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ABSTRACT

Nowadays, the world has been mobilized. By the end of 2022, mobile networks have connected

billions of mobile devices and provided billions of users with ubiquitous mobile services [1].

People can use the cellular network for voice and text communication, accessing the Internet,

conducting monetary transactions, etc. With the development of cellular networks, lots of new

services continue to be added and provided by the operators. As mobile networks continue to

evolve, with billions of devices and users connected, ensuring the security of mobile networks

becomes crucial.

However, it is challenging to secure mobile networks. The mobile network is a complex

ecosystem comprising various components, such as eNodeBs, MMEs, HHS, AAAs, ePDGs, P-

GWs, and S-GWs, encompassing a multitude of protocols including IP, NAS, RRC, PDCP, etc.,

and employing multiple generations of technologies of 2G, 3G, 4G/LTE, and 5G/NR. Furthermore,

the introduction of new technologies and services, such as Voice over LTE (VoLTE), Voice over

Wi-Fi (VoWi-Fi, a.k.a Wi-Fi calling), and the support of cellular IoT services further contributes

to the complexity. Additionally, the wide range of devices (e.g., smartphones, tablets, IoTs)

connected to mobile networks and the geographical distribution of mobile network components

further complicate security measures. Any vulnerability in mobile networks may threaten the entire

wireless ecosystem. Thus, there is a pressing need for security research to ensure the development

of secure and dependable mobile networks, which is the motivation of this dissertation to conduct

the security study on the essential cellular mobile network services including IMS services, wireless

IoT services, and Internet Application Services.

First, the security research of cellular network IP Multimedia Subsystem (IMS) security in

mobile networks is introduced. It is the first work that investigates the security of the operational

VoWi-Fi services in three major U.S. operators’ networks using commodity devices. We disclose

that current VoWi-Fi (Voice over Wi-Fi) security is not bullet-proof and uncover three vulnerabil-

ities. Two proof-of-concept attacks are devised and both of them can bypass the existing security

defenses. We propose solutions to address all discovered vulnerabilities. Our discovered vulner-



abilities have been confirmed by GSMA. Our findings have been acknowledged by academia and

industry and received positive recognition, including IEEE CNS Best Paper Award and Google

Security Reward.

Second, we focus on securing wireless IoT services, specifically cellular IoT (CIoT). By con-

ducting our empirical security research on cellular IoT service charging over the major U.S. carriers,

we discover security vulnerabilities and analyze their root causes. To assess their real-world impact,

proof-of-concept attacks are devised to allow adversaries to pay less for cellular data services. In the

end, we analyze the challenges in addressing these vulnerabilities and develop an anti-abuse solu-

tion to mitigate attack incentives. The solution is standard-compliant and can be used immediately

in practice. The prototype and evaluation confirm its effectiveness.

Third, to overcome the fundamental obstacle for Internet Application Service (IAS), which

is that there is no scalable, dependable, reliable, and privacy-preserving method to verify the

IAS users’ identities, we propose a novel security framework, MPKIX, designated as Mobile-

assisted PKIX (Public-Key Infrastructure X.509). MPKIX secures both IAS providers and users

by leveraging the broadly used PKIX services and mobile networked systems. It provides a reliable

and privacy protection user verification mechanism and largely mitigates the possibility of ID theft

attacks and benefits other involved parties. The evaluation results based on the prototype confirm

the effectiveness and efficiency of MPKIX with low overhead. In conclusion, the novel framework,

MPKIX, integrates Internet Application Services into the wide-sense mobile networks and enables

the mobile network to provide secure and dependable services to its users.

Lastly, the works introduced in this dissertation are summarized. Two future research topics

are discussed. In conclusion, the security research on the mobile cellular network services (i.e., IP

Multimedia Subsystem services, wireless IoT services, Internet Application Services) conducted

in this dissertation contributes to the advancement of secure and dependable mobile networks.

They secure the mobile ecosystem, facilitate the global deployment, and head toward secure and

dependable mobile networks. Our findings and solutions have implications of billions of mobile

users and pave the way for a safer mobile network ecosystem.
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CHAPTER 1

INTRODUCTION

Nowadays, the world has been mobilized. By the end of 2022, mobile networks have connected

billions of mobile devices and provided billions of users with ubiquitous mobile services [1]. People

can use the cellular network for voice and text communication, accessing the Internet, conducting

monetary transactions, controlling the smart appliances, etc. The cellular network has played an

important role in our daily life. With the development of cellular network, lots of new services

continue to be added and provided by the operators.

Considering such a great amount devices and people connected, it is very important to secure

mobile networks. However, it is challenging to secure the mobile network for the following reasons.

First, mobile network is a complex network. It contains various components (e.g., eNodeB, MME,

HHS, AAA, ePDG, P-GW, S-GW), protocols (e.g., IP, NAS, RRC, PDCP, RLC, MAC, PHY), and

technologies from multiple generations (e.g., 2G, 3G, 4G/LTE, 5G/NR). Second, new technologies

and services comes with the rapidly evolving technology. For instance, starting from 4G, the voice

and text services are transmitted via the packet switch (PS) instead of the circuit switching (CS).

Using different Radio Access Network (RAN), there are different voice and text services including

Voice over LTE (VoLTE), Voice over Wi-Fi (VoWi-Fi), and Voice over New Radio (VoNR). Third,

mobile network connects wide range of devices such as smartphones, tablets, IoT devices. Fourth,

different parts of the network are in different geographical locations. The User Equipment (UE), the

base stations (e.g., eNB), and the servers in cellular Core Network are all distributed and connected

with/without wires. In such complex mobile networks, any vulnerability can further threaten the

entire wireless ecosystem. It is the motivation to conduct the security research on the mobile

networks services for heading toward secure and dependable mobile networks.

1.1 Research Overview and Contributions

As shown in Figure 1.1, the author’s security research on the mobile network services can be

categorized as four projects on different essential mobile network services.

Taming cellular network IP Multimedia Subsystem: IMS (IP Multimedia Subsystem) is an

1
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Internet Application 
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Figure 1.1 Research overview.

essential framework for providing 4G/5G multimedia services. It has been deployed worldwide to

support three call services: VoLTE (Voice over LTE), VoNR (Voice over NR), and VoWi-Fi (Voice

over Wi-Fi, a.k.a, Wi-Fi calling). Since 2016, all of three major U.S. operators have rolled out

VoWi-Fi services, which enable telephony calls over the Wi-Fi networks to complement VoLTE and

VoNR based on the 3GPP IMS technology. Compared with conventional cellular voice solutions,

the major difference lies in that their traffic traverses untrusted Wi-Fi networks and the Internet.

This exposure to insecure networks can cause the Wi-Fi calling users to suffer from security threats.

Its security mechanisms are similar to the VoLTE and VoNR, because both of them are supported

by the IMS. They include SIM-based security, 3GPP AKA, IPSec, etc.

However, are they sufficient to secure VoWi-Fi services? Unfortunately, after conducting the

first security study on the operational VoWi-Fi services in three major U.S. operators’ networks

using commodity devices, we uncover that the VoWi-Fi security is not bullet-proof. Three vulner-

abilities are uncovered. By exploiting the vulnerabilities, we devise three proof-of-concept attacks:

telephony harassment or denial of voice service, user privacy leakage, and stealthy call DoS (Denial

of Service) attack. All of them can bypass the existing security defenses. We have confirmed their

feasibility using real-world experiments, as well as assessed their potential damages and proposed

a solution to address all identified vulnerabilities. We actively reported and demonstrated the
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security threats to the industry including international telecommunication standard organizations

(e.g., GSMA, 3GPP), U.S operators, device manufacturers. Our work received positive feedback

in academia and industry. In academia, our work has received IEEE CNS Best Paper Award.

In industry, the security team of Google Android has confirmed our findings and promised to

address the vulnerability that coming from the device. Our research result can thus benefit billions

of mobile phone users.

Safeguarding cellular emergency service security: Cellular networks that offer ubiquitous

connectivity have been the major medium for delivering emergency services. In the U.S., mobile

users can dial an emergency call with 911 for emergency uses in cellular networks, and the call

can be forwarded to public safety answer points (PSAPs), which deal with emergency service

requests. According to regulatory authority requirements for the cellular emergency services,

anonymous user equipment (UE), which does not have a SIM (Subscriber Identity Module) card

or a valid mobile subscription, is allowed to access them. Such support of emergency services for

anonymous UEs requires different operations from conventional cellular services, and can therefore

increase the attack surface of the cellular infrastructure.

In this work, we are thus motivated to study the insecurity of the cellular emergency services.

We identify four vulnerabilities from cellular standard designs regarding emergency services, as

well as validate them experimentally and analyze root causes. We next devise two proof-of-concept

attacks with three variants each by exploiting the identified vulnerabilities (i.e., free data service

attacks against cellular carriers, data DoS/overcharge and denial of cellular emergency service

attacks against mobile users) and assess their real-world impact with three major U.S. cellular

carriers. We finally propose a suite of standard-compliant solutions and evaluate them based on

a prototype. The lessons learned can secure both cellular network carriers and mobile users.

Our work received positive feedback from both academia and industry including MobiCom Best

Community Paper Runner-up and AT&T Security Award.

Securing wireless IoT services: The User Equipment (UE) can be classfied into two categoriza-

tions, IoT devices and Non-IoT devices, according to the use scenarios. Based on the connected
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radio access networks, IoT devices are categorized as cellular IoT (CIoT) and Wi-Fi IoT. This disser-

tation focuses on our work about CIoT. Specifically, carriers are rolling out IoT services including

various IoT devices and use scenarios from 2015. The support of cellular IoT services provide an

alternative solution for people to access their smart devices. Compared with conventional non-IoT

devices such as smartphones, IoT devices have limited network capabilities (e.g., low rates) and

specific use scenarios (e.g., inside vehicles only). These specialized use scenarios lead to carries

often offering cheaper device access fees for IoT devices. However, the aforementioned disparity

of service charging between IoT and non-IoT devices may lead to security issues.

In this work, we conduct the first empirical security study on cellular IoT service charging

over two major US carriers and make three major contributions. First, we discover four security

vulnerabilities and analyze their root causes, which help us identify two significant security threats,

IoT masquerading and IoT use scenario abuse. Second, we devise three proof-of-concept attacks

and assess their real-world impact. We determine that they can be exploited to allow adversaries to

pay 43.75%-80.00% less for cellular data services. Third, we analyze the challenges in addressing

these vulnerabilities and develop an anti-abuse solution to mitigate attack incentives. The solution

is standard-compliant and can be used immediately in practice. Our prototype and evaluation

confirm its effectiveness.

Improving Internet Application Service: Nowadays, both Internet Application Service (IAS)

providers and users face various security threats and legal issues. Due to the lack of reliable user

information verification mechanisms, adversaries can abuse IASs to launch various cyberattacks,

such as misinformation distributing and phishing, by using fake user accounts. IAS providers may

thus inadvertently offer inappropriate content to restricted users, thereby suffering a serious risk of

prosecution under local or international laws. Also, IAS users may suffer from nefarious ID theft

attacks.

This chapter makes four contributions. First, we proposed a novel security framework, MPKIX,

designated as Mobile-assisted PKIX (Public-Key Infrastructure X.509). MPKIX secures both IAS

providers and users by leveraging the broadly used PKIX services and mobile networked systems.
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MPKIX provides IAS providers with a reliable verification mechanism of user information while

providing IAS users with cross-IAS privacy protection via the developed ppQuery mechanism.

It can prevent various cyberattacks launched by false user accounts and distribution of improper

content. Moreover, MPKIX secures IAS users from nefarious ID theft attacks without revealing

unnecessary user information to IAS providers. By conforming to existing PKIX and cellular

network standards, MPKIX has a small deployment cost. It can facilitate the delivery of accountable

and secure online application services.

Second, the effectiveness of the proposed MPKIX framework is demonstrated experimentally.

First, the MPKIX testbed is capable of processing up to 130,000 CSRs (Certificate Signing Re-

quests) per minute and producing the corresponding CA-signed PKIX user certificates. Second,

the terminal-side prototype of MPKIX is evaluated on both phones and computers. It is shown that

MPKIX works well even on low/medium-end phone models. Third, MPKIX enables IAS providers

to effectively verify the correctness of user information within less than 1 second without compro-

mising user privacy. Fourth, the decision of the arbitration of a disputed IAS ID revocation/claim

can be made within 4 seconds, whereas the current practice takes several business days or weeks.

Third, a security analysis of the MPKIX framework is conducted. It shows that MPKIX not

only offers desirable security guarantees, such as data integrity, non-repudiation, user privacy, and

accountability, but also defends against various attacks.

Fourth, MPKIX benefits all the involved parties. Specifically, CAs can expand their enterprise-

based PKIX credential services to billions of mobile users. cellular network operators can make

profit by answering the queries about user information from IAS providers. IAS providers can

ensure the correctness of user information so that the risk of improper content distribution and cy-

berattacks can be minimized. IAS users have an efficient privacy-aware mechanism to claim/revoke

impersonated IDs without revealing additional user information to IAS providers.

1.2 Dissertation Structure

The rest of the dissertation is structured as follows. Note that, this dissertation will not introduce

the project of safeguarding cellular emergency service security in details because this work is not
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author’s main contribution.

Chapter 2 introduce the background about the mobile network architecture, the voice call flow of

the VoWi-Fi services, cellular IoT technologies, cellular IoT service charge, and PKIX (Public-Key

Infrastructure (X.509) [2]).

Chapter 3 introduces the project taming cellular network IMS security with an emphasis on the

operational VoWi-Fi services. Chapter 3.1 and Chapter 3.2 introduce the state-of-the-art works,

the threat model, the methodology, and the ethical consideration. The discovered vulnerabilities

are illustrated in Chapter 3.3. Two proof-of-concept attacks are demonstrated in Chapter 3.4 and

Chapter 3.5. Chapter 3.6 presents the proposed solution to address the identified vulnerabilities.

Chapter 4 studies the new security threats in operational cellular networks coming with the

cellular IoT services. Chapter 4.1 discusses the related works. Chapter 4.2 and Chapter 4.3 present

the overview, the threat model, and the methodology of this work. Chapter 4.4 describes and

validates the discovered vulnerabilities with the proof-of-concept attacks. Chapter 4.5 models

mobile users bills, analyzes the adversary’s maximum gain, and gives three attack instances to

showcase real-world impact. The difficulties to secure cellular IoT service charging are introduced

in Chapter 4.6. Finally, a standard-compliant solution that can rapidly mitigate the IoT attacks is

presented in Chapter 4.7.

Chapter 5 introduces a novel security framework, MPKIX, designated as Mobile-assisted PKIX

(Public-Key Infrastructure X.509) to improve Internet Application Service. Chapter 5.1 presents

the related work first. Chapter 5.2 describes the threat model, assumptions, and offered security

guarantees. Chapter 5.3 introduces the design of MPKIX. Chapter 5.4 gives the security analysis

of MPKIX. Chapter 5.5 and Chapter 5.6 present the MPKIX implementation and performance

evaluation, respectively. Chapter 5.7 discusses some remaining issues of MPKIX. In conclusion, the

novel framework, MPKIX, demonstrated in Chapter 5 integrates Internet Application Services into

the wide-sense mobile networks and enables the mobile network to provide secure and dependable

services to its users.

Chapter 6 summarizes my dissertation and discusses my future research topics.
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CHAPTER 2

BACKGROUND

In this chapter, the network architecture, the voice call flow of the VoWi-Fi services, cellular IoT

technologies, cellular IoT service charge, and PKIX are introduced.

Network architecture: Figure 2.1 illustrates a simplified network architecture that supports both

the Wi-Fi calling and VoLTE services. The UE (User Equipment), where the Wi-Fi calling and

VoLTE applications are installed, connects to the similar network infrastructure including the RAN

(Radio Access Network) and the CN (Core Network). For the RAN, VoLTE and Wi-Fi calling

employ the eNodeB (Evolved Node B) and the Wi-Fi network, respectively. The 3GPP standard [4]

classifies the Wi-Fi network into two types, namely trusted and non-trusted. For a cellular network

operator, the Wi-Fi networks deployed by itself are considered trusted, whereas the others are

non-trusted.

The CN consists of eight main components: the S-GW (Serving Gateway), the PDN-GW

(Public Data Network Gateway), the IMS (IP Multimedia Subsystem) servers, the TWGA (Trusted

Wireless Access Gateway), the ePDG (Evolved Packet Data Gateway), the HSS (Home Subscriber

Server), the MME (Mobility Management Entity), and the AAA (Authentication, Authorization,

and Authorization) server. For the IMS traffic delivered between the UE and the IMS servers,

the VoLTE packets are routed by the S-GW and the PDN-GW; those of Wi-Fi calling are routed

by the trusted Wi-Fi network, the TWAG, and the PDN-GW, or by the untrusted Wi-Fi network,

Serving-GW

MME HSS

AAA

S6a

TWAG
STa

SWx

ePDG PDN-GWS2b

SWm

S5

IMS 

Servers

SGiUntrusted Wi-Fi

Trusted Wi-Fi

eNodeB

UE

RAN 4G LTE Core Network

ESP Tunnel Mode 

IPsec Channel 

Figure 2.1 The 4G LTE network architecture that supports the Wi-Fi calling service [3].
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Caller CalleeWi-Fi calling Server
1. INVITE

2. 100 Trying

3. 183 Session

4. PRACK

5. 200 OK

6. 180 Ringing

7. PRACK

8. 200 OK

9. 200 OK

10. ACK

12. BYE
13. 200 OK

11. Voice Packets

Figure 2.2 Wi-Fi calling call flow diagram.

the ePDG, and the PDN-GW. The IMS servers offer multimedia services such as voice and text

services in the cellular network. The HSS stores user subscription data while, together with the

AAA, providing the user authentication service. The MME takes care of user mobility and network

resource reservation.

In order to protect the UE and the CN from the access of the non-trusted Wi-Fi network, the

Wi-Fi calling standard [5] stipulates that the UE and the CN shall support the EAP-AKA (Extensible

Authentication Protocol - Authentication and Key Agreement) procedure [6], IKEv2 (Internet Key

Exchange version 2), and IPSec [7]. Specifically, they have to authenticate each other based on the

EAP-AKA procedure and then establish a secure IPSec channel using the ESP tunnel mode [8, 9]

between the UE and the ePDG for the Wi-Fi calling services.

Wi-Fi calling call flow: Figure 2.2 shows the normal call flow of Wi-Fi calling. To initiate a call,

the caller sends an SIP INVITE message, which specifies the capabilities (e.g., voice codec) of the

caller, to the callee. Afterwards, the Wi-Fi calling server at the IMS system replies to the caller

with an 100 Trying message, which indicates that the call setup is in progress. In the meantime,

the callee replies to the caller with a list of available voice codecs in an 183 Session message.

After receiving the message, the caller sends a PRACK (Provisional Acknowledgement) message to

8



CAT-4 (R8) CAT-1 (R8) CAT-M1 (R13) NB-IoT (R13)

KPI

IoT types Critical Critical/Massive Massive Massive
DL peak rate 150 Mbps 10 Mbps 1 Mbps 0.2 Mbps
UL peak rate 50 Mbps 5 Mbps 1 Mbps 0.2 Mbps
bandwidth 20 Mhz 20 Mhz 1.4 MHz 180 KHz
battery life day(s) year(s) >10 years >10 years

Roll- Consumer IoT   G# (Few) G# (Few)
out product carrier   G# (Partial) G# (Partial)

Table 2.1 Summary of cellular IoT technologies in operational LTE networks from US carriers [13,
10, 11, 12].

inform the callee of the selected codec. Once the PRACK is received, the callee phone starts to ring

while sending back an 180 Ringing message. The caller phone rings upon the arrival of the 180

Ringing message. Whenever the callee answers the call, two call ends start to exchange voice

packets for the voice call after the 200 OK and ACK messages. A BYE message is sent from the end

who terminates the call, and then the other end acknowledges it with a 200 OK message.

Cellular IoT technologies: Cellular IoT is a newly emerging solution for IoT devices connected

over cellular networks. They share network infrastructure with non-IoT devices (e.g, smartphones),

but require special support, such as long sleep time and the delivery of small data over the control

plane. Several technologies have been proposed to meet their diverse demands: CAT-4, CAT-1,

CAT-M1, and NB-IoT (Narrowband IoT) [10, 11, 12], which are summarized in Table 2.1. These

cellular IoT technologies support two major types of IoT applications: critical (e.g, traffic/safety

control and mobile health) and massive (e.g, smart agriculture) applications. The critical IoT

applications require ultra reliability, low latency, and high availability, whereas the massive IoT

applications focus on low cost, low energy, and small data volumes. In the market, CAT-4 and

CAT-1 have been widely deployed by US carriers, but other technologies have not (e.g., Verizon

and AT&T support only CAT-M1 whereas T-Mobile supports only NB-IoT). Most consumer IoT

devices, such as wearable devices, car-connected mobile hotspots, and tracking sensors, belong to

CAT-4, CAT-1, and CAT-M1.

Figure 2.3 shows the 4G LTE network architecture with IoT support. The network architecture

consists of two major components: Radio Access Network (RAN) and core network. The RAN

9



Control-plane signaling path Data-plane data path

MME

4G Core Network

InternetInternet
…... 4G 

Gateways

4G RAN

eNodeB
HSS

Figure 2.3 4G LTE network architecture with IoT support.

Carriers Data plan Monthly
Charge fees

Non-IoT devices IoT devices

Smartphone Portable
Mobile Hotspot

CAT-4
CAT-1/CAT-M1Wearable Car-connected

Mobile Hotspot

OP-I
Limited data plan Device access fee $20 $20 $10 $10 $0

Service access fee $50 (3GB) $0* $0* $0* $0.99(0.5MB),$14(0.1GB),$22(1GB),$35(5GB)

Unlimited data plan Device access fee $35 No unlimited data plans $10 $20 No unlimited data plansService access fee $75 $0* $0*

OP-II
Limited data plan Device access fee $20 $10 $5, $10 (varying with models) $10 $0

Service access fee $35 (2GB) $0* $0* $0* $2(0.2MB),$18(0.15GB),$25(1GB),$50(5GB)

Unlimited data plan Device access fee $0(1),$65(2),$75(3),$85(4) $20 $5, $10 (varying with models) $20 No unlimited data plansService access fee $75 $0* $0* $0*

Table 2.2 Data plans for IoT and non-IoT devices in two US carriers (studied in Dec. 2018). The
price and volume cap are shown by per month unless explicitly specified. Many variants may not
be included, for example, $60 for 10GB per 30 days for OP-I IoT sim cards [14] ($0*: Shared the
fee with phones).

allows IoT devices to transmit IoT data to cellular network infrastructure using the aforementioned

cellular IoT technologies. The core network includes three main network elements: Mobility

Management Entities (MMEs), 4G gateways, and the Home Subscriber Server (HSS). The MMEs

are responsible for user mobility, user authentication, and resource reservation. Additionally,

the MMEs are responsible for new IoT functions [15], such as power saving mode and extended

discontinuous reception [16]. The HSS stores user subscription data and user information profiles.

The 4G gateways forward data between the RAN and the Internet, as well as collect device data

usage.

Cellular IoT service charge: We investigate the service charges of IoT devices from two top-tier

US carriers denoted as OP-I and OP-II and compare them with those of non-IoT service charges.

Table 2.2 summarizes the comparison. The SIM card used for each device is associated with the

owner’s non-IoT or IoT data plan. For both device types, a device’s charge includes two kinds of

fees, device and service access fees. Its bill can be formulated as 𝐵(𝑢) = 𝛼 + 𝑢 ⊗ 𝛽, where 𝛼 is
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the device access fee and 𝑢 ⊗ 𝛽 represents the service access fee determined by actual data usage

volume 𝑢 and unit price 𝛽. In most cases, unlimited voice and text services are offered, so the

formula does not include them. The service charges vary not only with device types and models

but also with limited and unlimited data plans.

The unlimited data plans often have higher device access fees than those of the limited data

plans. For instance, the device access fees are $20 and $35 for a smartphone line in OP-I’s limited

and unlimited plans, respectively. The limited plans usually have service access fees increasing

with capped data usage volumes, in contrast to fixed service fees in the unlimited data plans.

For example, OP-II charges $35, $50 and $70 for monthly volumes of 2 GB, 4 GB, and 8 GB,

respectively. Note that the increase is not proportional for most carriers except Google Project

Fi [17], which charges $15 for each 1 GB, is one of few exceptions.

In terms of the service charging policies, IoT devices differ from non-IoT devices in two aspects.

First, IoT device access fees are cheaper, since IoT devices require much smaller data usage volumes

than non-IoT devices. The IoT device access fees may also vary with device models. For example,

OP-II charges $5 for an LG Watch Urbane2 and $10 for an Apple Watch. Second, IoT service access

fees are usually tied to non-IoT data plans, but there are still some IoT-specific data plans. The

IoT-specific data plans offer lower service fees per data unit. For example, OP-I offers 5 GB [14] to

IoT users at only $35, but offers the same amount of data to smartphone users at $50.

PKIX: PKIX (Public-Key Infrastructure (X.509) [2]) is built based on the asymmetric cryptography,

in which the data encrypted by a public key can only be decrypted by its paired private key and

vice versa. The public key is disseminated to the public, whereas the private key is known only

by its owner. The PKIX certificate is usually formed in the format of X.509, which is an ITU-T

(International Telecommunications Union) standard. The certificate contains three main elements,

namely (1) the subject (owner) information (e.g., name, residence and age), (2) the owner’s public

key, and (3) the digital signature of the CA that issued the certificate. In practice, to obtain a

CA-signed PKIX user certificate, the applicant needs to provide the CA with a government-issued

photo ID and a CSR [18] request containing the applicant’s subject information, public key, and
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digital signature. The CA confirms the applicant’s identity by validating his/her digital signature

using the public key and verifying the subject information by inspecting the photo ID. After the

confirmation, the CA generates a PKIX user certificate and attaches a digital signature generated

for the certificate.
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CHAPTER 3

THE UNTOLD SECRETS OF WIFI-CALLING SERVICES: VULNERABILITIES,
ATTACKS, AND COUNTERMEASURES

Since 2016, all of four major U.S. operators have rolled out Wi-Fi calling services. They enable

mobile users to place cellular calls over Wi-Fi networks based on the 3GPP IMS technology.

Compared with conventional cellular voice solutions, the major difference lies in that their traffic

traverses untrusted Wi-Fi networks and the Internet. This exposure to insecure networks can cause

the Wi-Fi calling users to suffer from security threats. Its security mechanisms are similar to the

VoLTE, because both of them are supported by the IMS. They include SIM-based security, 3GPP

AKA, IPSec, etc. However, they are not sufficient to secure Wi-Fi calling services. In this project,

the first security study on the operational Wi-Fi calling services in three major U.S. operators

networks using commodity devices is conducted and makes four contributions.

1. We conducted the first security study to explore the dark side of operational Wi-Fi calling

services in five operational cellular networks in the U.S. and Taiwan using commodity devices.

We identified three Wi-Fi calling vulnerabilities, each of which roots in a design defect of

the Wi-Fi calling standard or an operational slip of the operators.

2. We devised two proof-of-concept attacks by exploiting the identified vulnerabilities and

assessed their negative impacts in a responsive manner.

3. We developed a practical solution, Wi-Fi Calling Guardian, to address the identified vul-

nerabilities. Our experiments confirm that it can protect the Wi-Fi calling users from the

proposed security threats.

4. We actively reported and demonstrated the security threats to the industry, and received a

positive feedback. Specifically, the security team of Google Android has confirmed our

findings and promised to address the vulnerability that coming from the device. Our research

result can thus benefit billions of Android phone users.
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3.1 Related Work

Cellular Network Security: Cellular network security is getting more attention in recent years.

Christian et al. [19] proposed Sonar to detect SS7 redirection attacks with audio-based distance

bounding. Reaves et al. [20] introduced AuthentiCall to protect voice calls made over traditional

telephone networks by leveraging now-common data connections available to call endpoints. An-

other study [21] analyzed nearly 400,000 text messages sent to public online SMS gateways over

the course of 14 months and offered insights into the prevalence of SMS spam and behaviors.

Jover [22] summarized the current state of affairs in the 5G protocol security and discussed the

related areas that can be improved further. He et al. [23] presented a comprehensive survey of the

attacks including RF jamming, signaling attacks, various SIP attacks, etc., in the LTE network.

The other three works[24, 25, 26] study various attacks for SIP on different levels, discuss a po-

tential attack based on SIP signaling, and classify existing SIP attacks and defenses, respectively.

Compared with them, our work focuses on the security of the newly deployed Wi-Fi calling service

security, which has not been fully explored yet.

VoIP and VoLTE Security: The security problem of the VoIP and VoLTE system has attracted lots

of attentions. Two studies [27, 28] examine side-channel attacks on VoIP traffic. McGann et al. [29]

analyzed the security threats and tools in the VoIP system. Several security issues (e.g., Toll Fraud)

of VoIP applications were discussed in [30]. Li et al. [31] examined the security implications of

VoLTE, which include several vulnerabilities (e.g., improper charing policies). Dacosta et al. [32]

proposed the use of a modified version of OpenSER to improve authentication performance of

distributed SIP proxies. This chapter studies the Wi-Fi calling service from the perspectives of the

standard, the implementation, and the operation, which are not covered by the prior arts.

Side-Channel Attacks Against Mobile Systems: The side-channel information leakage against

mobile systems has been a popular research area in recent years. Current studies [27, 28] target

the side-channel information leaked by mobile users’ traffic, which is generated by some particular

Internet services, and then seek to infer users’ activities. The work [33] introduces the analysis on

automatic fingerprinting of mobile applications for arbitrarily small samples of Internet traffic. Ali
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et al. [34] illustrated that each app leaves a fingerprint on its traffic behavior (e.g., transfer rates,

packet exchanges, and data movement). Another work [35] demonstrates automatic fingerprinting

and real-time identification of Android applications from their encrypted network traffic, which

even could work when HTTPS/TLS is employed. Eskandari et al. [36] analyzed the personal data

transfers in mobile apps and revealed that 51% of these apps did not provide any privacy policy.

The paper [37] demonstrates discerning of mobile user location within commercial GPS resolution

by leveraging the ability of mobile device magnetometers to detect externally generated signals

in a permissionless attack. Reaves et al. [38] did the security analysis on the branchless banking

applications. Different from them, we focus on the insecurity of the cellular Wi-Fi calling service,

which is stipulated by the 3GPP and is going to be deployed globally on billions of mobile devices

in the near future.

Wi-Fi Security: There are many novel studies related to Wi-Fi security. Liu et al. [39] used the

fine-grained channel information to authenticate the user. Lee et al. [40] examined the limitations

of the existing jamming schemes against channel hopping Wi-Fi devices in dense networks. Li et

al. [41] inferred user demographic information by exploiting the meta-data of Wi-Fi traffic. Another

study [42] proposes the system, the Wi-Fi Privacy Ticker, to improve participants’ awareness of

the circumstances in which their personal information is transmitted. Mikhail et al. [43] proposed

an SBN model to effectively detect intrusions in the enterprise networks and the 802.11 wireless

networks. Kolias et al. [44] categorized and evaluated popular attacks on the 802.11 networks, and

applied different learning models to the collected dataset for the intrusion detection. Different from

the prior art, our work investigates the insecurity of the Wi-Fi calling services, which have been

deployed worldwide by cellular network operators, instead of new Wi-Fi vulnerabilities.

Wi-Fi Calling Security: Wi-Fi calling security is a new research area and has not been fully

studied by the academic yet, since carriers just deployed their Wi-Fi calling services in recent

years. Current researchers mainly focus on the security vulnerabilities on Wi-Fi calling devices.

Specifically, Beekman et. al pointed out that T-Mobile Wi-Fi calling devices (e.g., Samsung S2)

are vulnerable to invalid server certificates [45]. Chalakkal et. al studied SIM-related security
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issues on Wi-Fi calling devices [46]. However, our work examines the Wi-Fi calling security from

two aspects: standards and operations.

3.2 Threat Model, Methodology and Ethical Considerations

Threat model: Compared to the limited deployment of trusted Wi-Fi networks, the non-trusted

public Wi-Fi networks have been broadly deployed in practice, including those in campuses, li-

braries, grocery stores, coffee shops, to name a few. The present study mainly targets the security

threats while users are using non-trusted public Wi-Fi networks. Adversaries are people or orga-

nizations which attack the Wi-Fi calling users. We consider the adversaries with the following

capabilities: (1) they can intercept, modify, or inject any messages in the public communication

channels (inside or outside connected Wi-Fi networks, e.g., Internet); (2) they adhere to all crypto-

graphic assumptions, e.g., adversaries cannot decrypt an encrypted message without the decryption

key; (3) they cannot compromise the Wi-Fi calling devices or the cellular network infrastructure,

but may access/deploy surveillance cameras near the victims.

Methodology: We validate the vulnerabilities and the attacks on three major U.S. carriers, which

together take about 75% of market share, and two Taiwan carriers, which together take 45% of

market share. We conduct experiments using two Wi-Fi APs, a software-based AP based on a Mac-

Book Pro 2014 laptop and an ASUS RT-AC1900 AP, and eight popular smartphones with the Wi-Fi

calling service, which include Samsung Galaxy S6/S7/S8/J7, Apple iPhone6/iPhone7/iPhone8, and

Google Nexus 6P. Apple and Samsung already take 74% share of the smartphone market [47]. The

experiments are conducted in the Wi-Fi networks of several campuses, including Michigan State

University, New York University, University of California Berkeley, and Northeastern University.

Ethical considerations: We understand that some feasibility tests and attack evaluations might be

harmful to the operators and/or users. Accordingly, we proceed with this study in a responsible

manner by running experiments in fully controlled environments. In all the experiments, victims

are always our lab members. Our goal is to disclose new security vulnerabilities and provide

effective solutions, instead of aggravating the damages.
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3.3 Vulnerabilities

In this subchapter, we first introduce three security vulnerabilities discovered from operational

Wi-Fi calling services in the U.S., and then present a study on non-U.S. operators and a feedback

from the industry.

3.3.1 V1: WLAN selection mechanisms for Wi-Fi calling devices merely consider ra-
dio/connectivity capabilities of available Wi-Fi networks

The first vulnerability is that all studied Wi-Fi calling devices cannot exclude an insecure Wi-Fi

network while enabling Wi-Fi calling services. According to Wi-Fi calling standards[5, 48], there

are two Wi-Fi network selection modes: manual and automatic modes. In the manual mode,

devices maintain a prioritized list of selected Wi-Fi networks, the implementation of which is

vendor-specific. In the automatic mode, devices select their connected Wi-Fi networks by follow-

ing the guidance from the network infrastructure based on the ANDSF (Access Network Discovery

and Selection Function) procedure described in [3]. However, both modes do not consider security

risks of available Wi-Fi networks but radio quality (e.g., ThreshBeaconRSSIWLANLow [48]) and

connectivity capabilities, such as MaximumBSSLoad (i.e., the loading of Wi-Fi AP), Minimum-

BackhaulThreshold (e.g., 2 Mbps in the downlink) [3, 49].

Validation: We deploy two Wi-Fi routers of the same model to test the Wi-Fi network selection of

the Wi-Fi calling devices. The experiment is conducted with four steps as follows. First, those two

routers are deployed 5 and 10 meters, respectively, away from the tested devices. All test Wi-Fi

calling devices are pre-installed with the required credentials to access these two Wi-Fi routers.

Second, the security mechanism against the ARP (Address Resolution Protocol) spoofing attack,

which is the prerequisite of various MitM (Man-in-the-Middle) attacks, is enabled on the far router,

but it is disabled on the near router. Third, we launch an ARP spoofing attack from a computer that

connects to the near router, to perform an MitM attack against all the other devices connecting to

the router. Fourth, we enable the Wi-Fi calling service on all the tested devices, and then make a

Wi-Fi calling call on each device whenever the device successfully has a Wi-Fi network connected.

We have three observations from the experiment. First, all the test Wi-Fi calling devices connect
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No.   | Time          | Source         | Destination    | Protocol  | Length   | Info

440    56.276919   208.54.16.4     192.168.2.5      ESP           176            ESP (SPI=0xbb21253b)

441    56.266969   208.54.16.4     192.168.2.5      ESP           176            ESP (SPI=0xbb21253b)

465    56.316883   192.168.2.5     208.54.16.4      ESP           176            ESP (SPI=0x0855c9c8)

468    56.337334   192.168.2.5     208.54.16.4      ESP           176            ESP (SPI=0x0855c9c8)

469    56.347763   208.54.16.4     192.168.2.5      ESP           176            ESP (SPI=0xbb21253b)

470    56.348012   208.54.16.4     192.168.2.5      ESP           176            ESP (SPI=0xbb21253b)

Figure 3.1 A trace of the Wi-Fi calling packets intercepted based on the ARP spoofing.

to the near Wi-Fi router. Second, all the Wi-Fi calling packets from the tested devices are intercepted

by the computer based on the ARP spoofing attack, as shown in Figure 3.1. Third, none of the

tested devices disconnects from the near router or terminates their Wi-Fi calling services; not any

alerts or warnings are observed from the tested devices. This validation experiment confirms that

current WLAN selection mechanisms do not prevent the Wi-Fi calling devices from connecting to

an insecure Wi-Fi network, thereby causing them to suffer from the MitM attack. Note that the

MitM attack does not need to compromise or control the near router.

Security implications: It is not without reasons that the WLAN selection mechanisms do not take

security issues into consideration but consider only the radio quality or/and WLAN performance,

since the Wi-Fi calling sessions have been protected by the IPSec tunnels with the end-to-end

confidentiality and integrity protection. Although the security protection can prevent the Wi-Fi

calling packets from being decrypted or altered, intercepting or discarding those packets for further

attacks is still possible. We believe that 3GPP and GSMA shall revisit the Wi-Fi network selection

mechanisms for the Wi-Fi calling service in terms of security; otherwise, the Wi-Fi calling users

are being exposed to potential security threats.

3.3.2 V2: Potential Side-channel Inference

Given the security mechanisms of untrusted access, the packets of the cellular services under

untrusted Wi-Fi networks can be securely delivered through the IPSec channel between the UE

and the ePDG. However, we discover that for all the test operators, the Wi-Fi calling service is the

only service carried by the IPSec channel. This monotonous operation may allow the adversary

to monitor the channel and then launch a side-channel attack to infer user privacy from the Wi-Fi
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Figure 3.2 The IPSec packets of six Wi-Fi calling events over time (×: uplink packets; ■: downlink
packets; I/VI: Activating/Deactivating Wi-Fi calling; II/III: Receiving/Dialing a call; IV/V: Send-
ing/Receiving a text).

SIP Message

Ipsec Packet

SIP Message

Ipsec Packet

1304    38.827132  2607:fc20:49   fd00:976a:1   SIP            1132      Request: BYE sip:sgc_c@[FD00:976A:14FB:57::1]:65529     

No.     |Time           |Source            |Destination  |Protocol| Length| Info

                                                 ESP           1200      ESP (SPI=0x09960417)   

32      16.894215   208.54.83.96  192.168.29.211  ESP            1360     ESP (SPI=0x00451590)

37      16.896092   fd00:976a:1  2607:fc20:49     SIP            1132      Request: INVITE sip:15174024559@[2607:fc20:49:1f4c...

98      17.315048   192.168.29.211 208.54.83.96   ESP           1152     ESP (SPI=0x09960417)

97      17.314491   2607:fc20:49...  fd00:976a:1...  SIP            1084      Status: 180 Ringing | 

Ipsec PacketIpsec Packet

SIP Message

Figure 3.3 A trace of the Wi-Fi calling packets collected on a test phone: SIP and IPSec packets.

calling events (e.g., call and text messaging statuses) and call statistics.

Validation: We examine whether any information can be inferred based on the intercepted Wi-

Fi calling packets, which are encrypted by IPSec. After analyzing their patterns, we discover

that for all the three operators, there are six service events of the Wi-Fi calling service, namely

dialing/receiving a call, sending/receiving a text message, and activating/deactivating the service.

Figure 3.2 shows the IPSec packets captured on a Wi-Fi AP when the above six events are

triggered on a test phone connecting to the AP. It is observed that all the events differ from each

other in terms of traffic patterns, which are composed of packet direction (uplink or downlink),

19



Test Device US-I US-II US-III
Samsung J7 (US-III) N/A N/A 100%
Samsung S6 (US-II) N/A 100% N/A
Samsung S7 (US-I) 100% N/A N/A
Samsung S8 (US-II) N/A 100% N/A

Nexus 6P 100% N/A N/A
iPhone 6 100% 100% 100%
iPhone 7 100% 100% 100%
iPhone 8 100% 100% 100%

Table 3.1 Classification accuracy of the Wi-Fi calling events in various cross-phone and cross-
carrier cases. N/A means that the test phone does not support the carrier’s Wi-Fi calling service.

packet size, and packet interval. In order to automatically identify them based on the encrypted

Wi-Fi traffic, we apply a decision tree method, the C4.5 algorithm [50]. To prepare a set of training

data, we trigger those six events on the test phone with 50 runs each while collecting all the IPSec

packets on the Wi-Fi AP. Based on the training data, a classification model can be generated by the

C4.5 algorithm. We assess the classification accuracy of the model using 50 tests by comparing

the model’s output with the test phone’s packet trace as shown in Figure 3.3. The result shows that

the model can give 100% accuracy. Note that the test phone is Nexus 6P with the Wi-Fi calling

service of US-I.

We next examine whether the classification model works for cross-phone and cross-carrier

cases. We consider various devices with the Wi-Fi calling services of the three carriers. Table 3.1

summarizes the result. It is observed that those six events in all the test cases can be identified

accurately. Accordingly, the model that is derived based on the training data collected from Nexus

6P with the US-I’s Wi-Fi calling service can be applied to the other devices and carriers, which

include the Samsung Galaxy J7/S6/S7/S8 and iPhone 6/7/8 devices with the US-II/US-III networks.

Security implications: The IPSec channel can prevent man-in-the-middle attackers from decrypt-

ing or altering the Wi-Fi calling packets, but does not block the side-channel inference attack. Its

monotonous operation allows the adversary to collect ‘clean’ Wi-Fi calling traffic, which simplifies
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the side-channel inference.

3.3.3 V3: the Inter-system Service Continuity Mechanism of Wi-Fi Calling can be Bypassed

The inter-system service continuity mechanism can seamlessly switch the voice service of

Wi-Fi calling on a device back to the cellular-based voice service (e.g., VoLTE), when the device

disconnects from its connected Wi-Fi network or it cannot be reached through the Wi-Fi network

(e.g., no response from the device in the Wi-Fi calling service). The mechanism can be triggered

by the device or the cellular network infrastructure, and mainly consists of two steps, namely an

inter-system handover [3] between Wi-Fi and the cellular network, and a procedure of the IMS

service continuity [51]. Its operation can inherently protect the device against a DoS attack on the

Wi-Fi calling service. For example, when all the Wi-Fi calling packets are maliciously dropped,

the device is unreachable. However, the operation is not bullet-proof and may be bypassed with a

sophisticated attack.

Validation: We conduct experiments to examine whether the mechanism can be bypassed in any

scenarios. We test a Wi-Fi calling device with the following four scenarios, together with their

corresponding results. First, the device with an established voice call of Wi-Fi calling moves out

of its connected Wi-Fi network. We observe that the ongoing voice call can successfully migrate

from Wi-Fi calling to VoLTE without any call interruption. Second, the device is dialing a Wi-Fi

calling call while all its Wi-Fi calling packets are discarded from the Wi-Fi AP. We find that the

device successively sends a packet of SIP INVITE to the Wi-Fi calling server; after six attempts,

it switches to initiating a VoLTE call, as shown in Figure 3.4. Third, while the device is having an

incoming call, all the Wi-Fi calling packets are discarded. It is observed that the device switches to

VoLTE for the incoming call. Fourth, the packets of a Wi-Fi calling call on the device are discarded

right after the call is established. We observe that no voice can be heard from two call ends, but

the inter-system switch is not triggered and the device keeps the connection of the Wi-Fi network.

In summary, the inter-system service continuity mechanism is triggered only when the radio

quality of the connected Wi-Fi network becomes bad, or the device and the network infrastructure

cannot reach each other in the Wi-Fi calling service. As in the above fourth case, where the device
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Figure 3.4 A trace shows that a device switches an ongoing call attempt from Wi-Fi calling to
VoLTE after all the Wi-Fi calling packets are dropped. It is obtained on the test phone via the
software MobileInsight [52].

and the network can reach each other but some packets are dropped, the adversary can attack a

device’s Wi-Fi calling call while keeping the device using the Wi-Fi calling service by preventing

the inter-system switch from being triggered.

Security implications: Although the Wi-Fi calling standard [3, 51, 5] provides the inter-system

switch mechanism for the Wi-Fi calling service continuity, it may suffer from some sophisticated

attacks where the Wi-Fi calling packets can be intercepted. The interception is possible since the

Wi-Fi calling traffic needs to traverse untrusted Wi-Fi networks and the Internet. To prevent the

attacks, the service continuity mechanism should also take security concerns into consideration.

3.3.4 A Vulnerability Study on Non-U.S. Operators

We conduct a study of the Wi-Fi calling vulnerabilities on two Taiwan operators to examine

whether they are limited to only U.S. operators or not. We summarize the result of the test phone,

Samsung Galaxy S8, for each vulnerability as follows.

V1: We repeat the validation experiment of V1 on the phone with the Taiwan operators, and observe

the same result that the WLAN selection mechanism does not prevent the device from connecting

to an insecure Wi-Fi network, where an ARP spoofing attack is launched.

V2: For both Taiwan operators, we observe that the Wi-Fi calling service is also the only one

service carried by the IPSec channel, and then apply the same classification method described in

Chapter 4.4.1.2 into classifying the aforementioned six events. The result summarized in Table 3.2

confirms that the method can give 100% accuracy for the event inference.
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Operator Act./Deact. Wi-Fi calling Rec./Dialing a call Sending/Rec. a text
TW-I 100%/100% 100%/100% N/A
TW-II 100%/100% 100%/100% 100%/100%

Table 3.2 Classification accuracy of the six Wi-Fi calling events for two Taiwan operators. N/A
means that the event is not supported.

V3: We test the device with the Wi-Fi calling services of the Taiwan operators for the inter-system

service continuity mechanism. It is also observed that the mechanism is deployed and can be

bypassed in the fourth scenario described in Chapter 4.4.2.

3.3.5 Industry Feedback

We have reported the vulnerabilities to the U.S. operators that are studied in this work and

several device manufacturers including Google, Samsung, and Apple. In particular, the Google

Android security team gives a positive feedback that the team has confirmed our findings after a

security analysis of the vulnerabilities, and will address them in an upcoming security patch. We

thus received a Google Security Reward in Jan. 2020. On the other hand, we are awaiting hearing

from the other operators and manufacturers.

3.4 Telephony Harassment/Denial of Voice Service (THDoS) Attack

We next devise the THDoS attack, which can cause telephony harassment or denial of voice

service on the Wi-Fi calling users. In the following, we describe the attack design, evaluation and

real-world impact.

3.4.1 Attack Design

In this attack, the adversary manages to discard particular signaling or/and voice packets of Wi-

Fi calling from the victim device, while preventing the inter-system service continuity mechanism

from being triggered. The attack can cause damage on the device’s voice service supported by

Wi-Fi calling, and let the damage last by getting the device stuck with the Wi-Fi calling service. To

discard particular packets between the device and the network infrastructure, the adversary needs

to identify encrypted IPSec packets. We next start with an illustrative example of the Wi-Fi calling

call, and then analyze the traffic patterns of the Wi-Fi calling messages and events based on the

encrypted packets.
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Figure 3.5 The IPSec packets of a Wi-Fi calling call, which are observed on the Wi-Fi AP to which
the callee connects. (×: uplink packets; ■: downlink packets).
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Figure 3.6 The packet arrivals of the event ‘receiving a call with a ringtone’ on the Wi-Fi AP.

An illustrative example: A device user receives an incoming Wi-Fi calling call and answers it

around 6 seconds after its ringtone. Afterwards, the user has a voice conversation for around

12 seconds. Figure 3.5 shows the IPSec packets observed on the Wi-Fi AP to which the device

connects. The following four events can be observed: (1) receiving a call with a ringtone; (2)

answering a call; (3) talking; (4) hanging up a call.

Event 1: Receiving a call with a ringtone. Figures 3.6a and 3.6b show the downlink and

uplink packets of this event, respectively. The first incoming packet, which is intercepted at the

2nd second, is a 1360-byte IPSec packet. We decrypt it at the callee and identify it as an SIP
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Figure 3.7 The packet arrivals of the event ‘answering a call’ on the Wi-Fi AP.

INVITE message, which indicates that a call attempt is coming. At the 2.43th second, the callee

sends an 180 RINGINGmessage to the Wi-Fi calling server. Afterwards, it is observed that several

small IPSec packets with only 176 bytes are received by the callee, but the callee does not send any

packets back. We discover that they are voice packets in the RTP (Real-Time Protocol) protocol.

Event 2: Answering a call. As shown in Figures 3.7a and 3.7b, the callee answers the call at the

8.38th second by sending a 200 OK message to the server, and then receives an acknowledgment

at the 8.68th second. Afterwards, the call conversation starts and the callee begins to send/receive

voice packets.

Event 3: Talking. The traffic pattern of this event is shown in Figure 3.8. During the call

conversation, the callee keeps sending/receiving voice packets to/from the Wi-Fi calling server, but

no SIP messages are observed. We further discover that the callee at least receives 10 voice packets

every two seconds from the server.

Event 4: Hanging up a call. The callee sends a BYE message at the 20.19th second after the

call is hanged up, as shown in Figure 3.9b. After the 20.32nd second, no more IPSec packets are

observed. Note that if the caller hangs up the call first, the BYE message should be sent by the

server.

Traffic Pattern Analysis: We have five observations on the traffic patterns of the Wi-Fi calling
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Figure 3.8 The packet arrivals of the event ‘talking’ on the Wi-Fi AP.
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Figure 3.9 The packet arrivals of the event ‘hanging up a call’ on the Wi-Fi AP.

messages and events.

1. The sizes of the voice packets in IPSec are smaller than 200 bytes (e.g., 176 bytes).

2. The sizes of the SIP packets that contain signaling messages, including INVITE, 180

RINGING, 200 OK, and BYE), in IPSec are much larger than the voice packets (e.g., 800-

1360 bytes).

3. The callee starts to receive the voice packets from the Wi-Fi calling server after the 180

RINGING message is sent.
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4. No voice packets are sent out by the callee before the call conversation starts.

5. The callee keeps receiving more than 10 voice packets every two seconds from the Wi-Fi

calling server after the call conversation starts.

These patterns allow us to identify call events, e.g., an outgoing call is initiated, an incoming

call attempt arrives, and an ongoing call ends. Moreover, by correlating them with the call flow

of Wi-Fi calling (see Figure 2.2), the signaling messages of Wi-Fi calling can be identified purely

based on the encrypted IPSec packets. Note that the third observation is made only from US-I and

US-II; the others can be observed from all the test operators.

3.4.2 Attack Evaluation

We launch attacks by discarding different patterns of the signaling and voice packets for an

outgoing call of Wi-Fi calling. Table 3.3 summarizes the results, which are observed on all the

tested smartphones. We exploit the results to devise four attack variants as follows. Note that the

damage that is caused to mobile phones may not be applied to other SIP phones (e.g., Cisco SPA

525G2).

Annoying-Incoming-Call Attack: The callee as the victim would receive multiple incoming calls

from the caller. There are two approaches. First, the adversary drops the 183 Session Progress

message sent by the callee, and then the caller’s Wi-Fi calling device would initiate another VoLTE

call towards the callee. Second, the adversary discards the 180 Ringing message sent by the

callee, and then it would cause the caller’s Wi-Fi calling device to get stuck in the dialing screen.

The caller does not hear any alerting tone, but the callee’s device would ring. The caller may thus

keep redialling.

Zombie-Call Attack: The caller’s device can be forced to get stuck in the dialing screen, when

the adversary discards the 200 OK message sent by the callee. The message indicates that the call

has been answered, so without receiving the message, the caller’s device gets stuck in the dialing

screen and keeps hearing the alerting tone. The call conversation is thus never started.

Intermittent Mute Call Attack: Two parties of a Wi-Fi calling call are both victims. This attack
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No. Dropped Pack-
ets Sender Results

1 INVITE Caller Caller initiates a cellular-based call.
2 100 Trying Server No effect.
3 183 Session Callee Two outgoing calls arrive at callee.
4 PRACK Caller No effect.
5 200 OK Callee No effect.

6 180 Ringing Callee
Caller will not enter the conservation
state. The caller phone gets stuck in the
dialing screen.

7 PRACK Caller No effect.
8 200 OK Callee Caller keeps hearing the alerting tone.
9 200 OK Callee Caller keeps hearing the alerting tone.
10 ACK Caller No effect.
11 Voice Packets Caller/ Call drops or voice quality downgrades.

Callee

12 BYE Caller Callee gets stuck in the conversation
state for 20 s. Afterwards, the call is
terminated.

13 200 OK Callee No effect.

Table 3.3 The results obtained when we drop different patterns of the signaling and voice packets
for an outgoing Wi-Fi calling call.

Drop Rate (%) Voice Quality
below 20% No clear impact.

40-60% Some noises.
70-90% Conversation is hardly continued.
100% Call is terminated by the network.

Table 3.4 Voice quality varies with the drop rate of voice packets.

does not aim to terminate the call but only mute the victims’ voice for a certain time. Our result

shows that the adversary can mute the call up to 8 seconds by dropping voice packets. If the voice

suspension time is longer than 8 seconds, the call would be terminated by the network. To prolong

the attack period, the adversary can launch a cyclical attack that drops voice packets for 7 s and

skip the packets for the next 1 s to mute the call intermittently.

Telephony Denial-of-Voice-Service Attack: Both the caller and the callee are victims. This
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attack downgrades the voice quality of a Wi-Fi calling call so that the conversation is hard to

be continued; meanwhile, the inter-system service continuality mechanism is not triggered. It is

achieved by controlling the drop rate of the intercepted Wi-Fi calling packets to/from the victim.

Table 3.4 shows the negative impact on the voice quality with different drop rates. There are four

findings. First, when the drop rate is below 20%, the caller/callee users do not complain about any

voice quality downgrade. Second, when the drop rate increases to 40%-60%, some of the users

may notice some noises. Third, when the drop rate becomes 70%-90%, the voice call is hardly

continued. Fourth, when the drop rate is 100%, the call is terminated within 8 seconds. Note that

when the drop rate is below 90%, the call termination is never triggered.

3.4.3 Real-world Impact

The impact of the THDoS attack can be significant in practice. Our studies show that the

campus Wi-Fi networks, which most U.S. universities have deployed, are the best attack surfaces

for the adversary. For example, the campus Wi-Fi (MSUNet) in Michigan State University provides

students, the faculty, and the staff with free Wi-Fi access. In a 2-min experiment, we discover

that more than 700 devices including smartphones, tablets, and computers, connect to MSUNet.

All the devices are served by the same gateway which is vulnerable to an ARP spoofing attack, so

their Wi-Fi calling packets can be intercepted if there are any. Therefore, it allows the adversary to

launch the THDoS attack against the Wi-Fi calling devices under the gateway. Note that MSUNet

is not the only Wi-Fi infrastructure that suffers from the ARP spoofing and THDoS attacks. We

find that such vulnerability also exists in the campus Wi-Fi of many other universities, such as New

York University, University of California Berkeley, Northeastern University, etc.

3.5 User Privacy Leakage Attack

In this subchapter, we devise a proof-of-concept attack that can leak the privacy of the Wi-Fi

calling users. We exploit the discovered vulnerabilities to collect call statistics (e.g., call duration

and number of dialing calls) for each Wi-Fi calling device with a specific IP address in an area,

while using the nearby cameras to identify the person behaviors related to phone usages. By

considering two information sources together, a device’s call statistics can be correlated with a
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Figure 3.10 The UPIS system that infers user privacy of the Wi-Fi calling users.

person’s behavior. For example, a device with 5-second call duration can be correlated with a

person who holds his/her phone and speaks for 5 seconds. Based on such correlation, the adversary

can obtain the IP address of a specific Wi-Fi calling user and then identify the user’s packets.

The adversary can thus inspect the packets to infer the user’s privacy, including device activities

(e.g., accessing gmail), device information (e.g., iPhone 7), running applications (e.g., WeChat),

etc. In addition, several prior studies have demonstrated that the call statistics can be exploited

to infer some user privacy information including mood (e.g., stressful [53]), personality (e.g.,

conscientiousness [54]), malicious behaviors (e.g., dialing spamming calls) [55], to name a few.

3.5.1 Overview of Attack Design

We launch this attack by developing a user privacy inference system, called UPIS, as shown

in Figure 3.10. It consists of three major components: WiCA (Wi-Fi Calling Analyzer), UCIA

(User Call and ID Analyzer), and CS-IP2U (Call Statistics based IP-to-User correlation) modules.

WiCA intercepts all the Wi-Fi packets and then identifies the Wi-Fi calling ones. From the Wi-Fi

calling packets, WiCA extracts call statistics (e.g., ringing time and call duration) for each device IP.

The other packets are dispatched to a real-time traffic analyzer, which analyzes application identity

and device information. UCIA identifies each phone user’s call statistics based on a surveillance

camera using the techniques of face recognition and human motion detection. CS-IP2U uses the call
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statistics from both WiCA and UCIA to correlate each phone user with an IP address. It generates a

mapping table with IP and user identity, together with each user’s call statistics. We next elaborate

on the WiCA, UCIA, and CS-IP2U components, and finally evaluate the UPIS system.

3.5.2 WiCA: Wi-Fi Calling Analyzer

WiCA infers call statistics on a per-IP basis by analyzing the Wi-Fi calling traffic. Unlike

the aforementioned THDoS attack where specific signaling messages of Wi-Fi calling need to be

accurately identified, WiCA considers the extraction of only call statistics. Thus, it requires a

relatively simple approach that consumes little resources. Figure 3.11 illustrates its finite state

machine, where the initial state is IDLE. It works as follows.

IDLE

state
RUNNING

state

First IPSec packet arrives

Not-In-Talking is detected

Figure 3.11 The state transition diagram of WiCA.

Step 1: At the initial IDLE state, whenever any IPSec packet belonging to a call event is received,

WiCA moves to the RUNNING state. WiCA determines that kind of IPSec packets by checking

whether they are sent to/from any Wi-Fi calling servers. WiCA records the forwarding direction to

differentiate between two events, namely dialing a call and receiving a call. Their IPSec packets

are sent to and from the servers, respectively.

Step 2: At the RUNNING state, WiCA uses a 2-second time window to group the collected IPSec

packets and classifies them into three categories: C-Large, C-Middle, and C-Small. They include

the packets with the sizes larger than 800 bytes, between 200 and 800 bytes, and smaller than

200 bytes, respectively. The C-Large category includes some critical SIP call messages (e.g.,

INVITE and RINGING), whereas the C-Small contains voice packets. Note that the 2-second packet

collection is denoted as 𝐷𝑎𝑡𝑎2𝑠𝑒𝑐 (𝑥), where 𝑥 is the sequence of a series of the 2-second collection

sets.
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Conditions Identified Scenarios
𝑁𝑢𝑚_𝑈𝐿_𝐶𝑆𝑚𝑎𝑙𝑙 𝑁𝑢𝑚_𝐷𝐿_𝐶𝑆𝑚𝑎𝑙𝑙

=0 >10 Ringing
>10 >10 Talking
=0 =0 Not in Talking

Table 3.5 𝑁𝑢𝑚_𝑈𝐿_𝐶𝑆𝑚𝑎𝑙𝑙 and 𝑁𝑢𝑚_𝐷𝐿_𝐶𝑆𝑚𝑎𝑙𝑙 , which respectively represent numbers of uplink
and downlink packets smaller than 200 bytes within 2 seconds, are used to determine Ringing,
Talking, Not in Talking scenarios for US-I, US-II, US-III. Note that the rule of determining ringing
event is only applicable to US-I and US-II but not to US-III, since which US-III does not send small
voice packets to the Wi-Fi calling callee when his/her phone is ringing.

Step 3: WiCA identifies three scenarios, namely Ringing, Talking and Not in Talking, based

on the number of uplink and downlink C-Small packets in 𝐷𝑎𝑡𝑎2𝑠𝑒𝑐 (𝑥), which are denoted as

𝑁𝑢𝑚_𝑈𝐿_𝐶𝑆𝑚𝑎𝑙𝑙 and 𝑁𝑢𝑚_𝐷𝐿_𝐶𝑆𝑚𝑎𝑙𝑙 , respectively. The rules are summarized in Table 3.5.

When no event is identified in a collection set, 𝐷𝑎𝑡𝑎2𝑠𝑒𝑐 (𝑥), it is buffered and WiCA moves back

to Step 2. When any event is identified, WiCA takes subsequent actions for the event in the

following.

• Ringing: WiCA revisits the last collection, 𝐷𝑎𝑡𝑎2𝑠𝑒𝑐 (𝑥 − 1), and looks for the time when

the last C-Large IPSec packet is captured, which is considered as when the ring starts. We

denote the time as 𝑇𝑅𝑖𝑛𝑔𝑖𝑛𝑔𝑆𝑡𝑎𝑟𝑡 .

• Talking: When no Talking scenarios are identified before this scenario, WiCA revisits the

last collection, 𝐷𝑎𝑡𝑎2𝑠𝑒𝑐 (𝑥 − 1), and finds the time when the first C-Large IPSec packet (i.e.,

SIP 200 OK, which indicates the event ‘answering the call’) is captured. This time, denoted

as 𝑇𝑇𝑎𝑙𝑘𝑖𝑛𝑔𝑆𝑡𝑎𝑟𝑡 , is considered as the time when the talk starts.

• Not In Talking: WiCA revisits the last collection, 𝐷𝑎𝑡𝑎2𝑠𝑒𝑐 (𝑥 − 1), to discover the time

when the first C-Large IPSec packet (i.e., SIP BYE) is captured. This time, denoted as

𝑇𝐶𝑎𝑙𝑙𝐸𝑛𝑑 , is considered as the time when the call ends. When the C-Large packet is sent by

the Wi-Fi calling device, WiCA infers that the device user hangs up the call first. Otherwise,

the other call end terminates the call first. When the call termination is observed, a pattern
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Figure 3.12 The UCIA working flowchart. The red bounding box denotes a detected calling/talking
motion, whereas the yellow bounding box denotes a detected user face.

analyzer outputs a set of information including the call end initiating the call, ringing duration

(i.e., 𝑇𝑇𝑎𝑙𝑘𝑖𝑛𝑔𝑆𝑡𝑎𝑟𝑡 − 𝑇𝑅𝑖𝑛𝑔𝑖𝑛𝑔𝑆𝑡𝑎𝑟𝑡 or 𝑇𝐶𝑎𝑙𝑙𝐸𝑛𝑑 − 𝑇𝑅𝑖𝑛𝑔𝑖𝑛𝑔𝑆𝑡𝑎𝑟𝑡), talking duration (i.e., 𝑇𝐶𝑎𝑙𝑙𝑆𝑡𝑜𝑝-

𝑇𝑇𝑎𝑙𝑘𝑖𝑛𝑔𝑆𝑡𝑎𝑟𝑡), and the call end terminating the call. Afterwards, WiCA returns to the IDLE

state. Note that the talking duration is not applicable to unestablished calls.

3.5.3 UCIA: User Call and ID Analyzer

UCIA is a visual recognition system which identifies users and their motions related to making

calls (e.g., a user moves a phone close to his/her ear). It mainly leverages four computer vision

techniques including a tiny face detector, which is designed to find small faces in a video, DR-

GAN (Disentangled Representation learning-Generative Adversarial Network), HOG (Histogram

of Oriented Gradient) [56], and SVM (Support Vector Machine). UCIA does not require the users

to be still or use a high-resolution video. It can support the video in which face resolutions are as

low as 25x10 [57].

Figure 3.12 illustrates the UCIA working flowchart, which analyzes videos on a per-frame basis.

It consists of two modules: (1) calling/talking motion detection and (2) user face detection and

recognition. In each video frame, UCIA uses the HOG and SVM models to detect calling/talking

motions for all users, and labels those whose motions are detected using red bounding boxes. For

each red bounding box, UCIA further uses the tiny face detector and the DR-GAN model to label

the user face with a yellow bounding box, and identifies his/her identities (i.e., names). We next

detail these two modules and then evaluate the performance of UCIA.
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3.5.3.1 Calling/talking Motion Detection

UCIA generates features of target motions using the HOG descriptor, and then classify them

with an SVM model.

SVM: We train the SVM model to recognize two motions, namely ‘dialing a call’ and ‘talking

in a call’. Since no video datasets contain them, we invite twenty volunteers to record videos

of their dialing/talking motions. To differentiate those two motions from the others, we do the

model training by mixing the recorded videos with those from 101 action categories in the UCF101

database [58].

HOG: Each frame in a surveillance video may contain many candidate bounding boxes within a

sliding window. After all the persons are marked by the bounding boxes, the pre-trained SVM

classifier determines whether any of those two motions happens in each bounding box based on

the change of the gradient information described by the HOG descriptor. To implement the HOG

descriptor, we first divide each image into different small connected components, called cells, and

then collect the orientation histogram of gradients for each pixel within each cell. Finally, we

concatenate all the histograms to be the HOG descriptor.

3.5.3.2 User Face Detection and Recognition

We adopt a tiny face detector [57], which is based on the technique of deep convolution neural

network (CNN), to detect user faces, since not all the surveillance cameras offer high video quality

(e.g., 1080p). The detector is designed to detect small faces (e.g., a face with the size of 3 × 3𝑐𝑚2)

in a low-resolution video, but can also support large faces in a high-resolution video. Moreover,

since people do not always face to the cameras with a frontal view, extracting pose-invariant feature

representations is critical to the face recognition. We thus apply DR-GAN [59] that can generate

those representations to recognizing user identities.

Tiny face detector: The working flowchart of this detector is illustrated in Figure 3.13. The

detector first resizes each input image into other two images with different resolutions to construct

an image pyramid for the training. It uses those three images with different resolutions as the input

of the CNN model. We adopt a well-trained model provided by Hu et al. [57]. The trained model
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Figure 3.13 The working flowchart of the tiny face detector.

can be used to predict the bounding boxes on the image pyramid. All the detected bounding boxes

are then selected and merged based on the non-maximum suppression (NMS) method [60], and

then the final detection result on the original image can be obtained.

DR-GAN-based face recognition: To recognize user identities, it is challenging to deal with

variations on the user faces (e.g., illumination conditions, poses, and expressions); especially, the

pose changes can cause a big drop on the face recognition performance. We tackle this challenge

by applying the DR-GAN model in the following two steps. First, we define face angles ranging

from −90◦ to 90◦. With the 0° face angle, the face is in the frontal view, which almost contains all

the facial information. With the angle of −90◦ or 90◦, only one side of the face is visible so that it

is difficult for the model to do face recognition. Second, we leverage the DR-GAN model to extract

the disentangled face representation by fine-tuning the GAN (Generative Adversarial Networks).

The model can generate a representation for each face with personal identity information and then

the representation can be used for the face verification and identification.

The face recognition flowchart of the DR-GAN model is shown in Figure 3.14. To train the

DR-GAN model, several face images with different poses for the same user identity are used as

the input. Each image will be fed into the encoder that uses VGG16 as the network structure. In

addition to generating a 320-dim feature 𝑓 for each face, the encoder outputs a 1-dim coefficient 𝑤.

A fused feature 𝑓 ′ can be then generated based on the following equation:
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𝑓 ′ =

∑𝑛
𝑖 𝑤𝑖 𝑓𝑖∑𝑛
𝑖 𝑤𝑖

(3.1)

, where 𝑓 ′ is a weighed average over all the 𝑓𝑖. 𝑓 ′ can be fed into a decoder to generate an output

image, called synthetic image, with the same size as the input. Accompanying the feeding of

𝑓 ′, a pose code 𝑐 and a random noise 𝑧 are also appended. The former can help the decoder

generate a synthetic image with an arbitrary pose, whereas the latter can prevent the decoder from

overfitting. We further use the combination of the original face images and the synthetic image

to train a discriminator. After the adversarial training involving the encoder, the decoder, and the

discriminator converges, an updated encoder can be derived. We finally use this trained encoder to

generate the disentangled feature representations of all the input images for the face recognition.

3.5.4 CS-IP2U: Correlating IP with User Identity

The CS-IP2U module correlates user identities with IP addresses based on the call statistics

extracted by WiCA and UCIA. It mainly considers two kinds of events, namely call start and call

end. We denote the happening times of these two events as 𝑇𝐶𝑆𝑡𝑎𝑟𝑡 and 𝑇𝐶𝐸𝑛𝑑, respectively.

Ideally, for an identified Wi-Fi calling call, WiCA outputs 𝑇𝐶𝑆𝑡𝑎𝑟𝑡𝑤, 𝑇𝐶𝐸𝑛𝑑𝑤, and 𝐼𝑃, whereas

UCIA outputs 𝑇𝐶𝑆𝑡𝑎𝑟𝑡𝑢, 𝑇𝐶𝐸𝑛𝑑𝑢, and 𝑈𝑠𝑒𝑟𝐼𝐷. One correlation can be thus identified when

𝑇𝐶𝑆𝑡𝑎𝑟𝑡𝑤 == 𝑇𝐶𝑆𝑡𝑎𝑟𝑡𝑢 and 𝑇𝐶𝐸𝑛𝑑𝑤 == 𝑇𝐶𝐸𝑛𝑑𝑢. Nevertheless, in practice, it is not the case

due to the errors of recorded timing in the call statistics. CS-IP2U thus considers not only time
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points but also time intervals in the correlation with the following three steps.

Step 1: We consider two time intervals, 𝑇𝐶𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑡𝑤 = [𝑇𝐶𝑆𝑡𝑎𝑟𝑡𝑤 − 𝜎,𝑇𝐶𝑆𝑡𝑎𝑟𝑡𝑤 + 𝜎] and

𝑇𝐶𝐸𝑛𝑑𝐼𝑛𝑡𝑤 = [𝑇𝐶𝐸𝑛𝑑𝑤−𝜎,𝑇𝐶𝐸𝑛𝑑𝑤+𝜎], for the call start and end events in WiCA, respectively.

𝜎 is set to the maximum timing error observed in WiCA (i.e., 1 second).

Step 2: We further consider the other two time intervals,𝑇𝐶𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑡𝑢 = [𝑇𝐶𝑆𝑡𝑎𝑟𝑡𝑢−𝜖, 𝑇𝐶𝑆𝑡𝑎𝑟𝑡𝑢+

𝜖] and 𝑇𝐶𝐸𝑛𝑑𝐼𝑛𝑡𝑢 = [𝑇𝐶𝐸𝑛𝑑𝑢 − 𝜖, 𝑇𝐶𝐸𝑛𝑑𝑢 + 𝜖] for the call start and end events in UCIA,

respectively. 𝜖 is set to the maximum timing error observed in UCIA (i.e., 1.5 seconds).

Step 3: When the following two conditions are met, the corresponding 𝐼𝑃 and 𝑈𝑠𝑒𝑟𝐼𝐷 are

correlated: 𝑇𝐶𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑡𝑤
⋂
𝑇𝐶𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑡𝑢 ≠ ∅ and 𝑇𝐶𝐸𝑛𝑑𝐼𝑛𝑡𝑤

⋂
𝑇𝐶𝐸𝑛𝑑𝐼𝑛𝑡𝑢 ≠ ∅.

Note that current CS-IP2U implementation does not support the cases that multiple Wi-Fi

calling users start or end calls near-simultaneously (within the time interval of 𝑚𝑎𝑥{𝜎, 𝜖} (i.e., 1.5

seconds). To address this issue, more fine-grained call statistics should be extracted by the WiCA

and UCIA modules. For example, we can infer time periods that users are talking and those that

user are listening by analyzing the uplink and downlink Wi-Fi calling voice packets at the WiCA

and detecting who are talking [61] at the UCIA. We do not implement this advanced feature on our

attack prototype, but only demonstrate the feasibility of the correlation between user identities and

IP addresses.

3.5.5 Attack Evaluation

We next evaluate the performance of the UPIS system in a controlled setting (in our laboratory

without passersby) and a wild setting (in an on-campus coffee shop with passersby). The WiCA is

implemented using Python3 and the scikit-learn library [62] on a 2014 Macbook Pro laptop with a

CPU, Intel I5-4278U, and an 8GB RAM. The UCIA is implemented using Python3 and other three

computer vision and machine learning libraries, namely VLFeat [63], MatConvNet, and Tensorflow,

on our campus computing servers (MSU HPCC) [64]. The CS-IP2U is also implemented on the

Macbook laptop. Moreover, the CS-IP2U requires to associate time and events between the WiCA

and the surveillance camera, so the clock synchronization between them is needed. The precision

time protocol (PTP) [65] can be used for the synchronization.
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Module Performance Metrics Controlled settings Wild settings
User1 User2 User3 User4 User1 User2 User3 User4

WiCA Call Event Time Estimation start time error (sec) 0.25 0.55 0.15 0.08 0.33 0.48 0.22 0.15
end time error (sec) 0.17 0.23 0.37 0.10 0.27 0.38 0.54 0.31

UICA

Calling Motion Recognition
ACC 94.9% 90.1% 90.0% 85.0% 88.3% 85.7% 85.0% 80.1%
FPR 3.4% 8.3% 6.8% 9.1% 12.7% 12.1% 13.1% 18.1%
FNR 7.3% 12.5% 12.2% 22.3% 10.8% 17.6% 17.9% 22.04%

Call Event Time Estimation start time error (sec) 1.51 1.34 0.53 0.98 1.22 1.34 1.03 1.28
end time error (sec) 0.62 0.99 0.76 1.19 1.23 1.55 0.92 1.26

User Identity Recognition
ACC 95.8% 98.1% 92.5% 93.5% 91.3% 93.8% 92.0% 90.8%
FPR 2.8% 1.0% 6.6% 7.5% 10.2% 8.0% 6.2% 5.6%
FNR 8.3% 5.7% 9.9% 8.1% 7.6% 7.5% 10.0% 10.1%

CS-IP2U ID and IP Mapping ACC 95.0% 100% 100% 94.7% 83.3% 84.2% 89.4% 90%
(19/20) (19/19) (17/17) (18/19) (15/18) (16/19) (17/19) (18/20)

Table 3.6 Overall performance of the UPIS system.

3.5.5.1 Evaluation Metrics

WiCA: The evaluation metric is the estimation error of the call event time, which is the difference

between the time when a W-Fi calling call starts or stops, and the time that is estimated for the call

event by the WiCA. Note that we can use a command, logcat -b radio -v threadtime |

grep "update phone state", on Android phones to obtain the times of the call start and stop

events, which are the ground truth in the evaluation.

UCIA: We evaluate UCIA from three aspects, namely calling/takling motion recognition, user

identity recognition, and the estimation error of the call event time. The evaluation metrics of the

first two aspects include accuracy (ACC), false positive rate (FPR), and false negative rate (FNR).

For the calling/takling motion recognition, the video frames of a user can be classified into two

categories: with and without a calling event. They are considered as positive and negative cases,

respectively. For the user identity recognition, UCIA analyzes all the frames that are recognized

with a calling event and looks for the user identity in the event from our database. The ACC, FPR,

and FNR rates are calculated on a per-user basis.

CS-IP2U: The evaluation metric is the ratio of the accurate cases that the identity of the Wi-Fi

calling user is correctly correlated with the user’s device IP, to all the user’s Wi-Fi calling calls.

3.5.5.2 Experimental Results

We evaluate the performance of Wi-Fi calling user privacy inference system (UPIS) in the

non-wild and wild settings as follows.

•Using non-wild settings (without passersby): The experiment is conducted in a on-campus
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space where there are no passersby but the experiment participants. We consider four participants

in the experiment. In each test, each of them is requested to dial at least one call; they are allowed

to do any random actions (e.g., looking at the ground). To emulate a real use scenario, we do not

restrict the duration of each Wi-Fi calling call. The experiment includes 10 tests, and 10 videos are

recorded.

The experimental result is summarized in Table 3.6. In the WiCA module, the errors of the call

event time estimation are limited to at most 0.55 s. As for the UICA module, the ACC/FPR/FNR

rates of the motion recognition are 85%∼94.9%, 3.4%∼9.1%, and 7.3%∼22.3%, respectively;

those of the identity recognition are 92.5%∼98.1%, 1.0%∼7.5%, and 5.7%∼9.9%, respectively; the

errors of the time estimation range between 0.53 s and 1.51 s. Although the identify recognition

mechanism does not correctly recognize user identity in all the video frames, the 100% accuracy is

not needed in practice. The reason is that the successful recognition of a Wi-Fi calling user requires

only one video frame of the user. Lastly, the overall performance of the UPIS system is 97.33%

(73/75) by considering the accuracy of the CS-IP2U module.

•Using wild settings (with passersby): We conduct the above experiment in an on-campus coffee

shop where has not only experiment participants but also other customers. We compare the results

of the wild experiment, which is also summarized in Table 3.6, with that of the controlled one. For

the WiCA module, the performance is comparable to that of the controlled experiment. In the UICA

module, the ACC/FPR/FNR rates of the motion recognition decrease to 80.1%∼88.3%, increase to

12.1%∼18.1%, and increase to 10.8%∼22.04%, respectively. This downgrade performance hurts

the accuracy of the call event time estimation; thus, the combined error of the start and end times

increases from 2.33 seconds in the controlled experiment to 2.89 seconds. The similar trends

are also observed in the identity recognition; its ACC/FPR/FNR rates decrease to 90.8%∼93.8%,

increase to 5.6%∼10.2%, and increase to 7.5%∼10.0%, respectively. As expected, the overall

performance is reduced to 87% (66/76). The reason is that the unexpected passersby can affect the

performance of the motion and identity recognition mechanisms. We leave the further improvement

to our future work.
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3.5.6 Real-world Impact

To the best of our knowledge, the UPIS is the first system which can correlate the identity of

the Wi-Fi calling user with the user’s device IP based on the call statistics of the Wi-Fi calling

service. Seemingly, it needs a little strong assumption that the victims are in the visible area of a

surveillance camera that can be accessed by the adversary and a face recognition technique can be

applied. However, for the sake of public safety, such surveillance cameras with face recognition

have been broadly deployed in several countries, e.g., United Kingdom [66], China [67], and U.S.

(Chicago and Detroit) [68]. We thus believe that some use scenarios can benefit from the UPIS

system in practice. For example, the UPIS can be deployed at airports to be against terrorists.

It allows the law enforcement agents to identify suspects’ phone models and IP addresses, and

further remotely install the malware on their phones for monitoring. The remote installation can

be achieved by exploiting public security vulnerabilities of the target devices. Note that we do not

advocate any use scenarios compromising user privacy no matter whether the purpose is benign or

not.

3.6 Solution

To completely address all the identified vulnerabilities, it is required to modify current Wi-Fi

calling standard; the standard modification is too time consuming to be achieved in a short time.

We thus propose a software-based security framework, Wi-Fi Calling Guardian, to largely mitigate

the impact of the vulnerabilities without any modifications on the standard but only a phone-side

software upgrade. In the following, we present the design and evaluate its performance.

3.6.1 Design

The architecture of Wi-Fi Calling Guardian consists of two network elements, namely the client

on the Wi-Fi calling device and the server in a secure private network, as shown in Figure 3.15.

There are mainly three security modules on the client and the server: (1) Wi-Fi security examiner,

which examines whether the connected Wi-Fi network is secure for the Wi-Fi calling service;

(2) singularity rectifier, which introduces noises to mix with the Wi-Fi calling traffic, thereby

increasing the difficulty of the inference; (3) service quality monitor, which monitors whether the
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Figure 3.15 The network architecture and protocol stack of Wi-Fi Calling Guardian.

Wi-Fi calling user is suffering from the degradation of the service quality and then takes actions if

needed.

Ideally, the Wi-Fi security examiner can help the Wi-Fi calling device stay away from insecure

Wi-Fi networks, which are vulnerable to any known attacks (e.g., the ARP spoofing attack).

However, the situation is far from simple in practice due to three reasons. First, not all the

vulnerabilities can be identified using a passive approach in which the examiner operates (e.g.,

using detection only not launching attacks). Second, the Wi-Fi calling user may have no secure

Wi-Fi networks to associate with. Third, the proposed attacks (e.g., the THDoS and user privacy

leakage attacks) can be launched outside of the connected Wi-Fi network. Therefore, the Wi-Fi

security examiner uses a passive approach to explore the insecurity of the connected Wi-Fi network

on one hand; on the other hand, the other security modules, singularity rectifier and service quality

monitor, protect the Wi-Fi calling device against potential attacks. We next elaborate on the details

of these three security modules.

Wi-Fi security examiner: Two detection mechanisms are deployed to examine the insecurity of the

connected Wi-Fi network. First, this module detects whether the WPA3 protocol [69] is enabled

in the connected Wi-Fi network. It is because the WPA3 requires all the compliant devices to

support the PMF (Protected Management Frames) feature, which provides integrity protection over

management frames and can thus defend against some Wi-Fi attacks (e.g., deauthentication and

rogue AP attacks). Second, this module detects whether the Wi-Fi calling device is being under an
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Figure 3.16 The voice packets sent from the phone per second.

ARP spoofing attack, which is a prerequisite of various MitM attacks, so that V1 can be prevented.

It monitors the device’s ARP table and checks whether two different IP addresses associate with

the same MAC address.

Singularity rectifier: This module uses a normalized data transmission mechanism to prevent the

Wi-Fi calling service from appearing as a singular service supported by the IPSec channel. The

mechanism encapsulates all the Wi-Fi calling packets into UDP datagrams for the delivery. The

UDP datagrams with a fixed packet size (e.g., 300 bytes) are generated by both the client and the

server, and sent to the other end at a steady rate. This approach can remove two traffic patterns of

Wi-Fi calling, namely packet sizes and delivery directions, at a low cost (e.g., consuming only the

bandwidth of 0.032 MB/s while the rate is 50 pkts/s) so that V2 can be eliminated.

Service quality monitor: This module provides the Wi-Fi calling device with the inter-system

service continuity mechanism driven by the service quality instead of the radio quality or the WLAN

performance. V3 can be thus prevented. We estimate the voice quality based on the number of

received voice packets per second on the device. Figure 3.16 plots the number of voice packets for a

140-second voice call. Since the Wi-Fi calling voice service uses the AMR (Adaptive Multi-Rate)

audio codec, the packet rate varies with time. However, we observe that the packet rate is never

smaller than 10 packets every two seconds. This rate can be thus used to detect whether the device

is being under service degradation attacks. Once any suspicious attack is detected at the client or

the server, the inter-system service continuity mechanism is triggered.
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3.6.2 Implementation

The client of Wi-Fi Calling Guardian is an Android application written in Java and implemented

on a Google Pixel XL with a CPU, Qualcomm Snapdragon 821, and a 4GB RAM; the server is

a network program written in C++ and implemented on a Dell precision tower 5810 with a CPU,

E5-1603, and an 8GB RAM. We next elaborate on the implementation of each key component.

Wi-Fi security examiner: This module is implemented in the client with two detection mecha-

nisms. First, the module uses an Android class of WiFiManager to obtain the Wi-Fi connection

status that indicates whether the WPA3 is enabled. Second, the module uses a command “arp -a”

to access the ARP table of the client device, and then detects the ARP spoofing attack by checking

whether any two entries share the same MAC address.

VPN: We use OpenVPN to set up the VPN tunnel between the client and the server. On the

client side, only Wi-Fi calling packets are forwarded through the VPN connection, whereas the

other packets are directly routed to their destinations. Since the Android system does not allow

the OpenVPN client to redirect the packets from a system application (i.e., the Wi-Fi calling

application), we deploy the OpenVPN client on a software-based Wi-Fi router to which the client

device connects. Through the VPN tunnel, all the uplink packets of Wi-Fi calling are delivered

to the service quality monitor on the server, whereas all the downlink packets of Wi-Fi calling are

forwarded to the singularity rectifier on the client.

Singularity rectifier: Data padding or packet fragmentation is performed on each Wi-Fi calling

packet so that the packets can be encapsulated into 300-byte UDP datagrams. This module is

implemented using the Type-length-value encoding scheme for the packets. Specifically, five types

of the UDP payload are developed: (1) signaling-packet, which specifies the start and stop of the

normalized data transmission; (2) original-packet, which contains a complete IPSec packet; (3)

fragment-packet, which contains a complete IPSec header, a fragment of an IPSec packet, and

the fragment’s sequence number; (4) padding-data, which contains padding data; (5) inter-system-

switch-request, which carries an inter-system switch request for the Wi-Fi calling service. After

the IPSec packets are restored from the UDP datagrams, they are forwarded to the service quality
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(a) WPA3 is not detected (b) Under an ARP spoofing attack

Figure 3.17 The Wi-Fi security examiner detects the WPA3 usage and any ongoing ARP spoofing
attack.

monitor.

Service quality monitor: When the number of received small Wi-Fi calling packets is smaller than

10 during two seconds or a request of the inter-system switch is received, this module triggers the

inter-system switch by disabling the device’s Wi-Fi interface via an Android class of WiFiManager.

Without the Wi-Fi access, the Wi-Fi calling device can be automatically switched back to the cellular

network.

3.6.3 Evaluation

We next evaluate the performance of those three key components and present a small-scale user

study.

Wi-Fi security examiner: We deploy a test Wi-Fi network which does not support the WPA3

protocol, and make the smartphone of Google Pixel XL connect with the Wi-Fi network. We

further launch an ARP spoofing attack against all the devices from a computer in the Wi-Fi network.

Figure 3.17 shows the evidence that the client of Wi-Fi Calling Guardian on the smartphone can

successfully detect a lack of WPA3 and the ARP spoofing attack.

Singularity rectifier: We evaluate whether the singularity rectifier can defend against the THDoS

and user privacy leakage attacks. The experiment is conducted as follows. First, we dial a Wi-Fi

calling call from one device to another device with the client of Wi-Fi Calling Guardian, where the

singularity rectifier is enabled. Second, we launch the annoying-incoming-call attack that discards
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01-06 15:52:48.185  4950 14977 D ImsPhoneCallTracker: [ImsPhoneCallTracker] onCallUpdated

01-06 15:52:47.056  4950  4950 D DCT     : [0]NETWORK_STATE_CHANGED_ACTION: mIsWifiConnected=false

01-06 15:52:48.185  4950 14977 D ImsPhoneCallTracker: [ImsPhoneCallTracker] processCallStateChange 
state=ACTIVE cause=0 ignoreState=true

01-06 15:52:47.080  4950  5073 V RILJ    : [UNSL]< UNSOL_OEM_HOOK_RAW 514f454….0100000000 [SUB0]

01-06 15:52:47.106  4950  4950 D SST     : pollState: modemTriggered=true

01-06 15:52:47.096  4950  5073 D RILJ    : [UNSL]< UNSOL_RESPONSE_NETWORK_STATE_CHANGED [SUB0]

01-06 15:52:47.107  4950 15236 D ImsManager: registrationFeatureCapabilityChanged :: serviceClass=1

01-06 15:52:47.107  4950 15236 D ImsPhoneCallTracker: [ImsPhoneCallTracker] onFeatureCapabilityChanged

01-06 15:52:47.115  4950  4950 D ImsPhoneCallTracker: [ImsPhoneCallTracker] handleFeatureCapabilityChanged: 
VoLTE:false ViLTE:false VoWiFi:false ViWiFi:false UTLTE:false UTWiFi:false  isVideoEnabledStateChanged=false

01-06 15:52:47.116  4950  4950 D SST     : EVENT_IMS_CAPABILITY_CHANGED

Wi-Fi is off

SwitchingSwitching

Switch to 

cellular network

Figure 3.18 A log from the Android logcat shows that a voice call over Wi-Fi calling is switched to
the cellular-based voice based on the Wi-Fi disabling.

the 180 Ringing message and causes the caller device to get stuck in the dialing screen (see

Chapter 3.4). Third, we use the WiCA module to infer the call statistics of this call from the

callee’s connected Wi-Fi network. Our experimental result shows that the singularity rectifier can

well defend against those two attacks. Specifically, in the first attack, the 180 Ringing message

cannot be identified because no large IPSec packets (800-1360 bytes) are observed. In the second

attack, 𝑇𝑅𝑖𝑛𝑔𝑖𝑛𝑔𝑆𝑡𝑎𝑟𝑡 and 𝑇𝑇𝑎𝑙𝑘𝑖𝑛𝑔𝑆𝑡𝑎𝑟𝑡 are not identified due to a lack of the C-Large IPSec packets.

Therefore, the ringing time and the call conversation time cannot be inferred.

Service quality monitor: We evaluate whether the service quality monitor can detect an attack of

the service quality degradation and then initiate a inter-system switch of the Wi-Fi calling service

continuity. We launch a telephony denial-of-voice-service attack which discards 70% packets of a

Wi-Fi calling call against a device after the call conversation starts. Our experimental result shows

that the service quality monitor can detect the service quality degradation within 2 seconds after

the attack is launched, and immediately trigger the inter-system switch, which is finished within 1

second as shown in Figure 3.18.

User study: To examine whether the VPN-based approach can significantly downgrade the voice

quality of the Wi-Fi calling calls, we invite 10 students to participate in a user study experiment. In
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the experiment, we dial two Wi-Fi calling calls to each participant. One call is made with enabling

Wi-Fi Calling Guardian, whereas the other is performed without it. The participants should report

which one’s voice quality is better or they are indistinguishable. Our experimental result shows

that all participants cannot distinguish VPN-enabled Wi-Fi calling calls from original Wi-Fi calling

calls (they think that both types of calls are the same in terms of voice quality), which means that

Wi-Fi Calling Guardian does not downgrade the voice quality to a noticeable extent.
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CHAPTER 4

HOW CAN IOT SERVICES POSE NEW SECURITY THREATS IN OPERATIONAL
CELLULAR NETWORKS?

Carriers are rolling out Internet of Things (IoT) services including various IoT devices and use

scenarios. Compared with conventional non-IoT devices such as smartphones and tablets, IoT

devices have limited network capabilities (e.g., low rates) and specific use scenarios (e.g., inside

vehicles only). These specialized use scenarios lead to carries often offering cheaper device access

fees for IoT devices. However, the aforementioned disparity of service charging between IoT and

non-IoT devices may lead to security issues. In this work, we make four major contributions.

• This work conducts the first empirical security study on cellular IoT service charging over

two major US carriers.

• This project discovers four security vulnerabilities summarized in Table 4.1 and analyze their

root causes, which help identify two significant security threats, IoT masquerading and IoT

use scenario abuse.

• In this work, three proof-of-concept attacks are devised and their real-world impact are

assessed. It is determined that they can be exploited to allow adversaries to pay 43.75%-

80.00% less for cellular data services.

• In this project, we analyze the challenges in addressing these vulnerabilities and develop an

anti-abuse solution to mitigate attack incentives. The solution is standard-compliant and can

be used immediately in practice. Our prototype and evaluation confirm its effectiveness.

4.1 Related Work

Mobile Security. Mobile security has been an active research area in recent years. Researchers

mainly study the security vulnerabilities of mobile data service charging, mobile devices, mobile

network infrastructure, and mobile applications/services. Some interesting findings are reported,

which include the anonymization of the SIP protocol [70], design flaws of mobile operating systems
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(e.g., Android and iOS) [71, 72, 73], charging attacks of mobile data services [74, 75, 76, 31, 77],

spam and fraudulence attacks through text and voice services [78, 79], vulnerable usage of Android

Internet sockets [80], vulnerabilities of VoWiFi [81] to name a few. Most of the early research

works target non-IoT devices (e.g., smartphones), as well as their mobile applications and services.

However, our work focuses on cellular IoT devices instead of smartphones, tablets or other non-IoT

mobile devices.

IoT Security. Current research studies can be categorized into three dimensions: (1) device

software and hardware, (2) network protocols, and (3) security architecture. In the first dimension,

a study [82] shows that an IoT botnet based on the Mirai malware [83] is able to launch a 600 Gbps

traffic attack. Another work [84] presents a threat that adversaries can compromise smart meters to

reduce their utility bills. Liu et al. [85] propose an ARM TrustZone based virtual sensing system

to enable a safe, isolated environment for IoT devices. Gao et al. [86] develop an easy access

solution for authenticated users to access the voice-based assistants. Ding et al. [87] discover

possible physical interactions and generates all potential interaction chains across applications in

IoT environment.

For the IoT network protocols, Sastry et al. [88] discover several security vulnerabilities and

pitfalls in IEEE 802.15.4, which is designed for wireless communication among low-power IoT

devices. Soltan et al. [89] and Herwig et al. [90] study the IoT botnet and analyze its attacks on

power grids and peer-to-peer networks.

For the IoT security architecture, some novel security mechanisms have been proposed, e.g.,

data-origin authentication, integrity verification, privacy preserving, and identity-based encryption.

Jia et al. [91] propose ContexIoT, a context-based permission system for IoT platforms. It provides

contextual integrity [92] and implements it on the Samsung SmartThings platform. Das et al. [93]

propose a deep-learning based classifier for IoT authentication. Harris et al. [94] propose to

protect user data against leakage by adopting the CryptoCoP-based encryption and a unique MAC

address rotation mechanism. Wang et al. [95] conduct an analysis of the IFTTT and enumerate the

inter-rule vulnerabilities that exist within trigger-action platforms. Haddadi et al. [96] introduce
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Category Vulnerability Type Root Cause

Device
V1: an IoT SIM card can be used for a
non-IoT device.

Design Defect No mutual authentication between the SIM card and the
device is stipulated in cellular IoT standards.

Infrastru-

V2: the infrastructure is unable to cor-
rectly identify IoT and non-IoT devices. Design Defect No device authentication mechanism is stipulated in cellular

IoT standards.

cture V3: the infrastructure does not impose
any restrictions on IoT data services. Operational Slip

Operators merely rely on the hardware constraints of IoT
devices instead of imposing restrictions from the infrastruc-
ture.

V4: the infrastructure is unable to con-
fine IoT devices to their pre-defined use
scenarios.

Operational Slip/ Operators restrict the IoT use scenarios by device-based
security mechanisms and constraints. However, they are
not bullet-proof.

Implementation Is-
sue

Table 4.1 Summary of security vulnerabilities and root causes.

the SIOTOME architecture between the network edge and the ISP to defend against attacks from

compromised IoT devices. Memos et al. [97] study the security challenges of the upcoming

IoT network architecture, and media security and privacy in wireless sensor networks (WSNs)

and develop an efficient algorithm for media-based surveillance systems in IoT network for smart

city framework. Stergiou et al. [98] do the security survey of IoT and Cloud Computing and

show the security challenges of the integration of IoT and Cloud Computing. Celik et al. [99]

present a policy-based enforcement system IoTGuard for IoT, which protects users from unsafe

and insecure states. Moreover, some researchers focus on improving the efficiency of the systems

leveraging the blooming of IoT devices (e.g., media-based IoT devices such as security camera

and senors) and cloud computing to secure our society. For example, Psannis et al. [100] develop

an efficient algorithm for encoding advanced scalable media-based smart big data on intelligent

cloud computing systems, which can efficiently process the smart big data generated by a great

number of media-based IoT devices (e.g., security camera). Stergiou et al. [101] leverage the

blooming of IoT in cloud computing to develop a new type of network for intelligent media-data

transfer. Plageras [102] investigates new systems for efficiently collecting and managing sensors’

data in a smart building by leveraging IoT, big data, cloud computing, and monitoring technologies.

Different from them, we here focus on the security of cellular IoT devices and their charging

functions in the operational 4G LTE networks.
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4.2 Overview

We aim to explore the dark side of the emerging IoT service charging scheme and its technical

support from a security perspective. Any of its vulnerabilities may cause cellular users and/or

carriers to suffer monetary losses. We start from an observation that IoT devices have cheaper data

plans than non-IoT devices, which can be attributed to their distinct use scenarios. For example,

smartwatches are designed for simple voice/data services, and car-connected hotspots are used only

inside vehicles. It appears to be reasonable, but one question arises: are the underlying technologies

sufficient to secure this differential charge? We answer it by starting with the following questions.

Q1. Given different charges for the same data service of an IoT device and a smartphone, can the

smartphone masquerade as the IoT device to pay less?

Q2. If yes, can the smartphone retain its data service quality (e.g.„ no speed downgrade)?

Q3. Can adversaries abuse IoT devices in unanticipated use scenarios so as to take advantage of

operators?

Unfortunately, we disclose that the IoT charging, as well as the technical support behind it, is

not bullet-proof. The answers to the above three questions are all yes. Specifically, we uncover

four vulnerabilities from design, implementation, and network operation aspects. The cellular

network standards, network operators/vendors, and device manufacturers all share the blame for

these vulnerabilities. The fundamental problems are rooted not in how to charge IoT and non-IoT

devices, but in how to provision and safeguard IoT services.

4.3 Threat Model and Methodology

Threat model. In this work, the adversary is a mobile user who uses only commodity devices:

smartphones and IoT devices available on the market. To launch attacks, (s)he needs to either

know how to install tools on smartphones and modify their settings, or rely on some one-click

software/hardware package, the development of which is not our main focus. In all cases, (s)he

has no access to the cellular network infrastructure or other devices. Moreover, the network
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infrastructure and the device hardware are not compromised. Given this model, the identified

security loopholes can be translated into realistic attacks against carriers.

Methodology. We validate vulnerabilities and attacks in two top-tier US carriers, OP-I and OP-II.

They, together, take more than 65% of market share [103] in the U.S. We conduct experiments

using IoT devices including two popular smartwatch models and two car-connected hotspots, as

well as non-IoT devices including four Android phone models, with the two carriers’ SIM cards.

The two smartwatch models are LG Watch Urbane 2nd edition with Android 6.1.1 and Samsung

Gear S3 frontier with Tizen OS 2.3.2. The four phone models include Samsung Galaxy S5/S6, LG

G3 and Google Nexus 6P, which run Android 4.4.4, 5.0.2/6.0.1, 4.4.2 and 7.1.1, respectively. Note

that all the results can be applied to both carriers, unless explicitly stated otherwise.

Responsible experiments. We understand that some feasibility tests and attack evaluations might

be harmful to carriers, so we proceed with this study in a responsible manner. We run experiments

in fully controlled environments. We purchase plans with sufficient data/voice/text quotas, so the

carriers do not get hurt. We seek to disclose new security vulnerabilities and effective attacks on

cellular IoT services, but not to aggravate the damages caused by them.

4.4 Vulnerabilities

In this subchapter, we answer the three aforementioned questions by considering two potential

threats, IoT masquerading and IoT use scenario abuse. We validate vulnerabilities and devise proof-

of-concept attacks for each threat, as well as evaluate a long-term IoT attack to show real-world

impact.

4.4.1 IoT Masquerading

We first introduce three vulnerabilities and then devise an IoT masquerading attack.

4.4.1.1 Can Non-IoT Devices Masquerade as IoT Ones?

The answer is yes, due to two vulnerabilities discovered within the 3GPP security design.

Each of vulnerabilities corresponds to a lack of mutual authentication between two parties. One

is between IoT SIM cards and mobile devices, so an IoT SIM card can be used for a non-IoT
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device (V1). The other is between mobile devices and the infrastructure, so the latter is unable to

correctly identify IoT and non-IoT devices (V2). These two vulnerabilities allow non-IoT devices

to masquerade as IoT devices without being detected by SIM cards or the infrastructure.

The cellular authentication solely relies on the Authentication and Key Agreement (AKA)

procedure [15], where users and the infrastructure are mutually authenticated. Each user is identified

by his/her International Mobile Subscriber Identity (IMSI) and authenticated based on a secret key.

Both the IMSI and the secret key are stored in the SIM card. However, neither the SIM card

nor the infrastructure authenticates the used device; the former does not differentiate types of

mobile devices in its operation, whereas the latter identifies a connected device purely based on its

reported information, which may be fake without the device authentication and thus lead to wrong

identification. By current design, the non-IoT/IoT data plan to which each user subscribes is bound

to the IMSI or the SIM card, so the used device is not restricted by the subscribed plan. That is, an

IoT SIM card, which is associated with an IoT data plan, can also work on non-IoT devices. This

allows the IoT masquerade to be possible. Moreover, differential non-IoT/IoT charges, where the

IoT plans are cheaper, can be a strong incentive for the masquerade.

Validation. We first validate V1 by showing that IoT SIM cards work for non-IoT devices. We

purchase IoT SIM cards used for CAT-4, CAT-1, and CAT-M1 IoT devices. We insert each of

them into our test smartphones, properly configure their networking settings, and then restart the

phones. Our experimental results, collected from OP-I and OP-II, show that all the smartphones

successfully obtain IP addresses from the cellular networks and access the Internet without any

issues.

We next validate V2 by examining whether the infrastructure can be fooled into thinking

that a smartphone is an IoT device. Initially, we discover that the OP-I and OP-II networks can

correctly identify connected non-IoT or IoT devices, and show the device information on their web

pages. We then analyze the control-plane protocol traces by using cellular diagnosis tools (e.g.,

MobileInsight [52]). It is observed that the infrastructure identifies a connected device based on the

IMEI (International Mobile Equipment Identity) carried in its IDENTITY RESPONSEmessage [15].
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IMEI of LG Watch Urbane 2nd

(a) Replacing the smartphone’s IMEI with an IoT device’s using the EFS tool [104].

(b) Confirming an IoT device’s IMEI on the smartphone.

(c) A snapshot of the OP-II’s web page shows that the smartphone is recognized as an IoT device, a
smartwatch.

Figure 4.1 Making IMEI spoofing on a smartphone (LG G3) to masquerade as an IoT device (LG
Watch Urbane 2nd).

When connecting to the network, the device reports its IMEI in the response to the message of

IDENTITY REQUEST. This implies that if the device reports a fake IMEI, the spoofing can happen.

We then investigate how to make a mobile device report a fake IMEI. The IMEI is stored in the

non-volatile memory of the device modem, and the memory can be modified by some tools (e.g.,
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Figure 4.2 When the IMEI spoofing on the smartphone lasts for one month, OP-II still recognizes
it as an IoT device, the LG smartwatch, with a $5 charge as the IoT device access fee.

EFS Professional [104]). We here show that the IMEI of a smartphone, LG G3, can be spoofed as

that of an IoT device, LG Watch Urbane 2nd, in the OP-II network; the same result is also observed

in OP-I. The validation consists of four steps. First, we connect to the smartphone’s modem via

the EFS tool [104] and replace its IMEI with the IoT device’s IMEI (i.e., 353649071060XXX), as

shown in Figure 4.1a. Second, we confirm the IMEI replacement on the smartphone as shown in

Figure 4.1b. Third, we reboot the smartphone to let it report the spoofed IMEI to the network.

We then confirm its IMEI change on OP-II’s web page, as shown in Figure 4.1c. It shows that

the smartphone has been recognized as the IoT device. Last, we keep the IMEI spoofing on the

smartphone for a monthly billing cycle and discover that OP-II does not detect this abuse but still

charges the IoT device’s access fee (e.g.„ $5), as shown in Figure 4.2. From an extended experiment

with eight months (the results are elaborated on in Chapter 4.4.3), we find that the operator cannot

detect the spoofing, even though several hundred megabytes of mobile data are consumed on the

smartphone spoofing the IMEI of the IoT device.

Security implications. As new cellular IoT service charging demands arise, current security

mechanisms for cellular IoT support in the 3GPP standards are not sufficient to secure carriers. We

believe that addressing V1 and V2 requires revisiting these security mechanisms.

4.4.1.2 Any Limitations Imposed on IoT Data Services?

The answer is expected to be yes when the infrastructure offers differential data services to

IoT and non-IoT devices. However, this is not the case for the tested carriers. We discover that a
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Figure 4.3 The uplink and downlink TCP throughput at the 10𝑡ℎ, 50𝑡ℎ, and 90𝑡ℎ percentiles for an
IoT device (i.e., LG Watch Urbane 2nd), a smartphone (i.e., Samsung S5), and the smartphone with
the spoofing of the IoT device’s IMEI in the OP-I and OP-II networks.

non-IoT device masquerading as an IoT device can still retain the same data service quality while

paying less (V3). This allows adversaries to take advantage of the carriers by purchasing cheaper

IoT device access for their non-IoT devices.

Validation. We validate this vulnerability by using iPerf to examine TCP throughput performance

on three devices: (1) an IoT device (i.e., LG Watch Urbane 2nd) equipped with an IoT SIM card,

(2) a smartphone (i.e., Samsung S5) with a non-IoT SIM card, and (3) the smartphone spoofing

the IoT device’s IMEI with an IoT SIM card. We consider both uplink and downlink cases and

test each case for 10 runs. Figure 4.3 shows the 10𝑡ℎ, 50𝑡ℎ, and 90𝑡ℎ percentiles of the throughput

results of those three devices in the OP-I and OP-II networks. We observe that all the three devices

have comparable performance on the uplink and downlink throughput in each operator’s network.

For example, in the OP-I network, the median uplink/downlink throughout speeds for the IoT

device, the smartphone, and the smartphone masquerading as an IoT device are 5.73/16.82 Mbps,

5.91/17.15 Mbps, 5.59/16.85 Mbps, respectively. This shows that the networks do not enforce

any noticeable restrictions on IoT devices in terms of data transmission rates. Besides, we do not

observe that any restrictions are imposed on IoT data usage volumes.
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Operator Device Data Voice Text Dedicated Charge
Service Service Service number? (per month)

OP-I

Smartphone √ √ √ √
$10w/ spoofing

Smartwatch
√ √ √ √

$10
Smartphone

√ √ √ √
$20

OP-II
Smartphone √ √ √ √

$5w/ spoofing
Smartwatch

√ √ √ × $5
Smartphone

√ √ √ √
$20

Table 4.2 Offered services and charges vary with the devices with or without the IMEI spoofing in
the OP-I and OP-II networks based on limited data plans.

Security implications. Seemingly, carriers just make a simple operational mistake, but this may

not be the case. This vulnerability can be attributed to two possible reasons. First, carriers may

not have incentives to restrict IoT data services for IoT devices due to its limited benefits. For

example, for limited IoT data plan users, the more data that IoT users use, the more profit that

carriers can make. Second, carriers may impose service restrictions based on the theoretical

maximum uplink and downlink rates of IoT device categories (e.g., CAT-4: 50Mbps/150Mbps,

CAT-1: 5Mbps/10Mbps), but they do not take any effect. This is because wireless resources are

shared by multiple devices and the theoretical maximum rates are usually much higher than the

actual rates available to the networks.

4.4.1.3 A Proof-of-concept Attack

We devise an IoT masquerading attack based on the vulnerabilities V1, V2, and V3. We

consider that an adversary has subscribed to a cellular network service with a limited or unlimited

data plan. (S)he adds a smartwatch to his/her account and obtains its IoT SIM card from the

carrier. Afterwards, (s)he can start to launch the attack by letting his/her smartphone masquerade

as the smartwatch based on the IMEI spoofing. We test three main cellular network services on

the smartphone: data, voice and text. The results are summarized in Table 4.2. With the attack

smartphone, the adversary can make voice calls, send/receive short messages and access the Internet

at 10 different locations, but only pay the IoT device access fee. The adversary can save 50% and

75% of the smartphone device access charges in the OP-I and OP-II networks, respectively. Note
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that OP-II does not assign a dedicated phone number to the smartwatch for voice and text services;

the user has to use the phone number belonging to the paired smartphone’s SIM card. However,

the attack smartphone can obtain a dedicated phone number. It may be because OP-II prevents the

IoT SIM card from registering the VoLTE system on the smartwatch, but it is not prohibited on the

smartphone.

4.4.2 IoT Use Scenario Abuse

We next investigate whether IoT devices can work in unanticipated use scenarios. Current

carriers offer cheaper device access fees to some IoT devices due to their limited use scenarios.

However, we discover the fourth vulnerability (V4) that those IoT devices may not be restricted to

their anticipated use scenarios. We validate this vulnerability on two different types of popular IoT

devices: car-connected mobile hotspots and smartwatches.

4.4.2.1 Car-connected Hotspots: Not Limited to only Vehicles

Car-connected hotspots are, by default, designed for using only inside vehicles. However, when

they are fully controlled by adversaries, some malicious manipulations can be performed to bypass

the usage restriction. We discover that the adversary may turn these car-connected hotpots into

common mobile hotspots, which offer mobile data services.

We observe that two hardware features of car-connected hotspots restrict their usage to only

inside operating vehicles. First, its power supply is from the diagnostic connector of OBD-II

(On-Board Diagnostics II), which is a system for the status report of various vehicle subsystems.

The OBD-II connector is not used for other non-vehicle systems, so the car-connected hotspot is

hardly powered on outside vehicles.

Second, the hotspot automatically enters a sleep mode after the vehicle has been turned off for

a period of time. The hotspot detects whether the vehicle is operating based on voltage changes

of the OBD-II connector. According to the hotspot’s specification, it operates normally when the

voltage of the OBD-II connector is higher than 11.7 V. The voltage of the OBD-II connector can

increase up to 15.5 V at the moment that the vehicle engine is ignited. The device disables its

hotspot function and enters the sleep mode, when the voltage of the OBD-II connector drops to
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11.7 V and 9 V, respectively. Once the adversary makes a power supply with the OBD-II connector

interface and then sets its voltage to be higher than 11.7 V, the device can be turned into a common

portable hotspot.

Validation We validate this vulnerability by testing whether a car-connected hotspot can continue

to be used outside vehicles with our customized power supply. To keep the device’s hotspot function

active, the power supply is made to output 12 V from a power bank through a voltage regulator.

We then connect the power bank’s ground and power pins to the fourth and sixteenth pins of the

OBD-II connector, respectively, via the regulator. After powering on the hotspot, we connect a

Wi-Fi client to the hotspot and use the client to keep generating traffic to/from the Internet using

ping. We run the test for a whole day, and the traffic is not interrupted.

4.4.2.2 Smartwatches: Not Constrained by Hardware or Software

Smartwatches with hardware constraints (e.g., small screen) are mainly developed to assist

mobile users in getting voice/text services, simple data services (e.g., voice assistants), and no-

tifications from their paired smartphones. Therefore, by design, there is only a small number

of smartwatch applications, and their functions are more limited than smartphone applications.

For example, Google wearable devices are not allowed to install standalone Gmail (e.g., working

without paired smartphones), Chrome browser, and Youtube. However, these hardware/software

constraints are not sufficient to restrict the real-world usage of the smartwatch. Specifically, the

smartwatch can be turned into a mobile data gateway, which forwards data packets between a Wi-Fi

device and the Internet, to provide Internet access over Wi-Fi. Note that the Wi-Fi device connects

to the smartwatch via Wi-Fi and the smartwatch connects to the Internet via the cellular network.

Validation. We validate this vulnerability by examining whether the network forbids a smartphone’s

data packets which are forwarded by the smartwatch. We develop a data forwarding application on

the smartwatch. It first receives the smartphone’s data packets from the Wi-Fi interface and sends

them to our external UDP server on the Internet through the cellular network interface. In our

test, the smartphone transmits about 500 MB traffic to the forwarding smartwatch. Our experiment

shows that all the transmitted packets are received by our Internet server. No restrictions from the
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OP-I and OP-II networks are observed for this usage.

Security implications. This vulnerability can be attributed to two potential issues. First, there are

various cellular IoT use scenarios, so it is challenging for the infrastructure to identify all possible

use scenarios. Second, even though carriers deploy some constraints or security mechanisms on

the IoT devices, they can be easily bypassed at low cost. For example, car-connected devices have

to be powered on via the OBD-II interface, and smartwatch users are not allowed to install the

applications that smartphone users can install.

4.4.2.3 Two Proof-of-concept Attacks

We devise two proof-of-concept attacks to assess the real-world damages of the vulnerability

V4.

Car-connected IoT abuse: portable mobile hotspot In this attack, we turn a car-connected IoT

hotspot (i.e., Mobley) into a mobile hotspot and then compare its performance with an ordinary

mobile hotspot (i.e., Velocity). We here present the results obtained in the OP-I network, but skip

that of OP-II because of similar phenomena. We connect a laptop with an 802.11ac Wi-Fi card

to each of those two hotspots, Mobley and Velocity, and gauge its uplink/downlink performance.

In the test, the hotspots are located at the same location, and the laptop is placed at six different

locations, which are spaced at 2-meter intervals, for a total range of 10 meters (i.e., S1-S6). S1 is

the closest to the hotspot location, whereas S6 is the farthest from the hotspots.

We test uplink and downlink throughput for 10 runs in each case and plot 10𝑡ℎ, 50𝑡ℎ, and

90𝑡ℎ percentiles of the throughput results in Figure 4.4. We observe that the two hotspots have

comparable performance for both uplink and downlink throughput at each location. Specifically,

the differences between their median throughput results are within only 5.62% and 2.03% for all the

cases in the OP-I and OP-II networks respectively. Neither of the hotspots always outperforms the

other. Take the OP-I’s limited data plans as an example for the gain estimation of this attack. $10

and $20 device access fees are charged for the car-connected and normal mobile hotspots. With

this attack, the adversary can gain a hotspot service for 50% cheaper. The gains can vary with

different carriers and data plans, as shown in Table 2.2.
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Figure 4.4 The uplink/downlink TCP throughput results at the 10𝑡ℎ, 50𝑡ℎ, and 90𝑡ℎ percentiles are
plotted for an IoT-masqueraded hotspot (i.e., Mobley) and a normal mobile hotspot (i.e., Velocity)
in the OP-I network, given a laptop client placed at six indoor locations in our campus.

Wearable IoT abuse: mobile data gateway We devise an attack that abuses a wearable IoT,

smartwatch, to be a mobile data gateway, which can provide a local area network with Internet

access through the mobile data service. This IoT-masqueraded gateway can cooperate with a Wi-Fi

AP to supply Internet access to Wi-Fi devices. We enable it to work for all the applications on

Wi-Fi devices by taking a VPN approach.

Figure 4.5 shows the network architecture that turns a smartwatch to a mobile data gateway.

It consists of four components: (1) a VPN server deployed on the Internet, (2) an IoT device

supporting both Wi-Fi and cellular networks (e.g., LG Watch Urbane and Samsung Gear S3), (3)

a Wi-Fi AP, and (4) a VPN client installed on the Wi-Fi device (here, a smartphone). Both the

smartphone and the smartwatch connect to the AP. The VPN client on the smartphone establishes

a VPN tunnel with the VPN server, and the smartwatch forwards data between the VPN client and

the VPN server through its Wi-Fi and LTE interfaces.

Our experimental results show that the smartphone’s applications can access the Internet and

work as usual without any changes. Figure 4.6 shows the smartwatch’s data usage. The 91% traffic

volume consumed by the web and applications is mostly used by the application that forwards data

between the Wi-Fi and LTE networks. We further examine the smartwatch’s forwarding bandwidth
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Figure 4.5 The network architecture that turns a smartwatch to a mobile data gateway based on a
VPN approach.

Figure 4.6 The data usage of the smartwatch that masquerades as a mobile gateway. The 91% traffic
volume of the total 665 MB, which is consumed by the web and applications, is mostly used by the
gateway application.

based on TCP traffic using iPerf. It is observed that the median of the TCP throughput over 10

runs can achieve 4.1 Mbps. Note that this attack can work without the Wi-Fi AP in two cases. First,

the IoT device supports the Wi-Fi direct technology, which enables Wi-Fi devices to connect to each

other directly. Second, the Wi-Fi device can run the VPN and Wi-Fi AP functions simultaneously.

As a result, this attack allows the adversary to pay 50% and 75% less in the OP-I and OP-II networks,

respectively. Both operators are not capable of detecting or preventing this attack.

4.4.3 Long-term IoT Attack Evaluation

We conduct a long-term attack evaluation on the IoT masquerading for eight months, in order

to examine whether carriers deploy any anomaly detection mechanism for IoT attacks. In the

experiment, we subscribe to a 2 GB data plan and then add a smartphone (i.e., Samsung J7) and

61



 0

 300

 600

 900
T

ra
ff

ic
/M

B

IoT-spoofing phone Phone

 0

 50

 100

R
a

ti
o

/%

 5
 10
 15
 20

1 2 3 4 5 6 7 8

F
e

e
/$

Month

Figure 4.7 An 8-month evaluation of the IoT masquerading attack: a smartphone and an IoT device
which another smartphone masquerades as (i.e., IoT-spoofing phone) subscribe to the same 2 GB
mobile data plan. Top: monthly data usage volumes; middle: the ratio of the IoT-spoofing phone’s
data usage to the normal phone’s; bottom: monthly device access fees from OP-II.

an IoT device (i.e., LG Watch Urbane 2nd) to this plan. Their device access fees are $20 and $5,

respectively. We use another smartphone (i.e., Samsung S5) to masquerade as the IoT device (i.e.,

LG Watch Urbane 2nd) with IMEI spoofing. During the 8-month duration, the IoT-spoofing phone

is scheduled to access the Internet at least once every day.

Figure 4.7 shows monthly data usage volumes for both the smartphone and the IoT-spoofing

phone (top), monthly usage ratios (the ratio of the data usage of the IoT-spoofing phone to that of

the normal smartphone) (middle), and device access fees charged by carriers (bottom). We make

three observations. First, the data usage volumes of the IoT-spoofing phone range from 50 MB to

650 MB, whereas those of the normal smartphone are from 115 MB to more than 900 MB. Second,

the ratio of the data usage of the IoT-spoofing phone to the normal smartphone ranges from 3.36% to

80.87%. Third, the tested carrier keeps treating the IoT-spoofing phone as an IoT device according

to its persistent IoT device access fee of $5. This result shows that current anomaly detection

mechanisms are not able to detect the attack, even though the IoT-spoofing phone’s monthly usage

volume can be as high as 650 MB or the ratio of its usage to that of the normal smartphone is

80.87%.
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4.5 Attack Incentive Modeling

In this subchapter, we model mobile user bills and analyze the adversary’s maximum gain, as

well as give three attack instances to showcase real-world impact.

4.5.1 Mobile User Bills Modeling

Suppose that there are 𝑠 different monthly service plans from an operator, and a mobile user has

a subscribed service plan 𝑗 , monthly data usage 𝑢, and 𝑛𝑡 devices from each device type 𝑡. Given 𝑖

different device types, the number of devices owned by the user can be represented by Σ𝑖
𝑡=1𝑛𝑡 . The

user’s monthly bill can thus be modeled as follows:

𝐵𝑖𝑙𝑙 𝑗 (𝑢, 𝑛1, · · · , 𝑛𝑖) = Σ𝑖𝑡=1𝑛𝑡 · 𝛼 𝑗 ,𝑡+

𝑚𝑎𝑥{𝛽 𝑗 ,1, 𝛽 𝑗 ,2 · 𝑢 · I(𝑢 ≤ 𝑐𝑎𝑝 𝑗 ), 𝛽 𝑗 ,2 · 𝑐𝑎𝑝 𝑗 · I(𝑢 > 𝑐𝑎𝑝 𝑗 )}+

𝛽 𝑗 ,3 · (𝑢 − 𝑐𝑎𝑝 𝑗 ) · 𝐼 (𝑢 > 𝑐𝑎𝑝 𝑗 ),

where 𝛼 𝑗 ,𝑡 is the device access fee of device type 𝑡 in plan 𝑗 , 𝛽 𝑗 ,1 is the minimal data service fee in

plan 𝑗 (e.g., $35 in the OP-II’s 2GB plan), 𝛽 𝑗 ,2 is the unit price when 𝑢 is lower than 𝑐𝑎𝑝 𝑗 , which

is the maximum data usage for the unit price 𝛽 𝑗 ,2, 𝛽 𝑗 ,3 is the unit price after 𝑢 exceeds 𝑐𝑎𝑝 𝑗 , and

𝐼 (𝑥 > 𝑦) is a boolean value (0 or 1) indicating if 𝑥 is larger than 𝑦.

Maximal attack gain. Suppose that the adversary uses a service plan 𝑗 before launching an attack.

To maximize the attack gain, the adversary can choose the best service plan for his overall usage

and the best device type to masquerade as for each device. The gain can be represented as follows:

𝐵𝑖𝑙𝑙 𝑗 (𝑢, 𝑛1, · · · , 𝑛𝑖) − 𝑚𝑖𝑛{𝐵𝑖𝑙𝑙𝑘 (𝑢, 𝑛′1, · · · , 𝑛
′
𝑖)}

where Σ𝑖
𝑡=1𝑛𝑡 = Σ𝑖

𝑡=1𝑛
′
𝑡 and 𝑘 = 1, · · · , 𝑠. By considering all the possible service plans and the

charges of all the device types, the adversary can identify an attack policy that maximizes the gain.

4.5.2 Three Attack Instances

Example I: light usage (Saving:$70→$14). Bob usually has free Wi-Fi access and thus requires

only small volume of mobile data service on his smartphone. Assume that the required volume

is less than 1 GB per year. According to OP-I’s monthly data plans, he needs to subscribe to at
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least a 3 GB data plan with a monthly service fee of $50 and adds his smartphone to the plan with

a monthly device access fee of $20. For a one-year time period, he should pay $840 ($70×12).

Based on the analysis of maximum gain, the best attack policy is to purchase a monthly 100 MB IoT

CAT-1/CAT-M1 plan, which has a monthly service fee $14, and then launch the IoT masquerading

attack on his smartphone. The attack can reduce his annual bill from $840 to $168 , offering an

80% saving.

Example II: moderate usage (Saving:$70→$22). Bob usually uses around 3 GB mobile data

per month. The OP-I’s 3 GB monthly data plan can be a perfect match for him. The monthly fee

is $70 including $50 service access and $20 device access fees. The best attack policy for him

is to purchase a 3 GB monthly IoT data plan, which only charges $22, and then launch the IoT

masquerading attack on his smartphone. His monthly bill can have a 68.5% reduction, from $70 to

$22.

Example III: heavy usage (Saving:$160→$90). Bob and his three family members together use

more than 8 GB mobile data per month. The OP-II’s unlimited data plan is a good match for

them. With four smartphone lines, a monthly fee $160 is charged for the unlimited data plan. By

launching the IoT masquerading attack, the cost can be reduced to $90, where $75 comes from

one smartphone line in the unlimited plan and $15 ($5×3) comes from three smartwatch lines that

can be used to masquerade for their three smartphones. This results in a 43.75% saving for Bob’s

family; on the other hand, there is a 43.75% revenue loss for OP-II on this account.

4.6 Difficulties Secure Cellular IoT Service Charging

To secure cellular IoT service charging, the network infrastructure needs to accurately identify

IoT devices and use scenarios. However, this can be challenging in practice. We next analyze

several potential and existing solutions.

4.6.1 Identifying Devices is Challenging

Current cellular networks identify a device based on the IMEI reported by the device itself.

When the adversary has full control over the device, it is challenging to prevent its IMEI from being

altered. We next introduce four possible remedies for the device identification and discuss their
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drawbacks.

Profiling-based device identification. Cellular IoT devices usually have limited software/hardware

capabilities, so the usage volume of their mobile data services can be expected to be low. For

example, due to the smartwatch’s small display, its Android OS does not support standalone

browser and Youtube applications. This can prevent IoT devices, such as smartwatches, from

consuming as much data traffic as smartphones. The infrastructure may thus be able to identify the

IoT devices based on such low-traffic profiles.

However, this approach has two potential technical issues. First, data usage patterns can vary

with users. Given that an IoT device’s daily usage volume exceeds a specified threshold, which may

be determined based on some statistical usage results, the carrier is still unable to ensure whether

the IoT masquerading attack is indeed happening. Second, various IoT devices can have different

data usage patterns. Profiling all IoT device types can lead to non-negligible overhead for carriers

since there will be more and more new IoT devices in the near future.

Hardware-based device identification. Potential hardware-based solutions include the ARM

TrustZone and the hardware-based public-key cryptography. The ARM TrustZone has been sup-

ported by many popular Cortex-A class processors, crypto chips and secure elements with tamper-

proof blocks. Carriers can leverage it to protect the IMEI from being modified by the adversary.

However, not all the user devices support this feature. The adversary can easily bypass the protec-

tion by using the mobile devices developed on top of the SDR (Software Defined Radio) platforms,

which lack the ARM TrustZone support.

With public-key cryptography, each mobile device needs to be assigned a key pair of private

and public keys, and an X.509 certificate which is signed by a CA (Certification Authority).

The infrastructure can identify each device based on its response to a challenge. Nevertheless, this

approach has two major issues. First, not all of IoT devices can support public-key cryptography due

to resource constraints (e.g., there is no enough storage space to install security libraries). Second,

enabling the public-key cryptography support for the device identification requires modifications

to current cellular network standards.
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(a) Sony C6806 (b) Samsung S5 (c) Samsung S7

(d) Nexus 6P (e) LG G3 (f) LG Watch

Figure 4.8 QPSK constellation diagrams collected on six mobile devices.

RF fingerprint-based device identification. Another possible solution is to identify devices based

on their different RF fingerprints. The differences come from device types and the imperfections

of device hardware. This has been proposed to address some security issues such as intrusion

detection [105], access control [106], wormhole detection [107], and to improve inter-cellular

security [108], to name a few. To assess the effectiveness of this approach, we conduct experiments

using the OpenAirInterface (OAI) platform, a software-defined 4G LTE infrastructure [109]. We

collect the RF signals transmitted by various mobile devices that connect to the OAI eNodeB. The

experiment starts after the tested device is powered on and stops after the RRC (radio resource

control) connection between the device and the OAI eNodeB is established. Note that we take two

measures to prevent the experiment from affecting other normal mobile users. First, we configure

the eNodeB to use the LTE band 7, which is not used by carriers in North America. Second, we

put the OAI platform and the mobile devices in a RF shielded enclosure box. Figure 4.8 shows

the QPSK (Quadrature Phase-Shift Keying) constellation diagrams of six mobile devices including

IoT and non-IoT devices. Seemingly, we can identify these devices by analyzing their constellation

diagrams, especially for the LG G3, LG Watch Urbane 2nd and Sony C6806. However, this

approach is not scalable as it requires the eNodeB to collect all the IoT devices’ RF fingerprints.
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Tethering-detection-based device identification. Tethering detection has been deployed by oper-

ators to detect if users provide their PCs with Internet access by enabling Wi-Fi or USB tethering

on their smartphones. However, it still requires significant modifications since it is designed for

smartphones rather than IoT devices, and some studies have reported that they can be bypassed

(e.g., faking OS signatures).

4.6.2 Identifying Use Scenarios is Challenging

The network is capable of identifying abnormal use scenarios of an IoT device to some extent.

Take car-connected hotspots as an example. The network has cell-level mobility information of

each hotspot, and can keep track of its mobility patterns. However, it is still difficult to identify

whether the hotspot is being used inside a vehicle or not. Even if the hotspot keeps staying within

a cell for a long time period, it is not necessarily outside the vehicle. It may be due to a serious

traffic jam. With the proliferation of cellular IoT devices in the near future, there may be more

unprecedented IoT use scenarios. It can be very challenging for the network infrastructure to

identify the use scenario of each device.

4.7 Solution

We seek for a standard-compliant solution that can rapidly mitigate the IoT attacks. We

thus consider eliminating V3, and it can also mitigates the attack incentives on the other three

vulnerabilities. We leave the solutions for V1, V2, and V4, which require time-consuming standard

modifications and cannot be done shortly, to the future design. Specifically, two new mutual

authentication mechanisms are required to address V1 and V2: one is between an IoT SIM card

and an IoT device, as well as the other is between the device and the infrastructure. The mutual

authentication based on the public-key cryptography can be a potential solution option, but it

requires modifications to 3GPP standards, which is time-consuming and cannot be done in a short

time. To address V4, a new security mechanism shall be introduced to confine IoT devices to their

specific use scenarios. It not only requires standard support but also is challenging for carriers.

To this end, we propose an anti-abuse service model to address V3. This can also largely

mitigate the attack incentives on other vulnerabilities. Specifically, our approach ensures that no
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IoT users can get better service quality than non-IoT users when the IoT users pay less, which

does not require any modifications to SIM cards, mobile devices, and cellular network standards

but minimal support from the infrastructure. Moreover, our model is scalable to support various

IoT devices and use scenarios and achieves both data service fairness and spectrum utilization

efficiency. We finally implement and evaluate it using the OAI platform.

4.7.1 Anti-Abuse Service Model

The major idea of this service model is to serve each cellular-connected device with service

quality based on its cellular IoT technology category and the device access fee paid by its owner.

This can prevent different charges on the same quality of services that the adversary can abuse. Our

model consists of two components: operational IoT service consistency and charge-aware service

access control. They together ensure that no IoT users can get better service quality than non-IoT

users when the IoT users pay less. Note that this assurance cannot be achieved by simple IoT service

throttle mechanisms (e.g., limiting data rates to 1 Mbps), since the available data rates of all the

devices can be smaller than the IoT rate limits in practice.

4.7.1.1 Operational IoT Service Consistency

With distinct cellular IoT technologies, IoT devices have different capabilities in terms of

theoretical maximum uplink/downlink speed. For example, for an IoT device supporting CAT-M1,

the theoretical maximum uplink/downlink speed is 1 Mbps/1 Mbps, whereas for an IoT device

supporting CAT-1, the theoretical maximum uplink/downlink speed is 5 Mbps/10 Mbps. However,

in practice, different entities including IoT devices, SIM cards, and the network infrastructure do

not operate in consistency with the cellular IoT profiles. That is, the network may not restrict

the performance of the IoT SIM cards based on their profiles. This leads to the gains which the

adversary can get by the IoT masquerading. We thus propose that all the parties in the cellular

ecosystem shall be consistent with the support of the IoT profiles. For example, when an IoT user

subscribes to an IoT sim card for his/her CAT-1 IoT device, the maximum uplink/downlink speed

of the CAT-1 IoT SIM card shall be limited to 5 Mbps/10 Mbps by the network no matter what

device is used for the SIM card. Therefore, even if the adversary performs the IoT masquerading on
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a non-IoT device using the IoT SIM card, the device can get only 10 Mbps as its maximum speed.

This service consistency mechanism contains two major tasks in the core network operation.

First, the network infrastructure should maintain maximum uplink/downlink speed information for

each IoT service subscription based on its subscribed cellular IoT technology category. Second,

it should apply the maximum speed to the EPS bearer context activation procedure [15], which is

initiated when an IoT device accesses the IoT service with which the SIM card is associated.

4.7.1.2 Charge-aware Service Access Control

Due to fewer resources needed for IoT services, carriers inevitably provide them with cheaper

charge plans than conventional non-IoT plans. However, they do not restrict the IoT services from

the network but only rely on the inherent constraints of IoT devices. This is why the adversary

can abuse the IoT devices to have non-IoT services with cheaper charges. We argue that these

differential charges shall be reflected in the service quality which includes traffic priority and

maximum transmission rate. This causes the gaps between IoT and non-IoT services to correlate

with their charges, thereby reducing attack incentives. We next elaborate on how to correlate the

charges with the priority and the maximum rate.

In the LTE network, there are 9 priority levels, which are assigned to different types of traf-

fic [110]. The level number decreases with the increase of priority. For example, the signaling

and voice traffic flows of VoLTE (Voice over LTE) respectively have levels 5 and 1, whereas the

flows of mobile data services on non-IoT devices are usually given the level 9, which is the lowest

priority. Since IoT services are cheaper, their traffic flows should have lower priority than level 9.

We then propose to use the level ranging from 9 to 10 to set priority for IoT services and correlate

it to their differential charges.

The priority value for an device 𝑋 can be formulated as:

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑋 = 10.0 − 𝐶ℎ𝑎𝑟𝑔𝑒𝑋

𝐶ℎ𝑎𝑟𝑔𝑒𝐻𝑖𝑔ℎ𝑒𝑠𝑡
, (4.1)

where𝐶ℎ𝑎𝑟𝑔𝑒𝑋 is the device access fee of device X and𝐶ℎ𝑎𝑟𝑔𝑒𝐻𝑖𝑔ℎ𝑒𝑠𝑡 is the highest device access

fee among the devices in the same type of data plan (e.g., limited or unlimited data plan) in the same
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network. For example, in a 2GB limited data plan, $20 and $5 are charged for a smartphone and an

LG smartwatch, respectively. Their priority levels should be set to 9 and 9.75 (i.e., 10.0− $5/$20).

The cheaper a device’s access fee a user pays, the lower the priority of device traffic flows (s)he can

receive. Note that we elaborate on how to set various priority levels in Chapter 4.7.2.

We next restrict maximum uplink/downlink transmission rates for IoT devices. We determine

the maximum transmission rate of each device by considering both its priority value and the

maximum rate given by the operational IoT service consistency. Assume that the maximum rate

for non-IoT devices in the same type of data plan is 𝑁𝑜𝑛𝐼𝑜𝑇𝑀𝑎𝑥𝑅𝑎𝑡𝑒 and the maximum IoT rate

from the service consistency is 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑀𝑎𝑥𝑅𝑎𝑡𝑒𝑋 . Then the maximum rate for the IoT device 𝑋 is

formulated as:

𝑀𝑎𝑥𝑅𝑎𝑡𝑒𝑋 = 𝑀𝑖𝑛(𝑁𝑜𝑛𝐼𝑜𝑇𝑀𝑎𝑥𝑅𝑎𝑡𝑒 × (10 − 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑋),

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑀𝑎𝑥𝑅𝑎𝑡𝑒𝑋).
(4.2)

Take the LG smartwatch as an example. Since its device access fee is $5 and the smartphone’s is

$20 in the OP-II network, its service priority and maximum rate are respectively 9.75 and 25% of

the maximum rate that the smartphone can receive when 𝑁𝑜𝑛𝐼𝑜𝑇𝑀𝑎𝑥𝑅𝑎𝑡𝑒× 0.25 is smaller than

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑀𝑎𝑥𝑅𝑎𝑡𝑒𝑤𝑎𝑡𝑐ℎ.

4.7.1.3 Computational Complexity Analysis

We next analyze computational complexity of the operational IoT service consistency and the

charge-aware service control. We consider the time complexity of associating a new IoT service

subscription with its transmission capability. After the association, the network can easily apply the

transmission capability to an IoT device based on its SIM profile when it attaches to the network.

In the analysis, we assume that (1) the GSMA’s and operators’ IMEI and SIM card databases

are maintained based on the B+ tree [111] (B+ tree is a common data structure used by database

systems, such as mySQL), (2) the time complexity of performing an arithmetic operation, such as

subtraction, multiplication, division, is O(1), and (3) the time complexity of reading/writing an

item in GSMA or operators’ databases is O(1).

Operational IoT service consistency: Making the service consistent consists of three main steps.
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First, the network obtains the information of cellular IoT technologies that the device can support

based on its IMEI, which is collected from the device owner. It can be queried from the GSMA’s

global central IMEI database (https://imeidb.gsma.com), which stores all the IMEIs with

device profiles, such as manufacturers and software/hardware capabilities. The time complexity of

the search operation on a B+ tree database is O(log 𝑛) [111], where n is the number of global mobile

devices stored in GSMA’s IMEI database. Second, the network identifies the theoretical maximum

uplink/downlink speed of the supported IoT technologies. It takes O(𝛼), where 𝛼 is the number

of various cellular IoT technologies. Third, the network associates the device’s IoT SIM card with

the transmission capability, and adds it into the SIM card database. The time complexity of a B+

database insertion is O(log 𝛽), where 𝛽 is the number of active SIM cards stored in the operator’s

SIM card database. In summary, the total time complexity is O(log 𝑛) + O(𝛼) + O(log 𝛽). Since

the time complexity related to the number of global mobile devices can dominate in practice, the

time complexity for operational IoT service consistently mechanism can be reduced to O(log 𝑛).

Charge-aware service access control: This module takes three major steps to add a new IoT

service subscription. First, it obtains the highest charge among all the devices in the same type of

data plans. The time complexity is O(𝛽′), where 𝛽′ is the number of active SIM cards in the type of

data plan to which the IoT user subscribes (e.g., limited data plan). Since, in practice, 𝛽′ is smaller

than 𝛽 (i.e., the number of all active SIM cards that the operator currently support), we can reduce

O(𝛽′) to O(𝛽). Second, it obtains the maximum rate of non-IoT devices. It takes only a constant

time O(1), since carriers, including OP-I and OP-II, usually apply the same maximum rate to all

non-IoT devices. Third, it calculates the IoT subscription’s priority value and then determines the

final maximum rate according to Equation 4.2. The calculation costs only a constant time O(1). In

summary, the total time complexity is O(𝛽) + O(1) + O(1) and can be reduced to O(𝛽).

Overall complexity: As a result, the overall time complexity is O(log 𝑛) + O(𝛽), where n is the

number of global mobile devices including cellular IoT devices and 𝛽 is the number of active SIM

cards that the operator currently support. In practice, 𝑛 is much larger than 𝛽.
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4.7.1.4 Merits

We next summarize three major merits of the anti-abuse service model. First, the model does

not require any modification to cellular IoT standards or devices, since its two components can be

carried out in the standard EPS bearer context activation procedure [15], which is initiated by the

infrastructure when an IoT device accesses the IoT services. Second, it can be scalable to support

a variety of devices and use scenarios, as it does not require calibration of the IoT service rates for

various devices and use scenarios. This is especially relevant with more and more devices being

introduced in the future. Third, it can achieve both data service fairness and spectrum utilization

efficiency. For the fairness, it can guarantee that no IoT devices can get better services than non-IoT

devices when the IoT owners pay less. For the efficiency, IoT devices still have chances to achieve

their maximum speeds when radio resources are sufficient (e.g., no contention comes from non-IoT

devices). Note that for limited IoT data plan users, the more data that IoT users use, the more profit

that carriers can make.

4.7.2 Implementation

We implement the anti-abuse model on the OAI platform. It consists of the 4G core network

and RAN. The 4G core network runs on a laptop (Acer Aspire E5-575-53EJ). The RAN contains

the eNodeB on a PC (Dell Inspiron 3268) and a software-defined radio (USRP B210). We mainly

modify three entities: the HSS, the MME, and the eNodeB (see Figure 2.3).

HSS. We add two types of new information in the user subscription data, which are associated

with each SIM card: user equipment profile and charge rate class. The former indicates the highest

technology category (e.g., CAT-4) that the SIM card can support. The latter represents the operator-

specific charge rate class (e.g., 25% off, 50% off) to which the SIM belongs. These are used by

the MME to determine service priority for the SIM. We add the delivery of this information to the

normal procedure that the MME has to obtain user authentication information from the HSS. The

new information entries are included in an element UE-Usage-Type of the response to the request

Authentication Information Retrieval, which is sent from the MME to the HSS.

MME. The maximum uplink/downlink rates and the service priority are set for each SIM card
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based on that new information provided by the HSS. We introduce new QoS to the EPS radio

access bearer (E-RAB). During the E-RAB Setup procedure [112], the MME specifies those

two restrictions in the fields, UE Aggregate Maximum Bit Rate [112] and E-RAB Level QoS

Parameters [112], respectively in the E-RAB Setup Request message, which is sent to the

eNodeB.

eNodeB. We support new priority levels (e.g., 9.25 and 9.5) by defining new QoS Class Identifier

(QCI) values, which are used to represent QoS classes in the LTE network. Each QCI value is an

8-bit unsigned octet. The QCI values, ranging from 128 to 254, are reserved for operator-specific

usage, so new QCI values can be added in this range. In our implementation, we define two new

priority levels 9.25 and 9.5 by adding new QCI values 129 and 130, respectively. Note that the

eNodeB in the current OAI implementation does not support full QCI functions specified by the

standards. We thus add a Service Control Entity (SCE), which is a Linux server, between the

eNodeB and the 4G core to fulfill the regulation of the maximum rates and the service priority.

4.7.3 Evaluation

We evaluate our solution based on the OAI-based prototype. We use 5 sysmoUSIM-SJS1

SIM cards, which are standard-compliant, and add their information to the HSS database. They

are configured to have five different categories (i.e., CAT-10, CAT-4, CAT-1, CAT-M1 and NB-

IoT), and classified into three priority classes: 9, 9.5, and 9.75. The device access fees of those

three priority classes are respectively 0%, 50% and 75% cheaper than non-IoT devices. These

configurations are summarized in Table 4.3. We use the iPerf tool to assess throughput of user

devices.

Operational IoT service consistency. We use one device (Nexus 6p) with different SIM cards

shown in Table 4.3 to assess the operational consistency for IoT profiles. We test both uplink

and downlink speed performance. The test on each SIM card has 10 runs with 30 seconds each.

Figure 4.9a shows maximum, median and minimum downlink/uplink speed results for the SIM

cards. There are two observations. First, the maximum throughput results of SIM1 and SIM2 are

similar (i.e., 8 Mbps and 16 Mbps for uplink and downlink, respectively), because they are bound
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SIM Highest Theoretical UE Priority Mapped
DL/UL speed Value Operator Plan

SIM1 CAT-10 (450 Mbps/150 Mbps) 9 Non-IoT, $20
SIM2 CAT-4 (150 Mbps/50 Mbps) 9.5 IoT, $10
SIM3 CAT-1 (10 Mbps/5 Mbps) 9.5 IoT, $10
SIM4 CAT-M1 (1 Mbps/1 Mbps) 9.75 IoT, $5
SIM5 NB-IoT (0.2 Mbps/0.2 Mbps) 9.75 IoT, $5

Table 4.3 The configurations of our test SIM cards.
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Figure 4.9 Maximum, median and minimum uplink/downlink speeds vary with SIM cards.

by the OAI platform’s maximum throughput, which is smaller than their maximum speeds. Second,

for the other three SIM cards, the maximum uplink/downlink speeds are 4.94 Mbps/9.96 Mbps

(SIM3), 0.99 Mbps/0.93 Mbps (SIM4) and 0.18 Mbps/0.19 Mbps (SIM5), respectively. They are

bound by the regulated maximum speeds of the cellular IoT technologies.

Charge-aware service control. We next examine whether the service priority control can take

effect in the prototype. We use two phones, Nexus 6p and Samsung S5, with SIM1 and SIM2,

respectively. Both phones have much larger maximum downlink/uplink throughput than the OAI

platform’s throughput bottleneck. The service priority levels assigned to them are respectively 9

and 9.5 based on the priority classes. We have 10 runs for each test. In each run, we generate

traffic to gauge throughput performance on them simultaneously, and examine how they affect each

other. Figure 4.9b plots maximum, median and minimum uplink/downlink results. It is observed

that the maximum throughput results for Nexux 6p with SIM1 and Samsung S5 with SIM2 are

5.03 Mbps/11.7 Mbps and 1.94 Mpbs/4.8 Mbps, respectively. It confirms that the service flows of
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Nexus 6P with priority level 9 have higher priority than those of Samsung S5.
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CHAPTER 5

MPKIX: TOWARDS MORE ACCOUNTABLE AND SECURE INTERNET
APPLICATION SERVICES VIA MOBILE NETWORKED SYSTEMS

Nowadays, both Internet Application Service (IAS) providers and users face various security threats

and legal issues. Due to the lack of reliable user information verification mechanisms, adversaries

can abuse IASs to launch various cyberattacks, such as misinformation distributing and phishing,

by using fake user accounts. IAS providers may thus inadvertently offer inappropriate content to

restricted users, thereby suffering a serious risk of prosecution under local or international laws.

Also, IAS users may suffer from nefarious ID theft attacks. In this chapter, a novel security

framework, MPKIX, designated as Mobile-assisted PKIX (Public-Key Infrastructure X.509) is

proposed. MPKIX secures both IAS providers and users by leveraging the broadly used PKIX

services and mobile networked systems. It not only provides IAS providers with a reliable user

verification mechanism while simultaneously enabling cross-IAS user privacy protection, but also

largely mitigates the possibility of ID theft attacks and benefits other involved parties, such as

cellular network operators and PKIX service providers.

This chapter makes four contributions.

• MPKIX provides IAS providers with a reliable verification mechanism of user information while

providing IAS users with cross-IAS privacy protection via the developed ppQuery mechanism.

It can prevent various cyberattacks launched by false user accounts and distribution of improper

content. Moreover, MPKIX secures IAS users from nefarious ID theft attacks without revealing

unnecessary user information to IAS providers. By conforming to existing PKIX and cellular

network standards, MPKIX has a small deployment cost. It can facilitate the delivery of accountable

and secure online application services.

• The effectiveness of the proposed MPKIX framework is demonstrated experimentally. First, the

MPKIX testbed is capable of processing up to 130,000 CSRs (Certificate Signing Requests) per

minute and producing the corresponding CA-signed PKIX user certificates. Second, the terminal-

side prototype of MPKIX is evaluated on both phones and computers. It is shown that MPKIX works
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well even on low/medium-end phone models. Third, MPKIX enables IAS providers to effectively

verify the correctness of user information within less than 1 second without compromising user

privacy. Fourth, the decision of the arbitration of a disputed IAS ID revocation/claim can be made

within 4 seconds, whereas the current practice takes several business days or weeks.

• A security analysis of the MPKIX framework is conducted. It shows that MPKIX not only offers

desirable security guarantees, such as data integrity, non-repudiation, user privacy, and account-

ability, but also defends against various attacks.

• MPKIX benefits all the involved parties. Specifically, CAs can expand their enterprise-based PKIX

credential services to billions of mobile users. cellular network operators can make profit by

answering the queries about user information from IAS providers. IAS providers can ensure the

correctness of user information so that the risk of improper content distribution and cyberat-

tacks can be minimized. IAS users have an efficient privacy-aware mechanism to claim/revoke

impersonated IDs without revealing additional user information to IAS providers.

5.1 Related Work

Side-channel inference/verification: Several methods have been proposed to infer/verify user

demographics (e.g., age, gender and education level) using side-channel information (e.g., HTTPS

packets and social network activities). Specifically, Wang et al. [113] developed a tensor factoriza-

tion based method, Dinfer, for inferring user demographic attributes from WiFi AP trajectories; Li

et al. [41] applied machine learning to analyzing campus WiFi traffic and inferred the user’s gender

and education level; Neal et al. [114] devised a multimodal-based approach to predict user gender

based on usage records of Bluetooth and Wi-Fi. However, these schemes have several common

issues. First, the error rates are not negligible (e.g., 22% in [41] and 9% [114]). The erroneous

inference results for IAS users may lead to unnecessary suspension or mistaken operations of IAS

services. Second, the above inference methods can only be applied to registered users, so they do

not protect IAS providers from numerous ID-related attacks during user registration.
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Public-key infrastructure: The PKI has been widely developed and studied in recent years.

Specifically, two studies [115, 116] conducted a large-scale analysis of current PKI-based certificate

ecosystem, whereas another study [117] used practical symbolic execution to expose noncompliance

in X.509 certificates. Moreover, Aas et al. [118] introduced an automated certificate authority, Let’s

Encrypt, for free issuance of HTTPS certificates. Wang et al. [119] distributed the trust for certificate

authenticity between the corresponding CA and the certificate owner by letting them co-sign the

certificate. Wang et al. [120] employed cache spaces on IoT devices as a large pool to store validated

certificates. Hoglund et al. [121] introduced a lightweight profile for X.509 digital certificates for

resource-constrained IoT devices. Rashid et al. [122] and Papageorgiou et al. [123] developed

a blockchain-based public key infrastructure for the decentralized issuance and management of

digital certificates.

Different from the above studies, MPKIX aims to leverage cellular networked systems to provide

IAS providers with authentic user information and protect IAS users from nefarious ID theft attacks

while preserving user privacy. Notably, this problem has not been addressed.

Mobile Connect: Mobile Connect[124] enables mobile users to log onto IAS services using mobile

phones. Specifically, when an IAS user accesses an IAS service, a cellular-network-initiated user

authentication is conducted on the user’s mobile phone. The authentication result is then returned

to the IAS server. The IAS user can choose to provide the IAS provider with nothing, Mobile

Connect identity (i.e., phone number) only, or Mobile Connect identity and other user information

(e.g., birthday).

Compared with MPKIX, Mobile Connect has the following limitations. First, an IAS user using

Mobile Connect is required to use his/her mobile phone and have cellular network connectivity

on it while accessing an IAS service; this requirement may decrease the applicability of Mobile

Connect. However, MPKIX does not have this limitation, since it supports not only computers

connecting to mobile phones with the MPKIX service but also an offline mode in which a CA-

issued ppCert and its corresponding private key are exported to other cryptographic tokens (e.g.,

Yubikey). Second, Mobile Connect does not provide users with a cross-IAS querying mechanism

78



with fine-grained privacy-preserving configuration. It allows IAS users to disclose only least

information for user verification. Third, Mobile Connect does not support a privacy-aware ID

claim/revocation mechanism, which prevents users from disclosing additional information to IAS

providers for the ID claim or revocation. However, the above two mechanisms are supported by

MPKIX.

5.2 Threat Model, Assumptions, and Security Guarantees

Threat Model: In this study, adversaries are people or organizations who aim to impersonate

IAS users, abuse IASs with false user information, or infer undisclosed information of IAS users.

Two different types of adversaries are considered, namely semi-trusted IAS providers, which are

interested in disclosing user identity and information, and network adversaries. The adversary

capabilities are assumed to be the same as the Dolev-Yao model [125]; that is, adversaries can

overhear, intercept, and synthesize any messages, but are constrained by the cryptographic methods

in use (e.g., adversaries cannot decrypt ciphered messages without corresponding cipher keys).

Moreover, we bear in mind to conduct this study in a responsible manner. All experiments and

evaluations were conducted conforming to the IRB policy; no human subjects were involved.

Assumptions: MPKIX makes the following assumptions: (1) cellular network operators follow

local/international information privacy laws (e.g., Code of Federal Regulations: Title 47 [126])

to protect user information from being leaked to other parties without user consent; and (2) the

adversaries adhere to all cryptographic assumptions; e.g., they cannot restore an original message

from its hashed value or decrypt an encrypted message without its decryption key.

Security Guarantees: MPKIX offers four security guarantees: (1) data integrity, which guarantees

accuracy and consistency of the user information provided by an IAS user to an IAS provider; (2)

non-repudiation, which guarantees that an IAS user cannot dispute authorship of the information

revealed by the user to an IAS provider; (3) user privacy, which guarantees that an IAS user can

reveal only partial user information to an IAS provider while accessing the IAS and initiating ID

claim/revocation arbitration, and moreover, the undisclosed user information cannot be inferred

(e.g., adversaries cannot correlate any IAS user with a particular individual or a small group based
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Figure 5.1 The overview of MPKIX.

the user’s information; (4) accountability, which guarantees that, given an IAS-based cyberattack,

the law enforcement authority can discover real identities of the IAS provider and user.

5.3 MPKIX Design

MPKIX enables a mobile user to securely access IAS services while preserving user privacy from

semi-trusted IAS providers and providing the IAS providers with a reliable means to verify the user

information essential to IASs. Figure 5.1 shows an overview of MPKIX containing three major ser-

vice components, namely carrier-endorsed PKIX user certificate issuance (ceIssuance), cross-IAS

privacy-preserving user information querying (ppQuery), and privacy-aware ID claim/revocation
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Category Symbol Description

ceIssuance

CMA Certificate Management Application
CMS Certificate Management Server
ppCSR Privacy-preserving Certificate Signing Request
ppCert Privacy-preserving User Certificate
𝐾𝑒𝑛𝑐 An encryption key used to encrypt data.

𝐾𝑎𝑢𝑡
An authentication key to calculate message authentication
code for integrity protection.

ppQuery

IA Anonymization factor.
𝑆 A subject attribute (e.g., name).
𝑓𝑆 The anonymization function of a given 𝑆.
𝑉𝑆 The value of a given 𝑆 (e.g., Smith).
𝑚 The number of subject attributes.
|𝐷𝐵| The number of users in the database.

𝐻𝑢,𝑖
The highest anonymization level used by user 𝑢 for the value
of 𝑆𝑖.

paClaim
𝑉 𝑐𝑙𝑎𝑖𝑚𝑒𝑟
𝑖

ID claimer’s value for 𝑆𝑖.
𝑉𝑜𝑤𝑛𝑒𝑟
𝑖

Owner’s value for 𝑆𝑖.
𝑊𝑖 The weight of the Levenshtein distance for 𝑆𝑖

Table 5.1 Summary of abbreviations, symbols, and parameters in MPKIX.

arbitration (paClaim). To enable the MPKIX service, a mobile user must apply to ceIssuance for

an MPKIX user credential including a CA-signed PKIX user certificate, where user information is

encrypted and has been verified by a cellular carrier, and a key pair of public and private keys. With

the MPKIX user credential, the user can securely access IAS servers with the support of PKIX-based

mutual authentication, which is supported by most mainstream security protocols (e.g., HTTPS,

SSL/TLS, and IPSec). To preserve user privacy, ppQuery enables IAS providers to verify the user

certificate through a cellular carrier for user authentication without decrypting user information in

the certificate. paClaim enables MPKIX users to claim/revoke an IAS ID that an adversary forges

from IAS providers without disclosing any additional user information.

We next elaborate on each of the three service components, where abbreviations, symbols, and

parameters are summarized in Table 5.1.
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Figure 5.2 MPKIX carrier-endorsed user certificate issuance.

5.3.1 ceIssuance: Carrier-endorsed PKIX User Certificate Issuance

The ceIssuance mechanism was developed to facilitate the issuance process of PKIX-based user

certificates while satisfying diverse demands of privacy protection from IAS users. It leverages

mobile user information that has been verified by cellular network operators during mobile service

activation1, and introduces privacy-preserving certificate signing request (ppCSR) and certificate

(ppCert).

Figure 5.2 presents an overview of the proposed mechanism involving four key parties: (1) Cer-

tificate Management Application (CMA), which is an MPKIX application running on the applicant’s

mobile phone; (2) HSS/AuC (Authentication Center), where HSS stores verified user information

(e.g., names, ages) and subscriptions (e.g., service plans) of mobile users, and AuC is a subsect

of the HSS that maintains secret keys shared with mobile users and generates a pair of challenge

and expected response to HSS for user authentication; (3) Certificate Management Server (CMS),

which is an application server (AS) [128] deployed in the cellular network and can obtain user

information from the HSS over the cellular-specific Sh interface [129] with secure communications

based on the 3GPP-stipulated Diameter protocol [130] over TLS; and (4) MPKIX-supported CA,
1Verifying mobile user information has been required by the law in many areas (e.g., China and Thailand) and is

becoming a mandatory policy [127].
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which collaborates with cellular network operators to issue PKIX user certificates. Notably, the

CMS is a standard-compliant AS accessing the HSS based on the 3GPP-stipulated interface and

secure communication protocol, so its deployment does not cause new security threats to cellular

networks.

The ceIssuance service comprises three parts: (1) secure mutual authentication between CMA

and CMS; (2) ppCSR preparation, validation, and endorsement; and (3) ppCert issuance. We

describe them in detail below.

5.3.1.1 Secure Mutual Authentication

We deployed a mechanism of secure mutual authentication between CMA and CMS to defend

against the attacks of certificate applicant masquerading and rogue infrastructure. It is based

on mobile Extensible Authentication Protocol (EAP), which relies on cellular-specific symmetric

cryptography with a secret key 𝐾 shared between UE (in the (U)SIM card) and HSS. It has

two methods, namely EAP-SIM [131] and EAP-AKA [6], which are used by 2G and 3G/4G/5G

networks, respectively. They were adopted to enable the secure mutual authentication in MPKIX,

and two 128-bit security keys were thus derived and shared between CMA and CMS: (1) 𝐾𝑎𝑢𝑡 , an

authentication key used to calculate message authentication code for integrity protection; and (2)

𝐾𝑒𝑛𝑐, an encryption key used to encrypt data.

In particular, CMA and CMS authenticate each other and derive the above two keys as follows:

Step 1: CMA provides CMS with the user’s subscriber identity, i.e., international mobile subscriber

identity (IMSI), through an exchange of EAP-Request and EAP-Response identity messages.

Step 2: As an EAP authenticator, CMS obtains a user authentication vector from HSS for the

authentication purpose of CMA. The authentication vector contains a random number serving

as a challenge, an expected challenge response, a transient master secret key, and a network

authentication token, which consists of an ownership proof of the secret key 𝐾 and a configuration

of 3GPP authentication and key generation functions [132]. Note that all the above functions

require the secret key 𝐾 .

Step 3: After receiving the user authentication vector, CMS sends an EAP-Request message
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carrying the challenge and the network authentication token to CMA.

Step 4: After receiving the EAP-Request message, CMA first validates the ownership proof of the

secret key 𝐾 to authenticate CMS, then generates an answer to the challenge, and finally produces a

shared transient master secret key using the configured security functions and the shared secret key

𝐾 within the (U)SIM card. The transient master secret key is then fed as a seed to an EAP-defined

pseudo-random number function [133], and then the function generates a pair of the 𝐾𝑒𝑛𝑐 and 𝐾𝑎𝑢𝑡

security keys. Afterwards, CMA replies an EAP-Response message to CMS with the answer to the

challenge.

Step 5: On receipt of the EAP-Response message, CMS verifies the answer and then generates the

pair of the 𝐾𝑒𝑛𝑐 and 𝐾𝑎𝑢𝑡 security keys based on the transient master secret key shared with CMA.

Note that the 𝐾𝑒𝑛𝑐 and 𝐾𝑎𝑢𝑡 will be generated once when applying for the MPKIX user credential

via ceIssuance service.

We further use the 𝐾𝑒𝑛𝑐 and 𝐾𝑎𝑢𝑡 security keys to generate the ppCSR, as described below.

5.3.1.2 ppCSR preparation, validation, and endorsement

To request an MPKIX certificate, i.e., ppCert, CMA prepares a certificate request, ppCSR, and

sends it to CMS for validation and endorsement. For the ppCSR preparation, CMA first generates

a pair of private and public keys, and then produce four major elements: (1) subject: containing

user information attributes such as name, address, and phone number; (2) subject extension:

domain name of the MPKIX CMS server (e.g., cms.mpkix.att.com); (3) public key information:

the generated pubic key and key algorithm; and (4) digital signature. For each attribute, a hash

value of the attribute value is generated based on the SHA-1 algorithm and the authentication key

(𝐾𝑎𝑢𝑡), and then the hash value is encrypted by the AES encryption algorithm and the encryption

key (𝐾𝑒𝑛𝑐), as illustrated in the upper part of Figure 5.3.

After receiving the ppCSR from CMA, CMS first verifies the digital signature and then validates

the encrypted hash value of each attribute by using the same keys and algorithms shared with CMA

and checking authentic user information from HSS. If any error occurs, CMS rejects the ppCSR;

otherwise, it endorses the ppCSR by attaching its digital signature and then sends the endorsed
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Subject’s signature
sha1WithRSAEncryption
45:67:81:1d:11:92:11:e2:2d:7b

ec:87:23:79:a5:51:ac:77:93:47
…..

Subject’s signature
sha1WithRSAEncryption
45:67:81:1d:11:92:11:e2:2d:7b

ec:87:23:79:a5:51:ac:77:93:47
…..

streetAddress: Enc(Hash(Water Dr., Kaut), Kenc)

commonName: Enc(Hash(Scott, Kaut), Kenc)

surname:Enc(Hash(Jordan, Kaut), Kenc)

emailAddress:Enc(Hash(hello@gmail.com, Kaut), Kenc)

countryName: Enc(Hash(USA, Kaut), Kenc)

telephoneNumber: Enc(Hash(123-456-7789, Kaut), Kenc)

stateOrProvinceName: Enc(Hash(MI, Kaut), Kenc)

Subject

ppCSR

Subject Pub Key Info
Public Key Algorithm: rsaEncryption

Public-Key: (2048 bit)
Modulus: 1a:ee:98:91:...
Exponent: 65537 

Extension

Subject

Extension

Subject Pub Key Info

Issuer’ signature

Certificate Serial Number

Issuer Name (CA)

Period of Validity

Unique Subject ID

Unique Issuer ID

ppCert

MPKIX Server: cms.mpkix.att.com

Figure 5.3 The formats of ppCSR and ppCert.

ppCSR to an MPKIX-supported CA over a secure channel (e.g., TLS connection).

5.3.1.3 ppCert Issuance

The MPKIX-supported CA issues a privacy-preserving PKIX user certificate (ppCert) with its

digital signature for each valid carrier-endorsed ppCSR from the CMS, as shown in the lower right

part of Figure 5.3. It validates each ppCSR by verifying the digital signatures of both the CMS and

the applicant in the ppCSR. The ppCert is then issued to the CMA via the CMS. Note that once the

ppCert issuance succeeds, those two security keys (𝐾𝑎𝑢𝑡 and 𝐾𝑒𝑛𝑐) associated with the ppCert are

recorded in the CMS. They are further used to answer queries from IAS providers when the ppCert

is used to access IASs, as described in Chapter 5.3.2.
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Figure 5.4 MPKIX: privacy-preserving query and verification of the user information.

5.3.1.4 Compared with Conventional PKIX User Certificates

ppCert has two key advantages over conventional PKIX user certificates. First, the conventional

certificate application process requires applicants to provide the CA with their user information,

but the ppCert applicants do not need to take this action. The reason is that MPKIX leverages the

user information that has been verified in the serving cellular network. Second, the conventional

certificates, which carry user information in plain text, are delivered without the protection of

secure channels[134], so the user information may be leaked; however, only the hash values of

encrypted user information are given in the ppCert.

5.3.2 ppQuery: Privacy-preserving User Information Querying

ppQuery is a carrier-certified service that not only allows IAS providers to query/verify IAS

user information but also protects IAS users from the leakage of user information. The ppQuery

service comprises three parts: ppCert-based user acquisition, ppQuery access token acquisition,

and carrier-certified user information querying, as shown in Figure 5.4. We elaborate on each of

them below.

5.3.2.1 ppCert-based User Acquisition

An IAS user can send his/her ppCert to an IAS provider and the provider verifies the ppCert

based on the CA signature. This ppCert-based user acquisition between the IAS user and the

IAS provider can be protected based on one of mainstream security protocols (e.g., HTTPS and

SSL/TLS), since ppCert conforms to the PKIX standard, the authentication mechanism of which
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has been broadly supported in the mainstream security protocols. If the verification fails, the IAS

provider may still offer the IAS user anonymous or unrestricted services.

5.3.2.2 ppQuery Access Token Acquisition

The ppQuery service is provided based on the common OAuth [135] framework. To consume

the service, the IAS provider needs to obtain an access token from CMS through the IAS user. As

shown in Figure 5.4, the acquisition procedure of the access token is described below. First, the

IAS provider obtains the IAS user’s serving CMS server address (e.g., cms.mpkix.att.com) and

a unique subject ID from its received ppCert, generates an authorization request including user

information for a query, and then redirects the IAS user to the CMS with the authorization request.

Second, upon the redirection, the IAS user logs onto the CMS server, reviews the authorization

request, and decides if the authorization is granted. Third, given a granted authorization request,

the IAS user obtains an authorization code from the CMS server and then forwards it to the IAS

provider. Fourth, the IAS provider can receive a ppQuery access token for the IAS user from the

CMS by presenting the authorization code to the CMS.

5.3.2.3 Carrier-certified User Information Query

For each IAS user with a granted authorization request, the IAS provider can use the correspond-

ing access token to query the CMS about the user’s information via GSMA OneAPI [136], which

is a set of standard APIs designed for external service providers to access cellular network services

and user profiles. The CMS responds to the query in accordance with the policy of user-specific

privacy protection. The key idea of the privacy protection is to allow an IAS user to specify an

anonymization degree of user information in terms of which attributes (e.g., age) can be disclosed.

Moreover, a minimum individual anonymization level (IA𝑚𝑖𝑛) is adopted for each IAS user

to guarantee that the user’s real identity cannot be discovered or narrowed down to a small group

of possible candidates, even though adversaries collect all the user information that the user ever

revealed to different IAS providers. Specifically, an IAS user’s IA𝑚𝑖𝑛 represents the minimum

percentage of the users with the same disclosed user information as the user in the database of the

cellular operator. Thus, for example, if IA𝑚𝑖𝑛 is set to 20% for an IAS user, adversaries cannot
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discover the user’s real identity but can only narrow down the user identity to a group of possible

candidates that take a percentage no smaller than 20% of all the users. Notably, any modification

on an anonymization degree that violates the desirable IA𝑚𝑖𝑛 is denied.

In the following, we first introduce how to anonymize a given subject attribute in the ppCert

certificate for a user and then present how an individual privacy protection, i.e., minimum individual

anonymization level, spans multiple subject attributes.

Anonymization of a Subject Attribute: MPKIX anonymizes attribute data using the Domain

Generalization Hierarchy (DGH) approach [137]. Given a subject attribute, 𝑆, and its value, 𝑉𝑆,

there is an anonymization function 𝑓𝑆 : (𝑉𝑆, 𝑛) → 𝑉𝑛
𝑆
, where 𝑛 lies in the range between 0 and

𝐿𝑆 − 1, and 𝐿𝑆 indicates the number of anonymization levels for 𝑆. 𝑆 has 𝐿𝑆 different attribute

values, namely 𝑉0
𝑆
, 𝑉1

𝑆
, ..., 𝑉

𝐿𝑆−1
𝑆

. 𝑉0
𝑆

is equivalent to 𝑉𝑆 and indicates the complete attribute value,

whereas 𝑉 𝐿𝑆−1
𝑆

provides only a minimum detail. Notably, the number of anonymization levels can

vary with subject attributes. In some cases, there are only two anonymization levels: disclosed and

undisclosed. Each IAS user is allowed to set their preferred number on the anonymization level of

each subject attribute.

Consider two examples on the anonymization of subject attributes. The first example attribute

is user address. Given 𝐿𝑆 = 4, there are four different attribute values: 𝑉0
𝐴𝑑𝑑𝑟

= {State-City-

Street-StreetNumber}, 𝑉1
𝐴𝑑𝑑𝑟

= {State-City-Street-***}, 𝑉2
𝐴𝑑𝑑𝑟

= {State-City-****-***}, and 𝑉3
𝐴𝑑𝑑𝑟

= {State-****-****-***}. The second one is cell number. Given 𝐿𝑆 = 3, three different attribute

values are generated as 𝑉0
𝑃ℎ𝑜𝑛𝑒

= 323-111-2222, 𝑉1
𝑃ℎ𝑜𝑛𝑒

= 323-111-****, and 𝑉2
𝑃ℎ𝑜𝑛𝑒

= 323-***-

****.

Minimum Individual Anonymization Level (IA𝑚𝑖𝑛): Although the anonymization level of each

subject attribute can be customized by an IAS user, the user may not know which level is sufficiently

secure. Moreover, the secure degree of each level depends on the disclosed information itself. For

example, if an IAS user’s first or last name is rarely used, adversaries may be able to narrow

down the user’s identity to a small group of candidates. Once more information is given from

other attributes, the user’s identity may be further inferred. As a result, the IAS user can be more
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interested in the anonymization levels that can have at least a certain percentage of the users with

the same disclosed user information as the user so that adversaries cannot tell the user’s identity

among those users, which makes MPKIX less useful in practice.

To address the above concern, we propose a minimum individual anonymization level, IA𝑚𝑖𝑛,

to provide individuals with cross-attributes user privacy protection, thereby preventing adversaries

from identifying the real user identities by analyzing all user information attributes that (s)he ever

disclosed (partially or fully) to IAS providers. Specifically, IA𝑚𝑖𝑛 is a configurable parameter

indicating the minimum level of IA for each user; the IA is an individual anonymization factor

representing the current anonymization degree of permitted information disclosure across attributes

for individuals. The IA factor of a user 𝑢 is defined as:

IA𝑢 =

∑|𝐷𝐵 |
𝑗=1

⋂𝑚
𝑖=1(𝑉

𝐻𝑢,𝑖

𝑗 ,𝑆𝑖
== 𝑉

𝐻𝑢,𝑖

𝑢,𝑆𝑖
)

|𝐷𝐵|

, where m and |𝐷𝐵| are the number of subject attributes and the number of users, respectively,

in the database, and 𝐻𝑢,𝑖 is the lowest anonymization level ever used by the user for the value of

attribute 𝑆𝑖 in response to the queries of IAS providers. In other words, the numerator in the above

equation indicates the number of users with the same disclosed values of all the attributes as the

user 𝑢. Intuitively, the higher value the IA𝑢 has, the more difficult it is for adversaries to identify

the user’s identity.

Consider an example to calculate IA for a user 𝑢 whose first name is John and birth year is 1951

in the Michigan Voter database with 121,489 qualified voters (see more details in Chapter 5.5). For

the two subject attributes, first name and age, two anonymization levels are adopted; the former

has the undisclosed and fully disclosed levels, whereas the latter is with the undisclosed level and a

disclosed level on whether the user age is over 21. Assume that the user is willing to disclose both

first name and age, the IA𝑢 is calculated as 3,766 (#users whose first names are John
⋂

ages over 21)
121,489 (#voters in database) = 3.1%,

which indicates that 3.1% of users in the database or more than 3,760 users have the same values

of both subject attributes as the user 𝑢.

The IA𝑢 is calculated for each query from the IAS provider or when any modifications are
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made to anonymization levels of subject attributes. Whenever IA𝑢 is smaller than IA𝑚𝑖𝑛,𝑢, an alert

is sent to the user and his/her approval is required. In this study, the default value of IA is set to

1.6% (see details in Chapter 5.6). To increase the diversity of applicable use scenarios, the current

MPKIX prototype is designed to maximize the number of subject attributes without the highest

anonymization level, i.e., the least information disclosure, for each user while satisfying his/her

desirable IA𝑚𝑖𝑛.

5.3.2.4 Compared with Conventional User Information Verification

ppQuery not only offers IAS providers a reliable means to verify user information but also

protects user privacy for the access of different IASs. It differs from conventional approaches

of user information verification from two aspects. First, ppQuery allows IAS users to disclose

verified user information based on different degrees of data anonymization. For example, it is

unnecessary for a user to reveal his/her full birthday to Google during account registration since

Google only needs to verify if the user is over 18 years old. Second, ppQuery allows IAS users

to control information disclosure based on the IA factor so that the leakage of user identity can be

prevented. With conventional approaches, an IAS user may inadvertently reveal different kinds of

user information while accessing different IASs; it may allow an adversary to discover the user’s

identity and then keep track of his/her activities.

Note that we admit that ppQuery may fail to prevent the identity leakage in some cases, e.g.,

a user reveals an attribute value which is unique or ignores a privacy leakage alert and agrees to

reveal critical information to IAS providers. Some data perturbation techniques may be adopted to

address this problem. We leave this improvement to our future work.

5.3.3 paClaim: Privacy-aware ID Claim/Revocation Arbitration

We developed the paClaim mechanism to improve the efficiency of ID dispute resolution based

on the ppQuery service. Figure 5.5 shows an overview of this mechanism involving two main

procedures: (1) ID claimer pre-qualification and (2) order-preserving-encryption (OPE)-enabled

ID Levenshtein Distance [138] comparison.
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Figure 5.5 Privacy-aware ID claim/revocation arbitration mechanism.

5.3.3.1 ID Claimer Pre-qualification

The ID claimer needs to pass the ID claimer pre-qualification before initiating an ID claim/

revocation request to the IAS provider. It can filter out unnecessary or malicious ID claim/revocation

requests by examining whether the carrier-verified user information of the ID claimer is equivalent

to those of the disputed ID to some extent. The IAS provider first selects some subject attributes

(e.g., the first and last names) for pre-qualification and the ID claimer then needs to prove that

his/her name values are similar enough to those of the disputed ID.

In this study, we use the ID Levenshtein Distance (IDLevDist) to quantify the similarity; the

Levenshtein Distance is the minimum number of single-character edits required to change one word

into the other (e.g., the Levenshtein distance between “Alex” and “Alexa” is 1). Notably, for certain

subject attributes (e.g., address), different values may still represent the same information (e.g., HK

and Hong Kong), and additional formatting functions (e.g., translating a user-entered address to a

USPS-suggested address) for attribute values are thus required (more details will be discussed in

Chapter 5.5).

Specifically, the pre-qualification process works as follows. First, the ID claimer provides the

IAS provider with the access token of a ppQuery service. Second, the IAS provider sends a query

to the CMS server of the ID claimer using the access token. The query message comprises three
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key elements: (1) a subset of provider-selected subject attributes and values for the disputed ID,

𝑂𝑤𝑛𝑒𝑟 = {𝑆1, 𝑉1, 𝑆2, 𝑉2, ..., 𝑆𝑛, 𝑉𝑛}, where 𝑆𝑖 is the ith subject attribute and 𝑉𝑖 is the value of

𝑆𝑖; (2) a set of Levenshtein distance weights, 𝑊 = {𝑊1,𝑊2, ...,𝑊𝑛}, where 𝑊 𝑗 is the weight of

the Levenshtein distance between 𝑉 𝑗 and the ID claimer’s value for 𝑆 𝑗 ; (3) the maximum of the

IDLevDist values that are allowed to pass the ID pre-qualification. IDLevDist is calculated as∑
𝑊𝑖 ∗ 𝐿𝑒𝑣𝐷𝑖𝑠𝑡 (𝑉 𝑐𝑙𝑎𝑖𝑚𝑒𝑟𝑖

, 𝑉𝑜𝑤𝑛𝑒𝑟
𝑖

). Note that, to prevent the IAS provider from inferring the ID

claimer’s user information, it is suggested that the maximum number of the compared attributes

is set to 3. Moreover, the recommended 𝑂𝑤𝑛𝑒𝑟 contains the first name, the last name, and an

additional provider-selected subject attribute (e.g., address).

Third, the CMS first checks if the computed IDLevDist exceeds the maximum value and then

sends back the pre-qualification result to the provider. If the ID claimer passes the pre-qualification,

the IAS provider initiates the ID claim/revocation arbitration and may temporarily suspend the

disputed ID accordingly.

5.3.3.2 OPE-enabled IDLevDist Comparison

After the ID claimer is pre-qualified for the ID claim/revocation arbitration, the IAS provider

initiates it by sending a ppQuery message for full ID verification to the ID claimer’s CMS server and

the ID owner’s (Steps 5-8). Then, each of them computes its own IDLevDist (Steps 9-10). Similar

to the ppQuery message previously introduced in the pre-qualification, the ppQuery message

comprises 𝑂𝑤𝑛𝑒𝑟 and 𝑊 . But, there are two major differences. First, the number of subject

attributes specified in 𝑂𝑤𝑛𝑒𝑟 is not limited. Second, the maximal IDLevDist that is allowed to

pass the verification is not specified.

Given those two IDLevDist values, the IAS provider can easily determine which of the ID claimer

and the ID owner has more operator-verified user information corresponding to the disputed ID.

The one with a shorter distance (i.e., smaller IDLevDist value) wins and is allowed to access or

revoke it. However, the IDLevDist value in plain-text may allow the IAS provider to infer additional

user information of the ID claimer and the ID owner. For example, the IDLevDist given by the ID

owner’s CMS indicates how close the user information that the ID owner left on the IAS provider
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is to the operator-verified information of the disputed ID.

To prevent this inference attack, the ID Levenshtein distances computed by the CMSs are not

directly returned to the IAS provider; instead, only the distances encrypted by the OPE (Order

Preserving Encoding) method [139], which is an encryption algorithm ensuring the order of plain-

text numbers to be equal to that of encrypted numbers, are delivered for the comparison. For

the secure distribution of the encryption key shared between the CMSs, the Diffie Hellman Key

Exchange (DHKE) protocol [140] was adopted; DHKE is a method of enabling the secure exchange

of cryptographic keys over public channels. By exchanging security parameters (e.g., two DHKE

public keys 𝐴 and 𝐵), DHKE enables the CMSs of ID claimer and ID owner to derive a shared

secret key 𝑀𝐾 using their DHKE private keys for the further OPE-based ID Levenshtein distance

encryption (Steps 15-18). With OPE-based ID Levenshtein distance comparison, the IAS provider

can identify the one with a shorter distance while preserving the privacy of the ID owner.

Note that current paClaim service only supports one ID claimer in each ID claim/revocation

arbitration; if there is more than one user claiming the same IAS ID, multiple arbitrations are

required. For example, by assuming that IAS users A and B both claim the ownership of a disputed

ID, whose owner is user C currently, and the IAS provider receives A’s request first, the IAS

provider arranges the first arbitration between users A and C, and then does the second arbitration

between user B and the winner of the first arbitration.

5.3.3.3 Compared with Conventional ID Claim/revocation Mechanisms

The paClaim has two key advantages. First, the paClaim-based ID claim arbitration can be

done in seconds, but the existing mechanisms may take several days or even longer. Second, the

paClaim does not require current ID owners or claimers to disclose additional operator-verified user

information to the IAS provider, whereas current mechanisms (e.g., uploading government-issued

ID documents) can inevitably cause an excessive information disclosure.

5.4 Security Analysis

In this subchapter, we analyze the desirable security guarantees provided by MPKIX and the

common attacks against which MPKIX can defend.
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5.4.1 Security Guarantees

Integrity and non-repudiation: MPKIX leverages the merits of current PKIX practice and cellular

network security to achieve both data integrity and non-repudiation of the ppCert certificate. To

obtain a ppCert certificate, an IAS user needs to create a ppCSR request and attach his/her digital

signature. After validating the user’s information and digital signature, the serving operator

endorses the ppCSR with its digital signature. The operator’s signature allows MPKIX-supported

CAs to validate the user’s ppCSR and digitally sign it. Thus, the accuracy of the user information

is guaranteed by the serving operator, and the data integrity is then guaranteed by both the cellular

symmetric cryptography with the key 𝐾𝑎𝑢𝑡 (see Chapter 5.3.1) and PKIX asymmetric cryptography

with the CA’s private key; these two keys are hardly to be stolen. Regarding the non-repudiation

property, in many countries/areas, e.g., the European Union and the U.S., previously described

digital signatures have legal significance [141]. Therefore, IAS users and operators cannot dispute

the authorship/validity of their digital signatures.

Privacy: MPKIX provides IAS users with a multitude of privacy protection. First, MPKIX allows

a user to freely determine which subject attributes in the ppCert are disclosed to the IAS provider

through the ppQuery service. Since the attribute values in the ppCert are hashed and encrypted,

neither the IAS provider nor adversaries can infer the values without the encryption and integrity

keys (i.e., 𝐾𝑎𝑢𝑡 and 𝐾𝑒𝑛𝑐). Second, MPKIX guarantees that adversaries cannot infer the identity

of an IAS user or narrow it down to a small group of possible candidates. Third, MPKIX allows

an IAS user to create his/her IAS user account with false information due to privacy concerns;

however, if the IAS user suffers from ID theft attacks, where an adversary impersonates the user’s

identity, MPKIX empowers the IAS user to claim/revoke the impersonated ID without revealing

more verified user information to the IAS provider.

Accountability: MPKIX allows law enforcement authorities to discover the real identity of an

IAS provider or an IAS user, when an IAS-based cyber attack/crime occurs. The IAS provider’s

identity can be revealed from its CA-signed PKIX server certificate, whereas although the IAS

user’s identity may not be disclosed in his/her ppCert, the law enforcement authorities can discover
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it from the user’s serving operator, which can be identified through the CA.

5.4.2 MPKIX’s Resilience Against Possible Attacks

We next analyze the resilience of those three MPKIX services against various cyberattacks

and discuss how MPKIX deals with other possible attacks (e.g., stealing mobile phones) beyond

the adversary model of this study, where the Dolev-Yao model [125] is considered (see details in

Chapter 5.2).

Assumptions: Two assumptions are made. First, we assume that the cellular infrastructure

is secure, and operators deploy security patches timely. Second, we assume that all security

and service protocols (e.g., TLS and OAuth) used by MPKIX are properly configured and with

recommended security patches (e.g., eliminating obsolete TLS configurations, such as ECDHE

with custom curves [142]).

Notations: We denote an IAS user with a mobile phone having Certificate Management Application

(CMA) installed by A, the Certificate Management Server (CMS) by S, the MPKIX-supported

certificate authority by CA, the IAS provider by I, the encryption function by 𝐸𝑛𝑐, the decryption

function by 𝐷𝑒𝑐, the function producing message authentication code by 𝑀𝑎𝑐, the signature

function by 𝑆𝑖𝑔, the private key by 𝑃𝑟𝑖, and the public key by 𝑃𝑢𝑏.

ceIssuance Analysis: We model the ceIssuance service and analyze it in terms of security as

follows:

1. A and S conduct EAP-SIM/AKA-based mutual authentication and obtain two shared security

keys, 𝐾𝑒𝑛𝑐 and 𝐾𝑎𝑢𝑡 .

2. A sends 𝐸𝑛𝑐(𝑝𝑝𝐶𝑆𝑅 |𝑀𝑎𝑐(𝑝𝑝𝐶𝑆𝑅, 𝐾𝑎𝑢𝑡), 𝐾𝑒𝑛𝑐) to S, where ‘|’ is a concatenation operator.

3. S decrypts the encrypted 𝑝𝑝𝐶𝑆𝑅 and verifies the MAC using 𝐾𝑒𝑛𝑐 and 𝐾𝑎𝑢𝑡 , respectively. Given

a valid 𝑝𝑝𝐶𝑆𝑅, S obtains the verified user information from the HSS through Diameter over TLS

and compares it to the user information in 𝑝𝑝𝐶𝑆𝑅.

4. S sends 𝐸𝑛𝑐(𝑝𝑝𝐶𝑆𝑅 |𝑆𝑖𝑔(𝑝𝑝𝐶𝑆𝑅, 𝑃𝑟𝑖𝑆), 𝑃𝑢𝑏𝐶𝐴) to CA.
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5. CA verifies S’s signature using 𝑃𝑢𝑏𝑆. If valid,CA generates a CA-signed ppCert with its signature

𝑆𝑖𝑔(𝑝𝑝𝐶𝑒𝑟𝑡, 𝑃𝑟𝑖𝐶𝐴) and sends 𝐸𝑛𝑐(𝑝𝑝𝐶𝑒𝑟𝑡), 𝑃𝑢𝑏𝑆) to S.

6. S sends the CA-signed 𝐸𝑛𝑐(𝑝𝑝𝐶𝑒𝑟𝑡, 𝑃𝑢𝑏𝐴) to A.

At Step 1, the messages exchanged between A and S are plain-text. Adversaries can thus

intercept and synthesize those messages to launch Man-in-the-Middle (MitM) attacks. However,

Alt et al. [143] have proven that the cellular AKA protocol with unique server identifiers attains the

properties (e.g., state-confidentiality and soundness) that can defend against MitM attacks even in

the presence of corrupted servers. Thus, adversaries cannot compromise the mutual authentication,

and further infer 𝐾𝑒𝑛𝑐 and 𝐾𝑎𝑢𝑡 .

At Steps 2-3, adversaries may apply for a CA-signed PKIX user credential on behalf of A

by launching an impersonation attack. However, without 𝐾𝑒𝑛𝑐 and 𝐾𝑎𝑢𝑡 , the adversaries cannot

generate a valid request message, 𝐸𝑛𝑐(𝑝𝑝𝐶𝑆𝑅 |𝑀𝑎𝑐(𝑝𝑝𝐶𝑆𝑅, 𝐾𝑎𝑢𝑡), 𝐾𝑒𝑛𝑐).

At Steps 4-6, all the message exchanges of 𝑝𝑝𝐶𝑆𝑅 and 𝑝𝑝𝐶𝑒𝑟𝑡 are provided with confidentiality

and integrity protection. Thus, without the private keys of CA and S, adversaries cannot decrypt

any intercepted ciphertext messages or fabricate digital signatures of CA and S.

ppQuery Analysis: We model the ppQuery service and do security analysis on it below.

1. A sends Client Hello to I.

2. I sends Server Hello, Certificate, Server Key Exchange, Certificate Request, and Server Hello

Done to A.

3. A sends ppCert, Server Key Exchange, Certificate Verify, Change Cipher Spec, and Finished to

I.

4. I sends Change Cipher Spec and Finished to A.

5. I obtains the CMS address (i.e., S) and the subject ID of A from ppCert for further ppQuery

operations, which verify correctness of the user information provided by A.
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6. I initiates an OAuth-based ppQuery access token acquisition with S over TLS.

7. I sends an encrypted ppQuery message, 𝐸𝑛𝑐(𝑝𝑝𝑄𝑢𝑒𝑟𝑦 |𝑇𝑜𝑘𝑒𝑛|𝑀𝑎𝑐(𝑝𝑝𝑄𝑢𝑒𝑟𝑦 |𝑇𝑜𝑘𝑒𝑛, 𝐾𝑖𝑛𝑡𝑇𝐿𝑆
),

𝐾𝑒𝑛𝑐𝑇𝐿𝑆
), to S, where 𝐾𝑒𝑛𝑐𝑇𝐿𝑆

and 𝐾𝑖𝑛𝑡𝑇𝐿𝑆
are the encryption key and integrity key derived from

the establishment of TLS connection between I and S.

8. S sends an encrypted response, 𝐸𝑛𝑐(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 |𝑀𝑎𝑐(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝐾𝑖𝑛𝑡𝑇𝐿𝑆
), 𝐾𝑒𝑛𝑐𝑇𝐿𝑆

) to I.

At Steps 1-4, A and I establish a TLS connection while authenticating each other. In particular,

A provides I with ppCert during the TLS connection establishment. Adversaries may intercept and

synthesize those handshake messages including ppCert to launch MitM attacks, infer the verified

user information, or conduct long-term user tracking attacks. However, MPKIX is immune to these

attacks due to the following three reasons. First, according to a recent NSA (National Security

Agency) report [142], an established TLS connection is considered as a secure communication

channel against various MitM attacks (e.g., MitMProxy and SSLSplit attacks) when obsolete TLS

configurations are avoided. Second, the values of subject attributes in ppCert are encrypted hashed

values (see Figure 5.3), and the used keys, 𝐾𝑒𝑛𝑐 and 𝐾𝑎𝑢𝑡 , are hardly obtained from the ceIssuance

service. Third, the real-world risk of ppCert-based user tracking attacks is limited since MPKIX

guarantees that adversaries cannot discover the real identity of a ppCert owner or narrow it down

to several possible individuals.

At Steps 5-6, adversaries may attempt to launch various attacks against token acquisition and

usage, but Fett et al [144] have proven that the OAuth protocol establishes strong authorization,

authentication, and session integrity guarantees, which can well defend potential attacks.

At Steps 7-8, I sends a ppQuery message with the granted access token to S, and S replies a

response to I based on A’s privacy protection setting. To defend against possible cyberattacks, the

ppQuery request and response messages are protected with confidentiality and integrity using those

two keys, 𝐾𝑒𝑛𝑐𝑇𝐿𝑆
and 𝐾𝑖𝑛𝑡𝑇𝐿𝑆

.

paClaim Analysis: The paClaim service is comprised of three ppQuery request-response transac-

tions over TLS for the qualification examination of the ID claimer, the collection of the OPE-encoded
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ID Levenshtein distance from the ID claimer’s CMS, and that from the ID owner’s CMS, respec-

tively. Since the user information verification and message exchange in the ppQuery service have

been analyzed, we here focus on the security analysis of deriving the shared OPE security keys at

CMSs (i.e., Steps 11-18 in Figure 5.5).

1. SClaimer selects a DHKE (Diffie Hellman Key Exchange) public key, 𝑋𝑆1 and a DHKE pri-

vate key, 𝑌𝑆1, generate a signature, 𝑆𝑖𝑔(𝑋𝑆1, 𝑃𝑟𝑖𝑆Claimer) for 𝑋𝑆1 using its 𝑃𝑟𝑖𝑆Claimer , and sends

𝑋𝑆1 |𝑆𝑖𝑔(𝑋𝑆1, 𝑃𝑟𝑖𝑆Claimer) to I.

2. I forwards 𝑋𝑆1 |𝑆𝑖𝑔(𝑋𝑆1, 𝑃𝑟𝑖𝑆Claimer) to SOwner.

3. SOwner selects a DHKE public key, 𝑋𝑆2 and a DHKE private key 𝑌𝑆2, generate a signature,

𝑆𝑖𝑔(𝑋𝑆2, 𝑃𝑟𝑖𝑆Owner), for 𝑋𝑆2 using its 𝑃𝑟𝑖𝑆Owner , and sends 𝑋𝑆2 |𝑆𝑖𝑔(𝑋𝑆2, 𝑃𝑟𝑖𝑆Owner) to I.

4. I forwards 𝑋𝑆2 |𝑆𝑖𝑔(𝑋𝑆2, 𝑃𝑟𝑖𝑆Owner) to SClaimer.

5. SClaimer calculates the shared OPE security key using DHKE algorithm2 as: (𝑋𝑆2)𝑌𝑆1 mod 𝑞,

where 𝑞 is a prime number shared by all CMSs MPKIX.

6. SOwner calculates the shared OPE security key using DHKE algorithm as: (𝑋𝑆1)𝑌𝑆2 mod 𝑞.

Different from the ppQuery service, where outside adversaries are considered, the paClaim

service may suffer from an inside adversary, the IAS provider (i.e., I), which may be interested

in discovering the plain-text ID Levenshtein distances from SClaimer and SOwner to infer more user

information. Thus, it can motivate I to compromise the procedure of the OPE security key exchange

by launching an MitM attack [145]. To this end, I first selects two DHKE key pairs: (1) 𝑋𝐼↔𝑆Claimer

and 𝑌𝐼↔𝑆Claimer and (2) 𝑋𝐼↔𝑆Owner and 𝑌𝐼↔𝑆Owner , intercepts 𝑋𝑆1 and 𝑋𝑆2, and then sends 𝑋𝐼↔𝑆Claimer

and 𝑋𝐼↔𝑆Owner to SClaimer and SOwner, respectively. In the unmodified DHKE protocol, I can obtain

two shared OPE security keys: one is for I and SClaimer (i.e., (𝑋𝑆1)𝑌𝐼↔𝑆Claimer mod 𝑞), and the other

is for I and SOwner (i.e., (𝑋𝑆2)𝑌𝐼↔𝑆Owner mod 𝑞), and further discover the plain-text ID Levenshtein

distances.
2The DHKE algorithm is based on the discrete logarithm problem; given 𝛼 and 𝑎, find 𝑏 so that 𝛼𝑏 = 𝑎.
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However, the paClaim service is immune to the above MitM attack. This is because 𝑆Claimer

and 𝑆Owner attach their digital signatures while transmitting 𝑋𝑆1 and 𝑋𝑆2 to I at Steps 1 and 3,

respectively. Without their private keys, 𝑃𝑟𝑖𝑆Claimer and 𝑃𝑟𝑖𝑆Owner , I cannot produce the digital

signatures and have them accepted the fabricated DHKE keys.

Other potential attacks: We next discuss how MPKIX defends against several potential attacks

beyond the Dolev-Yao adversary model.

• (U)SIM Card Compromising Attacks: By compromising mobile users’ (U)SIM cards, adversaries

can apply for ppCerts on behalf of them. There have been several SIM-based attacks, which

include inferring the secret key 𝐾𝑖 by abusing A3 algorithm COMP128v1 [146], rooting SIM

cards via insecure OTA [147], and launching a SIM swap attack [148]. The root causes mainly

lie in improper configurations of the cellular network [146], security flaws from SIM card manu-

facturers [147], and social engineering attacks [148]. Most of these attacks can be addressed with

proper configurations and timely security patches.

• Mobile Phone Compromising Attacks: An adversary may infer user information from a pre-

compromised mobile phone by eavesdropping on the issuance of carrier-endorsed PKIX user

certificate. However, MPKIX is immune to this attack since no plain-text user information is sent

over the air. Moreover, such attack requires root privilege of the compromised phone, which has

been shown with a significant technical challenge [149, 150, 151].

• Stealing Phones: If an IAS user’s phone is stolen, his/her PKIX user credential may be abused.

However, this problem can be largely mitigated by an action that the user promptly updates the

public CRL (Certificate Revoke List) to revoke his/her credential. Furthermore, compared with

traditional cryptographic tokens (e.g., YubiKey), the MPKIX phone-based cryptographic tokens

provide better security of user credentials. Specifically, modern smartphones support a variety

of bio-based security mechanisms, such as fingerprint and facial recognition, which can prevent

adversaries from abusing user credentials on stolen/lost phones.
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Figure 5.6 MPKIX prototype.

5.5 Implementation of MPKIX

Figure 5.6 illustrates three key entities of the MPKIX prototype: CMA on a mobile phone, an

MPKIX-enabled 4G LTE infrastructure with CMS, and an MPKIX-supported CA. Each of them

is elaborated below. Notably, the secure communications between MPKIX-supported network

elements were enabled by TLSv1.2 using the ciphersuite of ECDHE-RSA-AES256-SHA, and the

cryptographic key operations were implemented using the OpenSSL [152] library.

CMA was written in Java and implemented on four low/mid-end smartphones including Samsung

S2 (2011), Samsung S5 (2014), Sony Xperia Z (2013), and Google Pixel XL (2016). Notably, suc-

cessfully deploying CMA on these old phone models with fewer computing resources than modern

ones indicates that CMA works for most phone models. CMA uses the credential services provided

by an IsoApplet [153] to generate public and private keys, prepare ppCSR, and obtain/maintain

CA-issued ppCert. Moreover, to increase the applicability of the MPKIX credential service, the

PKCS#11 (Public Key Cryptography Standards [154]) interface, which is a standard platform-

independent API to access diversified cryptographic tokens and has been broadly supported by

many operating systems, was implemented on CMA. It enables CMA to transform an IAS user’s

phone to a cryptographic token with the PKCS#11 interface.

MPKIX-enabled 4G LTE infrastructure was set up using the SDR(software-defined radio)-based

OpenAirInterface (OAI) platform, which comprises a 4G LTE core network and a base station. The
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core network was deployed on a Lenovo desktop with Intel i7-9700k and 16GB RAM, whereas the

base station was built on a PowerSpec desktop with Intel i7-9700K and 16GB RAM connecting

to an Ettus USRP B210. In the core network, a CMS server supporting ceIssuance, ppQuery, and

paClaim services was deployed. We next introduce implementation details about CMS.

• CMS services. Three MPKIX services were implemented: (1) the ceIssuance service used

OpenSSL [152] to implement cryptographic key operations, and employed Node-diameter [155],

a diameter protocol over TLS, to enable secure communications with HSS; (2) the ppQuery service

was implemented on top of oauth2-server [156] and enabled to support OAuth (using scribejava-

6.9.0 [157]) and OneAPI (using an open GSMA OneAPI library [136]); and (3) the paClaim

service used the Boost Algorithm [158] and Fast OPE [159] to calculate the ID Levenshtein

distances and perform the order-preserving encryption, respectively.

• CMS database. The SQL database was built on top of the CryptoDB library [160] to store

and anonymize user information obtain from HSS. To emulate real mobile user data, the HSS’s

database contained the information of 120,531 users, which was purchased from a voter regis-

tration database [161] with 120,531 voters. The user attributes included name, gender, birthday,

address, and phone number. In the current prototype, the data anonymization levels for each

attribute are as follows (the information specified at each level was disclosed): (1) name: two

levels (L0: full name; L1: none); (2) gender: two levels (L0: gender; L1: none); (3) birthday:

six levels (L0: year, month, and day; L1: year and month; L2: year; L3: small age ranges ({0-17,

18-40, 41-60, 61-80, >80}); L4: large age ranges ({0-40, 40-80, >80}); L5: none); (4) phone

number: four levels (L0: phone number; L1: last seven digits; L2: last four digits; L3: none). (5)

addresses: five levels (L0: street number, street name, city, and state; L1: street name, city, and

state; L2: city and state; L3: state; and L4: none). Notably, to tackle the different addresses that

have the same legal semantics (e.g., HK and Hong Kong), we will reformat all address inputs to

unified ones using Google Geocoding API [162] prior to the data processing.

Moreover, the value of IA𝑚𝑖𝑛 was set as 2,000
120,531 ≃ 1.66% for all the users; it indicates that
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the number of mobile users who have the same disclosed user information cannot be smaller than

2,000. With the given IA𝑚𝑖𝑛, the MPKIX prototype can automatically adjust the number of subject

attributes and the anonymization level of each attribute, if needed, for each user. In particular,

to improve the diversity of applicable use scenarios, the current MPKIX prototype is designed to

maximize the number of a user’ subject attributes that do NOT apply the highest anonymization

levels while ensuring desirable IA𝑚𝑖𝑛

MPKIX-supported CA was written in Java and used the bouncycastle-v1.6 [163] library, a

lightweight cryptography library, to validate ppCSR and generate ppCert. It was deployed on

a Dell 5810 precision tower.

5.6 Evaluation of MPKIX

In this subchapter, we evaluated the effectiveness and performance of the three key MPKIX

services.

5.6.1 ceIssuance

We evaluated the ceIssuance service by two metrics: (1) certificate issuance time, which is the

time required by an IAS user to generate a pair of public and private keys, prepare a ppCSR request,

and obtain a ppCert certificate on a mobile phone, but does not include the time required by the user

to input user data; and (2) certificate issuance rate, which indicates the maximum number of PKIX

user certificates issued by the MPKIX prototype per unit of time.Finally, the overhead of supporting

varied anonymization levels was evaluated.

Experimental settings: For the issuance time, the experiment was intentionally conducted on a

low-end mobile phone, Samsung Galaxy S5 equipped with Qualcomm Snapdragon801 CPU and

2GB RAM, and had 20 runs. For the issuance rate, a program was developed to keep sending

ppCSR to the MPKIX infrastructure. The experiment lasted for one hour, where each new ppCSR

was sent right after the ppCert of the last ppCSR, if there was any, was received.

Experimental results: Figure 5.7 plots the CDF of the time spent on the overall issuance and

its three events including ppCSR preparation (T1), ppCSR validation (T2), and ppCert generation

(T3). We have three observations. First, an IAS user can obtain a ppCert certificate within 5 s
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Figure 5.7 PKIX user certificate issuance time. T1 is the time between the generation of a
public/private key pair and that of ppCSR; T2 is the time between when ppCSR is sent by the phone
and when the carrier-endorsed ppCSR is received by the CA; T3 is the period from the time right
after the end of T2 to that ppCert is received by the phone.

even on a low/medium-end smartphone, but typical CAs, e.g., GlobalSign and DigiCert [164, 165],

require several days for a certificate application. Second, T1 ranges from 3.3 s to 3.8 s, whereas

T2 and T3 take only 1.2-1.7 s. The main reason is that the IsoApplet used by the current CMA

prototype required more actions to carry out the credential service functions because of its data

length limitation, no larger than 256 bytes, for communicating with external applications. The usage

of the IsoApplet, a lightweight Java applet offering credential services, is to support low/medium-

end resource-constrained phones. Notably, the maximum values of the observed instant RAM and

CPU usages in the experiment for the CMA are 57 MB and 27%, respectively. Our experiment

results show that even on a low/medium-end smartphone, a user is still able to obtain his/her CA-

issued PKIX user certificate within less than 5 seconds, whereas the typical CAs, e.g., GlobalSign

and DigiCert, require several days [164, 165].

Figure 5.8 plots the issuance rate of the number of ppCerts issued per minute. It is observed

that the MPKIX infrastructure issued around 130,000 ppCerts per minute and issued a total of

7.82 million ppCerts without any significant variance within an hour. It shows that the MPKIX

infrastructure has a stable issuance performance.

For the overhead of supporting varied anonymization levels, CMS produces the values of all
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Figure 5.8 #ppCerts issued by the MPKIX infrastructure.

the subject attributes based on given anonymization levels for each ppCSR request before sending

the carrier-endorsed ppCSR to CA. For example, four values are produced for the phone number

attribute with four anonymization levels. In this experiment, we used a global variable 𝛼 as the

maximum anonymization level for all the subject attributes and then examined whether varied

anonymization levels would affect T2 (ppCSR validation time) by varying 𝛼. The experiment was

conducted with 20 runs for each level.

The result shows that T2 was increased by 42 ms, 48 ms, 54 ms, and 59 ms when 𝛼 was set

to 1, 2, 3, and 4, respectively, compared with the case with 𝛼 = 0. Although T2 is observed to

increase with anonymization level, producing values for all the anonymization levels is conducted

only once at CMS for each carrier-endorsed ppCSR, and does not affect the subsequent ppQuery

response times regardless of user privacy settings.

5.6.2 ppQuery

We evaluated the ppQuery service based on not only correctness, but also two metrics: (1) IAS

access time, which is the time required by an IAS user to establish a secure TLS connection with

an IAS server using his/her CA-issued ppCert; (2) IAS query time, which is the time spent by the

IAS server on receiving a query response after submitting the query.

Experimental settings: We randomly selected two IAS users from the user database at HSS: one
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Figure 5.9 The IAS access time (max/med/min) involving the establishment of a TLS connection
with or without mutual authentication varies with MPKIX-enabled phones and a computer connect-
ing to those phones.
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Figure 5.10 The peak CPU and RAM usage statistics (max/med/min) of the MPKIX-enabled phones
for the ppQuery service.

user is older than 18 years old, whereas the other is not. After obtaining their CA-issued ppCerts

through MPKIX, these two selected users attempted to connect with an IAS server, which allowed

only users older than 18 years old, using browsers on phones and computers. During the connection

of each user, the IAS server examined the age eligibility of the user by querying the CMS server

and then determined whether the user is allowed to have the access. The experiment was conducted

with 20 runs.

Experimental results: Figure 5.9 plots the statistics of the IAS access time for the WebKit browser

on different MPKIX-enabled phones and the Mozilla browser on a Windows computer connecting

to those phones for the MPKIX service. It is observed that the Mozilla browser requires 1.5s on

average for the IAS access time On the contrary, the Webkit browser takes only 0.5s on average. The

reason is that the WebKit can access the CMA locally on the phones, whereas the Mozilla cannot.

Moreover, compared to the case without TLS mutual authentication as shown in Figure 5.10, the
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(a) User: no older than 18. (b) User: older than 18.

Figure 5.11 The IAS connection results based on the ppQuery.

peak CPU and RAM usages are increased by 2-10% and 1-2 MB, respectively.

Figure 5.11 confirms that the IAS server successfully verified the ages of the IAS users using

the ppQuery service. The result showed that the IAS took 1.2s averagely, where 0.5s IAS access

time and 0.7s IAS query time, on the query of a single attribute. Notably, it was observed that no

full birthday information was returned to the IAS server in the experiment.

5.6.3 paClaim

We finally evaluated the effectiveness and performance of the paClaim service. Three perfor-

mance metrics were used: (1) 𝑇𝑝𝑟𝑒, the time required to perform the ID pre-qualification (Steps

1-4 in Figure 5.5); (2) 𝑇𝑑𝑖𝑠, the time required to calculate the full ID Levenshtein distances (Steps

5-10 in Figure 5.5); (3) 𝑇𝑜𝑝𝑒, the time required to perform the order-preserving encryption with key

exchange (Steps 11-18 in Figure 5.5).

Experimental settings: We randomly selected 11 users from the user database at HSS; the first 10

users were assumed to be the victims of an ID theft attack and denoted as benign users, whereas the

last user was an attacker of the ID theft. We obtained ppCerts for all the users through MPKIX. On

the IAS server, the attacker created 10 accounts impersonating those 10 benign users, respectively,

with their first and last names. An ID claim/revocation arbitration was performed for each benign

user. For the ID claim pre-qualification at the IAS server, 𝑂𝑤𝑛𝑒𝑟 comprised two subject attributes

{first name, last name}, 𝑊 = {1, 1} indicated the IDLevDist weights of those two attributes, and

the maximal IDLevDist value was set to 5. For the ID claim full verification, 𝑂𝑤𝑛𝑒𝑟 and 𝑊 were
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Figure 5.12 The CDF of the ID claim/revocation arbitration time.
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Figure 5.13 The statistics of 𝑇𝑜𝑝𝑒, CPU usage and RAM usage at CMS for different cryptographic
schemes.

set to {first name, last name, year of birth, state of address} and {3, 3, 2, 1}, respectively. The

experiment was conducted with 100 runs.

Experimental results: It was observed that each of those 10 benign users passed the ID claim

pre-qualification and won the arbitration. The statistics of the total arbitration time and the time

spent on each stage, 𝑇𝑝𝑟𝑒, 𝑇𝑑𝑖𝑠 and 𝑇𝑜𝑝𝑒, are plotted in Figure 5.12. We have two observations. First,

the overall ID claim arbitration process could be finished within 3.4s under the condition that the

ID owner can timely respond to the arbitration request. Second, the 90th percentile values of 𝑇𝑝𝑟𝑒,

𝑇𝑑𝑖𝑠, and 𝑇𝑜𝑝𝑒 are less than 1.63s, 1.58s, and 0.18s, respectively. The results have confirmed the

effectiveness and efficiency of the paClaim service.

We further studied the impact of different cryptographic schemes on the performance of the

paClaim service, especially for the OPE key exchange and encryption mechanisms (Steps 11-18 in

Figure 5.5). Specifically, we considered three key exchange schemes, Diffie-Hellman (DH), Elliptic

Curve Diffie-Hellman (ECDH), and RSA, and two OPE algorithms, Modular OPE [166] and Fast
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Figure 5.14 The statistics of 𝑇𝑜𝑝𝑒, CPU usage and RAM usage at CMS for different numbers of
concurrent ID claim requests.

OPE [159]. For each combination of a key exchange scheme and an OPE algorithm, we initiated

ID claim requests and measured 𝑇𝑜𝑝𝑒, CPU usage, and RAM usage on average at CMS; there

are totally six combinations of the cryptographic schemes. We make three observations from the

experimental results, as shown in Figure 5.13. First, the ECDH-based schemes are faster than the

others; the EDCH scheme plus modular OPE achieves the smallest 𝑇𝑜𝑝𝑒, whereas the DH scheme

plus fast OPE leads to the largest 𝑇𝑜𝑝𝑒. Second, all the cryptographic schemes have comparable

CPU usages, but the CPU usages of the RSA-based schemes are slightly higher than the others.

Third, the ECDH-based schemes consume about 500 KB RAM less than the others.

We finally studied the performance and overhead of the paClaim service with a varying number

of concurrent ID claim requests. The above experiment was repeated with two modifications: (1)

the most efficient combination of cryptographic schemes, ECDH plus modular OPE, was used for

MPKIX; and (2) the number of concurrent ID claim requests initiated ranges from 2 to 10. The

results show that 𝑇𝑜𝑝𝑒, CPU usage, and RAM usage are increased from 180 ms to 210 ms, from

3% to 18%, from 4 MB to 38 MB, respectively, when the number of concurrent requests increases

from 2 to 10, as shown in Figure 5.14.

In summary, our experimental results confirm not only the effectiveness of the paClaim service,

where concurrent ID claim requests can be processed efficiently, but also its merit that largely

reduces the time of ID claim/revocation arbitration, compared with current technologies, while

preserving IAS user privacy.
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5.7 Discussion

In this subchapter, we discuss potential concerns about deploying and using MPKIX, as well as

its limitations.

Incentives for MPKIX deployment. We believe that all the involved parties can benefit from the

MPKIX deployment. The reasons are four-fold. First, CAs can expand their enterprise-based PKIX

credential services to billions of mobile users, and the cost of user information verification can

be greatly reduced without the need for photo ID inspection. Second, cellular network operators

can make profit on new services including offering MPKIX to IAS providers and providing mobile

users with emerging services (e.g., facilitating the aircraft boarding process and short-term keyless

apartment rental) based on user certificate. Third, IAS providers can ensure the correctness of

user information so that the risk of cyberattacks with potential legal issues and complaints can

be reduced, e.g., those from governments [167] and online advertisers [168], where there is a

total of $1.3 billion loss due to fake followers. Fourth, IAS users can transform their phones to

PKCS#11-supported cryptographic tokens supporting a variety of PKIX credential services, with

an efficient privacy-aware mechanism of ID claim/revocation arbitration.

Note that an IAS user may not need to pay the serving CA for the PKIX user certificate issuance

if a reciprocal agreement between the connected cellular operator and the CA is signed. This

business model is commonly observed in practice. For example, Google provides users with free

cloud services but makes profit from online advertisers.

Enforcing users to disclose more information? People may think that MPKIX enforces IAS users

to disclose more user information to cellular network operators, CAs, and IAS providers, compared

with traditional mechanisms of user certificate. However, it is not true due to three major reasons.

First, MPKIX leverages only the existing user information that has been verified by the operators.

Second, MPKIX prevents IAS users from revealing user information to the CAs by encrypting data

in carrier-endorsed ppCSRs. Third, MPKIX provides the service of ID claim/revocation arbitration

to IAS users without the need of disclosing additional information to IAS providers. This privacy

protection mechanism does not exist in current solutions [169].

109



Why use cellular network infrastructure? People may wonder why build MPKIX with cellular

network operators but not the other institutions (e.g., banks and insurance companies) that also

have verified user information. The reasons are two-fold. First, the cellular network infrastructures

are built based on GSMA and 3GPP standards with a unified framework, but those institutions have

diversified network systems. The standardized and unified cellular framework allows MPKIX to be

developed on top of the GSMA OneAPI [136], which is generally supported by cellular operators,

so that MPKIX can be easily deployed in operational cellular networks. Second, the CMS server

is deployed as a 3GPP-defined application server (AS) [128], which can securely access HSS via

the standardized Sh interface [129], but the other institutions may be afraid that deploying a new

server in their network infrastructures may cause new security threats, especially for its access of

their user information databases.

Why not use email certificates? Several CAs can issue a user with an X.509 email certificate

within a few minutes. However, this kind of certificates can prove only the access of a particular

email account for the user, but not other user information such as age and address.

How about family-plan users? In some countries, operators offer mobile services with family

plans that contain more than one user. Some of them verify only the ID of the primary user; such

a case is currently not supported by MPKIX. We leave it to our future work.

How about photo-based ID theft attack? An ID thief may impersonate an IAS user by using only

the user’s personal photo without other user information such as name and birthday. MPKIX can

be extended to effectively defend against this attack due to three reasons. First, cellular network

operators can easily obtain verified user photos while verifying each user’s government-issued

photo ID for service activation. Second, ppCert can carry any type of octet data including an

encrypted user photo by using X.509 certificate extensions [2]. Third, given the encrypted user

photo in ppCert, MPKIX can verify a provided user photo based on face recognition techniques,

and thus prevent the photo-based ID theft attack.

Is the paClaim service better than current solutions? The common approach against ID theft

attacks is to do the manual inspection on government-issued photo IDs or other proof documents
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provided by ID claimers. Seemingly, by involving the investigators of IAS providers with more

user information, this approach is error-free and more rigorous than MPKIX. However, it may not

be the case due to three reasons. First, this approach is not considered to proceed in a scientific

way. The efficiency and accuracy of the ID claim process highly depend on the investigators, and

they may delay or have a bias due to human factors. For example, one police’s personal information

was abused to create a Facebook ID by an adversary; however, the disputed ID still remained valid

for a long time after a revocation request corresponding to the ID was submitted to Facebook [170].

Second, the current approach may be still vulnerable to ID owner masquerading attacks. With a

stolen photo ID or a utility bill from a benign IAS user (e.g., accessing mailbox), an adversary

can submit a request to an IAS provider by masquerading as the ID owner, and successfully

claim the ownership of the benign IAS user account. However, with MPKIX, an IAS user cannot

submit any ID claim/revocation request without passing the pre-qualification based on verified user

information from CMS. For example, Bob cannot claim the ownership of Alice’s account, even

when Bob possesses Alice’s driver license. Third, the photo-IDs and proof documents provided by

ID claimers may compromise user privacy by leaking more user information. On the contrary, the

proposed paClaim service is a scientific, rigorous and privacy-protected approach.

Support 5G/6G cellular networks? Current MPKIX prototype is built on top of 4G cellular

infrastructure. However, to support new cellular network systems (e.g., 5G and 6G), its core

functions do not require any modifications. Only the interfaces that MPKIX uses to communicate

with cellular network elements/functions that store subscriber information, e.g., UDM (Unified

Data Management)/UDR (Unified Data Repository) in 5G, need to be updated.

111



CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter provides conclusions of three aforementioned studies. Then, a few topics for future

research are introduced.

6.1 Conclusion

The cellular network has played an important role in our daily life. With the development

of cellular network, lots of new services continue to be added and provided by the operators.

Considering a great amount devices and people connected via cellular networks, it is very important

to secure mobile networks. Three security research projects of the most essential cellular network

services including IMS services, wireless IoT services, and Internet Application services are

conducted and introduced in this dissertation, which helps head toward the secure and dependable

mobile networks. Next, the specific conclusion of each project is presented.

Taming cellular network IP Multimedia Subsystem. The VoWi-Fi service is thriving and being

deployed worldwide. In this work, we conduct the first study on the security implication of the

operational VoWi-Fi service over five operational networks, three in U.S. and two in Taiwan,

using commercial VoWi-Fi devices (e.g., Google Nexus 6P, Apple iPhone 8, Samsung Galaxy S8).

We discover three security vulnerabilities which stem from design defects of the Wi-Fi calling

standard (V1 and V3) and an operational slip of the Wi-Fi calling services (V2). By exploiting the

vulnerabilities, adversaries are able to launch the telephony harassment or denial of voice service

attack and infer the Wi-Fi calling user’s privacy.

The fundamental issue is that the conventional security defenses well examined in cellular

network services are simply applied to the VoWi-Fi service without considering its specific security

threats. We thus develop a solution, called Wi-Fi Calling Guardian, which alleviates real-world

damage by getting to the root of the vulnerabilities. The lessons learned from the operational

VoWi-Fi service operators can help secure mobile ecosystem and facilitate the global deployment,

as well as provide new design insights for upcoming next-gen networks.

Securing wireless IoT services. The cellular IoT is thriving and being deployed worldwide. The
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security of the cellular IoT is playing an important role in its development, but has not been fully

explored yet. In this work, we examine the security implications in the service charging scheme

of the cellular network. We show that the cellular IoT charging can be exploited to launch attacks

against carriers. The adversary can gain 43.75%-80.00% cheaper bills on cellular data services by

masquerading non-IoT devices as IoT devices and abusing them in unanticipated use scenarios. The

fundamental issue lies in that no sufficient security manners, which include mutual authentications

between involved cellular entities, support differential charges between non-IoT and IoT devices.

In light of heavy burdens on standard modification, we propose an anti-abuse solution to mitigate

attack incentives instead of addressing the vulnerabilities directly. It can be used immediately in

practice so as to benefit carriers on securing the cellular IoT ecosystem.

Improving Internet Application Service. Both IAS providers and users face various security

threats nowadays. IAS providers are abused by adversaries based on fake user accounts, since they

have no reliable means to verify correctness of user information. IAS users suffer from nefarious ID

theft attacks, which lead to both financial losses and emotional/physical health damages. To address

these security threats, we proposed the MPKIX framework to improve the security and account-

ability of IAS. MPKIX offers IAS providers with a general, reliable mechanism of user information

verification, which makes IAS users accountable while largely preserving user privacy. Specifi-

cally, three novel mechanisms with privacy protection are introduced for user verification, namely

carrier-endorsed PKIX user certificate issuance, privacy-preserving user information querying, and

privacy-aware ID claim/revocation arbitration. Our evaluation results have shown that MPKIX

is an effective and scalable approach. MPKIX not only provides a potent solution to secure the

present-day IAS, but also benefits all the involved parties. Last but not least, the novel framework,

MPKIX, integrates Internet Application Services into the wide-sense mobile networks. It enables

the mobile network to provide secure and dependable services to users.

6.2 Future Work

Along the line of this thesis, there are two topics that are worth more research efforts in the

future.
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Efficient and Secure Cellular-Satellite Communication. Mobile networks (5G/4G) have suc-

cessfully served billions of users. But the heavy deployment and operation costs in rural areas,

aircraft, oceans, or even the areas suffered from the disasters (e.g., earthquakes, tornados, and wars)

limit the cellular network to cover all global users everywhere. Thus, the industry and academia

are collaborating to extend 5G and beyond network the constellation. Since this technique is still

in early stage, many challenges would come with the new technology. For instance, the network

congestion on the anchor gateway can be a limitation in the network. Due to the mobility of the

satellite, it is expected to have frequent handover with high signaling overhead considering billions

of users may access the network via satellite in the future. For security, a potential topic is moving

parts of the cellular infrastructure (e.g., AUSF (Authentication Server Function) and UDM (unified

data management)) to space, user authentication data leakage can become a problem for the harsh

environment of outer space and the difficulty of repair. Therefore, there is a pressing need for

studying the standardization for secure and efficient cellular satellite networks.

Cellular IoT Charging on 5G. As discussed in Chapter 4 Securing wireless IoT services, the

unremarkable standard design defects, carrier operational slips, and implementation issues on the

IoT device and infrastructure can cause the extremely appalling charging threat to the cellular users

and operators. Compared to the cellular services for smartphones, the services for cellular IoTs is

still on the way being mature. The service plans/mechanisms are changed frequently due to the

development of IoT devices. Moreover, cellular IoTs can be more popular in 5G network. 5G

is much more than just fast downloads; its unique combination of high-speed connectivity, very

low latency, and ubiquitous coverage will better support smart vehicles and transport infrastructure

such as connected cars, trucks, and buses. The operators will have specific plans to support those

cellular IoT devices. Any design defect, operational slip, or implementation issue can cause the

devastating problems. Thus, the study of cellular IoT charging vulnerabilities in 5G network is still

a valuable research topic for future work.
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