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ABSTRACT 

Precise execution of cell-type-specific gene transcription is critical for cell differentiation 

and development. The accurate lineage-specific gene regulation lies in the proper 

combinatorial binding of transcription factors (TFs) to the cis-regulatory elements. TFs 

bind to the proximal DNA sequences around the genes to exert control over gene 

transcription. Recently, experimental studies revealed that enhancers also recruit TFs to 

stimulate gene expression by forming long-range chromatin interactions, suggesting the 

interplay between gene, enhancer, and TFs in the 3D space in specifying cell fates. 

Identification of transcription factor binding sites (TFBSs) as well as pinpointing the long-

range chromatin interactions is pivotal for understanding the transcriptional regulatory 

circuits. Experimental approaches have been developed to profile protein binding as well 

as 3D genome but have their limitations. Therefore, accurate and highly scalable 

computation methods are needed to comprehensively delineate the gene regulatory 

landscape. Accordingly, I have developed a supervised machine learning model, TF-

wave, to predict TFBSs based on DNase-Seq data. By incorporating multi-resolutions 

features generated by applying Wavelet Transform to DNase-Seq data, TF-wave can 

accurately predict TFBSs at the genome-wide level in a tissue-specific way. I further 

designed a matrix factorization model, EP3ICO, to jointly infer enhancer-promoter 

interactions based on protein-protein interactions (PPIs) between TFs with combined 

orders. Compared with existing algorithms, EP3ICO not only identifies underlying 

mechanistic regulators that mediate the 3D chromatin interactions but also achieves 

superior performance in predicting long-range enhancer-promoter links.  In conclusion, 

our models provide new computational approaches for profiling the cell-type specific TF 

bindings and high-resolution chromatin interactions. 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright by  
WENJIE QI 
2022 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iv 

ACKNOWLEDGEMENTS 

I would like to acknowledge and give the warmest thanks to my advisor and committee 

chair, Professor Jianrong Wang. I have learned a lot from Dr. Wang about how to conduct 

research with specific goals and directions. His guidance carried me through all the stage 

of completing my projects as well as helped me to establish computational algorithm 

development.  

I would also like to express the appreciation to my committee members, Professor Adam 

Alessio, Professor Yuehua Cui and Professor Jens Schmidt as well as Professor Sudin 

Bhattacharya, for their insightful feedback in my research and professional guidance in 

my career skill development.  

Special thanks to Professor Adam Alessio. Dr. Alessio helped me go through the tough 

stages during my graduate school. Working with him, I have not only developed my 

technical skills, but also learned how to become a caring person who would always be 

there and help others. I feel blessed that I have Dr. Alessio on my committee.  

I would like to thank my lab members, Jiaxin Yang, Dr. Binbin Huang and Dr. Hao Wang 

for their help in my research. I will remember the days we worked together.  

Thanks to my friends, David Filipovic, Muneeza Amat for their listening, understanding 

and mental support. Graduate school could be hard, I am more than grateful that I have 

met them and have their accompany through this journey.   

I want to express my deepest thanks to my parents, my brother and his family. They are 

always behind me and encourage me to go further. Without their love and support, I would 

never have the achievements today. 



 v 

TABLE OF CONTENTS 

 INTRODUCTION ........................................................................................ 1 

 PREDICTING TRANSCRIPTION FACTOR FOOTPRINT USING 
WAVELET DECOMPOSED DNASE-SEQ DATA ............................................................ 4 

2.1 INTRODUCTION ............................................................................................... 4 
2.2 MATERIALS AND METHODS ........................................................................... 8 
2.3 RESULTS ........................................................................................................ 14 
2.4 DISCUSSION ................................................................................................... 23 

 
 PREDICTIVE MODELS OF GENOME-WIDE ARYL HYDROCARBON 

RECEPTOR DNA BINDING REVEAL CELL SPECIFIC BINDING DETERMINANTS ... 25 
3.1 INTRODUCTION ............................................................................................. 25 
3.2 MATERIALS AND METHODS ......................................................................... 29 
3.3 RESULTS ........................................................................................................ 31 
3.4 DISCUSSION ................................................................................................... 37 

 
 JOINT INFERENCE OF PROTEIN-PROTEIN INTERACTIONS AND 

ENHANCER-GENE LINKS BY A MATRIX DECOMPOSITION MODEL ....................... 39 
4.1 INTRODUCTION ............................................................................................. 39 
4.2 MATERIALS AND METHODS ......................................................................... 45 
4.3 RESULTS ........................................................................................................ 59 
4.4 DISCUSSION ................................................................................................... 67 

 
 FUTURE DIRECTIONS ............................................................................ 69 

 
BIBLIOGRAPHY............................................................................................................. 70 
 
APPENDIX A   SUPPLEMENTARY FIGURES FOR CHAPTER 2 ................................ 82 

APPENDIX B   SUPPLEMENTARY FIGURES FOR CHAPTER 3 ................................ 89 

APPENDIX C   SUPPLEMENTARY MATERIAL FOR CHAPTER 4 .............................. 90 

 
 
 
 
 
 
 
 



 1 

  
 

INTRODUCTION 

Understanding the gene regulatory network is critical to gain clear insights of cellular 

process as well as improve the understanding of human health. The formation of lineage-

specific gene regulatory network achieved by cell-type specific regulatory relationship 

between transcription factors (TFs) and their target genes. Through the binding to cis-

regulatory elements including promoters and enhancers in the non-coding genomic 

region, TFs exert control over target genes transcription activity such as enhance or inhibit 

target genes expression level. On the one hand, TFs bind on promoters near their target 

gene transcription start sites and directly recruit RNA polymerase or other accessary 

factors to regulate gene transcription activity. On the other hand, TFs also bind to distal 

enhancers that could be 1Mb away from target genes’ core promoters to regulate their 

transcription activity. The regulatory input from enhancers is achieved by the proper 

folding of chromatins that brings regulatory elements close to promoters in a three-

dimensional space. Therefore, identification of TFs binding sites (TFBSs) is the first step 

for constructing the cell-type specific gene regulatory networks. Moreover, pinpointing the 

long-range enhancer-promoter interactions is also critical for delineating the gene 

regulatory network in the 3D space. 

Experimental technologies including ChIP-Seq, ChIP-exo, and ChIP-nexus have been 

developed to detect TFs bindings at genome-wide level in different cell types. However, 

all of the ChIP-based methods are limited by the quality of antibodies. In addition, given 

that there are approximate 1600 TFs in the human genome, profiling every TFs in every 

cell line at every stage is currently not experimentally feasible. Experimental approaches 
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have also been developed to profile the chromatin conformation across cell types. For 

example, Hi-C and Capture-C can profile long-range chromatin contacts but it has high 

false positive rates and lacks tissue variability. ChIA-PET can detect chromatin 

interactions at high resolution. However, ChIA-PET can only detect chromatin interactions 

facilitated by a specific protein and therefore has high false negative rates. Overall, 

experimental methods used for detecting TFBSs as well as chromatin structures are cost-

expensive and not able to identify underlying mechanisms that determine transcription 

factor binding or facilitate long-range chromatin interactions. Therefore, accurate and 

highly scalable computational methods are needed to address the problems.  

Diverse genomic datasets have been profiled by high throughput sequencing 

technologies and collected by large data consortia such as ENCODE, Roadmap. All of 

the previous efforts make it promising to develop computational methods that integrate 

multi-omics data to predict TFBSs and infer long-range enhancer-promoter interactions. 

Here, we developed two main computational models, TF-wave and EP3ICO to predict 

cell-type specific TFBSs and long-range enhancer-promoter interactions respectively. TF-

wave uses a Gradient Boosting Tree model to predict based on DNase-Seq data. By 

applying Wavelet Transform to DNase-Seq data to extract multi-resolution features as 

input, TF-wave predicts cell-type TFBSs at genome-wide level accurately. TF-wave can 

also be applied to distinguish different TFs binding accurately. Moreover, by using local 

chromatin accessibility information, TF-wave can predict TF bind probability at single-

nucleotide level, which opens a new avenue in predicting TF footprinting at high-

resolution. As a case study, we have developed an XGBoost model that takes multi-omics 

data to predict Aryl Hydrocarbon Receptor’s (AHR) binding sites in multiple tissues. 
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Determinants of AHR binding are identified by extracting the important features from the 

XGBoost model. To detect long-range enhancer-promoter interactions, we have 

developed EP3ICO, which applies matrix factorization models to predict long-range 

enhancer-promoter interactions based on protein-protein interactions (PPIs) between TFs.  

By considering second-order PPIs between TFs, EP3ICO has boosted accuracy for 

enhancer-promoter interactions that cannot be reconstructed by first-order PPIs. EP3ICO 

can be further applied to infer higher-order PPIs between TFs that regulate chromatin 

interactions. Dispute that predicting long-range enhancer-promoter interactions is 

challenging, EP3ICO has achieved superior performance when compared with existing 

methods. EP3ICO can identify PPIs between TFs as mechanistic regulators that mediate 

3D chromatin interactions. The predicted long-range enhancer-promoter links are also 

enriched with cis-eQTLs, providing insights of unrevealing how genetic variants affect 

gene regulation, ultimately leading to different phenotypes.  
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PREDICTING TRANSCRIPTION FACTOR FOOTPRINT USING WAVELET 
DECOMPOSED DNASE-SEQ DATA 

This chapter is adapted from our in-preparation work: Qi W., Yang J., Wang J.. Predicting 

transcription factor footprint using Wavelet decomposed DNase-seq data.  

2.1 INTRODUCTION 

Identification of site-specific transcription factors (TF) binding at cis-regulatory elements 

is the key for elucidating regulatory mechanisms underlying transcriptional process and 

disease progress1–4. Characterizing TF binding sites (TFBS) across the entire genome is 

a monumental task2. Recently, high-throughput sequencing-based methods such as 

chromatin immunoprecipitation followed by DNA-sequencing (ChIP-Seq) are widely used 

to profile and detect TF binding sites at the genome-wide level5. However, ChIP-Seq has 

low resolution and is cost-expensive6. Newer experimental methods such as ChIP-exo 

and ChIP-nexus have been developed to detect DNA-binding TFs with higher resolution 

and cost efficiency7,8. However, all of the ChIP-based techniques have several 

shortcomings. Firstly, ChIP-based methods require high-quality antibodies to pull down 

TFs and therefore are limited to TFs that have high-quality antibodies. Secondly, ChIP-

based methods cannot be applied to distinguish TF bindings between primary binding 

and secondary binding2,6,9. Lastly, ChIP-based experiments can only characterize one TF 

per experiment. Given that there are approximate 1600 TFs in the human genome, it is 

currently not experimentally feasible to profile every TF in every tissue/cell line at different 

stages. 
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With the advent of high-throughput sequencing technologies, another experimental assay 

that identifies DNase I Hypersensitive Sites (DHS) has been developed to detect the open 

regions of chromatin10–12. In vivo binding of TFs shields bound DNA elements from the 

DNase I’s attack. After deep-sequencing, the chromatin accessibility data as well as the 

TF-specific DNase-I protection profiles at single-nucleotide resolution are collected in the 

open chromatin region. A majority of TFBSs can be identified at single-nucleotide 

resolution by detecting a footprint-like region with low DNase I cutting frequency13.  

By taking advantage of the booming DNase-Seq data, computational methods have been 

developed to predict TFBS by investigating the TF footprint patterns in open chromatin 

regions. The computational footprinting methods can be grouped into two main categories, 

including motif-centric models (BinDNase, CENTIPEDE, FLR, DeFCoM, PIQ) and de-

novo models (Wellington, TRACE, DNase2TF)2,13–19.  

On the one hand, motif-centric methods usually scan the genome to generate candidate 

binding sites for TF of interest and predict TF-specific binding activity at the candidate 

sites. BinDNase takes up- and down-stream base pair resolution DNase-Seq data (100bp) 

around the motifs as features and select the discriminatory features by a backward greedy 

method. BinDNase then deploys supervised logistic regression model to predict TFBSs 

based on the selected features. CENTIPEDE used position weight matrices (PWM) to 

scan the genome and collect all positions with substantial sequence similarity with the TF 

motif as the candidate sites. Then CENTIPEDE applied an unsupervised Bayesian 

mixture model to integrate DNase-Seq data, DNA sequence data, and histone 

modification data to infer which candidate site is likely to be bound by the TF. FLR detects 

active TFBSs by a mixture of multinomial models. Firstly, FLR first learns the mixture of 
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two multinomial distributions, representing TF footprints and background by the 

expectation maximization algorithm. Secondly, footprints are scored by log-odds ration or 

the footprint-versus-background model. One main advantage of FLR is that it uses a small 

window size around the motif, i.e. ±25bp, which makes it a more targeted approach for 

detecting footprints for TF of interest. DeFCoM extracts both local and global DNase-Seq 

features by using different size of segments around the motifs. The DeFCoM applies 

kernel SVM model with either a linear kernel or a radical kernel to integrate DNase-Seq 

features in a non-linear way to predict TFBSs at their motif sites. PIQ uses Gaussian 

process to model and smooth the footprint signals around candidate motif sites. Then PIQ 

estimates the footprints with an expectation propagation algorithm. Finally, PIQ selects 

the set of motifs whose footprints are distinguishable from the noise as the final 

predictions.  

On the other hand, the de-novo methods do not require the pre-generated candidate 

binding sites. De-novo methods detect TFBSs in the open chromatin region based on the 

DNase I digestion pattern. Wellington19 is a sliding window approach that detects TF 

footprints based on the binomial test. For a given candidate footprint site, Wellington tests 

the hypothesis that there are less reads within the footprint than its flanking regions. The 

major novelty of Wellington is that it tests each strand independently as it considers that 

different strands have different effect in inhibiting DNase I activity. However, Wellington 

is unable to detect the binding sites for TFs of interest specifically. DNase2TF detects 

footprints by calculating the significance of DNase I cut depletion around the motif region 

based on a binomial Z score. Then DNase2TF interactively merge the candidate 

footprints sites to identify the regions that produces the most significant depletion regions. 
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TRACE uses a Hidden Markov Model (HMM)20,21 to predict footprints and label binding 

sites for desired TFs by integrating PWMs and DNase-Seq Data in the open chromatin2. 

However, most de-novo methods were not designed to predict TF-specific footprinting 

and cannot label binding sites for TFs of interest.  

Assigning TFs to their footprints on the basis of matching consensus sequences enables 

the analysis of TF-mediated gene regulatory networks6,22. Experimental studies have 

revealed that different TFs have different TF footprint shapes13,17. However, previous 

computational footprinting methods mainly focus on binary prediction, i.e. if TFs will bind 

on a given candidate motif or an accessible open region. Yet, existing methods haven’t 

explored the different TFs footprint shape information and lack the ability to assign 

different TFs to their footprinted regions when there exist multiple candidate regions. 

Feature extraction methods such as short-time Fourier transform (STFT) and Discrete 

Wavelet Transform have been widely applied in spectrum signal processing23–27. Wavelet 

Transform applies a low pass filter, i.e. scaling and a high pass filter to a signal, i.e. 

wavelet transforms and decomposes the original signals into signals with low resolution 

and high resolution respectively. The low-resolution signals, which are the approximate 

coefficients, represent a summary of the original signals. On the other hand, the high-

resolution signals, which are the detailed coefficients represent the fine details in the 

original signals23,28. Both low-resolution coefficients and high-resolution coefficients are 

half sizes of the original signals. Multi-resolution signals are obtained by repeating the 

rounds of scaling and wavelet transform process to the low-resolution signals. 

Inspired by the different TF footprint patterns and the successful feature extraction 

application of Wavelet Transform, we develop a supervised machine-learning model, TF-
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wave, which applies Gradient Boosted trees to utilizes different frequency features 

decomposed by Discrete Wavelet Transform (DWT) from DNase-Seq data to predict 

specific TF bindings. By applying Wavelet decomposition to the DNase-Seq signal, TF-

wave considers the low and high-frequency signals contained in the spectrum in different 

TF’s footprints and can accurately infer specific TF binding sites as well as distinguish 

different TFs’ binding sites. Furthermore, we introduce a convolutional neuron network 

(CNN) model that can predict TF footprint probability at single-nucleotide level based on 

the local chromatin accessibility. Our results provide a framework for both binary and 

nucleotide-level footprinting model of TFs could be applied as the first step in analyzing 

TF-focused gene regulatory networks. 

2.2 MATERIALS AND METHODS 

2.2.1 Datasets and data generation 

TF ChIP-Seq data in BED format and DNase-Seq data in BAM and BED format in K562 

and GM12878 were collected from ENCODE. FRiP score for the TF ChIP-Seq files was 

calculated to quantify the quality of ChIP-Seq experiments by R Libray ChIPQCsample29. 

The ChIP-Seq Bed file with the highest FRiP score is kept for TFs with multiple datasets. 

To filter out TFs ChIP-Seq data with low quality, TFs with ChIP-Seq FRiP score < 5 were 

removed.  Overall, 46 TFs in K562 and 19 TFs in GM12878 with ChIP-Seq FRiP score => 

5 were kept for the subsequent analysis in each cell line. TFs’ motifs are downloaded 

from JASPAR30.  For each TF, candidate motif sites were identified by MOODS31 with 

threshold p < 0.0001 in open chromatin regions obtained from DNase-Seq BED files. 

Motif sites under TF ChIP-Seq peaks are labeled as positive samples, while motif sites 

under the DNase-Seq peak only are labeled as negative samples. Motifs located on both 
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forward and reverse strands are collected. Using the motif midpoint as the center, we 

extended each motif site to upstream 100bp and downstream 100bp to obtain the local 

chromatin accessibility from corresponding DNase-Seq BAM files around the TF motifs 

for the following analysis. 

2.2.2 Data processing 

The DNase-Seq read depth at each nucleotide for each motif site was obtained by 

SAMtools32 based on the DNase-Seq BAM file. DNase-Seq read-depth at each base pair 

for 200 bp was extracted by 5’-3’ orientation corresponding to the orientation of the TF 

motif on the forward strand naturally. However, for the motifs located in the 

complementary strand, we extracted the DNase-Seq read-depth at each nucleotide from 

3’-5’ with respect to the orientation of the motifs.  Then we inverted the DNase-Seq read-

depth vector for motifs on the complimentary strand to have the 5’-3’ direction. DNase-

Seq read-depth vectors on leading strands and inverted DNase-Seq read-depth vectors 

on complementary strands were used to construct the feature matrix at 5’-3’ orientation.  

2.2.3 Discrete Wavelet Transform and Gradient Boosted Trees model 

To extract features with different frequencies contained in the TF footprints as well as 

motifs sites in open chromatin regions without being footprinted by TFs, the DNase read-

depth data is first normalized by Z-Score normalization. Then we applied the Biorthogonal 

wavelet to decompose the 200bp normalized DNase-Seq vector into approximate 

coefficients and detailed coefficients with multiresolution. The approximate coefficients 

and detailed coefficients are then concatenated together as features to train the Gradient 

Boosting Trees (GBT). GBT is a fast and effective tree-boosting algorithm for 
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classification and regression33. GBT model learns the data by adding additional trees into 

the model to minimize the loss function of previous trees. Similar to the tree-based method, 

GBT can learn the non-linear interactions between different features and is proved to 

have high classification performance.  

2.2.4 Model training and evaluation 

In order to train the GBT model in TF-wave to obtain high accuracy, we tuned two kinds 

of parameters during the training process. Firstly, previous studies have observed that 

different TFs have different footprint shapes13,22, a single Wavelet Transform model with 

one decomposition level is unable to capture the most informative features for all TFs. 

Therefore, all of the 14 Biorthogonal wavelets model in pywt packages34 were used to 

decompose the DNase-Seq. The parameter of decomposition level is set up to six. The 

decomposed signals of a particular wavelet model with a specific decomposition level 

were used to construct a feature matrix and train the model. Secondly, the 

hyperparameters of GBT including the number of trees including [100, 500, 1000, 2000] 

and learning rate including [0.05, 0.1, 0.5] were tuned during the training process. 5-fold 

cross-validation with AUPR metric was used to evaluate the model performance. The 

best-performing model with the highest AUPR is selected and it consists of features 

constructed by a specific Biorthogonal wavelet model and the corresponding 

decomposition level.  Then the best-performing model is applied to predict TFBSs at 

genome-wide level and in cell-specific way. 
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2.2.5 Models performance comparison 

Due to the limited access to other model, we can only compare the performance of our 

model with Wellington (http://jpiper.github.io/pyDNase). We used the open chromatin 

regions containing TFs motifs as evaluation data. Specifically, candidate binding sites 

(motif sites) that overlap with DNase-seq peaks and ChIP-seq were used as the positive 

set, and candidate sites that are under DNase-seq peaks but not under ChIP-seq peaks 

are used as the negative set. We applied Wellington to DNase-seq peaks (with 100-bp 

flanking regions to each side) containing the same sets of motif sites that were included 

in our model and We compared our model with Wellington19. The fdrlimit in the output of 

Wellington was set to 0 to have predictions for all input DNase-seq peaks. The absolute 

values were used as scores in the evaluation. Only the predictions overlapping with motif 

sites of tested TFs were included in the evaluation on the same dataset. 

2.2.6 Distinguish different TFs footprints 

TFs have unique footprint shapes as it is shown in Figure 2.1. To investigate if different 

TFBSs is distinguishable by their DNase I footprinting shapes, we trained GBT models to 

predict different TFs’ binding sites based on the Wavelet decomposed DNase-Seq signals. 

Specifically, given two TFs, TF A and TF B, the DNase-Seq signal of these two TFs’ 

binding sites was collected and decomposed by Wavelet as input features for the GBT 

model using the methods described above.  Then the binding sites of TF A are labeled to 

be 1 as the positive data and the binding sites of TF B are labeled to be 0 as the negative 

data for training the GBT model. GBT models were then trained and evaluated by 5-fold 

cross-validation. We also used original DNase-Seq signals to train the GBT model as 
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baseline models and compared it with the model trained by Wavelet decomposed DNase-

Seq signals using AUCs on the same datasets. 

2.2.7 Consensus footprint generation 

For each TF, the trained GBT was used to predict TFBS for each candidate motif site. To 

obtain the consensus footprints for each TF, the 200bp DNse-Seq read-depth of the top 

5% predicted binding sites were used to generate the TF’s consensus footprints. The 

consensus footprints were presented by aggregating DNase-Seq read-depth at each 

nucleotide. The examples were obtained by the UCSC genome browser35. 

 

Figure 2.1. TFs leave footprints to DNase-Seq signal. Four examples of DNase-Seq 
footprints left by TF ZNF143. From the top to bottom for each panel: observed ZNF143 
binding site (green) flanking the motif (yellow), predicted ZNF143 binding site by TF-wave 
(red), DNase-Seq read depth of 200 base pairs flanking the ZNF143 motif (blue). ZNF143 
ChIP-Seq signal from bigwig files (green). The orientation of the DNase-Seq data is 
indicated by 5’-3’ or 3’-5’.  
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2.2.8 Single-nucleotide level footprint probability prediction 

Mutations in TFs motif results in the gain of function or loss of function binding, which will 

lead to the cis-regulatory evolution22.  Therefore, it is critical to determine the binding 

probability at each nucleotide for a TF to understand how the variants influence the gene  

regulatory networks mediated by the TF binding. In order to investigate the TF binding 

probability, we trained a CNN model to predict the TF binding at each nucleotide centering 

the TF motifs based on the 2kb flanking regions DNase-Seq signals. CNN has proven 

highly effective in a number of diverse tasks including biological sequence analysis36–38. 

The input layer of CNN has concatenated Wavelet decomposed DNase-Seq signals. 

Following the input layer, there are three convolutional layers. In each convolutional layer, 

batch normalization was applied to center the data. The kernel width is 3, and stride size 

is 1. Then Relu activation function was used to the filter output. Finally, Maxpool was 

applied to pool adjacent values by taking the maximum in a small window to reduce the 

dimension of input for the next layer (Figure 2.7a). 

 

Figure 2.2. TF-wave predicts TF binding sites based on wavelet-transformed 
DNase-Seq signal. Left: schematic figure of binding of CTCF in open chromatin leaves  
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Figure 2.2 (cont’d)  

footprint on DNase-Seq read-depth, centering around the CTCF motif, shown on the top. 
Right: schematic figure of applying Wavelet Transform to DNase-Seq to predict TF 
binding sites using gradient boosting tree model. Wavelet Transform is applied to 
decompose DNase-Seq signal. The extracted approximate coefficients (cA!) and detailed 
coefficients (dA!) are concatenated as input features to train the Gradient Boosting Tree 
models (GBT), the trained GBT is applied to predict TF binding status for a candidate 
motif in the open chromatin.  

2.3 RESULTS 

2.3.1 TF-wave predicts TFBS based on Wavelet decomposed DNase-Seq signals 

The binding of TFs protects DNA from DNase I digestion and therefore leaves the TFs 

footprints on the DNase-Seq signal (Figure 2.1). The footprints of different TFs are 

distinguishable and contain unique features for specific TFs. We applied a Discrete 

Wavelet Transform to extract the multi-resolution features underlying the DNase-Seq 

signals centering the TF motifs. Gradient Boosting Tree model were applied to predict TF 

binding probability at candidate motif sites by using the multi-resolution features (Figure. 

2.2).  

By using 5-fold cross-validation with auROC and auPR to evaluate the model’s 

performance, we demonstrated that Wavelet decomposed DNase-Seq signal can predict 

with-in TF binding sites at the genome-wide level accurately. 

2.3.2 TF-wave accurately predicts TFBS at the genome-wide level 

To assess the performance of TF-wave and Wellington which also uses DNase-Seq data 

to predict TFBS, we evaluated the performance of TF-wave and Wellington on the same 

datasets. To ensure a fair comparison, for a TF of interest, we used the same DNase-
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Seq datasets containing this TF’s motif as input data to predict its binding sites. The area 

under the receiver operating characteristic curve and the area under the precision-recall  

 

Figure 2.3. TF-wave predicts TF binding sites accurately and outperforms 
Wellington in K562. TF-wave and Wellington were evaluated on the same datasets 
using the averaged performance of 5-fold cross-validation. (a,b) auPRC of ZNF143 and 
CTCF in K562 for TF-Wave and Wellington. (c,d) auROC of ZNF143 and CTCF in K562 
for TF-Wave and Wellington. (e) Performance comparison in K562 for TF-Wave and 
Wellington using auPR. The x-axis and y-axis are auPR of applying Wellington and TF-  
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Figure 2.3 (cont’d)  

wave to predict TFBS on the same data. Each point represents a TF, points above the 
diagonal line indicate TF-wave performs better than Wellington. (f) Performance 
comparison in K562 for TF-Wave and Wellington using auROC. The x-axis and y-axis are 
auROC of applying Wellington and TF-wave to predict TFBS on the same data. Each 
point represents a TF, points above the diagonal line indicate TF-wave performs better 
than Wellington. 

curve was calculated for TF-wave and Wellington based on the predicted binding 

probability and scores respectively. 5-fold cross-validation was used and the averaged 

auROC and auPRC were reported to evaluate the final prediction performance of TF-

wave and Wellington. For all the TFs evaluated in the analysis, TF-wave achieves higher 

performances in identifying the TF binding sites from the candidate motif sites than 

Wellington in both K562 and GM12878 cell lines (Figure 2.3, Figure A.1). Examples of 

observed CTCF binding sites and TF-wave accurately predicted CTCF binding sites are 

shown in Figure 2.4. 

2.3.3 Applying Wavelet Transform to DNase-Seq signal provides boosted 
prediction performance 

To justify that multi-resolution features extracted by Discrete Wavelet Transform indeed 

contribute to the TFBSs prediction accuracy of TF-wave, we also trained the Gradient 

Booting Trees model on the Z-score normalized original DNase-Seq data as the baseline 

model and compared TF-wave with the baseline model on the same datasets. 5-fold 

cross-validation was used to evaluate TF-wave and the baseline model’s performances. 

Averaged auROC and auPR were reported as the final results. We observed that TF-

wave has higher auROC and auPR scores than the baseline model in both K562 and 

GM12878 cell lines (Figure A.2). The results demonstrated that TF-wave achieves 
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boosted performances for all TF binding sites predictions by using the multi-resolution 

features extracted from Wavelet decomposed DNase-Seq signal, suggesting the 

performance improvement of TF-wave is induced by applying Wavelet transformation 

DNase-Seq data.  

 

Figure 2.4. TF-wave identify TFBS accurately. Examples of observed CTCF binding 
sites at K562 chr1: 15000000-2000000. From top to bottom: observed CTCF binding sites 
(green), predicted CTCF binding sites by TF-wave (red), observed DNase-Seq indicating 
the open chromatin (blue). One correctly predicted CTCF binding site is highlighted by 
red rectangle and the CTCF footprinted DNase-Seq signal is shown below. Blue: CTCF 
footprinted DNase-Seq signal centering the CTCF motif(yellow). The orientation of the 
DNase-Seq read-depth data is 5’-3’. The CTCF ChIP-Seq track is shown at the bottom 
(green).  

2.3.4 Predicted TF binding sites reveal the TF footprint shapes  

In order to investigate if the predicted TF binding can reveal the different footprint shapes 

based on the DNase-Seq data, we ranked the predicted TF binding sites based on the 

GBT provided binding probability and selected the top 5% predicted binding sites to 

reconstruct the TF consensus footprints. Our results indicated that different TFs have 

different footprint shapes as shown in Figure 2.5 and Figure A.3. Yet, the TFs footprint 
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shapes are consistent with the pattern that there is one small DNase-Seq peak at each 

shoulder of the motif, indicating the high cleavage of DNase I at the accessible chromatin 

regions, and low cleavage of DNase I at the motif sites that are protected by TFs bindings. 

On the other hand, DNase-Seq read counts are relatively low at the centering motif region, 

suggesting the decreased DNase I cleavage rate at the motif sequences due to the 

protection of TF binding. 

 

Figure 2.5. Different TFs have different consensus footprint shapes. (a) Aggregated  
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Figure 2.5 (cont’d)  

DNase-Seq read-depth for top 5% predictions for ATF2, CTCF, MAFF, REST. Each TF 
has a unique footprint shape. The motif of ATF2 is palindromic, and the footprint of ATF2 
is symmetric. (b) Examples of DNase-Seq read-depth for ATF2 and REST. The footprint 
shape of the specific ATF2 binding site and REST binding site is similar to the aggregated 
ATF2 DNase-Seq and REST DNase-Seq respectively.  While the footprint shapes of 
ATF2 and REST are different. 

2.3.5 Using Wavelet decomposed DNase-Seq data can distinguish different TFs 
binding 

TFs bind at the accessible chromatin and different TFs leave different footprint shapes. 

Examples are shown in Figure 2.5. To test if different DNase-Seq signals centering the 

TFs footprinted region could distinguish different TFs binding, we applied Wavelet 

Transform to REST and ATF2 footprinted DNase-Seq data to extract features at different 

frequencies. The features at multi-resolution were used to train a Gradient Boosting Trees 

model to distinguish REST and ATF2 binding in the open chromatin (see details in the 

method section). The resulting AUCs are then compared to a baseline model that was 

trained on the original REST and ATF2 footprinted DNase-Seq data. Figure 2.6 shows 

that using Wavelet decomposed DNase-Seq signals can successfully distinguish the 

binding of REST and ATF2 and has higher accuracy (auROC 0.75 and auPR 0.65) than 

using DNase-Seq data only (auROC 0.72 and auPR 0.61). As it is shown in Figure. 2.6b, 

Figure. 2.6c, even though both REST and ATF2 are in the open chromatin region, the 

different footprinted DNase-Seq data decomposed by Wavelet have the capacity to 

distinguish their binding sites precisely.  
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Figure 2.6. Applying wavelet transformation to DNase-Seq signal can distinguish 
TF binding sites accurately. (a) ROCs and PRC for predictions of REST-ATF2 binding 
sites. ROCs for predictions by applying Wavelet transform to DNase-Seq signals (Red). 
GBT is applied to DNase-Seq directly to predict TF binding sites as a baseline model 
(Green). (b, c) Examples of correctly predicted REST and ATF2 binding sites. From top 
to bottom: predicted ATF2 binding site, observed ATF2 binding site. Predicted REST 
binding sites, observed REST binding site. DNase-Seq read-depth at each motif site, 
DNase-Seq track in K562. 
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2.3.6 Local chromatin accessibility can predict TF binding at single-nucleotide 
level accurately 

To investigate if local chromatin accessibility provides information for predicting TF 

binding probability at the single-nucleotide level, we obtained more DNase-Seq data 

including ±1000bp from the summit of the TF ChIP-Seq peaks as features, then we 

trained a CNN model to learn the Wavelet decomposed DNase-Seq data and predict TF 

binding probability at each nucleotide for ±25bp sequences flanking the summit of TF 

ChIP-Seq peaks containing the TF motif. Using CTCF ChIP-Seq data in K562 as an 

example data, we obtained multi-resolution features extracted by applying the Wavelet 

Transform to the K562 DNase-Seq data.  The input layer for the CNN is the concatenated 

Wavelet decomposed DNase-Seq data. Subsequent convolutional layers use Maxpool 

and Relu activation functions (see methods). The final layer outputs 51 predictions for the 

probability of each nucleotide in the DNA sequence is being footprinted by the CTCF in 

K562.  

To synthesize sensitivity and specificity, we assessed the CNN model using auROC. As 

the data is imbalanced, auPR is also used to measure the CNN model’s performance. 

Using K562 CTCF ChIP-Seq as gold-standard, the CNN model achieves high accuracy 

with auROC 0.74 and auPR 0.51 (Figure. 2.7a). For the CTCF motifs within ±25bp of the 

ChIP-Seq summit, the CNN model predicts high TF footprinted probability (> 0.5) for each 

nucleotide in the motifs, while for the flanking sequences around the motif, the predicted 

footprinted probability (< 0.5) is low (Figure 2.7b). These results suggested that local 

chromatin accessibilities can be applied to predict TF footprint probability at single-

nucleotide level.  
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Figure 2.7. Schematic figure of applying wavelet transformation to DNase-Seq 
signals and using CNN model to predict TF binding at single-nucleotide levels. (a) 
The DNase-Seq signals are extracted and decomposed by wavelet transformation. The 
approximate coefficients and detailed coefficients are concatenated as the input layer for 
training the CNN model. The CNN model has three convolutional layers. In each 
convolutional layer, batch normalization was applied, followed by Relu activation, and 
Maxpool function. Finally, the output layer was the predicted footprinted probability for 
each nucleotide around the CTCF motif. (b) AUCs for CTCF prediction at the single 
nucleotide level. (c) Examples of predicted CTCF binding at every single nucleotide. From 
bottom to top: the observed CTCF track, the DNA sequences containing the CTCF motif 
(violet-red), and the predicted TF footprint probability for each nucleotide in the DNA 
sequence. The predicted footprint probability is high for the motif sequences. 
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2.4 DISCUSSION 

Identifying TFBSs is the first-step for understanding the cell-specific gene regulatory 

network. In this study, we introduced TF-wave, a supervised Gradient Boosting Trees 

model that uses Wavelet decomposed DNase-Seq data to predict TF binding at candidate 

motif sites in a cell-specific way. We implement TF-wave in K562 and GM12878 cell lines. 

TF-wave demonstrates higher accuracy in TFBS prediction than other available 

computational footprinting method, Wellington, which also uses DNase-Seq data as the 

main feature. Moreover, we demonstrate that by applying Wavelet Transform to DNase-

Seq data to extract multi-resolution features underlying the TF footprints as the input 

features, TF-wave achieved higher prediction performance than models trained on 

original DNase-Seq data.  

Although the binding of TF in open chromatin protects DNA sequences from the cleavage 

of DNase I cleavage and therefore leaves footprints, different TFs yet have different 

footprint shapes. Existing computational footprinting methods focus on binary prediction 

of TFBS, i.e. if TFs bind or not for a given candidate motif or accessible chromatin region. 

They lack the capacity to distinguish different TFs binding in the open chromatin region. 

In this work, by using the Wavelet decomposed DNase-Seq signals, we demonstrate that 

TF-wave could accurately distinguish different TFs bindings when their motifs are in the 

open chromatin regions. This workflow provides the first step in understanding how TFs 

compete in the binding at the same accessible region as well as how TFs cooperate the 

binding. 

DNase-Seq can profile TF footprint at high resolution by counting the read at 5’ end. 

However, previous TFBSs footprinting methods mainly focus predict binary binding 
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activity for a given DNA sequence. By taking advantage of the high-resolution DNase-

Seq data, we developed the CNN model that can predict TF footprint probability at the 

single-nucleotide level. CNN model has been widely applied to biomedical filed and 

proved to be successful in multi-task prediction. The results show that trained CNN model 

can accurately predict TF binding at the motif site at single-nucleotide level. This single-

nucleotide footprinting strategy enables the understanding of how genetic variants located 

in the TF footprints regions will result in the gain of function or loss of function TF binding 

as well as elucidate how variants influence the gene regulatory network. Finally, this 

workflow can open the revenue not only for identifying functional mutations but also for 

understanding the underlying mechanism for phenotypic variations.  
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PREDICTIVE MODELS OF GENOME-WIDE ARYL HYDROCARBON RECEPTOR 
DNA BINDING REVEAL CELL SPECIFIC BINDING DETERMINANTS 

This chapter is adapted from our in-preparation work: Filipovic D., Qi W., Kana O., Marri 

D., LeCluyse E., Andersen M., Cuddapah S., Bhattacharya S.. Predictive Models of 

Genome-Wide Aryl Hydrocarbon Receptor DNA Binding Reveal Tissue Specific Binding 

Determinants. 

Section 3.3.2 in this chapter is adapted from previously published work (Desmet N. et al, 

2021):  Desmet N., Dhusia K., Qi W., Doseff A., Bhattacharya S., Gilad A. (2021) 

Bioengineering of Genetically Encoded Gene Promoter Repressed by the Flavonoid 

Apigenin for Constructing Intracellular Sensor for Molecular Events. Biosensors. 

3.1 INTRODUCTION 

The Aryl Hydrocarbon Receptor (AHR) is a ligand-activated transcription factor that 

belongs to the basic-helix-loop-helix (bHLH) PER-ARNT-SIM (PAS) family39–42. The AHR 

mediates toxic actions of environmental contaminants, such as 2,3,7,8-

tetrachlorodibenzo-ρ-dioxin (TCDD)43,44. Before binding to ligands and being activated, 

the AHR is sequestered in the cytoplasm by its chaperone proteins including a dimer of 

the 90-kDa heat shock protein (HSP90), the AHR-interacting protein (AIP) and the 

cochaperone p2345–48. When activated by its ligands, the AHR translocates to the nucleus 

and forms a heterodimer with Aryl Hydrocarbon Nuclear Translocator (ARNT)49–51. The 

AHR-ARNT heterodimer binds to specific DNA sequences termed Aryl Hydrocarbon 

Response Elements (AHRE), Dioxin Response Elements (DREs), or xenobiotic response 
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elements (XREs) containing a consensus motif, 5’-GCGTG-3’ to mediate genes 

transcription activity. 

Through the binding to cis-regulatory elements including gene promoters and distal 

enhancers, the AHR regulates a variety of target genes including cytochrome p450 1A1 

(CYP1A1), CYP1B1, and AHR Repressor. Identifying AHR binding sites is the first step 

for constructing its gene regulatory network and understanding its gene regulatory circuits, 

which is crucial for understanding the role of AHR in toxicity and disease, as well as its 

role in physiological functions such as immune response52,53, circadian rhythm54,55 cell 

cycle progression54,56, and embryonic development57,58. High throughput sequencing 

technologies such as Chromatin Immunoprecipitation and Sequencing (ChIP-Seq), ChIP-

exo, and ChIP-nexus have enabled the profiling of transcription factors binding sites at a 

genome-wide level7,8,59.  However, these experimental approaches are limited by several 

constraints including cost, time, or biological materials such as high-quality antibodies60–

62. AHR binding has been profiled in MCF-7 by ChIP-Seq experiment53. However, the 

determinants for the tissue specificity of AHR binding remain poorly understood.  

In recent years, a lot of pioneer efforts have been made to develop computational 

approaches to predict the TF binding sites. One of the most commonly used models to 

infer TF binding is the position weight matrix (PWM). PWM is derived from experimentally 

validated DNA sequences bound by a particular TF and quantitively describes the binding 

sites of the TF. The representation of a particular TF PWM is its motif, which can be 

readily obtained from databases such as JASPAR, HOCOMOCO, TRABSFAC, or 

estimated de novo30,63–66. For a potential binding site, the PWM generates a quantitative 

score by adding up individual scores of each nucleotide making up the PWM and 
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overlapping the potential binding site. PWM is commonly used to scan the genome for 

candidate TF binding sites by a predefined threshold score67–70. The PWMs are often 

derived from in vitro experiments, including high throughput systematic evolution of 

ligands by exponential enrichment (HT-SELEX)69 , and in vivo experiments such as ChIP-

seq. However, many TFs exhibit high levels of in vivo binding to DNA sequences that do 

not possess the in-vitro or even the in-vivo derived binding motif. 

On the other hand, TFs in eukaryotes generally do not bind DNA in isolation but rather in 

dense with other co-binding factors, which contributes to the tissue-specific binding 

activity. TF clusters with binding sites of multiple TFs co-occurring in close proximity71,72. 

Consequently, PWMs of co-bound TFs could potentially be used to predict the binding of 

a TF of interest. However, models incorporating PWMs of co-binding TFs have shown 

limited utility in improving model performance70. Nevertheless, given that TFs bind in 

clusters and that PWMs are not necessarily representative of actual TF binding, ChIP-

seq signals of co-bound TFs, as a measure of their actual binding, are likely to provide 

information that cannot be obtained from PWM. In addition, interpretable machine 

learning models incorporating measures of co-bound TFs could provide mechanistic 

insights into the determinants of tissue-specific binding for a TF of interest, such as AHR. 

Computational models have been developed to predict TF binding sites by integrating 

multi-omics data. Pique-Regi R et al applied Bayesian mixture models that integrate PWM, 

chromatin accessibility, and histone modifications to predict TF binding sites in open 

chromatin region73. TFBSImpute imputes missing TF binding directly from ChIP-Seq data 

by using a three-mode tensor74, where the three dimensions are the TFs, cell lines and 

genome locations respectively. Virtual ChIP-Seq makes the TF binding prediction by 
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leveraging the associations between gene expression and TF bindings70.  Deep learning 

models are also applied to predict TF binding in specific tissue based on DNA sequence 

and chromatin accessibility60,74,75. However, even though some of these models achieve 

high prediction performance for some TFs in both intra- and inter-cell lines, they generally 

lack interpretability and provide little mechanistic insight into what drives tissue-specific 

or cell-type specific TF binding. This limitation is especially acute for TFs exhibiting highly 

variable binding across tissues or cell lines. In addition, most computational models of TF 

binding to date have been developed for and tested on constitutively active TFs. The 

binding of inducible TFs, such as nuclear receptors or other ligand-activated TFs like the 

AHR, remains largely unexplored.  

In this study, we applied a Gradient Boosting Tree model, XGBoost76, to develop 

supervised machine learning models predicting the AHR binding status of DREs in open 

chromatin, i.e., DRE is bound or unbound, MCF-7 cell. Using AHR ChIP-Seq data derived 

from TCDD-treated MCF-7 cell line and corresponding chromatin accessibility 

experiments (DNase-Seq) in MCF-7 downloaded from ENCODE, we first detected tissue-

specific AHR-bound and AHR-unbound DREs in open chromatin of each tissue. Then, 

we applied XGBoost to integrate multi-omics data to predict the binding status of DREs 

in open chromatin in MCF-7. Our results demonstrate highly accurate and robust models 

of within-tissue binding prediction. We identify several TFs as predictive features of AHR 

binding in individual tissues, such as GATA3 as well as histone modifications (HMs) – 

H3K4me1 and H3K4me3 in MCF-7 cells. Our tissue-specific models generalize well to 

the prediction of AHR binding sites without DREs, demonstrating the robustness of the 

models. In conclusion, we demonstrate that the patterns of TFs and HMs most predictive 
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of AHR binding. Moreover, we show that AHR binding is driven by a complex interplay of 

tissue-agnostic DNA sequences flanking the DRE and tissue-specific local chromatin 

context. The approach used here can be further adapted to other inducible TFs, such as 

steroid hormones and nuclear receptors. 

3.2 MATERIALS AND METHODS 

3.2.1 Identification of AHR bound and unbound DREs 

To obtain the AHR bound or unbound DREs, all DREs in the human genome according 

to the reference sequence of the hg19 human assembly were collected based on the 

AHR motif firstly. Secondly, DNase-Seq experiment data for MCF-7 cell line was 

downloaded from ENCODE https://encodeproject.org/. The BroadPeak DNase-seq files 

for the hg19 genome assembly were used to mark the open chromatin. If there were 

multiple replicates, the intersection of all replicates was used for downstream analysis. 

Any DRE found under the peaks of DNase-seq intersection was considered to be in the 

open chromatin of the corresponding cell line and was used in the determination of bound 

and unbound DREs for the purposes of model training. DREs occurring in blacklisted 

regions were ignored in subsequent analyses. Thirdly, the AHR ChIP-seq file was 

downloaded from GEO (GEO: GSE90550)77, where the original sequencing files have 

been processed uniformly following a standard processing pipeline. DREs in open 

chromatin as well as under the AHR ChIP-Seq peaks are assigned to be the AHR bound 

DREs and used as the positive data in the machine learning model. DREs in open 

chromatin but outside of the AHR ChIP-Seq peaks are assigned to be the AHR unbound 

DREs. 
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3.2.2 Genomic and epigenetic features generation 

For each DRE in the human genome, the genomic sequence of seven nucleotides 5' and 

3' flanking the DRE (5'-GCGTG-3') were obtained. These nucleotides were then one-hot 

encoded and used as genomic features for the machine learning models. There were 

around 1.6 million DREs located in the entire the human genome. While only a small 

fraction of DREs have fulfilled the criteria for bound and unbound DREs used in the model 

training and testing.  

The epigenetic signals profiled by DNase-Seq, ChIP-Seq bigwig files were downloaded 

from ENCODE. The epigenetic signals extracted from bigwig files were then used as 

features in the models training and testing. Specifically, for each bound and unbound 

DRE, the epigenetic signal of 740 base pairs up and downstream from the DRE were 

extracted from the bigwig files, for a total of 1495 base pairs of signals (including the 5-

base pairs DREs). The extracted signals were split into 15 genomic bins and each bin 

contains 99 base pairs. The epigenetic signals within each bin were averaged to generate 

15 features corresponding to the particular DRE-genomic signal combination. During the 

averaging, any areas of missing signal are replaced with zeros. 

3.2.3 XGBoost model training 

For all the bound and unbound DREs appearing in open chromatin of that particular cell 

line, we have constructed the features matrix including genomic sequence, epigenetic 

features for all available DNase-Seq, histone mark as well as the co-binding activity of 

transcription factors. In order to tune the parameters of the XGBoost model, grid search 

was performed with the following of the hyperparameter space: max_depth = {3, 4, 5, 6, 

7}, min_child_weight = {3, 4, 5, 6, 7}, subsample = {1.0, 0.9, 0.8, 0.7}, colsample_by_tree 
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= {1.0, 0.9, 0.8, 0.7} and eta = {0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.3}. The average 

performances over all five folds were used to select best performing models in terms of 

hyperparameter selection. 

3.2.4 XGBoost model evaluation 

Area under Receiver Operating Characteristic (auROC) as well as area under Precision 

Recall curve (auPRC) was used to evaluate the performance of the model. The scores 

are the output of the XGBoost algorithm in the form of probabilities of each particular 

observation (DRE) belonging to a particular output class (bound or unbound). By using 

different thresholds for these probabilities above which the model predicts a DRE as 

bound, we obtain the number of true and false positives for each threshold, as well as 

true and false negatives relative to the ground truth of DRE binding obtained from the 

corresponding AHR ChIP-Seq experiment. Each threshold produces a point on the ROC 

and PRC curves; the area under the curve was calculated using a line interpolated 

through all the points. 

3.3 RESULTS 

3.3.1 Machine learning models accurately predict AHR binding 

In order to detect AHR binding sites, we applied XGBoost to integrate multi-omics data to 

predict the binding status of DREs in open chromatin. We trained the models on DREs 

occurring under singleton, i.e., 1-DRE, peaks only. These DREs represent about one third 

of all AHR peaks, across all binding experiments. To avoid noise in the training data, 

multi-DRE peaks were not used for training since it is impossible to determine which 

specific DRE among the cluster of DREs under the ChIP-Seq peak were indeed bound 
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by AHR and can be used as positive labels for training the model. In the validation, multi-

DRE peaks were used for validating the performance of the model. We developed all our 

machine learning models using the gradient boosted tree algorithm of the XGBoost family 

of algorithms, which has been shown to handle non-linear data well78,79. These algorithms 

also supply metrics of feature importance, i.e., the contribution of individual input features 

to improving the model performance. 

Local chromatin features were used as input features for the models and are trained and 

validated to predict the binding status of singleton bound and isolated unbound DREs 

(see Methods), limited to DREs found in open chromatin. Model evaluation is performed 

using a 5-fold cross validation procedure (see Methods for details) (Figure 3.1). The local 

 

Figure 3.1. Machine learning models predicting AhR binding learn tissue specific 
and agnostic rules. Schematic figure of XGBoost architecture. The input features 
include epigenetic features and DNA sequence (method). XGBoost uses the local 
chromatin features to predict the binding status of DRE in open chromatin.   

chromatin input features that were used include 1) The DNA sequence immediately 

flanking the DRE. We included the flanking sequence of up to 7 nucleotides directly up- 

and down- stream from the DRE–previously proposed to be involved in AHR binding. 

These sequences were one-hot encoded prior to being used as model inputs; 2) Binned 

mean values of bigWig signals of the MCF-7 cell line. We used the bigWig files of i) 
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DNase-seq (as representative of chromatin accessibility), ii) histone modification, and iii) 

transcription factor ChIP-seq signals from ENCODE – see methods for details. For each 

bigWig signal and each DRE, we created 15 bins of width 99 base pairs. Each bin was 

assigned a value representing the average bigWig signal across the width of that bin. The 

mid-point of the central bin was positioned at the middle nucleotide of the 5-bp DRE; 3) 

Indicator variables of whether the DRE is found in a strict (+/- 200 bp away from a 

transcription start site - TSS) or loose (+/- 1500 bp away from the TSS) definition of a 

promoter.  

In order to achieve accurate prediction performance, an extensive hyperparameter search 

were conducted for each binding experiment and input feature set (see Methods) and the 

model with the highest performance were selected. In all instances, unless otherwise 

stated, model performance was reported as the area under the Receiver Operating 

Characteristic (ROC) and Precision Recall (PR), averaged over five folds using the 5-fold 

cross validation procedure. For class imbalanced datasets such as the ones used here, 

where unbound DREs far outnumber the bound (Supplementary Table 1), the area under 

the PR curve (auPRC) is considered a more appropriate metric of model performance. 

Therefore, the model producing the highest auPRC was selected as the best performing 

model. However, the area under the ROC curve (auROC) was still a useful metric to 

distinguish between poorly and well performing models when comparing between binding 

experiments (see Methods).  

To better understand the tissue-specific determinants of AHR binding beyond the core 

DRE motif and chromatin accessibility, we developed a series of interpretable classifiers 

that use different combination of features to determine the binary binding status of DREs 
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in open chromatin. The model performance was investigated as a function of the input 

feature set. Different feature sets consisting of the following features were - 1) DNase-

seq only, 2) flanking sequence only, 3) flanking sequence and DNase-seq, 4) flanking 

sequence, DNase-seq and histone modifications, 5) flanking sequence, DNase-seq, 

histone modifications and transcription factor binding (referred to as the full model). 

(Figure 3.2) 

 

 

Figure 3.2. Performance of models predicting the binding status of DREs in open 
chromatin of the MCF-7 cells, with five different sets of input features. Performance 
of each set of features is represented as a mean line with a 95% confidence interval 
shaded around the line resulting from 5-fold cross-validation. The legend shows the 
features used, as well as area under the curve. Both receiver operating characteristic 
(ROC) - left panel, and precision-recall curves (PRC)  – right panel, are shown. 

XGBoost was extracted to determine, for each binding experiment, the total feature 

importance of non-sequence (i.e., TF binding and epigenomic) features (Figure 3.3A), 

relative feature importance of sequence features per flanking sequence nucleotide 

position (Figure 3.3B), and relative importance of individual bins of non-sequence 

features (Figure 3.3C). Further examination of non-sequence feature importance scores 
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revealed that the specific models are predominantly learning and making AHR-DRE 

binding predictions by relying on different features across different binding experiments. 

For example, within each binding experiment we observed three to six bigWig signals 

with feature importance 2-5 times higher than that of any other signal. These were in 

H3K4me1, H3K4me3, GATA3, CTCF, ZNF217 and FOXA1.  

 

Figure 3.3. Feature importance of all local chromatin context features excluding 
DNA sequence flanking the DRE, measured as feature importance gain in XGBoost 
classifier model trained on a particular cell type. A Feature importance for each 
chromatin context feature is calculated as the average feature importance of all bins for 
that particular chromatin context feature. B Feature importance of DNA sequence flanking 
the DRE, measured as feature importance gain in XGBoost classifier model trained on a 
particular cell line or type. Feature importance of each nucleotide type at a particular 
position relative to the DRE is normalized to the nucleotide type with the highest feature 
importance at that nucleotide position. C Feature importance of all local chromatin context 
features excluding DNA sequence flanking the DRE in models predicting the DRE binding 
status of all DREs in open chromatin. Feature importance measured as feature 
importance gain in XGBoost classifier model trained on a particular cell line or type. 
Feature importance for each bin of a particular chromatin context feature is normalized to 
the bin with the highest feature importance for that chromatin context feature. 

The importance of DNA sequence immediately flanking the DRE was evaluated via 

examining the importance scores of nucleotides flanking the DRE produced by two ways 

including 1) flanking sequence-only models, and 2) full models (inclusive of flanking 
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sequence, DNase-seq, histone mark and transcription factor features). And the 

importance of every nucleotide is shown in Figure 3.3B 

3.3.2 Sequence-only AHR model can identify the Optimal Promoter Sequence for 
designing gene circuits  

As a ligand-inducible transcription factor, the AHR could be activated by its ligand 

including flavonoids, and bind to DNA to turn on its target genes expression.  Therefore, 

the AHR system could be used to design reporter genes or gene circuits controlled by 

AHR ligands.  

 

Figure 3.4. Western blot analysis of AHR expression in HEK293FT (1) and Hela (2). 

In order to find the promoter with valid AHR binding sites, the XGBoost model trained 

based DNA sequence only was applied to predict the optimal promoter sequence for 

designing a reporter gene in response to flavonoids since the gene circuits don’t contain 

any epigenetic features. Specifically, the XGBoost model was trained on the AHR binding 

sites found in human breast cancer MCF-7 cells. The trained model was then applied to 

predict the binding probabilities for the 10 base pair segments containing the AHR core 

motif (5’-GCGTG-3’) are displayed in Table 1. Screening of a 2Kb promoter region 

upstream of the CYP1A1 transcription start site revealed 5 locations with putative binding 

probability of the AHR/ARNT complex greater than 0.5, suggesting that the complex 
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bound to these locations would initiate transcription of the reporter gene. Western blot 

confirmed that the reporter gene successfully expressed the AHR protein (Figure 3.4) 

3.4 DISCUSSION 

The binding of transcription factors (TFs) to DNA has been extensively studied by 

experimental studies, computational prediction models have been developed for TF 

binding imputation. However, the determinants and mechanisms underlying tissue-

specific TF binding are still not well understood. In addition, unlike many constitutively 

active TFs, tissue-specific binding of ligand-inducible TFs such as AHR cannot be fully 

determined through chromatin accessibility, the extended binding motif, the motifs of 

other co-bound TFs, or any combination of these features.  

PWM has been applied to scan the genome to identify candidate AHR binding sites, 

however, this method has high-false positive rate and cannot give us insights of 

determinants of AHR binding. In order to accurately identify AHR binding sites as well as 

as well as gain insights of mechanisms that mediate AHR binding, we developed, to the 

best of our knowledge, the first machine learning models that integrate multi-omics data 

to predict cell-specific and tissue-specific AHR binding sites. The machine learning model, 

XGBoost has demonstrated robust prediction performance across different tissue. 

Moreover, XGBoost can integrate predictive features in a non-linear way, and the 

important features can be extracted based on the Gradient Boosting tree structures, 

which provides us the probability of deciphering factors that determine AHR bindings. 

Furthermore, XGBoost trained on DNA sequence only has high scalability, and can be 

applied to predict AHR binding for building synthetic genes.  
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One of the limitations of predicting ligand-activated TFs is inconsistency in the data. In 

this study, the AHR ChIP-Seq is derived from TCDD treated MCF-7 cell line, while the 

epigenetics data used for training the machine-learning model collected from untreated 

cell lines. The treatment of TCDD might change the epigenetic environment in the 

genome, which results in the inconsistency of data used to generate features and labels 

for the model. Therefore, for future studies, comprehensive profiling of ligand-activated 

transcription factors is required not only to provide more biological information but also 

improve the predictive model’s performance designed specifically for such transcription 

factors.  
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JOINT INFERENCE OF PROTEIN-PROTEIN INTERACTIONS AND ENHANCER-
GENE LINKS BY A MATRIX DECOMPOSITION MODEL  

This chapter is adapted from our in-preparation work: Qi W., Yang J., Wang H., Wang J.. 

Joint Inference of Protein-Protein Interactions and Enhancer-Gene Links by A Matrix 

Decomposition Model. 

4.1 INTRODUCTION 

One of the fundamental questions in human biology is how one genome sequence can 

give rise to so many different cell fates. The answer to this question lies in the accurate 

execution of cell-type-specific gene transcription during cell differentiation and 

development80–84. Such lineage-specific regulation of gene transcription requires core 

promoters and proximal elements that locate around the genes’ transcription start sites. 

Recent experimental studies have revealed that, in addition to the proximal regulation 

elements, distal cis-regulatory elements, e.g. enhancers, also appear to be as major 

contributors in regulation of gene transcription activity85–87. Far away from their target 

genes as the enhancers could be in the genome, they can stimulate the gene transcription 

through the formation of chromatin loops to that bring the enhancers close to their target 

gene promoters in the 3D space88–91.   

Proper folding of chromatin is critical for gene regulation. The alterations in chromatin 

structure could lead to developmental abnormalities or human disease88–91. For example, 

disruptions including deletions, inversions, and duplications cause the TAD boundaries 

spanning EPHA4 brachydactyly, F syndrome, and polysyndactyly in humans. Further 4C 

analyses in a CRISPR-Cas9 edited mouse model revealed that a cluster of limb-specific 
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enhancers associated with EPHA4 was misplaced and abnormally activated neighboring 

genes including Pax3, Wnt6, and Ihh92. In addition to developmental disorders, mutations 

in chromatin structures such as enhancer adoption or enhancer hijacking by oncogenes 

could also lead to tumorigenesis91,93–96. For instance, variations are frequently found at 

cohesin and CTCF binding sites and, perturbing the TAD boundaries in non-malignant 

cells, which upregulates the proto-oncogenes97. A study using 7,416 cancer genomes 

across 26 tumor types also revealed that even one single duplication of the genome could 

result in a formation of a new chromatin domain and lead to the overexpression of the 

IGF2 gene in colorectal cancer98. Therefore, delineating the genome in the 3D space is 

critical to expanding our understanding of cell development and disease progression.  

Experimental methods have been developed to profile long-range chromatin interactions. 

For instance, chromatin conformation capture (3C) and 3C-derived techniques (4C and 

5C) perform high-throughput sequencing to examine spatial topology at a regional scale 

in the genome99–103. Moreover, Hi-C was later developed to profiling chromatin 

interactions at a genome-wide level103. A similar method, Capture Hi-C104 was developed 

to further improve the resolution of C based method. Chromatin interaction analysis with 

paired-end-tag sequencing (ChIA-PET) can detect cell-type specific long-range 

chromatin interactions at high resolution by targeting one protein out of interest105. 

Furthermore, CRISPR-dCase9-based techniques were developed to unbiasedly capture 

long-range DNA interactions as well as identify locus-specific chromatin-regulating 

protein complexes106,107. All of these technologies have provided large-scale chromatin 

contact maps in a diversity of cell types and tissues in the human genome as well as 

model species108. Imagining-based methods such as Fluorescence in situ hybridization 
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of DNA (DNA-FISH)109 use fluorescently labeled probes to hybridize to their 

complementary target loci within the nucleus. The chromatin contacts are therefore 

inferred by setting an arbitrary threshold, which is usually 50 nm to 1 μm110 , to the spatial 

distance based on the scale of genomic distances between the regions of interest and 

the resolution of the microscope. 

However, even though the experimental methods have generated comprehensive 

references of the long-range chromatin interactions maps for a number of cell types and 

tissue in both humans and model species108,111–114, there are limitations on in-depth 

profiling of enhancer-promoter interaction in a cell-type specific way. First, the resolution 

of existing C-methods including Hi-C and Capture Hi-C is usually 5kb-40kb, which is still 

relatively low and wherefore hard to precisely pinpoint specific enhancers that regulate 

the promoters104,108. Second, the chromatin interactions detected by Hi-C lack tissue 

variability and therefore have low specificity and too many false positive discoveries115,116. 

Third, mapping resolution is directly related to sequencing depth for Hi-C assays, hence, 

the cost of laboratories seriously hinders the popularity of Hi-C. Fourth, although ChIA-

PET and CRISPR-dCas9 have higher resolutions and can detect cell-type specific 

interactions, ChIA-PET relies on the antibodies to specific proteins such as CTCF, 

RAD21114, CRISPR-dCas9 can only generate locus-specific long-range interactions. 

Therefore, these two methods can only provide a subset of long-range chromatin 

interaction, which lead to high false negative discoveries. Imagining-based methods can 

detect chromatin contacts at all scales of chromosome folding, including contacts 

between chromosomes, while DNA-FISH remains to be limited to pre-selected genomic 
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regions and often used to validate findings, herein, not widely applied at the genome-wide 

level110.  

Due to the limitations of experimental technologies, computational methods have been 

developed to predict cell-type and tissue-type specific long-range enhancer-promoter 

interactions by integrating multi-omics signatures, including genomics, transcriptomics, 

and epigenomics117–120. There are in general two categories of computational methods of 

predicting chromatin interactions, e.g. unsupervised and supervised machine learning 

models. Unsupervised machine learning methods usually predict chromatin interactions 

by assigning each enhancer-promoter pair a score, ranking the pair based on the scores, 

and selecting the top-ranked pairs as the predicted interacting enhancer-promoter 

pairs121,122. Supervised models predict enhancer-promoter interactions by incorporating 

multi-omics signature features. The features include i) genomic sequences and genomic 

distance between enhancer-promoter pair, ii) gene expression activity profiled by RNA-

Seq, iii) enhancer activity profiled by epigenetics signals such as H3K4me1, DNase-Seq. 

iv) epigenetic features at the genomic window region between enhancer and promoter. 

By integrating these or some of these features, supervised machine-learning models are 

trained on labels generated by experimental technologies and predict enhancer-promoter 

interactions on unknown data. Two top-performing methods IM-PET123 and 

TargetFinder124  were developed to infer long-range enhancer gene links. IM-PET 

predicts EP pairs by training a Random Forest model that takes four kinds of features 1) 

correlation between enhancer and promoter activity. 2) The correlation between the 

expression of transcription factor binding on enhancers and the promoters’ activity. 3) the 

coevolution between the enhancer and its target promoter. 4) genomic distance between 
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enhancer and promoter. TargetFinder employs a gradient boosting tree model and 

integrates hundreds of genomic features including 1) chromatin accessibility, 2) 

methylation status of DNA, 3) gene expression, 4)ChIP-Seq signal of TFs, architectural 

proteins, modified histones, 5) quantified signal as well as the genomic distance   between 

enhancer and promoter. 6) conserved synteny of the enhancer and promoter, 7) similarity 

of TF and target gene annotations. Despite the supervised machine learning models have 

better performance than unsupervised models 125, these models suffer from overfitting 

problems due to the large feature dimension 126. In addition, these models didn’t provide 

insights into the mechanisms that mediate long-range enhancer-promoter interactions127.  

In addition to the predictive features used in previous studies as mentioned above, recent 

experimental studies revealed that protein-protein interactions (PPIs) between TFs also 

have been identified to participate in the formation of long-range chromatin interactions 

and herein facilitate interactions between distal enhancers with their target genes128–

131.  The most well-known example is the DNA loop extrusion formed by the cohesin 

complex, where cohesin loads onto chromatin, leading to the formation and enlargement 

of DNA loops that are eventually arrested at boundary elements such as CTCF132–134. In 

addition, instead of being an insulator to maintain the TAD boundary, intra-TAD CTCF 

binding, together with the cohesin complex, is also reported to stabilize the enhancer-

promoter interactions and maintain robust gene expression. Deleting the CTCF binding 

sites compromises the interactions between enhancers and promoters135,136. Moreover, 

The zinc-finger transcription factor Yin Yang 1 (YY1) has also been identified as a 

structural regulator of enhancer-promoter loops. YY1 could form dimers to promote DNA 
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interactions by binding to active enhancers and promoters identified by chromatin 

immunoprecipitation with mass spectrometry (ChIP-MS)131,137.  

Furthermore, experimental studies have reported that TFs bind together to secure long-

range enhancer-promoter interactions. For example, the zinc-finger protein, ZNF143, is 

also demonstrated to be involved in CTCF-mediated chromatin interaction loops by 

overlapping with cohesin binding sites and CTCF binding sites. Deletion of the ZNF143 

binding sites is reported to result in the loss of CTCF-mediated chromatin loops. Together, 

these observations implicate that ZNF143 functions as a partner of CTCF to establish 

and stabilize the chromatin structures by cooperating with the cohesin complex138–142. 

These observations from previous experimental work establish a mechanistic hypothesis 

that PPIs between specific TFs may mediate long-range enhancer regulation. Therefore, 

integrating PPIs between TFs as a new set of features into the computational models is 

expected to improve the prediction accuracy of long-range enhancer-promoter links. By 

interpreting the computational model to extract the most predicted PPIs, we can gain 

insights of cell/tissue-type specific mechanisms that regulate long-range enhancer-gene 

links. Furthermore, by considering TF PPIs with combined orders, the computational 

models are expected to achieve boosted accuracy in predicting long-range enhancer-

gene links.  

In this study, we developed a matrix factorization model to infer enhancer-promoter 

interactions based on TF PPIs with combined order (EP3ICO). EP3ICO jointly predicts 

long-range enhancer-promoter interactions and optimizes first-order TF-TF interactions 

that regulate enhancer-promoter links. Prioritized first-order TF-TF interactions can be 

applied to accurately to predict enhancer-promoter links. For the enhancer-promoter pairs 
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that cannot be reconstructed by the first-order TF-TF interactions, EP3ICO further 

decomposes these enhancer-promoter pairs and identify second-order PPIs between 

TFs that facilitate the long-range interaction between enhancer-promoter pairs that 

cannot be explained by the first-order TF PPIs only. By using TAD-split cross-validation 

and controlling confounding factors including genomic distance between enhancer and 

promoter, we demonstrated the superior performance of EP3ICO compared to existing 

models. EP3ICO provides a workflow to prioritize novel multi-order PPIs between TFs that 

regulate long-range enhancer-promoter interactions, making it possible to understand the 

underlying mechanisms that organize the 3D chromosome. 

4.2 MATERIALS AND METHODS 

4.2.1 Datasets 

EP3ICO takes the continuous chromatin contact frequency matrices derived from Hi-C 

data as input. High-resolution Hi-C data from K562 was downloaded from GEO (GEO: 

GSE63525)103,104,108. Knight-Ruiz normalization (KR) was first applied to remove the 

biases such as library size, fragment length, GC content, sequence mappability, copy 

number variations, and other unknown factors143,144. ChIA-PET in K562 was used as 

ground truth to evaluate the model performance111. Enhancer-promoter pairs were 

labeled as positive samples if they overlap with ChIA-PET interactions. Otherwise, they 

will be labeled as negative samples.  

Gene promoters are defined as up-stream and down-stream 1kb regions of the gene 

transcriptional start sites (TSS). The TSS data is obtained based on the annotation from 

GENCODE v17145. Gene expressions in K562 were measured by RPKM values of the 

RNA-seq dataset from the Roadmap Epigenomics project70. Enhancer coordinates were 
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obtained based on ENCODE and Roadmap enhancer annotations. Enhancer activities in 

K562 were quantified by the DNase-Seq signals146,147. In order to have high-activity 

enhancers and promoters, enhancers or promoters that have activity < 0.05 in K562 are 

removed. Enhancers that locate on the same Hi-C anchors with promoters are also 

filtered out. Correlation coefficients between enhancer-gene pairs were calculated based 

on the enhancer activity and gene expression across 111 cell types.   

The ChIP-Seq IDR narrow peaks datasets for TF binding in K562 were downloaded from 

ENCODE148. The ChIP-Seq experiments with treatments were removed to maintain the 

consistency with the cell-specific Hi-C and ChIA-PET data used in this work. If multiple 

datasets exit for one TF, ChIP-Seq file with the highest FRiP score149 is selected first, 

then ChIP-Seq datasets with FRiP score < 5 are further filtered out to maintain the high 

quality of ChIP-Seq data. The significant peaks identified by MACS2 were used to label 

the TF binding sites in the genome. Overall, 114 TFs in K562 were used for constructing 

the TF-TF interaction matrix for the following analysis. 

Protein-protein interactions are collected from STRING dataset v11150. To obtain the high-

quality PPIs, only PPIs with the confidence score greater than 100 in the ‘Experiments’ 

were used to for the following analysis.  

4.2.2 Generation of data matrices  

EP3ICO applies matrix factorization models to optimize first-order PPIs and second-order 

PPIs between TFs that regulate long-range enhancer-promoter interactions. Five kinds 

of matrices containing genomic information are required for the matrix factorization model: 

1) intra-TAD enhancer-promoter interaction frequency matrix, 2) TF binding on enhancer 

matrix and TF binding on promoter matrix, 3) first-order TF-TF interaction matrix and 
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second-order TF-TF interaction matrix, 4) TF binding correlation matrices, 5) genomic 

distance between enhancer-promoter pairs. 

Hi-C data is used to construct the enhancer-promoter contact frequency matrix108. For 

each enhancer-promoter pair, the enhancer is overlapped with one Hi-C anchor, the 

promoter is overlapped with the other Hi-C anchor, KR normalized Hi-C contacts between 

these two anchors were used as the contact frequency between the enhancer-promoter 

pair. Previous studies have reported that inter-TAD Hi-C interactions' data quality is 

substantially reduced compared with intra-TAD interactions151,152. Therefore, only intra-

TAD enhancer-promoter pairs were used to construct the enhancer-promoter pair contact 

matrix.  

ChIA-PET interactions were used as golden-standard to evaluate the model153. 

Specifically, for each intra-TAD enhancer-promoter pair where the enhancer overlaps with 

one ChIA-PET fragment and the promoter overlaps with the other ChIA-PET fragment, 

this enhancer-promoter pair will be assigned with 1 if there exists validated ChIA-PET 

interaction between these two fragments. Otherwise, the enhancer-promoter pair will be 

assigned 0. The binary matrix was then used as a label to evaluate model performance. 

To construct the binary TF binding on the enhancer matrix as well as TF binding on the 

promoter matrix, we overlapped the TF ChIP-Seq peak coordinates with enhancers’ or 

promoters’ coordinates, respectively. If the TF peak overlaps with enhancer coordinates, 

the TF-enhancer entry value is labeled to be 1, otherwise, 0. Similarly, if the TF peak 

overlaps with promoter coordinates, the TF-promoter entry value is labeled to be 1, 

otherwise, 0. 
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The first-order TF PPI matrix was constructed by labeling the TF-TF links according to 

the PPIs data, i.e. for each TF-TF pair, if there exist high-quality PPIs between them, then 

the value between these two TFs is labeled as 1, otherwise 0. All TFs with available ChIP-

Seq data from ENCODE that meet the criteria described above were used to construct 

the first-order TF PPI matrix.  

To obtain the second-order TF PPI matrix, the correlation coefficient between two TFs 

was firstly calculated based on their binding activities on enhancer and promoter 

respectively. Only correlation coefficients that are greater than 0.6 were used to make the 

E, and P matrices. Correspondingly, experimental validated PPIs between TF-TF pairs 

with a correlation greater than 0.6 on both enhancer binding and promoter binding sites 

were used in the second-order PPIs matrix. 

4.2.3 Cluster topological associated domains 

It is observed that TFs have high binding to enhancers or promoters in certain domains 

while low bindings in others. To reduce the variances caused by the TF binding, 

hierarchical clustering with the walds method were applied to cluster the TAD based on 

the TFs binding in promoters and enhancers. Specifically, for each TF, the proportion of 

enhancers or promoters this TF bind to was calculated, and a vector is used to represent 

the TFs binding abundance on promoters and enhancers for each domain. Ward 

minimum variance method is applied for the clustering154. Four clusters were identified so 

that there are enough training data (> 100 TADs) and similarity is maintained within each 

cluster.  
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4.2.4 Remove genomic distance variance from Hi-C data 

To remove the distance variance of Hi-C data, we first fit a linear model between 

enhancer-promoter contacts and their genomic distance. 𝒀 = 	𝜸𝑫 +	𝜸𝟎, where 𝒀 is the 

enhancer-promoter contacts matrix, 𝑫 is the genomic distance between enhancers and 

promoters. 𝜸 is solved by fitting a linear model. Residuals 𝑹𝟏 between the reconstructed 

enhancer-promoter interaction frequency using genomic distance and observed 

enhancer-promoter interaction frequency is calculated: 𝑹𝟏 = 	𝒀 − (𝜸𝑫 +	𝜸𝟎). 𝑹𝟏 is used 

as input for EP3ICO to optimize the TF-TF interactions that regulate enhancer-promoter 

interactions and predict enhancer-promoter links (Figure 4.1D).  

 

Figure 4.1. EP3ICO infers long-range enhancer-promoter interaction based on TF-
TF PPI features. A The Enhancer-promoter links are mediated by multi-order PPIs. Left,  
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Figure 4.1 (cont’d)  

enhancer-promoter interactions are regulated by first order PPIs between enhancer-
binding TFs (TF1, yellow) and promoter-binding TFs (TF2, beige). Right, enhancer-
promoter interactions are regulated by second-order PPIs. The co-binding of TFs on 
promoters (TF1 and TF3, purple) or enhancers (TF2 and TF3, dark olive-green) facilitate 
the second-order PPIs between TF2 and TF3 and TF1 and TF4 respectively. The second-
order PPIs regulate long-range enhancer-promoter links. B Examples of second-order 
PPI between IKZF1-CTCF-RAD21 mediated Hi-C interactions. CTCF and RAD21 have 
first-order PPIs, the co-binding of IKZF1 and CTCF on promoters provides second-order 
PPIs between IKZF1 and RAD21. The second-order PPI between IKZF1-CTCF-RAD21 
regulates interactions between ZMYND10 and enhancer located 100kb away. C 
Examples of second-order PPI between CTCF-YY1-JUND mediated Hi-C interactions. 
YY1 and JUND has first-order PPIs, the co-binding of YY1 and CTCF on enhancer 
provides second-order PPIs between CTCF and JUND. The second-order PPI between 
CTCF-YY1-JUND regulates interactions between SRP90 and enhancer located 200kb 
away. D The flexible framework of EP3ICO for jointly inferring multiple orders of PPIs that 
mediate chromatin loops and predicting long-range enhancer-promoter links using 
prioritized TF-TF PPIs. Bottom: a matrix optimization model that prioritizes first-order TF-
TF PPIs that regulate enhancer-promoter interactions, 𝑋 is the first-order PPI 
matrix.  Middle: a matrix optimization model that prioritizes second-order TF-TF PPIs that 
regulate enhancer-promoter interactions, 𝑋′ is the second-order PPI matrix. Top: EP3ICO 
can be further applied to identify higher-order PPIs that mediate chromatin interactions. 

4.2.5 Matrix decomposition model is applied to optimize first-order TF-TF 
interactions 

EP3ICO applies the model decomposition model 𝑹𝟏 = 	𝑨𝑿𝑩 to jointly infer the first-order 

TF-TF interactions that regulate long-range enhancer-promoter links as well as predict 

long-range enhancer-promoter interactions (Figure 4.1D), where 𝑨 is the TF-enhancer 

matrix, 𝑩 is the TF-promoter matrix, and 𝑿 is the TF-TF interaction matrix that need to be 

optimized. Biologically, only a subset of TF PPIs mediates the long-range enhancer-

promoter interactions. Therefore, the optimized TF-TF interaction matrix is expected to 

be a sparse matrix.  To make the optimized matrix be sparse, L1-regularization is added 

to the loss function to increase the sparsity in the optimized PPI matrix as well as avoid 

over-fitting of the models 𝑳(𝑿) = ||𝑹𝟏 − 𝑨𝑿𝑩||𝑭𝟐 + 𝝀|𝑿|. The gradient is derived for the 
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loss function and is used in the gradient descent method to minimize the loss function. 

We aim to identify TF-TF interactions from experimentally validated PPIs, thus, only 

entries with experimentally validated TF-TF interactions will be updated during the 

optimization progress, and remaining entries will be kept zero. In order to quickly achieve 

the global optimum, the Barzilai-Borwein method is used to calculate the step size at each 

iteration in the optimization process155.  

4.2.6 Matrix decomposition model to optimize second-order TF-TF interactions 

The first-order TF-TF interaction matrix is optimized in each cluster. Then the prioritized 

TF-TF interactions are applied to reconstruct long-range enhancer-promoter contact 

frequency together the genomic distance model in each TAD within the cluster. The 

residuals between observed and reconstructed enhancer-promoter interaction frequency 

is calculated: 𝑹𝟐 = 	𝒀 − (𝜸𝑫 +	𝜸𝟎) − 𝑨𝑿𝑩. 𝑹𝟐 is used to optimize the second-order TF-

TF interactions 𝑿&: 𝑹𝟐 = 	𝑨(𝑬𝑿& + 𝑿&𝑷)𝑩, where 𝑿& is the second-order TF-TF interaction 

matrix. Specifically, enhancer-promoter pairs with the top as well as bottom 5% residuals 

are considered the ones that cannot be solely explained by the first-order TF-TF 

interactions and are therefore used to prioritize the second-order PPIs. Similarly, the L1-

regularization is applied in the matrix factorization model to increase the sparsity and 

avoid over-fitting 𝑳(𝑿′) = ;|𝑹𝟐 − (	𝑨(𝑬𝑿& + 𝑿&𝑷)𝑩)|;𝑭
𝟐 + 𝜷|𝑿′|. 

4.2.7 Model evaluation and performance comparison 

Area under the Receiver Operating Characteristic curve (AUROC) and area under the 

precision-recall curve (AUPR) are used to evaluate both first-order TF-TF interactions and 

second-order TF-TF interactions model’s performance by 5-fold cross-validation. In each 
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cluster, TADs were randomly split into training and testing sets. EP3ICO was trained on 

the training TADs and was applied to predict EP pairs in the testing TADs.  

 

Figure 4.2. Performance comparison in K562 cells. EP3ICO, ProTECT, TargetFinder,  



 53 

Figure 4.2 (cont’d)  

and IM-PET are applied on the same input datasets and are evaluated based on the 
averaged performance of 5-fold cross-validation. As a baseline comparison, enhancer-
gene activity correlations are also included in the analysis. A ROC curves and B PR 
curves of first-order PPIs performance in K562 cells. C ROC curves and D PR curves of 
second-order PPIs performance in K562 cells. E, F Examples of enhancer-promoter 
interactions predicted by EP3ICO second-order PPIs. In each example, the highlighted 
enhancer (red) is predicted to interact with the highlighted promoter (green) by EP3ICO. 
Both predictions are supported by cell-type specific Hi-C interactions (blue paired lines). 
The prioritized TF PPIs mediating the interactions are second-order PPIs RAD21-CTCF-
YY1 (E) and YY1-JUND-CTCF (F), respectively. 

The training and testing data have high imbalance and the imbalanced dataset might 

inflate the model’s performance. To justify the robustness of EP3ICO, a balanced dataset 

with the same number of positive and negative samples is also generated by 

downsampling for cross-validation. Furthermore, the genomic distance between the 

enhancer and promoter pair might be a confounding factor that dominates the model 

performance. Thus, a balanced dataset with genomic distance control is further generated 

to evaluate the model performance.  

The performance of our EP3ICO were also evaluated and compared with two state of art 

models, TargetFinder and IM-PET, which also leverage TF binding features in their 

model124,156. Both TargetFinder and IM-PET integrate activity-based features, genomic 

distance, as well as TF binding information in enhancers and promoters. Additionally, 

TargetFinder also used the TF binding information in the windows region between 

enhancers and promoters. Using the same set of TF ChIP-Seq peaks to generate the TF 

features in the window between enhancer-promoter pair, TargetFinder is trained on the 

Hi-C data according to the data processing procedure in the paper. The trained model is 

then applied to the same testing dataset to make the predictions. IM-PET is implemented 
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to the same dataset. As IM-PET automatically predicts enhancer-promoter pairs with 

genomic distance < 2Mb, only common enhancer-gene pairs are used to evaluate 

performances, resulting in a fair comparison among the three models. By comparing our 

first-order PPIs model TargetFinder and IM-PET, we demonstrate that PPIs information 

can greatly improve the accuracy in the predicting of enhancer-promoter links.  

The prioritized second-order PPIs are used to predict enhancer-promoter interactions on 

the subset of enhancer-promoter pairs (see methods). By comparing the second-order 

PPIs with the first-order PPI's performance on the same dataset, we demonstrate that 

second-order PPIs can provide additional information for predicting enhancer-promoter 

links. ProTECT applies Random Forest model to integrate TF-TF interactions modules to 

predict enhancer-promoter interactions157. In order to demonstrate the additional 

information provided by the second-order PPIs, we further compare our second-order PPI 

model with ProTECT. Only the common enhancer gene pairs among all models were 

used to evaluate the model performance. 5-fold cross-validation is applied and the 

average AUCs are used to report the final performances. 

4.2.8 TF shuffling  

In order to quantitively check if TFs binding, as well as TF PPIs, indeed contribute to the 

high accuracy of EP3ICO, we randomly permute the TFs binding on the enhancers and 

genes as well as permute the PPIs between TFs with the degrees of each TFs unchanged 

and the numbers of TFs that bind on enhancer or promoter maintained respectively. The 

First-order PPI model was trained and tested on the same datasets using permuted TF 

bindings and TF PPIs. The AUCs were used to compare the first-order PPI model trained 

with the original dataset. For the second-order PPIs model, the TF binding on the 
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enhancer correlation matrix, i.e, 𝐸 matrix, as well as the TF binding on the promoter, i.e 

𝑃 matrix is calculated based on the permuted TF binding on the enhancers and promoters, 

respectively. Then, the second-order PPI model was trained using permuted 𝐸, 𝑃, and 

second-order PPI matrix on the same training set used for training the original second-

order PPI matrix, and the AUCs were compared to the original second-order PPI model 

on the same testing dataset. Balanced dataset as well as distance-controlled balanced 

data were also generated to evaluate the model performance based on shuffled PPIs.  

4.2.9 EP3ICO predict enhancer-promoter interactions based on imputed cell-
specific TF bindings  

In order to assess if EP3ICO can be transferred to cell lines or tissues when TF ChIP-Seq 

data is not accessible, we impute cell-line specific TF bindings in K562 and implement 

EP3ICO based on the imputed TF bindings.  

To impute the TFs binding, the TF motifs coordinates discovered from ENCODE ChIP-

Seq data were collected158. Firstly, TF motif coordinates located in close chromatin were 

filtered out and motifs in accessible chromatin were used to impute the TF binding. 

Secondly, TFs that have lower gene expressions than 0.6 were further removed to avoid 

the high false positives. Finally, imputed TF binding sites at enhancers and promoters are 

generated with TFs pass the criteria by overlapping these TFs’ imputed binding sites with 

enhancers and promoters through BEDtools159 (see methods). These TFs are then used 

to construct first-order and second-order TF-TF interactions matrices and applied in 

optimization models. 
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Figure 4.3. TF PPI features provide additional information beyond TF bindings. A 
Schematic figure of the permutation test on TF PPI features. The shuffled PPIs are  
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Figure 4.3 (cont’d)  

generated by randomly pairing two interacting TFs from the original pool of TF PPIs, while 
the degrees of PPI partners and TF binding sites in enhancers and promoters are 
maintained. B Correspondingly, the co-occurrence matrices of TFs, E, and P are 
generated based on the shuffle TF bindings. Based on the shuffled PPIs, new matrix 
factorization models were trained and then evaluated by the same cross-validation 
procedure for the first-order and second-order PPIs respectively. C, D ROC, and PR plots 
for the models based on the original first-order TF PPI features (red), the models based 
on the shuffled first-order TF PPI features (green). E, F ROC and PR plots for the models 
based on the original second-order TF PPI features (purple), the models based on the 
shuffled second-order TF PPI features (green). 

4.2.10 cis-eQTL enrichment analysis for predicted long-range enhancer-gene 
interactions 

To predict the enhancer-promoter interactions, the prioritized first-order PPIs were 

applied to reconstruct the score of the enhancer-promoter pairs. The top 10% predicted 

enhancer-promoter pairs were selected to be the final predictions. Furthermore, optimized 

second-order PPIs were applied to predict enhancer-promoter links on the subset of data 

we used to learn the second-order PPIs. And the top 10% predictions in the testing data 

from the subset were used as the final predictions. 

cis-eQTL from matched cell lines also provides orthogonal information in validating the 

accuracy of genome-wide predictions generated by our model. As we made the genome-

wide enhancer-promoter interactions in the K562 cell line, we collected three eQTL 

datasets that are profiled from either lymphoblastoid cells or blood tissue156,160,161. A 

predicted enhancer-promoter interaction is considered to be supported by the cis-eQTL 

if the SNP overlaps with the enhancer and the promoter matches with the gene. The 

fraction of predicted enhancer-promoter links was calculated for each eQTL dataset as 

the enrichment score. The overlapping fraction of SNP-gene pairs of the top 10% 

predictions of IM-PET were also used as a comparison for the first-order PPIs predictions. 
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The top 5% predictions of IM-PET were used to calculate the overlapping fractions of 

eQTLs as a comparison to our second-order PPIs predicted enhancer-gene pairs. 

Wilcoxon signed-rank test was used to check the statistical significance. 

 

Figure 4.4. Imputed TF bindings can accurately predict enhancer-promoter 
interactions. EP3ICO uses imputed TF binding to predict long-range enhancer-promoter 
interactions and is compared with IM-PET on the same input datasets. Performance is  
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Figure 4.4 (cont’d)  

evaluated based on the averaged performance of 5-fold cross-validation. As a baseline 
comparison, enhancer-gene activity correlations are also included in the analysis. A ROC 
curves and B PR curves of first-order PPIs performance in K562 cells based on imputed 
TF binding. C ROC curves and D PR curves of second-order PPIs performance in K562 
cells based on imputed TF binding. 

4.3 RESULTS 

4.3.1 Predict long-range enhancer-promoter interactions based on multi-order 
PPIs between TFs 

Previous experimental studies have identified that PPIs between specific TFs mediate 

long-range enhancer-promoter interactions through the binding to promoters and 

enhancers respectively. Two examples of first-order PPI-mediated Hi-C enhancer-gene 

interactions are shown in Figure C.1. In the first example, PPI between RAD21 and CTCF 

regulates gene TTC31’s promoter with a distal enhancer located 100kb away. In the 

second example, PPI between CTCF and YY1 mediates the long-range interaction 

between gene E2F2’s promoter and an enhancer located 20kb away.  

Moreover, higher-order PPIs between TFs are also found to participate in the regulation 

of long-range chromatin loops 138–142. Two second-order PPI facilitated Hi-C enhancer-

promoter interaction examples are shown in (Figure 4.1B, 4.1C). The first example shows 

that IKZF1 maintains a second-order PPI with RAD21 through the co-binding with CTCF 

on enhancer. The second-order PPI between IZKF1 and RAD21 facilitates long-range 

links between gene ZMYND10 with an enhancer located 100kb away. Without the co-

binding of IKZF1 on enhancer, PPI between CTCF and RAD21 alone is not able to 

facilitate the long-range chromatin loops for certain enhancer-promoter pairs. The second 

example shows second-order PPI between CTCF-YY1-JUND mediated Hi-C interactions. 
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YY1 and JUND has first-order PPIs, the co-binding of YY1 and CTCF on enhancer 

provides second-order PPIs between CTCF and JUND. The second-order PPI between 

CTCF-YY1-JUND regulates interactions between SRP90 and enhancer located 200kb 

away.  

A predictive model, especially a linear model can easily suffer from overfitting problems 

due to the large feature dimensions. To effectively avoid the overfitting problems, we 

applied two steps to increase the feature sparsity. First, before the training of the model, 

we removed PPIs with a confidence score < 100 to manually reduce the feature 

dimension as well as control the input feature quality. Secondly, we added L1-

regularization to the matrix factorization model we developed. L1-regularization shrinks 

the less important features’ weights to zero, resulting in a sparse optimized matrix. The 

sparse features will avoid over-fitting issues effectively as well as preserve the robustness 

of the model162. 

The first-order PPI models are trained on a high-resolution Hi-C dataset from human K562 

cell line. The Hi-C data was normalized by KR normalization method (see methods). The 

enhancer-gene contact frequency matrix in each TAD was constructed from the KR 

normalized matrix, and the variance caused by genomic distance was removed by fitting 

a linear model between enhancer-promoter distance and contacts (see methods). The 

residual matrix was computed by subtracting the prediction from the observation. The 

residual matrix was decomposed to into three matrices including the TF-enhancer matrix, 

the first-order PPIs interaction matrix, and the TF-promoter matrix.  The learned first-order 

PPIs were optimized through an optimization process. Prioritized first-order TF-TF 

interactions were applied to predict genome-wide enhancer gene interaction contacts.  
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Figure 4.5. EP3ICO identifies functional TF PPIs that regulate enhancer-promoter 
interactions. A,B Prioritized first-order (A) and second-order (B) TF PPIs in four clusters.  
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Figure 4.5 (cont’d)  

Min-Max normalization is applied to the TF PPIs optimized weights in each cluster, top 
20 optimized TF PPIs are selected based on the normalized weights in each cluster. The 
union of PPIs is used to plot the heatmap.  The higher the number, the more important 
TF PPI is in regulating long-range enhancer-promoter interactions. C D cis-eQTLs from 
multiple datasets (x- axis) are significantly enriched in first-order TF PPIs (C) predicted 
enhancer-promoter interactions and second-order PPIs (D) predicted enhancer-promoter 
interactions in K562 (red). The fractions of enhancer-promoter interactions overlapping 
with cis-QTLs (y-axis) are compared with IM-PET. Error bars represent sd. E Example of 
a cis-eQTL, i.e. the rs16889678-RPS10 pair, overlapping with a second-order PPI 
predicted enhancer-promoter interaction. The predicted interaction is supported by ChIA-
PET (blue paired lines). The prioritized PPI feature is YY1-CTCF-RAD21, consistent with 
the ChIP-seq signal tracks (black signals). 

Differences between the observed enhancer-promoter pair contacts and predicted 

enhancer-promoter contacts were calculated. Enhancers-promoter pairs with top 5% and 

bottom 5% residuals were then selected to be further decomposed to learn the second-

order PPIs information. The prioritized second-order PPIs were then applied to boost the 

prediction for enhancer-promoter pairs in the subset (Figure 4.1D). The prioritized first-

order PPIs as well as second-order PPIs between TFs provide new insights for 

understanding the complex interplay between TFs, enhancers, and genes. Further cis-

eQTL analysis based on the predicted first-order TF PPIs as well as second-order TF PPI 

predicted enhancer-promoter interactions provide a new platform for understanding the 

human genetic analyses. 

4.3.2 TF PPIs features provide boosted performance 

Using the genome TAD-split cross-validation strategy, we tested the prediction accuracy 

of the first-order PPI model as well as compared our model with two other supervised 

machine learning models, TagetFinder and IM-PET in K562 cell line. Our first-order PPI 

model achieved the highest performance, with AUROCs are 0.86. IM-PET ranked second 
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with AUROC being 0.57. TargetFinder has the lowest AUROC value 0.52. Since the 

testing data has a high imbalance, the AUPR is also used to assess the performance of 

all of the models. Our model has the highest performance again, with an AUPR are 0.13. 

As a baseline comparison, the activity correlation between the enhancer and gene pair is 

also calculated as a prediction score and used in the comparison. The AUROC and AUPR 

of activity correlation are 0.57 and 0.03 respectively, similar to IM-PET, which uses activity 

correlation as the main feature in their model (Figure 4.2A, 4.2B). As the data set is highly 

imbalanced, we also downsampled balanced data in two ways and evaluate the model 

performance on the balanced dataset. First, we randomly select a negative dataset that 

have the same number of samples as the positive dataset. By assessing the models’ 

performance on the balanced data, EP3ICO still shows the highest accuracy (Figure 

C.4A). Secondly, we performed the downsampling with a more stringent strategy by 

controlling the genomic distance. Specifically, instead of randomly selecting negative 

pairs, we selected the negative pairs that have the same genomic distance distribution 

with the positive pairs. By evaluating the models’ performance on the genomic-distance 

controlled data, EP3ICO again shows the highest accuracy (Figure C.6A). 

Two examples of predicted enhancer-promoter interactions are shown in Figure C.2. The 

first enhancer-gene pair example, where the enhancer locates 50kb away from the 

enhancer, has Hi-C validated interactions. The activity correlation between enhancer and 

gene is 0, which indicates a false negative prediction based on the activity correlation. 

However, our prioritized PPI between CTCF and RAD21 reconstructed the long-range 

enhancer-promoter interaction with CTCF binding on the enhancer and RAD21 binding 

on the promoter. The second enhancer-gene pair example have a low activity correlation, 
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i.e. 0.4 while with validated Hi-C interaction. Again, the prioritized PPIs between EP300 

and RAD21 have reconstructed this long-range enhancer-promoter pair with EP300 

binding on the enhancer and RAD21 binding on the promoter.  

A subset of enhancer-promoter pairs can’t be reconstructed by our first-order PPI model, 

we further developed a matrix factorization model and trained the model on the subset 

enhancer-gene pairs to identify second-order PPIs required for enhancer-promoter 

regulation (Figure 4.1D). By comparing the second-order PPI model with the first-order 

PPI model, we further demonstrated that second-order PPIs boosted the accuracy in 

predicting long-range enhancer-promoter links that could not be predicted by first-order 

PPIs only (Figure C.3). By generating the balanced dataset and evaluate the models on 

balanced data, we further proved the robust performance of second-order PPI model 

(Figure C. 4B, Figure C. 6B). ProTECT157 is another supervised random forest model that 

uses PPI modules as main features to predict long-range enhancer-promoter interactions. 

However, ProTECT doesn’t use higher order PPIs as their features. To justify that higher-

order PPIs can provide additional information, we compared our second-order PPI model 

with ProTECT, TargetFinder, IM-PET, and the baseline model on the common data. The 

results show that our second-order PPI model overperforms ProTECT as well as other 

three models, suggesting there are more information provided by the second-order PPIs 

(Figure C. 8).  

Two predicted examples using second-order PPIs are presented in Figure 4.2E, 4.2F. In 

the first example, YY1 maintains a second-order PPI with RAD21 through the co-binding 

with CTCF on the enhancer and leading to the regulation of this enhancer’s interaction 

with a gene located 20kb away. In the second example, JUND has second-order PPI in 
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CTCF through the co-binding with YY1. The second-order PPIs regulate the long-range 

enhancer-promoter interaction where the enhancer is 10kb away from the promoter.  

As we used a subset to learn the second-order PPIs, our second-order PPI model was 

compared with TargetFinder and IM-PET on the same testing dataset. Still, our second-

order PPI model has the highest performance with AUROC and AUPR are 0.81 and 0.14 

respectively (Figure 4.2C, 4.2D). The results not only demonstrate that our second-order 

PPIs model has superior performance, but also our matrix factorization model is robust 

on different datasets.  

4.3.3 TF PPI features provide additional information beyond TF bindings and 
activity-based features 

To further justify the superior performance of indeed result from the information of first-

order TF PPIs features, we permuted the TF bindings on the enhancer and promoters 

with the numbers of TFs on the enhancers or promoters being strictly maintained. 

Moreover, the TF-TF interactions were shuffled randomly with the degree of PPI partner 

remained (Figure 4.3A). Correspondingly, the E and P matrices were calculated based 

on the shuffled TF bindings to have the shuffled second-order PPIs (Figure 4.3B). We 

trained EP3ICO on the data y using the permuted TF bindings and the shuffled first-order 

as well as shuffled second-order TF-TF interactions, and compared the model 

performance with using the original data. We observed that using the shuffle TF-TF 

features decreases the accuracy of both first-order’s and second-order’s predictions in 

the K562 cell line (Figure 4.3 C-F). Balanced dataset was also generated by downsample 

same number of enhancer-promoter pairs that are not supported by called ChIP-PET 

interactions. Balanced dataset was generated with distance controlled as well as in a 
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random way, i.e distance is not controlled. The models’ performance was further 

compared on these two kinds of balanced dataset. The results further demonstrated that 

original TF bindings and TF-TF interactions can reconstruct the enhancer-promoter 

interactions more accurately (Figure C.5, Figure C.7). The difference in prediction 

accuracy suggests the boosted performance of EP3ICO is contributed by the TFs bindings 

and the TF PPI features. 

4.3.4 cis-eQTL are enriched in the first-order PPIs and second-order PPIs 
predicted long-range enhancer-promoter interactions. 

The prioritized first-order PPIs are applied to predict enhancer-promoter interactions on 

the testing dataset. We selected the top 10% predictions of enhancer-promoter links 

based on the reconstructed interaction scores as the final predictions. As we trained the 

model on the Hi-C data, cis-eQTLs were used as orthogonal evidence to evaluate the 

accuracy of predicted enhancer-promoter interactions. By calculating the fractions of 

predicted enhancer-promoter pairs supported with SNP-gene pairs of significant eQTLs, 

we compared the overlapping enrichment scores of EP3ICO with IM-PET. Compared with 

IM-PET, the enhancer-promoter links predicted by first-order PPIs have significantly 

higher fractions overlapping with eQTLs in K562 for all three eQTL datasets (p-values < 

5.50e-08, 6.03e-04, and 7.45e-04 respectively, Figure 4.5C). Moreover, the prioritized 

second-order PPIs were also applied to predicted enhancer-promoter interactions on the 

testing set from the subset data. The top 10% reconstructed enhancer-promoter links 

were selected as the predictions. The same cis-eQTL datasets were applied to check the 

enrichment scores of EP3ICO with IM-PET. EP3ICO has significantly higher overlapping 
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fractions in K562, the p-values < 2.54e-06, 0.0171, 0.0187 respectively (Figure 4.5D). 

The results suggest high accuracy of EP3ICO predictions. 

4.4 DISCUSSION 

In this study, we develop a matrix factorization model, EP3ICO to infer multi-order PPIs 

between TFs that regulate long-range enhancer-promoter interactions. Using the 

optimized multi-order TF-TF interactions, EP3ICO accurately predicts long-range 

enhancer-promoter interactions and achieves superior performance compared with 

existing methods. By incorporating higher-order PPIs between TFs, EP3ICO further 

improved the prediction performance on a subset of enhancer-promoter interactions that 

can’t be reconstructed accurately by first-order TF-TF interactions.  

cis-eQTLs are also applied to validate the predictions of EP3ICO as the orthogonal 

evidence. Enrichment scores of cis-eQTLs in EP3ICO predicted enhancer-promoter links 

are compared with enrichment scores of IM-PET predicted enhancer-promoter 

interactions. The results show that prioritized first-order PPIs and second-order PPIs 

reconstructed enhancer-promoter links have significantly higher fractions than IM-PET. 

The promising enrichment analysis further indicates the predictions of EP3ICO can be 

used as a platform to characterize the non-coding SNP’s effects propagated through 3D 

chromatin interactions.  

The K562 cell line has comprehensive profiling of TF bindings sites, which provides the 

data for EP3ICO. However, there remain cell lines or tissues that have limited data sets. 

To address the data limitation issue, we impute TF bindings based on the TF motifs, TF 

gene expression level, and chromatin accessibility. By using the imputed TF bindings, 

EP3ICO still achieves superior performance for both first-order PPIs and second-order 
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PPIs predicted enhancer-promoter links. The results further demonstrate the accuracy of 

EP3ICO and its generalizability.  

The major novelty of EP3ICO is the inclusion of multi-order TF PPIs as features. The first-

order TF PPI can reconstruct and explain the majority of enhancer-promoter links. 

However, a subset of enhancer-promoter interactions cannot be predicted by first-order 

TF PPIs only, second-order TF PPIs can be applied to improve the predictions. Moreover, 

EP3ICO is a flexible workflow and can be further applied to identify higher-order PPIs that 

regulate the 3D genome.  
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FUTURE DIRECTIONS 

Identification of transcription factors binding sites (TFBSs) and charactering chromatin 

interactions in the 3D space are critical for understanding the gene regulatory networks. 

In this dissertation, we presented the studies that were conducted in both directions to 

decode the gene regulatory rhythms by integrating the multi-omics data. We developed 

a supervised machine learning model, TF-wave, that uses DNase-Seq data to predict 

TFBSs within cell lines. Next, we designed a matrix factorization model, EP3ICO, that 

jointly infers long-range enhancer-promoter interactions and multi-order PPIs that 

mediate the 3D genome.  

Although TF-wave has achieved superior performance in predicting intra-cell transcription 

factors footprints, inter-cell line prediction is not investigated yet and will be one of the 

future directions we will focus on. Another future direction is applying ATAC-Seq data as 

features to predict TFBSs. Moreover, single-cell ATAC-Seq (scATAC-Seq) data is 

available in many cell lines, we will future take use of the scATAC-Seq to predict TFBS 

at single-cell level.  

 EP3ICO achieves high accuracy in predicting long-range enhancer-promoter links as well 

as provides mechanistic insights of 3D genome. We will continue working on exploring 

more on the roles of epigenetic features including histone modifications in shaping the 3D 

-genome. By integrating new epigenetics features, we will further improve the accuracy 

of mathematical models in predicting long-range enhancer-promoter links.  
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APPENDIX A  
 

SUPPLEMENTARY FIGURES FOR CHAPTER 2 

Table A.1. List of TFs in K562 cell line 

 
 

ID TF FRiP Motif 

ENCFF002DBD CTCF 35.5666667 MA0139.1 

ENCFF926FUM YY1 11.395 MA0095.2 

ENCFF664XPS SPI1 8.045 MA0080.5 

ENCFF495MHZ NFE2 7.095 MA0841.1 

ENCFF465JKF MYC 9.53 MA0147.3 

ENCFF002CVW FOS 6.25333333 MA0476.1 

ENCFF497XOD MITF 8.69 MA0620.3 

ENCFF178MOP SMAD5 7.55 MA1557.1 

ENCFF182QDI EGR1 13.28 MA0162.4 

ENCFF958KNK ATF3 14.1 MA0605.2 

ENCFF010UHD RFX1 12.235 MA0509.2 

ENCFF948TXN CREM 12.2 MA0609.2 

ENCFF973LDQ ZNF24 6.835 MA1124.1 

ENCFF544XKC PKNOX1 23.15 MA0782.2 

ENCFF334FMW USF1 10.75 MA0093.3 

ENCFF895QLA REST 11.385 MA0138.2 

ENCFF710IEF ATF4 12.3 MA0833.2 
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Table A.1 (cont’d) 

ENCFF917COW E2F6 15.925 MA0471.2 

ENCFF833FCO GABPA 15.25 MA0062.3 

ENCFF422NGZ MAX 24.15 MA0058.3 

ENCFF564WEB ELF1 16.3 MA0473.3 

ENCFF492GXZ FOXK2 5.31 MA1103.2 

ENCFF706ISJ ZBTB7A 10.21 MA0750.2 

ENCFF059ONJ MNT 9.9 MA0825.1 

ENCFF968JVX IKZF1 15.85 MA1508.1 

ENCFF213EPU ESRRA 6.62 MA0592.3 

ENCFF493ABN NRF1 38.9 MA0506.1 

ENCFF106DAY E2F1 10.375 MA0024.3 

ENCFF502KHR ELF4 5.43 MA0641.1 

ENCFF670ZCR MGA 6.805 MA0801.1 

ENCFF664ZGR NR2C1 5.91 MA1535.1 

ENCFF558DSF HMBOX1 7.31333333 MA0895.1 

ENCFF209MQX TEAD4 9.16 MA0809.2 

ENCFF370ENX NFIC 10.585 MA0161.2 

ENCFF255EOB NR2F2 5.02 MA1111.1 

ENCFF613RNG MEIS2 10.8 MA0774.1 

ENCFF968KBN ATF2 12.265 MA1632.1 

ENCFF408FQC ZBTB33 12.35 MA0527.1 

ENCFF175IIE NR2F1 10.36 MA0017.2 
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Table A.1 (cont’d) 

ENCFF868QLL ATF7 10.555 MA0834.1 

ENCFF308IXJ MAFF 5.19 MA0495.3 

ENCFF337DKJ JUND 11.4 MA0491.2 

ENCFF114IWY ZNF143 6.595 MA0088.2 

ENCFF113PMT NFYB 13.65 MA0502.2 

ENCFF179NDS BHLHE40 5.9 MA0464.2 

ENCFF429XKT CEBPB 10.855 MA0466.2 

 
 

Table A.2. List of TFs in GM12878 cell line 

 
ID TF FRiP Motif 

ENCFF002DAJ CTCF 28.9333333 MA0139.1 

ENCFF967ACD YY1 14.6 MA0095.2 

ENCFF911BYP MEF2B 9.845 MA0660.1 

ENCFF405NFV TBX21 11.21 MA0690.1 

ENCFF810CEL NR2F1 8.62 MA0017.2 

ENCFF141SAU ZNF143 12.4 MA0088.2 

ENCFF095GMM BHLHE40 19.7 MA0464.2 

ENCFF726VEK ATF7 11.85 MA0834.1 

ENCFF628QJU NFIC 10.41 MA0161.2 

ENCFF339KUO PAX5 6.28 MA0014.3 
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Table A.2 (cont’d) 

ENCFF456FQB RELB 10.385 MA1117.1 

ENCFF609KOY ATF2 7.045 MA1632.1 

ENCFF593FBF BATF 11.54 MA1634.1 

ENCFF394DLH EBF1 14.1 MA0154.4 

ENCFF807AKG ELF1 8.64 MA0473.3 

ENCFF939TZS JUNB 7.935 MA0490.2 

ENCFF328QLX MEF2A 7.16 MA0052.4 

ENCFF467NRS NFYB 8.26 MA0502.2 

ENCFF248QFF RUNX3 21.1 MA0684.2 
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Figure A.1. TF-wave predicts TF binding sites accurately and outperforms 
Wellington in GM12878. TF-wave and Wellington were evaluated on the same datasets 
using the averaged performance of 5-fold cross-validation. (a) Performance comparison 
in GM12878 for TF-Wave and Wellington using auPR. The x-axis and y-axis are auPR of 
applying Wellington and TF-wave to predict TFBS on the same data. Each point 
represents a TF, points above the diagonal line indicate TF-wave performs better than 
Wellington. (f) Performance comparison in GM12878 for TF-Wave and Wellington using 
auROC. The x-axis and y-axis are auROC of applying Wellington and TF-wave to predict 
TFBS on the same data. Each point represents a TF, points above the diagonal line 
indicate TF-wave performs better than Wellington.  
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Figure A.2. Wavelet transform can boot the TFBS prediction performance in K562 
and GM12878. TF-wave and GBT trained on the original DNase-Seq (baseline model) 
signal were evaluated on the same datasets using the averaged performance of 5-fold 
cross-validation. (a, c) Performance comparison in K562 GM12878 for TF-Wave and 
baseline model using auPR. The x-axis and y-axis are auPR of applying baseline model 
and TF-wave to predict TFBSs on the same data. Each point represents a TF, points 
above the diagonal line indicate TF-wave performs better than baseline model. (b, d) 
Performance comparison in K562 and GM12878 for TF-Wave and baseline model using 
auROC. The x-axis and y-axis are auROC of applying Wellington and TF-wave to predict 
TFBS on the same data. Each point represents a TF, points above the diagonal line 
indicate TF-wave performs better than baseline model. 
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Figure A.3. Different TFs have different consensus footprint shapes. Aggregated 
DNase-Seq read-depth for top 5% predictions for NRF2, ATF7, YY1, SPI1, CREM, and 
FOXK2. Each TF has a unique footprint shape. Palindrome motifs such as CREM and 
ATF7 leave a symmetric footprint. NRF1 is similar to palindrome motifs, and also leaves 
a symmetric footprint. Motifs that are not palindrome such as SPI1, YY1, FOXK2 leaves 
asymmetric footprints. 



 89 

APPENDIX B  
 

SUPPLEMENTARY FIGURES FOR CHAPTER 3 

 

Figure B.1. Ten putative AHR binding sites and their predicted binding probabilities 
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APPENDIX C  
 

SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

Table C. 1. List of TFs used in K562 cell line 

ID TF 

ENCFF002DBD CTCF 

ENCFF926FUM YY1 

ENCFF254YOX NR2C2 

ENCFF002CXU RAD21 

ENCFF664XPS SPI1 

ENCFF911VSD NFE2 

ENCFF465JKF MYC 

ENCFF002CVW FOS 

ENCFF947KPB POLR2A 

ENCFF497XOD MITF 

ENCFF178MOP SMAD5 

ENCFF076IFG ZEB2 

ENCFF701MXF TFDP1 

ENCFF116DIO ZNF148 

ENCFF182QDI EGR1 

ENCFF958KNK ATF3 

ENCFF490VVG HDAC2 

ENCFF644WLI RNF2 
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Table C.1 (cont’d) 

ENCFF948TXN CREM 

ENCFF232KAH ATF1 

ENCFF973LDQ ZNF24 

ENCFF511QHY ZMYM3 

ENCFF284LRP TAL1 

ENCFF440JJW MLLT1 

ENCFF822FWM TAF1 

ENCFF122QSN HNRNPLL 

ENCFF544XKC PKNOX1 

ENCFF294HEI PRDM10 

ENCFF334FMW USF1 

ENCFF895QLA REST 

ENCFF517KRT GABPB1 

ENCFF710IEF ATF4 

ENCFF622RBW SMARCE1 

ENCFF417LEJ ZBTB40 

ENCFF917COW E2F6 

ENCFF788EBS ZNF316 

ENCFF320THV NR2C1 

ENCFF685KAG GABPA 

ENCFF493TZM TCF12 

ENCFF186QUP VEZF1 
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Table C.1 (cont’d) 

ENCFF248AOD ZNF766 

ENCFF152VMJ CTBP1 

ENCFF422NGZ MAX 

ENCFF823SYE DPF2 

ENCFF692PVV FOSL1 

ENCFF076MSV AFF1 

ENCFF273TYA ZNF592 

ENCFF168HAG PBX2 

ENCFF273EYJ POLR2G 

ENCFF564WEB ELF1 

ENCFF366UBB NCOR1 

ENCFF492GXZ FOXK2 

ENCFF872JJJ POLR2B 

ENCFF706ISJ ZBTB7A 

ENCFF462JFW ZBTB11 

ENCFF996ZGL C11orf30 

ENCFF417TXD USF2 

ENCFF738WCE KDM1A 

ENCFF019ALY HDAC1 

ENCFF059ONJ MNT 

ENCFF968JVX IKZF1 

ENCFF801YZV POLR2H 
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Table C.1 (cont’d) 

ENCFF429XKT CEBPB 

ENCFF388YOB ZNF395 

ENCFF213EPU ESRRA 

ENCFF606CCB CEBPG 

ENCFF493ABN NRF1 

ENCFF120WOF ZNF639 

ENCFF096XMD RAD51 

ENCFF314ULQ L3MBTL2 

ENCFF106DAY E2F1 

ENCFF883TOD SMARCA4 

ENCFF602AXP ZNF589 

ENCFF502KHR ELF4 

ENCFF157UUF NFRKB 

ENCFF993GXU CBFA2T3 

ENCFF642BNC CBFA2T2 

ENCFF356ASJ E2F5 

ENCFF670ZCR MGA 

ENCFF083YCQ E4F1 

ENCFF881QBT PML 

ENCFF558DSF HMBOX1 

ENCFF209MQX TEAD4 

ENCFF521CRG ZFP36 
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Table C.1 (cont’d) 

ENCFF241TBP SOX6 

ENCFF680WBN RBM25 

ENCFF370ENX NFIC 

ENCFF057ZUY BCOR 

ENCFF925ANU EP400 

ENCFF255EOB NR2F2 

ENCFF927JBT MAFG 

ENCFF225MPC ARID1B 

ENCFF613RNG MEIS2 

ENCFF968KBN ATF2 

ENCFF408FQC ZBTB33 

ENCFF484HCG SUPT5H 

ENCFF646VQW TRIM24 

ENCFF350YXB MTA3 

ENCFF433RKB ZFX 

ENCFF175IIE NR2F1 

ENCFF868QLL ATF7 

ENCFF002CVU CCNT2 

ENCFF626KTJ PHF8 

ENCFF002CXW POLR3A 

ENCFF379MPS RBBP5 

ENCFF474NLG HCFC1 
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Table C.1 (cont’d) 

ENCFF671DOL UBTF 

ENCFF549TYR EP300 

ENCFF308IXJ MAFF 

ENCFF337DKJ JUND 

ENCFF114IWY ZNF143 

ENCFF113PMT NFYB 

ENCFF179NDS BHLHE40 

ENCFF041YQC SMC3 

ENCFF380FJL TBP 

 
 

 

Figure C.1. A,B Examples of first-order PPI mediated long-range enhancer 
promoter interactions in K562 cell line. A, RAD21 binds on TTC31 promoter, CTCF 
binds on enhancer, the PPI between RAD21 and CTCF regulates the long-range 
enhancer-promoter interactions. B, YY1 binds on the E2F2 promoter, CTCF binds on the 
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Figure C.1 (cont’d)  

enhancer, the PPI between YY1 and CTCF regulates this long-range enhancer-promoter 
interactions. C, matrices generation within each TAD, clustering of TAD based on the TF 
binding on enhancers and promoters within each TAD. A linear model was fitted between 
the enhancer-promoter interaction frequency and genomic distance.  

 
 
 

 

Figure C.2. Prioritized first-order PPIs can predict long-range enhancer-promoters 
accurately. A, RAD21 binds on S100A2 promoter, CTCF binds on enhancer, the 
prioritized PPI between RAD21 and CTCF regulate this long-range enhancer-promoter 
interactions. B, RAD21 binds on HNRNPUL1 promoter, RAD21 binds on enhancer, the 
prioritized PPI between EP300 and RAD21 regulate this long-range enhancer-promoter 
interactions.  
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Figure C.3. Performance comparison between first-order PPI model and second-
order PPI model. A. model comparison on the dataset used for second-order PPI model. 
B. model comparison on balanced-distance controlled dataset used for second-order PPI 
model 
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Figure C.4. Performance comparison in K562 cells on balanced data. EP3ICO, 
ProTECT, TargetFinder, and IM-PET are applied on the same input datasets and are 
evaluated based on the averaged performance of 5-fold cross-validation on a balanced 
data. As a baseline comparison, enhancer-gene activity correlations are also included in 
the analysis. A ROC curves and PR curves of first-order PPIs performance in K562 cells. 
B ROC curves PR curves of second-order PPIs performance in K562 cells. 
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Figure C.5. Comparison with shuffled PPIs on balanced datasets. A. ROC, and PR 
plots for the models based on the original first-order TF PPI features (red), the models 
based on the shuffled first-order TF PPI features (green). B. ROC and PR plots for the 
models based on the original second-order TF PPI features (purple), the models based 
on the shuffled second-order TF PPI features (green). 
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Figure C.6. Performance comparison in K562 cells on balanced data with distance 
control. EP3ICO, ProTECT, TargetFinder, and IM-PET are applied on the same input 
datasets and are evaluated based on the averaged performance of 5-fold cross-validation 
on a balanced data with distance control. As a baseline comparison, enhancer-gene 
activity correlations are also included in the analysis. A ROC curves and PR curves of 
first-order PPIs performance in K562 cells. B ROC curves PR curves of second-order 
PPIs performance in K562 cells. 
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Figure C.7. Comparison with shuffled PPIs on balanced datasets with distance 
control. A. ROC, and PR plots for the models based on the original first-order TF PPI 
features (red), the models based on the shuffled first-order TF PPI features (green). B. 
ROC and PR plots for the models based on the original second-order TF PPI features 
(purple), the models based on the shuffled second-order TF PPI features (green). 
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Figure C.8. Comparison with ProTECT, TargetFinder, IM-PET, and baseline model 
based on a common dataset. A. ROC, and PR plots for the models on the common 
dataset. B. ROC and PR plots for the models on the balanced dataset.  C. ROC and PR 
plots for the models on the balanced dataset with distance control. 


