biological
signals from the data [41], especially in typical small-to-medium-sized datasets
produced by most research labs (e.g. represented in SRA). Future work using our
framework could help learn the guidelines for deciding which and how many factors to
remove while carefully considering the various properties of the data and the biological
objective of the analysis. For instance, one could explore if different tissues might be
sensitive to different technical factors; signal from blood is often heavily influenced by
the large variation in cell type composition but the brain is much more greatly affected
by the post-mortem-interval [42]. Another related and open question is how cell type
composition influences gene coexpression calculated from bulk tissue data. Some
studies have concluded that gene coexpression networks are heavily confounded by

this factor [43,44], while others have shown that coexpression derived from single-cell
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data is very similar to bulk coexpression [45,46]. Finally, a similar framework could also
be used to explore the best procedure for building coexpression networks from
single-cell RNA-seq data, which has an entirely different set of challenges [47] that call

for an entirely separate benchmarking effort.

Conclusions

We have performed an extensive benchmarking and analysis of how data normalization
and network transformation impact the accuracy of coexpression networks built from
RNA-seq datasets. Based on this work, we have arrived at concrete recommendations
on robust procedures that will generally lead to best coexpression networks.
Specifically, using Counts adjustment with TMM Factors (CTF) and Counts adjustment
with Upper quartile Factors (CUF) normalizations to construct coexpression networks
results in the most consistently high accuracy networks, and using CLR to transform the
network can further increase accuracy in select cases. All the results from this study
—for GTEx, SRA, and GTEx resampling datasets, based on tissue-naive and
tissue-aware gold standard, using three different evaluation metrics — are available as a

consolidated webpage at https://krishnanlab.github.io/RNAseq_coexpression.

Researchers can use this website to easily examine the performance of various
workflows and make appropriate choices for coexpression analysis based on the
properties of their RNA-seq dataset of interest. All the scripts to reproduce our results

are available at https://github.com/krishnanlab/RNAseq_coexpression [55], along with

scripts that researchers can use to create coexpression networks from their datasets of
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interest. Finally, all the coexpression networks constructed in this study are available at

https://doi.org/10.5281/zenodo.5510567 [56].

Methods

Data Collection

Read counts for both SRA and GTEx datasets were downloaded from the recount2
database [19] and processed separately. Recount2 aligns all sequenced reads using
Rail-RNA, which eliminates the effect of using different alignment software on separate
experiments. We obtained SRA data for any tissue with at least five separate
experiments that each had at least five samples. The set of samples from each
experiment (project) was considered as an individual dataset from which coexpression
networks are inferred (one network per dataset). If a given experiment had samples
from multiple tissues, the samples were divided into multiple datasets that each contain
samples from the same tissue to yield 543 candidate SRA datasets. We downloaded all

available GTEx data, which was a total of 9,657 samples from 31 tissues.

Preprocessing
As a form of quality control, we excluded experiments that recount2 identified as having

” “*

a misreported paired-end status. Experiments that contained “cell line”, “celll line”,
‘passage”, “cultured cells”, or “cell culture” in the characteristics metadata were also
removed so as to retain primary tissue samples, which left 341 SRA datasets. Next, we
discarded low-coverage samples that had zero expression (counts) in at least half of all

genes of interest (IncRNA, antisense RNA, and protein-coding genes), and

subsequently excluded entire datasets that no longer contained five or more samples.
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Any dataset that had a sample removed under this criteria was not retained due to
dropping below five samples. Retaining only tissues that still had at least 5 separate
experiments left 256 datasets. Finally, we removed genes with very low expression
across the board by filtering out those that did not have at least one read per million
sample reads in at least 20% of the samples in at least one dataset. This resulted in
22,084 genes in the SRA networks and 20,418 genes in the GTEx networks. Our
filtering steps are intentionally relaxed, to retain as much data as possible without

keeping large amounts of completely uninformative data.
Calculating gene counts

Recount2 stores quantified expression as base pair counts per gene. We converted
these values into gene counts by dividing these base pair per gene counts by the
average read length in the sample and accounted for paired-end read samples by

further dividing by a factor of two.
Refine.bio data collection and processing

To evaluate the workflows on RNA-Seq data processed with different read alignment
and counts quantification methods, we matched as many SRA datasets in our final
recount2 data corpus as possible to data in refine.bio. In some cases, not every sample
in a recount2 dataset was available in the refine.bio database. If the number of missing
samples dropped the dataset to less than 5 samples, we did not use that dataset to
construct a network. This procedure brought the total number of usable refine.bio
datasets to 188, most of which (120/188) contained all of the samples that were used in

the recount?2 datasets. These datasets were downloaded from refine.bio as
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unnormalized transcript counts. Because some data in refine.bio was aligned using
Ensembl release 93 and the rest was aligned using Ensembl release 96, we first
subsetted all refine.bio transcripts to only the common transcripts between releases.
The transcript counts were summed to gene counts (using Ensembl release 96 and the
biomaRt R package [25], then subset to genes present in the recount2 data. Once gene
counts are calculated, the rest of each workflow was run exactly the same as it was on

the recount2 datasets.
Within-sample normalization

Within-sample normalization is designed to transform the expression levels of genes
within the same sample so that they can be compared to each other. Here, we
considered counts per million (CPM), transcripts per million (TPM), and reads per
kilobase million (RPKM) for performing within-sample normalization of the original raw
gene counts [28,48]. Note that RPKM is almost the same as Fragments Per Kilobase
Million (FPKM), except FPKM was introduced to accommodate paired-end RNA-seq so
it accounts for the fact that two reads can map back to a single fragment. We account
for paired-end samples with FPKM, but use the term “RPKM” throughout the
manuscript. These three ways of normalizing counts are very commonly used in
RNA-seq analysis and account for library size and gene/transcript length in different
ways. CPM corrects for library size (expressed in million counts) so that each count is
expressed as a proportion of the total number reads in the sample. TPM and RPKM are
similar methods that correct for both library size and gene length. Each gene count is

divided by both the length of the gene and the sum of counts in the sample, but these
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operations are done in a different order. TPM divides counts by gene length (in kb) first
to get transcript counts and then by total number of transcripts in the sample, resulting
in each normalized sample having the same number of total counts. This is not
guaranteed for RPKM since it corrects each gene count for the total number of reads in

the sample before correcting for gene length.
Between-sample normalization

Between-sample normalization transforms the expression levels of genes across a
group of samples so that gene counts from the same gene in different samples can be
more accurately compared to each other. We tested quantile (QNT), trimmed mean of
M-values (TMM) [49], and upper quartile (UQ) normalizations [13]. In addition, we tested
simple counts adjustment methods we call Counts adjusted with TMM Factors (CTF)
and Counts adjusted with Upper quartile Factors (CUF). Quantile normalization is an
extremely popular between-sample normalization for microarray samples. Applied to
RNA-seq data, QNT forces the distribution of all gene expression values to be exactly
the same in each sample. We performed quantile normalization on counts, CPM, TPM,
and RPKM using the preprocessCore package available from Bioconductor, which
implements the quantile normalization described in Bolstad et al [50]. TMM normalizes
across samples by finding a subset of genes whose variation is mostly due to technical
rather than biological factors, i.e. not differentially expressed, then using this subset to
calculate a scaling factor to adjust each sample. In brief, each sample is compared to a
chosen reference sample. A certain upper and lower percentage of data based on

absolute intensity and log-fold-change relative to the reference sample is removed (by
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default, 5% for absolute intensity and 30% for log-fold-change) and the log-fold-changes
of the remaining set of genes are used to calculate a single scaling factor for the
non-reference samples. UQ normalization first removes all zero-count genes and
calculates a scaling factor for each sample to match the 75% quantile of the counts in
all the samples. In both TMM and UQ, the scaling factors are made to multiply to one
before they are used to adjust the library sizes of each sample. These adjusted library
sizes are then used in place of the original library size for a calculation otherwise
identical to CPM. We used the edgeR package [51] to calculate TMM and UQ scaling
factors. These factors were also used for CTF and CUF, respectively, where they served

as a divisor for each gene count in the proper sample.

Gene type filtering

We chose to keep only long RNA gene types (mRNA (protein-coding), IncRNA,
antisense RNA) as those are the most common gene types used in coexpression
analysis and shorter reads make mapping and identification more difficult [52,53]. The
excluded gene types (mostly short RNAs) are also unlikely to show up in our functional
gold standard as there is very little functional information about these gene types.
Therefore, relationships between genes of these types are harder to evaluate.

Data Transformation

A log transformation is standard procedure when working with RNA-seq data, as the
expected variance grows with the mean for gene counts [35]. A pseudocount is added
to the gene count before taking the log. We use the hyperbolic arcsine (asinh)

transformation, which is defined along the entire real number line and circumvents the
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need for predefining a constant pseudocount and instead calculates a “pseudocount”
that is proportional to the original gene count. The asinh function compresses smaller
values of x less than a function like the natural logarithm [36,37].

We also compared asinh to variance stabilizing transformation (VST) [38] and
regularized logarithm transformation (rlog) [35] implemented in the DESeqg2 R package.
These were tested on the GTEx and SRA datasets, except for the six largest GTEXx
datasets due to the prohibitively long running time of the rlog transformation.

Network construction

A coexpression network was constructed for each individual dataset by calculating the
Pearson correlation coefficient between every pair of genes in that dati ‘aset using the
Distancer tool in the Sleipnir C++ library [54]. These correlations were treated as the
edge weight between gene pairs. We chose Pearson correlation as it has been
repeatedly shown to provide a robust measure of gene-gene correlations, especially in
small-to-medium-sized datasets that are produced by individual laboratories [7,55].
Since Spearman correlation is also popular in coexpression analysis, we compared
these two correlation metrics on our top ten workflows and found that Pearson
correlation results in more accurate coexpression networks than Spearman correlation
in both GTEx and SRA datasets, particularly in ensuring the accuracy of the top-scoring
edges (Appendix: Fig. A2.16).

Network transformation

We tested two common methods of network transformation, weighted topological

overlap (WTO) [9] and context likelihood of relatedness (CLR) [10], that use different
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aspects of network topology to correct the raw coexpression network. The general idea
of WTO is to increase the edge weight between gene pairs that share a high number of
network neighbors while diminishing edge weight between gene pairs that are tightly
connected to very different sets of genes in the network. All edges in the resulting
network will have normalized weighted between zero and one. CLR reweights the edge
for each gene pair (i, j) based on how different the original weight of that edge is relative
to all of the connections to gene i and all connections to gene j (to the rest of the genes
in the network). For instance, CLR will upweight an edge between two genes if the edge
weight is high compared to all of the other connections of both genes. WTO was
implemented using the wTO function with the “sign” method in the wTO package [56]

and CLR was implemented using the Dat2Dab function in the Sleipnir C++ library.

Network evaluation

The goal of coexpression networks is to capture true functional relationships between
genes in the cellular context of the original dataset. Therefore, we evaluated the
accuracy of each coexpression network by comparing it to two gold standards, one
representing known generic (tissue-naive) functional relationships and the other
representing known tissue-aware gene functional relationships. We assembled these
gold standards by beginning with a set of manually-selected Gene Ontology Biological
Process (GOBP) terms [55,57] that were deemed to be specific enough to be confident
that any genes co-annotated to them could be considered functionally related via
experimental follow-up (see Supplemental Note in Appendix). Specifically, curators were

considering the question “if unknown gene/protein G were predicted to be annotated to
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GOBP term T, would that be enough to consider experimentally testing this relationship
between G and T?” Then, any pair of genes that were co-annotated to the same specific
GOBP term was set as a positive edge in the gold standard. We only used annotations
based on experimental (GO evidence codes: EXP, IDA, IPI, IMP, IGI, TAS) or curated
evidence (IC). We explicitly ignored gene-term annotations made based on expression
(GO evidence code: IEP) to avoid circularity when comparing coexpression-derived
interactions to this gold-standard. We next had to determine which pairs of genes
among the ones with at least one positive edge could be declared as negative edges,
i.e., gene pairs that are unlikely to be functionally related based on prior knowledge. To
be clear, ‘positive’ and ‘negative’ are used here based on machine learning parlance to
indicate interactions and non-interactions, respectively, and do not correspond to the
sign of the relationship. This way, the terms are consistent with how we refer to
true/false positive/negative edges. Following previous work, we ignored gene pairs not
co-annotated to any specific term but still interact with many of the same genes in the
gold standard (determined based on each being annotated to two different terms that
contained very similar sets of genes; hypergeometric test; p-value <0.05). We also
ignored gene pairs that were not co-annotated to any specific term but were
co-annotated to certain general GOBP terms, thus introducing ambiguity in whether
they are functionally related or not. All remaining gene pairs were considered negatives.

We built the naive gold standard using the Answerer function in the Sleipnir C++ library.

We created the tissue-aware gold standards for as many tissues as possible by

subsetting the naive gold standard based on genes known to be specifically expressed
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in a particular tissue. We obtained tissue-aware genes from the TISSUES 2.0 database
Knowledge channel [58]. The knowledge channel contains curated manual annotations
of tissue expression provided by UniProtKB. For a given tissue, a positive edge from the
naive gold standard was kept in its tissue-aware standard if both genes were expressed
in that tissue. Negative edges were kept if both genes were expressed in that tissue, or
if one gene is expressed in the tissue and the other gene is expressed in one of the
other tissues considered. Only standards containing at least 50 positive edges were
used for evaluation, resulting in 24 tissue-aware gold-standards. We specifically
excluded epithelium from consideration for a tissue-aware standard, as there is no

straightforward way to determine the body site each sample was taken from.

We used the DChecker function in the Sleipnir C++ library to compare each
coexpression network to each gold-standard and return the number of true positives,
false positives, true negatives, and false negatives at various edge weight thresholds.
These numbers were used to calculate the area under the precision-recall curve
(auPRC) using the ftrapz function in the pracma package. Since gene functional
relationship gold-standards of different tissues have different proportions of positives to
negatives, the original auPRC scores are not directly comparable to each other.
Therefore, we divided each auPRC by its “prior” — the auPRC of a random predictor,
equal to the fraction of positives among all positive and negative edges — and
expressed the performance as the logarithm of this ratio to enable tissue-to-tissue

comparisons.
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The Supplemental Note in the Appendix contains more details on the i) gene functional
relationship gold standard, ii) additional gold standards that we explored (including
spike-ins [59,60]) and their limitations, and iii) calculation of the evaluation metrics.
Workflow comparison and analysis by parts

To assess whether two workflows resulted in coexpression networks that were
significantly different in quality, we used a paired Wilcoxon rank sum test to compare the
auPRC scores across all coexpression networks generated by those two workflows.
After calculating p-values, we performed a correction for multiple testing with the
Benjamini-Hochberg procedure and declared workflows with FDR < 0.01 as being
significantly different. Further, each workflow is a combination of method choices at
multiple stages. So, to determine the impact of including a particular method in a
workflow, we across aggregated workflows to calculate the proportion of times that
including a particular method in a workflow resulted in the workflow being significantly
greater than one that did not include the method. As it is not possible to do
within-sample normalization and then do TMM, UQ, CTF, or CUF, any workflow
including CPM, TPM, or RPKM was excluded when assessing between-sample
normalization methods so that method being compared to each other based on the
same number of aggregated workflows. For similar reasons, workflows involving TMM,
uQ, CTF, or CUF were not considered for the analysis of within-sample normalization

methods.
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GTEx resampling

To simulate uniformly-processed datasets that have sample sizes similar to datasets
from SRA, we chose nine sample sizes (5, 6, 7, 9, 11, 13, 16, 25, and 40) based on the
distribution of SRA dataset sample sizes. Then, from each GTEx dataset with at least
70 samples, we randomly sampled a “dataset” of each sample size, repeating this
sampling ten times to create 10 datasets per sample size from each GTEx dataset. One
coexpression network was constructed and evaluated from each of these

GTEX-resampled datasets in the same manner outlined above.

Experimental factor analysis

In addition to dataset size (i.e. number of samples), the quality of the coexpression
network reconstructed from a dataset could also depend on the similarity between the
samples in that dataset as well as the total number of mapped reads. We performed an
analysis to determine this impact using the GTEx-resampled datasets and the original
SRA datasets. Since SRA datasets are not large enough to do resampling for sample
size analysis, we split them into five groups with equal number of datasets, with
datasets in each group having similar sample sizes. We define sample similarity for a
given dataset as the median spearman correlation between all samples using the 50%
most variable genes in the GTEx tissue they came from for the resampled GTEx
datasets, or the median spearman correlation between all samples using the 50% most
variable genes in each individual dataset in the case of the SRA networks. Read count
diversity is calculated by summing the gene counts of each sample in a given dataset

and taking their standard deviation. Based on each of these measures —sample
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similarity and read count diversity — we divided the datasets into five groups of equal
size while taking care to check that each group contained datasets with similar sample
sizes. For the tissue analysis, we could only determine significance in SRA tissues that

had at least 15 datasets.
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Figure A2.1. Recount2 data used in this study. (a) The barplot shows the number of experiments from
each tissue in the SRA data. The heatmap on the right shows the number of projects/experiments that
have a particular sample size for each tissue. (b) The barplot shows the number of samples for each
GTEXx tissue. In the barplots, blue bars indicate tissues for which we were able to create a tissue-aware
gold standard. Tissues with gray bars were evaluated on the tissue-naive standard only.
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Figure A2.2. Overall performance of workflows based on the tissue-aware gold standard. The plots
show the aggregate accuracy of all coexpression networks resulting from each individual workflow using
(a) GTEx and (b) SRA datasets, evaluated based on the tissue-aware gold standard. The workflows
(rows) are described in terms of the specific method used in the within-sample normalization (blues),
between-sample normalization (greens), and network transformation (oranges) stages. The performance
of each workflow is presented as boxplots (without outliers) that summarizes the log2(auPRC/prior) of
each workflow where auPRC is the area under the precision recall curve (see Methods). The workflows
are ordered by their median log2(auPRC/prior) for the GTEx data. The numbers inside the SRA boxes
indicate rank by median log2(auPRC/prior) of the workflows for the SRA data. Figure 2.2 contains these
performance plots based on the tissue-naive gold standard.
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Figure A2.3. Dataset-level pairwise comparison of workflow performance for SRA datasets based
on the tissue-naive gold standard. The heatmap shows the relative performance of a pair of workflows,
corresponding to a row and a column, directly compared to each other for the SRA datasets based on the
tissue-naive gold standard. The color in each cell (row, column) represents the proportion of datasets for
which the workflow along the row has a higher log2(auPRC/prior) than the workflow along the column.
Comparisons that are statistically significant (corrected p < 0.01) based on a paired Wilcoxon test are
marked with an asterisk. Figure 2.3a contains the corresponding heatmap for GTEx datasets.
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Figure A2.4. Dataset-level pairwise comparison of workflow performance for GTEx and SRA
datasets based on the tissue-aware gold standard. (a) The heatmap shows the relative performance
of a pair of workflows, corresponding to a row and a column, directly compared to each other for the
GTEXx datasets based on the tissue-aware gold standard. The color in each cell (row, column) represents
the proportion of datasets for which the workflow along the row has a higher log2(auPRC/prior) than the
workflow along the column. Comparisons that are statistically significant (corrected p < 0.01) based on a
paired Wilcoxon test are marked with an asterisk. Figures A2.5 contains the corresponding heatmap for
the SRA datasets. (b and c) Barplots show the number of times each workflow was significantly greater
than another workflow for GTEx (left) and SRA (right) datasets. Figure 2.3 and A2.3 contain these
performance plots based on the tissue-naive gold standard.
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Figure A2.5. Dataset-level pairwise comparison of workflow performance for SRA datasets based
on the tissue-aware gold standard. The heatmap shows the relative performance of a pair of workflows,
corresponding to a row and a column, directly compared to each other for the SRA datasets based on the
tissue-aware gold standard. The color in each cell (row, column) represents the proportion of datasets for
which the workflow along the row has a higher log2(auPRC/prior) than the workflow along the column.
Comparisons that are statistically significant (corrected p < 0.01) based on a paired Wilcoxon test are
marked with an asterisk. Figure A2.4a contains the corresponding heatmap for GTEx datasets.
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Figure A2.6. Impact of individual methods on performance of workflows based on the
tissue-aware gold standard. Each bar in the two barplots, corresponding to a specific method, shows
the proportion of times (x-axis) that workflows including that particular method (y-axis) were significantly
better than other workflows. The barplots correspond to performance for the (a) GTEx and (b) SRA
datasets evaluated on the tissue-naive gold standard. In order to make the comparison of
between-sample normalization methods fair, workflows including CPM, RPKM, or TPM were left out
because it is not possible to pair them with TMM or UQ normalization. Similarly, TMM and UQ methods
are not included for “no within-sample normalization” (NO-WI). Figure 2.4 contains these barplots based
on the tissue-naive gold standard.
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Figure A2.7. Impact of various dataset-related experimental factors on performance of workflows
based on the tissue-aware gold standard. Each heatmap shows the number of times (cell color) each
workflow (row) outperforms other workflows as a particular experimental factor pertaining to the input
datasets is varied (columns), when the resulting coexpression networks are evaluated based on the
tissue-naive gold standard. The darkest colors indicate workflows that are significantly better than the
most other workflows. In addition, the top 5 workflows in each column are marked with their rank, with ties
given minimum rank. The heatmaps on the top (a—d) correspond to datasets from GTEx resampling and
those on the bottom (e—h) correspond to SRA datasets. The heatmaps from left to right show workflow
performance by sample size (a, e; number of samples used to make the coexpression network), sample
similarity (b, f; median spearman correlation of 50% most variable genes between samples), library size
diversity by counts (c, f; standard deviation of counts sums across samples), and tissue of origin (d, h).
Figure 2.5 contains these heatmaps based on the tissue-naive gold standard.
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Figure A2.8. Overall performance of workflows and pairwise-comparison using refine.bio datasets
based on the tissue-aware gold standard. The boxplots show the aggregate accuracy of all
coexpression networks resulting from each individual workflow using SRA datasets in refine.bio,
evaluated based on the tissue-aware gold standard. The performance of each workflow is presented as
boxplots (without outliers) that summarizes the log2(auPRC/prior) of each workflow where auPRC is the
area under the precision recall curve (see Methods). The workflows are ordered by their median
log2(auPRC/prior). The heatmap shows the relative performance of pairs of workflows (rows and
columns) directly compared to each other for the refine.bio SRA datasets based on the tissue-aware gold
standard. The color in each cell (row, column) represents the proportion of datasets for which the
workflow along the row has a higher log2(auPRC/prior) than the workflow along the column. Comparisons
that are statistically significant (corrected p < 0.01) based on a paired Wilcoxon test are marked with an
asterisk. Figure 2.6 contains these plots based on the tissue-naive gold standard.
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Figure A2.9. Gene- and edge-based overlap between tissue-aware gold standards. The heatmaps
show the number of (a) genes or (b) edges that are shared between any two given tissue-aware gold
standards divided by the total number of genes or edges in the smaller of the two tissue-aware gold
standards. Based on the heatmaps, the proportion of shared genes and edges between unrelated tissues
is small and therefore each tissue-aware gold standard is evaluating a very different set of biological
relationships.
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Figure A2.10. Overall accuracy of coexpression networks when evaluated based on the
tissue-naive and tissue-aware gold standards. Each density plot —for the (a) GTEx and (b) SRA
datasets — shows the distribution of log2(auPRC/prior) across all workflows and datasets when evaluating
based on the tissue-naive gold standard (x-axis) vs. the tissue-aware gold standard (y-axis). These
distributions show that coexpression networks capture tissue-aware gene interactions and emphasizes
the importance of evaluating coexpression networks using tissue-aware gold standards.

74



a GTEx b SRA

CTECLA: g g . T
cte- e e —— e e — e
cu- - S =T £ S s S
CLR- i CTF_CLR- ;

TPM_CLA- — L R P = S

oPv_cLa- — = — s e
L —— e T — T S — - E——

0 0.1 02 03 04 05 06 0 01 02 03 04 05 06
Log,(auPRC/prior) Log,(auPRC/prior)

Figure A2.11. Overall performance of top workflows with and without asinh transformation based
on the tissue-naive gold standard. The plots show the aggregate accuracy of all coexpression networks
resulting from the top ten individual workflows using (a) GTEx and (b) SRA datasets with (blue) and
without (gray) the asinh transformation, evaluated based on the tissue-naive gold standard. The
workflows (rows) are described in terms of the specific method used in the within-sample normalization,
between-sample normalization, and network transformation stages. The performance of each workflow is
presented as boxplots (without outliers) that summarizes the log2(auPRC/prior) of each workflow where
auPRC is the area under the precision recall curve (see Methods). The workflows are ordered by their
median log2(auPRC/prior) in each panel.
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Figure A2.12. Performance of workflows using different data transformation methods based on
the tissue-naive gold standard. The plots show the aggregate accuracy of all coexpression networks
resulting from using (a) GTEx and (b) SRA datasets with different data transformations to adjust gene
counts paired with the network transformation methods, evaluated based on the tissue-naive gold
standard. The workflows (rows) are combinations of specific data transformations (shades of gray) and
network transformations. The performance of each workflow is presented as boxplots (without outliers)
that summarize the log2(auPRC/prior) of each workflow where auPRC is the area under the precision
recall curve (see Methods). The workflows are ordered by their median log2(auPRC/prior) in each panel.
The heatmaps on the right show the relative performance of a pair of workflows, corresponding to a row
and a column, directly compared to each other for the GTEx (a) and SRA (b) datasets based on the
tissue-naive gold standard. The color in each cell (row, column) represents the proportion of datasets for
which the workflow along the row has a higher log2(auPRC/prior) than the workflow along the column.
Comparisons that are statistically significant (corrected p < 0.01) based on a paired Wilcoxon test are
marked with an asterisk. The six largest GTEx datasets (adipose_tissue, blood, blood_vessel, brain,
esophagus, and skin) are not considered in this evaluation because of the considerable amount of
computing time required to use rlog transformation on large datasets. CLR and Counts significantly
outperformed all other methods on GTEx datasets. For SRA datasets, Counts performed significantly
better than all other workflows, and CLR and WTO both performed significantly better than all workflows
incorporating VST or rlog.
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Figure A2.13. Performance of workflows using different data transformation methods based on
the tissue-aware gold standard. The plots show the aggregate accuracy of all coexpression networks
resulting from using (a) GTEx and (b) SRA datasets with different data transformations to adjust gene
counts paired with the network transformation methods, evaluated based on the tissue-aware gold
standard. The workflows (rows) are combinations of specific data transformations (shades of gray) and
network transformations. The performance of each workflow is presented as boxplots (without outliers)
that summarize the log2(auPRC/prior) of each workflow where auPRC is the area under the precision
recall curve (see Methods). The workflows are ordered by their median log2(auPRC/prior) in each panel.
The heatmaps on the right show the relative performance of a pair of workflows, corresponding to a row
and a column, directly compared to each other for the GTEx (a) and SRA (b) datasets based on the
tissue-aware gold standard. The color in each cell (row, column) represents the proportion of datasets for
which the workflow along the row has a higher log2(auPRC/prior) than the workflow along the column.
Comparisons that are statistically significant (corrected p < 0.01) based on a paired Wilcoxon test are
marked with an asterisk. The largest GTEx datasets (adipose_tissue, blood, brain, and skin) are not
considered in this evaluation because of the considerable amount of computing time required to use rlog
transformation on large datasets. Fewer comparisons between workflows are statistically significant when
evaluated on the tissue-aware gold standard, but CLR and Counts remain top performing methods for
both GTEx and SRA datasets.
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Figure A2.14. Overall performance of workflows based on the tissue-naive gold standard. The plots
show the aggregate accuracy of all coexpression networks resulting from each individual workflow using
(@) GTEx and (b) SRA datasets, evaluated based on the tissue-naive gold standard. The workflows
(rows) are described in terms of the specific method used in the within-sample normalization,
between-sample normalization, data transformation, and network transformation stages. The performance
of each workflow is presented as boxplots (without outliers) that summarizes the log2(auPRC/prior) of
each workflow where auPRC is the area under the precision recall curve (see Methods). The workflows
are ordered by their median log2(auPRC/prior) for each panel. The six largest GTEx datasets
(adipose_tissue, blood, blood vessel, brain, esophagus, and skin) are not considered in this evaluation
because of the considerable amount of computing time required to use rlog transformation on large

datasets.
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Figure A2.15. Overall performance of workflows based on the tissue-aware gold standard. The
plots show the aggregate accuracy of all coexpression networks resulting from each individual workflow
using (@) GTEx and (b) SRA datasets, evaluated based on the tissue-aware gold standard. The workflows
(rows) are described in terms of the specific method used in the within-sample normalization,
between-sample normalization, data transformation, and network transformation stages. The performance
of each workflow is presented as boxplots (without outliers) that summarizes the log2(auPRC/prior) of
each workflow where auPRC is the area under the precision recall curve (see Methods). The workflows
are ordered by their median log2(auPRC/prior) in each panel.
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Figure A2.16. Overall performance of top ten workflows using Pearson and Spearman correlation
based on the tissue-naive gold standard. The plots show the aggregate accuracy of all coexpression
networks resulting from the top ten individual workflows using Pearson (blue) or Spearman (gray)
correlation to build the network using (a, ¢) GTEx and (b, d) SRA datasets, evaluated based on the
tissue-naive gold standard. The workflows (rows) are described in terms of the specific method used in
the within-sample normalization, between-sample normalization, and network transformation stages. The
performance of each workflow is presented as boxplots (without outliers) that summarizes the
log2(auPRC/prior) (a, b) or the log2(p20r/prior) (¢, d) of each workflow where auPRC is the area under
the precision recall curve and p20r is the precision at 20% recall (see Methods). The workflows are
ordered by their median log2(auPRC/prior) in each panel. Pearson correlation clearly yields better
performance in all cases for the SRA data (i.e. datasets typically generated by individual research labs).
Pearson also usually yields better results for the GTEx data as well, and more so when considering the
accuracy of the top-scoring edges (evaluated using p20r).
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Supplemental Note

Rationale for our functional gold standard

The definition of the “true” network structure is a crucial aspect when evaluating the
accuracy of any network, including a coexpression network. Our choice and design of
this ground-truth using GO biological process annotations is based on a number of
factors including: A) many prior studies that link coexpression to GO co-annotation, B)
the applications of coexpression networks for function prediction, and C) several
previous studies that have established the strength and utility of GO-based
ground-truth.

A) Prior studies link coexpression to GO co-annotation.

From the conception of high-throughput gene-expression techniques, studies have
shown that coexpression between genes can be productively and accurately used to
separate genes into functional modules [1, 2]. A number of other studies have explicitly
tested the coexpression—co-annotation hypothesis and have shown that coexpressed
genes are highly likely to be transcriptionally co-regulated and are often functionally
related to each other by virtue of taking part in the same biological process or
physiological trait [3, 4].

B) Coexpression is commonly used to study gene function.

Gene function prediction and gene module detection are the two major and most
common applications of coexpression networks. These applications are based on the
fact that functionally-related gene pairs or groups (i.e. members of a specific biological
pathway or process) tend to be coexpressed with each other in high-throughput
gene-expression datasets. By inverting this association, coexpression networks have
often been successfully used in the literature to predict gene function and pathway
membership [5]. Further, coexpression networks are frequently used to identify
functional modules (i.e. entire pathways/processes) by clustering the network and
performing GO-based functional enrichment on each cluster of genes [6]. Therefore, to
assess the workflows examined in this study in relation to these most common
applications, we chose to evaluate the accuracy of the resulting coexpression networks
based on their ability to recapitulate gene functional relationships.

C) Strength of GO-based ground-truth of gene functional relationships.

Since functionally-related genes tend to be coexpressed with each other (A) and
coexpression networks are routinely used to infer gene function and pathway/process
membership (B), we reasoned that it would be most appropriate to evaluate the
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accuracy of coexpression networks based on their ability to recapitulate gene functional
relationships based on their co-annotations to GO biological processes (GOBP).

However, creating a ground-truth about gene functional relationships (gold standard)
from GO BP is not straightforward and should be done very carefully. For example, the
Gene Ontology has many generic terms for biological processes such as “metabolism”
or “stress response”. For such terms, it would indeed be incorrect to assume that genes
that are co-annotated to any of these terms should be connected in the co-expression
network. Therefore, we have devised a careful procedure for constructing a gene
functional gold standard based on GOBP. First, we do not use all GOBP terms to
construct our gold standard. Following previous work [7], we use only 607 “specific”
GOBP terms. These terms were selected by a team of seven graduate students and
postdocs (with training in cell/molecular biology and genetics) based on the following
procedure: To select “specific’ terms, this question was considered: “if unknown
gene/protein G were predicted to be annotated to GO term T, would that be enough to
consider experimentally testing this relationship between G and T?”. Only terms that
were declared “yes” by the majority were retained as specific terms and only gene pairs
co-annotated to any of these specific terms — based on experimental evidence — are
considered to have a positive relationship in our gold standard. Similarly, assuming
every other gene pair is a negative (not functionally related) would be far too strong an
assumption. So, the team also selected a set of 75 “intermediate” GOBP terms such as
“protein folding” or “cell proliferation”. Then, to be considered as a negative in the gold
standard, gene pairs must meet the following three criteria:
1. The two genes are not co-annotated to any intermediate term
2. The two genes are not co-annotated to significantly overlapping specific terms
(hypergeometric test; p-value <0.05)
3. Each gene individually has at least one annotation to a specific term
Gene pairs that are co-annotated to intermediate terms (criterion 1) would be
considered too close in general function to be sure that they are not functionally related.
The hypergeometric test (criterion 2) prevents gene pairs that may share a function (due
to being annotated to two overlapping terms) from being labeled as negatives.
Requiring a specific term annotation for each gene ensures that no assumptions are
made about genes that have not been experimentally studied before.

This procedure for creating GOBP-based gold standards of gene functional
relationships has several advantages, which are outlined in detail in the paper that first
used this procedure to create a functional gold standard for yeast [8]. Briefly, the
advantages of this gold standard over other options include lack of substantial functional
bias, lack of varying specificity problems, a thoughtful method of defining negatives, and
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a more proportional ratio of positive and negative examples. Careful manual selection of
specific terms covers the first two issues. Using all terms in GOBP or all pathways in a
different database results in functional biases towards very large pathways which can
‘make or break’ the evaluation (see the first figure and ribosome KEGG pathway in [9]).
Alternatively, defining a ‘specificity cutoff’ for these ontology structures (whether by
number of annotations or depth in the ontology) results in wildly different biological
specificity of terms (Figure 3, in [8]). Finally, manual selection of intermediate terms in
our gold standard procedure allows negatives to be defined sensically and confidently
with enough pairs to far outhnumber the positive examples. This reflects the ground truth,
which is that there are far more pairs of genes that do not interact with each other than
gene pairs that do interact with each other.

In summary, the definition of the ground-truth network structure (i.e., the gold standard)
is based on: previously established observations about the connection between
coexpression and functional co-annotation; the applications of coexpression to delineate
gene function; and our rigorous procedure for setting up a meaningful set of
functionally-related and unrelated gene pairs based on experimental annotations of
genes to specific terms in GOBP.

Other gold standards considered

We spent a considerable amount of effort trying to create other gold standards without
much success due to the lack of appropriate external datasets. For example, we
attempted to create gold standards based on groups of genes co-bound by the same
transcription factor (in ChIP-Seq experiments). However, physical binding of
transcription factor does not necessarily indicate functional interaction between the
transcription factor and the target gene nor does it indicate co-regulation (coexpression)
between the target genes. This limitation was apparent from our observation that
coexpression networks evaluated on these TF-binding-based gold standards had
random performance at best and worse than random performance otherwise,
regardless of workflow, sample size, or data quality.

We also attempted to create a gold standard based on groups of genes co-annotated to
only tissue-specific GO biological processes. However, there was very little
experimental annotation in this data to create gold standards that span tens of
thousands of genes for many tissues.

At least one previous study has used spike-in data to construct ground-truth
coexpression networks [9]. However, we did not choose to use spike-in data for reasons
similar to the ones outlined above: limited data that prevents conducting an evaluation
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on a large-enough scale to be comfortable drawing general conclusions. To our
knowledge, there is not a large collection of readily-available spike-in data from multiple
sources and tissues to leverage for this purpose. RNA-seq experiments are quite
sensitive to technical effects when considering final quantification of each gene count in
a given sample. These technical effects are a combination of the specific transcripts of
interest (GC content, length, reverse transcriptase binding site sequence, etc) and the
overall distribution of the population of RNA/cDNA in the sample library (whether rRNA
depletion or polyA+ tail selection is used, which tissue the sample comes from,
sequencing protocol, etc). All these factors can have significant effects on total read
counts and, thus, gene count quantification. And, spike-in controls are not immune to
these effects [10]. As we discuss throughout the paper, different normalization and
network transformation techniques handle these technical biases differently, whether
explicitly or implicitly. Therefore, to call a method or workflow “robust”, it must work well
over a large number of datasets that encompass datasets with any number of a variety
of technical biases. In our study, we check for robustness by using a large number of
primary bulk RNA-seq samples (over 15,000) from over 35 tissues and 200 independent
studies that were all quantified into gene counts by the same alignment software. It
would be a considerable effort to collect data with spike-ins from many sources and
process the raw reads into counts data for another large set of data, as we used
Recount2 to take away the variability of using different alignment software. Currently,
there does not seem to be a single, high-quality, large dataset for spike-in RNA-seq
data that would correspond to something like the data used in our GTEx analysis where
the raw reads are converted to gene counts using the same quality-control and
quantification procedure (like in Recount2) to take away the variability of using different
alignment software.

Furthermore, even if there is enough spike-in data available, it is not certain that it would
be a useful evaluation. The purpose of spike-in experiments is often to estimate the
precision and accuracy of the sequencing technology. So, typically, the concentration of
the spike-in is equal across samples in a dataset. Even in cases where the
concentration of a given spike-in probe is varied across samples, the point of these
spike-ins is to find the limit of detection or to be at a detectable level so that they can be
used for quantification. This means that, in many cases, we would only be able to
evaluate spike-in oligos with a nominal correlation of one or zero (as was done in [9]).
To be clear, this means that we would not be able to evaluate any correlation between 0
and 1. This limitation skews the assessment of workflows to an evaluation of genes that
are perfectly coexpressed and highly ‘expressed’ in at least some samples. As
discussed briefly in the Discussion section, the mean-correlation relationship bias (the
observation that highly-expressed genes tend to be more highly-coexpressed in
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coexpression analysis) might make this type of gold standard rather easy to achieve for
all workflows. Such a gold standard does not represent a large number of genes that
are never highly expressed but are nonetheless genes of great interest.

Evaluation procedure using our gold standard
The gold standard contains thousands of gene pairs that either have a functional
relationship (positive) or do not have a functional relationship (negative), defined based
on experimental gene co-annotations to specific GOBP terms (see above). Then, we
evaluate each coexpression network (derived from a single RNA-seq dataset analyzed
using any one of the workflows) by comparing it to this gold standard by essentially
asking the following question: do gene pairs that have very high coexpression strengths
(i.e. high correlation coefficients) tend be functionally related to each other based on the
gold standard?
We answer this question quantitatively by calculating the area under the precision-recall
curve for that coexpression network in the following manner:
1. We rank all the gene pairs in the network from highest to lowest correlation.
2. Then, at various cutoffs of correlation strength from high to low, we calculate the
number of true positives, false positives, true negatives, and false negatives.
a. Gene pairs with a correlation value above the cutoff and,
i. Functionally related in the gold standard (i.e., positive) are ‘true positives’
(TP).
i. Not functionally related in the gold standard (i.e., negative) are ‘false
positives’ (FP).
b. Gene pairs with a correlation value below the cutoff and,
i. Functionally related in the gold standard (i.e., positive) are ‘false negatives’
(FN).
i. Not functionally related in the gold standard (i.e., negative) are ‘true
negatives’ (TN).
c. These TP, FP, FN, and TN values are combined to calculate the precision (= TP /
(TP+FP))andrecall (=TP /(TP + FN ) ) at that cutoff.
3. All the precision and recall values at the various correlation cutoffs are used together
to build the precision-recall curve.
4. Finally, the area under this curve (auPRC) and the precision that corresponds to
20% recall (p20r) are used to quantify the ability of the coexpression network to
recapitulate gene functional relationships in the gold standard.
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CHAPTER 3: LEVERAGING PUBLIC TRANSCRIPTOME DATA WITH
MACHINE LEARNING TO INFER PAN-BODY AGE- AND SEX-SPECIFIC
MOLECULAR PHENOMENA

Background

Most complex traits and diseases have age- and sex-related differences in their
incidence and manifestation [1] and yet these factors have been largely
underconsidered in biomedical and clinical studies in the past [2-5]. Further, often these
age- and sex-related differences are intertwined and considering one without the other
will produce an incomplete understanding. For example, women have a lower
prevalence of stroke before menopause, but afterwards the prevalence exceeds that of
men [6]. Similarly, the peak of asthma diagnoses is between the ages of 2 and 8 years
old in boys, but incidence is higher for women in adults [7]. As scientific research begins
to pay closer attention to age and sex as biological factors, new studies are now
beginning to uncover some of the genetic basis that underlies the processes of
development and aging with or without considering sex differences in tissue physiology
[8], complex traits [9], diseases [10], and treatment responses [11].

These new data alone are not enough to create holistic frameworks capable of helping
biologists address questions about female and male tissue biology at specific intervals
along the human lifespan (e.g., childhood, adolescence, or old age). As we aim to
provide precision medicine for all, a comprehensive understanding of how age and sex
influence normal physiology and in turn affect complex traits and diseases is critical
[12,13]. Related differences can be quite small, producing subtle, easily-overlooked

changes. For example, significant sex differentially expressed genes often have small
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fold changes [12] and genes related to human longevity by GWAS have small effect
sizes [14].

An opportunity to investigate these small-yet-widespread influences resides in the
hundreds of thousands of publicly-available gene expression profiles generated by
hundreds of labs across the world over the past 25 years and stored in databases such
as NCBI GEO [15] and EBI ArrayExpress [16,17]. These transcriptomes span multiple
tissues, diverse experimental, biomedical, and environmental conditions, and numerous
diseases, and have been previously successfully leveraged towards gaining biological
insight into molecular mechanisms of complex traits and diseases [18,19]. A few
previous studies have used parts of these data to identify sex-associated genes and
molecular processes with occasional minor focus on age.

One of the first large-scale endeavors to characterize human sex-biased genes was a
2016 study wherein Mayne and colleagues [20] used differential expression analysis on
22 publicly-available microarray datasets totaling about 2,500 samples from 15 tissues
(Fig. 3.1b). Previous to that study, one of the largest sex-differential expression studies
published was the 2015 study [21] from the GTEXx consortium [22] which included sex
as one of many biological factors considered in the expression variation between
individuals. At the time, only the pilot data had been released, which included 1,641
RNA-seq samples from over 40 tissues in 175 individuals. GTEx consortium data has
since grown to over 17,000 samples from 948 individuals and has been used in another
handful of sex-differential expression studies. Guo and team [23] used GTEx data in
addition to curated datasets from GEO and restricted themselves to healthy samples to

determine sex-biased genes in 14 tissues. Gershoni and Pietrokovski [24] published
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sex-differential expression results using version 6 of GTEX in 2017, and in 2019 the
sex-associated gene database (SAGD) resource was published with sex-associated
genes (differential expression) from 2,828 samples in 21 different species. Later that
year Naqvi et al [25] used GTEx data in conjunction with data from macaque, mouse,
rat, and dog to investigate conserved sex-biased expression in 12 tissues. In 2020,
Lopes-Ramos and group [26] used the GTEx dataset for sex differential expression
analysis and further built regulatory networks for each sample and compared female
and male networks in each tissue. Finally, the GTEx consortium released a paper
focused entirely on the impact of sex on gene expression in 2020. Each of these studies
used publicly-available transcriptomic data, often including GTEx data, and stratified
samples by tissue to find differentially expressed genes between sexes. GTEx data
skews about %: male, and the Mayne study had a similar ratio of male to female
samples. The Guo study, SAGD, and this study are close to 50-50 sex balance. Most
studies did not explicitly consider age, but the SAGD considers developmental stage
when possible, and the GTEX studies incorporate age as a covariate but is focused on a
dataset of mostly adult and older individuals.

Efforts to characterize age-biased genes using human transcriptomic data are also
generally stratified by tissue though sometimes commonalities across tissues are
investigated. One of the earliest large-scale efforts to study common aging signatures in
public expression profiles was an differential expression analysis with 27 microarray
datasets from mice, rats, and humans that spanned multiple tissues in 400 samples by
Pedro de Magalhaes and colleagues [27] in 2007. A few years later Hannum et al [28]

used whole blood gene expression data of 488 individuals ranging from 20 to 75 years
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of age. A large amount of focus in studying age-biased gene expression has continued
to center around age prediction [28-33] and the process of aging [27,28,32,34,35]
and/or development [36] through differential expression. Two studies While sometimes
sex is adjusted for in the model, very little has been done to study age in a
sex-dependent manner, especially that does not focus on aging specifically, though
there is evidence that the processes of aging [32,37] and development [38] carry
sex-dependent differences.

These important efforts have begun to characterize tissue-specific expression in each
sex and in different age groups. However, there are still gaps that need to be
addressed. First, most of these studies using public gene expression data are focused
on age or sex, sometimes adjusting for the other, but rarely trying to delineate age and
sex differences at the same time. Second, the data used in these studies (often from
GTEXx) skew heavily towards adults and older individuals. Third, investigating both age
across all stages of life and sex specificity at the same time on a large scale has yet to
be done. We are interested in not just the process of aging, but molecular processes
that occur at specific stages along the human lifespan. Integration of a large body of
data allows us to pick up on multi-tissue signals without only learning dataset- or
tissue-specific signals. The main hurdle to leveraging the hundreds of thousands of
publicly-available gene expression profiles towards this purpose is that age and sex
metadata is often missing, inconsistent, or disorganized. Especially because age and
sex have been historically understudied, the vast majority of these samples are not
associated with any age and sex information. Sample descriptions that do contain this

information often have it buried in free text and many are annotated with vague labels
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that are minimally informative and imprecisely defined as, for e.g., ‘old’, ‘adult’, or ‘infant’
(i.e., without the associated age ranges), making it difficult for researchers wishing to
reanalyze these datasets.

In this study, we present the largest effort to characterize age- and sex-biased genes
across the entire human lifespan from public transcriptomes. First, we manually curated
the largest sex- and age-annotated public transcriptome dataset containing nearly
30,000 bulk, primary human microarray and RNA-seq samples from variety of tissues.
Second, to infer pan-body molecular processes impacted by age and sex, we used
these transcriptomes and their labels to calculate age-stratified sex-biased gene
signatures and sex-stratified age-group-specific gene signatures. Third, using existing
gene annotation and association data in various databases, we associated all these
age/sex gene signatures to hundreds of biomedical entities including biological
processes/pathways, phenotypes, traits, and diseases. We make our sample labels,
gene signatures, and associated biomedical entities available in a GitHub repository.
These resources will enable scientists in studying sex-specific health and disease
mechanisms in all stages of life.

Results

Curating a large dataset of human age- and sex-annotated transcriptomes

To characterize age- and sex-specific gene expression signatures, we first downloaded
all available human microarray data in Gene Expression Omnibus (GEO) [39] measured
on the same platform and all human RNA-seq data available in refine.bio [40]. We used
simple text matching in downloaded sample descriptions from GEO and the Sequence

Read Archive (SRA) [41] as well as labels from metaSRA to create a set of
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transcriptomes associated with age and sex information. We read the sample and
experiment descriptions of this entire set of samples to ensure the accuracy of the age
and sex labels, as well as to remove any samples that were not bulk, primary human
samples.

Our goal with the manual curation step was to assemble a set of samples that would
reflect age- and sex-specific molecular mechanisms as faithfully as possible. In addition
to improperly assigned age and sex labels, we removed any single cell or single nuclei
data, xenografts, microbiome samples, pooled samples, and cell lines. Cell lines were
removed due to the tendency of many lines to lose their Y or inactive X chromosome
[42], the variability in the ability of cell lines to represent biology of primary cells [43—45],
and contamination issues [46]. Our final set of samples is divided into age groups based
on sex hormone levels in each sex across all ages [1]. This set has a larger number of
samples and datasets in the middle age groups than the youngest and oldest ranges
(Fig. 3.1c, Fig. A3.1) and overall seem to be biased towards samples from blood, brain,
small intestine, liver, and lung tissues (Fig. A3.2).

Although tissue bias should be considered, it is worth noting that even when age- or
sex-biased genes are determined by restricting samples to a single tissue, cell type
composition has a significant effect and will alter results if not controlled for. For
example, a handful of studies previously reported breast as the most sex-differentiated
tissue [21,24,26], but the most recent GTEx consortium study [47] did not observe this
result after controlling for cell type composition. Pellegrino-Coppola and colleagues
recently reported a similar importance for cell type correction when determining genes

associated with aging from gene expression data [35]. On the task of age prediction,
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Wang and team found that combining expression data from two tissues reduced the
margin of error when predicting the age of GTEx (mostly adult) samples compared to
using expression from one tissue [48]. Nonetheless, to investigate the effect of
separating out samples by tissue, we repeated some analyses by restricting them to
samples from blood only, as it was the most common tissue labeled in our set. However,
not enough blood samples were annotated to the fetal (< 0) age group or the oldest age

group to include them in the blood-only analyses.
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Figure 3.1. Workflow and data. (a) Data was obtained from Gene Expression Omnibus and refine.bio for
microarray and RNA-seq, respectively. A combination of text matching and metaSRA labels were used to
create a first draft for sex and age labels. These labels were then manually inspected to ensure they were

correct and keep only primary human samples. Finally, the labeled data was used to assess sex and age
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Figure 3.1. (cont’d)

bias in the large, publicly available set. (b) The table contains the number of datasets and samples used
in some of the largest differential expression studies across sex published in recent years as well as the
number of datasets and samples used in this study. The previous studies used only RNA-seq data, while
this study uses both microarray and RNA-seq. (¢) The bar plots show the number of samples used in this

study separated by age group (y axis) and sex (bar color).

Age-stratified sex-biased genes

We first used our age- and sex-labelled transcriptome dataset to determine
age-stratified sex-biased genes. Independently in microarray and RNA-seq data, we
converted the expression of each gene across all samples into z-scores and, for
samples within each age group, stepped through the distribution at fixed intervals to find
the best expression threshold for that gene to separate ‘Female’ and ‘Male’ samples.
Balanced accuracy was used as a metric to determine how well-separated samples
were based on each gene’s expression while recording whether the expression was
higher in the Female or Male samples (Fig. 3.2a; see Methods). Only 19 genes had a
balanced accuracy = 0.8 in at least one age group in either microarray or RNA-seq data
and all these genes were on the X or Y chromosome (Fig. 3.2b). As sex differences
tend to be quite small and often tissue-specific [12], it is not surprising that all of the
strongest sex-biased genes reside in the sex chromosomes. The only Female-biased
genes in this set include XIST, the major effector of X chromosome inactivation, and
TSIX, the antisense RNA for XIST. The most surprising result is that one gene in this
set, ANOST, is both varyingly Male-biased across almost all age groups and is on the X
chromosome. Mutations in ANOS171 have been associated with hypogonadism and

Kallmann Syndrome in men [49].
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To ensure that the major signals captured here are not because of tissue-bias across
females and males, we repeated this analysis using only samples that came from blood
in all but the youngest and oldest age groups due to a low number of samples.
Excluding genes reaching the 0.8 threshold only in these age groups from the whole
sample set, the blood-only analysis recapitulated all strongly sex-biased genes except
NLGN4Y, a membrane protein in the neuroligin family (Fig. A3.3). Other sex-biased

genes found in blood samples were restricted to a single age group each.
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Figure 3.2. Sex bias of gene expression across age groups. (a) Distribution of male and female
samples with a given z-scored expression value of Xist (top) and KDM5D (bottom) in different age groups.
(b) The heatmap displays all genes (x axis) that had a balanced accuracy of at least 0.8 in any age group

(y axis) when separating male and female microarray or RNA-seq samples.

We then examined genes with weaker sex bias, but reasonably consistent across
technologies. These were genes biased in the same direction in both RNA-seq and

microarray data, but only reached a balanced accuracy of 0.65 in one of the

96



technologies (Fig. 3.3). No Y chromosome genes that did not reach a balanced
accuracy of 0.8 in at least one age group were added in this set, but several more
genes from the X chromosome were added, including 4 more genes that were
Male-biased (DUSP9, CD99, THOC2, SMARCAT) in some of the younger age groups.
The only Female-biased X chromosome gene common across all age groups was
KDMG6A, a lysine demethylase. The next most common Female-biased X-chromosome
genes across age groups were EIF1AX, PUDP, and ZFX. These were all common to
the seven youngest age groups along with the oldest age group. Interestingly, general
sex-biased expression seems to taper off as age increases (Fig. 3.3), but the oldest age
group contained a particularly high number of Female-biased genes (26), all on the X
chromosome. These genes were not enriched for any particular function. The youngest
age groups also show the most sex bias in autosomal genes; the four oldest age groups

showed no sex-biased autosomal genes.
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Figure 3.3. Number of sex-biased genes across age groups. The barplot shows the total number of
(a) Female-biased and (c¢) Male-biased genes per age group. The tables below display the number of (b)

Female-biased and (d) Male-biased genes on each chromosome per age group.

Age group prediction stratified by sex

Next, for each sex, we used our dataset to scan for genes that were able to differentiate
between age groups to find sex-stratified age-biased genes. We set this task up as a
supervised machine learning problem and trained logistic models to distinguish one age
group from all others, independently for each sex, in RNA-seq (Fig. 3.4) and microarray
(Fig. 3.5) data separately. We used an elastic-net penalty to encourage sparsity while

balancing the contributions of correlated genes. Entire datasets were always kept within
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a fold to avoid rewarding the model for learning study-specific signals (Fig. A3.4).
Across all age groups, ML models based on RNA-seq use less genes to predict sample
age group (Fig. 3.4a,c, Fig. 3.5a,c). In both technologies, the middle age groups are
harder to separate from other age groups using gene expression, as evidenced by the
higher number of genes required by the model and slightly lower performance

compared to the very youngest and oldest age group models (Fig. 3.4 and 3.5).
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Figure 3.4. Size and performance of RNA-seq age group prediction models. The stacked barplots

show the distribution of positive, zero, and negative weights for the model with the median number of
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Figure 3.4. (cont’d)

positives across the three folds for each age group in RNA-seq for (a) Females and (c) Males. The
heatmaps contain average auROC of RNA-seq models trained on the age group labeled in the rows when
evaluated using the samples in the age group labeled in the column as positive examples for (b) Females

and (d) Males.

In addition to measuring the performance of each model on the age group it was trained
to classify, we also evaluated it on samples from each of the other age groups (Fig.
3.4b,d, Fig. 3.5b,d). The heatmaps in Figure 3.4 and Figure 3.5 contain the average
area under the Receiver Operator Characteristic curve (auROC) across 3 folds for each
age group model trained on a specific age group (rows) and evaluated as if the age
group in the column were the positive examples. We chose to display auROC as it can
be easily interpreted as a probability. Thus, the value in each cell of a heatmap is the
probability that a randomly selected sample from the test age group (column) would be
ranked higher than a randomly selected sample from any other age group by the age
group model in the row. However, auROC is not the best measure of performance when
there is high imbalance of positive and negative examples, as we have in this age-group
classification task. So, we also include heatmaps of the performance measured with
log,(auPRC/prior) in the supplement (Fig. A3.5-8). This metric accounts for class
imbalance and emphasizes the accuracy of top-ranked positive samples. Nevertheless,
evaluation results with this metric largely agrees with those shown by auROC.

Overall, the classifiers show good performance across age groups in both RNA-seq and
microarray samples, with more difficulty in the middle age groups (Fig. 3.4b,d, Fig.
3.5b,d, Fig. A3.5-8). We also see poorer performance in the [0-2] age group RNA-seq

models, where we have one of the lowest number of positive examples (Fig. 3.4b,d,
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Fig. 3.1c). In general, however, the number of training positives does not correlate with
higher performance (Fig. A3.9). For instance, the 45-60 age group in both sexes has
the worst prediction performance with microarray samples despite having the highest
number of samples. (Fig. 3.5b,d, Fig. 3.1¢)

We repeated this analysis using only blood samples for training and evaluation using
three test sets, but reusing some training data in all folds because the lower number of
samples made it impossible to perform a strict three-fold cross validation for some age
groups. Even with this adjustment, we still were not able to include the youngest and
oldest age groups (Fig. 3.10). Overall, the blood-only models used less genes to
classify samples (more genes had zero weight) than the models using all tissues, but
had poorer prediction performance in most age groups (Fig. A3.11-16). This result
suggests that including data from multiple tissues may improve the age signal-to-noise
ratio (see Discussion).

To check consistency between folds and similarity between models in different age
groups in both sexes and technologies, we calculated the cosine similarity of the model
weights across all genes (Fig. A3.17-21). As expected, invariably, models trained on the
same age group, sex and technology are more similar to each other than to models that
differ in any of those factors. For the youngest age groups, especially fetus, we observe
the models to be similar even across sex and technologies. This observation combined
with the high performance of these models indicates that fetal gene expression is robust
and very distinct from all other age groups. Conversely, most sex-stratified age group
models are not similar across RNA-seq and microarray, indicating a substantial

technology effect.
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Figure 3.5. Size and performance of microarray age group prediction models. The stacked barplots

show the distribution of positive, zero, and negative weights for the model with the median number of
positives across the three folds for each age group in microarray for (a) Females and (c) Males. The
heatmaps contain the average auROC of microarray models trained on the age group labeled in the rows
when evaluated using the samples in the age group labeled in the column as positive examples for (b)

Females and (d) Males.

Finally, the cross-age-group evaluations (Fig. 3.4 and 3.5) also demonstrate that the
age group models capture the chronological relationships between age groups. We

quantified this pattern more precisely by dividing all age groups into four categories with
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reference to each model. The ‘target’ age group is the one that the model was trained
on, ‘bordering’ age groups are those directly before or after the target, and ‘nearby’ age
groups are those that are one-removed from the target. Every other age group is
marked as ‘distant’. As we train a one-vs-rest model for each age group, the model is
designed to separate target (positive) samples from non-target (negative) samples and
does not have any external information about the chronological relationships between
age groups. Despite this setting, we observe that age group models assign higher
probabilities to samples from neighboring age groups and lower probabilities to those
from distant age groups (Fig. 3.6). This trend holds in both sexes for RNA-seq and
microarray models and is strong evidence for our models capturing biologically-relevant
age signals. A similar trend can be observed in the blood age group model

performances, but it is not quite as strong, especially in Females (Fig. A3.22)
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Figure 3.6. Performance of models when evaluated on near and distant age groups. Boxplot of
auROC of all RNA-seq and microarray Female and Male models when considering target, bordering,

nearby, and distant age groups as positive examples (key on right).
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Sex-stratified age-biased genes

We defined sex-stratified age-biased genes per age group by choosing genes that were
assigned a positive weight in the corresponding model in at least five folds across the
six folds between the microarray and RNA-seq models, with a non-negative weight in
the remaining fold, if any. The middle age groups have a higher number of age-biased
genes than other age groups (Fig. 3.7, (Fig. 3.4a,c, Fig. 3.5a,c)). Across all age groups
in both sexes, the number of age-biased genes from each chromosome tends to
correlate with the total number of genes on the chromosome. Similar trends are present
in negatively-weighted genes from models in each sex (Fig. A3.23). In total, across all
age groups, 6,488 genes are age-biased in Female models and 6,975 genes are
age-biased in Male models, but only 2,838 of those genes are common between them.
The vast majority of these age-biased genes are biased in only one age group per sex
(5,447 in Females; 5,734 in Males). In each sex, about 1,000 genes are age-biased in
two age groups, around 100 in three age groups, and about 10 in four or five age
groups. Taken together with the good performance of our prediction models, these
results suggest that each age groups has a distinct expression signature and that
development and aging processes have sex-specific differences detectable in large

datasets.
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Figure 3.7. Number of age-biased genes across age groups in each sex. The table displays the
number of age-biased genes on each chromosome per age group and the barplot shows the total number
of age-biased genes per age group in (a) Females and (b) Males.

Enriched experimental genesets in age-stratified sex signatures

All the analyses presented above have resulted in several genome-wide gene
signatures associated with sex and age. To enable us and other researchers efficiently
interpret (and search) these signatures in relation to various biological contexts, we
associated these signatures to coherent genesets annotated to biological processes
[50], traits [51], diseases [52,53], phenotypes [54], and cell types [55]. First, we defined

age-stratified sex gene signatures as genes across the genome along with their signed
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normalized balanced accuracy scores, which indicates the extent to which each gene
was able to separate Female from Male samples (or vice versa) in a particular age
group (See Methods). We then used a permutation test to estimate the strength and
direction of association (i.e., ‘enrichment’) of each geneset with each signature (see
Methods).

We applied this approach to compare the sex gene signatures calculated in our study
and those from previous studies — Guo et al (2016) [23], SAGD (2019) [56], and GTEXx
(2020) [47] — estimated using differential expression analysis in multiple tissues.
Overall, the agreement between studies is very high. The only prominent disagreement
occurs with GTEx signatures, especially in our [0-2] sex signature (Fig. A3.24).
However, there are no samples from children in GTEx, which makes it unsuitable for
capturing what sex-biased expression should look like in children no older than 2. All the
other partial and minor disagreements are likely point to sex biases in specific age
groups found in our analysis that were not seen in previous analyses that did not stratify
data by age. However, the allround agreement suggests that gene signatures we
estimate reflect patterns of sex differences in expression across various tissues.
Application of the geneset enrichment approach to genesets from various sources
resulted in hundreds of biological contexts associated with sex across age group.
Notable among them is the pan-body phenomenon of immune response that plays a
central role in autoimmune diseases more prevalent in females [57,58]. We found the
large maijority of immune response-related (Fig. 3.8a) and viral-related (Fig. 3.8b)

biological processes to be Female-biased across most age groups. Notable exceptions
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include the < 0 and (2-8] age groups. A very similar trend can be observed with the
enrichment of immune diseases (Fig. 3.8¢) and immune phenotypes (Fig. 3.89).
Consistent with previous studies [59,60], the marker genes of B cells, T cells, and
lymphoid cells tend to be Female-biased in our sex signatures (Fig. 3.8d, e), again with
the exception of the < 0 and (2-8] age groups, and the (60-70] age group for B cells. We
also observe that myeloid cells tend to have Male-biased enrichment in the younger age
groups (consistent with a previous study [60]) and Female-biased enrichment in older
age groups.

Further, we find many metabolic processes to be Male-biased in our age-stratified sex
signatures, consistent with findings from a previous study [23] (Fig. A3.25). Together,
these enrichment results indicate the potential utility of our signatures to investigate sex
differences of multi-tissue processes such as immune response and metabolic
processes, along with corresponding disease mechanisms in different stages of the

human lifespan.
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signatures. Female- and Male-bias enrichment of experimentally-derived gene sets. Heatmaps show

enrichment scores for (a) a representative (See Methods) set of immune-related GO biological processes
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Figure 3.8. (cont’d)

(b) a representative (See Methods) set of viral-related GO biological processes, (¢) immune-related
diseases, (d) immune cell type marker genes, (e) tissue-specific immune cell type marker genes, (f)
Schwann cell marker genes, and (e) immune-related phenotypes.

Enriched experimental genesets in sex-stratified age group signatures

In addition to being valuable for making age group prediction of new samples, our age
group models can be biologically interpreted. To do so, we first defined sex-stratified
age-group gene signatures as genes across the genome along with their model
coefficients. Here, the genes with positive and negative coefficients in a model
correspond to genes whose relative high and low expression, respectively, are
characteristic to the pertinent age group (see Methods). Then, we used the same
permutation-based geneset enrichment strategy as above to associate hundreds of
biological contexts — biological processes, traits, diseases, phenotypes, and cell types
— to these signatures (see Methods for details).

We began our investigation of these results by focusing on biological processes that
show enrichment strongly correlated with increasing (Fig. 3.9a,b) or decreasing (Fig.
3.9c,d) age. Apoptosis-related processes are associated with relatively low or
non-expression in young age groups but show increased association with older age
groups in age signatures in both sexes, especially in Females, reminiscent of observed
aging processes [61]. In Males, positive regulation of NF-kappaB signaling and negative
regulation of lymphocyte migration also increase in association with age, consistent with
other studies [60,62].

On the other hand, processes that are associated with higher expression in younger

age groups and lower in older age groups include developmental processes and
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collagen fibril organization, which has been noted in multiple prior studies [63—65].

Together, these results suggest that our age signatures and enrichment patterns will be

powerful for studying sex-specific processes of aging and development.
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Figure 3.9. Enrichment of experimentally-derived genes sets from in our sex-stratified age

signatures. Age-bias enrichment of experimentally-derived gene sets. Heatmaps show enrichment

scores for GO biological processes that are associated with increasing age in (a) Females and (b) Males

and GO biological processes that are associated with decreasing age in (c¢) Females and (d) Males. Each

of these biological processes has a Spearman correlation over +0.8 or under —0.8 with age group.
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Discussion

Age and sex have historically not received the attention they deserve in biomedical
research, resulting in fundamental gaps in our understanding of how these factors
influence normal physiology and disease mechanisms. In this project, we make an effort
to enable the biomedical community to systematically address these gaps. First, we
assembled the largest set of manually-curated age- and sex-labeled bulk, primary
human gene expression samples to date. Using these data, we show that it is possible
to predict age group from gene expression with reasonably high accuracy using simple
one-vs-rest logistic regression models. We then investigated the genes across the
genome with age-stratified sex bias and sex-stratified age bias — both identified in a
data-driven manner. These analyses have provided insights into several aspects of age-
and sex-related human gene regulation, cellular pathways, and disease.

Sex and age group prediction from gene expression

Though we conducted an expansive search for transcriptome samples with sex and age
labels, there are several tissue and disease biases in our dataset. As blood is one of the
easiest tissue to collect from humans, it is not surprising that the largest set of samples
are from blood (Fig. A3.2). Brain, small intestine, liver, lung, and retina all have
hundreds of samples each as well. Often, studies separate samples based on tissue
and then determine age- and sex-biased genes through differential expression or age
prediction. However, even stratifying samples by tissue is not enough to determine age-
and sex-biased genes without prejudice as cell type composition affects these results
[35,47]. One study that considered multi-tissue signatures in age prediction showed that

prediction improves when gene expression from more than one tissue is used to predict
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age [29]. Ren and Kuan [33] recently compared several different tissue-specific and
across-tissue genesets to use as features for expression-based age prediction models
using data from GTEXx. Their results show that an across-tissue geneset derived from
expression across all GTEXx tissues have similar performance in prediction to using only
differentially expressed genes for a given tissue. When training in one tissue and
predicting age in another, the across-tissue feature set was superior. We too tested age
group prediction using only blood samples in our dataset and found that prediction
performance decreased in most age groups (Fig. A3.11-16). Combined with results
from previous studies, our findings suggest that age signal-to-noise ratio improves when
including expression from multiple tissues. In determining sex-biased genes, we found
that subsetting to only blood samples does not meaningfully change the results (Fig.
A3.3). In addition to tissue biases, our dataset also certainly has disease biases due to
inherent differences in the incidence of disease in different age and sex groups, along
with their likelihood to be studied. The National Institutes of Health lists infectious
diseases, brain disorders, and cancer as amongst its top-funded in disease research in
recent years [66]. As expected, these diseases make up a large number of the samples
in our dataset.

Age group prediction was more difficult in the middle age groups (Fig. 3.4b,d, Fig.
3.5b,d, Fig. A3.5-8). This is not surprising, as environmental factors, lifestyle, and aging
begin to contribute to more heterogeneity in these age groups, although nonlinearly and
nonuniformly [67]. This is also reflected in the similarity between age group models (Fig.
A3.17-21). There is more similarity between the young age group models than in older

age groups, especially when comparing across sexes and technologies. The
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dissimilarity between RNA-seq and microarray models is likely due to technological
differences including the large difference in dynamic range between RNA-seq and
microarray experiments. Nevertheless, even if the genes used in the same age group
models are different across technologies, it is possible that they play a role in similar
biological processes and pathways, which we can test in the future by comparing
enrichment results between technologies.

Enrichment of experimental genesets in age and sex signatures

Our age-stratified sex-signatures showed many immune response-related genesets to
be Female-biased (Fig. 3.8). Females usually produce a stronger immune response
than Males and this is thought to contribute to their increased susceptibility to
autoimmune diseases [58,68]. This increased susceptibility is profound, as Females
account for 80% of autoimmune disease occurrence [57,58]. A few autoimmune disease
incidence rates are close to even between sexes, but there are no common
autoimmune diseases that show a bias towards Male prevalence at the degree that
autoimmune diseases like rheumatoid arthritis, lupus and Hashimoto's show towards
Female prevalence [69]. The many immune response-related genesets found to be
Female-biased in our signatures might help probe the molecular underpinnings of these
differences.

Our age-stratified sex-biased signatures were able to recapitulate previously-observerd
sex differences in cell type composition. A study of individuals aged 20-35 years found
that Females have a higher number and proportion of B cells [59]. Another study
conducted by Marquez and colleagues with a range of individuals aged 22-93 years

found a Male-specific decline in B cell proportion after the age of 65 [60]. This study
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also found many lymphoid cells and T cell populations to be more abundant in Females,
the latter supporting the result of another study that had found naive T cells specifically
to be higher in Females [70]. These cell types are more commonly Female-biased in our
age-stratified sex-biased signatures (Fig. 3.8d,e). On the other hand, the previously
mentioned Marquez et al study also found myeloid lineage cells (particularly monocytes)
to be more abundant in Males [60] (Fig. 3.8d,e). We observe this Male-bias in the
younger age groups. Altogether, our signatures show high concordance with sex-biases
observed in previous immune studies, suggesting that they will be excellent tools to
study other pan-body sex-biased processes and disease mechanisms.

We noted several apoptosis and programmed cell death processes associated with
increasing age in our sex-stratified age-biased signatures, which are well known to be
associated with the process of aging [61] (Fig. 3.9a,b). Positive regulation of
NF-kappaB signaling and negative regulation of lymphocyte migration is associated with
increasing age in the Male signatures (Fig. 3.9b). These observations are consistent
with studies that link NF-kappaB signaling to the aging process [62] and show that
adaptive immune function decreases with age, especially in men [60]. Other processes
associated with decreasing age are developmental processes and collagen fibril
organization (Fig. 9c¢,d). Several studies have associated increased age with lower
collagen levels and lower integrity and increased dysregulation of the collagen network
[63—-65]. These biologically-meaningful age associations show the utility of these
data-driven signatures for investigating molecular processes related to aging and

development.
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Availability of data and code

We make the set of ~30,000 age- and sex-associated curated transcriptome samples
and code to reproduce these approaches available via GitHub so that other researchers
may build upon them for their own studies. Our genome-wide sex-biased and
age-biased gene signatures and the associations of hundreds of biological contexts with
these signatures will be searchable by an online webserver to make these results easily
accessible for biomedical researchers. The community can use these signatures and
associated contexts to explore the age- and sex-biased expression patterns of one or
more of their favorite genes, use the sex- and age-biased gene signatures to inform the
genes prioritized in new studies, and/or search through the thousands of precalculated
enrichment results using the names of pathways, cell types, phenotypes, traits, and
diseases of interest to examine the association of constituent genes with sex and age.
Finally, we will also make expression values of labeled transcriptomes available via the
web interface for biomedical researchers to search and compare gene expression
between age and sex groups of interest.

Methods

Data collection

We downloaded human microarray gene expression data from the Gene Expression
Omnibus (GEO) [15] as raw CEL files. Due to different platforms measuring different
genes, we restricted the data to samples from the Affymetrix Human Genome U133
Plus 2.0 Array. The CEL files were processed with background subtraction, quantile
transformation, and summarization using fRMA [71] based on custom CDF [72]

mapping probes to Entrez gene IDs. We downloaded Salmon [73] output files for all
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human RNA-seq samples available in refine.bio [40] and removed samples with over
50% zero counts. The Salmon-calculated TPM values for the remaining RNA-seq
samples were used for all further analysis. We also restricted analysis to genes
measured on both platforms, for a total of 18,478 genes.

Curation of age and sex labels

Age and sex labels were curated for microarray and RNA-seq data with a combination
of text mining and manual curation. For the microarray data, we downloaded sample
descriptions for our microarray from GEO and used simple text matching to identify
samples associated with potential age and sex information. We manually checked these
text-matched labels by reading the sample descriptions and verifying that the label was
correct and removing erroneously labeled samples. For RNA-seq data, we downloaded
metaSRA [74] version 1.8 to identify samples associated with potential age and sex
information. We then used ffq [75] to fetch sample accession data from the Sequence
Read Archive (SRA) [41] to match the sample identifiers used in metaSRA to the run
identifiers used in refine.bio. We manually checked these labels as well by reading
sample descriptions obtained from SRA. Both microarray and RNA-seq sample
descriptions were also used to remove samples that are not primary human samples,
and in the case of RNA-seq, to remove samples that are not bulk samples (i.e. single
cell or single nuclei). Examples of removed samples include cell lines, xenografts, and
pooled samples.

Age-stratified sex-biased genes

Sex-biased genes were determined separately in microarray and RNA-seq data. Within

each set of data, the expression values of each gene were z-scored across all samples.
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Samples were divided by age group. For each gene, the z-score value that best
separated the male and Female samples within an age group was found by calculating
the arithmetic mean of sensitivity and specificity at each value from the minimum to
maximum z score in steps of 0.2. Essentially, we considered each z score value as a
simple model to predict sex. Every sample with an expression z score above the value
was labeled ‘Female’ and every sample with an expression z score below the value was
labeled ‘Male’. By reconfiguring the balanced accuracy equation (below) to replace
‘positives’ with ‘Females’ and ‘negatives’ with Males, we create a Female-bias metric for
the expression of each gene. The balanced accuracy is the arithmetic mean of
sensitivity and specificity of a model and ranges from 0 to 1. In our metric, 1 is the
extreme end of Female bias (all Female samples have higher expression than the cutoff
value and all male samples have lower expression), 0 is the extreme end of male bias
(all male samples have higher expression than the cutoff value and all Female samples
have lower expression), and 0.5 is perfectly balanced. The same process was repeated
using only samples from blood for the blood-only analysis. For heatmaps of strongly
sex-biased genes (Fig. 3.2, Fig. A3.3), we subtract the Female-bias metric score from 1

to plot the balanced accuracy if Males are considered the more highly-expressed group.

balanced accuracy = 1 ( True Positives True Negatives )
y = 2\ True Positives + False Negatives True Negatives + False Positives
. . 1 True Females True Males
Female-bias metric = 2 ( True Females + False Males True Males + False Females )

Logistic regression models
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Separately for microarray and RNA-seq data, in each sex, for each age group, we
trained a one-vs-rest logistic regression model with an elasticnet penalty. RNA-seq data
was asinh transformed but no other scaling was used. In every sex/technology
combination, three folds of all the samples were created for cross-validation by
assigning entire datasets at a time, roughly by assigning the three largest remaining
datasets to each of the three folds in a manner that kept the number of samples and
datasets as equal as possible across all folds. In RNA-seq data, 145 fetal samples were
added by predicting sex in samples without sex information to increase the number of
samples to a number viable for 3-fold cross validation. Sex was predicted based on 15
genes with over 0.9 balanced accuracy in separating Female and Male samples with a
simple expression cutoff. Only samples with sex agreement in at least 13 out of the 15
genes were labelled with the predicted sex and kept in our labeled set.

To create sex-stratified age signatures in blood samples only, we assigned the 3 largest
datasets of each age group to one of three test folds making concessions to keep full
datasets together if there was a conflict across age groups. To ensure each test fold had
at least one dataset with at least 5 samples from a given age group, we excluded age
groups without enough data to meet this threshold in both microarray and RNA-seq
data. The remaining datasets were used in training for all three test folds. The folds
sizes and age group distribution for all models are shown in Figures A3.4 and A3.10.
Curation of other genesets for enrichment analysis

Genesets from previous sex differential expression studies, GTEx, SAGD, and Guo et
al, were downloaded from the supplemental data in their respective publications. We

used all genes declared significant by the authors for any defined group they had
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curated. Biological Process annotations with experimental evidence codes (EXP, IDA,
IPI, IMP, IGI, TAS, IC) were downloaded from the Gene Ontology [50] and propagated
to all ancestor Gene Ontology Biological Process (GOBP) terms. We then subset GOBP
terms to those with 10 to 200 annotated genes to remove terms with too few genes to
do enrichment or terms that are too general to be practically useful. Human disease
genes were downloaded from the Monarch Initiative [52,53] webpage at

https://data.monarchinitiative.org/latest/tsv/gene_associations/gene_disease.9606.tsv.q

z. The genes in the Monarch Initiative file are annotated to disease terms in the Mondo
[76] disease ontology. We propagated these annotations to all ancestor Mondo terms
and removed any terms without at least 10 genes. Phenotype genes were obtained
from Mouse Genome Informatics [77] (MGI) file that can be found at

http://www.informatics.jax.org/downloads/reports/MGIl GenePheno.rpt. We converted

these annotations to human genes using the MGI file that can be downloaded from

http://www.informatics.jax.org/downloads/reports/HOM MouseHumanSequence.rpt and

propagated them to all ancestor terms in the Mammalian Phenotype Ontology [78]. We
created sets of genes for GWAS Atlas [51] traits using the Release 3 metadata file at

https://atlas.ctglab.nl/#:~:text=Plain%20text%20file%3A-,gwasATLAS v20191115,-.txt.g

z%0AExcel and the MAGMA p value file that accompanies these traits at

https://atlas.ctglab.nl/#:~:text=gwasATLAS v20191115 _magma_P. The genes with the

25 lowest p values were selected as the geneset for each trait. Cell type marker genes
from lanevski et al [55] were downloaded from their github at the following link:

https://qithub.com/lanevskiAleksandr/sc-type/blob/master/ScTypeDB full.xlIsx.
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Enrichment analysis

In order to determine an enrichment score for each geneset in the age and sex
signatures, we used a permutation test to calculate a z score. For each geneset, we
calculated the average age-stratified sex enrichment or sex-stratified age bias using the
Female-bias metric (converted to a range of —1 to +1 by multiplying it by 2 and
subtracting 1) or weight in the logistic regression model, respectively. Then, we pulled a
random sample of genes of the same size as the geneset to calculate the average bias
of that set. This was repeated 100,000 times and the mean and standard deviation of
this distribution was used to calculate a z score for the bias of the original geneset.

The enrichment process for age-stratified sex-biased genes was done separately in the
microarray and RNA-seq data using their respective converted Female-bias metric
scores for all genes. The z score obtained for each geneset in microarray and RNA-seq
data is combined via Stouffer's method (equation below). For sex-stratified age
enrichment, the weight of each gene in the one-vs-rest logistic regression models were
used in the enrichment process. As there were six trained models for each age group (3
RNA-seq models, 3 microarray models), we used our permutation test to determine a z
score for each experimentally-derived geneset for each model, averaged the z scores
across the 3 folds in each technology separately, and combined the z score from
RNA-seq and microarray with Stouffer’s Method. This final z score was taken as the
enrichment score for each age group (equation below). For visualization, extreme z

scores were reduced to +5 or -5 if they were higher or lower than that, respectively.

Stoufferls Z _ Zmicroarray + ZRNA—Seq
- 2
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For heatmaps with “representative” sets of genesets/ontology terms, the python
package orsum [79] was used to find a nonredundant set of terms. The orsum method
will discard a geneset/term if there is a more significant term that annotates at least the
same genes. The remaining more significant term is representative for the discarded

term.
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Figure A3.1. Number of samples and datasets across age and sex groups. Number of samples
labeled with age and sex in (a) RNA-seq and (b) microarray. Number of datasets in (¢) RNA-seq and (d)
microarray.
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Figure A3.2. Number of samples across tissues. Number of samples per tissue in (a) RNA-seq and (b)

microarray.
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Figure A3.3. Most strongly sex-biased genes in blood samples across age ranges. The heatmap
displays all genes (x axis) that had a balanced accuracy of at least 0.8 in any age range (y axis) when
separating Female and Male microarray or RNA-seq blood samples.
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Figure A3.4. Fold sizes for age range prediction models. The top barplots show the number of
samples in each fold for models trained in (a) RNA-seq and (b) microarray. The bottom barplots show the
number of datasets in each fold for models trained in (¢) RNA-seq and (d) microarray.
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Figure A3.5. Performance of RNA-seq Female age range prediction models. The heatmaps contain
average log,(auPRC/prior) performance of RNA-seq models across 3 folds trained in Female samples on

the age range labeled in the rows while evaluated as if the age range labeled in the column were the
positive examples.
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Figure A3.6. Performance of RNA-seq Male age range prediction models. The heatmaps contain
average log,(auPRC/prior) performance of RNA-seq models across 3 folds trained in Male samples on

the age range labeled in the rows while evaluated as if the age range labeled in the column were the
positive examples.
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Figure A3.7. Performance of microarray Female age range prediction models. The heatmaps
contain average log,(auPRC/prior) performance of microarray models across 3 folds trained in Female
samples on the age range labeled in the rows while evaluated as if the age range labeled in the column
were the positive examples.
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Figure A3.8. Performance of microarray Male age range prediction models. The heatmaps contain
average log,(auPRC/prior) performance of microarray models across 3 folds trained in Male samples on

the age range labeled in the rows while evaluated as if the age range labeled in the column were the
positive examples.
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microarray Female and Male models.
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Figure A3.10. Fold sizes for age range prediction models in blood samples. The top barplots show
the number of samples in each fold for models trained on blood samples in (a) RNA-seq and (b)
microarray. The bottom barplots show the number of datasets in each fold for models trained on blood
samples in (¢) RNA-seq and (d) microarray.

138



a [0-2] l - I b
o =

g o B

3 (35-45] 10740

gl ==
(60-70] - - -
(7o-80] [ - S

c 0.2 l - Id
o B =

g co [

Y

3 (35-45] 1ods

€ (45-60] = o =
(e0-70) [ = -
(7o-s0) i) - -

. D DD S S DSOS S
weight I negative zero [l positive & & @/" T
XYY @ ¥ ©

number of genes test age range

auROC _

025 050 0.75

Figure A3.11. Size and performance of RNA-seq age range prediction models in blood samples.
The stacked barplots show the distribution of positive, zero, and negative weights for the model with the
median number of positives across the three folds for each age range in RNA-seq for blood samples from
(a) Females and (b) Males. The heatmaps contain auROC performance of RNA-seq models trained on
the age range labeled in the rows while evaluated as if the age range labeled in the column were the
positive examples (¢) Females and (d) Males.
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Figure A3.12. Size and performance of microarray age range prediction models in blood samples.
The stacked barplots show the distribution of positive, zero, and negative weights for the model with the
median number of positives across the three folds for each age range in microarray for blood samples
from (a) Females and (b) Males. The heatmaps contain auROC performance of microarray models
trained on the age range labeled in the rows while evaluated as if the age range labeled in the column
were the positive examples (c) Females and (d) Males.
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Figure A3.13. Performance of RNA-seq Female age range prediction models for blood samples.
The heatmaps contain average log,(auPRC/prior) performance of RNA-seq models across 3 folds trained

in Female blood samples on the age range labeled in the rows while evaluated as if the age range labeled
in the column were the positive examples.
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Figure A3.14. Performance of RNA-seq Male age range prediction models for blood samples. The
heatmaps contain average log,(auPRC/prior) performance of RNA-seq models across 3 folds trained in
Male blood samples on the age range labeled in the rows while evaluated as if the age range labeled in
the column were the positive examples.
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Figure A3.15. Performance of microarray Female age range prediction models for blood samples.
The heatmaps contain average log,(auPRC/prior) performance of microarray models across 3 folds
trained in Female blood samples on the age range labeled in the rows while evaluated as if the age range
labeled in the column were the positive examples.
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Figure A3.16. Performance of microarray Male age range prediction models for blood samples.
The heatmaps contain average log,(auPRC/prior) performance of microarray models across 3 folds
trained in Male blood samples on the age range labeled in the rows while evaluated as if the age range
labeled in the column were the positive examples.
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Figure A3.17. Cosine similarity of RNA-seq model weights. The heatmap shows the similarity
between all RNA-seq models trained in both Females and Males. The number after the age range is the
number of positive training examples.
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Cosine similarity between microarray models
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Figure A3.18. Cosine similarity of microarray model weights. The heatmap shows the similarity
between all microarray models trained in both Females and Males. The number after the age range is the
number of positive training examples.
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Figure A3.19. Cosine similarity of Female model weights. The heatmap shows the similarity between

all RNA-seq (‘R_’ prefix) and microarray (‘M_’ prefix) models trained in Females. The number after the
age range is the number of positive training examples.
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Figure A3.20. Cosine similarity of Male model weights. The heatmap shows the similarity between all
RNA-seq (‘R_’ prefix) and microarray (‘M_’ prefix) models trained in Males. The number after the age
range is the number of positive training examples.
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Figure A3.21. Cosine similarity of Female and Male model weights. The heatmap shows the similarity
between all RNA-seq and microarray models trained in Males. The number after the age range is the
number of positive training examples.
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Figure A3.22. Performance of blood sample models when evaluated on near and distant age
ranges. Boxplot of auROC performance of all RNA-seq and microarray Female and Male models when
considering target, bordering, nearby, and distant age ranges as positive examples (key on right).
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Figure A3.23. Number of age-biased genes across age ranges in each sex. (a) The table displays the
number of age-biased genes on each chromosome per age range in Females and the barplot shows the
total number of age-biased genes per age range. (b) The table displays the number of age-biased genes
on each chromosome per age range and the barplot shows the total number of age-biased genes per age
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Figure A3.24. Enrichment of sex-differentially expressed genes sets from previous studies in our
age-stratified sex signatures. Female- and Male-bias enrichment of gene sets from previous studies.
Heatmaps show enrichment scores for (a) Guo et al gene sets, (b) SAGD gene sets and (¢) GTEx gene
sets.
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Figure A3.25. Enrichment of experimentally-derived genes sets from in our age-stratified sex
signatures. Female- and Male-bias enrichment of experimentally-derived gene sets. Heatmaps show
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metabolic diseases, and (c) metabolic phenotypes.
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CHAPTER 4: DISCOVERING ANALOGOUS GENES, PHENOTYPES,
AND CONDITIONS ACROSS HUMAN AND MODEL SPECIES USING
MACHINE LEARNING

Background

Model organisms are commonly used to investigate underlying mechanisms and
discover therapeutic opportunities of human complex traits and diseases. However,
animal models have been shown to sometimes be faithful models [1] of human biology
and sometimes they are poor mimics of human biology [2,3]. Whether an animal model
is a good model system depends on disease/trait and species, as changing function,
regulation, and differences in redundancies [4—6] can cause unexpected divergences in
biological processes and phenotypes. Drugs in development must first be tested in
animal models before they are allowed to enter Phase | clinical trials, and using poor
models can be especially costly. A recent study of developmental drug candidates
entering Phase | in the period of 2011-2020 found the likelihood of approval to be about
8% [7]. In rare cases of disaster, compounds that showed no toxicity in other species
have caused multiple organ failure and even death in humans in clinical trials, even at
much lower doses than those tested in animal models [8]. This illustrates the dire need
for methods that can improve the translation of functional results from one species to
another.

Choosing the best model species with the correct experimental conditions is clearly
quite difficult. Genetic background, tissue, developmental stage, and environmental
factors are all crucial considerations. The ideal animal model for studying a specific
aspect of human biology should not only display the desired phenotype but the

underlying molecular mechanism should also be as similar as possible. Current
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computational methods that map related phenotypes across species rely on semantic
similarity of phenotypic descriptions [9], or consider the number of shared homologous
genes that are annotated to each phenotype [10]. Semantic similarity methods ignore
the genetic context of the traits and phenotypes completely by depending only on the
text description of the phenotype, while methods that rely on homologous gene overlap
fail in many cases due to our incomplete knowledge of the genes associated with any
given trait or phenotype. However, there are well over a million publicly-available
transcriptomes across multiple model organisms and humans that help overcome these
challenges of descriptive information and incomplete knowledge. Specifically, these
data can be leveraged to find expression profiles that are able to mimic the
transcriptomic landscape of a given trait, disease, or treatment response captured in a
human sample, which should lead to finding the ideal experimental setting for studying
the human biomedical context of interest.

Many previous studies have used gene expression profiles to make comparisons across
species [11]. These studies typically use differential expression [12-14] or some
similarity metric over absolute expression [15] to identify analogous samples. However,
many complex tissues, traits, and diseases have shared expression modules [16—18].
Hence, to truly map the most similar contexts across species, we must endeavor to use
not all molecular features but just those that are specific to the context of interest. A
supervised learning approach allows us to provide a machine learning classifier with
positive examples of the expression profiles of a particular context, say, a disease, that
need to be contrasted with negative examples of profiles from other (unrelated)

diseases. The classifier is then able to automatically learn context-specific features from
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the expression data, which can then be used to pick out samples from other species in
which the context-specific genes are highly expressed. In this study we develop a
data-driven method to prioritize transcriptomes, and predict experimental settings in
model organisms for studying particular facets of human biology and disease.

Results

Common gene feature sets across species

The first challenge in training machine learning models on a set of transcriptomes in one
species to make predictions in another is that different species do not share the same
set of genes. Therefore, a common set of features must be chosen so that a model is
able to learn the weights of the features in one species and predict using features in the
other. The easiest method to subset to a common set of genes across species is to
retain just those that are one-to-one orthologs of each other. One-to-one orthologs are
genes with a direct evolutionary relationship to only one other gene in the other species
[19]. However, a large portion of genes are not part of a one-to-one orthologous
relationship in any given pair of species. So, using one-to-one orthologs immediately
introduces a loss in the amount of information from transcriptomes that can be used for
this task. Therefore, to increase the number of genes informing the model, we
developed a feature set created by two ways of combining the expression of genes
within orthologous groups (OGs) in each species. One is by averaging the expression of
all genes in the OG and the other is by retaining only the maximum expression value of
all genes in the OG. We use the same two methods to combine expression of genes
that belong to the same biological process (from Gene Ontology; GO [20]). We use GO

biological processes to account for cases where, in the same biological context, the

156


https://www.zotero.org/google-docs/?l6eMv1
https://www.zotero.org/google-docs/?HcM7lq

same functional modules (biological processes) are perturbed but via different member
genes in different species. Further, previous studies have reported increased
performance in gene expression classification tasks by grouping gene expression into
pathway expression [21,22]. The rationale for combining gene expression within groups
by averaging and by retaining the maximum is that while the average is a good
representation of all genes in a given group, it is not robust to our incomplete knowledge
about which genes are part of which groups in any species. This yields five feature sets
for evaluation: one-to-one orthologs (OnetoOne), orthologous groups averaged
(OGs-avg), OGs maximum (OGs-max), GO biological processes averaged (GO-avg),
and GO biological processes maximum (GO-max).

Tissue-labeled samples from multiple species

Although our goal is to map a wide variety of analogous biological contexts across
species, it is difficult to systematically evaluate these mappings in every biological
context based on a large gold standard. The context for which enough sample
information is available and easily comparable across multiple species is that of sample
tissue-of-origin. Therefore, we first manually curated tissue labels for human, mouse,
and zebrafish RNA-seq samples (Fig. 4.1). We chose the six most common tissues —
blood, brain, heart, intestine, liver, and ovary — across all three species based on text

mining results that were subsequently verified manually to ensure accuracy.
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Figure 4.1. Number of samples in each tissue across species. The number of samples in human,

mouse, and zebrafish for each of six tissues.

Proof of concept with six tissues

Using these curated tissue-labeled samples from the three species, we trained a logistic
regression model for each tissue in a given species using each of our five gene feature
sets and then used each model to make predictions on held out samples from the same
species and on all samples in other species. We also tested the feasibility of extending
this method to include commonly-used organisms we could not get enough
tissue-labeled samples for: fly, worm, and yeast. We did this by building feature sets that
combine gene expression across only OGs and GO processes that are common to all
six species, meaning each OG or GO feature needed to include at least one gene from

each species.
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Unsurprisingly, the expression-based tissue prediction models were accurate in
classifying samples from the same species to the right tissue regardless of feature set
(Fig. 4.2). When using feature sets common to 3 species, all five sets had almost
identical performance when predicting on samples from the same species, but GO
features performed worse than orthologous group feature sets in cross-species
predictions. GO-max performance was notably lower than GO-avg.

When we tested feature sets common to 6 species, performance across the board
dropped slightly (Fig. 4.2). Predictions within species were still more accurate than
predictions across species, but instead of an identical performance across feature sets,
we observe that GO features have slightly poorer performance than OG-based feature
sets. In cross species predictions, OnetoOne orthologs seems to have the highest
performance. GO-avg shows similar performance to the OGs-avg and OGs-max, but
GO-max is significantly worse. Overall, the ability to train these models using feature
sets that cover six evolutionary distant species with only a small performance cost is
worth it, so we use feature sets common to all six species for results in the remainder of

the chapter.
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Figure 4.2. Performance of tissue classification models using each feature set built across three

and six species. The boxplots show the prediction performance (Log2P = log,(auPRC/prior)) of each
model trained on a given tissue in each species using a different feature set common to three species

(human, mouse, zebrafish) and six species (human, mouse, zebrafish, fly, worm, yeast) on samples from

a different species (cross species) and the same species.

Ideally, methods to map analogous transcriptomes across species would demonstrate
robust performance regardless of training or test species. We observed that the similar
performance across all five feature sets within a species holds true across tissues in
each species (Fig. 4.3, diagonal plots). When making cross-species predictions, there
is more variability in the performance of different feature sets (Fig. 4.3, off-diagonal
plots). Across all tissues, cross-species predictions involving zebrafish as the training
or testing species tended to have lower performance, and had the most cases where
the models had worse than random prediction performance (bars below zero). The

feature set with worse-than-random performance most often was GO-max. The three
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feature sets based on orthology (OnetoOne, OGs-avg, and OGs-max) performed

similarly to each other in all tissues across species except in a few cases.
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Figure 4.3. Performance of tissue classification models across tissues and train/test species. The
bars show the prediction performance (Log2P = log,(auPRC/prior)) of each tissue classification model
trained in a given species (Training species) and used to make predictions in another species (Test
species). The median performance value from 5-fold cross validation is plotted for models that were

trained and tested in the same species.
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Performance on an expanded set of diverse tissues

Though we observed good performance in most feature sets in most settings, the six
tissues we began with — blood, brain, heart, intestine, liver, and ovary — are disparate,
making for an easier classification problem compared to what we will encounter with
real data from public databases. Therefore, we next expanded the human tissue labels
using manually curated transcriptomes from the TissueNexus database [23]. These
labels increased the number of samples from our original tissues in humans by at least
2.5 times, and added nine other tissues to evaluate performance with and use as
negative examples in training (Fig. 4.4). We also manually curated sample disease
labels for 47 diseases along with as many healthy/control samples as possible in human

datasets.
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Disease # Samples Disease # Samples
melanoma 1035 pancreatic ductal adenocarcinoma 59
acute myeloid leukemia 833 alopecia areata 56
control 662 temporal lobe epilepsy 56
chronic myeloid leukemia 598 tuberculosis 49
hepatocellular carcinoma 519 juvenile rheumatoid arthritis 47
neuroblastoma 510 psoriasis 46
rheumatoid arthritis 394 diffuse large B-cell lymphoma 38
colorectal adenocarcinoma 360 herpes simplex 32
Crohn's disease 264 Huntington's disease 32
amyotrophic lateral sclerosis 216 osteoarthritis 31
meningioma 176 multiple sclerosis 29
lung adenocarcinoma 172 follicular lymphoma 26
biliary atresia 171 liposarcoma 26
multiple myeloma 155 allergic rhinitis 25
lupus erythematosus 139 intrahepatic cholangiocarcinoma 22
HIV infectious disease 108 lung squamous cell carcinoma 21
myotonic dystrophy type 1 104 cutaneous leishmaniasis 20
ulcerative colitis 104 influenza 20
prostate adenocarcinoma 97 autism spectrum disorder 18
mantle cell lymphoma 86 Duchenne muscular dystrophy 18
Lyme disease 84 atopic dermatitis 16
asthma 76 dilated cardiomyopathy 16
endometriosis 68 paroxysmal nocturnal hemoglobinuria 16
pre-eclampsia 68 dengue shock syndrome 15

Figure 4.4. Expanded tissue labels and disease labels. (a) Number of samples in all common tissues
across species with added TissueNexus labels for human. (b) Number of human samples with tissue

labels after expansion. (¢) Number of human samples annotated to each disease.
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With our expanded tissue label set, we see that overall, predictions within species
improve, but cross-species prediction performance lowers significantly (Fig. 4.5). The
number of times cross-species prediction performance drops below random (less than
0) is much higher. The general pattern of all feature sets performing similarly within
species is conserved using the expanded labels, but the orthology-based feature sets

are all equally bad in cross-species predictions.

i

Cross species same species Cross species same species

6

H

Log2P
N

o

Features ® OnetoOne E3 OGs-avg B OGs-max E3 GO-avg B8 GO-max
Figure 4.5. Performance of tissue classification models on previous and expanded labels. The

boxplots show the prediction performance (Log2P = log,(auPRC/prior)) of each model trained on a given
tissue in each species using previous and expanded sample labels (see Fig. 4.4) and different feature

sets on samples from a different species (cross species) and the same species.

Within human samples, human tissue classification models improved prediction
performance for all tissues (Fig. 4.6). However, they now have consistently lower
performance when classifying mouse and zebrafish samples. Using the previous label

set, only once did a human model perform worse than random, using the GO-max
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feature set. There are several instances using the expanded tissue labels. Mouse and
zebrafish tissue classification models suffered lower performance on all human tissues,

with worse than random performance much more often than on the previous label set.
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Figure 4.6. Performance of tissue classification models across tissues and train/test species
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using the expanded set of tissue labels. The bars show the prediction performance (Log2P =
log,(auPRC/prior)) of each tissue classification model trained in a given species (Training species) and

used to make predictions in another species (Test species) using the expanded tissue label set (see Fig.
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Figure 4.6. (cont’d)
4.4). The median performance value from 5-fold cross validation is plotted for models that were trained

and tested in the same species.

In an attempt to improve the significantly lower performance of cross-species
classification using the label set with many more human tissues, we combined samples
across two species to train tissue classification models and made predictions in the
held-out species (Fig. 4.7). This was successful to some extent. The model
performances drop below random (zero) at a lower rate, but in many cases the
performance seems to be a weighted average of the combined training species’

individual performances on the test species.
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Figure 4.7. Performance of combined-species tissue classification models across tissues using
the expanded set of tissue labels. The bars show the prediction performance (Log2P
log,(auPRC/prior)) of each tissue classification model trained in two species and used to make predictions
in the held-out species (Test species) using the expanded tissue label set (see Fig. 4.4). The median
performance value from 5-fold cross validation is plotted for models that were trained and tested in the

same species.
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Finally, we trained classification models for 47 human diseases. Within human samples,
these models perform well across the board, with some showing extremely accurate
performance (Fig. 4.8). Since we do not have disease labels for animal models, we
used these models to make predictions on all other samples and manually inspected
the top-ranked samples. Despite excellent performance in humans, cross-species
predictions are still poor even in the best models. Many top-ranked samples do not have
a recognizable connection to the disease, but worse is the number of single cell
samples that are assigned high probabilities by the disease model. All of our curated

labels are bulk transcriptomic samples, so the model does not train on single cell data.

Performance of human disease classifcation on human samples
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temporal lobe epilepsy -
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amyotrophic lateral sclerosis -
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Figure 4.8. Performance of disease classification models in human samples. The bars show the
median prediction performance (Log2P = log,(auPRC/prior)) from 5-fold cross validation of each disease

classification model trained on human disease samples.

168



Discussion

Gene expression, coexpression, and regulation have been shown to vary with species,
age, sex, tissue, phenotypic, and experimental factors [5,24-28]. We develop a
supervised machine learning approach to map similar transcriptomes across species,
thus finding samples in different species that are functionally most analogous based on
their expression profiles. Many previous studies have compared expression profiles
across species using differential expression and similarity metrics [12—15], however, our
data-driven method allows us to provide gene expression profiles as positive examples
and contrast them with negative examples so that similar transcriptomic landscapes are
prioritized based on features that are specific to the trait/context of interest.

We were able to obtain some promising preliminary results for mapping samples from
corresponding tissues across species, but our method still needs tuning to be robust
and accurate. One immediate area for improvement is the size of the tissue label set.
When we expanded to include more human tissues, performance of the human tissue
classification models increased significantly when making predictions for human
samples (Fig. 4.3, 4.6). Cross-species predictions in turn showed a significant
decrease, but it is likely that the only six tissues with labeled examples in mouse and
zebrafish (blood, brain, heart, intestine, liver, and ovary) are not providing enough
biological context to distinguish tissues in human with higher biological similarity
amongst the 15 that are labeled.

Performance of multi-species gene feature sets

We tested five feature sets for mapping analogous samples across species: one-to-one

orthologs (OnetoOne), orthologous groups averaged (OGs-avg), OGs maximum
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(OGs-max), Gene Ontology [20] (GO) biological processes averaged (GO-avg), and GO
biological processes maximum (GO-max). We also tested building these five feature
sets for commonality across 3 species (human, mouse, and zebrafish) and 6 species
(human, mouse, zebrafish, fly, worm, yeast). Although some features are lost when
using features common to 6 species compared to 3 species, it only slightly lowers
performance, suggesting that the most conserved features serve as a large portion of
prediction power.

When classifying samples within the same species, the five feature sets (OnetoOne,
OGs-avg, OGs-max, GO-avg, GO-max) generally perform very similarly across tissues
in each species. However, when making cross-species predictions, feature sets based
on orthology tend to perform similarly to each other, but outperform GO feature sets.
This may be due to our incomplete knowledge of which genes in each species take part
in specific biological processes. Orthology is based on sequence similarity, and all of the
species we consider have sequenced genomes, so it is likely that this set of
relationships is more complete.

Future directions

From a computational perspective, most studies frame functional knowledge transfer
between species as a gene classification problem wherein an approach is developed to
prioritize genes in one species based on data in another. Other groups have embedded
genes/proteins across species into the same vector space [29] or determined
homologous genes that are most likely to be functionally similar based on the similarity
of their network neighborhoods [30]. Our lab group has had recent success in

combining these ideas for gene classification across species by embedding their
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network structure in a shared vector space. We can incorporate these ideas into sample
classification to test whether a shared space is able to boost the sample classification
performance as well.

Availability of data and code

We plan to make all of the code to reproduce our approach as well as the tissue and
disease labels available for others to build on our methods or to use transcriptome
labels in a new analysis. When we finish tuning the method to work more consistently
across all tissues, diseases, and species we will make results available and develop a
webserver that enables a researcher to input a query transcriptome sample and get a
ranked list of similar samples (i.e. transcriptomic landscapes) to guide experimental
design. With the amount of expression profiles available for comparison, the large-scale
effort is a valuable tool and significant novel contribution.

Methods

RNA-seq data collection

We downloaded the TPM expression for all available human, mouse, and zebrafish
RNA-seq samples in the ARCHS4 [31] database as of version 8. The transcripts were
mapped to Entrez genes [32]. We filtered out samples that had more than 50% zero
counts as lenient quality control.

Curation of tissue and disease labels

We downloaded sample descriptions for all samples and used TAGGER to annotate
samples with UBERON ontology tissue labels. We then manually inspected sample

descriptions of tagged tissues to ensure the label was correct, removing incorrect labels
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and single cell data. Later, we added human sample tissue (but not cell types not
specific to a given tissue) labels from the TissueNexus database [23].

We downloaded metaSRA [33] version 1.8 and subset the disease labels to samples
that we obtained from ARCHS4. Sample descriptions were again manually inspected to
ensure the disease labels were correct.

Creating a common feature set across species for sample classification

In order to train models that could make predictions in another species, we had to
create a common set of features across samples. We tested five options for common
features: one-to-one orthologs (OnetoOne), orthologous groups (OGs) averaged
(OGs-avg), OGs maximum (OGs-max), Gene Ontology [20] (GO) biological processes
averaged (GO-avg), and GO biological processes maximum (GO-max). We used
orthologous groups that had a similarity score of at least 0.5 from WORMHOLE [34] and
restricted the set of GO biological processes to terms that had 5-300 genes annotated
to them. Any group that did not have at least one gene in each species was not used in
the feature set. Before creating each type of feature set for each species, the TPM
expression of each gene was z scored across all samples in the species. For
one-to-one orthologs, we simply subset the genes to those that were common across all
three species. For OGs-avg, we averaged the z score values from each gene in an OG.
For OGs-max, the maximum value across all genes in an OG was retained as the
feature value. For GO-avg, we used the average z score from all genes annotated to
the GO term and the maximum z score for GO-max. In order to test the feasibility of

extending this method to other common model organisms that we cannot obtain tissue
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labels for, we also tested creating feature sets with feature groups common to six
species (human, mouse, zebrafish, fly, worm, and yeast).

Sample classification models

We trained a one-vs-rest logistic regression model with an 12 penalty for each tissue or
disease. Tissue models were trained in each of human, mouse, and zebrafish data, but
disease labels are only for human samples, so all disease models are trained on human
data. Training data was standard scaled, and this scaling was applied to the test data.
Each tissue classification model was trained on all samples in a given species and used
to make predictions on samples from other species. Performance was evaluated on
curated labels. We also performed 5-fold cross-validation within species for each tissue
and disease, to get an idea of how well tissue and disease transcriptomes could be
classified within a species. Performance shown in figures is the median performance
value of 5 fold cross validation results. The exception is that when we are comparing
tissue prediction within a species to tissue prediction with training on two species and
testing in the third, prediction performance within species is based on an 80/20 train/test

split.
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CHAPTER 5: SUMMARY, REFLECTIONS, LIMITATIONS, AND FUTURE
DIRECTIONS

Summary

The goal of this dissertation research was to provide insights into the genomic
signatures, pathways, and interactions that characterize the age/sex biases and
cross-species analogs of complex diseases and traits. These relationships are critical
for improving our ability to diagnose and treat complex diseases. | have worked towards
this goal by developing computational frameworks capable of leveraging massive
amounts of publicly-available genomic data with prior knowledge using network analysis
and machine learning. By releasing code to reproduce our approaches and providing
tools for scientists to query my results, | have helped build infrastructure for advancing
biomedical research into the era of precision medicine.

Reflections and limitations

Although this dissertation research represents considerable progress in many areas of
biology, data science, and machine learning (ML), there are still some key limitations in
this work. Broadly, these encompass numerous issues faced and careful choices to be
made in all computational biology studies pertaining to i) deficiencies in our curated
biological ground truth databases, ii) biases in the experiments that generate the
datasets, and iii) assumptions in our computational models. Even when we address
these issues to the best of our abilities, all results produced by ML models using big

data must be interpreted with care.
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Building RNA-seq coexpression networks

In Chapter 2, | address the question: how can we best build coexpression networks
from heterogeneous RNA-seq data that comes from mostly small experiments
generated by individual labs, with a range of sequencing depths and qualities, as well
as high-quality consortium data? In this chapter, | elaborate on the most accurate and
robust methods to build coexpression networks from RNA-seq data. | test multiple
normalization and network transformation techniques and their combinations to make
concrete recommendations of when and how to use these techniques.

We put a lot of thought and effort into the gold standard we used as ground truth, i.e.
‘truly’ coexpressed and non-coexpressed gene pairs (see Chapter 2 Appendix:
supplemental note). Briefly, we curated pairs of genes that were functionally related
based on experimental evidence in the Gene Ontology [1], but were very careful to only
use specific terms in the ontology to determine these gene pairs. We were equally
careful about defining pairs of genes that are unlikely to be coexpressed using another
set of manually curated terms from the Gene Ontology. In this set, we kept only gene
pairs that we had enough functional information about to know that based on the
biological processes they play a role in, they are extremely unlikely to be functionally
related. This is a much more painstaking process than that many other coexpression
studies use to evaluate the set of coexpressed and non-coexpressed gene pairs in their
networks [2—4].

Despite the amount of care we took to build this gold standard, it is still based on
functional annotations that are not tissue-specific. We tried to account for tissue-based

effects by subsetting our original gold standard gene pairs using sets of genes known to
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be expressed or not expressed in any given tissue, but non-expression is not the only
modulator of tissue-specific coexpression [5]. In addition, age and sex affect gene
expression and coexpression as well [6-8], but we currently have no systematic way to
determine the robustness of our methods to these biological factors.

Age and sex specificity

In Chapter 3, | address two questions: (1) can age or age group be predicted using only
the gene expression values? And (2) what do these gene signatures tell us about age-
and sex-specific biological contexts? Here, | curate about 30,000 primary human
transcriptomes to predict age group and investigate age- and sex-biased gene
signatures. | also use experimentally-validated genesets for determining enrichment of
multiple biological contexts in different age and sex groups.

| took an extraordinary amount of care to curate age and sex labels to create a dataset
we could use to investigate age- and sex-biased gene expression. This set excludes
cell lines, xenografts, pooled samples, and single cell data. In other words, it is about as
high quality as one could hope for in a large-scale dataset of age- and sex-labeled
primary, bulk transcriptomes derived from public databases. However, most samples do
not have health/disease labels, and there are surely biases in how these diseases are
distributed across sex and age groups. While curating samples, | noticed many more
female samples with systemic lupus erythematosus (SLE), which is hardly surprising
since females outnumber males somewhere in the range of 7-10 to 1 in SLE incidence
[9,10]. There are many other diseases with higher prevalence in certain age and sex
groups, and there is also a bias in which samples are collected due to which diseases

have the most funding for study. There were also very little cancer labels (if any) in the
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youngest age groups. The number of cancer-associated datasets in each age group
seems to roughly correlate with the total number of samples in the group. This is not
hard to believe even though cancer incidence increases with age [11], due to the fact
that study of cancer is generally well-funded [12]. These may have an effect on the
gene signatures and subsequent enrichment scores | calculated for
experimentally-derived genesets associated with various biological processes, cell
types, phenotypes, and especially diseases. | would expect it to have a greater effect on
age-stratified sex signatures, due to deriving them from the TPM expression distribution
across female and male samples for each gene but using machine learning to derive
the sex-stratified age signatures. Machine learning has some robustness to noise due to
regularization. Despite these potential biases and limitations, we captured a number of
true age- and sex-biased signatures, and look forward to myself and others building
upon this work.

Cross species analogs

In Chapter 4, | address the question: can we utilize mass public transcriptomic data to
identify analogous samples, and therefore biological contexts and phenotypes across
species? In this chapter, | describe our efforts to use machine learning in mapping
transcriptomic landscapes and phenotypes across species to improve functional
knowledge transfer.

Thus far, we have only seen lukewarm success in mapping analogous samples across
species, but our group will continue to test new methods for making this goal possible
(see Cross species sample classification in Future directions). However, in the process |

learned a lot about translating functional knowledge across species, model organism
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biology, publicly-available experimental data, and databases curating information in
individual or multiple species. There is a lot of room to improve our understanding of
cross-species biology, but there are also many exciting ideas and efforts continuously
advancing the field just a little bit.

Future directions

Age- and sex-specific gene interaction networks

The work in this dissertation has laid the groundwork to build age- and sex-specific
gene interaction networks. Greene, Krishnan, Wong and team built the first
genome-scale tissue-specific functional interaction networks [13] and in a follow-up
study, Krishnan et al were able to show that using a brain-specific gene network to
predict novel candidate genes, brain-specific pathways, and developmental stages
related to autism spectrum disorder was more accurate than using a general (i.e. not
tissue-specific) or different tissue-specific network [14]. Essentially, using a
tissue-specific gene interaction network for the tissue most affected by the disorder
improves our ability to make these predictions. It stands to reason that if taking
tissue-specificity into account improves the relevant predictions we are able to make,
accounting for other biological contexts such as age and sex should further improve our
accuracy.

The sticking point is that while their study developed the method to integrate many
coexpression networks into one high-fidelity tissue-specific network, they did so with
only microarray data, not RNA-seq data. Very little work had been done to evaluate
robust and accurate normalization and network transformation methods to build

coexpression networks from RNA-seq data, so | addressed this issue in Chapter 2.
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With this evaluation completed, the remaining obstacle was that the maijority of
publicly-available microarray and RNA-seq samples we need to build these networks
are not associated with age and sex information. In Chapter 3, | manually curated nearly
30,000 bulk, primary human samples labeled with sex and age across the human
lifespan. Further, | showed that age group can be predicted from gene expression. So,
we can continue developing these models into more accurate ones to predict age on
samples that do not have age labels. Sex is easy to predict based on expression of X
and Y chromosome genes. Building on this work, in the near future, we will use these
pre-trained ML models to infer age-group and sex labels for the >150,000 human public
transcriptomes and then integrate these profiles into age- and sex-specific
genome-scale gene networks and use these networks to study genes associated with
diseases that show sex and age differences.

Cross species sample classification

Our efforts to train models to match analogous samples across species were only
partially successful, but we have discussed methods to improve the currently poor
performance. A promising approach is one we took for successfully classifying genes
across species: to first place all genes from different species into the same ‘functional’
space and then train ML models to transfer gene functions across species. In the near
future, we will apply this approach for sample classification.

Ongoing work

Current members of the lab have already started to build off of the work completed for
this dissertation. The age, sex, tissue, and disease labels | have curated for many gene

expression profiles are being used in multiple projects. Renming Liu is using disease
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annotations to develop methods that can automatically identify subgroups of contrasting
disease-relevant samples within transcriptome datasets. The tissue and disease labels
will continue to be used to pursue accurate methods to match analogous
transcriptomes, and thus biological contexts and phenotypes across species.

Hao Yuan is building coexpression networks in multiple species with RNA-seq data
using the recommendations | developed in Chapter 2 for robust workflows to do so. He
is also extending this work into building patient-specific networks. Stephanie Hickey is
using age and sex labels, along with best practices for network building established in
this dissertation, for integration of coexpression networks built using bulk and single-cell
data to compare gene interactions in different regions of the brain in multiple age and

sex groups.
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