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ABSTRACT
Crop yield is usually affected by impending weather and climate conditions, as well as human
interventions like irrigation. Hence, the prompt detection of regions experiencing water scarcity
can aid in implementing effective mitigation strategies. Our study utilized a data-driven approach
to compute a Water-Demand-Index (WDI), which incorporates crucial first-order geophysical
variables like ambient temperature, vegetation status, and soil moisture, to identify water-stressed
fields in Senegal’s agricultural regions during the millet planting, growing, and harvesting periods.
We have also explored various scenarios for enhancing the accuracy of millet yield prediction by
incorporating other drought indices, soil characteristics, and a bias correction factor. To optimize
the hyperparameters of machine learning (ML) models, various techniques were utilized.
Meanwhile, the performance of these ML models was evaluated using a nested cross-validation
approach. The outcomes of the analysis demonstrate that the Random Forest Regressor model
exhibits superior predictive performance. The outcomes of this study also indicate that integrating
soil moisture-based indices generated from advanced satellite-based high-resolution soil moisture
observations, accounting for individual phases of millet growth, and encompassing millet
production regions at the department (administrative unit) level, can significantly enhance the
overall predictive capacity of the model. The results imply that a holistic approach, encompassing
diverse environmental factors and crop growth stages, could result in more precise and dependable
millet yield predictions. Such refined yield predictions could aid in making informed agricultural

planning and intervention decisions.
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1.0 INTRODUCTION

Agriculture plays a vital role in ensuring food security globally. Food security may be defined
as the availability, accessibility, and utilization of safe and nutritious food to meet the dietary needs
and preferences of individuals (FAO, 2008; World Food Summit, 1996). According to the World
Economic Forum, about 690 million people were undernourished in 2019, and the number is
expected to rise to over 840 million by 2030 (World Economic Forum, 2020). Several factors
contribute to food insecurity, but climate change plays a significant role. Rising temperatures,
erratic weather patterns, and extreme weather events that result from the change in climate usually
lead to the loss of crops and livestock, thus causing food insecurity, malnutrition, and various
socioeconomic difficulties. Therefore, addressing food insecurity by transforming agriculture is
critical to achieving the United Nations Sustainable Development Goal of zero hunger by 2030

(United Nations, 2020; FAO, 2018).

One of the African countries constantly affected by droughts is Senegal, located in West
Africa (World Bank Group, 2021a). Agriculture accounts for a significant portion of Senegal’s
Gross Domestic Product (GDP) and employs a large proportion of its population (CIAT;
BFS/USAID, 2016). The main crops that define the majority of Senegal’s agricultural system are
typically comprised of groundnuts, millet, sorghum, rice, maize, cowpea, cassava, cotton, mango,
and vegetables, where millet, sorghum, rice, and maize are mostly grown by smallholder farmers,
and groundnuts and cotton are the main cash crops (CIAT;BFS/USAID, 2016). Millet holds great
importance in Senegal due to its higher resilience to drought compared to other staple crops. In

fact, millet cultivation covers approximately one-third of the country’s arable land (USDA, 2011).

Crop yield estimation is an essential component of agricultural management, as it helps farmers

plan their planting and harvesting schedules, make informed decisions about inputs such as
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fertilizers and pesticides, and optimize their crop management practices, thereby improving
productivity (Kropp et al., 2019). Traditionally, crop yield estimation has been done through
ground-based surveys, which can be time-consuming and resource-intensive. For instance,
ground-based data collection exercises take a long to complete, are heavily technical, and are
difficult to execute at a larger scale. However, with advances in remote sensing technology, it has
become possible to estimate crop yields from satellite and aerial imagery (Meroni et al., 2013;
Panek & Gozdowski, 2020; Qiao et al., 2021). Remote sensing refers to the collection of
information from an object or phenomenon using sensors mounted on platforms such as satellites.
This data collection technique can provide much information about crops, including their growth
stage, health, and yield potential. Therefore, by using remote sensing to estimate crop yield,
farmers can make more informed decisions about crop management. For example, if remote
sensing data indicates a crop is experiencing stress, farmers can take corrective actions such as
adjusting irrigation or applying additional fertilizers. Similarly, if remote sensing data suggests a
crop is nearing maturity, farmers can plan their harvesting schedule accordingly (de Castro et al.,
2018). Although advancements in remote sensing have helped address different issues in the world,
there are challenges associated with it, including the need for extensive computational resources
and the construction of models for data analysis (Chadburn, 2020), which may not be readily

accessible to smallholder farmers.

Remote sensing can be used to estimate crop yield in several ways. One approach uses
vegetation indices, such as the Normalized Difference Vegetation Index (NDV1), which measures
the difference between the reflectance of near-infrared and red light. NDVI is a widely used
vegetation index that can provide valuable information about crop health and biomass (de Castro

et al., 2018; Lumbierres et al., 2017). Multiple studies have employed remote sensing techniques



to assess crop yield. Some studies have relied on a single variable (Panek & Gozdowski, 2020),
while others have utilized a combination of variables and indices (Ines et al., 2013; Prasad et al.,
20064a). In the context of Senegal, Fall et al. (2020) used precipitation-based and remote sensing-
based indicators to identify the optimal combination of variables for yield prediction (Fall et al.,
2021). Sarr & Sultan (2022) also tested several machine learning algorithms for yield predictability
for different crops, including millet (Sarr & Sultan, 2022). However, the reliability of certain past
studies is compromised by incomplete datasets caused by bad weather conditions or aggregated
information to reduce the problem’s complexity and computational time. For example, It can be
quite challenging to obtain continuous evapotranspiration datasets in coastal areas due to
prolonged cloudiness periods. Additionally, precipitation data is often provided in an aggregated
format, such as annual or seasonal timeframes, which can make it difficult to calculate water stress
for crops. Due to insufficient data on evapotranspiration water demand, it is currently unfeasible
to accurately identify crucial periods of water stress in crops. Additionally, the prolonged drought
period, which can harm crop growth, may go unnoticed due to precipitation data aggregation.
Therefore, the proposed study tries to address these challenges using higher-resolution temporal
and spatial remote sensing products. In addition, we are considering physiographical datasets to
examine their relevance to improving the overall crop yield predictability model. Therefore the

objective of the work is to

1) Address the challenge of missing and continued observation of remote sensing products by
using the new generation of remote sensing products that can improve our understanding

of the earth’s water cycle, climate, and agricultural productivity.



2) Address the challenge of temporal aggregation by dividing the total growing season into
distinct stages: planting, growing, and harvesting periods, and generate remote sensing
products for each period separately.

3) Address the challenge of spatial aggregation of crop yield information at the department

level by introducing a new bias correction index.

Through the integration of these novel strategies, we anticipate a substantial advancement in
the timely prediction of millet yield, enabling us to forecast it several months in advance. This can
assist policy makers with the information and tools they need to make better decisions and
implement more effective strategies for ensuring food security in their countries. Ultimately, with
the increasing availability and affordability of remote sensing data, techniques such as the one
proposed here are poised to provide farmers with new opportunities to optimize their crop

management practices and increase their productivity.



2.0 LITERATURE REVIEW
2.1 Food, Nutrition, and Water Security
2.1.1 Food and Nutrition Security

Food security can be defined as a state in which people have access to enough nutritious and
safe food and are able to acquire it through socially accepted means (USDA ERS, 2022). On the
contrary, food insecurity is a state in which people do not have access to enough safe and nutritious
food. The United States Department of Agriculture (USDA) uses a scale to gauge food security,
ranging from high to very low levels (USDA ERS, 2022). High food security indicates unhindered
access to nutritious and healthy food without any difficulties. Marginal food security denotes some
obstacles in accessing healthy and nutritious food, but it does not compromise the quality and
quantity of the food consumed. Low food security implies a compromised state of food quality,
variety, and desirability, while the quantity remains relatively unaffected. Lastly, very low food
security signifies the inability to afford food for all family members, leading to significant

disruptions in eating patterns.

About 2 billion people experience food insecurity globally, and about 820 million people are
hit by hunger, of which about 514 million are in Asia, 256 million are from Africa, and about 42.5
million are from Latin America and the Caribbean (FAO et al., 2019). Another concerning issue
is malnutrition, which ranges from being underweight to being obese, and according to the Food
and Agriculture Organization of the United Nations 2019 report, about 4 million birth deaths are
due to obesity worldwide (FAO et al., 2019). Africa and Asia are the most affected regions, with
the most stunted and overweight children. This is also a significant issue in high-income countries,
as regular access to healthy food is a challenge for about 8% of the people in Europe and Northern

America (WHO, 2019).



One of the ways to deal with food and nutrition insecurity is by strengthening resilience
through diversification of food supply, investing in food processing and preservation, and
considering cross-sectoral approaches in dealing with food insecurity and malnutrition (World
Bank Group, 2017). To achieve this, there is a need for collaboration from different sectors,

including education, water and sanitation, agriculture, and health (FAO et al., 2019).

2.1.2 Water Security

The earth's surface measures about 510 million square kilometers. Of this surface area, 71%
is covered by water, and the remaining 29% is the surface area of land. The 71% surface area
covered by water comprises different forms, including water in the oceans, glaciers, lakes, rivers,
groundwater, and the water that makes up soil moisture (Piani & Paris, 2021). Of all the water on
the earth’s surface, 97.2% is the water in oceans, 2.15% is in Antarctica and Greenland glaciers,

and the remaining 0.65% includes all surface and groundwaters (Sharp, 2017).

The combination of glaciers, surface, and groundwater accounts for 2.8% of the total water
on the earth’s surface and is categorized as freshwater. Most of the water stored in glaciers is
frozen, which means even less freshwater is available for human consumption and other uses,
which is why water is becoming scarce with time (Smith & Southard, 2002). Meanwhile,
accessible freshwater is not enough to meet human demands in many regions of the world. As a
result, a large population experiences water shortage problems (Jackson et al., 2018). Currently,
Southern and Eastern Mediterranean (SEMED) countries (Algeria, Libya, Cyprus, Morocco,
Egypt, Palestine, Israel, Syria, Jordan, Lebanon, Turkey, and Tunisia) use more of their renewable
water resources, with eight of the countries using over 50% of the water resources and two of the

countries using over 100% of the renewable water resources (Baba et al., 2011).



It was estimated that the world’s population will reach 9 billion by 2050, and with the
growing population, there are increasing strains on water resources (Kurian, 2015). This means
there will not be enough water to sustain agricultural production, industrial expansion, and human
demand if we do not come up with an innovative solution to address the aforementioned
challenges. By 2050, the world’s need for water will increase by 55% due to increased agriculture,
manufacturing, and electricity production, among other uses (OECD, 2012). Agriculture accounts
for 70% of freshwater use worldwide (Smedley, 2017), and by 2050, the water demand for
agriculture is expected to increase by 60% so that there is enough food production for the growing

population (UN Water, 2019).

The world’s population today uses six times more water than the world’s population 100
years ago (UN WATER, 2020). Yet, the sources of water have remained the same. Regions that
are currently experiencing water scarcity are likely going to have amplified water scarcity, and
regions that are experiencing an abundance of water are likely going to experience water stress
(UN Water, 2019). Some regions of the world that are currently experiencing water stress include
Mumbai, Rio, Jakarta, and Nairobi. About 3 billion people worldwide do not afford basic
handwashing services (Ki-moon & Verkooijen, 2021). In addition, approximately 4.2 billion
people globally do not have safe sanitation facilities, and 2.2 billion do not have safe drinking

water (UN WATER News, 2020).

The available water resources are not meeting current water demands, and local and federal
governments need to start planning for a world that will not have enough water in years to come
(Ki-moon &Verkooijen, 2021). Several solutions have been suggested to address this issue, such
as water trading, water recycling, water desalination, and rainwater harvesting (Day, 2019). Water

trading means exchanging water for money among people in different regions or countries (Chong



& Sunding, 2006). Water recycling means treating water regarded as wastewater into a usable and
safe form for human use (UN-Environment, 2017). Water desalination means removing minerals
and other inorganic substances from saline water so that it is safe for human use (WHO, 2011).
This is the primary source of water for many countries, such as Israel, where the saline seawater
is converted into potable water through desalination, and it is safe for human consumption. In this
case, the desalinating seawater supplies over half of the country’s drinking water and over 40% of
its agricultural activities (Region, 2015). Lastly, rainwater harvesting means capturing or
collecting rainwater from rooftops or any platform so that it is stored and used later. The amount
captured through rainwater harvesting can be quite large. For example, 30% of the water demand

in Singapore is met by rainwater harvesting (Smedley, 2017).
2.1.3 Water Security in Africa

Africa's water supply relies on both surface and groundwater sources. However, there has
been a lack of comprehensive research and effective management of these vital water resources
(Matondo et al., 2020). Africa is home to several of the world's largest lakes, which are primarily
situated in the Great Lakes Region within the Great African Rift. The lakes within the Great Lakes
Region of Africa play a crucial role in the continent's water supply, accounting for approximately
25% of the unfrozen freshwater available (Kiprop, 2020). Groundwater is also extensively utilized,
with around 40% of the population relying on it as their primary source of drinking water (Rutten,

2012).

In terms of water consumption, agriculture dominates the water usage in Africa, accounting
for approximately 85% of the fresh water utilized. Comparatively, industry utilizes only 5% of the
water, while household activities account for the remaining 10% (AWF, 2021). Despite having

sufficient freshwater resources to meet the continent's water requirements, the average daily water
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usage per person in Africa is considerably low, ranging from 30 to 40 liters. This falls significantly

below the recognized daily water requirement of 100 liters per person (Howard et al., 2003).

The current water crisis in Africa is severe, with approximately 1 billion people lacking
access to clean and safe water sources (Project, 2019). This situation is exacerbated by significant
pressures on existing water resources throughout the continent, leading to the gradual depletion of
major water bodies (UNWA, 2003). An alarming example is Lake Chad, once among Africa's
largest lakes, which served as a vital water source for over 20 million people across four countries.
However, it has significantly diminished in size and now occupies less than 10% of its original
extent (FAO, 2017; Gao et al., 2011). The primary cause behind Lake Chad's shrinking is the
excessive water withdrawal resulting from a rapid population increase over the past five decades

(Jacobs, 2010).

The plight of Lake Chad is not unique, as other African lakes have also experienced
substantial shrinkage. For instance, Lake Jipe and Lake Natron in Tanzania have diminished in
size by approximately 60% and 65%, respectively, within the past few decades (Waigwa, 2007).
These shrinking water bodies illustrate Africa's critical challenges in sustaining its water resources.
The consequences of shrinking lakes are far-reaching. The reduction in water availability disrupts
ecosystems, threatens biodiversity, and jeopardizes the livelihoods of communities reliant on these
water sources for drinking, irrigation, and other economic activities (Gao et al., 2011; Jones &
Fleck, 2020). To safeguard Africa's water security and ensure access to clean and safe water for
all its inhabitants, managing population growth and investing in green infrastructures are necessary

(Jacobs, 2010; Holtz & Golubski, 2021).

Africa requires a comprehensive approach to effectively manage surface and groundwater

resources to conserve its precious water sources (UN Water, 2019). However, insufficient planning
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and inadequate management of water resources can have detrimental consequences, including the
gradual disappearance of water bodies and detrimental impacts on the communities and

ecosystems reliant on these resources (Plessis, 2019).

Proactive water resource management is crucial to prevent the depletion and degradation of
water resources, which involves implementing sustainable practices that balance the needs of
human populations, agriculture, industry, and the environment (The World Bank, 2022). In
addition, ensuring collaboration and appropriate adaptation of different strategies for water
resource management are necessary to ensure the equitable and efficient use of water while

minimizing the negative impacts on ecosystems and vulnerable communities.

Efficient water allocation and distribution, supported by accurate data and scientific research,
can help prevent the overuse and depletion of water resources, which requires robust monitoring
systems to track water availability, consumption patterns, and ecological health. By understanding
these dynamics of water resources, policymakers, and stakeholders can make informed decisions
to regulate water usage and promote conservation efforts (Miller et al., 1997; OECD, 2015).
Moreover, effective water resource management should prioritize protecting and restoring
ecosystems that sustain water sources. This involves preserving wetlands, forests, and other natural
habitats crucial in regulating water flow, enhancing water quality, and maintaining the overall
ecological balance (US EPA, 2022). Integrated approaches that consider both the social and

ecological aspects of water management are essential for long-term sustainability.

Additionally, raising awareness and promoting education about water conservation practices
among the general public is crucial. Encouraging responsible water use at individual and
community levels can significantly contribute to preserving water resources, and public

campaigns, community engagement, and educational programs can empower individuals to adopt

10



water-saving behaviors and contribute to sustainable water management efforts (Kelly et al., 2017,
Nelson et al., 2021). By adopting holistic and proactive approaches to water resource management,
Africa can safeguard its water resources for future generations, protect ecosystems, and ensure
water security for all[UNWA, 2003). Collaboration among governments, local communities,
researchers, and international organizations is vital to address the challenges and implement

effective solutions that will lead to sustainable water management practices (UNESCO, 2019).

2.1.4 Food, Nutrition, and Water Security in Senegal

Senegal, located in West Africa, has been significantly impacted by natural disasters such as
floods and drought, exacerbating the issue of food insecurity in the country (WFP, 2019).
Approximately 50% of the population in Senegal lives below the poverty line, and the situation
worsened in 2020 with a rise in cases of food insecurity and malnutrition due to low agricultural

yields in the preceding years (Action Against Hunger, 2022).

To address the challenges posed by climate change, Senegal has recognized the importance
of adopting climate-smart agriculture approaches alongside traditional farming methods (World
Bank Group, 2021b). These approaches aim to mitigate the adverse effects of climate change on
agriculture and enhance resilience in the face of climate-related challenges. The World Food
Program (WFP) has been actively promoting the adoption of climate-smart agriculture in various
parts of Senegal to support farmers in achieving food and nutrition security. Furthermore,
preserving baobab trees has been a key focus for the WFP. These iconic trees contribute to
reducing the concentration of carbon dioxide in the atmosphere, mitigating climate change effects,
and producing baobab fruits that serve as valuable vitamin supplements, enhancing nutritional

diversity in local diets (WFP, 2019).
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By implementing climate-smart agriculture practices and protecting vital ecological
resources like baobab trees, Senegal aims to build resilience in its agricultural sector, enhance food
security, and improve the nutritional status of its population. Collaborative efforts among
government agencies, international organizations, local communities, and farmers are crucial to
implementing and scaling up these initiatives, ensuring their long-term sustainability and positive

impact on Senegal’s food system and environment (Ndoye, 2015; USDA, 2023).

2.2 Factors Affecting Food Security

2.2.1 Climate Change

Climate change is a phenomenon characterized by long-term alterations in weather patterns
and environmental conditions (Muchuru & Nhamo, 2019). Over the past century, human activities
and natural processes have led to a significant increase in carbon dioxide levels in the Earth's
atmosphere, rising by 48% since 1850 (NASA, 2021). The consequences of climate change are
far-reaching and impact various aspects of the planet. Sea-level rise is occurring as a result of
melting ice caps and thermal expansion of the oceans, posing significant threats to coastal regions
and island nations (National Geographic Society, 2019). Global temperatures are increasing, with
the Earth's average temperature rising by approximately 1 degree Celsius in the past century, and
projections indicate further warming in the coming decades (NASA, 2014). This temperature rise
has numerous implications, including the shrinking of icebergs, the melting of glaciers, and
alterations in precipitation patterns leading to more frequent and severe floods and droughts

(CSSR, 2016).

Without effective measures to mitigate greenhouse gas emissions, the future projections paint
a worrisome picture. Global temperatures may rise by up to 5 degrees Celsius by the end of the

21st century, with dire consequences for ecosystems, human livelihoods, and the planet's overall
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health (CSSR, 2016). Such significant temperature increases would exacerbate the risks of extreme
weather events, further threaten biodiversity, and amplify the challenges associated with food

security, water availability, and public health (US EPA, 2023).

Climate change has disrupted water cycles and weather patterns on a global scale, leading to
unpredictable rainfall patterns characterized by either insufficient or excessive precipitation in
different regions (Ki-moon and Patrick Verkooijen, 2021). This variability in rainfall has
significant implications for water-related health effects linked to climate change. One such
consequence is malnutrition, resulting from food scarcity caused by droughts or floods (UN
WATER, 2020). Furthermore, extreme weather events like floods can lead to injuries, fatalities,

and the spread of vector-borne diseases (Husain & Trak, 2018).

Agricultural production has been significantly impacted by climate change. However,
implementing strategies such as cultivating hybrid crop varieties and establishing flood or drought-
resistant infrastructure and systems can help communities adapt to the effects of climate change
(Sarkodie & Strezov, 2019). These measures can enhance the resilience of agricultural systems

and support food security in the face of changing climate conditions.

In Africa, the impact of climate change varies across different regions, with countries in the
northern part generally facing lower risks compared to those in the south. However, certain areas
within the continent, such as the Sahel, Somalia, parts of Ethiopia, and the southwest portion of
the Arabian Peninsula, are particularly vulnerable due to limited adoption of adaptive strategies
(UN WATER, 2020). As a result, these areas exhibit higher susceptibility to the adverse effects of
climate change, compounded by challenges related to water resources and political interference.
In countries frequently affected by conflict, political interference has disrupted the equitable

distribution of water resources, exacerbating water inequality in the region. Furthermore,
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deteriorating water infrastructure, population displacement, and using water as a tool for
diplomatic leverage pose additional challenges in these countries (UN WATER, 2020). These
factors contribute to heightened vulnerability to the impacts of climate change and further

exacerbate the water-related challenges these nations face.

Various solutions have been identified to address water inequality and enhance resilience to
climate change in the region. Promoting research, innovation, and sustainable development
through policy formulation and integration is essential. Through mitigation and adaptation
strategies, this approach ensures the implementation of long-term solutions that can withstand the
challenges posed by climate change (UN WATER News, 2020). By integrating climate change
considerations into policy frameworks and fostering sustainable practices, countries in the region
can work towards achieving water security, reducing vulnerability, and promoting equitable access

to water resources.

2.2.2 Land Use and Land Cover Changes

Land use encompasses the various cultural and economic activities that shape the purpose
and utilization of land. In contrast, land cover refers to the physical materials that cover the Earth's
surface (MSU extension, 2013). Over time, profound changes in land use and land cover have
occurred worldwide. For instance, forests have been cleared to make way for agriculture, urban
development, and other human activities. Within the past century, these changes have been
substantial, with approximately 75% of the Earth's land area experiencing alterations in land use.
Meanwhile, over the past 60 years alone, about 32% of the planet has undergone changes in land

use (Winkler et al., 2021).
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These land-use transformations have wide-ranging consequences, with significant impacts
on climate patterns, human health, ecological systems, watershed functions, and more (US EPA,
2021). Additionally, land cover change has been identified as a major environmental threat,
playing a substantial role in the increase of carbon dioxide and other greenhouse gases in the

atmosphere during the transition from the 20th to the 21st century (Arneth et al., 2014).

Another crucial aspect in the study of land use and land cover is land management change,
which pertains to the human activities conducted on different land covers without altering them
(Luyssaert etal., 2014). These activities may involve practices like irrigation, fertilizer application,
and the implementation of specific cropping systems, among others. Over time, these practices can
have environmental consequences, such as groundwater pollution resulting from nutrient leaching
in the soil and the accumulation of salts, both of which can adversely affect agricultural
productivity (Krasilnikov et al., 2022; Mostafazadeh-Fard et al., 2007; Pahalvi et al., 2021). As a
result, the concepts of land use change, land cover change, and land management change contribute
directly to food scarcity by impeding adequate farming land availability and exacerbating land

degradation through unsustainable land management practices (Agidew & Singh, 2017).

Addressing these challenges requires a comprehensive approach considering sustainable land
use and management practices. This includes promoting responsible land stewardship,
implementing effective land management strategies, and adopting sustainable farming techniques.
Proper land management can mitigate the negative environmental impacts associated with land
use changes, help preserve soil fertility, prevent soil erosion, reduce water pollution, and promote
long-term agricultural productivity (CIESIN, 2000; Findell et al., 2017). Moreover, integrating
sustainable land management practices with land use planning and policy development is crucial

for achieving resilient and sustainable agricultural systems (FAO, 2023). This entails supporting
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farmers with knowledge, resources, and incentives to adopt sustainable practices (El Fartassi et al.,
2023), investing in research and innovation for improved land management techniques, and
fostering collaboration among stakeholders to ensure the long-term viability of land resources

(Karalliyadda et al., 2023).

By prioritizing sustainable land use, land cover management, and responsible land
management practices, we can address the interconnected challenges of food security,
environmental conservation, and land degradation, ultimately fostering a more sustainable and

resilient future for generations to come.

2.2.3 Population Growth

The world’s population is currently about 8 billion, with an average density of 62 people per
square kilometer (Our World in Data, 2023) and is expected to increase to 9 billion by 2050
(USAID, 2022) and almost 10.9 billion by 2100 (Our World in Data, 2023). However, there is
variability among countries and regions as some will continue to experience a population increase
while some will experience a population decrease. In addition, studies have shown that by 2050,
the need for food will rise to 100% from 70% due to the increasing population, and developing

countries will need to double their food production to achieve food security (USDA, 2022).

Since rapid population growth often results in high demand for food, interventions like
family planning may help slow down the food demand to become more manageable (ToolKits,
2012). Other strategies that will ensure food security include minimizing food waste (FAO, 2019;
Parfitt et al., 2010), improved storage and transportation systems, and better consumer awareness
initiatives (Parfitt et al., 2010). Pretty et al. (2018) also found that improving agricultural

productivity through sustainable practices can increase food production without expanding
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agricultural land. This includes promoting agroecological approaches, precision agriculture, and
efficient water and nutrient management techniques (Pretty et al., 2018). Investing in research and
technology transfer to smallholder farmers can help improve yields and reduce the demand for
additional agricultural land. Therefore, ensuring food security will eliminate hunger and promote

economic stability (Wageningen University and Research, 2023).

2.3 Drought

Drought, a natural disaster, lacks a universal definition, as its interpretation varies across
different disciplines. Nevertheless, drought can be characterized as a prolonged period of
inadequate soil moisture, a state of dryness resulting in diminished water levels in streams, and a
scarcity that adversely impacts the economy, agriculture, and water resources (Minucci, 2021).
Unlike other natural disasters, drought has a widespread impact on global populations (NRDC,
2018), and its severity and frequency are escalating over time (UNCCD, 2019). Research
examining the impacts of drought reveals its adverse effects on various sectors. These include
reduced crop yields (Ray et al., 2018), negative repercussions on livestock production (Dzavo et
al., 2019; Mare et al., 2018), compromised child nutrition (Cooper et al., 2019), and significant
economic consequences (IPCC, 2019; Keyantash, 2002). In fact, from 2005 to 2015,
approximately 80 percent of the economic losses incurred in developing nations were attributed to
drought's impact on crops, livestock, and fisheries (NRDC, 2018). Moreover, according to the
Atlas of Mortality and Economic Losses from Weather, Climate, and Water extremes, drought
emerged as the deadliest natural disaster between 1970 and 2019, claiming over 600,000 lives (UN

News, 2021).
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2.3.1 Types of Drought

Drought can be classified into five distinct categories: meteorological drought, agricultural
drought, hydrological drought, socioeconomic drought, and stream health drought (Esfahanian et
al., 2017). Meteorological drought occurs when there is a prolonged period of reduced or no
precipitation (Spinoni et al., 2019). Agricultural drought refers to insufficient soil moisture,
negatively impacting crop growth (Dai et al., 2020). Hydrological drought is characterized by
depleted water levels in lakes, streams, and groundwater sources (Keyantash, 2002).
Socioeconomic drought describes a shortage of water supply, impacting society, the economy, and
the environment (Meng et al., 2019). Stream health drought relates to low stream flow during the
driest month, commonly known as index flow (Esfahanian et al., 2017). While each type of drought
possesses its own definition, all are interconnected, originating from a deficit in precipitation.
Meteorological drought precedes agricultural drought, which in turn influences stream health

drought and socioeconomic drought (Xianfeng et al., 2016).

2.3.2 Drought Assessment Strategies

To effectively mitigate the impacts of extreme drought, it is crucial to accurately measure
and assess its intensity and severity across different categories. Several indices have been
developed for this purpose. The Palmer Drought Severity Index (PDSI) (Aiguo & NCAR, 2019),
the Standardized Precipitation-Evapotranspiration Index (SPEI) (Stagge et al., 2014), and the
Standardized Precipitation Index (SPI) (Palmer, 1965b) are commonly used indices for studying
meteorological drought. For hydrological drought analysis, the Surface Water Supply Index
(SWSI) (Shafer & Dezman, 1982), the Reclamation Drought Index (RDI) (Weghorst, 1996), the

Streamflow Drought Index (SDI) (Aghelpour et al., 2020), and the Palmer Hydrologic Drought
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Index (PHDI) (Palmer, 1965a) are widely employed. In the realm of agricultural drought
assessment, commonly utilized indices include the Palmer Moisture Anomaly Index (Z-Index), the
Soil Water Deficit Index (SWDI), the Evapotranspiration Deficit Index (EDI), and the Soil
Moisture Deficit Index (SMDI) (Esfahanian et al., 2017). Evaluating stream health drought
involves using the Current Drought Severity Model and the Future Drought Severity Model
(Esfahanian et al., 2016). Lastly, for socioeconomic drought evaluation, the Multivariate
Standardized Reliability and Resilience Index (MSRRI), the Inflow-demand Reliability Index
(IDR), and the Water Storage Resilience Index (WSR) are commonly employed (Huang et al.,

2016).

It's important to note that these indices not only aid in detecting and assessing drought
severity but also play a crucial role in drought forecasting. Drought forecasting is essential as it
enables governments and policymakers to proactively prepare for disasters, explore alternative

resource options, and maintain economic sustainability (UN-Environment, 2017).

2.3.3 Drought in Senegal

Like other West African countries, Senegal is impacted by climate variability and change
(Diatta et al., 2021). Research by Busby et al. (2014) highlights that Senegal and other African
nations are particularly vulnerable to climate change effects, including increased drought
occurrences, primarily due to rising heat waves in the region (Busby et al., 2014). Senegal has a
history of being prone to droughts, with the African Sahel drought between 1968 and 1988 being
one of the most severe and enduring droughts in history (Alahacoon & Edirisinghe, 2022).
However, it is important to note that vulnerability to climate change varies among countries due

to socioeconomic, environmental, and cultural factors (Alcamo et al., 2007). Developing countries,
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such as Senegal, often face greater exposure and have less capacity to adapt to climate events

compared to developed nations (Sarkodie & Strezov, 2019).

To address the adverse effects of natural disasters, including drought and flood, countries in
Africa have embraced initiatives such as the African Alliance for Climate Smart Agriculture. This
alliance aims to enhance agricultural productivity and adaptability to climate change (World Bank
Group, 2017). It promotes convergence and coordination of efforts toward common goals aligned
with Climate Smart Agriculture (CSA), which involves supporting the planning, implementation,
and evaluation of investment programs in agriculture, as well as mobilizing resources for these
initiatives (Toure & Fane, 2015). Another approach is the development of crop models that utilize
observed and simulated data to estimate crop yield under different weather and soil conditions. In
a successful study, Faye et al. (2018) developed and calibrated a crop model to estimate peanut
yield in Senegal by incorporating data on water stress and soil nutrient conditions. These strategies

contribute to enhancing agricultural resilience and adaptation to climate change in Senegal.

2.4 Introduction to Remote Sensing

Remote sensing is a method of acquiring data that utilizes sensors mounted on various
platforms, such as satellites, airplanes, or drones, to gather reflected or emitted radiation from the
object or area of interest without direct contact (Lillesand et al., 2015). There are two primary
categories of remote sensing: passive and active. Passive remote sensing relies on natural energy
sources, particularly the sun, while active remote sensing utilizes artificial energy sources
(GISGeography, 2022). Irrespective of the type of data acquisition, remote sensing finds numerous
applications in natural resources studies, including the monitoring of land use and land cover
changes, weather predictions (USGS, 2021), water resource monitoring, and natural disaster

surveillance (Jyotsna, 2017).
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2.4.1 Applications of Remote Sensing in Food Security

2.4.1.1 Drought Measurement through Remote Sensing

Traditional drought forecasting methods have limitations in terms of accuracy (Ren et al.,
2008). However, the availability of remote sensing products with varying spatiotemporal
resolutions enables large-scale drought monitoring and prediction (Choi et al., 2012; Sur et al.,
2015; West et al., 2019). This is particularly crucial in regions with limited ground-level
monitoring capabilities and insufficient financial resources. The ability to monitor and predict
droughts through remote sensing can significantly enhance regional food security by serving as an

early warning system (Kogan et al., 2015; Krishnamurthy R et al., 2020).

Drought indices and monitoring systems have been developed to measure and forecast the
severity of droughts. These indices utilize numerical representations based on one or multiple
physical variables to assess drought intensity on different scales (Hayes et al., 2012). The majority
(around 90%) of remote sensing-based drought indices are used for monitoring agricultural
drought, while approximately 10% are employed for meteorological and hydrological drought
monitoring. More than 150 indices have been developed globally, and policymakers in different
countries need to select the most suitable indices for their specific regions (Alahacoon &

Edirisinghe, 2022).

To quantify agricultural drought, commonly used indices include the Normalized Difference
Vegetation Index (NDVI), the Vegetation Health Index (VHI), and the Vegetation Condition Index
(VCI) (Shahzaman et al., 2021). NDVI measures vegetation cover, with values near +1 indicating
robust vegetation and lower values near -1 indicating sparse vegetation (J. Zhao et al., 2020). VHI

assesses overall vegetation health and is calculated using two other indices: the Vegetation
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Condition Index (VCI) and the Temperature Condition Index (TCI). VCI is employed for drought
monitoring, with values below 50% indicating drought conditions and values below 35%

indicating extreme drought (Dutta et al., 2015).

For quantifying hydrological drought, the Standardized Runoff Index (SRI), Surface Water
Supply Index (SWSI), and Standardized Water Level Index (SWI) are commonly utilized drought
indices (Zhu et al., 2018). SRI simulates surface runoff and considers various hydrologic processes
that influence seasonal streamflow variations (Shukla & Wood, 2008). SWSI compares water
availability across multiple basins to determine the extent and severity of drought(Garen, 1993;
Zhu et al., 2018). SWI is another index used for monitoring hydrological drought and aids in
assessing groundwater deficits, among other applications (Zhu et al., 2018). Although these were
developed using ground-observed data, studies have also shown that they can be derived entirely
from remotely sensed products. For instance, the SWSI has been developed using data obtained
from Landsat 5, 7 and 8, Climate Hazard Group InfraRed Precipitation with Station (CHIRPS),
and Sentinel-1 datasets that are entirely remotely sensed (Alahacoon & Edirisinghe, 2022). The
Landsat series have been extensively used for different purposes, including drought monitoring,
and has provided vegetation index data like NDVI and VCI (Ghaleb et al., 2015). The CHIRPS
dataset was also used in the Feed the Future project to develop a remote sensing based SRI (Feed

the Future, 2023).

Meteorological drought can be monitored using indices such as the Standardized
Precipitation Index (SPI), the Palmer Drought Severity Index (PDSI), and the Drought Area Index
(DAI) (Danandeh Mehr et al., 2022). SPI is particularly useful for assessing the frequency and
impact of meteorological droughts, contributing to drought forecasting and climate studies

(Dhawale & Paul, 2018). The CHIRPS dataset is a widely used remote sensing source for
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precipitation data and has been used to develop the SPI (Feed the Future, 2023), and The Tropical
Rainfall Measuring Mission (TRMM) is another remote sensing-based precipitation data source

that has been used to develop the SPI (Q. Zhao et al., 2018).

2.4.1.2 Yield Estimation

Several studies have investigated the relationship between remotely sensed data and crop
yield estimation, employing two primary methods: [1] comparing remotely sensed information or
parameters with available regional crop yield data, and [2] integrating remotely sensed data into

existing crop models (Ren et al., 2008).

While some studies have used soil health and environmental factors data as a tool for yield
estimation (Suruliandi et al., 2021), vegetation cover, as determined by vegetation indices, has also
been a commonly utilized indicator for yield estimation. Examples of vegetation indices include
the Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and
Vegetation Health Index (VHI) (Alahacoon & Edirisinghe, 2022). Previous research has employed
various approaches, including the use of single parameters derived from satellite imagery or
combinations of parameters to establish correlations with crop yield. For instance, Prasad et al.
(2006) developed a crop yield estimation model by incorporating soil moisture, NDVI,
temperature, and precipitation data obtained from satellite imagery (Prasad et al., 2006b). Ines et
al. (2013) used AMSR-E soil moisture data and Leaf Area Index in a crop model to estimate yield
(Ines et al., 2013). Torre et al. (2021) used different models to estimate rice yield and
acknowledged the need for using different climatic variables and indices and machine learning
techniques in crop yield estimation studies (Torre et al., 2021). Specifically for Senegal, recent

studies have used precipitation-based indicators and statistical tools to predict millet yield (Fall et
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al., 2022). Meanwhile, other studies have used vegetation and climatic data separately or in

combination to predict the yield of main crops in the country (Sarr & Sultan, 2022).

2.5 Limitations of Existing Yield Estimation Methods
Numerous studies have explored remotely sensed data, particularly vegetation indices, for
estimating crop yield. However, several limitations need to be addressed to enhance the accuracy

and applicability of these methods.

e Emphasizing the importance of regional-level research is imperative due to the notable
variations in crop yield estimation at small scales among different districts or regions
(Turvey & McLaurin, 2012). This can be a valuable tool for policy makers to make
more informed decisions.

e |t is important to recognize that crop yield is influenced by various factors beyond
vegetation index and water availability. Other key determinants include soil
characteristics, topography, nutrient availability, irrigation practices, pest and disease
management, and agricultural management practices. Integrating these additional
variables into crop predictive analyses can help create more comprehensive and robust

models for yield estimation.

In summary, while remote sensing techniques, particularly vegetation indices, have shown
promise for estimating crop yield, addressing limitations such as conducting localized research,
developing crop-specific correction factors, and incorporating additional relevant variables will
enhance the precision and reliability of these prediction models. By bridging these gaps, remote
sensing can significantly improve agricultural decision-making and food security on a regional

and global scale.
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This study utilizes the SMAP-Sentinel soil moisture product, which combines SMAP Active
L-band and Passive L-band Synthetic Aperture Radar (SAR), as well as the Copernicus C-band
SAR to provide soil moisture data at a 1 km resolution under various weather conditions (Das et
al., 2019; Singh & Das, 2022). In addition, it considers all potential factors that may influence crop
yield, various demand, drought, and physiographical indices and variables were employed. Finally,
the crop life cycle was categorized into planting, growing, and harvesting seasons to enhance

accuracy, as the variables differ across each phase.
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3.0 MILLET YIELD ESTIMATIONS IN SENEGAL: UNVEILING THE POWER OF
REGIONAL WATER STRESS ANALYSIS AND ADVANCED PREDICTIVE
MODELING

3.1 Introduction

Effective agricultural production has the potential to reduce food insecurity in developing
countries facing rising poverty, including many countries in Africa (Christiaensen & Martin,
2018). Not only does agriculture provide food, but also it is a large source of employment. Davis
et al. (2017) conducted a comprehensive study on income sources among households in Sub-
Saharan Africa. They discovered that more than 80% of rural households rely on the agricultural
industry for their livelihoods, irrespective of the agricultural sector's contribution to the Gross
Domestic Product (GDP) in different countries. However, this major source of income and
employment has been threatened by local and global crises (e.g., the COVID-19 pandemic) and
environmental stressors (e.g., megadrought).

Climate change and variability have caused most developing countries to experience food
insecurity in the past few decades due to over-dependence on rainfed agriculture (Bedeke, 2022).
Meanwhile, adopting CSA interventions can effectively mitigate the adverse effects of climate
change (Lipper et al., 2014). Among these interventions, drought and flood monitoring and
forecasting systems can help understand the magnitude and timing of water shortages. The
aforementioned systems hold promise in supporting decision-makers with vital information to
refine national and regional plans to mitigate the consequences of extreme environmental events
(UN-Environment, 2017). However, these interventions alone are insufficient for a precise
assessment of food insecurity. This is because they only provide an indirect correlation between
water imbalance effects and agricultural yield. On the other hand, direct yield estimation methods,

which assess the effects of extreme climatic events on crop yield, can provide a more effective
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basis for policymakers when considering alternative strategies to tackle food insecurity (Ren et al.,
2008).

Yield estimation can be accomplished through several means. Conventional forecasting
systems heavily rely on field observations such as rainfall and temperature data obtained through
weather stations or in-situ sensors (Bastiaanssen & Ali, 2003). The data from field observations
can be used to establish crop growth and statistical sampling models (Ren et al., 2008). However,
these methods generally cannot be expanded to a large area mainly due to a lack of observed data
and the complexity of setting up and operating crop growth models. To address these
shortcomings, recent crop yield prediction techniques use remote sensing data (Bastiaanssen &
Ali, 2003) or combine ground and space observations (Singh & Das, 2022). As technology
advances, remotely sensed products have proved to be reliable, easily accessible, and uniformly
available even in the most remote areas. The use of recently developed remote sensing satellite
imagery allows the production of high-resolution data, which is readily available and not
constrained by geographical or environmental factors. This approach overcomes the limitations
inherent in traditional data acquisition processes that can be hindered by such parameters (Sui et
al., 2018). As these products continually improve in quality and frequency, there is a high

probability that the predictability of forecasting models using these products is also improving.

Traditional remote sensing-based yield estimation techniques typically rely on a single
parameter extracted from satellite images to construct a correlation between said parameter and
crop yield (Panek & Gozdowski, 2020; Lopresti et al., 2015; Meroni et al., 2013). Nevertheless,
recent research has started to integrate multiple parameters in an effort to establish a more
comprehensive correlation between these aggregated parameters and crop yield. For instance,

Prasad et al. (2006) used NDVI (Normalized Difference Vegetation Index), temperature, soil
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moisture, and precipitation data from satellite imagery to develop a crop yield estimation model
(Prasad et al., 2006). Ines et al. (2013) used AMSR-E soil moisture data and Leaf Area Index (LAI)
in a crop model to estimate yield (Ines et al., 2013). As an important aspect of ensuring accurate
yield prediction using multi-spectral images, incorporating temporal, spectral, and spatial
components has also been studied in crop yield estimation studies (Qiao et al., 2021).

Despite these improvements in crop yield estimations, many of these methods have been
created for developing countries with limited scalability to other regions. In addition, the
predictability of some previous studies is undermined by incomplete datasets attributable to
adverse weather conditions. However, advancements in technology have yielded new satellite
imagery products that can help bridge gaps in data while concurrently furnishing more precise and
higher-resolution information. Therefore, our goal in this study is to use technological
advancement in remote sensing to estimate crop yield in data-scared regions such as Senegal. The
problem is further aggravated due to a lack of reliable ground observation data that is usually
aggregated at a large scale, such as the department (administrative unit) level. In order to address
these challenges, the following objectives should be considered: 1) examining the sensitivity of
remotely sensed products to crop yield variabilities in different regions and 2) developing the
regional crop yield predictive models. The novelty of this work is the contribution of sub-seasonal
and unaggregated crop information in order to improve the overall model predictability in case of

data scarcity in developing regions of the world.

3.2 Materials and Methods

3.2.1 Study area

This study is Senegal, a country in West Africa. Senegal has a dry tropical climate, with an

average annual rainfall of about 1200 (mm) in the south and about 300 mm in the arid zones.

28



Between 1991 and 2020, the mean annual temperature was about 28.91 degrees Celsius (World
Bank Group, 2021). The soil type is primarily sandy, which allows crops like millet, sorghum,
corn, and groundnuts to grow very well in most of its agricultural departments. Rice is also grown
well in the irrigated areas of Senegal. With slightly over 3 million hectares of arable land
nationwide, only about 2% is irrigated (Global Yield Gap Atlas, 2016). Senegal’s agriculture
sector is very significant, as it takes up about 43% of the country’s total area, contributes about
17% to the GDP, and offers employment to about 70% of its population (Feed The Future, 2015).
Millet production, like the production of other cereals, experiences yearly variability influenced
by diverse weather patterns and economic pressures (Debieu et al., 2018; Kane et al., 2016).
However, as of 2016, millet had emerged as the second-largest contributor to the national food
production system, following groundnuts, and accounting for roughly 20% of the total agricultural
activities (Feed The Future, 2015). Furthermore, in 2018, it accounted for 30% of all cereal

production in the country (Kane et al., 2023).

3.2.2. Modeling Overview

Our research proposes three hypotheses to enhance the accuracy of millet yield prediction.
The first hypothesis suggests that incorporating soil moisture-based indices derived from high-
resolution satellite-based soil moisture retrievals can improve the prediction. The second
hypothesis suggests that a prediction model based on individual stages of millet growth will be
more effective than a model based on the average of all stages. Lastly, we hypothesize that
accounting for the area of millet production at the department level during different growth stages
can improve the overall model predictability. To test these hypotheses, we introduce a modeling
procedure, which is presented schematically in Figure 1 and briefly explained in the following

section.
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Figure 1. Overview of the modeling process

Crop yield is affected by both spatiotemporal and physiographical variables. Therefore, in
the first step, we obtained remotely sensed data on temperature, soil moisture, precipitation, as
well as vegetation cover to develop different spatiotemporal variables. We also utilized
physiographical variables derived from a combination of remote sensing and ground observations
data pertaining to soil characteristics. These variables were used to perform Predictive and
Exploratory Analysis. Thirsty six spatiotemporal variables, collected from all Senegal
departments, went through an initial series of checks to examine their interdependency, validity,
and correlation with crop yield through the preprocessing stage. This information is then fed to a
series of machine learning (ML) and nested cross-validation techniques to identify the most robust
model. In the next step, we are performing variable reduction strategies to reduce the burden of
future data collection and improve computational time. Variables are systematically reduced to

identify the best combination of variables for the optimal ML model. Finally, the optimal model
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is subjected to permutation importance analysis to determine the significance of each feature. This
involves shuffling the values of each feature in the validation dataset and comparing the model’s
performance on the shuffled and original datasets. The importance scores of each feature are

averaged over multiple iterations for a more reliable estimate.

3.2.3 Data Input

3.2.3.1 Crop Yield Data

Five-year (2016 — 2020) crop yield data for millet were obtained for 43 departments in
Senegal (Vieira Junior et al., 2023). Millet production is predominantly in the western region, with
the highest production in the southwest and the lowest in the north (Figure 2.a). Figure 2.b shows
the millet production zones clustered using k-means method and the country’s average yield value
of 43 departments (Figure 2). The planting period of millet across the country ranges from June to
July; this is the period between the beginning and end of the planting exercise. August is the main
growing period of millet in Senegal; this is the period that the crop attains most of its vegetative
growth and achieves maximum canopy cover. The harvesting of millet ranges from September to
November; this is the period when the crop is removed from the field (FAO, 2020). The harvesting
period seems spatially longer than the planting and growing periods because millet can be
harvested from the time the grains mature while the crop is still using water and nutrients for its

growth-producing fresh grains until the crop stops growing and loses water-producing dry grains.
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Figure 2. a) average Millet production across Senegal; b) production zones based on annual
average yield

3.2.3.2 Spatiotemporal and Physiographical Variables

The following remote sensing products were employed to assess the impact of various

environmental stressors on crop productivity at different stages of development. The source and

further details of these remote sensing products are presented in Table 1. Also, since the reported

yield data was at the department level while remote sensing data have varying spatial scales, it was

necessary to upscale the remote sensing products to the department level. The upscaling was

achieved by averaging all cells of a department using the ArcGIS version 10.8.1 zonal statistic

tool. Additionally, the remote sensing data was only extracted for areas with agricultural land use.

Then, all indices were calculated/extracted for three millet development stages: planting (June-

July), growing (August), and harvesting (September to November) periods (FAO, 2020). In

summary, eight remote sensing products were utilized to estimate yield during the planting,

growing, harvesting, and development seasons, resulting in 38 predictor variables.
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Table 1: Remote sensing products used for the yield prediction

Spat

il TempP
Index Product Type Publisher s oral Source
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e
Soil SMAP/Sentinel-1  Secon  National lkm 12 https://nsidc.org/data/s
Moistur L2 dary Aeronauti days pl2smap_s/versions/3
e Index Radiometer/Radar cs and
(SMI) 30-Second Scene Space
EASE-Grid Soil Administr
Moisture, Version ation
3 (SPL2SMAP_S) (NASA)
Vegetati SPOT/VEGETATI Secon Copernicu 1km 10 https://land.copernicus
on Index ON, PROBA-V dary s Global days .eu/global/products/nd
(VI) NDVI version 2.2 Land vi
Service
Growing Copernicus Secon Copernicu 1km Hourly https://cds.climate.cop
Degree  ECMWF dary S ernicus.eu/cdsapp#!/da
Days European taset/reanalysis-erab-
Index Centre for land-monthly-
Medium- means?tab=overview
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Weather
Forecasts
(ECMWF)
Water e SMAP/Sentinel- Secon  Singh & lkm 12 https://www.sciencedi
Demand 112 dary Das, days rect.com/science/articl
Index Radiometer/Radar (2022) e/pii/S0048969722029
(WDI)  30-Second 904
SceneEASE-Grid
Soil Moisture,
Version 3

(SPL2SMAP_S)
¢ SPOT/VEGETA
TION, PROBA-V
NDVI version 2.2
e Copernicus

ECMWF
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https://nsidc.org/data/spl2smap_s/versions/3
https://nsidc.org/data/spl2smap_s/versions/3
https://land.copernicus.eu/global/products/ndvi
https://land.copernicus.eu/global/products/ndvi
https://land.copernicus.eu/global/products/ndvi
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
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The remotely sensed products and observation data used in this study are generally

categorized into spatiotemporal and physiographical groups. The spatiotemporal variables were

carefully selected to capture the environmental stressors that change over time and space.

Meanwhile, the physiographical variables are limited to those that represent local conditions.

3.2.3.2.1 Spatiotemporal Variables

Spatiotemporal variables show the frequency and location of the change in landscape

(Meng et al., 2019). The spatiotemporal variables that are considered in this study were calculated

or observed, and these include Soil Moisture Index (SMI), Vegetation Index (V1), Growing Degree

Days Index (GDDI), Water Demand Index (WDI), Soil Moisture Deficit Index (SMDI),

Standardized Precipitation Index (SPI), Standardized Runoff Index (SRI), and Drought Severity

Index (DSI).
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Soil Moisture Index (SMI): SMI is derived using soil moisture observations. Soil moisture is an
important aspect that helps to determine water, energy, and carbon fluxes globally (Das et al.,
2011). This study used the SMAP/Sentinel-1 active-passive soil moisture product at 1
kmresolution, SMAP L2 _SM_SP version 3 (Das et al., 2020), to derive the SMI. Since SMAP
L2 SM_SP dataset has a revisit interval of about 6 to 12 days (Das et al., 2019), we found
approximately full coverage over the entire Senegal within 12 days. Thus, all available SMAP
L2 SM_SP coverage over Senegal within 12 days were composite to estimate SMI using Eq.1

(Singh & Das, 2022) as:

SMI = 10 — (=) x 10 )

S max

where, SMtis the soil moisture for day t, and SMmax is the saturated water content or soil porosity.
The soil’s particle density (ppartictle) @and soil bulk density (pvuik) are used to compute the SMmax by

Eq. 2:
SMpax = (1 — pbulk/pparticle) 2

where, SMI is a dimensionless indicator in the range of 0-10, here, lower soil moisture values

produce higher SMI (i.e., high water stress condition) and vice-versa.

Vegetation Index (VI): Vegetation indices like NDVI, Vegetation Condition Index (VCI), and
Vegetation Health Index (VHI) have been widely used to study the amount and health of vegetation
over time (Kogan et al., 2012; Shammi & Meng, 2021). This study used NDVI-derived vegetation
index (VI) to characterize the amount of vegetation at a specific time period and location. The
SPOT/VEGETATION, PROBA-V NDVI version 2.2 product at 1 km resolution is used to
compute the VI (Toté et al., 2020). The VI for each day is a dimensionless indicator in the range

of 0-10, which is calculated by dividing NDVI: (NDVI of a particular day) by NDVImax (the
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maximum NDVI value in a 20-year period (2000 — 2020), and then multiplying by 10, as per the

Eq. 3 given by Singh & Das (2022):

VI = (22) % 10 3)

NDVImax

The higher the NDVI, the higher the V1 (i.e., high amount of vegetation), and vice-versa.

Growing Degree Days Index (GDDI): GDD is used to determine biological activities throughout
a crop’s development and phenology stages, which are expressed as heat units (Mcmaster &
Wilhelm, 1997), derived by subtracting the base temperature, which is the temperature below
which plant development activity becomes insignificant, from the average temperature (Singh &
Das, 2022). The Copernicus ECMWF ERA5 Hourly Temperature dataset is used to compute the

GDD (Hersbach et al., 2023). The GDDI is calculated using Eq. 4 as follows (Singh & Das, 2022):

GDDI = Gbb x 10 (4)

Temperature Growth Range

where, GDDI is the daily GDD, and the Temperature Growth Range is the optimum temperature
for crop development, calculated as the difference between the lower and upper base temperatures
(Twase). Major cereal crops have an average temperature growth range of 10 degrees Celsius to 30
degrees Celsius (Anandhi, 2016; Singh & Das, 2022). However, based on the crop growth
characteristics in Senegal, we used a temperature growth range of 12 degrees Celsius to 35 degrees
Celsius for millet (ICRISAT, 1984). GDDI is a dimensionless index, which varies between 0 and
10, where a GDDI of 10 represents the highest potential heat unit (high crop water stress condition)

to support plant activities.

Water Demand Index (WDI): The Water Demand Index is a dimensionless product that measures

the amount of water required for crops, which can help identify areas where water is limited and

37



potentially cause stress on agricultural production. WDI can be calculated based on factors
influencing water demand, such as temperature, solar radiation, and atmospheric humidity (Mishra
& Singh, 2013). As with prior study (Singh & Das, 2022), we have incorporated GDDI, VI, and
SMI into the calculation of WDI (Eqg. 5), to provide information on crop growth and development,

vegetation cover, and soil moisture conditions and improve the accuracy of yield prediction:

WDI = SMI x VI x GDDI (5)

A high value of WDI represents a high water demand, which indicates water stress
conditions; a low WDI represents a low water demand, indicating the absence of water stress

conditions. The theoretical maximum value of WDI is 1000, and the minimum is zero.

Soil Moisture Deficit Index (SMDI): A widely employed measure for evaluating agricultural
drought is the Standardized Moisture Deficit Index (SMDI), as introduced by Narasimhan and
Srinivasan in 2005. The SMDI for the study period was collected from the Senegal Drought and
Crop Watch System, which was derived using root-zone soil moisture simulations of the well-
known Variable Infiltration Capacity (VIC) model (Feed the Future, 2023). The SMDI used in this

study ranges from -4 to +4, representing dry and wet conditions, respectively.

Standardized Precipitation Index (SPI1): The SPI is a well-known meteorological drought index
developed by McKee et al. (1993) that measures the magnitude of short and medium-term drought
based on the amount of precipitation within a specific timescale: 3, 6, 9, 12, 24, and 48 months.
This study used SPI13, which was derived using three months of precipitation to characterize short-
and medium-term water deficit/excess conditions, primarily important in the context of agriculture.
We used Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data at 5 km

spatial resolution to estimate SPI3, which was further re-scaled to 1 km resolution. The SPI3
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indicates how much above or below the median the 3-month precipitation is, ranging from -3 to
+3, where positive values of the SPI3 imply precipitation greater than the median, which means
there is no drought, and negative values imply that precipitation is lower than the median, and

therefore there is a drought (Kubiak-Wojcicka & Juskiewicz, 2020; Svoboda et al., 2012).

Standardized Runoff Index (SRI): The SRI is a drought index that is widely used to study
hydrological drought, which is expressed as the concept employed by (McKee et al., 1993) for the
SPIin defining SRI as the unit standard normal deviate linked to the percentile of hydrologic runoff
accumulated over a specific period (Kubiak-Wojcicka & Juskiewicz, 2020; Shukla & Wood,
2008). This study used the SRI3, developed on a 3-month timescale in the range of - 3 to +3. The
positive values of the SRI3 indicate the absence of drought, whereas negative values of the SRI3
indicate the presence of drought (Kubiak-Wojcicka & Juskiewicz, 2020). The VIC model
simulated SRI values for the study period were obtained from then Senegal Drought and Crop
Watch System at 5 km resolution, which was further re-scaled at 1 km resolution (Feed The Future,

2023).

Drought Severity Index (DSI): The DSI indicates the agricultural drought severity derived using
root zone soil moisture expressed as a percentile of the soil moisture climatology as described in

Andreadis et al. (2005).

DSl is expressed as a percentage between 0 and 100%, where values close to 100%
represent extreme drought (water stressed) conditions. The VIC model simulated DSI was obtained
from the Senegal Drought and Crop Watch System at 5 km resolution, which was further re-scaled

at 1 km resolution using a linear interpolation technique (Feed The Future, 2023).
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The SPI3, SRI3, SMDI, and DSI were obtained from the Regional Hydrological Extreme
Assessment System (RHEAS), a software framework that streamlines water resources simulations
by assimilating diverse datasets, including satellite observations (Andreadis et al., 2017). The core
of RHEAS is a spatially enabled PostgreSQL/PostGIS database that automatically ingests various
datasets. The software allows for nowcast and forecast simulations, and in this study, it

demonstrated its ability to produce data products in different contexts.

2.3.2.2 Physiographical Variables

Physiographical variables are the environmental characteristics that affect plant growth,
processes, and physiology. It is very important to note that crop yield is not only affected by natural
occurrences like drought and floods but also by existing characteristics of the soil on which the
crops are grown. This study has incorporated the critical physiographical variables for crop growth
such as Nitrogen Content; Rainfall Erosivity; Sand, Clay, and Silt contents; and Soil Organic

Carbon.

Nitrogen Content: Among the major nutrients essential for plant growth (e.g., nitrogen,
phosphorus, potassium), nitrogen is vital in crop growth and development (Hofman & Cleemput,
2004). In addition, the proper application of nitrogen-rich fertilizer as a part of agricultural
management practices can improve crop yield (Smil, 2011). Nitrogen goes through a series of
processes and exists in different forms in the soil, but plants can only uptake the mineral form of
nitrogen (nitrate and ammonium) (Robertson & Vitousek, 2009). In this study the soil nitrogen

content (cg/kg) was obtained from the Global SoilGrid250 m dataset (Hengl et al., 2017).

Sand, Clay, and Silt Contents: It is very important to know the soil texture information of a

particular region’s sand, silt, and clay content, as this determines the type of crop grown in that
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region. Different crops have different growth in different soil textures; for example, maize does
well in sandy loam soils, whereas rice does well in soils with more clay and silt (USA Rice, 2020).
On the other hand, millet grows well in well-drained loamy soils (Oelke et al., 1990). Incorporating
this element in our study will ensure that the soil type for a particular region is considered in the
estimated crop yield. The soil texture information is reported in (g/kg) and was obtained from the

Global SoilGrid250 m dataset (Hengl et al., 2017).

Soil Organic Carbon (SOC): Soil Organic Carbon is the carbon component in the soil’s organic
matter (Department of Agriculture and Food-Western Australia, 2014). The changes in SOC
happen after many years, and the change is usually very small, primarily observed in the topsoil.
However, it is still important to quantify the SOC as it is vital to know how much carbon stocks
are available and to identify any effects a management practice may have. Soils with higher
amounts of SOC tend to have better aeration, drainage, microbe support, and resistance to erosion,
and are often associated with improved yields (Corning et al., 2016). This study obtained SOC

(dg/kg) from the Global SoilGrid250m dataset (Hengl et al., 2017).

Rainfall Erosivity: Rainfall erosivity is the ability of rainfall to cause soil loss downslope, and its
estimation is based on the storm energy and intensity (Nearing et al., 2017). Soil erosion caused
by water is regarded as the primary cause of soil degradation (Panagos et al., 2017), so it is vital
to identify the erosivity level in a particular region, as this affects soil fertility and crop yield. For
this study, the rainfall erosivity (mm ha* h™* yr1) dataset of Senegal was obtained from the

Global Rainfall Erosivity map at 1 km spatial resolution developed by (Panagos et al., 2017).
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3.2.3. Data Analysis
3.2.3.1 Bias Correction

After conducting an extensive analysis of crop cultivation in every department of Senegal
between 2016 and 2020, we found that multiple crops were grown in the same department and
could not be differentiated during data acquisition. As a result, the remotely sensed data,
particularly the NDVI, which measures the reflectance of vegetation in a given area, did not
distinguish millet from other crops. This led to elevated NDVI readings, even during millet
harvesting periods, which were attributed to other crops grown in the same department as millet.
Moreover, the growing vegetation could have influenced soil moisture readings, which are
essential in calculating the WDI. To reduce the margin of error, we identified the exact size of the
cultivated area where millet was grown in each department and established a Bias Correction factor
(Tables S1 to S3). By considering only the area in which millet is grown, we can more accurately
compute the WDI with respect to the planting, growing, and harvesting periods. This correction
factor will improve the accuracy of similar calculations and provide a more precise understanding

of the agricultural conditions in Senegal.

3.2.3.2 Exploratory Analysis: Spatiotemporal and Physiographical VVariable Analysis

We aim to investigate the individual effects of spatiotemporal and physiographic variables
on millet crop yields as well as the relationships between these variables using Spearman’s rank
correlation and linear mixed effects model, as they have different strengths and weaknesses. With
Spearman’s rank correlation, we examined the correlation between all remote sensing indices and
crop yield to understand their annual variabilities. Meanwhile, we statistically identified the most

relevant indices to crop yield regardless of temporal variability with the linear mixed effects model.

42



By investigating the independent effects of these factors, we can better understand how they

influence millet crop yields.

Data were analyzed using the R statistical software (R Core Team, 2022). We employed a
linear mixed effects model to test the effect of independent variables (WDI, SMI, GDDI, VI,
SMDI, SRI3, SPI3, DSI, sand content, silt content, clay content, nitrogen content, SOC, and
rainfall erosivity (during the planting, growing, and harvesting stages of plant growth) on millet
yield using the package ‘ImerTest” (Kuznetsova et al., 2017). Independent variables were
considered fixed effects, and departments and years were considered random effects. All
independent variables were continuous, and we standardized the variables (mean centered at 0 and
standard deviation of 1) because the means of some variables were different by many orders of

magnitude, leading to scaling issues.

Model residuals were assessed visually by plotting model residuals against predicted values
to assess constant variance, and the responses were log-transformed to meet the model assumption.
Additionally, a QQ-plot was used to visually evaluate the normality of the model residuals, and it
was found that the model satisfied the assumptions of normality. Outliers were identified using the
function outlierTest (Fox & Weisberg, 2019). Significant mean shifting studentized residuals were
identified based on Bonferroni adjusted p values and were removed from the model. Next, a
backward elimination stepwise regression was used to identify candidate predictors of millet yield
using package “stats” (R Core Team, 2022). Starting with the current model, including all
predictors, one predictor was dropped at a time, and AIC values were computed for each model.
The candidate model with the lowest AIC was used as a final model. Partial residuals plotted
against each significant predictor suggested that higher-order polynomial regression was

unnecessary.
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Each significant predictor of millet yield was then categorized into four different categories
based on quantiles to assess mean differences in millet yield. The model with categorical predictors
was subjected to ANOVA. Post hoc mean separation tests were performed on significant predictors
based on tukey adjusted p values at the alpha level of 0.05 using the “emmeans” package (Lenth

et al., 2023). Finally, back-transformed estimated marginal means are reported.

3.2.3.3 Predictive Analysis: Crop Yield Estimations

In this task, we aimed to predict millet yield using the spatiotemporal and physiographical
features dataset. The task started with preprocessing, in which we applied MinMax and Robust
scaling methods, respectively, to the input and output variables to ensure that the differences would
not influence our model in the scale of the features (Pedregosa et al., 2011). Then to find the best
hyperparameters for the ML models and to evaluate their performance, we used nested cross-
validation with the following configurations: 1) Outer cross-validation loop: This loop is
responsible for estimating the model’s performance. We divided the dataset into multiple, equally
sized folds (in our case, 5). In each iteration of the loop, one of these folds was set aside as “test
set,” while the remaining folds were used for training the model. This process was repeated until
each fold had been used as the test set once. The average performance across all iterations provided
an unbiased estimate of the model’s performance and 2) Inner cross-validation loop: This loop is
responsible for selecting the best hyperparameters for the model. For each iteration in the outer
loop, we performed another cross-validation process on the training data (again using 5 folds).
This time, however, we used a grid search to try different combinations of hyperparameters for
our ML models. The hyperparameter combination that resulted in the best average performance

was chosen as the best set of hyperparameters for that iteration.
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After finding the best hyperparameters using nested cross-validation, we trained the model
on the entire dataset and saved it for further model evaluation. We compute the error indexes,
including the Nash—Sutcliffe model efficiency coefficient (NSE), the coefficient of determination
(R?), Root mean Square Error (RSME), the normalized root mean squared error by variable range
(nRMSE), and Willmot’s index of agreement (d) for each iteration of the outer loop and then
average them for evaluating the model performance. We repeat the above-mentioned procedure to
select the best unbiased model among eight regression models for millet yield prediction. The

models that we selected with their hyperparameter configurations are presented in Table 2.

Table 2. Comparison of regression models and their hyperparameter configurations

Parameters
Configuration for Hyperparameters
Model Name Grid Search Description Model Reference
Linear Regression N/A No hyperparameters  Galton (1886)

Ridge Regression

Lasso Regression

Elastic Net
Regression

Partial Least Squares
Regression

Support Vector
Regression

alpha: logspace (-4,
4,9)

alpha: logspace (-4,
4,9)

alpha: logspace (-4,
4,9),

I1_ratio: linspace
(0.1, 1, 10)

n_components: range
(1, 11)

C: logspace (-3, 3, 7),

alpha: Regularization
strength (L2 penalty)

alpha: Regularization
strength (L1 penalty)

alpha: Regularization
strength (L1 and L2
penalty),

11 _ratio: The mix
between L1 and L2
penalty

n_components:
Number of
components to keep
in the reduced
dimensionality space
kernel: Kernel type,
C: Penalty parameter,
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Table 2 (cont’d)

Random Forest
Regression

Gradient Boosting
Regression

epsilon: logspace (-3,
3, 7), kernel: ['linear’,
'Tbf']

n_estimators: [50,
100, 200],
max_depth: [None,
10, 20],
min_samples_split:
[2, 5, 10],
min_samples_leaf:
[1,2,4],
max_features: ['sqrt’]

n_estimators’: [50,
100, 200],
max_depth’: [3, 6, 9],
min_samples_split’:
[2, 5, 10],
min_samples_leaf’:
[, 2,4],
max_features’:
[*sqrt’],
learning_rate’: [0.01,
0.1]

epsilon: Tube width
within which no
penalty is applied on
the training data

n_estimators:
Number of trees,
max_depth: The
maximum depth
allowed for trees.
min_samples_split:
The minimum
number of samples
required to split a
node.
min_samples_leaf:
The minimum
number of samples
required at each leaf
node. max_features:
The number of
features to consider
when searching for
the best split

n_estimators: The
number of boosting
stages. max_depth:
The maximum depth
allowed for trees.
min_samples_split:
The minimum
number of samples
required to split a
node.
min_samples_leaf:
The minimum
number of samples
required at each leaf
node. max_features:
The number of
features to consider
when searching for
the best split.
learning_rate: The

(Breiman, 2001)

(Friedman, 2001)
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Table 2 (cont’d) learning rate, also
known as shrinkage.

3.2.3.4 Exploratory Analysis: Permutation Importance Analysis

Permutation importance is a method for assessing the relative significance of features in an
ML model by quantifying the change in model performance when a particular feature’s values are
randomly shuffled (Breiman, 2001). The underlying principle is that if a feature is crucial,
scrambling its values should significantly impact the model’s performance, while shuffling an
insignificant feature should have minimal or no effect. In some cases, an increase in model
performance after shuffling a feature’s values may occur, indicating that the feature introduces
noise to the model, thereby degrading its performance. Overall, this technique offers an intuitive
way to comprehend the importance of each feature in a model by directly examining the

consequences of shuffling the feature values on the model’s performance.

Herein, we employ the Scikit-learn library (Pedregosa et al., 2011) to compute permutation
importance. Using the fitted ML model, we evaluated each feature by randomly shuffling its values
and then assessing the model’s performance on the shuffled dataset with the same scoring function
utilized during model training and cross-validation. Subsequently, the change in performance is
compared to that of the original performance. This process was repeated ten times for each feature,

and the average performance change was calculated and reported as feature importance.

47



3.3 Results and Discussion

3.3.1 Explanatory Analysis: Spatiotemporal and Physiographical Variable Analysis

3.3.1.1 Assessing the Effect of Temporal Variability on the Relationship between Crop Yield
and Remote Sensing Indices using Spearman’s Rank Correlation

The Spearman’s Rank correlation coefficients between millet yield and different

spatiotemporal and physiographical variables for all departments in Senegal are presented in

Figure 3.
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Figure 3. Spearman’s Rank Correlation Coefficient analysis of millet yield and
spatiotemporal/physiographical variables across departments in Senegal

48



Planting indices: Specific planting indices, namely WDI, SMI, and GDDI, were discovered to
have a negative impact on millet crop yield due to increased water demands, unsuitable vegetation
conditions, elevated temperature, and significant soil moisture deficits during planting. However,
the remaining planting indices exhibited inconsistent trends, indicating complex relationships that
require further investigation. This inconsistency was especially noticeable in 2016 and 2020,

which corresponded to the rainy planting period as indicated by drought indices.

Growing indices: The association between millet crop yield and different growing indices is more
intricate and diverse than planting indices. Certain indices primarily exhibit a negative correlation
with crop yield (namely WDI, SMI, and GDDI), whereas others manifest irregular patterns, and a
few are predominantly positively linked. These findings imply that the impact of these indices on
crop yield throughout the growing period is contingent on specific contextual factors and other

pertinent variables.

Harvesting indices: During the harvesting period, there is a lack of a discernible p trend in the
indices’ correlation. Nonetheless, WDI and SMI exhibit a robust negative correlation in the earlier
and later years, indicating that increased values of these variables could have resulted in reduced
yields. This timeframe corresponds to the dry harvesting season, as evidenced by the presence of
negative drought indices. Additionally, all drought indices (DSI, SMDI, SPI3, and SRI3) displayed
a considerable positive correlation in 2018 and 2019, implying that elevated values of these

variables could have contributed to high millet yields.

Physiographical indices: The correlation coefficients between various physiographical indices and
millet yield showed fluctuating trends from 2016 to 2020 that are harder to explain as the values
of these indices are constant during the study period. This suggests that it is crucial to account for

spatiotemporal variations alongside physiographical indices when characterizing the anomalies
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and fluctuations in millet yield. Over the period of three years (2018-2020), various indices, such
as clay and silt content, soil organic carbon, and rainfall erosivity, exhibited predominantly
negative correlation coefficients. However, there was an exception with sand, which demonstrated

a general increasing trend between 2016 and 2019, followed by a decrease in 2020.

Overall summary: The study shows that the relationship between indices and millet crop yield is
complex and varies depending on the stage of crop development. Overall, the correlations vary
from -0.56 (Planting SMI) to +0.40 (Harvesting SRI13). However, regardless of the growth stage,
all variables describing crop water demands (WDI, VI, SMI, and GDDI) are negatively correlated
with yield. In contrast, all drought indices (DSI, SMDI, SPI3, and SRI3) are positively correlated
with millet yields indicating no drought conditions. Nonetheless, when examining the temporal
trends, the results show the occurrence of both wet and dry years during the study period. The
physiographical parameters are negatively correlated with yield except for the sand content.
Meanwhile, the temporal element adds more complexity and inconsistent trends. Therefore,
additional analysis is required to enhance the comprehension of these relationships, accounting for
other influential factors and adopting modeling techniques that accommodate complex and

nonlinear relationships.
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3.3.1.2 Assessing the Relationship between Crop Yield and Remote Sensing Indices Using

Spearman’s Rank Correlation

Stepwise regression through backward elimination following a linear mixed effect model
showed that VI, GDDI, SPI3, and SRI3 in the planting period, VI in the growing period, WDI, VI,
SMI, GDDI, SMDI, SPI3, and SRI3 in the harvesting period, and rainfall erosivity and soil organic
carbon unvarying of time had a significant effect on millet yield (Table S4). Below is the yield
prediction model with the lowest AIC in which 78.6% of the variation in the millet yield was

explained by the following equation (Eqg. 6):

yield; ~ N(ajji i, 6%) ©

a; ~N By + By (Planting VI) + B (Planting GDDI) + B3 (Planting SRI3)
+ B, (Planting SPI3) + B; (Growing VI) + B¢ (Harvesting WDI)
+ B7 (Harvesting Vipgryesting ) + By (Harvesting SMI)

+ By (Harvesting GDDI ) + p5, (Harvesting SMDI )

+ p{,, (Harvesting SPI3) + B7,, (Harvesting SRI3)
+ Bf,5 (Rainfall Erosivity) + p7,, (SOC), 6§j for Departments j = 1, ...,])
ay ~ N, 6% 1), foryeark = 1, ..., K

where, all variables were modeled as predictors, and the year and department were modeled as
random effects. j and k are department and year, respectively; N is a normal or Gaussian
distribution, a is a random effect representing the effect of the department (j) or year (k) on yield,
B is the model coefficient, i is the mean value of the random effects, and &2 is unaccounted

variation, which is the overall variance of the random effects not explained by the model.

In general, some indices have a positive relationship with planting SPI13, growing VI,
harvesting WDI, harvesting SRI3, and Rainfall Erosivity. In contrast, others have a negative
relationship, like planting VI, planting GDDI, planting SRI3, harvesting VI, harvesting SMI,

harvesting GDDI, harvesting SMDI, harvesting SPI3, and SOC.
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The results of our analysis of variance indicate that certain variables have a strong
correlation with millet yield. Specifically, during the planting period, SPI3 and SRI3, and during
the growing period, VI, as well as SOC, showed a significant correlation with millet yield at the
0.1% significance level. SPI3 values above the median indicate above-average precipitation, while
high SRI3 values indicate high hydrologic runoff, suggesting the absence of drought according to
both indices. In addition, we observed that high values of planting SPI3 and harvesting SRI3 were
associated with higher values of millet yields; however, the confidence interval for planting SPI3
(0.43 — 1.33) is wider than the confidence interval for growing VI (0.15 — 0.50), demonstrating

greater uncertainty in the effect of planting SPI3 on millet yield.

The planting period is crucial for millet as it includes plant emergence and early stages of
development when adequate moisture is necessary for germination and early growth. The young
plants are sensitive to dry spells, and high runoff levels can cause erosion, making them fragile.
Our findings align with Fall et al. (2021), who reported that very high precipitation could cause
crop damage when associated with runoff, which explains why high values of SRI could be
associated with low yield, as very high precipitation may have resulted in high surface runoff
which could easily erode germinating plants. We also found that VI, derived from NDVI, had a
strong correlation with millet yield during the growing period (August), consistent with Fall et al.
(2021) and Panek & Gozdowski (2020), who reported the highest correlation between NDVI and

cereal yield during the early stages of crop development.

Our findings indicate a relationship between SOC levels and millet yields, with moderate
SOC levels being associated with higher millet yields. Conversely, elevated SOC levels are
correlated with reduced millet yields. This observation agrees with Oldfield et al. (2019), who

reported a decline in maize yield when SOC concentrations exceeded 2%. The consistency
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between these studies underscores the potential influence of SOC on crop productivity and the

importance of optimizing SOC levels for various crop types (Oldfield et al., 2019).

3.3.2 Predictive Analysis: Crop Yield Estimations
3.3.2.1 Predictive Crop Yield Model Selection

Based on the results from Table 3, it is evident that the Random Forest Regressor model
has the best predictive performance, as it has positive scores for all metrics (i.e., NSE, R?, RMSE,
nNRMSE, and d). This indicates that the model can predict the millet yield more reliably compared
to the other ML models after extensive nested 5-fold cross-validation. Prasad et al. (2021), Jeong
et al. (2016), and Sakamoto (2020) found similar results, where Random Forest Regressor model
performed reliably and faster in predicting cotton yield (Prasad et al., 2021), wheat yield (Jeong et
al., 2016), and soybean yield (Sakamoto, 2020). On the other hand, the Linear Regression model
has the worst predictive performance, as it has negative scores for all metrics, which is also similar
to what Jeong et al. (2016), where the Linear Regression model performed poorly compared to
Random Forest Regressor model. This indicates that the model is not able to predict the millet
yield accurately. The other models have mixed results, with some performing better than others
depending on the metric. Therefore, the Random Forest Regressor model is adopted for further

investigations.

Table 3. Average performance and the best-unbiased hyperparameters

Optimized
Regression Model Hyperparameters
NSE RMSE nRMSE d

Linear Regression -10.495 1.417 0.539 0.514 No parameters to tune for
Linear Regression.
Ridge Regression -0.022 0.597 0.245 0.626  alpha=0.0001

Lasso Regression -0.016 0.594 0.244 0.625 alpha=0.0001,
max_iter=10000
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Table 3 (cont’d)

ElasticNet -0.018 0.595 0.244  0.625 alpha=0.0001,

Regression I1_ratio=0.9,
max_iter=10000

Partial Least 0.055 0.583 0.238  0.591 n_components=1

Squares

Support Vector -0.046 0.618 0.251 0.606 C=10, kernel="linear'

Regression

Random Forest 0.161 0.554 0.224 0.574  max_features='sqrt’,

Regressor n_estimators=50,

random_state=42
Gradient Boosting 0.014 0.588 0.24 0.617 max_depth=6,
Regressor max_features="sqrt’,

min_samples_leaf=4,

random_state=42

3.3.2.2 Predictive Crop Yield Model Implementation and Evaluation of its Performance

Table 4 and S5 present the results of the Random Forest Regressor models, which were
trained using different sets of independent variables. The models’ performance was evaluated
using several statistical indices, including NSE, R?, d, RMSE, and nRMSE. The best model was
selected based on the highest NSE, R?, and d values and the lowest RMSE and nRMSE values.
According to this criterion, the best model was identified as the one using all independent variables
except Department, Harvesting, Total, Growing, Physiographical, and Planting SMI, VI, and
GDDI (Figure 4a). This model exhibited the highest NSE (0.831), the lowest RMSE (0.308) and
NnRMSE (0.077), and the highest R? (0.831) and d (0.942) values. Conversely, the worst-performing
model used all independent variables except Bias Correction factor and Department (Figure 4b),
which had the lowest NSE (0.730), the highest RMSE (0.391) and nRMSE (0.098), and the lowest
R? (0.730) and d (0.896) values. The exclusion of certain variables, including Department,
Harvesting, Total, Growing, Physiographical, and some climate-related variables (SMI, VI, and
GDDI) during the planting period, improved the Random Forest performance model. These

variables may have had less influence on the response variable, or their exclusion may have
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reduced multicollinearity or noise in the data (Schroeder, 1990; Senaviratna & Cooray, 2019).
However, these findings are dataset-specific and may not necessarily apply to other crops and

regions.

Table 4. The best-performing Random Forest Regressor models for different sets of variables

Independent Variables NSE RMSE nRMSE R? d
All variables except Bias Correction 0.781 0.351 0.088 0.781  0.921
Harvesting, Total, Growing, and

Physiographical

All variables except Bias Correction, 0.796 0.340 0.085 0.796  0.928
Department, Harvesting, Total, Growing,

Physiographical, and Planting SMI, VI, and

GDDI

All variables except Bias Correction 0.756 0.371  0.093 0.756  0.909
All variables except Bias Correction and 0.730 0.391  0.098 0.730  0.896
Department

All variables except Bias Correction, 0.729 0.391  0.098 0.729  0.900
Department, and Physiographical

All variables except Bias Correction, 0.790 0.344  0.086 0.790  0.925
Harvesting and Total

All variables except Bias Correction, 0.798 0.337  0.085 0.798  0.928
Harvesting, Total, and Growing

All variables except Bias Correction, 0.767 0.362 0.091 0.767  0.915
Department, Harvesting, Total, and Growing

All variables except Bias Correction, 0.735 0.387  0.097 0.735  0.902

Department, Harvesting, and Total
All variables except Bias Correction and Total 0.756 0.371  0.093 0.756  0.907

All variables except Bias Correction, 0.735 0.387  0.097 0.735  0.901
Department and Total

All variables except Harvesting, Total, 0.794 0.341  0.086 0.794  0.926
Growing, and Physiographical

All variables 0.763 0.366  0.092 0.763  0.916
All variables except Department 0.740 0.383 0.096 0.740  0.900
All variables except Department and 0.746 0.378  0.095 0.746  0.909
Physiographical

All variables except Harvesting and Total 0.793 0.342  0.086 0.793  0.925
All variables except Harvesting, Total, and 0.820 0.319 0.080 0.820 0.938
Growing

All variables except, Department, Harvesting, 0.795 0.340  0.086 0.795  0.927
Total, and Growing

All variables Department, Harvesting, and 0.768 0.362 0.091 0.768 0.916
Total
All variables except Total 0.766 0.363  0.091 0.766  0.912
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Table 4 (cont’d)

All variables except Department and Total 0.746 0.379  0.095 0.746  0.904
All variables except Department, Harvesting, 0.831 0.308 0.077 0.831  0.942
Total, Growing, Physiographical and Planting

SMI, VI, and GDDI

a)  Actual vs Predicted Millet Yield: Random Forest b) Actual vs Predicted Millet Yield: Random Forest
4 4
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Figure 4. Comparing the predicted vs. actual millet yield for (a) the best- and (b) worst-
performing Random Forest Regressor models

Meanwhile, the relatively lower statistical indices associated with the average-performing

Random Forest Regressor models (refer to Table S5) could suggest the presence of other

influential factors, currently unaccounted for or unidentified, that significantly impact millet yield

predictions. These factors may not be entirely observable or quantifiable through the remote

sensing products employed in this study.

3.3.2.3 Understanding the Key Predictors for Millet Crop Yield Using Permutation

Importance Analysis:

Figure 5 illustrates the relative significance of the independent variables contributing to the
optimal performance of the Random Forest Regressor model. The prominence of the WDI within

the optimal model underscores the pivotal role of water availability in crop production, particularly
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during the planting phase. This suggests that any alterations in water accessibility, whether
instigated by climatic extremes, farming management practices, or other elements, could
profoundly affect millet yields. Singh and Das (2022) also found that WDI affected crop yield
significantly (Singh & Das, 2022). The Bias Correction factor emerges as the second most
influential variable. This high ranking infers substantial variability in millet cultivation areas
across different departments, a factor of paramount importance when production data is only

available in aggregated forms, such as at departmental or district levels.

The combined contribution of the indices related to drought and flood conditions (Planting
SMI, Planting SPI3, Planting DSI, Planting SRI13, and Planting SMDI) accounts for approximately
49% of the variance, thereby signifying the substantial impact of extreme events on millet yield.
Moreover, incorporating SPI3 and SRI3, representing precipitation and runoff data over three
months, insinuates that recent climatic conditions during the planting phase can significantly
influence overall crop yields. This is in line with other studies that have used these indices, SPI
specifically, to monitor or predict yield (Mohammed et al., 2022; Tigkas et al., 2018). This
underlines the necessity of incorporating temporal dynamics into agricultural modeling and
planning. Consequently, identifying these crucial periods could aid in planning interventions or

mitigation strategies to optimize yield.

In summary, these findings emphasize the intricate nature of agricultural yield predictions,
which are influenced by a multitude of interconnected environmental factors. They further
underscore the necessity of maintaining comprehensive, spatially and temporally explicit data

pertaining to these factors to enhance the precision and applicability of these predictive models.
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Figure 5. The relative importance of independent variables in the overall performance of the
optimal Random Forest Regressor model

3.4 Conclusion

In conclusion, this study aimed to address the challenges of estimating crop yield in data-
scarce regions such as Senegal by using technological advancements in remote sensing and ML.
The research proposed three hypotheses to improve the accuracy of millet yield prediction;
Initially, we assumed that integrating indices derived from satellite-based high-resolution soil
moisture retrievals could boost the yield model predictive capability. Subsequently, we put forth
the idea that a prediction model centered on distinct millet growth phases might yield greater

efficacy compared to a model that relies on the average of all stages. Finally, we hypothesize that
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factoring in the millet production area at the departmental level during various growth stages can
enhance the model’s overall predictive accuracy. The findings of this research offer compelling
support for the notion that integrating soil moisture-related indices, considering discrete millet
growth stages, and incorporating a millet area Bias Correction factor can enhance the overall

predictive performance of the model.

The Random Forest algorithm emerged as the most robust approach, outperforming other
ML models and maintaining its superiority throughout the variable reduction process, which
systematically minimized the set of independent variables to pinpoint the ideal combination for
the optimal ML model. The analysis also highlighted the importance of water availability in seed
germination and early plant development, as shown by SMI and WDI affecting model performance
significantly during the planting season, as well as the significance of the Bias Correction factor
in predicting millet yield. Indeed, the Bias Correction factor ranks as the second most significant
variable in forecasting millet yields, highlighting its importance when production data is solely

accessible in aggregated formats, such as departmental or district levels.

When it comes to maximizing millet yield, it is essential to consider the impact of drought
and flood conditions. In fact, these factors account for almost half of the variance in yield. It is
also important to pay attention to recent climatic conditions during the planting phase, as they can
have a significant influence on overall crop yields. Specifically, SPI3 and SRI3 are key indicators
to consider. By recognizing these crucial periods, we can better plan interventions and mitigation
strategies to optimize yield. This underscores the need for agricultural modeling and planning that

takes into account temporal dynamics.

The findings have significant implications for enhancing crop yield prediction in regions

lacking adequate data and facilitating the advancement of more precise and efficient crop
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management strategies. The intricate and interconnected nature of environmental factors that
impact crop yields highlights the importance of maintaining comprehensive data that is both
spatially and temporally specific. This data is crucial in enhancing the precision and significance
of predictive models, which can aid in creating interventions and mitigation tactics to optimize
yield. Such measures will benefit both producers and consumers by promoting sustainable and

productive agricultural practices.
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4.0 OVERALL CONCLUSION

The United Nations Sustainable Development Goals (SDGs) aim to combat food insecurity

by 2030. Nevertheless, numerous developing nations, Senegal included, are encountering

challenging obstacles in pursuing this objective, primarily due to the emergence of various

pressing issues, such as climate change and the COVID-19 global pandemic. The primary

objective of this study was to assess the efficacy of cutting-edge technological advancements and

products in addressing the adverse effects of these challenges. Specifically, our aim was to aid

policy makers in formulating planning strategies at regional and national levels by leveraging

advanced machine learning techniques and utilizing high-resolution spatial and temporal remote

sensing products. The sections below summarize some of our findings:

Soil moisture is critical for crop growth, and integrating these indices may significantly
enhance yield prediction. Therefore, we hypothesized that using high-resolution satellite
data to derive soil moisture-based indices can improve crop yield prediction, which was
proven to be valid. Nevertheless, expanding the implementation of this approach to a
national level necessitates government assistance, given that smallholder farmers may not
possess the financial means and technical resources to implement it on an individual farm
basis.

In this study, we examined the hypothesis that a prediction model focused on individual
stages of millet growth would outperform a model based on the average of all stages. The
findings revealed that predictions based on individual stages produced superior results
compared to predictions for the entire growing season. Notably, precipitation-based indices
had a significant impact on crop yield prediction during the planting season, emphasizing

the importance of water for germination and early plant development. As a result, it is
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crucial to prioritize specific indices at different stages of millet growth, focusing on the
most critical factors.

Our hypothesis that including the area of millet production at the department level during
different growth stages would improve the model's accuracy was proven to be correct. This
is especially important as the current land use map cannot differentiate between different
crops. Consequently, our dependence on agricultural census data becomes essential to

augment the overall predictability of the model.

In light of the study's findings, there are several policy interventions and agricultural

strategies that can be contemplated to enhance crop yield prediction and alleviate food insecurity

in regions vulnerable to the effects of climate change and extreme events. The subsequent policies

and interventions are presented as follows:

National Policy: In light of the substantial computational and technical endeavors required
to assess crop production on a national level, it is imperative for governmental bodies and
humanitarian organizations to take action and provide assistance to small-scale farmers
who might lack the necessary resources. In order to enhance the accessibility of modeling
outcomes to the broader public, various dissemination techniques and platforms can be
employed, supported by subsidies in the form of human and financial resources. It is
recommended to ensure the availability of this information at local levels, such as
Extension offices, as it facilitates the distribution of information and allows for model
refinement. Extension officers, due to their direct engagement with smallholder farmers
and familiarity with local data quality, possess valuable insights that can contribute to the

accuracy and relevance of the model.
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Local Policy: Departments should be equipped with the necessary resources and expertise
to analyze and interpret the collected data and model results. Moreover, Extension officers
should possess comprehensive knowledge to effectively communicate advanced
technologies to producers, provide guidance on suitable farming practices, and emphasize
the crucial factors influencing crop yield. Achieving this can be facilitated through the
implementation of workshops, training programs, or field days.

Targeted Irrigation and Water Management: Considering the importance of water during
germination and early plant development, policies focusing on irrigation and water
management can be implemented, including using the WDI to assist in irrigation
scheduling.

Capacity Building and Training: In order to empower farmers to harness advanced
agricultural technologies effectively, it is imperative to implement comprehensive training
programs. These programs will focus on enhancing their capacity to interpret and utilize
remote sensing indices and crop prediction results. By training them with this knowledge,
farmers will be better equipped to make informed decisions and adapt their farming
practices in alignment with the latest advancements. This policy aims to foster a proactive
approach towards agricultural innovation and ensure sustainable growth in the farming
sector.

Research and Development Funding: To promote progress in agriculture, it is crucial to
allocate funds towards research and development, with a specific focus on advancing
remote sensing technologies for crop yield prediction. This investment will play a vital role
in the advancement of more precise and efficient crop prediction models. Additionally, it

will facilitate the identification of sustainable agricultural practices that can enhance

63



productivity while minimizing environmental impact. By prioritizing these endeavors, this
policy seeks to drive innovation in agriculture and support the long-term sustainability of

the sector.

In conclusion, this study demonstrates the value of incorporating soil moisture-based indices,
considering individual stages of millet growth, accounting for production areas at the department
level, and implementing bias correction factors in improving crop yield prediction. These findings
provide valuable insights for policy makers and agricultural stakeholders, emphasizing the need
for targeted interventions and technological support to enhance food security in regions vulnerable
to climate change and extreme events. By implementing these policies and interventions,
governments can support farmers, enhance agricultural productivity, and ultimately contribute to
achieving the United Nations Sustainable Development Goal of combating food insecurity by

2030.
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5.0 FUTURE WORK

Based on the findings of this study, there are several suggestions for future work that can

help us better understand and use millet yield prediction models in the face of changing land use

and climate conditions. These recommendations are as follows:

Conducting long-term monitoring of soil moisture, climate variables, and crop yield data
can provide valuable insights into the dynamic relationships between these factors. Long-
term data collection and analysis will help identify trends, patterns, and potential changes
in the relationships over time, enabling the development of more accurate and robust crop
yield prediction models.

While this study focused on millet yield prediction in Senegal, future research can expand
the scope to include other crops and regions. Different crops may exhibit varying
sensitivities to extreme climate factors, and understanding these dynamics for a range of
crops will contribute to the development of comprehensive crop yield prediction models.
Additionally, studying different regions with varying climatic conditions will provide
insights into the transferability and generalizability of the findings.

Consideration of socioeconomic factors, such as market prices, input costs, and agricultural
policies, can provide a more holistic understanding of the factors influencing crop yield. In
addition, integrating socioeconomic data into the crop yield prediction models can help
identify additional drivers of yield variability and inform policy decisions to improve food
security.

Involving farmers in the research process through participatory approaches can enhance

the relevance and applicability of crop yield prediction models. Engaging farmers in data
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collection, model development, and decision-making processes will ensure that the models

address their specific needs and can be effectively implemented at the farm level.

By pursuing these future research recommendations, we can advance our knowledge and practical
applications in crop yield prediction, ultimately contributing to more effective agricultural

planning, improved food security, and sustainable agricultural systems.
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APPENDIX

Table S1. Bias Correction factor based on each department's expected millet cultivated area

during the planting period (June and July)

Expected Millet Planting

Expected Planting of Other

Department Crops

(%) (%)
Bakel 25.68 74.32
Bambey 56.40 43.60
Bignona 14.28 85.72
Birkelane 27.57 72.43
Bounkiling 20.59 79.41
Dagana 9.76 90.24
Diourbel 59.94 40.06
Fatick 49.89 50.11
Foundiougne 33.15 66.85
Gossas 34.70 65.30
Goudiri 30.69 69.31
Goudomp 18.96 81.04
Guinguineo 59.36 40.64
Kaffrine 26.69 73.31
Kanel 60.04 39.96
Kaolack 38.68 61.32
Kebemer 28.21 71.79
Kedougou 0.00 100.00
Kolda 18.11 81.89
Koumpentoum 29.50 70.50
Koungheul 28.74 71.26
Linguere 45.70 54.30
Louga 23.64 76.36
Malem Hodar 25.11 74.89
Matam 57.69 42.31
Mbacke 48.14 51.86
Mbour 54.29 45.71
Medina Yoro Foulah 22.50 77.50
Nioro 46.56 53.44
Oussouye 3.06 96.94
Podor 9.46 90.54
Ranenou 74.81 25.19
Rusfique 0.00 100.00
Saint-Louis 6.84 93.16
Salemata 0.00 100.00
Saraya 0.00 100.00
Sedhiou 12.62 87.38
Tamba 22.06 77.94

38.80 61.20
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Table S1 (cont’d)

Thies

Tivaouane 37.96 62.04
Velingara 13.19 86.81
Ziguinchor 9.23 90.77

Table S2. Bias Correction factor based on each department's expected millet cultivated area
during the growing period (August)

Expected Planting Expected Millet Expected Growing of

Department of Other Crops Growing Other Crops
(%) (%) (%)
Bakel 2.78 25.68 71.54
Bambey 0.00 56.40 43.60
Bignona 32.45 14.28 53.28
Birkelane 0.52 27.57 71.91
Bounkiling 23.13 20.59 56.27
Dagana 77.75 9.76 12.49
Diourbel 0.00 59.94 40.06
Fatick 4.95 49.89 45.15
Foundiougne 3.29 33.15 63.56
Gossas 0.00 34.70 65.30
Goudiri 1.64 30.69 67.67
Goudomp 33.18 18.96 47.86
Guinguineo 0.00 59.36 40.64
Kaffrine 0.03 26.69 73.28
Kanel 11.58 60.04 28.38
Kaolack 0.29 38.68 61.03
Kebemer 0.00 28.21 71.79
Kedougou 43.70 0.00 56.30
Kolda 36.15 18.11 45.74
Koumpentoum 0.20 29.50 70.31
Koungheul 0.08 28.74 71.18
Linguere 0.00 45.70 54.30
Louga 0.59 23.64 75.76
Malem Hodar 0.10 25.11 74.79
Matam 31.84 57.69 10.47
Mbacke 0.00 48.14 51.86
Mbour 0.00 54.29 45.71
Medina Yoro Foulah 19.11 22.50 58.39
Nioro 1.00 46.56 52.43
Oussouye 89.77 3.06 7.17
Podor 69.52 9.46 21.02
0.00 74.81 25.19

82



Table S2 (cont’d)

Ranenou

Rusfique 0.00 0.00 100.00
Saint-Louis 3.81 6.84 89.35
Salemata 21.00 0.00 79.00
Saraya 4141 0.00 58.59
Sedhiou 35.32 12.62 52.05
Tamba 1.00 22.06 76.94
Thies 0.00 38.80 61.20
Tivaouane 0.00 37.96 62.04
Velingara 19.40 13.19 67.41
Ziguinchor 67.28 9.23 23.49

Table S3. Bias Correction factor based on each department's expected millet cultivated area
during the harvesting period (September, October, and November)

Expected Growing Expected Millet Expected Harvesting

Department of Other Crops Harvesting of Other Crops
(%) (%) (%)
Bakel 13.31 25.68 61.01
Bambey 22.13 56.40 21.47
Bignona 54.23 14.28 31.49
Birkelane 36.21 27.57 36.22
Bounkiling 33.27 20.59 46.14
Dagana 58.76 9.76 31.48
Diourbel 24.25 59.94 15.81
Fatick 26.66 49.89 23.44
Foundiougne 33.17 33.15 33.68
Gossas 40.53 34.70 24.77
Goudiri 16.52 30.69 52.80
Goudomp 44.44 18.96 36.60
Guinguineo 25.72 59.36 14.92
Kaffrine 30.02 26.69 43.29
Kanel 9.62 60.04 30.34
Kaolack 25.82 38.68 35.50
Kebemer 47.42 28.21 24.37
Kedougou 44.02 0.00 55.98
Kolda 41.06 18.11 40.83
Koumpentoum 33.75 29.50 36.75
Koungheul 32.12 28.74 39.14
Linguere 31.54 45.70 22.76
Louga 49.03 23.64 27.33
Malem Hodar 35.99 25.11 38.91
Matam 21.81 57.69 20.50
Table S3 (cont’d) 31.49 48.14 20.37
20.02 54.29 25.69
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Mbour
Medina Yoro Foulah
Nioro
Oussouye
Podor
Ranenou
Rusfique
Saint-Louis
Salemata
Saraya
Sedhiou
Tamba
Thies
Tivaouane
Velingara
Ziguinchor

38.86
29.10
64.17
46.35
4.43
31.72
61.92
20.90
40.27
37.16
29.77
36.75
39.30
32.94
56.65

22.50
46.56
3.06
9.46
74.81
0.00
6.84
0.00
0.00
12.62
22.06
38.80
37.96
13.19
9.23

38.64
24.33
32.77
44.19
20.76
68.28
31.24
79.10
59.73
50.21
48.17
24.45
22.74
53.86
34.12

Table S4. Analysis of Variance results for significant variables. The p-value at 0.1% is
extremely significant, 1% is highly significant, and 5% is significant

Predictors Estimates Confidence Interval p-value
(Intercept) -0.36 -0.69 —-0.04 0.028
Planting VI -0.27 -0.48 — -0.06 0.012
Planting GDDI -0.40 -0.68 —-0.12 0.005
Planting SPI3 0.88 0.43-1.33 <0.001
Planting SRI3 -0.81 -1.25--0.38 <0.001
Growing VI 0.33 0.15-0.50 <0.001
Harvesting WDI 2.69 0.47-4.92 0.018
Harvesting VI -0.30 -0.51--0.09 0.005
Harvesting SMI -2.76 -4.88 — -0.64 0.011
Harvesting GDDI -0.71 -1.28--0.14 0.015
Harvesting SMDI -0.30 -0.58 —-0.03 0.032
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Table S4 (cont’d)

Harvesting SPI3 -0.73
Harvesting SRI3 0.92
Rainfall Erosivity 0.53
Soil Organic -0.79
Carbon

-1.45--0.01

0.27 -1.56

0.04-1.03

-1.22 - -0.36

0.048
0.005
0.034

<0.001

Table S5. The average-performing Random Forest Regressor models for different sets of

variables
Independent Variables NSE RMSE nRMSE R? d
All variables except Bias Correction 0.283 0.619 0.189 0.283 0.633
Harvesting, Total, Growing, and
Physiographical
All variables except Bias Correction, 0.096 0.700 0.213 0.096  0.545
Department, Harvesting, Total, Growing,
Physiographical, and Planting SMI,VI, and
GDDI
All variables except Bias Correction 0.234 0.638 0.196 0.234  0.617
All variables except Bias Correction and 0.161 0.664 0.204 0.161  0.592
Department
All variables except Bias Correction, 0.138 0.678 0.208 0.138  0.568
Department, and Physiographical
All variables except Bias Correction, 0.246 0.629 0.193 0.246  0.636
Harvesting and Total
All variables except Bias Correction, 0.281 0.614 0.189 0.281 0.676
Harvesting, Total, and Growing
All variables except Bias Correction, 0.227 0.635 0.196 0.227  0.651
Department, Harvesting, Total, and Growing
All variables except Bias Correction, 0.167 0.666  0.204 0.167  0.583
Department, Harvesting, and Total
All variables except Bias Correction and Total 0.239 0.634  0.195 0.239 0.619
All variables except Bias Correction, 0.167 0.666  0.204 0.167  0.570
Department and Total
All variables except Harvesting, Total, 0.320 0.602  0.185 0.320  0.669
Growing, and Physiographical
All variables 0.250 0.633 0.194 0.250 0.622
All variables except Department 0.192 0.653 0.201 0.192  0.606
All variables except Department and 0.139 0.678 0.208 0.139  0.568
Physiographical
All variables except Harvesting and Total 0.234 0.635 0.195 0.234  0.626
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Table S5 (cont’d)

All variables except Harvesting, Total, and
Table S5 (cont’d)

All variables except Department, Harvesting,
Total, and Growing

All variables Department, Harvesting, and
Total

All variables except the Total

All variables except Department and Total
All variables except Department, Harvesting,
Total, Growing, Physiographical and Planting
SMI, VI, and GDDI

0.318

0.303
0.212
0.260

0.206
0.198

0.594

0.604
0.647
0.625

0.648
0.661

0.183

0.186
0.198
0.192

0.199
0.201

0.318

0.303
0.212
0.260

0.206
0.198

0.698

0.682
0.612
0.643

0.613
0.590
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