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ABSTRACT 

Crop yield is usually affected by impending weather and climate conditions, as well as human 

interventions like irrigation. Hence, the prompt detection of regions experiencing water scarcity 

can aid in implementing effective mitigation strategies. Our study utilized a data-driven approach 

to compute a Water-Demand-Index (WDI), which incorporates crucial first-order geophysical 

variables like ambient temperature, vegetation status, and soil moisture, to identify water-stressed 

fields in Senegal’s agricultural regions during the millet planting, growing, and harvesting periods. 

We have also explored various scenarios for enhancing the accuracy of millet yield prediction by 

incorporating other drought indices, soil characteristics, and a bias correction factor. To optimize 

the hyperparameters of machine learning (ML) models, various techniques were utilized. 

Meanwhile, the performance of these ML models was evaluated using a nested cross-validation 

approach. The outcomes of the analysis demonstrate that the Random Forest Regressor model 

exhibits superior predictive performance. The outcomes of this study also indicate that integrating 

soil moisture-based indices generated from advanced satellite-based high-resolution soil moisture 

observations, accounting for individual phases of millet growth, and encompassing millet 

production regions at the department (administrative unit) level, can significantly enhance the 

overall predictive capacity of the model. The results imply that a holistic approach, encompassing 

diverse environmental factors and crop growth stages, could result in more precise and dependable 

millet yield predictions. Such refined yield predictions could aid in making informed agricultural 

planning and intervention decisions. 
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1.0 INTRODUCTION 

Agriculture plays a vital role in ensuring food security globally. Food security may be defined 

as the availability, accessibility, and utilization of safe and nutritious food to meet the dietary needs 

and preferences of individuals (FAO, 2008; World Food Summit, 1996). According to the World 

Economic Forum, about 690 million people were undernourished in 2019, and the number is 

expected to rise to over 840 million by 2030 (World Economic Forum, 2020). Several factors 

contribute to food insecurity, but climate change plays a significant role. Rising temperatures, 

erratic weather patterns, and extreme weather events that result from the change in climate usually 

lead to the loss of crops and livestock, thus causing food insecurity, malnutrition, and various 

socioeconomic difficulties. Therefore, addressing food insecurity by transforming agriculture is 

critical to achieving the United Nations Sustainable Development Goal of zero hunger by 2030 

(United Nations, 2020; FAO, 2018). 

One of the African countries constantly affected by droughts is Senegal, located in West 

Africa (World Bank Group, 2021a). Agriculture accounts for a significant portion of Senegal’s 

Gross Domestic Product (GDP) and employs a large proportion of its population (CIAT; 

BFS/USAID, 2016). The main crops that define the majority of Senegal’s agricultural system are 

typically comprised of groundnuts, millet, sorghum, rice, maize, cowpea, cassava, cotton, mango, 

and vegetables, where millet, sorghum, rice, and maize are mostly grown by smallholder farmers, 

and groundnuts and cotton are the main cash crops (CIAT;BFS/USAID, 2016). Millet holds great 

importance in Senegal due to its higher resilience to drought compared to other staple crops. In 

fact, millet cultivation covers approximately one-third of the country’s arable land (USDA, 2011).  

Crop yield estimation is an essential component of agricultural management, as it helps farmers 

plan their planting and harvesting schedules, make informed decisions about inputs such as 
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fertilizers and pesticides, and optimize their crop management practices, thereby improving 

productivity (Kropp et al., 2019). Traditionally, crop yield estimation has been done through 

ground-based surveys, which can be time-consuming and resource-intensive. For instance, 

ground-based data collection exercises take a long to complete, are heavily technical, and are 

difficult to execute at a larger scale. However, with advances in remote sensing technology, it has 

become possible to estimate crop yields from satellite and aerial imagery (Meroni et al., 2013; 

Panek & Gozdowski, 2020; Qiao et al., 2021). Remote sensing refers to the collection of 

information from an object or phenomenon using sensors mounted on platforms such as satellites. 

This data collection technique can provide much information about crops, including their growth 

stage, health, and yield potential. Therefore, by using remote sensing to estimate crop yield, 

farmers can make more informed decisions about crop management. For example, if remote 

sensing data indicates a crop is experiencing stress, farmers can take corrective actions such as 

adjusting irrigation or applying additional fertilizers. Similarly, if remote sensing data suggests a 

crop is nearing maturity, farmers can plan their harvesting schedule accordingly (de Castro et al., 

2018). Although advancements in remote sensing have helped address different issues in the world, 

there are challenges associated with it, including the need for extensive computational resources 

and the construction of models for data analysis (Chadburn, 2020), which may not be readily 

accessible to smallholder farmers. 

Remote sensing can be used to estimate crop yield in several ways. One approach uses 

vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), which measures 

the difference between the reflectance of near-infrared and red light. NDVI is a widely used 

vegetation index that can provide valuable information about crop health and biomass (de Castro 

et al., 2018; Lumbierres et al., 2017). Multiple studies have employed remote sensing techniques 
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to assess crop yield. Some studies have relied on a single variable (Panek & Gozdowski, 2020), 

while others have utilized a combination of variables and indices (Ines et al., 2013; Prasad et al., 

2006a). In the context of Senegal, Fall et al. (2020) used precipitation-based and remote sensing-

based indicators to identify the optimal combination of variables for yield prediction (Fall et al., 

2021). Sarr & Sultan (2022) also tested several machine learning algorithms for yield predictability 

for different crops, including millet (Sarr & Sultan, 2022). However, the reliability of certain past 

studies is compromised by incomplete datasets caused by bad weather conditions or aggregated 

information to reduce the problem’s complexity and computational time. For example, It can be 

quite challenging to obtain continuous evapotranspiration datasets in coastal areas due to 

prolonged cloudiness periods. Additionally, precipitation data is often provided in an aggregated 

format, such as annual or seasonal timeframes, which can make it difficult to calculate water stress 

for crops. Due to insufficient data on evapotranspiration water demand, it is currently unfeasible 

to accurately identify crucial periods of water stress in crops. Additionally, the prolonged drought 

period, which can harm crop growth, may go unnoticed due to precipitation data aggregation. 

Therefore, the proposed study tries to address these challenges using higher-resolution temporal 

and spatial remote sensing products. In addition, we are considering physiographical datasets to 

examine their relevance to improving the overall crop yield predictability model. Therefore the 

objective of the work is to  

1) Address the challenge of missing and continued observation of remote sensing products by 

using the new generation of remote sensing products that can improve our understanding 

of the earth’s water cycle, climate, and agricultural productivity. 
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2) Address the challenge of temporal aggregation by dividing the total growing season into 

distinct stages: planting, growing, and harvesting periods, and generate remote sensing 

products for each period separately. 

3) Address the challenge of spatial aggregation of crop yield information at the department 

level by introducing a new bias correction index.  

Through the integration of these novel strategies, we anticipate a substantial advancement in 

the timely prediction of millet yield, enabling us to forecast it several months in advance. This can 

assist policy makers with the information and tools they need to make better decisions and 

implement more effective strategies for ensuring food security in their countries. Ultimately, with 

the increasing availability and affordability of remote sensing data, techniques such as the one 

proposed here are poised to provide farmers with new opportunities to optimize their crop 

management practices and increase their productivity. 
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2.0 LITERATURE REVIEW 

2.1 Food, Nutrition, and Water Security 

2.1.1 Food and Nutrition Security 

Food security can be defined as a state in which people have access to enough nutritious and 

safe food and are able to acquire it through socially accepted means (USDA ERS, 2022). On the 

contrary, food insecurity is a state in which people do not have access to enough safe and nutritious 

food. The United States Department of Agriculture (USDA) uses a scale to gauge food security, 

ranging from high to very low levels (USDA ERS, 2022). High food security indicates unhindered 

access to nutritious and healthy food without any difficulties. Marginal food security denotes some 

obstacles in accessing healthy and nutritious food, but it does not compromise the quality and 

quantity of the food consumed. Low food security implies a compromised state of food quality, 

variety, and desirability, while the quantity remains relatively unaffected. Lastly, very low food 

security signifies the inability to afford food for all family members, leading to significant 

disruptions in eating patterns. 

About 2 billion people experience food insecurity globally, and about 820 million people are 

hit by hunger, of which about 514 million are in Asia, 256 million are from Africa, and about 42.5 

million are from Latin America and the Caribbean (FAO et al., 2019). Another concerning issue 

is malnutrition, which ranges from being underweight to being obese, and according to the Food 

and Agriculture Organization of the United Nations 2019 report, about 4 million birth deaths are 

due to obesity worldwide (FAO et al., 2019). Africa and Asia are the most affected regions, with 

the most stunted and overweight children. This is also a significant issue in high-income countries, 

as regular access to healthy food is a challenge for about 8% of the people in Europe and Northern 

America (WHO, 2019).  
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One of the ways to deal with food and nutrition insecurity is by strengthening resilience 

through diversification of food supply, investing in food processing and preservation, and 

considering cross-sectoral approaches in dealing with food insecurity and malnutrition (World 

Bank Group, 2017). To achieve this, there is a need for collaboration from different sectors, 

including education, water and sanitation, agriculture, and health (FAO et al., 2019). 

2.1.2 Water Security 

The earth's surface measures about 510 million square kilometers. Of this surface area, 71% 

is covered by water, and the remaining 29% is the surface area of land. The 71% surface area 

covered by water comprises different forms, including water in the oceans, glaciers, lakes, rivers, 

groundwater, and the water that makes up soil moisture (Piani & Paris, 2021). Of all the water on 

the earth’s surface, 97.2% is the water in oceans, 2.15% is in Antarctica and Greenland glaciers, 

and the remaining 0.65% includes all surface and groundwaters (Sharp, 2017). 

The combination of glaciers, surface, and groundwater accounts for 2.8% of the total water 

on the earth’s surface and is categorized as freshwater. Most of the water stored in glaciers is 

frozen, which means even less freshwater is available for human consumption and other uses, 

which is why water is becoming scarce with time (Smith & Southard, 2002). Meanwhile, 

accessible freshwater is not enough to meet human demands in many regions of the world. As a 

result, a large population experiences water shortage problems (Jackson et al., 2018). Currently, 

Southern and Eastern Mediterranean (SEMED) countries (Algeria, Libya, Cyprus, Morocco, 

Egypt, Palestine, Israel, Syria, Jordan, Lebanon, Turkey, and Tunisia) use more of their renewable 

water resources, with eight of the countries using over 50% of the water resources and two of the 

countries using over 100% of the renewable water resources (Baba et al., 2011). 
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It was estimated that the world’s population will reach 9 billion by 2050, and with the 

growing population, there are increasing strains on water resources (Kurian, 2015). This means 

there will not be enough water to sustain agricultural production, industrial expansion, and human 

demand if we do not come up with an innovative solution to address the aforementioned 

challenges. By 2050, the world’s need for water will increase by 55% due to increased agriculture, 

manufacturing, and electricity production, among other uses (OECD, 2012). Agriculture accounts 

for 70% of freshwater use worldwide (Smedley, 2017), and by 2050, the water demand for 

agriculture is expected to increase by 60% so that there is enough food production for the growing 

population (UN Water, 2019). 

The world’s population today uses six times more water than the world’s population 100 

years ago (UN WATER, 2020). Yet, the sources of water have remained the same. Regions that 

are currently experiencing water scarcity are likely going to have amplified water scarcity, and 

regions that are experiencing an abundance of water are likely going to experience water stress 

(UN Water, 2019). Some regions of the world that are currently experiencing water stress include 

Mumbai, Rio, Jakarta, and Nairobi. About 3 billion people worldwide do not afford basic 

handwashing services (Ki-moon & Verkooijen, 2021). In addition, approximately 4.2 billion 

people globally do not have safe sanitation facilities, and 2.2 billion do not have safe drinking 

water (UN WATER News, 2020). 

The available water resources are not meeting current water demands, and local and federal 

governments need to start planning for a world that will not have enough water in years to come 

(Ki-moon &Verkooijen, 2021). Several solutions have been suggested to address this issue, such 

as water trading, water recycling, water desalination, and rainwater harvesting (Day, 2019). Water 

trading means exchanging water for money among people in different regions or countries (Chong 
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& Sunding, 2006). Water recycling means treating water regarded as wastewater into a usable and 

safe form for human use (UN-Environment, 2017). Water desalination means removing minerals 

and other inorganic substances from saline water so that it is safe for human use (WHO, 2011). 

This is the primary source of water for many countries, such as Israel, where the saline seawater 

is converted into potable water through desalination, and it is safe for human consumption. In this 

case, the desalinating seawater supplies over half of the country’s drinking water and over 40% of 

its agricultural activities (Region, 2015). Lastly, rainwater harvesting means capturing or 

collecting rainwater from rooftops or any platform so that it is stored and used later. The amount 

captured through rainwater harvesting can be quite large. For example, 30% of the water demand 

in Singapore is met by rainwater harvesting (Smedley, 2017). 

2.1.3 Water Security in Africa 

Africa's water supply relies on both surface and groundwater sources. However, there has 

been a lack of comprehensive research and effective management of these vital water resources 

(Matondo et al., 2020). Africa is home to several of the world's largest lakes, which are primarily 

situated in the Great Lakes Region within the Great African Rift. The lakes within the Great Lakes 

Region of Africa play a crucial role in the continent's water supply, accounting for approximately 

25% of the unfrozen freshwater available (Kiprop, 2020). Groundwater is also extensively utilized, 

with around 40% of the population relying on it as their primary source of drinking water (Rutten, 

2012). 

In terms of water consumption, agriculture dominates the water usage in Africa, accounting 

for approximately 85% of the fresh water utilized. Comparatively, industry utilizes only 5% of the 

water, while household activities account for the remaining 10% (AWF, 2021). Despite having 

sufficient freshwater resources to meet the continent's water requirements, the average daily water 
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usage per person in Africa is considerably low, ranging from 30 to 40 liters. This falls significantly 

below the recognized daily water requirement of 100 liters per person (Howard et al., 2003). 

The current water crisis in Africa is severe, with approximately 1 billion people lacking 

access to clean and safe water sources (Project, 2019). This situation is exacerbated by significant 

pressures on existing water resources throughout the continent, leading to the gradual depletion of 

major water bodies (UNWA, 2003). An alarming example is Lake Chad, once among Africa's 

largest lakes, which served as a vital water source for over 20 million people across four countries. 

However, it has significantly diminished in size and now occupies less than 10% of its original 

extent (FAO, 2017; Gao et al., 2011). The primary cause behind Lake Chad's shrinking is the 

excessive water withdrawal resulting from a rapid population increase over the past five decades 

(Jacobs, 2010). 

The plight of Lake Chad is not unique, as other African lakes have also experienced 

substantial shrinkage. For instance, Lake Jipe and Lake Natron in Tanzania have diminished in 

size by approximately 60% and 65%, respectively, within the past few decades (Waigwa, 2007). 

These shrinking water bodies illustrate Africa's critical challenges in sustaining its water resources. 

The consequences of shrinking lakes are far-reaching. The reduction in water availability disrupts 

ecosystems, threatens biodiversity, and jeopardizes the livelihoods of communities reliant on these 

water sources for drinking, irrigation, and other economic activities (Gao et al., 2011; Jones & 

Fleck, 2020). To safeguard Africa's water security and ensure access to clean and safe water for 

all its inhabitants, managing population growth and investing in green infrastructures are necessary 

( Jacobs, 2010; Holtz & Golubski, 2021). 

Africa requires a comprehensive approach to effectively manage surface and groundwater 

resources to conserve its precious water sources (UN Water, 2019). However, insufficient planning 
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and inadequate management of water resources can have detrimental consequences, including the 

gradual disappearance of water bodies and detrimental impacts on the communities and 

ecosystems reliant on these resources (Plessis, 2019). 

Proactive water resource management is crucial to prevent the depletion and degradation of 

water resources, which involves implementing sustainable practices that balance the needs of 

human populations, agriculture, industry, and the environment (The World Bank, 2022). In 

addition, ensuring collaboration and appropriate adaptation of different strategies for water 

resource management are necessary to ensure the equitable and efficient use of water while 

minimizing the negative impacts on ecosystems and vulnerable communities. 

Efficient water allocation and distribution, supported by accurate data and scientific research, 

can help prevent the overuse and depletion of water resources, which requires robust monitoring 

systems to track water availability, consumption patterns, and ecological health. By understanding 

these dynamics of water resources, policymakers, and stakeholders can make informed decisions 

to regulate water usage and promote conservation efforts (Miller et al., 1997; OECD, 2015). 

Moreover, effective water resource management should prioritize protecting and restoring 

ecosystems that sustain water sources. This involves preserving wetlands, forests, and other natural 

habitats crucial in regulating water flow, enhancing water quality, and maintaining the overall 

ecological balance (US EPA, 2022). Integrated approaches that consider both the social and 

ecological aspects of water management are essential for long-term sustainability. 

Additionally, raising awareness and promoting education about water conservation practices 

among the general public is crucial. Encouraging responsible water use at individual and 

community levels can significantly contribute to preserving water resources, and public 

campaigns, community engagement, and educational programs can empower individuals to adopt 
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water-saving behaviors and contribute to sustainable water management efforts (Kelly et al., 2017; 

Nelson et al., 2021). By adopting holistic and proactive approaches to water resource management, 

Africa can safeguard its water resources for future generations, protect ecosystems, and ensure 

water security for all(UNWA, 2003). Collaboration among governments, local communities, 

researchers, and international organizations is vital to address the challenges and implement 

effective solutions that will lead to sustainable water management practices  (UNESCO, 2019). 

2.1.4 Food, Nutrition, and Water Security in Senegal 

Senegal, located in West Africa, has been significantly impacted by natural disasters such as 

floods and drought, exacerbating the issue of food insecurity in the country (WFP, 2019). 

Approximately 50% of the population in Senegal lives below the poverty line, and the situation 

worsened in 2020 with a rise in cases of food insecurity and malnutrition due to low agricultural 

yields in the preceding years (Action Against Hunger, 2022). 

To address the challenges posed by climate change, Senegal has recognized the importance 

of adopting climate-smart agriculture approaches alongside traditional farming methods (World 

Bank Group, 2021b). These approaches aim to mitigate the adverse effects of climate change on 

agriculture and enhance resilience in the face of climate-related challenges. The World Food 

Program (WFP) has been actively promoting the adoption of climate-smart agriculture in various 

parts of Senegal to support farmers in achieving food and nutrition security. Furthermore, 

preserving baobab trees has been a key focus for the WFP. These iconic trees contribute to 

reducing the concentration of carbon dioxide in the atmosphere, mitigating climate change effects, 

and producing baobab fruits that serve as valuable vitamin supplements, enhancing nutritional 

diversity in local diets (WFP, 2019). 
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By implementing climate-smart agriculture practices and protecting vital ecological 

resources like baobab trees, Senegal aims to build resilience in its agricultural sector, enhance food 

security, and improve the nutritional status of its population. Collaborative efforts among 

government agencies, international organizations, local communities, and farmers are crucial to 

implementing and scaling up these initiatives, ensuring their long-term sustainability and positive 

impact on Senegal's food system and environment (Ndoye, 2015; USDA, 2023). 

2.2 Factors Affecting Food Security 

2.2.1 Climate Change 

Climate change is a phenomenon characterized by long-term alterations in weather patterns 

and environmental conditions (Muchuru & Nhamo, 2019). Over the past century, human activities 

and natural processes have led to a significant increase in carbon dioxide levels in the Earth's 

atmosphere, rising by 48% since 1850 (NASA, 2021). The consequences of climate change are 

far-reaching and impact various aspects of the planet. Sea-level rise is occurring as a result of 

melting ice caps and thermal expansion of the oceans, posing significant threats to coastal regions 

and island nations (National Geographic Society, 2019). Global temperatures are increasing, with 

the Earth's average temperature rising by approximately 1 degree Celsius in the past century, and 

projections indicate further warming in the coming decades (NASA, 2014). This temperature rise 

has numerous implications, including the shrinking of icebergs, the melting of glaciers, and 

alterations in precipitation patterns leading to more frequent and severe floods and droughts 

(CSSR, 2016). 

Without effective measures to mitigate greenhouse gas emissions, the future projections paint 

a worrisome picture. Global temperatures may rise by up to 5 degrees Celsius by the end of the 

21st century, with dire consequences for ecosystems, human livelihoods, and the planet's overall 
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health (CSSR, 2016). Such significant temperature increases would exacerbate the risks of extreme 

weather events, further threaten biodiversity, and amplify the challenges associated with food 

security, water availability, and public health (US EPA, 2023). 

Climate change has disrupted water cycles and weather patterns on a global scale, leading to 

unpredictable rainfall patterns characterized by either insufficient or excessive precipitation in 

different regions (Ki-moon and Patrick Verkooijen, 2021). This variability in rainfall has 

significant implications for water-related health effects linked to climate change. One such 

consequence is malnutrition, resulting from food scarcity caused by droughts or floods (UN 

WATER, 2020). Furthermore, extreme weather events like floods can lead to injuries, fatalities, 

and the spread of vector-borne diseases (Husain & Trak, 2018). 

Agricultural production has been significantly impacted by climate change. However, 

implementing strategies such as cultivating hybrid crop varieties and establishing flood or drought-

resistant infrastructure and systems can help communities adapt to the effects of climate change 

(Sarkodie & Strezov, 2019). These measures can enhance the resilience of agricultural systems 

and support food security in the face of changing climate conditions. 

In Africa, the impact of climate change varies across different regions, with countries in the 

northern part generally facing lower risks compared to those in the south. However, certain areas 

within the continent, such as the Sahel, Somalia, parts of Ethiopia, and the southwest portion of 

the Arabian Peninsula, are particularly vulnerable due to limited adoption of adaptive strategies 

(UN WATER, 2020). As a result, these areas exhibit higher susceptibility to the adverse effects of 

climate change, compounded by challenges related to water resources and political interference. 

In countries frequently affected by conflict, political interference has disrupted the equitable 

distribution of water resources, exacerbating water inequality in the region. Furthermore, 
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deteriorating water infrastructure, population displacement, and using water as a tool for 

diplomatic leverage pose additional challenges in these countries (UN WATER, 2020). These 

factors contribute to heightened vulnerability to the impacts of climate change and further 

exacerbate the water-related challenges these nations face. 

Various solutions have been identified to address water inequality and enhance resilience to 

climate change in the region. Promoting research, innovation, and sustainable development 

through policy formulation and integration is essential. Through mitigation and adaptation 

strategies, this approach ensures the implementation of long-term solutions that can withstand the 

challenges posed by climate change (UN WATER News, 2020). By integrating climate change 

considerations into policy frameworks and fostering sustainable practices, countries in the region 

can work towards achieving water security, reducing vulnerability, and promoting equitable access 

to water resources. 

2.2.2 Land Use and Land Cover Changes 

Land use encompasses the various cultural and economic activities that shape the purpose 

and utilization of land. In contrast, land cover refers to the physical materials that cover the Earth's 

surface (MSU extension, 2013). Over time, profound changes in land use and land cover have 

occurred worldwide. For instance, forests have been cleared to make way for agriculture, urban 

development, and other human activities. Within the past century, these changes have been 

substantial, with approximately 75% of the Earth's land area experiencing alterations in land use. 

Meanwhile, over the past 60 years alone, about 32% of the planet has undergone changes in land 

use (Winkler et al., 2021). 
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These land-use transformations have wide-ranging consequences, with significant impacts 

on climate patterns, human health, ecological systems, watershed functions, and more (US EPA, 

2021). Additionally, land cover change has been identified as a major environmental threat, 

playing a substantial role in the increase of carbon dioxide and other greenhouse gases in the 

atmosphere during the transition from the 20th to the 21st century (Arneth et al., 2014). 

Another crucial aspect in the study of land use and land cover is land management change, 

which pertains to the human activities conducted on different land covers without altering them 

(Luyssaert et al., 2014). These activities may involve practices like irrigation, fertilizer application, 

and the implementation of specific cropping systems, among others. Over time, these practices can 

have environmental consequences, such as groundwater pollution resulting from nutrient leaching 

in the soil and the accumulation of salts, both of which can adversely affect agricultural 

productivity (Krasilnikov et al., 2022; Mostafazadeh-Fard et al., 2007; Pahalvi et al., 2021). As a 

result, the concepts of land use change, land cover change, and land management change contribute 

directly to food scarcity by impeding adequate farming land availability and exacerbating land 

degradation through unsustainable land management practices (Agidew & Singh, 2017). 

Addressing these challenges requires a comprehensive approach considering sustainable land 

use and management practices. This includes promoting responsible land stewardship, 

implementing effective land management strategies, and adopting sustainable farming techniques. 

Proper land management can mitigate the negative environmental impacts associated with land 

use changes, help preserve soil fertility, prevent soil erosion, reduce water pollution, and promote 

long-term agricultural productivity (CIESIN, 2000; Findell et al., 2017). Moreover, integrating 

sustainable land management practices with land use planning and policy development is crucial 

for achieving resilient and sustainable agricultural systems (FAO, 2023). This entails supporting 
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farmers with knowledge, resources, and incentives to adopt sustainable practices (El Fartassi et al., 

2023), investing in research and innovation for improved land management techniques, and 

fostering collaboration among stakeholders to ensure the long-term viability of land resources 

(Karalliyadda et al., 2023). 

By prioritizing sustainable land use, land cover management, and responsible land 

management practices, we can address the interconnected challenges of food security, 

environmental conservation, and land degradation, ultimately fostering a more sustainable and 

resilient future for generations to come. 

2.2.3 Population Growth 

The world’s population is currently about 8 billion, with an average density of 62 people per 

square kilometer (Our World in Data, 2023) and is expected to increase to 9 billion by 2050 

(USAID, 2022) and almost 10.9 billion by 2100 (Our World in Data, 2023). However, there is 

variability among countries and regions as some will continue to experience a population increase 

while some will experience a population decrease. In addition, studies have shown that by 2050, 

the need for food will rise to 100% from 70% due to the increasing population, and developing 

countries will need to double their food production to achieve food security (USDA, 2022). 

Since rapid population growth often results in high demand for food, interventions like 

family planning may help slow down the food demand to become more manageable (Toolkits, 

2012). Other strategies that will ensure food security include minimizing food waste (FAO, 2019; 

Parfitt et al., 2010), improved storage and transportation systems, and better consumer awareness  

initiatives (Parfitt et al., 2010). Pretty et al. (2018) also found that improving agricultural 

productivity through sustainable practices can increase food production without expanding 
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agricultural land. This includes promoting agroecological approaches, precision agriculture, and 

efficient water and nutrient management techniques (Pretty et al., 2018). Investing in research and 

technology transfer to smallholder farmers can help improve yields and reduce the demand for 

additional agricultural land. Therefore, ensuring food security will eliminate hunger and promote 

economic stability (Wageningen University and Research, 2023). 

2.3 Drought 

Drought, a natural disaster, lacks a universal definition, as its interpretation varies across 

different disciplines. Nevertheless, drought can be characterized as a prolonged period of 

inadequate soil moisture, a state of dryness resulting in diminished water levels in streams, and a 

scarcity that adversely impacts the economy, agriculture, and water resources (Minucci, 2021). 

Unlike other natural disasters, drought has a widespread impact on global populations (NRDC, 

2018), and its severity and frequency are escalating over time (UNCCD, 2019). Research 

examining the impacts of drought reveals its adverse effects on various sectors. These include 

reduced crop yields (Ray et al., 2018), negative repercussions on livestock production (Dzavo et 

al., 2019; Mare et al., 2018), compromised child nutrition (Cooper et al., 2019), and significant 

economic consequences (IPCC, 2019; Keyantash, 2002). In fact, from 2005 to 2015, 

approximately 80 percent of the economic losses incurred in developing nations were attributed to 

drought's impact on crops, livestock, and fisheries (NRDC, 2018). Moreover, according to the 

Atlas of Mortality and Economic Losses from Weather, Climate, and Water extremes, drought 

emerged as the deadliest natural disaster between 1970 and 2019, claiming over 600,000 lives (UN 

News, 2021). 
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2.3.1 Types of Drought 

Drought can be classified into five distinct categories: meteorological drought, agricultural 

drought, hydrological drought, socioeconomic drought, and stream health drought (Esfahanian et 

al., 2017). Meteorological drought occurs when there is a prolonged period of reduced or no 

precipitation (Spinoni et al., 2019). Agricultural drought refers to insufficient soil moisture, 

negatively impacting crop growth (Dai et al., 2020). Hydrological drought is characterized by 

depleted water levels in lakes, streams, and groundwater sources (Keyantash, 2002). 

Socioeconomic drought describes a shortage of water supply, impacting society, the economy, and 

the environment (Meng et al., 2019). Stream health drought relates to low stream flow during the 

driest month, commonly known as index flow (Esfahanian et al., 2017). While each type of drought 

possesses its own definition, all are interconnected, originating from a deficit in precipitation. 

Meteorological drought precedes agricultural drought, which in turn influences stream health 

drought and socioeconomic drought (Xianfeng et al., 2016). 

2.3.2 Drought Assessment Strategies 

To effectively mitigate the impacts of extreme drought, it is crucial to accurately measure 

and assess its intensity and severity across different categories. Several indices have been 

developed for this purpose. The Palmer Drought Severity Index (PDSI) (Aiguo & NCAR, 2019), 

the Standardized Precipitation-Evapotranspiration Index (SPEI) (Stagge et al., 2014), and the 

Standardized Precipitation Index (SPI) (Palmer, 1965b) are commonly used indices for studying 

meteorological drought. For hydrological drought analysis, the Surface Water Supply Index 

(SWSI) (Shafer & Dezman, 1982), the Reclamation Drought Index (RDI) (Weghorst, 1996), the 

Streamflow Drought Index (SDI) (Aghelpour et al., 2020), and the Palmer Hydrologic Drought 
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Index (PHDI) (Palmer, 1965a) are widely employed. In the realm of agricultural drought 

assessment, commonly utilized indices include the Palmer Moisture Anomaly Index (Z-Index), the 

Soil Water Deficit Index (SWDI), the Evapotranspiration Deficit Index (EDI), and the Soil 

Moisture Deficit Index (SMDI) (Esfahanian et al., 2017). Evaluating stream health drought 

involves using the Current Drought Severity Model and the Future Drought Severity Model 

(Esfahanian et al., 2016). Lastly, for socioeconomic drought evaluation, the Multivariate 

Standardized Reliability and Resilience Index (MSRRI), the Inflow-demand Reliability Index 

(IDR), and the Water Storage Resilience Index (WSR) are commonly employed (Huang et al., 

2016). 

It's important to note that these indices not only aid in detecting and assessing drought 

severity but also play a crucial role in drought forecasting. Drought forecasting is essential as it 

enables governments and policymakers to proactively prepare for disasters, explore alternative 

resource options, and maintain economic sustainability (UN-Environment, 2017). 

2.3.3 Drought in Senegal 

Like other West African countries, Senegal is impacted by climate variability and change 

(Diatta et al., 2021). Research by Busby et al. (2014) highlights that Senegal and other African 

nations are particularly vulnerable to climate change effects, including increased drought 

occurrences, primarily due to rising heat waves in the region (Busby et al., 2014). Senegal has a 

history of being prone to droughts, with the African Sahel drought between 1968 and 1988 being 

one of the most severe and enduring droughts in history (Alahacoon & Edirisinghe, 2022). 

However, it is important to note that vulnerability to climate change varies among countries due 

to socioeconomic, environmental, and cultural factors (Alcamo et al., 2007). Developing countries, 
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such as Senegal, often face greater exposure and have less capacity to adapt to climate events 

compared to developed nations (Sarkodie & Strezov, 2019). 

To address the adverse effects of natural disasters, including drought and flood, countries in 

Africa have embraced initiatives such as the African Alliance for Climate Smart Agriculture. This 

alliance aims to enhance agricultural productivity and adaptability to climate change (World Bank 

Group, 2017). It promotes convergence and coordination of efforts toward common goals aligned 

with Climate Smart Agriculture (CSA), which involves supporting the planning, implementation, 

and evaluation of investment programs in agriculture, as well as mobilizing resources for these 

initiatives (Toure & Fane, 2015). Another approach is the development of crop models that utilize 

observed and simulated data to estimate crop yield under different weather and soil conditions. In 

a successful study, Faye et al. (2018) developed and calibrated a crop model to estimate peanut 

yield in Senegal by incorporating data on water stress and soil nutrient conditions. These strategies 

contribute to enhancing agricultural resilience and adaptation to climate change in Senegal. 

2.4 Introduction to Remote Sensing 

Remote sensing is a method of acquiring data that utilizes sensors mounted on various 

platforms, such as satellites, airplanes, or drones, to gather reflected or emitted radiation from the 

object or area of interest without direct contact (Lillesand et al., 2015). There are two primary 

categories of remote sensing: passive and active. Passive remote sensing relies on natural energy 

sources, particularly the sun, while active remote sensing utilizes artificial energy sources 

(GISGeography, 2022). Irrespective of the type of data acquisition, remote sensing finds numerous 

applications in natural resources studies, including the monitoring of land use and land cover 

changes, weather predictions (USGS, 2021), water resource monitoring, and natural disaster 

surveillance (Jyotsna, 2017). 
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2.4.1 Applications of Remote Sensing in Food Security  

2.4.1.1 Drought Measurement through Remote Sensing 

Traditional drought forecasting methods have limitations in terms of accuracy (Ren et al., 

2008). However, the availability of remote sensing products with varying spatiotemporal 

resolutions enables large-scale drought monitoring and prediction (Choi et al., 2012; Sur et al., 

2015; West et al., 2019). This is particularly crucial in regions with limited ground-level 

monitoring capabilities and insufficient financial resources. The ability to monitor and predict 

droughts through remote sensing can significantly enhance regional food security by serving as an 

early warning system (Kogan et al., 2015; Krishnamurthy R et al., 2020). 

Drought indices and monitoring systems have been developed to measure and forecast the 

severity of droughts. These indices utilize numerical representations based on one or multiple 

physical variables to assess drought intensity on different scales (Hayes et al., 2012). The majority 

(around 90%) of remote sensing-based drought indices are used for monitoring agricultural 

drought, while approximately 10% are employed for meteorological and hydrological drought 

monitoring. More than 150 indices have been developed globally, and policymakers in different 

countries need to select the most suitable indices for their specific regions (Alahacoon & 

Edirisinghe, 2022). 

To quantify agricultural drought, commonly used indices include the Normalized Difference 

Vegetation Index (NDVI), the Vegetation Health Index (VHI), and the Vegetation Condition Index 

(VCI) (Shahzaman et al., 2021). NDVI measures vegetation cover, with values near +1 indicating 

robust vegetation and lower values near -1 indicating sparse vegetation (J. Zhao et al., 2020). VHI 

assesses overall vegetation health and is calculated using two other indices: the Vegetation 
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Condition Index (VCI) and the Temperature Condition Index (TCI). VCI is employed for drought 

monitoring, with values below 50% indicating drought conditions and values below 35% 

indicating extreme drought (Dutta et al., 2015). 

For quantifying hydrological drought, the Standardized Runoff Index (SRI), Surface Water 

Supply Index (SWSI), and Standardized Water Level Index (SWI) are commonly utilized drought 

indices (Zhu et al., 2018). SRI simulates surface runoff and considers various hydrologic processes 

that influence seasonal streamflow variations (Shukla & Wood, 2008). SWSI compares water 

availability across multiple basins to determine the extent and severity of drought(Garen, 1993; 

Zhu et al., 2018). SWI is another index used for monitoring hydrological drought and aids in 

assessing groundwater deficits, among other applications (Zhu et al., 2018). Although these were 

developed using ground-observed data, studies have also shown that they can be derived entirely 

from remotely sensed products. For instance, the SWSI has been developed using data obtained 

from Landsat 5, 7 and 8, Climate Hazard Group InfraRed Precipitation with Station (CHIRPS), 

and Sentinel-1 datasets that are entirely remotely sensed (Alahacoon & Edirisinghe, 2022). The 

Landsat series have been extensively used for different purposes, including drought monitoring, 

and has provided vegetation index data like NDVI and VCI (Ghaleb et al., 2015). The CHIRPS 

dataset was also used in the Feed the Future project to develop a remote sensing based SRI (Feed 

the Future, 2023). 

Meteorological drought can be monitored using indices such as the Standardized 

Precipitation Index (SPI), the Palmer Drought Severity Index (PDSI), and the Drought Area Index 

(DAI) (Danandeh Mehr et al., 2022). SPI is particularly useful for assessing the frequency and 

impact of meteorological droughts, contributing to drought forecasting and climate studies 

(Dhawale & Paul, 2018). The CHIRPS dataset is a widely used remote sensing source for 
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precipitation data and has been used to develop the SPI (Feed the Future, 2023), and The Tropical 

Rainfall Measuring Mission (TRMM) is another remote sensing-based precipitation data source 

that has been used to develop the SPI (Q. Zhao et al., 2018). 

2.4.1.2 Yield Estimation 

Several studies have investigated the relationship between remotely sensed data and crop 

yield estimation, employing two primary methods: [1] comparing remotely sensed information or 

parameters with available regional crop yield data, and [2] integrating remotely sensed data into 

existing crop models (Ren et al., 2008). 

While some studies have used soil health and environmental factors data as a tool for yield 

estimation (Suruliandi et al., 2021), vegetation cover, as determined by vegetation indices, has also 

been a commonly utilized indicator for yield estimation. Examples of vegetation indices include 

the Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and 

Vegetation Health Index (VHI) (Alahacoon & Edirisinghe, 2022). Previous research has employed 

various approaches, including the use of single parameters derived from satellite imagery or 

combinations of parameters to establish correlations with crop yield. For instance, Prasad et al. 

(2006) developed a crop yield estimation model by incorporating soil moisture, NDVI, 

temperature, and precipitation data obtained from satellite imagery (Prasad et al., 2006b). Ines et 

al. (2013) used AMSR-E soil moisture data and Leaf Area Index in a crop model to estimate yield 

(Ines et al., 2013). Torre et al. (2021) used different models to estimate rice yield and 

acknowledged the need for using different climatic variables and indices and machine learning 

techniques in crop yield estimation studies (Torre et al., 2021). Specifically for Senegal, recent 

studies have used precipitation-based indicators and statistical tools to predict millet yield (Fall et 



 
 

24 
 

al., 2022). Meanwhile, other studies have used vegetation and climatic data separately or in 

combination to predict the yield of main crops in the country (Sarr & Sultan, 2022). 

2.5 Limitations of Existing Yield Estimation Methods 

Numerous studies have explored remotely sensed data, particularly vegetation indices, for 

estimating crop yield. However, several limitations need to be addressed to enhance the accuracy 

and applicability of these methods. 

• Emphasizing the importance of regional-level research is imperative due to the notable 

variations in crop yield estimation at small scales among different districts or regions 

(Turvey & McLaurin, 2012). This can be a valuable tool for policy makers to make 

more informed decisions. 

• It is important to recognize that crop yield is influenced by various factors beyond 

vegetation index and water availability. Other key determinants include soil 

characteristics, topography, nutrient availability, irrigation practices, pest and disease 

management, and agricultural management practices. Integrating these additional 

variables into crop predictive analyses can help create more comprehensive and robust 

models for yield estimation. 

In summary, while remote sensing techniques, particularly vegetation indices, have shown 

promise for estimating crop yield, addressing limitations such as conducting localized research, 

developing crop-specific correction factors, and incorporating additional relevant variables will 

enhance the precision and reliability of these prediction models. By bridging these gaps, remote 

sensing can significantly improve agricultural decision-making and food security on a regional 

and global scale. 
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This study utilizes the SMAP-Sentinel soil moisture product, which combines SMAP Active 

L-band and Passive L-band Synthetic Aperture Radar (SAR), as well as the Copernicus C-band 

SAR to provide soil moisture data at a 1 km resolution under various weather conditions (Das et 

al., 2019; Singh & Das, 2022). In addition, it considers all potential factors that may influence crop 

yield, various demand, drought, and physiographical indices and variables were employed. Finally, 

the crop life cycle was categorized into planting, growing, and harvesting seasons to enhance 

accuracy, as the variables differ across each phase. 
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3.0 MILLET YIELD ESTIMATIONS IN SENEGAL: UNVEILING THE POWER OF 

REGIONAL WATER STRESS ANALYSIS AND ADVANCED PREDICTIVE 

MODELING 
 

3.1 Introduction 

Effective agricultural production has the potential to reduce food insecurity in developing 

countries facing rising poverty, including many countries in Africa (Christiaensen & Martin, 

2018). Not only does agriculture provide food, but also it is a large source of employment. Davis 

et al. (2017) conducted a comprehensive study on income sources among households in Sub-

Saharan Africa. They discovered that more than 80% of rural households rely on the agricultural 

industry for their livelihoods, irrespective of the agricultural sector's contribution to the Gross 

Domestic Product (GDP) in different countries. However, this major source of income and 

employment has been threatened by local and global crises (e.g., the COVID-19 pandemic) and 

environmental stressors (e.g., megadrought).  

Climate change and variability have caused most developing countries to experience food 

insecurity in the past few decades due to over-dependence on rainfed agriculture (Bedeke, 2022). 

Meanwhile, adopting CSA interventions can effectively mitigate the adverse effects of climate 

change (Lipper et al., 2014). Among these interventions, drought and flood monitoring and 

forecasting systems can help understand the magnitude and timing of water shortages. The 

aforementioned systems hold promise in supporting decision-makers with vital information to 

refine national and regional plans to mitigate the consequences of extreme environmental events 

(UN-Environment, 2017). However, these interventions alone are insufficient for a precise 

assessment of food insecurity. This is because they only provide an indirect correlation between 

water imbalance effects and agricultural yield. On the other hand, direct yield estimation methods, 

which assess the effects of extreme climatic events on crop yield, can provide a more effective 
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basis for policymakers when considering alternative strategies to tackle food insecurity (Ren et al., 

2008).  

Yield estimation can be accomplished through several means. Conventional forecasting 

systems heavily rely on field observations such as rainfall and temperature data obtained through 

weather stations or in-situ sensors (Bastiaanssen & Ali, 2003). The data from field observations 

can be used to establish crop growth and statistical sampling models (Ren et al., 2008). However, 

these methods generally cannot be expanded to a large area mainly due to a lack of observed data 

and the complexity of setting up and operating crop growth models. To address these 

shortcomings, recent crop yield prediction techniques use remote sensing data (Bastiaanssen & 

Ali, 2003) or combine ground and space observations (Singh & Das, 2022). As technology 

advances, remotely sensed products have proved to be reliable, easily accessible, and uniformly 

available even in the most remote areas. The use of recently developed remote sensing satellite 

imagery allows the production of high-resolution data, which is readily available and not 

constrained by geographical or environmental factors. This approach overcomes the limitations 

inherent in traditional data acquisition processes that can be hindered by such parameters (Sui et 

al., 2018). As these products continually improve in quality and frequency, there is a high 

probability that the predictability of forecasting models using these products is also improving. 

Traditional remote sensing-based yield estimation techniques typically rely on a single 

parameter extracted from satellite images to construct a correlation between said parameter and 

crop yield (Panek & Gozdowski, 2020; Lopresti et al., 2015; Meroni et al., 2013). Nevertheless, 

recent research has started to integrate multiple parameters in an effort to establish a more 

comprehensive correlation between these aggregated parameters and crop yield. For instance, 

Prasad et al. (2006) used NDVI (Normalized Difference Vegetation Index), temperature, soil 
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moisture, and precipitation data from satellite imagery to develop a crop yield estimation model 

(Prasad et al., 2006). Ines et al. (2013) used AMSR-E soil moisture data and Leaf Area Index (LAI) 

in a crop model to estimate yield (Ines et al., 2013). As an important aspect of ensuring accurate 

yield prediction using multi-spectral images, incorporating temporal, spectral, and spatial 

components has also been studied in crop yield estimation studies (Qiao et al., 2021). 

Despite these improvements in crop yield estimations, many of these methods have been 

created for developing countries with limited scalability to other regions. In addition, the 

predictability of some previous studies is undermined by incomplete datasets attributable to 

adverse weather conditions. However, advancements in technology have yielded new satellite 

imagery products that can help bridge gaps in data while concurrently furnishing more precise and 

higher-resolution information. Therefore, our goal in this study is to use technological 

advancement in remote sensing to estimate crop yield in data-scared regions such as Senegal. The 

problem is further aggravated due to a lack of reliable ground observation data that is usually 

aggregated at a large scale, such as the department (administrative unit) level. In order to address 

these challenges, the following objectives should be considered: 1) examining the sensitivity of 

remotely sensed products to crop yield variabilities in different regions and 2) developing the 

regional crop yield predictive models. The novelty of this work is the contribution of sub-seasonal 

and unaggregated crop information in order to improve the overall model predictability in case of 

data scarcity in developing regions of the world. 

3.2 Materials and Methods 

3.2.1 Study area 

This study is Senegal, a country in West Africa. Senegal has a dry tropical climate, with an 

average annual rainfall of about 1200 (mm) in the south and about 300 mm in the arid zones. 
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Between 1991 and 2020, the mean annual temperature was about 28.91 degrees Celsius (World 

Bank Group, 2021). The soil type is primarily sandy, which allows crops like millet, sorghum, 

corn, and groundnuts to grow very well in most of its agricultural departments. Rice is also grown 

well in the irrigated areas of Senegal. With slightly over 3 million hectares of arable land 

nationwide, only about 2% is irrigated (Global Yield Gap Atlas, 2016). Senegal’s agriculture 

sector is very significant, as it takes up about 43% of the country’s total area, contributes about 

17% to the GDP, and offers employment to about 70% of its population (Feed The Future, 2015). 

Millet production, like the production of other cereals, experiences yearly variability influenced 

by diverse weather patterns and economic pressures (Debieu et al., 2018; Kane et al., 2016). 

However, as of 2016, millet had emerged as the second-largest contributor to the national food 

production system, following groundnuts, and accounting for roughly 20% of the total agricultural 

activities (Feed The Future, 2015). Furthermore, in 2018, it accounted for 30% of all cereal 

production in the country (Kane et al., 2023). 

3.2.2. Modeling Overview 

Our research proposes three hypotheses to enhance the accuracy of millet yield prediction. 

The first hypothesis suggests that incorporating soil moisture-based indices derived from high-

resolution satellite-based soil moisture retrievals can improve the prediction. The second 

hypothesis suggests that a prediction model based on individual stages of millet growth will be 

more effective than a model based on the average of all stages. Lastly, we hypothesize that 

accounting for the area of millet production at the department level during different growth stages 

can improve the overall model predictability. To test these hypotheses, we introduce a modeling 

procedure, which is presented schematically in Figure 1 and briefly explained in the following 

section. 
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Figure 1. Overview of the modeling process  

Crop yield is affected by both spatiotemporal and physiographical variables. Therefore, in 

the first step, we obtained remotely sensed data on temperature, soil moisture, precipitation, as 

well as vegetation cover to develop different spatiotemporal variables. We also utilized 

physiographical variables derived from a combination of remote sensing and ground observations 

data pertaining to soil characteristics. These variables were used to perform Predictive and 

Exploratory Analysis. Thirsty six spatiotemporal variables, collected from all Senegal 

departments, went through an initial series of checks to examine their interdependency, validity, 

and correlation with crop yield through the preprocessing stage. This information is then fed to a 

series of machine learning (ML) and nested cross-validation techniques to identify the most robust 

model. In the next step, we are performing variable reduction strategies to reduce the burden of 

future data collection and improve computational time. Variables are systematically reduced to 

identify the best combination of variables for the optimal ML model. Finally, the optimal model 
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is subjected to permutation importance analysis to determine the significance of each feature. This 

involves shuffling the values of each feature in the validation dataset and comparing the model’s 

performance on the shuffled and original datasets. The importance scores of each feature are 

averaged over multiple iterations for a more reliable estimate.  

3.2.3 Data Input 

3.2.3.1 Crop Yield Data 

Five-year (2016 – 2020) crop yield data for millet were obtained for 43 departments in 

Senegal (Vieira Junior et al., 2023). Millet production is predominantly in the western region, with 

the highest production in the southwest and the lowest in the north (Figure 2.a). Figure 2.b shows 

the millet production zones clustered using k-means method and the country’s average yield value 

of 43 departments (Figure 2). The planting period of millet across the country ranges from June to 

July; this is the period between the beginning and end of the planting exercise. August is the main 

growing period of millet in Senegal; this is the period that the crop attains most of its vegetative 

growth and achieves maximum canopy cover. The harvesting of millet ranges from September to 

November; this is the period when the crop is removed from the field (FAO, 2020). The harvesting 

period seems spatially longer than the planting and growing periods because millet can be 

harvested from the time the grains mature while the crop is still using water and nutrients for its 

growth-producing fresh grains until the crop stops growing and loses water-producing dry grains. 
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Figure 2. a) average Millet production across Senegal; b) production zones based on annual 

average yield 

 

3.2.3.2 Spatiotemporal and Physiographical Variables 

The following remote sensing products were employed to assess the impact of various 

environmental stressors on crop productivity at different stages of development. The source and 

further details of these remote sensing products are presented in Table 1. Also, since the reported 

yield data was at the department level while remote sensing data have varying spatial scales, it was 

necessary to upscale the remote sensing products to the department level. The upscaling was 

achieved by averaging all cells of a department using the ArcGIS version 10.8.1 zonal statistic 

tool. Additionally, the remote sensing data was only extracted for areas with agricultural land use. 

Then, all indices were calculated/extracted for three millet development stages: planting (June-

July), growing (August), and harvesting (September to November) periods (FAO, 2020). In 

summary, eight remote sensing products were utilized to estimate yield during the planting, 

growing, harvesting, and development seasons, resulting in 38 predictor variables. 
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 Table 1: Remote sensing products used for the yield prediction 

Index Product Type Publisher 

Spat

ial 

Scal

e 

Temp

oral 

Scale 

Source 

Soil 

Moistur

e Index 

(SMI) 

SMAP/Sentinel-1 

L2 

Radiometer/Radar 

30-Second Scene 

EASE-Grid Soil 

Moisture, Version 

3 (SPL2SMAP_S) 

Secon

dary 

National 

Aeronauti

cs and 

Space 

Administr

ation 

(NASA) 

1 km 12 

days 

https://nsidc.org/data/s

pl2smap_s/versions/3  

Vegetati

on Index 

(VI) 

SPOT/VEGETATI

ON, PROBA-V 

NDVI version 2.2  

Secon

dary 

Copernicu

s Global 

Land 

Service 

1 km 10 

days 

https://land.copernicus

.eu/global/products/nd

vi  

Growing 

Degree 

Days 

Index 

Copernicus 

ECMWF 

Secon

dary 

Copernicu

s 

European 

Centre for 

Medium-

Range 

Weather 

Forecasts 

(ECMWF) 

1 km Hourly https://cds.climate.cop

ernicus.eu/cdsapp#!/da

taset/reanalysis-era5-

land-monthly-

means?tab=overview  

Water 

Demand 

Index 

(WDI) 

• SMAP/Sentinel-

1 L2 

Radiometer/Radar 

30-Second 

SceneEASE-Grid 

Soil Moisture, 

Version 3 

(SPL2SMAP_S) 

• SPOT/VEGETA

TION, PROBA-V 

NDVI version 2.2  

• Copernicus 

ECMWF 

Secon

dary 

Singh & 

Das, 

(2022) 

 

1 km 12 

days 

https://www.sciencedi

rect.com/science/articl

e/pii/S0048969722029

904 

  

https://nsidc.org/data/spl2smap_s/versions/3
https://nsidc.org/data/spl2smap_s/versions/3
https://land.copernicus.eu/global/products/ndvi
https://land.copernicus.eu/global/products/ndvi
https://land.copernicus.eu/global/products/ndvi
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://www.sciencedirect.com/science/article/pii/S0048969722029904
https://www.sciencedirect.com/science/article/pii/S0048969722029904
https://www.sciencedirect.com/science/article/pii/S0048969722029904
https://www.sciencedirect.com/science/article/pii/S0048969722029904
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Soil 

Moistur

e Deficit 

Index 

(SMDI) 

•  
 

 

• Regional 

Hydrological 

Extreme 

Assessment 

System (RHEAS)  

 

 

 

Secon

dary 

 

 

Feed the 

Future: 

Senegal 

Drought 

and Crop 

Watch 

 

 

5 km 

 

 

Daily 

 

 

 

Andreadis et al. (2017) 

https://rshydroag.egr.

msu.edu/ 

Standard

ized 

Precipita

tion 

Index 

(SPI3) 

• Regional 

Hydrological 

Extreme 

Assessment 

System (RHEAS)  

Secon

dary 

Feed the 

Future: 

Senegal 

Drought 

and Crop 

Watch 

5 km Daily Andreadis et al. (2017) 

https://rshydroag.egr.

msu.edu/ 

 

Standard

ized 

Runoff 

Index 

(SRI3) 

• Regional 

Hydrological 

Extreme 

Assessment 

System (RHEAS)   

 

Secon

dary 

Feed the 

Future: 

Senegal 

Drought 

and Crop 

Watch 

5 km Daily Andreadis et al. (2017) 

 

https://rshydroag.egr.

msu.edu/ 

Drought 

Severity 

Index 

(DSI) 

• Regional 

Hydrological 

Extreme 

Assessment 

System (RHEAS)  

 

Secon

dary 

Feed the 

Future: 

Senegal 

Drought 

and Crop 

Watch 

5 km Daily Andreadis et al. (2017) 

https://rshydroag.egr.

msu.edu/ 

Precipita

tion 
• CHIRPS dataset  Primar

y 

CHIRPS 5 km Daily https://www.chc.ucsb.

edu/data/chirps  

Tempera

ture 
• NCEP 

Reanalysis at 2.5 

degrees 

Primar

y 

NOAA 

NCEP 

5 km Hourly https://psl.noaa.gov/da

ta/gridded/data.ncep.re

analysis.html 

Nitrogen • Global 

SoilGrids250m  

dataset 

Secon

dary 

ISRIC - 

World 

Soil 

Informatio

n 

250 

m 

5 years https://www.isric.org/e

xplore/soilgrids 

Sand • Global 

SoilGrids250m  

dataset 

Secon

dary 

ISRIC - 

World 

Soil 

Informatio

n 

250 

m 

Decad

es to 

Centur

ies 

https://www.isric.org/e

xplore/soilgrids 

Table 1 (cont’d) 

https://rshydroag.egr.msu.edu/
https://rshydroag.egr.msu.edu/
https://rshydroag.egr.msu.edu/
https://rshydroag.egr.msu.edu/
https://rshydroag.egr.msu.edu/
https://rshydroag.egr.msu.edu/
https://rshydroag.egr.msu.edu/
https://rshydroag.egr.msu.edu/
https://www.chc.ucsb.edu/data/chirps
https://www.chc.ucsb.edu/data/chirps
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
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Silt 

•  
 

• Global 

SoilGrids250m  

dataset 

 

 

Secon

dary 

ISRIC - 

World 

Soil 

Informatio

n 

 

250 

m 

 

Decad

es to 

Centur

ies 

 

https://www.isric.org/e

xplore/soilgrids 

Clay • Global 

SoilGrids250m  

dataset 

Secon

dary 

ISRIC - 

World 

Soil 

Informatio

n 

250 

m 

Decad

es to 

Centur

ies 

https://www.isric.org/e

xplore/soilgrids 

Soil 

Organic 

Carbon  

• Global 

SoilGrids250m  

dataset 

Secon

dary 

ISRIC - 

World 

Soil 

Informatio

n 

250 

m 

30 

years 

https://www.isric.org/e

xplore/soilgrids 

Rainfall 

Erosivit

y 

• Global Rainfall 

Erosivity Map 

Secon

dary 

European 

Soil Data 

Centre 

(ESDAC) 

1 km 1 to 60 

minute

s 

https://esdac.jrc.ec.eur

opa.eu/content/global-

rainfall-erosivity 

 

 

The remotely sensed products and observation data used in this study are generally 

categorized into spatiotemporal and physiographical groups. The spatiotemporal variables were 

carefully selected to capture the environmental stressors that change over time and space. 

Meanwhile, the physiographical variables are limited to those that represent local conditions.  

3.2.3.2.1 Spatiotemporal Variables 

Spatiotemporal variables show the frequency and location of the change in landscape 

(Meng et al., 2019). The spatiotemporal variables that are considered in this study were calculated 

or observed, and these include Soil Moisture Index (SMI), Vegetation Index (VI), Growing Degree 

Days Index (GDDI), Water Demand Index (WDI), Soil Moisture Deficit Index (SMDI), 

Standardized Precipitation Index (SPI), Standardized Runoff Index (SRI), and Drought Severity 

Index (DSI). 

Table 1 (cont’d) 

https://esdac.jrc.ec.europa.eu/content/global-rainfall-erosivity
https://esdac.jrc.ec.europa.eu/content/global-rainfall-erosivity
https://esdac.jrc.ec.europa.eu/content/global-rainfall-erosivity
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Soil Moisture Index (SMI): SMI is derived using soil moisture observations. Soil moisture is an 

important aspect that helps to determine water, energy, and carbon fluxes globally (Das et al., 

2011). This study used the SMAP/Sentinel-1 active-passive soil moisture product at 1 

kmresolution, SMAP L2_SM_SP version 3 (Das et al., 2020), to derive the SMI. Since SMAP 

L2_SM_SP dataset has a revisit interval of about 6 to 12 days (Das et al., 2019), we found 

approximately full coverage over the entire Senegal within 12 days. Thus, all available SMAP 

L2_SM_SP coverage over Senegal within 12 days were composite to estimate SMI using Eq.1 

(Singh & Das, 2022) as:  

SMI = 10 − (
𝑆𝑀𝑡

𝑆𝑀𝑚𝑎𝑥
) × 10           (1) 

where, SMt is the soil moisture for day t, and SMmax is the saturated water content or soil porosity. 

The soil’s particle density (ρparticle) and soil bulk density (ρbulk) are used to compute the SMmax by 

Eq. 2: 

𝑆𝑀𝑚𝑎𝑥 = (1 −  𝜌𝑏𝑢𝑙𝑘/𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒)           (2) 

where, SMI is a dimensionless indicator in the range of 0–10, here, lower soil moisture values 

produce higher SMI (i.e., high water stress condition) and vice-versa.  

Vegetation Index (VI): Vegetation indices like NDVI, Vegetation Condition Index (VCI), and 

Vegetation Health Index (VHI) have been widely used to study the amount and health of vegetation 

over time (Kogan et al., 2012; Shammi & Meng, 2021). This study used NDVI-derived vegetation 

index (VI) to characterize the amount of vegetation at a specific time period and location. The 

SPOT/VEGETATION, PROBA-V NDVI version 2.2 product at 1 km resolution is used to 

compute the VI (Toté et al., 2020). The VI for each day is a dimensionless indicator in the range 

of 0–10, which is calculated by dividing NDVIt (NDVI of a particular day) by NDVImax (the 
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maximum NDVI value in a 20-year period (2000 – 2020), and then multiplying by 10, as per the 

Eq. 3 given by Singh & Das (2022): 

VI = (
𝑁𝐷𝑉𝐼𝑡

𝑁𝐷𝑉𝐼𝑚𝑎𝑥
) × 10            (3)  

The higher the NDVI, the higher the VI (i.e., high amount of vegetation), and vice-versa. 

Growing Degree Days Index (GDDI): GDD is used to determine biological activities throughout 

a crop’s development and phenology stages, which are expressed as heat units (Mcmaster & 

Wilhelm, 1997), derived by subtracting the base temperature, which is the temperature below 

which plant development activity becomes insignificant, from the average temperature (Singh & 

Das, 2022). The Copernicus ECMWF ERA5 Hourly Temperature dataset is used to compute the 

GDD (Hersbach et al., 2023). The GDDI is calculated using Eq. 4 as follows (Singh & Das, 2022): 

GDDI =
𝐺𝐷𝐷

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑛𝑔𝑒 
 × 10           (4) 

where, GDDI is the daily GDD, and the Temperature Growth Range is the optimum temperature 

for crop development, calculated as the difference between the lower and upper base temperatures 

(Tbase). Major cereal crops have an average temperature growth range of 10 degrees Celsius to 30 

degrees Celsius (Anandhi, 2016; Singh & Das, 2022). However, based on the crop growth 

characteristics in Senegal, we used a temperature growth range of 12 degrees Celsius to 35 degrees 

Celsius for millet (ICRISAT, 1984). GDDI is a dimensionless index, which varies between 0 and 

10, where a GDDI of 10 represents the highest potential heat unit (high crop water stress condition) 

to support plant activities. 

Water Demand Index (WDI): The Water Demand Index is a dimensionless product that measures 

the amount of water required for crops, which can help identify areas where water is limited and 
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potentially cause stress on agricultural production. WDI can be calculated based on factors 

influencing water demand, such as temperature, solar radiation, and atmospheric humidity (Mishra 

& Singh, 2013). As with prior study (Singh & Das, 2022), we have incorporated GDDI, VI, and 

SMI into the calculation of WDI (Eq. 5), to provide information on crop growth and development, 

vegetation cover, and soil moisture conditions and improve the accuracy of yield prediction: 

WDI = SMI × VI × GDDI            (5) 

A high value of WDI represents a high water demand, which indicates water stress 

conditions; a low WDI represents a low water demand, indicating the absence of water stress 

conditions. The theoretical maximum value of WDI is 1000, and the minimum is zero. 

Soil Moisture Deficit Index (SMDI): A widely employed measure for evaluating agricultural 

drought is the Standardized Moisture Deficit Index (SMDI), as introduced by Narasimhan and 

Srinivasan in 2005. The SMDI for the study period was collected from the Senegal Drought and 

Crop Watch System, which was derived using root-zone soil moisture simulations of the well-

known Variable Infiltration Capacity (VIC) model (Feed the Future, 2023). The SMDI used in this 

study ranges from -4 to +4, representing dry and wet conditions, respectively.  

Standardized Precipitation Index (SPI): The SPI is a well-known meteorological drought index 

developed by McKee et al. (1993) that measures the magnitude of short and medium-term drought 

based on the amount of precipitation within a specific timescale: 3, 6, 9, 12, 24, and 48 months. 

This study used SPI3, which was derived using three months of precipitation to characterize short- 

and medium-term water deficit/excess conditions, primarily important in the context of agriculture. 

We used Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data at 5 km 

spatial resolution to estimate SPI3, which was further re-scaled to 1 km resolution. The SPI3 
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indicates how much above or below the median the 3-month precipitation is, ranging from -3 to 

+3, where positive values of the SPI3 imply precipitation greater than the median, which means 

there is no drought, and negative values imply that precipitation is lower than the median, and 

therefore there is a drought (Kubiak-Wójcicka & Juśkiewicz, 2020; Svoboda et al., 2012). 

Standardized Runoff Index (SRI): The SRI is a drought index that is widely used to study 

hydrological drought, which is expressed as the concept employed by (McKee et al., 1993) for the 

SPI in defining SRI as the unit standard normal deviate linked to the percentile of hydrologic runoff 

accumulated over a specific period (Kubiak-Wójcicka & Juśkiewicz, 2020; Shukla & Wood, 

2008). This study used the SRI3, developed on a 3-month timescale in the range of - 3 to +3. The 

positive values of the SRI3 indicate the absence of drought, whereas negative values of the SRI3 

indicate the presence of drought (Kubiak-Wójcicka & Juśkiewicz, 2020). The VIC model 

simulated SRI values for the study period were obtained from then Senegal Drought and Crop 

Watch System at 5 km resolution, which was further re-scaled at 1 km resolution (Feed The Future, 

2023). 

Drought Severity Index (DSI): The DSI indicates the agricultural drought severity derived using 

root zone soil moisture expressed as a percentile of the soil moisture climatology as described in 

Andreadis et al. (2005).  

DSI is expressed as a percentage between 0 and 100%, where values close to 100% 

represent extreme drought (water stressed) conditions. The VIC model simulated DSI was obtained 

from the Senegal Drought and Crop Watch System at 5 km resolution, which was further re-scaled 

at 1 km resolution using a linear interpolation technique (Feed The Future, 2023). 
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The SPI3, SRI3, SMDI, and DSI were obtained from the Regional Hydrological Extreme 

Assessment System (RHEAS), a software framework that streamlines water resources simulations 

by assimilating diverse datasets, including satellite observations (Andreadis et al., 2017). The core 

of RHEAS is a spatially enabled PostgreSQL/PostGIS database that automatically ingests various 

datasets. The software allows for nowcast and forecast simulations, and in this study, it 

demonstrated its ability to produce data products in different contexts. 

2.3.2.2 Physiographical Variables 

Physiographical variables are the environmental characteristics that affect plant growth, 

processes, and physiology. It is very important to note that crop yield is not only affected by natural 

occurrences like drought and floods but also by existing characteristics of the soil on which the 

crops are grown. This study has incorporated the critical physiographical variables for crop growth 

such as Nitrogen Content; Rainfall Erosivity; Sand, Clay, and Silt contents; and Soil Organic 

Carbon. 

Nitrogen Content: Among the major nutrients essential for plant growth (e.g., nitrogen, 

phosphorus, potassium), nitrogen is vital in crop growth and development (Hofman & Cleemput, 

2004). In addition, the proper application of nitrogen-rich fertilizer as a part of agricultural 

management practices can improve crop yield (Smil, 2011). Nitrogen goes through a series of 

processes and exists in different forms in the soil, but plants can only uptake the mineral form of 

nitrogen (nitrate and ammonium) (Robertson & Vitousek, 2009). In this study the soil nitrogen 

content (cg/kg) was obtained from the Global SoilGrid250 m dataset (Hengl et al., 2017). 

Sand, Clay, and Silt Contents: It is very important to know the soil texture information of a 

particular region’s sand, silt, and clay content, as this determines the type of crop grown in that 
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region. Different crops have different growth in different soil textures; for example, maize does 

well in sandy loam soils, whereas rice does well in soils with more clay and silt (USA Rice, 2020). 

On the other hand, millet grows well in well-drained loamy soils (Oelke et al., 1990). Incorporating 

this element in our study will ensure that the soil type for a particular region is considered in the 

estimated crop yield. The soil texture information is reported in (g/kg) and was obtained from the 

Global SoilGrid250 m dataset (Hengl et al., 2017). 

Soil Organic Carbon (SOC): Soil Organic Carbon is the carbon component in the soil’s organic 

matter (Department of Agriculture and Food-Western Australia, 2014). The changes in SOC 

happen after many years, and the change is usually very small, primarily observed in the topsoil. 

However, it is still important to quantify the SOC as it is vital to know how much carbon stocks 

are available and to identify any effects a management practice may have. Soils with higher 

amounts of SOC tend to have better aeration, drainage, microbe support, and resistance to erosion, 

and are often associated with improved yields (Corning et al., 2016). This study obtained SOC 

(dg/kg) from the Global SoilGrid250m dataset (Hengl et al., 2017). 

Rainfall Erosivity: Rainfall erosivity is the ability of rainfall to cause soil loss downslope, and its 

estimation is based on the storm energy and intensity (Nearing et al., 2017). Soil erosion caused 

by water is regarded as the primary cause of soil degradation (Panagos et al., 2017), so it is vital 

to identify the erosivity level in a particular region, as this affects soil fertility and crop yield. For 

this study, the rainfall erosivity (mm ha−1 h−1 yr−1) dataset of Senegal was obtained from the 

Global Rainfall Erosivity map at 1 km spatial resolution developed by (Panagos et al., 2017). 
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3.2.3. Data Analysis 

3.2.3.1 Bias Correction 

After conducting an extensive analysis of crop cultivation in every department of Senegal 

between 2016 and 2020, we found that multiple crops were grown in the same department and 

could not be differentiated during data acquisition. As a result, the remotely sensed data, 

particularly the NDVI, which measures the reflectance of vegetation in a given area, did not 

distinguish millet from other crops. This led to elevated NDVI readings, even during millet 

harvesting periods, which were attributed to other crops grown in the same department as millet. 

Moreover, the growing vegetation could have influenced soil moisture readings, which are 

essential in calculating the WDI. To reduce the margin of error, we identified the exact size of the 

cultivated area where millet was grown in each department and established a Bias Correction factor 

(Tables S1 to S3). By considering only the area in which millet is grown, we can more accurately 

compute the WDI with respect to the planting, growing, and harvesting periods. This correction 

factor will improve the accuracy of similar calculations and provide a more precise understanding 

of the agricultural conditions in Senegal. 

3.2.3.2 Exploratory Analysis: Spatiotemporal and Physiographical Variable Analysis  

We aim to investigate the individual effects of spatiotemporal and physiographic variables 

on millet crop yields as well as the relationships between these variables using Spearman’s rank 

correlation and linear mixed effects model, as they have different strengths and weaknesses. With 

Spearman’s rank correlation, we examined the correlation between all remote sensing indices and 

crop yield to understand their annual variabilities. Meanwhile, we statistically identified the most 

relevant indices to crop yield regardless of temporal variability with the linear mixed effects model. 
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By investigating the independent effects of these factors, we can better understand how they 

influence millet crop yields. 

Data were analyzed using the R statistical software (R Core Team, 2022). We employed a 

linear mixed effects model to test the effect of independent variables (WDI, SMI, GDDI, VI, 

SMDI, SRI3, SPI3, DSI, sand content, silt content, clay content, nitrogen content, SOC, and 

rainfall erosivity (during the planting, growing, and harvesting stages of plant growth) on millet 

yield using the package ‘lmerTest” (Kuznetsova et al., 2017). Independent variables were 

considered fixed effects, and departments and years were considered random effects. All 

independent variables were continuous, and we standardized the variables (mean centered at 0 and 

standard deviation of 1) because the means of some variables were different by many orders of 

magnitude, leading to scaling issues.  

Model residuals were assessed visually by plotting model residuals against predicted values 

to assess constant variance, and the responses were log-transformed to meet the model assumption. 

Additionally, a QQ-plot was used to visually evaluate the normality of the model residuals, and it 

was found that the model satisfied the assumptions of normality. Outliers were identified using the 

function outlierTest (Fox & Weisberg, 2019). Significant mean shifting studentized residuals were 

identified based on Bonferroni adjusted p values and were removed from the model. Next, a 

backward elimination stepwise regression was used to identify candidate predictors of millet yield 

using package “stats” (R Core Team, 2022). Starting with the current model, including all 

predictors, one predictor was dropped at a time, and AIC values were computed for each model. 

The candidate model with the lowest AIC was used as a final model. Partial residuals plotted 

against each significant predictor suggested that higher-order polynomial regression was 

unnecessary. 
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Each significant predictor of millet yield was then categorized into four different categories 

based on quantiles to assess mean differences in millet yield. The model with categorical predictors 

was subjected to ANOVA. Post hoc mean separation tests were performed on significant predictors 

based on tukey adjusted p values at the alpha level of 0.05 using the “emmeans” package (Lenth 

et al., 2023). Finally, back-transformed estimated marginal means are reported. 

3.2.3.3 Predictive Analysis: Crop Yield Estimations  

In this task, we aimed to predict millet yield using the spatiotemporal and physiographical 

features dataset. The task started with preprocessing, in which we applied MinMax and Robust 

scaling methods, respectively, to the input and output variables to ensure that the differences would 

not influence our model in the scale of the features (Pedregosa et al., 2011). Then to find the best 

hyperparameters for the ML models and to evaluate their performance, we used nested cross-

validation with the following configurations: 1) Outer cross-validation loop: This loop is 

responsible for estimating the model’s performance. We divided the dataset into multiple, equally 

sized folds (in our case, 5). In each iteration of the loop, one of these folds was set aside as “test 

set,” while the remaining folds were used for training the model. This process was repeated until 

each fold had been used as the test set once. The average performance across all iterations provided 

an unbiased estimate of the model’s performance and 2) Inner cross-validation loop: This loop is 

responsible for selecting the best hyperparameters for the model. For each iteration in the outer 

loop, we performed another cross-validation process on the training data (again using 5 folds). 

This time, however, we used a grid search to try different combinations of hyperparameters for 

our ML models. The hyperparameter combination that resulted in the best average performance 

was chosen as the best set of hyperparameters for that iteration. 
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After finding the best hyperparameters using nested cross-validation, we trained the model 

on the entire dataset and saved it for further model evaluation. We compute the error indexes, 

including the Nash–Sutcliffe model efficiency coefficient (NSE), the coefficient of determination 

(R2), Root mean Square Error (RSME), the normalized root mean squared error by variable range 

(nRMSE), and Willmot’s index of agreement (d) for each iteration of the outer loop and then 

average them for evaluating the model performance. We repeat the above-mentioned procedure to 

select the best unbiased model among eight regression models for millet yield prediction. The 

models that we selected with their hyperparameter configurations are presented in Table 2.  

Table 2. Comparison of regression models and their hyperparameter configurations 

 

 

 

Model Name 

Parameters 

Configuration for 

Grid Search 

Hyperparameters 

Description Model Reference 

Linear Regression 

 

N/A No hyperparameters Galton (1886) 

Ridge Regression 

 

 

alpha: logspace (-4, 

4, 9) 

alpha: Regularization 

strength (L2 penalty) 

(Hoerl & Kennard, 

1970) 

Lasso Regression 

 

 

alpha: logspace (-4, 

4, 9) 

alpha: Regularization 

strength (L1 penalty) 

(Tibshirani, 1994) 

Elastic Net 

Regression 

 

 

 

 

 

 

alpha: logspace (-4, 

4, 9),  

l1_ratio: linspace 

(0.1, 1, 10) 

alpha: Regularization 

strength (L1 and L2 

penalty),  

 

l1_ratio: The mix 

between L1 and L2 

penalty 

(Zou & Hastie, 2005) 

Partial Least Squares 

Regression 

 

 

 

n_components: range 

(1, 11) 

n_components: 

Number of 

components to keep 

in the reduced 

dimensionality space 

(Wold et al., 2001) 

 

Support Vector 

Regression 

 

C: logspace (-3, 3, 7),  

kernel: Kernel type,  

C: Penalty parameter,  

 

(Drucker et al., 1996) 
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epsilon: logspace (-3, 

3, 7), kernel: ['linear', 

'rbf'] 

epsilon: Tube width 

within which no 

penalty is applied on 

the training data 

 

Random Forest 

Regression 

n_estimators: [50, 

100, 200], 

max_depth: [None, 

10, 20], 

min_samples_split: 

[2, 5, 10], 

min_samples_leaf: 

[1, 2, 4], 

max_features: ['sqrt'] 

n_estimators: 

Number of trees, 

max_depth: The 

maximum depth 

allowed for trees. 

min_samples_split: 

The minimum 

number of samples 

required to split a 

node. 

min_samples_leaf: 

The minimum 

number of samples 

required at each leaf 

node. max_features: 

The number of 

features to consider 

when searching for 

the best split 

 

(Breiman, 2001) 

Gradient Boosting 

Regression 

n_estimators’: [50, 

100, 200], 

max_depth’: [3, 6, 9], 

min_samples_split’: 

[2, 5, 10], 

min_samples_leaf’: 

[1, 2, 4], 

max_features’: 

[‘sqrt’], 

learning_rate’: [0.01, 

0.1] 

n_estimators: The 

number of boosting 

stages. max_depth: 

The maximum depth 

allowed for trees. 

min_samples_split: 

The minimum 

number of samples 

required to split a 

node. 

min_samples_leaf: 

The minimum 

number of samples 

required at each leaf 

node. max_features: 

The number of 

features to consider 

when searching for 

the best split. 

learning_rate: The 

(Friedman, 2001) 

Table 2 (cont’d) 
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learning rate, also 

known as shrinkage. 

 

3.2.3.4 Exploratory Analysis: Permutation Importance Analysis  

Permutation importance is a method for assessing the relative significance of features in an 

ML model by quantifying the change in model performance when a particular feature’s values are 

randomly shuffled (Breiman, 2001). The underlying principle is that if a feature is crucial, 

scrambling its values should significantly impact the model’s performance, while shuffling an 

insignificant feature should have minimal or no effect. In some cases, an increase in model 

performance after shuffling a feature’s values may occur, indicating that the feature introduces 

noise to the model, thereby degrading its performance. Overall, this technique offers an intuitive 

way to comprehend the importance of each feature in a model by directly examining the 

consequences of shuffling the feature values on the model’s performance. 

 Herein, we employ the Scikit-learn library (Pedregosa et al., 2011) to compute permutation 

importance. Using the fitted ML model, we evaluated each feature by randomly shuffling its values 

and then assessing the model’s performance on the shuffled dataset with the same scoring function 

utilized during model training and cross-validation. Subsequently, the change in performance is 

compared to that of the original performance. This process was repeated ten times for each feature, 

and the average performance change was calculated and reported as feature importance. 

 

 

 

Table 2 (cont’d) 
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3.3 Results and Discussion 

3.3.1 Explanatory Analysis: Spatiotemporal and Physiographical Variable Analysis   

3.3.1.1 Assessing the Effect of Temporal Variability on the Relationship between Crop Yield 

and Remote Sensing Indices using Spearman’s Rank Correlation 

The Spearman’s Rank correlation coefficients between millet yield and different 

spatiotemporal and physiographical variables for all departments in Senegal are presented in 

Figure 3.  

 

Figure 3. Spearman’s Rank Correlation Coefficient analysis of millet yield and 

spatiotemporal/physiographical variables across departments in Senegal 
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Planting indices: Specific planting indices, namely WDI, SMI, and GDDI, were discovered to 

have a negative impact on millet crop yield due to increased water demands, unsuitable vegetation 

conditions, elevated temperature, and significant soil moisture deficits during planting. However, 

the remaining planting indices exhibited inconsistent trends, indicating complex relationships that 

require further investigation. This inconsistency was especially noticeable in 2016 and 2020, 

which corresponded to the rainy planting period as indicated by drought indices. 

Growing indices: The association between millet crop yield and different growing indices is more 

intricate and diverse than planting indices. Certain indices primarily exhibit a negative correlation 

with crop yield (namely WDI, SMI, and GDDI), whereas others manifest irregular patterns, and a 

few are predominantly positively linked. These findings imply that the impact of these indices on 

crop yield throughout the growing period is contingent on specific contextual factors and other 

pertinent variables. 

Harvesting indices: During the harvesting period, there is a lack of a discernible p trend in the 

indices’ correlation. Nonetheless, WDI and SMI exhibit a robust negative correlation in the earlier 

and later years, indicating that increased values of these variables could have resulted in reduced 

yields. This timeframe corresponds to the dry harvesting season, as evidenced by the presence of 

negative drought indices. Additionally, all drought indices (DSI, SMDI, SPI3, and SRI3) displayed 

a considerable positive correlation in 2018 and 2019, implying that elevated values of these 

variables could have contributed to high millet yields. 

Physiographical indices: The correlation coefficients between various physiographical indices and 

millet yield showed fluctuating trends from 2016 to 2020 that are harder to explain as the values 

of these indices are constant during the study period. This suggests that it is crucial to account for 

spatiotemporal variations alongside physiographical indices when characterizing the anomalies 
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and fluctuations in millet yield. Over the period of three years (2018-2020), various indices, such 

as clay and silt content, soil organic carbon, and rainfall erosivity, exhibited predominantly 

negative correlation coefficients. However, there was an exception with sand, which demonstrated 

a general increasing trend between 2016 and 2019, followed by a decrease in 2020. 

Overall summary: The study shows that the relationship between indices and millet crop yield is 

complex and varies depending on the stage of crop development. Overall, the correlations vary 

from -0.56 (Planting SMI) to +0.40 (Harvesting SRI3). However, regardless of the growth stage, 

all variables describing crop water demands (WDI, VI, SMI, and GDDI) are negatively correlated 

with yield. In contrast, all drought indices (DSI, SMDI, SPI3, and SRI3) are positively correlated 

with millet yields indicating no drought conditions. Nonetheless, when examining the temporal 

trends, the results show the occurrence of both wet and dry years during the study period. The 

physiographical parameters are negatively correlated with yield except for the sand content. 

Meanwhile, the temporal element adds more complexity and inconsistent trends. Therefore, 

additional analysis is required to enhance the comprehension of these relationships, accounting for 

other influential factors and adopting modeling techniques that accommodate complex and 

nonlinear relationships. 
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3.3.1.2 Assessing the Relationship between Crop Yield and Remote Sensing Indices Using 

Spearman’s Rank Correlation 

Stepwise regression through backward elimination following a linear mixed effect model 

showed that VI, GDDI, SPI3, and SRI3 in the planting period, VI in the growing period, WDI, VI, 

SMI, GDDI, SMDI, SPI3, and SRI3 in the harvesting period, and rainfall erosivity and soil organic 

carbon unvarying of time had a significant effect on millet yield (Table S4). Below is the yield 

prediction model with the lowest AIC in which 78.6% of the variation in the millet yield was 

explained by the following equation (Eq. 6): 

𝑦𝑖𝑒𝑙𝑑 𝑖  ~ 𝑁(𝛼𝑗[𝑖],𝑘[𝑖], 𝛿2)         (6) 

𝛼 𝑗  ~ 𝑁 (ꞵ
0
𝛼 +  ꞵ

1
𝛼 (𝑃𝑙𝑎𝑛𝑡𝑖𝑛𝑔 𝑉𝐼 ) + ꞵ

2
𝛼 (𝑃𝑙𝑎𝑛𝑡𝑖𝑛𝑔 𝐺𝐷𝐷𝐼 ) + ꞵ

3
𝛼 (𝑃𝑙𝑎𝑛𝑡𝑖𝑛𝑔 𝑆𝑅𝐼3 )

+ ꞵ
4
𝛼 (𝑃𝑙𝑎𝑛𝑡𝑖𝑛𝑔 𝑆𝑃𝐼3 ) + ꞵ

5
𝛼  (𝐺𝑟𝑜𝑤𝑖𝑛𝑔 𝑉𝐼 ) +  ꞵ

6
𝛼 (𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝑊𝐷𝐼 )

+ ꞵ
7
𝛼 (𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝑉𝐼ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔 ) + ꞵ

8
𝛼 (𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑀𝐼  )

+ ꞵ
9
𝛼 (𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝐺𝐷𝐷𝐼  ) + ꞵ

100
𝛼  (𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑀𝐷𝐼  )

+ ꞵ
111
𝛼  (𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑃𝐼3 ) + ꞵ

122 
𝛼 (𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑅𝐼3 )

+ ꞵ
133  
𝛼 (𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝐸𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦) + ꞵ

144 
𝛼 (𝑆𝑂𝐶), 𝛿𝛼𝑗

2  𝑓𝑜𝑟 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠 𝑗 = 1, … , 𝐽) 

𝛼𝑘 ~ 𝑁(𝜇𝛼𝑘, 𝛿2
𝛼𝑘), for year 𝑘 = 1, … , K 

where, all variables were modeled as predictors, and the year and department were modeled as 

random effects. j and k are department and year, respectively; N is a normal or Gaussian 

distribution, α is a random effect representing the effect of the department (j) or year (k) on yield, 

ꞵ is the model coefficient, μ is the mean value of the random effects, and 𝛿2 is unaccounted 

variation, which is the overall variance of the random effects not explained by the model. 

In general, some indices have a positive relationship with planting SPI3, growing VI, 

harvesting WDI, harvesting SRI3, and Rainfall Erosivity. In contrast, others have a negative 

relationship, like planting VI, planting GDDI, planting SRI3, harvesting VI, harvesting SMI, 

harvesting GDDI, harvesting SMDI, harvesting SPI3, and SOC. 
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The results of our analysis of variance indicate that certain variables have a strong 

correlation with millet yield. Specifically, during the planting period, SPI3 and SRI3, and during 

the growing period, VI, as well as SOC, showed a significant correlation with millet yield at the 

0.1% significance level. SPI3 values above the median indicate above-average precipitation, while 

high SRI3 values indicate high hydrologic runoff, suggesting the absence of drought according to 

both indices. In addition, we observed that high values of planting SPI3 and harvesting SRI3 were 

associated with higher values of millet yields; however, the confidence interval for planting SPI3 

(0.43 – 1.33) is wider than the confidence interval for growing VI (0.15 – 0.50), demonstrating 

greater uncertainty in the effect of planting SPI3 on millet yield.  

The planting period is crucial for millet as it includes plant emergence and early stages of 

development when adequate moisture is necessary for germination and early growth. The young 

plants are sensitive to dry spells, and high runoff levels can cause erosion, making them fragile. 

Our findings align with Fall et al. (2021), who reported that very high precipitation could cause 

crop damage when associated with runoff, which explains why high values of SRI could be 

associated with low yield, as very high precipitation may have resulted in high surface runoff 

which could easily erode germinating plants. We also found that VI, derived from NDVI, had a 

strong correlation with millet yield during the growing period (August), consistent with Fall et al. 

(2021) and Panek & Gozdowski (2020), who reported the highest correlation between NDVI and 

cereal yield during the early stages of crop development. 

Our findings indicate a relationship between SOC levels and millet yields, with moderate 

SOC levels being associated with higher millet yields. Conversely, elevated SOC levels are 

correlated with reduced millet yields. This observation agrees with Oldfield et al. (2019), who 

reported a decline in maize yield when SOC concentrations exceeded 2%. The consistency 
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between these studies underscores the potential influence of SOC on crop productivity and the 

importance of optimizing SOC levels for various crop types (Oldfield et al., 2019). 

3.3.2 Predictive Analysis: Crop Yield Estimations 

3.3.2.1 Predictive Crop Yield Model Selection   

Based on the results from Table 3, it is evident that the Random Forest Regressor model 

has the best predictive performance, as it has positive scores for all metrics (i.e., NSE, R2, RMSE, 

nRMSE, and d). This indicates that the model can predict the millet yield more reliably compared 

to the other ML models after extensive nested 5-fold cross-validation. Prasad et al. (2021), Jeong 

et al. (2016), and Sakamoto (2020) found similar results, where Random Forest Regressor model 

performed reliably and faster in predicting cotton yield (Prasad et al., 2021), wheat yield (Jeong et 

al., 2016), and soybean yield (Sakamoto, 2020). On the other hand, the Linear Regression model 

has the worst predictive performance, as it has negative scores for all metrics, which is also similar 

to what Jeong et al. (2016), where the Linear Regression model performed poorly compared to 

Random Forest Regressor model. This indicates that the model is not able to predict the millet 

yield accurately. The other models have mixed results, with some performing better than others 

depending on the metric. Therefore, the Random Forest Regressor model is adopted for further 

investigations.  

Table 3. Average performance and the best-unbiased hyperparameters 

Regression Model 

Optimized 

Hyperparameters 

NSE RMSE nRMSE d  

Linear Regression -10.495 1.417 0.539 0.514 No parameters to tune for 

Linear Regression.  
Ridge Regression -0.022 0.597 0.245 0.626 alpha=0.0001 

Lasso Regression -0.016 0.594 0.244 0.625 alpha=0.0001, 

max_iter=10000 
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ElasticNet 

Regression 

 

 

-0.018 

 

 

0.595 

 

 

0.244 

 

 

0.625 

 

 

alpha=0.0001, 

l1_ratio=0.9, 

max_iter=10000 

Partial Least 

Squares  

0.055 0.583 0.238 0.591 n_components=1 

Support Vector 

Regression 

-0.046 0.618 0.251 0.606 C=10, kernel='linear' 

Random Forest 

Regressor  

0.161 0.554 0.224 0.574 max_features='sqrt', 

n_estimators=50, 

random_state=42 

Gradient Boosting 

Regressor  

0.014 0.588 0.24 0.617 max_depth=6, 

max_features='sqrt', 

min_samples_leaf=4, 

random_state=42 

 

3.3.2.2 Predictive Crop Yield Model Implementation and Evaluation of its Performance   

Table 4 and S5 present the results of the Random Forest Regressor models, which were 

trained using different sets of independent variables. The models’ performance was evaluated 

using several statistical indices, including NSE, R2, d, RMSE, and nRMSE. The best model was 

selected based on the highest NSE, R2, and d values and the lowest RMSE and nRMSE values. 

According to this criterion, the best model was identified as the one using all independent variables 

except Department, Harvesting, Total, Growing, Physiographical, and Planting SMI, VI, and 

GDDI (Figure 4a). This model exhibited the highest NSE (0.831), the lowest RMSE (0.308) and 

nRMSE (0.077), and the highest R2 (0.831) and d (0.942) values. Conversely, the worst-performing 

model used all independent variables except Bias Correction factor and Department (Figure 4b), 

which had the lowest NSE (0.730), the highest RMSE (0.391) and nRMSE (0.098), and the lowest 

R2 (0.730) and d (0.896) values. The exclusion of certain variables, including Department, 

Harvesting, Total, Growing, Physiographical, and some climate-related variables (SMI, VI, and 

GDDI) during the planting period, improved the Random Forest performance model. These 

variables may have had less influence on the response variable, or their exclusion may have 

Table 3 (cont’d) 
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reduced multicollinearity or noise in the data (Schroeder, 1990; Senaviratna & Cooray, 2019). 

However, these findings are dataset-specific and may not necessarily apply to other crops and 

regions. 

Table 4. The best-performing Random Forest Regressor models for different sets of variables 

Independent Variables NSE RMSE nRMSE R2 d 

All variables except Bias Correction 

Harvesting, Total, Growing, and 

Physiographical 

0.781 0.351 0.088 0.781 0.921 

All variables except Bias Correction, 

Department, Harvesting, Total, Growing, 

Physiographical, and Planting SMI, VI, and 

GDDI 

0.796 0.340 0.085 0.796 0.928 

All variables except Bias Correction  0.756 0.371 0.093 0.756 0.909 

All variables except Bias Correction and 

Department 

0.730 0.391 0.098 0.730 0.896 

All variables except Bias Correction, 

Department, and Physiographical 

0.729 0.391 0.098 0.729 0.900 

All variables except Bias Correction, 

Harvesting and Total 

0.790 0.344 0.086 0.790 0.925 

All variables except Bias Correction, 

Harvesting, Total, and Growing 

0.798 0.337 0.085 0.798 0.928 

All variables except Bias Correction, 

Department, Harvesting, Total, and Growing 

0.767 0.362 0.091 0.767 0.915 

All variables except Bias Correction, 

Department, Harvesting, and Total 

0.735 0.387 0.097 0.735 0.902 

All variables except Bias Correction and Total 0.756 0.371 0.093 0.756 0.907 

All variables except Bias Correction, 

Department and Total 

0.735 0.387 0.097 0.735 0.901 

All variables except Harvesting, Total, 

Growing, and Physiographical  

0.794 0.341 0.086 0.794 0.926 

All variables  0.763 0.366 0.092 0.763 0.916 

All variables except Department 0.740 0.383 0.096 0.740 0.900 

All variables except Department and 

Physiographical 

0.746 0.378 0.095 0.746 0.909 

All variables except Harvesting and Total 0.793 0.342 0.086 0.793 0.925 

All variables except Harvesting, Total, and 

Growing 

0.820 0.319 0.080 0.820 0.938 

All variables except, Department, Harvesting, 

Total, and Growing 

0.795 0.340 0.086 0.795 0.927 

All variables Department, Harvesting, and 

Total 

0.768 0.362 0.091 0.768 0.916 

All variables except Total 0.766 0.363 0.091 0.766 0.912 
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All variables except Department and Total 

 

 

0.746 

 

 

0.379 

 

 

0.095 

 

 

0.746 

 

 

0.904 

All variables except Department, Harvesting, 

Total, Growing, Physiographical and Planting 

SMI, VI, and GDDI 

0.831 0.308 0.077 0.831 0.942 

 

Figure 4. Comparing the predicted vs. actual millet yield for (a) the best- and (b) worst-

performing Random Forest Regressor models 

 

 

Meanwhile, the relatively lower statistical indices associated with the average-performing 

Random Forest Regressor models (refer to Table S5) could suggest the presence of other 

influential factors, currently unaccounted for or unidentified, that significantly impact millet yield 

predictions. These factors may not be entirely observable or quantifiable through the remote 

sensing products employed in this study. 

 3.3.2.3 Understanding the Key Predictors for Millet Crop Yield Using Permutation 

Importance Analysis:  

Figure 5 illustrates the relative significance of the independent variables contributing to the 

optimal performance of the Random Forest Regressor model. The prominence of the WDI within 

the optimal model underscores the pivotal role of water availability in crop production, particularly 

Table 4 (cont’d) 
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during the planting phase. This suggests that any alterations in water accessibility, whether 

instigated by climatic extremes, farming management practices, or other elements, could 

profoundly affect millet yields. Singh and Das (2022) also found that WDI affected crop yield 

significantly (Singh & Das, 2022). The Bias Correction factor emerges as the second most 

influential variable. This high ranking infers substantial variability in millet cultivation areas 

across different departments, a factor of paramount importance when production data is only 

available in aggregated forms, such as at departmental or district levels.  

The combined contribution of the indices related to drought and flood conditions (Planting 

SMI, Planting SPI3, Planting DSI, Planting SRI3, and Planting SMDI) accounts for approximately 

49% of the variance, thereby signifying the substantial impact of extreme events on millet yield. 

Moreover, incorporating SPI3 and SRI3, representing precipitation and runoff data over three 

months, insinuates that recent climatic conditions during the planting phase can significantly 

influence overall crop yields. This is in line with other studies that have used these indices, SPI 

specifically, to monitor or predict yield (Mohammed et al., 2022; Tigkas et al., 2018). This 

underlines the necessity of incorporating temporal dynamics into agricultural modeling and 

planning. Consequently, identifying these crucial periods could aid in planning interventions or 

mitigation strategies to optimize yield. 

 In summary, these findings emphasize the intricate nature of agricultural yield predictions, 

which are influenced by a multitude of interconnected environmental factors. They further 

underscore the necessity of maintaining comprehensive, spatially and temporally explicit data 

pertaining to these factors to enhance the precision and applicability of these predictive models. 
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Figure 5. The relative importance of independent variables in the overall performance of the 

optimal Random Forest Regressor model 

 

 

3.4 Conclusion 

In conclusion, this study aimed to address the challenges of estimating crop yield in data-

scarce regions such as Senegal by using technological advancements in remote sensing and ML. 

The research proposed three hypotheses to improve the accuracy of millet yield prediction; 

Initially, we assumed that integrating indices derived from satellite-based high-resolution soil 

moisture retrievals could boost the yield model predictive capability. Subsequently, we put forth 

the idea that a prediction model centered on distinct millet growth phases might yield greater 

efficacy compared to a model that relies on the average of all stages. Finally, we hypothesize that 
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factoring in the millet production area at the departmental level during various growth stages can 

enhance the model’s overall predictive accuracy. The findings of this research offer compelling 

support for the notion that integrating soil moisture-related indices, considering discrete millet 

growth stages, and incorporating a millet area Bias Correction factor can enhance the overall 

predictive performance of the model. 

The Random Forest algorithm emerged as the most robust approach, outperforming other 

ML models and maintaining its superiority throughout the variable reduction process, which 

systematically minimized the set of independent variables to pinpoint the ideal combination for 

the optimal ML model. The analysis also highlighted the importance of water availability in seed 

germination and early plant development, as shown by SMI and WDI affecting model performance 

significantly during the planting season, as well as the significance of the Bias Correction factor 

in predicting millet yield. Indeed, the Bias Correction factor ranks as the second most significant 

variable in forecasting millet yields, highlighting its importance when production data is solely 

accessible in aggregated formats, such as departmental or district levels.  

 When it comes to maximizing millet yield, it is essential to consider the impact of drought 

and flood conditions. In fact, these factors account for almost half of the variance in yield. It is 

also important to pay attention to recent climatic conditions during the planting phase, as they can 

have a significant influence on overall crop yields. Specifically, SPI3 and SRI3 are key indicators 

to consider. By recognizing these crucial periods, we can better plan interventions and mitigation 

strategies to optimize yield. This underscores the need for agricultural modeling and planning that 

takes into account temporal dynamics. 

The findings have significant implications for enhancing crop yield prediction in regions 

lacking adequate data and facilitating the advancement of more precise and efficient crop 
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management strategies. The intricate and interconnected nature of environmental factors that 

impact crop yields highlights the importance of maintaining comprehensive data that is both 

spatially and temporally specific. This data is crucial in enhancing the precision and significance 

of predictive models, which can aid in creating interventions and mitigation tactics to optimize 

yield. Such measures will benefit both producers and consumers by promoting sustainable and 

productive agricultural practices. 
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4.0 OVERALL CONCLUSION 

The United Nations Sustainable Development Goals (SDGs) aim to combat food insecurity 

by 2030. Nevertheless, numerous developing nations, Senegal included, are encountering 

challenging obstacles in pursuing this objective, primarily due to the emergence of various 

pressing issues, such as climate change and the COVID-19 global pandemic. The primary 

objective of this study was to assess the efficacy of cutting-edge technological advancements and 

products in addressing the adverse effects of these challenges. Specifically, our aim was to aid 

policy makers in formulating planning strategies at regional and national levels by leveraging 

advanced machine learning techniques and utilizing high-resolution spatial and temporal remote 

sensing products.   The sections below summarize some of our findings: 

• Soil moisture is critical for crop growth, and integrating these indices may significantly 

enhance yield prediction. Therefore, we hypothesized that using high-resolution satellite 

data to derive soil moisture-based indices can improve crop yield prediction, which was 

proven to be valid. Nevertheless, expanding the implementation of this approach to a 

national level necessitates government assistance, given that smallholder farmers may not 

possess the financial means and technical resources to implement it on an individual farm 

basis.   

• In this study, we examined the hypothesis that a prediction model focused on individual 

stages of millet growth would outperform a model based on the average of all stages. The 

findings revealed that predictions based on individual stages produced superior results 

compared to predictions for the entire growing season. Notably, precipitation-based indices 

had a significant impact on crop yield prediction during the planting season, emphasizing 

the importance of water for germination and early plant development. As a result, it is 
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crucial to prioritize specific indices at different stages of millet growth, focusing on the 

most critical factors. 

• Our hypothesis that including the area of millet production at the department level during 

different growth stages would improve the model's accuracy was proven to be correct. This 

is especially important as the current land use map cannot differentiate between different 

crops. Consequently, our dependence on agricultural census data becomes essential to 

augment the overall predictability of the model.  

In light of the study's findings, there are several policy interventions and agricultural 

strategies that can be contemplated to enhance crop yield prediction and alleviate food insecurity 

in regions vulnerable to the effects of climate change and extreme events. The subsequent policies 

and interventions are presented as follows: 

• National Policy: In light of the substantial computational and technical endeavors required 

to assess crop production on a national level, it is imperative for governmental bodies and 

humanitarian organizations to take action and provide assistance to small-scale farmers 

who might lack the necessary resources. In order to enhance the accessibility of modeling 

outcomes to the broader public, various dissemination techniques and platforms can be 

employed, supported by subsidies in the form of human and financial resources. It is 

recommended to ensure the availability of this information at local levels, such as 

Extension offices, as it facilitates the distribution of information and allows for model 

refinement. Extension officers, due to their direct engagement with smallholder farmers 

and familiarity with local data quality, possess valuable insights that can contribute to the 

accuracy and relevance of the model.  
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• Local Policy: Departments should be equipped with the necessary resources and expertise 

to analyze and interpret the collected data and model results. Moreover, Extension officers 

should possess comprehensive knowledge to effectively communicate advanced 

technologies to producers, provide guidance on suitable farming practices, and emphasize 

the crucial factors influencing crop yield. Achieving this can be facilitated through the 

implementation of workshops, training programs, or field days.  

• Targeted Irrigation and Water Management: Considering the importance of water during 

germination and early plant development, policies focusing on irrigation and water 

management can be implemented, including using the WDI to assist in irrigation 

scheduling. 

• Capacity Building and Training: In order to empower farmers to harness advanced 

agricultural technologies effectively, it is imperative to implement comprehensive training 

programs. These programs will focus on enhancing their capacity to interpret and utilize 

remote sensing indices and crop prediction results. By training them with this knowledge, 

farmers will be better equipped to make informed decisions and adapt their farming 

practices in alignment with the latest advancements. This policy aims to foster a proactive 

approach towards agricultural innovation and ensure sustainable growth in the farming 

sector. 

• Research and Development Funding: To promote progress in agriculture, it is crucial to 

allocate funds towards research and development, with a specific focus on advancing 

remote sensing technologies for crop yield prediction. This investment will play a vital role 

in the advancement of more precise and efficient crop prediction models. Additionally, it 

will facilitate the identification of sustainable agricultural practices that can enhance 
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productivity while minimizing environmental impact. By prioritizing these endeavors, this 

policy seeks to drive innovation in agriculture and support the long-term sustainability of 

the sector. 

In conclusion, this study demonstrates the value of incorporating soil moisture-based indices, 

considering individual stages of millet growth, accounting for production areas at the department 

level, and implementing bias correction factors in improving crop yield prediction. These findings 

provide valuable insights for policy makers and agricultural stakeholders, emphasizing the need 

for targeted interventions and technological support to enhance food security in regions vulnerable 

to climate change and extreme events. By implementing these policies and interventions, 

governments can support farmers, enhance agricultural productivity, and ultimately contribute to 

achieving the United Nations Sustainable Development Goal of combating food insecurity by 

2030. 
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5.0 FUTURE WORK 

Based on the findings of this study, there are several suggestions for future work that can 

help us better understand and use millet yield prediction models in the face of changing land use 

and climate conditions. These recommendations are as follows: 

• Conducting long-term monitoring of soil moisture, climate variables, and crop yield data 

can provide valuable insights into the dynamic relationships between these factors. Long-

term data collection and analysis will help identify trends, patterns, and potential changes 

in the relationships over time, enabling the development of more accurate and robust crop 

yield prediction models. 

• While this study focused on millet yield prediction in Senegal, future research can expand 

the scope to include other crops and regions. Different crops may exhibit varying 

sensitivities to extreme climate factors, and understanding these dynamics for a range of 

crops will contribute to the development of comprehensive crop yield prediction models. 

Additionally, studying different regions with varying climatic conditions will provide 

insights into the transferability and generalizability of the findings. 

• Consideration of socioeconomic factors, such as market prices, input costs, and agricultural 

policies, can provide a more holistic understanding of the factors influencing crop yield. In 

addition, integrating socioeconomic data into the crop yield prediction models can help 

identify additional drivers of yield variability and inform policy decisions to improve food 

security. 

• Involving farmers in the research process through participatory approaches can enhance 

the relevance and applicability of crop yield prediction models. Engaging farmers in data 
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collection, model development, and decision-making processes will ensure that the models 

address their specific needs and can be effectively implemented at the farm level. 

By pursuing these future research recommendations, we can advance our knowledge and practical 

applications in crop yield prediction, ultimately contributing to more effective agricultural 

planning, improved food security, and sustainable agricultural systems. 
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APPENDIX 

Table S1. Bias Correction factor based on each department's expected millet cultivated area 

during the planting period (June and July) 

Department 
Expected Millet Planting 

(%) 

Expected Planting of Other 

Crops 

(%) 

Bakel 25.68 74.32 

Bambey 56.40 43.60 

Bignona 14.28 85.72 

Birkelane 27.57 72.43 

Bounkiling 20.59 79.41 

Dagana 9.76 90.24 

Diourbel 59.94 40.06 

Fatick 49.89 50.11 

Foundiougne 33.15 66.85 

Gossas 34.70 65.30 

Goudiri 30.69 69.31 

Goudomp 18.96 81.04 

Guinguineo 59.36 40.64 

Kaffrine 26.69 73.31 

Kanel 60.04 39.96 

Kaolack 38.68 61.32 

Kebemer 28.21 71.79 

Kedougou 0.00 100.00 

Kolda 18.11 81.89 

Koumpentoum 29.50 70.50 

Koungheul 28.74 71.26 

Linguere 45.70 54.30 

Louga 23.64 76.36 

Malem Hodar 25.11 74.89 

Matam 57.69 42.31 

Mbacke 48.14 51.86 

Mbour 54.29 45.71 

Medina Yoro Foulah 22.50 77.50 

Nioro 46.56 53.44 

Oussouye 3.06 96.94 

Podor 9.46 90.54 

Ranenou 74.81 25.19 

Rusfique 0.00 100.00 

Saint-Louis 6.84 93.16 

Salemata 0.00 100.00 

Saraya 0.00 100.00 

Sedhiou 12.62 87.38 

Tamba 22.06 77.94 

 38.80 61.20 



 
 

82 
 

 

 

 

Thies 

Tivaouane 37.96 62.04 

Velingara 13.19 86.81 

Ziguinchor 9.23 90.77 

 

Table S2. Bias Correction factor based on each department's expected millet cultivated area 

during the growing period (August) 

Department 

Expected Planting 

of Other Crops 

(%) 

Expected Millet 

Growing 

(%) 

Expected Growing of 

Other Crops 

(%) 

Bakel 2.78 25.68 71.54 

Bambey 0.00 56.40 43.60 

Bignona 32.45 14.28 53.28 

Birkelane 0.52 27.57 71.91 

Bounkiling 23.13 20.59 56.27 

Dagana 77.75 9.76 12.49 

Diourbel 0.00 59.94 40.06 

Fatick 4.95 49.89 45.15 

Foundiougne 3.29 33.15 63.56 

Gossas 0.00 34.70 65.30 

Goudiri 1.64 30.69 67.67 

Goudomp 33.18 18.96 47.86 

Guinguineo 0.00 59.36 40.64 

Kaffrine 0.03 26.69 73.28 

Kanel 11.58 60.04 28.38 

Kaolack 0.29 38.68 61.03 

Kebemer 0.00 28.21 71.79 

Kedougou 43.70 0.00 56.30 

Kolda 36.15 18.11 45.74 

Koumpentoum 0.20 29.50 70.31 

Koungheul 0.08 28.74 71.18 

Linguere 0.00 45.70 54.30 

Louga 0.59 23.64 75.76 

Malem Hodar 0.10 25.11 74.79 

Matam 31.84 57.69 10.47 

Mbacke 0.00 48.14 51.86 

Mbour 0.00 54.29 45.71 

Medina Yoro Foulah 19.11 22.50 58.39 

Nioro 1.00 46.56 52.43 

Oussouye 89.77 3.06 7.17 

Podor 69.52 9.46 21.02 

 0.00 74.81 25.19 

Table S1 (cont’d) 
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Ranenou 

Rusfique 0.00 0.00 100.00 

Saint-Louis 3.81 6.84 89.35 

Salemata 21.00 0.00 79.00 

Saraya 41.41 0.00 58.59 

Sedhiou 35.32 12.62 52.05 

Tamba 1.00 22.06 76.94 

Thies 0.00 38.80 61.20 

Tivaouane 0.00 37.96 62.04 

Velingara 19.40 13.19 67.41 

Ziguinchor 67.28 9.23 23.49 

 

Table S3. Bias Correction factor based on each department's expected millet cultivated area 

during the harvesting period (September, October, and November) 

Department 

Expected Growing 

of Other Crops 

(%) 

Expected Millet 

Harvesting 

(%) 

Expected Harvesting 

of Other Crops 

(%) 

Bakel 13.31 25.68 61.01 

Bambey 22.13 56.40 21.47 

Bignona 54.23 14.28 31.49 

Birkelane 36.21 27.57 36.22 

Bounkiling 33.27 20.59 46.14 

Dagana 58.76 9.76 31.48 

Diourbel 24.25 59.94 15.81 

Fatick 26.66 49.89 23.44 

Foundiougne 33.17 33.15 33.68 

Gossas 40.53 34.70 24.77 

Goudiri 16.52 30.69 52.80 

Goudomp 44.44 18.96 36.60 

Guinguineo 25.72 59.36 14.92 

Kaffrine 30.02 26.69 43.29 

Kanel 9.62 60.04 30.34 

Kaolack 25.82 38.68 35.50 

Kebemer 47.42 28.21 24.37 

Kedougou 44.02 0.00 55.98 

Kolda 41.06 18.11 40.83 

Koumpentoum 33.75 29.50 36.75 

Koungheul 32.12 28.74 39.14 

Linguere 31.54 45.70 22.76 

Louga 49.03 23.64 27.33 

Malem Hodar 35.99 25.11 38.91 

Matam 21.81 57.69 20.50 

Mbacke 31.49 48.14 20.37 

 20.02 54.29 25.69 

Table S2 (cont’d) 

Table S3 (cont’d) 
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Mbour 

Medina Yoro Foulah 38.86 22.50 38.64 

Nioro 29.10 46.56 24.33 

Oussouye 64.17 3.06 32.77 

Podor 46.35 9.46 44.19 

Ranenou 4.43 74.81 20.76 

Rusfique 31.72 0.00 68.28 

Saint-Louis 61.92 6.84 31.24 

Salemata 20.90 0.00 79.10 

Saraya 40.27 0.00 59.73 

Sedhiou 37.16 12.62 50.21 

Tamba 29.77 22.06 48.17 

Thies 36.75 38.80 24.45 

Tivaouane 39.30 37.96 22.74 

Velingara 32.94 13.19 53.86 

Ziguinchor 56.65 9.23 34.12 

 

Table S4. Analysis of Variance results for significant variables. The p-value at 0.1% is 

extremely significant, 1% is highly significant, and 5% is significant 

 

  Predictors Estimates Confidence Interval p-value 

(Intercept) -0.36 -0.69 – -0.04 0.028 

Planting VI -0.27 -0.48 – -0.06 0.012 

Planting GDDI -0.40 -0.68 – -0.12 0.005 

Planting SPI3 0.88 0.43 – 1.33 <0.001 

Planting SRI3 -0.81 -1.25 – -0.38 <0.001 

Growing VI 0.33 0.15 – 0.50 <0.001 

Harvesting WDI 2.69 0.47 – 4.92 0.018 

Harvesting VI -0.30 -0.51 – -0.09 0.005 

Harvesting SMI -2.76 -4.88 – -0.64 0.011 

Harvesting GDDI -0.71 -1.28 – -0.14 0.015 

Harvesting SMDI -0.30 -0.58 – -0.03 0.032 

    



 
 

85 
 

 

Harvesting SPI3 

 

-0.73 

 

-1.45 – -0.01 

 

0.048 

Harvesting SRI3 0.92 0.27 – 1.56 0.005 

Rainfall Erosivity 0.53 0.04 – 1.03 0.034 

Soil Organic 

Carbon 

-0.79 -1.22 – -0.36 <0.001 

 

Table S5. The average-performing Random Forest Regressor models for different sets of 

variables 

Independent Variables NSE RMSE nRMSE R2 d 

All variables except Bias Correction 

Harvesting, Total, Growing, and 

Physiographical 

0.283 0.619 0.189 0.283 0.633 

All variables except Bias Correction, 

Department, Harvesting, Total, Growing, 

Physiographical, and Planting SMI,VI, and 

GDDI 

0.096 0.700 0.213 0.096 0.545 

All variables except Bias Correction  0.234 0.638 0.196 0.234 0.617 

All variables except Bias Correction and 

Department 

0.161 0.664 0.204 0.161 0.592 

All variables except Bias Correction, 

Department, and Physiographical 

0.138 0.678 0.208 0.138 0.568 

All variables except Bias Correction, 

Harvesting and Total 

0.246 0.629 0.193 0.246 0.636 

All variables except Bias Correction, 

Harvesting, Total, and Growing 

0.281 0.614 0.189 0.281 0.676 

All variables except Bias Correction, 

Department, Harvesting, Total, and Growing 

0.227 0.635 0.196 0.227 0.651 

All variables except Bias Correction, 

Department, Harvesting, and Total 

0.167 0.666 0.204 0.167 0.583 

All variables except Bias Correction and Total 0.239 0.634 0.195 0.239 0.619 

All variables except Bias Correction, 

Department and Total 

0.167 0.666 0.204 0.167 0.570 

All variables except Harvesting, Total, 

Growing, and Physiographical  

0.320 0.602 0.185 0.320 0.669 

All variables  0.250 0.633 0.194 0.250 0.622 

All variables except Department 0.192 0.653 0.201 0.192 0.606 

All variables except Department and 

Physiographical 

0.139 0.678 0.208 0.139 0.568 

All variables except Harvesting and Total 0.234 0.635 0.195 0.234 0.626 

      

Table S4 (cont’d) 
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All variables except Harvesting, Total, and 

Growing 

 

0.318 

 

0.594 

 

0.183 

 

0.318 

 

0.698 

 

 

All variables except Department, Harvesting, 

Total, and Growing 

 

 

0.303 

 

 

0.604 

 

 

0.186 

 

 

0.303 

 

 

0.682 

All variables Department, Harvesting, and 

Total 

0.212 0.647 0.198 0.212 0.612 

All variables except the Total 0.260 0.625 0.192 0.260 0.643 

All variables except Department and Total 0.206 0.648 0.199 0.206 0.613 

All variables except Department, Harvesting, 

Total, Growing, Physiographical and Planting 

SMI, VI, and GDDI 

0.198 0.661 0.201 0.198 0.590 

 

Table S5 (cont’d) 

Table S5 (cont’d) 


