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ABSTRACT 

Violence is a widespread public health and justice system problem with far-reaching 

consequences for victims, offenders, and their communities. Aggression, the cognitive and 

behavioral antecedent to violent action, is mainly understood in terms of the psychosocial risk 

factors that increase the likelihood of aggressive behavioral strategies. Neighborhood context is a 

principal risk factor for violent crime perpetration, but the mechanisms that mediate the effect of 

the environment on individual-level aggression behavior are poorly understood, especially the 

biological factors that may contribute to our understanding of violent behavior. In order to gain a 

better understanding of mechanisms that precipitate violence in specific geographic contexts, this 

dissertation explores the relationship between aggression behavior and the gut microbiome, a 

spatially determined physiological system that affects human health and behavior. In humans, post 

mortem microbiome studies show a loss of biodiversity in high crime census block groups that can 

be leveraged, alongside indicators of socioeconomic status, to predict block group crime level, 

supplying critical foundational support to explore how differences in gut microbiome composition 

relate to human aggression behavior. The overall goal of this research is to connect basic science 

findings in mice to correlational evidence of a relationship between the human gut microbiome 

and violent crime exposures, thus revealing how community health affects individuals and 

supplying a potential target for future intervention. 
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CHAPTER 1: INTRODUCTION 

Introduction 

Aggression predicates acts of violence that serve to control, traumatize, maim, or kill 

victims. According to the Federal Bureau of Investigation (2017), however, a conservative 

estimate of violent crime (e.g., murder, rape, robbery, and aggravated assault) in Michigan is 450 

crimes per 100,000 persons annually, with aggravated assault offenses accounting for 

approximately 69% of all violent crime. Within clinical populations, the risk of aggression is 

elevated among those with paranoid psychoses, substance abuse disorder, and antisocial 

personality disorder (Eronen, Angermeyer, & Schulze, 1998), posing a challenge to patient care 

within the justice and healthcare systems. Importantly, survivors of violence often suffer long-term 

health consequences of abuse, such as increased risk for post-traumatic stress disorder, chronic 

pain, and generally higher health care utilization (Campbell, 2002; Rivara et al., 2019). Thus, 

aggression and violence represent serious public health problems with negative effects on quality 

of life, health, and vitality for both perpetrators and victims.  

Spatial location is a critical risk factor for crime perpetration, underscoring the importance 

of contextual, or environmental, factors in driving offender behavior. Crime mapping has thus 

become a tradition of criminological study in an effort to understand broader patterns of behavior 

and the local area factors that increase risk of crime. Historically, criminologists of the 19th century 

first demonstrated the coupling of crime and place (e.g., Guerry, 1833), but it was the work of 

Shaw and McKay (1942) that first explained the link in terms of social and environmental factors 

that disrupt community through social disorganization. In particular, residential instability, 

population heterogeneity, and low socioeconomic status emerged as predictors of neighborhood 

delinquency that persisted in defining risk across three different time periods irrespective of 
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shifting neighborhood demographics (Shaw & McKay, 1942), suggesting that factors within a 

disorganized neighborhood context rather than individual-level traits drive human health and 

behavioral patterns.  

This foundational research led to the identification of a suite of social and environmental 

risk factors for criminal behavior that are spatially clustered in disadvantaged neighborhoods 

(Bursik & Grasmick, 1993; Sampson & Groves, 1989; Sampson, Raudenbush, & Earls, 1997; 

Shaw & McKay, 1942). This has led many to speculate that there is a neighborhood effect wherein 

mechanisms of social control breakdown (in response to disorganization) to create a social (i.e., 

low cohesion) and physical environment where crime is more readily perpetrated. However, most 

individuals who live in neighborhoods that have a high risk of crime do not commit crime or 

otherwise engage in deviant behavior (Bursik & Grasmick, 1993). Therefore, there is important 

variation in this so-called “neighborhood effect” on crime that is not accounted for by current 

explanations of criminal behavior, highlighting a need for additional research to explain individual 

variation in response to the psychosocial risk factors associated with deviance.  

Indeed, research to date is limited in its ability to provide (1) a mechanism through which 

social and environmental exposures influence individual action and (2) why individuals exposed 

to similar social and environmental factors vary in their engagement in deviant behavior. 

Understanding how these factors affect the brain, the final common mediator of risk, is essential 

for understanding the etiology of deviant/aggressive behavior. Previous research demonstrates that 

there are significant differences in brain activity between individuals with a history of violent 

behavior and non-violent controls (e.g., Leutgeb et al., 2015). Specifically, increased risk for 

human aggression is associated with pathophysiological changes in brain regions underlying 

emotional regulation and the body’s response to stress (e.g., threat). Impairments in the prefrontal 
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cortex (PFC), the seat of executive function, and the amygdala, the center of fear and aggression 

(Rosell & Siever, 2015), limit the ability to process and regulate emotion, enabling the expression 

of violating behaviors (Sapolsky, 2017). Importantly, similar pathophysiological changes are 

observed in the brains of individuals who grow up living in impoverished socioeconomic 

conditions (Liberzon et al., 2015). This raises the question as to how exposures in disadvantaged 

neighborhood contexts affect the brain. Critically, because the brain does not operate in isolation 

from the rest of the body, consideration of other physiological systems that could mediate the 

relationship between the physical environment and the brain must be accounted for. 

Emerging research about the human microbiome, the communities of microbes that inhabit 

the body, suggests that it has a role as a physiological regulator in health and behavior (Knight, 

2015), an effect that depends on the environment and its spatial location. Moreover, recent 

evidence suggests a role for the gut microbiome in human psychological disposition and mental 

health. For example, Borre and colleagues (2014) review how perturbations in the normal 

developmental trajectory of the human microbiome due to both lifestyle choices (e.g., formula 

versus breast feeding) and environmental insults (e.g., pathogen exposure) can disrupt physical 

growth, permanently alter critical brain signaling pathways, and predispose an individual to 

neurodevelopmental psychiatric disorders. Research also shows that differential microbial 

community structures in the gut are associated with different temperaments in children (Christian 

et al., 2015) as well as major depression and anxiety in adults (Jiang et al., 2015; Jiang et al., 2018). 

Together, these findings suggest that gut dysbiosis (i.e., imbalance) is associated with various 

expressions of pathological behavior and aberrations in brain health.  

Evidence of the specific effect of the gut microbiome on human aggression is limited and 

does not directly relate to behavior. In one study, changes in inmate diet were associated with 
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reductions in aggression and prison rule-breaking (Gesch, Hammond, Hampson, Eves, & Crowder, 

2002; Zaalberg, Nijman, Bulten, Stroosma, & van der Staak, 2010). This effect was attributed to 

changes in metabolic function (Gesch et al., 2002), but given recent findings regarding the effect 

of diet on the gut microbiome (Sonnenburg & Sonnenburg, 2015), the underlying mechanism for 

this behavioral change among the prisoners remains unclear. More specifically, other work has 

shown that changes in the gut microbiome are associated with changes in the neurocognitive 

antecedents of aggressive behavior. For example, a recent human imaging study showed 

reductions in brain activity related to vigilance (e.g., threat tracking) following probiotic treatment 

(Tillisch et al., 2013), and other research demonstrated reductions in self-reported aggression in 

response to probiotics (Steenbergen et al., 2015). Taken together, this research suggests a 

relationship between the microbiome of the gut and sensitivity to emotional cues that could be 

important for the manifestation of aggressive behavior in humans. 

Importantly, the microbiome of the gut has a known role in sensory and neurochemical 

pathways that communicate with the brain to modulate behavior (Mayer et al., 2014). Its 

composition is also highly dependent on lifestyle choices and environmental exposures (Clarke, 

O'Mahony, Dinan, & Cryan, 2014; von Mutius & Vercelli, 2010). Thus, perturbations in the gut 

microbiome caused by environmental input, such as those observed in disadvantaged 

neighborhoods (e.g., low access to nutritional foods, toxin exposure), could have a profound effect 

on behavior, including deviant behavior. However, research is needed to investigate the potential 

link between the human microbiome, brain health, and aggression behavior to uncover potential 

mechanisms that could explain why certain contexts are so risky for both health and behavior.  

Though there is increasing interest in studying the biological factors associated with 

aggressive behavior from a criminal justice perspective (Rafter et al., 2016), only limited work has 
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been done. Neuroscientific research shows the importance of pathophysiological changes in the 

brain for the expression of aggression behavior (Bannon, Salis, & O'Leary, 2015), which involves 

a dynamic interplay of biological, psychological, and social or environmental factors. Given the 

established contributions of both environmental and social neighborhood factors to individual-

level risk for aggressive behavior, the pressing question becomes how context interacts with 

physiology, and to what extent there is an effect of physiology beyond long-established risk factors 

like residential instability, population heterogeneity, and low socioeconomic status. One potential 

mechanism is through the gut-brain axis, which is both shaped by the environment and has a role 

in human behavior, including pathological behavior. However, the role of the gut-brain axis in 

aggression and aggressive behavior remains largely unexplored.  

The Biopsychosocial Model 

In the 1970s, the medical community experienced a paradigm shift with the introduction 

of George L. Engel’s biopsychosocial model (Engel, 1977). Engel (1977) criticized the biomedical 

model for its cold reductionism, asserting that biology alone could not explain the complexity of 

human health and behavioral phenomena. As a solution, Engel (1977) proposed the 

biopsychosocial model as a paradigm to explain human health and behavior with respect to the 

combination of biological, psychological, and social or environmental risk factors that work 

together and interact to affect human health and behavior. Naturally, the main tenet of the 

biopsychosocial model is that complex health and behavioral phenomena cannot be explained by 

narrowly defined mechanisms. For example, disease may be characterized by pathophysiological 

changes in the body, but the severity of the illness and its prognosis worsen in the presence of 

psychosocial risk factors, such as psychological distress or poor living conditions (Engel, 1977). 

In this view, human health and behavioral phenomena may have a classic presentation, but vary 
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according to other biological (e.g., comorbidities), psychological, and social or environmental risk 

factors. This perspective expands the influences of context, or the social and environmental 

exposures that nuance both human experience and physiology, and supplies a critical framework 

for integrating natural and social science to advance the study of aggression behavior. 

At the onset of an acute social interaction, the actors and their biology arrive conditioned 

from past experience. They import experience gained through development, socialization, and 

social learning (i.e. culture) as reference for appropriate behavior. Together, the actors' histories, 

social abilities, and other factors, such as current emotional and psychological state, frame each 

actor's perception of environmental and social cues, and shape the behavioral response (Crick & 

Dodge, 1994). As such, the role of biology is to simply enable an established propensity towards 

aggression and deviance (Sapolsky, 2017). This comprehensive explanation of aggression can be 

accounted for within a biopsychosocial framework, creating a critical need to integrate biology in 

criminological research to understand the full set of factors known to influence aggressive and 

violent behavior (Fishbein, 1990). 

The human microbiome is a primary candidate for integration into a biopsychosocial model 

of aggression behavior in humans. The microbiome, which varies according to both physical 

(Afshinnekoo et al., 2015; Yatsunenko et al., 2012) and social (Song et al., 2013) exposures, is an 

environmental factor that is known to affect host physiology, including the structure and function 

of the brain (Sherwin, Bordenstein, Quinn, Dinan, & Cryan, 2019). Importantly, the human 

microbiome is specifically known to vary by socioeconomic conditions with a significantly higher 

abundance of pathogens and lower biodiversity associated with urban blight and unhealthy living 

conditions (Pearson et al., 2019), forging another potential link between the human microbiome 

and disadvantaged neighborhood contexts where crime occurs. Together, these features position 
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the gut microbiome as a potential novel mechanism through which the environment can affect 

individual behavior in a spatially determined way. 

Background 

In an ordinary context, aggression is a behavioral tool used to compete for resources. When 

aggression is expressed outside the context of competition, it is pathological (Nelson & Trainor, 

2007). When it becomes harmful, it is deviant. When a law prohibits the behavior and the 

individual is caught, it is criminal. Interpersonal aggression is conceptualized in many ways in the 

literature but can generally be subdivided into two types. Broadly, reactive aggression is 

considered emotional and impulsive while instrumental aggression is considered calculated and 

goal-oriented, either for gain or pleasure (J. Haller & Kruk, 2006; Nelson & Trainor, 2007; 

Sapolsky, 2017). Both reactive and instrumental aggression are associated with pathophysiological 

changes in several key brain regions in the clinical literature. In particular, areas implicated in 

emotion and executive control function differently or less optimally preceding deviant behavior. 

Though many regions are known to participate in processing emotional stimuli, the cortico-

amygdala loop is among the most studied. The basic function of this circuitry is to (1) detect 

emotional stimuli, and (2) properly interpret the stimuli to select an appropriate behavioral 

response.  

Deficits in the structure and function of the amygdala and prefrontal cortex (PFC), critical 

players in circuits underlying emotional regulation and social behavior, result from changes in the 

molecular environment of the body. Indeed, brain activity depends on the coordinated signaling of 

chemicals messengers for normal function. Adverse events (i.e., stressors) can excessively activate 

biological processes that suppress neural growth factors, limit social learning, and alter 

developmental trajectory. When activity changes, there is an underlying change in chemical 
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messaging, or signaling cascades. It is the inimitable set of life experiences garnered through 

unique social and environmental exposures in combination with unique genetic factors that creates 

variation in human behavior and adds complexity to understanding behavioral phenomena, like 

aggression.  

Acknowledging that the brain does not operate in isolation, it is critical to examine the 

relationship between other physiological systems and the brain dysfunction driving behavioral 

aggression. The human microbiome is one such system, both known for its profound effects on 

health and behavior as well as its contextually specific (microbial) community structure, 

positioning it as a likely conduit between environmental exposures, the brain, and spatially 

determined behaviors (e.g., aggression). The microbiome is an environmental factor that affects 

host physiology and behavior, potentially via the gut-brain axis (Knight, 2015; Sherwin et al., 

2019), a collection of signaling pathways that describes mechanisms through which microbiota 

can engage in physiological processes throughout the body. For example, the vagus nerve, known 

for its role in visceral sensation (e.g., cramping), directly innervates the gut where afferent 

projections interact with microbial metabolites and intermediary enteroendocrine cells that are 

regulated, in part, by gut bacteria. Moreover, gut bacteria produce neurotransmitters, short-chain 

fatty acid (SCFA), and other signaling molecules as well as inflammatory agents (e.g., 

lipopolysaccharide) that induce an immune response. The gut microbiota therefore interact with 

vital body systems, directly modulating host physiology, and by extension health and even 

behavior. Critically, although in its infancy, there is evidence to suggest that the gut microbiome 

plays a role in regulating the function of key aggression-related brain regions.  
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The Current Study 

 The current study is an interdisciplinary exploration of the role of the gut microbiome in 

aggressive behavior, underscoring the translational relevance of my preclinical work with the 

Michigan State University’s Neuroscience Program. Human microbiome data were obtained 

through collaboration with the Human Post Mortem Microbiome (HPMM) research team who 

supplied secondary sequencing data from their study of the post mortem human microbiome across 

Wayne County, Michigan (Pechal, Schmidt, Jordan, & Benbow, 2018). Secondary sequencing 

data from samples representing the digestive track (i.e., mouth and rectum) collected from 

decedents during routine autopsy in 2014-2015 were used as a proxy measure for the ante mortem 

gut microbiome to investigate the relationship between microbial community structure and local 

area crime. These data supplied descriptive information, including the diversity and distribution of 

bacteria, as well as geospatial information for both the (1) death event and (2) home locations of 

each decedent, placing each subject in the local area where they had known social and 

environmental exposures. Violent crime data from the Detroit Police Department (DPD) as well 

as socioeconomic data from the United States Census Bureau (USCB) were paired with 

microbiome data to examine the relationship between disadvantage, the human gut microbiome, 

and patterns of local area aggression behavior. 
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CHAPTER 2: METHODOLOGY 

Site Selection 

Detroit is a recovering city, trying to regain itself after years of political corruption, rapid 

population decline, and the mass exodus of industry (LeDuff, 2013). Once considered America’s 

arsenal of democracy for its manufacturing efforts during World War II (Baime, 2014), it is now 

plagued with healthcare disparities, poverty, and crime. In 2015, Detroit’s population was 

estimated to be approximately 690,074 individuals, accounting for only 7% of the state of 

Michigan’s total population (U.S. Census Bureau, 2015) but a disproportionate amount of its 

disadvantage. For example, Detroit has a higher mortality rate for seven of the ten leading causes 

of death in Michigan, including heart disease, cancer, stroke, unintentional injuries, diabetes 

mellitus, pneumonia/influenza, and kidney disease compared to both Michigan and the United 

States at large (Michigan Department of Community Health, 2014). The 2015 American 

Community Survey estimates that 30% of Detroit’s 365,528 housing units are vacant. Among the 

homes that are occupied, only 49% are owner-occupied and a staggering 25% do not have access 

to a car in a city where there is limited public transportation. The median household income is 

$25,764, but 49% of households earn less than $25,000 per year. The unemployment rate is high 

with 25% of Detroit’s eligible workforce unemployed (U.S. Census Bureau, 2015). In addition to 

its poor health and poverty, Detroit has an infamous reputation. Popular media consistently 

characterizes Detroit as America’s most dangerous city, and even rank it among one of the most 

dangerous places in the world (Fisher, 2015; "The world’s most dangerous cities," 2017). 

According to the Federal Bureau of Investigation, the City of Detroit accounted for 36% of 

Michigan’s violent crime in 2015 and ranked in the top three major cities in violent crime and 

homicide (Federal Bureau of Investigation, 2017). Detroit is thus characterized by disadvantage, 
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instability, and crime. Given this unfortunate profile, Detroit is the ideal place to study how 

patterns of violent crime relate to local area social and environmental risk factors.  

Aggregate Data: The United States Census Bureau American Community Survey 

In an attempt to reconstruct contextual features at the time of HPMM data collection, 5-

year socioeconomic variable estimates for Michigan in 2015 were obtained from the 2015-2019 

American Community Survey (ACS). Unlike single-year estimates, five-year survey estimates are 

drawn from larger sample sizes with sampling at smaller census geographies and have the benefit 

of years of subsequent data collection to inform estimates, rendering five-year variable estimates 

the most reliable (Gaquin & Ryan, 2019). The 2015-2019 ACS data are the most recent five-year 

product release from the USCB and were selected because the majority of the HPMM samples 

were collected during 2015 (61%). Data from the 2010-2014 ACS were not included to reduce the 

chance of introducing variation in estimates between ACS surveys related to changing census 

geographies or question modification. Importantly, 2010 decennial census data were excluded 

from the current study in an effort to minimize threats to internal validity driven by the profound 

impact of the 2008 recession on economic security nationwide. The 2010 data reflect a distinct 

period of history that may inaccurately represent the socioeconomic conditions during 2014 and 

2015. Therefore, the 5-year estimates for 2015 from the 2015-2019 ACS were collected for the 

State of Michigan. 
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Table 1 | 2015 American Community Survey Variables 

Study Variable Operationalization 

Unemployment Estimate of the total count of work eligible adults not in the labor force 

Household Income Estimate of the median household income during the past 12 months 

Population of Black Residents Estimate of the total count of Black residents 

Vacancy Estimate of the total count of vacant housing units 

Tenure Estimate of the total count of occupied housing units 

Population of Ages ≥ 16 Estimate of the total count of population aged 16 years or older  

Population Estimate of the total count of the population  

Unemployment Rate = Unemployment / Population of Ages ≥ 16 Years 

Percent of Black Residents = Population of Black Residents /  Population 

Vacancy Rate = Vacancy / ( Vacancy + Tenure) 

 

Sociodemographic variables estimating the total population and population aged 16 and 

older (i.e., eligible workforce), unemployment, median household income, the representation of 

Black citizens, vacancy status, and total tenure were collected at the census block group level 

(Table 1), the smallest geographic unit of analysis available for the ACS, representing between 

600 and 3,000 people clustered in a contiguous area (USCB, 2021a). All demographic measures 

were recorded by the Census per survey respondent self-identification and report. Census variables 

were collected in accordance with Office of Management and Budget’s Federal Interagency Work 

Group for Research on Race and Ethnicity. According to the most recent ACS estimates (USCB, 

2019), the City of Detroit includes a diverse population that is 77.9% Black or African American, 

14.7 White, 1.7% Asian, 0.7% American Indian or Alaskan Native, 3.3% of another race, and 

1.7% multi-racial. While 77.9% of Detroit residents self-identify as Black or African American, 

this ranges from 83.1% to 100% per block group. Due to the current and historical practice of 

societal underinvestment in residential areas with high Black representation, the percentage Black 

could be a signal for under-investment not measured by other covariates and is therefore included 
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in these models. Altogether, these ACS data provide basic social and environmental factors that 

characterize Detroit block groups and serve as socioeconomic covariates in statistical modeling.  

Aggregate Data: Detroit Police Department Open-Source Crime Data 

 Open-source violent crime data for the City of Detroit were obtained from the city’s open 

data portal. Specifically, victim-based data enumerating the number of aggravated assaults, 

nonfatal shootings, and homicides reported to the Detroit Police Department (DPD) during 2014-

2015 were collected. Aggravated assaults reported to DPD were collected from a larger dataset 

documenting major crimes reported to DPD during 2011-2014 that were compiled for submission 

to public safety surveillance programs. To extract aggravated assaults from these data, a crime 

category and date variable query was used to filter the dataset for aggravated assault crimes that 

occurred only during 2014. Likewise, data for nonfatal shootings reported to DPD in 2014-2017 

were downloaded and filtered for incidents that occurred during 2014 and 2015. Finally, homicide 

data for incidents reported to DPD in 2014-2017 was downloaded and subset by the incident date 

variable to obtain years 2014 and 2015. All three datasets included latitude and longitude data, 

providing the location of where each incident occurred. These data were thus transformed into 

three separate spatial point datasets. 

 These spatial point data were assigned to census block group polygons and summed to 

calculate a raw count of incidents within the block group. Totals were divided by the block group 

population and multiplied by 1,000 to generate per capita aggravated assault, nonfatal shootings, 

and homicide rates. Each block group was then categorized as having high, medium, or low levels 

of per capita assault, shootings, and homicide using quantile thresholds from variable summary 

statistics. These categorizations were subsequently used to code block groups as having high, 

medium, or low overall crime. A block group was considered to have high crime if it was also 
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coded as having high levels of assaults, shootings, and homicides. Likewise, a block group was 

considered to have low crime if it was coded as having low levels of assaults, shootings, and 

homicides. Notably, a designation of “medium” crime level can be interpreted as a variable crime 

level. Importantly, overall crime rates were not calculated given significant variation reporting 

across crime type (see Appendix). Together with USCB socioeconomic data, the combined data 

supplied critical contextual information for the human post mortem microbiome data. 

Aggregate Data: The Human Post Mortem Microbiome 

To examine the relationships between the human gut microbiome and local area crime and 

sociodemographic factors, secondary 16S ribosomal RNA (rRNA) amplicon sequencing data from 

the Human Post Mortem Microbiome (HPMM) project were obtained through collaboration with 

HPMM colleagues. In their original work, Pechal and colleagues (2018) collected post mortem 

microbiome samples from the ears, eyes, nose, mouth, and rectum from 188 decedents during 

routine autopsy with the Wayne County, Michigan, Medical Examiner (ME) between 2014 and 

20151. Samples were subsequently characterized via a common genetic marker, allowing for the 

identification of constituent microbiota. In addition, ME reports provided basic demographic, 

health, and law enforcement information, detailing circumstances surrounding the individual’s 

death. Accompanying sample metadata therefore included variables for age, race, sex, body mass 

index (BMI), manner of death (e.g., natural), cause of death (e.g., cardiovascular disease), and the 

estimated postmortem interval, which leverages milestones in decomposition to determine the 

estimated time between death and discovery. Central to the current study, decedent death event 

and home location geospatial information were also collected. Together, these data provide 

covariates which have a role in shaping the human gut microbiome.  

 
1 Some 2015 cases were processed in 2016. 
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The HPMM dataset has broad forensic applications, but principal among them is its ability 

to represent the ante mortem human microbiome. Indeed, the majority of the subjects were 

sampled within 24-48 hours of death, limiting the effects of decomposition on microbial 

community composition. Moreover, variation in the manner in which individuals died (i.e., natural, 

accidental, homicide, and suicide) led to the inclusion of decedents of varying age and health, 

creating opportunity to evaluate the post mortem microbiome as a tool for exploring living human 

health. As a first step, initial analyses showed stability in microbial community composition during 

the first 24-48 hours after death, especially among rectal samples, suggesting that decomposition 

processes do not dramatically shift microbial communities immediately after death. In a further 

proof of concept analysis, the initial HPMM investigation demonstrated that features of the post 

mortem microbiome of the mouth, such as decreased phylogenetic diversity, significantly 

predicted the presence of ante mortem heart disease among decedents found less than 24 hours 

after death. Taken together, the overall stability of the post mortem microbiome and predictive 

power of these data suggest that they may serve as an appropriate proxy measure of ante mortem 

microbial communities, rendering the human post mortem microbiome a viable tool for examining 

human health in living populations (Pechal et al., 2018). As such, 16S rRNA amplicon sequencing 

data from mouth and rectal samples (i.e., digestive track samples) from this study were used as 

proxy measures to characterize the human gut microbiome among decedents who lived and died 

across the City of Detroit.  

Aggregate Data 

United States Census Bureau 

To compare the effects of local area socioeconomic factors on the composition of the 

human post mortem microbiome, basic demographic information for the State of Michigan was 
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obtained from the United States Census Bureau (USCB) using a Census application programming 

interface (API) key2 and the tidycensus package for R and RStudio (Walker & Herman, 2021). The 

USCB is the United States federal repository for both the decennial census, a population 

enumeration effort in accordance with Article I, Section 2 of the United States Constitution, and 

the American Community Survey (ACS), an annual estimation of the nation’s demographic and 

economic characteristics (USCB, 2021b) for policy decision-making. The tidycensus package 

facilitates digital data collection from both of these surveys.  

Geospatial information for the State of Michigan was downloaded from USCB using a 

combination of the tidycensus and tigris packages for R and RStudio (Walker, 2020; Walker & 

Herman, 2021). The tidycensus package facilitates USCB survey data download with 

accompanying attribute information, including polygon geometry for the census geography to 

which the data are assigned (e.g., block group). The tigris package, however, facilitates the 

download of shapefiles for USCB geographies, such as metropolitan areas in specific states, 

providing critical cartographic information. Shapefiles store geospatial vector data that describe 

physical space as points (e.g., locations), lines (e.g., streets), and polygons (e.g., neighborhoods), 

 
2 Census API requests can be made at https://api.census.gov/data/key_signup.html. 

Figure 1 | Maps of Michigan Census Block Groups. a-c) Schematic showing the 2015 ACS 

census block groups (BG) represented in study geographies. a) Michigan, 8,205 BG; b) Wayne 

County, MI, 1,822 BG; c) Detroit, MI, 879 BG. 

a b c 

https://api.census.gov/data/key_signup.html
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defining geographies for data selection and mapping operations. In particular, USCB observes 

legally bounded small geographies, such as counties and incorporated places, but also creates 

statistical entities for other small geographies, like census core-based statistical areas (i.e., 

metropolitan areas), to examine local data trends (USCB, 2012). To access the geographical 

boundaries observed during the 2015 ACS, geospatial information for counties, core-based 

statistical areas, and incorporated places in Michigan was collected using the tigris package. These 

data were subsequently integrated with census demographic and economic data to pare down, or 

clip, census survey data to study-relevant geographies.  

A series of data processing steps were conducted to isolate Wayne County and City of 

Detroit geospatial and ACS survey data (Fig 1a-c). Shapefiles for the legal boundaries observed 

during the 2015 ACS for Michigan counties and incorporated places were downloaded and queried 

using logical operators searching the “NAME” variable for “Wayne” and “Detroit”, respectively. 

Shapefiles for nationwide core-based statistical areas drawn for the 2015 ACS were also 

downloaded and similarly queried for “Detroit” to identify its metro area. Each geography was 

then joined with 2015 ACS demographic and economic data using the sf package for R and 

RStudio (Pebesma, 2018). Importantly, all Michigan ACS survey data that were assigned to block 

groups that did not fall within the shapefiles were eliminated, thereby “clipping” the census data 

to areas under study. The resulting geospatial dataset was projected to the World Geodetic System 

1984 (WGS84) coordinate reference system for downstream processing and analysis. 

 Detroit Police Department Open Source Crime Data 

 The City of Detroit has an open data portal from which three datasets were downloaded 

(https://data.detroitmi.gov/). Specifically, datasets enumerating the number of aggravated assaults, 

nonfatal shootings, and homicides reported to the Detroit Police Department (DPD) during 2014-
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2015 were collected. Aggravated assaults reported to DPD were collected from a larger dataset 

documenting major crimes reported to DPD during 2011-2014 that were compiled for submission 

to state and federal public safety surveillance programs, such as the Michigan Incident Crime 

Reporting (MICR)3 and National Incident Based Reporting System (NIBRS) data repositories. To 

extract aggravated assaults from these data, a crime category and date variable query was used to 

filter the dataset for aggravated assault crimes that occurred only during 2014. Likewise, a victim-

based dataset documenting nonfatal shootings reported to DPD during 2014-2017 calendar years 

was downloaded and queried for incidents that occurred during 2014 and 2015 using the incident 

date variable. Finally, a third, victim-based dataset detailing homicides reported to DPD during 

2014-2017 calendar years was downloaded and queried for incidents that occurred during 2014 

and 2015 using the incident date variable. These data are victim-based, spatial point datasets with 

latitude and longitude coordinates projected to the WGS84 coordinate reference system, providing 

the precise location of where each incident occurred for assignment to census block group 

polygons.  

Human Post Mortem Microbiome Data 

Secondary 16S rRNA amplicon sequencing data from the Human Post Mortem 

Microbiome (HPMM) project (www.ebi.ac.uk/ena; PRJEB22642) were obtained through 

collaboration with HPMM colleagues. For the original project, Pechal and colleagues (2018) 

collected post mortem microbiome samples from five different body locations, including the ears, 

eyes, nose, mouth, and rectum, for 188 decedents during routine autopsy examinations conducted 

by the Wayne County, Michigan, Medical Examiner (ME) between 2014 and 20154. The ME 

 
3 The MICR data was extensively evaluated for this project and deemed insufficient due to inadequate address data 

entry. 
4 Some 2015 cases were processed during 2016. 
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report also provided basic demographic and health information as well as the circumstances 

surrounding the individual’s death. Sample metadata therefore included variables for age, race, 

sex, body mass index (BMI), manner of death (e.g., natural), cause of death (e.g., cardiovascular 

disease), and the estimated postmortem interval, denoting the estimated time between death and 

discovery. Critically, the metadata include geospatial information for the decedent’s home and 

death event locations. Together, these data constitute the basic factors which could drive the 

microbial profile reflected in the sample data.  

 The HPMM dataset provides geospatial information for decedent home and death event 

locations, both of which were geocoded to examine the distribution of HPMM sample 

characteristics in physical space. Specifically, location information was provided via geographical 

coordinates and/or postal address, depending on the nature of the circumstances surrounding the 

decedent and his death. For example, some decedents were homeless and therefore had no known 

home location. To avoid excluding these individuals from analysis, their death event locations 

were duplicated as an approximation of their sleep location, and by extension, home area (Pearson 

et al., 2019). Additionally, some deaths occurred at locations without postal addresses, like 

intersections or open fields. These death events were manually assigned the next nearest postal 

address to the given coordinates or intersection using Google Maps Street View. Together, these 

strategies facilitated the collection of standard postal addresses for all home and death event 

locations in the dataset. These standard postal addresses were subsequently formatted for 

automated geocoding using the ggmap package for R and RStudio (Kahle & Wickham, 2013), 

which leverages Google Maps to generate geographical coordinates for known postal addresses. 

Together, these strategies yielded geocoordinates for a complete spatial point dataset that was 
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filtered for locations within Detroit and subsequent block group assignment (see below), thereby 

rendering characteristics of decedent gut microbiome spatial attributes. 

Analytic Strategy 

Microbiome Data Analysis (performed with S. Kaszubinski) 

To obtain meaningful sample characterizations from raw DNA sequences, a series of 

computationally-intensive data processing steps were conducted. First, the study team’s 

collaborating HPMM forensic data analyst pulled raw sequences through a standardized data 

processing pipeline to classify taxa present in the samples using the Quantitative Insights Into 

Microbial Ecology 2 (QIIME 2) program v2018.11  (Bolyen et al., 2019). Briefly, this entailed 

assembling paired-end sequence reads from the raw fastq files provided by MSU Genomics 

Core, removing poor quality sequences, and taxonomic assignment, the details of which are 

outlined by the HPMM team elsewhere (Kaszubinski, Pechal, Schmidt, et al., 2020). For 

classification, sequences were binned into operational taxonomic units (OTUs), or working 

groups of sequences with 99% similarity. From these OTUs, representative sequences were 

aligned to the SILVA small subunit database v132 (Quast et al., 2013). Non-bacterial sequences 

were removed from the dataset and final taxonomy tables were exported to CSV files to be used 

as input data for downstream analysis.  

Next, the taxonomy tables were imported into R and RStudio for further data processing. 

In these final steps, a long-form dataset was created such that each OTU represented a row and 

every column was one of the decedents’ five samples. The OTUs were labeled according to their 

taxonomic classification (down to the genus level), empty rows were removed, and the 

reformatted table was merged with combined study metadata using the phyloseq package for R 

and RStudio (McMurdie & Holmes, 2013). In an effort to standardize sample microbial 
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communities, taxa with less than 0.01% of the mean library size, or the number of sequences, 

were dropped from the dataset. Sequence libraries were subsequently normalized via rarefaction, 

whereby sequence libraries were randomly subsampled to a specified minimum library size to 

prevent the effects of sample size bias on microbial community composition. Guided by 

rarefaction curves, human and mouse data were rarefied to standardize library size. Using 

normalized sequence libraries, measures of relative abundance and community diversity metrics 

were calculated to characterize the decedent’s gut microbiome.  

Statistics and Model Selection 

 Statistical analysis was conducted using a combination of R and RStudio version 4.0.5 (R 

Core Team, 2021; RStudio Team, 2020). Data distributions were examined with Shapiro-Wilks 

tests of normality and Bartlett’s tests of homogeneity of variance to select the appropriate 

parametric or nonparametric tests.  

Dependent and Independent Variables 

 For this analysis, the primary dependent variable was an ordinal, pseudo-composite crime 

variable with three levels describing census block groups with high, medium (i.e., fluctuating), 

and low crime relative to levels of assault, nonfatal shootings, and homicide. To construct this 

categorical measure of overall crime, quantile thresholds were used to designate each block group 

as having low, medium, or high levels of per capita assault, shootings, and homicide. These 

designations within each crime type were subsequently used to code block groups as having high, 

medium, or low overall crime. Importantly, overall crime rates (as opposed to the categorical 

variable described here) were not calculated given variation in reporting across crime type. This 

variable was selected from the suite of described crime variables (i.e., per capita rates) during the 
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initial stages of data analysis with exploratory analyses that established the potential microbiome-

crime exposure link.  

Independent variable collection was informed by criminological research and theory that 

emphasizes the role of contextual factors in disrupting social processes in human communities. As 

such, USCB socioeconomic variables, including household income, vacancy rate, unemployment 

rate, and the percentage of residents who identify as Black in census block groups were used 

alongside HPMM variables that characterize the human post mortem gut microbiome. These 

included measures of relative abundance as well as alpha and beta diversity metrics. Relative 

abundance was calculated as a value between 0 and 1, indicating the percentage of the community 

that each operational taxonomic units (OTUs), or working groups of sequences with 99% 

similarity, occupies (McGill et al., 2007). This measure was used to compare the distribution of 

microbiota between samples across different levels of local area crime. Relatedly, diversity metrics 

were used to describe the structure of microbial community membership. In particular, alpha 

diversity measures, including observed richness, Chao1 diversity, Shannon diversity, and Inverse 

Simpson diversity, were used as summary statistics to quantify the richness and evenness of taxa 

within samples. Conversely, beta was used as a summary statistic of (dis)similarity, or the degree 

of overlap, among samples within each crime level condition (Morgan & Huttenhower, 2012). The 

diversity of each sample was compared to the diversity of every other sample, generating a 

dissimilarity matrix among the sample microbial communities. Together, measures of relative 

abundance and community diversity provide basic descriptive statistics for microbiome 

community structure that were used to determine the extent to which features of the human post 

mortem gut microbiome could predict what type of living crime exposure decedents experienced, 

accounting for all other socioeconomic factors.  
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Research Questions 

In this cross-sectional, non-experimental investigation of violent crime, characteristics of 

the human post mortem gut microbiome were compared between census block groups5 with 

varying levels of violent crime. These comparisons were made with respect to both (1) death event 

and (2) home locations. In doing so, three primary research questions were answered: 

1. Is there a relationship between the human gut microbiome and local area violent crime 

levels? 

2. Does the human gut microbiome vary according to (i) local area crime level and (ii) other 

socioeconomic factors? 

3. Which taxa, if any, drive the relationship between the human gut microbiome and local 

area socioeconomic factors? 

Analysis 

 Given the exploratory nature of this project, data analysis was conducted in a series of data-

driven steps. Sample data were subdivided by body site and rectal and mouth samples were 

separately analyzed. Model building proceeded with bivariate comparisons between microbiome 

diversity metrics and structural features and crime variables, including block group crime level as 

well as per capita assault, nonfatal shooting, and homicide rates. The distribution of microbiome 

sequencing data is unknown but non-normal, zero-inflated, and overdispersed, requiring the use 

of nonparametric tests. Alpha diversity metrics (i.e., observed richness, Chao1, Shannon diversity, 

and Inverse Simpson diversity) were calculated for both mouth and rectal samples. Shapiro-Wilks 

 
5 This analysis was repeated using census tracts and DPD police precincts as the unit of analysis. These analyses 

returned negative findings, likely due to introducing variation in study variables aggregated to larger geographic 

areas. 
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normality tests confirmed the use of nonparametric correlations with Kendall’s tau and Kruskal-

Wallis tests. Here, a Bonferroni correction was used to correct for multiple comparisons.  

For beta diversity, permutational multivariate analysis of variance (PERMANOVA) was 

used with 999 permutations and concomitant tests for differences in beta dispersion, or 

homogeneity of variance, between conditions. Permutational analysis of variance is a 

nonparametric model that tests group differences, similar to parametric analysis of variance 

(ANOVA). Instead of means testing, however, PERMANOVA evaluates group differences based 

on user-specified distances that reflect similarities between sample clusters (M. J. Anderson, 2001, 

2017). As such, PERMANOVA evaluates differences across centroids of clusters (e.g., block 

group crime level). Here, dissimilarity matrices were calculated using Unifrac distances, thereby 

taking phylogenetic relationships into account in exploring differences between samples. 

In accordance with other HPMM research (Kaszubinski, Pechal, Smiles, et al., 2020), 

multinomial logistic regression was selected to model the probability of membership in one of the 

three block group crime level categories using maximum likelihood estimation. Multinomial 

logistic regression is an ideal modeling technique because it does not require normally distributed 

data, linearity, or homoscedasticity. In this case, the model was used to predict block group 

placement in one of the three crime level categories using a combination of socioeconomic 

variables and microbiome measures collected from decedents assigned to the block groups as 

either their death event or home location. Model building was conducted in a stepwise fashion, 

beginning with diversity metrics and proceeding with the subsequent addition of socioeconomic 

covariates. Models were evaluated for goodness-of-fit with the Akaike information criterion (AIC) 

and log likelihood indices relative to a null model. Model performance was assessed via model 
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rate of correct block group (BG) classification, but models were compared to the null model using 

a Chi-squared difference test. McFadden’s pseudo R2 was also reported.  

 To investigate whether specific taxa or socioeconomic predictors drive the relationship 

between gut microbiome composition and local area crime, a random forest classification model 

with 500 trees was built (Kaszubinski, Pechal, Schmidt, et al., 2020; Y. Zhang et al., 2019). 

Random forest modeling is a machine learning strategy that utilizes a supervised learning approach 

to classify data within large and complex datasets. Briefly, labeled training data that pairs input 

values (e.g., socioeconomic and OTU data) with their class label (e.g., block group crime level) is 

used to derive a function to classify novel, unlabeled inputs, or test data. This cross-validation step 

assigns prediction error to the model, which can be leveraged to generate an importance score for 

specific taxa (or other metadata) by estimating the increase in error associated with removing them 

as a predictor. Random forest classification was piloted to identify OTUs and socioeconomic 

predictors that differentiate the composition of the gut microbiome between high, medium, and 

low violent crime levels. Given that random forest modeling is sensitive to unbalanced groups, 

however, alternative modeling strategies were implemented. 

In particular, negative binomial mixed models (NBMM) with maximum likelihood 

estimation were used as a follow-up to random forest modeling to identify specific taxa associated 

with block group crime level and per capita homicide. This modeling strategy was selected to 

account for features of microbiome data that are poorly dealt with by other analytic strategies 

(Zhang et al., 2017; Zhang & Yi, 2020). Specifically, microbiome data are count data with natural 

dependencies created by an inherent structure related to taxonomic levels (i.e., phylum, genus), 

phylogenetic relationships, gene function, etc. Moreover, the relative abundance of an OTU 

necessarily affects the abundance of all others in the sample. Together, these features violate the 
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classic assumption of independence that most statistical tests require. In addition, sample OTU 

data are nested within each decedent, incorporating unknown host factors that thus become random 

effects. Models thus included OTUs as the modeled count variable, crime and socioeconomic 

variables as fixed effects, and sample ID, a decedent indicator, as the random effect. To incorporate 

the crime level variable, low, medium, and high crime conditions were dummy coded with the low 

condition as the reference category. Overall, NBMM was utilized to identify microbiota that are 

differentially abundant, depending on contextual factors.  
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CHAPTER 3: RESULTS 

Overview 

The current study demonstrates a potential link between human gut microbiome 

composition and local area crime level. Secondary sequencing data from both mouth and rectum 

samples were used to calculate diversity metrics that describe the human post mortem microbiome 

as a proxy measure for the ante mortem gut microbiome. These metrics were subsequently 

assigned to both the decedents’ death event and home locations to determine if the structure of the 

gut microbiome was unique in different physical contexts such that it could be used to predict the 

local area crime level, and by extension, the types of social and environmental exposures in the 

block group. 

Demographics 

 The final sample included 98 decedents with a death event or home location in the City of 

Detroit, 85 of whom both lived and died in Detroit. The full sample (n = 98) was comprised of 

decedents with an average age of 43.9 years and an average body mass index (BMI) of 27.4. Fifty-

nine percent were male and 41% female. There were only two racial identities represented in the 

sample, 76% of whom were Black and 24% of whom were White. Most cases occurred in the 

Spring (52%) with the majority of decedents found less than 48 hours post mortem (89%). The 

manner in which decedents died included accident (34%), homicide (33%), suicide (6%), and 

natural (28%) events, categories that included drug-related (29%), gunshot (26%), cardiovascular 

(22%), and other (23%) causes. From the full sample, 93 had complete case information on their 

death event location and 82 had complete case information related to their home location. Table 2 

presents basic demographic information on the sample subdivided by block group, or local area, 

crime level. 
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Samples 

 The original HPMM contained 855 samples representing five body areas and 30,906 taxa. 

From this dataset, 162 rectum and 173 mouth samples were extracted. Libraries with less than 

0.01% the mean number of sequences were trimmed, and libraries were rarefied to 5,000 reads. 

After these quality control and normalization measures, Detroit samples were selected. There were 

a total of 146 rectum samples, representing 1,191 taxa, and 170 mouth samples, representing 913 

taxa, for death event and home locations in the final Detroit HPMM dataset (Table 3).  

  



 

29 
 

 

  

Table 2 | Wayne County Medical Examiner Case Report Data 
 

Death Event Location Home Location 

Low 

Crime 

Medium 

Crime 

High 

Crime 

Low 

Crime 

Medium 

Crime 

High 

Crime 

(n = 6) (n = 75) (n = 12) (n = 8) (n = 72) (n = 2) 

Age Mean 41.3 44.2 42.2 47.1 43.8 46.0  
SD (11.3) (14.5) (15.9) (16.0) (13.9) (26.9) 

BMI Mean 26.2 27.6 26.7 26.9 27.5 30.4  
SD (4.01) (7.15) (5.21) (3.43) (7.04) (3.96) 

Sex Male 1 31 5 4 44 2  
Female 5 44 7 4 28 0 

Race White 3 16 5 2 15 1  
Black 3 59 7 6 57 1 

MoD Accident 1 22 9 1 26 2  
Homicide 2 28 1 3 24 0  
Natural 3 21 1 4 19 0  
Suicide 0 4 1 0 3 0 

Event 

Location 

Hospital 0 16 8 1 19 0 

 
Indoors 5 42 2 4 41 1  
Outdoors 1 13 1 2 8 1  
Vehicle 0 4 1 1 4 0 

PMI < 48 HRS 5 65 11 7 62 2  
> 48 HRS 1 10 1 1 10 0 

Table 3 | Human Post Mortem Microbiome Sample Count by Body Site  
Death Event  

(n = 164) 

Home Location 

 (n = 152)  
Low 

Crime 

Medium 

Crime 

High 

Crime 

Total Low 

Crime 

Medium 

Crime 

High 

Crime 

Total 

Rectum 5 60 11 76 6 60 4 70 

Mouth  6 69 13 88 7 70 5 82 
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Alpha diversity is associated with block group crime level at decedent death event location 

To compare richness and evenness by local area crime level at the decedent's death event 

location, Kruskal-Wallis tests were conducted with crime level serving as the grouping variable. 

Though observed richness in rectum samples and Shannon diversity in mouth samples were 

normally distributed, sample size within conditions varied markedly between low, medium, and 

high crime areas, rendering the use of one-way ANOVA tests a less conservative choice. As such,  

Figure 2 | Alpha Diversity by Death Event Location. Schematic showing the distribution of 

alpha diversity values for observed richness, Chao1, Shannon diversity, and Inverse Simpson 

diversity in mouth and rectal samples across low, medium, and high levels of census block 

group crime at the decedents’ death even location. There were significant differences across 

levels of crime (p < 0.05) for each alpha diversity metric.in rectal samples. There were no 

significant findings in mouth samples.  

Alpha Diversity | Death Event Location Crime Level 
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Kruskal-Wallis tests with post hoc Nemenyi tests were globally employed to compare measures 

of alpha diversity across local area crime level at the death event locations.  

Results show a significant difference in the alpha diversity of rectum samples (n = 76) 

between low (n = 6), medium (n = 59), and high (n = 11) crime areas when comparing the 

decedents’ death event locations. Results indicate that there are significant differences in observed 

richness (H(2) = 8.1103, p = 0.017), Chao1 (H(2) = 7.842, p = 0.020), Shannon diversity (H(2) = 

9.2975, p = 0.010), and Inverse Simpson diversity (H(2) = 7.3407, p = 0.025) indices among 

rectum samples across local area crime levels (Fig 2; Table 4). Specifically, observed richness 

among decedents found in areas with low (p = 0.036) and medium (p = 0.035) crime was 

significantly higher compared to high crime areas, but there was no difference between low and 

Figure 3 | Alpha Diversity by Home Location. Schematic showing the distribution of alpha 

diversity values for observed richness, Chao1, Shannon diversity, and Inverse Simpson diversity 

in mouth and rectal samples across low, medium, and high levels of census block group crime 

at the decedents’ home location. There were no significant differences in alpha diversity (p > 

0.05) in mouth or rectum samples. 

Alpha Diversity | Home Location Crime Level 
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medium crime areas (p = 0.505). Likewise, the Chao1 index, an indicator of sample richness, was 

significantly higher in low and medium crime areas compared to high crime areas; though, there 

was no difference in Chao1 index between medium and low crime areas (p = 0.515). Findings for 

Shannon diversity, an alpha diversity measure that accounts for both the abundance and 

distribution of taxa, follow the same pattern with significantly higher alpha diversity in low (0.013) 

and medium (0.038) crime areas compared to high crime areas but no difference between medium 

and low crime areas (p = 0.275). Finally, results show significantly higher Inverse Simpson 

diversity, another alpha diversity measure that accounts for richness and evenness, among low 

crime areas compared to high crime areas (p = 0.022), but no differences between medium and 

low (0.190) or medium and high crime areas (0.147) were found. There were no significant 

differences between low (n = 6), medium (n = 69), and high (n = 13) crime areas for any of the 

alpha diversity metrics among decedent mouth samples (n = 88). In addition, alpha diversity was 

further investigated by local area crime in the decedents’ home location. Repeat analysis according 

to the decedents’ home location showed no significant differences in alpha diversity in either 

mouth or rectal samples (Fig 3; Table 5). In sum, multiple metrics demonstrate significant 

differences in the alpha diversity of rectum samples between block group crime level assigned to 

the decedent death event, but not home, locations.  

Table 4 | Alpha Diversity by Death Event Location Crime Level  
Rectum 
M (SD) 

Mouth 
M (SD) 

Low Med High Low Med High 

Observed 

Richness 

140.600 

(72.189) 

104.550 

(43.339) 

65.455 

(34.992) 

80.500 

(39.399) 

82.652 

(49.226) 

78.385 

(36.864) 

Chao1 Diversity 147.723 

(77.443) 

108.791 

(46.549) 

68.641 

(36.913) 

84.348 

(41.012) 

86.538 

(51.691) 

82.029 

(39.401) 

Shannon 

Diversity 

3.805 

(0.787) 

3.320 

(0.714) 

2.715 

(0.863) 

2.520 

(0.833) 

2.783 

(0.887) 

2.827 

(0.706) 

Inverse Simpson 31.514 

(17.476) 

16.702 

(8.804) 

10.825 

(6.475) 

7.620 

(6.035) 

11.167 

(9.095) 

10.870 

(7.930) 
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Table 5 | Alpha Diversity by Home Location Crime Level  
Rectum 
M (SD) 

Mouth 
M (SD) 

Low Med High Low Med High 

Observed 

Richness 

112.667 

(64.920) 

102.850 

(44.958) 

71.500 

(19.416) 

70.714 

(30.939) 

82.029 

(47.265) 

95.800 

(68.430) 

Chao1 

Diversity 

119.311 

(70.590) 

107.227 

(48.121) 

72.857 

(19.817) 

74.121 

(31.429) 

85.938 

(49.873) 

97.887 

(70.579) 

Shannon 

Diversity 

3.521 

(0.681) 

3.272 

(0.792) 

3.075 

(0.556) 

2.787 

(0.558) 

2.768 

(0.880) 

3.009 

(0.854) 

Inverse 

Simpson 

22.204 

(14.574) 

16.399 

(8.699) 

14.113 

(7.029) 

10.275 

(7.857) 

10.706 

(8.368) 

13.428 

(13.116) 

       

Alpha diversity is not correlated with block group per capita assault, nonfatal shootings, or 

homicide at decedent death event or home locations 

 To determine if alpha diversity of both rectum and mouth samples was associated with 

per capita rates of aggravated assault, nonfatal shootings, and homicide, nonparametric 

correlations were conducted using Kendall's tau with a Bonferroni correction to adjust for 

multiple comparisons. Findings revealed no significant associations between any of the 

continuous crime measures and observed richness, Chao1, Shannon diversity, or Inverse 

Simpson diversity in either the decedents’ death event (Fig 4-5) or home location (Fig 6-7), 

thereby confirming the choice of the categorical crime level variable as the primary dependent 

variable in subsequent analyses.  

In view of these findings, the rectum sample dataset for decedent death event location 

was selected for further analysis. To foretell any issues of multicollinearity while modeling, 

relationships between predictor variables were explored via Spearman rank correlation tests (Fig 

8). Here, p-values were not adjusted to consider every source of potential model contamination. 

Unsurprisingly, household income was negatively associated with both block group 
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unemployment rate (r = -0.345, p < 0.0001) and vacancy rate (r = -0.247, p < 0.0001). Likewise, 

block group vacancy rate was also positively associated with unemployment rate (r = 0.146, p < 

0.0001). In addition, there were small but significant correlations between the percentage of 

Black residents in a block group and socioeconomic and per capita crime variables. The 

percentage of Black residents was significantly associated with household income (r = -0.193, p 

< 0.0001), unemployment rate (0.091, p = 0.01), and vacancy rate (0.145, p = 0.01) as well as 

reductions in per capita nonfatal shootings (r = -0.222, p < 0.0001) and assault (r = -0.132, p < 

0.0001), underscoring the potential of informal social control mechanisms and guardianship in 

driving down local area crime. Overall, these data demonstrate important covariation in the 

dataset that must be further examined during model building.  
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Figure 4 | Rectum Sample Alpha Diversity and Per Capita Crime by Death Event 

Location. a-d) Correlograms depicting correlation results using Kendall’s tau to determine 

the relationship between block group per capita assault, nonfatal shootings, and homicide 

at decedent death event location and a) observed richness, b) Chao1, c) Shannon, and d) 

Inverse Simpson diversity in rectum samples. The color of the squares represents the 

strength and direction of the correlation coefficient, and the values represent p-values 

adjusted with a Bonferroni correction. 

Alpha Diversity | Rectum Samples by Death Event Location 
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Alpha Diversity | Mouth Samples by Death Event Location 

Figure 5 | Mouth Sample Alpha Diversity and Per Capita Crime by Death Event 

Location. a-d) Correlograms depicting correlation results using Kendall’s tau to determine 

the relationship between block group per capita assault, nonfatal shootings, and homicide 

at decedent death event location and a) observed richness, b) Chao1, c) Shannon, and d) 

Inverse Simpson diversity in mouth samples. The color of the squares represents the strength 

and direction of the correlation coefficient, and the values represent p-values adjusted with 

a Bonferroni correction. 
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Alpha Diversity | Rectum Samples by Home Location 

Figure 6 | Rectum Sample Alpha Diversity and Per Capita Crime by Home Location. 

a-d) Correlograms depicting correlation results using Kendall’s tau to determine the 

relationship between block group per capita assault, nonfatal shootings, and homicide at 

decedent home location and a) observed richness, b) Chao1, c) Shannon, and d) Inverse 

Simpson diversity in rectum samples. The color of the squares represents the strength and 

direction of the correlation coefficient, and the values represent p-values adjusted with a 

Bonferroni correction. 
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Alpha Diversity | Mouth Samples by Home Location 

Figure 7 | Mouth Sample Alpha Diversity and Per Capita Crime by Home Location. a-

d) Correlograms depicting correlation results using Kendall’s tau to determine the 

relationship between block group per capita assault, nonfatal shootings, and homicide at 

decedent home location and a) observed richness, b) Chao1, c) Shannon, and d) Inverse 

Simpson diversity in mouth samples. The color of the squares represents the strength and 

direction of the correlation coefficient, and the values represent p-values adjusted with a 

Bonferroni correction. 
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Figure 8 | Correlations for Model Covariates. Correlogram showing significant 

correlations among model covariates collected for decedent death event locations. Notably, 

there are significant relationships between household income and i) unemployment rate 

and ii) vacancy rate. There is also a significant association between unemployment rate 

and vacancy rate. The color of the squares represents the strength and direction of the 

correlation coefficient, and the values show unadjusted p-values. 
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Random forest classification fails with dramatically imbalanced groups 

 In order to determine the OTUs driving the relationship between alpha diversity in rectum 

samples and block group crime level at decedent death locations, a random forest classification 

model was built. For this analysis, decedent demographic metadata and USCB socioeconomic 

covariates from their assigned block group were included with OTU data as predictors of block 

group crime level membership. Using 500 decision trees and 92 predictors at each decision tree 

split, the error estimate was 21.05%, suggesting that model predictors correctly predicted sample 

membership to its assigned block group 78.95% of the time. However, this low error rate was a 

result of the low number of cases in the low (n = 5) and high (n = 11) crime conditions being 

misclassified in the medium (n = 60) crime level group 100% of the time. As such, negative 

binomial mixed models were used as an alternative strategy to identify taxa that differ in 

abundance between low, medium, and high crime areas.  

Block group vacancy rate and alpha diversity drive block group classification 

 To investigate the extent to which alpha diversity measures can predict block group 

placement in one of the three crime level categories beyond known risk factors for neighborhood 

dangerousness, sets of multinomial logistic regression models were fitted, corresponding to the 

four alpha diversity metrics presented (i.e., observed richness, Chao1, Shannon diversity, and 

Inverse Simpson diversity). Models were compared for goodness-of-fit relative to a null model. 

First, single variable models were fitted to assess standalone performance of model covariates 

(Models A1-7; Table 6). Findings indicate a significant effect of block group unemployment rate, 

vacancy rate, and Inverse Simpson diversity in predicting block group crime level; however, these 

models showed only a modest improvement in goodness-of-fit compared to the null model. 

Therefore, significant covariates from Models A1-7, including unemployment rate, vacancy rate, 
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and the Inverse Simpson diversity, were selected for further model building, accounting for 

population homogeneity. These predictors were used to construct Models B-G, comparing model 

fit to a null model.  

The addition of socioeconomic covariates improved model fit and block group 

classification in low, medium, and high crime conditions (Tables 7-8). Models B-G were all 

significant (Table 7), but the overall best performing models were Models D & G. Both Models 

D & G successfully predicted block group crime level 81.9% of the time. However, model fit was 

best for Model G. Model G shows a significant effect of block group vacancy rate such that for 

every one-unit increase in vacancy rate, the odds of classification in a high crime level block group 

increase (β = 24.3, p = 0.03). Likewise, for every one-unit decrease in decedent Inverse Simpson 

diversity, the odds of classification in a high crime block group increase (β = -0.17, p = 0.02). 

Importantly, unlike in random forest modeling, classification was not driven by the imbalanced 

groups. Block groups in every crime condition were both correctly and incorrectly classified, 

contributing to overall model performance. Taken together, these data demonstrate that there is a 

common gut microbiome structure within crime level conditions that drives block group 

classification. 

Table 6 | Single Variable Multinomial Logistic Regression  
Models A1-7 

(n = 72)  
β SE p-value AIC 

% Black Residents 1.76 1.33 0.186 47.11 

Unemployment Rate 10.85 4.57 0.018 42.19 

Vacancy Rate 17.49 6.68 0.009 36.77 

Observed -0.02 0.01 0.053 36.47 

Chao1 -0.02 0.01 0.054 36.58 

Shannon -2.08 1.11 0.062 35.52 

Inverse Simpson -0.13 0.05 0.005 30.13 
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Table 7 | Multivariate Multinomial Logistic Regression with Inverse Simpson 

Diversity   
Inverse Simpson % Black Unemployment Vacancy 

Model B β -0.133 
   

 
SE (0.047) 

   

 
p-value 0.005 

   

Model C β -0.174 4.285 
  

 
SE (0.064) 2.144 

  

 
p-value 0.006 0.046 

  

Model D β -0.113 -- 17.028 
 

 
SE (0.054) -- 7.262 

 

 
p-value 0.037 -- 0.019 

 

Model E β -0.161 4.262 16.693 
 

 
SE (0.077) 2.539 7.623 

 

 
p-value 0.037 0.093 0.029 

 

Model F β -0.193 2.853 -- 23.290  
SE (0.083) 2.074 -- 11.516  

p-value 0.020 0.169 -- 0.043 

Model G β -0.171 -- -- 24.304  
SE (0.071) -- -- 10.858  

p-value 0.016 -- -- 0.025 
 

Table 8 | Multivariate Multinomial Logistic Regression Model Fit 

Model Log-likelihood McFadden R2 X2 p BG 

Correct 

% 

Correct 

AIC 

Null -59.4 0.0 0.0 1.0 NA NA 46.8 

Model B -41.1 0.14 13.9 0.0 58 80.6% 30.1 

Model C -35.2 0.27 25.8 0.0 54 75.0% 27.3 

Model D -37.0 0.23 22.1 0.0 59 81.9% 23.3 

Model E -31.8 0.34 32.5 0.0 56 77.8% 20.8 

Model F -30.3 0.37 35.5 0.0 59 81.9% 24.8 

Model G -35.5 0.26 25.2 0.0 59 81.9% 21.0 

 

Residential instability, population heterogeneity, and low socioeconomic status are important 

predictors of gut microbiome composition  

 Microbiome OTUs, binned sequencing data used to describe bacterial abundance, from 

rectum samples assigned to decedent death locations were modeled using crime and 

socioeconomic variables to identify microbiota that have a significant relationship with block 
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group contextual factors. Given the significant relationships among socioeconomic covariates, 

four separate models were fitted using a dummy coded block group crime level variable alone (Fig 

9; Model 1) as well as block group vacancy rate (Model 2), unemployment rate (Model 3), and 

percentage of Black residents (Model 4) together with block group crime level as fixed effects. In 

all four models, crime level and socioeconomic factors were significant predictors in modeling 

OTU data (see Appendix), with socioeconomic factors markedly increasing the number of OTUs 

predicted by block group contextual factors compared to the crime variable alone. Together, these 

four models collectively predicted the abundance of 52 different taxa (see Appendix), 

demonstrating local area contextual factors drive gut microbiome composition. Importantly, these 

Figure 9 | Microbial Families Associated with Crime Level. Schematic depicting 25 

bacteria families significantly associated with block group crime level (Model 1). Each 

point corresponds to one taxon and its color corresponds the family. The error bars 

represent standard error of the estimate. 
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data supply critical evidence that gut microbiome composition varies according to local area crime 

exposures. 

Given that the primary dependent variable is categorical and there are limited cases in the 

low and high crime conditions, a follow-up NBMM analysis modeling OTU data with block group 

per capita homicide was conducted. Per capita homicide was selected for this supplemental 

analysis because it is considered a reliable indicator of local crime, and subsequently used in place 

of crime level as the model’s fixed effect. Results were similar to finding from Model 1, returning 

18 taxa that were significantly associated with block group per capita homicide (Fig 10). 

Figure 10 | Microbial Families Associated with Per Capita Homicide. Schematic 

depicting 18 bacteria families significantly associated with block group per capita 

homicide. Each point corresponds to one taxon and its color corresponds the family. The 

error bars represent standard error of the estimate. 



 

45 
 

Interestingly, both crime variables have a significant relationship with Lachnospiraceae and the 

Clostridia class, in general, providing a direct connection to the project’s preclinical findings.  

Beta diversity did not differ between block group crime conditions 

 To investigate the differences in beta diversity across levels of local area crime, a series of 

PERMANOVA tests were conducted using Unifrac distances. Results returned no significant 

difference in beta diversity among rectum samples across levels of block group crime at decedent 

death event locations (F(2) = 1.0534, R2 = 1.0534, p = 0.307). There were also no significant 

differences in beta dispersion among rectal samples between crime conditions (F(2) = 0.780, p = 

0.45). Similarly, there were no significant differences detected for beta diversity of mouth samples 

by block group crime level at decedent death event locations (F(2) = 1.1527, R2 = 0.026, p = 

0.166), nor any difference in beta dispersion across conditions (F(2) = 0.6643, p = 0549). A similar 

pattern emerged from analyses by decedent home location. PERMANOVA results indicated no 

difference in beta diversity of rectum samples between low, medium, and high crime block groups 

at decedent home locations (F(2) = 1.194, R2 = 0.034, p = 0.132). There was also no difference in 

home location beta dispersion of rectum samples (F(2) = 0.1468, p = 0.874). Finally, there were 

no significant differences in beta diversity (F(2) = 0.8684, R2 = 0.022, p = 0.77) or beta dispersion 

(F(2) = 1.1377, p = 0.323) of mouth samples across crime conditions at decedent home locations. 

Overall, this suggests that there is no significant deviation in microbiome community structure 

across block group crime level. 
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CHAPTER 4: DISCUSSION 

 In this dissertation, findings demonstrate a potential link between human gut microbiome 

composition and local area crime level. Specifically, secondary sequencing data from mouth and 

rectum samples were used to calculate diversity metrics that describe the human post mortem 

microbiome as a proxy measure for the ante mortem gut microbiome. These metrics were 

subsequently assigned to both the decedents’ death event and home locations in an effort to 

determine if the structure of the gut microbiome was unique in different physical contexts such 

that it could be used to predict the local area crime level, and by extension, the types of social and 

environmental exposures in the block group. 

 The data show a significant negative relationship between alpha diversity of rectum 

samples and block group crime level assigned to decedent death event locations. Negative 

binomial mixed models for rectum samples at the decedent death event location revealed 52 unique 

taxa that are associated with block group socioeconomic and crime variables. Importantly, subsets 

of taxa were identified that are associated with both block group crime level and per capita 

homicide. Further analysis (of rectum samples assigned to decedent death event locations) with 

multinomial logistic regression was used to determine the extent to which the structure of the 

human gut microbiome is a standalone marker of ante mortem social and environmental exposures. 

In sum, these data suggest that there is a link between human gut microbiome composition and 

local area violent crime level. 

The current study demonstrates an overall loss of gut microbiome diversity and change in 

distribution of certain taxa as local area crime increases, supplying a novel mechanism through 

which neighborhood context could affect health and behavior. This finding is in line with 

criminological research that has already established a link between environmental factors and local 
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crime patterns. For example, previous research documents that exposures to lead and other toxins 

in the environment are highest in impoverished areas (Mohai & Saha, 2006, 2007), and that those 

exposures increase the likelihood of neurocognitive deficits and externalizing behaviors (Denno, 

1990; Narag, Pizarro, & Gibbs, 2009). This important criminological research provides well-

documented evidence that bridges the first connection between physical context and human 

physiological states. Complementary neuroscientific research demonstrates that exposure to heavy 

metals, including lead, induces excitotoxicity and oxidative stress that causes cell death in the brain 

(Bondy, 2021; Li, Xia, Zorec, Parpura, & Verkhratsky, 2021), adding a molecular mechanism that 

explains the observed neurocognitive changes and behavioral deficits among those with high toxin 

exposure in their environment. Importantly, research shows that toxin exposure is positively 

associated with local violent crime patterns, especially in areas with the highest resource 

deprivation (Stretesky & Lynch, 2004), showcasing the interaction between human physiology 

and the environment. The current work shows a relationship between gut microbiome composition 

and local area crime that is modulated by socioeconomic factors, thereby expanding on this 

approach by combining criminological and basic neuroscientific research to provide another 

potential mechanism that may mediate the effect of a disadvantaged neighborhood context.  

The data presented here confirm with multiple metrics that the decedents with exposure to 

high crime areas have overall lower biodiversity in their gut microbiomes. This result is consistent 

with previous research that demonstrates a reduction in biodiversity associated with urban 

blighting (Pearson et al., 2019). Multiple studies demonstrate the relationship between crime and 

urban blight (Bogar & Beyer, 2015; Branas, Rubin, & Guo, 2012; Spelman, 1993), with some 

showing reductions in certain types of crime secondary to green remediation (Branas et al., 2016; 

Kondo et al., 2018). It is therefore unsurprising that, along with alpha diversity indicators, the best 
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model predicting block group crime level was its vacancy rate with high vacancy areas having 

higher crime rates. Though it is true that reductions in microbial diversity are associated with urban 

blight and blight is associated with increases in crime, evidence also suggests that environmental 

exposures drive gut microbiome composition (Afshinnekoo et al., 2015; Von Ehrenstein et al., 

2000; von Mutius & Vercelli, 2010; Yatsunenko et al., 2012), raising important questions about 

other exposures in high crime areas that could affect gut microbiome composition.  

Previous work has demonstrated the forensic applications of the HPMM in its ability to 

predict forensic case attributes; however, the performance of rectal samples in predictions is 

relatively poor (Kaszubinski, Pechal, Smiles, et al., 2020; Pechal et al., 2018; Y. Zhang et al., 

2019). Given that the post mortem microbiome of the rectum is especially stable (Pechal et al., 

2018), the current study’s findings suggest that the microbial profile in post mortem rectal samples 

has potential non-forensic applications. To this end, the current study shows that rectal samples 

assigned to decedent death event location can be used in tandem with socioeconomic factors to 

predict local area crime level, establishing a potential gut-brain link related to differential 

exposures in low, medium, and high crime areas. Interestingly, the current study failed to show a 

relationship between measures of alpha diversity (i.e., observed richness, Chao1, Shannon 

diversity, and Inverse Simpson diversity) and any other measure of crime, suggesting that the 

relationship between the gut microbiome and local crime level exists in severe contexts where 

crime is very high or very low.  

Though the specific effect of crime exposure on gut microbiome composition is unknown, 

there are two principal mechanisms through which very high crime exposure could negatively 

affect the human gut microbiome. First, stress has a known role in shaping the gut microbiome 

both in humans and animal models (Foster, Rinaman, & Cryan, 2017; Moloney, Desbonnet, 
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Clarke, Dinan, & Cryan, 2014; C. Yang et al., 2017), playing a critical role in brain health. For 

example, one recent study in children reported that high stress was associated with lower alpha 

diversity (Michels et al., 2019). Interestingly, this relationship was found with Simpson, but not 

observed or Chao1 diversity, as shown here, suggesting that richness and evenness are both 

important in determining the effect of social and environmental exposures. Next, resource 

deprivation, a stressor in and of itself, may affect gut microbiome composition. While there is an 

overall dearth of research on this topic, researchers posit that both stress exposure and reduced 

access to varied sources of dietary fiber (e.g., food deserts) could explain, in part, gut microbiome 

differences related to inflammatory disease and health across geographic space (Harrison & Taren, 

2018; Kau, Ahern, Griffin, Goodman, & Gordon, 2011). Given the connection between violence 

exposure and stress (Bingenheimer et al., 2005; Cisler et al., 2012), and the relationship of both 

with disadvantage, the current study supplies evidence that the gut microbiome is a potential 

candidate to consider as a mediator of the neighborhood effect.  

One important facet of the gut microbiome as a mediator of the neighborhood effect is its 

potential to explain, in part, individual-level variation in behavior within a biopsychosocial 

framework. Indeed, the structure of the gut microbiome depends on individual-level conditioning 

in response to psychosocial factors (e.g., stress, diet). In this view, unique social and environmental 

exposures shape the gut microbiome, changing host physiology and contributing to the variability 

in health and behavioral outcomes observed in disadvantaged communities. The gut microbiome 

is thus a biological factor that exerts its effects in accordance with other known psychological and 

social or environmental risk factors identified in the criminological literature. In addition, the 

current study identified specific taxa in relation to high crime contexts that were also identified in 

the project’s preclinical studies in relation to territorial, reactive aggression behavior in mice, 
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raising questions about neighborhood context and the role of the gut microbiome in human 

aggression that needs to be addressed in future research.  

 The current study has a number of limitations. Detroit represents 139 square miles of land 

in Southeast Michigan, yet only 95 of the 185 HPMM subjects died within its city limits. Among 

those 95 decedents, only 72 had data from rectum samples, further paring down the sample size. 

Therefore, this study cannot be considered representative of all Detroit block groups. In addition, 

the current study is ecological research and cannot be used to make inferences about the individuals 

in the block groups (Zeoli, Paruk, Pizarro, & Goldstick, 2019), but rather, the types of exposures 

that could occur within a block group. 

 Individual behaviors may have contributed to the observed findings in both decedent death 

event and home locations. Given the high number of deaths that occurred at hospitals6 and 

accidental deaths recorded in the death event location dataset for high crime areas, it is possible 

that other factors that affect gut microbiome composition, like drug use, could be driving the 

observed relationship between block group crime exposures and alpha diversity. Moreover, there 

may be variation in exposure to the decedent home locations among individuals who may have 

spent the majority of their time elsewhere (due to work or other lifestyle choices), contributing to 

the null findings. Because the current study has an ecological design, exploring the effect of 

individual-level factors on the gut microbiome was outside its scope. Additional observations are 

needed to improve future modeling that could be hampered by imbalanced groups and overall low 

number of individuals in the high crime condition.  

 Another critical limitation of this study is endogeneity in modeling (Zohoori & Savitz, 

1997). Environmental and social exposures that are known risk factors for crime, like family 

 
6 Though there are many hospital deaths recorded in the high crime condition, they did not all occur at the same 

hospital. 
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structure (e.g., Bursik & Grasmick, 1993), also have an influence in driving microbial community 

composition (Song et al., 2013). In particular, the environment has a strong influence in shaping 

gut microbiome composition (Afshinnekoo et al., 2015; Pearson et al., 2019; Von Ehrenstein et 

al., 2000; von Mutius & Vercelli, 2010; Yatsunenko et al., 2012). Endogeneity thus becomes a 

problem when one model covariate (e.g., block group vacancy rate) has theoretical influence on 

both the outcome and other model covariates (e.g., alpha diversity). This is a particularly difficult 

limitation to overcome with microbiome and social and environmental research; however, future 

work should attempt more sophisticated modeling on larger datasets. 

Conclusion 

The current study shows that the structure of the human gut microbiome varies according 

to local area crime level and socioeconomic conditions. In particular, these data show that there is 

lower biodiversity in areas with high crime, an indicator of a less healthy microbiome. Thus, data 

presented here hypothesize a potential mechanism through which access to a particular diet, water 

supply, atmosphere, or physical space affects health and behavior. In the United States, 

socioeconomic deprivation is distributed across geographic space in a racially coded way. As such, 

the findings presented here demonstrate yet another way through which the persistent lack of 

investment and marginalization of Black communities has real health consequences that translates 

into a disproportionate health burden.  

Public health research has long shown how local food environments contribute to health 

disparities (Moore & Diez Roux, 2006; Wallace et al., 2021). Most immediately, the current 

study’s findings provide support for this public health research, providing a novel biomarker to 

demonstrate the impact of different physical contexts, with varying levels of crime exposure, 

socioeconomic resources, and healthy dietary choices, as well as how these different living 
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conditions affect health. This work could therefore provide additional rationale for bolstering 

greening efforts and urban food programs. Further research is needed to develop the human gut 

microbiome as a potential target for public health intervention. 
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

Summary 

The work presented in this dissertation contributes to the field of criminology in several 

ways. Overall, my preclinical data describe a novel connection between the gut microbiome and 

territorial, reactive aggression behavior in mice that holds translational relevance for human public 

health. In support of this clinical relevance, the human data show that local area crime level is 

associated with variation in the human post mortem gut microbiome, establishing a critical link in 

the field of criminology between environmental context and physiology. Together, these findings 

move toward a biopsychosocial model of aggression behavior, providing foundational information 

that begins to address a critical gap in criminological research. Though criminological theories 

discuss the ill effects of concentrated disadvantage, poor social attachment, and their negative 

psychological sequelae that increase risk for crime perpetration, current research has not elucidated 

the biological underpinnings of these dispositions or how they convert to behavioral action. That 

is to say, the mechanisms of how individuals in risky physical and social environments go from 

feeling to doing are poorly understood. By combining research in the social and natural sciences, 

the work of my dissertations demonstrates the relationship between the gut microbiome and 

aggression behavior that has important connections to human crime patterns, laying the foundation 

for further exploration of the gut microbiome in human aggression. Given the complexity of 

aggression behavior and the multitude of factors that increase risk for human aggression, the best 

solution is to pull aggression-related natural and social science work together into a 

biopsychosocial model, which this interdisciplinary work begins to do. 

To demonstrate the translational relevance of my preclinical work, the presented analysis 

explored the relationship between violent crime, socioeconomic conditions, and the human post 
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mortem gut microbiome. For these studies, secondary 16S ribosomal RNA (rRNA) amplicon 

sequencing data were obtained through collaboration with colleagues on the Human Post Mortem 

Microbiome (HPMM) research team, including data analyst Sierra Kaszubinski as well as Drs. 

Jennifer Pechal and Eric Benbow. These data provide correlational evidence that gut microbiome 

composition varies according to local area (i.e., census block group) crime level. Importantly, 

analysis of decedent rectum samples revealed that alpha diversity, the richness and evenness of 

gut bacteria, corresponding to decedent death event locations was significantly lower in high 

versus medium and low crime areas. Further investigation showed that, together with block group 

vacancy rate, alpha diversity could be used to predict block group category placement in low, 

medium, and high crime conditions. Further examination of bacteria abundance data with negative 

binomial mixed models identified specific taxa that varied by crime level, some of which belonged 

in the same Lachnospiracaeae family we identified as associated with aggression in male CD-1 

aggressor mice described in my Aggression and the Gut-Brain Axis work. Taken together, these 

data provide support for a connection between crime exposure and changes in (gut) physiology 

that have implications for the future study of aggression behavior and violent crime in humans.  

Implications and Future Directions 

Biological changes in a disadvantaged neighborhood context 

 There is a call in criminological research to incorporate biology into the framework of 

major criminological theories to supply information about the molecular underpinnings of criminal 

behavior in all its various presentations (Fishbein, 1990). Though not formally tested here, the 

work in this thesis provides foundational evidence in support of exploring how perturbations in 

the gut microbiome affect individual-level expressions of aggression behavior. While it is unlikely 

that all behaviors have a direct gut-brain link, there are a multitude of factors in disadvantaged 
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neighborhoods that could affect gut microbiome composition, thereby affecting individual 

physiology and behavior. Importantly, this line of reasoning is consistent with criminological 

research on neighborhoods and small places showing that structural features impair social and 

community processes such that psychosocial risk factors aggregate in geographic space to 

compound risk for negative health and behavioral outcomes.  

Living in an economically disadvantaged community, which in this study was associated 

with a higher block group percentage of Black residents, with high crime is a source of chronic 

stress, especially among children and adolescents. Among youth exposed to socioeconomic 

deprivation (i.e., low socioeconomic status; SES), research demonstrates an increase in both self-

reported stress and cortisol reactivity (Brenner, Zimmerman, Bauermeister, & Caldwell, 2013; 

Hackman, Betancourt, Brodsky, Hurt, & Farah, 2012), revealing a direct connection between 

neighborhood context and a physiological mechanism that also affects (Xu, Lee, Zhang, & 

Frenette, 2020), and is affected by (Gao et al., 2018), the gut microbiome. Evidence also suggests 

that exposure to low socioeconomic status is associated with changes in the structure and function 

of key corticolimbic brain regions (Liberzon et al., 2015; Noble et al., 2015), an effect attributed, 

in part, to other psychosocial factors, such as maternal health, family relationship quality, and 

fewer community resources in low SES contexts (Hackman et al., 2010). Critically, such chronic 

stress exposure is also associated with pathophysiological changes in the structure and function of 

the corticolimbic brain regions, like the amygdala, shifting physiology towards threat sensitivity 

and reactivity (Kwiatkowski, Manning, Eagle, & Robison, 2020).  

In addition to socioeconomic deprivation, the majority of youth living in high crime areas 

are also routinely exposed to violence (Berman, Kurtines, Silverman, & Serafini, 1996; Finkelhor, 

Turner, Ormrod, & Hamby, 2009), which has been directly associated with an impaired stress 
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response among those affected (Theall, Shirtcliff, Dismukes, Wallace, & Drury, 2017). Altogether, 

there is overwhelming evidence that living within a crime hotspot has deleterious health 

consequences, both increasing risk for disease and mood disorders (Lowe et al., 2016; Robinson 

& Keithley, 2000; Weisburd & White, 2019). Moreover, violence exposure has an interactive 

effect with exposure to disadvantage, exacerbating the risk for major depression, anxiety, and even 

post-traumatic stress disorder (Stockdale et al., 2007), all of which are associated with 

perturbations in the gut microbiome (Foster et al., 2017). Importantly, exposure to socioeconomic 

deprivation and neighborhood violence is also a risk factor for crime perpetration. 

Early life adversity increases risk for criminal offending in a dose-dependent fashion 

(Appleyard et al., 2005; Hay et al., 2006). In a large cohort study examining adult socioeconomic 

burden, 81% of the subjects with criminal convictions experienced early life socioeconomic 

deprivation and other early life adversity (Caspi et al., 2016). In addition, youth who are exposed 

to violence show immediate deficits in attention and impulse control (Sharkey, Tirado-Strayer, 

Papachristos, & Raver, 2012), and are significantly more likely to perpetrate serious violence 

within two years of exposure (Bingenheimer et al., 2005). Though the mechanisms that facilitate 

this behavioral pattern are poorly understood, there is likely a complex interplay between stress, 

threat sensitization and reactivity, and other psychosocial factors that increase risk for aggression, 

raising the question as to how exposure to socioeconomic deprivation and violence in high crime 

areas changes physiology. In answer to this question, the data presented in this dissertation suggest 

that exposure to high crime areas affects the composition of the human gut microbiome, potentially 

mediating the epigenetic effects of social and environmental exposures.  

In recent consideration of the link between neighborhood context and aggression behavior, 

Lesham and Weisburd (2019) proposed that exposures in crime hotspots have epigenetic effects 
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whereby the chronically stressful social and environmental landscape interacts with individual-

level genetic factors to change gene expression, the brain, and behavior. One canonical example 

comes from Caspi and colleagues (2002) who demonstrated a genetic variant of the monoamine 

oxidase A (MAOA) gene was associated with increased risk of a disposition favorable towards 

violence as well as antisocial and violent behavior, but only among those who had also experienced 

childhood maltreatment. Indeed, the environmental effects on gene expression are being more 

widely recognized in the study of aggression behavior (Tremblay, Vitaro, & Côté, 2018), with 

some studies estimating that a 50-50 split between genetic and environmental effects in explaining 

variation of aggression behavior in children (Lacourse et al., 2014; Tuvblad & Baker, 2011; 

Tuvblad & Beaver, 2013). Moreover, recent research shows multiple methylation sites associated 

with aggression behavior in humans, explained in part by maternal health behaviors and other 

chemical exposures (van Dongen et al., 2021), drawing attention to physiological processes that 

mediate such changes in cell signaling and gene expression, namely epigenetics.  

Future Work 

Further research is needed to increase the translational relevance of this dissertation with 

additional human data. Overall, additional HPMM samples are needed to cover a larger study 

geography and include more cases from distinctly low and high crime areas where the greatest 

differences in the HPMM analysis were observed. Current HPMM studies should also be 

supplemented with protein quantification of human brain tissue, potentially collected alongside 

post mortem microbiome samples during routine autopsy. In addition, sampling from living 

humans across varying levels of neighborhood crime and over repeated measurements could also 

be conducted. Moreover, self-reported measures of violent crime perpetration, psychosocial stress, 

socioeconomic status, and other lifestyle factors need to be collected directly from individuals 
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under study in order to make any direct inferences about human gut microbiome composition and 

aggression behavior. Together, these efforts could greatly advance a biopsychosocial model of 

human aggression. 

Ethical Considerations 

Though many criminologists are concerned about the life sciences bringing reductionism 

and determinism to the study of crime, this is highly unlikely with the biopsychosocial approach. 

The biopsychosocial model requires assessment of biological, psychological, and social or 

environmental factors that combine and interact to drive a behavioral response. This approach 

showcases several layers of explanation rather than a universal cause of aggression and deviance. 

Instead of being deterministic, the incorporation of biology in criminological research is a 

necessary result of the intertwining of these fields. As such, there will likely never be an absolute 

biomarker of aggression or deviance, or a single cure. To assume otherwise would be ethically and 

empirically incorrect. Though individual structures, such as the amygdala, PFC, and their circuitry, 

can change in function in a manner that is conducive to deviant behavior, they are part of a larger, 

more complicated system that may fail or compensate. There is never a guaranteed response based 

solely on physiology or solely on psychology or solely on environment. Instead, it is best to view 

biological processes as enablers of a propensity for aggression and deviance that is cast over time 

in the light of developing psychology in response to environmental influences. This is most 

appropriately understood in the context of a biopsychosocial approach where environmental cues 

and stressors shape psychological and biological function, and the work presented here offers a 

potential avenue forward for the biopsychosocial model. 
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APPENDIX 

Table 9 | Negative Binomial Mixed Models of OTUs with Crime Level and Socioeconomic 

Predictors 
Family Genus Variable Estimate SE p p-adj Model 

Erysipelotrichaceae Clostridium:innocuum Crime 

Level 

-6.841 3.130 0.032 0.180 Model 1 

Bifidobacteriaceae Bifidobacterium Crime 

Level 

-5.764 0.660 0.000 0.000 Model 1 

Streptococcaceae Streptococcus Crime 

Level 

-2.963 0.416 0.000 0.000 Model 1 

Bifidobacteriaceae Bifidobacterium Crime 

Level 

-2.655 0.554 0.000 0.000 Model 1 

Desulfovibrionaceae Desulfovibrio Crime 

Level 

-2.584 0.420 0.000 0.000 Model 1 

Burkholderiaceae Sutterella Crime 

Level 

-2.030 0.611 0.001 0.020 Model 1 

FamilyXI W5053 Crime 

Level 

-1.977 0.598 0.001 0.020 Model 1 

Coriobacteriaceae Collinsella Crime 

Level 

-1.936 0.683 0.006 0.057 Model 1 

Corynebacteriaceae Corynebacterium1 Crime 

Level 

-1.756 0.337 0.000 0.000 Model 1 

Veillonellaceae Unassigned Crime 

Level 

-1.709 0.811 0.038 0.190 Model 1 

Lachnospiraceae Lachnoclostridium Crime 

Level 

-1.378 0.540 0.013 0.098 Model 1 

Lachnospiraceae Ruminococcus:torques Crime 

Level 

-1.359 0.471 0.005 0.054 Model 1 

FamilyXI Anaerococcus Crime 

Level 

-0.845 0.349 0.018 0.120 Model 1 

Desulfovibrionaceae Bilophila Crime 

Level 

-0.773 0.367 0.038 0.190 Model 1 

Burkholderiaceae Sutterella Crime 

Level 

-0.683 0.305 0.028 0.160 Model 1 

Lachnospiraceae Roseburia Crime 

Level 

-0.651 0.249 0.011 0.088 Model 1 

Ruminococcaceae RuminococcaceaeUCG-002 Crime 

Level 

-0.629 0.256 0.016 0.110 Model 1 

Lachnospiraceae Blautia Crime 

Level 

-0.559 0.244 0.025 0.150 Model 1 

Ruminococcaceae Subdoligranulum Crime 

Level 

-0.345 0.171 0.048 0.240 Model 1 

Porphyromonadaceae Porphyromonas Crime 

Level 

0.722 0.259 0.007 0.058 Model 1 

Veillonellaceae Dialister Crime 

Level 

0.820 0.291 0.006 0.057 Model 1 

Ruminococcaceae Fastidiosipila Crime 

Level 

1.063 0.366 0.005 0.054 Model 1 

Porphyromonadaceae Porphyromonas Crime 

Level 

1.495 0.484 0.003 0.036 Model 1 

Rikenellaceae Alistipes Crime 

Level 

2.118 0.850 0.015 0.110 Model 1 

Porphyromonadaceae Porphyromonas Crime 

Level 

3.573 0.780 0.000 0.000 Model 1 

FamilyXI Anaerococcus Crime 

Level 

-8.415 3.090 0.008 0.094 Model 2 
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Table 9 (cont’d) 

Erysipelotrichaceae Clostridium:innocuum Crime 

Level 

-6.429 3.218 0.049 0.300 Model 2 

Streptococcaceae Streptococcus Crime 

Level 

-3.248 0.504 0.000 0.000 Model 2 

Porphyromonadaceae Porphyromonas Crime 

Level 

-2.744 0.342 0.000 0.000 Model 2 

Prevotellaceae Prevotella Crime 

Level 

-2.593 0.593 0.000 0.001 Model 2 

Desulfovibrionaceae Desulfovibrio Crime 

Level 

-2.377 0.531 0.000 0.001 Model 2 

Coriobacteriaceae Collinsella Crime 

Level 

-2.219 0.697 0.002 0.034 Model 2 

Erysipelotrichaceae Erysipelatoclostridium Crime 

Level 

-1.902 0.774 0.016 0.160 Model 2 

Lachnospiraceae Tyzzerella Crime 

Level 

-1.427 0.291 0.000 0.000 Model 2 

Corynebacteriaceae Corynebacterium1 Crime 

Level 

-1.421 0.327 0.000 0.001 Model 2 

Burkholderiaceae Sutterella Crime 

Level 

-1.194 0.227 0.000 0.000 Model 2 

Lachnospiraceae Ruminococcus:torques Crime 

Level 

-1.017 0.372 0.008 0.094 Model 2 

Desulfovibrionaceae Bilophila Crime 

Level 

-0.887 0.372 0.020 0.170 Model 2 

FamilyXI Anaerococcus Crime 

Level 

-0.883 0.427 0.042 0.300 Model 2 

Porphyromonadaceae Porphyromonas Crime 

Level 

-0.463 0.223 0.041 0.300 Model 2 

Veillonellaceae Dialister Crime 

Level 

0.595 0.290 0.044 0.300 Model 2 

Porphyromonadaceae Porphyromonas Crime 

Level 

0.613 0.265 0.023 0.180 Model 2 

Veillonellaceae Negativicoccus Crime 

Level 

0.708 0.277 0.012 0.130 Model 2 

Porphyromonadaceae Porphyromonas Crime 

Level 

1.205 0.502 0.019 0.170 Model 2 

Rikenellaceae Alistipes Crime 

Level 

2.286 0.731 0.003 0.036 Model 2 

Streptococcaceae Streptococcus Vacancy -10.784 3.727 0.005 0.110 Model 2 

Streptococcaceae Streptococcus Vacancy -3.692 1.314 0.006 0.120 Model 2 

Peptostreptococcaceae Criibacteriumbergeronii Vacancy -3.629 0.951 0.000 0.036 Model 2 

Lachnospiraceae Tyzzerella Vacancy -3.626 1.138 0.002 0.067 Model 2 

Lachnospiraceae Ruminococcus:torques Vacancy -3.054 1.458 0.040 0.430 Model 2 

FamilyXI Finegoldia Vacancy 3.244 1.241 0.011 0.180 Model 2 

FamilyXI Peptoniphilus Vacancy 3.962 1.596 0.015 0.190 Model 2 

Porphyromonadaceae Porphyromonas Vacancy 4.911 1.964 0.015 0.190 Model 2 

FamilyXI W5053 Vacancy 7.078 2.160 0.002 0.067 Model 2 

Ruminococcaceae Eubacterium:coprostanoligene Vacancy 7.331 2.467 0.004 0.100 Model 2 

Corynebacteriaceae Corynebacterium1 Vacancy 27.633 12.757 0.034 0.400 Model 2 

FamilyXI Anaerococcus Vacancy 40.051 12.100 0.002 0.067 Model 2 

FamilyXI Anaerococcus % Black -4.304 2.079 0.042 0.260 Model 3 

Corynebacteriaceae Corynebacterium1 % Black -3.108 0.970 0.002 0.032 Model 3 

FamilyXI Peptoniphilus % Black -2.197 1.087 0.047 0.270 Model 3 
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Table 9 (cont’d) 

Actinomycetaceae Mobiluncus % Black -1.823 0.425 0.000 0.002 Model 3 

Lachnospiraceae Blautia % Black 0.943 0.313 0.004 0.052 Model 3 

Lachnospiraceae Lachnoclostridium % Black 1.172 0.472 0.015 0.150 Model 3 

Bacteroidaceae Bacteroides % Black 1.217 0.451 0.009 0.100 Model 3 

Enterobacteriaceae Escherichia-Shigella % Black 1.392 0.628 0.030 0.200 Model 3 

Erysipelotrichaceae Erysipelatoclostridium % Black 1.494 0.569 0.011 0.120 Model 3 

Bifidobacteriaceae Bifidobacterium % Black 1.497 0.379 0.000 0.005 Model 3 

Burkholderiaceae Parasutterella % Black 1.986 0.716 0.007 0.090 Model 3 

Burkholderiaceae Sutterella % Black 2.017 0.573 0.001 0.014 Model 3 

Porphyromonadaceae Porphyromonas % Black 2.084 0.939 0.030 0.200 Model 3 

Erysipelotrichaceae Holdemanella % Black 2.688 0.372 0.000 0.000 Model 3 

Lachnospiraceae Blautia % Black 2.838 1.221 0.023 0.190 Model 3 

Bacteroidaceae Bacteroides % Black 2.899 1.191 0.017 0.150 Model 3 

Lachnospiraceae Agathobacter % Black 2.991 0.001 0.000 0.000 Model 3 

Erysipelotrichaceae Clostridium:innocuum % Black 3.214 1.322 0.018 0.150 Model 3 

Veillonellaceae Dialister % Black 4.077 1.058 0.000 0.005 Model 3 

Lachnospiraceae Anaerostipes % Black 6.971 1.247 0.000 0.000 Model 3 

Enterobacteriaceae Unassigned % Black 11.762 5.234 0.028 0.200 Model 3 

Lachnospiraceae Fusicatenibacter % Black 12.311 5.845 0.039 0.250 Model 3 

Lachnospiraceae Agathobacter Crime 

Level 

-6.982 0.001 0.000 0.000 Model 3 

Porphyromonadaceae Porphyromonas Crime 

Level 

-4.951 0.586 0.000 0.000 Model 3 

Acidaminococcaceae Phascolarctobacterium Crime 

Level 

-4.628 2.086 0.030 0.170 Model 3 

Veillonellaceae Negativicoccus Crime 

Level 

-2.810 0.608 0.000 0.001 Model 3 

Prevotellaceae Prevotella Crime 

Level 

-2.441 0.479 0.000 0.000 Model 3 

Porphyromonadaceae Porphyromonas Crime 

Level 

-2.015 0.579 0.001 0.014 Model 3 

Coriobacteriaceae Collinsella Crime 

Level 

-1.787 0.683 0.011 0.095 Model 3 

Prevotellaceae Prevotella Crime 

Level 

-1.491 0.506 0.004 0.050 Model 3 

Streptococcaceae Streptococcus Crime 

Level 

-1.476 0.529 0.007 0.066 Model 3 

Desulfovibrionaceae Desulfovibrio Crime 

Level 

-1.474 0.649 0.026 0.160 Model 3 

FamilyXI W5053 Crime 

Level 

-1.383 0.601 0.024 0.150 Model 3 

Lachnospiraceae Tyzzerella Crime 

Level 

-1.331 0.376 0.001 0.013 Model 3 

Lachnospiraceae Lachnoclostridium Crime 

Level 

-1.154 0.523 0.031 0.170 Model 3 

Burkholderiaceae Sutterella Crime 

Level 

-1.080 0.358 0.004 0.045 Model 3 

Lachnospiraceae Ruminococcus:torques Crime 

Level 

-1.051 0.267 0.000 0.005 Model 3 

Ruminococcaceae RuminococcaceaeUCG-002 Crime 

Level 

-0.848 0.352 0.019 0.140 Model 3 
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Table 9 (cont’d) 

Desulfovibrionaceae Bilophila Crime 

Level 

-0.779 0.373 0.040 0.190 Model 3 

FamilyXI Anaerococcus Crime 

Level 

-0.771 0.288 0.009 0.085 Model 3 

Erysipelotrichaceae Erysipelatoclostridium Crime 

Level 

-0.751 0.355 0.038 0.190 Model 3 

Burkholderiaceae Sutterella Crime 

Level 

-0.719 0.311 0.024 0.150 Model 3 

Erysipelotrichaceae Holdemanella Crime 

Level 

-0.704 0.232 0.003 0.045 Model 3 

Bifidobacteriaceae Bifidobacterium Crime 

Level 

-0.676 0.237 0.006 0.060 Model 3 

Actinomycetaceae Varibaculum Crime 

Level 

-0.640 0.296 0.034 0.180 Model 3 

Bacteroidaceae Bacteroides Crime 

Level 

0.565 0.281 0.048 0.210 Model 3 

Actinomycetaceae Mobiluncus Crime 

Level 

0.639 0.265 0.019 0.140 Model 3 

Corynebacteriaceae Corynebacterium1 Crime 

Level 

1.212 0.605 0.049 0.210 Model 3 

FamilyXI Anaerococcus Crime 

Level 

1.333 0.666 0.049 0.210 Model 3 

Porphyromonadaceae Porphyromonas Crime 

Level 

1.486 0.386 0.000 0.005 Model 3 

Lachnospiraceae Anaerostipes Crime 

Level 

1.759 0.778 0.027 0.160 Model 3 

Rikenellaceae Alistipes Crime 

Level 

2.389 0.987 0.018 0.140 Model 3 

Erysipelotrichaceae Clostridium:innocuum Crime 

Level 

-7.207 3.182 0.026 0.170 Model 4 

FamilyXI Anaerococcus Crime 

Level 

-6.592 3.192 0.043 0.220 Model 4 

Bifidobacteriaceae Bifidobacterium Crime 

Level 

-5.462 0.699 0.000 0.000 Model 4 

Veillonellaceae Negativicoccus Crime 

Level 

-5.054 0.523 0.000 0.000 Model 4 

Porphyromonadaceae Porphyromonas Crime 

Level 

-4.178 1.864 0.028 0.170 Model 4 

Desulfovibrionaceae Desulfovibrio Crime 

Level 

-3.358 0.469 0.000 0.000 Model 4 

Erysipelotrichaceae Holdemanella Crime 

Level 

-2.828 1.131 0.015 0.110 Model 4 

Bifidobacteriaceae Bifidobacterium Crime 

Level 

-2.731 0.468 0.000 0.000 Model 4 

Erysipelotrichaceae Erysipelatoclostridium Crime 

Level 

-2.662 0.903 0.004 0.042 Model 4 

Burkholderiaceae Sutterella Crime 

Level 

-2.091 0.626 0.001 0.019 Model 4 

Coriobacteriaceae Collinsella Crime 

Level 

-1.848 0.688 0.009 0.077 Model 4 

Veillonellaceae Unassigned Crime 

Level 

-1.690 0.810 0.040 0.220 Model 4 

Peptostreptococcaceae Criibacteriumbergeronii Crime 

Level 

-1.614 0.513 0.002 0.031 Model 4 

Prevotellaceae Prevotella Crime 

Level 

-1.609 0.534 0.004 0.042 Model 4 
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Table 9 (cont’d) 

Lachnospiraceae Tyzzerella Crime 

Level 

-1.518 0.362 0.000 0.001 Model 4 

Lachnospiraceae Dorea Crime 

Level 

-1.228 0.273 0.000 0.000 Model 4 

Lachnospiraceae Ruminococcus:torquesgroup Crime 

Level 

-1.061 0.363 0.005 0.042 Model 4 

Lachnospiraceae Lachnoclostridium Crime 

Level 

-0.759 0.323 0.021 0.150 Model 4 

Desulfovibrionaceae Bilophila Crime 

Level 

-0.693 0.267 0.011 0.089 Model 4 

Burkholderiaceae Sutterella Crime 

Level 

-0.660 0.310 0.036 0.210 Model 4 

Actinomycetaceae Varibaculum Crime 

Level 

-0.649 0.318 0.045 0.220 Model 4 

Ruminococcaceae UBA1819 Crime 

Level 

-0.552 0.263 0.040 0.220 Model 4 

Prevotellaceae Prevotella6 Crime 

Level 

-0.450 0.196 0.025 0.170 Model 4 

Veillonellaceae Dialister Crime 

Level 

0.901 0.179 0.000 0.000 Model 4 

Ruminococcaceae Faecalibacterium Crime 

Level 

1.576 0.000 0.000 0.000 Model 4 

Rikenellaceae Alistipes Crime 

Level 

2.163 0.740 0.005 0.042 Model 4 

Ruminococcaceae Faecalibacterium Unemploy. -26.970 0.000 0.000 0.000 Model 4 

Ruminococcaceae Faecalibacterium Unemploy. -15.206 5.934 0.012 0.074 Model 4 

Veillonellaceae Dialister Unemploy. -11.591 1.035 0.000 0.000 Model 4 

Lachnospiraceae Agathobacter Unemploy. -11.515 3.291 0.001 0.009 Model 4 

Lachnospiraceae Anaerostipes Unemploy. -11.456 2.847 0.000 0.002 Model 4 

Ruminococcaceae RuminococcaceaeUCG-003 Unemploy. -10.481 2.435 0.000 0.002 Model 4 

Streptococcaceae Streptococcus Unemploy. -9.397 2.298 0.000 0.002 Model 4 

Bacteroidaceae Bacteroides Unemploy. -9.284 2.562 0.001 0.007 Model 4 

Lachnospiraceae Ruminococcus:torquesgroup Unemploy. -3.403 1.553 0.032 0.130 Model 4 

Desulfovibrionaceae Bilophila Unemploy. -2.797 1.141 0.017 0.084 Model 4 

Corynebacteriaceae Lawsonella Unemploy. 2.079 0.925 0.028 0.120 Model 4 

Peptococcaceae Peptococcus Unemploy. 2.922 0.912 0.002 0.018 Model 4 

FamilyXI Peptoniphilus Unemploy. 3.014 1.101 0.008 0.059 Model 4 

Porphyromonadaceae Porphyromonas Unemploy. 3.116 1.523 0.044 0.170 Model 4 

FamilyXI Peptoniphilus Unemploy. 3.211 1.551 0.042 0.170 Model 4 

Lachnospiraceae Tyzzerella Unemploy. 3.862 1.548 0.015 0.081 Model 4 

FamilyXI Peptoniphilus Unemploy. 4.113 1.611 0.013 0.076 Model 4 

Lachnospiraceae Dorea Unemploy. 4.437 1.166 0.000 0.004 Model 4 

Veillonellaceae Dialister Unemploy. 4.654 0.766 0.000 0.000 Model 4 

Rikenellaceae RikenellaceaeRC9gutgroup Unemploy. 4.973 1.972 0.014 0.079 Model 4 

Peptostreptococcaceae Criibacteriumbergeronii Unemploy. 5.102 2.194 0.023 0.110 Model 4 

FamilyXI Anaerococcus Unemploy. 5.565 2.328 0.019 0.091 Model 4 

Veillonellaceae Dialister Unemploy. 5.854 1.413 0.000 0.002 Model 4 

FamilyXI Peptoniphilus Unemploy. 5.918 1.834 0.002 0.018 Model 4 

Porphyromonadaceae Porphyromonas Unemploy. 6.735 2.522 0.009 0.067 Model 4 

Burkholderiaceae Parasutterella Unemploy. 7.196 2.592 0.007 0.056 Model 4 
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Table 9 (cont’d) 

Erysipelotrichaceae Holdemanella Unemploy. 7.253 3.264 0.029 0.120 Model 4 

Ruminococcaceae Eubacterium:coprostanoligene Unemploy. 7.365 3.028 0.017 0.084 Model 4 

Veillonellaceae Negativicoccus Unemploy. 9.263 2.240 0.000 0.002 Model 4 

Bifidobacteriaceae Bifidobacterium Unemploy. 9.601 2.992 0.002 0.018 Model 4 

Porphyromonadaceae Porphyromonas Unemploy. 10.049 3.207 0.003 0.022 Model 4 

FamilyXI W5053 Unemploy. 17.847 6.910 0.012 0.074 Model 4 

Porphyromonadaceae Porphyromonas Unemploy. 20.364 7.852 0.011 0.074 Model 4 
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Table 10 | 52 Unique Taxa Associated with Crime Level and Socioeconomic Predictors 
Phylum Class Order Family Genus 

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 

Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus:torques 

Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium1 

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas 

Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Sutterella 

Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Bilophila 

Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Collinsella 

Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 

Firmicutes Clostridia Clostridiales FamilyXI W5053 

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Clostridium:innocuum 

Firmicutes Clostridia Clostridiales Ruminococcaceae RuminococcaceaeUCG-002 

Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes 

Firmicutes Negativicutes Selenomonadales Veillonellaceae Unassigned 

Firmicutes Clostridia Clostridiales Ruminococcaceae Subdoligranulum 

Firmicutes Clostridia Clostridiales FamilyXI Anaerococcus 

Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium 

Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 

Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia 

Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio 

Firmicutes Clostridia Clostridiales Ruminococcaceae Fastidiosipila 

Firmicutes Negativicutes Selenomonadales Veillonellaceae Dialister 

Firmicutes Negativicutes Selenomonadales Veillonellaceae Negativicoccus 

Firmicutes Clostridia Clostridiales FamilyXI Finegoldia 

Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella 

Firmicutes Clostridia Clostridiales Ruminococcaceae Eubacterium:coprostanoligene 

Firmicutes Clostridia Clostridiales Peptostreptococcaceae Criibacteriumbergeronii 

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelatoclostridium 

Firmicutes Clostridia Clostridiales FamilyXI Peptoniphilus 

Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Varibaculum 

Firmicutes Clostridia Clostridiales Lachnospiraceae Agathobacter 

Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerostipes 

Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Parasutterella 

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Holdemanella 

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unassigned 

Firmicutes Negativicutes Selenomonadales Acidaminococcaceae Phascolarctobacterium 

Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Mobiluncus 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia-Shigella 

Firmicutes Clostridia Clostridiales Lachnospiraceae Fusicatenibacter 

Firmicutes Clostridia Clostridiales Peptococcaceae Peptococcus 

Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium 

Firmicutes Clostridia Clostridiales Ruminococcaceae RuminococcaceaeUCG-003 

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella6 
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Table 10 (cont’d) 

Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Lawsonella 

Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae RikenellaceaeRC9gut 

Firmicutes Clostridia Clostridiales Ruminococcaceae UBA1819 

Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea 

Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinomyces 

Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium5 

Firmicutes Negativicutes Selenomonadales Veillonellaceae Megasphaera 

Bacteroidetes Bacteroidia Bacteroidales Marinifilaceae Odoribacter 

 

 

 

 

 


