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ABSTRACT

Many applications of representation learning, such as privacy preservation and algorithmic

fairness, desire explicit control over some unwanted information being discarded. This goal is

formulated as satisfying two objectives: maximizing utility for predicting a target attribute while

simultaneously being invariant (independent) to a known sensitive attribute (like gender or race).

Solutions to invariant representation learning (IRepL) problems lead to a trade-off between utility

and invariance when they are competing. Most existing works are empirical and implicitly look

for single or multiple points on the utility-invariance trade-off. They do not explicitly seek to

characterize the entire trade-off front optimally and do not provide invariance and convergence

guarantees.

In this thesis, we address the shortcoming mentioned above by considering simple linear mod-

eling and building upon them. As a first step, we derive a closed-form solution for the global optima

of the underlying linear IRepL optimization problem. In further development, we consider neural

network-based encoders, where we model the utility of the target task and the invariance to the

sensitive attribute via kernelized ridge regressors. This setting leads to a stable iterative optimiza-

tion scheme toward global/local optima(s). However, such a setting cannot guarantee universal

invariance. This drawback motivated us to further study the case where the invariance measure is

modeled universally via functions in some reproducing kernel Hilbert spaces (RKHS)s. By model-

ing the encoder and target networks via functions in some RKHS, too, we derive a closed formula

for a near-optimal trade-off, corresponding optimal representation dimensionality, and the associ-

ated encoder(s). Our findings have an immediate application to fairness in terms of demographic

parity.
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Chapter 1

Introduction To Invariant Representation

Learning

1.1 Introduction

Real-world applications of representation learning often have to contend with objectives beyond

predictive performance. These include cost functions pertaining to, invariance (e.g., to photo-

metric or geometric variations), semantic independence (e.g., to age or race for face recognition

systems), privacy (e.g., mitigating leakage of sensitive information [1]), algorithmic fairness (e.g.,

demographic parity [2]), and generalization across multiple domains [3], to name a few.

At its core, the goal of the aforementioned formulations of representation learning is to sat-

isfy two competing objectives: Extracting as much information necessary to predict a target label

Y (e.g., face identity), while intentionally and permanently suppressing information about a given

sensitive attribute S (e.g., age or gender). See Figure 1.1 for an illustration. An encoder f produces

a representation Z = f(X) from the input data X . A target predictor gY operates on the repre-

sentation Z to predict the target attribute Y . A parametric or non-parametric dependence measure

Dep(Z, S) measures the statistical dependency of the representation Z on the sensitive attribute S.

For example, Dep(Z, S) can be measured by a hypothetical adversary loss that aims to predict the

sensitive attribute S. Even though randomized encoder and target predictor can also be consid-
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X
f (X)

Z gY (Z) Ŷ

Dep(Z, S) S

Figure 1.1: An encoder f in the form of a Borel function produces a representation Z = f(X)
from the input data X . A target predictor g, in the form of a Borel function, operates on the
representation Z to predict the target attribute Y . A parametric or non-parametric dependence
measure Dep(Z, S) quantifies the statistical dependency of the representation Z on the sensitive
attribute S. Invariant representation learning seeks a representation Z = f(X) that contains as
much information necessary for the downstream target predictor gY while being independent of
the sensitive attribute S.

ered, however in this dissertation, we assume that both f and gY are deterministic Borel functions.

When the statistical dependency between Y and S is not negligible, learning a representation Z

that is invariant to the sensitive attribute S (i.e., Z ⊥⊥ S) will necessarily degrade the performance

of the target prediction, i.e., there exists a trade-off between utility and invariance. The primary

application of invariant representation learning (IRepL) is invariant prediction. This is because if

Z is independent of S, then the target prediction Ŷ = gY (Z) is independent of S, regardless of the

target predictor gY . As a result, to be robust to the choice of target predictor [4], it is preferred to

deploy IRepL for invariant prediction rather than enforcing invariance on Ŷ directly.

The existence of a trade-off between utility and invariance has been well established, both

theoretically and empirically, under various contexts of representation learning such as fairness [5,

6, 7, 8], invariance [9], and domain adaptation [10]. However, the central aspect of IRepL is

still challenging: A learning algorithm that achieves any point on the utility-invariance trade-off,

optimally or via local optima(s), and how can we estimate them from training data. A vast majority

of existing works are empirical in nature. They implicitly look for single or multiple points on the

trade-off between utility and invariance to the sensitive information and do not explicitly seek to

2



X
f (X)

Z gY (Z) Ŷ

gS (Z) Ŝ

Figure 1.2: Adversarial Representation Learning consists of three entities, an encoder f that
obtains a compact representation Z of the input data X , a predictor gY that predicts a desired
target attribute Y and an adversary gS that seeks to extract a sensitive attribute S, both from the
embedding Z.

characterize the entire trade-off front optimally. This dissertation aims to address the mentioned

shortcoming of existing IRepL approaches by employing functions in some reproducing kernel

Hilbert spaces (RKHS)s to model target predictor gY and the dependence measure Dep(Z, S).

Under the case where the encoder f is also modeled via functions in some RKHSs, we are able

to find a closed-form solution for the optimal encoder. For encoders modeled by neural networks

(NN)s, we are able to provide some stability for the underlying iterative optimization problem.

1.2 Prior Work

1.2.1 Adversarial Representation Learning

Most practical approaches for learning fair, invariant, domain adaptive, or privacy-preserving rep-

resentations discussed above are based on adversarial representation learning (ARL). At the core

of ARL is the idea of modeling Dep(Z, S) via a proxy adversary that seeks to extract the sensitive

attribute S. See Figure 1.2 for an illustration. In the context of image classification, adversarial

learning has been utilized to obtain representations that are invariant across domains [3, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20]. Such representations allow classifiers that are trained on a source

3



domain to generalize to a different target domain. In the context of learning fair and unbiased rep-

resentations, a number of approaches [1, 2, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]

have used and argued for explicit adversarial networks, to extract sensitive attributes from the en-

coded data. All these methods are usually set up as a minimax game between the encoder, a target

task, and a proxy adversary. The encoder is set up to achieve invariance by maximizing the loss

of the proxy adversary, i.e., minimizing the negative log-likelihood or mean square error (MSE) of

sensitive variables as measured by the proxy adversary. Roy et al. [1] identify and address the in-

stability of the optimization in the zero-sum minimax formulation of ARL and propose an alternate

non-zero-sum solution, demonstrating improved empirical performance. All the above approaches

use deep neural networks (DNN)s to represent the ARL entities, optimize their parameters through

stochastic gradient descent ascent (SGDA), and rely on empirical validation. However, none of

them seek to study the nature of the ARL formulation itself, i.e., in terms of decoupling the role of

the expressiveness of the models and convergence/stability properties of the optimization tools for

learning the parameters of the corresponding models. This shortcoming motivates us to take some

steps towards filling this gap by studying simpler forms of ARL from an optimal optimization

perspective in Chapter 3 and build upon it in Chapters 4, 5.

1.2.2 Invariant Representation Learning

The basic idea of representation learning that discards unwanted semantic information has been

explored under many contexts like invariant, fair, or privacy-preserving learning. The concept of

learning fair representations was first introduced by Zemel et al. [36]. The goal was to learn a rep-

resentation of data by “fair clustering” while maintaining the discriminative features of the predic-

tion task. Building upon this work, many techniques have been proposed to learn an unbiased rep-

resentation of data while retaining its effectiveness for a prediction task. These include the Varia-
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tional Fair Autoencoder [37] and the more recent information bottleneck-based objective by Moyer

et al. [38]. In domain adaptation [11, 12, 39], the goal is to learn features that are independent of

the data domain. In fair learning [2, 21, 40, 36, 41, 42, 43, 23, 24, 22, 44, 26, 45, 46, 47, 48, 49, 50],

the goal is to discard the demographic information that leads to unfair outcomes. Similarly,

there is growing interest in mitigating unintended leakage of private information from representa-

tions [51, 52, 53, 54, 55, 45, 56, 57, 58, 59].

A vast majority of this body of work is empirical in nature. They implicitly look for single

or multiple points on the trade-off between utility and sensitive information and do not explicitly

seek to characterize the entire trade-off front. Overall, these approaches are not concerned with or

aware of the inherent utility-invariance trade-off. In contrast, using functions in some RKHSs, we

near-optimally characterize the trade-off and propose a practical learning algorithm that achieves

this trade-off in Chapter 5.

1.2.3 Trade-Offs in Invariant Representation Learning

Prior work has established the existence of trade-offs in IRepL, both empirically and theoretically.

In the following, we categorize them based on properties of interest.

Restricted Class of Attributes: A majority of existing work considers IRepL trade-offs under

restricted settings, i.e., binary and/or categorical attributes Y and S. For instance, [60] uses

information-theoretic tools and characterizes the utility-fairness trade-off in terms of lower bounds

when both Y and S are binary labels. Later [55] provided both upper and lower bounds for binary

labels. By leveraging Chernoff bound, [61] proposed a construction method to generate an ideal

representation beyond the input data to achieve perfect fairness while maintaining the best per-

formance on the target task. In the case of categorical features, a lower bound on utility-fairness

trade-off has been provided by [6] for the total invariance scenario (i.e., Z ⊥⊥ S). In contrast to this
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body of work, our trade-off analysis applies to multidimensional continuous/discrete attributes. To

the best of our knowledge, the only prior work with a general setting is [9]. However, in [9], both

S and Y are restricted to be continuous/discrete or binary at the same time (e.g., it is not possible

to have Y binary while S is continuous).

Characterizing Exact versus Bounds on Trade-Off: To the best of our knowledge, all existing

approaches characterize the trade-off in terms of upper and/or lower bounds. In contrast, we exactly

characterize a near-optimal trade-off with closed-form expressions for encoders belonging to some

RKHSs.

Optimal Encoder and Representation: Another property of practical interest is the optimal en-

coder that achieves the desired point on the utility-invariance trade-off and the corresponding rep-

resentation(s). Existing works which only study bounds on the trade-off do not obtain the encoder

that achieves those bounds. Hilbert-Schmidt independent criterion (HSIC), a universal measure

of dependence, has been adopted by prior work (e.g., [62]) to quantify all types of dependencies

between Z and S. However, these methods adopt stochastic gradient descent (SGD) for optimizing

the underlying non-convex optimization problem. As such, they fail to guarantee that the repre-

sentation learning problem converges to a global optima. In contrast, we obtain a closed-form

solution for the optimal encoder and its corresponding representation while detecting all modes of

dependence between Z and S in Chapter 5.

1.2.4 Optimization Theory for Adversarial Learning

A growing class of learning algorithms, including ARL, generative adversarial networks (GAN)s,

etc., involve more than one objective and are trained via games played by cooperating or dueling

NNs. An overview of the challenges presented by such algorithms and a plausible solution in

general n-player games can be found in [63]. In the context of two-player minimax games such
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as GANs, several solutions [64, 65, 66, 67, 68, 69, 70, 71] have been proposed to improve the

optimization dynamics, many of them relying on the idea of taking an extrapolation step [72].

The non-convex nature of the ARL formulation poses unique challenges from an optimization

perspective. Practically, the parameters of the models in ARL are optimized through SGD, either

jointly [21, 64] or alternatively [11], with the former being a generalization of gradient descent and

is known as SGDA. While the convergence properties of gradient descent and its variants are well

understood, there is relatively little work on the convergence and stability of SGDA in adversarial

minimax problems. Recently, Mescheder et al. [64] and Nagarajan et al. [65] both leveraged

tools from non-linear systems theory [73] to analyze the convergence properties of SGDA, in

the context of GANs, around a given equilibrium. They show that without the introduction of

additional regularization terms to the objective of the zero-sum game, SGDA does not converge.

However, their analysis is restricted to the two-player GAN setting and is not concerned with its

global/local optima. In contrast, using kernelized ridge regressors for target and proxy adversary

networks, we are able to optimize these networks optimally for any given representationZ = f(X)

that turns the unstable SGDA optimization scheme into the stable SGD scheme.

1.2.5 Dimensionality Reduction

The technical machinery of Chapters 3, 5 in this dissertation is closely related to principal com-

ponent analysis (PCA) [74] and its kernelized version [75] for dimensionality reduction. PCA can

provide a compact disentangled representation (i.e., different elements of the representation vector

are uncorrelated to each other) of the input data, which is efficient for downstream classification,

regression, and clustering tasks. In particular, we deploy supervised PCA in this thesis [76]. Ker-

nel methods have also been previously used for fair dimensionality reduction by [77], where the

Rayleigh quotient is employed to only search for a single point in the utility-invariance trade-off.
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In contrast to this work, our approaches in Chapters 3, 5 aims to characterize the entire trade-off

front.

1.2.6 Dependence Measure

In 1959, Rényi introduced dependence measures as a quantifier of the statistical dependence be-

tween two random variables (RV)s Z and S by a non-negative value, where zero indicates that

Z and S are independent and with larger values indicating greater degrees of dependence [78].

A possible such dependence measure can be defined as the maximum Pearson correlation (aka

correlation coefficients) between α(Z) and β(S) over all Borel functions α and β [78]. Such a

measure is not computationally tractable if Z and/or S are continuous [76]. To circumvent this

difficulty, [79] demonstrated that any universal RKHS is sufficient as a search space for α and

β to detect all modes of dependence1 between Z and S. Later, [80] employed the maximum of

covariance as a measure of independence for α and β belonging to a unit-ball in some univer-

sal RKHSs. Further, [81] proposed HSIC, where they demonstrated that considering covariance

for only elements of any basis set in the involved RKHSs is sufficient for a universal dependence

measure.

1.3 Overview of the Thesis

In the second chapter, we introduce the notations, definitions, mathematical background, and ma-

chinery required for this dissertation. The mathematical background of this dissertation includes

linear algebra, probability theory, and functional analysis. In particular, we sometimes deploy

functions in some RKHSs to model the encoder f and/or the target predictor gY . Further, we

1By ’all modes of dependence’, all types of linear or non-linear relations in contrast to only linear or monotonic
relations.
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sometimes model the dependence measure between the representation Z and the sensitive attribute

S via kernel measures of independence.

In the third chapter, we study the simplest ARL, where all players 1) encoder f , 2) target

predictor gY , and 3) proxy adversary gS are modeled linearly. Under this scenario, we obtain a

closed-form solution (both empirically and in population) for the optimal encoder in terms of the

eigenvectors of the projection of input data into the space that is as close as possible to the target

label space while lying on the least explanatory space for the sensitive attribute. We then generalize

our formulation and closed-form solutions to encoders in RKHSs while target and proxy adversary

networks remain linear. Moreover, we theoretically obtain an optimal embedding dimensionality

(i.e., dim(Z)) as a function of the user-defined trade-off parameter.

In the fourth chapter, we let the encoder be DNN and aim to circumvent the instability and

lack of convergence guarantees induced by SGDA optimization in ARL by modeling adversary

and target networks by kernelized ridge regressors. This, in turn, yields a closed-form solution for

the optimal adversary and target predictors for any given representation Z = f(X). Therefore, the

SGDA optimization strategy reduces to a simple SGD to learn the encoder parameters. Moreover,

we theoretically obtain an upper bound for the optimal embedding dimensionality.

In the fifth chapter, motivated by the fact that proxy adversary loss may not account for all

modes of dependence, we model the invariance measure via a near-universal dependence measure

rather than a proxy adversary loss. By modeling the target loss the same, we are able to find a

closed-form solution (both empirically and in population) for encoders in RKHSs. The closed-

form solution also leads to the determination of optimal embedding dimensionality. The utility-

invariance trade-off induced by the optimal encoder can be interpreted as an inherent trade-off

arising from the triplet of the input data X , the target label Y , and the sensitive attribute S.

We conclude the thesis in the sixth chapter, where we discuss limitations, future work, and the
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broader impact of this thesis.

1.4 Contributions of the Thesis

• We obtain a closed-form solution for the global optima of ARL with linear/kernelized en-

coder and linear target and proxy adversary networks under MSE loss in Chapter 3. This

closed-form solution can interestingly be interpreted as a generalization of supervised PCA

(and its kernelized version) when there is a sensitive attribute to discard. Consequently,

we are able to obtain an exact optimal embedding dimensionality as a function of the user-

defined utility-invariance trade-off parameter under the mentioned scenario.

• We deploy kernelized ridge regressors for modeling proxy adversary and target networks

while the encoder can be DNN in Chapter 4. In turn, the unstable SGDA optimization

involved in ARL reduces to SGD, which is a stable optimization scheme. Furthermore, we

obtain an upper bound for the optimal embedding dimensionality.

• We introduce a simplified version of HSIC to measure the dependence between the represen-

tation Z and the sensitive attribute S for encoders in RKHSs in Chapter 5. We demonstrate

that our proposed dependence measure is near-universal and lends itself to a closed-form so-

lution for the IRepL problem where the optimal embedding dimensionality can be precisely

obtained as a function of the trade-off parameter. The introduced utility-invariance trade-off

can be interpreted as a near-optimal trade-off induced by the triplet (X, Y, S).
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Chapter 2

Mathematical Background and

Preliminaries

2.1 Notations and Definitions

Scalars are denoted by regular lowercase letters, e.g., r, λ. Deterministic vectors are denoted by

boldface lowercase letters, e.g., x, s. The L2-norm of the vector x is denoted by ‖x‖, and the

inner product between the vectors x and s of the same size is denoted by 〈x, s〉. We denote n-

tuple vectors of ones and zeros by 1n and 0n, respectively. Finite or infinite sets are denoted by

calligraphy letters, e.g.,H, A. The indicator function is denoted by 1B(·), where

1B(m) =





1 if m ∈ B

0 if m 6∈ B
(2.1)

We denote deterministic matrices by boldface upper case letters, e.g., M , K. The element at i-th

row and j-th column of any matrix M is denoted by (M )ij or mij ; its transpose is denoted by

MT ; its inverse is denoted by M−1, and its Moore-Pensore pseudo-inverse is denoted by M †.

Centering, i.e., mean subtraction with respect to (w.r.t.) columns, is denoted by ”̃ ”, e.g., M̃ ,
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which can be obtained as

M̃ = MH whereM ∈ Rm×n andH := In −
1

n
1n1Tn . (2.2)

The subspace spanned by the columns of M is denoted by R(M) or simplyM; the orthogonal

complement of M is denoted by M⊥, and the null space of M is denoted by N (M). The

orthogonal projection ontoM is denoted by PM and can be obtained as

PM = M
(
MTM

)†
MT . (2.3)

We denote an n× n identity matrix by In or simply I . The trace of any square matrixK (i.e., the

sum of diagonal elements) is denoted by Tr [K]. The Frobenius norm of any matrixM is denoted

by ‖M‖F , which is related to the trace as

‖M‖2F = Tr
[
MMT

]
= Tr

[
MTM

]
.

We denote both scalar-valued and multidimensional random variables (RV)s by regular upper-

case letters, e.g., X , S. The expectation of the RVX is denoted by E[X]; and its covariance matrix

is denoted by CX , where

CX := E
[
(X − E[X])(X − E[X])T

]
.

Similarly, denoted by CXY , the cross-covariance between the RVs X and S is defined as

CXS := E
[
(X − E[X])(S − E[S])T

]
.
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For a positive definite matrix C (denoted by C � 0), its Cholesky factorization results in

C � 0⇒ C = QQT , Q is full rank. (2.4)

If C is a positive semi-definite matrix (denoted by C � 0), then its incomplete Cholesky factor-

ization is

C � 0⇒ C = LLT , L is full column-rank. (2.5)

Consider the probability space (Ω,F ,P), where Ω is the sample space, F is a σ−algebra on

Ω, and P is a probability measure on F . We assume that the joint RV, (X, Y, S) containing the

input data X ∈ RdX , the target label Y ∈ RdY , and the sensitive attribute S ∈ RdS , is an RV

on (Ω,F) with joint distribution pX,Y,S . Furthermore, Y and S can also belong to any finite set,

like a categorical set. This setting enables us to work with classification and multidimensional

regression tasks, where the sensitive attribute can be either categorical or multidimensional contin-

uous/discrete RV. We letD := {(x1,y1, s1), · · · , (xn,yn, sn)} be the training data, containing n

i.i.d. samples from the joint distribution pX,Y,S . We also separately define the input, the label, and

the sensitive data, respectively, as follows.

X := [x1, · · · ,xn] ∈ RdX×n

Y := [y1, · · · ,yn] ∈ RdY ×n

S := [s1, · · · , sn] ∈ RdS×n.

13



2.2 Preliminaries

2.2.1 Kernelization

Let f ∈ HX , where HX is an RKHS of functions from RdX to R with kernel function kX(·, ·).

Invoking the representer theorem [82], it follows that

f(X) =
n∑

i=1

θikX(xi, X) = θ [kX(x1, X), · · · , kX(xn, X)]T ,

where θ ∈ Rn×1 and (θ)i = θi. Moreover, let f(X) := [f1(X), · · · , fr(X)]T . Similarly, we have

f(X) = Θ [kX(x1, X), · · · , kX(xn, X)]T , (2.6)

where Θ ∈ Rr×n and (Θ)ji = θji.

2.2.2 Kernelized Dependence Measures

Principally, two RVs Z and S are independent (denoted by Z ⊥⊥ S) if and only if (iff) [83]

Cov(α(Z), β(S)) := E [α(Z) β(S)]− E [α(Z)] E [β(S)] (2.7)

is zero for all Borel functions α : Rr → R and βs : RdS → R belonging to the universal RKHSs

HZ and HS , respectively. Note that universality ensures that RKHSs can approximate any Borel

function with arbitrary precision [84]. In the remainder of this thesis, we consider the following

assumption unless otherwise stated.

Assumption 2.1. We assume that any RKHSH (from Rd to R) is universal and separable and the
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corresponding kernel function, k(·, ·) is bounded:

E [k(U,U)] <∞ for any square-integrable d-dimensional U. (2.8)

Note that a Hilbert space is separable iff it has a countable orthonormal basis set and U is square-

integrable iff E
[
‖U‖2

]
<∞.

Now consider the following bi-linear functional:

h : HZ ×HS → R, h(α, β) 7→ Cov(α(Z), β(S)),

where HZ and HS are RKHSs. This bi-linear functional is bounded due to Assumption 2.1 [85].

Invoking Riesz representation theorem [86], there exist a unique and bounded operator ΣSZ :

HZ → HS such that

Cov(α(Z), β(S)) = h(α, β) = 〈Σα, β〉HS ∀α ∈ HZ , β ∈ HS . (2.9)

Consequently, it follows that

Z ⊥⊥ S ⇐⇒ ΣSZ = 0. (2.10)

Notice that ΣSZ = 0 iff the norm of ΣSZ is zero for any valid norm like spectral norm:

‖ΣSZ‖Spectral:= sup
α∈HZ

‖ΣSZ α‖HS
‖α‖HZ

, (2.11)
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or Hilbert-Schmidt norm:

‖ΣSZ‖2HS:=
∑

αi∈UZ, βj∈US

〈
ΣSZ αi, βj

〉2
HS

, (2.12)

where UZ and US are countable orthonormal basis sets for the separable universal RKHSs HZ

and HS , respectively. These norms have been deployed in constrained covariance (COCO) [80]

and HSIC, respectively, which are universal measures of dependence [81]. Moreover, kernelized

canonical covariance (KCC) introduced by [79]:

KCC(Z, S) := sup
α∈HZ,β∈HS

Cov(α(Z), β(S))√
Var(α(Z))Var(β(S))

, (2.13)

has also widely been used as a universal measure of dependence.
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Chapter 3

Adversarial Representation Learning

Under Linear Invariance

3.1 Introduction

Adversarial representation learning is a promising framework for training image representation

models that can control the information encapsulated within it. ARL is practically employed for

learning representations for a variety of applications, including unsupervised domain adaptation

of images [87], censoring sensitive information from images [21], learning fair and unbiased rep-

resentations [37, 2], learning representations that are controllably invariant to sensitive attributes

[24] and mitigating unintended information leakage [1], amongst others.

At the core of the ARL formulation is the idea of jointly optimizing three entities: (i) An

encoder f that seeks to distill the information from the input data X and retains the information

relevant to the target attribute Y while intentionally and permanently eliminating the information

corresponding to the sensitive attribute S, (ii) a predictor gY that seeks to predict Y , and (iii) a

proxy adversary gS , playing the role of an unknown adversary, that seeks to extract the sensitive

information S. Figure 3.1 shows a pictorial illustration of the ARL problem.

Typical instantiations of ARL represent these entities through non-linear functions in the form

of NNs and formulate parameter learning as a minimax optimization problem. Practically, opti-
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X
f (X)

Z gY (Z) Ŷ

gS (Z) Ŝ

Figure 3.1: Adversarial Representation Learning consists of three entities, an encoder f that
obtains a compact representation Z of the input data X , a predictor gY that predicts a desired
target attribute Y and an adversary gS that seeks to extract a sensitive attribute S, both from the
embedding Z.

mization is performed through SGDA, wherein small gradient steps are taken simultaneously in the

parameter space of the encoder, target predictor, and proxy adversary. The solutions thus obtained

have been effective in learning data representations with controlled invariance across applications

such as image classification [1], multi-lingual machine translation [24], and domain adaptation

[87].

Despite its practical promise, the aforementioned ARL setup suffers from a number of draw-

backs:

– Representation learning under adversarial settings is challenging in its own right. The minimax

formulation of the problem leads to an optimization problem that is non-convex in the parameter

space, both due to the adversarial loss function as well as due to the non-linear nature of mod-

ern NNs. As we show in this chapter, even for simple instances of ARL where each entity is

characterized by a linear function, the problem remains non-convex in the parameter space. Sim-

ilar observations [65] have been made in a different but related context of adversarial learning in

generative adversarial networks (GAN)s [88].

– Current paradigm of SGDA to solve the ARL problem provides no provable guarantees while

suffering from instability and poor convergence [1, 2]. Again, similar observations [64, 65] have
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been made in the context of GANs, demonstrating the difficulty posed by the minimax formula-

tion of the optimization and exposing the limitations of standard simultaneous optimization (i.e.,

SGDA).

– In applications of ARL related to fairness, accountability, and transparency of machine learning

models, it is critically important to be able to provide performance bounds in addition to empirical

evidence of their efficacy. A major shortcoming of existing works is the difficulty and lack of

performance analysis and provable guarantees of unfairness or information leakage.

In this chapter, we take a step back and analytically study the simplest version of the ARL prob-

lem from an optimization perspective with the goal of addressing the aforementioned limitations.

Doing so enables us to delineate the contributions of the expressivity of the entities in ARL (i.e.,

shallow versus DNNs) and the challenges of optimizing the parameters (i.e., local optima through

SGDA versus global optima). We first consider the “linear” form of ARL, where the encoder is

a linear transformation, the target predictor is a linear regression, and the proxy adversary is also

a linear regressor. We show that this linear ARL leads to an optimization problem that is both

non-convex and non-differentiable. Despite this fact, by reducing it into a set of trace problems on

a Stiefel manifold, we obtain an exact closed-form solution for the global optima. As part of our

solution, we also determine the optimal dimensionality of the embedding space. We then obtain

analytical bounds (lower and upper) on the target and adversary objectives and prescribe a pro-

cedure to control the maximal leakage of sensitive information explicitly. Finally, we extend the

linear-ARL formulation to allow non-linear functions in some RKHSs while still enjoying an ex-

act closed-form solution for the global optima. Numerical experiments on multiple datasets, both

small and large scale, indicate that the global optima solution for the linear and kernel formulations

of ARL are competitive and sometimes even outperform DNN-based ARL trained through SGDA.

Practically, we also demonstrate the utility of linear ARL and kernel-ARL for “imparting” prov-
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able invariance to any biased pre-trained data representation. We refer to our proposed algorithm

for obtaining the global optima as spectral-ARL and abbreviate it as SARL.

3.2 Adversarial Representation Learning

3.2.1 Problem Setting

The adversarial representation learning problem is formulated with the goal of learning parameters

of an embedding function f(·; Θ) : X 7→ Z with two objectives: (i) aiding a target predictor

gY (·; ΘY ) to accurately predict the target attribute Y from Z, and (ii) preventing an adversary

gS(·; ΘS) from inferring the sensitive attribute S from Z. The ARL problem can be formulated as

min
Θ

min
ΘY

EX,Y [LY (gY (f(X; Θ); ΘY ) , Y )]

s.t. min
ΘS

EX,S [LS (gS (f(X; Θ); ΘS) , S)] ≥ α, (3.1)

where LY and LS are the loss functions for the target and the adversary predictors, respectively;

α ∈ [0,∞) is a user-defined value that determines the minimum tolerable loss for the adversary on

the sensitive attribute. For example, α = 0 corresponds to ignoring the adversary loss and result-

ing in standard representation learning, while α → ∞ corresponds to no tolerance for adversary

performance. The minimization in the constraint is equivalent to the encoder operating against an

optimal adversary. Existing instances of this problem adopt DNNs to represent f , gY , and gS and

learn their respective parameters {Θ,ΘY ,ΘS} through SGDA. See Figure 3.2 for an illustration.
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figure

X
f (X;Θ)

Z gY (Z;ΘY ) Ŷ

gS (Z;ΘS) Ŝ

Figure 3.2: ARL-SGDA: Illustration of training adversarial representation learning through
stochastic gradient descent ascent. i) At first, the target predictor parameters ΘY are updated
while the encoder and adversary are frozen. ii) Then, the adversary parameters ΘS are updated
while the encoder and ΘY are frozen. iii) Finally, the encoder parameters Θ get updated while
ΘY and ΘS are frozen. SGDA does not provide any convergence guarantees.

3.2.2 The Linear Case

We first consider the simplest form of the ARL problem and analyze it from an optimization per-

spective. We model both the adversary and the target predictors as linear regressors

Ŷ = ΘY Z + bY , Ŝ = ΘSZ + bS , (3.2)

where Z is an encoded version of X , and Ŷ and Ŝ are the predictions corresponding to the target

and sensitive attributes, respectively. We also model the encoder through a linear mapping

Θ ∈ Rr×dX : X 7→ Z = ΘX, (3.3)

where r is the dimensionality of the projected space. While existing NN-based solutions select r

on an ad-hoc basis, our approach for this problem determines r as part of our solution to the ARL

problem. See Figure 3.3 for an illustration. For both adversary and target predictors, we adopt the
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X

ΘX

Z ∈ Rr

ΘY Z+bY Ŷ

ΘSZ + bS Ŝ

Figure 3.3: Linear-ARL: Illustration of linear adversarial representation learning for learning a
fair representation. An encoder f , in the form of a linear mapping, produces a new representation
Z = ΘX . A target predictor gY and an adversary gS , in the form of linear regressors, operate
on the representation Z. We analytically analyze this ARL setup to obtain a closed-form solution
for the globally optimal parameters of the encoder Θ. Provable bounds on the trade-off between
utility and fairness of the representation are also derived.

MSE to assess the quality of their respective predictions, i.e.,

LY (Y, Ŷ ) = E
[
‖Y − Ŷ ‖2

]
, LS(S, Ŝ) = E

[
‖S − Ŝ‖2

]
.

3.2.2.1 Optimization Problem

For any given encoder Θ the following lemma gives the minimum MSE for a linear regressor in

terms of covariance matrices and Θ. The following Lemma assumes that the RV X is zero-mean

and the covariance matrix CX is positive definite. These assumptions are not restrictive since we

can always remove the mean and dependent features from X .

Lemma 3.1. Let X and U be two RVs with E[X] = 0, E[U ] = b, where CX � 0. Consider a

linear regressor, Û = WZ + b, where W ∈ RdU×r is the parameter matrix, and Z ∈ Rr is an

encoded version of X for a given Θ: X 7→ Z = ΘX, Θ ∈ Rr×dX . The minimum MSE that

can be achieved by designingW is

min
W

E
[
‖U − Û‖2

]
= Tr [CU ]−

∥∥∥PMQ−TX CXU

∥∥∥
2

F
,
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whereM = QXΘT ∈ RdX×r, and CX = QT
XQX (Cholesky factorization).

Proof. See Appendix A.1

Applying this Lemma to the target and adversary regressors, we obtain their minimum MSEs

as

JY (Θ) := min
ΘY

LY (gY (f(X; Θ); ΘY ) , Y ) = Tr [CY ]−
∥∥∥PMQ−TX CXY

∥∥∥
2

F
(3.4)

JS(Θ) := min
ΘS

LS (gS (f(X; Θ); ΘS) , S) = Tr [CS ]−
∥∥∥PMQ−TX CXS

∥∥∥
2

F
. (3.5)

Given the encoder Θ, JY (Θ) is related to the performance of the target predictor, whereas JS(Θ)

corresponds to the amount of sensitive information that an adversary is able to extract. Note that

the linear model for gY and gS enables us to obtain their respective optimal solutions for a given

encoder Θ. On the other hand, when gY and gS are modeled as NNs, doing the same is analytically

infeasible and potentially impractical.

The orthogonal projector PM in Lemma 3.1 is a function of two factors: a data-dependent term

QX and the encoder parameters Θ. While the former is fixed for a given dataset, the latter is our

object of interest. Pursuantly, we decompose PM in order to separably characterize the effect of

these two factors. Let the columns of LX ∈ RdX×dX be an orthonormal basis for the column

space of QX , and G ∈ RdX×r be an arbitrary matrix. consider LXG := QXΘT . Due to the

bijection

G = L−1
X QXΘT ⇔ Θ = GTLTXQ

−T
X ,

determining the encoder parameters Θ is equivalent to determiningG. The projector PM can now

be expressed in terms of PG , which is only dependent on the free parameterG:

PM = M
(
MTM

)†
MT = LXPGLTX , (3.6)
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where we used the equalityM = QXΘT and the fact that LTXLX = I .

Now, we turn back to the ARL setup and see how the above decomposition can be leveraged.

The optimization problem in (3.1) reduces to

min
G

JY (G)

s.t. JS(G) ≥ α,

(3.7)

where the minimum MSE measures of (3.4) and (3.5) are now expressed in terms of G instead of

Θ.

Before solving this optimization problem, we will first interpret it geometrically. Consider a

simple example where X is a white RV, i.e., CX = I . Under this setting, QX = LX = I and

G = Θ. As a result, the optimization problem in (3.7) can alternatively be solved in terms of

G = Θ, where JY (G) = Tr [CY ]−
∥∥PGCXY

∥∥2
F and JS(G) = Tr [CS ]−

∥∥PGCXS
∥∥2
F .

The constraint JS(G) ≥ α implies
∥∥PGCXS

∥∥2
F ≤ (Tr [CS ]− α) which is geometrically

equivalent to the subspace G being outside (or tangent to) the cone around CXS . Similarly, min-

imizing JY (G) implies maximizing
∥∥PGCXY

∥∥2
F , which in turn is equivalent to minimizing the

angle between the subspace G and the vector CXY . Therefore, the global optima of (3.7) are any

hyperplane G which is outside the cone aroundCXS while subtending the smallest angle toCXY .

An illustration of this setting and its solution is shown in Figure 3.4 for dX = 3, r = 2, and

dY = dS = 1.

Constrained optimization problems such as (3.7) are commonly solved through their respective

unconstrained scalarization [89] formulations as shown below

min
G∈RdX×r

{(1− λ) JY (G)− λ Js(G)} (3.8)
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CXS CXY

o
G

Figure 3.4: Geometric Interpretation: An illustration of a three-dimensional input space X
and one-dimensional target and adversary regressors. Therefore, both CXS and CXY are one-
dimensional. We locate the y-axis in the same direction as CXS . The feasible space for the
solution G = Θ imposed by the constraint JS(Θ) ≥ α corresponds to the region outside the
cone (specified by CS and α) around CXS . The non-convexity of the problem stems from the
non-convexity of this feasible set. The objective min JY (Θ) corresponds to minimizing the angle
between the lineCXY and the plane G. WhenCXY is outside the cone, the lineCXY itself or any
plane that contains the line CXY and does not intersect with the cone, is a valid solution. When
CXY is inside the cone, the solution is either a line or, as we illustrate, a tangent hyperplane to
the cone that is closest toCXY . The non-differentiability stems from the fact that the solution can
either be a plane or a line.
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for some parameter 0 ≤ λ < 1. Such an approach affords two main advantages and one disadvan-

tage: (a) A direct and closed-form solution can be obtained. (b) Framing (3.8) in terms of λ and

(1− λ) allows explicit control between the two extremes of no fairness (λ = 0) and only fairness

(λ → 1). As a consequence, it can be shown that for every λ ∈ [0, 1), ∃ α ∈ [αmin, αmax] (see

Appendix A.2 for a proof). (c) The vice-versa, on the other hand, does not necessarily hold, i.e.,

for a given tolerable loss α, there may not be a corresponding λ ∈ [0, 1). This is the theoretical

limit of solving a scalarized problem instead of the constrained problem.

Before we obtain the solution to the scalarization formulation (3.8), we characterize the nature

of the optimization problem in the following theorem.

Theorem 3.2. As a function of G ∈ RdX×r, the objective function in (3.8) is neither convex nor

differentiable.

Proof. See Appendix A.3

3.2.2.2 Learning

Despite the difficulty associated with the objective in (3.8), we derive a closed-form solution for

its global optima. Our key insight lies in partitioning the search space RdX×r based on the rank

of the matrixG (i.e., the number of independent rows or columns ofG). For a given rank i, let Si

be the set containing all matricesG of rank i,

Si =
{
G ∈ RdX×r | rank(G) = i

}
, i = 0, 1, · · · , r.

Since
⋃r
i=0 Si = RdX×r, the optimization problem in (3.8) can be solved by considering r mini-
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mization problems, one for each possible rank ofG:

min
i∈{1,...,r}

{
min
G∈Si

(1− λ) JY (G)− λ JS(G)

}
(3.9)

We observe from (3.4), (3.5), and (3.6) that the optimization problem in (3.8) is dependent only

on a subspace G. As such, the solutionG is not unique since many different matrices can span the

same subspace. Hence, it is sufficient to solve for any particularG that spans the optimal subspace

G. Without loss of generality, we seek an orthonormal basis spanning the optimal subspace G

as our desired solution. We constrain G ∈ RdX×i to be an orthonormal matrix i.e., GTG = Ii,

where i is the dimensionality of G. Ignoring the constant terms in JY and JS , for each i = 1, . . . , r,

the minimization problem over Si in (3.9) reduces to

min
GTG=Ii

Jλ(G), (3.10)

where

Jλ(G) := λ ‖LXGGTLTXQ
−T
X CXS‖2F−(1− λ) ‖LXGGTLTXQ

−T
X CXY ‖2F .

From basic properties of trace, we have, Jλ(G) = Tr
[
GTBG

]
where B ∈ RdX×dX is a

symmetric matrix:

B = LTXQ
−T
X

(
λCT

SXCSX − (1− λ)CT
Y XCY X

)
Q−1
X LX . (3.11)

The optimization problem in (3.10) is a trace minimization on a Stiefel manifold which has closed-

form solution(s) (see [90] and [91]).
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In view of the above discussion, the solution to the optimization problem in (3.8) or equiva-

lently (3.9) can be stated in the next theorem.

Theorem 3.3. Assume that the number of negative eigenvalues (β) of B in (3.11) is j. Denote

γ = min{r, j}. Then, the minimum value in (3.9) is given as,

β1 + β2 + · · ·+ βγ (3.12)

where β1 ≤ β2 ≤ . . . ≤ βγ < 0 are the γ smallest eigenvalues of B. And the minimum can be

attained by G = V , where the columns of V are eigenvectors corresponding to all the γ negative

eigenvalues ofB.

Proof. Consider the inner optimization problem of (3.10) in (3.9). Using the trace optimization

problems and their solutions in [90], we get

min
GTG=Ii

Jλ(G) = min
GTG=Ii

Tr
[
GTBG

]
= β1 + β2 + · · ·+ βi,

where β1, β2, . . . , βi are i smallest eigenvalues of B and minimum value can be achieved by the

matrix V whose columns are corresponding eigenvectors. If the number of negative eigenvalues

ofB is less than r, then the optimum i in (3.9) is j, otherwise the optimum i is r.

Note that including the eigenvectors corresponding to zero eigenvalues of B into our solution

G in Theorem 3.3 does not change the minimum value in (3.12). But, considering only the eigen-

vectors corresponding to negative eigenvalues results in G with the least rank and, thereby, an

encoder that is less likely to contain sensitive information for an adversary to exploit. Once G is

constructed, we can obtain our desired encoder as Θ = GTLTXQ
−T
X . Recall that the solution in

Theorem 3.3 is under the assumption that the covariance CX is a full-rank matrix.
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3.3 Empirical Solution for Linear Encoder

In many practical scenarios, we only have access to data samples but not to the population mean

vectors and covariance matrices. Therefore, the population solution might not be feasible in such

as case. In this section, we provide an approach to solve the optimization problem in (3.3), which

relies on empirical moments and is valid even if the covariance matrix CX is not full-rank.

Firstly, for a given Θ, we find

JY = min
WY ,bY

MSE (Ŷ − Y ).

Note that the above optimization problem can be separated over WY and bY . Therefore, for a

givenWY , we first minimize over bY :

min
bY

E
{
‖WY ΘX + bY − Y ‖2

}
= min

bY

1

n

n∑

k=1

‖WY Θxk + bY − yk‖2

=
1

n

n∑

k=1

‖WY Θxk + c− yk‖2 ,

where we used the empirical expectation and the minimizer c is

c =
1

n

n∑

k=1

(yk −WY Θxk) =
1

n

n∑

k=1

yk −WY Θ
1

n

n∑

k=1

xk

= E {Y } −WY ΘE {X} .
(3.13)
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Let all the columns of matrix C be equal to c. We now have

JY = min
WY ,bY

MSE (Ŷ − Y )

= min
WY

1

n
‖WY ΘX +C − Y ‖2F

= min
WY

1

n

∥∥∥WY ΘX̃ − Ỹ
∥∥∥

2

F

= min
WY

1

n

∥∥∥X̃TΘTW T
Y − Ỹ T

∥∥∥
2

F

= min
WY

1

n

∥∥∥MW T
Y − PMỸ T

∥∥∥
2

F
+

1

n

∥∥∥PM⊥Ỹ
T
∥∥∥

2

F

=
1

n

∥∥∥∥∥∥∥
MM †
︸ ︷︷ ︸
PM

PMỸ T − PMỸ T

∥∥∥∥∥∥∥

2

F

+
1

n

∥∥∥PM⊥Ỹ
T
∥∥∥

2

F

=
1

n

∥∥∥PM⊥Ỹ
T
∥∥∥

2

F

=
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n

∥∥∥PMỸ T
∥∥∥

2

F
,

where in the third step we used (3.13), M = X̃TΘT and the fifth step is due to orthogonal

decomposition. Using the same approach, we get

JS =
1

n

∥∥∥S̃T
∥∥∥

2

F
− 1

n

∥∥∥PMS̃T
∥∥∥

2

F
. (3.14)

Now, assume that the columns of Lx are the orthogonal basis for the column space of X̃T .

Therefore, for any M , there exists a G such that LXG = M . In general, there is no bijection

between Θ and G in the equality X̃TΘ = LXG. But, there is a bijection between G and Θ

when constrained to Θ’s in which R(ΘT ) ⊆ N (X̃T )
⊥

. This restricted bijection is sufficient to

be considered since for any ΘT ∈ N (X̃T ), we have M = 0. Once G is determined, ΘT can be
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obtained as

ΘT = (X̃T )†LXG+ Θ0, Θ0 ⊆ N (X̃T ).

However, since

‖Θ‖2F =
∥∥∥ΘT

∥∥∥
2

F
=
∥∥∥(X̃T )†LXG

∥∥∥
2

F
+ ‖Θ0‖2F ,

choosing Θ0 = 0 results in minimum ‖Θ‖F , which is favorable in terms of robustness to noise.

By choosing Θ0 = 0, determining the encoder Θ would be equivalent to determining G.

Similar to (3.6), we have PM = LXPGLTX . If we assume that the rank of PG is i, Jλ(G) in (3.10)

can be expressed as

Jλ(G) = λ
∥∥∥LXGGTLTX S̃

T
∥∥∥

2

F
− (1− λ)

∥∥∥LXGGTLTX Ỹ
T
∥∥∥

2

F

where GGT = PG for some orthogonal matrix G ∈ RdX×i. This resembles the optimization

problem in (3.9) and therefore it has the same solution as Theorem 3.3 with modifiedB given by

B = LTX

(
λ S̃T S̃ − (1− λ) Ỹ T Ỹ

)
LX (3.15)

OnceG is determined, Θ can be obtained asGTLTXX̃
†.

3.3.1 Non-Linear Extension Through Kernelization

We extend the “linear” version of the ARL problem studied thus far to a “non-linear” version

through kernelization. We model the encoder in the ARL problem as a linear function over the

non-linear mapping of inputs as illustrated in Figure 3.5. Let the data matrix X be mapped non-

linearly by a possibly unknown and infinite dimensional function φX(·) and the corresponding
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fr(·) ∈ HX

Z ∈ Rr

ΘY Z+bY Ŷ

ΘSZ + bS Ŝ

Figure 3.5: Kernel-ARL: Illustration of kernel adversarial representation learning for learning a
fair representation. An encoder f , in the form of a linear mapping on top of kernelized input,
produces a new representation Z = Θ [kX(x1, X), · · · , kX(xn, X)]T . A target predictor gY and
an adversary gS , in the form of linear regressors, operate on the representation Z.

reproducing kernel function be kX(·, ·).

From (2.6), it follows that the representation Z can be expressed as

Z = Θ [kX(x1, X), · · · , kX(xn, X)]T . (3.16)

The scalarization formulation of this kernel-ARL setup and its solution share the same form as that

of the linear case (3.8). The objective function remains non-convex and non-differentiable, while

the matrixB is now dependent on the kernel matrixKX as opposed to the covariance matrixCX

(see Appendix A.5 for details):

B = LTX

(
λ S̃T S̃ − (1− λ) Ỹ T Ỹ

)
LX , (3.17)

where the columns of LX are the orthonormal basis for HKX . Once G is obtained through

the eigendecomposition of B, we can obtain the optimal encoder as Θ = GTLTXK
†
X . This non-

linear extension in the form of kernelization serves to study the ARL problem under a setting where

the encoder possesses greater representational capacity while still being able to obtain the global

optima and bounds on the objectives of the target predictor and the adversary.
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3.4 Analytical Bounds

In this section, we introduce bounds on the utility and invariance of the representation learned by

SARL. We define four bounds αmin, αmax, γmin and γmax.

γmin : A lower bound on the minimum achievable target loss, or equivalently an upper bound on

the best achievable target performance. This bound can be expressed as the minimum target MSE

across all possible encoders Θ and is attained at λ = 0:

γmin = min
Θ

JY (θ)

αmax : A upper bound on the maximum achievable adversary loss, or equivalently a lower bound

on the minimum leakage of the sensitive attribute. This bound can be expressed as the maximum

adversary MSE across all possible encoders Θ and is attained at λ = 1:

αmax = max
Θ

JS(Θ)

γmax : An upper bound on the maximum achievable target loss, or equivalently a lower bound on

the minimum achievable target performance. This bound corresponds to the scenario where the

encoder is constrained to hinder the adversary maximally. In all other cases, one can obtain higher

target performance by choosing a better encoder. This bound is attained in the limit λ→ 1 and can

be expressed as

γmax = min
arg maxJS(Θ)

JY (Θ)

αmin : A lower bound on the minimum achievable adversary loss, or equivalently an upper bound

on the maximum leakage of the sensitive attribute. The absolute lower bound is obtained in the
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scenario where the encoder is neither constrained to aid the target nor hinder the adversary, i.e.,

α∗min = min
Θ

JS(Θ)

However, this is an unrealistic scenario since in the ARL problem, by definition, the encoder is

explicitly designed to aid the target. Therefore, a more realistic lower bound can be defined under

the constraint that the encoder maximally aids the target, i.e.,

ᾱmin = min
arg minJy(Θ)

JS(Θ)

However, even this bound is not realistic since, among all the encoders that aid the target, one

can always choose the encoder that minimizes the leakage of the sensitive attribute. The bound

corresponding to such an encoder can be expressed as

αmin = max
arg minJY (Θ)

JS(Θ)

This bound is attained in the limit λ → 0. It is easy to see that these bounds are ordinally related

as

α∗min ≤ ᾱmin ≤ αmin

To summarize, in each of these cases, there exists an encoder that achieves the respective bound.

Therefore, given a choice, the encoder that corresponds to αmin is the most desirable.

The following Lemma defines these bounds and their respective closed-form expressions as a

function of data.

Theorem 3.4. Let the columns of LX be the orthonormal basis for HKX . Further, assume that
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the columns of VS are the singular vectors corresponding to zero singular values of S̃LX and the

columns of VY are the singular vectors corresponding to non-zero singular values of Ỹ LX . Then,

we have

γmin := min
Θ

JY (Θ) =
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n
‖Ỹ LX‖2F

γmax := min
arg maxJS(Θ)

JY (Θ) =
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n

∥∥∥Ỹ LXVS
∥∥∥

2

F

αmin := max
arg minJY (Θ)

JS(Θ) =
1

n

∥∥∥S̃T
∥∥∥

2

F
− 1

n

∥∥∥S̃LXVY
∥∥∥

2

F

αmax := max
Θ

JS(Θ) =
1

n

∥∥∥S̃T
∥∥∥

2

F

Proof. See Appendix A.6

Under the special case of one-dimensional data, i.e., X , Y , and S are scalars, the above bounds

can be related to the correlation coefficients (i.e., normalized correlations) of the variables involved.

Specifically, the normalized bounds γmin and αmin can be expressed as,

γmin

σ2
S

= 1− ρ2(X, Y )

αmin

σ2
S

= 1− ρ2(X,S)

where ρ(·, ·) denotes the correlation coefficient between two RVs and σ2
Y := Var[Y ] (σ2

S is sim-

ilarly defined). Similarly, the upper bounds γmax and αmax can be expressed in terms of the

variance of the label space as

γmax

σ2
y

=
αmax

σ2
s

= 1.
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Therefore, in the one-dimensional setting, the achievable bounds are related to the underlying

alignment between the subspace spanned by the data X , and the respective subspaces spanned by

the labels S and Y .

3.5 Computational Complexity

In the case of linear-SARL, calculating the covariance matrices CX , CY X and CSX requires

O(d2
Xn), O(d2

Y n), and O(d2
SdX) multiplications, respectively. Next, the complexity of Cholesky

factorization CX = QT
XQX and calculating its inverse Q−1

X is O(d3
X) each. Finally, solving

the optimization problem has a complexity of O(d3
X) to eigendecompose the dX × dX matrixB.

In the case of kernel-SARL, the eigendecomposition of B requires O(n3) operations. However,

for scalability, i.e., large n (e.g., CIFAR-100), the Nyström method with data sampling [92] can be

adopted. To summarize, the complexity of the linear and kernel formulations isO(d3
X) andO(n3),

respectively.

3.6 Numerical Experiments

We evaluate the efficacy of the proposed Spectral-ARL (SARL) algorithm in finding the global op-

tima and compare it with other ARL baselines that are based on the standard SGDA optimization.

In all experiments, we refer to our solution for “linear” ARL as Linear-SARL and the solution

to the “kernel” version of the encoder with linear classifiers for the predictor and adversary as

Kernel-SARL.
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Figure 3.6: (a) Samples from a mixture of four Gaussians. Each sample has two attributes, shape
and color. (b) The trade-off between target performance and leakage of a sensitive attribute by an
adversary.

3.6.1 Mixture of Four Gaussians

We first consider a simple example in order to visualize and compare the learned embeddings

from different ARL solutions. We consider a three-dimensional problem where each data sample

consists of two attributes, color and shape. Specifically, the input data X is generated from a

mixture of four different Gaussian distributions corresponding to different possible combinations

of the attributes, i.e., {•, •,×,×} with means at µ1 = (1, 1, 0), µ2 = (2, 2, 0), µ3 = (2, 2.5, 0),

µ4 = (2.5, 3, 0) and identical covariance matrices CX = diag
(
0.32, 0.32, 0.32

)
. The shape

attribute is the target, while color is the sensitive attribute, as illustrated in Figure 3.6 (a). The goal

of the ARL problem is to learn an encoder that projects the data such that it remains separable with

respect to the shape and non-separable with respect to the color attribute.

We sample 4000 points to learn linear and non-linear (RBF Gaussian kernel) encoders across

λ ∈ [0, 1]. To train the encoder, the one-hot encoding of target and sensitive labels are treated

as the regression targets. Then, we freeze the encoder and train logistic regressors for the adver-

sary and target task for each λ. We evaluate their classification performance on a separate set of

1000 samples. The resulting trade-off front between target and adversary performance is shown
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(a) Color (λ = 0) (b) Color (λ = 0.5) (c) Color (λ = 1) (d) Color (λ = 0.5)

(e) Shape (λ = 0) (f) Shape (λ = 0.5) (g) Shape (Kernel, λ = 1) (h) Shape (Kernel, λ = 0.5)

Figure 3.7: Gaussian Mixture: The optimal dimensionality of embedding Z is 1. Visualization
of the embedding histograms w.r.t each attribute for different relative emphasis, λ, on the target
(shape) and sensitive attributes (color). The top row is color and the bottom row is shape. The first
three columns show results for a linear encoder. At λ = 0, the weight on the adversary is 0, so
the color is still separable. As the value of λ increases, we observe that the colors are less and less
separable. The last column shows results for a kernel encoder for λ = 0.5. We observe that the
target attribute is quite separable while the sensitive attribute is entangled.

in Figure 3.6 (b). We make the following observations, (1) For λ = 1, all methods achieve an

accuracy of 50% for the adversary, which indicates complete removal of features corresponding to

the sensitive attribute via our encoding, (2) At small values of λ the objective of Linear-ARL is

close to being convex, hence the similarity in the trade-off fronts of Linear-SARL and SGDA-ARL

in that region. However, everywhere else, due to the iterative nature of SGDA, it is unable to find

the global solution and achieve the same trade-off as Linear-SARL. (3) The non-linear encoder

in the Kernel-SARL solution significantly outperforms both Linear-SARL and SGDA-ARL. The

non-linear nature of the encoder enables it to strongly entangle the color attribute (50% accuracy)

while simultaneously achieving a higher target accuracy than the linear encoder. Figure 3.7 vi-

sualizes the learned embedding space Z for different trade-offs between the target and adversary

objectives.
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Figure 3.8: Gaussian Mixture: Lower and upper bounds on adversary loss, αmin and αmax,
computed on the training set. The loss achieved by our solution as we vary λ is shown on the
training and testing sets, αtrain and αtest, respectively.

Figure 3.8 shows the MSE of the adversary as we vary the relative trade-off parameter λ be-

tween the target and adversary objectives. The plot illustrates (1) the lower and upper bounds αmin

and αmax respectively calculated on the training dataset, (2) achievable adversary MSE computed

on the training set αtrain, and finally, (3) achievable adversary MSE computed on the test set αtest.

Observe that on the training dataset, all values of α ∈ [αmin, αmax] are reachable as we sweep

through λ ∈ [0, 1]. This is, however, not the case on the test set as the bounds are computed

through empirical moments as opposed to the population covariance matrices.

3.6.2 Fair Classification

We consider the task of learning representations that are invariant to a sensitive attribute on two

datasets, Adult and German, from the UCI ML-repository [93]. For comparison, apart from the raw

featuresX , we consider several baselines that use NNs and are trained through SGDA; LFR [36],

VAE [94], VFAE [37], ML-ARL [24] and MaxEnt-ARL [1].

The Adult dataset contains 14 attributes. There are 30, 163 and 15, 060 instances in the training

and test sets, respectively. The target task is the binary classification of annual income, i.e., more

or less than 50K, and the sensitive attribute is gender. Similarly, the German dataset contains 1000
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Table 3.1: Fair Classification Performance (in %)

Adult Dataset German Dataset

Method Target Sensitive ∆∗ Target Sensitive ∆∗
(income) (gender) (credit) (age)

Raw Data 85.0 85.0 17.6 80.0 87.0 6.0

LFR [36] 82.3 67.0 0.4 72.3 80.5 0.5
VAE [94] 81.9 66.0 1.4 72.5 79.5 1.5
VFAE [37] 81.3 67.0 0.4 72.7 79.7 1.3
ML-ARL [24] 84.4 67.7 0.3 74.4 80.2 0.8
MaxEnt-ARL [1] 84.6 65.5 1.9 72.5 80.0 1.0

Linear-SARL 84.1 67.4 0.0 76.3 80.9 0.1
Kernel-SARL 84.1 67.4 0.0 76.3 80.9 0.1

∗ Absolute difference between adversary accuracy and random guess

instances of individuals with 20 different attributes. The target is to classify the creditworthiness

of individuals as good or bad, with the sensitive attribute being age.

We learn encoders on the training set, after which, following the baselines, we freeze the en-

coder and train the target (logistic regression) and adversary (2-layer network with 64 units) clas-

sifiers on the training set. Table 3.1 shows the performance of the target and adversary on both

datasets. Both Linear-SARL and Kernel-SARL outperform all NN-based baselines. For either of

these tasks, the Kernel-SARL does not afford any additional benefit over Linear-SARL. For the

adult dataset, the linear encoder maps the 14 input features to just one dimension. The weights as-

signed to each feature are shown in Figure 3.9. Notice that the encoder assigns almost zero weight

to the gender feature in order to be fair with respect to the gender attribute.

3.6.3 Illumination Invariant Face Classification

This task pertains to face classification under different illumination conditions on the Extended

Yale B dataset [95]. It comprises of face images of 38 people under five different light source

directions, namely, upper right, lower right, lower left, upper left, and front. The target task is to
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Figure 3.9: Adult Dataset: Magnitude of learned encoder weights Θ for each semantic input
feature.

establish the identity of the person in the image, with the direction of the light being the sensitive

attribute. Since the direction of lighting is independent of identity, the ideal ARL solution should

obtain a representation Z that is devoid of any sensitive information. We first followed the exper-

imental setup of Xie et al. [24] in terms of the train/test split strategy, i.e., 190 samples (5 from

each class) for training and 1096 images for testing. Our global solution was able to completely

remove illumination from the embedding resulting in the adversary accuracy being 20%, i.e., ran-

dom chance. To investigate further, we consider different variations of this problem, flipping target

and sensitive attributes and exchanging training and test sets. The complete set of results, including

NN-based baselines, are reported in Table 3.2 ([EX] corresponds to exchanging training and testing

sets). In all these cases, our solution was able to completely remove the sensitive features resulting

in adversary performance that is no better than random chance. Simultaneously, the embedding is

also competitive with the baselines on the target task.
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Table 3.2: Extended Yale B Performance (in %)

Method Adversary Target Adversary Target
(illumination) (identity) (identity) (illumination)

Raw Data 96 78 - -

VFAE [37] 57 85 - -
ML-ARL [24] 57 89 - -
MaxEnt-ARL [1] 40 89 - -

Linear-SARL 21 81 3 94
Linear-SARL [EX] 20 86 3 97
Kernel-SARL 20 86 3 96
Kernel-SARL [EX] 20 88 3 96

3.6.4 CIFAR-100

The CIFAR-100 dataset [96] consists of 50, 000 images from 100 classes that are further grouped

into 20 superclasses. Each image is therefore associated with two attributes, a “fine” class label and

a “coarse” superclass label. We consider a setup where the “coarse” and “fine” labels are the target

and sensitive attributes, respectively. For Linear-SARL and Kernel-SARL (degree five polynomial

kernel) and SGDA, we use features (64-dimensional) extracted from a pre-trained ResNet-110

model as an input to the encoder instead of raw images. From these features, the encoder is tasked

with aiding the target predictor and hindering the adversary. This setup serves as an example to

illustrate how invariance can be “imparted” to an existing biased pre-trained representation. We

also consider two NN-baselines, ML-ARL [24] and MaxEnt-ARL [1]. Unlike our scenario, where

the pre-trained layers of ResNet-18 are not adapted, the baselines optimize the entire encoder for

the ARL task. For evaluation, once the encoder is learned and frozen, we train a discriminator

and adversary as 2-layer networks with 64 neurons each. Therefore, although our approach uses

linear regressor as an adversary at training, we evaluate against stronger adversaries at test time.

In contrast, the baselines train and evaluate against adversaries with equal capacity.

Figure 3.10 shows the trade-off in accuracy between the target predictor and adversary. We
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Figure 3.10: CIFAR-100: Trade-off between target performance and leakage of sensitive attribute
by adversary.

observe that (1) Kernel-ARL significantly outperforms Linear-SARL. Since the former implicitly

maps the data into a higher dimensional space, the sensitive features are potentially disentangled

sufficiently for the linear encoder in that space to discard such information. Therefore, even for

large values of λ, Kernel-SARL is able to simultaneously achieve high target accuracy while keep-

ing the adversary performance low. (2) Despite being handicapped by the fact that Kernel-SARL

is evaluated against stronger adversaries than it is trained against, its performance is comparable

to that of the NN baselines. In fact, it outperforms both ML-ARL and MaxEnt-ARL with respect

to the target task. (3) Despite repeated attempts with different hyper-parameters and choice of op-

timizers, SGDA was highly unstable across most datasets and often got stuck in a local optimum

and failed to find good solutions.

Figure 3.11 shows the MSE of the adversary as we vary the relative trade-off λ between the

target and adversary objectives. The plot illustrates (1) the lower and upper bounds αmin and

αmax respectively calculated on the training dataset, (2) achievable adversary MSE computed on

the training set αtrain, and finally, (3) achievable adversary MSE computed on the test set αtest.

Observe that on the training dataset, all values of α ∈ [αmin, αmax] are reachable as we sweep
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Figure 3.11: CIFAR-100: Lower and upper bounds on adversary loss, αmin and αmax, computed
on the training set. The loss achieved by our solution as we vary λ is shown on the training and
testing sets, αtrain and αtest, respectively.

through λ ∈ [0, 1]. This is, however, not the case on the test set, as the bounds are computed

through empirical moments as opposed to the true covariance matrices.

Figure 3.12 plots the optimal embedding dimensionality provided by SARL as a function of

the trade-off parameter λ. At small values of λ, the objective favors the target task, i.e., 20 class

predictions. Thus, SARL does indeed determine the optimal dimensionality of 19 for a 20-class

linear target regressor. However, at large values of λ, the objective only seeks to hinder the sen-

sitive task, i.e., 100 class prediction. In this case, the ideal embedding dimensionality from the

perspective of the linear adversary regressor is at least 99. The SARL ascertained dimensionality

of one is, thus, optimal for maximally mitigating the leakage of the sensitive attribute from the

embedding. However, unsurprisingly, the target task also suffers significantly.

3.7 Summary

We studied the “linear” form of adversarial representation learning (ARL), where all the entities

are linear functions. We showed that the optimization problem, even for this simplified version,

is both non-convex and non-differentiable. Using tools from spectral learning, we obtained a
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Figure 3.12: CIFAR-100: Optimal embedding dimensionality learned by SARL. At small values
of λ, the objective favors the target task, which predicts 20 classes. Thus, an embedding dimen-
sionality of 19 is optimal for a linear target regressor. At large values of λ, the objective only seeks
to hinder the adversary. Thus, SARL determines the optimal dimensionality of the embedding as
one.

closed-form expression for the global optima and derived analytical bounds on the achievable

utility and invariance. We also extended these results to non-linear parameterizations through

kernelization. Numerical experiments on multiple datasets indicated that the global optima solution

of the “kernel” form of ARL is able to obtain a trade-off between utility and invariance that is

comparable to that of local optima solutions of NN-based ARL. At the same time, unlike NN-based

solutions, the proposed method can (1) analytically determine the achievable utility and invariance

bounds and (2) provide explicit control over the trade-off between utility and invariance.

Admittedly, the results presented in this chapter do not extend directly to NN-based formula-

tions of ARL. However, we believe it sheds light on the nature of the ARL optimization problem

and aids our understanding of the ARL problem. It helps delineate the role of the optimization al-

gorithm and the choice of embedding function, highlighting the trade-off between the expressivity

of the functions and our ability to obtain the global optima of the adversarial game. We consider

our contribution as the first step towards controlling the non-convexity that naturally appears in

game-theoretic representation learning.
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Chapter 4

Adversarial Representation Learning With

Closed-Form Solvers

4.1 Introduction

In this chapter, we revisit the ARL problem and look at it from the NN-based optimization point

of view. The vanilla algorithm for learning the parameters of the encoder, target, and adversary

networks is SGDA [24, 1], where the players take a gradient step simultaneously. See Figure 4.1

for an illustration. However, applying SGDA is not an optimal strategy for ARL and is known

to suffer from some drawbacks. Firstly, SGDA has undesirable convergence properties; it fails to

converge to a local minimum and can converge to fixed points that are not local minimax while

being very unstable and slow in practice [67, 68]. Secondly, SGDA exhibits strong rotation around

fixed points, which requires using very small learning rates [64, 66] to converge. Numerous solu-

tions [64, 65, 69] have been proposed recently to address the aforementioned computational chal-

lenges. These approaches, however, seek to obtain solutions to the minimax optimization problem

in the general case, where each player is modeled as a complex neural network.

We take a different perspective and propose an alternative optimization algorithm for ARL.

Our key insight is to replace the shallow NNs with other analytically tractable models with simi-

lar capacities. We propose to adopt simple learning algorithms that admit closed-form solutions,
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X
f (X;Θ)

Z gY (Z;ΘY ) Ŷ

gS (Z;ΘS) Ŝ

Figure 4.1: ARL-SGDA: Illustration of training adversarial representation learning through
stochastic gradient descent ascent. i) At first, the target predictor parameters ΘY are updated
while the encoder and adversary parameters are frozen. ii) Then, the adversary parameters ΘS are
updated while the encoder and target parameters are frozen. iii) Finally, the encoder parameters
Θ get updated while target and adversary parameters are frozen. SGDA does not provide any
convergence guarantees.

such as linear or kernel ridge regressors for the target and adversary, while modeling the encoder

as a DNN. Crucially, such models are particularly suitable for ARL and afford numerous advan-

tages, including (1) closed-form solution allows learning problems to be optimized globally and

efficiently, (2) analytically obtaining upper bound on optimal dimensionality of the embedding, (3)

the simplicity and differentiability allows us to backpropagate through the closed-form solution,

(4) practically it resolves the notorious rotational behavior of iterative minimax gradient dynamics,

resulting in a simple optimization that is empirically stable, reliable, converges faster to a local

optimum, and ultimately results in a more effective encoder.

We demonstrate the practical effectiveness of our approach, dubbed OptNet-ARL, through

numerical experiments on an illustrative toy example, fair classification on UCI Adult and German

datasets, and mitigating information leakage on the CelebA dataset. We consider two scenarios

where the target and sensitive attributes are (a) dependent and (b) independent. Our results indicate

that, in comparison to existing ARL solutions, OptNet-ARL is more stable and converges faster

while also outperforming them in terms of accuracy, especially in the latter scenario.

A number of recent approaches have integrated differentiable solvers, both iterative as well as
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closed-form, within end-to-end learning systems. Structured layers for segmentation and higher-

order pooling were introduced by [97]. Similarly, [98] proposed an asymmetric architecture that

incorporates a correlation filter as a differentiable layer. Differential optimization as a layer in NNs

was introduced by [99, 100]. More recently, differentiable solvers have also been adopted for meta-

learning [101, 102] as well. The primary motivation for all the aforementioned approaches is to

endow DNNs with differential optimization and ultimately achieve faster convergence of the end-

to-end systems. In contrast, our inspiration for using differential closed-form solvers is to control

the non-convexity of the optimization in ARL in terms of stability, reliability, and effectiveness.

4.2 Problem Setting

Recall the ARL optimization problem in (3.1) and denote the global minimums of the adversary

and target estimators as

JY (Θ) := min
ΘY

EX,Y [LY (gY (f (X; Θ) ; ΘY ), Y )]

JS(Θ) := min
ΘS

EX,S [LS (gS(f (X; Θ) ; ΘS), S)] .

(4.1)

Similar to Chapter 3, instead of solving the constrained optimization problem in (3.1), we solve its

scalarization version:

min
Θ
{(1− λ) JY (Θ)− λ JS(Θ)} , 0 ≤ λ ≤ 1, (4.2)

where λ is the trade-off parameter between utility and the leakage of the sensitive information.
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4.2.1 Motivating Exact Solvers

Most state-of-the-art ARL algorithms cannot solve the optimization problems in (4.1) optimally

(e.g., SGDA). For any given Θ, denote any non-optimal adversary and target predictors’ loss func-

tions by J
approx
Y (Θ) and J

approx
S (Θ), respectively. It is obvious that for any given Θ, it holds

that

J
approx
Y (Θ) ≥ JY (Θ) and J

approx
S (Θ) ≥ JS(Θ).

Note that the optimization problem raised from a non-optimal adversary and target predictors is

min
Θ

{
(1− λ) J

approx
Y (Θ)− λ Japprox

S (Θ)
}
, 0 ≤ λ ≤ 1. (4.3)

Intuitively, solution(s) of (4.3) do not outperform that of (4.2). We now formulate this intuition

more concretely.

Definition 4.1. Let (a1, a2) and (b1, b2) be two arbitrary points in R2. We say (b1, b2) dominates

(a1, a2) iff b1 > a1 and b2 < a2 hold simultaneously.

The following lemma states that any solutions obtained by a sub-optimal adversary and target

predictors cannot dominate that of exact solvers.

Lemma 4.2. For any λ1, λ2 ∈ [0, 1), consider the following optimization problems

Θexact = arg min
Θ

{(1− λ1) JY (Θ)− λ1 JS(Θ)} (4.4)

and

Θapprox = arg min
Θ

{
(1− λ2) J

approx
Y (Θ)− λ2 J

approx
S (Θ)

}
.

49



Then, any adversary-target objective trade-off generated by
(
JS(Θexact), JY (Θexact)

)
cannot be

dominated by the trade-off generated by (JS(Θapprox), JY (Θapprox)).

Proof. It is enough to show that

if (i) JS(Θapprox) > JS(Θexact) then JY (Θapprox) ≥ JY (Θexact),

and if (ii) JY (Θapprox) < JY (Θexact) then JS(Θapprox) ≤ JS(Θexact).

The key point is to observe from (4.4) that regardless of λ2, Japprox
y and Japprox

S , we have

(1− λ1) JY (Θexact)− λ1 JS(Θexact) ≤ (1− λ1) JY (Θapprox)− λ1 JS(Θapprox).

Now, consider three possible cases for λ1:

a) λ1 = 0: In this case we have JY (Θexact) ≤ JY (Θapprox) and therefore regardless of

Js(Θ
exact) and JS(Θapprox), (ii) cannot happen and (i) holds under its assumption.

b) λ1 = 1: In this case we have JS(Θexact) ≥ JY (Θapprox) and therefore regardless of

JY (Θexact) and JY (Θapprox), (i) cannot happen and (ii) holds under its assumption.

c) 0 < λ1 < 1:

(i) If JS(Θapprox) > JS(Θexact), then

0 < λ1
(
Js(Θ

approx)− JS(Θexact)
)
≤ (1− λ1)

(
JY (Θapprox)− JY (Θexact)

)
.

This implies that JY (Θapprox) ≥ JY (Θexact).

(ii) If JY (Θapprox) < JY (Θexact), then

0 < (1− λ1)
(
JY (Θexact)− JY (Θapprox)

)
≤ λ1

(
JS(Θexact)− JS(Θapprox)

)
.

This implies that JS(Θapprox) < Js(Θ
exact).
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X
f (X;Θ)

Z ΘY kY (·, Z) Ŷ

ΘS kS(·, Z) Ŝ

Figure 4.2: ARL with kernelized ridge regressors for adversary and target predictors. This setting
turns typical SGDA optimization of ARLs into a simple SGD optimization.

4.3 Exact Adversary and Target Predictor Solvers

Existing instances of ARL adopt NNs to represent f , gY , and gS and learn their respective param-

eters {Θ,ΘY ,ΘS} through SGDA. Consequently, the target and adversary in equation (4.1) are

not solved to optimality, thereby resulting in a sub-optimal encoder.

4.3.1 Closed-Form Adversary and Target Predictor

The machine learning literature offers a wealth of methods with exact solutions appropriate for

modeling adversary and target predictors. In this section, we argue for and adopt simple, fast,

and differentiable methods such as kernel ridge regressors as shown in Figure 4.2. Such modeling

allows us to obtain the optimal estimators globally for any given encoder f(·; Θ).

On the other hand, kernelized ridge regressors can be stronger than the shallow NNs that are

used in many ARL-based solutions(e.g., [24, 103, 2, 1]). Although it is not the focus of this

dissertation, it is worth noting that even DNNs in the infinite-width limit reduce to linear models

with a kernel called the neural tangent kernel [104], and as such can be adopted to increase the

capacity of our regressors.

Consider two RKHSs of functions,HS andHY , for the adversary and target networks, respec-
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tively. Let a possible corresponding pair of feature maps be φS(·) ∈ RrS and φY (·) ∈ RrY where

rS and rY are the dimensionality of the resulting features and can potentially approach infinity. The

respective kernel functions forHS andHY can be represented as kS(z, z′) = 〈φS(z), φS(z′)〉HS
and kY (z, z′) = 〈φY (z), φY (z′)〉HY . Under this setting, we can relate the target and sensitive

attributes to any given embedding Z as

Ŷ = ΘY [kY (z1, Z), · · · , kY (zn, Z)]T

Ŝ = ΘS [kS(z1, Z), · · · , kS(zn, Z)]T ,

(4.5)

where ΘY ∈ RdY ×n and ΘS ∈ RdS×n, and n is the number of data samples. Let the entire

embedding of input data be denoted as Z := [z1, · · · , zn] ∈ Rr×n, where zi = f(xi) for i =

1, · · · , n. Consequently, it follows that

Ŷ := [ŷ1, · · · , ŷn] = ΘY KY

Ŝ := [ŝ1, · · · , ŝn] = ΘSKS .

(4.6)

In a typical ARL setting, once an encoder is learned (i.e., for a given fixed embeddingZ), we eval-

uate against the best possible adversary and target predictors. In the following lemma, we obtain

the minimum MSE for the kernelized adversary and target predictors for any given embedding Z.

Lemma 4.3. Let JY (Z) and JS(Z) be regularized minimum MSEs for adversary and target:

JY (Z) = min
ΘY

{
E
{∥∥∥Ŷ − Y

∥∥∥
2
}

+ γY ‖ΘY ‖2F
}
,

JS(Z) = min
ΘS

{
E
{∥∥∥Ŝ − S

∥∥∥
2
}

+ γS ‖ΘS‖2F
}

where γY and γS are regularization parameters for target and adversary regressors, respectively.
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Then, for any given embedding matrix Z, the minimum MSE for the kernelized adversary and

target can be obtained as

JY (Z) =
1

n
‖Y ‖2F −

1

n

∥∥∥∥∥∥∥∥
PMY



Y T

0n×dY




∥∥∥∥∥∥∥∥

2

F

JS(Z) =
1

n
‖S‖2F −

1

n

∥∥∥∥∥∥∥∥
PMS



ST

0n×dS




∥∥∥∥∥∥∥∥

2

F

,

(4.7)

where

MY :=




KY

√
nγY In


 , MS :=




KS

√
nγSIn




are both full-column rank matrices, and the orthogonal projection matrix for any full-column rank

matrixM can be obtained as

PM = M(MTM )−1MT .

Proof. Using the empirical mean, we have

JY (Z) = min
ΘY

{
1

n

n∑

k=

‖ΘYKY − Y ‖2F + γY ‖ΘY ‖2F

}

=
1

n
min
ΘY

∥∥∥∥∥∥∥∥∥∥∥∥∥∥




KY

√
nγY In




︸ ︷︷ ︸
MY

ΘT
Y −



Y T

0n×dY




∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

F

=
1

n
min
ΘY

∥∥∥∥∥∥∥∥
MY ΘT

Y − PMY



Y T

0n×dY




∥∥∥∥∥∥∥∥

2

F

+
1

n

∥∥∥∥∥∥∥∥
PM⊥Y



Y T

0n×dY




∥∥∥∥∥∥∥∥

2

F
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=
1

n

∥∥∥∥∥∥∥∥∥
MYM

†
Y︸ ︷︷ ︸

PMY



Y T

0n×dY


− PMY



Y T

0n×dY




∥∥∥∥∥∥∥∥∥

2

F

+
1

n

∥∥∥∥∥∥∥∥
PM⊥Y



Y T

0n×dY




∥∥∥∥∥∥∥∥

2

F

=
1

n

∥∥∥∥∥∥∥∥
PM⊥Y



Y T

0n×dY




∥∥∥∥∥∥∥∥

2

F

=
1

n
‖Y ‖2F −

1

n

∥∥∥∥∥∥∥∥
PMY



Y T

0n×dY




∥∥∥∥∥∥∥∥

2

F

, (4.8)

where we used orthogonal decomposition w.r.t MY in the third and last steps and a possible

minimizer used in the forth step is ΘT
Y = M

†
Y



Y T

0n×dY


. Using the same approach, we get

JS(Z) =
1

n
‖S‖2F −

1

n

∥∥∥∥∥∥∥∥
PMS



ST

0n×dS




∥∥∥∥∥∥∥∥

2

F

,

whereMS :=




KS

√
nγSIn


.

It is quite straightforward to generalize this method to the case of multiple target and adversary

predictors through equation (4.3). In this case, we will have multiple λs to trade-off between utility

and the leakage of sensitive information.

4.3.2 Optimal Embedding Dimensionality

The ability to effectively optimize the parameters of the encoder is critically dependent on the

dimensionality of the embedding as well. Higher dimensional embeddings can inherently absorb
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unnecessary extraneous information in the data. Existing ARL applications, where the target and

adversary are non-linear NNs, select the dimensionality of the embedding on an ad-hoc basis.

Adopting closed-form solvers for the target and adversary enables us to analytically determine

an upper bound on the optimal dimensionality of the embedding for OptNet-ARL. To obtain the

upper bound, we rely on the observation that a non-linear target predictor and adversary, by virtue

of greater capacity, can learn non-linear decision boundaries. As such, in the context of ARL, the

optimal dimensionality required by non-linear models is lower than the optimal dimensionality of

linear target predictor and adversary. Therefore, we analytically determine the optimal dimension-

ality of the embedding in the following theorem.

Theorem 4.4. Let Z in Figure 4.2 be disconnected from the encoder and be a free vector in Rr.

Further, assume that both adversary and target predictors are linear regressors, and γS = γY = 0.

Then, for any 0 ≤ λ ≤ 1 the optimal dimensionality of the embedding vector, r is the number of

negative eigenvalues of

B = λS̃T S̃ − (1− λ)Ỹ T Ỹ . (4.9)

Proof. Recall that for linear regressor adversary and target predictors, we have

Ŷ = ΘYZ + bY , Ŝ = ΘSZ + bS . (4.10)

Following the proof in Lemma 4.3, we have

JY (Z) =
1

n

∥∥∥Ỹ
∥∥∥

2

F
− 1

n

∥∥∥PMỸ
∥∥∥

2

F
, JS(Z) =

1

n

∥∥∥S̃
∥∥∥

2

F
− 1

n

∥∥∥PMS̃
∥∥∥

2

F

whereM is the column space of Z̃T Z̃ or equivalently the column space of Z̃. Consequently, it
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follows that

(1− λ) JY (Z)− λ JS(Z) =

1

n

(
(1− λ)

∥∥∥Ỹ T
∥∥∥

2

F
− λ

∥∥∥S̃T
∥∥∥

2

F
− (1− λ)

∥∥∥PMỸ T
∥∥∥

2

F
+ λ

∥∥∥PMS̃T
∥∥∥

2

F

)
.

(4.11)

Now, consider
∥∥∥PMỸ T

∥∥∥
2

F
:

∥∥∥PMỸ T
∥∥∥

2

F
= Tr




Ỹ PTMPM︸ ︷︷ ︸

PM

Ỹ T





= Tr
{
PMỸ T Ỹ

}

Similarly,

∥∥∥PMS̃T
∥∥∥

2

F
= Tr

{
PMS̃T S̃

}
.

The terms
∥∥∥Ỹ T

∥∥∥
2

F
and

∥∥∥S̃T
∥∥∥

2

F
on the right side of (4.11) are constants with respect to Z, and

hence can be ignored. We now get

λ
∥∥∥PMS̃T

∥∥∥
2

F
− (1− λ)

∥∥∥PMỸ T
∥∥∥

2

F
= Tr {PMB} ,

where

B = λ S̃T S̃ − (1− λ) Ỹ T Ỹ .
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Noting that any projection matrix PM ∈ Rn×n of rank i ≤ n can be decomposed as V V T for

some orthogonal matrix V ∈ Rn×i, we get

min
r∈{1,···,n}

min
Z∈Rr×n

{
λ
∥∥∥PMS̃T

∥∥∥
2

F
− (1− λ)

∥∥∥PMỸ T
∥∥∥

2

F

}

= min
r∈{1,···,n}

min
dimM≤r

Tr {PMB}

= min
r∈{1,···,n}

min
i∈{1,···,r}

min
V TV =Ii

Tr
{
V V TB

}

= min
i=r∈{1,···,n}

min
V TV =Ii

Tr
{
V V TB

}
.

From trace optimization problems and their solution in [90], we have

min
r∈{1,···,n}

min
V TV =Ir

Tr
{
V V TB

}
= min

r∈{1,···,n}
{β1 + β2 + · · ·+ · · · βr}

= β1 + β2 + · · ·+ βj

where β1, · · · , βr are the r smallest eigenvalues ofB, j denotes the number of negative eigenvalues

ofB and a possible minimizer is matrixZ in which the columns space of Z̃T (i.e.,M) is the span

of eigenvectors corresponding to all negative eigenvalues ofB.

Given a dataset with the target and sensitive labels, Y andS, respectively, the matrixB in (4.9)

and its eigenvalues can be computed offline to determine the upper bound on the optimal dimen-

sionality. By virtue of the greater capacity, the optimal dimensionality required by non-linear

models is lower than the optimal dimensionality of linear predictors and therefore, Theorem 2 is a

tight upper bound for the optimal embedding dimensionality. On large datasets where B ∈ Rn×n

can be a very large matrix, the Nyström method with data sampling [92] can be adopted.
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4.3.3 Gradient of Closed-Form Solution

In order to find the gradient of the encoder loss function in (4.3) with JY and JS given in (4.7), we

can ignore the constant terms, ‖Y ‖F and ‖S‖F . Then, the optimization problem in (4.3) would

be equivalent to

min
Θ





(1− λ)

∥∥∥∥∥∥∥∥
PMS



ST

0n×dS




∥∥∥∥∥∥∥∥

2

F

− λ

∥∥∥∥∥∥∥∥
PMY



Y T

0n×dY




∥∥∥∥∥∥∥∥

2

F





= min
Θ



(1− λ)

dS∑

k=1

∥∥∥PMS
ukS

∥∥∥
2
− λ

dY∑

m=1

∥∥∥PMY
umY

∥∥∥
2



 , (4.12)

where the vectors ukS and umY are the k-th and m-th columns of



ST

0n×dS


 and



Y T

0n×dY


, respec-

tively. Let M be an arbitrary matrix function of Θ, and θ be an arbitrary scalar element of Θ.

Then, from [105] we have

∂‖PMu‖2
∂θ

= 2uTPM⊥
∂M

∂θ
M †u, (4.13)

where

[
∂M

∂θ

]

ij
=





∇Tzi
(

[M ]ij

)
∇θ(zi) +∇Tzj

(
[M ]ij

)
∇θ(zj), i ≤ n

0, else.

Equation (4.13) can be directly used to obtain the gradient of objective function in (4.12).

Directly computing the gradient in equation (4.13) requires a pseudo-inverse of the matrix

M ∈ R2n×n, which has a complexity of O(n3). For large datasets, this computation can get

prohibitively expensive. Therefore, we approximate the gradient using a single batch of data as we
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optimize the encoder end-to-end. Similar approximations [92] are in fact, commonly employed to

scale up kernel methods. Thus, the computational complexity of computing the loss for OptNet-

ARL reduces toO(b3), where b is the batch size. Since maximum batch sizes in training NNs are of

the order of 10 to 1000, computing the gradient is practically feasible. We note that the procedure

presented in this section is a simple SGD in which its stability can be guaranteed under Lipschitz

and smoothness assumptions on encoder network [106].

4.4 Experiments

In this section, we will evaluate the efficacy of our proposed approach, OptNet-ARL, on three

different tasks; Fair Classification on UCI [107] dataset, mitigating leakage of private informa-

tion on the CelebA dataset, and ablation study on a Gaussian mixture example. We also compare

OptNet-ARL with other ARL baselines in terms of stability of optimization, the achievable trade-

off front between the target and adversary objectives, convergence speed, and the effect of em-

bedding dimensionality. We consider three baselines, (1) SGDA-ARL: vanilla stochastic gradient

descent ascent that is employed by multiple ARL approaches including [24, 103, 2, 1, 108] etc.,

(2) ExtraSGDA-ARL: a state-of-the-art of stochastic gradient descent ascent that uses an extra

gradient step [72] for optimizing minimax games. Specifically, we use the ExtraAdam algorithm

from [69], and (3) SARL: a global optimum solution for a kernelized regressor encoder and linear

target and adversary [49]. Specifically, hypervolume (HV) [109], a metric for stability and good-

ness of trade-off (comparing algorithms under multiple objectives) is also utilized. A larger HV

indicates a better Pareto front achieved, and the standard deviation of the HV represents stability.

In the training stage, the encoder, a DNN, is optimized end-to-end against kernel (RBF Gaus-

sian kernel) ridge regressors in the case of OptNet-ARL and multi-layer perceptrons (MLP)s for
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the baselines. Table 4.1 summarizes the network architecture of all experiments. We note that the

optimal embedding dimensionality, r, for the binary target is equal to one, which is consistent with

Fisher’s linear discriminant analysis [110]. The embedding is instance normalized (unit norm).

So we adopted a fixed value of σ = 1 for the Gaussian Kernel in all the experiments. We let the

regression regularization parameter be 10−4 for all experiments. The learning rate is 3×10−4 with

weight decay of 2× 10−4, and we use Adam as an optimizer for all experiments.

At the inference stage, the encoder is frozen, features are extracted, and a new target predictor

and adversary are trained. At this stage, for both OptNet-ARL and the baselines, the target and

adversary have the same model capacity. Furthermore, each experiment on each dataset is repeated

five times with different random seeds (except for SARL, which has a closed-form solution for the

encoder) and several different trade-off parameters λ ∈ [0, 1). We report the median and standard

deviation across the five repetitions.

4.4.1 Fair Classification

We consider fair classification on two different tasks. UCI Adult Dataset: It includes 14 features

from 45, 222 instances. The task is to classify the annual income of each person as high (50K or

above) or low (below 50K). The sensitive feature we wish to be fair with respect to is the gender

of each person. UCI German Dataset: It contains 1000 instances of individuals with 20 different

attributes. The target task is to predict their creditworthiness while being unbiased with respect

to age. The correlation between the target and sensitive attributes is 0.03 and 0.02 for the Adult

and German datasets, respectively. This indicates that the target attributes are almost orthogonal

to the sensitive attributes. Therefore, the sensitive information can be totally removed with only a

negligible sacrifice on the performance of the target task.

Stability and Performance: Since there is no trade-off between the two attributes, we compare
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Table 4.1: Network Architectures in Experiments.

Method Encoder Embd Target Adversary Target Adversary
(ARL) Dim (Train) (Train) (Test) (Test)

Adult
SGDA [24, 2] MLP-4-2 1 MLP-4 MLP-4 MLP-4-2 MLP-4-2
ExtraSGDA [72] MLP-4-2 1 MLP-4 MLP-4 MLP-4-2 MLP-4-2
SARL [49] RBF krnl 1 linear linear MLP-4-2 MLP-4-2
OptNet-ARL
(ours)

MLP-4-2 1 RBF krnl RBF krnl MLP-4-2 MLP-4-2

German
SGDA [24, 2] MLP-4 1 MLP-2 MLP-2 logistic logistic
ExtraSGDA [72] MLP-4 1 MLP-2 MLP-2 logistic logistic
SARL [49] RBF krnl 1 linear linear logistic logistic
OptNet-ARL
(ours)

MLP-4 1 RBF krnl RBF krnl logistic logistic

CelebA
SGDA [24, 2] ResNet-18 128 MLP-64 MLP-64 MLP-32-16 MLP-32-16
ExtraSGDA [72] ResNet-18 128 MLP-64-32 MLP-64-32 MLP-32-16 MLP-32-16
OptNet-ARL
(ours)

ResNet-18 [1, 128] RBF krnl RBF krnl MLP-32-16 MLP-32-16

Gaussian Mixture
SGDA [24, 2] MLP-8-4 2 MLP-8-4 MLP-8-4 MLP-4-4 MLP-4-4
ExtraSGDA [72] MLP-8-4 2 MLP-8-4 MLP-8-4 MLP-4-4 MLP-4-4
SARL [49] RBF krnl 2 linear linear MLP-4-4 MLP-4-4
RBF-OptNet-ARL
(ours)

MLP-8-4 2 RBF krnl RBF krnl MLP-4-4 MLP-4-4

IMQ-OptNet-ARL
(ours)

MLP-8-4 [1, · · · , 512] IMQ krnl IMQ krnl MLP-4-4 MLP-4-4

stability by reporting the median and standard deviation of the target and adversary performance

in Table 4.2. Our results indicate that OptNet-ARL achieves a higher accuracy for target tasks

and lower leakage of the sensitive attribute with less variance. For instance, in the Adult dataset,

our OptNet-ARL method achieves 83.81% target accuracy with almost zero sensitive leakage. For

OptNet-ARL, the standard deviation of the sensitive attribute is exactly zero, which demonstrates

its effectiveness and stability in comparison to the baselines. Similarly, for the German dataset,

OptNet-ARL achieves 80.13% for sensitive accuracy, which is close to random chance (around

81%) while having the largest target accuracy compared to the baselines.
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Table 4.2: Fair classification on UCI Adult and German datasets (in %)

Adult Dataset German Dataset

Method Target Sensitive Diff Target Sensitive Diff
(income) (gender) 67.83 (credit) (age) 81

Raw Data 85.0 85.0 17.6 80.0 87.0 6.0

LFR [36] 82.3 67.0 0.4 72.3 80.5 0.5
AEVB [94] 81.9 66.0 1.4 72.5 79.5 1.5
VFAE [37] 81.3 67.0 0.4 72.7 79.7 1.3
SARL [49] 84.1 67.4 0.0 76.3 80.9 0.1

SGDA-ARL [24] 83.61± 0.38 67.08± 0.48 0.40 76.53± 1.07 87.13± 5.70 6.13
ExtraSGDA-ARL [69] 83.66± 0.26 66.98± 0.49 0.4 75.60± 1.68 86.80± 4.05 5.80
OptNet-ARL 83.81± 0.23 67.38± 0.00 0.00 76.67± 2.21 80.13± 1.48 0.87

4.4.2 Mitigating Sensitive Information Leakage

The CelebA dataset [111] contains 202, 599 face images of 10, 177 celebrities. Each image con-

tains 40 different binary attributes (e.g., gender, emotion, age, etc.). Images are pre-processed and

aligned to a fixed size of 112×96, and we use the official train-test splits. The target task is defined

as predicting the presence or absence of high cheekbones (binary), with the sensitive attribute be-

ing smiling/not smiling (binary). The choice of this attribute pair is motivated by the presence of

a trade-off between them. We observe that the correlation between this attribute pair is equal to

0.45, indicating that there is no encoder that can maintain target performance without leaking the

sensitive attribute.

For this experiment, we note that SARL [49] cannot be employed since (1) it does not scale to

large datasets (O(n3)) like CelebA, and (2) it cannot be applied directly on raw images and needs

features extracted from a pre-trained network. Most other attribute pairs in this dataset either

suffer from severe class imbalance or small correlation, indicating the lack of a trade-off. Network

architecture details are shown in Table 4.1.

Stability and Trade-off: Figure 4.3 (a) shows the attainment surface [112] and hypervol-

ume [109] (median and standard deviation) for all methods. SGDA-ARL spans only a small part
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of the trade-off and, at the same time, exhibits large variance around the median curves. Overall,

both baselines are unstable and unreliable when the two attributes are dependent on each other.

On the other hand, OptNet-ARL solutions are very stable while also achieving a better trade-off

between target and adversary accuracy.

Optimal Embedding Dimensionality: Figure 4.3 (b) compares the utility-bias trade-off of the

sub-optimal embedding dimensionality (r = 128) with that of the optimal dimensionality (r = 1).

We can observe that optimal embedding dimensionality (r = 1) is producing a more stable trade-

off between adversary and target accuracies.

Training Time: It takes five runs for SGDA-ARL and ExtraSGDA and two runs for OptNet-

ARL to train a reliable encoder for overall 11 different values of λ ∈ [0, 1). The summary of

training time is given in Figure 4.3 (c). ExtraSGDA-ARL takes an extra step to update the weights,

and therefore, it is slightly slower than SGDA-ARL. OptNet-ARL, on the other hand, is signif-

icantly faster in obtaining reliable results. Even for a single run, OptNet-ARL is faster than the

baselines. This is because OptNet-ARL uses closed-form solvers for adversary and target and

therefore does not need to train any additional networks downstream to the encoder.

Independent Features: We consider the target task to be the binary classification of smil-

ing/not smiling, with the sensitive attribute being gender. In this case, the correlation between

gender and target feature is 0.02, indicating that the two attributes are almost independent, and

hence it should be feasible for an encoder to remove the sensitive information without affecting the

target task. The results are presented in Figure 4.3 (d). In contrast to the scenario where the two

attributes are dependent, we observe that all ARL methods can perfectly hide the sensitive infor-

mation (gender) from representation without sacrificing on the target task performance. Therefore,

OptNet-ARL is especially effective in a more practical setting where the target and sensitive at-

tributes are correlated and hence can only attain a trade-off.
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pair (smiling/not-smiling, gender) (b) Overall and single run training time for different ARL methods.
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Figure 4.3: CelebA: (a) Trade-off between adversary and target accuracy for dependent pair
(smiling/not-smiling, high cheekbones). (b) Comparison between the trade-offs of optimal em-
bedding dimensionality r = 1 and that of r = 128. (c) Overall and single run training time for dif-
ferent ARL methods. (d) Trade-off between adversary and target for independent pair (smiling/not-
smiling, gender).

4.4.3 Ablation Study on Mixture of Four Gaussians

In this experiment, we consider a simple example where the data is generated by a mixture of four

different Gaussian distributions. Let {fi}4i=1 be all Gaussian distributions with means at (0, 0),

(0, 1), (1, 0), and (1, 1), respectively and covariance matrices all equal to C = 0.22I2. Denote by

f(X) the distribution of the input data. Then, it follows that

f(X| •) = f1(X) +
1

2
f2(X) + +

1

2
f3(X), P{•} =

1

2

f(X| •) = f4(X) +
1

2
f2(X) + +

1

2
f3(X), P{•} =

1

2

The sensitive attribute is assumed to be the color (0 for red and 1 for blue), and the target task is

reconstructing the input data. We sample 4000 points for training and 1000 points for the testing
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set independently. For visualization, the testing set is shown in Figure 4.4 (a). In this illustrative

dataset, the correlation between input data and color is 0.61, and therefore there is no encoder

that results in full target performance at no leakage of the sensitive attribute. Network architecture

details are shown in Table 4.1.

Stability and Trade-off: Figure 4.4 (b) illustrates the five-run attainment surfaces and me-

dian hypervolumes for all methods. Since the dimensionality of both input and output is 2, the

optimal embedding dimensionality is equal to 2, which we set in this experiment. We note that

SARL achieves hypervolume better than SGDA and ExtraSGDA ARLs, which is not surprising

due to the strong performance of SARL on small-size datasets. However, SARL is not applicable

to large datasets. Among other baselines, ExtraSGDA-ARL appears to be slightly better. In con-

trast, the solutions obtained by RBF-OptNet-ARL (Gaussian kernel) outperform all baselines and

are highly stable across different runs, which can be observed from both attainment surfaces and

hypervolumes. In addition to Gaussian kernel, we also used inverse multi quadratic (IMQ) ker-

nel [113]1 for OptNet-ARL to examine the effect kernel function. As we observe from Figure 4.4

(b), IMQ-OptNet-ARL performs almost similar to OptNet-ARR with Gaussian kernel in terms of

both trade-off and stability.

Batch Size: In order to examine the effect of batch size on OptNet-ARL (with Gaussian ker-

nel), we train the encoder with different values of batch size between 2 and 4000 (entire training

data). The results are illustrated in Figure 4.4 (c). We observe that the HV is quite insensitive to

batch sizes greater than 25, which implies that the gradient of the mini-batch is an accurate enough

estimator of the gradient of the entire data.

Embedding Dimensionality: We also study the effect of embedding dimensionality (r) by

1k(z, z′) = 1√
‖z−z′‖2+c2
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Figure 4.4: Mixture of Gaussians: (a) Input data. The target task is to learn a representation that
is informative enough to reconstruct the input data and, at the same time, hide the color information
(• versus •). (b) The trade-off between the MSEs of adversary and target task for different ARL
methods. (c) The HVs of OptNet-ARL (Gaussian kernel) versus different batch size values in
[2, 4000]. (d) The HV values of OptNet-ARL (Gaussian kernel) versus different values of r in
[1, 512].

examining different values for r in [1, 512] using RBF-OptNet-ARL. The results are illustrated in

Figure 4.4 (d). It is evident that the optimal embedding dimensionality (r = 2) outperforms other

values of r. Additionally, HV of r = 1 suffers severely due to the information loss in embedding,

while for 2 < r ≤ 512, the trade-off performance is comparable to that of optimal embedding

dimensionality, i.e., r = 2.

4.5 Summary

Adversarial representation learning is a minimax theoretic game formulation that affords explicit

control over unwanted information in learned data representations. Optimization algorithms for
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ARL, such as SGDA and their variants, are sub-optimal, unstable, and unreliable in practice. In this

chapter, we introduced OptNet-ARL to address this challenge by employing differentiable closed-

form solvers, such as kernelized ridge regressors, to model the ARL players that are downstream

from the representation. OptNet-ARL reduces iterative SGDA to a simple optimization, leading to

a fast, stable, and reliable algorithm that outperforms existing ARL approaches on both small and

large-scale datasets.
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Chapter 5

Universal Invariant Representation

Learning

5.1 Introduction

Ideally, the utility-invariance trade-off is defined as a bi-objective optimization problem:

inf
f∈HX, gY ∈HY

EXY [LY (gY (f(X)) , Y )] such that Dep (f(X), S) ≤ ε, (5.1)

where f is the encoder that extracts the representation Z = f(X) from X , gY predicts Ŷ from

the representation Z, HX and HY are the corresponding hypothesis classes, and LY is the loss

function for predicting the target attribute Y . The function Dep(·, ·) ≥ 0 is a parametric or non-

parametric measure of statistical dependence, i.e., Dep(Q,U) = 0 implies Q and U are indepen-

dent, and Dep(Q,U) > 0 implies Q and U are dependent with larger values indicating greater

degrees of dependence. The scalar ε ≥ 0 is a user-defined parameter that controls the trade-off

between the two objectives, with ε → ∞ being the standard scenario that has no invariance con-

straints with respect to (w.r.t.) S while ε→ 0 enforces Z ⊥⊥ S (i.e., total invariance). Involving all

Borel functions inHX andHY ensures that the best possible trade-off is included within the feasi-

ble solution space. For example, when ε→∞ and LY is MSE loss, the optimal Bayes estimation,
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Figure 5.1: Invariant representation learning seeks a representation Z = f(X) that contains as
much information necessary for the downstream target predictor gY while being independent of
the semantic attribute S.

gY (f(X)) = E [Y |X] is attainable.

In this chapter, we consider the linear combination of utility and invariance in (5.1) and de-

fine the optimal utility-invariance trade-off (denoted by TOpt) as a single objective optimization

problem:

Definition 5.1.

TOpt := (5.2)

inf
f∈HX

{
(1− λ) inf

gY ∈HY
EX,Y [LY (gY (f(X)) , Y )] + λDep (f (X) , S)

}
, 0 ≤ λ < 1,

where λ controls the trade-off between utility and invariance (e.g., λ = 0 corresponds to ignoring

the invariance and only optimizing the utility, while λ→ 1 corresponds to Z ⊥⊥ S).

The motivation behind deploying this single-objective IRepL is that any solution to this simpli-

fied problem is a solution to the bi-objective problem in (5.1) and even (5.2) is challenging to solve,

and it has not been fully investigated by existing works. An illustration of the utility-invariance

trade-off is illustrated in Figure 5.2. In this chapter, we restrict HX to be some RKHSs and

Dep(Z, S) to be a simplified version of the Hilbert-Schmidt Independence Criterion (HSIC) [81].

Further, we replace the target loss function in (5.2) by Dep(Z, Y ) as presented and justified in

Sections 5.3.1 and 5.5.2.
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Figure 5.2: (The trade-off (denoted by TOpt) between utility (target task performance) and invari-
ance (measured by the dependence metric Dep(Z, S)) is induced by a controlled representation
learner in the hypothesis class of all Borel functions.

The basic idea of representation learning that discards unwanted semantic information has

been explored under many contexts like invariant, fair, or privacy-preserving learning. In domain

adaptation [11, 12, 39], the goal is to learn features that are independent of the data domain. In

fair learning [41, 42, 43, 40, 36, 21, 23, 24, 22, 44, 2, 26, 45, 46, 47, 48, 49], the goal is to discard

the demographic information that leads to unfair outcomes. Similarly, there is growing interest in

mitigating unintended leakage of private information from representations [51, 52, 1, 53, 54].

A vast majority of this body of work is empirical in nature. They implicitly look for single or

multiple points on the trade-off between utility and semantic information and do not explicitly seek

to characterize the whole trade-off front. Overall, these approaches are not concerned with or aware

of the inherent utility-invariance trade-off. In contrast, with the cost of restricting encoders to lie

in some RKHSs, we exactly characterize the trade-off and propose a practical learning algorithm

that achieves this trade-off.
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5.1.1 Adversarial Representation Learning

Most practical approaches for learning fair, invariant, domain adaptive, or privacy-preserving rep-

resentations discussed above are based on adversarial representation learning (ARL). ARL is typi-

cally formulated as

inf
f∈HX

{
(1− λ) inf

gY ∈HY
EX,Y [LY (gY (f(X)) , Y )]− λ inf

gS∈HS
EX,S [LS (gS (f(X)) , S)]

}
,(5.3)

where LS is the loss function of a hypothetical adversary gS who intends to extract the semantic

attribute S through the best estimator within the hypothesis class HS and 0 ≤ λ < 1 is the

utility-invariance trade-off parameter. ARL is a special case of (5.2) where the negative loss of

the adversary, − inf
gS∈HS

EX,S [LS (gS (f(X)) , S)] plays the role of Dep(f(X), S). However, this

form of adversarial learning suffers from a drawback. The induced independence measure is not

guaranteed to account for all modes of non-linear dependence between S and Z if the adversary

loss function LS is not bounded like MSE or cross-entropy [56, 114]. In the case of MSE loss, even

if the loss is maximized at a bounded value, where the corresponding representation Z = f(X) is

also bounded, still, it is not guaranteed that Z ⊥⊥ S is attainable (see Section 5.2 for more details).

This implies that designing the adversary loss in ARL that accounts for all modes of dependence

is challenging, and it can be infeasible for some loss functions.

5.1.2 Trade-Offs in Invariant Representation Learning:

Prior work has established the existence of trade-offs in IRepL, both empirically and theoretically.

In the following, we categorize them based on properties of interest.

Restricted Class of Attributes: A majority of existing work considers IRepL trade-offs under

restricted settings, i.e., binary and/or categorical attributes Y and S. For instance, [60] uses
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information-theoretic tools and characterizes the utility-fairness trade-off in terms of lower bounds

when both Y and S are binary labels. Later [55] provided both upper and lower bounds for binary

labels. By leveraging Chernoff bound, [61] proposed a construction method to generate an ideal

representation beyond the input data to achieve perfect fairness while maintaining the best per-

formance on the target task. In the case of categorical features, a lower bound on utility-fairness

trade-off has been provided by [6] for the total invariance scenario (i.e., Z ⊥⊥ S). In contrast to this

body of work, our trade-off analysis applies to multidimensional continuous/discrete attributes. To

the best of our knowledge, the only prior works with a general setting are [49] and [9]. However,

in [9], both S and Y are restricted to be continuous/discrete or binary at the same time (e.g., it is

not possible to have Y binary while S is continuous).

Characterizing Exact versus Bounds on Trade-Off: To the best of our knowledge, all existing

approaches except [49], which obtains the trade-off for the linear dependence only, characterize the

trade-off in terms of upper and/or lower bounds. In contrast, we exactly characterize a near-optimal

trade-off with closed-form expressions for encoders belonging to some RKHSs.

Optimal Encoder and Representation: Another property of practical interest is the optimal en-

coder that achieves the desired point on the utility-invariance trade-off and the corresponding rep-

resentation(s). Existing works which only study bounds on the trade-off do not obtain the encoder

that achieves those bounds. [49] do develop a learning algorithm that obtains a globally optimal

encoder, but only under a linear dependence measure between Z and S. HSIC, a universal measure

of dependence, has been adopted by prior work (e.g., [62]) to quantify all types of dependencies

between Z and S. However, these methods adopt stochastic gradient descent for optimizing the

underlying non-convex optimization problem. As such, they fail to provide guarantees that the

representation learning problem converges to a global optima. In contrast, we obtain a closed-form

solution for the optimal encoder and its corresponding representation while detecting all modes of
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dependence between Z and S.

Summary of Contributions: i) We design a dependence measure that accounts for all modes

of dependence between Z and S (under a mild assumption) while allowing for analytical tractabil-

ity. ii) We employ functions in RKHSs and obtain closed-form solutions for the IRepL optimiza-

tion problem. Consequently, we exactly characterize a near-optimal approximation of TOpt via

encoders restricted to RKHSs. iii) We obtain a closed-form estimator for the encoder that achieves

the near-optimal trade-off, and we establish its numerical convergence. iv) Using random Fourier

features (RFF) [115], we provide a scalable version (in terms of both memory and computation) of

our IRepL algorithm. v) We numerically quantify our TOpt (denoted by K-TOpt) on an illustrative

problem as well as large-scale real-world datasets, Folktables [116] and CelebA [111], where we

compare K-TOpt to those obtained by existing works.

5.2 Deficiency of Mean-Squared Error as

A Measure of Dependence

Theorem 5.2. LetHS contain all Borel functions, S be a dS-dimensional RV, and LS(·, ·) be MSE

loss. Then,

Z ∈ arg sup

{
inf

gS∈HS
EX,S [LS (gS (Z) , S)]

}
⇔ E[S |Z] = E[S].

Proof. Let Si, (gS(Z))i, and (E[S |Z] )i denote the i-th entries of S, gS(Z), and E[S |Z], respec-
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tively. Then, it follows that

inf
gS∈HS

EX,S [LS (gS (Z) , S)] = inf
gS∈HS

dS∑

i=1

EX,S
[
((gS(Z))i − Si)2

]

=

dS∑

i=1

EX,S
[
((E[S |Z] )i − Si)2

]

≤
dS∑

i=1

ES
[
((E[S] )i − Si)2

]
=

dS∑

i=1

Var[Si],

where the second step is due to the optimality of conditional mean (i.e., Bayes estimation) for

MSE [117] and the last step is because independence between Z and S leads to an upper bound on

MSE. Therefore, if Z ∈ arg sup
{

infgS∈HS EX,S [LS (gS (Z) , S)]
}

, then E[S |Z] = E[S]. On

the other hand, if E[S |Z] = E[S], then it follows immediately that

Z ∈ arg sup

{
inf

gS∈HS
EX,S [LS (gS (Z) , S)]

}
.

This theorem implies that an optimal adversary does not necessarily lead to a representation

Z that is statistically independent of S but instead leads to S being mean independent of the

representation Z.

74



5.3 Problem Setting

5.3.1 Problem Setup

The representation RV Z can be expressed as

Z = f(X) := [Z1, · · · , Zr]T ∈ Rr, Zj = fj(X), fj ∈ HX ∀j = 1, . . . , r,

= Θ [kX(x1, X), · · · , kX(xn, X)]

(5.4)

where r is the dimensionality of the representation and Θ ∈ Rr×n. As we will discuss in Corollary

5.1, unlike common practice where r is chosen on an ad-hoc basis, it is an object of interest for

optimization. We consider a general scenario where both Y and S can be continuous/discrete or

categorical, or one of Y or S is continuous/discrete while the other is categorical. To accomplish

this, we replace the target loss, inf
gY ∈HY

EX,Y [LY (gY (Z), Y )] in (5.2) by the negative of a non-

parametric measure of dependence, i.e., −Dep (Z, Y ). The main reason for this replacement is

that maximizing statistical dependency between the representation Z and the target attribute Y can

flexibly learn a representation that is applicable for different downstream target tasks, including

regression, classification, clustering, etc [118]. Particularly, Theorem 5.8 in Section 5.5.2 indicates

that with an appropriate choice of involved RKHS for Dep (Z, Y ), we can learn a representation

that lends itself to an estimator that performs as optimally as the Bayes estimation, i.e., EX [Y |X].

Furthermore, in an unsupervised setting, where there is no target attribute Y , the target loss can

be replaced with Dep (Z,X), which implicitly forces the representation Z to be as dependent on

the input data X . This scenario is of practical interest when a data producer aims to provide an

invariant representation for an unknown downstream target task.
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X Z = f(X) = Θ kX(·, X)

Dep(Z, Y ) :=

r∑

j=1

∑

βY ∈UY

Cov2 (Zj , βY (Y )) βY (·) Y

Dep(Z, S) :=
r∑

j=1

∑

βS∈US

Cov2 (Zj , βS(S)) βS(·) S

Figure 5.3: Our IRepL model consists of three components: i) An r-dimensional encoder f be-
longing to the universal RKHSHX . ii) A measure of dependence that accounts for all dependence
modes between data representation Z and semantic attribute S induced by the covariance between
Z = f(X) and βS(S) where βS belongs to a universal RKHS HS . iii) A measure of dependency
between Z and the target attribute Y defined similarly to that for S.

5.4 Choice of Dependence Measure

We only discuss for Dep (Z, S) since Dep (Z, Y ) follows similarly. Accounting for all possible

non-linear relations between RVs is a key desideratum of dependence measures. A well-known ex-

ample of such measures is MI (e.g., MINE [119]). However, calculating MI for multidimensional

continuous representation is analytically challenging and computationally intractable. Kernel-

based measures are an alternative solution with the attractive properties of being computationally

feasible/efficient and analytically tractable [83].

Principally, Z ⊥⊥ S iff Cov(α(Z), βS(S)) = 0 for all Borel functions α : Rr → R and

βs : RdS → R belonging to the universal RKHSsHZ andHS , respectively. Alternatively, Z ⊥⊥ S

iff HSIC(Z, S) = 0 for HSIC [81] being defined as

HSIC(Z, S) :=
∑

α∈UZ

∑

βS∈US
Cov2 (α(Z), βS(S)) , (5.5)

where UZ and US are countable orthonormal basis sets for the separable universal RKHSs HZ

and HS , respectively. However, since Z = f(X) , calculating Cov(α(Z), βS(S)) necessitates

the application of a cascade of kernels, which limits the analytical tractability of our solution.
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Therefore, we adopt a simplified version of HSIC that considers transformation on S only but

affords analytical tractability for solving the IRepL optimization problem. We define this measure

as

Dep(Z, S) :=
r∑

j=1

∑

βS∈US
Cov2 (Zj , βS(S)

)
, (5.6)

where Zj = fj(X) for fjs defined in (5.4). We note that Dep(·, ·), unlike HSIC and other

kernelization-based dependence measures, is not symmetric. However, symmetry is not neces-

sary for measuring statistical dependence. The measure Dep(Z, S) in (5.6) captures all modes of

non-linear dependence under the assumption that the distribution of a low-dimensional projection

of high-dimensional data is approximately normal [120], [121]. To see why this reasoning is rel-

evant, we note from (5.4) that Z can be expressed as Z = ΘV , where V ∈ Rn and Θ ∈ Rr×n.

This indicates that for large n and small r (which is the case for most real-world datasets), Z is

indeed a low-dimensional projection of high-dimensional data. In other words, (Z, βS(S)) is ap-

proximately a jointly Gaussian RV. In our numerical experiments in Section 5.6 we empirically

observe that Dep(Z, S) enjoys a monotonic relation with the underlying invariance measure and

captures all modes of dependency in practice, especially as Z ⊥⊥ S. Nevertheless, if the normal-

ity assumption on the distribution of (Z, βS(S)) fails, Dep(Z, S) reduces to measuring the linear

dependency between Z and βS(S) for all Borel functions βS . This corresponds to measuring the

mean independency of Z from S, i.e., how much information a predictor (linear and non-linear)

can infer (in the sense of MSE) about Z from S. See Section 5.2 for more technical details on

mean independency.

Lemma 5.3. Let KX ,KS ∈ Rn×n be the Gram matrices corresponding to HX and HS , re-

spectively, i.e., (KX)ij = kX(xi,xj) and (KS)ij = kS(si, sj), where covariance is empirically
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estimated as

Cov
(
fj(X), βS(S)

)
≈ 1

n

n∑

i=1

fj(xi)βS(si)−
1

n2

n∑

i=1

n∑

k=1

fj(xi)βS(sk).

It follows that, the corresponding empirical estimation for Dep (Z, S) is

Depemp (Z, S) =
1

n2
‖ΘKXHLS‖2F , (5.7)

where H = In − 1
n1n1Tn is the centering matrix, and LS is a full column-rank matrix in which

LSL
T
S = KS (Cholesky factorization). Furthermore, the empirical estimator in (5.7) has a bias of

O(n−1) and a convergence rate of O(n−1/2).

Proof. See Appendix B.2

Notice that the dependence measure between Z and Y can be defined similarly.

5.5 Exact Kernelized Trade-Off

Consider the optimization problem corresponding to TOpt in (5.2). Recall that Z = f(X) is an

r-dimensional RV, where the embedding dimensionality r is also a variable to be optimized. A

common desideratum of learned representations is that of compactness [122], to avoid learning

representations with redundant information where different dimensions are highly correlated to

each other. Therefore, going beyond the assumption that each component of f (i.e., fjs) belongs

to the universal RKHS HX , we impose additional constraints on the representation. Specifically,

we constrain the search space of the encoder f(·) to learn a disentangled representation [122] as
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follows

Ar :=
{

(f1, · · · , fr) | fi, fj ∈ HX , Cov
(
fi(X), fj(X)

)
+ γ 〈fi, fj〉HX = δi,j

}
. (5.8)

In the above set, the Cov
(
fi(X), fj(X)

)
part enforces the covariance matrix of Z = f(X) to be

an identity matrix. This kind of disentanglement is used in the principal component analysis (PCA)

and encourages the variance of each entry of Z to be one and different entries of Z to be uncorre-

lated with each other. The regularization part, γ 〈fi, fj〉HX encourages the encoder components

to be as orthogonal as possible to each other and to be of the unit norm, which aids with numer-

ical stability during empirical estimation [85]. As the following theorem states formally, such

disentanglement is an invertible transformation, and therefore it does not nullify any information.

Theorem 5.4. Let Z = f(X) be an arbitrary representation of the input data, where f ∈ HX .

Then, there exists an invertible Borel function h, such that h ◦ f belongs to Ar.

Proof. See Appendix B.3

This Theorem implies that the disentanglement preserves the performance of the downstream

task since any target network can revert the disentanglement h and access to the original rep-

resentation Z. In addition, any deterministic measurable transformation of Z will not add any

information about S that does not already exist in Z.

We define our K−TOpt as

sup
f∈Ar

{J (f , λ) := (1− λ) Dep (f(X), Y )− λDep (f(X), S)} , 0 ≤ λ < 1, (5.9)

where λ is the utility-invariance trade-off parameter. Fortunately, the above optimization problem

lends itself to a closed-form solution as follows.
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Theorem 5.5. Consider the operator ΣSX to be induced by the bi-linear functional

Cov(α(X), βS(S)) = 〈βS , ΣSXα〉HS

and define ΣY X and ΣXX , similarly. Then, a global optima for the optimization problem in (5.9)

is the eigenfunctions corresponding to the r largest eigenvalues of the following generalized eigen-

value problem

(
(1− λ) Σ∗Y XΣY X − λΣ∗SXΣSX

)
f = τ (ΣXX + γ IX)f , (5.10)

where γ is the disentanglement regularization parameter defined in (5.8), IX is the identity oper-

ator inHX , and Σ∗ is the adjoint of Σ.

Proof. Consider Dep(Z, S) in (5.6):

Dep(Z, S) =
∑

βS∈US

r∑

j=1

Cov2 (fj(X), βS(S)
)

=
r∑

j=1

∑

βS∈US

〈
βS ,ΣSXfj

〉2
HS

=
r∑

j=1

‖ΣSXfj‖2HS ,

where the last step is due to Parseval’s identity for the orthonormal basis set. Similarly, we have

dep(Z, Y ) =
∑r
j=1‖ΣY Xfj‖2HY . Recall that Z = f(X) = [(f1(X), · · · , fr(X)], then it follows
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that

J(f(X)) = (1− λ)
r∑

j=1

‖ΣY Xfj‖2HY −λ
r∑

j=1

‖ΣSXfj‖2HS

= (1− λ)
r∑

j=1

〈
ΣY Xfj ,ΣY Xfj

〉
HY
− λ

r∑

j=1

〈
ΣSXfj ,ΣSXfj

〉
HS

=
r∑

j=1

〈
fj , ((1− λ) Σ∗Y XΣY X − λΣ∗SXΣSX)fj

〉
HX

,

where Σ∗ is the adjoint operator of Σ. Further, note that Cov(fi(X), fj(X)) = 〈fi,ΣXXfj〉HX .

As a result, the optimization problem in (5.10) can be restated as

sup
〈fi,(ΣXX+γIX )fk〉HX=δi,k

r∑

j=1

〈
fj ,
(
(1− λ)Σ∗Y XΣY X − λΣ∗SXΣSX

)
fj
〉
HX

, 1 ≤ i, k ≤ r

where IX denotes identity operator from HX to HX . This optimization problem is known as

generalized Rayleigh quotient [123] and a possible solution to it is given by the eigenfunctions

corresponding to the r largest eigenvalues of the following generalized problem

((1− λ) ΣXY ΣY X − λΣXSΣSX) f = λ (ΣXX + γIX) f.

Remark. If the trade-off parameter λ = 0 (i.e., no semantic independence constraint is imposed)

and γ → 0, the solution in Theorem 5.5 is equivalent to a supervised kernel-PCA. On the other

hand, if λ→ 1 (i.e., utility is ignored and only semantic independence is considered), the solution

in Theorem 5.5 is the eigenfunctions corresponding to the r smallest eigenvalues of Σ∗SXΣSX ,

which are the directions that are the least explanatory of the semantic attribute S.
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Now, consider the empirical counterpart of the optimization problem (5.9),

sup
f∈Ar

{Jemp(f , λ) := (1− λ) Depemp (f(X), Y )− λDepemp (f(X), S)} , 0 ≤ λ < 1 (5.11)

where Depemp (f(X), S) is given in (5.7) and Depemp (f(X), Y ) is defined similarly.

Theorem 5.6. Let the Cholesky factorization of KX be KX = LXL
T
X , where LX ∈ Rn×d

(d ≤ n) is a full column-rank matrix. Let r ≤ d, then a solution to (5.11) is

fOpt(X) = ΘOpt [kX(x1, X), · · · , kX(xn, X)]T ,

where Θopt = UTL
†
X and the columns of U are eigenvectors corresponding to the r largest

eigenvalues of the following generalized eigenvalue problem.

LTX ((1− λ)HKYH − λHKSH)LXu = τ

(
1

n
LTXHLX + γI

)
u. (5.12)

Further, the objective value of (5.11) is equal to
∑r
j=1 βj , where {β1, · · · , βr} are the r largest

eigenvalues of (5.12).

Proof. Consider the Cholesky factorization,Kx = LxL
T
x where Lx is a full column-rank matrix.
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Using the representer theorem, the disentanglement property in (5.8) can be expressed as

Cov
(
fi(X), fj(X)

)
+ γ 〈fi, fj〉HX

=
1

n

n∑

k=1

fi(xk)fj(xk)− 1

n2

n∑

k=1

fi(xk)
n∑

m=1

fj(xm) + γ 〈fi, fj〉HX

=
1

n

n∑

k=1

n∑

t=1

KX(xk,xt)θit

n∑

m=1

KX(xk,xm)θjm −
1

n2
θTi KX1n1TnKXθj + γ 〈fi, fj〉HX

=
1

n
(KXθi)

T (Kxθj
)
− 1

n2
θTi KX1n1TnKXθj

+ γ

〈
n∑

k=1

θikkX(·,xk),
n∑

t=1

θitkX(·,xt)
〉

HX

=
1

n
θTi KXHKXθj + γ θTi KXθj

=
1

n
θTi LX

(
LTXHLX + nγ I

)
LTXθj

= δi,j .

As a result, f ∈ Ar is equivalent to

ΘLX

( 1

n
LTXHLX + γI

)

︸ ︷︷ ︸
:=C

LTXΘT = Ir,

where Θ := [θ1, · · · ,θr]T ∈ Rr×n.
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Let V = LTXΘT and consider the optimization problem in (13):

sup
f∈Ar

{(1− λ) Depemp(f(X), Y )− λDepemp(f(X), S)}

= sup
f∈Ar

1

n2

{
(1− λ) ‖ΘKXHLY ‖2F − λ ‖ΘKXHLS‖2F

}

= sup
f∈Ar

1

n2

{
(1− λ) Tr

{
ΘKXHKYHKXΘT

}
− λTr

{
ΘKXHKSHKXΘT

}}

= max
V TCV =Ir

1

n2
Tr
{

ΘLXBL
T
XΘT

}

= max
V TCV =Ir

1

n2
Tr
{
V TBV

}
(5.13)

where the second step is due to (5.7) and

B := LTX ((1− λ)HKYH − λHKSH)LX

It is shown in [90] that an1 optimizer of (5.13) is any matrix U whose columns are eigenvectors

corresponding to r largest eigenvalues of generalized problem

Bu = τ Cu (5.14)

and the maximum value is the summation of r largest eigenvalues. Once U is determined, then,

any Θ in which LTXΘT = U is optimal Θ (denoted by Θopt). Note that Θopt is not unique and

has a general form of

ΘT =
(
LTX

)†
U + Λ0, R(Λ0) ⊆ N

(
LTX

)
.

1Optimal V is not unique.
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However, setting Λ0 to zero would lead to a minimum norm for Θ. Therefore, we opt Θopt =

UTL
†
X .

Corollary 5.1. Embedding Dimensionality: A useful corollary of Theorem 5.6 is characterizing

optimal embedding dimensionality as a function of the trade-off parameter, λ:

rOpt(λ) := arg sup
0≤r≤d

{
sup
f∈Ar

{Jemp (f , λ)}
}

= number of non-negative eigenvalues of (5.12).

Proof. From proof of Theorem 5.6, we know that

sup
f∈Ar

{(1− λ) Depemp(f(X), Y )− λDepemp(f(X), S)} =
r∑

j=1

τj ,

where {τ1, · · · , τn} are eigenvalues of the generalized problem in (5.12) in decreasing order. It

follows immediately that

arg sup
r





r∑

j=1

τj



 = number of non-negative elements of {τ1, · · · , τl}.

To examine these results, consider two extreme cases: i) If there is no semantic independence

constraint (i.e., λ = 0), all eigenvalues of (5.12) are non-negative sinceHKYH is a non-negative

definite matrix and 1
n L

T
XHLX + γI is a positive definite matrix. This indicates that rOpt is equal

to the maximum possible value (that is equal to d), and therefore it is not required for Z to nullify

any information in X . ii) If we only concern about the semantic independence and ignore the

target task utility (i.e., λ→ 1), all eigenvalues of (5.12) are non-positive and therefore rOpt would

be the number of zero eigenvalues of (5.12). This indicates that Depemp(Z, S) in (5.7) is equal to
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zero, since ΘoptKX is zero for zero eigenvalues of (5.12) when λ→ 1. In this case, adding more

dimension to Z will necessarily increase Depemp(Z, S).

The following Theorem characterizes the convergence behavior of empirical K−TOpt to its

population counterpart.

Theorem 5.7. Assume that kS and kY are bounded by one and f2
j (xi) ≤M for any j = 1, . . . , r

and i = 1, . . . , n for which f = (f1, . . . , fr) ∈ Ar. Then, for any n > 1 and 0 < δ < 1, with

probability at least 1− δ, we have

∣∣∣∣∣ sup
f∈Ar

J(f , λ)− sup
f∈Ar

Jemp(f , λ)

∣∣∣∣∣ ≤ rM

√
log(6/δ)

0.222 n
+O

(
1

n

)
.

Proof. See Appendix B.4

Note that, for any x in the training set, fj(x) can be calculated as fj(x) =
∑n
i=1 θjikX(xi,x).

We can assume that kX(·, ·) is bounded. For example, in RBF Gaussian and Laplacian RKHSs

(that are universal), kX(·, ·) ≤ 1. This implies that f2
j (x) ≤ √n‖θj‖, where θj is j-th row of

Θ in equation (5.4). One always can normalize fj(x) by dividing it by the maximum of
√
n‖θj‖

over js, or by dividing by the maximum of |fj(xi)| over is and js. Notice that, this normalization

is only a scalar multiplication and has no effect on the invariance of Z = f(X) to S and the utility

of any downstream target task predictor gY (Z).

5.5.1 Numerical Complexity

Computational Complexity: If LX in (5.12) is provided in the training dataset, then, the com-

putational complexity of obtaining the optimal encoder is O(l3), where l ≤ n is the numerical

rank of the Gram matrix KX . However, the dominating part of the computational complexity is
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due to the Cholesky factorization,KX = LXL
T
X which isO(n3). Using random Fourier features

(RFF) [115], kX(x,x′) can be approximated by rX(x)T rX(x′), where rX(x) ∈ Rd. In this

situation, the Cholesky factorization can be directly calculated as

LX =




rX(x1)T

...

rX(xn)T



∈ Rn×d. (5.15)

As a result, the computational complexity of obtaining the optimal encoder becomesO(d3), where

the RFF dimension, d can be significantly less than the sample size n with negligible sacrifice on

kX(x,x′) ≈ rX(x)T rX(x′) approximation.

Memory Complexity: The memory complexity of (5.12), if calculated naively, is O(n2) since

KY and KS are n by n matrices. However, using RFF together with Cholesky factorization

KY = LY L
T
Y ,KS = LSL

T
S , the left-hand side of (5.12) can be re-arranged as

(1− λ)
(
LTXL̃Y

)(
L̃TY LX

)
− λ

(
LTXL̃S

)(
L̃TSLX

)
, (5.16)

where L̃TY = HLY = LY − 1
n1n(1TnLY ) and therefore, the required memory complexity is

O(nd). Note that, L̃TS andHLX can be calculated similarly.

5.5.2 Target Task Performance in K−TOpt

Assume that the desired target loss function is MSE. In the following Theorem, we show that max-

imizing Dep (f(X), Y ) over f ∈ Ar can learn a representation Z that is informative enough for a

target predictor on Z to achieve the most optimal estimation, i.e., the Bayes estimation (E[Y |X]).
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Theorem 5.8. Let f∗ be the optimal encoder by maximizing Dep(f(X), Y ), where γ → 0 and

HY is a linear RKHS. Then, there existW ∈ RdY ×r and b ∈ RdY such thatWf∗(X) + b is the

Bayes estimator, i.e.,

[
‖WZ∗ + b− Y ‖2

]
= inf

h is Borel
EX,Y

[
‖h(X)− Y ‖2

]

= EX,Y
[
‖E[Y |X]− Y ‖2

]
.

Proof. We only prove this theorem for the empirical version due to its convergence to the popula-

tion counterpart. The optimal Bayes estimator can be the composition of the kernelized encoder

Z = f(X) and a linear regressor on top of it. More specifically, Ŷ = Wf(X) + b can approach

to E[Y |X] if we optimize f , W , and b all together. This is because f ∈ HX can approximate

any Borel function (due to the universality of HX ) and, since r ≥ dy, W can be surjective. Let

Z := [z1, · · · , zn] ∈ Rr×n and Y := [y1, · · · ,yn] ∈ Rdy×n. Further, let Z̃ and ỹ be the centered

(i.e., mean subtracted) version of Z and Y , respectively. We firstly optimize b for any given f , r,

andW :

bopt := arg min
b

1

n

n∑

i=1

‖Wzi + b− yi‖2

=
1

n

n∑

i=1

yi −W
1

n

n∑

i=1

zi.

Then, optimizing overW would lead to

min
W

1

n

∥∥∥WZ̃ − Ỹ
∥∥∥

2

F
=

1

n
min
W

∥∥∥Z̃TW T − Ỹ T
∥∥∥

2

F

= min
W

1

n

∥∥∥Z̃TW T − P
Z̃
Ỹ T
∥∥∥

2

F
+

1

n

∥∥∥P
Z̃⊥Ỹ

T
∥∥∥

2

F

=
1

n

∥∥∥P
Z̃⊥Ỹ

T
∥∥∥

2

F
=

1

n

∥∥∥Ỹ
∥∥∥

2

F
− 1

n

∥∥∥PZ̃Ỹ
T
∥∥∥

2

F
,
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where P
Z̃

denotes the orthogonal projector onto the column space of Z̃T and a possible min-

imizer is W T
opt = (Z̃T )†Ỹ T or equivalently Wopt = Ỹ (Z̃)†. Since the MSE loss is a func-

tion of the range (column space) of Z̃T , we can consider only Z̃T with orthonormal columns or

equivalently 1
nZ̃Z̃

T = Ir. In this setting, it holds P
Z̃

= 1
nZ̃

T Z̃. Now, consider optimizing

f(X) = Θ [kX(x1, X), · · · , kX(xn, X)]T . We have, Z̃ = ΘKXH where H is the centering

matrix. Let V = LTxΘT and C = 1
nL

T
XHLX , then it follows that

min
ΘKXHKXΘT=nIr

1

n

{∥∥∥Ỹ
∥∥∥

2

F
−
∥∥∥PZ̃Ỹ

T
∥∥∥

2

F

}

=
1

n

∥∥∥Ỹ
∥∥∥

2

F
− max

ΘKXHKXΘT=nIr

1

n

∥∥∥PZ̃Ỹ
T
∥∥∥

2

F

=
1

n

∥∥∥Ỹ
∥∥∥

2

F
− max
V TCV =Ir

1

n2
Tr
[
Ỹ HKXΘTΘKXHỸ

T
]

=
1

n2

∥∥∥Ỹ
∥∥∥

2

F
− max
V TCV =Ir

1

n2
Tr
[
ΘKXHỸ

T Ỹ HKXΘT
]

=
∥∥∥Ỹ
∥∥∥

2

F
− max
V TCV =Ir

1

n2
Tr
[
V TLTX Ỹ

T Ỹ LXV
]

=
1

n

∥∥∥Ỹ
∥∥∥

2

F
− 1

n2

r∑

j=1

λj ,

where λ1, · · · , λr are r largest eigenvalues of the following generalized problem

B0u = λCu

and B0 := LTX Ỹ
T Ỹ LX . This resembles the eigenvalue problem in Section , equation (5.14)

where λ = 0,HY is a linear RKHS and γ → 0.

This Theorem implies that not only Dep (f(X), Y ) can preserve all the necessary information

in Z to optimally predict Y , also, the learned representation is simple enough for a linear regressor

to achieve the optimal performance.
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5.6 Experiments

In this section, we numerically quantify our K−TOpt through the closed-form solution for the en-

coder obtained in Section 5.5 on an illustrative toy example and two real-world datasets, Folktables

and CelebA.

5.6.1 Baselines

We consider two types of baselines: (1) ARL (the main framework for IRepL) with MSE or Cross-

Entropy as the adversarial loss. Such methods are expected to fail to learn a fully invariant repre-

sentation [56, 114]. These include [24, 22, 2], and SARL [49]. (2) HSIC-based adversarial loss

that accounts for all modes of dependence, and as such is theoretically expected to learn a fully in-

variant representation [62]. Among these baselines, except for SARL, all the others are optimized

via iterative minimax optimization which is often unstable and not guaranteed to converge. On the

other hand, SARL obtains a closed-form solution for the global-optima of the minimax optimiza-

tion under a linear dependence measure between Z and, S which may fail to capture all modes of

dependence between Z and S.

5.6.2 Datasets

Gaussian Toy Example: We design an illustrative toy example where X and S are mean indepen-

dent in some dimensions but not fully independent in those dimensions. Specifically, X and S are

4-dimensional continuous RVs and generated as following

U = [U1, U2, U3, U4] ∼ N (04, I4) , N ∼ N (04, I4) , U ⊥⊥ N

X = cos
(π

6
U
)

+ 0.005N, S =
[
sin
(π

6
[U1, U2]

)
, cos

(π
6

[U3, U4]
)]
, (5.17)
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where sin(·) and cos(·) are applied point-wise. To generate the target attribute, we define four

binary RVs as follows.

Yi = 1{|Ui|>T}(Ui), i = 1, 2, 3, 4,

where 1B(·) is the indicator function, and we set T = 0.6744, so it holds that P[Yi = 0] =

P[Yi = 1] = 0.5 for i = 1, 2, 3, 4. Finally, we define Y as a 16-class categorical RV concatenated

by Yis. Since S is dependent on X through all the dimensions of X , then, a wholly invariant

Z (i.e., Z ⊥⊥ S) should not contain any information about X . However, since [S1, S2] is only

mean independent of [X1, X2] (i.e., E [S1, S2|X1, X2] = E [S1, S2]), ARL baselines with MSE

as the adversary loss, i.e., [24, 22, 2] and SARL cannot capture the dependency of Z to [S1, S2]

and result in a representation that is always dependent on [S1, S2] (see Section 5.2 for theoretical

details). We sample 18, 000 instances from pX,Y,S , independently, and split these samples equally

into training, validation, and testing partitions.

Folktables: We consider a fair representation learning task on Folktables [116] dataset (a deriva-

tion of the US census data). Particularly, we use 2018-WA (Washington) and 2018-NY (New York)

census data where the target attribute Y is the employment status (binary for WA and 4 categories

for NY) and the semantic attribute S is age (discrete value between 0 and 95 years). We seek

to learn a representation that predicts employment status while being fair in demographic parity

(DP) w.r.t. age. DP requires that the prediction Ŷ be independent of S which can be achieved

by enforcing Z ⊥⊥ S. The WA and NY datasets contain 76, 225 and 196, 967 samples, respec-

tively, each constructed from 16 different features. We randomly split the data into training (70%),

validation (15%), and testing (15%) partitions. Further, we adopt embeddings for categorical fea-

tures (learned in a supervised fashion by Y ) and normalization for continuous/discrete features (by

dividing to the maximum value).
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CelebA: CelebA dataset [111] contains 202, 599 face images of 10, 177 different celebrities with

standard training, validation, and testing splits. Each image is annotated with 40 different at-

tributes. We choose the target attribute Y as the high cheekbone attribute (binary) and the semantic

attributes S to be the concatenation of gender and age (a 4-class categorical RV). The objective of

this experiment is similar to that of Folktables. Since raw image data is not appropriate for kernel

methods, we pre-train a ResNet-18 [124] (supervised by Y ) on CelebA images and extract features

of dimension 256. These features are used as the input data for all methods.

5.6.3 Evaluation Metrics

We use the accuracy of the classification tasks (16-class classification for Gaussian toy example,

employment prediction for Folktables, and high cheekbone prediction for CelebA) as a utility. For

Folktables and CelebA datasets, we define DP violation as

DPV(Ŷ , S) := E
Ŷ

[
VarS

(
P[Ŷ |S]

)]
(5.18)

and use it as a metric to measure the variance (unfairness) of the prediction Ŷ w.r.t. the semantic

attribute S. For the Gaussian toy example, the above metric is challenging to compute because S

is a continuous RV. To circumvent this difficulty, we deploy KCC [79]

KCC(Z, S) := sup
α∈HZ,β∈HS

Cov(α(Z), β(S))√
Var(α(Z))Var(β(S))

, (5.19)

as a measure of invariance of Z to S, whereHZ andHS are RBF-Gaussian RKHS. The reason for

using KCC instead of HSIC is that, unlike HSIC, KCC is normalized, and therefore it is a more

readily interpretable measure for comparing the invariance of representations between different
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methods.

5.6.4 Choice of (Y, S) Pair

The existence of a utility-invariance trade-off ultimately depends on the statistical dependency

between target and semantic attributes. If Dep(Z, S) is negligible, then there does not exist a

trade-off. Keeping this in mind, we first chose the semantic attribute to be a sensitive attribute

for Folktables (i.e., age) and CelebA (i.e., concatenation of age and gender) datasets. Then, we

calculated the data imbalance (i.e., |P[Y = 0]− 0.5|) and KCC(Y, S) for all possible Y s. Finally,

we chose Y with a small data imbalance and a moderate KCC(Y, S). For Folktables dataset,

|P[employment = 0]− 0.5| = 0.04 and KCC(employment, age) = 0.4. For CelebA dataset,

|P[high cheekbone = 0]− 0.5| = 0.05 and KCC(high cheekbone, [age, gender]) = 0.1.

5.6.5 Implementation Details

For all methods, we pick different values of λ (100 λs for the Gaussian toy example and 70 λs for

Folktables and CelebA datasets) between zero and one for obtaining the utility-invariance trade-

off. We train the baselines that use a neural network for encoder five times with different random

seeds. We let the random seed also change the training-validation-testing split for the Folktables

dataset (CelebA and Gaussian datasets have fixed splits).

Embedding Dimensionality: None of the baseline methods have any strategy to find the optimum

embedding dimensionality (r) and they all set r to be constant w.r.t. λ. Therefore, for baseline

methods, we set r = 15 (i.e., the minimum dimensionality required to linearly classify 16 different

categories) for the Gaussian toy example and r = 3 (i.e., the minimum dimensionality required to

linearly classify 4 different categories) for Folktables-NY dataset, that is also equal to rOpt when
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Figure 5.4: Plots of rOpt(λ) versus the dependence trade-off parameter 1− λ for (a) the Gaussian
toy dataset and (b) Folktables-NY dataset. There is a non-decreasing relation between rOpt(λ) and
1− λ.

λ = 0. For K-TOpt, we use rOpt(λ) in Corollary 5.1. See Figure 5.4 for the plot of rOpt versus

λ for the toy Gaussian and Folktables-NY datasets. For Folktables-WA and CelebA datasets,

rOpt(λ = 0) is equal to one, and therefore we let r = 1 for all methods and all 0 ≤ λ < 1.

K−TOpt: We letHX ,HS , andHY be RBF Gaussian RKHS, where we compute the corresponding

band-widths (i.e., σs) using the median strategy introduced by [125]. We optimize the regulariza-

tion parameter γ in the disentanglement set (5.8) by minimizing the corresponding target losses

over γs in {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1} on validation sets. RFF (as discussed in Sec-

tion 5.5.1) is deployed for all datasets. For RFF dimensionality, we started with a small value

and gradually increased it until reaching the maximum possible performance for λ = 0 (i.e. the

standard unconstrained representation learning) on the corresponding validation sets that results in

100 for the Gaussian dataset, 5000 for Folktables dataset, and 1000 for CelebA dataset.

SARL [49]: SARL method is similar to our K−TOpt except that HY and HS are linear RKHSs,

and therefore we set σX and γ similar to that of K−TOpt.

ARL [24, 22, 2]: The representation Z = f(X) is extracted via the encoder f , which is an MLP (4

hidden layers and 15, 15 neurons for Gaussian data; 3 hidden layers and 128, 64 neurons for Folk-

tables and CelebA datasets). These architecture choices were based on starting with a single linear
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layer and gradually increasing the number of layers and neurons until over-fitting was observed.

This results in the number of encoder parameters for the Gaussian toy example to be 735, while

that is 100 = 100 ∗ rOpt(λ → 1) ≤ 100 ∗ rOpt(λ) ≤ 100 ∗ rOpt(λ = 0) = 1500 for K−TOpt. For

Folktables and CelebA, those are 41, 024 and 15, 616, respectively, for ARL and 5000 and 1000

for K−TOpt. The representation Z is fed to a target task predictor gY and a proxy adversary gS

networks where both are MLP with (2 hidden layers, and 16 neurons for Gaussian data, 2 hidden

layers, and 128 neurons for Folktables and CelebA datasets). All involved networks (f , gY , gS) are

trained end-to-end. We use stochastic gradient descent-ascent (SGDA) [24] with AdamW [126] as

an optimizer to alternately train the encoder, target predictor, and proxy adversary networks. We

choose batch size as 500 for Gaussian data; and 128 for Folktables and CelebA datasets. Then, the

corresponding learning rates are optimized over {10−2, 10−3, 5× 10−4, 10−4, 10−5} by minimiz-

ing the target loss on the corresponding validation sets.

HSIC-IRepL [62]: This method can be formulated as (5.2) where Dep(Z, S) is replaced by

HSIC(Z, S). The encoder and target predictor networks have the same architecture as the ARL.

Therefore, we follow the same optimization procedure as ARL to train the involved neural net-

works.

5.6.6 Results

Utility-Invariance Trade-offs: Figures 5.5 and 5.6 show the utility-invariance and Dep(Z, Y ) −

Dep(Z, S) trade-offs for the toy Gaussian, Folktables-WA, Folktables-NY, and CelebA datasets,

respectively. The invariance measure for the Gaussian toy example is KCC (5.19), and the in-

variance measure for Folktables and CelebA datasets is the fairness measure, DPV (5.18). We

make the following observations: 1) K−TOpt is highly stable and almost spans the entire trade-

off front for all datasets except Folktables-NY which can be due to the inability of scalarized
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DPV(Ŷ , S)

A
cc

ur
ac

y

K−TOpt

HSIC
OptNet
ARL

SARL

(c)

0 0.1 0.2
0.5

0.6

0.7

0.8

0.9

DPV(Ŷ , S)
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Figure 5.5: Utility versus invariance trade-offs obtained by K−TOpt and other baselines for (a)
Gaussian, (b) Folktables-WA, (c) Folktables-NY, and (d) CelebA datasets. K-TOpt stably spans
the entire trade-off front and considerably dominates other methods for all datasets. (a) ARL
and SARL span a small portion of the trade-off front since S is mean independent (but not fully
independent) ofX in some dimensions for the Gaussian toy example. HSIC-IRepL, despite using a
universal dependence measure, performs sub-optimally due to the lack of convergence guarantees
to the global optima.

single-objective formulation in (5.2), in contrast to the constrained optimization in (5.1), to find all

Pareto-optimal points. 2) There is almost the same trend in the trade-off between Dep(Z, Y ) and

Dep(Z, S) (Figure 5.6) as the utility-invariance trade-off (Figure 5.5). This is a desired observa-

tion since Dep(Z, Y )-Dep(Z, S) trade-off is what we actually optimized in (5.9) as a surrogate to

utility-invariance trade-off. 3) The baseline method HSIC-IRepL, despite using a universal depen-

dence measure, leads to a sub-optimal trade-off front due to the lack of convergence guarantees

to the global optima. 4) The baselines, ARL and SARL span only a small portion of the trade-off

front in the Gaussian toy example, since some dimensions of the semantic attribute S in (5.17) are

mean independent (but not fully independent) to some dimensions ofX and therefore the adversary
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Figure 5.6: Dep(Z, Y ) versus Dep(Z, S) in K−TOpt for (a) Gaussian, (b) Folktables-WA, (c)
Folktables-NY, and (d) CelebA datasets. We can observe that there is the same trend in Dep(Z, Y )-
Dep(Z, S) trade-off as utility-invariance-trade-off in Figure 5.5.

does not provide any information to the encoder to discard [S1, S2] from the representation. In this

dataset, ARL and SARL baselines do not approachZ ⊥⊥ S, i.e., KCC(Z, S) = 0 cannot be attained

for any value of the trade-off parameter λ. 5) ARL shows high deviation on Folktables dataset due

to the unstable nature of the minimax optimization. 6) SARL performs as good as K−TOpt for

CelebA dataset. This is because both S and Y are categorical for CelebA dataset, and therefore

linear RKHS on one-hot encoded attribute performs just as well as universal RKHSs [127].

Universality of Dep(Z, S): We empirically examine the practical validity of our assumption in

Section 5.4 and verify if our dependence measure Dep(Z, S), defined in (5.6), can capture all

modes of dependency between Z and S. Figure 5.7 (a) shows the plot of the universal dependence

measure KCC(Z, S) versus Dep(Z, S) for the Gaussian dataset and Figures 5.7 (b, c) illustrate the

relation between DPV(Ŷ , S) and Dep(Z, S) for Folktables and CelebA datasets, respectively. We
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Figure 5.7: Invariance versus Dep(Z, S) of K−TOpt for (a) Gaussian, (b) Folktables-WA, (c)
Folktables-NY, and (d) CelebA datasets. Dep(Z, S) enjoys a monotonic relation with the un-
derlying invariance measures.

observe that there is a non-decreasing relation between the corresponding invariance measures and

Dep(Z, S). More importantly, as KCC(Z, S)→ 0 (or DPV(Ŷ , S)→ 0) so does dep(Z, S). These

observations verify that Dep(Z, S) accounts for all modes of dependence between Z and S.

5.6.7 Ablation Study

Effect of Embedding Dimensionality: In this experiment, we examine the significance of the

embedding dimensionality, rOpt(λ), discussed in Corollary 5.1. We obtain the utility-invariance

trade-off when the embedding dimensionality is fixed to be r = rOpt(λ = 0) = 15. A com-

parison plot between the utility-invariance trade-off induced by rOpt(λ) and the fixed r = 15 is

illustrated in Figure 5.8 (a). We can observe that not only the utility-invariance trade-off for fixed

r is dominated by that of rOpt(λ), but also, using fixed r is unable to achieve the total invariance
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Figure 5.8: (a) Comparison between the utility-invariance trade-offs induced by the optimal em-
bedding dimensionality rOpt(λ) and that of fixed r = 15. Fixed r = 15 is significantly dominated
by that of rOpt(λ) and fails to attain Z ⊥⊥ S. (b) The first, fifth, tenth, and fifteenth largest eigen-
values in (5.12) versus 1 − λ. Given λ, rOpt is equal to the number of non-negative eigenvalues.
As 1− λ decreases, the largest eigenvalues approach to negative numbers.

0 5 · 10−2 0.1 0.15 0.2
0.5

0.6

0.7

0.8

0.9

DPV(Ŷ , S)
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Figure 5.9: (a) Utility versus invariance trade-offs for all methods when age (i.e., the sensitive
attribute) is discarded from the input data. (b) A comparison between trade-offs of K−TOpt when
age is present versus age is discarded from the input data. Removing the age attribute slightly
degrades the trade-off due to information discarding.

representation, i.e., Z ⊥⊥ S. Further, rOpt(λ) and some of the largest eigenvalues of (5.12) vs

the invariance trade-off parameter λ are plotted in Figures 5.8 (b, c), respectively. We recall from

Corollary 5.1 that, for any given λ, rOpt is the number of non-negative eigenvalues of (5.12).
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5.7 Summary

Invariant representation learning (IRepL) often involves a trade-off between utility and invariance.

While the existence of such trade-off and its bounds have been studied, its exact characterization

has not been investigated. This chapter takes some steps to address this problem by, i) establishing

the exact kernelized trade-off (denoted by K−TOpt), ii) determining the optimal dimensionality of

the data representation necessary to achieve a desired optimal trade-off point, and iii) developing

a scalable learning algorithm for encoders in some RKHSs to achieve K−TOpt. Numerical results

on both an illustrative example and two real-world datasets show that commonly used adversarial

representation learning-based techniques are unable to attain the optimal trade-off estimated by

our solution.
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Chapter 6

Conclusion and Future Work

Invariant representation learning often introduces a trade-off between utility and invariance. How-

ever, a learning algorithm that can optimally achieve any point on the trade-off front is challenging.

To circumvent this difficulty, in this dissertation, we propose to model IRepL players via functions

in some RKHSs. Consequently, we found a closed-form solution for the underlying IRepL prob-

lem. Additionally, the optimal embedding dimensionality is also determined. We also considered

the case where the encoder is an NN. In this situation, we model the target network and invariance

measure via kernelized ridge regressors that yield, in turn, closed-form solutions for the target net-

work and invariance measure. As a result, the unstable SGDA optimization scheme turns to SGD,

which is a stable optimization scheme. Numerical experiments on real-world datasets like the US

Census and CelebA confirm the optimality and efficiency of our proposed methods compared to

baseline IRepL algorithms. Finally, our theoretical results and empirical solutions shed light on the

utility-invariance trade-offs in various settings, such as algorithmic fairness and privacy-preserving

learning.

6.1 Limitations

This dissertation restricts the target predictor to be modeled via functions in some RKHSs to afford

analytical tractability and theoretical guarantees in Chapters 3, 5. Our proposed IRepL formulation

is under the scalarization of the bi-objective trade-off formulation. Even though any solution to the
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scalarized version is a solution to the original bi-objective IRepL problem, some regions on the

utility-invariance trade-off may not be spotted by the scalarized counterpart. In general, IRepL is

a function of the involved dependence measure that quantifies the dependence of learned represen-

tations on the sensitive attribute. As such, the trade-off obtained in this dissertation is optimal for

HSIC-like dependence measures and may not be optimum for other invariance measures like KCC

or COCO.

6.2 Future Work

As a result of the limitations mentioned above, studying the bi-objective trade-off (rather than the

scalarization) and other universal measures are interesting directions for future work. Moreover,

the invariance criterion deployed in this dissertation is analogous to demographic parity in fairness

which can be an unsuitable fairness notion in some practical scenarios [128, 129]. Our method in

this dissertation can be extended to other notions of fairness, such as equalized odds and equality

of opportunity [128] by modifying the invariance measure to capture the conditional dependency

of the representation on the sensitive attribute given the target label.

6.3 Broader Impact

IRepL can enable many machine learning systems to prevent the leakage of private (sensitive)

information while being effective for the desired prediction task(s). In particular, IRepL has an

immediate application in fairness which is a significant societal problem. Our approach in this

dissertation proposes some algorithms that can be used to learn fair representations of data. More

generally, these approaches can enable machine learning systems to discard specific data before
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making predictions. Of course, as with any technological or algorithmic solutions, one can also

employ them for harmful purposes.
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APPENDIX

A.1 Proof of Lemma 3.1

Lemma. Let X and U be two RVs with E[X] = 0, E[U ] = b, where CX � 0. Consider a linear
regressor, Û = WZ + b, where W ∈ RdU×r is the parameter matrix, and Z ∈ Rr is an encoded
version of X for a given Θ: X 7→ Z = ΘX, Θ ∈ Rr×dX . The minimum MSE that can be
achieved by designingW is

min
W

E
[
‖U − Û‖2

]
= Tr [CU ]−

∥∥∥PMQ−TX CXU

∥∥∥
2

F
,

whereM = QXΘT ∈ RdX×r, and CX = QT
XQX (Cholesky factorization).

Proof. Direct calculation yields:

JU := E
{∥∥∥U − Û

∥∥∥
2
}

= Tr
[
E
{

(U − b−WZ)(U − b−WZ)T
}]

= Tr
[
E
{

(U − b)(U − b)T + (WΘX)(WΘX)T

− (U − b)(WΘX)T − (WΘX)(U − b)T
}]

= Tr
[
CU + (WΘ)CX(WΘ)T −CUX(WΘ)T − (WΘ)CT

UX

]

= Tr
[
CU + (WΘQT

X)(WΘQT
X)T −CUX(WΘ)T − (WΘ)CT

UX

]

= Tr
[
(WΘQT

X −CUXQ−1
X )(WΘQT

X −CUXQ−1
X )T

+CU − (CUXQ
−1
X )(CUXQ

−1
X )T

]

=
∥∥∥QXΘW T −Q−TX CXY

∥∥∥
2

F
−
∥∥∥Q−TX CXU

∥∥∥
2

F
+ Tr[CU ]

Hence, the minimizer of JU is obtained by minimizing the first term in the last equation, which is
a standard least square error problem. LetM = QXΘ, then the minimizer is given by

W T = M †Q−TX CXU .

Finally, Using the orthogonal decompositions

∥∥∥Q−TX CXU

∥∥∥
2

F
=
∥∥∥PMQ−TX CXU

∥∥∥
2

F
+
∥∥∥PM⊥Q

−T
X CXU

∥∥∥
2

F
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and
∥∥∥QXΘW T −Q−TX CXU

∥∥∥
2

F
=
∥∥∥MW T − PMQ−TX CXU

∥∥∥
2

F
+
∥∥∥PM⊥Q

−T
X CXU

∥∥∥
2

F

=

∥∥∥∥∥∥∥
MM †
︸ ︷︷ ︸
PM

Q−TX CXU − PMQ−TX CXU

∥∥∥∥∥∥∥

2

F

+
∥∥∥PM⊥Q

−T
X CXU

∥∥∥
2

F

=
∥∥∥PM⊥Q

−T
X CXU

∥∥∥
2

F
,

we obtain the minimum value of JU as

Tr [CU ]−
∥∥∥PMQ−TX CXU

∥∥∥
2

F
.

A.2 Relation Between Constrained Optimization Problem in (3.7) and Its
Scalarization in (3.8)

Consider the optimization problem in (3.7)

Gα = arg min
G

JY (G), s.t. JS(G) ≥ α. (1)

and the optimization problem in (3.8)

Gλ = arg min
G

Jλ(G) (2)

where
Jλ(G) = (1− λ) JY (G)− λ JS(G), λ ∈ [0, 1).

Claim For each λ ∈ [0, 1), solutionGλ of (2) is also a solution of (1) with

α = JS(Gλ). (3)

Proof. Let us consider (1) while assuming that (2) is satisfied. For each λ and corresponding
solutionGλ, let α be given as in (3). For an arbitraryG satisfying JS(G) ≥ α, we have

(1− λ) JY (Gλ)− λα = (1− λ) JY (Gλ)− λ JS(Gλ)

≤ (1− λ) JY (G)− λ JS(G),
(4)

where the second step is from the assumption that (2) is satisfied. Consequently, we have

(1− λ) [JY (G)− JY (Gλ)] ≥ λ [JS(G)− α] ≥ 0. (5)

Since JS(G) ≥ α, it follows that JY (G) ≥ JY (Gλ) and consequentlyGλ is a possible minimizer
of problem (1).
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A.3 Proof of Theorem 3.2

Theorem. As a function ofG ∈ RdX×r, the objective function in equation (3.8) is neither convex
nor differentiable.

Proof. Recall that PG is equal to G(GTG)†GT . Therefore, due to the involvement of the pseudo
inverse, (3.8) is not differentiable (see [105]).

For non-convexity consider the theorem that f(G) is convex in G ∈ RdX×r if and only if
h(t) = f(tG1 +G2) is convex in t ∈ R for any constantsG1, G2 ∈ RdX×r (see [133]).

In order to use the above theorem, consider rank one matrices

G1 =




1 0 . . . 0

0 0 . . . 0

0 0 . . . 0
...

... . . .

0 0 . . . 0




and G2 =




1 0 . . . 0

1 0 . . . 0

0 0 . . . 0
...

... . . .

0 0 . . . 0



.

DefineG = (tG1 +G2). Then

PG(t) = G(GTG)†GT =
1

(t+ 1)2 + 1




(t+ 1)2 (t+ 1) 0 . . . 0

(t+ 1) 1 0 . . . 0

0 0 0 . . . 0
...

...
... . . .

0 0 0 . . . 0



.

Using basic properties of trace we get

(1− λ) JY (G)− λ JS(G) = Tr
[
PG(t)B

]
,

where the matrixB is given in (3.11) and we used Lemma 3.1. Now, representB as

B =




b11 b12 . . . b1d
b12 b22 . . . b2d

...
... . . .

b1d b2d . . . bdd



.

Thus,

Tr
[
PG(t)B

]
= b11 +

2b12(t+ 1) + b22 − b11

(t+ 1)2 + 1
.

It can be shown that the above function of t is convex only if b12 = 0 and b11 = b22. On the other
hand, if these two conditions hold, it can be similarly shown that (1−λ) JY (G)−λ JS(G) is non-
convex by considering a different pair of matricesG1 andG2. This implies that (1− λ) JY (G)−
λ JS(G) is not convex.
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A.4 Proof of Theorem 3.3

Theorem. Assume that the number of negative eigenvalues (β) of B in (3.11) is j. Denote γ =
min{r, j}. Then, the minimum value in (3.9) is given as

β1 + β2 + · · ·+ βγ

where β1 ≤ β2 ≤ . . . ≤ βγ < 0 are the γ smallest eigenvalues of B. And the minimum can be
attained by G = V , where the columns of V are eigenvectors corresponding to all the γ negative
eigenvalues ofB.

Proof. Consider the inner optimization problem of (3.10) in (3.9). Using the trace optimization
problems and their solutions in [90], we get

min
GTG=Ii

Jλ(G) = min
GTG=Ii

Tr
[
GTBG

]
= β1 + β2 + · · ·+ βi,

where β1, β2, . . . , βi are i smallest eigenvalues of B and minimum value can be achieved by the
matrix V whose columns are corresponding eigenvectors. If the number of negative eigenvalues
ofB is less than r, then the optimum i in (3.9) is j, otherwise the optimum i is r.

A.5 Non-Linear Extension Through Kernelization

We assume that X is non-linearly mapped to φX(X) as illustrated in Figure 3.5. Recall from (2.6)
that

Z = Θ [kX(x1, X), · · · , kX(xn, X)]T .

For a given fixed Θ, we have

JY = min
WY ,bY

MSE (Ŷ − Y ).

Note that the above optimization problem can be separated over WY , bY . Therefore, for a given
WY , we first minimize over bY :

min
bY

E
{
‖WY Z + bY − Y ‖2

}

= min
bY

1

n

n∑

k=1

‖WY zk + bY − yk‖2

=
1

n

n∑

k=1

‖WY zk + c− yk‖2 ,

where the minimizer c is

c =
1

n

n∑

k=1

(yk −WY zk)

=
1

n

n∑

k=1

yk −WY
1

n

n∑

k=1

zk

= E {Y } −WY E {Z} .

(6)
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Let all the columns of C be equal to c. Therefore we now have

min
WY ,bY

MSE (Ŷ − Y )

= min
WY

1

n
‖WY ΘKX +C − Y ‖2F

= min
WY

1

n

∥∥∥WY ΘKXH − Ỹ
∥∥∥

2

F

= min
WY

1

n

∥∥∥HKXΘTW T
Y − Ỹ T

∥∥∥
2

F

= min
WY

1

n

∥∥∥MW T
Y − PMỸ T

∥∥∥
2

F
+

1

n

∥∥∥PM⊥Ỹ
T
∥∥∥

2

F

=
1

n

∥∥∥∥∥∥∥
MM †
︸ ︷︷ ︸
PM

PMỸ T − PMỸ T

∥∥∥∥∥∥∥

2

F

+
1

n

∥∥∥PM⊥Ỹ
T
∥∥∥

2

F

=
1

n

∥∥∥PM⊥Ỹ
T
∥∥∥

2

F

=
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n

∥∥∥PMỸ T
∥∥∥

2

F
,

(7)

where the third step is due to (6), M = HKXΘT , and the fifth step is the orthogonal decompo-
sition w.r.t. M . Using the same approach, we get

JS =
1

n

∥∥∥S̃T
∥∥∥

2

F
− 1

n

∥∥∥PMS̃T
∥∥∥

2

F
. (8)

Assume that the columns of LX are the orthonormal basis for the columns space of HKX .
For any M , there exists G such that LXG = M . In general, there is no bijection between Θ
and G in the equality HKXΘT = LXG. But, there is a bijection between G and Θ when
constrained to Θ’s in which R(ΘT ) ⊆ N (HKX)⊥. This restricted bijection is sufficient since
for any ΘT ∈ N (HKX) we haveM = 0. OnceG is determined, ΘT can be obtained as

ΘT = (HKX)†LXG+ Θ0, Θ0 ⊆ N (HKX).

However, since

‖Θ‖2F =
∥∥∥ΘT

∥∥∥
2

F
=
∥∥∥(HKX)†LXG

∥∥∥
2

F
+ ‖Θ0‖2F ,

choosing Θ0 = 0 results in minimum ‖Θ‖F , which is favorable in terms of robustness to the
noise. Similar to (3.6), we have PM = LXPGLTX . If we assume that the rank of PG is i, Jλ(G)
in (3.10) can be expressed as

Jλ(G) = λ
∥∥∥LXGGTLTX S̃

T
∥∥∥

2

F
− (1− λ)

∥∥∥LXGGTLTX Ỹ
T
∥∥∥

2

F
,

where PG = GGT for some orthogonal matrix G ∈ RdX×i. This resembles the optimization
problem in (3.9) and therefore have the same solution as Theorem 3.3 with modifiedB as

B = LTX

(
λ S̃T S̃ − (1− λ) Ỹ T Ỹ

)
LX . (9)
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OnceG is determined, Θ can be computed as Θ = GTLTX(HKX)†.

A.6 Proof of Theorem 3.4

Theorem. Let the columns of LX be the orthonormal basis for HKX . Further, assume that the
columns of VS are the singular vectors corresponding to zero singular values of S̃LX and the
columns of VY are the singular vectors corresponding to non-zero singular values of Ỹ LX . Then,
we have

γmin := min
Θ

JY (Θ) =
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n
‖Ỹ LX‖2F

γmax := min
arg maxJS(Θ)

JY (Θ) =
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n

∥∥∥Ỹ LXVS
∥∥∥

2

F

αmin := max
arg minJY (Θ)

JS(Θ) =
1

n

∥∥∥S̃T
∥∥∥

2

F
− 1

n

∥∥∥S̃LXVY
∥∥∥

2

F

αmax := max
Θ

JS(Θ) =
1

n

∥∥∥S̃T
∥∥∥

2

F

Proof. Firstly, we recall from Section that instead of Θ, we consider G. These two matrices are
related to each other as HKXΘT = LXG = M , where the columns of LX are the orthogonal
basis for the column space of HKX . Therefore we can now express the projection onto M in
terms of projection onto G, i.e.,PM = LXPGLX . Using (7), we get

γmin =
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n
max
Θ

∥∥∥PMỸ T
∥∥∥

2

F

=
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n
max
G

∥∥∥LXPGLTX Ỹ T
∥∥∥

2

F

=
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n
max
i

{
max

GTG=Ii

Tr
[
GTLTX Ỹ

T Ỹ LXG
]}

=
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n
Tr
[
V T
Y L

T
X Ỹ

T Ỹ LXVY

]

=
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n

∑

k

σ2
k

=
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n

∑

σk>0

σ2
k

=
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n

∥∥∥Ỹ LX
∥∥∥

2

F
,

(10)

where the fourth step is borrowed from trace optimization problems studied in [90] and σk’s are
the singular values of Ỹ LX .

In order to interpret the bounds in more detail, we consider the one-dimensional case where
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X, Y,∈ R. In this setting, the correlation coefficient (denoted by ρ(·, ·)) between X and Y is

ρ(X, Y ) =
Ỹ X̃T

√
Ỹ Ỹ T X̃X̃T

=
‖Ỹ LX‖F

σY

=

√
1− γmin

σ2
Y

,

(11)

where σ2
Y = ‖Ỹ ‖2F /n. As a result, the normalized MSE can be expressed as

γmin

σ2
Y

= 1− ρ2(X, Y ). (12)

Therefore, the lower bound of the target’s MSE is independent of the encoder and is only related
to the alignment between the subspaces spanned by the data and labels.

Next, we find an encoder that allows the target task to obtain its optimal loss, γmin, while
seeking to minimize the leakage of sensitive attributes as much as possible. Thus, we constrain
the domain of the encoder to {arg min JY (Θ)}. Assume that the columns of the encoder G is
the concatenation of the columns of VY together with at least one singular vector corresponding
to a zero singular value of Ỹ LX . Therefore VY ⊆ G and consequently ‖LXPVY L

T
XU‖2F≤

‖LXPGLTXU‖2F for arbitrary matrix U . As a result, JS(G) ≥ JS(VY ) and at the same time
JY (G) = JY (VY ). The latter can be observed from

∥∥∥LXPGLTx Ỹ T
∥∥∥

2

F
=
∥∥∥Ỹ LXPGLTX

∥∥∥
2

F

=
∥∥∥Ỹ LXGGTLTX Ỹ

T
∥∥∥

2

F

=
∥∥∥Ỹ LXVY V T

Y L
T
X

∥∥∥
2

F

=
∥∥∥LXPVY L

T
X Ỹ

T
∥∥∥

2

F
.

(13)

We then have
αmin =

1

n

∥∥∥S̃T
∥∥∥

2

F
− 1

n

∥∥∥LXPVY L
T
X S̃

T
∥∥∥

2

F

=
1

n

∥∥∥S̃T
∥∥∥

2

F
− 1

n
Tr
[
V T
Y L

T
X S̃

T S̃LXVY

]

=
1

n

∥∥∥S̃T
∥∥∥

2

F
− 1

n

∥∥∥S̃LXVY
∥∥∥

2

F
.

(14)

This bound can again be interpreted under the one-dimensional setting of X,S ∈ R as

αmin

σ2
S

= 1− ρ2(X,S) (15)
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On the other hand, αmax turns out to be,

αmax =
1

n

∥∥∥S̃T
∥∥∥

2

F

= σ2
S ,

(16)

which can be achieved via a trivial choice ofG = 0. However, we let the columns ofG be the sin-
gular vectors corresponding to all zero singular values of S̃LX in order to maximize

∥∥∥PMỸ T
∥∥∥
F

and at the same time ensuring that JS(G) equal to αmax. As a result, we have

γmax =
1

n

∥∥∥Ỹ T
∥∥∥

2

F
− 1

n

∥∥∥Ỹ LXVS
∥∥∥

2

F
.

For the one dimensional case i.e., X, Y, S ∈ R, we get VS = 0 and consequently,

γmax = σ2
Y . (17)

B.1 A Population Expression for Definition in (5.6)

A population expression for Dep(Z, S) in (5.6) is given in the following.

Dep(Z, S) =
r∑

j=1

{
EX,S,X′,S′

[
fj(X) fj(X

′) kS(X,X ′)
]

+EX
[
fj(X)

]
EX′

[
fj(X

′)
]
ES,S′

[
kS(X,S′)

]

−2EX,S
[
fj(X)EX′ [fj(X

′)]ES′ [kS(S,X ′)]
] }

where (X ′, S′) is independent of (X,S) with the same distribution as pXS .

Proof. We first note that this population expression is inspired by that of HSIC [81].
Consider the operator ΣSX induced by the linear functional Cov (α(X), βS(S))

= 〈βS ,ΣSXα〉HS . Then, it follows that

Dep(Z, S) =
r∑

j=1

∑

βS∈US
Cov2 (fj(X), βS(S)

)

=
r∑

j=1

∑

βS∈US

〈
βS ,ΣSXfj

〉2
HS

=
r∑

j=1

∑

βS∈US

〈
βS ,ΣSXfj

〉2
HS

(a)
=

r∑

j=1

‖ΣSXfj‖2HS
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=
r∑

j=1

〈
ΣSXfj ,ΣSXfj

〉
HS

(b)
=

r∑

j=1

Cov
(
fj(X), (ΣSXfj)(S)

)

=
r∑

j=1

Cov
(
fj(X),

〈
kS(·, S),ΣSXfj

〉
HS

)

=
r∑

j=1

Cov
(
fj(X),Cov(fj(X

′), kS(S′, S))
)

=
r∑

j=1

Cov
(
fj(X), EX′,S′ [fj(X

′) kS(S, S′)]− EX′ [fj(X
′)]ES′ [kS(S, S′)]

)

=
r∑

j=1

{
EX,S,X′,S′

[
fj(X) fj(X

′) kS(S, S′)
]

+EX
[
fj(X)

]
EX′

[
fj(X

′)
]
ES,S′

[
kS(S, S′)

]

−2EX,S
[
fj(X)EX′ [fj(X

′)]ES′ [kS(S, S′)]
] }

where (a) is due to Parseval relation for orthonormal basis and (b) is from the definition of ΣSX .

B.2 Proof of Lemma 5.3

Lemma. Let KX ,KS ∈ Rn×n be Gram matrices corresponding to HX and HS , respectively,
i.e., (KX)ij = kX(xi,xj) and (KS)ij = kS(si, sj), where covariance is empirically estimated
as

Cov
(
fj(X), βS(S)

)
≈ 1

n

n∑

i=1

fj(xi)βS(si)−
1

n2

n∑

i=1

n∑

k=1

fj(xi)βS(sk).

It follows that, the corresponding empirical estimation for Dep (Z, S) is

Depemp (Z, S) :=
1

n2
‖ΘKXHLS‖2F , (18)

where H = In − 1
n1n1Tn is the centering matrix, and LS is a full column-rank matrix in which

LSL
T
S = KS (Cholesky factorization). Furthermore, the empirical estimator in (5.7) has a bias of

O(n−1) and a convergence rate of O(n−1/2).

Proof. Firstly, let us reconstruct the orthonormal set US when n i.i.d. observations {sj}nj=1 are
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given. Invoking representer theorem, for two arbitrary elements βi and βm in US , we have

〈βi, βm〉HS =

〈
n∑

j=1

αjkS(sj , ·),
n∑

l=1

ηlkS(sl, ·)
〉

HS

=
n∑

j=1

n∑

l=1

αjηlkS(sj , sl)

= αTKSη

=
〈
LTSα, L

T
Sη
〉
Rq

where LS ∈ Rn×q is a full column-rank matrix and KS = LSL
T
S is the Cholesky factorization

of KS . As a result, searching for βi ∈ US is equivalent to searching for LTSα ∈ Uq where Uq is
any complete orthonormal set for Rq. Using empirical expression for covariance, we get

Depemp(Z, S) :=
∑

βS∈US

r∑

j=1

{
1

n

n∑

i=1

fj(xi)βS(si)−
1

n2

n∑

i=1

fj(xi)
n∑

k=1

βS(sk)

}2

=
∑

LTSα∈Uq

r∑

j=1

{ 1

n
θTj KXKSα−

1

n2
θTj KX1n1TnKSα

}2

=
∑

LTSα∈Uq

r∑

j=1

{
1

n
θTj KXHKSα

}2

=
∑

LTSα∈Uq

r∑

j=1

{
1

n
θTj KXHLSL

T
Sα

}2

=
∑

ζ∈Uq

r∑

j=1

{
1

n
θTj KXHLSζ

}2

=
∑

ζ∈Uq

1

n2
‖ΘKXHLSζ‖22

=
1

n2
‖ΘKXHLS‖2F ,

where f(X) = Θ[kX(x1, X), · · · , kX(xn, X)]T and Θ := [θ1, · · · ,θr]T .
We now show that the bias of Depepm(Z, S) for estimating Dep(Z, S) in (5.7) is O

(
1
n

)
. To
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achieve this, we split Depepm(Z, S) into three terms as,

1

n2
‖ΘKXHLS‖2F =

1

n2
Tr
{

ΘKXHKSHKXΘT
}

=
1

n2
Tr
{

ΘKX

(
I − 1

n
11T

)
KS

(
I − 1

n
11T

)
KXΘT

}

=
1

n2
Tr
{
KXΘTΘKXKS

}

︸ ︷︷ ︸
I

− 2

n3
Tr
{

1TKXΘTΘKXKS1
}

︸ ︷︷ ︸
II

+
1

n4
Tr
{

1TKXΘTΘKX11TKS1
}

︸ ︷︷ ︸
III

(19)

Let cnp denote the set of all p-tuples drawn without replacement from {1, · · · , n}. Moreover, let
Θ = [θ1, · · · ,θr]T ∈ Rr×n and (A)ij denote the element of an arbitrary matrixA at i-th row and
j-th column. Then, it follows that

(I):

E
[
Tr
{
KXΘTΘKXKS

}]

=
r∑

k=1

E


Tr




KXθk︸ ︷︷ ︸
:=αk

θTkKXKS








=
r∑

k=1

E
[
Tr
{
αkα

T
kKS

}]

=
r∑

k=1

E



∑

i

(αkα
T
k )ii(KS)ii +

∑

(i,j)∈cn2

(αkα
T
k )ij(KS)ji




= n
r∑

k=1

EX,S
[
f2
k (X)kS(S, S)

]

+
n!

(n− 2)!

r∑

k=1

EX,S,X′,S′
[
fk(X)fk(X ′)kS(S, S′)

]

= O(n) +
n!

(n− 2)!

r∑

k=1

EX,S,X′,S′
[
fk(X)fk(X ′)kS(S, S′)

]
(20)

where (X,S) and (X ′, S′) are independently drawn from the joint distribution pXS .
(II):

E
[
1TKXΘTΘKXKS1

]

=
r∑

k=1

E


1T KXθk︸ ︷︷ ︸

αk

θTkKXKS1
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=
r∑

k=1

E
[
1Tαkα

T
kKS1

]

=
r∑

k=1

E




n∑

m=1

n∑

i=1

n∑

j=1

(αkα
T
k )mi(KS)mj




=
r∑

k=1

E



∑

i

(αkα
T
k )ii(KS)ii +

∑

(m,j)∈cn2

(αkα
T
k )mm(KS)mj




+
r∑

k=1

E




∑

(m,i)∈cn2

(αkα
T
k )mi(KS)mm +

∑

(m,j)∈cn2

(αkα
T
k )mj(KS)mj




+
r∑

k=1

E




∑

(m,i,j)∈cn3

(αkα
T
k )mi(KS)mj




= n
r∑

k=1

EX,S
[
f2
k (X)kS(S, S)

]

+
n!

(n− 2)!

r∑

k=1

EX,S,S′
[
f2
k (X)kS(S, S′)

]

+
n!

(n− 2)!

r∑

k=1

EX,S,X′
[
fk(X)fk(X ′)kS(S, S)

]

+
n!

(n− 2)!

r∑

k=1

EX,S,X′,S′
[
fk(X)fk(X ′)kS(S, S′)

]

+
n!

(n− 3)!

r∑

k=1

EX,S
[
fk(X)EX′ [fk(X ′)]ES′ [kS(S, S′)]

]

=
n!

(n− 3)!

r∑

k=1

EX,S
[
fk(X)EX′ [fk(X ′)]ES′ [kS(S, S′)]

]

+ O(n2). (21)

(III):

E
[
1TKXΘTΘKX11TKS1

]

=
r∑

k=1

E


1T KXθk︸ ︷︷ ︸

αk

θTkKX11TKS1




=
r∑

k=1

E
[
1Tαkα

T
k 11TKS1

]

129



=
r∑

k=1

E


 ∑

i,j,m,l

(αkα
T
k )ij(KS)ml




= O(n3) +
r∑

k=1

E




∑

(i,j,m,l)∈cn4

(αkα
T
k )ij(KS)ml




=
n!

(n− 4)!

r∑

k=1

EX [fk(X)]EX′
[
fk(X ′)

]
ES,S′

[
kS(S, S′)

]

+ O(n3). (22)

Using above calculations together with Lemma 2 lead to

Dep(Z, S) = E [Depemp(Z, S)] +O
(

1

n

)
.

We now obtain the convergence of depemp(Z, S). Consider the decomposition in (19) together
with (20), (21), and (22). Let αk := KXθk , then it follows that

P {Dep(Z, S)− Depemp(Z, S) ≥ t}

≤ P

{
r∑

k=1

EX,S,X′,S′
[
fk(X)fk(X ′)kS(S, S′)

]

−(n− 2)!

n!

r∑

k=1

∑

(i,j)∈cn2

(αkα
T
k )ij(KS)ji +O

(
1

n

)
≥ at

}

+ P

{
r∑

k=1

EX,S
[
fk(X)EX′ [fk(X ′)]ES′ [kS(S, S′)]

]

− (n− 3)!

n!

r∑

k=1

∑

(i,j,m)∈cn3

(αkα
T
k )mi(KS)mj +O

(
1

n

)
≥ bt

}

+ P

{
r∑

k=1

EX [fk(X)]EX′
[
fk(X ′)

]
ES,S′

[
kS(S, S′)

]

−(n− 4)!

n!

r∑

k=1

∑

(i,j,m,l)∈cn4

(αkα
T
k )ij(KS)ml +O

(
1

n

)
≥ (1− a− b)t

}
,

where a, b > 0 and a + b < 1. For convenience, we omit the term O
(

1
n

)
and add it back in the

last stage.
Define ζ := (X,S) and consider the following U-statistics [173]

u1(ζi, ζj) =
(n− 2)!

n!

∑

(i,j)∈cn2

r∑

k=1

(αkα
T
k )ij(KS)ij
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u2(ζi, ζj , ζm) =
(n− 3)!

n!

∑

(i,j,m)∈cn3

r∑

k=1

(αkα
T
k )mi(KS)mj

u3(ζi, ζj , ζm, ζl) =
(n− 4)!

n!

∑

(i,j,m,l)∈cn4

r∑

k=1

(αkα
T
k )ij(KS)ml

Then, from Hoeffding’s inequality [173] it follows that

P {Dep(Z, S)− Depemp(Z, S) ≥ t} ≤ e
−2a2t2

2r2M2 n + e
−2b2t2

3r2M2n + e
−2(1−a−b)2t2

4r2M2 n
,

where we assumed that kS(·, ·) is bounded by one and f2
k (Xi) is bounded by M for any k =

1, · · · , r and i = 1, · · · , n.
Further, if 0.22 ≤ a < 1, it holds that

e
−2a2t2

2r2M2 n + e
−2b2t2

3r2M2n + e
−2(1−a−b)2t2

4r2M2 n ≤ 3e
−a2t2

r2M2 n.

Consequently, we have

P {|Dep(Z, S)− Depemp(Z, S)| ≥ t} ≤ 6e
−a2t2

r2M2 n.

Therefore, with probability at least 1− δ, it holds

|Dep(Z, S)− Depemp(Z, S)| ≤

√
r2M2 log(6/σ)

α2n
+O

(
1

n

)
. (23)

B.3 Proof of Theorem 5.4

Theorem. Let Z = f(X) be an arbitrary representation of the input data, where f ∈ HX . Then,
there exist an invertible Borel function h, such that, h ◦ f belongs to Ar.
Proof. Recall that the space of disentangled representation is

Ar :=
{

(f1, · · · , fr)
∣∣∣ fi, fj ∈ HX , Cov

(
fi(X), fj(X)

)
+ γ〈fi, fj〉HX = δi,j

}
,

where γ > 0. Let IX denote the identity operator from HX to HX . We claim that h :=
[h1, · · · , hr], where

G0 =




〈f1, f1〉HX · · · 〈f1, fr〉HX
... . . . ...

〈fr, f1〉HX · · · 〈fr, fr〉HX




G = G0
−1/2

hj ◦ f =
r∑

m=1

gjm (ΣXX + γIX)−1/2 fj , ∀j = 1, · · · , r
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is the desired invertible transformation. To see this, construct

Cov
(
hi(f(X)), hj(f(X))

)
+ γ〈hi ◦ f , hj ◦ f〉HX

=
〈
hi ◦ f , (ΣXX + γIX)hj ◦ f

〉
HX

=

〈
r∑

m=1

gim (ΣXX + γIX)−1/2 fi,
r∑

k=1

gjk(ΣXX + γIX) (ΣXX + γIX)−1/2 fj

〉

HX

=
r∑

m=1

r∑

k=1

gim gjk
〈
fi, fj

〉
HX

= (GG0G)ij = δi,j

The inverse of h is h′ := [h′1, · · · , h′r] where

H = G
1/2
0

h′j ◦ h =
r∑

m=1

hjm (ΣXX + γIX)1/2 hj , ∀j = 1, · · · , r.

B.4 Proof of Theorem 5.7

Theorem. Assume that kS and kY are bounded by one and f2
j (xi) ≤ M for any j = 1, . . . , r

and i = 1, . . . , n for which f = (f1, . . . , fr) ∈ Ar. Then, for any n > 1 and 0 < δ < 1, with
probability at least 1− δ, we have

∣∣∣∣∣ sup
f∈Ar

J(f , λ)− sup
f∈Ar

Jemp(f , λ)

∣∣∣∣∣ ≤ rM

√
log(6/δ)

0.222 n
+O

(
1

n

)
.

Proof. Recall that in the proof of Lemma 5.3 we have shown that with probability at least 1 − δ,
the following inequality holds

|Dep(Z, S)− Depemp(Z, S)| ≤

√
r2M2 log(6/σ)

0.222 n
+O

(
1

n

)
.

Using the same reasoning for dep(Z, Y ), with probability at least 1− δ, we have

|Dep(Z, Y )− Depemp(Z, Y )| ≤

√
r2M2 log(6/σ)

0.222 n
+O

(
1

n

)
.

Since J(f(X)) = (1− λ) dep(Z, Y )− λ dep(Z, S) and Jemp(f(X)) := (1− λ) depemp(Z, Y )−
λ depemp(Z, S), it follows that with probability at least 1− δ,

|J(f , λ)− Jemp(f , λ)| ≤ rM

√
log(6/σ)

0.222 n
+O

(
1

n

)
.
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We complete the proof by noting that, the following inequality holds for any bounded J and Jemp:
∣∣∣∣∣ sup
f∈Ar

J(f , λ)− sup
f∈Ar

Jemp(f , λ)

∣∣∣∣∣ ≤ sup
f∈Ar

|J(f , λ)− Jemp(f , λ)| .

133


