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ABSTRACT 

Gas-based chemical sensors have proven invaluable for investigating the underlying 

chemical configuration of a particular odorant. Technologies such as gas chromatography-mass 

spectrometry and hyphenated ion mobility spectrometry have elucidated numerous causal 

factors and biochemical pathways contributing to a variety of healthy and pathologic conditions. 

Nevertheless, these technologies face innate challenges that have precluded their adoption and 

implementation in the clinical environment. As a result, a considerable amount of research and 

development has been geared towards fabricating cheap, easy-to-use, and highly portable 

electronic noses. These devices have demonstrated excellent potential for applications such as 

environmental monitoring, food analysis, and forensic science. Moreover, innovations in 

nanotechnology and other materials science fields have spurred the ideation and creation of 

highly efficient electronic noses. However, the broad range and low concentrations of chemical 

metabolites observed in breath profiles, hinders their use as medical diagnostics for complex 

diseases. Here, this work proposes a novel technology utilizing biologically based chemical 

biosensors to accurately characterize the volatile profiles associated with pathological disease 

states, especially that of cancer. The development of this powerful and efficient gas-sensing 

system has the potential for use in a variety of real-world contexts, including homeland security, 

law enforcement, and medicine. 

 It is well known that the presence of disease alters underlying biochemical processes, 

thereby influencing metabolic byproducts and the volatile chemicals excreted via the breath. 

Existing manmade chemical sensors as medical diagnostics lack the ability to differentiate the 

breath profiles of healthy individuals from those with complex diseases. Chapter 1 investigates 



 

the field of volatolomics as a whole, including the gas-based identification of ‘simple’ diseases 

and the application of state-of-the-art sensor technologies to diagnose complex pathologies. In 

chapter 2, the methodology for all experiments involving this novel gas-based biosensor in the 

context of disease diagnosis is discussed. Chapters 3, 4, and 5 detail applied research which 

validates the biosensors’ powerful abilities to differentiate chemicals and chemical profiles. This 

work serves to establish its potential as a non-invasive medical diagnostic using biological 

matrices, such as breath profiles. Finally, chapter 6 discusses the current limitations of the proof-

of-concept technology as well as modifications that will mitigate such limitations and aid in the 

creation of an effective state-of-the-art breath-based medical diagnostic.
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CHAPTER 1 | INTRODUCTION 

Volatolomics 

Chemical molecules are the building blocks of the material world. Depending on their physical 

properties and environmental conditions, molecules can exist in solid, liquid, or gaseous forms. 

For example, a sufficient increase in temperature can break the covalent bonds of H2O molecules, 

evaporating the hydrogen and oxygen atoms into their respective gases. The resultant volatile 

chemicals can convey a considerable amount of information about the underlying chemical 

composition of the stimulus itself. Since atoms in the gaseous state can diffuse more freely than 

those of solids or liquids, gas-based sensing offers a method for non-invasive chemical analysis, 

particularly important for toxic, delicate, or otherwise inaccessible stimuli. Today, such gas 

sensors exist in a litany of fields, from law enforcement to environmental monitoring to medicine. 

However, given the millions of known chemicals and minute conformational differences between 

individual species, accurately characterizing a volatile requires exceptionally high precision. This 

task is made even more difficult when one considers that the vast majority of stimuli are 

constructed of heterogeneous molecular matrices, significantly complicating the associated 

volatile profiles. These demands have led to the development and progression of a number of 

disparate scientific domains. Volatolomics, one such field still in its infancy, seeks to apply 

chemical sensing technologies intended to aid in the identification of the unique volatile organic 

compounds (VOCs) emitted by biological organisms[1]. Volatolomics has direct implications for a 

wide variety of societal sectors. In food science, the VOC profiles of specific foodstuffs have been 

observed to indicate overall quality and possible nutritional deterioration[2]. In environmental 
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Table 1.1 | Characteristic Odors of Disease. Patient odor has long been used by physicians as a 
diagnostic element. A large number of diseases have been documented to elicit stereotypical 
odors, perceivable even with the human nose, which displays relatively poor olfactory 
capabilities relative to other animals. Adapted from [3, 4]. 

maintenance, the growing number of densely populated cities has led to an increased demand 

to actively monitor air pollution levels via IoT (Internet of Things) devices[5]. In homeland 

security, detecting and differentiating between the volatile profiles of various explosive 

precursors could allow means for highly accurate, non-destructive sampling and safer public 

spaces[6]. 

Certain diseases have been known to exude particular odors since antiquity[4, 7-11] and 

physicians were taught to consider smell as a key factor for assessing a patient’s health until 

relatively recently (Table 1.1) [12-14]. Nevertheless, this subjective olfactory-based diagnostic 

fell into disuse with the advent of objective technologically based diagnostics. In fact, gas-sensors 

as medical devices are just now becoming standard tools in research laboratories and clinical 

practice. Capnography, the monitoring of CO2 levels in patients’ exhaled breath, has enabled 

Disease Source Smell 
Diabetic Ketoacidosis Breath Rotting apples, acetone 

Renal Failure Breath Stale urine 
Intestinal Obstruction  Breath Feculent, foul 

Liver failure Breath Musty fish, raw liver, feculent 
Fetor hepaticus Breath Newly mown clover, sweet 

Pneumonia Breath Putrid 
Typhoid Skin Freshly baked brown bread 

Yellow Fever Skin Butcher’s shop 
Squamous-cell carcinoma Skin Offensive odor 

Diphtheria Sweat Sweet 
Rubella Sweat Freshly plucked feathers 

Schizophrenia Sweat Mildly acetic 
Bladder Infection Urine Ammonia 
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Figure 1.1 | Real time monitoring of CO2 using a handheld capnograph device. Capnography 
provides insight into the amount of expired carbon dioxide in exhaled breath. As such, it can aid 
in breath sampling protocols by standardizing collection procedures using chemically derived 
information. Reproduced from [15]. 

anesthesiologists to significantly mitigate hypoxia induction and is useful for enhancing the 

quality of breath samples (Figure 1.1) [16, 17]. For individuals with suspected bronchial asthma 

Figure 1.2 | Breath profiles include various volatile metabolites useful for disease diagnosis. 
Exhaled breath contains a myriad chemical information pertaining to underlying biochemical 
processes. Analysis of breath profile constituents can aid in non-invasive disease diagnosis. a) 
Metabolic byproducts from cells and tissues are passed into the blood stream based on the 
partition coefficient between fat and blood (lf:b). As the pulmonary circulatory system transports 
blood and metabolic byproducts to the lungs, molecules diffuse into the alveoli of the lungs based 
on the partition coefficient between blood and air (lb:a). Reproduced from [18]. b) These volatile 
biomarkers are excreted via the breath in trace-level concentrations, which can aid in identifying 
underlying metabolic processes. Reproduced from [19]. 

a) b) 
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or other inflammatory airway diseases, fractional exhaled nitric oxide (FENO) measurements are 

commonplace[20-22] and may even be superior to conventional diagnostic approaches[23]. 

Exhaled levels of acetone have been shown to increase significantly in those with type I diabetes, 

especially during bouts of ketoacidosis[24-29]. Even nonpathogenic, yet suboptimal cellular 

processes, such as free radical formation and systemic oxidative stress can be determined by 

elevated concentrations of ethane, pentane, and other unbranched hydrocarbons (Figure 1.2) 

[30-33]. 

Selective Gaseous Sensors 

Independent of the specific analytical technology, all gaseous chemical sensors operate according 

to two basic principles: chemical recognition and signal transduction. Initially, the device must 

incorporate methods for interacting with the analytes of interest, oftentimes separating out 

individual chemicals based on one or more physicochemical molecular properties. Thereafter, a 

readout signal is generated permitting direct stimulus classification or subsequent analysis 

designed to aid in stimulus classification. Two approaches to gas sensing have been realized due 

to the implementation of novel technologies and new knowledge acquisition. Targeted bottom-

up approaches first identify volatile biomarkers corresponding to a disease of interest and 

subsequently look to fabricate gas sensing devices most equipped to separate out and identify 

these chemicals. Conversely, untargeted top-down strategies utilize broad-scale sensors that aim 

to characterize highly informative features present within a sample with no preconception of 

potential biomarker identities[1].  
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For pathophysiological conditions well characterized by an individual chemical species, 

targeted sensors can be highly effective for classification (Figure 1.3a). These selective sensor 

technologies ought to be able to detect the volatile marker of interest at the appropriate 

concentration. Since exhaled breath aerosol consists predominantly of a mixture of nitrogen, 

oxygen, carbon dioxide, water vapor and inert gases, devices such as capnographs do not face 

significantly high sensitivity requirements[7]. However, in addition to these main breath 

constituents, more than 3400 other volatile biomarker species have been found at trace levels, 

though some of these are likely of exogeneous origin[34-36]. Selective sensors are constructed 

according to a lock-and-key type model, in which an individual chemical species and 

corresponding sensor interface are highly specific for one another. This ligand specificity enables 

high degrees of sensitivity, capable of achieving the necessary parts-per-million and parts-per-

billion detection thresholds for some of these compounds. Nitric oxide, for example, is routinely 

present at low parts-per-billion levels in healthy individuals, yet average concentrations in those 

Figure 1.3 | Single and multi-component sensor schematics. a) Sensors highly specific to 
individual chemicals can provide exceptional sensitivity owing to the sheer number of integrated 
sensors. Higher sensor concentrations enable a higher rate of analyte-sensor chemical reactions, 
capable of eliciting high signal-to-noise ratios. b) Multi-component sensors are necessary for 
highly heterogeneous gaseous stimuli. Although these sensors do not display the fine detection 
limits of single-component sensors, they can be made responsive to a range of chemical species 
whose identity is dependent on incorporated sensor materials. 

a) b) 
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with bronchial asthma are increased three-fold[37-41]. Innovative functional transducer surface 

modifications, such as electrode platinization and electrochemical film layering, have been found 

to heighten nitric oxide sensitivity and selectivity, culminating in more robust patient 

classification[42-45]. Alternatively, exhaled acetone concentrations for healthy individuals have 

been noted to be between 300 and 900 parts-per-billion, whereas diabetics’ levels often exceed 

1.8 parts-per-million[46, 47]. During bouts of diabetic ketoacidosis, acetone concentrations can 

reach a thousand parts-per-million or higher (Figure 1.4). Novel selective sensor designs have 

continued to improve device sensitivity reaching low parts-per-billion ranges[48-54]. Such highly 

selective sensors are simple, robust, and provide adequate discriminability for some diseases[55]. 

However, they do not offer sufficient diagnostic power for all, or even most pathophysiological 

conditions[45, 47]. The presence of confounding factors (i.e. concomitant disease, smoking 

Figure 1.4 | Exhaled acetone concentrations are indicative of underlying ketogenic conditions. 
a) The overproduction of ketone bodies induces changes in blood chemistry. Elevated levels of 
breath-based acetone correspond to blood serum concentrations and have been observed for 
those experiencing ketogenetic conditions and diabetics at large. Reproduced from [1].  b) A 
portable chemo-resistive acetone sensor incorporating interdigitated platinum electrodes with a 
resistance temperature detector (RTD) is shown. Back-heating by the platinum electrode 
increases the sensitivity of silicon-doped tungsten oxide nanoparticles on the electrode surface 
with detection limits of 20 parts-per-billion. Reproduced from [50]. 

a) b) 
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status, etc.) or large variations in individual breath-based VOCs, can complicate real-world 

diagnostic implementation[39, 41, 56-60]. The majority of diseases are complex phenomena that 

have multifaceted consequences on cells, tissues, and entire organs. As such, the immediate 

effects of a specific disorder can elicit downstream signaling cascades, increasing or decreasing 

levels of various primary as well as secondary metabolites. Devices that aim for high chemical 

specificity with narrowly tuned sensors are effective for a handful of diseases but are generally 

not well-suited for multi-component identification. 

Instead of relying on single-component sensing methods for disease detection and 

classification, the majority of diseases have been found to be associated with altered levels of a 

host of disparate VOCs[15]. This suggests that multi-component discrimination techniques may 

offer superior diagnostic potential, especially for heterogeneous samples[61] (Figure 1.3b). The 

breath profile of a particular individual is a snapshot in time reflecting a unique combination of 

genetic, dietary, environmental and lifestyle influences. As such, there may not be a linear 

correlation between any single biomarker and an underlying pathological state. That is, the 

concentration of a particular VOC found in a healthy individual may be the same as that found in 

a diseased patient. Even two patients expressing the same pathology will have some degree of 

variability in VOC concentrations, based on the resolution of the analytical technology. Multi-

component sensors approach this challenge by integrating various sensor measurements to 

glean relevant stimulus information from a large proportion of the constituent volatile chemicals. 

Such systems are characterized by more degrees of freedom and superior discriminatory power 

than selective systems. Even for diseases well-characterized by individual chemical species, broad 

spectrum chemical analyses can offer superior diagnostic precision due to the idiosyncratic 
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nature of breath samples[36, 62]. A number of multi-component gas sensing technologies have 

undergone rigorous laboratory testing with the goal of demonstrating sufficient discriminability 

to warrant clinical implementation. 

Gas Chromatography-Mass Spectrometry (GC-MS) 

One untargeted technology that has shown tremendous potential for analyzing breath samples 

is gas-chromatography mass spectrometry (GC-MS) (Figure 1.5). Gaseous samples are initially 

collected and concentrated onto an analyte trapping device, usually in the form of a sorbent tube 

or microextraction fiber. The matrix containing these adsorbed sample chemicals is then placed 

inside the injection port of a gas chromatograph. Here, an ultra-pure carrier gas is passed through 

the sample as the oven temperature is incrementally increased to facilitate analyte-sorbent 

desorption. With continual heating, chemicals are desorbed in accordance with their volatility 

before entering a capillary column—highly volatile components are desorbed at lower oven 

temperatures followed by the elution of those with lower volatilities at higher temperatures. 

Column- and molecule-specific properties determine the state phase probability and rate of 

transmission through the column. The larger and less volatile components will display longer 

column retention times and will elute later than smaller, highly volatile chemicals (Figure 1.5b). 

Prior to pairing with mass spectrometers, detectors such as flame-ionization and thermal 

conductivity detectors, were incorporated to measure the elution time of each molecule. 

However, similar retention times for compounds, such as pentane and isoprene, have been 

observed, confounding readout accuracy[63, 64]. The spatiotemporally stratified gas molecules 

are depressurized at the GC-MS interface before entering the mass spectrometer. Once the  
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Figure 1.5 | GC-MS. a) GC-MS schematic illustrating separate components. Carrier gas is purified 
and passes over the heated sample at the sample inlet/injection port. Molecular separation 
occurs along the length of the capillary column. Spatiotemporally segregated analytes are 
ionized, fragmented, and separated by mass-charge ratio in the mass spectrometer (MS). b) Gas 
chromatography separates ions based on size and volatility, or gaseous vs. liquid state phase 
probability. c) Electron ionization schematic. An electron beam interacts with molecules of a low-
pressure gas cloud. Proximal electrons energize the analyte molecule, cueing electron release 
and formation of a positively charged ion. d) Different ionization techniques can result in 
completely different fragmentation patterns, eliciting contrasting mass spectra. Amphetamine 
(left) and a derivative of amphetamine (right) were both observed to exhibit variability in 
fragmentation patterns based on the ionization technique. Reproduced from [65]. 

a) 

b) c) d) 
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eluted chemicals have entered the mass spectrometer, they are bombarded with 70-eV 

electrons, ionized, and, with sufficient energy, rapidly fragment to smaller ions. The low-pressure 

environment of the mass spectrometer enables ion flow trajectories to be dictated purely by 

electromagnetic properties, with little to no influence from ambient air particles. The stream of 

ions travels along the mass-to-charge analyzer until striking a detector. An overall sample 

chromatogram indicates the relative quantity of unique molecules separated by their retention 

time. At each time step, a unique mass spectrum is constructed, detailing an analyte-specific 

molecular configuration. The unique separation techniques utilized by gas chromatography and 

mass spectrometry serves to significantly enhance molecular discriminability than using either 

one as standalone sensors[66, 67]. 

A decade after the first GC-MS publication in 1959, Jansson demonstrated the potential 

use of GC-MS for breath analysis by identifying a few breathborne VOCs, including methane, 

acetone, and isoprene[68, 69]. While experiments utilizing urine headspace vapors were 

analyzed to generate metabolic profiles[70-73], Pauling’s successful identification of 250 

compounds from exhaled breath first hinted at the power of gas sensors for medical 

volatolomics[74]. A subsequent experiment sought to link increased levels of sulfuric compounds 

to liver cirrhosis[75]. Research by Gordon and O’Neill facilitated the incorporation of whole-

sample mass spectral matching algorithms to a public database to successfully distinguish lung 

cancer patients from healthy controls based solely on expired breath[76, 77]. Further work 

utilizing breath-based sensors as disease diagnostics by Phillips in the 1990s supported the notion 

that altered breath profiles were indicative of cancer[78] and also revealed a correlation with 

schizophrenia[79, 80]. The positive results garnered from these early studies spurred the 
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development of novel sampling technologies[81-88] and protocols[7, 33, 82, 89-91], as well as a 

plethora of research into the VOCs involved in various pathogenic conditions[63, 92-115], with 

particular emphasis on lung cancer[19, 87, 88, 116-133]. Experimental findings by Barash et al., 

suggest that breath-based GC-MS analysis is even powerful enough to differentiate between 

disease subtypes caused by genetic mutations[134].  

The resolution of GC-MS and related technologies has improved tremendously since their 

inceptions, with current day systems able to extract over 500 biomarkers from individual breath 

samples[36, 78, 134]. Owing to their high information content, GC-MS and other mass 

spectrometry techniques have been integral research tools for identifying novel compounds 

contained within heterogeneous samples. The elucidation of key compounds indicative of a 

particular stimuli or associated with a disease has enabled the fabrication of highly efficient 

application-specific targeted sensors. Moreover, VOCs common to both in vivo and in vitro 

experiments have supported the possibility of utilizing cell culture headspace as a proxy for 

exhaled breath under specific environmental conditions[135, 136]. This finding has facilitated 

proof-of-concept research on a broad range of novel gas-sensing devices for pathogenic and 

nonpathogenic VOC-profile analysis without the need for animal or human subjects[137-156]. 

GC-MS has shown comparable performance to standard diagnostic imaging techniques, such as 

CT and PET scans, while avoiding patient exposure to doses of ionizing radiation[157-161] and 

potentially reducing the associated high rates of false positive diagnoses[162, 163].  

However, GC-MS remains largely sequestered to research laboratories owing to a host of 

undesirable attributes for a clinical diagnostic. The operation of such instruments especially for 

highly complex samples, such as breath, requires expert personnel. For any given sample, the 
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technician must consider a myriad variables such as the operation mode (split vs. splitless), 

column oven temperature, type and velocity of carrier gas, thickness of the stationary phase, 

column length and diameter, etc.[65]. Additionally, the resolution and signal-to-noise ratio are 

positively correlated with the length of the capillary column. This necessitates longer sample 

processing times for heterogeneous samples in order to attain minimally separable 

chromatographic peaks[19]. Though GC-MS is touted as a highly sensitive analytical technology, 

sample pre-concentration is necessary for breath-based VOCs. This is due, in part, to the low 

concentration of biomarkers in the breath as well as the inefficiency of the mass spectrometer’s 

electron ionization process, which only ionizes 0.01-0.001% of the total analyte molecules[65]. 

Furthermore, the high oven temperatures restricts GC-MS to analyzing compounds that can 

sustain thermal vaporization without chemical decomposition[65, 164]. While GC-MS is not likely 

to be of particular use as a point-of-care clinical diagnostic, it has conclusively demonstrated that 

breath-based biomarkers, potentially indicative of an underlying pathophysiological condition, 

are well within detectable ranges. As related instrument technology continues to mature, greater 

degrees of sensitivity will be possible, unveiling novel chemical species that may aid in our 

understanding of the underpinnings of a variety of disease states[65]. 

Ion Mobility Spectrometry (IMS) & High-Field Asymmetric Waveform Ion Mobility 
Spectrometry (FAIMS) 

Another type of untargeted gas-sensing technology, ion mobility spectrometry (IMS), has also 

proven useful for disease detection and differentiation by using volatiles from exhaled breath 

samples (Figure 1.6)[165-167]. As the name suggests, this technology initially ionizes sample 

molecules, which allows for analyte separability based on the different mobility constants unique 
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Figure 1.6 | Ion mobility spectrometry (IMS). a) Schematic illustrated IMS principles. Molecules 
are ionized in the ionization region before being intermittently passed to the drift tube. A carrier 
gas is applied in the opposite direction of ion flow, whose molecules collide with sample ions at 
differential rates based on cross-sectional area. Reproduced from [168]. b) Image of IMS drift 
region housing drift tube attached to reaction region housing faraday plate for ion detection is 
also depicted. c) Internal drift tube shown with attached electrical resistors to augment injected 
current in ring electrodes. Reproduced from [169].

 to each type of ion. Most commonly, these ions pass into a trapping region where packets of 

them are intermittently released into the drift tube (Figure 1.6a). Within the drift tube, ions are 

exposed to a homogeneous electric field, permitting a higher drift velocity in ions with higher 

charges. Simultaneously an inert drift gas is propelled in the opposite direction of the electric 

field and ion trajectories. Larger ions tend to engage in more collisions with neutral drift gas 

molecules lowering their velocity relative to smaller ions. Therefore, once the ion gate is opened, 

the ion’s overall mass and charge will determine the overall rate of migration and arrival time at 

the end of the drift tube. Here, spatiotemporally stratified ions can be detected to form a mobility 

spectrum or undergo additional analysis via the incorporation of tools like mass spectrometers. 

IMS has two important similarities to gas chromatography: the device can be operated at 

atmospheric pressures and the drift tube length determines spectral resolution. This latter 

feature constrains the miniaturization of drift tube-based IMS systems, especially for complex 

sample analysis (Figure 1.6b). While systems with circular drift tubes can be constructed to 

mitigate the resolution-size tradeoff[170], other variants of IMS, such as high-field asymmetric 

a) b) c) 
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waveform ion mobility spectrometry (FAIMS), are more amenable to device miniaturization 

(Figure 1.7) [168]. In FAIMS, molecules of a carrier gas are ionized to form reactant ions, which 

collide with and bind to analyte molecules. These cluster ions are pulled into the filter region by 

 Figure 1.7 | High field asymmetric waveform mobility spectrometry (FAIMS). FAIMS technology 
is related to IMS but removes the need for an elongated drift tube and shutter, promoting device 
miniaturization and continuous stream injection. a) Schematic of FAIMS-based operation inside 
Owlstone Nanotech’s µFAIMS analyzer. Molecules are ionized in the ionization region (not 
shown) and are transmitted through the FAIMS filter. The ions that follow stable flight 
trajectories and reach the detector electrode are determined by the radio frequency input as 
well as the compensation voltage. Ionization region and detector electrode are separated by a 
300 µm gap. Individual electrode columns are 30 µm in width. Reproduced from [171]. b) Image 
of Owlstone Nanotech’s µFAIMS analyzer. Reproduced from [171]. c) FAIMS working principle 
relies on the differential mobility of various ion species. Those with similar mobilities will pass to 
the detector electrode at the same compensation voltage. A full sample mixture can be analyzed 
by sweeping through a range of compensation voltages. Reproduced from [172]. d) Owlstone 
Nanotech’s Lonestar with Atlas sampling system incorporating the µFAIMS analyzer for sample 
testing. Reproduced from [173]. 

a) b) 

c) 
d) 
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the electrical field between the top and bottom electrode[174]. FAIMS-based sensors 

incorporate strong oscillatory radio frequency fields which alters the flight trajectory of the 

cluster ions. Simultaneously, a low-strength direct current compensation voltage is applied 

between the top and bottom electrode. By changing the compensation voltage, different types 

of ions will follow sufficiently stable flight trajectories to traverse the filter region and measured 

at the detector. Ions that follow unstable flight trajectories collide with and are neutralized by 

one of the electrodes. Sweeping this value through a preselected or experimentally determined 

range can produce a plot of ion current intensity as a function of the compensation voltage.  

IMS-based devices are relatively new in the field of diagnostic volatolomics. Traditional 

applications of IMS were predominantly concerned with drug detection, explosive detection, and 

environmental monitoring[168]. One of the earliest studies applying an IMS sensor as a 

diagnostic tool demonstrated significant differences between the chromatograms of healthy 

individuals and those with lung infections[175]. Subsequently a number of studies have sought 

to provide support for IMS as a clinical diagnostics for a range of pneumological and nephrological 

conditions as well as those common in critical care[176]. Mobility spectrum chromatograms from 

healthy individuals were shown to be differentiable from those of individuals with lung 

cancer[177-180] and other diseases[166, 181-187]. Some evidence suggests that IMS devices can 

also be used to differentiate between disease subtypes due to genetic mutations[188]. As of late, 

FAIMS devices have been investigated owing to their attraction as point-of-care devices. They 

have proven effective in identifying various cancers from breath samples and urine 

headspace[97, 173, 189-191]. A number of commercial products have been developed, some of 

which are currently being tested in clinical trials (Owlstone, Thermo Fischer, Chemring, Bahia 21). 
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Having been routinely utilized for field-based applications, IMS and FAIMS sensors are 

quite robust and operable in a variety of environmental conditions. Additionally, the processing 

time for IMS and FAIMS devices is on the order of seconds to minutes, offering online or quasi-

online sample analysis[168, 171, 192-196]. GC-MS requires sample pre-concentration on 

trapping materials before offline analysis. In contrast, IMS devices avoid this requirement as their 

detection limits can progress into the parts-per-trillion ranges[168]. Hyphenated IMS techniques 

with in-line pre-concentrators can even offer sensitivities in the parts-per-quintillion range[197]. 

A common struggle for breath-based gas sensing technologies is the high levels of moisture 

present in exhaled breath, capable of decreasing device sensitivity by more than 40%[198-200]. 

The incorporation of multi-capillary columns increases water retention time, enabling a gas 

chromatographic-like form of molecular pre-separation[175, 195, 198]. However, the removal of 

humidity from a breath sample can wash out many organic compounds and shift peak positions, 

significantly decreasing analyte identification accuracy[176, 201]. 

IMS and FAIMS technologies are powerful tools for analyzing gaseous stimuli, yet they are 

not without their drawbacks. These systems are restricted to only ionizable compounds and, 

unlike GC-MS, there is no general database against which to compare mobility spectrum 

chromatograms. Sample ionization often introduces radiation hazards[168, 197] and readouts 

for such technologies are rather complex, requiring skilled operational personnel. However, the 

largest concern when employing IMS and FAIMS devices is their limited resolution. Ions can 

cluster and interact in the ionization region (and drift tube if present) leading to overlapping 

chromatographic peaks[172, 197]. High resolution is likely critical for highly complex breath 

samples that can contain well over 500 compounds while only minute differences in a fraction 
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may be relevant for diagnostic purposes. Novel ultra-high-resolution ion mobility 

spectrometers[202] and the selective use of hyphenated techniques can aid in analyzing specific 

chemicals present in complex mixtures, yet whether this will lead to a preference for IMS over 

GC-MS remains to be seen[172]. 

Electronic Noses 

Untargeted chemical sensors such as GC-MS and hyphenated IMS/FAIMS can provide excellent 

insight into the underlying biochemical structure of a gaseous sample. Stand-alone IMS/FAIMS, 

while sacrificing specific analyte identification, permits portability, lower power requirements 

and a considerable degree of separation strength. Such technologies are sensitive enough to 

detect a large number of trace level chemicals present in exhaled breath, sometimes even 

without sample preconcentration. However, for complex diseases involving subtle concentration 

changes of numerous VOCs, these component-wise methods may not offer sufficient whole 

sample discriminability. Electronic noses, or enoses, strive to generate a qualitative readout of 

sample gaseous stimuli in its totality. Originally inspired by biological olfaction, they seek to 

incorporate numerous cross-reactive sensors and sophisticated signal compression algorithms, 

thereby generating stimulus-specific fingerprints. These “breathprints” can be conceptualized as 

a point in high-dimensional space, in which the number of dimensions is a function of the number 

of sensors[203]. The system design and combinatorial selectivity eliminates the necessity for high 

sensor specificity and engenders an immense encoding hyperspace, capable of classifying highly 

heterogeneous stimuli[204].  

The introduction of cross-reactive sensors reduces the impact of confounding factors, 

such as inter-individual variability in breath profiles[205], since alterations of one or a few VOCs 
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will have a negligible effect on the overall compound signal[36, 102, 206, 207]. Importantly, 

enose sensitivity and specificity correspond to the total amount of nonredundant information 

procurable by each individual sensor. As such, simply incorporating a higher sensor concentration 

density without diversifying response characteristics serves to increase overall system noise[208, 

209]. This critical need for targeted application specificity in sensor design in conjunction with 

significant improvements in nanotechnology, microfabrication and materials sciences have 

fueled the development of novel enose systems. 

The first enose, constructed by Persaud and Dodd in 1982, consisted of two tin oxide 

semiconductors that elicited a conductance change once analyte molecules interacted with 

ambient oxygen atoms on the metallic surface[210]. This metal-oxide semiconductor-based 

sensor encouraged future metal-oxide enose iterations to incorporate a variety of doped metals 

to alter analyte specificity. In these devices, combustion reactions occurring on the surface of the 

metal oxide particles, oxidize or reduce the host material and issue a change of electrical 

resistance (Figure 1.8d) [211]. By operating these enose devices at temperatures ranging from 

200-500°C, reaction rates are increased, thereby enhancing sensitivity and selectivity[211, 212] 

assuming VOC breakdown is avoided[207]. Metal-oxide sensors have shown promising results for 

differentiating breath and urine samples of cancer patients and healthy controls[213-227]. 

Additional studies demonstrated metal-oxide sensors were effective in identifying conditions 

such as diabetes[228, 229] and renal failure[228, 230]. Yet such systems suffer from specificity 

limitations and are sensitive to environmental conditions[208, 211, 231]. 
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Figure 1.8 | Design schematics for various electronic nose technologies. a) Chemiresistor based 
on monolayer-capped metal nanoparticles. b) Chemiresistor based on single-wall carbon 
nanotubes c) Chemiresistor based on conducting polymers. d) Chemiresistor or chemicapacitor 
based on metal oxide film e) Quartz microbalance with selective coating. Reproduced from [27].

Devices incorporating conductive organic polymers offer an alternative to metal-oxide 

based enoses (Figure 1.8c). Here, the conducting polymers serve as the analyte sensing and signal 

transduction element, with a pair of electrodes and a substrate material providing signal 

transmission and structural stability, respectively[232]. These systems pass a voltage across their 

electrode pair, eliciting current flow in the attached conducting polymer[233]. Adsorption of gas 

molecules to the polymer surface alters the electron flow, imparting a measurable change of 

electrical resistance[234]. As a medical diagnostic, conductive polymer-based enoses have been 

used to differentiate cancer patients from healthy controls[118, 235-241], though it is important 

to consider patient history prior to sampling as confounding factors could potentially skew breath 

profiles[242-244]. Such devices have also been investigated as a diagnostic for diabetes[245], 

asthma, and other conditions[246-248]. Enoses based on conductive polymers have been shown 

to be highly susceptible to water vapor, thus complicating online, point-of-care sampling[234]. 

Another common enose design is based on quartz-microbalance technology, which 

incorporates organometallic compounds for chemical adsorption (Figure 1.8e). Upon adsorption, 

the gas molecules alter the mass and therefore the fundamental oscillating frequency of a quartz 

crystal. Chemical modifications to the associated organometallic material can adjust the 

a) b) c) d) e) 
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selectivity of individual microbalance sensors. Such enose devices were among the first to 

demonstrate breath-based discriminability between cancer patients and healthy controls[249]. 

Subsequent studies indicated that quartz microbalances conjugated with sensitive 

metalloporphyrins can differentiate between cancer samples, healthy samples, and those of 

other non-cancer diseases[118, 249-260]. Interestingly, early stage classification was superior to 

that of later stages, suggesting unsuitability as a stage invariant disease diagnostic[252].  

More recently, sensors based on various nanomaterials, such as nanocrystals, 

nanoparticles, or nanowires, have been incorporated into enose devices. The nanoscale 

dimensions not only promote device miniaturization, but the increased surface-to-volume ratio 

increases the rate of sensor—analyte chemical interactions[261, 262]. While individual devices 

vary in design specifics, all nanomaterial-based enoses consist of organic films or functional 

groups that coat the exterior of inorganic conductive nanomaterials to provide VOC adsorption 

sites. However, the manner of signal transduction can provide select system designs with unique 

sensing qualities, which may be advantageous in analyzing samples of a particular nature. For 

example, chemiresistive sensors utilize nanoparticles (Figure 1.8a), carbon nanotubes (Figure 

1.8b), semiconducting nanowires, or a combination of such nanomaterials. Whereas carbon 

nanotubes and semiconducting nanowires display high sensitivity for polar compounds, they 

show little affinity for nonpolar molecules. In pre-clinical testing, devices incorporating these 

nanomaterials have demonstrated an ability to distinguish healthy individuals from those with 

various cancers[19, 101, 102, 106, 109, 114, 116, 134, 138, 263-273] as well as non-cancer 

diseases[274-277]. 
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While the majority of preliminary enose volatolomics research was geared towards 

identifying volatile signatures of many common microbial pathogens[273, 278-310], recent 

research has focused on the utilization of enose devices as diagnostics for a variety of 

noncommunicable diseases. Enoses have a number of advantages inherent to their unique 

system design. Cheap costs, operation simplicity and real-time readouts offer a more ubiquitous 

appeal as point-of-care devices in primary and secondary clinical care. The multitude of e-nose 

designs offers significant flexibility. Yet, it may be difficult to determine the best sensor for a 

given task. Prior identification of key volatiles, through technologies such as GC-MS, can guide 

system design, increasing sensitivity and specificity to the molecules of interest. A single breath 

sample can contain hundreds of types of analytes with wildly differing chemical attributes. As 

such, a complementary approach by combining various bulk and nanomaterials may aid in  

Figure 1.9 | Cross-reactive sensors enables a highly efficient combinatorial encoding scheme. 
a) Left, four sensors can encode a maximum of four stimuli in a labeled-line approach. Right, the 
same four sensors, working as a group and implementing different activation (ON-OFF) 
combinations, can encode a maximum of 15 stimuli. Adapted from [311]. b) Cross-reactivity of 
sensors enables sophisticated pattern recognition algorithms to map stimuli to unique parts of a 
high dimensional encoding hyperspace. Dimensionality reduction techniques can be utilized to 
reduce hyperspace dimensionality and enable response visualizations in an algorithm-specific 
subspace. Adapted from [1]. 

a) b) 
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improved feature extraction and sample identification[312]. E-noses replace the intricate 

molecular separation techniques seen in more conventional technologies with cross-reactive 

sensors (Figure 1.9), promoting device miniaturization and portability. The inclusion of sensors 

capable of responding to numerous analytes also endows e-noses with a robustness to 

environmental variability and background interferants. This feature is critical for applications 

such as breath analysis, in which the concentrations of volatile metabolites can be highly 

codependent. Enoses target the relative abundance of various biomarkers, which may be much 

more indicative of an underlying pathology than exact concentration changes. 

The low-profile nature of enoses makes them an attractive gas-based diagnostic but 

enforces limitations. For the ideal point-of-care medical diagnostic, no pre-processing steps, such 

as the concentration of volatiles onto a sorbent material, will be necessary. Sensitivity is of 

particular concern when analyzing trace-level VOCs present in breath samples with any 

technological intervention. The majority of enose devices exhibit sensitivities in the parts per 

million and upper parts per billion ranges[313]. High relative humidity is a challenge for many 

technologies and enoses are no exception. Varying degrees of water vapor in each breath sample 

complicates system calibration and can induce variation in sensor responsivity[204, 209, 312]. 

The struggle to achieve high sensitivity as well as process humid samples can lead to significant 

losses of potentially useful chemical information. Moreover, sensor drift, characterized by a 

gradual change in output despite no change in input, can corrupt signals and accurate stimulus 

classification[231, 314, 315]. 

When designing an effective gaseous chemical sensor, it is essential to integrate 

technologies from discrete scientific domains. In order to optimize performance, the component 
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limiting device efficacy must be identified and improved[316]. The sensor material interacts with 

the volatile molecules and, thus, serves as the first and most significant bottleneck for stimulus-

related information. Moreover, the sensitive materials seem to exhibit an inherent tradeoff: high 

levels of specificity correspond to high levels of irreversibility[312]. Enoses attempt to find an 

optimal balance between the two so as to enhance device stability and longevity. However, this 

approach seems to significantly limit their chemical resolvability. Biological olfaction, from which 

enoses are inspired, has seemed to favor the latter, given the fact that human receptor cells only 

have a lifetime of a few weeks[317]. Olfactory receptors have also been shown to be more 

broadly tuned than the synthetic sensors of enoses, relying to a greater degree on their 

population-wide activity for odorant processing[318]. Apart from encoding stimuli as a single 

entity, these critical distinctions suggest that enoses bear little resemblance to biological 

olfaction[211]. Considering that living organisms are the ultimate sensing machines, it reasons 

that the demanding conditions of stimulus discrimination in the natural world have imposed 

stringent constraints on effective chemical sensors[319] that human manufacturing has yet to 

match. 

Biological Olfaction 

Olfactory-based chemical sensing is an inordinately difficult task, mandating precise detection 

and efficient encoding of millions of different odorants with strikingly disparate molecular 

configurations[320]. Yet, it can provide critical information about the surrounding chemical 

environment, including the presence and location of food, predators, and potential mates. For 

example, animals must differentiate between vegetation of different genotypes and growth 

stages to determine if they contain a sufficient nutritional payload. Foraging insects identify 
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flowers that have already been visited to maximize the probability of reward procurement while 

minimizing energy expenditure[321-324]. More extremely, all organisms must differentiate 

between toxic and innocuous stimuli for proper growth and development[319]. In fact, the 

benefits of chemical sensing are so valuable that olfaction was one of the earliest senses to evolve 

and striking commonalities are seen between genetically dissimilar organisms[325]. 

In vertebrates, hydrophobic odorant molecules initially enter the nasal epithelium where 

they are bound and solubilized by odorant binding proteins. These proteins transport the 

molecules to the superficially located cilia of olfactory receptor neurons (ORNs). Here, binding 

affinity is dictated by the underlying chemical configuration of the odorant molecule as well as 

the receptor expressed on the cilia. The number and diversity of functional odorant receptors 

(ORs) permits substantial specificity to a broad range of chemicals and is thought to be indicative 

of overall olfactory ability[326]. Humans, for example, possess 388 functional OR genes (802 in 

total), enabling olfactory-based discrimination of up to more than one trillion stimuli[1, 327-329]. 

Canines, whose olfactory sensitivity is 100,000 times stronger than that of humans, display 713 

functional OR genes (971 in total)[326]. Each ORN expresses only a single type of OR, however 

ORs can exhibit significantly different tuning curves, from acutely specific to very broad. One 

theory posits that ORs recognize particular features of odorants, with some being more 

ubiquitous than others, to allow for variable chemical recognition specificity. The axonal 

processes of all ORNs expressing a particular receptor innervate olfactory bulb neurons within 

one of many glomeruli, producing a topographically-specific epitope map[330, 331]. Owing to a 

dense network of inhibitory granule and periglomerular cells, glomeruli function as highly 

efficient information processors, providing a 100-fold decrease in the number of neurons 
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necessary for signal transmission[332, 333]. This is accomplished by incorporating an oscillatory-

based temporal component to the spatially distinct glomeruli, dramatically expanding the 

odorant encoding hyperspace (Figure 1.10) [334-336]. Extrinsic neurons, mitral and tufted cells, 

propagate action potentials to higher order brain areas that further interpret the incoming 

electrical signal[337]. 

 The skeletal system offers immense structural stability, ultimately permitting vertebrates 

unique developmental adaptations and ways in which to interact with the physical 

environment[338]. Alternatively, insects utilize an exoskeleton, limiting growth potential and 

Figure 1.10 | Temporal encoding rapidly expands odor state space. The use of multiple sensors 
enhances the encoding state space in an exponential manner. Adding a dynamic temporal 
component, increases the encoding space even further. For example, using a set of only four 
sensors, each with two possible states (ON-OFF), and 10 time points, allows for over a trillion 
possible spatiotemporal signals (24 = 16, 1610-1 = 1,099,511,627,775). 
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total lifespan. As a result, insects have developed highly acute chemosensory abilities due to their 

reliance on olfaction for nearly all tasks, from food source localization to predator and prey 

detection to identifying potential mates. While many fundamental chemosensory mechanisms 

remain consistent with those of vertebrates, insects have evolved a number of adaptations that 

are well-suited to their ecological niches[339-341]. Odor perception in insects originates in 

microscopic hairlike structures, known as sensilla, that coat the surface of the antennae (Figure 

1.11c). Similar to the nasal epithelium in vertebrates, these sensilla house ORN dendrites that 

interact directly with odorant molecules. Once an odorant molecule is encountered, it enters a  

Figure 1.11 | Sensilla coat the locust antennal surface. a) Antenna depicting individual antennal 
segments. b) Antennal segments housing microscopic sensilla. c) Electron micrograph of distal 
antennal segment depicting various types of sensilla: ch- chaetica, bs- basiconica, co- 
coeloconica, tr- trichodea. d) Individual basiconic sensillum. Tiny pores along the cuticular surface 
allow molecule entry and subsequent ORN-analyte binding. e) Individual trichoid sensillum. Note 
the slender morphology of the trichoid sensillum vs. the basiconic sensillum in d. Reproduced 
from [342]. 

a) c) 

b) 

d) e) 
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sensillum through tiny cuticular pores or spoke channels, where it is solubilized and transported 

to ORNs by odorant binding proteins. ORNs are the site for chemical reception and signal 

transduction and, as such, are of particular importance for chemical sensing. Structural studies  

Figure 1.12 | Olfactory receptors display significant variability in chemical specificity. Functional 
responses of twenty-four olfactory receptors to a panel of 110 different odorants is shown for 
Drosophila melanogaster. Each panel indicates tuning properties of an individual olfactory 
receptor. The tuning curves are ordered according to the number of odorants eliciting a strong 
response. Through combinatorial coding, variable tuning properties allow for discrimination of a 
large number of diverse odorants at low concentrations. Reproduced from [343].
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have demonstrated that densities of olfactory receptor sites can reach 30,000 per µm2[344]. ORN 

response properties are dictated by the expressed olfactory receptor and can exhibit broad 

molecular specificity, responding to hundreds of different analytes, or very high selectivity with 

strong binding affinities for one or a select few (Figure 1.12). Insects display a number of 

morphologically and functionally disparate olfactory sensilla. Sensilla basiconica, the most 

abundant type, contain a high density of pores, whereas sensilla trichodea contain far fewer, 

thereby limiting the rate at which molecules can enter and bind to ORNs. Moreover, the internal 

configuration of sensilla appears to be species-specific. Whereas sensilla basiconica house either 

two or four ORNs in Drosophila melanogaster[345], in locusts they can house anywhere between 

20 and 50[342]. The presence of more neurons within an individual sensillum introduces a 

competitive ligand binding environment subsequently altering the ionic concentration gradient 

experienced by any one neuron. Unlike the metabotropic OR receptors found in vertebrates, 

evidence suggests that invertebrate ORs form heteromeric ionotropic transmembrane channels 

that allow direct ion influx upon ligand binding[346, 347]. This theory has been corroborated by 

molecular studies[347, 348] as well as the low-latency of odorant-based electrophysiological and 

behavioral responses observed in a variety of insect species[349-351]. ORNs exhibit low levels of 

spontaneous activity, but upon ligand binding, response dynamics of individual neurons and 

entire neural ensembles shift dramatically. The spontaneous baseline activity presents an 

ingenious method for increasing the chemical encoding state space. Not only can odorant binding 

cause unique upregulations in spiking activity, but others, oftentimes aversive odorants, can 

significantly reduce firing rates. While at the cost of a slight increase in energetic output 

necessary for the spontaneous activity of these neurons, an individual neuron can demonstrate 
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additional unique firing patterns to incoming stimuli. Efferent signals are transmitted along the 

ORN axons into glomeruli of the antennal lobe[352]. Most insects, including Drosophila 

melanogaster and Apis mellifera, project receptor-specific ORN axons to one or two glomeruli 

within the antennal lobe, closely resembling the uniglomerular branching patterns observed in 

the olfactory bulb of vertebrates[353-358]. However, the antennal lobe of most insects contains 

an order of magnitude fewer neurons and glomeruli than are found the vertebrate olfactory bulb. 

Here, a complex network of inhibitory local neurons induces 20-30 Hz oscillatory cycles that are 

essential for odor recognition[359, 360]. Additionally, the signal processing within the antennal 

lobe has been shown to amplify weaker signals as well as mitigate undesirable chemical 

noise[361, 362]. This oscillatory behavior not only synchronizes the activity of efferent projection 

neurons to transmit action potentials to higher-order processing regions, but also increases the 

total number of encodable stimuli. Inclusion of a temporal component seems to be essential for 

providing organisms with high olfactory resolution, necessary for interpreting complex stimuli 

and differentiating similar odorants[363, 364]. Afferent signals become increasingly sparse in 

higher order brain regions as neuronal divergence occurs and neuronal tuning curves show very 

high signal specificity[360, 365-367]. 

 While the low number of neurons in the insect olfactory system seemingly ought to endue 

gross detection limits and poor chemical differentiation relative to vertebrates, insects are 

equally or more potent in their sensitivity and discrimination capabilities[368]. Separate studies 

have found moths to elicit an observable physiological response to a single or tens of chemical 

molecules[369, 370]. Exactly how such low detection limits are achieved is an active area of  
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 Figure 1.13 | Olfactory receptors display significant variability in chemical specificity. The red 
and blue bars represent the number of active and pseudogenes, respectively. Vertebrates exhibit 
significantly more olfactory receptors (OR) than insects. Moreover, they have a larger portion of 
disrupted pseudogenes that no longer encode for functional olfactory receptors. This suggests 
the development of and heavy reliance on sensory abilities other than olfaction. While insects 
display approximately an order of magnitude fewer olfactory receptors than vertebrates, they 
exhibit alternate coding schemes enabling highly acute chemosensation. Reproduced from [371].

research. The heavy reliance on olfaction has caused insects to retain many more functionally 

active ORs than their vertebrate counterparts (Figure 1.13). The limitation of expressing a low 

number of neurons for sensory processing is likely also significantly mitigated by the intricate 

network dynamics observed in the antennal lobe. One key anatomical difference is that ORN 

axons within the olfactory bulb primarily innervate extrinsic neurons directly as well as indirectly 

via interneurons, such as granule cells[372]. In the antennal lobe, however, ORNs only form 

polysynaptic connections to projection neurons by way of local neurons, with no direct 

input[368]. Additionally, extraglomeruluar synapses are present in the olfactory bulb, whereas 

none have been observed in the antennal lobe[333, 368]. Exactly how these anatomical 



  31 

disparities alter functional aspects of olfactory encoding remains to be seen, yet insects have 

been found to display exceptionally high levels of olfactory acuity based on a significantly reduced 

neural network. 

Biosensors & Bioelectronic Noses 

The prowess of animal olfaction has been long recognized by humans. The domestication of dogs, 

for example, first allowed humans to take advantage of the canine olfactory system and 

behavioral responses for prey localization during hunting or fumes indicative of dangerous 

environments. The sensitivity, selectivity, generalizability and response rapidity of canine 

olfaction cannot be matched by current state-of-the-art manmade sensors[233]. 

Understandably, canines have proven highly effective for a number of applications from the 

detection of explosive compounds[373-378] to identification of human disease states[379-386]. 

Since the first anecdotal reports of canines’ abilities to recognize various forms of cancers in their 

owners[387-390], research utilizing sniffer dogs as medical diagnostics has shown promising 

findings. Though results vary due to lack of standard training and testing regimens, canines have 

demonstrated impressive discriminatory power in identifying samples associated with lung, 

breast, and skin cancer, among others[225, 391-406].  

In addition to expressing more ORs than humans, dogs’ enhanced olfactory abilities stem 

from a substantial increase in nasal epithelium surface area, permitting a higher density and 20-

40 fold more total ORNs (Figure 1.14) [355, 407]. As a result, the sensitivity and specificity of 

canine olfaction, especially among variable background interferants, is exceptional, with 

detection levels at 1-2 parts-per-trillion[391, 399, 408-410]. Thus, it is understandable that the 
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Figure 1.14 | The highly convoluted nasal epithelium of canines enables impressive olfactory 
abilities. The structural adaptation of a enables a significant increase in ORN density. In 
conjunction with the wide variety of ORNs, canines can detect a broad range of chemical stimuli 
with sensitivities as low as 1-2 parts-per-trillion. Reproduced from [411].

sensitivity of artificial systems pales in comparison to biological olfaction, given that most devices 

contain a maximum of a few dozen sensors. Furthermore, the high water vapor concentration 

present within biological samples, while a significant concern for analytical devices, actually 

enhances canine olfactory abilities[412]. Nevertheless, sniffer dogs for disease detection are not 

without their limitations. Since canine chemical reception is inherently linked with respiration, 

only approximately 12-13% of inspired air reaches the olfactory neuroepithelium, thus wasting a 

fair amount of otherwise useful chemical information[411]. Highly standardized training 

protocols that often last weeks or months must be adopted for a particular stimulus[413, 414]. 

Furthermore, easily interpretable binary behavioral responses limit readout intricacies and the 

amount of stimulus-related information. Other models utilizing rodents to detect tuberculosis via 
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sputum samples have elicited positive results with minimal testing time relative to canines[415-

419]. While rodents express even more ORs than canines and are not easily influenced by a 

specific handler, they face similar sampling and readout challenges. Animal models mitigate the 

sensing limitations seen in manmade technologies, however reliance on behavioral readouts 

significantly hinders signal saliency. 

To bypass many of the limitations of using current animal models as chemical sensors, 

researchers have looked to invertebrates, which exhibit a much wider dynamic range than that 

of their vertebrate counterparts[420]. A few studies have determined that the nematode, 

Caenorhabditis elegans, can be genetically modified to reliably exhibit stereotypical chemotactic 

behaviors when presented with explosives[421], prominent tuberculosis biomarkers[422], and 

cancer urine samples[423-428]. The parasitic wasp, Microplitis croceipes, has been explored for 

its use as a gaseous sensor for a variety of VOCs[429-431]. Detection limits were found to be 10-

fold lower than those for a common electronic nose[432]. While displaying very high sensitivity, 

the wasps did not respond to some standard alcohols[429, 433], suggesting a limited range of 

chemical specificity.  

The chemical sensing abilities of higher order insect species exhibiting more complex 

olfactory circuitry and discriminatory power have also been investigated. Field studies with 

honeybees, Apis mellifera, have shown them capable of detecting explosive vapors at parts-per-

billion and parts-per-trillion concentrations, surpassing state-of-the-art devices based on 

IMS/FAIMS technologies[434-437]. For medical purposes, sniffer bees can be taught to elicit a 

proboscis-extension behavioral response when presented with various compounds associated 

with tuberculosis[438]. A prototype breath sampling device has been developed intended to 
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screen patients for various diseases based on the behavioral responses of pre-conditioned 

honeybees[439, 440]. Like canines, bees have evolved in naturalistic conditions, permitting 

excellent detection sensitivity for humid samples or samples among humid environments[434]. 

In the moth, Manuduca sexta, King et al. showed that olfactory-induced electromyographic 

signals could be used as an electrical proxy for a behavioral readout[441]. The technological 

application allowed for a finer level of discrimination than binary behavioral responses, however, 

the insect still necessitated a training period to associate muscular activation with the processed 

neuronal signals. While insects do not require significant training times (hours-days)[442], basing 

stimulus identity on behavioral readouts, whether vertebrate or invertebrate, requires that they 

be preconditioned to associate a reward with the intended stimulus. 

In an effort to remove this bottleneck, biohybrid chemical sensors have predominantly 

sought to incorporate low-level neural correlates, such as specific olfactory receptors and even 

entire insect antennae. Antennal-based electronic noses target either neural activity from a large 

number of ORN axonal processes across the antennal flagellum or a more select group of ORN 

dendrites located within individual sensilla. For whole-antennae electroantennography (EAG), 

the electrical potentials of ORN axons are recorded by metal or saline-filled glass electrodes. 

Despite reflecting the aggregate activity of a large neural population, resulting readout 

amplitudes and shapes roughly correspond to the concentration and identity of the presented 

odorant stimulus[443-445]. A number of EAG technologies have been developed since its 

inception, including portable antenna-on-a-chip devices[444, 446-448], multi-antennae 

arrays[449-452], and hyphenated GC-EAG systems[449, 453-456]. EAGs have largely been used 

to investigate insect response profiles to a variety of pheromone components, given their strong 
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attunement to pheromone blends[457]. Other EAG devices have also shown promise for more 

general chemical-sensing applications[458-463], detecting parts-per-trillion concentrations for 

some odorant species with the incorporation of signal amplification technologies[464-468]. In 

addition to chemosensation, various types of sensilla respond to a variety of input modalities, 

such as temperature, humidity, and mechanical stimulation. The non-specific recording 

technique employed by EAGs necessitates stringent environmental controls to mitigate the 

influence of such non-chemical signals. The longevity of such devices has also been of concern. 

Whereas antennae-only setups enable device miniaturization, satisfactory readings last for 

approximately 30 minutes[446]. Whole animal EAG recordings, in contrast, can be continued for 

several days and are ultimately limited by the total lifetime of the incorporated organism[443]. 

The main limitation of electroantennogram technology stems from the fact that the electrical 

potentials represent the summation of activity of a large population of ORNs. This reduces the 

overall chemical specificity as individual ORN responses, which may contain feature-specific 

information, likely only minorly contribute to the aggregate population-wide signal. As such, 

information from sparsely firing or smaller populations of narrowly tuned neurons that would 

otherwise transmit critical stimulus features to the antennal lobe may be irresolvable[449].  

Alternatively, sharp metal or glass electrodes can be inserted into individual sensilla to 

record electrochemical alterations within the extracellular lymphatic solution surrounding ORN 

dendrites to enhance chemical specificity. These sensilla-specific recordings (SSRs) offer lower 

detection thresholds and effective neuron differentiation via spike amplitudes[449, 455, 469-

473]. Recordings from diverse odor panels have demonstrated rich temporal response dynamics 

based on stimulus identity, with each neuron responding to a limited subset of odors[457, 474-
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482]. SSRs even elicit clear responses to a number of natural stimuli as well as biologically 

irrelevant odorants, such as those from explosives and illicit drugs[483, 484].  

Whereas EAG recordings are characterized by their gross neural population-wide 

resolution, SSRs occupy the alternate end of the spectrum. The high spatiotemporal precision 

enables intricate analyses of fine-scale biochemical processes occurring within individual sensilla; 

however, it also significantly restricts scaling up associated recording systems to attain a broad 

response profile from disparate sensilla. Moreover, the small profiles and high impedances of 

SSR electrodes make them vulnerable to signal contamination via electrical interference.  

In addition to electrode-based recordings, transgenic organisms and fluorescent dyes can 

be used to visualize intracellular calcium concentrations that are indicative of underlying neural 

activity. In vivo calcium imaging of the antennae of fruit flies bypasses the challenge of 

simultaneously targeting multiple disparate sensilla by incorporating a relatively wide field of 

view. This sensillar-ensemble technique has been used to successfully discriminate between 

various odorants[485-487] as well as the volatiles associated with cancerous and healthy cell 

cultures[488]. However, most imaging techniques for odorant encoding in insects have targeted 

second-order neurons within the antennal lobe. Projection neurons, the efferent cells of the 

antennal lobe, exhibit a number of key features elevating their ability for stimulus encoding and 

candidacy for bioelectronic interfacing. Relative to ORNs, PN responses show superior reliability 

and are more broadly tuned, increasing the stimulus related information attainable from any one 

cell over time[489-491]. This is in large part due to the intricate inhibitory network of local 

neurons as well as reciprocal PN-LN interactions, which are responsible for sublinear signal 

transformations between ORNs and PNs[491-496]. Calcium imaging of antennal lobe PNs has 
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shown odor-specific glomerular activation in multiple invertebrate species, including 

locusts[497], honeybees[498-503], and others[485, 504-507]. However, the reliance on optical 

methods restricts neuronal analysis to visible glomeruli and the temporal resolution of such 

technologies is too low to reveal fast dynamic effects[499-501]. While calcium imaging permits 

the differentiation of various stimuli, the lack of high temporal resolution likely impairs 

discriminating between complex, similar odorant mixtures. Since 20-30 Hz oscillations are 

essential for efficient signal transmittal by projection neurons, technologies with courser 

sampling rates will promote information loss. Calcium signals are not always correlated with 

neuronal action potentials and increases in fluorescence can be observed due to subthreshold 

activity[497]. Alternatively, electrode-based recordings are not restricted by the relatively slow 

kinetics of calcium indicators or limiting optical parameters, such as tissue-induced light 

diffraction[508-510]. Numerous studies have shown that odorant-induced projection neuron 

activity can be used to discriminate between a plethora of natural stimuli using electrode-based 

technology[360, 362, 491, 511-522]. Taking this approach a step further, Saha et al. 

demonstrated the efficacy of an insect biosensor for identifying varying concentrations of 

explosive compounds, which have played no part in guiding olfactory sensory evolution[523]. 

Forward Engineering Novel Insect Biosensors 

Our forward-engineering approach for chemical gas sensing combines a highly sensitive sensor 

with broad-ranging specificity and an efficient functional processing scheme optimized to elicit 

highly discriminable spatiotemporal response patterns. The decoupling of olfactory receptors 

and/or antennae from the dense network of the antennal lobe would not be a significant 

bottleneck if the inner dynamics of biological olfactory systems had been sufficiently elucidated. 
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Even more extreme, researchers pursuing gas-sensing devices based on cross-reactive sensor 

materials, exclude biological sensors and, therefore, any downstream circuitry. This has 

contributed to the inability of enoses, for example, to process natural stimuli as rapidly and 

efficiently as the biological olfactory system it aims to emulate. By tapping into the extrinsic 

neural signals of the antennal lobe, we posit that we can interpret the intricate spatiotemporal 

response patterns as encoding for key volatile biomarkers seen in the exhaled breath of diseased 

patients. Moreover, we suspect that the massive encoding state space affiliated with such 

processing schemes is powerful enough to differentiate between small, few-component 

variations in highly heterogeneous mixtures. Our rationale for intervening at the point of the 

antennal lobe is rooted in functional neurobiology. The substantial convergence of chemical 

signals to a relatively small number of extrinsic neurons permits maximal information extraction 

by a finite number of microelectrodes. The spatiotemporal response patterns are amenable to 

high-level, time-based signal processing analyses and ultimately may underly a gas sensing 

system with discriminatory power superior to that of current state-of-the-art manmade 

technologies. 
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CHAPTER 2 | METHODOLOGY 

In order to record precisely timed stimulus-evoked neuronal signals, a number of independent 

technologies were integrated. 

Odorant Delivery 

A cylinder of purified zero-contaminant air provided all supply air to a commercial olfactometer 

(Aurora Scientific, 220A). The olfactometer can deliver highly controlled concentrations of 

gaseous odorant stimuli with precise timing. Upon sequence initiation, a stream of clean supply 

air equal to that of the experimenter-determined total air flow rate flowed through mass flow 

controller three (fresh air line) via a 1/16” diameter polytetrafluoroethylene (PTFE) tube to a final 

solenoid valve. Another stream of clean air was sent through the other two mass flow controllers 

via similar PTFE tubing. Mass flow controller two (odor line) passed a percentage of the total air 

flow rate predetermined by the experimenter. The remaining air flow equal to that of the total 

air flow rate minus the odor line air flow rate was directed through mass flow controller one 

(dilution line). The odor line and dilution line joined as air streams from each line mixed together 

upstream of the final valve. The final valve directed the incoming air lines one of two ways: to an 

exhaust line or to a thirty-centimeter-long stimulus flow line, the end of which was positioned 

approximately two to three centimeters from the most distal antennal segment. During 

interstimulus intervals, the vial inlet and outlet valves remained closed. Clean air from the odor 

line continued through the mixing valve where it mixed with clean air from the dilution line. Air 

from the fresh air flow line was directed via the final valve towards the insect antenna, while 

combined dilution-odor line air was directed via the final valve towards exhaust. Five seconds 

prior to stimulus delivery, vial inlet and outlet valves opened while the mixing valve closed. The 
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clean air from the odor line carried the vial headspace contents through the vial outlet valves 

until combining with the clean air from the dilution line. The final valve remained in the 

unactuated state, directing clean air to the insect and odor-laden air to exhaust (Figure 2.1a). 

After receiving a stimulus delivery signal, the final valve was actuated, directing clean air to 

exhaust and odor-laden air to the insect (Figure 2.1b). Stimulus periods lasted four seconds in 

duration, at which point, the final valve returned to the unactuated state. One second after 

returning to the unactuated state, the vial/flask inlet and outlet valves were closed to ensure the 

Figure 2.1 | Olfactometer flow design schematic (adapted from Aurora Scientific). Mass flow 
controller 3 (MFC3) passes the total flow rate of clean air to the final valve via the clean air flow 
line. An additional allotment of clean air equal to that of the total flow rate is split between mass 
flow controller 1 (MFC1) and 2 (MFC2), the dilution and odor lines, respectively. The path of the 
air travelling through MFC2 is dependent on the state of the olfactometer. a) Olfactometer 
configuration in the unactuated state. The vial inlet and outlet valves remain closed while the 
mixing valve is open. Clean air from the odor line combines with that of the dilution line to 
achieve the total flow rate. The final valve directs this portion of clean air to exhaust, while 
directing the clean air from MFC3 to the insect antenna. b) Olfactometer configuration in the 
actuated state. The vial inlet and outlet valves open while the mixing valve remains closed. Clean 
air from the odor line travels into the vial, disrupting the sample headspace, and recombines the 
odor-laden air with clean air from the dilution line. The final valve directs this portion of clean air 
to the insect antenna, while directing the clean air from MFC3 to exhaust. 

a) b) 



  41 

headspace sufficiently repopulated with odorant volatiles prior to successive stimulus deliveries. 

This protocol was designed to maintain a constant flow rate through the stimulus flow line, 

thereby eliminating any potentially confounding neuronal responses due to a change in air 

pressure. A six-inch diameter funnel pulling a slight vacuum was placed immediately behind the  

Figure 2.2 | Odor Delivery Program. Labview (National Instruments) block diagram depicting 
clock synchronization controller schematic. The three sequences depict three independent 
clocks. The top row corresponds to the clock determining the absolute times to record and save 
neural signals. The middle row determines the timing of the TTL pulse to begin the olfactometer 
challenger sequence. The bottom row guards the triggering of the final valve on the olfactometer. 
Users selected the number of trials to run. Electronic feedback loops were installed to the 
accompanying DAQ assistant. The right-hand side of the block diagram displays plots for the 
outgoing signals to ensure timing of each clock occurred as expected. If the total time selected 
for any of the clocks was not equal, the program would not execute and throw a warning. 
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insect to ensure swift removal of odorants. Each stimulus was repeated five times with an 

interstimulus interval of one minute. The order of stimuli was pseudorandomized for each 

experiment. 

A multifunction I/O device was installed into the computer and connected via a 

multifunction cable to a terminal block. This hardware installation allowed for signal transmission 

to and from external electrical devices. Custom Labview code was written (Figure 2.2) along with 

a corresponding GUI (Figure 2.3). The program allowed for user-defined stimulus presentation  

Figure 2.3 | Odor Delivery GUI. Labview (National Instruments) front panel depicting GUI for 
selecting experimental timing parameters and initiating the sequence. Data recording times and 
stimulus presentation times are customizable based on experiment. If trial times are unequal, 
the program will trigger an error and will not execute. Plots on the right-hand side provide visual 
feedback for signal transmission and clock synchronization.  
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periods and neuronal recording times. A high TTL output pulse served to initiate the challenger 

sequence within the olfactometer software. A subsequent high TTL output pulse opened the final 

valve of the olfactometer, prompting odorant delivery to the insect antenna.  

Signal Recording & Electrode Preparation 

A USB interface board software was used to visualize and record all neuronal signals and an RHD 

USB interface board (Intan Technologies, LLC, Figure 2.4) was used for acquisition of all neural 

signals. Either four or eight of the low-noise amplifier channels were active at any one time  

Figure 2.4 | RHD USB Interface Board (courtesy of Intan Technologies, LLC). Circuit board 
providing up to 256 amplifier channels (64 per SPI port). SPI cable extended to a small headstage 
(not shown), which digitized neuronal signals recorded from microelectrodes. Digital input 
channels received a high signal during the stimulus presentation period to record stimulus onset 
and offset times for subsequent analysis. 
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depending on microelectrode targeting and neuronal signal quality. The sampling rate of the 

board was set to 20 kHz for all experiments. Upon stimulus presentation, a TTL input pulse issued 

by the olfactometer was transmitted to the RHD USB interface board to record exact stimulus 

onset and offset times. The RHD USB interface board was connected to a 16-channel preamplifier 

headstage (RHD2132, Intan Technologies, LLC) via a serial peripheral interface cable. A wire 

adapter connected to a 16-channel DIP pin socket received neural signals via a microelectrode 

array.  

For all locust-specific experiments, multi-electrode arrays (MEAs) were purchased from 

NeuroNexus Technologies (Figure 2.5). MEAs consisted of dual silicon shank probes with two sets 

of iridium tetrodes embedded into each shank. The lower two tetrodes were located 55-101 µm 

Figure 2.5 | Neuronexus Multi-Electrode Array.  a) Schematic of dual shank multi-electrode array 
configuration.  Figure reproduced from Neuronexus Technologies. b) and c) Magnified images of 
one probe used for locust neural recordings. Four individual tetrodes can be seen along the two 
shanks. 

a) b) 

c) 
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above the tip of the shank. The upper two tetrodes were located 121-177 µm above the lower 

and were not used as recordings only required minimal penetration depths. Electrodes pads had 

a surface area of 11 µm2 and a center-to-center pitch of 25 µm within each tetrode. 

Custom fabricated wire tetrodes were used for honeybee-specific neuronal recordings. 

Ultra-fine nickel-chromium 12.7 µm diameter wire with a ~0.254 um thick polyimide coating for 

insulation was used (Sandvik Technologies). A six-foot length of wire was drawn out and secured 

at both ends with lab tape. The taped ends were carefully brought together while avoiding the 

introduction of any kinks in the wire strands. Using tungsten-carbide scissors, the looped end 

Figure 2.6 | Tetrode Wire Drawing. a) Tungsten-carbide scissors were used to cut the wire 
loop(s), creating strands of equal lengths. b) Strands were manually drawn out to ensure equal 
length prior to securing with tape. Image depicts two 12.5 µm wires. 

a) b) 
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distal to the tape was cut, ensuring the wire strands were of equal length (Figure 2.6). Another 

piece of lab tape was placed over the ends of the cut-wires and subsequently folded onto the 

existing taped end. The dual-loops were strewn over a lab retort stand bar and a binder clip was 

attached to the taped ends to stretch the wire strands and keep them in place overtop a magnetic 

stirrer. Wires were twisted in a clockwise fashion for approximately five minutes at 500 rpm. The 

twisted wire strands were then heated by running a heat gun up-and-down the length of the wire 

for ten passes lasting a total of ~45 seconds (Figure 2.7). After heating, wires were allowed 20 

seconds to cool, then spun in a counterclockwise fashion for five to ten seconds to release any 

residual tension. Having stopped the spinning wires, another ten passes of a heat gun was applied 

to the wire strands. A piece of lab tape was applied to the top of the wire near the looped ends. 

Holding the tape, the loop was cut, and the wire was strewn across two elevated platforms 

Figure 2.7 | Tetrode Spinning. Looped wire strands were strewn over metal retort stand atop a 
magnetic stirrer. Attached binder clip allowed free rotation of the lower end, spinning wires into 
a tetrode. The wires were heated to reduce residual tension and prevent wire recoiling once 
removed from the stand. 

a) b) c) 
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(Figure 2.8). Tape was applied to both ends to prevent any coils or kinks from forming. Five-

minute epoxy was mixed in a small petri dish and applied at intervals along the length of the 

twisted wire tetrode strands. A ball of epoxy was placed two inches (51 mm) from the future 

brain insertion point of the tetrode wires. After another inch, a second ball of epoxy was 

positioned to section off the portions of the wires to be soldered. The process was repeated for 

the entire length of the twisted tetrode strands (Figure 2.9). The epoxy balls were left at room 

temperature overnight to ensure full curing occurred. The wire strands were cut immediately 

upstream of the sections to be soldered. A thin-walled PEEK tube was cut to size (Figure 2.9) and  

Figure 2.8 | Tetrode Wire Removal and Sectioning. While holding the wire between lab tape, 
the loop was cut, and the twisted wire was strewn across two elevated platforms. Special care 
was taken to ensure the wire was kept taught and did not exert any recoil. Both sides were 
secured using lab tape. 

a) b) c) 

d) e) f) 
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 Figure 2.9 | Tetrode Epoxy Application. Equal parts of two-part epoxy were mixed, and droplets 
were applied along the length of the spun tetrode. One epoxy ball was placed at the end to be 
soldered and another was positioned at the junction point.  

Figure 2.10 | Tetrode Splaying. Tetrodes were manually unwound under a stereomicroscope and 
the end epoxy ball was cut off. Note: here, no junction epoxy ball is depicted to aid in tetrode 
visualization. If needed, tweezers coated with a soft plastic were used to unwind individual wires 
until sufficiently separated. 

a) b) 

a) 

b) 
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the wire bundle was placed through the tube until the end touched the remaining epoxy ball. 

More epoxy was used to mechanically bond the existing epoxy ball and wire bundle to the PEEK 

tube. Under a stereomicroscope, the end epoxy ball was spun counterclockwise to unwind a 

portion of the wire bundle. The wire bundle was cut and any remaining wire twists were removed 

by clasping the tetrode strands with a Plasti Dip coated tweezer and repeatedly running the 

softened tool along the length of the wire until reaching the free end (Figure 2.10). A low-heat 

electric lighter was briefly touched to the free wires to remove the polyimide insulation, while 

allowing the metal wires to maintain mechanical strength and integrity. Solder flux was placed in 

Figure 2.11 | Finished Tetrode. A finished tetrode is depicted having been appropriately soldered 
and finished with epoxy application for structural support and additional electrical insulation. b) 
Thin wires can be seen completing the electrical circuit from each wire tip to its respective pin 
channel. d, e) Brain insertion point.  

a) 

b) 

c) 

d) e) 
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each pin connector of a four pin DIP socket prior to filling each pin connector with a small amount 

of lead-free solder. Grasping each deinsulated wire strand, solder joints were remelted, and wires 

were individually pulled through channel-specific solder joints until taught. Any wire extruding 

beyond solder joints was trimmed. Two-part epoxy was placed over solder joints and the DIP 

socket body to provide effective channel insulation and structural support (Figure 2.11). 

Both NeuroNexus probes and custom fabricated wire tetrodes were electroplated to 

achieve desired impedances and improve signal-to-noise ratio (Figure 2.12). A stainless-steel 

anode and either multi-electrode array or tetrode were submerged into a non-cyanide gold 

plating solution within a custom-designed, 3-D printed electroplating reservoir. A constant 

current stimulus isolator delivered a steady state current of 1.5 mA to an IMP-2A impedance 

tester, which gated the input to deliver square waves at a frequency of 3 Hz. The afferent voltage 

signal was transmitted via the impedance tester to an electroswitch, which was soldered to a 16  

Figure 2.12 | Electroplating setup. Current from the stimulus isolator is gated according to input 
parameters on the function generator. The oscillating current is directed to the impedance 
tester, which can be selected to plate electrode channels with gold ions or test the impedance of 
individual channels.  
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pin DIP socket. By adjusting the channel on the electroswitch, the current was redirected to the 

appropriate pin connection and corresponding electrode channel. The stainless-steel anode was 

connected to the impedance tester and completed the electrical circuit. While in test mode, the 

externally derived current was directed towards ground and impedance measurements of each 

electrode channel were taken at 1 kHz. Upon switching to plating mode, the current stimulus 

isolator-derived current was passed through the electrode channel, into the plating solution and 

through the anode. Gold particles from within the solution were deposited onto the electrode, 

thereby decreasing overall channel impedance. Individual channels were plated to 200-300 kW 

for locust recordings and 300-400 kW for honeybee recordings. 

Stimulus Creation 

Odor Vials 

All stimuli used for experiments were constructed within the same week to avoid volatile leakage 

or chemical breakdown. For 1% odorant experiments, 10 mL of mineral oil was placed into 

airtight 20 mL vials followed by the liquid chemical stimulus. For synthetic lung cancer mixtures, 

10 mL of mineral oil was placed into airtight 20 mL vials with additional steps shown below. 

Micropipettes were used to achieve precise chemical concentrations in individual vials.  

For those chemicals naturally found in lower concentrations within healthy and lung 

cancer breath samples, serial dilution was used. For simulated healthy breath samples, final 

desired chemical concentrations were as follows: 0.2 µL of decane, 0.09 µL of nonanal, 0.005 µL 

of 2-methylheptane, 0.0006 µL of 2,2,4,6,6-pentamethylheptane, and 0.00001 µL of pentanal 
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(Figure 2.13). Steps to achieve appropriate chemical concentrations within odorant mixtures 

were as follows: 

1. 10 µL of pentanal added to 10 mL of mineral oil to make working solution 

2. 100 µL of working solution added to 10 mL of mineral oil 

3. 50 µL of 2-methylheptane and 6 µL of 2,2,4,6,6-pentamethylheptane added to working 

solution 

4. 100 µL of working solution added to 10 mL of mineral oil 

5. 9 µL of nonanal and 20 µL of decane added to working solution 

6. 100 L of working solution added to 10 mL of mineral oil to make final stimulus solution 

For synthetic lung cancer breath samples, final desired chemical concentrations were as 

follows: 0.7 µL of nonanal, 0.4 µL of decane, 0.02 µL of 2-methylheptane, 0.002 µL of 2,2,4,6,6-

Figure 2.13 | Synthetic Healthy Breath Construction. Diagrammatic steps detailing the serial 
dilution protocol used to create synthetic healthy breath stimuli. 
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pentamethylheptane, 0.001 µL of pentanal, and 0.001 µL of hexanal (Figure 2.14). Steps to 

achieve appropriate chemical concentrations within odorant mixtures were as follows: 

1. 10 µL of pentanal, 10 µL of hexanal, and 20 µL of 2,2,4,6,6-pentamethylheptane added to 

10 mL of mineral oil to make working solution 

2. 100 µL of working solution added to 9.9 mL of mineral oil 

3. 2 µL of 2-methylheptane, 70 µL of nonanal, and 40 µL of decane added to working 

solution 

4. 100 µL of working solution added to 9.9 mL of mineral oil to make final stimulus solution 

Figure 2.14 | Synthetic Lung Cancer Breath Construction. Diagrammatic steps detailing the serial 
dilution protocol used to create synthetic lung cancer breath stimuli. 
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All 1% and synthetic lung cancer breath samples were rapidly sealed, vortexed for a total 

of 30 seconds to achieve sample homogeneity, and stored in a cool, dry location prior to 

conducting experiments. 

Cell Culture Flasks 

Modified airtight T25 flasks were used for all in vitro cell culture experiments. Initially holes were 

drilled using 19-gauge needles, one in the back right corner of the body and one in the cap. One 

19-gauge needle was inserted through the flask body to serve as an inlet pin and another through 

the cap to serve as an outlet pin. Two successive layers of a low-volatile, two-part epoxy was 

applied to the flask and cap surface, hermetically sealing the flask—needle joints. Two 5-cm long 

PTFE tubes were sealed with the low-volatile epoxy, placed over both pins and stabilized via a 

small tube clamp (Figure 2.15). The incorporation of the needles allowed for a rapid and simple 

Figure 2.15 | Modified Flask Construction. Images depict fully constructed flasks with cell media 
and freshly seeded cells. Two layers of two-part epoxy was used to secure the 19-gauge pins to 
the polystyrene T25 flasks. Flasks were always capped other than during stimulus presentation 
to ensure sufficient cell culture volatiles within the flask headspace. Flasks were constructed at 
least 72 hours before cell seeding to allow epoxy to cure entirely. 

a) b) 
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connection to an airline through which headspace volatiles could be transmitted. Five stimuli 

were used in the current experiment, including three cancer cell lines, HSC-3, SAS, and Ca9-22, 

one non-cancer cell line, HaCaT, and one flask with solely cell media. These cell lines were 

selected due to the observed metabolic differences during longitudinal cell culture analysis 

(unpublished data). Cell media (Dulbecco’s modified eagle media) was kept consistent for all 

stimuli in order to maintain consistency between cell line environments. A HEPES zwitterionic 

organic buffering agent was added to the flasks to promote cell growth while in a hypoxic 

environment. A total of one million cells for each cell line were initially seeded in the augmented 

flasks. Cell progression was monitored over the course of four days and experiments were 

repeated once every 24 hours. Electrophysiological experiments took place over a period of 8 

weeks. Flasks were stored in an incubator set at 37° C and were only removed when in active use 

during an experiment.   

Husbandry 

Locusts 

All locusts were housed within cages in an environmentally controlled incubator. Locust cages 

were adapted from commercially purchased reptile cages to include a plexiglass front screen with 

a 6” diameter hole and custom designed door covering (Figure 2.16). The locust incubator 

(Powers Scientific, Inc.) operated according to a 18-6-hour light-dark cycle at a daytime 

temperature of 35.5°C and  nighttime temperature of 25°C. All locusts were fed a diet of organic, 

hydroponically grown wheat grass once a day with supplementary organic wheat germ available 
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as needed. Once reaching sexual maturity, cups were placed into each cage for oviposition. Two 

cups consisted of hydrated vermiculite and a third cup contained hydrated sand. Cups were left 

in the cages for 2-3 days, at which point, they were replaced with freshly made cups, lidded, and 

placed into a high-humidity incubator for hatching purposes (Figure 2.17). Each cup collecting 

cycle continued for 3-weeks. The incubation time for these egg-rich cups was approximately 17 

days, at which time, cups that contained hatchlings were placed into nursery cages and de-lidded. 

Once locusts were large enough (3rd instar), cages were vacuumed every 2-3 days to remove any 

frass, deceased individuals, and/or other debris.  

Figure 2.16 | Adult Locust Husbandry. Locust colony was maintained in a light and temperature-
controlled incubator. Locusts of different life cycles were housed in separate cages. Cages were 
adapted to include a plexiglass front panel and locking door. Locusts were fed a diet of organic 
wheat grass and organic wheat germ. 

a) b) 
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Honeybees 

Honeybee cages were custom fabricated. Wooden back, side and top panels framed the cage 

with #8 metallic screens covering the bottom. A pair of one-inch diameter holes were drilled into 

the wood panel atop the cage and metallic screening was secured underneath. A front plexiglass 

panel was installed to allow for adequate visibility (Figure 2.18). The honeybee incubator (Powers 

Scientific, Inc.) was set to a 24-hour dark cycle at a constant temperature of 34.2°C. Two vials of 

simple syrup (50% sucrose, 50% DI H2O) with small holes drilled in the lids for accessibility were 

placed in the holes atop the wire mesh affixed to the top wood panel to allow bees constant  

Figure 2.17 | Hatchling Locust Husbandry. Locust colony maintenance included ensuring 
reproductive success with future generations. a) Cups filled with sand or vermiculite contain egg 
sacs from which locust emerge. b) Hatchling cage one week after initial hatching depicts 
numerous first and second instar locusts. 

a) b) 
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 Figure 2.18 | Honeybee Husbandry. Worker honeybees are housed in a dark, temperature- and 
humidity-controlled incubator. Custom bee boxes were fabricated featuring a plexiglass front 
panel for visualization. Bees were allotted a 50% sucrose solution and a pollen substitute as 
needed. 

Figure 2.19 | Locust Exoskeleton Stabilization. a, b) Young adult locust stabilized on a clay 
platform with plastic body and head supports. c) triangular pillars were constructed from batik 
wax. 

a) b) 

a) b) c) 
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access to adequate nutrients. A vat of DI H2O was kept in the bottom of the incubator to maintain 

a ~50% humidity level. 

Surgery & Electrophysiology 

Locusts 

Figure 2.20 | Locust Exoskeleton Excision and Neural Surgery. A batik wax bowl was constructed 
to stabilize and isolate the locust head. Prior to initial incision, the bowl was filled with a room 
temperature locust saline to prevent tissue desiccation. The exoskeleton was excised using 
microscissors and glandular tissue was removed with microtweezers. The brain was stabilized on 
a wire platform and desheathed. 

a) b) 

c) d) 
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All neural recordings were conducted on post-fifth instar locusts (Schistocerca americana) of 

either sex raised in a crowded colony. Locusts were initially immobilized on a surgical platform 

(Figure 2.19a, b). Batik wax towers were constructed on either side of the head (Figure 2.19c).  

Antennae were fed through 1/32” inner diameter polyethylene tubes and stabilized to the towers 

using additional batik wax. A quick-acting, two-part epoxy was used to secure the antennae to 

the inner walls of the polyethylene tubing. While the epoxy cured, a bowl of batik wax was built 

to isolate the head region. The bowl was then filled with a room temperature, physiologically 

balanced locust saline solution before removing exoskeleton and glandular tissue until the brain 

was fully apparent (Figure 2.20). A drip tube supplying fresh saline was installed through the wax 

bowl. Using super fine tip tweezers, the antennal lobes were desheathed following treatment 

with protease. 

Figure 2.21 | Locust Electrode Insertion. Dual shank Neuronexus probe before and after 
insertion. Required penetration depth is only 50-100 µm as the antennal lobe glomeruli are 
positioned around the cortex of the lobe. Shanks were advanced slowly while watching for high 
signal-to-noise ratios and action potentials on the Intan GUI.  

a) b) 
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 Surgically prepared locusts were set inside a faraday cage to mitigate environmental 

electrical noise. A 30-AWG silver reference wire coated with chloride ions was submerged into 

the saline within the wax bowl. A 16-channel Neuronexus multi-electrode array was connected 

to a 16-channel DIP socket and adjusted by a micromanipulator (WPI) for appropriate targeting. 

The tips of the probes were placed directly atop the antennal lobe and slowly lowered (Figure 

2.21) until neural spikes were clearly visible (~50-100 µm) on the Intan USB board interface GUI. 

Odorants were then presented in a pseudorandomized order and neuronal responses were 

recorded. 

Honeybees 

All honeybees were of foraging age and sourced from Arizona State University (Social Insect 

Research Group, Smith Lab). The day prior to experiments, honeybees were collected from cages 

within the incubator and placed into 50 mL conical vials. Six individuals were cryoanesthetized by 

Figure 2.22 | Honeybee Harness and Surgical Preparation. Honeybees were placed inside a 
custom-designed, 3D-printed harness and secured with dental wax. 

a) b) c) 

d) e) f) 
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inserting the conical vials into an ice bucket for ~1 minute until motion cessation. Using 

entomological forceps, honeybees were removed from the vials and secured into a custom-

designed, 3-D printed harness by placing a piece of dental wax directly behind the head (Figure 

2.22). Honeybees were left undisturbed for 30-minutes and then fed with a 50% sucrose solution 

to satiation (Figure 2.23). All individuals were placed in a humidified cardboard box and left in 

the dark overnight. The following day, restrained honeybees were given a small amount of the 

Figure 2.23 | Honeybee Proboscis Extension Response. Honeybees were allotted simple syrup 
the night before and morning of experiments. Here, a honeybee is engaging in a proboscis 
extension response after having her antennae stimulated with the sugar water mixture. 
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1:1 water-sucrose solution to check for proboscis extension response. Individuals that did not 

present their proboscis were not used for electrophysiological experiments. Antennae were 

maneuvered into a forward-facing orientation using a custom-designed antennae tool and 

stabilized at the base of the scape and the pedicel with eicosane (Figure 2.24). The head was 

shaved using a microscalpel and a window of the head capsule exoskeleton was excised (Figure 

2.24). Any glandular tissue atop the brain was removed to allow for direct electrode access.  

 Honeybees were placed inside a faraday cage and a small piece foam was placed behind 

the abdomen, to reduce body movement. A 30-AWG silver reference wire coated with chloride 

Figure 2.24 | Surgically Prepared Honeybee. Honeybee has been prepared for neurosurgery by 
affixing the antennae forward-facing with eicosane. The head capsule has also been shaved with 
a microscalpel. 
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ions was hooked inside the head capsule window. A four-channel twisted wire tetrode was 

connected to the 16-channel DIP socket and adjusted by a micromanipulator for appropriate  

Figure 2.25 | Honeybee Electrode Insertion. Custom made tetrodes have been inserted into the 
antennal lobe to a depth of 100 µm. c) The twisted, 4-channel probe is clearly visible and the Ag-
Cl reference wire has been hooked underneath the head capsule cavity. d) A single drop of 
honeybee saline solution is applied to prevent tissue desiccation during neural recordings. 

a) b) 

c) d) 
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targeting. The tetrode tip was brought to the antennal lobe surface. The tetrode was lowered 

into the antennal lobe (Figure 2.25) until clear neuronal spikes were observed (<100 µm) on the 

Intan USB board interface GUI. Adequate electrode targeting was confirmed by presenting a test 

odorant and checking odor-evoked responses. Once electrode positioning was finalized, 20 µLs 

of honeybee ringer solution was added to prevent tissue desiccation (Figure 2.25). Individuals 

were left undisturbed for 10 minutes to allow for the brain to settle around the electrode. 

Odorants were then presented in a pseudorandomized order and neuronal responses were 

recorded. 

Signal Analysis 

Data Preprocessing 

All analysis of neuronal signals was performed using MATLAB, R2021b (MATHWORKS, Inc.) and 

IGOR-Pro 3.04. The MATLAB RHD file reader program, provided by Intan Technologies, was 

adapted to enable highly efficient file reading and data processing. All data was high pass filtered 

using a sixth order Butterworth filter with a cutoff frequency of 300 Hz. Stimulus presentation 

periods were identified using an external signal delivered to the Intan USB Interface Board. If 

necessary, data were aligned according to the stimulus presentation owing to the use of different 

software programs with independent clock cycles. Data were saved in experiment-specific 

folders, corresponding to individual electrode positions. At this point, all data underwent a spike 

sorting procedure as well as root mean square transformation.  

Spike Sorting 

Data were converted to big-endian format in order to enable file importation into IGOR-Pro 3.04. 

A supervised spike sorting program was used to identify spiking events based on experimentally 
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derived parameters. Covariance matrices were generated for waveforms that exceeded a 

threshold between 2.5-3.5 times the standard deviation of the data. Sweep width and peak 

position of identified super-threshold waveforms were chosen to ensure the entirety of the 

waveform was captured. Common values for sweep width and peak position were 55 samples 

and 25 samples, respectively. A model was generated based on the identified spiking events and 

their time discrepancies that were seen in all four channels of the tetrodes. Sorted spike classes, 

corresponding to potential putative neurons, were required to pass a number of tests before 

further consideration. The distance (based on covariance) to a spike’s nearest neighboring spike 

was considered. Additionally, the standard deviation within an individual spiking class and the 

percentage of interspike intervals that were less than 20 ms were also considered. For locust 

recordings, Neuronexus-based tetrodes, with an inter-electrode pitch of 25 µm, were sufficiently 

separated in space to consider all three tests. Here, the nearest projection was required to be 

greater than five standard deviations away and the percentage of inter-spike intervals less than 

20 ms as well the intra-spike standard deviation could not be over 10%. For honeybee recordings, 

custom-made twisted wire tetrodes did not provide enough spatial separation to apply the same 

demands. In this case, the nearest projection was also set to a minimum of 5 standard deviations 

away, but the intra-spike standard deviation was not considered Additionally, due to the spiking 

nature of local neurons in the honeybee antennal lobe, the minimal percentage of inter-spike 

intervals less than 20 ms was increased to 20%. Any spikes that did not meet these criteria for 

locusts or honeybees did not undergo further consideration and were discarded. Raster plots 

from the remaining spike classes of putative neurons were visually inspected to ensure adequate 

inter-trial reliability and inter-stimulus reliability for pre-stimulation baseline periods. Those 
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spikes that passed this subsequent inspection were included in a model applied to all stimuli of 

an individual experiment. The model identified similar spikes in other neural traces from the 

same recording location across all stimuli. This process was repeated for all experiments, 

adjusting IGOR parameters as necessary to ensure spike consistency and reliability. The spike 

times of putative neurons were saved, converted to MAT files, and concatenated into master 

tensors corresponding to each stimulus. 

Root Mean Square (RMS) Transformation 

Data that were not subjected to spike sorting were processed according to an unsupervised root 

mean square transformation. Baseline values, considered to be voltage samples within 2 seconds 

prior to the stimulus onset, was averaged and subtracted from the entire neural trace in order to 

remove any bias due to electrode drift or signal-to-noise ratio variability. These baseline-

subtracted voltages were trimmed to the time window of interest and subjected to a 500-point 

RMS transformation. Values that were less than 500 samples from either the beginning or end of 

the trace were gradually tapered off according to the mean of the remaining samples. A 500-

point smoothing window was then applied to reduce any potential jitter due to natural biological 

variability or thermal noise. Signals from all four tetrode channels were averaged together to get 

an overall channel non-specific response. These RMS processed neural signals were 

concatenated into master tensors corresponding to the appropriate stimuli. 

Data Processing & Neural Population Analysis 

Experiment-specific analyses were performed to visualize the response characteristics of an 

individual electrode position or putative neuron. For raw signals, per-stimulus voltage traces 

depicted signal-to-noise ratio and variability of responses based on the presented stimulus. For 
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RMS-processed data, per-stimulus voltage traces could also be visualized. For spike sorted data, 

raster plots and peri-stimulus time histograms depicted possible stimulus-specific neuron 

response patterns as well as inter-trial reliability of spiking events. More often, population-wide 

responses were analyzed using the master tensors constructed from RMS-processed and spike 

sorted data. For spike sorted data, the average of the 2 seconds prior to the stimulus were 

subtracted from all experiments. For RMS-processed data, this was already performed during the 

pre-processing regimen. Data were then binned according to the user-defined bin size. Master 

tensors corresponding to individual stimuli were concatenated into one overall master tensor 

with the following dimensions: number of neurons (for spike sorted data) or electrode positions 

(for RMS-processed data) ´ number of binned samples ´ number of trials ´ number of stimuli.  

Population peri-stimulus voltage traces or peri-stimulus time histograms with standard 

error of the mean indicators were created to visualize population-averaged responses to each 

stimulus. To further visualize population-wide response dynamics, principal component analysis 

(PCA) was used as a dimensionality reduction technique. Here, data were projected to new 

coordinates defined by the three largest eigenvectors of the dataset. This linear transformation 

maps data to a new coordinate system defined by the directions of maximal variance within a 

particular dataset and is routinely implemented to determine any potential underlying structure 

within high-dimensional data. Owing to the temporal evolution of neural responses, data were 

projected to this new PCA subspace and connected in a temporal fashion, forming neural 

trajectories. These neural trajectories were smoothed slightly for visualization with a low-grade 

cubic spline interpolation technique. Previous research has determined that these neural 

trajectories correspond to stimulus-specific features, such as chemical identity and 
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concentration[516]. Additionally, linear discriminant analysis (LDA), was routinely used to 

visualize datasets in an alternate dimensionally reduced subspace more suited to classification-

based problems. LDA differs from PCA in that it uses a priori class information to determine the 

optimal transformative subspace. The algorithm does this by finding a linear transformation that 

maximizes the between-class scatter while minimizing the within-class scatter of the projected 

classes. Here, the data was initially normalized according to the mean of the entire dataset. 

Means of all normalized data and of all stimulus-specific data were then calculated. The 

eigenvectors of these resultant scatter matrices were computed, and all data was projected onto 

the first three of these new component dimensions to form a new LDA subspace. An optional L2 

regularization parameter was added to mitigate any potential overfitting of the algorithm when 

considering overdetermined systems.  

For quantitative analysis, data was handled solely in the original high-dimensional space. 

Here, by using a leave-one-trial-out approach, training templates corresponding to each stimulus 

were constructed. Test trials were held out and thus, not used for template construction. 

Progressing through the temporal evolution of the neural signal, each sample was compared to 

each training template using an L1 (Manhattan distance) or L2 (Euclidean distance) norm metric. 

The training template that minimized this norm value, dictated classification of the test sample 

bin. Cycling through all combinations of trials for template construction, enabled each trial to be 

the held-out test trial exactly once. The classifier performance was then visualized by plotting the 

presented odor versus the odor predicted by the model in a confusion matrix. Here, correct 

classifications are indicated by entries along the main diagonal. Since insects rely heavily on both 

spatial and temporal response characteristics for stimulus identification, we performed a winner-
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take-all approach for a particular trial. This required taking the mode of all the bin predictions of 

an individual trial as the appropriate predicted class. We constructed trial prediction-specific 

confusion matrices for this subsequent approach. While the training templates and test trials are 

independent in the leave-one-trial-out approach, we also formulated completely non-

overlapping train and test trial sets and performed similar norm calculations and confusion matrix 

visualizations. 
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CHAPTER 3 | DISCRIMINATING CANCER BIOMARKERS USING A NOVEL INSECT 
BIOSENSOR 

 
Chemical Sensors 

A key factor in the development of chemical sensing systems is the selection and integration of 

optimal sensing materials. For each stimulus, sensors must undergo rigorous testing regimens to 

determine whether they are effective for the application at hand. For example, a sensor designed 

to aid in the diagnosis of bronchial asthma, in which elevated levels of exhaled nitric oxide are 

present, must first and foremost be capable of detecting nitric oxide[1, 20-23]. Thus, the most 

critical quality of an effective breath-based diagnostic is responsiveness to the chemical(s) 

associated with the disease of interest. However, sensor response characteristics can be affected 

by a host of different factors that may be inherent to the sample itself or the sampling 

environment, complicating device reliability. One of the most prominent challenges for 

manmade sensors, such as GC-MS and enoses, is the processing of stimuli characterized by high 

levels of humidity. The presence of water vapor is well known to negatively affect sensor 

detection limits. In contrast, biological olfactory systems, having evolved in the natural world, 

may in fact benefit from the high water vapor concentration of breath samples[524, 525]. 

Another factor affecting chemical reaction kinetics is sensor operating temperature. Higher 

temperatures increase the rate of chemical reactions and can shorten processing time associated 

with manmade chemical sensors. Additionally, the shorter pre-sensing period mitigates the time 

allotted for the breakdown of highly sensitive volatiles. This enhanced sensing rapidity can help 

to maintain biomarker integrity and provide a more accurate profile of exhaled cellular 

metabolites. Yet the heating of volatile components can itself encourage molecular degradation. 
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Both vertebrates and invertebrates can rapidly process chemical signals and identify stimuli 

without the need for such highly controlled extrinsic thermal regulation[526, 527]. The 

fundamental goal of biological olfaction is to encode stimulus-specific information in such a way 

that reliably shapes perception and directs future behavior. As such, organisms must rapidly 

encode chemical stimuli in unique manners that allows for maximal perceptual discrimination. 

Canines, for example, have exquisite chemosensory abilities and are routinely employed as 

chemical biosensors. A number of experiments have demonstrated that canine olfaction can be 

used to diagnose pathological states using breath samples. To perform this feat, canines must be 

able to identify subtle alterations in metabolic byproducts contained in breath profiles indicative 

of the disease state.  

Cellular Metabolism & Breath-Based Biomarkers 

At any one time in the human body an assortment of up to 8700 possible biochemical processes 

are ongoing[528]. Intermediary metabolic reactions are responsible for synthesizing simple 

molecules or polymerizing them into complex macromolecules (anabolism), breaking down 

compounds to release energy (catabolism), and removing any chemical byproducts (waste 

removal). Chemically sensitive transporter proteins bind to and transport glucose molecules into 

cells where they are phosphorylated and most often undergo glycolysis[529]. In the presence of 

oxygen and two key substrate molecules, aerobic glycolysis converts glucose to the intermediate 

metabolite pyruvate. Pyruvate is then converted to acetyl coenzyme A before entering the TCA 

cycle to be converted into carbon dioxide, water, and adenosine triphosphate. In anaerobic 

conditions, glycolysis converts glucose into lactate, which does not undergo further 

oxidation[530]. Instead, the Cori cycle transports the lactate to the liver, which converts it back 
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to glucose via gluconeogenesis. The overarching goal of this intricate interplay of cellular 

functions is to maintain homeostasis and the disruption of a single subprocess can lead to the 

development of a particular disease state[531]. 

Diabetes mellitus, for example, is a disorder that is characterized by elongated periods of 

hyperglycemia. Here, an enzymatic imbalance enhances gluconeogenesis while decreasing the 

rate of glycolysis. This in turn triggers excessive hepatic glucose production and high 

concentrations of glucose in the blood for extended periods of time[532]. The inability to 

effectively transport glucose into the cell alters feedforward and feedback regulatory pathways. 

Anabolic and catabolic dysregulation can exacerbate bouts of hyperglycemia inducing significant 

levels of oxidative stress[533-536]. Carbon dioxide, digested nutrients and metabolic waste are 

transported to the lungs via the pulmonary circulatory system. Here, carbon dioxide and other 

highly volatile chemicals can diffuse across the blood-air barrier into the alveoli of the lungs, and 

possibly airways, and be excreted in the breath[537]. The chemical profile of exhaled breath 

contains a substantial degree of information on underlying metabolic processes and the 

existence of particular pathologies can be inferred. For diabetics in particular, acetone 

production has long been known to increase during diabetic ketoacidosis[25, 538, 539] and 

breath-based concentrations correlate with glucose serum levels[540]. This allows for the 

development of effective breath tests to measure acetone concentrations, which are widespread 

in research and gaining traction for clinical implementation[26, 541-549]. 

Unlike acetone as a marker for diabetes, a single volatile biomarker indicative of cancer 

has not yet been discovered and is highly unlikely. Rather, complex patterns of specific VOC 

concentration increases and decreases have been observed in cancer-related breath testing 
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research. The subtle changes in numerous breath constituents are suspected to reflect the 

underlying heterogeneity and multifarious nature of the disease. The molecular mechanisms of 

cancer have been studied ad nauseum for over two and a half centuries. Cancer cells deregulate 

natural metabolic signals for achieving homeostasis in favor of those promoting chronic 

proliferation. Warburg first demonstrated that even in oxygenated environments, most cancer 

cells preferentially engage in glycolysis but not subsequent oxidative phosphorylation, as often 

occurs in healthy cells[550]. The intermediary pyruvate molecule is converted to lactate and 

either secreted into the extracellular milieu or recycled for cell-specific nutrients[551, 552]. 

Inefficient energy production of aerobic glycolysis is compensated by upregulating glucose 

transporter proteins, enabling significantly more glucose to enter the cell[553]. The combination 

of the unfavorable energy output of glycolysis and the introduction of additional glucose 

transporter proteins into the cell membrane, causes the cell to deplete glucose from surrounding 

tissues[554]. Moreover, the elevated levels of lactate in the extracellular space promote 

immunosuppression, thereby preventing tumor cell recognition and enabling further 

proliferation[552, 555, 556]. A host of downstream effects are common including the synthesis 

of excessive fatty acids, tumor formation and acidification of the local cellular environment[557]. 

This leads to the aggregation of metabolic waste products at levels not seen in healthy conditions, 

which, if volatilized and excreted via the breath, can be indicative of underlying pathology. 

Numerous studies have investigated the efficacy of breath-based technologies for the diagnosis 

of lung, breast, and other types of cancers. Blood- and breath-based concentrations of certain 

aldehydes, alcohols, and ketones have been shown to differ based on the underlying disease as 

well as the affected organ[558]. 
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Locust Olfaction 

The desert locust (Schistocerca gregaria) is a widely used insect model for exploring biologically 

relevant olfactory processing schemes. Preliminary work by Laurent and others, elucidated 

several critical aspects locusts employ for odorant discrimination, including local signal 

processing networks and sparse signal transmission to higher neural regions[359, 360, 511, 516, 

518, 559, 560]. The exact dynamics of these networks remain unknown but theoretical and 

computational models continue to elucidate key elements of functional schemes[514, 560-563]. 

Locust antennae display a variety of disparate chemosensory sensilla dedicated to olfaction. 

These sensilla house olfactory receptor neurons (ORNs), which are responsible for chemical 

recognition and signal transduction. For example, basiconic sensilla house anywhere from 30-50 

ORNs, whereas trichoid sensilla house just three[480]. The majority of ORNs are broadly tuned, 

responding to a number of different volatile chemicals based on specific stereochemical 

properties. This enables a highly complex and competitive ligand binding environment within 

each sensillum, especially those with greater numbers of similarly tuned ORNs. Relative to other 

insects, locusts have been found to display unique anatomical features. Individual ORNs branch 

to and innervate several glomeruli within the antennal lobe, suggesting a highly adaptable 

network with extensive signal processing capabilities[564]. Interestingly, unlike the fewer (50-

100), large glomeruli found in other insects, the antennal lobe of locusts contains 1000 

microglomeruli[355, 564]. These highly interconnected glomeruli are positioned near the surface 

of the antennal lobe and arranged around a central fiber core (Figure 3.1) [515].  This dense fiber
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Figure 3.1 | Locust neuroanatomy. a) Schematic drawing of locust brain with emphasis on 
olfactory pathway. Olfactory receptor neurons project axons to the antennal lobe via the 
antennal nerve (ant n.). A projection neuron (labeled as NOTG I) is depicted. Locust projection 
neurons can receive signals from eight or more glomeruli, eliciting spikes with sufficient 
concurrent input activity. The axonal projections innervate Kenyon cells of the mushroom body 
(a.c.) in a sparse fashion. Reproduced from [564]. b) Microglomeruli can be visualized with a DAPI 
stain, confirming their presence around the cortical region of the antennal lobe. Reproduced 
from [565]. c) An exposed locust brain following surgery procedure. The antennal nerves, 
antennal lobes and mushroom bodies are clearly visible. 

a) b) 

c) 
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network efficiently converges input signals from a total of 50,000 ORNs onto a mere 300 

inhibitory local neurons. Lacking axons, local neurons utilize dendrodendritic graded electrical 

potentials, instead of spike-based action potentials, to aid in local signal conditioning. The neural 

network within the antennal lobe is an immensely powerful signal processor, capable of 

improving signal-to-noise ratios and enabling background-invariant odor coding[311]. While 

some of these local neurons extend to only a few glomeruli, others arborize across the majority, 

if not all, of the antennal lobe neural circuitry. After signal conditioning, an assortment of 830 

projection neurons, which receive input from multiple different glomeruli, transmits the signal  

Figure 3.2 | Antennal lobe-mushroom body signal sparsening. a) Four projection neurons elicit 
unique bursting response properties to the same and different odorants. These neurons display 
a considerable amount of spontaneous baseline activity before the stimulus arrives (gray and 
black bars). The responses of these neurons are mapped to and visualized in a lower two-
dimensional space as a cloud of points. b) Kenyon cells of the mushroom body exhibit extremely 
sparse firing activity and little to no background spiking. Note that there is a significant of 
divergence between the projection neurons (830) to Kenyon cells (50,000), suggesting 
considerable specificity. The signal transformation that occurs between projection neurons and 
Kenyon cells improves separability in this lower two-dimensional space. Reproduced from [566]. 

a) b) 
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to higher order neural regions, such as the mushroom body. Here, 50,000 highly specific Kenyon 

cells exhibit little to no spontaneous activity and only fire one to two spikes when activated 

(Figure 3.2) [566]. Each of these Kenyon cells is contacted by approximately 50% of the PNs, 

providing a highly intricate, multidimensional input signal for each neuron[567]. Receiving a 

significant number of inputs, Kenyon cells function as coincidence detectors, only firing when a 

large portion of the afferent projection neurons all fire simultaneously. This decorrelating 

function of the mushroom body can reduce the complexity of the incoming signal, making it far 

more interpretable while maintaining a substantial encoding state space[560, 568]. The response 

dynamics of mushroom body neurons play a vital role in learning as well as memory formation, 

consolidation, and retrieval via feedback mechanisms. 

Locust-Based Cancer Biomarker Differentiation 

Previous work has demonstrated that locusts can detect and differentiate between various 

alcohols, aldehydes[516, 517, 519], and even explosive chemicals[523]. In order to determine the 

feasibility of using the locust olfactory system as a breath-based cancer diagnostic, we sought to 

test the responsiveness of projection neurons to a number of volatiles found to be significantly 

upregulated in lung and breast cancer[78, 132, 569]. Moreover, we intended to demonstrate that 

the chemicals could elicit unique and reliable responses capable of providing successful stimulus 

discrimination. For the lung cancer volatile chemical panel, we used decane, 2-methylheptane, 

6-6-4-4 pentamethylheptane, propylbenzene and undecane. For the breast cancer volatile 

chemical panel, we used hexanal, nonanal, pentanal, trichlorotheylene and undecane. All 

odorants were diluted in paraffin oil (1% v/v) and stored in 20 mL glass vials with 1/32” diameter  
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Lung Cancer Breast Cancer 
Decane 0.67 ppm Hexanal 0.43 ppm 
Methylheptane 3.14 ppm Nonanal 0.2 ppm 
Pentamethylheptane 0.83 ppm Pentanal 10.8 ppm 
Propylbenzene 1.61 ppm Trichloroethylene 53.23 ppm 
Undecane 0.22 ppm Undecane 0.22 ppm 

Table 3.1 | Biomarker stimulus panel. All odorants were chosen due to their identification as 
breath-based volatile biomarkers in lung and breast cancer. A large number of volatiles have been 
linked to cancer with significant variation between studies. Note that some chemicals may be 
implicated in more than one type of cancer, such as undecane seen here. 

polytetrafluoroethylene (PTFE) tubing serving as inlet and outlet lines. For additional information 

on odorant preparation, see Chapter 2: Methodology- Stimulus Creation. Due to differences in 

volatilities, Raoult’s law was used to approximate the gaseous concentrations (Table 3.1). 

 The brain of locusts was exposed and perfused with a custom-made locust saline 

throughout the duration of the experiment to prevent tissue desiccation. Microelectrode arrays  

 
Figure 3.3 | Experimental design schematic. The air cylinder passes zero-contaminant air into 
the olfactometer, which controlled flow trajectories using a series of solenoid valves. Upon 
stimulus delivery a final valve (not shown) redirected the airstream in-line with the vial to the 
insect antenna. For more information see Chapter 2: Methodology- Stimulus Delivery. Here, 
odor delivery demarcated by the gray box elicits a sharp transient response from locust 
projection neurons. The neuron quickly moves into a steady state response before a return to 
baseline upon stimulus offset.  
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were inserted into the antennal lobe until spikes were visible and purified odorants were 

presented in a pseudorandomized fashion (Figure 3.3). For more information, see Chapter 2: 

 Methodology- Stimulus Presentation. The locust olfactory system appeared highly responsive to 

many of the presented odors. Though some stimuli, such as hexanal, seemed to generate 

distinctive responses in most neurons, others appeared to preferentially activate more select  

Figure 3.4 | Biomarker peristimulus voltage traces. Neural traces from a representative neural 
recording location demonstrate unique spatiotemporal responses to different odorants. Four 
second stimulus presentation indicated by gray box. Spontaneous spiking occurred prior to 
stimulus onset as is expected from projection neurons. Most odors caused a significant increase 
in spike rates, especially during the transient response period. Some odors, such as hexanal and 
pentanal, display a unique spiking response to the stimulus onset as well as a separate pattern 
to the stimulus offset. Note that in some of the traces, spikes of different amplitudes are 
discernible, suggesting the presence of multiple neurons from this recording location. 
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neuronal subsets. In order to investigate the quality of the data, we initially observed individual 

recordings and odor-evoked response dynamics. Neural signals recorded from an individual 

electrode elicited reliable temporal responses over all five trials. Figure 3.4 depicts voltage traces 

after pre-processing with a 300-Hz high-pass filter to remove low frequency signals associated 

with local field potentials. Increased neural firing rates indicate that neuron(s) in this particular 

electrode recording vicinity were able to detect most of the volatile molecules included in our 

cancer odor panel. The broad tuning curves of many projection neurons in the locust antennal 

lobe suggests that each neuron may respond to a particular feature of the presented stimulus. 

On this basis, we recorded from 24 different electrode positions across nine individual locusts. 

Evidence suggests that the antennal lobe and associated neural circuitry is largely conserved 

within species. Thus, each recording was considered independent as different areas of the 

antennal lobe were targeted. To investigate the population-wide responses from all recordings, 

we first employed a spike sorting procedure (see Chapter 2: Methodology- Signal Analysis). Spike 

times corresponding to putative neurons were recorded. Owing to the 20-Hz oscillatory 

integration cycles observed in the antennal lobe and the corresponding spiking activity in Kenyon 

cells of the mushroom body, we considered the total number of spikes over a 50 msec window. 

A master tensor was created consisting of spikes per bin ´ trials ´ number of bins.  

A population-wide peri-stimulus time histogram was constructed by plotting the average 

value across all binned neuron-specific responses for a given odor (Figure 3.5). While these peri-

stimulus time histograms demonstrated unique response properties of all neurons as an 

averaged group, more effective analyses were performed to further investigate the underlying 

structure of the data. Various time windows were considered to determine the response period  
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Figure 3.5 | Population-wide peri-stimulus time histogram demonstrates unique response 
trajectories. a) Neural traces are plotted from one second prior to stimulus onset to four seconds 
after stimulus offset, as response dynamics can continue well after stimulus cessation. Unique 
response patterns were observed with the transient period immediately after stimulus onset 
eliciting the most significant odor-evoked activity in response to all odors. b) On responses were 
seen approximately 300 msecs after stimulus delivery. This agrees with the latency for  
 

a) 

b) c) 
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Figure 3.5 (cont’d)
intracellular recordings and other insects. c) Some odors generated relatively informative off 
responses upon stimulus cessation, though, on average, they were less stark than the transient 
on responses. Note in all plots, mean averages are depicted with a dark colored line and the 
standard error of the mean over all trials is plotted as a semi-translucent colored patch 
surrounding the mean average. 

capable of issuing optimal stimulus separability and classification. Linear dimensionality 

reduction techniques were utilized for data visualization purposes. Data was processed according 

to principal component analysis (PCA) and resultant neural trajectories were plotted as functions 

of time for the three dimensions explaining maximal variance across the dataset. For data 

processing specifications, see Chapter 2: Methodology- Signal Analysis. Figure 3.6 depicts neural 

trajectories for the four seconds following stimulus onset (Figure 3.6a), the two seconds 

following stimulus onset (Figure 3.6b), and the one second following stimulus onset (Figure 3.6c). 

For all analyzed time periods, trajectories are seen to move to different regions of the PCA 

subspace during the transient response period before returning to near baseline upon reaching 

a steady state. This suggests neurons exhibit unique, stimulus-specific response dynamics upon  

Figure 3.6 | Neural trajectories exhibit unique temporal dynamics after being projected into 
principal component space. The first bin of all trajectories are zeroed so that all traces begin at 
the same point in PCA space. Subsequent bins are subtracted by the initial value to maintain 
proper response dynamics. Neural trajectories evolve in specific manners for a) the four second 
period after stimulus onset, b) the two second period after stimulus onset, and c) the one second 
period after stimulus onset. Total number of neurons: n = 45. 

a) b) c) 
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Figure 3.7 | Stimulus-specific clusters consisting of activity of individual time bins separate from 
one another in LDA space. Distinct groups begin to emerge by processing data according to a 
linear discriminant analysis transformation and projecting points corresponding to the activity of 
individual bins into this new subspace. This supervised dimensionality reduction technique was 
performed for a) the four seconds, b) two seconds, and c) one second after stimulus onset. Total 
number of neurons: n = 45.

stimulus presentation, especially during this initial transient period. To further investigate the 

underlying structure of the dataset, an alternative linear dimensionality reduction algorithm, 

linear discriminant analysis (LDA), was performed. This supervised technique serves to maximize 

the variance between different groups, while minimizing that within a particular group. Again, 

time periods of the four seconds (Figure 3.7a), two seconds (Figure 3.7b), and one second (Figure 

3.7c) after stimulus onset were considered. Each dot corresponds to the activity of an individual 

time bin. As such, for longer time windows and smaller bin sizes, more dots were generated, and 

graphs became somewhat polluted. Nevertheless, the existence of stimulus-specific clusters 

began to emerge in this new LDA hyperspace. Dimensionality reduction techniques such as PCA 

and LDA are advantageous in their ability to present data in more interpretable manners. 

However, depending on the complexity of the dataset, a significant loss in overall information 

can occur. 

For quantitative analysis, therefore, we generated stimulus-specific training templates 

using a leave-one-trial-out cross validation methodology in the original high dimensional 

encoding space. Training templates were formed from four out of the five trials, while holding 

a) b) c) 
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the final trial out as a novel testing trial. Since our spike sorting algorithm was able to extract 45 

putative neurons, each training template and testing trial consisted of a vector of 45 different 

values, each corresponding to an individual time bin over all suspected neurons. The stimulus-

specific training templates were averaged over the time window of interest and a Euclidean norm 

metric was used to calculate the distance between each training template and individual bins for 

the testing trials. The training template that minimized the norm distance to the bin of the testing 

trial was considered to be the predicted class. For more details on our leave-one-trial-out 

classification approach, see Chapter 2: Methodology- Signal Analysis. Resultant predictions were 

plotted against the true values via a confusion matrix (Figure 3.8a). This confusion matrix depicts 

the overall accuracy of classifying individual bins. While this allows for an expansive high 

dimensional encoding space, it treats each time bin as an independent unit. In contrast, biological 

systems can aggregate response information collected over a number of time bins until 

Figure 3.8 | Euclidian-norm based classifier performance. Here, classifier accuracies are 
displayed as confusion matrices. High classifier accuracy is indicated by dark colors along the 
main diagonal. The leave-on-trial-out train-test protocol was utilized in this scenario to train a 
linear classifier. To assign predicted classes for the test trial, we selected the training template 
that minimized the Euclidean distance (L2). Results are shown for a) individual bins for each test 
trial and b) entire trials in a winner-take-all approach. Note in a the majority of test bins were 
classified correctly and in b the classifier achieved 100% accuracy. 

a) b) 
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Figure 3.9 | Manhattan-norm based classifier performance. Similar to figure 3.8, classifier 
accuracies are displayed as confusion matrices. High classifier accuracy is indicated by dark colors 
along the main diagonal. The leave-on-trial-out train-test protocol was utilized in this scenario to 
train a linear classifier. To assign predicted classes for the test trial, we selected the training 
template that minimized the Manhattan distance (L1). Results are shown for a) individual bins for 
each test trial and b) entire trials in a winner-take-all approach. A different norm metric applied 
here improved the bin-wise classification and did not affect the perfect performance seen 
previously in trial-wise classification.

sufficiently confident to predict stimulus identity. Therefore, we employed a winner-take-all 

approach where each trial in its entirety was classified, instead of individual time bins. This 

technique showed a marked increase in prediction accuracy evidenced by the associated 

confusion matrix (Figure 3.8b). We also sought to determine classification effectiveness using the 

Manhattan norm distance (Figure 3.9) and maximum norm distance (Figure 3.10). 

Since locusts routinely integrate signals within a 20-Hz oscillatory cycle, our default bin 

size was 50 msecs. However, this time period may be an adaptation necessary for the rapid 

decision making within highly dynamic natural environments. The inclusion of more time 

windows, hence more oscillatory cycles, has been shown to be important for discriminating 

between stimuli with a higher degree of similarity[570]. While the inclusion of single odorants in 

our panel reduced the chemical complexity of the stimulus, these volatiles may not be ubiquitous 

in locusts’ natural environment and classification accuracy may be highly dependent on allotted 

a) b) 
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Figure 3.10 | Maximum-norm based classifier performance. Similar to figure 3.8, classifier 
accuracies are displayed as confusion matrices. High classifier accuracy is indicated by dark colors 
along the main diagonal. The leave-on-trial-out train-test protocol was utilized in this scenario to 
train a linear classifier. To assign predicted classes for the test trial, we selected the training 
template that minimized the infinity-norm (L¥) distance. In this case, only the absolute value of 
the largest component of the vector is taken into account. Results are shown for a) individual 
bins for each test trial and b) entire trials in a winner-take-all approach. In this scenario, the 
classifier did not perform as well relative to using the Euclidean and Manhattan norms as distance 
metrics. Moreover, we see our first misclassification in the trial-wise confusion matrix. 

processing time. Therefore, we tested alternate bin sizes of 100, 150, and 200 msecs. Peri-

stimulus time histograms were characterized by smoother features with increasing bin sizes 

(Figure 3.11). This is to be expected with a larger number of included data points, yet, critically, 

Figure 3.11 | Bin-size selection affects peri-stimulus time histogram dynamics. The graphs 
indicate the population average response for all neurons from one second prior to stimulus onset 
to four seconds after stimulus offset. The stimulus presentation period is demarcated by the light 
gray box. Different bin sizes were considered to examine their effect on response dynamics. a) 
100-, b) 150-, and c) 200-msec bin sizes are shown. As the bin size increases, the data becomes 
smoother, reducing fine response dynamics that could be a result of noise or function as key 
information for stimulus classification.

a) b) 

a) b) c) 
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Figure 3.12 | Bin-size selection affects neural trajectories in PCA space. Data was plotted after 
processing via principal component analysis. As expected from the peri-stimulus time histograms, 
the minor voltage fluctuations evident in the a) 100-msec scenario were seen slightly with b) 150-
msec and not at all with c) 200-msec bin sizes. In all three cases, unique neural trajectories are 
observed indicating that different odorants induce variations in temporal response patterns.

high consistency was observed in the overall response patterns regardless of bin size. All three 

bin sizes were processed via principal component analysis (Figure 3.12), linear discriminant 

analysis (Figure 3.13), and tested using the previously used leave-one-trial-out methodology 

(Figure 3.14). 

Spike sorting has the benefit of creating sparse matrices, significantly reducing 

computational complexity and overhead. Yet, the employed spike sorting algorithm used here 

was a supervised approach, requiring careful experimenter intervention and evaluation of each 

spike class as belonging to a viable putative neuron. Effective sensors, apart from permitting 

Figure 3.13 | Bin-size selection affects neural clusters in LDA space. Neural responses were 
processed using a linear discriminant analysis technique and the time bins were plotted in LDA 
space. Here we can clearly see fewer time bins with a larger bin size. a) With 100-msec bin 
sizes, stimulus-specific groups were beginning to emerge, but some still remained clustered 
together. b) 150-msec bins enabled well-separated clusters and c) 200-msec bins enabled 
clusters to occupy discrete points within the LDA subspace. 

a) b) c) 

a) b) c) 
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Figure 3.14 | Bin-size selection quantified via confusion matrices. We subjected data of different 
bin sizes to a leave-one-trial-out train-test procedure. We could visualize the accurate predictions 
and which odorants induced more similar neural responses via confusion matrices. Bin-wise 
classification results are shown for a) 100-, b) 150-, and c) 200-msec bin sizes. With increasing 
bin sizes the accuracy improves, though the classifier is also predicting fewer time bins. The trial-
wise accuracies for d) 100-, e) 150-, and f) 200-msec bins all reached 100%. All classifier 
predictions were made using the Euclidean norm.

 adequate classification performance, ought to enable rapid readout and minimal supervised 

intervention. Therefore, we performed a relatively simple, fully automated root-mean-square 

transformation capable of reducing the total number of data points while retaining the intricacies 

of spike response patterns (Figure 3.15). A number of different point filters were tested to 

determine the minimal resolution necessary to retain unique stimulus-specific response patterns. 

Processing the data with a 500-point filter seemed to over-smooth the data, with the dissolution 

of potentially important signal elements. The 100-point filter retained a large number of these 

features, yet some of the minute voltage changes may reflect natural biological response 

variability and would not enhance future unknown stimulus classification. All RMS processing was 

conducted with a series of two 500-point filters, one for applying a smoothing algorithm and 

a) b) c) 

d) e) f) 
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Figure 3.15 | Root-mean square transformation preserves signal integrity. In an effort to move 
towards real-time analysis and readout, data was initially smoothed and then subjected to a 
moving point RMS filter. For details on signal transformation, see Chapter 2 Methodology- Signal 
Analysis. a) Data from all four tetrode channels was efficiently combined and transformed from 
20,000 samples per second to 20, while retaining signal integrity. b) A number of different point 
filter values were considered. For larger point filters (top), some fine neural response features 
were removed, while for smaller point filters (bottom), many of these were retained.

another for the root-mean-square transformation. For additional details, see Chapter 2: 

Methodology- Signal Analysis.  We performed similar analytical techniques on the RMS-

processed dataset, that we had utilized for the previous spike sorted data. Peri-stimulus voltage 

traces demonstrated clear population-wide neural responses unique to the presented odorant 

(Figure 3.16). A more salient off response was observed for a number of the stimuli relative to 

the spike sorted data, suggesting that response dynamics of these neurons were not able to be 

captured by use of the spike sorting algorithm. Since the RMS analysis incorporates the total 

energy from the recording location, it may retain pertinent information that would otherwise be 

lost in spike sorting putative neurons. We then performed principal component analysis (Figure 

3.17a) and linear discriminant analysis (Figure 3.17b) to aid in data visualization. Similar to spike 

sorted data visualization results, neural trajectories and stimulus-specific clusters began to 

emerge in the PCA and LDA subspaces, respectively. A total of 24 recording locations defined the  

a) b) 
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Figure 3.16 | Peri-stimulus voltage trace of RMS-processed data. Intricate neural response 
dynamics can be observed from population-wide averages of RMS-processed data. Here, clear b) 
ON and c) OFF responses are apparent. This may be a result of retaining more stimulus-specific 
information from the total energy signal of the recording location that was previously filtered out 
during spike sorting.

a) 

b) c) 
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Figure 3.17 | Unique population dynamics observed in PCA and LDA subspaces. Here, we 
performed similar dimensionality reduction algorithms as before, namely principal component 
analysis and linear discriminant analysis. We kept only the three most prominent dimensions in 
order to effectively analyze the underlying structure. The RMS-processed data generated a) 
uniquely evolving neural trajectories in PCA space and b) stimulus specific clusters in LDA space.

Figure 3.18 | Confusion matrices for RMS-processed data. To quantify the performance of a 
relatively simple linear classifier in 24-dimensional space, we used the leave-one-trial-out 
training-testing procedure. Results were comparable to those attained by spike sorting. a, c) Bin-
wise and trial-wise based classification using the Euclidean norm as the distance metric. b, d) Bin-
wise and trial-wise accuracy using the Manhattan norm as the distance metric. Similar to the 
spike sorting data, the Manhattan norm produced slightly better results that using the Euclidean 
norm metric. The rapid processing and readout is a step towards real-time and completely 
unsupervised analysis.

a) b) 
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encoding state space, in which training templates were generated using the leave-one-trial-out 

cross validation technique. This high dimensional classification in a 24-dimensional RMS-based 

encoding space offered similar performance to the 45-dimensional space of spike sorted data 

(Figure 3.18). Moreover, signal processing did not require experimenter supervision and total 

processing time was drastically reduced. 

Outlook 

Biological olfaction is an immensely powerful chemical processing system that has evolved over 

millions of years to sense a broad range of chemicals at minute concentrations. On the contrary, 

manmade gas sensing for diagnostic capabilities is a relatively new field. These sensors display 

extraordinary potential but, struggle to achieve the broad sensing capabilities and low parts-per-

trillion to parts-per-quintillion detection limits seen in biological olfactory systems. Moreover, 

olfaction has evolved to perform background invariant stimulus identification, an extremely 

important quality for tasks in which natural variability is expected.  

This study represents a crucial first step towards determining whether insect olfactory 

systems could be suitable as a medical diagnostic technology. Our work has demonstrated that 

the locust olfactory system can be readily utilized to detect a number of key volatiles present in 

the exhaled breath of cancer patients. It is important for a cross-reactive chemical sensing system 

to display unique encoding of various chemicals or molecular features. Recognition of individual 

features dramatically enhances the capacity of the system—an essential characteristic for any 

device designed to characterize highly heterogeneous stimulus mixtures adequately and reliably. 

We have also proven that stimuli containing unique chemical structures elicit stereotypical 

responses in projection neurons of the locust antennal lobe and these spatiotemporal readouts 
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can be used to classify stimulus identity with an extremely high degree of accuracy. Even odorants 

with similar chemical structures, such as hexanal and pentanal, were distinguished from one 

another. These two volatiles have also been identified as chemical biomarkers of maladaptive 

metabolic states, such as oxidative stress and lipid peroxidation. While our goal is to test the 

efficacy of the locust olfactory system as a non-invasive cancer diagnostic specifically, it may also 

have use as a broad-spectrum screening tool. Processes such as oxidative stress occur in diseased 

populations as well as healthy individuals and is likely a natural phenomenon indicative of aging. 

Depending on detection limits and disease separability, the locust olfactory system could offer a 

modality by which to investigate underlying maladaptive metabolic processes that are not 

necessarily considered to be pathogenic.   
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CHAPTER 4 | CANCER CELL LINE DIFFERENTIATION BY AN INSECT CHEMICAL 
BIOSENSOR 

 
Cancer Metabolism 

Cancer is a highly complex and multifaceted disease consisting of hundreds or thousands of 

different genotypes[571]. While some key features can be identified, different types and sub-

types of cancers can lead to significantly different biomolecular reactions. The Warburg effect of 

aerobic glycolysis is considered to be a metabolic hallmark of cancer. However, the ubiquity of 

this metabolic pathway has been questioned relentlessly since its original proposition. While 

some evidence suggests the existence of damaged mitochondria[572, 573], others point to 

decreased mitochondrial activity triggered by upregulations in specific transcription factors[574-

576]. Ultimately, given the rapid speed of glycolysis relative to that of oxidative 

phosphorylation[577, 578], the mitochondria cannot process the plethora of resultant pyruvate 

molecules. While these two models seem contradictory, different cancers may, in fact, be 

characterized by these distinct features due to the impact of genetic variation or environmental 

influences. This could lead to alterations in subsequent downstream molecular processes and, in 

part, explain the subtle variations in biomarkers associated with different types of cancers. 

Disease variability also stems from the identity of the affected organ and even the region within 

said organ. Tumor formation is highly dependent on the local cellular environment, which is 

shaped in large part by the excessive release of lactate by cancerous cells into the extracellular 

milieu. Extracellular signals can be dictated by lactate-specific chemical reactions, which are 

differentially impacted by variables such as the efficacy of the nutrient delivery system and the 

distance to surrounding blood vessels[579-582]. The multifarious nature of cancer emphasizes 
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the pressing need to consider type- and subtype-specificity for effective diagnosis, prognosis, and 

treatment. 

Volatile-Based Cancer Detection 

Breath-based chemical sensors have proved to be an enticing option for cancer detection. 

Groundbreaking experiments over the past three decades have shown that the excretion of 

trace-level volatiles differs between healthy and diseased individuals[583]. Generic volatile 

biomarkers representative of oxidative stress and lipid peroxidation, such as ethane and pentane, 

are often observed in higher quantities for those with underlying illnesses. However, the real 

power of breath-based gas sensing is due to the subtle changes in other volatile metabolites that 

are more indicative of certain types and subtypes of diseases[114, 140, 265, 584]. One study has 

demonstrated that breath concentrations of several compounds not only differ between breast 

cancer patients and healthy controls, but also among those with genetically determined breast-

cancer subtypes[134]. Here, GC-MS and electronic nose-based analyses were fairly accurate in 

distinguishing group identity based on breath profiles alone. The ability to discriminate between 

different disease states necessitates that the underlying biochemical processes related to a 

specific disease state will elicit a unique assortment of volatiles, indicative of those processes. 

Furthermore, accurate diagnosis requires sufficiently sensitive gas sensing technology to detect 

at least some of these volatiles and discern an appropriate combination that allows for group 

separability based on underlying pathology.  

In vitro cell culture models are commonly used to test the efficacy of gas-sensing 

technologies for volatolomics research[129-131, 137, 138, 266, 583, 585-587]. For volatile 

headspace sampling, either an adsorbent material can be placed in the sealed flask or direct 
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headspace can be passed to the gas sensor. In the sorbent-based technique, metabolites 

volatilize out of the cell culture medium and are absorbed by the sorbent trap. Subsequent 

thermal desorption can be used to increase molecular energy and break chemical-sorbent bonds. 

A high concentration of chemicals with relatively similar volatilities will be released at any one 

time. In order to maximize the number of chemicals released from the trap, especially those with 

lower volatilities, the temperature is incrementally increased over time. For technologies, such 

as gas chromatography-mass spectrometry and ion mobility spectrometry, this is perfectly 

appropriate as each chemical is considered independently of others in the mixture. However, for 

electronic noses and biological olfaction, which create breathprint templates for entire samples, 

the temporal nature of odorant delivery is critical. Passing the volatile headspace directly, 

ensures a more homogeneous stimulus between individual presentations. 

 Having demonstrated biosensor responsiveness to and discriminability of various cancer 

VOC biomarkers, our next set of experiments were designed to determine the ability of the locust 

olfactory system to effectively differentiate between the volatile headspace profiles of cancerous 

and non-cancerous cell lines. Evidence suggests that there are more than 500 volatiles in a single 

breath sample, though the actual number is likely much higher as volatile identification is a 

function of technological sensitivity[134]. Of these identified volatiles, approximately 10% appear 

to be universal[36]. As such, an effective breath-based sensor must be able to process highly 

complex mixtures with overlapping constituent chemicals. Additionally, considering the subtle 

changes in breath biomarkers brought about by disease, detecting concentration differences 

requires exceptional chemical sensitivity and highly effective pattern recognition capabilities. In 

addition to differentiating between cancer and non-cancer samples, we sought to test whether 
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our forward-engineering biological-based approach was powerful enough to distinguish between 

oral cancer subtypes. The cell lines chosen were based on preliminary data demonstrating that 

the cancer cell lines (Ca922, HSC-3, and SAS) exhibit functional increases in both glycolysis and 

oxidative phosphorylation relative to the non-cancer cell line (HaCaT). All cell lines were grown 

Figure 4.1: Electrophysiological recording setup. a) Schematic of the VOC delivery and in vivo 
neural recording setup. Cancer and non-cancer cell lines were cultured and placed inside airtight 
flasks. The culture medium was the same for all cell lines. Emitted VOCs from the cell cultures 
were sampled periodically by injecting a fixed amount of clean air into the closed flask using an 
olfactometer. The duration and volume of cell culture VOCs delivered to the locust antenna were 
controlled by the odor delivery setup. Extracellular neural recordings were obtained from the 
locust antennal lobe before, during, and after odor delivery. Total airflow to the antenna was 
kept constant throughout the experiment and delivered VOCs were removed quickly by an 
exhaust placed behind the locust antenna. A raw voltage response of a neural recording is shown 
for a 4 s long odor pulse. b) Image depicting the olfactometer unit connected to an in-line cell 
culture flask. The final valve, with exhaust and stimulus flow lines, is shown in the lower right 
portion of the image. c) Experimental setup depicting an in vivo locust preparation housed inside 
a faraday cage. The brain has been implanted with a microelectrode array and an Ag-Cl reference 
electrode completes the electrical circuit. The stimulus flow line passes either zero contaminant 
clean air or air containing volatiles from the cell culture headspace to the locust antenna, 
depending on stimulation parameters. 
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in identical conditions to ensure background VOC consistency, a critical component for any in 

vitro volatolomics study[588]. For precise culturing conditions see Chapter 2: Methodology- 

Stimulus Creation. Stimuli consisting of headspace volatiles were systematically passed to locust 

antennae over a period of four seconds. Stimulus presentation was repeated five times with an 

inter-stimulus interval of 60 seconds in order to ensure responses remained consistent over time 

and to enable accurate sensor calibration. Microelectrodes were used to record neuronal action 

potentials from projection neurons within the antennal lobe (Figure 4.1). Prior to each 

experiment, ten pictures were taken from each flask to investigate cell health and density (Figure 

4.2). Cells in each of these pictures were manually counted using ImageJ and longitudinal growth 

curves were constructed (Figure 4.3). 

Locust-Based Cancer Biosensor  

We began by investigating odor-evoked individual projection neuron (PN) responses in the locust 

antennal lobe to the volatile headspace of cancer and non-cancer cells. Cell culture VOC samples 

were examined at 24 h intervals by in vivo PN recordings. Additionally, we used two control 

odorants, hexanal and undecane, which have been implicated in earlier studies as putative cancer 

biomarkers[589].  

We observed VOC-evoked changes in neural spiking responses in most of the PNs 

recorded. Since PNs are broadly selective to several odor stimuli and respond to specific odorants 

or odor mixtures with distinctive temporal firing patterns [516, 518, 523, 590], we targeted this 

neuron population for oral cancer classification. At the individual neuron level, the three oral 
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cancer and the non-cancer VOC mixtures elicited distinct spiking responses over the odor 

presentation window. Raw voltage traces of representative extracellular neural recordings 

showed clear differentiation between the oral cancer cells, non-cancer cells, and cell culture 

medium. We noted differences in PN spiking responses between the three oral cancer cell lines 

(Figure 4.4).  

 Next, we investigated how total spike counts (over the entire 4 s stimulus window) varied 

for each recorded neuron corresponding to different VOC exposures (Figure 4.5). To identify 

single neurons, spike-sorting of extracellular multi-channel recordings was performed following 

Figure 4.2: Representative images of cell cultures over days. Images are shown for a replicate 
of the cell culture used for electrophysiological recordings. All four cell lines are shown over four 
days. Healthy cells were observed at all four time points (24-, 48-, 72-, and 96-h). 
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Figure 4.3: Cell counting procedure and growth curves. a) Schematic of a T25 cell culture flask. 
Prior to conducting electrophysiology experiments, the flask for each cell line was imaged 10 
times pseudo-randomly. Example imaging locations shown by yellow rectangles. b) Image from 
the flask prior to counting is shown. Black scale bar indicates 200 μm. c) An image from a different 
location within the same flask is shown. d, e) The same images from b, c are shown post counting 
with all live cells marked by a blue dot using FIJI/ImageJ. The mean of the 10 images were taken 
to determine the total cell count of each flask. f) Initially, cells were seeded at 1 x 106 cells per 
flask at 0 h. Cells were counted from each flask at 24-hour intervals after seeding (24-, 48-, 72-, 
and 96-h). At each time point, the total cell count of each flask was averaged over 8seven 
replicates. Error bars are S.E.M from the seven replicates. No significant difference in cell counts 
were observed between 24-h and 48-, 72-, or 96-h (P < 0.05, d.f. = 6, 16, one-way ANOVA with 
Bonferroni correction). 
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 previously published methods [591]. Then, we used a simple metric of VOC-evoked time-

averaged and trial-averaged spike counts of individual PNs for each stimulation condition. 

Individual PN spike counts were summed over the 4 s stimulus presentation window and 

averaged across trials (n = 5 trials) to quantify these changes. Next, we compared the average 

spike count of each PN across two stimulus conditions. For example, PN spike counts 

corresponding to each oral cancer cell line were compared to the spike counts of the same set of 

PNs elicited by the culture medium VOC composition. When all recorded PNs were analyzed, 

several PNs showed significant changes in spike counts across two stimulus conditions (P < 0.05, 

d.f. = 4, 28, one-way ANOVA with Bonferroni correction). These results demonstrated that there 

were differences in individual PN spike counts elicited by cancer vs. non-cancer vs. control VOCs. 

Notice that this analysis only compared total PN spike counts corresponding to different stimuli, 

Figure 4.4: Headspace from cell lines and control odors evoke unique spatiotemporal patterns 
in multiple neurons. VOC-evoked raw neural voltage responses of a recording location are shown 
for the three oral cancer cell lines, the non-cancer cell line, the cell culture medium, and two 
control VOCs (Hexanal and Undecane). The light grey box indicates the 4 s stimulus presentation 
window. Two different recording locations are shown. Position 2 had multiple PNs, which 
resulted in different spike amplitudes in the multiunit voltage trace. 
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but differences in temporal firing motifs of individual PNs as seen in Figure 4.4 were not reflected 

in this analysis.  

Oral Cancer Classification via Multi-Dimensional Neural Signal Analysis 

To incorporate the temporal spiking characteristics, we analyzed the spatiotemporal PN 

responses elicited by the three oral cancer cell lines, the non-cancer cell line, and the cell culture 

medium. To generate ‘spatial’ (neuronal identity) – ‘temporal’ (spiking dynamics) response 

Figure 4.5: Neurons demonstrate stimulus-specific spiking rates. VOC-evoked total spike counts 
(over 4 s) of individual PNs are compared across two stimulus conditions. For each PN, the trial-
averaged total spike count is plotted with the error bars representing S.E.M. of the trial-wise 
variations for two stimulus conditions. All comparisons were made with the cell culture medium 
evoked spike counts (plotted along the X-axis). All 194 recorded PNs are plotted in every scatter 
plot. Individual PNs were identified after spike-sorting of the extracellular recordings. PNs that 
responded significantly higher (or lower) to the stimulus VOCs compared to the cell culture 
medium VOCs were plotted in red (or blue), respectively (P < 0.05, d.f. = 4, 28, one-way ANOVA 
with Bonferroni correction). PNs that did not show significant differences in total spike counts 
across two conditions were plotted in grey. 
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vectors of the entire PN population, trial-averaged firing rates of each neuron were binned into 

50 ms non-overlapping time windows. Individual neuron responses were temporally aligned 

following stimulus onset. For this analysis, we combined spiking responses from all recorded PNs 

Figure 4.6: Cancer vs. non-cancer VOCs are distinguished by spatiotemporal PN responses. 
Schematic representation of the spatiotemporal PN response analysis. This analysis contains 
spiking responses from all recorded PNs (spatial) and their response dynamics (temporal) over 
the 4 s stimulus presentation window. a) Raster plots of all recorded PNs pooled across 
experiments are combined for each stimulus (represented by PN1 to PN194). Then the 4 s 
duration VOC-evoked spike counts are divided into 50 ms non-overlapping time bins (total 80 
time bins for 4 s). Two different stimuli are used for illustration (Ca9-22 and HaCaT). Notice that 
the same PNs are recorded for all stimuli. b) A neuron number (n = 194) × time (t = 80) matrix is 
constructed, where each element in the matrix corresponds to the spike count of one neuron for 
a single time bin (denoted by xitj or yitj). c) The high dimensional population response time-series 
is dimensionally reduced using PCA and data corresponding to the first three principal 
components are kept. d) The 4 s time-series data is plotted along the three principal component 
axes. Each point is connected temporally with the next time point to generate individual VOC-
evoked neural trajectories that take into account both temporal and spatial motifs of the 
recorded PN ensemble. Notice that the two PN trajectories corresponding to the Ca9-22 and 
HaCaT track along different manifolds in the principal component space. Angular separation 
between the two neural trajectories signifies the distinction between the two VOCs. The 
percentage of variance captured along the first three principal components is plotted along the 
axes. Because of the large number of recorded PNs and their complex response dynamics, the 
total variance captured along the first three principal components is low. Therefore, PCA-based 
neural trajectories are only used for qualitative comparisons. 
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over multiple days of cell culture. This resulted in a high dimensional population neuron 

response, which was represented by an n x m matrix (Figure 4.6a, n = 194 PNs; m = 80 time bins 

with 50 ms bin size over 4 s of odor presentation). Next, all recorded PN responses corresponding 

to each stimulus were concatenated to generate the population PN time-series data for the 

stimulus panel corresponding to Ca9-22, HSC-3, SAS, HaCaT, and the cell culture medium. 

To visualize these cell culture VOC-evoked spatiotemporal neural responses, we projected 

the high dimensional data onto three dimensions using a linear principal component analysis 

(PCA, Figure 4.6d, see Chapter 2: Methodology- Signal Analysis). The points in the three-

dimensional PCA subspace were connected in a temporal order to generate stimulus-specific 

neural response trajectories. We observed that each VOC profile generated a closed loop neural 

trajectory, which evolved in a unique direction. A long line of work in insect olfaction has 

established that the unique direction of the population PN trajectories are specific to odor 

identity and intensity [516, 590, 592]. Our previous work demonstrated that larger angular 

distances between PN trajectories signify better separability between two odorants [590, 592]. 

Therefore, unique neural trajectories corresponding to individual VOC mixtures indicate that oral 

cancer VOC profiles are distinct from the non-cancer cell line. Moreover, we observed 

distinctions among the neural trajectories evoked by the three oral cancer cell lines (Figure 4.7), 

which signify that differences between various oral cancers can be identified by this approach as 

well. 
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To determine the separation between the cell line specific neural response clusters, we 

performed linear discriminant analysis (LDA) on the population PN time-series data (Figure 4.8). 

Similar to the PCA analysis, we used the population PN time-series dataset and plotted the VOC-

evoked PN responses in a three-dimensional LDA subspace. This linear dimensionality reduction 

technique maximized the neural response cluster separation between stimuli. We observed 

distinct clustering of PN responses corresponding to all five stimuli, indicating that a linear 

classifier in a three-dimensional LDA space is sufficient to classify cancer vs. non-cancer 

successfully based on their corresponding VOC profiles. 

Figure 4.7: Neural responses follow unique temporal trajectories in PCA space. Population PN 
trajectory plots are shown after dimensionality reduction using PCA for the three cancer cell lines 
(SAS, Ca9-22, and HSC-3), the non-cancer cell line (HaCaT), and the control cell culture medium. 
For each stimulus, PN population trajectory is plotted for 0–4 s of VOC exposure. Numbers along 
the neural trajectories indicate time in seconds from the stimulus onset. Total number of PNs 
used in this analysis is n = 194, which was computed by pooling neurons across all timepoints and 
replicates of the cell cultures. 
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To get a quantitative estimate of the classification performance, we performed a leave-

one-trial-out cross validation analysis of the PN time-series data (see Chapter 2: Methodology- 

Signal Analysis, Figure 4.9). This analysis was performed on the high dimensional dataset (n = 194 

PNs, m = 80 time bins) without any dimensionality reduction. During the odor presentation 

window, PN spikes are accompanied by a global 20 Hz local field oscillation generated by 

synchronized sub-threshold activities of inhibitory local neurons present in the locust antennal 

lobe [593-595]. It has been proposed that the Kenyon cell population, which receives direct 

inputs from PNs, integrate PN responses within each of these 50 ms time windows generated by 

the 20 Hz oscillation. It has been shown that PN responses are most discriminatory within this 50 

Figure 4.8: Linear discriminant analysis can elicit clear group distinctions across spatiotemporal 
neural responses. Spatiotemporal PN responses (n = 194) for the 4 s stimulus presentation 
window (50 ms bin size, total 80 points for each odor) are visualized after dimensionality 
reduction using LDA (see Chapter 2: Methodology- Signal Analysis). LDA minimizes within-class 
variance and maximizes the variance between classes. Numbers along the axes indicate the 
variance captured along that dimension. Distinct clustering of neural responses corresponding to 
different VOC profiles indicates that the cell culture VOCs (cancer vs. non-cancer) can be 
segregated based on the neural response they elicit. 
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ms time window. Therefore, to take advantage of this biological neural computational scheme, 

we divided the stimulus VOC-evoked population PN responses into 50 ms time bins, starting from 

the stimulus onset. For this analysis, Euclidian distances of neural response vectors at each time 

bin (50 ms duration) were compared between the testing and the training data (total 80 

comparisons over 4 s for each test trial), generating a bin-wise classification (Figure 4.9a). This 

bin-wise confusion matrix had its highest values along the diagonal, which implied a high rate of 

successful detection of all five stimuli (76% average classification success). Next, we plotted a 

trial-wise confusion matrix by calculating the mode of the predicted responses for all 80 time bins 

(Figure 4.9b). The trial-wise analysis was implemented to assign one stimulus class value for each 

test trial of 4 sec duration. This analysis showed 100% classification for all three oral cancer VOC 

Figure 4.9: Neural responses are well separated in high-dimensional space. Classifications of 
VOC-evoked population PN responses without any dimensionality reduction are analyzed by 
leave-one-trial-out cross validation analysis (see Chapter 2: Methodology- Signal Analysis). These 
quantitative classification results are summarized by a confusion matrix. Each column and row 
correspond to the target stimulus and the predicted class, respectively. Here, each 50 ms time 
bin of the testing trial is classified as one of the 5 target VOCs based on the minimum Euclidian 
distance. The high values along the diagonal of the confusion matrix indicate that most of the 
predicted responses match the target labels. This result signifies that information contained 
within the 50 ms time bins of the VOC-evoked neural response is sufficient to classify oral cancer 
vs. non-cancer and to distinguish different oral cancers from each other. (e) Similar analysis as 
shown in panel d except we classified the test trial as a whole by taking the mode of the bin-wise 
classification for the 4 s long trial (mode of total 80 time bins for each test trial). This trial-wise 
classification of VOC profiles shows flawless distinction of all 5 stimuli tested and reveals the 
strength of this neural response-based cancer detection approach. 
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Figure 4.10: Neural responses follow unique trajectories when including entire odor panel in 
PCA space. Ensemble neural trajectories over the 4 s stimulus presentation window are shown 
for all 7 stimuli after PCA dimensionality reduction. Volatiles from putative cancer biomarkers 
(Hexanal and Undecane 1% v/v diluted in mineral oil) elicited PN responses that traced different 
manifolds than those from the cell lines and control media. Numbers along trajectories indicate 
time in seconds from the stimulus onset. Total number of PNs used in this analysis is n = 194. 

Figure 4.11: LDA dimensionality reduction shows clear distinction between entire odor panel. 
Population PN responses corresponding to each stimulus plotted in 3-dimensional LDA space 
showed separability between response clusters. Total number of PNs used in this analysis is n = 
194. 
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mixtures among themselves and in comparison with the non-cancer and control VOCs. Similar 

dimensionality reduction (Figure 4.10 and 4.11) and confusion matrix (Figure 4.12) analyses were 

performed on the dataset while including the two other control odorants. Neural trajectories 

corresponding to the two control odorants were significantly different from all cell culture VOCs 

Figure 4.12: High dimensional quantitative analysis enables reliable distinction between entire 
odor panel. a) Quantitative classification was performed using a leave-one-trial-out cross-
validation methodology to train and test a linear classifier in the high dimensional feature space. 
The time bin-wise confusion matrix shows highest values along diagonal for all cases which 
indicates successful classification of all 7 stimuli using PN time-series data. Note the high accuracy 
for hexanal and undecane, suggestive that they are mapped to different regions of the encoding 
state space b) Trial-wise confusion matrix is plotted for all stimuli. Total number of PNs used in 
this analysis is n = 194. 

Figure 4.13: Non-overlapping train-test datasets produces similar results to leave-one-out 
based classification. Cancer vs. non-cancer classification using non-overlapping train-test PN 
response datasets. VOC exposure trials 1-2 were used for training template construction while 
trials 3-5 were used as the test set. This allowed for completely non-overlapping training and 
testing sets. Confusion matrices summarize classification results based on a linear classifier in 
high-dimensional feature space (see Chapter 2: Methodology- Signal Analysis). a) Bin-wise and 
b) trial-wise confusion matrices are plotted for all 5 VOC mixture classified. 
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and the confusion matrix analysis showed high classification success for all seven VOCs tested. 

We also performed confusion matrix analysis using completely non-overlapping training and 

testing dataset (Figure 4.13), which showed similar results as the leave-one-trial-out cross 

validation analysis. We tested bin-wise and trial-wise classification using multiples of 50 ms bin 

size (i.e., 100 ms and 200 ms time bins), which yielded comparable results as obtained using 50 

ms duration time bin (Figure 4.14).  

Time-Matched Cancer Volatile Detection 

We anticipated that emitted VOC compositions corresponding to each cell line would vary over 

time due to cell growth and ongoing metabolic processes in a fixed cell culture medium. We 

also hypothesized that the neuronal template-based VOC classification approach would be able 

to compensate for these variations. To investigate this, the neural data that were previously 

combined were split and analyzed at four different time points: 24-, 48-, 72- and 96-h after 

seeding. All PNs recorded at a specific time point across multiple repetitions of the cell cultures 

were combined to generate the population PN response vector for that time point. For 

example, each cell culture was repeated 7 times, and the VOC analysis at the 24-h time point 

resulted in a total of 42 PNs. All the cell cultures remained viable over 96-h from initiation, 

which was verified by manually counting healthy cells at different time points of the cell 

cultures (Figure 4.2). 

We began by examining VOC-evoked population PN time-series data at 24-h post seeding. 

We noticed that dimensionally reduced neural trajectories evolved in different directions for 

different VOC profiles in the PCA space (Figure 4.15a). When we performed the same analysis at 
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48-h, 72-h and 96-h time points, we continued to observe distinct cell line specific neural 

trajectories, which indicated that all the tested stimuli were distinguishable from each other at 

different time points of cell growth (Figure 4.15). This observation demonstrated that cultured 

cells started emitting VOCs specific to their identity about 24 hours after seeding and remained 

separable over multiple days based on their emitted VOC profiles. Next, we analyzed the neural 

cluster separation between the three oral cancer cell lines, the non-cancer cell line, and the 

Figure 4.14: Spatiotemporal PN response-based VOC mixture classification is robust. Three 
different bin sizes (50 ms, 100 ms, and 200 ms) were tested for bin-wise and trialwise 
classification. Both a, c, e) bin-wise and b, d, f) trial-wise classification results remained largely 
similar across different bin sizes used for the high-dimensional VOC classification analysis. 
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control medium at different time points of the cultures using LDA (Figure 4.16). Since the number 

of PNs recorded at each time point was low, PN response clusters showed some overlap in the 

LDA space. This was also reflected in the time bin-wise confusion matrix classification results 

performed in the high-dimensional space (Figure 4.17a-d). However, the trial-wise classification 

result yielded 100% classification success for each test trial for all the VOCs at all four time points  

Figure 4.15: Unique neural trajectories observed at different time-matched points of growth. 
PN response trajectories corresponding to the cancer cell lines, the non-cancer cell line, and the 
cell culture medium VOC mixtures are plotted after dimensionality reduction by PCA. In this 
analysis, neurons were pooled only across experiments performed at predefined time post 
seeding. a) A total of 42 PNs were recorded for different cell cultures at this time point. Notice 
that neural trajectories are distinct from each other even when the recorded neuron numbers 
are lower and the cultured cells are grown for only 24-h. b-d) Cell culture VOC-evoked neural 
trajectory plots are shown for 48-, 72-, and 96-h time points of the cell cultures, respectively. At 
each time point, PN trajectories traversed distinct manifolds indicating the distinguishability 
between cell cultures over multiple days of growth. Note that different PNs (n) were recorded at 
different time points. 
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Figure 4.16: Neural response clusters demonstrate visible distinction between stimuli at time-
matched points of growth. a–d) PN population responses cluster distinctly for different VOCs 
after dimensionality reduction by LDA at 24-, 48-, 72-, and 96-h of cell growth. In all cases, LDA 
shows separability between VOC-evoked neural response clusters. 

Figure 4.17: Stimulus-induced neural responses clearly distinguishable in high-dimensional 
space at time-matched points of growth. a-d) Time bin-wise high dimensional confusion matrix 
analysis of PN responses by leave-one-trial-out approach at 24-, 48-, 72-, and 96-h post seeding. 
The confusion matrices have higher values along the diagonal, which indicates that most of the 
test trials time bins are classified correctly. However, the confusion matrices also have non-zero 
off-diagonal elements, indicative of some misclassification. e-h) Trial-wise confusion matrices are 
shown at 24-, 48-, 72-, and 96-h of cell cultures. Here, each test trial was classified based on the 
mode of the bin-wise classification results. This analysis elicits diagonal confusion matrices for all 
cases, which indicates clear distinction of oral cancer vs. non-cancer VOC profiles based on 
population PN spiking responses. 
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(Figure 4.17e-h). Notice that we generated VOC-specific neural fingerprints at each time-

matched points of growth of the cell cultures and performed leave-one-trial-out cross validation 

between the test and the training templates generated at that time point.  

These results validated our hypothesis that neural response-based classification between 

multiple types of oral cancers cells and a non-cancer cell remained unaffected by the variations 

in VOCs caused by evolution of cancer and non-cancer cells in the culture medium.  

Rapid Detection and Identification of Complex Cancer Volatile Headspace  

We investigated how short of a VOC exposure will result in robust cancer classification. We 

hypothesized that a neuron response-based classification approach would be fast and able to 

classify different VOCs with a short inter-stimulus interval (~ 1 minute). Based on the fast PN 

response dynamics, we anticipated that distinction between cancer VOCs would be achieved 

Figure 4.18: Root-mean squared (R.M.S) transformation largely preserved stimulus-specific 
spiking dynamics. a) Representative recordings from an individual electrode are shown for all 
stimuli after high-pass filtering. The gray box delineates the 4 s stimulus presentation period. b) 
R.M.S. transformed data traces of panel a recordings reflect the spiking rate-based response 
dynamics, while reducing computational overhead. The gray box delineates the same 4 s stimulus 
presentation period as in a. 
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within a few hundred milliseconds of stimulus exposure. To achieve fast analyses of neural 

signals, we employed a different metric of neural response, which was obtained by root mean 

squared (R.M.S.) filtering of raw neuron voltage responses (Figure 4.18, see Chapter 2: 

Methodology- Signal Analysis). Until now, all classification analyses were performed after spike-

sorting of multi-unit extracellular voltage responses obtained from each recording location. 

However, this approach eliminated neurons that did not pass the statistical test necessary to be 

counted as single units. These lost signals from unresolved neurons could potentially be 

important for odor discrimination, therefore, we decided to employ the R.M.S.-based approach 

which takes into account the total energy of the signal acquired from each location. This approach 

was computationally less expensive, unsupervised and shown to be odor specific in our previous 

Figure 4.19: Using R.M.S transformed population PN voltage responses to classify the stimulus 
panel. Similar plots as shown in Figure S1, but here, we have used R.M.S transformed PN voltages 
to generate, a) VOC evoked ensemble neural trajectories after PCA; b) PN response clusters after 
LDA; c) Bin-wise confusion matrix in high dimensional space; and d) Trial-wise confusion matrix 
corresponding to all 7 stimuli. Spike-based and R.M.S-filtered PN time-series data both yielded 
excellent classification for all VOCs tested. 
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work [523]. Using the R.M.S. filtered population PN voltages, we observed distinct classification 

of all 7 VOCs tested (Figure 4.19). These classification results were qualitatively similar to the 

results obtained from spike sorted single unit data. 

 To determine the speed and efficacy of this method, we performed VOC classification 

during four different 250 ms time segments of the 4 s stimulus presentation window (Figure 

4.20). The rationale behind choosing different time windows follows from the unique odor-

evoked response dynamics of the projection neurons. PNs generally fire strongly with high spiking 

rates within the first ~1.5 s of stimulus onset, which is known as the ‘transient state’[516-518, 

596]. After about 2 s of stimulus exposure, the population PN firing rate converges to a stable 

firing rate, which stays above baseline firing but does not change significantly over the rest of the 

odor presentation duration. This is known as the ‘steady state’ response period. It is shown in 

our and others’ work that odor-evoked transient PN responses are more discriminatory[516, 523, 

590]. Therefore, we expected the cell culture VOCs to display the best separation when the 

population PN responses are within the transient state. We observed that odor plumes took 

about 0.5 s to elicit spiking responses in PNs. This time corresponded to the delay between the 

final olfactometer valve opening and the odor plume hitting the antenna. Therefore, we chose 

the analysis time windows for transient PN response period as 0.5 – 0.75 s and 0.75 – 1 s and the 

steady state time windows as 2 – 2.25 s and 2.25 – 2.5 s (Figure 4.20). 

We performed PCA dimensionality reduction analysis to visualize population neural 

trajectories, which showed distinct trajectories at the earliest of the time windows (0.5 to 0.75  
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Figure 4.20: Rapid classification of oral cancer VOC profiles using neural voltage responses. a–
d) High dimensional neuron response vector, where each row represents R.M.S. filtered PN 
signals of a recording position (n = 84) and each column represents a 50 ms time bin (total 5 time 
bins over 250 ms), was dimensionally reduced using PCA and ensemble neural response 
trajectories are plotted (see Chapter 2: Methodology- Signal Analysis). Cancer vs. non-cancer 
VOC-evoked neural response trajectories are shown for the stimulus presentation windows of 
0.5–0.7 5 s, 0.75–1.0 s, 2.0–2.25 s, and 2.25–2.5 s, respectively. Notice that population 
trajectories generated from R.M.S. filtered neural voltages are distinct within just 250 ms of odor 
exposures. Two 250 ms time windows are shown during the transient state of the PN response 
(0–1.5 s), while two other time windows are chosen during the steady state neural response 
period (2 s to the termination of the stimulus). e–h) Confusion matrix analysis of the predicted 
vs. target responses are shown for the ensemble neural voltage time-series data for the same 
time windows as shown in panel a-d. Note that the confusion matrix analysis is done without any 
dimensionality reduction. Transient state time windows of 0.5–0.75 s and 0.75–1.0 s show better 
VOC classification compared to the steady state time windows. i–l) The same confusion matrices 
are plotted for the trial-wise classification, which results into near perfect classification of VOCs 
in 250 ms time windows during transient state. Steady state windows show relatively low trial-
wise classification. m) Pairwise distances between ensemble R.M.S. voltages (from n = 84 PN 
recordings) corresponding to five different VOCs are plotted in light grey (total 10 pairwise  
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s). The VOC-evoked neural trajectories remained distinct during both transient and steady state 

time epochs (Figure 4.20a-d). Next, we performed the quantitative high dimensional confusion 

matrix analysis using leave-one-trial-out methodology. We observed better classification during  

transient state time windows compared to the steady state time windows, evident from the 

higher value of diagonal elements in the confusion matrix shown in Figure 4.20e, f in comparison 

to Figure 4.20g, h. Trial-wise classification also showed better predictability during transient state 

response periods (0.5 – 0.75 s and 0.75 – 1 s) compared to the steady state segments (2 – 2.25 s 

and 2.25 – 2.5 s, Figure 4.20i-l). Finally, when we compared the pairwise R.M.S. response 

distances of the PN population elicited by all 5 VOCs, we observed the largest separation was also 

during the transient periods. These results demonstrated that once the brain-based recording 

and VOC delivery is set up, neuronal population responses can classify VOCs within 250 ms of 

stimulus onset. 

To verify that a one-minute inter-stimulus interval is sufficient for the VOC classification 

and our results are consistent with the PN response dynamics, we employed the R.M.S.-based 

classification analysis on the baseline, transient, and steady state epochs of the population PN 

response (Figure 4.21). Each analysis epoch was 1.5 s in duration and the 0.5 s delay for the odor 

stimulus to reach the antenna was included in the pre-stimulus period. We observed no 

Figure 4.20 (cont’d) 
distances) during the stimulus exposure (4 s). The mean of pairwise distances is plotted in black, 
which indicates that there are differences in ensemble PN voltage responses corresponding to 
different VOCs and these differences are highest during 0.5–1 s of the transient response period. 
Note that in our setup, odorants took about 500 ms to reach the antenna from the opening of 
the final olfactometer valve (t = 0) and therefore, the earliest transient state time window that 
could be chosen was 0.5–0.75 s. 
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classification in the baseline period (-1 to 0.5 s), but VOC classification was distinct during the 

transient (0.5 to 2 s), and steady state (2 to 3.5 s) periods. Overall, VOC-evoked neural responses 

Figure 4.21: Cancer VOC classification during transient vs. steady state response periods of PN 
response. Time bin-wise confusion matrix analysis results shown for three 1.5 s duration time 
periods- a) 1 s prior to 0.5 s after final olfactometer valve opening (pre-stimulus period). b) 0.5 
to 2 s after final olfactometer valve opening (transient state), and c) 2 to 3.5 s after final 
olfactometer valve opening (steady state). The pre-stimulus time period shows no stimulus 
specific classification as expected because VOCs had not yet reached the antenna at this time. 
The transient state period (0.5 to 2 s) shows the best bin-wise classification of all 5 VOCs. The 
steady state period (2 to 3.5 s) also shows high classification success, but the diagonal values are 
relatively lower compared to the transient state period. d-f) Trial-wise confusion matrices are 
shown for the same time windows as in panel a. g) A population-based peri-stimulus time 
histogram (PSTH) plots the change in R.M.S. transformed values of all recording positions (n = 84) 
as a function of time. Time labels along the X-axis are relative to the stimulus onset time. A 
significant change in R.M.S. values is seen approximately 500 ms after the final valve was opened 
(i.e., stimulus onset). 



  121 

during the transient period yielded best classification results as expected from the PN response 

dynamics [590].  

Outlook 

While mass spectrometry based techniques have proven essential for volatile chemical 

identification for cancer detection [99, 108, 122, 190, 589, 597-616], the desire for portable and 

real-time gas sensor has fueled interest in developing electronic nose devices, which mimics 

biological principles for odor detection[617, 618]. Electronic noses have increased in popularity 

owing to advancements in materials science, nanotechnology, and pattern recognition 

algorithms. These devices have demonstrated the ability to distinguish between breathprints of 

healthy controls and those afflicted with different types of cancer [216, 263, 269, 602, 619-631]. 

Although, many of these portable chemical sensors are able to process breath samples in real 

time and potentially can be used as point-of-care devices, performance deficiencies due to sensor 

drift, humidity and temperature-induced changes significantly complicate implementation as a 

breath-based diagnostic. Moreover, electronic noses struggle to attain the high sensitivity 

necessary for detecting and differentiating between disease-specific volatiles at the trace-levels 

found in breath[617, 618, 632-635]. Despite drawing inspiration from biological olfaction, the 

prowess of electronic noses as chemical sensors is minimal relative to their biological 

counterpart.  

In biological olfaction, natural selection has forced animals to develop highly sensitive 

olfactory capabilities while preserving chemical specificity. In the olfactory sensory system, a 

target VOC mixture as a whole is encoded by a distinct neuronal response template (or a neuronal 

‘fingerprint’ of a VOC), while a different gas mixture is uniquely encoded by a different neuronal 
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fingerprint. It is important to note that biology does not perform component-wise classification 

of gas mixtures, but instead achieves optimal separation between the VOC-evoked neural 

fingerprints. Many implementations of biological olfaction for disease detection has relied on 

behavioral readouts, which require extensive training and significantly limit the response 

resolution. Other attempts at creating medical bio-diagnostics have focused solely on the first 

order sensors used in animals for chemical recognition and signal transduction[636-646]. This 

biohybrid approach of integrating sensory neurons into signal processing platforms has proven 

challenging and devices often lack chemical discriminability and long-term performance[618]. 

Here, we took a forward engineering approach by ‘hijacking’ an insect brain to detect oral 

cancers from their VOC signatures. We combined in vivo, multi-electrode, population neuronal 

recordings with a multi-channel micro-amplifier, high speed data acquisition, and biological 

neural computations to achieve cancer detection. This approach is fundamentally different from 

current gas sensing devices and animal behavior-based disease detection as it uses a fully 

functional biological chemosensory array (antennae) and olfactory neural circuits as a gas sensor, 

and neuronal ‘fingerprints’ of cancer VOC profiles as decoding schemes. This in vivo neural 

recording technique can be portable as shown in previous work [523]. We envision this study as 

the first step in ‘sniffing out cancer by neurons’ research.  

Our brain-based cancer detection method is an untargeted sensing approach for which 

we do not need to know the exact chemical composition of the cancer VOC mixture, which is 

essential for component-wise classification. Therefore, our method does not identify specific 

VOC biomarkers. However, this is also a key strength of biology-based VOC sensing. Biological 

olfactory systems detect the entire gas mixture as a single entity (e.g., coffee, banana, specific 
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cancer cell VOC mixture) and encode this information in the brain as a spatiotemporal neural 

pattern. By identifying these neural patterns, we can create a template associated with each VOC 

Figure 4.22: Principles of neuronal response-based noninvasive cancer detection. a) This 
approach employs VOC mixture-evoked neural response templates for distinction between 
cancer and healthy samples. During the training phase, target (e.g., breath samples of oral cancer 
patients) and control (e.g., healthy human breath samples) VOC mixtures will be exposed to the 
locust antenna and in vivo neural recordings will be obtained from multiple projection neurons 
in the antennal lobe, simultaneously. The entire in vivo electrophysiological setup will be placed 
inside a closed Faraday chamber with inlet and outlet port for VOC delivery and removal. Trained 
VOC-evoked population neural responses will be used to construct optimally separated heathy 
vs. cancer clusters in the neural space as illustrated in our analysis. Our results indicate that ~40 
recorded PNs is sufficient for classification of multiple oral cancer cell lines from healthy controls. 
Notice that the training/calibration will be performed for each brain-based sensor, where the 
separation between target VOCs will be maximized by optimal placement of the microelectrode 
array in the antennal lobe. b) During testing phase, unknown VOC samples (e.g., breath sample 
of an early-stage oral cancer patient) will be presented to the antennae and neural responses will 
be obtained from the same set of neurons. In our study, we have used the minimum Euclidian 
distance between the unknown sample and the healthy vs. oral cancer neural clusters as the 
classification metric. However, other distance metrics can be used to classify unknown VOCs. 
Since the PN responses reach near baseline within 2 s of odor onset and we have demonstrated 
that reliable classification can be performed for 1 min inter stimulus interval, this technique can 
work as a high throughput cancer screening device. 
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mixture. Then, an unknown VOC mixture can be tested by comparing it to the known templates 

Figure 4.22). In this study, training neuronal templates are generated for the VOC profile of each 

cell line and template-matching analyses are done between the training and testing templates to 

determine the test cell line identities. By harnessing the gas sensing power of the entire 

repertoire of the locust olfactory sensors, which are cross-selective and extremely sensitive, we 

can generate distinct neural response templates for different oral cancer cells. Moreover, this 

biology-based non-specific detection technology can be generalized to detect other cancers in 

the future.  

Acknowledgments 

A.F. was supported by D.S. The author thanks M. Parnas for assisting in cell culture flask 

modification, electrophysiological data collection, spike sorting analysis, and cell counting. E. 

Hoque Apu provided support in cell culture seeding and maintenance. E. Cox assisted in locust 

colony husbandry and cell counting.  N Lefevre and S. Miller assisted in cell counting. 

  



  125 

CHAPTER 5 | DISCRIMINATING CANCER BIOMARKERS USING HONEYBEE NEURAL 
RESPONSES 

 
Application-Specific Chemical Sensors 

Chemical gas sensing is a highly interdisciplinary scientific field, drawing upon principles from 

molecular chemistry, nanomaterial fabrication, and signal analysis to name but a few. One reason 

why it is such an intricate process is due to the millions of chemical combinations in existence. 

These molecules can be combined in highly heterogeneous matrices, forming exceptionally 

complex stimuli. The resultant stimulus state space would simply be infeasible to cover with a 

labeled line approach, in which individual sensors were responsible for encoding specific stimuli. 

Fortunately, stimuli are often constructed in stereotypical manners, relying heavily on relatively 

basic yet highly efficient chemical configurations. This chemical redundancy has prompted 

sensors, such as electronic noses and biological olfactory neurons (ORNs), to implement a 

combinatorial pattern recognition scheme. In this case, sensors can be tuned to highly conserved 

features, which can then be combined into ensembles to efficiently encode a large number of 

stimuli[647]. By incorporating an assortment of highly selective as well as broad range sensors, 

this approach can optimize chemical sensitivity, selectivity, and generalizability based on a finite 

stimulus space[371, 648]. This can be thought of in comparison to our sense of hearing. Within 

the ear, inner hair cells are arranged in a tonotopic pattern with adjacent cells being maximally 

responsive to sounds of near similar frequencies. Importantly, the response curves for a number 

of successive hair cells overlap, enabling a much finer resolution of tone discrimination[649]. The 

overlapping sensitivity between different sensors is a critical component for systems 

incorporating combinatorial coding information processing schemes. 
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 Olfactory receptor neurons (ORNs) and electronic nose sensors display variability in their 

tuning curves. That is while one sensor may be highly selective and display high affinity for a 

particular chemical, others are responsive to a broad range. In electronic nose sensor 

development, the guiding force is based on an iterative process of fabricating or combining new 

materials and testing their response characteristics to a particular stimulus. While great strides 

in electronic nose technology have been made since its inception 40 years ago, state-of-the-art 

devices struggle to achieve sufficient detection limits for the wide range of disease-specific 

volatiles found in exhaled breath. While improvements in sensor material technology and signal 

processing algorithms will improve the gas sensing abilities of electronic noses, the performance 

of current systems lags behind that of biological olfaction. In biology, the force dictating the 

response characteristics of ORNs is evolution via natural selection. It reasons that ORNs providing 

a selective advantage for an organism within its immediate environment, are much more likely 

to be maintained through successive generations. For example, humans are highly responsive to 

odors in blood, information critical for assessing injury or danger, while unresponsive to carbon 

monoxide, as prior to the advent of fire, it provided no selective advantage[650, 651]. As such, 

organisms display species-specific olfactory receptor genes and differentially tuned ORNs based 

on unique environmental pressures. 

 Previous research on insect olfaction has demonstrated that locusts respond to a broad 

range of odors, from those that hold biological significance to those that have had no influence 

in their evolution. Moreover, even these novel, non-biologically relevant stimuli were mapped to 

different regions of their chemical encoding state space, allowing for efficient signal 

discriminability. Our previous work has demonstrated that locusts can not only identify unique 



  127 

cancer biomarkers, but their olfactory system is powerful enough to differentiate between the 

complex volatile headspaces of cancer and non-cancer cells. Like all sensors, however, locust 

olfaction has a limited scope across a subset of possible odor space. It is improbable that the 

locust olfactory system, which has developed to function optimally in a particular ecological 

niche, is the best sensor for classifying disease from breath samples. 

Honeybee Olfaction 

A significant amount of research has been conducted using honeybees, due to their impressive 

learning abilities, gregarious nature, and critical role in the environment[652]. Like other insects, 

honeybees rely strongly on their olfactory abilities, rapidly identifying pertinent volatiles, 

localizing plumes and occasionally using them for long-distance flights[653]. As a result of wide 

interest in honeybee neurobiology and behavior, multiple standard brain atlases have been 

constructed, aiding in understanding network topologies and functional processing schemes 

(Figure 5.1) [654-657]. A variety of studies incorporating genomic, behavioral, 

electrophysiological, and calcium-based imaging data, have elucidated key anatomical and 

functional features specific to honeybees that are integral for their highly acute chemical sensing 

abilities[498, 658, 659]. Preliminary research has indicated that honeybees can be conditioned 

to engage in stereotypical behavioral responses to highly specific stimuli. Importantly, like other 

biological olfactory systems, they analyze complex patterns of chemoreceptor activations to 

recognize relative concentrations of chemical constituents and identify unique odorants[499]. A 

deeper look into their anatomical and functional neurobiology can help to unveil some of the 

mechanisms used to perform this impressive feat. 
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Figure 5.1 | Surface model of the honeybee standard brain. Olfactory receptor neurons 
converge onto glomeruli in the antennal lobe. Here, two distinct populations of glomeruli are 
shown, T1 and T3. These neuronal populations project axons along particular paths to higher-
level processing areas such as the median calyx (MCA) and lateral calyx (LCA) of the mushroom 
body (MB). Scale: 250 mm. Reproduced from [657]. 

Honeybees contain three types of olfactory-specific sensilla: placoid (poreplate), trichoid 

(hair-like), and basiconic (peg-shaped)[660]. The placoid sensilla contain between five and 35 

ORN dendrites[323, 661]. Hydrophobic volatiles are bound by odorant binding proteins and 

transported to the appropriate ORN. Interestingly, honeybees have the smallest set of odorant 

binding proteins (21) of all studied insects[662] but a rather expansive set of ORNs (163)[663]. 

While the activity of one ORN can alter that of its neighbors due to the shared lymphatic ionic 

environment, direct ligand binding competition is rare as neurons with similar tuning curves are 

likely to be found in different sensilla[664]. A total of 60,000 ORNs extend axonal processes into 

the antennal lobe, where a portion splits into four different tracts and innervates the 165 
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glomeruli[665]. Like most other insects, ORN axons of a particular type innervate a single 

glomerulus[666]. Within each glomerulus, a stereotypical topography is observed: ORN axons 

innervate the cortex and PNs innervate the core[654, 666]. The honeybee antennal lobe consists 

of 800 projection neurons and 4000 local neurons. This is in striking contrast to the locust 

antennal lobe, which displays 830 projection neurons and 300 local neurons. Differences in total 

neuronal populations suggest that these insects use highly disparate processing schemes in order 

to effectively encode olfactory stimuli. Moreover, the local neurons in locusts issue graded 

dendrodendritic potentials, whereas those in honeybees fire sparse action potentials. The 

inhibitory local networks in both species play a vital role in effectively encoding different 

odorants[364]. Projection neurons transmit conditioned signals to higher-level brain regions, 

such as the mushroom body characteristic of signals divergence and sparse neuronal 

activity[365]. Each glomerulus can be thought of as encoding for a particular stimulus related 

feature. On average, a single glomerulus contains axons from 400 ORNs, 1000 local neurons and 

a mere five projection neurons[323, 667]. This crude breakdown indicates massive convergence 

of chemical signals onto a small number of extrinsic neurons, emphasizing the critical nature of 

temporal dynamics for maximizing discriminability. 

Honeybee-Based Cancer Biomarker Differentiation 

In our current study, we sought to determine the efficacy of the honeybee olfactory system in 

detecting and discriminating between key cancer biomarkers found in exhaled breath. 

Microelectrodes were used to record neuronal action potentials from the antennal lobe. We 

included a panel of 10 odorants, identical to those used in our previous research intended to use 

the locust olfactory system to identify individual cancer biomarkers. Our stimulus panel consisted 
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of five odors affiliated with breast cancer (hexanal, nonanal, pentanal, trichloroethylene, and 

undecane), five odors affiliated with lung cancer (decane, methylheptane, pentamethylheptane, 

propylbenzene, and undecane) and one stimulus (paraffin oil) as a negative control. Note that 

some biomarkers, such as undecane, are observed to be elevated in a number of different 

cancers owing to common underlying pathophysiological adaptations. All odorants were diluted 

in paraffin oil (1% v/v) and stored in 20 mL glass vials with 1/32” diameter 

Figure 5.2 | Peri-stimulus voltage trace. Honeybee antennal lobe neurons were initially 
processed using an RMS transform and population average voltages were plotted as a function 
of time. Here, different stimuli seem to elicit unique response patterns corresponding to 
stimulus-specific spatiotemporal encoding of stimuli. 
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polytetrafluoroethylene (PTFE) tubing serving as inlet and outlet lines. For additional information 

on odorant preparation, see section Chapter 2: Methodology- Odor Vials. All stimulus 

presentation periods lasted for four seconds. For additional information on odorant preparation, 

see section Chapter 2: Methodology- Odor Presentation. 

 Similar to the encoding state space of enoses, the responses of individual electrodes or 

neurons can be conceptualized as unique orthogonally oriented dimensions in an encoding 

hyperspace[203]. Given current limitations in microelectrode design and fabrication, we pooled 

the total number of electrode positions across 39 different individuals. This technique, well-

established for other insect models, is based on a breadth of data demonstrating that response 

patterns remain consistent between species-specific individuals[498-500]. 

Owing to the positive results gained from locust research, we processed data with our 

RMS technique. Population-wide neural responses demonstrated honeybees successfully 

detected the presented odorants (Figure 5.2). We observed unique response dynamics with a 

large transient response for the majority of the presented stimuli. This could potentially allow for 

stimulus discrimination based on neural responses alone. We performed similar dimensionality 

reduction techniques as we had done with our locust dataset. Initially, we plotted neural 

trajectories after processing the data according to principal component analysis (Figure 5.3a). 

This again showed unique neural trajectories for each individual odorant. Data mapped to and 

plotted in linear discriminant analysis subspace demonstrated disparate stimulus-specific neural 

cluster formation (Figure 5.3b). We performed quantitative analysis using our leave-one-trial-out 

technique. Bin-wise predictions and trial-wise predictions were plotted in a confusion matrix for 

the four second period following stimulus onset. This constituted the entirety of the odor 
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presentation period, including the initial transient response and subsequent steady state. Bin-

wise predictions showed adequate classifier performance (Figure 5.4a). Trial-wise performance 

was near perfect, with only two out of 50 trials predicted incorrectly (Figure 5.4b). 

Figure 5.3 | Dimensionally reduced population-wide response dynamics. a) Principal 
component analysis allows for visualization of neural response trajectories according to the 
degree of variance they express. Highly unique trajectories indicate that the response state 
corresponding to each stimulus at each point in time differ dramatically from one another. b) 
Stimulus-specific clusters begin to emerge from linear discriminant analysis processing. This 
suggests that an underlying structure exists for encoding and processing this data in the 
honeybee brain and these responses may be linearly separable with enough recording locations. 

Figure 5.4 | Classification of cancer biomarkers. We used a leave-one-trial-out method for 
training and testing a linear classifier in the original 39-dimensional neural encoding state space. 
a) Results from bin-wise classification show moderate levels of classification accuracy using the 
Manhattan norm. b) Trial-wise based classification generates near perfect results. A total 
accuracy of 96% was attained using the Manhattan norm as a distance metric. 
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Outlook 

It is important in gas sensing applications to consider the particular application as well as the 

strengths and weakness of different sensor technologies. This iterative process is relatively 

straightforward for manmade sensors, but a nearly limitless number of confounding factors can 

threaten readout integrity. It is also immensely time-consuming as application-specific devices 

must be fabricated, each tested within an assortment of different environmental conditions . 

Biological olfaction has evolved to function over a wide range of environments. It is likely less 

affected by the high humidity levels found in exhaled breath and is robust to minor alterations in 

background noise or interferants. This ability stems from the highly intricate processing schemes 

that incorporate spatial and temporal aspects for enhanced encoding capabilities. This imbues 

biosensors as highly attractive models for processing complex gas mixtures. In this case, 

biosensor tuning is likely based on evolutionary pressures forcing organisms into particular 

ecological niches. Having demonstrated that the locust can effectively detect cancer biomarkers, 

we sought to test the same capabilities in the honeybee, which exhibit disparate sensory 

processing capabilities. We found that honeybees can, in fact, differentiate between stimuli with 

a high degree of accuracy. While tempting to compare the classification accuracies between 

locusts and honeybees as an indicator for olfactory performance, it should be noted that different 

technologies for interfacing with the neural system were utilized owing to alternate 

morphological features of the two species. To our knowledge, this study represents the first 

extracellular recordings from the honeybee antennal lobe and, hopefully, paves the way for 

future experiments using honeybees as a non-invasive cancer diagnostic. 
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CHAPTER 6 | ONGOING WORK AND FUTURE DIRECTIONS 

Introduction 

Bio-hybrid sensors offer fundamental advantages over current state-of-the-art manmade sensors 

for the purpose of disease detection. Gas chromatography-mass spectrometry and ion mobility 

spectrometry offer excellent component wise separation abilities. These analytical approaches 

have provided insight into underlying metabolic processes by identifying analytes tied to specific 

biological pathways. However, the goal of a medical diagnostic is to identify the presence (or 

absence) of an underlying disease. While individual volatiles can be indicative of a few different 

pathological conditions, breath profiles are combinations of hundreds to potentially thousands 

of trace-level compounds. Subtle variations in a broad range of these chemicals are often much 

more informative for disease diagnoses, especially when considering complex pathologies. 

Importantly, the production of intermediary metabolites can alter subsequent biochemical 

reactions, eliciting further changes in metabolites. As such, diseases often have broad scale 

effects dependent on numerous genetic as well as environmental variables. These component-

wise breath analysis methods as medical diagnostics require extensive signal processing to 

identify patterns particular to a disease state. In order to bypass the limitations of such systems, 

electronic noses are based on a functional combinatorial coding scheme. The incorporation of 

broadly selective, cross-reactive sensors prevents the identification and quantification of 

individual analytes. Instead, these devices aim to classify entire gaseous mixtures as points in a 

high-dimensional space. Although inspired by biological olfaction, the performance of electronic 

noses pale in comparison. They lack the broad response characteristics seen in biological 

olfactory systems and fail to achieve sensitivity levels for the detection of many trace-level 
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volatiles present in exhaled breath. Instead of attempting to reverse-engineer gas-based sensors, 

our approach harnesses the power of biological olfaction directly by incorporating complete 

biological chemosensory arrays involving diverse olfactory receptors (antennae), biological signal 

transduction, and neural computations all in one device. We have demonstrated that multiple 

different insect biosensors are able to reliably detect and differentiate between cancer 

biomarkers. Moreover, the locust olfactory system is capable of differentially encoding 

heterogeneous mixtures such as the volatile headspace of cancer cells. Our proof-of-concept 

testing indicates that insect biosensors have tremendous potential as medical diagnostics. 

Current Limitations 

All insect brain surgeries were performed manually. For locusts, each surgery took one to one 

and a half hours depending on the experimenter’s surgical experience and expertise. Success rate 

of electrode insertion was moderate (~80% per surgery). In future iterations, these limitations 

can be mitigated by incorporating robotic surgeons to automate the surgery and electrode 

insertion processes[668-670]. In our lab, the supply of insects was relatively abundant and 

inexpensive. For large scale operations, significant increases in colony sizes would be necessary, 

requiring some trained operative personnel.  

One significant concern regarding brain-machine interface technologies is the potential 

damage to neurons and glial cells. While for acute experiments this has limited impact, the 

induced damage can initiate an inflammatory response and significantly affect signal-to-noise 

ratios in chronic models[671]. Based on our current neural recording setup, the number of PNs 

recorded per experiment was low (on average ~3 PNs/recordings). Therefore, PN responses were 

pooled across multiple recordings which is standard in neuroscience studies[523, 590, 596] but 
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not optimal for one-shot cancer VOC analysis. In the future, high density multi-electrode arrays 

and signal processing circuitry can be employed to record large amount of PNs simultaneously, 

thereby eliminating the need for multiple experiments and achieving one-shot classification [670, 

672-674].  

In the locust antennal lobe, projection neurons are the only neurons to exhibit a spiking 

response. Thus, we each class of spike sorted data belonged to a putative projection neuron. In 

honeybees, however, both local neurons and projection neurons exhibit spike-based signaling. 

We could not positively determine whether our spike sorting algorithm was identifying a local or 

projection neuron, though the activity of both might be beneficial for stimulus classification. 

Waveform analysis algorithms may be effective in discriminating between the functional 

characteristics and separating out activity from these distinct populations. 

One significant concern of manmade sensors as medical diagnostics is their limited 

sensitivity. While biological olfactory systems, such as canines, have shown to exhibit very low 

detection thresholds, our current study did not investigate whether these insect biosensors could 

detect and differentiate between volatiles or volatile mixtures at the concentrations typically 

found in exhaled breath. The selection of cell culture stimuli in our locust study enabled a highly 

controlled environment limiting the presence of confounding variables. However, in vitro cell 

cultures do not fully reflect the in vivo tumor microenvironment and cellular matrix, and in vivo 

VOC profiles may differ from the VOC profiles observed in in vitro cultures for different cancer 

types [146, 147, 675, 676]. Therefore, further studies involving in vivo cancer VOC analysis will be 

necessary to validate this brain-based sensing technology for cancer detection. 
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Multi-Electrode Array Modifications 

Sensor response characteristics are vital for determining a system’s performance in a given task. 

By tapping into the neural signals from insects, we eliminate the difficulty in designing and testing 

effective sensors for a broad range of chemicals. Yet, we still need optimal technologies to read 

the electrical signals that have been transduced by olfactory receptor neurons and processed by 

the dense neural network of the antennal lobe. State-of-the-art multi-electrode array fabrication 

technologies are generally geared towards device implantation in humans to restore normative 

sensory functioning. As such, the dimensions of these arrays are not suitable for insect-based 

neural recordings. We explored different avenues for the creation of novel high-density electrode 

arrays that eliminate the need to pool data across multiple insects. The antennal lobes of locusts 

and honeybees are ~500µm and ~300µm in diameter, respectively. For our locust recordings, we 

used micromachined probes, however, microwire arrays minimize the amount of displaced tissue  

Figure 6.1 | Multi-tetrode device. A single guide tube contains five different tetrodes, consisting 
of four channels each. While this technique could be beneficial for recording from a large number 
of neurons, it lacks reproducibility as tetrode bundles are not stabilized within the guide tube. 
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Figure 6.2 | Multi-electrode array size comparisons. Left to right: Dual shank Neuronexus probe 
with two tetrodes per shank, 4-, 8- and 16-channel twisted wire tetrodes. As the number of 
channels increases for the twisted wire tetrodes so too does the device footprint. For insertion 
points with no space between individual wires, device implantation was not viable and a 
significant amount of neural damage occurred. 

Figure 6.3 | Dual guide tube single wire electrodes. Individual 12.7 µm diameter wires were fed 
through micro-capillary columns with an inner diameter of 50 µm. The hole—wire size mismatch 
permitting significant maneuverability within the tubes and the relatively large tube thickness 
limited using a large number of tubes for a highly dense array. Line-to-line width in the above 
images is 200 µm.  
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and are often characterized by much smaller device profiles. As such, twisted wire tetrodes were 

used for honeybee recordings to minimize the extent of insertion damage. For locusts, the larger 

working area permitted multiple tetrodes to be paired within the same device (Figure 6.1). 

However, inter-tetrode pitch was highly variable and twisting of the wires created a solid mass 

at the insertion point (Figure 6.2), issuing substantial redundancy among a tetrode’s channels. 

Initial attempts to reduce the electrode footprint and maximize information content were 

attempted by inserting individual electrode wires into adjacent tubes to enable sufficient inter-

electrode separation (Figure 6.3). Yet, the resulting gap between electrodes was too large to 

enable the construction of high-density arrays. Next, we attempted to splay electrode wires at 

the ends of a spun tetrode (Figure 6.4). The splayed channels achieved appropriate inter-

electrode distances but, similar to the variable pitch between tetrodes observed in our multi-

tetrode devices, the pitch between individual wires varied significantly. This technique not only 

produced inconsistent channel spacing but was difficult to scale up to polytrodes containing the 

high number of channel counts intended. Instead a jig template was designed and printed using 

a Stratasys J750 3D printer (Figure 6.5). Test pieces containing 400 µm, 300 µm, 200 µm, and 100 

Figure 6.4 | Flared multi-electrode array. Tetrodes were fabricated as seen in Chapter 2: 
Methodology- Tetrode fabrication. Once finished construction, tetrode tips were splayed to form 
close, yet identifiably separate channels. These devices proved viable but lacked inter-device 
reliability and proved difficult to scale up to higher channel counts. Line-to-line distance is 200 
µm. 
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µm diameter holes were initially printed to determine the maximal feature resolution of the 

printer (Figure 6.5a). Holes exceeding 150 µm failed to be printed (Figure 6.5b). This test showed 

that the resolution of the printer was inadequate for generating jigs with necessary inter-

Figure 6.5 | 3D-printed multi-electrode template. Template piece for testing Stratasys J750 
resolution and minimal feature size capabilities. Printer successfully printed 400 µm and 300 µm 
holes but failed to print 200 µm and 100 µm holes. While the larger holes were visible, the 
channel did not extend the entire way through the piece.  

Figure 6.6 | Boston Micro Fabrication 3D-printed multi-electrode template. A template piece 
for testing the resolution and minimal size feature capabilities of a 3D printer specializing in 
micro-scale technology was printed. Hole diameters included 80 µm, 70 µm, 50 µm, 30 µm, 25 
µm, 20 µm, 18 µm, 15 µm, 12 µm, and 10 µm. The printer successfully printed most, if not all, of 
the holes, though this was difficult to assess for the smaller ones even with the use of a 
stereomicroscope. a-d) Template test piece. e) Supplementary 3D printed holding device to 
stabilize piece during wire feed through. f, g) Wires successfully fed through the larger holes of 
the device, demonstrating excellent printer resolution. h) Custom-made 3D multi-electrode array 
just prior to device insertion. 
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electrode pitch distances and the large hole size would induce variability in pitch distance. A new 

test piece printed by a company specializing in micro-scale 3D printing applications (Boston Micro 

Fabrication). Holes of various diameters were tested, and the printer achieved resolution 

adequate for our intended application (Figure 6.6). Handling of the 3D printed jig template was 

exceptionally difficult owing to its small profile and extremely light weight. However, some 

Figure 6.7 | 3D multi-electrode array. Close up images of an additional 3D multi-electrode array 
as seen through a stereomicroscope. 
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electrode wires were able to be fed through individual holes and a layer of two-part epoxy was 

placed atop the template, thereby stabilizing electrode positioning. Once cured, the epoxied wire 

was removed from the jig template to expose tips of the 3D high-density probe (Figure 6.7). 

Alternative design schematics were considered but not pursued (Figure 6.8a). Moreover, 

microcapillary columns, occasionally used in gas chromatography-mass spectrometry and ion 

mobility spectrometry, could be used to serve as a template substrate (Figure 6.8b). 

In addition to 3D geometries, 2D configurations were also explored. One design used 

wires aligned in parallel, which resulted in excellent configurations, but the fabrication of such 

probes was painstaking and difficult to reproduce (Figure 6.9). Alternatively, wires were drawn 

Figure 6.8 | Alternative multi-electrode array designs. a) Custom-design 3D printable horizontal 
jig. b) Micro-capillary column with numerous microscopic hole channels. 

a) b) 

a) b) c) 

Figure 6.9 | 2D straight-wire multi-electrode array. a) Test array of two individual wires. b, c) 
Test array demonstrating multi-channel capabilities at micron level resolution. 
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at angled geometries crossing over a central point. Cyanoacrylate adhesive was applied to 

stabilize the wires adjacent to the point of cutting. However, even with sharp microscissors, 

minor hand movements put undue tension on the wires and unintentionally altered relative tip 

positions (Figure 6.10). Laser cutting could be applied to mitigate tip position alterations, but this 

avenue was not explored.  

a) 

b) 

c) 

d) f) 

e) 

Figure 6.10 | 2D angled-wire multi-electrode array. a, b) Test array of two individual wires. c-f) 
Array testing multi-channel capabilities at micron level resolution. 

Figure 6.11 | Dual-lobe multi-tetrode device. Both antennal lobes could be targeted at the same 
time, doubling the number of recording locations and potentially putative spike sorted neurons. 
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In addition to microwire arrays, a planar array device was custom fabricated and tested 

for in vivo recordings (Figure 6.12). This flexible device was fitted with multiple surface electrodes 

intended to record from the projection neurons residing in the cortex of the locust antennal lobe. 

Unfortunately, even with hydrophilic and hydrophobic film applications, the planar array did not 

adhere to the antennal lobe surface sufficiently. A future microfabricated iteration consists of a 

foldable device with penetrating electrode shanks (Figure 6.13). Probes can contain a variety of 

individual electrode channels, however, these have yet to be tested in vivo. 

Other electrode modifications could be made to enhance recording capabilities that do 

not necessitate increasing channel density. Electrochemical etching of the wire tips could reduce 

the electrode tip footprint, thereby minimizing probe insertion damage. This could potentially 

increase device longevity and improve signal-to-noise ratios. Alternative electrode wire materials 

that have enhanced conductivity could be explored. While for the majority of brain implants, the 

stiffness or young’s modulus of a metal ought to be considered, removal of the neural sheath 

covering the antennal lobe exposes an extremely soft surface. This requires minimal material 

rigidity for penetration, allowing electrode material selection to optimize electrical properties 

a) b) c) 

Figure 6.12 | Planar multi-electrode array. Microfabricated flexible surface-level electrode 
arrays targeting both antennal lobes. a) PCB board facilitating electrode connections. b, c) Planar 
array implanted on top of the locust antennal lobe. 
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with little mechanical constraints. We electroplated the wire tips with pure gold for all 

experiments, but other plating materials, such as carbon nanotubes, that may enhance signal-to-

noise ratios may be considered. 

Sensor Calibration 

Device longevity and sensor calibration are significant concerns for any chemical sensor, 

especially those incorporating biological componentry. Optical imaging techniques benefit from 

the topological and functional glomerular conservation observed between individuals within the 

same species. This allows for the generalization of odor-specific glomerular response profiles 

across different individuals. For biosensors incorporating electrode-based neuronal signals, it is 

highly unlikely that electrodes will be positioned at the exact same location in different 

individuals. Therefore, sensor calibration procedures ought to be performed for each individual 

based on the encoding state space generated by the electrode array’s positioning within the 

antennal lobe. This sensor initialization process is effective due to the spatiotemporal 

combinatorial coding scheme implemented by the insect olfactory system. Instead of relying on 

the identity of individual neurons, distinct neuronal response training templates can be formed 

from the entire signal population of putative neurons or recorded electrodes. While some 

variation will be observed between the effectiveness of each individual sensor, ensembles of 

broadly tuned projection neurons will recognize stimulus-specific features and encode disparate 

stimuli in unique manners.  

Various experimentally derived parameters can be selected for the application at hand. 

For example, during training template formation, a maximum of 10% overlap could be allowed 

between population PN responses. Additionally, during the testing phase, a minimum of 80% 
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classification success rate may be chosen. The tuning of these parameters enables altering the 

balance between accuracy, precision, and recall, a highly useful ability when implementing the 

chemical sensor as a screening tool versus a later stage diagnostic to determine disease 

progression. 

The limited system lifetime is offset by significant sensor reversibility, which promotes 

high sample throughput capabilities. Unlike the substantial processing and recovery times 

associated with artificial sensors, the insect olfactory system is capable of rapidly binding, 

Figure 6.13 | Excised locust antennae and brain. The brain was able to be extracted but 
significant strain was enforced upon the antennal lobe, corrupting incoming electrical signals.  
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sensing, and removing odorant molecules. The real-time processing capabilities of this 

biologically based chemical sensor allows for odorants to be delivered on the second- and 

minute-timescale. Repeated presentations with such low intervals could serve to substantially 

increase stimulus encoding and effective discrimination. 

Brain-on-a-Chip 

In an effort to move towards highly portable devices, we are actively exploring brain-on-a-chip 

technologies. Essentially, the insect body is unnecessary as long as the antennae neural circuitry 

remains intact. Efforts to remove the locust antennae and brain as chemical sensors and an 

Figure 6.14 | Ex vivo v2. Attempts were made to decapitate the locust and subsequently perform 
a brain extraction method. The inserts seen above slid into a secondary surgical reservoir filled 
with locust saline to mitigate tissue desiccation. However, a lack of head stability prevented this 
technique from being effective. 
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associated processing unit have been undertaken. Preliminary extraction methods were 

attempted by performing usual in vivo brain surgery followed by excising the exoskeleton 

surrounding the antennae and brain. We were able to keep structures intact, but these methods 

induced considerable damage to the antennal lobe and nerve, thus corrupting signal transmission 

(Figure 6.13). Other efforts included a decapitation method and subsequent antennae and brain 

excision in a secondary 3D printed surgical basin (Figure 6.14). Here, however, the structure of 

the basin complicated surgical accessibility and the locust head did not remain stable during 

surgery. A third strategy involved designing an entire in vivo surgical platform followed by 

antennae—brain extraction with particular focus on preserving the integrity of the antennal 

nerve (Figure 6.15). The device proved to be effective during surgical procedures but attempts 

to determine whether stable electrophysiological-based recordings can be attained have not yet 

been conducted. 

Figure 6.15 | Ex vivo v3. A novel design was cadded and 3D printed. The device performed as 
expected during the surgical procedure, however brain extraction techniques have not yet been 
attempted. 
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In Vivo Diagnostic Validation 

Apart from the aforementioned innovations, further research should be conducted incorporating 

more realistic models to determine the diagnostic feasibility of our insect-based biosensor. Such 

testing can include 3D cell culture models, volatiles from diseased animal models or preclinical 

experiments processing breath samples from human patients. 

Outlook 

Manmade gas sensing technologies are powerful and exhibit a number of positive features. 

Component-wise methods are integral technologies for exploring the individual analytes of a 

mixture and for identifying chemical concentrations. In particular, gas chromatography-mass 

spectrometry is an essential method for laboratory research in a variety of scientific domains. 

Electronic noses offer rapid sample processing times and high potential for device miniaturization 

and portability. However, no manmade sensor has demonstrated the impressive chemical 

sensing capabilities characteristic of biological olfactory systems. We have successfully 

demonstrated that both locusts and honeybees can be used to detect and differentiate between 

cancer biomarkers. We believe that using biosensors as chemical sensing devices provides a 

number of advantages over conventional sensors. While biological olfaction has been lauded for 

its impressive sensitivity and broad ranging specificity, the development of biosensors as medical 

diagnostics is an interdisciplinary approach that requires expertise in a number of areas. As 

related technologies and signal processing algorithms continue to improve, the potential of the 

field will follow suit. We hope that this research paves the way for future investigations of novel 

biosensors for disease detection and other practical, real-life applications. 
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