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ABSTRACT

This thesis presents novel machine learning algorithms that achieve state-of-the-art performance

on a variety of electroencephalography (EEG) tasks, including decoding, classification, and unsu-

pervised / semi-supervised artifact detection and correction. These algorithms are then used within

the scope of an EEG experiment that explores how attention to multiple items modulates sensory

representations. Using a signal detection paradigm, we demonstrate that attending to multiple items

impacts the sensitivity of our participants, causing a sharp increase in false-alarm rates and only

slightly decreasing hit-rate. We conclude that our behavioral and EEG decoding results contradict

simultaneous attention guidance by multiple items (the multiple item template hypothesis).
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This dissertation focuses on the two research areas I pursued during my graduate studies at

Michigan State University: cognitive attention and deep representation learning. My cognitive

neuroscience research utilized electroencephalography (EEG) to explore how attention modulates

sensory perceptions. EEG decoding is challenging for many practical engineering reasons, as the

signal is a consequence of an ensemble of neural activations from various processes. The difficulties

are further exacerbated in the case of attention modulation, which is expressed as a latent variable

embedded within the already noisy EEG signal. Successful EEG research requires developing

better machine learning techniques to eliminate sources of noise, and more generally, algorithms

capable of successfully deriving insights about latent variables from noisy EEG signals.

1.1.1 Electroencephalography in Attention Research

Common sense and science studies alike attest to the importance of attention for task perfor-

mance: drivers that attend to their phones are twice as likely to experience a car accident than

those that attend to the roadway exclusively [168], and eliminating distractions during study can

significantly improve academic performance [33]. Controlled behavioral experiments in lab set-

tings have repeatedly demonstrated that attention can improve performance in search, detection,

and memory retrieval tasks [173, 186]. However, as will be discussed in section 5.2, understanding

the mechanisms responsible for the behavioral effects of attention requires direct access to the

latent cognitive processes behind perception. Prior work has demonstrated that EEG signals reflect

latent cognitive processes at a high degree of temporal fidelity, and are suited for the study of

dynamic cognitive processes such as attention. Within the last two decades, EEG experiments

have corroborated many theories proposed based on behavioral results; for instance, attending to

an event causes us to process it faster (known as the law of prior entry) [178], and attending to a

feature enhances its sensory representation [25].
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Despite an ever-growing body of literature, much about cognitive attention remains unknown,

and many open debates in attention research stand to benefit from the increasing ubiquity of EEG as

a research modality. This dissertation utilized EEG to explore attention modulation of performance

in multi-template tasks; if attention improves performance on single-target tasks, what happens

when multiple items are attended to at once? In less colloquial terms: Attention to a feature value

enhances its sensory representation, but how does attending to multiple feature values modulate

sensory representations, if at all?

To successfully decode attention modulation in the EEG experiment multiple machine learning

algorithms were developed. These tools enabled more effective data preprocessing, facilitating the

study of the latent attention phenomenon with greater fidelity.

1.1.2 Electroencephalography in Machine Learning Research

Electroencephalography devices are unique in being cheap, portable, and non-invasive neu-

roimaging technology. Moreover, EEG has a variety of applications such as brain-computer

interfaces [170, 41, 192], emotion recognition [94, 31], and medical diagnostics [56]. Considering

the above, the exponential growth of "machine learning for EEG" literature in recent decades is

unsurprising (see figure 1.1). However, successful application of machine learning to EEG tasks

remains difficult, as it requires overcoming a number of challenges inherent to EEG data:

• Low Signal-to-Noise Ratio: EEG data is extremely noisy, and any EEG classification or

decoding task requires heavy preprocessing and artifact removal [146].

• Few Rows, Many Columns: Traditionally, machine learning has focused on image or text

data sets that contain hundreds of thousands of data points, each represented by relatively

short vectors. In contrast, EEG data sets often contain only a few dozen subjects, each

having only a few hundred trials; at the same time, EEG data is extremely dense, containing

thousands of measurements per second of recording.

• Data Scarcity: One consequence of EEG’s low signal-to-noise ratio is that data collected

from subjects is often unusable (for instance [119] and [171] both discarded 10% of their

subjects due to noise). Moreover, data collection, annotation, and maintenance all require
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Figure 1.1 Number of publications containing involving machine learning and EEG by year of
publication. The figure was produced using data from the dimensions.ai analytics tool.

.

considerable effort and data scarcity affects EEG research reliability. This is reflected by the

low sample sizes in Table 2.2.

• Temporal and Spatial Covariability: The EEG signal is global and continuous across space

(all signal components appear in multiple electrodes) and time. This high level of covariance

between dimensions is relatively unique.

• Inter-Subject Variability: Research shows consistent individual differences in EEG activity

even when performing the same task, under the same circumstances. These differences are so

distinct that it has enabled researchers to design EEG based user authentication methods [64].

However, this is an issue when designing any kind of application that seeks to generalize to

new subjects; for instance, BCI applications.

• Inter-Task Variability: EEG classification models are often trained to decode a narrow set

of labels. This inhibits the reusability of developed models. As we will discuss in Chapter 2,

this weakness is inherent to discriminative, as opposed to generative, models.

• Interpretability: While high accuracy might be a priority when designing BCI, this is not the

case when the underlying goal is the study of specific cognitive phenomena; for a decoding

methodology to be widely adopted it must also be interpretable.

3
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My machine learning work focused on leveraging state-of-the-art representation learning meth-

ods to address these weaknesses. Sections 3.1 and 3.2 present algorithms that utilize data properties

to learn signal representation that enable unsupervised detection and correction of corrupted data.

Section 3.3 presents a novel approach for integrating expert knowledge into neural networks based

classification approaches via modular pre-trained sub-networks; that section demonstrates how this

approach can mitigate scarcity and inter-task variability concerns while achieving state of the art

results on a variety of EEG classification tasks. Finally, it is repeatedly demonstrated that our

algorithms can generalize to out-of-training subject data after simple fine-tuning.

1.2 Contributions

This thesis has three main contributions:

• Development of novel unsupervised learning methods for artifcat detection and correction

[145, 147, 146]. Facilitating easier preprocessing, and alleviating data scarcity concerns.

• Proposes a novel framework for integrating expert knowledge, and insights from the cognitive

neuroscience literature, into neural networks via weight initialization [143].

• Directly evaluate differences in attention modulation of sensory representation across different

attentional load conditions. And evaluate how attention load impacts performance using a

signal detection theory framework.

1.3 Thesis Outline

Here we provide a brief outline of the upcoming chapters in this thesis. In Chapter 2, we

provide a comprehensive review of current machine learning approaches for artifact detection and

correction in EEG data, as well as popular EEG decoding algorithms. In Chapter 3, we present

novel algorithms that achieve state-of-that-art performance on channel interpolation, unsupervised

artifact detection and correction. Section 3.3 also discusses a novel framework for integrating

expert knowledge into neural networks that achieves state-of-the-performance on multiple EEG

classification tasks. All algorithms are based on representation learning in neural networks, and are

designed to generalize for unseen data. Chapter 4 briefly describes a pilot study we conducted as

a precursor to our main experiment. Finally, Chapter 5 focuses on cognitive neuroscience themes;
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the chapter begins with an introduction to the current debate surrounding the capacity of attention

(our ability to attend to multiple items simultaneously), followed by an in-depth literature review.

Sections 5.3 to 5.6 present and discuss the main experiment and how our results fit within the

previous literature. Section 5.4 also demonstrates how the algorithms presented in Chapter 3 can

be useful in a cognitive neuroscience setting. Finally, the last chapter was reserved for general

conclusions and reflections.
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CHAPTER 2

EEG PREPROCESSING AND DECODING LITERATURE REVIEW

Parts from this chapter are adapted from a published manuscript titled "Artifact Detection and

Correction in EEG data: A Review" that appeared in the 2021 proceedings of the 10th International

IEEE/EMBS Conference on Neural Engineering (NER) [147]. Other sections were adapted from

an unpublished manuscript that was reviewed by Dr Ghassemi and Dr Liu.

2.1 Artifact Correction and Rejection

Electroencephalography (EEG) is a non-invasive, inexpensive, and portable neuro-imaging

technology, but the low signal-to-noise ratio of EEG limits its ease of adoption and use for the

research and commercial communities alike. The low signal-to-noise ratio of EEG is due, in part, to

a variety of artifacts including ocular artifacts from blinks and eye movements, and muscle artifacts

from movements. While EEG data is affordable to collect, it is challenging to use in practice

because artifacts correction is a necessary prerequisite for meaningful use.

To reduce the human labor associated with EEG experimentation (and the requisite data cleans-

ing) researchers have developed several methods for automated artifact detection. Once an artifact

has been detected, the corrupted segment may be discarded but discarding segments introduces

discontinuities to the signal that may limit its applications. To circumvent discontinuities, artifact

correction techniques may be utilized to "correct" the signal. Implementing effective strategies for

artifact detection and correction requires careful review of approaches scattered across the scientific

literature. In this review, we highlight the key research contributions in the EEG artifact detection

and correction domain over the last 7 years, and identify promising directions for further research

and development efforts.
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Paper Artifact Type Datasets Method Requirements Performance

[154] Blinks D 4256 trials† ICA labeled ICA scalp-maps > 0.80 AUC

[113]
Blinks
Muscle

D
47752 trails†

1955 Blinks
4203 Muscle Mov.

Supervised learning
algorithms

labeled trials 0.98 F1

[43] Muscle R ‡ Hand Crafted EEMD Uses expert knowledge .83 F1
[58] All R ‡ LDA, SVM, KNN, ICA labeled trials < 0.50 F1
[114] All D ‡ CNN classifier labeled trials 0.92 F1

[162] All R
2 new datsets

real and simulated†
MWF

labeled trials
assumes stationarity

6.20 SNR

[2] Blinks D
†4 new datasets

2350 blinks
Hand Crafted Assumes artifact frequency > 0.94 F1

[57] Blinks R
†2000 trials
1000 Blinks

SVM
Autoencoder

labeled trials
> 0.98 F1
.024 RMSE

[134]
Blinks, Muscle
Heart, Channel

D †6352 subjects
ICA

CNN classifier
Labeled ICA components

0.80 F1
(multi-class)

[17] Blinks R
‡2 new dataset

simulated and real
ICA with ASR Labeled ICA components

Downstream
tasks

[146] All R
†2 new datasets
4578, 4569 trails
628, 570 artifacts

Classical classifiers
and Autoencoder

Assumes artifacts
are uncommon

Downstream
tasks, 0.54 F1

[133] Blinks R
EEGLAB dataset

with simulated blinks
ICA, SVM

and Autoencoder
Uncorrelated signal

and noise
0.97 F1

0.04 NMSE

[194]
Blinks
Muscle

C simulated artifacts Autoencoder
Simulates only

specific artifacts
0.56 RRMSE

Table 2.1 Artifact rejection / correction papers being reviewed in chronological order. Type: (D)etection, (C)orrection or (R)emoval.
See 2.1.2 for a breakdown of the different metrics. † marks a new dataset. ‡ Data characteristic were not reported by the authors.
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2.1.1 Definition of Artifact

For the EEG community, an “artifact” refers to a diverse set of signal distortions that span spatial,

frequency and temporal scales [100]. While different taxonomies of artifacts have been proposed

[100], the exact distinction between signal and artifact is often dependant on the specific purposes

of those collecting the data. For instance, muscle artifacts are unwanted in a motor-imagery Brain

Computer Interface (BCI) application, but are useful for tasks such as sleep stage identification

[54]. Given the variety of phenomena that could be classified as an artifact for any given EEG

use-case, it is not surprising that artifact detection algorithms are narrowly-focused on correcting

the intruding artifact in a specific context [154]. Al alternative approach argues that a distortion to

an EEG segment is an artifact if and only if the distortion negatively impacts the performance of a

downstream tasks [146].

2.1.2 Scope of Review

This review includes algorithms for artifact detection and correction using EEG data, alone.

That is, we do not discuss algorithms that rely on external signals (e.g. electrooculography).

Furthermore, we exclude research focused on electrode ‘pops’ or other spatially localized artifacts

as their unique characteristics enable ease of detection by simple unsupervised and self-supervised

techniques [145]. Finally, for the sake of brevity, when a group of papers constitutes a sequence of

incremental improvements, we select only the work which presents the accumulation of that line of

research [27, 17]. Table 2.1 provides an overview of the literature surveyed in this review.

2.1.2.1 Removal vs. Correction

This review distinguishes between two approaches: artifact removal and artifact correction.

For an algorithm to perform correction (rather than removal) it must have access to an artifact free

version of the EEG waveform to be used as ground truth for correcting an artifact ridden version of

that same waveform. Note that this necessitates that artifact correction algorithms are trained on

datasets with simulated artifacts (for instance see the data-set proposed by [194]).
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2.1.2.2 Metrics

The performance of artifact detection algorithms are often measured using manually annotated

EEG signals. Common metrics to evaluate artifact detection methods include the F1 score, accuracy,

sensitivity, specificity, Area Under the Receiver Operator Curve (AUC), and Cohen’s Kappa (inter-

rater reliability). For the purpose of comparing performance in this review, we standardized these

metrics when possible. For instance, if an author did not report the F1 score, we attempted to derive

it from the other metrics [57].

For artifact detection, we compare algorithms using several common performance metrics. We

note that not all metrics are equally valid for evaluating EEG artifact detection algorithms. The F1

score and accuracy are appropriate for the assessment of tasks with balanced outcome class labels,

which is not common in artifact annotation settings; a classifier graded on an unbalanced dataset

may achieve a high accuracy but suffer from a high false negative rate.

Artifact correction algorithms are more challenging to assess compared to detection algorithms

as (barring simulated data) the ground truth is unknown. When artifacts are simulated, and access

to the artifact free waveform is available, metrics such as normalized mean square error (NMSE)

and root mean square error (RMSE) are used [133, 194]. When the data is not simulated the

same metrics are calculated using artifact free EEG data collected under similar circumstances

(i.e. stimuli and task) [57]. The signal-to-noise ratio (SNR) between clean and noisy EEG post

artifact removal is another popular metric [162]. Finally, some researchers use the improvement

in downstream task performance as a measure of the reconstruction fidelity; for instance, artifact

removal was demonstrated to improve stimuli decoding and visual-evoked potentials recognition

[146, 17].

2.1.2.3 Datasets

Table 2.1 lists a summary of investigations conducted for the purpose of developing algorithms

for artifact detection and correction. We note that investigators typically evaluate their approaches

on data they have collected themselves, as opposed to a standard community benchmark dataset;

this highlights a larger issue in the EEG research community around data sharing practices. When
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data is shared, it is often to study a particular downstream task, so to facilitate this end, artifacts are

often removed which renders the dataset irrelevant for the purpose of artifact detection research.

For papers surveyed in this review, only a few made their datasets publicly available [114, 2, 134,

146].

2.1.3 Artifact Detection Methods

Various machine learning and statistical approaches have been applied to the domain of artifact

detection. We elaborate on these methods below.

2.1.3.1 Hand Crafted Methods

The BLINK algorithm was tailor-made to detect the specific signal characteristics of artifacts

caused by eye blinks. Like many hand crafted methods, this approach performs well for the specific

task it was engineered to accomplish, but can not be easily extended, tuned, or adapted to detect

other types of artifacts [2].

2.1.3.2 Signal Decomposition Methods

Blind source separation methods, most prominently Independent Component Analysis (ICA),

treat EEG as a composite signal; ICA decomposes EEG signals into their constituent signal

components from which an expert may identify and remove artifact components. While there are

rules-of-thumb to distinguish artifact from signal components (for instance, higher power aggregates

in frontal areas of scalp maps for blinks), expert annotation is still often required. One notable

exception to this is the work of Shamlo et al., who side-stepped the need for an expert annotator by

collecting thousands of scalp maps of blink artifacts to contrast new EEG segments against [154].

2.1.3.3 Supervised Approaches

Supervised classification approaches including Support Vector Machines (SVM), Decision

Trees, and K-nearest neighbors (KNN) have been applied to a variety of EEG artifact detection

problems. Deep learning and Neural Network methods are a relatively recent development in the

field of EEG artifact detection. Multiple recent efforts have applied Convolutional Neural Networks

(CNN) to EEG by representing data as an 𝑛 × 𝑡 image of 𝑛 channels and 𝑡 samples. Nejedly et
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al. used a CNN in conjunction with fully automated image processing procedures to automatically

detect artifacts in intracerebral EEG data [114]. Transfer learning has also be used to improve

the performance of network models previously trained on different datasets [114]. Ultimately,

supervised classifiers have been shown to effectively discriminate artifact from signal segments

[58, 57], but require annotated artifact data to do so, which is not commonly available for many

EEG datasets.

2.1.3.4 Unsupervised Approaches

Sadiya et al. proposed a general-purpose artifact detection algorithm [146]; their method

extracted 58 different EEG features that are commonly used in EEG research and prognostication,

and made the assumption that the frequency of artifacts in the datasets was relatively low. While,

this assumption may not always be true (for instance, seizure detection), it is usually valid. The

authors benchmarked multiple unsupervised methods. For instance, an auto-encoder was trained to

reconstruct EEG waveform segments. Assuming artifact are infrequent, the auto-encoder minimizes

the reconstruction error for artifact free trials, hence high reconstruction error is taken as indicative

of an outlier EEG segment likely to be an artifact. Their results showed artifact detection rates

comparable to the inter-annotator agreement reported in the literature, but as expected, unsupervised

algorithms are outperformed by methods tailor-made to detect a given artifact type (Table 2.1).

2.1.3.5 Hybrid Approaches

Hybrid methods that use deep learning classifiers in conjunction with other methods have shown

great promise. ICLabel is a recently available artifact rejection plugin for EEGLab1 that uses a

CNN to label the components of the ICA decomposed waveform [134]. The classifier distinguishes

between seven different artifact types with a binary accuracy (artifact vs signal) of 0.83. Like other

ICA based algorithms, ICLabel is capable of online artifact rejection.

2.1.4 Artifact Removal and Correction Methods

Detecting and excluding artifact ridden trails allows researchers access to clean data. However,

these trials could constitute a non-trivial portion of the collected data, and rejecting them may
1https://github.com/sccn/ICLabel
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introduce discontinuities into data that is fundamentally temporal in nature. Recent research

efforts have focused on approximating an artifact free version of the affected segment, instead of

discarding it all together. It is important to note that all artifact removal methods discussed below

are supervised, even when constituting a component of a larger unsupervised pipeline.

2.1.4.1 Signal Decomposition Methods

As previously stated, ICA decomposes EEG signals into their constituent components from

which noise components may be identified. A natural extension of the detection algorithms

discussed above is to reconstruct the EEG signal from all but the identified noise components.

Gilbert et al. trained several classifiers (LDA, SVM, KNN) to distinguish between signal and

noise independent components [58], and as previously mentioned, [134] trained a CNN classifier

to distinguish between noise and signal components. Notably, these methods involve some global

loss of information when the signal is reconstructed [133].

Another approach to blind source separation is Artifact Subspace Reconstruction (ASR) which

learns statistical characteristics of the components resulting from Principal Component Analysis

(PCA). While the performance of ASR and ICA based methods are comparable, the former is faster

and less computationally demanding, and is therefore more suitable for online artifact correction

[17].

Extended Empirical Mode Decomposition (EEMD) has also been applied to EEG artifact

removal [43]. Empirical mode decomposition methods can be used as filters but are not strictly

in the same category. EMDs decompose signals into a special class of generating functions that

maximizes the signal-to-noise ratio of the reconstruction. While EMDs might appear reminiscent

of ICA, the nature of the decomposition is different. ICA decomposes the data for all EEG channels

simultaneously, while EMD and the other filtering methods decompose the signal at each channel

separately.

2.1.4.2 Filter-based Methods

In signal processing, filters are basic sequence-to-sequence elements that suppress unwanted

temporal phenomenon. The Multi-Channel Wiener Filter (MWF) has been used to great effect in

12



audio and speech processing; Wiener filters use labeled examples to estimate parameters of the

signal and noise waveforms such that that noise waveform may be filtered out while the NMSE

between a clean signal and its output is minimized. The amount of labeling required to use MWF

is minimal and an EEGLab plugin is publicly available [162]2. MWF assumes stationary of the

EEG and noise profiles but to be fair, many simple classifiers make a similar assumption. With

sufficient depth, neural encoder-decoder models can learn to correct multiple artifacts drawn from

different distributions.

2.1.4.3 Supervised Approaches

Artifact removal with neural networks is a recent development that was been made possible

with breakthroughs in sequence-to-sequence modeling tasks using encoder-decoder neural network

architectures. Since the ground truth is not usually available, researchers use noisy trials as the

input sequence to the encoder-decoder model and artifact free trials as the target sequence [57].

To facilitate work in artifact correction, EEGdenoiseNet was recently published as a bench-marked

data set of simulated ocular and muscle artifacts [194]. The package provided by the authors allows

for the simulation of various artifacts at various signal-to-noise ratios. The authors implemented

fully-connect, convolutional, and recurrent neural networks to bench mark the data-set.

2.1.4.4 Unsupervised Approaches

As discussed, section 3.2 proposes an unsupervised approach for artifact detection. Assuming

a low false positive rate, trials marked as artifact free are used to train a CNN to reconstruct EEG

segments using surrounding samples. The trained network is then used to reconstruct artifact ridden

segments. By training with artifact free trials, the method ensures that the reconstructed signal

approximates an artifact free signal. While the artifact removal component itself was supervised the

pipeline as a whole does not require any labeling (due to the artifact detection being unsupervised).

Note that this same approach could be used with any other supervised artifact removal component

such as [57, 162]. This approach remains highly limited by the low accuracy of unsupervised

artifact detection (Table 2.1).
2https://github.com/exporl/mwf-artifact-removal
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2.1.4.5 Hybrid Methods

Phadikar et al. suggested a hybrid model that uses SVMs to detect noise components in the ICA

deconstructed signals and a denoising autoencoder to remove artifacts from the ICA components

rather than the raw EEG [133]. By denoising the ICA components, instead of excluding them from

the reconstruction all together, the reconstruction was found to be more accurate.

2.1.5 Conclusion

In this review, we provide a succinct overview of EEG artifact detection and correction methods,

with a focus on the last 5 years of research. We reviewed many more papers than formally discussed

in this chapter; indeed, there has been an increased interest in artifact detection and removal as

EEG devices become more prevalent in multiple fields.

As evident from Table 2.1, the research community is in dire need for a standardized metric,

database,and terminology surrounding the EEG artifact detection task, especially if the goal is to

produce usable application that will generalize to multiple datasets, and heterogeneous tasks. The

more recent entries in Table 2.1 imply a growing popularity of deep learning techniques comes at

the expense of traditional approaches and expert knowledge. However, we note that recent papers

successfully drew on the rich history and knowledge developed within the EEG preprocessing

community to build hybrid approaches that synthesize deep learning, ICA frameworks [133], or

features borrowed from EEG prognostication [146]. We believe that hybrid frameworks are an

interesting future direction of work in this domain and uniquely situated to combine the strengths

of multiple approaches that will advance the current state-of-the-art.
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2.2 Decoding EEG Signals

EEG applications span a wide spectrum: from healthcare [36] and accessibility [88, 29] to

entertainment [20] and user authentication [64].EEG decoding in particular, namely the decoding

of internal cognitive representations has been an of extensive research. Researchers working in

cognitive science use EEG decoding to investigate how stimuli is represented and stored in working

memory [119, 7, 171, 66]. In contrast, many biomedical applications leverage advanced machine

learning techniques to decode user intentions, such as motor-imagery [92, 29, 192], envisioned

speech [88], and environmental control via brain-computer interfaces (BCI) [36]. Here we compare

the most common EEG decoding approaches, highlighting the particular circumstances that led to

the adoption of different approaches across disciplines, and the strengths and weaknesses of each

of them. See Table 2.2 for a quick overview of the literature discussed in this section.

2.2.1 Challenges to EEG Decoding

Despite the plethora and variety of research, there remain a number of challenges that limit

EEG decoding applications. While some of these challenges are universal, the impact of others is

unevenly felt across disciplines. The following are the most relevant challenges for the sake of this

review:

• Inter-Subject Variability: Research shows consistent individual differences in EEG. This

has enabled researchers to design EEG based user authentication methods [64]. However,

this is an issue when designing any kind of BCI application as pre-trained models might face

difficulties when used by out-of-training subjects.

• Inter-Task Variability: Models are often trained to decode a narrow set of labels. As we

will discuss in subsection 2.2.2, this weakness is inherent to discriminative, as opposed to

generative, models.

• Data Scarcity: EEG data may suffer from an extremely low signal-to-noise ratio that fre-

quently renders data collected from subjects unusable (for instance [119] and [171] both

discarded 10% of their subjects due to noise). Moreover, data collection, annotation, and

maintenance all require considerable effort and data scarcity effects EEG research reliability.
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This is reflected by the low sample sizes in Table 2.2.

• Interpretability: While high accuracy might be a priority when designing BCI, this is not the

case when the underlying goal is the study of specific cognitive phenomena; for a decoding

methodology to be widely adopted it must also be interpretable.

Note that these challenges are interrelated; relieving Inter-Task Variability for instance can

alleviate the Data Scarcity issues facing the researcher. Moreover, Interpretability might provide

insights that can improve transfer learning methods used to combat Inter-Subject and Inter-Task

Variability.

Paper Feature Discipline Subjects Method

[88] SR BCI 23 RF
[119] Cat P 20 ECOC-SVM

[7]
Ori
Loc

P 16 ECOC-SVM

[171] Loc P 8 IEM

[66]
Clr
Ori

P 30 LDA

[49] Ori P 16 IEM
[192] MI BCI 9 CNN
[170] MI BCI 5,5 DNN
[149] MI BCI 10,14 CNN
[94] EM AS 24 CNN
[41] MI BCI 109 CNN
[199] MI BCI 25,9 CNN
[31] EM AS 58 CNN
[190] Ori P 24 MHL
[184] Clr P 34 MHL

Table 2.2 A breakdown of the papers reviewed in this section. Feature: the signal being decoded;
orientation (Ori), location (Loc), color (Clr), category (Cat, for instance faces, scenes, tools), Motor-
Imagery (MI), Emotion Labeling (EM). Discipline: Perception (P), Brain Computer Interfaces
(BCI), Affective Science (AS). Subjects: number of subjects. Algorithms: Mahalanobis distance
(MHL), Support Vector Machine (SVM), Inverted Encoding Models (IEM), Linear Discriminant
Analysis (LDA).
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2.2.2 Review

Our review includes decoding studies using various features (motor intentions as well as item

location, color, category) and decoding methodologies. As shown in Table 2.2, the literature is

dominated by three decoding methods. First classic methods such as Support Vector Machines

(SVM) and Linear Discriminant Analysis (LDA), and Mahalanobis distance (MHL) are still widely

used. Second, Inverted Encoding Models (IEMs) have recently become popular among cognitive

scientists. Finally, advanced machine learning techniques, and particularly neural networks, are

now the state-of-the-art for most BCI based applications. In the following subsections we explore

each of these methods and examine their strengths and weaknesses.

2.2.2.1 Classical Classification Algorithms

Support Vector Machines These classifiers were developed by Valdimir Vapnik and his col-

leagues in a series of papers during the mid 90s. This method quickly peaked in popularity, and

by 2001 it has been applied to multiple EEG classification problems [109]. While the engineering

community has come to favor neural network approaches for most classification problems, SVMs

remain the predominant method in other non-engineering focused disciplines [7, 8]. This is not

surprising; SVMs use a relatively low number of parameters, are simple to train without costly

computational resources (i.e. GPUs), and can find globally optimal solutions for most problems

with the correct kernel selection.

Linear Discriminant Analysis Another classification algorithm that is commonly used with EEG

data is Linear Discriminant Analysis (LDA). Given two or more (normal) distributions, LDA finds

the projection that maximizes the separation of the clusters. LDA is reminiscent of decomposition

algorithms such as PCA. However, while principle component analysis (PCA) solves for a projection

that captures the direction of maximum variation in the data set without requiring any labels (thereby

projecting the data into a lower dimension in a way that allows for low reconstruction error), LDA

maximizes separability between clusters. Mathematically, given two clusters 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}

and𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛} with means 𝜇𝑥 , 𝜇𝑦 and covariance matrices Σ𝑥 , Σ𝑦 respectively. LDA finds

a transformation𝑊 that 1) Maximizes the difference between the means of the transformed clusters
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(𝑊𝜇𝑥 −𝑊𝜇𝑦)2 and 2) Minimizes both within class scatter values. Since 𝜎𝑥 = 𝐸 [𝑋𝑋 𝑡] − 𝜇𝑥𝜇𝑡𝑥 after

the transformation we get a new scatter matrix 𝑊𝜎𝑥𝑊 𝑡 . The two terms are combined, and we get

the objective function

𝑎𝑟𝑔𝑚𝑎𝑥𝑊
(𝑊𝜇𝑥 −𝑊𝜇𝑦)2

𝑊Σ𝑥𝑊
𝑡 −𝑊Σ𝑦𝑊

𝑡

.

Empirical studies on multiple EEG data-sets have demonstrated that LDA consistently achieves

decoding accuracy on par with other classification methods [61]. For this reason LDA was chosen

as the default classifier in the ADAM toolbox [44]. Despite implementing a Mahalanobis distance

classifier, for reasons that would be discussed in future sections, decoding of data collected during

this dissertation was completed using the ADAM LDA classifier.

Multidimensional Scaling Visualization Due to the similarities between LDA and SVM many

visualization techniques are applicable to both methods. One such technique is Multidimensional

Scaling (MDS): a distance-preserving dimensionality reduction technique that can be used to

visualize complex high dimensional data. MDS originated in psychometrics and is still a common

tool in cognitive science. For instance, using the distances that SVM and LDA methods provide, it

is possible to make deductions regarding the similarity of EEG measurements for different items.

By making the reasonable assumption that, for a given subject, EEG pattern similarity correlates

with neural representation similarity Hanjonides et al. demonstrated that the color representations

follows the color circle in representational space (orange is between green and red) [66]. That is,

they showed that the representations being decoded were sensory in nature, not merely the result

of a verbal label (the decoded activation wasn’t simply the result of subjects repeating the color

names in their head). This is an extremely valuable insight for cognitive scientists as it speaks to

the organization of neural representation in the brain. Note that such techniques can not be applied

used with deep learning black box modules that do not preserve stimuli properties.

This type of visualization highlights the interpretability of results obtained using classical

methods, which contributes to their persistent popularity amongst cognitive scientists.
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Mahalanobis Distance Finally, many EEG decoding papers have used Mahalanobis distance for

EEG labeling [190, 184]. The Mahalanobis distance is calculated between a data point and a

distribution. Let 𝑋𝑘 be a set of all data points labeled 𝑘 in the training set, and Σ𝑘 and 𝜇𝑘 be the

covariance matrix and mean for 𝑋𝑘 . Given a data-point from the testing set 𝑦 the Mahalanobis

distance of the point from the distribution of each label is:

𝑀𝐻𝐿𝑘 =

√︃
(𝑦 − 𝜇𝑘 )𝑡Σ𝑘−1(𝑦 − 𝜇𝑘 )

The smaller the Mahalanobis distance from a distribution, the more likely it is that the data

point belongs to the same label as the cluster used to generate the distribution. Therefore, for each

data point the label that satisfies 𝑎𝑟𝑔𝑚𝑖𝑛𝑘 (𝑀𝐻𝐿𝑘 ) is assigned as the class. The reason behind

the popularity of Mahalanobis distance in EEG research stems from signals being global, hence

producing highly correlated electrode readings. By multiplying by the inverse of the covariance

matrix we essentially uncorrelate and z-score the data. This is becomes apparent when decomposing

the covariance matrix to eigenvalues and vector Σ = 𝑣𝜆𝑣𝑡 as can be seen in figure 2.1.

Figure 2.1 The two red data-points have the same euclidean distance from the center of the cluster.
By scaling the distance in the direction of the eigenvalue 𝑣𝑘 by 1

𝜆𝑘
we correct for covariance.

2.2.2.2 Neural Networks

Neural Networks have facilitated massive advances in all area relating to signal processing;

this "Deep learning tsunami" [103] did not spare the field of bioinformatics. With respect to

the decoding problem, most deep learning applications are seen in BCI applications. This is

not surprising as BCI engineers are primary interested in high algorithm performance; statistical

19



significance alone is typically insufficient. For instance, the decoding accuracy in the Neuroscience

paper [119] peaked at 37.5% against a chance level of 33.3% but the BCI study [41] achieved a

79.25% accuracy for a comparable chance level.

Convolutional Neural Networks (CNN) in particular have proven to be extremely capable for

EEG decoding. Schirrmeister et al. tested multiple CNN architectures on multiple data-sets against

traditional decoding methods and found that CNN dramatically outperformed all baselines [149].

The authors suggest that the temporal nature of EEG signals might be especially suited for CNNs,

as these neural network ‘can capture the temporal hierarchies of local and global [temporal]

modulations in the deeper architectures’.

Transfer Learning A well known weakness of deep learning methods is the need for large

amounts of data. In our case this is further exacerbated by the data scarcity issues discussed above.

One potential way to combat data scarcity is solving the Inter-class variability problem by using

pretrained models with transfer learning. For instance [192] used VGG-16, a CNN classifier trained

for image classification [195], to improve performance on an EEG motor imagery data-set. Xu et

al. freezed the first 11 VGG layers and allowed tuning the remaining five. The intuition being

that the initial layers have ‘extracted low-level universal features ... appropriate for general image

processing tasks’.

Transfer learning can also be used to elevate Inter-Subject Variability problems. Emotion

detection EEG data is particularly noisy and decoding accuracy is often extremely low. Using a

model pre-trained on a subset of subjects can improve the decoding for specific subjects with low

accuracy [94]. This was demonstrated as possible even across different data-sets that were collected

using different paradigms [31]. A different approach to inter-subject transfer learning is to train

a model using a few trials from all available subjects before fine tuning the model for a specific

subject. This approach was used by [41] to improve the performance of the models proposed by

[149]. Finally, [199] have used CNN with hand crafted features to implement a ‘training free’

classifier that can outperform traditional methods such as SVM and LDA for subjects it did not

previously encounter.
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Interpretability Machine Learning researchers have recently drawn a distinction between Inter-

pretability, the ability to associate cause and effect, and the more general attribute of Explainability

which relates to justifying this association. For example, in image classification, interpretability

techniques, such as the Shapely values, reflect the contribution of each input pixel to the final

decision model. However, they do not explain why the presence of a tail increases the probability

of an image being classified as a dog [26]. In the specific context of EEG decoding, interpretability

is sufficient, as explaining the chain of cause and effect often falls in the realm of cognitive science.

Many examples of such "attribution" techniques can be found in the cognitive neuroscience litera-

ture [149, 170]. For instance, "Layer-Wise Relevance Propagation" was used in a motor-imagery

classification from EEG task [170]. As could be expected, results indicated that activity in the

contralateral sensorimotor areas was crucial for the accurate classification of the motor-imager

action. The same technique was also used for Alzheimer’s disease classification from fMRI data.

Not only did the techniques attribute relevancy to areas known to be implicated in the progres-

sion of Alzheimer’s disease, but the attribution also had high inter-patient variability, enabling the

researchers to identify Alzheimer’s disease "subtypes" [18].

2.2.2.3 Encoding Models

In contrast to BCI researchers, cognitive scientists prioritize understanding the underlying

neural representation over decoder performance. This has led to the development of Encoding

Models (EM)s that aim to predict brain responses 𝑟 given the stimuli 𝑠. In other words, EMs model

cognitive functions as conditional distributions 𝑃(𝑟 |𝑠). For instance by characterizing how every

fMRI voxel (cluster of neurons) in the early visual areas responds to different spatial frequencies

and orientations, researchers were able to identify images by comparing voxel responses with model

predicted activations with over 80% precision [112]. Moreover, by inverting the encoding model

and calculating 𝑃(𝑠 |𝑟) the authors were able to reconstruct images from brain activation. Later

work expanded on this by constructing entire video segments from fMRI data [118]3). Another

development is the so-called Inverted Encoding Models (IEMs), a specific type of EMs that uses

3A demonstration of video reconstruction
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Figure 2.2 The Inverted Encoding Model. a) The channel tuning functions. Each channel is
sensitive to a different orientation. b) predicted activation for a specific stimuli. c) the electrode
values for the stimuli. We can calculate 𝑊 , and use the inverse transformation to predict channel
response from electrode activation, their-by concluding stimuli properties from raw EEG.

“channel responses” instead of stimuli as input. The IEM assumes that the activation measured

by each of the 𝑚 EEG electrodes reflects a weighted sum of 𝑛 response channels. Each response

channel is selective towards a specific stimuli value (Figure 2.2 a). Computationally, the problem

is equivalent to solving a system of linear equations 𝑐 ¤𝑊 = 𝑒 where 𝑐𝑛 is the vector of the channels’

activation for a given stimuli, 𝑒𝑚 are the electrode measurements, and the weight matrix, 𝑊𝑚×𝑛,

describes the contribution of each channel to each electrode. Solving𝑊𝑚×𝑛 on the training data and

then applying the inverse operation allows us to infer the channel responses, and thereby stimuli,

from EEG data [171, 49]. See figure 2.2 for a visualization of IEM training.
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Flexibility Encoding models can be used to reconstruct any stimuli, even if it was not encountered

during training. Meaning that, unlike the methods previously discussed in this review, EMs are

generative rather than discriminative. For instance while the EM in figure 2.2 is trained for

orientations that are 30 deg apart, we can still predict the channel response for a 45 deg orientation.

As noted by Brouwer et al. training an EM is equivalent to creating "a lookup table of channel

outputs for an arbitrarily large number of different [stimuli]" [23].

Limitations EMs model the neural representations that underline human perception. Neural

mechanisms underlying human perception can be investigated using the performance of EMs that

incorporate them. For example, EMs that account for the semantic categories present in the stimuli

accurately predict voxel responses at some brain regions but not others, indicating which regions

represent such concepts [118]. However, as two recent papers have demonstrated, the reconstructed

channel response functions of IEMs are highly contingent on model assumptions [98, 50]. For

instance, the decoding would work just as well if instead of assuming that the channel functions

are shaped like a normal distribution (Figure 2.2 a), the researcher uses bimodal (or arbitrary)

distributions [50]. Proponents of IEMs responded by suggesting that as longs as “sensible” models

that follow the current consensus in the research community are used, IEM methods are still useful

for intuition regarding the inner working of the cognitive-neural systems [165]. This demonstrates

how dependant EMs of the expert knowledge.

Another related limitation that is more specific to IEMs is that they require handcrafted channel

responses, but it is not apparent how these can be extended to more complex stimuli categories.

For instance [119] used an SVM to decode stimuli category (faces, natural scenes, and tools),

it is not clear how one can model a set of channels for such high-dimensional stimuli, or even

non-perceptual domains such as motor imagery or semantic categories.

2.2.3 Conclusion

In this review we examined the currently most widely used EEG decoding modalities and the

context in which they are utilized. While a unified EEG decoding methodology could be beneficial,

by carefully choosing the modalities most appropriate for their use cases researchers seem to be

23



able to side-step many of their inherent weaknesses. As discussed in subsection 2.2.2, each of the

current popular methods has different strengths that counter-act a specific subset of the challenges

discussed in 2.2.1. This can be summarized as follows:

• Classical Methods require relatively small amount of data and their results can provide

insights into the cognitive processes underlying the EEG representations being decoded.

These methods are suited to researchers concerned with Interpretability and Data Scarcity

and are therefore most popular amongst non-engineering disciplines focusing on cognitive

science research as opposed to building practical EEG applications.

• Inverted Encoding Modules A new method that gained popularity in cognitive science. This

is a generative rather than discriminative EEG decoding method as it can decode stimulus

values that were not encountered during training. Moreover, as discussed earlier it has been

demonstrated that it can be used to decode stimuli with multiple features even if only a

single value stimuli was available during training (and vice versa). This method is therefore

uniquely flexible as far as Inter-task Variability is cornered.

• Deep Learning Methods Deep learning methods achieve the highest accuracy, and transfer

learning is a promising approach that can alleviate Inter-subject and Inter-task Variability

related issues. However, even with transfer learning these methods remain relatively data-

intensive. Considering the above, these are the most popular methods for BCI applications.

Considering the cross-disciplinary challenges of working with EEG data it is more than likely that

practices from different fields will eventually find their way into other disciplines. We hope that

this review will serve to help the reader consider decoding approaches from new angles.
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CHAPTER 3

DEEP LEARNING METHODS FOR PREPROCESSING EEG

3.1 EEG Channel Interpolation Using Deep Encoder-decoder Networks

This section was published as a manuscript titled "EEG Channel Interpolation Using Deep

Encoder-decoder Networks" in the proceedings for the 2020 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM) [145].

3.1.1 Introduction

Electroencephalography (EEG) devices have become increasingly popular in recent years and

are used in a wide range of applications. Naturally, the medical applications of EEG are centered on

neurological diagnosis, but EEG has proven useful for other problems in healthcare domain [153,

138]. Moreover, the use of EEG devices extends far beyond the medical domain; novel applications

of EEG may be found in wide a variety of fields including advertising [177], education[161],

entertainment [20], and security [82].

A fundamental challenge of EEG data is the low signal to noise ratio. Different sources

contribute to this noisiness but, in general, they can be categorized as either movement artifacts or

electrode artifacts. The most common, and particularly persistent, electrode artifact is the electrode

“pop" [180, 100]. These artifacts result from abrupt changes in impedance, usually due to a loose

electrode or bad conductivity. Furthermore, these artifacts are difficult to avoid because, even if

the greatest care is taken when applying electrodes, the most minor subject movement or change in

perspiration can cause the electrode to “pop”.

A common solution to EEG “pops" is to interpolate the missing segments using recordings

from nearby electrodes [48]. In practice, this interpolation is most commonly performed using

eeglab, which contains a tool for spherical interpolation [131, 45]. Within the last few years,

alternative interpolation methods reporting improved performance have been proposed: Petrichella

et al. proposed a euclidean inverse distance method [132] while Courellis et al. demonstrated an

interpolation approach that (while also being based on an inverse distance calculation) used geodesic
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lengths and electrode localization to extract more exact channel locations, thereby performing

more accurate interpolation. [35]. Effective interpolation is a necessary preliminary step to

any subsequent preprocessing or formal analysis of the EEG, including Independent Component

Analysis (ICA). As noted by Ullsperger et al: “activity from bad channels should be removed before

ICA decomposition, as it can massively deteriorate otherwise good decomposition results." [175]

One shortcoming of these previous solutions is their dependence on knowledge of the precise

locations of the electrodes (i.e. electrode localization / registration), which are not collected in most

practical settings. Furthermore, the existing methodologies assume that the incidence and specific

characteristics of the “pops" are similar across both subjects and tasks (i.e. “one-size-fits-all").

Furthermore, as far as the authors are aware, none of the studies surveyed for the purposes of this

work provided publicly available software repositories to enable practical use, reproduction of their

methodologies, or ease of extension.

To address the aforementioned challenges, we propose a novel electrode interpolation frame-

work using representation learning. Our method autonomously identifies the spatio-temporal

properties of EEG data measured at a set of electrodes, that predict the values of a given neigh-

bor to those electrodes. Our model, which has been made publicly available (at github.com/

sari-saba-sadiya/EEG-Channel-Interpolation-Using-Deep-Encoder-Decoder-Networks),

can be used “out of the box" to more effectively interpolate EEG for any missing channel, at any

time.

One important advantage of our model over existing approaches is its amenability to transfer

learning: the ability to easily fine tune it using clean data from a novel subject or EEG experiment.

This property of our model allows for interpolation that is tailor-made to the specific task and

subject at hand, enabling the model to learn even idiosyncratic relations in new data.

To determine the usefulness of our method we evaluate the model on unseen tasks and subjects

with and without further tuning. To summarize, our main contributions are:

• We propose and implement a new framework for EEG channel interpolation using encoder-

decoder deep representation learning.
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• We compare our method against contemporary algorithms for channel interpolation.

• We make our code publicly available for the benefit of the community, and demonstrate how

it may be tuned to novel subjects and tasks using transfer learning.

3.1.2 Related Work

3.1.2.1 Current Interpolation Solutions

The Spherical interpolation method (as implemented by eeglab) was first proposed by Perrin

et al. in their 1989 work [131] and remains the most widely-used interpolation solution [131, 45,

163, 132]. More recent work describes improved interpolation methods by, for instance, using

ellipsoid geodesic lengths [35] to better estimate the distances between electrodes. A weighted

signal reconstruction scheme that favors electrodes closer to the location of the missing channel is

then used to achieve higher accuracy. This however requires that the electrode positions be digitally

registered so that an ellipsis can be fitted to the shape of the subject’s head. That ellipsis is then used

when calculating the distances between electrodes. Unfortunately, most data tends not to provide

the specific channel locations.

3.1.2.2 Artifact Detection Using Neural Networks

EEG is a signal with spatial structure that unfolds in time. Convolutional neural networks

(CNNs) are an obvious candidate for the EEG interpolation problem because they naturally capture

hierarchical spatio-temporal relationships.

A few recent papers have leveraged CNNs for EEG classification [55, 106]. Previous works

have also used CNNs to annotate EEG wave-forms for the presence of artifacts: Nejedly et. al.

framed artifact detection as a classification problem and used CNNs to robustly annotate eye blink

segments [115]. However, while the use of deep learning approaches for artifact detection has

shown promising results, there is relatively less work on the use of deep learning to reconstruct

artifact-ridden data segments.

Finally, recently researchers working with EEG data started to use generative rather than dis-

criminative neural networks. For instance [34] used generative auto-encoders (GANs) to specially
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up-sample EEG data by interpolating non-existing channels. While not interchangeable, this is a

similar task to channel interpolation. However, no previous work was validated on either subjects

or tasks that did not appear during training. Moreover, to the best of the authors’ knowledge no

previous work tested how transfer learning could facilitate further fine tuning on specific data-sets,

or even made the trained model available. We hope that our rigorously tested ready to use model

will allow for wider access to state-of-the-art machine learning techniques.

3.1.3 Data

3.1.3.1 Data Collection

The data in this study was collected from the recently published EEG During Mental Arithmetic

Data Set [201]. The data consists of 24 subjects performing two tasks: a resting state task, and a

mental arithmetic task. EEG data was collected as subjects performed the tasks using the 10-20

international system with the linked ears serving as a reference electrode (see Figure 3.2, left). The

sampling rate was 500𝐻𝑧. Each resting state task lasted 180 seconds while each mental arithmetic

task lasted for 60 seconds; hence, the total number of samples was 90, 000 and 30, 000 for each

resting state and mental arithmetic task respectively.

We segmented the data into 16𝑚𝑠 (8 samples) epochs. Hence, each subject ended up with

11, 250 and 3, 750 epochs for the resting state and mental arithmetic tasks respectively.

3.1.3.2 Data Partitioning

In Figure 3.1, we illustrate how the data was partitioned for the training and evaluation of our

method. Training data from the resting state task was used for model development while data

from the mental arithmetic task was held out for intra-task evaluation. We further partitioned

data from both tasks into training subjects (67% of subjects) and evaluation subjects (33%). This

resulted in the following four partitions of the data, which we will refer to later when discussing our

results:“Seen Task, Seen Subjects" (n=16 subjects),“Seen Task, Unseen Subjects" (n=8), “Unseen

Task, Seen Subjects" (n=16), and “Unseen Task, Unseen Subjects" (n=8).

The “unseen" data sets contain some deviation from the data the model was trained on, and are
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Figure 3.1 The four-way split of the data into partitions. The dotted area (top left) was used to train
our main algorithm. The areas with the diagonal shading were used for transfer learning. The areas
with white background were used to test our algorithm. Each shaded area was used separately to
tune the model for testing on the remaining 90% of the data in its own partition.

thus a good test for the generalizability of the method. Because we are utilizing transfer learning

10% of the data for all unseen sets was held-out for tuning, to test the impact of this additional

context on the model’s performance.

In general, the fundamental difference between the two tasks is crucial to our evaluation.

Researchers will often not have enough data to train neural networks "from scratch", not to mention

training a neural network often requires exploration of a hyper-parameter space that may consume

significant temporal (and financial) resources. This is especially true for deep learning frameworks

that have strong tendencies to over fit and produce remarkable results for a specific data set while

failing to generalize to other contexts. With this in mind, it is important that our models achieve

good results on both unseen tasks and subjects to enable their continued development and utility

within the greater research community. We therefore structured our data to assess its ability to

generalize across tasks and subjects.

3.1.4 Methods

3.1.4.1 Pre-processing

To begin, all EEG data were Z-scored at the subject-level (i.e. converted to a zero mean, and

unit variance representations). Deep networks require a large volume of training data; hence, we
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Figure 3.2 A diagram of our framework. The EEG data is first segmented the 500𝐻𝑧 data into 16𝑚𝑠
epochs, each segment is then mapped to a 5𝑥5 matrix that roughly reflects the spatial locations of
the EEG electrodes (e.g. F7 is located in position 1,1 of the matrix). The electrodes at the sagittal
and median planes were duplicated and the tensor was padded with the linked ear channel data to
create a 8 × 8 × 8 tensor per epoch. This data serves as the input to an encoder-decoder model.
Finally, the output is transformed back into a signal.

supplemented our training data by transforming each subject’s EEG data into 10 distinct pseudo-

subjects. Each pseudosubject’s data was an elementwise addition of the Z-scored subject’s EEG

data and random draws from a Gaussian distribution with (𝜇 = 0, 𝜎 = 0.05). The pseudosubject’s

(already normalized) EEG data was then Z-scored again following the introduction of the noise.

The utility and validity of this data augmentation approach for EEG research has been demonstrated

in prior work [56]. Next, a simple transformation was applied to project each sample of EEG data

from a spherical channel representation onto a quantized two dimensional surface represented by a

5 × 5 matrix (Figure 3.2, panel 2).

Finally, EEG data was epoched into 16𝑚𝑠 segments, with no overlap across segments 1. This

resulted in a 5 channels ×5 channels ×8 samples tensor. The electrodes at the sagittal and median

planes (the central electrodes) were then duplicated and the tensor was padded with the linked ear

1Average pop artifact duration exceeds 1 second, hence 16 ms is more than sufficient for reconstruction.
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channel data to create a 8 × 8 × 8 tensor. This manipulation of input size is common place in deep

learning and is mainly the result of networks being optimized to work with input sizes that are

powers of two [95]. This 8×8×8 tensor formed a single sample of input data, from the perspective

of the network when training.

To create training data, we iterative occluded each of the 19 non reference electrodes (All

electrodes except 𝐴1 or 𝐴2, see Figure 3.2). Thus each 8 × 8 × 8 tensor became the prediction

target for 19 input tensors, each with one distinct occluded channel.

3.1.4.2 Proposed Approach

An Encoder-Decoder model for EEG Interpolation Inspired by research on image inpainting

we deployed an encoder-decoder model for EEG interpolation. Image inpainting is a classical

problem in computer vision: given a corrupted image the aim is to complete or “fill in" missing

pixels. This is a similar problem to electrode interpolation.

Encoder-decoder models are the combinations of two networks that are trained simultaneously:

the encoder first learns a lower dimensional embedding of the data, and the decoder attempts

to recover the original data from the embedding. Encoder-decoder networks are a popular tool

in image inpainting [129, 193, 181], so much so that this technique is now leveraged for image

compression as selective removal of pixels might greatly enhance compression ratios [11].

We determined the optimal topological configuration of our encoder-decoder network via

a random search of the network hyper-parameter space [15]. The tested topologies varied in the

number of convolution layers, the existence of max-pooling, dropout, and batch normalization layers

after each convolution layer, and whether the decoder was based on transposed convolution layers

or simple up-sampling with convolution. More specifically, we trained 300 distinct architectural

configurations of the encoder-decoder networks, and retained the configuration that best generalized

within a held out subset of the training data itself. The best network was then used after training

for our transfer learning evaluation. The code to run this search in the topological space, as well as

the trained winning algorithm before and after the transfer learning tuning is available online. The

optimal topology is shown in Figure 3.3, and discussed in Subsubsection 3.1.5.1.
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Subject+Task Enhancement via Transfer Learning Transfer learning experiments were carried

out by taking the model trained on the original data set and tuning it on a small subset (10%) of the

testing data. Realistically, it is highly likely that a small sample of clean data will be available for

a researcher to use when tuning our model.

To assess performance enhancements associated with transfer learning, we held out 10% of

each data partition (See Figure 3.1) and tuned our network for 100 epochs. These numbers were

intentionally small as to showcase how even minimal training that can be easily completed on non

specialized hardware and using very little data can lead to significant improvements. By tuning the

model for specific subjects and tasks, we assessed the flexibility and practical extensibility of our

proposed approach.

Figure 3.3 Our network, the dashed black arrow denotes the 4 × 4 × 128 embedded data tensor.
This embedded representation is passed form to the decoder which reconstructs the original input
sans the occlusion.
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3.1.4.3 Methodological Baselines

For our baseline we implemented the three methods described in the Related Work subsection

[131, 132, 35].

The Euclidean Baseline Both [132, 35] suggest methods that employ an inverse distance metric

where the interpolated channel 𝑠𝑖 is calculated using the following equation:

𝑠𝑖 =

∑
𝑗≠𝑖 𝑤𝑖 𝑗 𝑠 𝑗∑
𝑗≠𝑖 𝑤𝑖 𝑗

, 𝑤𝑖 𝑗 =
1
𝑑
𝑝

𝑖 𝑗

where 𝑝 is the power parameter. The variable 𝑑𝑖 𝑗 represents the distance between electrodes

𝑖 and 𝑗 . The original channel 𝑗 is represented by 𝑠 𝑗 . The power parameter is an integer (usually

between 2 and 5) that is set using a small amount of data; while it is usually set to be the same

value across a given data-set where interpolation is happening, we optimized the power parameter

separately for each baseline and data-set to maximize the performance of the baselines.

The calculation of the distance, 𝑑𝑖 𝑗 , is the main difference between the two baselines. The fist

euclidean baseline (EUD) uses a simple euclidean distance formula. This distance calculation is

done using the generic electrode positions in space that are always available for every cap.

The Geodesic Baseline The Geodesic Length baseline (EGL) is also based on the inverse distance

equation. However, instead of using euclidean distances for 𝑑𝑖 𝑗 the geodesic length is calculated.

The geodesic distance is calculated using the Vincenty algorithm which was originally used in

geodesy to calculate the distance between points on the surface of a spheroid. The method is

iterative and not theoretically guaranteed to converge. Previous work have demonstrated that inter-

polation calculated using this method outperforms simple euclidean interpolation [35]. However,

as previously discussed, this was tested by the original baseline works when specific electrode

locations were available [35]. It should therefore be expected that results obtained for the EGL may

be lower than those reported in previous studies.

The Spherical Splines Baseline Finally, we also followed the eeglab MATLAB implementation

of spherical splines method (SS) [131]. According to this implementation at each point in time the

value of of the interpolated channel 𝑠𝑖 can be approximated using the equation:
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𝑠𝑖 = 𝑐0 +
∑︁
𝑗≠𝑖

𝑐 𝑗𝑔
(
𝑐𝑜𝑠(𝜃𝑖, 𝑗 )

)
Where 𝜃𝑖, 𝑗 is the angle between the electrode locations 𝑖 and 𝑗 . Instead of calculating the angle,

given the positions of the electrodes in space 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) it is possible to directly calculate the

cosine value: cos(𝜃𝑖, 𝑗 ) =
𝑥𝑖 ·𝑥 𝑗

∥𝑥𝑖 ∥·∥𝑥 𝑗 ∥ . The function 𝑔(𝑥) is defined as the sum of the series:

𝑔(𝑥) = 1
4𝜋

∞∑︁
𝑛=1

2𝑛 + 1
𝑛𝑚 (𝑛 + 1)𝑚 𝑃𝑛 (𝑥)

Where 𝑃𝑛 is the Legendre polynomial and following [131] we set 𝑚 = 4. Additionally,

following the eeglab implementation we limited the infinite sum to the first seven values. Finally,

the coefficients𝐶 = (𝑐1, 𝑐2, . . . , 𝑐𝑛) are set to be the solution for the system of equation𝐺𝐶+𝑇𝑐0 = 𝑆

with the constraint 𝑇 ′𝐶 = 0 where𝐺𝑘,𝑙 = 𝑔
(
𝑐𝑜𝑠(𝜃𝑘,𝑙)

)
, 𝑆 = (𝑠1, 𝑠2, .., 𝑠𝑛) and 𝑇 is a vector of ones.

The interpolated channel is excluded from the calculations of 𝐺 and 𝑆.

3.1.4.4 Model Evaluation Approach

The selected baseline approaches [35] used the averaged normalized mean square error (AN-

MSE) as the main evaluation measure. The normalization of the mean square error is used to

prevent a specific channel’s performance from skewing the results, in case of a bad reconstruction.

Having Z-scored the data however all channels are guaranteed to have the same mean amplitude.

Therefore we do not normalize our mean square error results. Hence our final evaluation is:

𝐴𝑀𝑆𝐸 =
1
𝑀

𝑀∑︁
𝑗=1

(∑𝑁
𝑖=1(𝑠𝑖 − 𝑠𝑖)2

𝑁

)
𝑗

Where 𝑁 is the number of channels (19 in our specific case). 𝑀 is the number of samples. Note

that the expression for mean reconstruction error (the inner average) changes for every sample. 𝑠𝑖 and

𝑠𝑖 are as previously defined. This measure was used both for optimizing the power parameter for the

different baselines (see subsection 3.1.4.3) and calculating the final results presented momentarily.
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Interpolation
Method

Seen Task,
Seen Subjects

(% Improvement)

Seen Task,
Unseen Subjects

Unseen Tasks,
Seen Subjects

Unseen Task,
Unseen Subjects

SS Baseline 0.728 0.694 0.8238 0.779
EUD Baseline 0.5215 0.561 0.665 0.566
EGL Baseline 0.585 0.501 0.566 0.622

Our Encoder-Decoder Model 0.446 (14.47%) 0.478 0.552 0.465
Our Encoder-Decoder Model

+Transfer Learning
— 0.392 (21.75%) 0.439 (21%) 0.446 (19.78%)

Table 3.1 Comparison between Encoder-decoder model and baselines using Averaged mean square
error (AMSE); lower is better. Note that for transfer learning (last row) the training data set differed
on each column. There was no transfer learning for the Seen Task, Seen Subject partition as this
is the original data used to train the model. SS: spherical splines baseline EGL: geodesic length
calculation; EUD: euclidean baseline. The best result is bolded and percentage of improvement
over the most competitive baseline is given.

3.1.5 Results

3.1.5.1 Model Hyper-parameter Optimization

After exploring the topological space by testing different network architectures (using the Seen

task, Seen subjects data, see Figure 3.1), the best performing network is visualized in Figure 3.3.

This network consisted of a simple encoder with three convolution layers and one max pooling

layer, as well as four transposed convolutions in the decoder. Additionally there was a dropout

and a batch normalization layer after each convolution in the encoder. All results described in this

subsection were achieved using this particular architecture.

3.1.5.2 Baseline Power-parameter Optimization

For our evaluation to be extra rigorous. we optimized the power parameter for each baseline

data-partition configuration separately. In Figure 3.4, we illustrate the results of our power parameter

optimization for the baseline methods. As seen in the Figure, the optimal power parameters were

comparable with those reported in previous literature (between 2 and 5) [35]. All the results that are

reported in this subsection were for the optimized baseline on the specific data set being discussed.

The spherical splines baseline has no analogous parameter we can optimize.
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Figure 3.4 Power parameter optimization to maximize the performance of the baseline approaches.
For each of the four data partitions and for the two, EUD and EGL (solid and dashed lines
respectively), methods. EGL: Geodesic Length calculation; EUD: euclidean baseline; AMSE:
Averaged mean square error.

Figure 3.5 An exemplary 48ms reconstruction of the EEG data for Subject 0 resting state task
for channel P4. The original channel data was removed and interpolated using best performing
baseline (geodesic length calculation, in blue) and our method (in red).

3.1.5.3 Main Result

In Table 3.1, we compare the results of our proposed approach against the baselines for the

EEG interpolation task on the test sets. The baseline methods are highly unstable, giving a high
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variability in performance relative to our approach.

The Encoder-decoder model consistently outperformed the baselines by at least 10%. Moreover,

by utilizing transfer learning the network was able to improve it’s accuracy even with minimal

additional data and training time.

Interestingly, in contrast to results reported in the literature, the EGL method did not clearly

outperform the EUD baseline [35]. This might be due to our data not having the precise electrode

locations in contrast to previous research (see Subsubsection 3.1.6.2 in the discussion).

Another interesting result is the pattern of improvements after transfer learning. As can be seen

in the last row of Table 3.1, the biggest improvement was for Unseen task, Seen subjects data. This

hint that there was more variability between EEG data from different tasks compared to data from

different subjects. Additional testing will be needed to verify this hypothesis. However, this can

be seen as a compelling argument in favor of flexible models that can be tuned for the specific data

the researcher is working with.

Finally, we also extracted the delta (0.5-4𝐻𝑧), theta (4-8𝐻𝑧), alpha (8-12𝐻𝑧), beta (12-30𝐻𝑧),

and gamma (30-100𝐻𝑧) bands and tested the models performance for each band separately. Our

method significantly improved over the baselines method in all bands. This is crucial as differ-

ent bands have different functions (for instance, the theta band is especially responsive during

observation and memorization tasks [177]). Hence for an interpolation method to be useful the

reconstruction fidelity must be consistent across all frequency bands. In the interest of brevity we

will not present the results for all these bands separately. The code to extract the sub-bands is also

available online.

3.1.5.4 Performance on Exemplary Data

In Figure 3.5, we present an example of our method’s interpolation on an exemplary portion of

the data, compared against the baselines. As shown in the figure, the best baseline reconstruction

contains voltage fluctuations that do not appear in the original signal, or the one reconstructed using

our method. These fluctuations were quite common in baseline reconstructions. We speculate that

our method might have learned to not only the optimal weights to use to approximate the occluded
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channel, but also a more complicated relationship that enables our method to suppress potential

artifacts that are localized to one electrode and therefore do not effect the original electrode that

is being reconstructed. All things being equal, this is evidence that our framework was able to

learn the nuanced relationships between electrode measurements that are not captured by baseline

approaches.

3.1.6 Discussion

Our work used a deep encoder-decoder model to tackle the problem of EEG channel inter-

polation. While discriminative frameworks are able to only detect and label bad data segments,

our results demonstrate that a generative approach can reconstruct the missing channel with high

fidelity to the original signal. The success of our method suggests that deep learning can capture

complex relationships between electrodes that are not sufficiently expressed by the relatively simple

inverse distance calculations predominant in contemporary solutions.

3.1.6.1 On Self-supervised Learning

Data labeling is often a tenuous and resource consuming process. Unfortunately, training deep

learning models often requires extensive data collection and labeling efforts. Therefore, deep

learning researchers have recently began to focus on finding ways to mitigate the need for labeled

data. As we showed in this study, one approach to mitigate this is to frame problems as self-

supervised learning tasks. Specifically, our work is a special case of a popular self-supervised

learning task: the prediction of occluded parts of data from visible ones. By using this framing we

were able to circumvent a common hurdle faced by deep learning approaches.

3.1.6.2 On the Challenges of Electrode Localization

As discussed previously, prior research that compared different interpolation methods used

electrode localization to extract exact channel locations for each specific subject. While generic

and imprecise locations are always available, electrode localization methods attempt to alleviate

the noisiness inherent to EEG by providing exact electrode locations. This localization can be done

in many ways; one expensive option is to equip EEG caps with spatial sensors, or motion capture
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sensors [35, 139]. Other methods that require less specialized hardware including a simple DSLR

camera [32] and Kinect with an Neural Network [53]. However, despite these recent advances,

electrode localization remains uncommon. For instance, no EEG data set in physionet2 or gigadb3

contain an EEG database with electrode localization. Therefore, and to ensure our method is

applicable to the vast majority of databases, the data we used also did not include electrode

localization [201]. A possible future work could incorporate location data into the deep learning

framework.

3.1.6.3 On Baseline Approaches

It is worth noting that there are multiple other interpolation methods such as the nearest

neighbors method, planar-spline technique [163]. We selected the baselines methods described in

Subsubsection 3.1.2.1 as they were the most contemporary approaches on the topic. Furthermore,

the performance improvement of our model are especially impressive considering that the EUD and

EGL baselines were optimized to maximize their performance on each and every separate partition

of the data.

The SS method requires a system of equations to be solved for each and every time point. This

is not a trivial requirement as it necessities complex calculations. This demand renders the SS

method ill-suited for any online interpolation, and by extension many BCI applications [20, 93,

138]. In contrast to the taxing nature of the training procedure, piping data foreword in neural

network is computationally cheap. Therefore our approach could potentially satisfy a growing need

for accurate interpolation from online data.

3.1.6.4 On Transfer Learning

Transfer learning involves training a model on a problem similar to the one being solved. This

is especially useful when only scarce data is available for the problem being solved, hindering the

training of the model. While transfer learning is possible for many machine learning algorithms

such as Bayesian networks and Markov chains, this technique became essential to deep learning

2https://physionet.org/about/database/#ecg
3https://gigadb.org/search/new?keyword=eeg
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especially due to its reliance on huge amounts of training data. Transfer learning is considered to

be essential for the success and ubiquity of neural networks [117]. Our work for instance would be

considerably less useful if it required every researcher to train the neural network from scratch, or

if the results on data-sets that the model was not trained on were considerably worse.

3.1.7 Conclusion and Future Work

With the increasing prevalence of EEG devices, there is a need for methodologies that better

address common EEG artifacts. In this work, we developed a deep encoder-decoder based method

to interpolate EEG segments impacted by the most common EEG artifact: the electrode “pop".

We demonstrated that our method improved EEG reconstruction performance compared to existing

approaches, and that our method generalized well to unseen tasks and subjects.

Future work will extend this method to tackle other kinds of electrode artifacts. Moreover,

an end-to-end system that automatically detects artifacts and replaces the corrupted data with an

interpolated reconstruction of the original might be of particular interest to the community.
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3.2 Unsupervised EEG Artifact Detection and Correction

This section was published as a manuscript titled "Unsupervised EEG Artifact Detection and

Correction" January 2021 in Frontiers in Digital Health [146].

3.2.1 Introduction

Electroencephalography (EEG) devices are pervasive tools used for clinical research, education,

entertainment, and a variety of other domains [161]. However, most EEG applications remain

limited by the low signal to noise ratio inherent to data collected by EEG devices. EEG noise

sources include: movement artifacts, physiological artifacts (e.g. from perspiration), and instrument

artifacts (resulting from the EEG device itself). While researchers have developed a number of

methods to identify specific instance of these artifacts [176] in EEG data, most methods require

manual labeling of exemplary artifact segments 4 or special hardware such as Electrooculography

electrodes that are placed around the eyes, or large data-sets of templates such as independent

component scalp maps [154].

Manual annotation of artifacts in EEG data is problematic because it is time-consuming and

may even be untenable if the specific profiles of artifacts in the EEG data vary as a function of the

task, the subject, or the experimental trial within a given task, for a given subject - as they so often

do. These realities quickly scale the complexity of the artifact annotation problem, and make the

use of a one-size-fits-all artifact detection method infeasible for many practical use cases.

Even if artifacts could be identified with perfect fidelity, their simple removal (e.g., by deletion

of the corrupted segment) may introduce secondary analytic complications that confound the

performance of downstream methods that leverage these data. For instance, methods that rely on

the stationarity of EEG segments will be confounded by simple removal of the artifact segments.

Even the simplest approaches, such as averaging many EEG trials before extracting features [30],

may be less effective if artifact occurrence is correlated with the trail type or experimental condition,

thereby increasing the likelihood of a type II error and the consequent reduction in experimental

power.
4which may be used as "templates" by statistical or rule-based methods for the identification (and potential rejection)

of noisy data epochs
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An essential challenge of artifact detection in EEG processing is that the definition of "artifact"

depends on the specific task at hand. That is, a given EEG segment is an artifact if and only

if it impacts the performance of downstream methods by manifesting as uncorrelated noise in a

feature space that is relevant to those methods. For instance, muscle movement signatures confound

comma-prognostic classification but are useful features for sleep stage identification [54].

The task specific nature of artifacts makes their detection especially suitable for data-driven

unsupervised approaches as the only requirement for the identification of artifacts using such

methods is that the artifacts are relatively infrequent. That is, when mapping our data into feature

spaces that are relevant to the specific EEG task, artifacts should stand out as rare anomalies.

Indeed, many state-of-the-art approaches use unsupervised methods for the detection of specific

artifact types, under specific circumstances. For instance, the Blink algorithm described by Agarwal

et al. is a fully unsupervised EEG artifact detection algorithm [2] that is effective for the detection

of eye-blinks. While existing methods provide excellent performance for specific artifact types,

there is a need for additional progress toward generalized artifact detection approaches, that make

no assumptions about the task-, subject- or circumstances.

It is also possible to go beyond artifact detection to correct the EEG trial by removing the artifact

signal. EEG artifact removal is one instance of a more general class of noise reduction problems.

The removal of noise from signal data has been a topic of scientific inquiry since Shannon’s laid the

foundation of information theory in the 1940s [155]; and over the years multiple signal processing

approaches to this problem have found their way into EEG research. One such technique for artifact

removal that is ubiquitous for EEG processing is Independent Component Analysis (ICA). This

method and it’s modern derivative remain popular among the research community for unsupervised

artifact correction. However, ICA still requires EEG experts to review the decomposed signals

and manually classify them as either signal or noise. Furthermore, while ICA is undeniably an

invaluable tool for many EEG applications, it also has limitations that are particularly poignient

when the number of channels is low; ICA can only extract as many independent components as

there are channels, and will therefore be unable to isolate all independent noise components if the
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total number of independent noise components and signal sources exceeds the number of EEG

electrodes [39].

Artifact removal is an especially common practice for a particular artifact type: the electrode

“pop". These artifacts result from abrupt changes in impedance, often due to loose electrode

placement or bad conductivity [180, 100]. Unlike muscle and movement artifacts, electrode pop is

extremely localized, often effecting only one electrode channel. Channel interpolation is the process

of replacing the signal of a corrupted channel with one that is interpolated from surrounding clean

channels. Patrichella et al. demonstrated that knowing specific electrode locations (namely the

exact electrode locations for each subject) and the distances between them can improve interpolation

results [132, 35]. However this type of additional information is rarely available and often requires

special dedicated hardware. Recently, Sadiya et al. proposed a deep learning convolutional

auto-encoder based approach to learn task and subject specific interpolation [146]. By iteratively

occluding channels in the input and using original data as the ground truth, the model learned

how to interpolate channels in a self-supervised manner with no human annotation. Moreover, not

only was the model able learn idiosyncratic information such as subject specific electrode location,

beating state of the art models, it was also possible to use transfer learning to improve performance

on previously unseen tasks and subjects.

In this paper, we extend the aforementioned state-of-the-art approaches in artifact detection and

rejection by building an end-to-end pipeline that solves both the detection and rejection problems

together, without making any assumptions concerning the task or artifact type.

Our artifact detection approach uses a collection of quantitative EEG features that are relevant

for a wide variety of tasks including coma prognostics [172], diagnosing mental-illness [174],

decoding mental representations [70], decoding attention deployment [200], and brain computer

interface design [6]. Unsupervised outlier detection algorithms utilize these extracted features to

identify artifacts in the EEG data. These unsupervised algorithms only require an estimate of

the frequency of artifacts in the data, and can detect any artifact type, irrespective of the task.

To guarantee that our results accurately represent the capabilities of these unsupervised outlier
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detectors we carefully selected algorithms that are qualitatively different from each other (for

instance relying on local vs global characteristics of the data distributions) and explored hundreds

of different possible configurations. Sub-subsection 3.2.2.2 provides a comprehensive review of

the feature extraction process. Sub-subsection 3.2.2.2 details our experimentation with different

outlier detection algorithms.

Our artifact correction approach uses a deep encoder-decoder network to correct artifacts that

are not restricted to only one channel. Specifically, we frame our learning objective as a modified

“frame-interpolation" task. Frame interpolation is the filling in of missing frames in a video

[79]. To the best of our knowledge this is the first work that takes this approach to EEG artifact

correction. The proposed approach is also unique in that it does not require the maintenance of

any large data-set of templates or annotated data similarly to other state-of-the-art artifact removal

methods [2]. The model architecture, as well as the exact objective formulation are discussed in

detail in subsubsection 3.2.2.3.

The data-sets used in this work are discussed in detail in subsubsection 3.2.2.1. And the results

of the different experiments we conducted can be found in subsubsection 3.2.3. Finally we, discuss

our findings, their broad implications, and the limitations of our approach in subsection 3.2.4.

3.2.2 Methods

In this paper we propose an end-to-end pre-processing pipeline for the automated identification,

rejection and removal / correction of EEG artifacts using a combination of feature-based and

deep-learning models which is intended for use as a general-purpose EEG pre-processing tool. To

begin, we provide a brief overview of the data and methodological pipeline, calling out the specific

subsubsections where the full details of each component of the pipeline is discussed.

In Figure 3.6 we provide a visualization of our proposed pre-processing pipeline; our method

begins by performing unsupervised detection of epoched EEG segments in a 58 dimensional feature

space (subsubsection 3.2.2.2). The trials that were not rejected in this initial stage are used to train

a deep encoder-decoder network designed to correct artifacts segments (subsubsection 3.2.2.3).

While we demonstrate this method on a particular data set (described below), it is applicable
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Figure 3.6 Our methodological approach. The EEG data is first segmented into epochs (see 𝐴1, 𝐴2,
𝐴3). Next, 58 features are extracted and an ensemble of unsupervised outlier detection methods
are used (see 𝐵1, 𝐵2, 𝐵3) to identify EEG epochs that are artifact-ridden and require interpolation
(see 𝐴2 and 𝐵2). The artifact-ridden epochs are then interpolated by an ensemble of deep encoder-
decoder networks (see red line in 𝐶).

(with no modifications) for any EEG pre-processing work. The methods are presented in the order

of their processing within our proposed pipeline.

3.2.2.1 Data-sets

Data acquisition Our aim is to demonstrate that unsupervised anomaly detection be successfully

used to identify artifacts in EEG data, and that these artifacts can be corrected via representation

learning methods (see subsection 3.2.2.3). To demonstrate the feasibility of our approach, it is

necessary to not only have ground truth artifact annotations, but also the ground truth labels for

all trials, including those that were annotated as artifacts. While the artifact annotations allow us

to test the unsupervised outlier detection methods, the trial labels allow us to verify that corrected

EEG data can indeed be used in conjunction with that regular data for downstream analytic tasks

(e.g. training a classification model). Unfortunately available data sets usually do not contain

rejected trials, and even when these annotations are available the original trial label is not included
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5. Therefore, our work is validated on two data-sets, hereinafter referred to as the orientation

and color data-sets, that were previously collected by Saidya et al. [144]. We briefly describe

these datasets here; additional information about the data-sets are provided in the Supplementary

materials.

Both experiments were passive viewing tasks. The orientation task stimulus consisted of 6

oriented gratings, the color task stimulus consisted of random dot fields in 6 different colors.

The stimulus was generated using MGL, a library running in Matlab (Mathworks). The data was

collected using a 32 electrode actiCHamp cap at 1000𝐻𝑧. For each task we collected data from 7

subjects (4 male) for a total of ∼ 10, 000 EEG Trials. All subjects reported normal or corrected

to normal vision. The data was examined for noisy trials by expert annotators. Fully annotated

and anonymized data-sets will be made available online. Participants gave informed consent and

compensated at the rate of 15$ per hour. The experimental procedures were approved by the

Michigan State University Institutional Review Board and adhered to the tenets of the Declaration

of Helsinki.

3.2.2.2 Unsupervised artifact detection

To benchmark the different outlier detection methods we collected a list of common features used

in EEG research in different domains and applied various unsupervised outlier detection algorithms.

Our main objective was to thoroughly investigate the feasibility of unsupervised artifact rejection

for EEG.

Feature extraction Building on the previous work of Ghassemi et al. [56], we reviewed the

EEG literature and constructed a permissive list of several features that are commonly used for

EEG classification tasks. In total we identified and extracted 58 features. The code that extracts

these features was written to allow for parallelization of the calculations, and is accessible as a

downloadable python 3.5 package6. See Table 3.2 for breakdown and references for all 58 features.

These features can be grouped into three categories that measure the complexity, continuity

and connectivity of EEG activity. Before continuing to discuss our pipeline we will provide a high
5For instance BCI competitions data: http://bbci.de/competition/
6Code available at: https://github.com/sari-saba-sadiya/EEGExtract
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Signal Descriptor Ref. Brief Description
Complexity Features degree of randomness or irregularity
Shannon Entropy [156] additive measure of signal stochasticity
Tsalis Entropy (n=10) [52] non-additive measure of signal stochasticity
Information Quantity (𝛿, 𝛼, 𝜃, 𝛽, 𝛾) [158] entropy of a wavelet decomposed signal
Cepstrum Coefficients (n=2) [125] rate of change in signal spectral band power
Lyapunov Exponent [185] separation between signals with similar trajectories
Fractal Embedding Dimension [1] how signal properties change with scale
Hjorth Mobility [120] mean signal frequency
Hjorth Complexity [120] rate of change in mean signal frequency
False Nearest Neighbor [69] signal continuity and smoothness
ARMA Coefficients (n=2) [21] autoregressive coefficient of signal at (t-1) and (t-2)
Continuity Features clinically grounded signal characteristics
Median Frequency the median spectral power
𝛿 band Power spectral power in the 0-3Hz range
𝜃 band Power spectral power in the 4-7Hz range
𝛼 band Power spectral power in the 8-15Hz range
𝛽 band Power spectral power in the 16-31Hz range
𝛾 band Power spectral power above 32Hz
Median Frequency median spectral power
Standard Deviation [142] average difference between signal value and it’s mean
𝛼/𝛿 Ratio [172] ratio of the power spectral density in 𝛼 and 𝛿 bands
Regularity (burst-suppression) [172] measure of signal stationarity / spectral consistency
Voltage < (5𝜇, 10𝜇, 20𝜇) low signal amplitude
Diffuse Slowing [167] indicator of peak power spectral density less than 8Hz
Spikes [167] signal amplitude exceeds 𝜇 by 3𝜎 for 70 ms or less
Delta Burst after spike [167] Increased 𝛿 after spike, relative to 𝛿 before spike
Sharp spike [167] spikes lasting less than 70 ms
Number of Bursts number of amplitude bursts
Burst length 𝜇 and 𝜎 statistical properties of bursts
Burst band powers (𝛿, 𝛼, 𝜃, 𝛽, 𝛾) spectral power of bursts
Number of Suppressions segments with contiguous amplitude suppression
Suppression length 𝜇 and 𝜎 statistical properties of suppressions
Connectivity Features interactions between EEG electrode pairs
Coherence - 𝛿 [172] correlation in in 0-4 Hz power between signals
Mutual Information [6] measure of dependence
Granger causality - All [16] measure of causality
Phase Lag Index [166] association between the instantaneous phase of signals
Cross-correlation Magnitude [81] maximum correlation between two signals
Crosscorrelation - Lag [81] time-delay that maximizes correlation between signals

Table 3.2 The 58 EEG features fell into three EEG signal property domains: Complexity features
(25 in total), Category features (27 in total), Connectivity features (6 in total).

level intuition behind the inclusion of each category. We encourage the interested reader to refer to

the previous work of Ghassemi et al. for a more detailed discussion of of the specific features [56].
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Complexity features (n = 25): These features measure the complexity of the EEG signal, from an

information theoretic perspective, and are known to correlate with impaired cognitive functions

and the presence of degenerative illnesses. Therefore our first set of features is a collection of

information theoretic complexity measures. Of special interest are the first three features shown in

Table 3.2 as they are particularly prominent in EEG research: Shanon’s entropy has been associated

with neurological outcomes in post-anoxic coma patients [172]; the entropy of the decomposed

EEG wavelet signals (known as the Subband Information Quantity) have similarly been used in

cardiac arrest studies [157, 78]. Tsalis entropy is a generalization of Shannon’s entropy that does

not make assumptions about the independence of data channels (as Shannon’s entropy does) and

has been shown to be particularly useful for the characterization of complexity in EEG data [52].

Continuity features (n = 27): These features capture the regularity and volatility of EEG activity.

Bursts, spikes, and unusual changes in the mean and standard deviation in the frequency and power

domains are examples of continuity features that are relevant for a variety of clinical tasks. See

Hirsh et al. for an in-depth review of continuity and it’s relevance to clinical care [71].

Connectivity features (n = 6)): These features reflect the statistical dependence of EEG signal

activity across two or more channels. Functional connectivity networks are an established features

of normal brain functioning. We draw on the rich literature on measuring connectivity from

EEG signals [150] extracting features that have previously been used for designing brain computer

interfaces [6] as well as in mental-illness, perception, and attention research (See [174], [70], and

[200] respectively).

Outlier detection methods We explored a set of ten algorithms for unsupervised artifact detec-

tion; the explored algorithms were inspired by the work of Zhao et al. [196]. The algorithms

can be divided into two general groups: statistical methods and representation learning methods;

they are described in more detail in the “Statistical Methods" and “Representation Learning Based

Methods" subsections below. The hyper-parameters of each method were determined by randomly

exploring the hyper-parameter space and choosing the settings that yielded the best performance of

the methods on the data according to our artifact annotations.
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Statistical methods: Statistical methods identify anomalies based on statistical measures extracted

from the data, thereby producing an "anomaly score" for each trial. The Histogram Based Outlier

detection (HBOS) method uses histograms with dynamic bin widths to detect clusters and anomalies

in different feature dimensions. Despite the simplicity of the approach it has been shown to work

well on a variety of data types [60]. The Local Outlier Factor (LOF) method similarly calculates

an "outlier score", however instead of global measures it relies on the local density of the data

as it’s main indicator [22]. Another popular local algorithm, the Angle-Based Outlier Detector

(ABOD), calculates the cosine similarity of data points with their neighbors and uses the variance

of these scores to generate anomaly scores [85]. Finally, we also trained a One Class SVM Detector

(OCSVM), a classic algorithm for outlier detection [151]. In this algorithm a SVM is trained

on the entire data-set and afterwords every instance is scored based on its distance from the class

boundary; the intuition is that the infrequent outliers will contribute less to the decision boundary

calculation and will be more likely to be on the margin of the learned boundary.

As previously mentioned, we selected these detectors to be different in the type of statistical

measurements they use. Therefore, it makes sense to also train ensemble classifiers to further

improve the outlier detection accuracy. Specifically we trained five hundred Locally Selective

Combination in Parallel (LSCP) Outlier Ensembles [197] with different combinations of the

algorithms mentioned above.

Representation learning based methods: Unlike statistical methods, representation learning based

outlier detectors do not simply calculate statistical properties of featuarized data. The most basic

classifier uses auto-encoder (AUTO) based deep learning architectures to learn a lower dimensional

representation of the data that enables the best possible reconstruction of the original signal; the

embedding would be optimized for the common regular data points thereby producing distinctly

noisy reconstructions for the outlier trials [3]. This classifier can be viewed as a modern update of

similar classic outlier detection methods that use methods such as PCA reconstruction instead of

of a training a deep auto-encoder (PCA) [159]. A more sophisticated approach uses Variational

Auto-Encoders (VAE). This class of algorithms try to ensure that the learned embedding captures
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the structure of the original data by penalizing the classifier if the embedding does not follow a

standard normal distribution [4]. Finally we also examine a Generative Adversarial Active Learning

(GAAL) outlier detector [99] which uses a generative adversarial networks to generate outliers.

This method can be used to improve any of the statistical methods described in 3.2.2.2. We also

use an extension of the original method to learn multiple generators (MGAAL).

3.2.2.3 Artifact correction

As previously mentioned, encoder-decoder based deep learning methods have proven useful for

channel interpolation [146]. In this subsection we discuss an extension of this approach that utilizes

the same framework for artifact correction. Namely, given an EEG data segment with an isolated

artifact we remove the corrupted segment and use the data samples preceding and proceeding it to

fill in the resulting void. This problem is equivalent to the “frame-interpolation" task of filling in

missing frames in a video [79].

The model Input representation: The channel interpolation model proposed in [146] represented

the EEG as a time series of 2D topologically organized arrays. This reflects the spatial nature of the

EEG channel interpolation issue; the intrepolated values at different time points are treated as inde-

pendent. To the best of the author’s knowledge this is a standard assumption for EEG interpolation

algorithms. For instance, Petrichella et al. and Courellis et al. calculate the interpolated values of

the missing data at each time point separately [132, 35]. However, research on convolutional neural

networks for EEG decoding and visualization have shown performance benefits from presenting

the input as a column of electrodes unfolding in time, as this facilitates the learning of temporal

modulations [149]. Since artifact correction is first and foremost a process of completing gaps

across time we decided to depart from [146] and use a 2D array representation with the number of

time steps as the width of the array.

Architecture: The best frame interpolation models involve calculating object trajectory and account-

ing for possible occlusion (e.g. if one object moves behind another). With these "flow computations"

and a stack of the frames before and after the missing image a convolutional encoder-decoder can

generate realistic intermediate images [79]. Unlike video, EEG data has only one spatial dimen-
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sion (see subsubsection 3.2.2.3) and no analogues to local phenomena such as occlusion or object

movement can occur as EEG modulations are often thought of as mostly global in nature [149].

Therefore we only concern ourselves with a stacked convolutional auto-encoder. This architecture is

shared by previously discussed state-of-the-art algorithms for both frame interpolation and channel

interpolation [149, 146].

The interpolation of each frame is done separately, thus to predict 𝑛 frames it is necessary

to train 𝑛 networks. Technically this is equivalent to training one ensemble model, however by

separating the networks we allow for easier parallelization of the training process. Specifically,

given a series of EEG frames 𝑥1, 𝑥2, . . . , 𝑥𝑛 where 𝑥𝑡 is a vector of all the channel values at time 𝑡,

and assuming that the series is missing all frames between time points 𝑡𝑏 and 𝑡𝑒, our network learns

to predict 𝑥𝑡𝑞 from the two stacks, 𝑥𝑡𝑏−ℎ, 𝑥𝑡𝑏−ℎ+1, . . . , 𝑥𝑡𝑏 and 𝑥𝑡𝑒 , 𝑥𝑡𝑒+1, . . . , 𝑥𝑡𝑒+ℎ where 𝑡𝑞 ∈ (𝑡𝑏, 𝑡𝑒)

and ℎ is some small positive integer representing how many frames before and after the missing

segment can be perceived. Every network is trained to predict the value at one specific value of 𝑞.

Every network takes the same 2ℎ frames (half preceding the missing segment and half following

it) to calculate the value at a given frame.

3.2.2.4 Model validation approach

Artifact Detection Method: The performance of the artifact detection methods was assessed by

inspecting the agreement between the artifact detection approach and the expert annotations from

the two data sets (color and orientation). More specifically, the agreement was measured using

the f-score and Cohen’s Kappa (first and second values in each cell respectively). We compared

the performance of our model against the expected performance of a classifier with knowledge of

the exact number of artifacts; this random classifier is expected to have an f-score of 0.172 and a

Kappa of 0.029. We ran the detection algorithms in two configurations, for each subject separately

and for the entire aggregated data. We hypothesise that the performance will drop when using the

aggregated configuration as each individual setup for an EEG recording is likely introduce unique

artifacts (due to loose connections, or subject specific circumstances such as perspiration).

Artifact correction method: To optimize the parameters of the artifact correction model, we pro-
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duced training data from trials that were marked as artifacts free by our unsupervised artifact

detection method (subsection 3.2.2.2) and randomly removed a segment from the middle of the

trial. The ℎ samples proceeding the removed segment and ℎ samples preceding it were used as

input for the model while the removed segment was the ground truth (ℎ was a hyper parameter

optimized on the training set). For the purposes of validating the artifact correction model, all EEG

data was re-sampled to 200𝐻𝑧. The reconstructed segments were 200𝑚𝑠 each.

End-to-end assessment approach: We ran a number of tests to examine if the trials reconstructed

by our artifact correction method could be used to enhance the performance of downstream EEG

tasks. More specifically, we trained two SVM models to predict the label of the trial from the

color data-set: one SVM was trained using the raw data, and the other was trained using the raw

data after artifact correction. Both models were validated using 5 fold cross validation, and the

performance of the models on the test set (𝜇 and 𝜎) was reported.

We also evaluated the impact of our artifact correction method on downstream EEG tasks when

applied to clean trials, exclusively; this evaluation allowed us to test for inadvertent degeneration in

signal quality of clean segments when processed by our method. More specifically, we applied our

artifact correction method to 20% of clean trials and used the resulting data to trained an additional

SVM model.

3.2.3 Results

This subsection presents the results of the two main components in our pipeline, the artifact

detection method and the artifact correction method on the data described in 3.2.2.1.

3.2.3.1 Artifact detection results

In Table 3.3, we compare the average performance of the outlier detection methods described in

subsection 3.2.2.2 when applied to each subject separately. Therefore, each value is the mean of the

algorithm’s performance across subjects. As previously mentioned, the expected performance of a

baseline random classifier with knowledge of the exact number of artifacts is an f-score of 0.172

and a Kappa of 0.029. Hence, all models other than the ABOD classifier performed significantly

better than the baseline (one tailed t-test with a 𝑝 = 0.05 significance level).
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Statistical
Methods

HBOS LOF ABOD OCSVN LSCP

Orientation 0.564
0.473

0.218
0.065

0.11
0.06

0.41
0.29

0.577
0.489

Color 0.5
0.4

0.241
0.091

0.1
−0.08

0.36
0.23

0.51
0.411

Representation
Learning

AUTO PCA VAE GAAL MGAAL

Orientation 0.53
0.44

0.527
0.426

0.477
0.368

0.429
0.311

0.428
0.309

Color 0.51
0.42

0.477
0.367

0.478
0.368

0.241
0.086

0.389
0.263

Table 3.3 Comparison of the different unsupervised outlier detection methods when applied to each
subject separately. We calculated the mean f-score and Cohen’s Kappa (first and second row in
every cell) across all subject. HBOS: Histogram based outlier detection, LOF: Local outlier factor
Method, ABOD: Angle-based outlier detector, OCSVM: One class support vector machine, LSCP:
Locally selective combination of parallel outlier Ensembles, AUTO: Auto-encode based method,
VAE: Variational auto-encoder based method. GAAL: Generative Adversarial Active Learning,
MGAAL: Multi-object Generative Adversarial Active Learning.

Unsurprisingly, the best outlier detector was an LSCP ensemble classifier that performed 16.86𝑥

better than the baseline method, and 1.03𝑥 better than the next best approach; the best performing

configuration of the classifier consisted of two HBOS classifiers and one OCSVM. While it is difficult

to interpret ensemble classifiers it is worth noting that the two histogram based classifiers diverged

quite substantially; one using a high number of histogram bins and a rigid outlier scoring policy

(𝑡𝑜𝑙 = 0.1) while the other using a smaller number of bins and more relaxed policy (𝑡𝑜𝑙 = 0.5). A

simple auto-encoder was the best representation learning algorithm, closely followed by the PCA

algorithm. We speculate that the auto-encoder could have possibly had better performance if more

data was available for each subject. See our supplementary material for a breakdown of trial and

artifact numbers for each subject.

In Table 3.4, we compare the performance of the outlier detection methods described in sub-

section 3.2.2.2 when applied to the subjects aggregated data; that is, subject were not considered

separately as they were in the results from Table 3.3. When compared to the results shown in
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Table 3.3, the performance decreased for most models. This is not surprising as the fundamental

assumption of unsupervised methods is that the data is homogeneous with the exceptions of the

outliers. Here again the LSCP method performed the best of the tested approaches. A comparison

of the results in Tables 3.4 and 3.3 provide motivation for the development of subject-specific

anomaly detection approaches. Moreover, the comparison also highlights that the unsupervised

algorithms and the features we extracted can successfully capture both common EEG artifacts and

subject specific idiosyncrasies.

Statistical
Methods

HBOS LOF ABOD OCSVN LSCP

Orientation 0.502
0.4

0.246
0.095

0.07
−0.11

0.362
0.234

0.537
0.441

Color 0.476
0.35

0.305
0.15

0.09
−0.108

0.377
0.238

0.463
0.332

Representation
Learning

AUTO PCA VAE GAAL MGAAL

Orientation 0.488
0.338

0.448
0.338

0.447
0.336

0.383
0.246

0.393
0.258

Color 0.414
0.283

0.437
0.312

0.436
0.31

0.185
0.022

0.393
0.258

Table 3.4 The performance of the models trained on data aggregated from all the subjects. The
f-score and Cohen’s Kappa are presented in the first and second row in every cell.

3.2.3.2 Artifact correction results

Network optimization: Our first step was to optimize the network hyper-parameter configurations.

This included testing different sizes of both the layers and convolution filter, as well as exploring

different hyper-parameters such as optimization algorithms, dropout rates, and activation functions.

To train the network we followed the method discussed in subsection 3.2.2.2: we randomly extracted

104 samples from the data, the first and last 32 samples were stacked and used as the input to the

model, the sample at position 𝑖 from the remaining 40 samples was used as the ground truth.

Essentially we are training a network to predict the values after removing 40 samples (200𝑚𝑠)

using the 32 samples that before and after the removed segment. The best performing network
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(lowest loss) was different for different 𝑡s. The optimal topology for reconstructing sample 20 is

available in the supplementary material as a reference of the type of convolutional U-net architecture

used.

End-to-end assessment In Table 3.5 we compare the classification accuracy of a 5-fold SVM model

trained to perform a downstream classification of trial type using down sampled EEG data with

three different configurations of the data: (1) the raw EEG data, (2) the data after correction of

artifact segments and (3) the data following “correction" of a random 40 samples of 20% of the

non-artifact segments. Note that while simple this type of analysis is used in actual EEG research

[30].

The performance remained comparable after using the artifact correction on trials that did

not contain any artifacts. This is a strong indication that the model is indeed able to learn how

to reconstruct the original EEG signal. When using the corrected trials with EEG artifacts the

classification accuracy improved by 10% overall and over 20% for trials that were marked as

containing artifacts. These results successfully demonstrate that our unsupervised end-to-end

artifact correction pipeline improves down-stream analysis.

Original EEG EEG with
Random Correction

EEG with
Artifact Correction

All trials 0.3 0.31 0.33
Rejected trials 0.23 0.23 0.29

Table 3.5 Mean accuracies of simple SVM classifiers. A simple t-test confirmed that all accuracies
were significantly above chance level (1/6 for 6 different colors) at a 𝑝 = 0.05 level. Original EEG:
The Original EEG data. EEG with Random Correction: The EEG data after random artifact free
trials were “corrected". EEG with artifact correction: The data after we applied the EEG artifact
correction on the trials that were marked as artifact ridden.

3.2.4 Discussion

Significance of our results: In this paper we presented an end-to-end pipeline that is capable of

unsupervised artifact detection and correction. Our results demonstrate that data driven approaches

for unsupervised outlier detection can be an extremely useful when applied to the problem of EEG
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artifact detection. Interestingly the classifiers with the best performance (HBOS, OCSVM, and

the best performing LSCP) are global classifiers, this might indicate that EEG artifacts are better

discriminated by global characteristics. This supports our previous observation that artifacts are task

specific and infrequent occurrences of uncorrelated noise. It is worth noting that, as demonstrated

in Table 3.4, the classifiers we trained were able to learn subject specific idiosyncrasies.

While the accuracy and agreement between the annotators and the detectors was far from perfect,

the Cohen Kappa of the best performing algorithm was comparable to the inter-rater agreement

levels of expert annotators reported in the literature; for instance when asked to annotate "periodic

discharges" (a specific type of artifact) and "electrographic seizure" annotators had a cohen’s Kappa

of 0.38 and 0.58 respectively [67]. Our results indicate that unsupervised outlier detection is a

feasible approach for generalized EEG artifact detection.

The data-sets: We validated our framework on two novel data-sets. To test the impact of artifact

correction algorithms on downstream analysis it is necessary to have ground truth artifact annotation

as well as knowledge of the labels of all trials, including those that are artifact ridden. Unfortunately

public data sets often exclude trials that contain artifact. Even in the rare occasions in which these

trials are made available the labels are often replaced with a special identifier for rejected trials 7.

We hope our data-sets inspire other researchers to adopt more thorough data publishing practices

as data-availability is perhaps the primary limiting factor in artifact correction research.

The strength of unsupervised end-to-end methods: The accuracy of simple classifiers improved

modestly after artifact removal. It is possible that replacing our deep learning based artifact removal

components with an ICA artifact removal algorithm [80] could yield better results. However, two

important distinctions should be made: First, the proposed method does side step many weaknesses

inherit to ICA [39] (such as the number of independent components being limiting by the number

of channels, which is particularly problematic for lightweight commercial EEG setups). Secondly,

while the independent component deconstruction itself is data driven and unsupervised, the ICA

method still requires visual inspection and analysis of the decomposed signal by human experts. In

7For an example of standard EEG publishing practices see the BCI Competition data-sets
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contrast, our method can be put into effect without any human intervention, making it is suitable

for online EEG applications or as a no-cost first step before more thorough analysis. In general,

supervised methods unquestionably out-perform unsupervised ones and we fully acknowledge that

the pipeline proposed in this work is no different. It is therefore useful to consider unsupervised

methods not as replacements of currently existing algorithms, but as complimentary additions to

the toolbox of the EEG researcher. With this in mind we intentionally designed our end-to-end

pipelines to be highly modular; An experienced researcher can easily substitute our last component

with an ICA artifact removal algorithm, and in contrast, researchers that have access to artifact

annotations (for instance by virtue of employing specialized hardware during data acquisition) will

be able use their method in conjunction with ours or side step the first processes completely and

apply only the artifact correction component before carrying on with the analysis process.

Limitations: We did not formally evaluate the reconstruction performance of the model because

(1) there is not an authoritative literature baseline and (2) insofar as the reconstruction enhances

the ability of the downstream classification model to perform their intended classification tasks,

the reconstruction is valid and valuable. There are a few limitations that we hope to address in

future work. First and foremost, this artifact detection method can only be used if the frequency

of the artifacts is low enough for them to be considered outliers. While this is indeed the case

for the vast majority of EEG use cases, tasks such as seizure detection often involve long periods

of unusually low signal to noise ratio. Additionally, the performance of our artifact correction

network would likely benefit from introducing more complex component into the architecture. For

instance, introducing temporal dependencies via and LSTM component would guarantee that the

corrected frame at time 𝑡 influences the frame at time 𝑡 + 1. Finally, our method is in dire need of

being validated on additional tasks and data-sets.

Despite the challenges described above, we believe that our work demonstrates the feasibility

of a EEG pre-processing pipeline which if adopted could facilitate and expedite the often tenuous

process of artifact annotation and removal, and could therefore be extremely beneficial for the

general EEG research community.
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3.2.5 Conclusion and future Work

The applications of EEG are numerous and diverse, and while this impacts the particularities

of what components are classified as part of the signal versus artifacts, data homogeneity is a

common concern in this area of research. Building on this data science perspective, in this work we

appropriated state-of-the-art data driven methods to construct an end-to-end unsupervised pipeline

for general artifact detection and correction. We introduced two new data-sets and demonstrated that

the inter-rater reliability of our artifact detection component against expert annotators is comparable

to reported inter-human levels. Furthermore, we demonstrated how applying the complete pipeline

on a data-set can improve the performance of a common downstream analysis. The pipeline makes

use of a wide range of handcrafted clinically relevant features, and we believe the released python

package will be of use to many in EEG research community.
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3.3 Feature Imitating Networks

This section was published as a manuscript titled "Feature Imitating Networks" in the pro-

ceedings for the 2022 IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP) [143].

3.3.1 Introduction

The successful application of deep learning to new problem domains has three conditions:

(1) access to large data sets, (2) access to sufficient computing resources for hyper-parameter

optimization and (3) modest expectations about model interpretability. Deep learning models

require large data-sets to learn representations that generalize on future unseen data. Additionally,

extensive exploration of the model topological space is often necessary to identify a network

architecture with sufficient representational power for a given task. Lastly, despite ample recent

work on interpretability of deep learning models, the community remains without normative

standard for how deep networks should be interpreted; this is problematic for many problem

domains (e.g. healthcare) where the importance of interpretability may supersede performance

[141]. [19].

Contributions In this section we introduce Feature-Imitating-Networks (FINs): a FIN is a neural

networks with weights that are initialized to approximate one or more closed-form statistical fea-

tures. In this section, we will demonstrate how this property of FINs improves their interpretability

while also reducing data and hyper-parameter tuning requirements compared to other networks with

similar or greater representational power. More specifically, we demonstrate how, when combined

with a careful application of transfer-learning, and by taking into account expert knowledge, FINs

can be used to quickly build and deploy robust and better performing models using less training

epochs. Our validation of FINs focused on tasks involving biomedical signals; the data-sets in

this domain are often smaller, and therefore stand to benefit the most from the introduction of our

framework.

Section Organization The remainder of the Section is organized as follows: First we review

relevant literature regarding transfer learning. The Related Work subsection is followed by the
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Methodology subsection where we discuss how to build and design different FINs. The Experiments

subsection contains three experiments - including a brief discussion of the data and results for each.

Finally, the Discussion subsection examines all the results in aggregate and discusses how our

framework might be expanded.

3.3.2 Related Work

Transfer learning is the application of a pre-trained model to tasks it was not originally intended

to perform [117]. Transfer learning enabled researchers to make significant progress on various

tasks in Machine Vision[73], Speech [89], and Natural Language Processing [75].

Most applications of transfer learning are within-domain; these involve fine-tuning a pre-trained

model for new tasks. For instance, AlexNet [87], VGG [160], and ResNet [68] are computer vision

models trained to classify the ImageNet data-set. The features learned by these models (in later

layers), and their more fundamental image components (in earlier layers) can be re-purposed to

solve other tasks using only a fraction of the training data required by original models.

Models that are trained on large heterogeneous data-sets are good candidates for "transfer". But

for biomedical signal processing problems, there isn’t a sufficiently large data-set to train such a

model. Indeed, the largest publicly available biomedical signal archives contain only a few thousand

subjects, which is too small by most data standards in other domains [56]. Consequently, transfer

learning for biomedical signals is often performed across-domains. For instance, computer vision

models such as VGG have been adapted to emotion recognition from speech [89], motor-imagery

classification [192] and mental task classification [124], but these cross-domain transfers are not

as effective as those performed within-domain. Finally, interpretability is greatly hindered when

models are trained on broad data-sets with objective functions that differ from the final application

[19].

The performance of transfer learning is proportional to the proximity of the domains across

which knowledge is being transferred. Feature imitating networks were designed to address this

limitation of current transfer learning paradigms; they provide the power and flexibility of transfer

learning without the “Big data” and heavy computational requirements.
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3.3.3 Methodology

A FIN is a neural network with weights that are initialized to approximate one or more closed-

form statistical features. In this section, we train FINs that approximate five commonly used features

in biomedical signal processing: Shannon’s Entropy, kurtosis, skewness, fundamental frequency,

Mel-frequency cepstral coefficients (mfcc), and regularity [146]. We evaluate the utility of the

FINs on three biomedical signal processing experiments, which we describe in subsection 4, below.

The pre-trained FINs, and code to reproduce all experimental results are available online 8.

Network Construction For each feature, we used a simple gradient descent optimizer with mean

square error (MSE) loss to train a simple dense network to approximate that feature on synthetic

signals. The topological space explored for all the FINs was between 2 to 10 layers with the number

of parameters in the 3 − 15 million range. All best performing FINs used simple 𝑟𝑒𝑙𝑢 and 𝑡𝑎𝑛ℎ

activation functions. See Figure 3.7 for density functions for the errors of the FINs reconstruction.

Input The input data for the FINs consisted of synthetic signals generated randomly (zero mean,

unit variance) and converted to the time-frequency domain using the wavelett transform [89, 192].

Outcome The outcome data for the FINs consisted of closed-form feature values calculated on

the synthetic signals using SciPy and EEGExtract packages [146].

Transfer When applying the models to new classification tasks, (i.e. subsection 3.3.4) the very

last layer was discarded in favor of a randomly initialized softmax layer with dimensions suitable

to the task.

Baseline model The baseline in each experiment was the best performing neural network with

similar (or greater) representational power to the corresponding FIN, trained using the same training

data and schedule, but with weights that were randomly initialized; In total one hundred different

topologies were explored for each baseline. The baseline with the best average performance on the

validation data was retained for comparison against the FINs.

Training All models (both FIN and Baseline) were trained using early stopping and a simple

gradient descent optimizer. Non topological hyper-parameters such as learning rate and momentum

8https://github.com/sari-saba-sadiya/Feature-Imitating-Networks

61



Figure 3.7 Density plots for the errors for the entropy (left) and regularity (right) FIN reconstructions.
The feature values were scaled and normalized, making the biggest possible error 1, as can be
observed the FINs faithfully recreate the closed form equations.

had minor effects in comparison and therefore will be omitted from future discussions. Training

was conducted using CUDA on a Tesla K80 GPU with 25GB of RAM.

3.3.4 Experiments

To evaluate our framework we ran three experiments on three different biomedical data-sets

and tasks. The first experiment was an Electrocardiography (ECG) classification task; our goal

was only to demonstrate that our FINs framework can successfully improve performance on small

low-accuracy data-sets. The second experiment was an Electroencephalography (EEG) artifact

detection task; our goal was to demonstrate the modular nature of FINs, and the potential benefits

of using FIN ensembles. The third experiment was a drowsiness detection task using EEG; our goal

was to compare both the performance and speed of FINs against state-of-the-art transfer-learning

techniques under conditions of varying data scarcity.

For all three experiments, the data was regularized and transformed to the time-frequency

domain as discussed in the Methods subsection. The data was partitioned into training, validation,

and testing sets. In the first two experiments this was achieved by randomly partitioning the data

15% − 85% for testing and training respectively, before repeating the same split for the training

data to extract a validation subset. This was repeated for a 50-fold cross-validation. In the third

experiment, where subject data is balanced, the partitioning was achieved by iteratively leaving

two of the twelve subjects out for validation and testing. To compare training time we used similar

instances of nodes with Tesla K80 GPUs and 25GB of RAM, all training times are reported in

seconds.
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Model Baseline SVM kNN
Fine-tuned

FIN
Mean
(± std)

.443
(±0.174)

.5233
(±0.016)

.525
(±0.018)

.543
(±.0245)

Table 3.6 Mean and standard deviation of the accuracy for the experiment I classification task. As
demonstrated the FIN based network out performs both randomly initialized neural networks and
classical statistical approaches.

3.3.4.1 Experiment I

In this experiment, we explored the potential of FINs for the detection of artifact ridden ECG

signals [116, 59].

Data and Prepossessing We used data made available by The Brno University of Technology

ECG Quality Database [116]. ECG segments of variable lengths from 18 subjects were classified

by experts into three categories according to signal quality. After standardizing the lengths we

ended up with 2544 trials. Preprocessed data will be made available.

Models We hypothesized that a FIN trained to imitate Kurtosis might be useful in the context

of this task [198]. The Kurtosis FIN was adapted for our classification task by replacing the very

last layer with a softmax classification layer. In addition to the baseline neural network, we also

compare against several non deep learning classification algorithms.

Results As can be seen in Table 3.6, The Kurtosis FIN consistently outperformed the baseline

models. Moreover, the standard deviation in the performance of the FINs was an order of magnitude

smaller than the deep network baseline models. A Levene’s test indeed indicates a statistically

significant (𝑝 < .05) difference in variance between the performance of the two methods throughout

the iterations. This highlights the fact that our framework helps with the robustness of the models.

3.3.4.2 Experiment II

In this experiment, we investigate how different FINs can be used in conjunction to build

complex networks suited for EEG artifact detection. Moreover, we demonstrate how theoretical

knowledge regarding the features and their relevancy to the task is helpful when using the FINs

Framework.
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FIN Regularity
Fundamental
Frequency

Entropy+
Regularity

Kurtosis+
Regularity

Baseline

Mean
(± std)

.6527
(±.1066)

.6825
(±.0591)

.6991
(±.0662)

.7134
(±.0807)

.7142
(±.0587)

FIN MFCC Entropy Kurtosis
Entropy+Kurtosis

+Regularity
Mean
(± std)

.7167
(±.01411)

.7195
(±.03783)

.0.7214
(±.02397)

.0.724
(±.0451)

Table 3.7 Mean and std of the accuracy for experiment 2. Corrected one-tailed t-tests demonstrated
that models imitating features known to be useful for EEG artifact detection (last three columns)
significantly out-performed models imitating ill-suited features (first two columns).

Data and Prepossessing The data used in this experiment is from an EEG artifact detection

data-set [146]. The data contains EEG segments from a 1𝑘𝐻𝑧 recording made using 32 electrodes

during a passive viewing task. Each segment is a second long and was labeled as artifact ridden or

clean by expert annotators. We re-sampled the data at 500𝐻𝑧 and converted the EEG setup to the

international 10 − 20 system that contains only 19 electrodes.

Models We evaluated individual FINs and FIN ensembles trained to imitate Kurtosis, Shannon’s

Entropy, Regularity, Fundamental Frequency, MFCCs, and ensemble combinations thereof. We

expect some of these FINs to outperform others based on the task-relevance of the feature being

imitated. For instance, the fundamental frequency of the signal, defined as the lowest periodic

frequency of the waveform should be irrelevant, while the Kurtosis is highly relevant to the

task [37, 77]. Similarly, we expect ‘Complexity Features’ such as the cepstrum coefficients and

Shannon’s entropy to outperform clinically grounded ‘Continuity Features’ such as the fundamental

frequency or EEG regularity (burst suppression) [146]. Following these theoretical considerations

we hypothesize that the MFCC, Entropy, and Kurtosis FINS, as well as a combination of these

FINS will outperform the Regularity FINs. As we have multiple hypotheses, appropriate Bonferroni

correction for multiple comparisons was used. To have enough statistical power after the correction

we increased sample size by repeating each experiment 50 times.

Each FIN was applied on each electrode signal in parallel, the outputs were then concatenated

and passed forward to a binary softmax classification layer. We compared the FINs against the best
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performing baseline dense neural network.

Results As summarized in Table 3.7, our experiment demonstrates how (when appropriately

selected) FIN ensembles may be used in combination to further enhance task performance. We

note here that deliberate consideration when combining FINs can improve task performance, while

keeping the size of the ensemble small.

A corrected one tailed t-test showed that after correction the Kurtosis, Entropy, and Ensamble

Network (last three columns in the table) performed significantly better than the Fundamental

Frequency or Regularity FINs.

3.3.4.3 Experiment III

In this experiment, we compare the performance of FINs against state-of-the-art approaches for

a fatigue and drowsiness detection from EEG task on a recently published data-set.

Data and Prepossessing We used data made available by [108]. This section identified multiple

subsets of electrodes as especially predictive. We tested separately on every subset. The data was

then partitioned for six fold intra-subject cross validation. In other words, at each iteration ten out

of twelve available subjects were used for training, one was used for validation, and the testing

accuracy was calculated on the remaining subject. Finally, each cross-validation step was repeated

5 times. If only a fraction of the training data was being used different trials were picked at each of

these iterations.

Models Prior work indicates that entropy is a useful feature for the prediction of drowsiness and

fatigue from EEG data [108]. Thus, we compared a FIN trained to imitate Shannon’s entropy against

the baseline models (described in the methods), as well as a fine tuned VGG network pre-tarined

on the ImageNet data-set [160]. The VGG model was similar to the 19 layer convolutional neural

network introduced in [160] sans the last 3 dense layers and with the addition of a final softmax

classification layer. This is the standard way in which the VGG model is used in biomedical tasks

[124, 192].

Additionally, to test the performance of our pre-trained FIN when only very limited data is

available we ran the same models but with varying fractions of the data being made available
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Figure 3.8 Experiment 3 results. (top): Training and Validation loss for the baseline and pre-tuned
entropy FIN. (Bottom): Difference in accuracy between our pre-trained FIN and the best performing
baseline as a function of the percentage of data available.

during training.

Results The pre-tuned Shannon entropy FIN outperformed the baseline and reinitialized FIN in

each of the four subsets and at over 83% of the iterations of the cross validation. Additionally, as

can be seen in Figure 3.8 (top), the pre-tuned FIN had lower loss at every epoch compared to the

baseline. It is important to note that the FIN also beat the performance of classical classifiers with

different entropy measures that was reported in the literature [108].

The performance improvements were even greater under limited data availability conditions As

small training data sets are known to increase performance noise, we also repeated this process

10 times and reported the average accuracy; the difference in the average accuracy between our

method and the baseline for each data percentage is plotted in figure 3.8 (bottom).

The VGG transfer learning network under-performed both the FINs and other baseline models

and was particularly sensitive to small data sizes. When only a fraction of the data was available,
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Mean (± std)
Training Seconds

Baseline VGG FIN

20% of data
.746(±0.019)
37.2(±8.9)

0.615(±0.122)
21911(±520)

.771(±0.016)
50.8(±5.7)

40% of data
.895(±0.04)
37.2(±0.2)

.644(±0.18)
10881(±1441)

.922(±0.013)
106.0(±23.3)

60% of data
.939(±.07)

189.8(±79.9)
.69(±.197)

18434(±1058)
.962(±.006)

322.4(±201.2)

80% of data
.983(±0.0203)
574.8(±132.3)

.802(±.103)
17141(±1838)

.996(±.0013)
441.6(±92.2)

100% of data
.993(±0.022)
645.7(±187.1)

.846(±.088)
19267.3(±2014)

.998(±0.001)
552.6(±129.7)

Table 3.8 Experiment 3 results. The models were trained using varying subsets of the data. We
report the mean and standard deviation for both accuracy and training duration on a node with a
Tesla K80 GPU and 25GB of RAM running CUDA.

VGG performed at close to chance.

3.3.5 Discussion

The feature imitating networks framework proposed in this section is an innovative way to use

transfer learning. Traditional transfer learning requires large, slow to train, black-box, networks

such as VGG and AlexNet tuned on hundreds of thousands of labeled data. In contrast, FINs require

no human labeling, are small and fast to train, and can be combined to create ensemble FIN networks

in accordance with insights from the literature surrounding the task being performed. Therefore, our

network facilitates the integration of domain specific knowledge into modern data driven machine

learning practices. This is also beneficial for alleviating some interpretability concerns; while the

final FIN sub-models likely do not reproduce the exact feature they were trained to imitate after the

end to end tuning, the fact that FINs perform better than a network with the same architecture that

with weights initialized at random suggest that the tuned FINs are most likely computing a slightly

modified version of the original statistical feature. Moreover, the fact FINs that are ill-suited for

a task continue to underperform even after fine-tuning (see Experiment II) also suggests that our
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the measures computed by the FINs do not drastically change after the fine-tuning. Beyond these

considerations there are several practical benefits to using our framework:

• Robustness: Our experiments indicated that FINs are more robust than other networks and

techniques with similar representational power. This is evident in statistically significant

differences in variations in accuracy when performing leave subject out and cross valida-

tion. Deep learning in general is sensitive to weight initialization randomness and data

idiosyncrasies. Transfer learning of weights tuned to calculate task relevant features seems

to guarantee we start at a ’neighborhood‘ of a good solution. Moreover, FINs expedite

the hyper-parameter optimization step which remains resource-consuming despite recent

research [191, 107].

• Performance: Data scarcity still plagues many domains. In the case of biomedical research

data collection is especially costly and can prohibit researchers from applying deep learning

to their tasks altogether [147]. Our experiments indicate that FINs are useful especially

when only limited data is available. The intuition behind this is straightforward; pre-trained

weights already extract useful task-relevant information, resulting in a better performance

and lower loss when from the very first epochs of the training procedure, as can be seen in

Figure 3.8.

• Flexibility: By tuning on task-specific data sets our framework also out performs methods

that pass the calculated features as input to the classifiers. This is not surprising as our FINs

are allowed to tune the extracted features to better suit the task (for instance by focusing on

specific parts of the signal). Additionally, the modular nature of the FINs lends itself to easily

building and testing ensembles networks.

• Speed: VGG and AlexNet are powerful networks that have been successfully applied in

various domains. However, these architectures are extremely large. The VGG based network

consists of at least 17 layers and contains over 20 million parameters. In contrast, FINs

are simple shallow networks consisting of up to 4 layers and a quarter of that numbers of

parameters. The shallowness of the models in particular guarantees that even when using an
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ensemble of FINs gradient descent calculations, and therefore training and inference times,

remain simple and fast. This can be observed in the results of the third experiment presented

in Table 3.8, training the 𝑉𝐺𝐺 network was in some cases over 60 times slower than the

FINs network training despite lower performance.

3.3.5.1 Future Directions

Designing the dense implementation of the FINs can be streamlined by considering the closed

form equation of the signal and training layers to imitate each operator separately. For instance,

the mathematical expression for Shannon’s entropy requires discretization of the signal to create

a histogram before averaging each bin. Partitioning the operations allows us to reuse pre-trained

operation-specific layers to quickly construct FINs that are then fine tuned to mimic specific features.

3.3.6 Conclusion

In recent years, some have critiqued the current state of the machine learning community. These

critiques often focus on disregard of traditional techniques in favor of data driven approaches [103]

and the different ways deep learning have struggled to live up to it’s promise, especially when it

comes to real world applications [141]. In this section, we presented Feature-Imitating-Networks, a

variation over traditional transfer learning that uses networks trained to imitate simple closed form

statistical features, that we believe elevates these concerns. We demonstrated that our framework

is superior in both the speed and accuracy to deep and transfer learning techniques with similar

(or greater) representational ability. Especially when only very limited data is available. The

experiments were conducted on a variety of tasks and domains. Future work will extend this initial

exploratory work. An extensive library of Feature Imitating Network bench-marked on many data-

sets and other signal processing domains might be of particular use and interest to the research

community.
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3.4 Conclusion and Future Work

This chapter presented multiple novel methods for unsupervised artifact detection and correction

[145, 146], as well as a framework for integrating expert knowledge into deep learning models via

weight initialization [143]. All presented methods were validated using unseen subject (and when

possible unseen task) EEG data. The models were designed to streamline EEG preprocessing

and decoding, and can help mitigate some of the challenges facing the research community;

unsupervised artifact detection eliminates the need for a manual data examination by an expert,

and artifact correction reduces the amount of EEG trials rejected. Finally, the modular nature of

our feature imitating networks framework enables researchers to rapidly test different intuitions

when decoding EEG data. While the methods achieve state-of-the-art performance on EEG tasks,

each could have many potential uses in various other fields of research which share some of the

difficulties inherent to working with EEG signals. For instance, the feature imitating network

framework has already been utilized in natural language processing, computer vision, and even

predicting athletic performance [83]. The models developed in these works are being added to a

library of pre-tuned models which we hope will be useful for other researchers interested in building

on our framework.
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CHAPTER 4

PILOT: DECODING COLOR FROM PASSIVE VIEWING

Before focusing on attentional capacity, a small pilot study was first conducted. The goal was

to determine the feasibility of color decoding from EEG signals. The experiment design was

a simple passive viewing paradigm that used stimuli similar to what will later be used in the

main experiment. This pilot study also laid important foundations for the work that follows by

allowing the identification of electrodes and frequency bands that optimize decoding performance.

Most importantly, results of this pilot study addressed concerns regarding the classifier decoding

capturing verbal label, rather than feature information. Since the completion of this pilot study,

a number of papers that decoded color from EEG have been published [66], confirming its main

conclusions.

4.1 Pilot Experiment

The pilot was conducted with the eventual main experiment in mind. Therefore, this pilot

experiment utilizes dot-field stimuli reminiscent of those used in [96].

4.1.1 Methodology

4.1.1.1 Participants

8 participants were recruited from the Michigan State University student body. The protocol

was approved by the MSU institutional review board and written informed consent was obtained

from every subject.

4.1.1.2 Stimuli and Apparatus

The experiment was programmed in MATLAB and using the MGL extension [51]. This

experiment was a passive viewing task involving six different stimuli. Participants were directed

to focus on a fixation cross in the middle of the screen. Each trial consisted of 1000𝑚𝑠 stimulus

presentations, followed by a 1000 − 1500𝑚𝑠 inter-trial interval. The stimulus consisted of random

dot fields (240 dots each) in six different colors. The dots were drawn in an annulus (inner

radius=1.5◦, outer radius=6◦). In total there were 648 trials per experiment per subject (108 trials
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per condition). We collected additional trials for some subjects but kept the balance between the

different trial types. See figure 4.1 for an example of the stimuli.

Isoluminance Procedure To eliminate potential confounds, each subject adjusted the brightness

for every hue separately to achieve isoluminance between all colors. The isoluminance procedure

employed heterochromatic flicker photometry [90]. Observers viewed grey and chromatic square

tiles (size: 1.8◦𝑥1.8◦, luminance: 6.3 cd/𝑚2) arranged in a checkerboard pattern and constrained

within an annulus (inner radius=1.5◦, outer radius=6◦) centered around a white fixation cross. The

gray and chromatic tiles flickered at 8𝐻𝑧 in a counterphase fashion. Subjects were instructed

to adjust the brightness of the chromatic tiles to minimize the flicker, resulting in isoluminance

between the color and the constant gray. We ran three separate blocks for each of the six colors.

The three "isoluminant values" obtained were averaged to get the final luminance value for each

color. These value were calculated for each participant and used during the main task in this pilot

study.

Figure 4.1 Examples of pilot experiment stimuli. The background color was changed for visibility
(RGB value 240, 240, 240).

4.1.1.3 Data Acquisition and Preprocessing

Continuous EEG activity was recorded using the actiCHamp system with BrainVision recorder

software. The participants were fitted with a 64-channel actiCap with active electrodes. The screen

refresh rate was set to 120𝐻𝑧 and data sampling was at 1000𝐻𝑧. Additionally, electrooculogram
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(EOG) activity was recorded from from horizontal and vertical electrode pairs, and used to detect

and reject horizontal eye movements, eyeblinks, and vertical eye movements. Electrode impedance

was maintained < 50𝐾Ω. The data from the inter-trial interval was discarded. We used EEGLAB

and ERPLAB to process the data. First, we resampled the data to 500Hz, removed the AC line

noise (using the cleanline plugin), applied a bandpass filter between 1 and 100Hz, and used ICA

decomposition to separate and remove components originating from blinks and other artifacts.

Finally, waveforms were manually examined by experimenters and noisy epochs were rejected.

4.1.2 EEG Data Analysis

We used the ADAM decoding toolbox default LDA algorithm with a 10 cross-fold process

and 2000 iterations of cluster-based significance testing [44]. The data was not down-sampled or

filtered beyond what was previously described. Different subsets of electrodes were examined.

For detailed description of the LDA decoding algorithm see Section 2.2.2.1. The decoding and

significance testing will also be discussed more thoroughly in the Methodology section of the main

experiment. The results plotted in this chapter were achieved using the following electrode subset:

Pz, P3, P7, O1, Oz, O2, P4, P8, TP10, T8, P1, P5, PO7, PO3, POz, PO4, PO8, P6, P2, CP4, CP2,

CP1, CP3.

4.2 Pilot Results

We were successfully able to decode color from EEG data. Performance peaked when limiting

decoding to sub-alpha frequencies (< 10𝐻𝑧). Follow up decoding after time-frequency decompo-

sition revealed significant decoding cluster only in this sub-alpha band.

4.3 Discussion and Conclusion

Having identified the setup necessary to achieve robust decoding of color, our main experiment

will use the same setup to explore how attentional load impacts this decoding. For the sake of the

following chapters, it is important to emphasize of two conclusions of this this pilot experiment.

First, feature information is available mostly in the sub-alpha frequency band (below 10𝐻𝑧). While

this was demonstrated for other features such as orientation and motion direction [7, 8], to the best of
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Figure 4.2 Right: Decoding performance using sub-alpha frequencies and visual-cortex electrodes.
Horizontal black lines indicate significant decoding clusters. Left: Decoding after time-frequency
decomposition, significant decoding clusters are highlighted in red.

our knowledge, this is the first experiment that demonstrates this to be the case also for color. Note

that previous EEG studies that decoded color demonstrate that the color decoding reflects sensory

qualities (such as a circular order with obvious color categories) and not, for instance, verbal labeling

[66]. With all the above in mind we assume that decoding color from sub-alpha frequency band will

reflect feature information, therefore we expect differences in attantional modulation of sensory

representations to manifest in the classifier decoding accuracy. Finally, having tested different

combinations, we conclude that the color feature information is carried mostly by the occipital and

parietal electrodes. This is not surprising considering similar "visual-cortex" electrode subsets have

been used in other EEG papers that decoded feature values [7, 8, 128]. Following these conclusion

from the pilot study the main experiment will use a similar electrode subset and a 10𝐻𝑧 low pass

filter will be applied before the feature decoding.
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CHAPTER 5

THE NUMBER OF ATTENTIONAL TEMPLATES MODULATES SENSORY
REPRESENTATIONS

Attention to a specific feature value enhances its sensory representation [25]. This everyday

phenomenon is essential for the completion of search tasks and has been thoroughly researched

[186, 173]. However, modulation of sensory representation when attending to multiple feature

values remains the topic of much debate. Traditionally there have been two opposing views; Many

researchers argue that there is a hard limit on attentional capacity (only one “attentional template”

can be maintained at a time). On the other hand, experiments have demonstrated that multiple

working memory items can influence behavior simultaneously. Recent theories reconcile these

two views by separating the search task into different processes with different capacity limits [128]

or arguing that task characteristics might be influencing attentional capacity limits [135]. Either

way, the exact mechanism responsible for the difference in performance under varying “attentional

load” conditions remains a mystery. Inspired by recent studies, we conducted Behavioral and

EEG experiments to investigate the capacity of early attentional processes in tasks that demand

active guidance by attentional templates (rather than the suppression of irrelevant distractors). Our

study utilized a detection, rather than search, paradigm, which enabled us to explore the specifics

of how attentional load impacts sensory representations using both behavioral modulations and

their neural correlates. Results indicate that maintaining multiple attentional templates increases

false-alarm rates while only slightly diminishing hit rates, and are overall incompatible with many

versions of multiple-item templates theories. Generally, both the signal detection theory and

EEG decoding analyses indicate that sensitivity deteriorated when maintaining multiple templates.

Finally, analysis of behavioral performance and EEG decoding in target-present trials conforms

with some current theories of attentional load [128, 136]. However, considering cue-condition

effects are more pronounced in target-absent trials, further evaluation of current attentional load

theory is necessary.
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5.1 Introduction

A friend asks for help locating a misplaced notebook. One natural response could be “what

is the notebook’s color?”. When color alone is not enough to go by, one might ask for additional

characteristics (shape, size, etc.) and conjure up a mental image to attend to and guide the search.

This is a real-life example of the single-item search paradigms that have been studied extensively

in attention research. Attention to a target feature value enhances its sensory representation,

enabling efficient completion of search tasks [148, 25]. This phenomenon of sensory representation

modulation has driven the development of many influential theories of attention (such as Treisman’s

Feature Integration Theory [173] and Wolfe’s guided search model [186]). The general consensus

is that after being cued to attend a specific feature value an “attentional template” forms in working

memory. This “attentional template” then enhances the saliency of targets matching the represented

feature value [186, 38]. However, despite the phenomenon of guidance by a single attentional

template being a cornerstone of modern attention research, the debate surrounding the modulation

of attention by multiple working memory representations remains unresolved. Moreover, while the

capacity of working memory has been studied for decades, research focusing on the capacity for

attentional templates - the number of working memory items that can guide attention simultaneously

- is mainly limited to the previous decade.

Broadly speaking, there have been two conflicting theories. Proponents of the (SIT) Single-

Item-Template hypothesis [123, 74, 110] argue that only one attentional template can exist at a

time. On the other hand, a growing body of literature seems to favor an opposing (MIT) Multiple-

Item-Template hypothesis [72, 28, 9]. Behavioral, eye-tracking, and neuroimaging studies found

evidence in favor of both theories. Moreover, despite utilizing very similar paradigms, researchers

repeatedly arrived at conflicting results that withstood scrutiny via large-scale replications [47].

Recently there have been attempts to reconcile this conflicting body of literature. In a recent EEG

study, the original authors of the SIT hypothesis suggest that participants can in fact maintain

multiple attentional templates simultaneously, but only one can be effectively deployed at a time

[128]. The conclusions of this study remain limited by the fact the authors decoded target location
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rather than attended feature value, thus possibly missing modulations in early attention processes.

Other attempts to reconcile the literature focused on the fact that, studies that support the SIT

hypothesis often require active guidance by the working memory representations, while studies

that support the MIT hypothesis focus on attention capture by distractors instead [84, 47]. Very

recently, researchers have explored this possibility by slightly modifying a search task to either

require distractor suppression or active guidance [135]. The authors concluded that, while multiple

working memory representations can be behind distractor costs, only a single “active control set”

that improves search performance can exist at a time.

Finally, diminishing performance during guidance by two representations (as opposed to one)

was often interpreted as evidence in support of the SIT [128]. However, the exact mechanism behind

this diminished performance remains a mystery. Does attending to multiple, rather than a single,

feature values not enhance the sensory representation to the same degree? Or are participants

more prone to errors when the target feature value is ambiguous? Previous attention capacity

studies focused on search - rather than detection - paradigms. And while search paradigms are

very common in general attention research, they are ill-suited for shining a light on the exact

nature of the performance differences observed between single vs multiple cue conditions (see

section 5.2.2). In one exception, researchers investigated modulations in the psychometric function

under different attentional template load conditions [96]. The authors demonstrated that the target

signal in multiple template trials must be stronger than in single template trials to achieve the

same level of performance (as measured by hit-rate minus false-alarm). However, the exact way in

which the number of attentional templates modulate sensory representations is yet to be thoroughly

investigated.

Considering the recent studies discussed above, it becomes imperative to refine and reformulate

the original question. First, following [135], we differentiate between distractor interference and

active guidance by working memory items. To directly investigate how the number of templates

actively guiding attention impacts sensory modulation we modified experiment 2 from [96]. Ad-

ditionally, to assess the cueing effect modulation directly we decode the cued feature value. We
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hope that by decoding the stimulus feature matching the working memory content - as opposed to

stimulus location [128] - we will be able to capture early attention effects. The authors of [128]

argued for different capacity limits during the template maintenance and deployment processes.

They observed delayed and suppressed decoding in two-cue-one-target compared to single cue

trials, an effect they attributed to a bottleneck in the template maintenance stage. However, there

is no guarantee that deployment when multiple templates are available is indeed comparable to

single attentional template deployment. Therefore, the conclusion that their decoding results reflect

limitations in template maintenance capacity is contestable. In simpler terms, the differences in

location decoding observed by the authors of [128] could reflect attentional load effects on later

processes and not necessarily a template maintenance bottleneck. In contrast, our paradigm enables

us to investigate early differences in perception via modulations in representations of the attended

feature value (instead of a subsidiary target location). Moreover, the detection paradigm we employ

enables us to examine how number of templates impacts the decision making process. Finally, very

few studies had conditions with more than two attentional templates (one notable example is [84]).

Attentional guidance might diminish with the number of templates (following a 1
𝑛𝑢𝑚−𝑐𝑢𝑒𝑠 decay rate

as observed in [96]), or there might be a sudden drop when the number of templates exceeds two.

To explore this further, the behavioral session of our study includes one, two, three, and no-cue

conditions.
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5.2 Literature Review

5.2.1 Behavioral Studies

As previously mentioned, many paradigms in attentional capacity research are cued search

tasks. More specifically, these paradigms are often some version of a nested Memory-Search task

(see figure 5.1). In this paradigm, subjects are asked to remember a feature value for a memory

task while first performing a simple cued search task (for which the remembered feature value is

irrelevant). Under some conditions, the search array contains items with feature values matching

the remembered item (memory cue in figure 5.1). In addition to these “matching distractors” trials,

“mismatched distractors” and “no distractor” trials are used to measure baseline performance.

Longer response time for trials containing “matching distractors” (in comparison to “mismatching

distractors”) indicates that the remembered feature value interferes with the search task. Since

the search cue is also guiding attention, this would indicate that multiple items can indeed drive

attention simultaneously. Trials in which the subject answered the search task or the memory

task incorrectly are usually excluded from the analysis, as this could indicate failure to memorize

the cue or find the search target. One variation of Memory-Search tasks are nested Memory-

NoCue-Search paradigms. Instead of the search being guided by a cued feature value, the search

target is a consistent item across the experiment. The paradigm in figure 1 can be modified to a

Memory-NoCue-Search paradigm by removing the “search cue” and asking subjects to always find

the triangle in the array. While the difference between the two paradigms might seem minute, this

difference has become central to recent debates that we will discuss in future sections [135].

Downing and Dodds were among the first to use a nested Memory-Search paradigm [42].

Trials started with two cues, one for a search task that immediately followed and another for a

later memory task. The researchers found that even when the distractors in the search task were

identical to the memory cue there was no increase in response time, indicating that the remembered

item did not bias attention. This conclusion was in direct conflict with other contemporary studies

[164, 122]. Both of these studies used a Memory-NoCue-Search paradigm. For instance, in

[122], participants remembered a color while performing a search task in which the target value
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Figure 5.1 Example of a Nested Memory-Search task, stimulus order from left to right. The subjects
are directed to remember two feature values (blue and triangle). One of the features is relevant to
an immediate search task (the shape) and another for a later memory task (the color). The search
array task is to report the orientation of the line in the target item. The Memory is to report the
color matching the memory sample.

was constant throughout the experiment. The search task had different distractor conditions (see

figure 5.1). Analysis showed that “matching distractors” captured attention significantly more than

“mismatched distractors”. Additionally, when the memory test was conducted before the search

task the difference between matching and mismatching distractors disappeared. Together these

results indicate that only task-relevant working memory items bias attention. And secondly, the

behavior modulation is not simply due to some sensory after-effect, but is driven by a working

memory item that is actively maintained (relevant to a future task).

The discrepancy between these results was replicated by other studies in this time period.

Olivers later reviewed these three papers as well as two others and discussed design similarities
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and differences [121]. Olivers argued that other than search task difficulty the only difference

in experimental design that correlates with finding distractor-interference from working memory

items was a lack of “varied mapping”. In other words, experiments with a constant search target

(Memory-NoCue-Search paradigm) found distractor interference, while experiments with a search

cue (Memory-Search paradigm) did not.

Olivers did not elaborate further in [121] on the mechanisms that might be behind the importance

of a block-consistent search target. However, this review is an important precedent to the attentional

capacity debate. The conclusion suggested that maintaining multiple items (as required by the

Memory-Search paradigm) impacts working memory modulation of attention. The first paper to

explicitly frame the discussion in terms of “limits of attentional capacity” was another review from

Olivers’ lab [123]. The authors of this work coined multiple definitions that became fundamental

to the attentional capacity debate. Most importantly, they established the main components of what

is now known as the single-item template hypothesis (SIT)

• Working Memory Representations guide attention via “templates”. This statement is widely

accepted. Moreover, the concept of “attentional template” is essential to many theories of

visual search that preceded the attentional capacity debate (consider Wolfe’s guided search

[186] or the biased competition theory [12]).

• When there is only one item in the working memory, such as in [122], this item becomes

“active” and will become an attentional template that influences even irrelevant tasks. If the

item is not relevant to future tasks it will no longer be active and will not influence attention

(again, see [122]).

• When there are two items in working memory, such as in [42] or other papers discussed in

[121], only the representation that is relevant to the immediate task is made active. And

the irrelevant representation exists in a different passive working memory state that does not

impact the deployment of attention or influences behavior.

Beyond simply suggesting that some ‘accessory’ representations in visual working memory do

not drive attention, this review commits to the notion of a “hard limit” on the capacity of attention.
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Moreover, the authors explicitly argued that only a single memory representation can become a

search template, and this representation will then "block" attentional guidance by all other memory

representations.

The same authors later went on to make an addition to this SIT hypothesis. Using a Memory-

NoCue-Search paradigm they demonstrated that when the memory task involves multiple items no

“attention capture” is observed [110]. Crucially, attentional capture was observed in a condition

with a single memory item. In other words, results indicated that in conditions with more than

one memory cue, all relevant to the memory task, there was no reaction time difference between

“matched” and “mismatched” distractors (even when distractors matched all the memory cues).

This result does not simply follow from the SIT hypothesis: If only one item out of three was

active, one would expect attentional capture during one-third of the trials. The effect sizes would

only be reduced but not disappear completely. The complete lack of evidence of attentional capture

prompted the researchers to conclude that when multiple items are held in working memory

they automatically compete with each other, preventing any item from becoming an attentional

template and eliminating any memory contents driven attentional capture. In other words, multiple

representations compete to be the active trace in a mutually detrimental fashion.

Despite the success of the SIT hypothesis in making sense of previous conflicting results,

subsequent research quickly challenged the core notions of this theory. The authors of [72] showed,

using a very similar paradigm to the one used in [110], that even when subjects had to remember

multiple colors for a subsequent memory test, there was evidence for attentional capture by matching

color distractors during the search task. Moreover, not only was attentional capture observed for

either color in two-cue trials, it also appeared to be stronger than attentional capture during one-cue

trials. Specifically, there seemed to be a compound effect when distractors matching both cues

were present. Despite using a nearly identical paradigm, the results here are in direct contrast to

the results of [110].

Furthermore, taking the original SIT hypothesis (before the addition of this competition compo-

nent) at face value, one would expect reduced memory capture. Since [72] found the exact opposite,
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a compounded effect, even the original more conservative version of the SIT hypothesis does not

accommodate this result. The discrepancy surprised the research community and large-scale repli-

cations of both papers followed [47]. However, both studies were successfully replicated. The

authors of the replication hypothesized that this outcome might be due to a difference in paradigm:

[110] had only a single distractor in the search array and the delay period between the cue and the

search task was 1250ms, in contrast, the paradigm in [72] contained multiple distractors and the

delay period lasted only 700ms. The number of distractors is an unlikely culprit, as [72] found

an effect even when only a single distractor matched the memory cue. However, the delay period

duration could be relevant as there is evidence that the strength of memory representations dimin-

ishes over time [40]. However, based on the growing body of literature, delay period duration also

fails to provide an adequate explanation. Two similar papers [28], and recently [84] showed that

in Memory-NoCue-Search tasks (virtually identical to the one used in [110]) when two and even

three items are maintained in the visual working memory all representations bias search results.

This further supports the idea that the number of distractors in an array is not the culprit behind

the conflicting results reported by [47]. Moreover, in the three experiments reported [28] the delay

period varied between 300 and 2000 ms, but the same behavioral patterns emerged: response times

were longer for memory-cue matching distractors. These results demonstrated that subjects can

maintain multiple working memory representations simultaneously and that all of these items, in-

fact, guide attention to some extent. Finally, even previous experiments such as [122] that reported

attention capture by WM items had delay periods as long as 3,000 ms. It is unlikely that storing

two templates instead of one would degrade the effect to the point that it becomes undetectable

within 1250 ms.

Other studies completed by Beck and Hollingworth over the years arrived at similar conclusions

[13, 9]. In their most recent paper [9] the authors conducted a series of experiments in which the

feature dimensions of the memory and search cues were (unlike for instance [42]) different (color

and shape, see figure 1 for an example). Response time increase for matching distractors indicated

robust attention capture during the search task by the irrelevant feature dimension memory cue.
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These results have prompted the authors to suggest the Multiple-Item-Template (MIT) hypothesis

which states that the limit of attentional capacity is flexible and at the very least two attentional

templates can be active simultaneously.

Finally, instead of focusing on single-item search, the authors of [86] used a foraging task.

Subjects had to tap on target-colors circles on an iPad while avoiding distractor-colors circles. This

foraging paradigm is designed to mimic animal foraging settings. The SIT hypothesis would predict

longer reaction times due to template switching cost when the number of target colors increases

from 1 to 2, but no such increase should occur for further increase. The pattern of results in [86]

shows an almost linear reaction time increase when the number of target-colors increased, despite

the number of total targets remaining the same and regardless of the number of distractors. The

authors of [86] argue that this indicates that some evidence taken to support the SIT hypothesis

might in fact just be the result of increased cognitive load. It is important to note that one can

argue that an increase in reaction times between 2 and 3, as well as 3 and 4 target types, does in

fact support the SIT hypothesis, as long as the subjects focus on each target type separately before

moving to the next. However, this behavior of focusing on different target types sequentially was

not observed in previous foraging studies conducted by the authors.

Finally, a very recent study by the authors of the MIT hypothesis used a paradigm where

participants would benefit from multiple template usage [10]. Unlike previously, here performance

increase (rather than decrease due to distractor interference) would support the MIT hypothesis.

The task was a search paradigm with two search cues (color and shape). Targets could match either

one or both cues. Response time was faster when the target matched both cues (the target had both

the cued shape and color) as opposed to only one (shape or color). Moreover, the response time

distribution in two-cue-match-target trials violated the “race model inequality” which indicates

“coactive” guidance by both cue’s attentional templates as opposed to a parallel but separate or

sequential activation of two mechanisms [111]. Of course, proponents of the SIT hypothesis might

argue that this pattern of results would be possible if participants were always simply using a single

item. If participants were attending to the feature value that does not match the target half of the
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time their response times would increase. Since any cue always matches the target when it has both

the cued shape and color, this condition will always have faster response times. To reiterate, the

“race model inequality” uses the sum of the probabilities observed in the single-cue-match-target

conditions to calculate an upper bound on the response-time probabilities that should be observed

in the two-cue-match-target condition if no coactive mechanisms are involved. However, if half

the single-cue-match-target trials are “corrupted” by a switching cost the calculated upper bound

might not be accurate.

At this point, one might be under the impression that an overwhelming number of studies draw

conclusions that are in stark contrast to the core components of the SIT hypothesis. However,

there are a few things to consider; As the authors of [84] point out, in the paradigms used in these

studies no cue is ‘actively’ guiding visual attention during the search. This raises the questions

regarding whether one can indeed maintain multiple attentional templates, or if in the absence

of such a template all contents of working memory (which Olivers et al referred to as accessory

memory items) are able to drive attention. Interestingly, [84] seem to believe the latter ‘capacity

to actively maintain irrelevant items during visual search is higher than our capacity to actively

maintain relevant items for a visual search.’. In other words, while, as noted by [47], there are

still contradictory results even for very similar paradigms, there might be a way for a relaxed or

modified version of the SIT hypothesis to explain these results as well. This idea was expanded in

a few studies we will discuss in the following section.

5.2.2 Challenges for Nested Search-Memory Paradigms

As the reader has no doubt gathered, nested Memory-Search paradigms (with and without

a search cue) seem to dominate the attention capacity research. However, these paradigms have

several clear limitations. Firstly, many influential theories of attention, as well as recent "attentional

capacity theories", speculate the existence of analogous fast parallel stage followed by a separate

slow stage in which potential target locations are sequentially evaluated [173, 186, 128]. As

previously discussed, attentional load could affect both stages, making it difficult to attribute target-

location decoding or behavioral differences specifically to template maintenance. In other words,
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search-paradigms do not provide direct evidence of early differences in sensory modulation under

different attentional capacity conditions. The issue is further exacerbated when participants are

required to complete an additional task (such as reporting the orientation of a bar or letter [122,

121, 28, 9, 84], also see Figure 5.1), as previous research demonstrates that working memory load

can impact the processing speed even in unrelated tasks [65]. Secondly, while it is well known that

attentional templates improve performance by enhancing the sensory representation of the attended

feature value [25], the exact impact of load on how attention modulates sensory representations

is an important component that remains missing when focusing only on search-based paradigms.

Analysis of search based paradigms focuses on reaction time and accuracy. In contrast, detection

tasks enables, for instance, detailed analysis of the decision making process via signal detection

theory models. One interesting example of such modeling can be observed in [74]. Participants

in this study were cued to look for one or more items in a subsequent rapid serial presentation

(an RSVP paradigm). The authors modeled the ROC curves expected under the SIT and MIT

hypotheses, and estimate the number of attentional templates for each subject. Behavioral results

were most consistent with having only a single attentional template. Furthermore, these results

persisted when participants attended to objects instead of colors, as well as a mix of these two

cue types, supporting the theory that working memory representations might be object-based [46].

One possible explanation for this surprising result might be found in individual differences. As

noted by the authors, almost half the subjects had faster reaction time in the cue (in comparison

to the non-cue) condition despite the cue being irrelevant to the search task [46]. This results can

not be explained by either the single or multiple item template hypotheses, and might point out

that attentional capacity modulation might simply have a small effect size that could be masked in

nested search-memory paradigms by noise or individual differences.

Another relevant signal detection experiment can be found in Liu et al 2017 [96]. The authors

attempted to test if multiple attentional templates are maintained when their guidance directly

benefits the task, as opposed to negatively impacting the behavior via distractor interference. The

task was to indicate if one of the six colors in a cloud of colored dots was more coherent (had more
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dots) than the others. In some conditions, cues indicated which colors might be coherent. For

instance, when green and red were cued the subjects knew that if there will be a coherent color it

would be either one of those two. There were both one and two cue conditions. If multiple templates

can indeed be maintained then the increase in performance should be similar for both conditions.

However, analysis indicated that only one of the two cues guided attention. This study builds on the

results of a similar earlier work by the authors that showed decreased performance when attending

to two motion directions relative to only one [97]. However, since the lower accuracy could be due

to splitting resources between two templates instead of attending only to one, [97] did not fully

commit to the interpretations supporting the SIT hypothesis. Crucially, [96] found that the two-cue

condition was equivalent to a condition with a 50% valid single cue. Suggesting that participants

are able to successfully attend only to a single cue. Therefore the authors argue that their results

(and possibly also [97]) support a strong limit on attentional capacity.

Finally, recent research uncovered another disadvantage particular to the Memory-NoCue-

Search paradigms common in the attentional capacity literature. Throughout the literature two

types of results were interpreted as supporting the MIT hypothesis: interference from multiple

representations, and performance enhancement when multiple attentional templates are maintained.

However, it is possible that this conflates two separate phenomena. Indeed, experiments in which

guidance by working memory items would enhance performance (relative to a no cue baseline)

seem more supportive of harder attentional capacity limits [96, 74]. In comparison, experiments

that test for distractor interference [72, 28, 84]. This pattern of results was systematically tested in

a recent study [135]. The authors ran experiments using both the classic Memory-NoCue-Search

paradigm and a slight variation that require participants to “actively search” for items matching

working memory content. Their analysis demonstrates a significant distractor effect in the first

experiments, even for distractors that do not match WM content (not to mention multiple WM

representations). However, analysis of results from experiments with the varied paradigm indicate

that participants were able to adopt a WM “active state” for only a single item. The authors conclude

that while (possibly multiple) working memory representations can bias distractor costs, only when
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participants are actively using a WM representation an “active control set” is created to improve

search performance for a single target stimulus.

Considering the above, the next few sections will focus on eye-tracking and neuro-imaging

papers, as nested memory-search paradigms are significantly less common in these modalities.

Finally, we will discuss the challenges inherent to the nested search-memory task in the context of

the detection paradigm used in our experiment.

5.2.3 Eye-Tracking Studies

Shortly after proposing the SIT hypothesis, the authors of [123] presented eye-tracking results

supporting their theory. A straightforward conclusion of SIT is that when the search criteria isn’t

defined by a single feature-value (for instance, targets are in either one of two different colors),

participants begin first employ one attentional template and eventually switch to a second template.

Following this logic, the SIT hypothesis expects some evidence of switching cost. To explore this

matter, [40] introduced a novel paradigm: a search array with two targets (at the left and right

sides of the visual fields) was used. The color of the two targets was either the same (one-color

condition) or different (two-color condition). In the two-color condition, targets at each particular

side had a consistent color (for instance, the left target is always red). Additionally, distractors

could be the color of the target on the opposite side of the visual field (for instance, if the left target

is always red and the right target green, then distractors at the left could be green). Analysis of

subject eye movements showed that saccades to the second target were slower and less accurate in

two-color trials. Moreover, initial saccades often landed on other target color distractors, despite

the color never being task-relevant in that half visual field (throughout the entire experiment). Time

course analysis revealed that the proportion of saccades ending on the distractors trended down after

250-300 ms. The authors concluded that a template-switching cost does exist and is responsible

for this pattern of results. Specifically, they conclude that fully switching attentional templates

requires at least 250ms, and until then attention capture by distractors matching the feature value

of the initial template could occur.

It is interesting to note that eye-tracking studies have previously demonstrated that multiple
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items in long-term memory can guide search simultaneously [169]. The authors of the MIT

hypothesis modified the paradigm used by this earlier study [14]. A search array containing 32

circles in 4 different colors was presented, two target colors were cued before the search array

began and the participants had to fixate on all target color circles as fast as they could. The

subjects were instructed to search for targets either sequentially (moving on to targets matching

the second cue only after finding all targets matching the first) or simultaneously. Researchers

coded segments of sequential fixations on targets of the same colors. The switching cost was

analyzed by comparing the length of the fixation between these segments to the fixations at the

beginning/end of these segments. Analysis revealed that there was a significant switching cost

when subjects were instructed to search for targets sequentially, but no such cost was observed in

the simultaneous search condition. There was no significant difference in the mean fixation time

between the sequential and simultaneous search conditions, indicating that higher rates of switching

did not incur any additional costs. Hence, it is unlikely that only a single template, which is being

constantly switched, is maintained. The authors concluded that it is likely that there is no single

item bottle-neck between working memory and attention, and that failure of previous studies to

observe multiple-item guidance is simply due to the participants approaching search tasks serially

instead of looking for multiple target cues simultaneously.

Recent technical developments in the field of eye-tracking enable eye-movement measurements

beyond duration and location. New “gaze-contingent” studies enable researchers to tailor the exper-

iment trial by trial to test hypothesized behaviors. These experiments usually require participants

to fixate on one of the multiple items in a search display, and subsequent trials are generated in

real-time based on previous participant behavior. An interesting application of this technology is

another more recent study conducted by Beck et al [13]. In this paradigm, two target colors were

consistent throughout the block. Each trial began with two circles, at least one of which was in a

cued color, the participant had to fixate on a cued color circle to continue. Every subsequent trial

belonged to one of three types: 1) forces the participants to pick the same cue color multiple times

by only presenting one cue color among different non-cue color targets. 2) forces the participant
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to switch by not presenting the cue color fixated on in the previous trial. And 3) present both cued

colors and let the participant choose. Analysis of participant behavior showed that, when possible,

participants switched the color from the previous trial an average of 46% of the time. Bahle et al

argued that if only a single attentional template was active at a time the template matching the color

used in the preceding trial would drive subsequent selection even if target-types matching the other

template are available. This would result in very few switching between colors. The authors argue

that the high switch rate implies that attentional templates matching both cues are simultaneously

driving attention.

In response, the authors of SIT conducted a similar gaze-contingent experiment [126]. Virtually

the only difference being that this experiment contained multiple distractors instead of only two

circles at each trial, as before there were three possibilities when generating each new trial (only a

match to cue color A, only a match to cue color B, or targets matching both colors). The authors

again found a high 37%switching rate when both cues were presented. However, further analysis

showed longer pre-eye-movement fixation periods in trials that forced participants to switch relative

to the last fixation cue color. The authors argue that this reflects a higher “switching cost” when

subjects were forced to change the state of the working memory items. According to the MIT

hypothesis there should not be any bias to any of the two cues, contradicting these results. The

authors argue that the lack of a switching cost when both targets are available, and the high switching

rate, are the consequences of participants spontaneously switching targets between trials.

While the contradictory results above might seem confusing, there is room to critique both of

these papers. The authors of [126] correctly point out that template switching can occur between

trials and a high switching rate does not unequivocally support the MIT view. In the other hand,

the switching cost at the heart of their argument in favor of the SIT hypothesis can be driven by

selection history rather than bias towards the most recently active template. Recently selected

items tend to be favored in subsequent trials, even in non-search experiments and when targets

are fixed across blocks [188]. This selection history effect was not controlled for by any of the

aforementioned experiments, and seemingly, there is no way to differentiate between this effect and
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attentional template guidance in the aforementioned paradigms.

5.2.4 Neuroimaging Studies

In their original paper presenting the SIT hypothesis [123] the authors postulate different

neuronal mechanisms that can account for their theory. Mainly, they focused on previous rhesus

single-cell recordings studies by Warden and Miller [183, 182]. Results indicated that item working

memory representations change when a newer item is introduced. Olivers et al argue that this

change to an “orthogonal representation” might reflect an “active” item undergoing a transition

into a “passive” working memory state. Subsequent research found further support for multiple

working memory states. For instance, Lewis-Peacock et al [91] found that the identity of a single

task-relevant item could be successfully decoded from fMRI activity. Other items, however, were

initially decodable but became “deactivated” after a newer item that is relevant to an immediate

task was introduced. Crucially, these same items become reactivated and decodable once they

became task-relevant again. Most recently, Olivers’ lab published an EEG study that demonstrated

that it is possible to decode the status (active vs passive) of the content of the working memory

[179]. The authors showed subjects a cue followed by two search tasks. The cue was relevant for

the first task in half the trials and the second half in the other, and participants knew the type of

the trial in advance. This paradigm encouraged the participants to switch the status of the working

memory contents (cued feature value) from passive during the irrelevant search task to active (and

vice versa). Analysis showed that the status of the working memory content can be decoded from

a burst of power in the delta band (2-4 Hz), and a longer non-lateralized alpha (8-14 Hz) power.

The delta decoding was brief and the authors concluded that it reflects the transition processes

involved in changing the status of WM contents. However, this experiment is not without its issues.

Participants knew which of the two tasks is upcoming, making it possible that the decoded working

memory status is in fact related to processes involved in task-specific preparations. To put it simply,

the tasks were to search for a cued memory item or a duplicate color. Since the subjects knew which

task was coming up, decoding the delay period before the presentation of the search array might

be “corrupted” by task-specific preparations unrelated to the status of working memory contents.
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More specifically, the irrelevant search task always involved looking for a duplicate color, instead

of a specific target, and did not involve any attentional template. Therefore, the delta band activity

could therefore possibly relate to the existence of any attentional template (even if its from long term

memory), or even a preparation specific to duplicate-search, rather than the status of the working

memory contents.

Notwithstanding, while these papers make a strong case for the existence of different working

memory states, as pointed out by many researchers [86, 47], this by itself does not necessarily

imply that only a single attentional template is active at a time1.

To measure the attentional capacity more directly several EEG studies have been conducted.

These studies often borrowed from previous EEG research. Two specific EEG components that were

repeatedly used to explore attentional capacity are the Contralateral Delay Activity (CDA) and N2pc

EEG components. The CDA component is understood to reflect the number of items maintained

in the visual working memory [101]. While the N2pc component is a transient contralateral signal

that tracks the spatial deployment of attention in the visual field. N2pc is particularly useful for

measuring attention capture by distractors (as long as the distractor and target appear on opposite

sides of the visual field). Attention capture by distractors produces reliable N2pc components

that do not appear in distractor-free trials. Both the CDA and N2pc are examples of an Event-

Related Potential (ERP) obtained from EEG recordings. Both ERP components are measured by

subtracting ipsilateral activity from contralateral activity with respect to an electrode (usually PO8

or PO7) and the cue location. For instance, N2pc contralateral activity is recorded from either 1)

right electrodes (such as PO8) on trials with distractors on the left side of the visual field. or 2) left

electrodes on trials with distractors that appear on the right. One crucial difference between the

two components is that, while the N2pc ERP peaks around 200ms after stimulus onset, the CDA

activity is sustained during delay periods in working memory tasks.

One example of the use of ERPs to investigate attention was a study by Gurbert et al. CDA

1The authors of [86, 47] also argued that a single item attentional bottleneck would probably require a centralized
visual working memory specific neural mechanism, which is unlikely considering the apparent distributed nature of
working memory. But discussion regarding the nature of WM representations is somewhat beyond the our scope.
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components in trials with a changing cue were significantly larger than trials in fixed cue trials [62].

This was expected as processing fixed cues can be delegated to non-working memory processes

such as long-term memory [24]. More interestingly, CDA components were larger in two-cue (in

comparison to one-cue) trials, and larger still in three-cue trials. The authors argue that this indicates

that all cues are represented simultaneously in working memory. However, N2pc components were

attenuated in the multiple cue conditions, becoming smaller and delayed, indicating impairments

in the deployment of spatial attention, and that multiple cue representations were less effective in

guiding search. Further analysis revealed that there was a significant correlation between behavioral

measures such as response time and N2pc, but not CDA, component characteristics. The authors

conclude that this indicates that decreased performance in multiple cue trials (as measured by

longer RTs) is driven by worse attentional guidance and deployment and not the cognitive load of

having to maintain multiple templates. The authors of [62] concluded that these findings support

the SIT hypothesis.

Perhaps inspired by the notion of separating between deployment and maintenance, Olivers’

lab conducted their own neuroimaging study [128]. The authors decoded the location of the target

from EEG activity during a guided search paradigm with one-cue one-target, two-cue one-target,

and two-cue two-target conditions. The authors found that classification accuracy (as well as

behavioral measures) was similar for trials from the first two conditions (though slightly worse

for the second condition) but significantly worst in two-cue two-target trials. They argue that this

demonstrates that deploying two templates as opposed to preparing them is the true bottleneck.

This conclusion would explain the difference between the CDA and N2pc ERP modulation in

multiple cue conditions observed by Gurbert et al [62]. This research offers a possible resolution

of the SIT vs MIT debate by postulating that multiple item templates can co-exist in a mutually

suppressive manner, and when a stimulus that matches one of the two templates is presented the

matching template strengthens at the cost of the unmatching one. However, when stimuli match

both attentional templates (cues) there is a strong mutual suppression ‘resulting in a substantially

weakened and delayed selection’. In other words, multiple templates can be maintained but not
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selected simultaneously. This theory has similarities to popular models of attention. For instance,

Treisman’s Feature Integration Theory [173] and Wolfe’s original guided search model [186] both

have a quick parallel stage followed by a slow serial process with a strong bottleneck. However,

these theories are all based on single-item search paradigms. Moreover, in more recent iterations of

the guided search model, Wolfe proposed two completely separate attentional template mechanisms

[187]. This conceptualization holds that, while guiding templates from working memory items

are used to select objects based on features, items in an “activate long-term memory state” might

capture attention nonetheless. While Oliver’s new theory can account for some of the previously

mentioned results, it fails to do so fully. For instance, this theory would predict that in [96], which

had conditions only similar to the first two in this work, no strong difference between conditions

would have been found. Moreover, as Ort et al decoded only the target location during the search

task [128], there is no evidence that the two templates were actually maintained in an active state

before the stimuli presentation. In fact, the small difference between the first two conditions could

be accounted for by the original SIT hypothesis as simply a template becoming active in working

memory (switching cost).

Recently an EEG study attempted to decode attentional templates directly[184]. Participants

were cued to suppress a specific color during an upcoming search array. Maintaining a negative

attentional template is beneficial for search performance. The authors had fixed and varied cue

blocks. Decoding the to-be-suppressed color was sustained in the fixed cue condition and decoding

strength correlated with search performance. However, in the varied cue condition, decoding

happened only at the onset of the delay period and was negatively correlated with performance.

The authors argued that this indicates that negative templates do not form under the varied-cue

condition. Another possible interpretation is that attentional templates during delay periods are

simply difficult to decode. This is a clear hurdle for anyone hoping to verify the simultaneous

maintenance of multiple attentional templates [128], as decoding seems difficult even in single-

template trials.

One other recent EEG experiment found similar evidence of multiple coactive attentional
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templates [63]. In this work, the authors alternated the search task cue in an ABAB fashion across

trials (red or green). Before presenting the search array seven task-irrelevant arrays with distractors

matching the cue colors appeared. Knowing that one of the cues is irrelevant to the upcoming

task, the researchers expect evidence of attention suppression. Specifically, if only the task-relevant

color template is active then distractors matching the other color should not capture attention.

However, analysis showed that distractors for both colors captured attention (evoked a significant

N2pc component) in all but the last array out of the seven. The N2pc activity evoked by irrelevant

color distractors was heavily suppressed in the array immediately preceding the search task. The

authors argue that this indicates that two attentional templates were maintained until shortly before

the search task began, at which point top-level processes suppressed the task-irrelevant template.

Other relevant studies attempted to explore working memory representations more directly using

steady-state-evoked potentials (SSVEPs). When flickering a stimulus at a specific frequency, activ-

ity in early-visual area neurons representing the stimuli matches the SSVEP frequency. Moreover,

attending to stimuli has been shown to increase the amplitude of the respective SSVEP oscillations.

By having subjects attend to objects in two colors oscillating in different frequencies researchers

have been able to confirm that, at the very least, attending to two colors increased the corresponding

SSVEP for both colors simultaneously [5, 105]. While this seemingly supports a multiple atten-

tional template theory, as noted in [127], a direct comparison between SSVEP modulation during

one-cue and two-cue conditions is needed before any strong conclusions are taken.

5.2.5 Conclusion

As the reader might have gathered, despite attentional capacity research being mostly limited

to the last decade, there is already a substantial body of literature. Before delving into the

details of our experiment, it is worth highlighting some key take-ways that can help contextualize

subsequent chapters. First and foremost, as evident from this literature review, and experimentally

established in [135], there seem to be a fundamental difference between distractor interference and

guidance by working memory templates. The overwhelming majority of experiments supporting

the MIT hypothesis did not require participants actively search for multiple cues, instead focusing
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on interference by distractors matching working memory contents. Secondly, as discussed, search

tasks provide only indirect evidence of load during template maintenance, as confounds such

as working memory load effects on processing speed [65] and attentional deployment related

bottlenecks [128] could impact results. Previous neuro-imaging research theorized that modulation

by attentional templates occurs shortly before and early on during stimulus onset [128, 63]. With

this in mind, we will try to decode attentional modulations in early sensory representations. To

summarize, given the literature we decided to use a detection paradigm that has no distractors and

encourages active guidance by attentional templates. Moreover, we decode sensory modulations

during stimulus presentation, which are a direct effect of attention, enabling direct observation of

attentional load effects no matter how early or transitional. Finally, to understand how exactly the

attentional load impacts the decision making process we use a detection paradigm and separately

evaluated modulations in hit rate, false alarms rate, and signal detection theory measures.

96



5.3 Main Experiment

5.3.1 Motivation

This chapter presents our main experiment. Motivated by readings from the literature, our goal

was decoding attentional modulation of sensory representations directly, and analyzing how - if at

all - attentional load impacts these modulations. To our knowledge, all other neuro-imaging work

on attentional capacity focused on other, less direct, measures of attention [128, 63]. Following

previous neuro-imaging work we expect differences in these modulations to be most pronounced at

stimulus onset [128, 63]. These differences are not confounded by working memory load effects on

processing speed [65], unlike search-task accuracy and response time measurements [122, 121, 28,

84, 9]. Moreover, these differences can only be explained by template maintenance capacity limits

rather than other bottlenecks in the later stages of perception [128]. In simple terms, modulation

of sensory representations by attention are immediate and begin at stimulus perception. And early

differences in these modulation can only be explained by attentional load. Another conclusion

from our literature review was that guidance by attentional templates and interference by distractors

matching working memory contents are two separate phenomena [135]. With the above in mind,

we elected to use a detection paradigm with no distractors during stimulus duration. Using this

paradigm has multiple additional benefits in bridging a few gaps that became apparent during the

literature review. Firstly, in previous EEG experiments that used nested memory-search paradigms

the target was always present, and analysis focused on correct trials only [128]. This left a gap in the

literature; for instance, the attentional load theory proposed in [128] does not necessarily predict

any difference between different attentional load conditions when the target is absent. However,

previous results are consistent with an increase in false alarms [97, 96]. Since target-absent trials

are impossible in the ubiquitous nested memory-search paradigm these consequences of increased

attentional load that is yet to be thoroughly explored. Secondly, behavioral results of the nested

memory-search paradigms can only be quantified in terms of accuracy and response time. Only

few researchers employed a detection paradigm [74, 97, 96], and to the best of our knowledge

only one - behavioral - experiment focused on signal detection modeling [74]. Diversity of
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analytical methods and paradigms is essential for a comprehensive understanding of the underlying

mechanisms responsible for the effects of different attentional load conditions. Our behavioral

results could therefore be of particular interest, as they provide a different perspective from the vast

majority of attentional capacity work published in the last decade, especially if neural correlates of

behavioral differences are observed in target-absent trials.

5.3.2 The Experiment

We employed a modified version of experiment 2 from [96]. Our two-alternative-forced-choice

experiment presented participants with an array of dots in different colors. One of the colors

was over-represented in half of the trials, while in the other half the dots were equally distributed

across five colors (for a total of six colors per trial). Participants were required to distinguish

between trials with an over-represented color (target-present) vs trials with an equal distribution of

colors (target-absent). The experiment had no-cue, one-cue, and two-cue conditions. The over-

represented color in all one-cue and two-cue target-present trials was always one of the cued colors.

The [96] experiment modified the color coherence (amount of over-representation) between trials.

Performance at different coherence levels was then used to fit a psychometric function. The analysis

used the parameters of the best fit function to study the impact of WM on attention guidance. EEG

decoding is sensitive to such variability stimuli. Therefore, we separately calculated thresholds for

each color per subject to be used in the actual experiment. The target was present in 75% of the

trials, this was done to ensure we had enough EEG data to decode and compare the signal in one

and two-cue target present trials, which are the most analogous to the types of trials analyzed in

previous works [128]. The locations of the cues were randomized but where always 180◦ and 120◦

degrees apart in the two and three-cue trials respectively. The six colors were randomly selected

from a pool of seven (red, green, blue, yellow, purple, orange, and cyan) in each trial.

Our experiment is divided into behavioral and EEG sessions. The behavioral session has no-cue,

one-cue, two-cue, and three-cue conditions. Following [96] we expect the Hit-FA rate to drop when

less information is available to the participants and more uncertainty is present. In other words, we

expect the Hit-FA to be the highest in the one cue condition and consistently drop in the two, three,
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and no cue. This can be explained by a drop in the hit rate, an increase in the false-alarm rate, or

a combination of the two. With this in mind, we test the hypothesis that the Hit-FA monotonically

decreases across conditions when less information is available (this order being one-cue, two-cue,

three-cue, and no-cue). Additionally, we hypothesize the hit rate will similarly decrease, while the

false-alarm rate would follow an opposite trend by monotonically increasing. Significant differences

between memory load conditions would eliminate any possibility of a strong multiple item template

hypothesis. Moreover, a complete failure in three-cue trials could indicate that even if two attentional

templates can guide attention simultaneously, there is still a "hard limit". Furthermore, signal

detection theory analysis can be used to explore how attentional load impacts the decision making

process. Differences in sensory modulation are likely to manifest differences in the discriminability

index (the d-prime) rather than the criterion for instance. Decreased performance when less

information is available would correlate to decreased discriminability, hence we hypothesize that,

similarly to the Hit-FA, the d-prime will also monotonically decreases across conditions.

EEG sessions focused on the one-cue and two-cue conditions. Our paradigm is designed so

that trials of the same type are identical during the stimulus period, regardless of block condition.

In other words, a one-cue and a two-cue target-present green trials will be identical after cue offset.

Therefore, differences in EEG decoding during stimulus presentation must be the direct result

of differing attentional loads. Similarly to previous research, we also expect to find a difference

in EEG decoding early on in the stimulus presentation period [128, 63]. More specifically, we

are directly decoding the sensory representations modulated by attention, therefore we should be

able to observe any differences between the attentional load conditions no matter how transient

or early in the perception process. We hypothesize that attention in the single template condition

would results in bigger sensory modulations resulting in better decoding compared to the two-cue

condition. This difference in modulation can be considered the neural correlate of a decrease in the

discriminability index between the one and two cue conditions. We also decode false-alarm trials

to confirm that false-alarms are driven by attention-capture of one of the attended cued color, as

opposed to general performance decrease due to higher attentional load. Generally, any degradation
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of attentional modulation between different memory load conditions could be interpreted as a cost

for maintaining multiple templates.

Finally, we also completed an exploratory analysis of generalizations of different classifiers to

preparatory period decoding.

5.3.3 Methodology

5.3.3.1 Participants

We surveyed the literature and examined the number of participants used in similar EEG

decoding studies. The sample size of the most relevant EEG decoding papers ranged from 16 to

34 [8, 128, 119, 184]. Following [128] we collected data until we had 24 participants in total.

In addition to the 24 subjects who’s results were included in this study, 2 were rejected due to

noisy EEG, 3 were rejected due to low performance during the behavioral session (accuracy was at

threshold performance in all conditions), and 1 was rejected after his thresholding session failed to

converge. The participants were recruited from the Michigan State University student body. The

protocol was approved by the MSU institutional review board and written informed consent was

obtained from every subject.

5.3.4 Stimuli and Apparatus

The experiment was programmed in MATLAB and using the MGL extension [51]. The stimulus

consisted of random dot fields. For each trial, five out of the seven colors were selected and 240 dots

were drawn in an annulus (inner radius = 1.5◦ , outer radius = 6◦ ) and centered on a central fixation

disc (white; size: 0.1◦; luminance: 14.8 𝑐𝑑/𝑚2). A random color out of the five was selected

to be the target-color. During target-present trials, the target-color was over-represented, and the

remaining dots were divided equally between the four remaining colors. In target-absent trials,

all five colors were equally represented. To eliminate potential confounds, each subject adjusted

the brightness for every hue separately to achieve isoluminance between all colors. This was done

because differences in luminance between colors could cause the overall brightness during stimulus

presentation to differ - especially in target present trials with disproportionately represented colors
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- thereby inflating the EEG decoding accuracy. The procedure for obtaining isoluminance between

all colors was identical to the one used for the pilot experiment (see Section 4.1.1.2). During cue

trials, the stimulus was preceded by a cue (size: 0.5◦). One of the cues contained the target color.

When more than one cue was present the other cue colors were randomly drawn from the remaining

two colors that are not present in the stimulus dot field at that particular trial. The location of the cue

was on a circle around the fixation (radius = 1.5◦). The angle of the first cue was randomly drawn

from (0◦, 10◦, 20◦, .., 360◦), in two-cue trials, the second cue was 180° away from the target-color

cue. Finally, in three-cue trials the cues were 120◦ away from each other (see figure 5.2).

5.3.4.1 Procedure

Participants first performed a simple isoluminance task to prevent potential brightness con-

founds. The actual task trials began with a cue that lasted 500𝑚𝑠, followed by an 800𝑚𝑠 preparatory

period and a 100𝑚𝑠 stimulus segment. Finally, participants were required to make a target-absent

or target-present trial judgment by pressing either 1 or 2 on a keypad with their right index or middle

finger (see figure 5.2). Short auditory feedback was given after every incorrect answer. Before

the behavioral and EEG sessions, we ran a separate thresholding task. All thresholding trials were

similar to the no-cue condition. The target color coherence was manipulated to find the coherence

(relative over-representation) that produces an intermediate level of performance ( 82%) for every

subject. This thresholding was done separately for each color and was achieved by utilizing the

Best PEST adaptive method with a Weibull psychometric function [130, 137]. In a classical paper,

Quick proved that, if a few reasonable assumptions (such as Gaussian noise) hold, any psychometric

function can be approximated using a Weibull probability distribution [140]. Given previous trials,

the Best PEST adaptive function uses maximum likelihood estimation to select the parameter values

that are most likely to induce the desired performance levels.

During the behavioral session, subjects ran 2 blocks of 84 trials in every condition. The order

of the blocks was randomized across subjects.

The EEG session procedure differed from what was described above in multiple key aspects.

First, the subjects completed 5 blocks of one-cue and two-cue conditions only (in an ABAB fashion
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Figure 5.2 Example of behavioral session no-cue, one-cue, two-cue, and three-cue trials. The
background color was changed for visibility (RGB value 240, 240, 240).

with the order balanced across subjects). Additionally, to prevent alpha frequencies phase issues the

delay segment duration varied between 800𝑚𝑠 and 1100𝑚𝑠. Finally, as we are mostly interested in

decoding target-present trials, the ratio of target-present trials was 75% of the total number of trials.

Since behavioral sessions were used to exclude subjects with abnormal performance, behavioral

and EEG blocks shared the same task characteristics (such as proportion of target present trials).

5.3.4.2 Data Acquisition and Preprocessing

Continuous EEG activity was recorded using the actiCHamp system with BrainVision recorder

software. The participants were fitted with a 64-channel actiCap with active electrodes. The screen

refresh rate was set to 120𝐻𝑧 and data sampling was at 1000𝐻𝑧. Additionally, electrooculogram

(EOG) activity was recorded from from horizontal and vertical electrode pairs, and used to detect

and reject horizontal eye movements, eyeblinks, and vertical eye movements. Electrode impedances

were maintained < 50𝐾Ω. The data from the inter-trial interval was discarded. We used EEGLAB

and ERPLAB to process the data. First, we resampled the data to 500Hz, removed the AC line

noise (using the cleanline plugin), applied a bandpass filter between 1 and 100Hz, and used ICA

decomposition to separate and remove components originating from blinks and other artifacts.
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Finally, waveforms were manually examined by experimenters and noisy epochs were rejected. A

simple peak-to-peak blink detection algorithm (available in ERPLAB) was also used to detect blink

using the EOG channels. The threshold differed for every participant, and potential blinks were

marked before an examiner manually checked the data and marked any additional noisy epochs

for rejection. On average, we rejected 120 of the 840 recorded trials. This is comparable to the

rejection rates reported in other EEG studies [7, 8].

5.3.5 EEG Data Analysis

We used the ADAM decoding toolbox [44], with a few modifications such as adding Gaussian

smoothing to the raw data, and smoothing classifier accuracies. First, we resample the data at

a rate of 100𝐻𝑧. Additionally, following the conclusion of our pilot experiment, we expect the

color feature information to be mostly contained in the sub-alpha frequency band, and visual-cortex

electrodes. Therefore we employ a 10𝐻𝑧 lowpass filter and use the subset of mostly parietal and

occipital electrodes Pz, P3, P7, O1, Oz, O2, P4, P8, TP10, TP9, T7, T8, P1, P2, P5, PO7, PO3,

POz, PO4, PO8, P6, P2, CP4, CP2, CP1, CP3, C1, C2, C3, and C4. The pilot decoding results for

this subset were robust, and similar electrodes were used in the literature [7, 8, 128].

Following previous studies, we Gaussian smoothed (window size, 20𝑚𝑠) the data along the time

dimension, and smoothed the classifier outputs using a 40 ms moving average [7, 8, 184]. To verify

that our pipeline does not inflate accuracy we simulated and tried to decode random noise (see

Appendix B). After decoding trials from the one-cue and two-cue conditions we subtracted the two

decoding results and used a similar cluster-based permutation testing to identify significant results.

We used the default ADAM backwards decoding classifier with a 10 cross-fold permutation testing.

For an in depth discussion of LDA decoders such as the ADAM backward decoding model see the

previous EEG decoding section in literature review 2.2.2.1. At each permutation, 90% of the data

(balanced across the seven colors) was used to train an LDA classifier and accuracy was computed

on the withheld 10% of the data. However, an exception to this procedure is when using different

training and testing sets (Figure 5.10), as in these cases no splitting of the data is necessary and

there is only a single iteration. Given that we always decode seven classes representing the seven
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different colors, the chance level of the classifier was 1
7 = 14.28%. Finally, for evaluating statistical

reliability we used the default ADAM monte-carlo sampling with 2000 iterations of cluster-based

significance testing [128]. Since the classifier accuracy is being compared against chance, the

t-tests used to generate the significance values before the cluster based permutation testing are

always one-tailed [44].

To investigate temporal generalizations we employed a similar pipeline. First a classifier was

trained using samples at a specific time point, then decoding accuracy is calculated on the testing

data at every time point (instead of just the same time point). Analogous significance cluster

analysis is performed on the resulting two dimensional (training time 𝑥 testing time) accuracy

matrix. Generalization can also be calculated across completely different EEG segments. For

instance, by training classifiers for each stimulus duration time point, and classifying preparatory

period data. Here however no cross-fold validation is needed, as the number of trials available for

training and testing are independent.

Finally, we also implemented a Mahalanobis distance classifier. The implementation was

directly integrated into ADAM. While the classification accuracy was comparable to the LDA

performance, the Mahalanobis classifier failed to reproduce some transient effects that were present

in the default LDA decoding. We believe that this is due to the Mahalanobis classifier requiring

additional trial averaging and binning [184], see Appendix C for Mahalanobis classification results.

Both the LDA and Mahalanobis classifier algorithms were described previously in section 2.2.2.1.

All results in the following sections were achieved using the LDA classifier.
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5.4 Unsupervised Artifact Rejection With Deep Encoder-Decoders

More often than not, electroencephalography preprocessing sections in cognitive neuroscience

papers allude to manual trial-rejection by visual inspection [7, 8, 128]. This tasking process

constitutes a bottleneck, especially at early research stages when making decision regarding the

design and procedure of the experiment. To elevate this bottleneck one of the unsupervised artifact

detection algorithms presented in section 3.2 was used. Code for converting EEGLAB files to

and from formats that can be processed by our feature extraction and artifact detection packages

is available online2. As can be observed in figure 5.3, using unsupervised outlier detection

improved the decoding performance without requiring hours of commitment in the early stages of

the experiment.

Figure 5.3 decoding performance on target-present correct trials after and before using unsupervised
outlier detection (red and green lines respectively). Horizontal lines indicate a significant decoding
cluster.

2github.com/sari-saba-sadiya/EEGLAB-Artifact-Detection
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5.5 Results

5.5.1 Behavioral Results

Following [96] we hypothesized that the Hit-FA rate would drop when less information is

available to the participants (in other words we expected a downward trend across the one, two,

three, and no cue conditions). Moreover, we hypothesized that the hit rate would decrease following

the same trend, and the false-alarm rate would do the opposite and increase.

Figure 5.4 Results of our behavioral session. ★) p<.05 ★★) p<0.01 ★★★) p<0.005.

A repeated measures ANOVA revealed a significant main-effect of cue condition on Hit-FA

(𝐹 (3, 69) = 28.812, 𝑀𝑆𝐸 = 0.008167, 𝑝 < .005, 𝜂2
𝐺

= 0.556). We followed up the ANOVA

with a series of paired two-tailed t-tests (see figure 5.4). Results showed significant differences

between one-cue trials and two, three, and no-cue trials (one vs two 𝑡 (23) = 4.652 𝑝 < 0.005,

one vs three 𝑡 (23) = 7.95 𝑝 < 0.005, one vs no cue 𝑡 (23) = 8.24 𝑝 < 0.005) as well as two-cue

and three, and no-cue trials (two vs three 𝑡 (23) = 2.88 𝑝 < 0.01, two vs no-cue 𝑡 (23) = 4.22

𝑝 < 0.005). A repeated measures ANOVA revealed a significant main-effect of cue condition

on hit rate (𝐹 (3, 69) = 9.609, 𝑀𝑆𝐸 = 0.001646, 𝑝 < .000, 𝜂2
𝐺

= 0.294). We followed up the

ANOVA with a series of paired two-tailed t-tests. Results showed significant differences between

one-cue trials and two, three, and no-cue trials (one vs two 𝑡 (23) = 2.80 𝑝 < 0.01, one vs three
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𝑡 (23) = 4.86 𝑝 < 0.005, one vs no cue 𝑡 (23) = 4.73 𝑝 < 0.005), as well as between the two and

three-cue conditions (𝑡 (23) = 2.12 𝑝 < 0.05). Finally, a repeated measures ANOVA revealed a

significant main effect of cue condition on false-alarm rate (𝐹 (3, 69) = 14.015, 𝑀𝑆𝐸 = 0.009272,

𝑝 < .001, 𝜂2
𝐺

= 0.378). We followed up the ANOVA with a series of paired two-tailed t-tests.

Results showed significant differences between one-cue trials and two, three, and no-cue trials

(one vs two 𝑡 (23) = 3.3025 𝑝 < 0.01, one vs three 𝑡 (23) = 4.94 𝑝 < 0.005, one vs no-cue

𝑡 (23) = 6.38 𝑝 < 0.005) as well as a significant difference between the two-cue and no-cue

conditions (𝑡 (23) = 2.84 𝑝 < 0.01).

Figure 5.5 Discriminability index and Criterion results of our behavioral session. ★) p<.05 ★★)
p<0.01 ★★★) p<0.005.

Further signal detection theory analysis was also conducted by calculating the d-prime and

criterion for each condition. A repeated measures ANOVA revealed a significant main-effect of

cue condition on d-prime (𝐹 (3, 69) = 5.175, 𝑀𝑆𝐸 = 1.064882, 𝑝 < .01, 𝜂2
𝐺
= 0.10106). Follow

up two-tailed t-tests showed significant differences between the discriminability indexes (d-prime)

in the one and three as well as no-cue conditions (one vs three-cue 𝑡 (23) = 4.67 𝑝 < 0.005, one vs

no-cue 𝑡 (23) = 4.98 𝑝 < 0.005). No significant main effect of cue condition on criteria was found

(𝐹 (3, 69) = 0.454, 𝑝 = .715).
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Figure 5.6 Results of our EEG session. ★) p<.05 ★★) p<0.01 ★★★) p<0.005.

Additionally, we found a main effect of condition on response time (𝐹 (3, 69) = 3.851, 𝑀𝑆𝐸 =

0.0118, 𝑝 < .05, 𝑒𝑡𝑎2
𝐺

= 0.143). Response-time generally followed the same trend as other

behavioral measures (The mean response time was 0.6038, 0.6399, 0.7019, and 0.6803 seconds

for one, two, three, and no-cue trials respectively). The effect of cue condition on response time for

correct trials was also significant (𝐹 (3, 69) = 3.9273, 𝑀𝑆𝐸 = 0.00937, 𝑝 < .05, 𝑒𝑡𝑎2
𝐺
= 0.145)

and followed the same pattern overall. In general, the response time, response time on correct only

trials, and response time on target-present correct only trials (not plotted) followed an inverse trend

to the accuracy, hit rate, hit-FA, and the discriminability index (See Figure 5.8 and Figure 5.5).

Therefore there is no evidence of any speed accuracy trade-off in this experiment.

We ran the same analysis of performance during EEG trials (see Figure 5.6). A repeated

measures ANOVA revealed a significant main effect of cue condition on Hit-FA rate (𝐹 (1, 23) =

26.883, 𝑀𝑆𝐸 = 0.0028, 𝑝 < .001, 𝜂2
𝐺
= 0.538). Similarly, repeated measure ANOVA also showed
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Figure 5.7 Discriminability index and Criterion results of our eeg session. ★) p<.05 ★★) p<0.01
★★★) p<0.005.

a main-effect of cue condition on hit rate (𝐹 (1, 23) = 4.293, 𝑀𝑆𝐸 = 0.0003, 𝑝 < .001, 𝜂2
𝐺
= 0.157)

and false alarm (𝐹 (1, 23) = 19.674, 𝑀𝑆𝐸 = 0.0028, 𝑝 < .001, 𝜂2
𝐺
= 0.461).

Signal detection theory analysis of the EEG session behavioral data showed a significant main

effect of cue condition on the discriminability index (𝐹 (1, 23) = 25.793, 𝑀𝑆𝐸 = 0.0369, 𝑝 < .001,

𝜂2
𝐺

= 0.0606), but no significant main effect was found for the criterion (𝐹 (1, 23) = 3.264,

𝑝 = .083).

Additionally, we found a main effect of condition on response time (𝐹 (1, 23) = 3.851, 𝑀𝑆𝐸 =

0.0114, 𝑝 < .05, 𝜂2
𝐺
= 0.222). The mean response time was 0.5417 seconds for one-cue trials and

0.6210 seconds for two-cue trials (Figure 5.8). There was no main effect of condition on response

time when analyzing correct only trials (𝐹 (1, 23) = 3.876, 𝑀𝑆𝐸 = 0.023, 𝑝 = .061), however

the mean for one-cue trials was still lower than for two-cue trials (0.4678 and 0.557 respectively).

Following the pattern observed in the behavioral session, conditions with higher accuracy and

discriminability index also had lower mean response time, thus we conclude that there was no

speed accuracy trade-off.

109



Figure 5.8 Response time (in seconds) for all trials and correct only trials, for the different conditions
in the behavioral and EEG sessions. ★) p<.05 ★★) p<0.01 ★★★) p<0.005.

5.5.2 Bayesian Analysis of Behavioral Results

To further investigate if there is any evidence of behavior differing across three-cue and no-cue

trials we followed up the previous analysis with Bayesian modeling using JASP [76]. Specifically,

we tested the hypotheses that the hit rate, false-alarm, and d-prime values for the no-cue and

three-cue trials were the same.

The default JASP prior of 0.707 on the Cauchy scale with 95% credibility interval was used for

all Bayesian paired t-test. For follow up robustness analysis see Appendix D.

Bayesian paired t-test was used to explore if hit rate in three and no-cue trials differed. Analysis

showed a Bayesian factor of 𝐵𝐹01 = 4.628 (0.024 error %) in support of the null hypothesis. The

median effect size was −0.022 and the confidence interval was [−0.398, 0.353]. Bayesian paired

t-test was also used to explore if false-alarm rates in three and no-cue trials differed. Analysis

showed a Bayesian factor of 𝐵𝐹01 = 2.879 (0.026 error %) in support of the null hypothesis. The

median effect size was 0.187 and the confidence interval was [−0.191, 0.574]. Finally, a Bayesian

paired t-test was used to explore if the d-prime in three and no-cue trials differed. Analysis showed
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a Bayesian factor of 𝐵𝐹01 = 2.122 (0.026 error %) in support of the null hypothesis. The median

effect size was −0.242 and the confidence interval was [−0.634, 0.14].

The Bayesian factors suggest weak to moderate evidence in favor of the null hypotheses.

Indicating no significant differences in behavior across three and no-cue trials.

5.5.3 EEG Results

We first compared target-present trials across the one-cue and two-cue conditions. Generally,

the target feature value could be decoded from the very beginning of the one-cue trials, while

decoding in the two-cue condition was possible from 150 ms after stimulus offset (Figure 5.9).

Figure 5.9 Decoding target present EEG trials. Bold red and green horizontal lines indicate
significant decoding in the one cue and two trials respectively. Blue horizontal lines indicate
clusters of significant differences between conditions. The dashed and solid lines indicate stimulus
onset and offset respectively.
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Additionally, to investigate the impact of attentional load on “false alarm” trials we decoded the

cued color that was present (but not over-represented) in target-absent trials. Training the classifier

using two-cue trials was generally unsuccessful and yielded no significant decoding. However,

classifiers trained on target-present one-cue trials generalized to two-cue trials. The present (but

not over-represented) color is likely to be the cause of the false alarm in two-cue target-absent

trials (as the other color is completely absent from the array). Indeed, we were able to decode

the present color in false alarm but not correct reject trials. Moreover, there was a significant

difference in decoding between the two. Considering the two trials are identical stimulus-wise,

this indicates the decoding in false-alarm trials is indeed driven by attention capture by the cued

color. Surprisingly, there was no significant decoding in one-cue target-absent false alarm trials

(see Appendix A). However, this is likely due to the low number of one-cue false-alarm trials rather

than any attentional load modulation of perception. Finally, while decoding was not significant

for all target-absent trials in either condition, it is worth noting that decoding accuracy was higher

for two-cue, as opposed to on-cue, target-absent trials (Appendix A). The difference was not

statistically significant, but the decoding results seem to correspond to the behavioral performance

trends observed in the EEG and behavioral sessions (namely, false-alarms rate was higher in the

two cue condition).

5.5.4 Generalizations For Stimulus and Preparatory Period Decoding

Classifiers trained on one-cue trials generalized well to two-cue trial stimulus period classifica-

tion (figure 5.11). Preparatory period decoding was significant only in one-cue trials shortly after

cue offset. Generalization across the preparatory period yielded no significant clusters for either

one-cue or two-cue, trials (Figure 5.12). However, classifiers trained on the one-cue target present

correct trials stimulus period successfully generalized to the one-cue preparatory period (Figure

5.13).

Mental representations are expected to be most robust during stimulus presentation in one-cue

trials (when a coherent target color is present and after the sensory perception was enhanced by

attention). The generalization of stimulus period one-cue classifiers to both one-cue preparatory
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Figure 5.10 Decoding absent present EEG trials. Bold red and horizontal lines indicate significant
decoding in the two-cue target absent false-alarm trials. Classifiers were trained using on target-
present one-cue trials. Blue horizontal lines indicate clusters of significant differences between
false-alarm and correct reject trials. The dashed and solid lines indicate stimulus onset and offset
respectively.

period, and two-cue stimulus period, EEG could indicate a similarity in the representations being

used. This indicates that when the target is coherent, representations in two-cue target present

correct trials become similar to those of one-cue target present correct trials. Moreover, when only

a single attentional template is maintained, representations in the preparatory period are similar to

representations after perceiving the attended feature value.

Following the same logic, the lack of generalization for two-cue trials during the preparatory

period could be indicative that a qualitatively different representation is being used when two atten-

tional templates are being maintained simultaneously. There are a number of possible explanations
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Figure 5.11 Decoding generalization for one-cue and two-cue target-present correct trials (left and
right respectively). The classifiers were trained using one-cue target-present correct trials. The
dashed lines indicate stimulus onset.

Figure 5.12 Decoding generalization for one-cue and two-cue target-present correct trials during
the preparatory period (left and right respectively). The classifiers were trained using stimulus
period EEG for one-cue and two-cue target present-correct trials (left and right respectively). The
y-axis and x-axis dashed line indicate cue onset.
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Figure 5.13 Decoding generalization for one-cue and two-cue target-present correct trials during
the preparatory period (left and right respectively). The classifiers were trained using one-cue
target-present trials after the stimulus onset. The y-axis dashed lines indicate stimulus onset, and
the x-axis dashed line indicates cue onset.

for the above. One possibility is that, as suggested by [128], the two attentional templates are

mutually suppressive until feedback from a sensory stimulus causes the corresponding template

to win the competition. Another possibility is that only one of the items is being maintained in

an active state. Researchers have demonstrated that passive and active working memory states are

encoded using orthogonal representations where only the active template can be decoded [183,

182, 91]. If this is indeed the case, we expect decoding to not be possible during the preparatory

period in half of the trials, limiting our statistical power. Finally, empirical limitations of machine

learning complicate the interpretation of these results even further. Classifiers perform better

with under-representative training noise (low training noise and high test noise) in comparison to

over-representative training noise (high training noise and low test noise) [104]. Representations

are expected to be most robust during stimulus presentation in one-cue trials (when a coherent

target-color is present and the sensory perception is being enhanced by attention). Therefore,

training stimulus presentation in one-cue trials is an example of under-representative training noise.

Moreover, stimulus presentation could involve a variety of representations (visual, semantic labels,

. . . ). This is less likely during the preparatory period. Hence, preparatory period data might simply

lack aspects of the representation needed to decode stimulus presentation data.
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5.6 Discussion and Conclusion

EEG decoding analysis of the target feature values during and after stimulus presentation showed

significant difference between one-cue and two-cue trials. This indicates the existence of a cost

for maintaining multiple attentional templates. Having designed our paradigm so that one and

two-cue trials differ only during cue presentation, it is safe to assume that decoding differences

during stimulus presentation can be attributed to differences in attentional modulation of sensory

representations. Specifically, under single attentional template conditions modulation of sensory

representations occurs earlier. These neural differences are reflected behaviorally in the d-prime

statistic which decreases when multiple templates are maintained. Therefore, we conclude that

the enhanced attentional modulation in the single template condition (demonstrated by the EEG

analysis) enables easier discrimination between noise and signal trials (as evidenced by differences

in d-prime).

Moreover, there was a clear downward trend in hit minus false-alarm with decreased certainty

regarding target color. Analysis revealed that maintaining multiple templates decreases performance

mainly by increasing false-alarm rates. EEG analysis of two-cue target-absent trials demonstrated

that we can decode the non-coherent signal in false-alarm trials but not correct-reject ones. This

indicates that false-alarms occur due to participants mistaking the non-coherent signal for a target,

rather than due to increased task difficulty or other confounds of increased attentional or working

memory load. This further supports our conclusion that behavioral differences between the one and

two-cue conditions originate from a decrease in sensitivity when multiple attentional templates are

maintained. These differences in EEG decoding of target-absent trials also correspond to the results

of the signal detection theory analysis. The d-prime significantly decreased between the one and

two-cue conditions, indicating that it becomes increasingly harder to discriminate between signal

and noise trials when maintaining multiple attentional templates, resulting in a higher false-alarm

rate.

There was no significant main effect of attention load on the criterion, suggesting that the

differences are not due to variation in response strategy across conditions. This held true in both
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the behavioral and EEG session, indicating that the observed attentional load effects are likely due

to low level mechanisms responsible for a change in sensitivity rather than any top-down change in

response strategy. Additionally, response time and accuracy inversely correlated, hence there is no

evidence to suggest speed any accuracy trade-off occurred.

Generally, three-cue trials did not differ significantly from no-cue trials. Moreover, follow up

Bayesian analysis found weak evidence in favor of the null hypothesis (that behaviorally these trials

are identical). Therefore, analysis indicates that attentional guidance might be limited to two items

at most, and that maintaining three or more templates results in a complete failure of attentional

guidance.

Considering the EEG results for the target-present and target-absent trials, as well as the overall

pattern of the behavioral results, we conclude that maintaining multiple attentional templates

comes at a significant cost. Moreover, we demonstrate that while the cost exists in target-present

trials, impaired attentional modulation due to maintaining multiple templates also significantly

increases false-alarms due to decreased ability to discriminate between signal and noise trials. This

result is especially interesting as previous research utilized paradigms that make signal detection

analysis impossible [123, 179, 9] and limited EEG decoding analysis to correct target-present

trials only [128]. Overall, we conclude that attention modulation of sensory representations is

significantly weaker when maintaining multiple templates, resulting in impaired signal perception

in target-present trials, and more false alarms in target-absent trials due to difficulties discriminating

between signal and noise. Following this conclusion, we reject many versions of the multiple item

template (MIT) hypothesis, especially if they argue for a lack of cost (or even an additive effect)

of maintaining multiple templates [14, 10, 28, 84]. However, significant performance differences

between two-cue and three/no-cue conditions suggest that participants are still able to make a

limited use of multiple cues. Previous literature discussed three different scenarios that could

potentially account for our results.

First, participants could be maintaining only a single template while storing the other cues

in working (or long term) memory. Switching occurs when a participant fails to detect a signal
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matching the attentional template. Theoretically, both our results, and the data presented in [128],

could be explained by template-switching. Many theories of attention postulate the existence of a

quick, parallel pre-attentive perception stage and a slower sequential focused attention stage [173,

186]. Operating under such framework, the difference in decoding between our one-cue and two-

cue trials (as well as the one-cue-one-target and two-cue-one-target conditions in [128]) could be

attributed to template switching after quick pre-attentive processing revealed no stimulus matching

the initial attentional template. The authors of [128] do acknowledge that sequential processing is

indeed a possibility, but ultimately reject this interpretation after finding no trial-based correlation

between classification confidence scores and target position, or any pattern of target location

switching in individual subject data. We are unable to run an equivalent analysis using our data, as

we did not systematically manipulate the spatial locations of neither cue nor target. Moreover, while

many switching cost estimates reported in the literature are around 250ms [40, 189], more recent

estimates go as low as 50ms [126]. The significant difference in decoding between one and two-cue

trials in both our experiment and [128] lasted only 50 ms. Therefore, the literature is inconclusive

as far as the possibility of attributing the decoding differences we observed to switching cost.

Generally, while the sequential template-switching interpretation remains a possibility, considering

previous research we believe it is a less likely alternative.

Another possibility is that multiple templates can exist simultaneously but at a cost. According

to this view, while attentional capacity is limited it can be flexibly divided to accommodate multiple

items at the expense of representation quality. Similar conceptualization of working memory have

been suggested [102]. Moreover, the authors of [128] proposed an attentional load theory with

simultaneous maintenance of mutually suppressive templates, which could be interpreted as a

variation on the flexible attentional capacity theme.

Finally, it is also possible that the templates are rhythmically oscillating. One recent study

demonstrated oscillatory patterns in behavioral performance when attending to two cues [136].

While interesting, analysis in [136] focused only on hit rate, ignoring the effects of attentional

load on false-alarm rates which, according to our results, are more substantial. Unfortunately, the
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literature mostly consists of paradigms with stimuli presentation until response, making post-hoc

analysis for oscillatory behavior difficult.

Overall, it is important to note that both [128, 136] do not fully explain our results. Both

paradigms consist of only target-present trials, and it remains unclear how either theory could be

extended to account for the increased frequency and decoding accuracy of false-alarm trials in the

multiple templates condition. Further experiments that center target-absent trials and deliberately

manipulate cue presentation onset (similarly to [136]) are required to thoroughly test rhythmic

template fluctuations. Similarly, a version of our experiment with multiple targets (similarly to

[128]) could have interesting implications.

To summarize, we used a signal detection paradigm that requires active guidance by attentional

templates. Our results seem sufficient to reject most versions of the multiple-item-template hy-

pothesis. Several substantial differences in both behavior and EEG decoding indicate that multiple

templates are not able to guide attention as well as a single template. One interesting result of our

experiment was that maintenance of multiple templates increased the likelihood of false-alarms

while only slightly decreasing hit rates. This could have practical implications, as many tasks

(such as aviation security or radiology screening) prioritize low false-negative rates, even at the

expense of a slightly inflated false-positive rates [152]. While not conclusive, some of our results

are consistent with recent theories of attentional load such as the competition model suggested by

[128] or the fluctuating templates suggested by [136]. However, further research is required into

attentional load effects during target-absent trials.
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CHAPTER 6

GENERAL CONCLUSIONS AND REFLECTIONS

6.1 What Was Accomplished

This thesis contains several relatively distinct components. Before concluding this document,

it is worth highlighting a few of its more interesting elements:

• The Feature Imitating Network (FIN) framework enables the integration of expert knowl-

edge into deep learning models. This middle ground between rigid hand-crafted feature

engineering and unpredictable data-hungry deep learning models has already sparked some

interest. So far, this framework has been utilized in various domains such as natural language

processing, computer vision, and predicting athletic performance [83].

• EEG decoding results demonstrate the direct impact of attention load on modulation of

sensory representation. Observing this latent variable provides direct evidence of the cost

of divided attention. Moreover, behavior in target absent trials (and neural correlates of this

behavior) reveals a manifestation of this cost that was not explored in previous literature.

• The EEG feature extraction pipeline, originally a sub-component of a larger project, achieved

modest popularity among EEG researchers and have become a collaboratively maintained

standalone library1.

6.2 Future Directions

There are multiple limitations to the current Feature Imitating Networks framework. First and

foremost, FINs do not currently accept variable length inputs. Remedying this is not as simple as

may initially seem, as feature (for instance, entropy) calculation often requires access to the full

input vector. Furthermore, a thorough examination of how the task specific tuning changes the

embedding in each FIN sub-model is required to support our intuition that the network is adapting

the hand-crafted features to task requirements, rather than for instance learning a completely new

embedding.

The presented cognitive neuroscience research also warrants follow up experiments. Behavioral
1https://github.com/sari-saba-sadiya/EEGExtract
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differences between three-cue and no-cue conditions were inconclusive. While it is likely that there

is some attentional guidance in three-cue trials, future experiments with larger sample size are

required to properly validate this intuition. Additionally, analysis indicated that attention load

has significant effects on behavior in target-absent trials. Further experiments focusing on target

absent-trials are needed to identify the changes to the decision making process responsible for the

behavioral differences. For instance, it is unclear if the changes are driven by top-down changes in

task parameters (such as a reduced decision threshold), or bottom-up changes in how the sensory

evidence is processed.

6.3 Reflections on Deep Learning in EEG

The real-world applications of machine learning for EEG data are numerous. However, whether

the application is a medical-diagnostics tool [56] or a thought controlled prosthetic [192], a number

of conditions need to be met for the developed algorithms to have any real-world impact. Perhaps

most importantly, performance needs to be consistent even when testing on data from unseen (out

of training sample) subjects, and despite some variability in data acquisition circumstances (for

instance, unseen EEG task). Preparing the literature review, I was dismayed to discover that the

vast majority of researchers do not report any out-of-sample testing (one notable exception being

[56]). As can be observed in Section 3.1, the difference in performance between "seen task seen

subject" and out of sample data can significant. Generally, out of sample testing was reported for

the algorithms proposed in throughout work. Hopefully, this practice will become more common

as the field of EEG focused machine learning matures, and the demand for algorithms that perform

well in the real world increases.

6.4 Reflections on Accessibility

Code and data for reproducing the experiments presented in this thesis will be made available.

All developed machine learning algorithms are already available on several github repositories.

The interest there repositories generated is a testament to the much discussed importance of

accessibility in science. However, an unexpected hidden benefit I had the pleasure of experiencing

is the friendship and collegiality that can blossom from an email inquiring about a run time error.
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APPENDIX A

DECODING TARGET-ABSENT AND FALSE ALARM TRIALS

There was no significant decoding for either one or two-cue target-absent trials. Difference was

similarly not significant. However decoding in two-cue target absent trials was higher than for

one-cue target absent trials. This correlated to the behavioral results observed. Namely the higher

false-alarm rate in the two-cue condition.

Figure A.1 Decoding target-absent EEG trials. There were no significant decoding clusters for
either the one or two-cue target-absent trials.
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Figure A.2 Decoding one-cue target-absent EEG trials. There were no significant decoding clusters
for either the one-cue target-absent false-alarm or correct reject trials.
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APPENDIX B

DECODING SIMULATED NOISE

To insure that our preprocessing does not inflate classifier accuracy. We simulated noise by

producing a noise trial 𝑛𝑖 for every real EEG trial 𝑥𝑖, the label of the noise trial corresponded with

the label of the real trial, and for every electrode we simulated the noise 𝑛𝑖 𝑗 by sampling from a

Gaussian distribution with the same mean and standard deviation as 𝑥𝑖 𝑗 and smoothing the resulting

signal using a moving mean (4-sample window). This is a stringent test, as in non-EEG data the

standard deviation and mean could potentially be meaningful for signal classification, however, this

should not be the case in our EEG data (especially considering the colors are isoluminant).

As can be seen in figure B.1, there were no significant classification clusters for noise data

generated using target-present correct one-cue trials.

Figure B.1 Classification of noise data generated using target-present correct one-cue trials.
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APPENDIX C

MAHALANOBIS DISTANCE DECODING RESULTS

In the literature, EEG trials are always averaged before classification using the Mahalanobis distance

methods [184, 190]. For instance, the researchers might divide the data into five equal parts, each

with an equal number of trials from each label. For every label, the trials are averaged to produce

five trials, five-fold (leave-one-out) classification is used to get decoding accuracy. While x-fold

iterations are the default for the ADAM LDA classifier, the number of trials in each fold is greater

than one, resulting in less noisy classification performance (Figure c left). We produced a new

division of trials before every six-fold loop, adding another layer of selection, and increasing the

number of classifiers we train from 10 to 50 (10 different data divisions, each producing 5-folds).

While the overall performance is comparable between the default LDA classifier and the Ma-

halanobis distance classifier we implemented. Moreover, the overall trend in the data remained the

same. For instance, target-present correct decoding was significant earlier (and lasted longer) in the

one-cue condition in comparison to the two-cue condition (Figure A.2 right). However, the added

layer of averaging seems to mask the transient effects, and there was no longer a significant cluster

of difference between the two cues.
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Figure C.1 Left: Three Iterations of Mahalanobis Classification, each is the result of a five-fold
classification, in each iteration the trial were randomly assigned to a different fold, and trials for
each label were averaged, producing five trials per label in total. Right: Target-present correct
results using 10 iterations of the 5-fold Mahalanobis classifiers.
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APPENDIX D

BAYESIAN ANALYSIS

Default JASP prior of 0.707 on the Cauchy scale with 95% credibility interval was used for all

Bayesian paired t-test. The null hypotheses were that the hit rate, false-alarm rate, and d-prime did

not differ across three and no-cue trials. Bayesian factors, error percentages, median effect sizes,

and effect size confidence intervals are provided in the table below. Follow up robustness check

demonstrates that the null hypothesis remains more likely than the alternative for a wide range of

priors.

Measure being tested 𝐵𝐹01 error % Median effect size Effect size
confidence interval

Hit rate 4.628 0.024 −0.022 [−0.398, 0.353]
False-Alarm rate 2.879 0.026 0.187 [−0.191, 0.574]

d-prime 2.122 0.026 −0.242 [−0.634, 0.14]

Table D.1 Results of Bayesian paired t-test for hit rate, false-alarm, and d-prime equality in three
and no-cue trials.

Figure D.1 Bayes factor robustness check for hit rate Bayesian paired t-test analysis.
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Figure D.2 Bayes factor robustness check for false-alarm rate Bayesian paired t-test analysis.

Figure D.3 Bayes factor robustness check for d-prime Bayesian paired t-test analysis.
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